WO2024175041A1 - 天线单元、具有该天线单元的天线阵列及电子设备 - Google Patents
天线单元、具有该天线单元的天线阵列及电子设备 Download PDFInfo
- Publication number
- WO2024175041A1 WO2024175041A1 PCT/CN2024/077967 CN2024077967W WO2024175041A1 WO 2024175041 A1 WO2024175041 A1 WO 2024175041A1 CN 2024077967 W CN2024077967 W CN 2024077967W WO 2024175041 A1 WO2024175041 A1 WO 2024175041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna array
- waveguide
- antenna
- chip
- sub
- Prior art date
Links
- 230000005855 radiation Effects 0.000 claims abstract description 58
- 230000007704 transition Effects 0.000 claims abstract description 41
- 230000007423 decrease Effects 0.000 claims abstract description 29
- 230000005284 excitation Effects 0.000 claims description 40
- 230000003071 parasitic effect Effects 0.000 claims description 24
- 230000008859 change Effects 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 abstract description 12
- 230000000875 corresponding effect Effects 0.000 description 42
- 238000010586 diagram Methods 0.000 description 37
- 239000000243 solution Substances 0.000 description 12
- 230000010287 polarization Effects 0.000 description 10
- 238000001514 detection method Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000003079 width control Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
Definitions
- the present application relates to the field of wireless communications, and in particular to an antenna unit, an antenna array having the antenna unit, and an electronic device.
- Millimeter wave antennas have become the mainstream of antenna design research due to their advantages such as small component size, high spatial resolution, and strong anti-interference ability.
- the transmission and reception of signals of electronic equipment such as radars are realized by millimeter wave antennas.
- the main indicators of antennas are bandwidth, gain, beam width, antenna polarization, etc.
- resolution, detection distance, and detection angle range are key indicators. The wider the bandwidth, the higher the distance resolution that the antenna can support. The higher the antenna gain or the lower the feeder loss, the longer the radar detection distance that the antenna can support. The wider the beam width, the larger the angle range of radar detection under the same conditions.
- Waveguide antennas are divided into substrate integrated waveguide (SIW) antennas, hollow waveguide antennas, and gap waveguide antennas.
- SIW antennas are similar to microstrip antennas and have large transmission medium losses; waveguide slot antennas have high processing accuracy requirements and narrow bandwidth.
- Traditional waveguide antennas have good electrical performance, but the structure is complex and requires multi-layer implementation. The processing accuracy requirements for gap waveguide antennas are reduced, but the design and structure are still complex and the implementation cost is high.
- Planar printed antennas have low efficiency, large feed line losses, and limited design freedom; waveguide slot antennas require high processing precision and have narrow bandwidth; traditional aperture radiation arrays have complex structures and must be implemented in multiple layers; gap waveguide designs have complex structures and high costs.
- the present application provides an antenna unit, an antenna having the antenna unit and an electronic device, which realizes the conversion of the fundamental mode to the high-order mode through the stepped structure of the transition waveguide of the antenna unit, improves the bandwidth of the antenna unit, simplifies the antenna structure and saves costs.
- a first aspect of an embodiment of the present application provides an antenna unit, comprising: a feeding waveguide; a transition waveguide, comprising a first part, a second part, a third part and a fourth part connected in sequence, wherein one end of the first part is connected to the feeding waveguide, and the waveguide size of the end of the first part away from the feeding waveguide gradually decreases to form a first step structure; the second part is arranged in parallel with the first part, and the waveguide size of the end of the second part away from the feeding waveguide gradually decreases to form a second step structure, and the second step structure is arranged opposite to the first step structure; the third part is connected to the end of the second part away from the feeding waveguide, and the waveguide size of the end of the third part away from the second part gradually decreases to form a third step structure, and the third step structure is located on the side of the third part opposite to the fourth part; the fourth part is arranged in parallel with the third part and adjacent to the first part, and the waveguide size of the end of the fourth
- the conversion from the fundamental mode to the high-order mode is realized through the stepped structure of the transition waveguide of the antenna unit, thereby improving the achievable bandwidth of the antenna unit, simplifying the antenna structure and saving costs.
- the direction in which the waveguide size of the first part decreases is a first gradual direction
- the direction in which the waveguide size of the second part decreases is a second gradual direction
- the direction in which the waveguide size of the third part decreases is a third gradual direction
- the direction in which the waveguide size of the fourth part decreases is a fourth gradual direction
- the first gradual direction and the third gradual direction are parallel to each other and have the same direction
- the second gradual direction and the fourth gradual direction are parallel to each other and have opposite directions
- the first gradual direction and the second gradual direction are perpendicular to each other.
- the change of waveguide size is controlled to form a stepped structure, and the directions in which the waveguide sizes of multiple parts become smaller are correlated, so as to improve the conversion performance from fundamental mode to high-order mode and the achievable bandwidth.
- the radiation waveguide has a plurality of radiation ends, each radiation end has a corresponding radiation opening
- the transition waveguide is a square waveguide
- the antenna unit satisfies the following relationship: 0.85 ⁇ L ⁇ 0.55 ⁇ ; 0.3 ⁇ B ⁇ 0.15 ⁇ ; 0.3 ⁇ b ⁇ 0.15 ⁇ ; wherein ⁇ is the free space wavelength, L is the size of the square waveguide, b is the waveguide width of the feeding waveguide, and B is the waveguide width of the radiation opening.
- the antenna unit is guaranteed to be compact, and multiple antenna units are easy to combine and install, thereby improving the degree of freedom of combination of multiple antenna units.
- the radiating waveguide has a plurality of radiating ends, each radiating end has a corresponding radiating opening, the transition waveguide is a circular waveguide, and the antenna unit satisfies the following relationship: 0.40 ⁇ L ⁇ 0.32 ⁇ ; 0.3 ⁇ B ⁇ 0.15 ⁇ ; 0.3 ⁇ b ⁇ 0.15 ⁇ ;
- ⁇ is the free space wavelength
- L is the size of the square waveguide
- b is the waveguide width of the feed waveguide
- B is the waveguide width of the radiation opening.
- a transition arc or a chamfer is provided at the intersection of adjacent steps of at least one of the first step structure, the second step structure, the third step structure, the fourth step structure and the fifth step structure.
- arcs or chamfers are set to improve the conversion performance from fundamental mode to high-order mode and the achievable bandwidth.
- the radiation waveguide includes a power divider and a radiation end, the power divider is connected to the fourth part, and the radiation end is connected to the power divider.
- the structure of the antenna unit is simplified, the degree of freedom of combining multiple antenna units is improved, and the combination cost is reduced.
- an antenna array comprising a plurality of antenna units according to any one of the first aspects.
- the conversion from the fundamental mode to the high-order mode is realized for each antenna unit through a stepped structure, thereby improving the achievable bandwidth of the antenna unit, simplifying the antenna structure and saving costs.
- the antenna array includes a transmitting antenna array and a receiving antenna array
- the transmitting antenna array includes a first transmitting sub-antenna array, a second transmitting sub-antenna array and a third transmitting sub-antenna array
- the receiving antenna array includes a first receiving sub-antenna array and a second receiving sub-antenna array
- each sub-antenna array includes at least two antenna units; the antenna units in the first receiving sub-antenna array and the antenna units in the second receiving sub-antenna array are respectively arranged at intervals along a first direction, the antenna units in the first transmitting sub-antenna array and the antenna units in the second transmitting sub-antenna array are respectively arranged at intervals along a second direction, and the first direction is perpendicular to the second direction; the first receiving sub-antenna array, the second receiving sub-antenna array, the first transmitting sub-antenna array and the
- the above technical solution simplifies assembly complexity and reduces assembly cost, and the combined structure can reduce feeder loss between the chip and the antenna unit.
- the combined arrangement of multiple antenna units is fixed, which is convenient for modularization and generalization.
- the distance between the center point of the first receiving sub-antenna array and the center point of the second receiving sub-antenna array along the second direction is greater than the length of the first transmitting sub-antenna array along the second direction or the length of the second transmitting sub-antenna array along the second direction, wherein the center point is the center of the first receiving sub-antenna array or the second receiving sub-antenna array along the second direction.
- the bandwidth performance of the antenna array is improved by limiting the extension length.
- antenna units of the third transmitting sub-antenna array are arranged at equal intervals along a diagonal of a square.
- the bandwidth performance of the antenna array is improved by limiting the arrangement of the antenna units.
- the antenna units in the first receiving sub-antenna array and the antenna units in the second receiving sub-antenna array are respectively arranged at equal intervals along the first direction
- the antenna units in the first transmitting sub-antenna array and the antenna units in the second transmitting sub-antenna array are respectively arranged at equal intervals along the second direction.
- the antenna array also includes a transceiver RF chip, and the feeding waveguide of each antenna unit has a corresponding feeding interface; the transceiver RF chip is connected to the corresponding multiple feeding interfaces through chip pins, and the feeding interface corresponding to each transceiver RF chip is arranged in a "T" shape or an "L" shape.
- the feeding interface is arranged in a centralized manner, the average feeder loss between the chip and the antenna unit is reduced, and the azimuth (1.6°)/elevation resolution of the electronic equipment is comprehensively improved.
- the antenna array further includes a transceiver RF chip, an excitation patch, a parasitic patch and a circuit board, the transceiver RF chip, the excitation patch, and the parasitic patch are arranged on the circuit board at intervals, and the excitation patch and the parasitic patch are arranged corresponding to the feeding interface of the corresponding antenna unit;
- the transceiver radio frequency chip is connected to the excitation patch through a feeder unit.
- the excitation patch may be a rectangular patch, a circular patch, a triangular patch or a ring patch. piece.
- the excitation patch and the parasitic patch satisfy the following relationship: 0.3 ⁇ L1 ⁇ 0.1 ⁇ ; 0.3 ⁇ L2 ⁇ 0.1 ⁇ ;
- L1 is the extension length of the excitation patch away from the transceiver RF chip
- L2 is the extension length of the parasitic patch away from the transceiver RF chip.
- the feed line unit includes a microstrip line and a balun, one end of the microstrip line is connected to a chip pin of a transceiver RF chip, the other end of the microstrip line is connected to the balun, and the balun is connected to the excitation chip.
- Nt is the number of transmitting channels of the transceiver RF chip
- Nr is the number of receiving channels of the transceiver RF chip
- Nc is the number of transceiver RF chips of the antenna array
- N is the total number of channels of the antenna array.
- the antenna array includes a first waveguide plate and a second waveguide plate, a plurality of first grooves are provided on a side of the first waveguide plate facing the second waveguide plate, and a plurality of second grooves are provided on a side of the second waveguide plate facing the first waveguide plate, each first groove and the corresponding second groove form a receiving space, and the receiving space is used to receive the corresponding antenna unit.
- a third aspect of an embodiment of the present application provides an electronic device, the electronic device comprising the antenna array of the second aspect.
- FIG1 is a schematic diagram of the structure of an antenna unit provided in an embodiment of the present application.
- FIG. 2 is a schematic front view of a partial structure of the antenna unit shown in FIG. 1 .
- FIG. 3 is a cross-sectional view of the antenna unit shown in FIG. 1 .
- FIG. 4 is a schematic structural diagram of the antenna unit from another angle provided in an embodiment of the present application.
- FIG5 is a schematic diagram of the structure of an antenna array provided in an embodiment of the present application.
- FIG. 6 is a schematic diagram of the exploded structure of the antenna array shown in FIG. 5 .
- FIG. 7 is a schematic diagram of the exploded structure of the antenna array shown in FIG. 5 from another angle.
- FIG. 8 is a schematic diagram showing a comparison of simulation curves of return loss of an antenna array provided in an embodiment of the present application.
- FIG. 9 is a schematic top view of another antenna array provided in an embodiment of the present application.
- FIG10 is a schematic diagram of the combined structure of a transceiver RF chip and an antenna unit provided in an embodiment of the present application.
- FIG. 11 is a schematic diagram of an exploded view of the combined structure of the transceiver RF chip and the antenna array shown in FIG. 10 .
- FIG. 12 is a schematic diagram showing a comparison of simulation curves of return loss of an antenna array provided in an embodiment of the present application.
- FIG. 13 is a schematic diagram of another antenna array provided in an embodiment of the present application.
- FIG. 14 is an exploded schematic diagram of the antenna array shown in FIG. 13 .
- FIG. 15 is a schematic diagram of the structure of the antenna unit in the transmitting antenna array in FIG. 13 .
- FIG. 16 is a schematic diagram of the structure of another antenna array provided in an embodiment of the present application.
- 17A, 17B, 18A and 18B are schematic diagrams of the arrangement of antenna units provided in embodiments of the present application.
- FIG19 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
- FIG20 is a schematic diagram of an application scenario of a vehicle-mounted radar provided in an embodiment of the present application.
- first”, second, etc. are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
- the term “a” or “b” refers to a number of technical features that are indicated or impliedly specified. Thus, a feature defined as “first”, “second”, etc. may explicitly or implicitly include one or more of the features.
- “multiple” means two or more.
- Directional terms such as “upper”, “lower”, “left”, and “right” are defined relative to the positions of the components schematically placed in the drawings. It should be understood that these directional terms are relative concepts. They are used for description and clarification relative to the components, and may change accordingly according to changes in the positions of the components placed in the drawings.
- connection should be understood in a broad sense, for example, “connection” can be fixed connection, detachable connection, or integrated; can be directly connected or indirectly connected through an intermediate medium.
- connection can be fixed connection, detachable connection, or integrated; can be directly connected or indirectly connected through an intermediate medium.
- connection can be fixed connection, detachable connection, or integrated; can be directly connected or indirectly connected through an intermediate medium.
- connection can be fixed connection, detachable connection, or integrated; can be directly connected or indirectly connected through an intermediate medium.
- connection can be fixed connection, detachable connection, or integrated; can be directly connected or indirectly connected through an intermediate medium.
- connection can be fixed connection, detachable connection, or integrated; can be directly connected or indirectly connected through an intermediate medium.
- connection can be fixed connection, detachable connection, or integrated; can be directly connected or indirectly connected through an intermediate medium.
- and/or used herein includes any and all combinations of one or more of the relevant listed items.
- FIG1 shows a schematic structural diagram of an antenna unit 100 provided in an embodiment of the present application.
- the antenna unit 100 includes a feeding waveguide 10, a transition waveguide 20 and a radiating waveguide 30.
- the feeding waveguide 10 is used to access the feeding to realize the signal conversion from the input end to the antenna.
- One end of the transition waveguide 20 is connected to the feeding waveguide 10, and the other end of the transition waveguide 20 is connected to the radiating waveguide 30.
- the transition waveguide 20 is used to realize the conversion from the fundamental mode to the high-order mode and realize the distribution of amplitude and phase.
- the radiating waveguide 30 is used to realize the radiation of the signal of the antenna unit 100 into the free space.
- the antenna unit 100 shown in FIG. 1 has a compact structure and can form an antenna array by combining a plurality of antenna units 100 . This has a high degree of freedom in combination design and can reduce assembly costs.
- the feeding waveguide 10, the transition waveguide 20 and the radiation waveguide 30 in FIG. 1 are integrally arranged, that is, the feeding waveguide 10, the transition waveguide 20 and the radiation waveguide 30 are a whole.
- the feed waveguide 10 and the radiation waveguide 30 are of the same waveguide type. If the feed waveguide 10 is an elliptical waveguide, the radiation waveguide 30 is also an elliptical waveguide; if the feed waveguide 10 is a rectangular waveguide (also called an E-plane waveguide), the radiation waveguide 30 is also a rectangular waveguide.
- Fig. 2 is a partial structural schematic diagram of the antenna unit 100 shown in Fig. 1.
- the transition waveguide 20 includes a first portion 22, a second portion 24, a third portion 26 and a fourth portion 28 connected in sequence, one end of the first portion 22 is connected to the feeding waveguide 10, and the fourth portion 28 is connected to the radiation waveguide 30.
- the waveguide size of the end of the first portion 22 away from the feeding waveguide 10 gradually decreases to form a first stepped structure 222, the first stepped structure 222 is located on the side opposite to the first portion 22 and the second portion 24, and the second portion 24 is arranged in parallel with the first portion 22.
- the waveguide size of the second portion 24 at one end close to the feeding waveguide 10 gradually decreases to form a second stepped structure 242 .
- the second stepped structure 242 is located on a side of the second portion 24 opposite to the third portion 26 and opposite to the first stepped structure 222 .
- the waveguide size of the third portion 26 at one end away from the feeding waveguide 10 gradually decreases to form a third stepped structure 262 .
- the third stepped structure 262 is located on a side of the third portion 26 opposite to the fourth portion 28 and opposite to the second stepped structure 242 .
- the fourth part 28 is arranged in parallel with the third part 26 and is arranged adjacent to the first part 22 at intervals.
- the fourth part 28 and the first part 22 are located on the same side of the combined structure of the second part 24 and the third part 26.
- the waveguide size of the fourth part 28 at one end away from the third part 26 gradually decreases to form a fourth step structure 282 and a fifth step structure 284.
- the fourth step structure 282 and the fifth step structure 284 have the same structure and are arranged oppositely.
- the fourth step structure 282 and the fifth step structure 284 are arranged adjacent to the first step structure 222.
- the step structure of the antenna unit 100 realizes the conversion from the fundamental mode to the high-order mode and the distribution of the amplitude and phase.
- the direction in which the waveguide size of the first portion 22 decreases is the first gradual change direction a
- the direction in which the waveguide size of the second portion 24 decreases is the second gradual change direction b
- the direction in which the waveguide size of the third portion 26 decreases is the third gradual change direction c
- the direction in which the waveguide size of the fourth portion 28 decreases is the fourth gradual change direction d;
- the first gradient direction a and the third gradient direction c are parallel to each other and have the same direction
- the second gradient direction b and the fourth gradient direction d are parallel to each other and have opposite directions
- the first gradient direction a and the second gradient direction b are perpendicular to each other.
- extension direction of the first portion 22 in FIG. 2 is the first gradual change direction a
- the extension direction of the second portion 24 is the second gradual change direction b
- the extension direction of the third portion 26 is the third gradual change direction c
- the extension direction of the fourth portion 28 is the fourth gradual change direction d;
- the extending direction of the third portion 26 is the same as the extending direction of the first portion 22
- the extending direction of the fourth portion 28 is the same as the extending direction of the second portion 24
- the extending direction of the first portion 22 and the extending direction of the third portion 26 are the same as the extending direction of the second portion 24 and the extending direction of the fourth portion 28.
- the extension direction of the portion 28 is vertical.
- the extending direction of the first portion 22 , the second portion 24 , the third portion 26 and the fourth portion 28 may be the direction of the opening of the connection between the portion and the previous portion.
- the first part 22, the second part 24, the third part 26 and the fourth part 28 of the transition waveguide 20 in Figure 2 all include a fixed part and a variable part, wherein the waveguide size of the fixed part remains unchanged, and the waveguide size of the variable part gradually decreases in the extension direction or gradient direction of the corresponding part.
- the first step structure 222 is a three-step ladder
- the second step structure 242 is a three-step ladder
- the third step structure 262 is a two-step ladder
- the fourth step structure 282 and the fifth step structure 284 are both three-step ladders.
- the number of steps of the first step structure 222, the second step structure 242, the third step structure 262, the fourth step structure 282 and the fifth step structure 284 can be adjusted according to actual applications.
- the first step structure 222, the second step structure 242, the third step structure 262, the fourth step structure 282 and the fifth step structure 284 are all two-step ladders.
- FIG. 3 is a cross-sectional view of the antenna unit 100 shown in FIG. 1 .
- the antenna unit 100 in Figure 3 is a waveguide structure, which has an inner cavity wall and an outer cavity wall, and the inner cavity wall and the outer cavity wall of the changing parts of the first part 22, the second part 24, the third part 26 and the fourth part 28 (that is, the parts where the waveguide size changes) all form a stepped structure.
- the inner cavity walls of the changing portions of the first portion 22 , the second portion 24 , the third portion 26 , and the fourth portion 28 of the antenna unit 100 form a stepped structure, and the corresponding outer side walls do not form a stepped structure.
- chamfers are provided at the intersections of adjacent steps of the first step structure 222, the second step structure 242, the third step structure 262, the fourth step structure 282 and the fifth step structure 284, and the first step structure 222, the second step structure 242, the third step structure 262, the fourth step structure 282 and the fifth step structure 284 are chamfered to improve the broadband performance of the antenna unit 100.
- At least one of the first stepped structure 222 , the second stepped structure 242 , the third stepped structure 262 , the fourth stepped structure 282 , and the fifth stepped structure 284 may be chamfered.
- a transition arc is provided at the intersection of adjacent steps of at least one of the first step structure 222, the second step structure 242, the third step structure 262, the fourth step structure 282 and the fifth step structure 284, and the intersection of adjacent steps in at least one of the above-mentioned step structures is processed into an arc to form a transition arc, so as to improve the broadband performance of the antenna unit 100.
- FIG. 4 is a schematic structural diagram of the antenna unit 100 from another angle provided in an embodiment of the present application.
- the radiation waveguide 30 includes a power divider 32 and a plurality of radiation ends 34 .
- the power divider 32 is connected to the fourth portion 28 , and the radiation ends 34 are connected to the power divider 32 .
- the power divider 32 in FIG4 is a two-power divider, which is used to divide the energy of one input signal transmitted by the transition waveguide 20 into two paths, and the two signals are radiated to the free space through the corresponding radiation ends 34.
- the radiation waveguide 30 in FIG4 includes four radiation ends 34, and the two-power divider divides two signals, and each signal corresponds to two radiation ends 34. It can be understood that in other embodiments, the number of radiation ends 34 can be set according to specific application scenarios. For example, the number of radiation ends 34 is 8, and the two signals divided by the two-power divider each correspond to four radiation ends 34.
- each radiation end 34 has a corresponding radiation opening 342 , and the radiation opening 342 may be a rectangular waveguide or an elliptical waveguide.
- the feeding waveguide 10 has a feeding interface 12 , and the feeding waveguide 10 is fed via the feeding interface 12 .
- the transition waveguide 20 is a square waveguide, and the size of the square waveguide is L, and L satisfies the following relationship:
- the waveguide width of the radiation opening 342 is B, and B satisfies the following relationship: 0.3 ⁇ B ⁇ 0.15 ⁇ ;
- the waveguide width of the feeding waveguide 10 is b, and b satisfies the following relationship: 0.3 ⁇ b ⁇ 0.15 ⁇ ;
- the size of the antenna unit is no more than 0.8 times the wavelength and meets the radar MIMO array layout, has a higher degree of freedom, reduces the number of waveguide layers (less than 4 layers), reduces assembly costs, and improves antenna bandwidth.
- the transition waveguide 20 is a circular waveguide, and the size of the circular waveguide is L, and L satisfies the following relationship:
- the waveguide width of the radiation opening 342 is B, and B satisfies the following relationship: 0.3 ⁇ B ⁇ 0.15 ⁇ ;
- the width of the feed waveguide 10 is b, and b satisfies the following relationship: 0.3 ⁇ b ⁇ 0.15 ⁇ ;
- the size of the antenna unit is no more than 0.8 times the wavelength and meets the radar MIMO array layout, has a higher degree of freedom, reduces the number of waveguide layers (less than 4 layers), reduces assembly costs, and improves antenna bandwidth.
- the thickness of the waveguide walls of the radiation opening is greater than 0.8 mm, and the thickness of the waveguide walls of the feeding waveguide 10 is greater than 0.8 mm.
- the winding of the feeding waveguide can be flexibly designed according to the location of the antenna unit and the outlet pins of the relevant chip, and the radiation waveguide 30 can be a rectangular waveguide or an elliptical waveguide to realize the radiation of the signal to the free space.
- the amplitude and phase distribution and the wave width of the antenna unit 100 can be controlled by adjusting the position of the step structure in the transition waveguide 20 and the slot structure corresponding to the radiation opening of the radiation waveguide 30 .
- FIG5 is a schematic diagram of the structure of an antenna array 200 provided in an embodiment of the present application.
- the antenna array 200 in FIG. 5 includes a plurality of antenna units 100 , and the structures of the transition waveguides 20 and the radiation waveguides 30 of the plurality of antenna units 100 are the same, and the antenna beam widths and gains corresponding to the plurality of antenna units 100 are also the same.
- the antenna array 200 includes a receiving antenna array 210 and a transmitting antenna array 220. All antenna units 100 in the receiving antenna array 210 operate simultaneously.
- the structures of the corresponding transition waveguides 20 and radiation waveguides 30 of the multiple antenna units 100 are the same and all antenna units 100 in the receiving antenna array 210 work simultaneously, which is easy to implement and compose, and further facilitates modular and universal design.
- the receiving antenna array 210 includes a first receiving sub-antenna array 2102 and a second receiving sub-antenna array 2104
- the transmitting antenna array 220 includes a first transmitting sub-antenna array 2202, a second transmitting sub-antenna array 2204 and a third transmitting sub-antenna array 2206; each sub-antenna array includes at least two antenna units 100.
- the number of antenna units 100 in the first receiving sub-antenna array 2102 and the number of antenna units 100 in the second receiving sub-antenna array 2104 are the same, and the antenna units 100 in the first receiving sub-antenna array 2102 and the antenna units 100 in the second receiving sub-antenna array 2104 are respectively arranged at equal intervals along the first direction.
- the antenna units 100 in the first transmitting sub-antenna array 2202 and the second transmitting sub-antenna array 2204 are respectively arranged at equal intervals along the second direction; wherein the first direction is perpendicular to the second direction;
- the distance between the center point of the first receiving sub-antenna array 2102 and the corresponding center point of the second receiving sub-antenna array 2104 along the second direction is L1, and the extension length of the first transmitting sub-antenna array 2202 along the second direction and the extension length of the second transmitting sub-antenna array 2204 along the second direction are equal and are L2, wherein L1 is greater than L2, and wherein the center point is the center of the sub-antenna array as a whole along the second direction.
- first receiving sub-antenna array 2102, the second receiving sub-antenna array 2104, the first transmitting sub-antenna array 2202 and the second transmitting sub-antenna array 2204 are arranged to form a square structure, and the antenna unit 100 of the third transmitting sub-antenna array 2206 is located in the square structure.
- the square can be a square or a rectangle.
- the antenna units 100 of the third transmitting sub-antenna array 2206 are arranged at equal intervals along the diagonal lines of the square and arranged at equal intervals in a regular pattern, so as to realize the modularization of the antenna array 200 .
- the first receiving sub-antenna array 2102 and the second receiving sub-antenna array 2104 each include twelve antenna units 100
- the first transmitting sub-antenna array 2202, the second transmitting sub-antenna array 2204 and the third transmitting sub-antenna array 2206 each include four antenna units 100. It can be understood that in other embodiments, the number of antenna units 100 in each sub-antenna array can be set according to actual needs.
- FIG. 6 is a schematic diagram of the exploded structure of the antenna array shown in FIG. 5
- FIG. 7 is a schematic diagram of the exploded structure of the antenna array shown in FIG. 5 from another angle.
- the antenna array 200 also includes a first waveguide plate 230 and a second waveguide plate 240, wherein a plurality of first grooves 232 are provided on the side of the first waveguide plate 230 facing the second waveguide plate 240, and a plurality of second grooves 241 are provided on the side of the second waveguide plate 240 facing the first waveguide plate 230, each first groove 232 has a corresponding second groove 241, and each first groove 232 and the corresponding second groove 241 form a receiving space for receiving the corresponding antenna unit 100.
- the multiple antenna units 100 of the first receiving sub-antenna array 2102, the second receiving sub-antenna array 2104, the first transmitting sub-antenna array 2202, the second transmitting sub-antenna array 2204 and the third transmitting sub-antenna array 2206 are respectively located in the receiving space enclosed by the corresponding first groove 232 and the second groove.
- the antenna array 200 is matched with two waveguide plates to accommodate a plurality of antenna units 100, has a simple structure, is easy to assemble, and saves assembly costs.
- the first waveguide plate 230 has a plurality of first through holes 234, each of which penetrates the bottom of the corresponding first groove 232, and the radiation end 34 of the radiation waveguide 30 of the antenna unit 100 passes through the corresponding first through hole 234 to extend out through the first through hole 234.
- the receiving space is enclosed by two waveguide plates, thereby radiating the signal.
- strip grooves 236 are provided on both sides of the first through hole 234 corresponding to the radiation end 34 of each antenna unit 100, and the strip grooves 236 contain conductive members 238. In this way, the strip grooves 236 of the antenna array 200 are combined with the above-mentioned stepped structure to achieve amplitude and phase distribution and wave width control.
- the second waveguide plate 240 has a plurality of second through holes 244, each second through hole 244 passes through the bottom of the corresponding second groove 241, and one end (feeding interface 12) of the feeding waveguide 10 of each antenna unit 100 passes through the corresponding second through hole 244 to receive corresponding feeding.
- the structures of the feeding waveguides 10 of the multiple antenna units 100 in the antenna array 200 are not the same, and the structure of the feeding waveguide 10 in the figure is flexibly arranged according to the position of the antenna unit 100, so as to enhance the flexibility of the antenna units 100 forming the antenna array 200.
- FIG. 8 is a schematic diagram showing a comparison of simulation curves of return loss of the antenna array 200 provided in an embodiment of the present application.
- FIG8 is a schematic diagram showing a comparison of the return loss S11 of an existing antenna array 200 and the return loss S11 of an antenna array provided in an embodiment of the present application. It can be seen from FIG8 that, compared with the existing antenna array, the antenna array 200 provided in an embodiment of the present application reduces the return loss and increases the bandwidth by 1.6 times.
- FIG. 9 is a schematic diagram of another antenna array provided in an embodiment of the present application.
- the antenna array shown in FIG9 has the same structure as the antenna array 200 of the above embodiment, except that:
- the antenna array 200 shown in FIG9 further includes a transceiver RF chip 250 , which is disposed on a side of the second waveguide plate 240 opposite to the first waveguide plate 230 , and a chip pin of the transceiver RF chip 250 provides power feeding to the antenna unit 100 via a feeder line.
- each transceiver RF chip 250 has six chip pins, of which two chip pins correspond to two antenna units 100 corresponding to the transmitting antenna array and two antenna units 100 corresponding to four receiving antenna arrays. Each chip pin provides feeding for the feeding interface 12 of the feeding waveguide 10 of the corresponding six antenna units 100 through a feeder line.
- the antenna array 200 in FIG9 includes six transceiver RF chips 250 , each transceiver RF chip 250 corresponds to a chip area, and the six chip areas corresponding to the six transceiver RF chips 250 are: A, B, C, D, E and F;
- the feeding interfaces 12 of the six antenna units 100 in the chip area A are arranged in an "L” shape; the feeding interfaces 12 of the six antenna units 100 in the chip area B are arranged in a "T” shape; the feeding interfaces 12 of the six antenna units 100 in the chip area C are arranged in an "L” shape; the feeding interfaces 12 of the six antenna units 100 in the chip area D are arranged in an "L” shape; the feeding interfaces 12 of the six antenna units 100 in the chip area E are arranged in a "T” shape; the feeding interfaces 12 of the six antenna units 100 in the chip area F are arranged in an "L” shape.
- each transceiver RF chip 250 can be adjusted according to actual needs.
- the feeding interfaces 12 of multiple antenna units 100 within the chip area of each transceiver RF chip 250 are concentratedly distributed in a "T" shape or an "L” shape to ensure that the feeding interface 12 area of the antenna unit 100 of the antenna array 200 is tightly connected and assembled, and to reduce the loss from the feeding interface 12 to the transceiver RF chip 250.
- the feed line in FIG. 9 may be a single-ended microstrip line or a differential microstrip line.
- Nt is the number of transmitting channels of the transceiver RF chip 250
- Nr is the number of receiving channels of the transceiver RF chip 250
- the number of transceiver RF chips in the antenna array 200 is Nc
- the total number of channels of the antenna array 200 is N.
- the first receiving sub-antenna array 2102 includes Nr*Nc/2 channels
- the second receiving sub-antenna array 2104 includes Nr*Nc/2 channels
- the first transmitting sub-antenna array 2202 includes (Nt-Nt1)*Nc/2 channels
- the second transmitting sub-antenna array 2204 includes (Nt-Nt1)*Nc/2 channels
- the third transmitting sub-antenna array 2206 includes Nt1*Nc channels, and the value of Nt1 is between Nr/8 and Nr/4.
- FIG. 10 is a schematic diagram of the combined structure of a transceiver RF chip 250 and an antenna unit 100 provided in an embodiment of the present application.
- FIG. 11 is a schematic diagram of an exploded view of the combined structure of the transceiver RF chip 250 and the antenna array 200 shown in FIG. 10 .
- the antenna array 200 also includes a circuit board 260, an excitation patch 270 and a parasitic patch 280.
- the transceiver RF chip 250, the excitation patch 270 and the parasitic patch 280 are all arranged on the circuit board 260 and located on the side of the second waveguide plate 240 away from the first waveguide plate 230.
- the excitation patch 270 and the parasitic patch 280 are arranged at intervals, and the excitation patch 270 is connected to the transceiver RF chip 250.
- the parasitic patch 280 is arranged corresponding to the feeding interface 12 of the feeding waveguide 10 of the corresponding antenna unit 100 .
- the transceiver RF chip 250 realizes broadband microstrip line to waveguide conversion with the corresponding antenna unit 100 through the excitation patch 270 and the parasitic patch 280, thereby improving the bandwidth of the antenna array 200 and reducing the feeding loss between the transceiver RF chip 250 and the antenna unit 100.
- the excitation patch 270 may be a rectangular patch, a circular patch, a triangular patch or a ring-shaped patch.
- the extension lengths of the excitation patch 270 and the parasitic patch 280 in the direction away from the transceiver RF chip 250 are L1 and L2 respectively, where L1 and L2 satisfy: 0.3 ⁇ L1 ⁇ 0.1 ⁇ ; 0.3 ⁇ L2 ⁇ 0.1 ⁇ ;
- the overall structure of the antenna array 200 can be made more compact.
- the parasitic patch 280 is a rectangular patch
- the excitation patch 270 is a rectangular patch
- a groove 272 is provided on the side of the excitation patch 270.
- the groove 272 is processed by grooving or bending the excitation patch 270 to improve the bandwidth of the antenna array 200 and reduce the feeding loss between the transceiver RF chip 250 and the antenna unit 100.
- a bending portion is provided on the periphery of the parasitic patch 280 , which is combined with the groove 272 of the excitation patch 270 to improve the bandwidth of the antenna array 200 and reduce the feeding loss between the transceiver RF chip 250 and the antenna unit 100 .
- a copper layer 261 is disposed on the circuit board 260 .
- the excitation patch 270 is spaced apart from the copper layer 261 .
- the parasitic patch 280 is connected to the copper layer 261 .
- the copper layer 261 is provided with a clearance hole 2612 , the excitation patch 270 and the parasitic patch 280 are located in the space surrounded by the clearance hole 2612 , the excitation patch 270 is spaced apart from the copper layer 261 , and the parasitic patch 280 is connected to the hole wall of the clearance hole 2612 .
- metal vias 281 are provided around the excitation patch 270 and the parasitic patch 280 to isolate the influence of the switching structure on the radiation waveguide 30 of the antenna unit 100 .
- transceiver RF chip 250 and the excitation patch 270 are connected via a feeder unit 290 .
- the feed line unit 290 includes a microstrip line 292 and a balun 294.
- the chip pin of the transceiver RF chip 250 is connected to one end of the microstrip line 292.
- the other end of the microstrip line 292 is connected to the balun 294.
- the balun 294 is connected to the excitation patch 270.
- the transceiver RF chip 250 and the excitation patch 270 are connected through the microstrip line 292 and the balun 294 to reduce the feed line loss between the transceiver RF chip 250 and the excitation patch 270.
- the antenna array 200 further includes a microstrip differential line (not shown), the chip pin of the transceiver RF chip 250 is connected to one end of the microstrip differential line, and the other end of the microstrip differential line is connected to the excitation patch 270.
- the transceiver RF chip 250 and the excitation patch 270 are connected by the microstrip differential line to reduce the feeder loss between the transceiver RF chip 250 and the excitation patch 270.
- a feeder slot 246 is provided on a side of the second waveguide plate 240 opposite to the first waveguide plate 230 , and the feeder slot 246 is used to accommodate a feeder between the transceiver RF chip 250 and the feeding interface 12 to improve matching and reduce loss.
- the antenna unit 100 may be metal, electroplated plastic (the electroplating material may be gold, silver, copper, nickel, tin, etc.) or conductive plastic.
- the antenna unit 100 may be formed by metal machining or plastic injection molding, and the draft angle of the antenna unit 100 is 0.5°.
- the thickness D of the waveguide of the antenna unit 100 is within the range of: 0.8mm>D>3mm.
- a weight reduction and a thinning design may be performed outside the antenna area of the antenna unit 100 to increase the overall volume of the antenna unit 100 .
- the first waveguide plate 230 and the second waveguide plate 240 are processed in layers, the first waveguide plate 230 and the second waveguide plate 240 are positioned by pins, and the first waveguide plate 230 and the second waveguide plate 240 are assembled by welding or screws or gluing.
- the antenna array 200 and the substrate where the transceiver RF chip 250 is located are fastened by screws or glue.
- FIG. 12 is a schematic diagram showing a comparison of simulation curves of return loss of an antenna array provided in an embodiment of the present application.
- Figure 12 illustrates an example graph of the return loss of an existing antenna array and the return loss of an antenna array provided in an embodiment of the present application. It can be seen from Figure 12 that, compared with the existing antenna array, the embodiment of the present application realizes a broadband microstrip line to waveguide conversion corresponding to the antenna unit 100 through an excitation patch 270 and a parasitic patch 280, thereby reducing the return loss, improving the bandwidth of the antenna array 200, and reducing the feeding loss between the transceiver RF chip 250 and the antenna unit 100.
- Fig. 13 is a schematic diagram of another antenna array 200a provided in an embodiment of the present application.
- Fig. 14 is an exploded schematic diagram of the antenna array 200a shown in Fig. 13 .
- the antenna array 200a shown in FIG. 13 is similar in structure to the antenna array 200 shown in FIG. 6 .
- the antenna array 200a includes a plurality of antennas. Unit 100a.
- the transition waveguide 20a of the plurality of antenna units 100a shown in FIG13 has the same structure as the transition waveguide 20 of the antenna unit 100 in the embodiment of FIG6.
- the antenna array 200a includes a first waveguide plate 230a and a second waveguide plate 240a.
- the first waveguide plate 230a has a plurality of first through holes 234a, each of which passes through the bottom of the corresponding first groove, and the radiating end of the radiating waveguide of the antenna unit 100a passes through the corresponding first through hole to extend out of the accommodation space enclosed by the two waveguide plates through the first through hole 234a, thereby radiating the signal.
- strip grooves 236a are provided on both sides of the first through hole 234a corresponding to the radiation end 34 of each antenna unit 100a, and the conductive member 238a is accommodated in the strip groove 236a.
- the antenna array 200a includes a transmitting antenna array 220a and a receiving antenna array 210a.
- the structures of the radiation waveguides 30a and the transition waveguides 20a of the multiple antenna units 100a of the transmitting antenna array 220a are the same, and the structures of the radiation waveguides 30a and the transition waveguides 20a of the multiple antenna units 100 of the receiving antenna array 210a are the same, except that:
- the radiation waveguides 30a of the multiple antenna elements 100a of the transmitting antenna array 220a are different from the radiation waveguides 30a of the multiple antenna elements 100a of the receiving antenna array 210a, resulting in different antenna beam widths and gains of the transmitting antenna array 220a and the receiving antenna array 210a.
- the number of the radiating ends 34 in the antenna unit 100a of the transmitting antenna array 220a in Figures 13 and 14 is eight, and the number of the radiating ends 34 in the antenna unit 100a of the receiving antenna array 210a is four.
- the transmitting antenna array 220a includes a first transmitting sub-antenna array 2202a, a second transmitting sub-antenna array 2204a and a third transmitting sub-antenna array 2206a, and the multiple antenna units 100a of the first transmitting sub-antenna array 2202a and the multiple antenna units 100a of the second transmitting sub-antenna array 2204a are arranged at equal intervals along the second direction;
- the receiving antenna array 210a includes a first receiving sub-antenna array 2102a and a second receiving sub-antenna array 2104a.
- the multiple antenna units 100a of the first receiving sub-antenna array 2102a are arranged unevenly along a first direction
- the multiple antenna units 100a of the second receiving sub-antenna array 2104a are arranged unevenly along a second direction.
- the first transmitting sub-antenna array 2202a, the second transmitting sub-antenna array 2204a, the first receiving sub-antenna array 2102a and the second receiving sub-antenna array 2104a are arranged to form a square.
- the third transmitting sub-antenna array 2206a is located in the square.
- the multiple antenna units 100a of the third transmitting sub-antenna array 2206a are arranged at non-equidistant intervals.
- the first transmitting sub-antenna array 2202a in FIG13 includes three antenna units 100a, and the three antenna units 100a are arranged at equal intervals along the second direction;
- the second transmitting sub-antenna array 2204a includes three antenna units 100a, and the three antenna units 100a are arranged at equal intervals along the second direction;
- the first receiving sub-antenna array 2102a includes sixteen antenna units 100a, which are arranged along the second direction, twelve antenna units 100a are evenly arranged in the middle, four antenna units 100a on both sides of the middle are symmetrically arranged relative to the twelve antenna units 100a in the middle, and the interval between the two outer antenna units 100a is greater than the interval between the two inner antenna units 100a;
- the second receiving sub-antenna array 2104a includes eight antenna units 100a, and the eight antenna units 100a are arranged at equal intervals along the first direction;
- the third transmitting sub-antenna array 2206a includes six antenna units 100a, and the six antenna units 100a are located in a square space;
- the number of antenna units 100a in the antenna array 200a can be adjusted according to actual needs.
- FIG 15 is a schematic diagram of the structure of the antenna unit 100a in the transmitting antenna array 220a provided in an embodiment of the present application, each antenna unit 100a includes a feeding waveguide 10a, a transition waveguide 20a and a radiating waveguide 30a, the feeding waveguide 10a is connected to the transition waveguide 20a, the transition waveguide 20a is connected to the radiating waveguide 30a, and the structures of the transition waveguides 20a of multiple antenna units are the same, except that each antenna unit 100a includes two transition waveguides 20a and two radiating waveguides 30a, wherein the feeding waveguide 10a is respectively connected to one end of the two transition waveguides 20a, and the other end of each transition waveguide 20a is connected to the corresponding radiating waveguide 30.
- FIG. 16 is a schematic diagram of the structure of another antenna array 200a provided in an embodiment of the present application.
- the antenna array shown in FIG. 16 has the same structure as the antenna array 200a of the above embodiment, except that:
- the antenna array 200a shown in FIG16 further includes a transceiver RF chip 250a, which is disposed on a side of the second waveguide plate 240a opposite to the first waveguide plate 230a, and the chip pins of the transceiver RF chip 250a provide feeding for the antenna unit 100a through a feeder line.
- each transceiver RF chip 250a has six chip pins, of which two chip pins correspond to two antenna units 100a corresponding to the transmitting antenna array and two antenna units 100a corresponding to the four receiving antenna arrays. Each chip pin provides feeding for the feeding interface 12a of the feeding waveguide 10a of the corresponding six antenna units 100a through a feeder line.
- the antenna array 200a in Figure 16 includes six transceiver RF chips 250a, each transceiver RF chip 250a corresponds to a chip area, and the six transceiver RF chips 250 correspond to six chip areas, and the feeding interfaces 12a of the six antenna units 100a in the six chip areas are all arranged in a "T" shape.
- FIG. 17A , FIG. 17B , FIG. 18A and FIG. 18B are schematic diagrams of the arrangement of antenna units 100 in an antenna array 200 provided in an embodiment of the present application.
- the arrangement direction of the radiation waveguides of the multiple antenna units 100 of the antenna array 200 is -45° to the extension direction of the multiple antenna units 100 in the antenna array 200, so that the antenna array 200 is -45° oblique polarization.
- the arrangement direction of the radiation waveguides of the multiple antenna units 100 of the antenna array 200 is +45° to the extension direction of the multiple antenna units 100 in the antenna array 200, so that the antenna array 200 is +45° oblique polarization.
- the arrangement direction of the radiation waveguides of the multiple antenna units 100 of the antenna array 200 in Figure 18A is +45° and -45° to the extension direction of the multiple antenna units 100 in the antenna array 200, so that the antenna array 200 is ⁇ 45° dual-polarized or circularly polarized.
- the arrangement direction of the radiation waveguides of the multiple antenna units 100 of the antenna array 200 in Figure 18B is +45° and -45° to the extension direction of the multiple antenna units 100 in the antenna array 200, so that the antenna array 200 is ⁇ 45° dual-polarized or circularly polarized.
- the feeding network with +45° polarization and -45° polarization is realized by multi-level changes of waveguide.
- ridged waveguide combined with cross distribution is adopted.
- the dual polarization is achieved by adjusting the front and rear positions of the feed part, combining the cross distribution of the units with the double-ridge waveguide to form a complete +/-45° dual polarization antenna, or by converting the dual polarization feed to a quad-ridge waveguide to form a complete +/-45° dual polarization.
- the antenna array 200 in FIG. 18A ensures the vector synthesis of the feed signal by delaying the feed part by ⁇ 90°, and finally forms circular polarization.
- FIG 19 is a structural schematic diagram of an electronic device provided in an embodiment of the present application.
- the electronic device includes the antenna array of any one of the above embodiments.
- the antenna array in Figure 19 includes an antenna unit and a transceiver RF chip connected to the antenna unit.
- the antenna unit and the transceiver RF chip cooperate to radiate the signal into the free space.
- the electronic device in Figure 19 is a vehicle-mounted radar, which can be installed on the body of the vehicle.
- the vehicle-mounted radar also includes a signal processor and a vehicle-mounted connector.
- the transmission signal of the transceiver RF chip passes through the antenna unit of the antenna array and the antenna cover to illuminate the target to generate a reflected signal; the reflected signal passes through the antenna cover and the antenna unit to enter the transceiver RF chip, and after amplification, mixing, filtering, intermediate frequency amplification, and digital sampling, the signal enters the signal processor from the transceiver RF chip to generate a detection signal, which is sent to the vehicle body through the vehicle-mounted connector.
- Figure 20 shows the application scenario of the vehicle-mounted radar in a vehicle.
- the vehicle-mounted radar can be applied to the front of the vehicle to detect the approaching movement of targets such as the front and side vehicles of the vehicle.
- the antenna unit of the above embodiment can reduce feeder loss, improve antenna efficiency, and simplify the structure of the antenna array, which is conducive to improving the detection distance and detection range of the vehicle-mounted radar and reducing costs.
- the above antenna unit or antenna array can be applied to other types of electronic devices, such as detection equipment.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
一种天线单元、具有该天线单元的天线阵列及电子设备,天线单元包括馈电波导、过渡波导及辐射波导;过渡波导包括依次连接的第一部分、第二部分、第三部分及第四部分,第一部分与馈电波导连接,第一部分远离馈电波导的一端的波导尺寸逐渐变小以形成第一阶梯结构;与第一部分并列设置的第二部分靠近馈电波导的一端的波导尺寸逐渐变小以形成第二阶梯结构,第二阶梯结构与第一阶梯结构相背设置;第三部分远离第二部分的一端的波导尺寸逐渐变小以形成第三阶梯结构;第四部分远离第三部分的一端的波导尺寸逐渐变小以形成相对设置的第四阶梯结构和第五阶梯结构;辐射波导与第四部分连接,通过阶梯结构实现基模到高阶模的转换,简化天线结构,节省成本。
Description
相关申请的交叉引用
本申请要求于2023年2月24日提交中国专利局、申请号为202310208198.1,发明名称为“天线单元、具有该天线单元的天线阵列及电子设备”的中国专利的优先权,上述中国专利全部内容通过引用结合在本申请中。
本申请涉及无线通信领域,尤其涉及一种天线单元、具有该天线单元的天线阵列及电子设备。
毫米波天线因其具有部件体积小、高空间分辨率、抗干扰能力强等优点,现已经成为天线设计领域研究的主流。雷达等电子设备的信号的发射和接收由毫米波天线来实现。天线的主要指标有带宽、增益、波束宽度、天线极化等。对车载雷达而言,分辨率、探测距离、探测角度范围是关键指标,带宽越宽代表天线可以支持的距离分辨率越高,天线增益越高或馈线损耗越低均代表天线可以支持雷达探测距离越远,波束宽度越宽代表相同情况下雷达探测的角度范围越大。
在76GHz-81GHz频段,大多毫米波雷达采用平面印刷天线和波导天线。平面印刷天线工艺成熟,但在毫米波频段的馈线介质损耗大、天线效率低,且频率越高损耗越大。波导天线分为基片集成波导(SIW)天线、空心波导天线和间隙波导天线,其中SIW天线与微带天线类似,传输介质损耗大;波导缝隙天线加工精度要求高且带宽窄,传统波导天线电性能好,但结构复杂须多层实现,间隙波导天线加工精度要求降低,但设计和结构仍较复杂,实现成本高。
平面印刷天线效率低,馈线损耗大,设计自由度有限;波导缝隙天线加工精度要求高,带宽窄;传统口径辐射阵,结构复杂须多层实现;间隙波导设计结构复杂,成本高。
发明内容
基于上述问题,本申请提供了一种天线单元、具有该天线单元的天线及电子设备,通过天线单元的过渡波导的阶梯结构实现基模到高阶模的转换,提升天线单元带宽,简化天线结构,节省成本。
本申请实施例的第一方面提供一种天线单元,包括:馈电波导;过渡波导,包括依次连接的第一部分、第二部分、第三部分及第四部分,第一部分的一端与馈电波导连接,第一部分远离馈电波导的一端的波导尺寸逐渐变小以形成第一阶梯结构;第二部分与第一部分并列设置,第二部分远离馈电波导的一端的波导尺寸逐渐变小以形成第二阶梯结构,第二阶梯结构与第一阶梯结构相背设置;第三部分连接与第二部分远离馈电波导的一端,第三部分远离第二部分的一端的波导尺寸逐渐变小以形成第三阶梯结构,第三阶梯结构位于第三部分与第四部分相背的一侧;第四部分与第三部分并列设置且与第一部分相邻,第四部分远离第三部分的一端的波导尺寸逐渐变小以形成相对设置的第四阶梯结构和第五阶梯结构,第四阶梯结构与第一阶梯结构相邻;辐射波导与第四部分连接。
采用上述技术方案,通过天线单元的过渡波导的阶梯结构实现基模到高阶模的转换,提升天线单元可实现的带宽,简化天线结构,节省成本。
基于第一方面,一种可能的实现方式中,第一部分的波导尺寸变小的方向为第一渐变方向,第二部分的波导尺寸变小的方向为第二渐变方向,第三部分的波导尺寸变小的方向为第三渐变方向,第四部分的波导尺寸变小的方向为第四渐变方向;第一渐变方向与第三渐变方向相互平行且方向相同,第二渐变方向与第四渐变方向相互平行且方向相反,第一渐变方向与第二渐变方向相互垂直。
采用上述技术方案,通过控制波导尺寸的变化以形成阶梯结构,且多个部分的波导尺寸变小的方向具有相关性,以提升基模到高阶模的转换性能和可实现的带宽。
基于第一方面,一种可能的实现方式中,辐射波导具有多个辐射端,每个辐射端具有对应的辐射开口,
过渡波导为方波导,天线单元满足以下关系式:0.85λ≥L≥0.55λ;0.3λ≥B≥0.15λ;0.3λ≥b≥0.15λ;其中,λ为自由空间波长,L为方波导的尺寸,b为馈电波导的波导宽度,B为辐射开口的波导宽度。
采用上述技术方案,保证天线单元的紧凑型,且多个天线单元便于组合安装,提升多个天线单元的组合的自由度。
基于第一方面,一种可能的实现方式中,辐射波导具有多个辐射端,每个辐射端具有对应的辐射开口,过渡波导为圆波导,天线单元满足以下关系式:
0.40λ≥L≥0.32λ;
0.3λ≥B≥0.15λ;
0.3λ≥b≥0.15λ;
0.40λ≥L≥0.32λ;
0.3λ≥B≥0.15λ;
0.3λ≥b≥0.15λ;
其中,λ为自由空间波长,L为方波导的尺寸,b为馈电波导的波导宽度,B为辐射开口的波导宽度。
基于第一方面,一种可能的实现方式中,第一阶梯结构、第二阶梯结构、第三阶梯结构、第四阶梯结构和第五阶梯结构中至少一个的相邻阶梯的相交处设置有过渡圆弧或倒角。
采用上述技术方案,通过设置圆弧或倒角,以提升基模到高阶模的转换性能和可实现的带宽。
基于第一方面,一种可能的实现方式中,辐射波导包括功分器和辐射端,功分器与第四部分连接,辐射端与功分器连接。
采用上述技术方案,简化天线单元的结构,提升多个天线单元组合的自由度,降低组合成本。
第二方面,提供一种天线阵列,天线阵列包括多个第一方面中任意一项的天线单元。
采用上述技术方案,对个天线单元通过阶梯结构实现基模到高阶模的转换,提升天线单元可实现的带宽,简化天线结构,节省成本。
基于第二方面,一种可能的实现方式中,天线阵列包括发送天线阵列和接收天线阵列,发送天线阵列包括第一发送子天线阵列、第二发送子天线阵列和第三发送子天线阵列,接收天线阵列包括第一接收子天线阵列和第二接收子天线阵列;每个子天线阵列包括至少两个天线单元;第一接收子天线阵列中的天线单元和第二接收子天线阵列中的天线单元分别沿第一方向间隔设置,第一发送子天线阵列中的天线单元和第二发送子天线阵列中的天线单元分别沿第二方向间隔设置,第一方向与第二方向相垂直;第一接收子天线阵列、第二接收子天线阵列、第一发送子天线阵列及第二发送子天线阵列围设形成一方形结构,第三发送子天线阵列位于方形结构内。
采用上述技术方案,简化组装复杂度,降低组装成本,且该组合结构可降低芯片与天线单元之间的馈线损耗。且多个天线单元的组合排布方式固定,便于模块化和通用化。
基于第二方面,一种可能的实现方式中,第一接收子天线阵列的中心点和第二接收子天线阵列的中心点沿第二方向的距离大于第一发送子天线阵列沿第二方向的长度或第二发送子天线阵列沿第二方向的长度,其中,中心点是第一接收子天线阵列或第二接收子天线阵列沿第二方向的中心。
采用上述技术方案,通过限定延伸长度,以提升天线阵列的带宽性能。
基于第二方面,一种可能的实现方式中,第三发送子天线阵列的天线单元沿方形的对角线等间隔设置。
采用上述技术方案,通过限定天线单元的排布,以提升天线阵列的带宽性能。
基于第二方面,一种可能的实现方式中,第一接收子天线阵列中的天线单元和第二接收子天线阵列中的天线单元分别沿第一方向等间隔设置,第一发送子天线阵列中的天线单元和第二发送子天线阵列中的天线单元分别沿第二方向等间隔设置。
采用上述技术方案,通过等间隔设置天线单元,便于实现天线阵列的模块化和通用化。
基于第二方面,一种可能的实现方式中,天线阵列还包括收发射频芯片,每个天线单元的馈电波导具有对应的馈电接口;收发射频芯片通过芯片管脚与对应的多个馈电接口连接,每个收发射频芯片对应的馈电接口呈“T”字形排列或“L”字形排列。
采用上述技术方案,使馈电接口集中排布,减少芯片和天线单元之间的馈线平均损耗,综合提高电子设备方位(1.6°)/俯仰分辨率。
基于第二方面,一种可能的实现方式中,天线阵列还包括收发射频芯片、激励贴片、寄生贴片及电路板,收发射频芯片、激励贴片、寄生贴片间隔设置于电路板上,激励贴片和寄生贴片与对应的天线单元的馈电接口对应设置;
收发射频芯片与激励贴片通过馈线单元连接。
基于第二方面,一种可能的实现方式中,激励贴片可为矩形贴片、圆形贴片、三角形贴片或圆环性贴
片。
基于第二方面,一种可能的实现方式中,激励贴片和寄生贴片满足以下关系式:
0.3λ≥L1≥0.1λ;
0.3λ≥L2≥0.1λ;
0.3λ≥L1≥0.1λ;
0.3λ≥L2≥0.1λ;
其中,L1为激励贴片沿远离收发射频芯片的延伸长度,L2为寄生贴片沿远离收发射频芯片的延伸长度。
基于第二方面,一种可能的实现方式中,馈线单元包括微带线和巴伦,微带线的一端与收发射频芯片的芯片管脚连接,微带线的另一端与巴伦连接,巴伦与激励芯片连接。
基于第二方面,一种可能的实现方式中,天线阵列满足以下公式:
N=(Nt+Nr)*Nc;
N=(Nt+Nr)*Nc;
其中,Nt为收发射频芯片的发射通道数,Nr为收发射频芯片的接收通道数,Nc为天线阵列的收发射频芯片数,N为天线阵列的通道总数。
基于第二方面,一种可能的实现方式中,天线阵列包括第一波导板和第二波导板,第一波导板朝向第二波导板的一侧设置有多个第一凹槽,第二波导板朝向第一波导板的一侧设置有多个第二凹槽,每个第一凹槽与对应的第二凹槽形成一收容空间,收容空间用于收容对应的天线单元。
本申请实施例的第三方面提供一种电子设备,电子设备包括第二方面的天线阵列。
图1为本申请的实施例提供的天线单元的结构示意图。
图2为图1所示的天线单元的部分结构的主视示意图。
图3为图1所示的天线单元的剖视图。
图4为本申请实施例提供的天线单元的另一角度的结构示意图。
图5为本申请实施例提供的天线阵列的结构示意图。
图6为图5所示的天线阵列的分解结构示意图。
图7为图5所示的天线阵列的另一角度的分解结构示意图。
图8为本申请实施例提供的天线阵列的回波损耗的仿真曲线的比较示意图。
图9为本申请实施例提供的另一种天线阵列的俯视示意图。
图10为本申请实施例提供的一种收发射频芯片与天线单元的组合结构示意图。
图11为图10所示的收发射频芯片与天线阵列的组合结构的分解示意图。
图12为本申请实施例提供的天线阵列的回波损耗的仿真曲线的比较示意图。
图13为本申请实施例提供的另一种的天线阵列的示意图。
图14为图13所示的天线阵列的分解示意图。
图15为图13中的发送天线阵列中的天线单元的结构示意图。
图16为本申请实施例提供的另一种天线阵列的结构示意图。
图17A、17B、18A及18B为本申请实施例提供的天线单元的排布示意图。
图19为本申请实施例提供的一种电子设备的结构示意图。
图20为本申请实施例提供的一种车载雷达的应用场景示意图。
主要元件符号说明
如下具体实施方式将结合上述附图进一步说明本申请。
以下由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合较佳实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下,如果有用到,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要
性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。“上”、“下”、“左”、“右”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
在本申请中,如果有用到,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在下述实施例结合示意图进行详细描述时,为便于说明,表示器件局部结构的图会不依一般比例作局部放大,而且示意图只是示例,其在此不应限制本申请保护的范围。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
图1示出了本申请实施例提供的一种天线单元100的结构示意图。
如图1所示,天线单元100包括馈电波导10、过渡波导20及辐射波导30,馈电波导10用于接入馈电,以实现输入端到天线的信号转换,过渡波导20的一端连接馈电波导10,过渡波导20的另一端连接辐射波导30,过渡波导20用于实现基模到高阶模的转换并实现幅度相位的分配,辐射波导30用于实现将天线单元100的信号向自由空间进行辐射。
图1所示的天线单元100结构紧凑,可通过多个天线单元100组合形成天线阵列,具有较高的组合设计自由度,且可降低组装的成本。
在一些实施例中,图1中馈电波导10、过渡波导20及辐射波导30为一体式设置,即馈电波导10、过渡波导20及辐射波导30为一个整体。
在一些实施例中,馈电波导10和辐射波导30的波导类型相同。若馈电波导10为椭圆波导,辐射波导30也为椭圆波导;若馈电波导10为矩形波导(又称为E面波导),辐射波导30也为矩形波导。
图2为图1所示的天线单元100的部分结构示意图。图2中过渡波导20包括依次连接的第一部分22、第二部分24、第三部分26及第四部分28,第一部分22的一端与馈电波导10连接,第四部分28与辐射波导30连接。进一步地,第一部分22远离馈电波导10的一端的波导尺寸逐渐变小以形成第一阶梯结构222,第一阶梯结构222位于第一部分22与第二部分24相背的一侧,第二部分24与第一部分22并列设置。
第二部分24靠近馈电波导10的一端的波导尺寸逐渐变小以形成第二阶梯结构242,第二阶梯结构242位于第二部分24与第三部分26相背的一侧且与第一阶梯结构222相背。
第三部分26远离馈电波导10的一端的波导尺寸逐渐变小以形成第三阶梯结构262,第三阶梯结构262位于第三部分26与第四部分28相背的一侧且与第二阶梯结构242相背。
第四部分28与第三部分26并列设置且与第一部分22相邻间隔设置,图2中,第四部分28和第一部分22位于第二部分24和第三部分26组合结构的同侧,第四部分28远离第三部分26的一端的波导尺寸逐渐变小以形成第四阶梯结构282和第五阶梯结构284,第四阶梯结构282和第五阶梯结构284的结构相同且相对设置,第四阶梯结构282和第五阶梯结构284与第一阶梯结构222相邻设置。通过天线单元100的阶梯结构实现基模到高阶模的转换并实现幅度相位的分配。
如图2所示,第一部分22的波导尺寸变小的方向为第一渐变方向a,第二部分24的波导尺寸变小的方向为第二渐变方向b,第三部分26的波导尺寸变小的方向为第三渐变方向c,第四部分28的波导尺寸变小的方向为第四渐变方向d;
第一渐变方向a与第三渐变方向c相互平行且方向相同,第二渐变方向b与第四渐变方向d相互平行且方向相反,第一渐变方向a与第二渐变方向b相互垂直。通过限定过渡波导20中波导尺寸的变化方向,以限定过渡波导20的形状,以提升基模到高阶模的转换效果。
进一步地,图2中的第一部分22的延伸方向为第一渐变方向a,第二部分24的延伸方向为第二渐变方向b,第三部分26的延伸方向为第三渐变方向c,第四部分28的延伸方向为第四渐变方向d;
如此,第三部分26的延伸方向与第一部分22的延伸方向相同,第四部分28的延伸方向与第二部分24的延伸方向相同,第一部分22的延伸方向和第三部分26的延伸方向与第二部分24的延伸方向和第四
部分28的延伸方向相垂直。
其中,第一部分22、第二部分24、第三部分26及第四部分28的延伸方向可为该部分与之前部分的连接处的开口朝向。
图2中过渡波导20的第一部分22、第二部分24、第三部分26及第四部分28均包括固定部分和变化部分,其中,固定部分的波导尺寸保持不变,变化部分为对应部分的延伸方向或渐变方向的波导尺寸逐渐变小。
图2中,第一阶梯结构222为三级阶梯,第二阶梯结构242为三级阶梯,第三阶梯结构262为两级阶梯,第四阶梯结构282和第五阶梯结构284均为三级台阶。可以理解,在其他实施例,第一阶梯结构222、第二阶梯结构242、第三阶梯结构262、第四阶梯结构282和第五阶梯结构284的阶梯数可以依据实际应用进行调整,例如,第一阶梯结构222、第二阶梯结构242、第三阶梯结构262、第四阶梯结构282和第五阶梯结构284均为二阶阶梯。
图3为图1所示的天线单元100的剖视图。
可以理解,图3中的天线单元100为波导结构,该波导结构具有内腔壁和外侧壁,第一部分22、第二部分24、第三部分26及第四部分28的变化部分(即波导尺寸发生变化的部分)内腔壁和外侧壁均形成阶梯结构。
在其他实施例中,天线单元100的第一部分22、第二部分24、第三部分26及第四部分28的变化部分的内腔壁形成阶梯结构,且对应的外侧壁不形成阶梯结构。
在一些实施例中,第一阶梯结构222、第二阶梯结构242、第三阶梯结构262、第四阶梯结构282和第五阶梯结构284的相邻阶梯的相交处设置有倒角,通过对第一阶梯结构222、第二阶梯结构242、第三阶梯结构262、第四阶梯结构282和第五阶梯结构284进行倒角处理,以提升天线单元100的宽带性能。
可以理解,在其他实施例中,第一阶梯结构222、第二阶梯结构242、第三阶梯结构262及第四阶梯结构282和第五阶梯结构284中至少一个阶梯结构进行倒角处理即可。
在一些实施例中,第一阶梯结构222、第二阶梯结构242、第三阶梯结构262及第四阶梯结构282和第五阶梯结构284中至少一个阶梯结构的相邻阶梯的相交处设置有过渡圆弧,通过对上述至少一个阶梯结构中的相邻阶梯的相交处进行圆弧处理以形成过渡圆弧,以提升天线单元100的宽带性能。
图4为本申请实施例提供的天线单元100的另一角度的结构示意图。
请参见图4,辐射波导30包括功分器32和多个辐射端34,功分器32与第四部分28连接,辐射端34与功分器32连接。
图4中的功分器32为二功分,用于将过渡波导20传输的一路输入信号能量分成两路,两路信号通过对应的辐射端34向自由空间辐射。图4中辐射波导30包括四个辐射端34,二功分分出两路信号,每路信号对应两个辐射端34,可以理解,在其他实施例中,可依据具体应用场景设定辐射端34的数量,例如,辐射端34数量为8,二功分分出的两路信号,每路信号对应四个辐射端34。
进一步地,每个辐射端34具有对应的辐射开口342,辐射开口342可为矩形波导或椭圆波导。
进一步地,馈电波导10具有馈电接口12,馈电波导10通过馈电接口12接入馈电。
在一些实施例中,过渡波导20为方波导,且方波导的尺寸为L,且L满足以下关系式:
0.85λ≥L≥0.55λ;其中λ为天线单元100的自由空间波长。
辐射开口342的波导宽度为B,且B满足以下关系式:
0.3λ≥B≥0.15λ;
0.3λ≥B≥0.15λ;
馈电波导10的波导宽度为b,且b满足以下关系式:
0.3λ≥b≥0.15λ;
0.3λ≥b≥0.15λ;
通过以上限定,使天线单元的尺寸不大于0.8倍波长且满足雷达MIMO阵列布局,具有较高的自由度,降低波导板层数(小于4层),降低组装成本。提升天线带宽。
在一些实施例中,过渡波导20为圆波导,且圆波导的尺寸为L,且L满足以下关系式:
0.40λ≥L≥0.32λ;其中λ为天线单元100的自由空间波长。
辐射开口342的波导宽度为B,且B满足以下关系式:
0.3λ≥B≥0.15λ;
0.3λ≥B≥0.15λ;
馈电波导10的宽度为b,且b满足以下关系式:
0.3λ≥b≥0.15λ;
0.3λ≥b≥0.15λ;
通过以上限定,使天线单元的尺寸不大于0.8倍波长且满足雷达MIMO阵列布局,具有较高的自由度,降低波导板层数(小于4层),降低组装成本。提升天线带宽。
在一些实施例中,辐射开口的波导间壁厚大于0.8mm,馈电波导10的波导间壁厚大于0.8mm。
其中,馈电波导的绕线可以根据天线单元所在的位置和相关芯片的出口管脚进行灵活设计,辐射波导30可为矩形波导或椭圆波导,以实现信号到自由空间的辐射。
进一步地,可通过调节过渡波导20中的阶梯结构的位置以及辐射波导30的辐射开口对应的槽结构以实现天线单元100的幅相分布和波宽的控制。
图5为本申请实施例提供的一种天线阵列200的结构示意图。
图5中的天线阵列200包括多个天线单元100,且多个天线单元100的过渡波导20和辐射波导30的结构均相同,多个天线单元100对应的天线波束宽度和增益也相同。
天线阵列200包括接收天线阵列210和发送天线阵列220,接收天线阵列210中的所有天线单元100同时工作。
多个天线单元100的对应的过渡波导20和辐射波导30的结构均相同且接收天线阵列210中的所有天线单元100同时工作,便于实现和组成,进而便于进行模块化和通用化设计。
进一步地,接收天线阵列210包括第一接收子天线阵列2102和第二接收子天线阵列2104,发送天线阵列220包括第一发送子天线阵列2202、第二发送子天线阵列2204及第三发送子天线阵列2206;每个子天线阵列包括至少两个天线单元100。
第一接收子天线阵列2102中的天线单元100和第二接收子天线阵列2104中的天线单元100的数量相同。且第一接收子天线阵列2102中的天线单元100和第二接收子天线阵列2104中的天线单元100分别沿第一方向等间隔设置。
第一发送子天线阵列2202和第二发送子天线阵列2204中的天线单元100分别沿第二方向等间隔设置;其中,第一方向与第二方向相垂直;
第一接收子天线阵列2102的中心点和第二接收子天线阵列2104对应的中心点沿第二方向的距离为L1,第一发送子天线阵列2202沿第二方向的延伸长度和第二发送子天线阵列2204沿第二方向的延伸长度相等且为L2,其中,L1大于L2,其中,中心点为子天线阵列作为一个整体的沿第二方向的中心。
进一步地,第一接收子天线阵列2102、第二接收子天线阵列2104、第一发送子天线阵列2202及第二发送子天线阵列2204围设形成一方形结构,第三发送子天线阵列2206的天线单元100位于该方形结构内。其中,方形可为正方形,也可为长方形。
进一步地,第三发送子天线阵列2206的天线单元100沿方形的对角线等间距设置。等间隔规律排列,以便实现天线阵列200的模块化。
图5中,第一接收子天线阵列2102和第二接收子天线阵列2104均包括十二个天线单元100,第一发送子天线阵列2202、第二发送子天线阵列2204及第三发送子天线阵列2206均包括四个天线单元100,可以理解,在其他实施例中,可以理解实际需求设定每个子天线阵列中的天线单元100的数量。
图6为图5所示的天线阵列的分解结构示意图,图7为图5所示的天线阵列的另一角度的分解结构示意图。
请一并参见图6和图7,天线阵列200还包括第一波导板230和第二波导板240,其中,第一波导板230朝向第二波导板240的一侧设置有多个第一凹槽232,第二波导板240朝向第一波导板230的一侧设置有多个第二凹槽241,每个第一凹槽232具有对应的第二凹槽241,每个第一凹槽232与对应的第二凹槽241形成一收容空间,用于收容对应的天线单元100。
第一接收子天线阵列2102、第二接收子天线阵列2104、第一发送子天线阵列2202、第二发送子天线阵列2204及第三发送子天线阵列2206的多个天线单元100分别位于对应的第一凹槽232和第二凹槽所围设的收容空间内。
上述天线阵列200,通过两个波导板配合,以收容多个天线单元100,结构简单,便于组装,节省装配成本。
进一步地,第一波导板230具有多个第一贯穿孔234,每个第一贯穿孔234贯穿对应第一凹槽232的槽底,天线单元100的辐射波导30的辐射端34穿过对应第一贯穿孔234内,以通过第一贯穿孔234伸出
两个波导板围设的收容空间,从而将信号辐射出去。
进一步地,第一波导板230相背第二波导板240的一侧,每个天线单元100的辐射端34对应的第一贯穿孔234的两侧设置有条形槽236,条形槽236内收容有导电件238。如此,天线阵列200的条形槽236结合上述的阶梯结构实现幅相分布和波宽控制。
进一步地,第二波导板240具有多个第二贯穿孔244,每个第二贯穿孔244贯穿对应第二凹槽241的槽底,每个天线单元100的馈电波导10的一端(馈电接口12)穿过对应第二贯穿孔244以接收对应的馈电。
进一步地,由图6和图7可知,天线阵列200中的多个天线单元100的馈电波导10的结构并不相同,图中的馈电波导10的结构是依据天线单元100所处的位置进行灵活设置。以提升天线单元100组成天线阵列200的灵活性。
图8为本申请实施例提供的天线阵列200的回波损耗的仿真曲线的比较示意图。
图8中示例了现有的天线阵列200的回波损耗S11和本申请实施例提供的天线阵列的回波损耗S11的比较示意图,由图8可知,相较于现有的天线阵列,本申请实施例提供的天线阵列200降低了回波损耗,提升了1.6倍的带宽。
图9为本申请实施例提供的另一种天线阵列的示意图。
图9所示的天线阵列与上述实施例的天线阵列200的结构相同,不同之处在于:
图9所示的天线阵列200还包括收发射频芯片250,收发射频芯片250设置于第二波导板240相背于第一波导板230的一侧,收发射频芯片250的芯片管脚通过馈线为天线单元100提供馈电。
图9中,每个收发射频芯片250具有六个芯片管脚,其中两个芯片管脚对应发送天线阵列对应的两个天线单元100和四个接收天线阵列对应的两个天线单元100,每个芯片管脚通过馈线为对应的六个天线单元100的馈电波导10的馈电接口12提供馈电。
图9中天线阵列200包括六个收发射频芯片250,每个收发射频芯片250对应一个芯片区域,则六个收发射频芯片250对应的六个芯片区域为:A、B、C、D、E及F;
其中,芯片区域A中六个天线单元100的馈电接口12呈“L”字形排布;芯片区域B中六个天线单元100的馈电接口12呈“T”字形排布;芯片区域C中六个天线单元100的馈电接口12呈“L”字形排布;芯片区域D中六个天线单元100的馈电接口12呈“L”字形排布;芯片区域E中六个天线单元100的馈电接口12呈“T”字形排布;芯片区域F中六个天线单元100的馈电接口12呈“L”字形排布。
可以理解,在其他实施例中,每个收发射频芯片250的数量可以依据实际需求进行调整。
如此,每个收发射频芯片250的芯片区域内的多个天线单元100的馈电接口12按“T”字形或“L”字形集中分布,以保证天线阵列200的天线单元100的馈电接口12区域紧密连接组装,并减少馈电接口12到收发射频芯片250的损耗。
其中,图9中的馈线可为单端微带线或差分微带线。
在一些实施例中,包括收发射频芯片250的天线阵列200满足以下公式:
N=(Nt+Nr)*Nc;
N=(Nt+Nr)*Nc;
其中,Nt为收发射频芯片250的发射通道数,Nr为收发射频芯片250的接收通道数,天线阵列200的收发射频芯片个数Nc,天线阵列200的通道总数为N。
进一步地,图5中第一接收子天线阵列2102包含Nr*Nc/2个通道,第二接收子天线阵列2104包含Nr*Nc/2个通道;第一发送子天线阵列2202包含(Nt-Nt1)*Nc/2个通道,第二发送子天线阵列2204包含(Nt-Nt1)*Nc/2个通道,第三发送子天线阵列2206包含Nt1*Nc个通道,Nt1的取值在Nr/8~Nr/4之间。
图10为本申请实施例提供的一种收发射频芯片250与天线单元100的组合结构示意图。
图11为图10所示的收发射频芯片250与天线阵列200的组合结构的分解示意图。
请一并参见图10和图11,天线阵列200还包括电路板260、激励贴片270和寄生贴片280,收发射频芯片250、激励贴片270和寄生贴片280均设置于电路板260上且位于第二波导板240远离第一波导板230的一侧。
激励贴片270和寄生贴片280间隔设置,且激励贴片270与收发射频芯片250连接,激励贴片270和
寄生贴片280与对应的天线单元100的馈电波导10的馈电接口12对应设置。
收发射频芯片250通过激励贴片270和寄生贴片280实现与对应天线单元100的宽带微带线到波导转换,提升了天线阵列200的带宽,降低了收发射频芯片250和天线单元100之间的馈电损耗。
其中,激励贴片270可为矩形贴片、圆形贴片、三角形贴片或圆环形贴片。
在一些实施例中,激励贴片270和寄生贴片280沿远离收发射频芯片250方向的延伸长度分别为L1和L2,其中,L1和L2满足:
0.3λ≥L1≥0.1λ;
0.3λ≥L2≥0.1λ;
0.3λ≥L1≥0.1λ;
0.3λ≥L2≥0.1λ;
通过限定激励贴片270和寄生贴片280的尺寸,以使天线阵列200的整体结构更加紧凑。
图11中,寄生贴片280为矩形贴片,激励贴片270为矩形贴片,且激励贴片270周侧设置有凹槽272,该凹槽272通过对激励贴片270开槽或\和弯折处理,以提升天线阵列200的带宽,降低收发射频芯片250和天线单元100之间的馈电损耗。
可以理解,在其他实施例中,寄生贴片280周侧设有弯折部,结合激励贴片270的凹槽272,以提升天线阵列200的带宽,降低收发射频芯片250和天线单元100之间的馈电损耗。
请参见图11,电路板260上设置有铜层261,激励贴片270与铜层261间隔设置,寄生贴片280与铜层261连接。
进一步地,铜层261设有让位孔2612,激励贴片270和寄生贴片280位于让位孔2612围设的空间内且激励贴片270与铜层261间隔设置,寄生贴片280与让位孔2612的孔壁连接。
进一步地,激励贴片270和寄生贴片280的周围设置有金属过孔281,以隔绝转接结构对天线单元100的辐射波导30的影响。
进一步地,收发射频芯片250和激励贴片270通过馈线单元290连接。
在一些实施例中,馈线单元290包括微带线292和巴伦294,收发射频芯片250的芯片管脚与微带线292的一端连接,微带线292的另一端连接巴伦294,巴伦294连接激励贴片270。通过微带线292和巴伦294连接收发射频芯片250和激励贴片270,以减少收发射频芯片250和激励贴片270之间的馈线损耗。
可以理解,在其他实施例中,天线阵列200还包括微带差分线(图未示),收发射频芯片250的芯片管脚与微带差分线的一端连接,微带差分线的另一端与激励贴片270连接。通过微带差分线连接收发射频芯片250和激励贴片270,以减少收发射频芯片250和激励贴片270之间的馈线损耗。
进一步地,第二波导板240相背于第一波导板230的一侧设置有馈线槽246,馈线槽246用于收容收发射频芯片250与馈电接口12之间的馈线,以提高匹配和降低损耗。
在一些实施例中,天线单元100可为金属、电镀塑料(电镀材料可以是金、银、铜、镍、锡等)或导电塑料。
其中,可通过金属机加或塑料注塑加工形成天线单元100,天线单元100的拔模角为0.5°。
在一些实施例中,天线单元100的波导的厚度D,D范围满足:
0.8mm>D>3mm。
0.8mm>D>3mm。
进一步地,可在天线单元100的天线区域外做减重、减薄设计,以提升天线单元100的整体体积。
在一些实施例中,采用分层加工第一波导板230和第二波导板240,采用销钉定位第一波导板230和第二波导板240,采用焊接或螺钉或胶粘固定组装第一波导板230和第二波导板240。采用螺钉紧固或胶粘天线阵列200与收发射频芯片250所在基板。
图12为本申请实施例提供的天线阵列的回波损耗的仿真曲线的比较示意图。
图12中示例了现有的天线阵列的回波损耗和本申请实施例提供的天线阵列的回波损耗的示例图,由图12可知,相较于现有的天线阵列,本申请实施例通过激励贴片270和寄生贴片280实现与对应天线单元100的宽带微带线到波导转换,降低了回波损耗,提升了天线阵列200的带宽,降低了收发射频芯片250和天线单元100之间的馈电损耗。
图13为本申请实施例提供的另一种的天线阵列200a的示意图。图14为图13所示的天线阵列200a的分解示意图。
图13所示的天线阵列200a与图6所示的天线阵列200的结构相类似,天线阵列200a包括多个天线
单元100a。且图13所示多个天线单元100a的过渡波导20a与图6实施例中的天线单元100的过渡波导20的结构均相同。天线阵列200a包括第一波导板230a和第二波导板240a。
进一步地,第一波导板230a具有多个第一贯穿孔234a,每个第一贯穿孔234a贯穿对应第一凹槽的槽底,天线单元100a的辐射波导的辐射端穿过对应第一贯穿孔内,以通过第一贯穿孔234a伸出两个波导板围设的收容空间,从而将信号辐射出去。
进一步地,每个天线单元100a的辐射端34对应的第一贯穿孔234a的两侧设置有条形槽236a,条形槽236a内收容有导电件238a。
天线阵列200a包括发送天线阵列220a和接收天线阵列210a,发送天线阵列220a的多个天线单元100a的辐射波导30a和过渡波导20a的结构均相同,接收天线阵列210a的多个天线单元100的辐射波导30a和过渡波导20a的结构均相同,不同之处在于:
发送天线阵列220a的多个天线单元100a的辐射波导30a与接收天线阵列210a的多个天线单元100a的辐射波导30a不同,导致发送天线阵列220a和接收天线阵列210a的天线波束宽度和增益不同。
其中,图13和图14中的发送天线阵列220a的天线单元100a中的辐射端34的数量为八个,接收天线阵列210a的天线单元100a中的辐射端34的数量为四个。
进一步地,发送天线阵列220a包括第一发送子天线阵列2202a、第二发送子天线阵列2204a和第三发送子天线阵列2206a,第一发送子天线阵列2202a的多个天线单元100a和第二发送子天线阵列2204a的多个天线单元100a沿第二方向等间隔设置;
接收天线阵列210a包括第一接收子天线阵列2102a和第二接收子天线阵列2104a,第一接收子天线阵列2102a的多个天线单元100a沿第一方向非均匀间隔排列,第二接收子天线阵列2104a的多个天线单元100a沿第二方向非均匀间隔排列。
第一发送子天线阵列2202a、第二发送子天线阵列2204a、第一接收子天线阵列2102a和第二接收子天线阵列2104a围设形成一个方形,第三发送子天线阵列2206a位于方形内,第三发送子天线阵列2206a的多个天线单元100a非等间距排列。
图13中的第一发送子天线阵列2202a包括三个天线单元100a,三个天线单元100a沿第二方向等间隔设置;
第二发送子天线阵列2204a包括三个天线单元100a,三个天线单元100a沿第二方向等间隔设置;
第一接收子天线阵列2102a包括十六个天线单元100a,十六个天线单元100a沿第二方向设置,中部十二个均匀设置,中部的两侧的四个天线单元100a相对中部的十二个天线单元100a对称设置,且外侧两个天线单元100a之间的间隔大于内侧两个天线单元100a之间的间隔;
第二接收子天线阵列2104a包括八个天线单元100a,八个天线单元100a沿第一方向等间隔设置;
第三发送子天线阵列2206a包括六个天线单元100a,六个天线单元100a位于方形空间内;
可以理解,在其他实施例中,天线阵列200a中天线单元100a的数量可依据实际需求进行调整。
图15为本申请实施例提供的发送天线阵列220a中的天线单元100a的结构示意图,每个天线单元100a包括馈电波导10a、过渡波导20a和辐射波导30a,馈电波导10a与过渡波导20a连接,过渡波导20a和辐射波导30a连接,多个天线单元的过渡波导20a的结构均相同,不同之处在于,每个天线单元100a包括两个过渡波导20a和两个辐射波导30a,其中,馈电波导10a分别连接两个过渡波导20a的一端,每个过渡波导20a的另一端连接对应的辐射波导30。
请参见图16,图16为本申请实施例提供的另一种天线阵列200a的结构示意图,图16所示的天线阵列与上述实施例的天线阵列200a的结构相同,不同之处在于:
图16所示的天线阵列200a还包括收发射频芯片250a,收发射频芯片250a设置于第二波导板240a相背于第一波导板230a的一侧,收发射频芯片250a的芯片管脚通过馈线为天线单元100a提供馈电。
图16中,每个收发射频芯片250a具有六个芯片管脚,其中两个芯片管脚对应发送天线阵列对应的两个天线单元100a和四个接收天线阵列对应的两个天线单元100a,每个芯片管脚通过馈线为对应的六个天线单元100a的馈电波导10a的馈电接口12a提供馈电。
图16中天线阵列200a包括六个收发射频芯片250a,每个收发射频芯片250a对应一个芯片区域,则六个收发射频芯片250对应的六个芯片区域,六个芯片区域内的六个天线单元100a的馈电接口12a均呈“T”字形排布。
图17A、图17B、图18A和图18B为本申请实施例提供的天线阵列200中天线单元100的排布示意图。
请参见图17A,图17A中天线阵列200的多个天线单元100的辐射波导的排布方向与天线阵列200中的多个天线单元100的延伸方向呈-45°,以使天线阵列200呈-45°斜极化。
请参见图17B,图17B中天线阵列200的多个天线单元100的辐射波导的排布方向与天线阵列200中的多个天线单元100的延伸方向呈+45°,以使天线阵列200呈+45°斜极化。
请参见图18A,图18A中天线阵列200的多个天线单元100的辐射波导的排布方向与天线阵列200中的多个天线单元100的延伸方向呈+45°和-45°,以使天线阵列200呈±45°双极化或圆极化。
请参见图18B,图18B中天线阵列200的多个天线单元100的辐射波导的排布方向与天线阵列200中的多个天线单元100的延伸方向呈+45°和-45°,以使天线阵列200呈±45°双极化或圆极化。
通过+45°极化和-45°极化的馈电网络通过波导多级变化实现,为了实现紧凑结构采用加脊波导结合交叉分布。
双极化通过调整馈电部分前后位置,单元交叉分布和双脊波导结合,形成完整的+/-45°双极化天线,或者通过双极化馈电转换到四脊波导形成完整的+/-45°双极化。图18A中的天线阵列200通过馈电部分±90°相差延时,保证馈电信号的矢量合成,最终形成圆极化。
请参见图19,图19为本申请实施例提供的一种电子设备的结构示意图,电子设备包括上述实施例任一项的天线阵列,图19中的天线阵列包括天线单元和与天线单元连接的收发射频芯片,通过天线单元和收发射频芯片配合,以将信号辐射到自由空间中。
图19中的电子设备为车载雷达,可安装于车辆的车身上。该车载雷达还包括信号处理机和车载连接器。车载雷达工作时,收发射频芯片的发射信号通过天线阵列的天线单元透过天线罩照射目标产生反射信号;反射信号透过天线罩经天线单元进入收发射频芯片,经放大、混频、滤波、中频放大、数字采样后信号由收发射频芯片进入信号处理机产生检测信号经车载连接器发送至车身。
图20为车载雷达在车辆中的应用场景。车载雷达可应用于车辆的前部,以检测车辆的前方和侧向车辆等目标靠近动作,通过上述实施例天线单元,以减少馈线损耗、提升天线效率,简化天线阵列的结构,有利于提高车载雷达的探测距离和探测范围并降低成本。
可以理解,在其他实施例中,上述天线单元或天线阵列可以应用于其他类型的电子设备,例如探测设备。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的公开范围之内。
Claims (19)
- 一种天线单元,其特征在于,包括:馈电波导;过渡波导,包括依次连接的第一部分、第二部分、第三部分及第四部分,所述第一部分的一端与所述馈电波导连接,所述第一部分远离所述馈电波导的一端的波导尺寸逐渐变小以形成第一阶梯结构;所述第二部分与所述第一部分并列设置,所述第二部分靠近所述馈电波导的一端的波导尺寸逐渐变小以形成第二阶梯结构,所述第二阶梯结构与所述第一阶梯结构相背设置;所述第三部分连接于所述第二部分的远离所述馈电波导的一端,所述第三部分远离所述第二部分的一端的波导尺寸逐渐变小以形成第三阶梯结构;所述第四部分与所述第三部分并列设置且与所述第一部分相邻,所述第四部分远离所述第三部分的一端的波导尺寸逐渐变小以形成相对设置的第四阶梯结构和第五阶梯结构,所述第四阶梯结构与所述第一阶梯结构相邻;辐射波导,与所述第四部分连接。
- 如权利要求1所述的天线单元,其特征在于,所述第一部分的波导尺寸变小的方向为第一渐变方向,所述第二部分的波导尺寸变小的方向为第二渐变方向,所述第三部分的波导尺寸变小的方向为第三渐变方向,所述第四部分的波导尺寸变小的方向为第四渐变方向;所述第一渐变方向与所述第三渐变方向相互平行且方向相同,所述第二渐变方向与所述第四渐变方向相互平行且方向相反,所述第一渐变方向与所述第二渐变方向相互垂直。
- 如权利要求1或2所述的天线单元,其特征在于,所述辐射波导具有多个辐射端,每个所述辐射端具有对应的辐射开口,所述过渡波导为方波导,所述天线单元满足以下关系式:
0.85λ≥L≥0.55λ;
0.3λ≥B≥0.15λ;
0.3λ≥b≥0.15λ;其中,λ为自由空间波长,L为方波导的尺寸,b为所述馈电波导的波导宽度,B为所述辐射开口的波导宽度。 - 如权利要求1或2所述的天线单元,其特征在于,所述辐射波导具有多个辐射端,每个所述辐射端具有对应的辐射开口,所述过渡波导为圆波导,所述天线单元满足以下关系式:
0.40λ≥L≥0.32λ;
0.3λ≥B≥0.15λ;
0.3λ≥b≥0.15λ;其中,λ为自由空间波长,L为方波导的尺寸,b为所述馈电波导的波导宽度,B为所述辐射开口的波导宽度。 - 如权利要求1至4任一项所述的天线单元,其特征在于,所述第一阶梯结构、所述第二阶梯结构、所述第三阶梯结构、所述第四阶梯结构和所述第五阶梯结构中至少一个的相邻阶梯的相交处设置有过渡圆弧或倒角。
- 如权利要求1至4任一项所述的天线单元,其特征在于,所述辐射波导包括功分器和辐射端,所述功分器与所述第四部分连接,所述辐射端与所述功分器连接。
- 一种天线阵列,其特征在于,所述天线阵列包括多个如权利要求1至6中任意一项所述的天线单元。
- 如权利要求7所述的天线阵列,其特征在于,所述天线阵列包括发送天线阵列和接收天线阵列,所述发送天线阵列包括第一发送子天线阵列、第二发送子天线阵列和第三发送子天线阵列,所述接收天线阵列包括第一接收子天线阵列和第二接收子天线阵列;每个子天线阵列包括至少两个所述天线单元;所述第一接收子天线阵列中的所述天线单元和所述第二接收子天线阵列中的所述天线单元分别沿第一方向间隔设置,所述第一发送子天线阵列中的所述天线单元和所述第二发送子天线阵列中的所述天线单元分别沿第二方向间隔设置,所述第一方向与所述第二方向相垂直;所述第一接收子天线阵列、所述第二接收子天线阵列、所述第一发送子天线阵列及所述第二发送子天线阵列围设形成一方形结构,所述第三发送子天线阵列位于所述方形结构内。
- 如权利要求8所述的天线阵列,其特征在于,所述第一接收子天线阵列的中心点和所述第二接收子 天线阵列的中心点沿所述第二方向的距离大于所述第一发送子天线阵列沿所述第二方向的长度或所述第二发送子天线阵列沿所述第二方向的长度,其中,所述中心点是所述第一接收子天线阵列或所述第二接收子天线阵列沿所述第二方向的中心。
- 如权利要求8或9所述的天线阵列,其特征在于,所述第三发送子天线阵列的天线单元沿所述方形的对角线等间隔设置。
- 如权利要求8至10任一项所述的天线阵列,其特征在于,所述第一接收子天线阵列中的所述天线单元和所述第二接收子天线阵列中的所述天线单元分别沿第一方向等间隔设置,所述第一发送子天线阵列中的所述天线单元和所述第二发送子天线阵列中的所述天线单元分别沿所述第二方向等间隔设置。
- 如权利要求7至11任一项所述的天线阵列,其特征在于,所述天线阵列还包括收发射频芯片,每个所述天线单元的馈电波导具有对应的馈电接口;所述收发射频芯片通过芯片管脚与对应的多个所述馈电接口连接,每个所述收发射频芯片对应的所述馈电接口呈“T”字形排列或“L”字形排列。
- 如权利要求7至12任一项所述的天线阵列,其特征在于,所述天线阵列还包括收发射频芯片、激励贴片、寄生贴片及电路板,所述收发射频芯片、所述激励贴片、所述寄生贴片间隔设置于所述电路板上,所述激励贴片和所述寄生贴片与对应的所述天线单元的馈电接口对应设置;所述收发射频芯片与所述激励贴片通过馈线单元连接。
- 如权利要求13所述的天线阵列,其特征在于,所述激励贴片为矩形贴片、圆形贴片、三角形贴片或圆环性贴片。
- 如权利要求13或14所述的天线阵列,其特征在于,所述激励贴片和所述寄生贴片满足以下关系式:
0.3λ≥L1≥0.1λ;
0.3λ≥L2≥0.1λ;其中,L1为所述激励贴片沿远离所述收发射频芯片的延伸长度,L2为所述寄生贴片沿远离所述收发射频芯片的延伸长度。 - 如权利要求7至15任一项所述的天线阵列,其特征在于,所述馈线单元包括微带线和巴伦,所述微带线的一端与所述收发射频芯片的芯片管脚连接,所述微带线的另一端与所述巴伦连接,所述巴伦与所述激励芯片连接。
- 如权利要求7至16任一项所述的天线阵列,其特征在于,所述天线阵列满足以下公式:
N=(Nt+Nr)*Nc;其中,Nt为所述收发射频芯片的发射通道数,Nr为所述收发射频芯片的接收通道数,Nc为天线阵列的所述收发射频芯片数,N为天线阵列的通道总数。 - 如权利要求7至17任一项所述的天线阵列,其特征在于,所述天线阵列包括第一波导板和第二波导板,所述第一波导板朝向所述第二波导板的一侧设置有多个第一凹槽,所述第二波导板朝向第一波导板的一侧设置有多个第二凹槽,每个所述第一凹槽与对应的所述第二凹槽形成一收容空间,所述收容空间用于收容对应的所述天线单元。
- 一种电子设备,其特征在于,所述电子设备包括如权利要求7至18任一项所述的天线阵列。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310208198.1 | 2023-02-24 | ||
CN202310208198.1A CN118589191A (zh) | 2023-02-24 | 2023-02-24 | 天线单元、具有该天线单元的天线阵列及电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024175041A1 true WO2024175041A1 (zh) | 2024-08-29 |
Family
ID=92500246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/077967 WO2024175041A1 (zh) | 2023-02-24 | 2024-02-21 | 天线单元、具有该天线单元的天线阵列及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118589191A (zh) |
WO (1) | WO2024175041A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020119646A1 (en) * | 1998-06-12 | 2002-08-29 | Tomoyuki Sasaki | Method of manufacturing electronic device |
CN201134509Y (zh) * | 2007-10-31 | 2008-10-15 | 中国电子科技集团公司第三十八研究所 | 宽带双l形波导窄边缝隙天线阵 |
CN104901001A (zh) * | 2015-05-19 | 2015-09-09 | 安徽四创电子股份有限公司 | 脊波导偏置缝耦合微带振子双极化天线 |
CN107910642A (zh) * | 2017-12-07 | 2018-04-13 | 厦门大学 | 一种具有解耦结构的二维波导缝隙阵列天线及其设计方法 |
CN108173007A (zh) * | 2017-12-21 | 2018-06-15 | 厦门大学 | 一种基于四角馈电的双层波导缝隙近场聚焦阵列天线 |
US10186787B1 (en) * | 2017-09-05 | 2019-01-22 | Honeywell International Inc. | Slot radar antenna with gas-filled waveguide and PCB radiating slots |
-
2023
- 2023-02-24 CN CN202310208198.1A patent/CN118589191A/zh active Pending
-
2024
- 2024-02-21 WO PCT/CN2024/077967 patent/WO2024175041A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020119646A1 (en) * | 1998-06-12 | 2002-08-29 | Tomoyuki Sasaki | Method of manufacturing electronic device |
CN201134509Y (zh) * | 2007-10-31 | 2008-10-15 | 中国电子科技集团公司第三十八研究所 | 宽带双l形波导窄边缝隙天线阵 |
CN104901001A (zh) * | 2015-05-19 | 2015-09-09 | 安徽四创电子股份有限公司 | 脊波导偏置缝耦合微带振子双极化天线 |
US10186787B1 (en) * | 2017-09-05 | 2019-01-22 | Honeywell International Inc. | Slot radar antenna with gas-filled waveguide and PCB radiating slots |
CN107910642A (zh) * | 2017-12-07 | 2018-04-13 | 厦门大学 | 一种具有解耦结构的二维波导缝隙阵列天线及其设计方法 |
CN108173007A (zh) * | 2017-12-21 | 2018-06-15 | 厦门大学 | 一种基于四角馈电的双层波导缝隙近场聚焦阵列天线 |
Also Published As
Publication number | Publication date |
---|---|
CN118589191A (zh) | 2024-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7728772B2 (en) | Phased array systems and phased array front-end devices | |
US6104343A (en) | Array antenna having multiple independently steered beams | |
US11749902B2 (en) | Dual-band shared-aperture antenna array based on dual-mode parallel waveguide | |
US6421021B1 (en) | Active array lens antenna using CTS space feed for reduced antenna depth | |
EP1647072B1 (en) | Wideband phased array radiator | |
Ren et al. | Phase shifter-relaxed and control-relaxed continuous steering multiple beamforming 4× 4 Butler matrix phased array | |
US20090140943A1 (en) | Slot antenna for mm-wave signals | |
JP4021150B2 (ja) | スロットアレーアンテナ | |
US20040056814A1 (en) | Dual-polarization common aperture antenna with rectangular wave-guide fed centeredlongitudinal slot array and micro-stripline fed air cavity back transverse series slot array | |
KR102693697B1 (ko) | 중심 급전 안테나 어레이를 가지는 마이크로스트립 안테나 디바이스 | |
US20060038732A1 (en) | Broadband dual polarized slotline feed circuit | |
CN101533961A (zh) | 基于八端口结的共基片多波束天线 | |
JP4535641B2 (ja) | 一次放射器および移相器ならびにビーム走査アンテナ | |
CN201383549Y (zh) | 辐射效率高的多波束天线 | |
Fang et al. | 1-D wide scanning gap waveguide-based slot array antenna using decoupling technique for 100 GHz applications | |
Nguyen et al. | Pencil-beam full-space scanning 2D CRLH leaky-wave antenna array | |
Kapusuz et al. | Millimeter wave phased array antenna for modern wireless communication systems | |
CN115296028A (zh) | 一种水平面360度波束连续扫描天线 | |
CN111082218A (zh) | 共口径复合天线单元及相控阵天线 | |
CN114122736A (zh) | 一种全向覆盖的宽带圆极化多波束天线阵列 | |
JP3364829B2 (ja) | アンテナ装置 | |
WO2024175041A1 (zh) | 天线单元、具有该天线单元的天线阵列及电子设备 | |
CN110931968A (zh) | 一种低交叉极化的毫米波微带平板阵列天线 | |
CN117013245A (zh) | 一种基于双模贴片单元的毫米波宽角扫描相控阵 | |
Djerafi et al. | Innovative multilayered millimetre-wave antennas for multi-dimensional scanning and very small footprint applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24759718 Country of ref document: EP Kind code of ref document: A1 |