[go: up one dir, main page]

WO2024171965A1 - Multilayer body - Google Patents

Multilayer body Download PDF

Info

Publication number
WO2024171965A1
WO2024171965A1 PCT/JP2024/004514 JP2024004514W WO2024171965A1 WO 2024171965 A1 WO2024171965 A1 WO 2024171965A1 JP 2024004514 W JP2024004514 W JP 2024004514W WO 2024171965 A1 WO2024171965 A1 WO 2024171965A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
laminate
layer
peak
metal
Prior art date
Application number
PCT/JP2024/004514
Other languages
French (fr)
Japanese (ja)
Inventor
倫子 甲斐
絵美 山田
祐一 辻
千紘 山本
誠 佐藤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2024513915A priority Critical patent/JP7563653B1/en
Publication of WO2024171965A1 publication Critical patent/WO2024171965A1/en
Priority to JP2024158781A priority patent/JP2025000692A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • B41M1/30Printing on other surfaces than ordinary paper on organic plastics, horn or similar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a laminate that has excellent adhesion to a printing layer.
  • Packaging materials for food, medicines, daily necessities, etc. require oxygen and water vapor barrier properties to prevent deterioration of the contents.
  • Barrier films made of resin films such as polyester with a metal layer such as aluminum or a metal oxide layer laminated onto them have been used as barrier packaging materials.
  • a metal oxide layer is laminated onto a transparent film, it has good visibility, and when packaging food, it can be heated in a microwave oven, making it highly convenient, and so it is widely used.
  • These films can be printed with characters, pictures, etc. for display purposes, or laminated with other resin films, making them suitable for use as packaging materials for a variety of purposes.
  • a protective layer is sometimes laminated on top of the gas barrier layer, and generally printing is performed on the protective layer.
  • gravure printing which is the mainstream method for printing on flexible packaging, because it has excellent printability and adhesion to the protective layer (Patent Document 1).
  • Patent Document 1 The printing method used for such protective layers is gravure printing, which is the mainstream method for printing on flexible packaging, because it has excellent printability and adhesion to the protective layer (Patent Document 1).
  • gravure printing uses ink that contains a large amount of solvent, so a large amount of energy is required to dry the ink solvent and to treat the exhaust, which places a large burden on the environment.
  • EB flexographic printing and EB offset printing which cure ink by exposure to active energy rays, particularly electron beams (EB), in flexible packaging printing
  • Patent Document 2 flexible packaging printing is performed using a roll-to-roll method, so the quick drying of the ink is important, and active energy ray curing printing methods are not only environmentally advantageous because they contain almost no solvents, but also energy-saving and highly productive because they shorten the drying process without using thermal energy.
  • curing by electron beam irradiation has excellent transparency and does not require a photopolymerization initiator in the ink, reducing the risk of odors on the printed material and migration of initiator decomposition components to the contents, and is also excellent in terms of safety in terms of protecting the contents.
  • the amount of silicon alkoxide having a (meth)acrylate group introduced is very large, and adhesion to active energy ray-curable ink is obtained, but in consideration of other protective layer components such as highly hydrophilic vinyl alcohol resins and silicon alkoxides with small molecular weights, the introduction of a large number of highly hydrophobic and large molecular weight (meth)acrylate groups increases voids in the film and the film cannot be cured densely enough to suppress deterioration of the contents, which is not sufficient to obtain barrier properties and leaves room for improvement.
  • the objective of the present invention is to provide a laminate that exhibits high adhesion to printed layers made of various inks and also exhibits high gas barrier properties.
  • a preferred embodiment of the present invention is as follows. (1) A laminate in which a metal layer and/or an inorganic compound layer and a coating layer are laminated in this order on at least one surface of a base film, in which the ratio X/Y of the emission intensity X of an emission peak to the emission intensity Y of a reference peak measured under the following measurement conditions from the coating layer side is 5 or more and 300 or less. ⁇ Measurement conditions> The coating layer side of the laminate was brought into contact with a 1 ⁇ 10-4 mol/L solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole in THF (tetrahydrofuran) at 60°C for 30 minutes, and the laminate was then immersed and washed twice in THF.
  • THF tetrahydrofuran
  • P1 Intensity of the maximum peak present at 1,050 to 1,080 cm -1
  • P2 Intensity of the maximum peak present at 920 to 970 cm -1
  • the coating layer contains a metal element M in addition to a water-soluble resin and a hydrolysate of a metal alkoxide and/or a polycondensate thereof, and the ratio m/s of the peak intensity m of a fragment ion derived from the metal element M to the peak intensity s of a fragment ion derived from a segment having a Si-O bond, as measured by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), is 0.05 or more and 10.00 or less.
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • the present invention makes it possible to provide a laminate that exhibits high adhesion to printed layers made of various inks and also exhibits high gas barrier properties.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a laminate of the present invention.
  • the resin constituting the substrate film according to the present invention is not particularly limited, and examples thereof include polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, and polybutylene terephthalate; polyolefin resins such as polyethylene, polystyrene, polypropylene, polyisobutylene, polybutene, and polymethylpentene; cyclic polyolefin resins, polyamide resins, polyimide resins, polyether resins, polyesteramide resins, polyetherester resins, acrylic resins, polyurethane resins, polycarbonate resins, and polyvinyl chloride resins; and biodegradable resins such as polylactic acid, polycaprolactone, polyglycolic acid, and polyvinyl alcohol.
  • polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, and polybutylene terephthalate
  • polyester resins are preferred from the viewpoint of adhesion to the inorganic compound layer and handling, and polyolefin resins are preferred from the viewpoint of ease of recycling.
  • the resin contains 3 to 55% by mass of recycled raw materials relative to the entire resin.
  • the recycled raw materials may be those recycled by mechanical recycling or chemical recycling, and are not particularly limited.
  • the resin constituting the base film may contain a biomass-derived (plant-derived) raw material, and for example, in the case of polyester, it is preferable that either one or both of the raw materials, diol or dicarboxylic acid, contain 10 to 95 mass % of a biomass-derived (plant-derived) raw material with respect to the entire resin composition.
  • the base film may be unstretched or stretched (monoaxially or biaxially), but is preferably biaxially stretched from the viewpoint of thermal dimensional stability.
  • the thickness of the base film is preferably 3 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less, and even more preferably 8 ⁇ m or more and 30 ⁇ m or less.
  • a thickness of 3 ⁇ m or more of the base film allows the rigidity of the support to be maintained, while a thickness of 100 ⁇ m or less is preferable because it maintains the flexibility of the film as a packaging material while improving conformability.
  • the thickness of the base film is determined by the method described in the examples.
  • the polyolefin resin film used for the base film is preferably a film mainly composed of a resin whose main constituent unit is an olefin hydrocarbon.
  • the main constituent unit refers to the monomer unit contained in the resin that has the highest content (unit number), and the main component refers to the monomer unit contained in the resin that has the highest content (mass%) among all the constituent components.
  • the film may be unstretched or stretched, but it is preferable to be biaxially stretched from the viewpoint of thermal dimensional stability.
  • the polyolefin resin film preferably has a melting point of 150°C or higher. By setting the melting point at 150°C or higher, heat damage caused by the heat during the process of forming the metal oxide layer or processing into a packaging material can be prevented, and the heat resistance after processing is also increased, so deterioration of the barrier properties can be suppressed.
  • the melting point of the film can be measured by DSC (differential scanning calorimetry) using the following method.
  • the glass transition temperature (Tg) of the polyolefin resin film is preferably 50°C or lower. This embodiment increases the flexibility of the film even at low temperatures, and when used as a package, it does not harden even at low temperatures, allowing for stable use over a wide temperature range.
  • the polyolefin resin film has a smooth surface.
  • Surface smoothness can be expressed by the arithmetic mean height Sa defined in ISO25178 (2012), and Sa is preferably 50 nm or less, more preferably 30 nm or less. Sa can be measured using a non-contact surface observation device, for example, a scanning white light interference microscope manufactured by Hitachi High-Tech Science Corporation. In the present invention, Sa is determined by the method described in the examples. By making the surface smooth, defects in the inorganic oxide layer laminated on the surface can be reduced, a good inorganic oxide layer can be obtained, and the barrier properties can be improved.
  • the laminate of the present invention preferably has a metal layer and/or an inorganic compound layer on at least one surface of the substrate film.
  • the metal layer and/or the inorganic compound layer preferably contains one or more elements selected from Groups 2 to 14 (excluding carbon) of the periodic table, and the inorganic compound layer further contains at least one of oxygen and nitrogen.
  • the metal layer preferably contains aluminum, and more preferably has aluminum as the main component.
  • the main component refers to the component that has the largest content (mass%) among the components.
  • the inorganic compound layer preferably contains at least one or more selected from aluminum, magnesium, titanium, tin, indium, and silicon, and more preferably contains silicon or aluminum. Examples of preferable inorganic compound layers include silicon oxide, silicon oxynitride, and aluminum oxide, and aluminum oxide is particularly preferable.
  • the ratio of aluminum to the total of elements from Groups 2 to 14 (excluding carbon) of the periodic table is preferably 50 atomic % or more.
  • the thickness of the metal layer is preferably 5 nm or more and 500 nm or less, and more preferably 10 nm or more and 100 nm or less.
  • a thickness of 5 nm or more can improve the barrier properties, and a thickness of 500 nm or less is preferable because it can prevent the substrate from being damaged by heat during film formation.
  • the thickness of the inorganic compound layer is preferably 2 nm to 50 nm, more preferably 2 nm to 20 nm, and even more preferably 4 nm to 10 nm.
  • a thickness of 2 nm or more can reduce defects such as pinholes in the inorganic compound layer, and a thickness of 50 nm or less can suppress cracks, which is preferable.
  • the thickness of the metal layer and inorganic compound layer will be determined by the method described in the examples.
  • the laminate of the present invention is preferably a laminate in which a metal layer and/or an inorganic compound layer, and a coating layer are laminated in this order on at least one surface of a base film.
  • This embodiment includes a laminate in which a base film, a metal layer, and a coating layer are laminated in this order, a laminate in which a base film, an inorganic compound layer, and a coating layer are laminated in this order, as well as a laminate in which a base film, a metal layer, an inorganic compound layer, and a coating layer are laminated in this order, a laminate in which a base film, an inorganic compound layer, a metal layer, and a coating layer are laminated in this order, and a laminate in which a base film, an inorganic compound layer, a metal layer, and a coating layer are laminated in this order.
  • the coating layer refers to at least one outermost layer of the laminate, and is preferably a layer containing a water-soluble resin and a hydrolysate of a metal alkoxide and/or a polycondensate thereof.
  • the laminate of the present invention is preferably a laminate in which a metal layer and/or an inorganic compound layer and a coating layer are laminated in this order on at least one surface of a base film, the coating layer is preferably a layer containing a water-soluble resin and a hydrolysate of a metal alkoxide and/or a polycondensate thereof, and the outermost layer is preferably the coating layer.
  • Water-soluble resin refers to a resin that is dispersed in water to a concentration of 5% by mass, heated and stirred at 90°C for 1 hour, and then cooled to room temperature. When 30 mL of the liquid is passed through filter paper type 1 (compliant with JIS P 3801 (1995)), no residue remains on the filter paper.
  • the water-soluble resin of the coating layer preferably contains one or more segments selected from a segment derived from a vinyl alcohol resin, a segment derived from a polysaccharide, and a segment derived from an acrylic polyol resin.
  • Preferred examples of resins containing segments derived from vinyl alcohol resins, segments derived from polysaccharides, and segments derived from acrylic polyol resins are vinyl alcohol resins, polysaccharides such as methyl cellulose, and acrylic polyol resins, respectively, with vinyl alcohol resins being preferred in terms of improved oxygen barrier properties.
  • vinyl alcohol resins include polyvinyl alcohol, ethylene-vinyl alcohol copolymers, and modified polyvinyl alcohol, and these resins may be used alone or in mixtures of two or more.
  • the average molecular weight of the vinyl alcohol resin (in accordance with JIS K 6726 (1994)) is preferably 500 or more and 3,000 or less. If the molecular weight is smaller than this, the polymer is less likely to be fixed in the layer, and the barrier properties may be reduced.
  • Vinyl alcohol resins are generally obtained by saponifying polyvinyl acetate. They may be partially saponified by saponifying some of the acetate groups, or completely saponified, but a higher degree of saponification is preferable.
  • the degree of saponification (based on JIS K 6727 (1994)) is preferably 90% or more, and more preferably 95% or more.
  • a higher degree of saponification means fewer acetate groups with large steric hindrance, a smaller free volume for the coating layer, and a higher degree of crystallization of the resin, which is advantageous for improving barrier properties and is therefore preferable.
  • Modified polyvinyl alcohol resins are those made by chemically reacting polyvinyl alcohol with monomers of different chemical structures, or by copolymerizing monomers of different chemical structures.
  • Modified polyvinyl alcohol resins include vinyl esters such as vinyl acetate and vinyl propionate, carboxylic acids, methacrylic esters, vinyl ethers such as methyl vinyl ether, and glycols.
  • the segments derived from the vinyl alcohol resin, the polysaccharide, and the acrylic polyol resin contained in the coating layer can be analyzed by the following method.
  • the film piece is immersed in deuterated isopropanol, and the coating layer composition is dissolved in the solvent, or the coating layer is physically scraped off using a spatula or the like. Whether the coating layer has been dissolved or scraped off can be confirmed by measuring the thickness of the coating layer in the same manner as in the thickness evaluation method described below. Next, the sample dissolved in the solvent is analyzed by liquid NMR, or the scraped sample is analyzed by solid NMR for 13 C, and it can be confirmed whether each segment is included by assigning each peak.
  • the metal alkoxide is one or more selected from silicon alkoxides represented by Si(OR) 4 , hydrolysates of silicon alkoxides, and polycondensates of hydrolysates of silicon alkoxides, which become segments having Si-O bonds, and/or is represented by the general formula M(OR) n .
  • n is a natural number
  • M is a metal atom, preferably titanium, aluminum, zirconium, etc.
  • R is an alkyl group, and in particular, a lower alkyl group having 1 to 4 carbon atoms is preferable.
  • tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane can be preferably used, and these may be used alone or in a mixture of two or more kinds.
  • These metal alkoxides may be hydrolyzed or polycondensed to form a network.
  • the hydrolysis and/or polycondensation of the metal alkoxide can be carried out in the presence of water, a catalyst, and an organic solvent.
  • the amount of water used in the reaction is preferably 0.8 equivalents or more and 5 equivalents or less relative to the alkoxy groups of Si(OR) 4 and/or M(OR) n .
  • the hydrolysis can be sufficiently advanced to form a network.
  • the degree of hydrolysis can be adjusted to suppress random network formation, and the free volume of the film can be reduced to improve the barrier property.
  • the catalyst used for the reaction of the metal alkoxide is preferably an acid catalyst.
  • acid catalysts include, but are not limited to, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, tartaric acid, etc.
  • hydrolysis and polycondensation reaction of the metal alkoxide can be carried out with either an acid catalyst or a base catalyst.
  • an acid catalyst is used, the monomers in the system are easily hydrolyzed on average, and condensation is likely to proceed in a linear or network structure.
  • the reaction mechanism is such that the hydrolysis and polycondensation reaction of alkoxides bonded to the same molecule is easily promoted, so the reaction product tends to be granular with a large free volume and many voids. Since the voids in the film become a permeation path for water vapor and oxygen, it is preferable to use an acid catalyst.
  • the amount of catalyst used is preferably 0.1 mol% to 0.5 mol% of the total molar amount of the metal alkoxide.
  • the organic solvent used in the reaction of the metal alkoxide can be water and alcohols that are miscible with the metal alkoxide, such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, and n-butyl alcohol.
  • silicate oligomers and polysiloxanes can also be used as polycondensates of metal alkoxides.
  • silicate oligomers and polysiloxanes can be used alone or mixed with low molecular weight metal alkoxides, it is preferable to use them mixed with low molecular weight metal alkoxides to prevent cracks caused by excessive crosslinking.
  • silicate oligomers or polysiloxanes it is preferable to select those with a linear or network structure, as this reduces the free volume of the film and tends to improve the barrier properties.
  • the metal alkoxide contained in the coating layer can be analyzed by FT-IR-ATR analysis of the coating layer surface, and by assigning each peak, it can be confirmed whether or not the coating layer contains segments with Si-O bonds and M-O bonds.
  • the coating layer in the present invention is preferably obtained by mixing the water-soluble resin with the hydrolysis and/or polycondensation product of the metal alkoxide, and applying and drying the coating agent to the metal layer and/or inorganic compound layer.
  • the ratio of the resin and the hydrolysis product and/or polycondensation product of the metal alkoxide contained in the coating layer is preferably in the range of 15/85 to 85/15, more preferably in the range of 20/80 to 65/35, more preferably in the range of 20/80 to 50/50, and particularly preferably in the range of 20/80 to 40/60, in terms of the mass ratio of the resin to the mass (converted mass of SiO 2 and MO n) when the central atom of the metal alkoxide is completely oxidized.
  • this ratio 15/85 or more it is possible to suppress the occurrence of cracks due to the weakening of the film caused by an excess amount of the hydrolysis product and/or polycondensation product of the metal alkoxide, which is preferable.
  • the resin can be fixed by a network of a hydrolysate and/or a polycondensate of the metal alkoxide, and deterioration of the water vapor barrier property can be suppressed, which is preferable.
  • the coating layer in the present invention is preferably prepared by adding a silane coupling agent having a (meth)acryloyl group to the coating agent obtained by mixing the water-soluble resin with the hydrolysis and/or polycondensation product of the metal alkoxide, which makes it possible to introduce a (meth)acryloyl group into the coating layer.
  • a silane coupling agent having a (meth)acryloyl group to the coating agent obtained by mixing the water-soluble resin with the hydrolysis and/or polycondensation product of the metal alkoxide, which makes it possible to introduce a (meth)acryloyl group into the coating layer.
  • the (meth)acryloyl group is preferably 0.25 mol% or more, more preferably 0.30 mol% or more, based on the total molar amount of metal elements contained in the coating layer, since it improves the film adhesion of active energy ray-curable ink. Also, since the gas barrier properties are well maintained, it is preferably 1.25 mol% or less, more preferably 1.10 mol% or less. This is because the (meth)acryloyl group has a large free volume compared to alkoxides having 4 or less carbon atoms and hydroxyl groups which are their hydrolysates, and as the amount added increases, the voids in the coating layer expand, which may result in a decrease in gas barrier properties.
  • a preferred embodiment of the laminate of the present invention is a laminate in which the ratio X/Y of the emission intensity X of the emission peak to the emission intensity Y of the reference peak measured under the following measurement conditions from the coating layer side is 5 or more and 300 or less.
  • ⁇ Measurement conditions> The coating layer side of the laminate was brought into contact with a 1 ⁇ 10-4 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole at 60° C. for 30 minutes, and the laminate was then immersed and washed twice in THF. Thereafter, a 15 mm ⁇ 15 mm piece was cut out and the emission spectrum was measured by exciting at 470 nm, and the peak intensity of the emission maximum observed at 520 to 550 nm was calculated.
  • the (meth)acryloyl group is an ⁇ - ⁇ unsaturated carbonyl compound, and therefore can be converted to a 3-aminopropionate structure by 1,4 conjugate addition of highly nucleophilic primary or secondary amines (Michael addition reaction).
  • a fluorescent dye with a secondary amino group into the (meth)acryloyl group, it is possible to quantify the (meth)acryloyl group in the film.
  • the fluorescent dye has only one secondary amino group, so it reacts with the (meth)acryloyl group at an equivalent ratio of 1:1.
  • the reaction proceeds even at room temperature without a catalyst.
  • it since it has absorption and fluorescence emission in the visible light region of 400 nm or more, it can be detected spectroscopically.
  • the contact time since the contact time is short, the thickness of the coating layer does not affect the value of X very much.
  • the detailed measurement method is determined by the method described in the examples.
  • the presence of a certain amount or more of (meth)acryloyl groups in the coating layer improves adhesion to ink.
  • the coating layer in the present invention preferably has a thickness of 200 nm or more and 600 nm or less, and more preferably 200 nm or more and 500 nm or less.
  • the thickness 200 nm or more the metal layer and/or inorganic compound layer can be coated without defects and the barrier properties can be improved.
  • the thickness 600 nm or less cracks due to thermal shrinkage during curing and insufficient curing can be prevented, which is preferable.
  • the thickness of the coating layer will be determined by the method described in the examples.
  • the coating layer preferably has a ratio P1/P2 of peak intensities P1 and P2 detected by FT-IR-ATR measurement of 3.5 to 8.0, more preferably 4.0 to 6.5 (where P1 indicates the intensity of the maximum peak present at 1,050 to 1,080 cm -1 , and P2 indicates the intensity of the maximum peak present at 920 to 970 cm -1 . Note that peak intensity is the absorbance (unitless) at the peak position).
  • the FT-IR-ATR method can capture the characteristics of the surface coating layer, where P1 indicates the reaction product Si-O-Si, and P2 indicates the amount of the reaction raw material Si-OH.
  • the ratio P1/P2 of peak intensities P1 and P2 increases as the polycondensation of metal alkoxide proceeds.
  • the terminal OH is reduced to form a strong film, improving the barrier properties and improving the moist heat resistance when retorted as a packaging material.
  • P1/P2 is 3.5 or more, the terminal OH is reduced to form a strong film, and a layer excellent in barrier properties and moist heat resistance can be obtained.
  • P1/P2 is 8.0 or less, cracks and embrittlement due to shrinkage of the film can be suppressed, which is preferable.
  • P1 and P2 are determined by the method described in the examples.
  • the ratio P1/P2 of the peak intensities P1 and P2 detected by the FT-IR-ATR method it is necessary to sufficiently proceed with the reaction of the metal alkoxide. Since the polycondensation of the metal alkoxide is a dehydration reaction, it can be proceeded by heating, but the polyolefin resin film used in the base film constituting the more preferable laminate of the present invention has a low heat resistance compared to conventional polyester resins, so there was a problem that it was difficult to sufficiently proceed with the reaction. As a result of extensive research, the inventors have succeeded in obtaining a film with suitable properties even in low-temperature processing by mixing a component that can form a network at low temperatures. They also discovered that the deterioration of barrier properties in post-processing can be suppressed by adjusting P1/P2 to 3.5 or more and 8.0 or less.
  • the laminate of the present invention When the laminate of the present invention is used as a packaging material, it is subjected to heat and pressure as it goes through printing and bag making processes.
  • a coating that forms an appropriate network can function as a protective film, which is preferable.
  • P1/P2 is less than 3.5, there is a lot of unreacted metal alkoxide, so the coating layer does not harden and is prone to scratches and deterioration of barrier properties, or, depending on the processing conditions, the unreacted metal alkoxide hardens and shrinks, causing barrier deterioration.
  • P1/P2 exceeds 8.0, the coating layer becomes embrittled, and cracks are likely to occur due to the pressure during lamination and the transport tension, causing barrier deterioration.
  • the coating layer in the present invention is preferably a layer that contains one or more segments selected from a segment derived from a vinyl alcohol resin, a segment derived from a polysaccharide, and a segment derived from an acrylic polyol resin, as well as a segment having an Si-O bond, and also contains a metal element M.
  • the segment derived from a vinyl alcohol resin, the segment derived from a polysaccharide, and the segment derived from an acrylic polyol resin are the water-soluble resins described above, and the segment having a Si—O bond is at least one selected from the group consisting of a silicon alkoxide represented by Si(OR) 4 , a hydrolysate of a silicon alkoxide, and a polycondensate of a hydrolysate of a silicon alkoxide, among the metal alkoxides described above.
  • the metal element M contained in the coating layer excludes silicon Si.
  • the inclusion of the metal element M in the coating layer makes it possible to make the coating layer dense. It is believed that the reason the inclusion of the metal element M in the coating layer makes it dense is that the compound containing the metal element M penetrates moderately into the repetition of Si-O bonds, creating a moderate degree of freedom in the bonds and making it possible to suppress the occurrence of very fine structural defects and cracks compared to repetition of only Si-O bonds.
  • the compound containing the metal element M is preferably a complex (chelate) or alcoholate of at least one metal element selected from at least one metal element selected from metals and semimetals excluding silicon, and may contain two types of metal elements.
  • the metal element M preferably contains a metal element having an empty orbital, and the sum of the elemental ratios of the metal elements having an empty orbital is preferably 80 atom% or more in the total of 100 atom% of the metal elements M (excluding silicon).
  • the metal element M preferably contains at least one metal element selected from aluminum, titanium, and zirconium, and more preferably the sum of the elemental ratios of aluminum, titanium, and zirconium is 80 atom% or more in the total of 100 atom% of the metal elements M (excluding silicon), and further preferably consists of at least one selected from aluminum, titanium, and zirconium, and particularly preferably the sum of the elemental ratios of titanium and zirconium is 80 atom% or more in the total of 100 atom% of the metal elements M (excluding Si), and most preferably consists of zirconium and/or titanium.
  • Examples of chelates or alcoholates containing aluminum element include aluminum tris(acetylacetonate), aluminum monoacetylacetonate bis(ethylacetoacetate), aluminum di-n-butoxide monoethylacetoacetate, aluminum di-iso-propoxide monomethylacetoacetate, aluminum tris(ethylacetoacetate), etc.
  • Examples of chelates or alcoholates containing titanium element include titanium orthoesters such as tetra-normal-butyl titanate, tetraisopropyl titanate, butyl titanate dimer, tetra(2-ethylhexyl) titanate, and tetramethyl titanate; and titanium chelates such as titanium acetylacetonate, titanium tetraacetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, titanium lactate, titanium triethanolamine, and titanium ethylacetoacetate.
  • titanium orthoesters such as tetra-normal-butyl titanate, tetraisopropyl titanate, butyl titanate dimer, tetra(2-ethylhexyl) titanate, and tetramethyl titanate
  • titanium chelates such as titanium acetylacetonate, titanium tetraacetylacetonate, polytit
  • Examples of chelates or alcoholates containing zirconium element include zirconium acetate, zirconium normal propylate, zirconium normal butylate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, etc.
  • titanium chelates such as aluminum tris(ethylacetoacetate), aluminum monoacetylacetonate bis(ethylacetoacetate), titanium lactate, titanium diethanolaminate, diisopropoxytitanium bis(triethanolaminate), zirconium lactate, etc.
  • titanium chelates are preferred because they provide stability even with small ligands, since reducing the amount of ligand residue after the reaction can suppress an increase in free volume derived from the ligands.
  • the polycondensation product of silicon alkoxide that forms the coating layer needs to undergo a sufficient reaction in order to provide a barrier. Therefore, by mixing a highly reactive metal chelate, it is possible to achieve both appropriate reactivity and stability of the coating liquid.
  • the coating layer of the present invention preferably has a ratio m/s of the peak intensity m of the fragment ion derived from the metal element M to the peak intensity s of the fragment ion derived from the segment having a Si-O bond, measured at the center of the coating layer thickness using a time-of-flight secondary ion mass spectrometer (TOF-SIMS), of 0.05 or more and 10.00 or less.
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • the ratio m/s of the peak intensity m of the fragment ion derived from the metal element M to the peak intensity s of the fragment ion derived from the segment having a Si-O bond, as measured by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), is determined by the following method.
  • the thickness of the coating layer is calculated by the thickness calculation method described in the examples, and half of the thickness is set as the central part.
  • the coating layer is analyzed while etching the thickness under the above measurement conditions.
  • the analyzed sample is measured for the crater depth using a stylus-type step gauge (Dektak XTL, manufactured by BRUKER).
  • the measured depth is converted using the average etching rate obtained by dividing the measured depth by the etching time, and the value of the central part is read. If there is no TOF-SIMS measurement data for the part that is exactly half the thickness, the TOF-SIMS measurement data of the measurement point closest to the part that is half the thickness is used. If there is not one measurement point closest to the part that is half the thickness, the average value of m/s calculated from the measurement data of each measurement point is set as the m/s of the part that is half the thickness.
  • Pretreatment conditions If the coating layer is exposed on the outermost surface, no pretreatment is required, but if other layers are formed on the coating layer, those layers are removed before analyzing the coating layer.
  • the method for removing the layers formed on the coating layer can be various ion etching methods such as argon ion beam etching or chemical treatment to remove the thickness of each layer. The thickness of each layer is determined by the method described in the examples.
  • ⁇ Analysis method> The raw data is read using a time-of-flight secondary ion mass spectrometer TOF-SIMS5 manufactured by ION TOF and measurement software SURFACE LAB 7.1, and peaks assigned to various ions are read from the mass spectrum.
  • TOF-SIMS5 manufactured by ION TOF and measurement software SURFACE LAB 7.1
  • m/s When m/s is 0.05 or more, a reaction promotion effect can be obtained even under low-temperature processing conditions, and the effect of the metal element M can make the coating layer dense, resulting in a layer with excellent barrier properties and moist heat resistance.
  • m/s is more preferably 0.30 or more, and even more preferably 0.50 or more.
  • the amount of metal element M present in the coating layer can be made to be a certain amount or more, and since the metal element M acts as a catalyst, a reaction promotion effect can be obtained even under low-temperature processing conditions.
  • the metal element M is preferably one that easily forms a chelate. By forming a chelate, it is possible to ensure reactivity while simultaneously achieving stability in the coating liquid state.
  • metal elements include aluminum, titanium, and zirconium.
  • a metal chelate containing the metal element M it is preferable that it has an empty coordination site, which is the difference between the valence and the coordination number. In other words, the metal chelate functions as a Lewis acid.
  • the empty coordination site is electronically unstable and is easily attacked, improving reactivity and providing a reaction promotion effect at a lower temperature.
  • a metal chelate containing the metal element M can bond multiple silicon alkoxides, thereby promoting the reaction between adjacent silicon alkoxides. In other words, a highly reactive metal chelate lowers the activation energy of the reaction between silicon alkoxides, and can reduce the thermal energy required to promote polycondensation, thereby providing a reaction promotion effect at a lower temperature.
  • the laminate of the present invention preferably uses a polyolefin-based resin film as a substrate so that the packaging material can be recovered and recycled.
  • the polyolefin-based resin film has a lower glass transition temperature than conventional polyester-based resins and polyamide-based resins. Therefore, even during storage in a roll, the film is likely to shrink and become tightly wound due to changes in the surrounding temperature. At that time, the coating layer is strongly pressed against the back surface of the film outside the roll, which causes a problem that the coating layer is more likely to deteriorate than conventional resin substrates.
  • barrier degradation can be suppressed by setting m/s to 0.05 or more and 10.00 or less.
  • Setting m/s to 0.05 or more provides a reaction promotion effect even under low-temperature processing conditions, making low-temperature processing possible and suppressing stress on the film due to shrinkage of the coating layer caused by additional curing, while setting m/s to 10.00 or less makes it possible to control the progress of excessive reaction, suppressing embrittlement of the coating layer and suppressing barrier degradation when the film is pressed down by tight rolling.
  • barrier degradation can be suppressed by setting P1/P2 to 3.5 or more and 8.0 or less, even when tight rolling occurs with polyolefin resin film.
  • Setting P1/P2 to 3.5 or more can suppress the stress placed on the film due to shrinkage of the coating layer caused by additional curing, while setting it to 8.0 or less can suppress embrittlement of the coating layer and suppress barrier degradation when the film is pressed down by tight rolling.
  • the laminate of the present invention preferably has a water vapor transmission rate of 1.0 g/m 2 /day or less, more preferably 0.5 g/m 2 /day or less.
  • the oxygen transmission rate is preferably 1.0 cc/m 2 /day or less, more preferably 0.3 cc/m 2 /day or less.
  • the smaller the water vapor transmission rate and oxygen transmission rate, the more preferable, and the lower limit is not particularly limited, but the water vapor transmission rate is substantially 0.01 g/m 2 /day and the oxygen transmission rate is 0.01 cc/m 2 /day.
  • the water vapor transmission rate 1.0 g/m 2 /day or less and the oxygen transmission rate 1.0 cc/m 2 /day or less it is preferable that the deterioration due to moisture absorption and oxidation of the contents when made into a package can be prevented.
  • the water vapor transmission rate and the oxygen transmission rate are measured by the method described in the examples.
  • the laminate of the present invention can be obtained by forming a metal layer and/or an inorganic compound layer on at least one surface of a substrate film, and then laminating a coating layer.
  • the metal layer and/or the inorganic compound layer can be formed by using known methods such as vacuum deposition, sputtering, ion plating, and plasma vapor phase growth, but the deposition method can be used preferably because it can form a film at high speed with good productivity.
  • the deposition method of the vacuum deposition method includes, but is not limited to, electron beam (EB) deposition, resistance heating, and induction heating.
  • the temperature is preferably 20° C. or less, more preferably 0° C. or less.
  • a method for obtaining a metal layer an example of deposition using a target metal as a raw material can be mentioned.
  • a method for obtaining an inorganic compound layer in addition to deposition using a compound of a target composition as a raw material, a method of using a metal as a raw material and introducing a reaction gas into the deposited metal vapor to obtain an inorganic compound can be exemplified.
  • an aluminum oxide layer is obtained, aluminum is used as a deposition material, and a gas containing oxygen is introduced into the evaporated aluminum vapor to form an inorganic oxide layer on the film.
  • the gas introduced may contain a gas having a composition that reacts with the evaporated metal and is incorporated into the layer, and may contain an inert gas or the like for controlling the film quality.
  • the surface of the resin film on which the metal layer and/or inorganic compound layer is formed may be subjected to a surface modification treatment in order to improve interlayer adhesion.
  • the surface modification treatment may be in-line or off-line, and the modification treatment method is not particularly limited, but examples thereof include known methods such as corona treatment, plasma treatment, ion beam treatment, and flame treatment.
  • These surface modification treatments may be performed in air, or in an atmosphere of various gases such as argon, nitrogen, oxygen, carbon dioxide, hydrogen, ammonia, and hydrocarbons (C n H 2n+2 , where n is an integer of 1 to 4), or a mixture of these gases.
  • gases such as argon, nitrogen, oxygen, carbon dioxide, hydrogen, ammonia, and hydrocarbons (C n H 2n+2 , where n is an integer of 1 to 4), or a mixture of these gases.
  • the gas used for the surface modification treatment can be selected based on the ease of discharge, the energy of the active species obtained, and the type of functional group to be introduced. However, it is preferable for the gas to contain carbon dioxide gas or oxygen gas for introducing functional groups, or argon or nitrogen gas, which are easy to stably discharge.
  • the laminate of the present invention is preferably manufactured by a manufacturing method including a step of applying a coating agent containing a hydrolyzate of a water-soluble resin and a metal alkoxide and/or a polycondensate thereof, and a silane coupling agent having a (meth)acryloyl group, to the surface of the laminate having a metal layer and/or an inorganic compound layer on at least one surface of a base film, and a drying step.
  • a coating agent containing a hydrolyzate of a water-soluble resin and a metal alkoxide and/or a polycondensate thereof, and a silane coupling agent having a (meth)acryloyl group to the surface of the laminate having a metal layer and/or an inorganic compound layer on at least one surface of a base film, and a drying step.
  • Another preferred embodiment of the laminate of the present invention is preferably produced by a production method including a step of applying a coating agent containing a water-soluble resin, a hydrolyzate of a metal alkoxide and/or a polycondensate thereof, and a silane coupling agent having a (meth)acryloyl group to the surface of the metal layer and/or inorganic compound layer of a laminate having a metal layer and/or an inorganic compound layer on at least one surface of a polyolefin resin film, and a drying step.
  • the laminate is obtained by a production method of a laminate including a step of applying a coating agent containing one or more resins selected from silicon alkoxide, a hydrolyzate of silicon alkoxide, and a polycondensate of a hydrolyzate of silicon alkoxide, one or more resins selected from vinyl alcohol resins, polysaccharides, and acrylic polyol resins, a silane coupling agent having a (meth)acryloyl group, and a compound containing a metal element M to the surface of the metal layer and/or inorganic compound layer of a laminate having a metal layer and/or an inorganic compound layer on at least one surface of a polyolefin resin film, and a drying step.
  • a coating agent containing one or more resins selected from silicon alkoxide, a hydrolyzate of silicon alkoxide, and a polycondensate of a hydrolyzate of silicon alkoxide
  • one or more resins selected from vinyl alcohol resins,
  • the laminate when a printed layer is formed on the laminate, a laminate exhibiting high adhesion and having good barrier properties can be obtained regardless of the type of ink.
  • a laminate having high water vapor barrier properties and oxygen barrier properties can be obtained while suppressing the environmental load during production.
  • the laminate can be sufficiently cured even at low temperatures, and can be sufficiently cured even at high temperatures in a short time, which is preferable because it reduces the environmental load during production.
  • a preferred embodiment of the method for producing a laminate of the present invention is a method for producing a laminate including a step of applying a coating agent containing a water-soluble resin, a hydrolyzate of a metal alkoxide and/or a polycondensate thereof, and a silane coupling agent having a (meth)acryloyl group to the surface having the metal layer and/or the inorganic compound layer of a laminate having a metal layer and/or an inorganic compound layer on at least one surface of a base film, and a step of drying.
  • a more preferred embodiment is one in which the substrate film is a polyolefin resin film, and an even more preferred embodiment is one in which the coating agent is a coating agent containing at least one selected from silicon alkoxides, hydrolysates of silicon alkoxides, and polycondensates of hydrolysates of silicon alkoxides, at least one resin selected from vinyl alcohol resins, polysaccharides, and acrylic polyol resins, a silane coupling agent having a (meth)acryloyl group, and a compound containing a metal element M.
  • the coating agent is a coating agent containing at least one selected from silicon alkoxides, hydrolysates of silicon alkoxides, and polycondensates of hydrolysates of silicon alkoxides, at least one resin selected from vinyl alcohol resins, polysaccharides, and acrylic polyol resins, a silane coupling agent having a (meth)acryloyl group, and a compound containing a metal element M.
  • the coating agent is obtained by mixing coating agent 1 containing a water-soluble resin and a hydrolysate and/or polycondensate of a metal alkoxide with coating agent 2 containing a hydrolysate and/or polycondensate of a silane coupling agent having a (meth)acryloyl group.
  • coating agent 1 containing a water-soluble resin and a hydrolysate and/or polycondensate of a metal alkoxide
  • coating agent 2 containing a hydrolysate and/or polycondensate of a silane coupling agent having a (meth)acryloyl group.
  • the coating layer has 0.25 mol % or more and 1.25 mol % or less of (meth)acryloyl groups relative to the total molar amount of metal elements contained in the coating layer, while the ratio X/Y is 5 or more and 300 or less.
  • the coating method is not particularly limited, and known methods can be used, such as direct gravure, reverse gravure, microgravure, rod coating, bar coating, die coating, spray coating, etc.
  • the drying temperature after coating is preferably 70°C or higher and 150°C or lower, and more preferably 90°C or higher and 130°C or lower.
  • the drying temperature refers to the maximum temperature reached on the film surface.
  • the heat treatment temperature is preferably 30°C or higher and 100°C or lower, and more preferably 40°C or higher and 80°C or lower.
  • the heat treatment time is preferably 1 day or higher and 14 days or lower, and more preferably 3 days or higher and 7 days or lower.
  • the laminate of the present invention is preferably used for packaging material applications.
  • it may be laminated with another resin film for printing or other purposes, a heat seal layer for bag making, or to improve rigidity.
  • the base film, heat seal layer, and resin film for improving rigidity are preferably polyolefin-based resins.
  • the laminate of the present invention is preferably used for printing with electron beam curable ink.
  • adhesion with the printed layer is improved and good barrier properties are obtained, so that it is preferable because the deterioration of the contents can be suppressed while the environmental load during the production of the printed layer can be reduced by using electron beam curable ink.
  • Measurement conditions Objective lens 10x 1x telescope tube Zoom lens x 1 Wavelength filter 530nm white Measurement mode: Wave Measurement software: VS-Measure Version 10.0.4.0 ⁇ Analysis software: VS-Viewer Version 10.0.3.0 -Measurement area: 0.561 x 0.561 mm 2 .
  • Thickness of the metal layer and/or inorganic compound layer was measured by cross-sectional observation using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • a microsampling system FB-2000A manufactured by Hitachi, Ltd. an observation sample was prepared by the FIB method (specifically, based on the method described in "Polymer Surface Processing Science” (by Akira Iwamori), pp. 118-119).
  • the cross-section of the observation sample was observed using a transmission electron microscope H-9000UHRII manufactured by Hitachi, Ltd., at an acceleration voltage of 300 kV, and the thickness of the metal layer and/or inorganic oxide layer was confirmed at any 10 points.
  • the arithmetic average value of these values was taken as the thickness (unit: nm) of the metal layer and/or inorganic oxide layer.
  • the laminate was cut in a direction perpendicular to the film surface with a microtome, and the cross section of the laminate was observed and measured with a scanning transmission electron microscope. The observation was performed using a STEM (scanning transmission electron microscope/H-9000UHRII) manufactured by Hitachi, Ltd., and images were taken at three points at a magnification of 100,000 times. The thickness of the coating layer was measured in the three images obtained, and the average value was taken as the thickness of the coating layer (unit: nm).
  • Ratio X/Y of emission intensity X to emission intensity Y of the reference peak The prepared laminate was cut to 40 mm x 40 mm, and the coating layer side was surface-contacted with a 1 x 10 -4 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole at 60 ° C. for 30 minutes. Next, the laminate was immersed and washed twice in THF, and then the four corners of the washed film piece were cut, cut into 15 mm x 15 mm pieces, and fixed to a quartz plate to obtain a measurement sample.
  • the measurement sample was subjected to fluorescence measurement by a transmission method using a fluorescent phosphorescence spectrophotometer (manufactured by Horiba, FluoroMax-4P) with 470 nm excitation light, excitation light slit 2 nm, emission slit 2 nm, and a light receiving range of 500 to 700 nm.
  • a fluorescent phosphorescence spectrophotometer manufactured by Horiba, FluoroMax-4P
  • a 1 ⁇ 10 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole was measured using a quartz glass cell with an optical path length of 10 mm.
  • the peak of the emission intensity at 520 to 550 nm obtained by the measurement was calculated as the emission intensity Y of the reference peak, and the ratio X/Y of the emission intensity X to the emission intensity Y of the reference peak was calculated.
  • Oxygen permeability According to the isobaric method of JIS K 7126-2 (2006), oxygen permeability was measured using an oxygen permeability measuring device ("OXTRAN (registered trademark)" 2/20) manufactured by MOCON/Modern Controls, Inc., under conditions of a temperature of 23°C and a humidity of 90% RH. The measurement was performed twice for each of two test pieces, and the average value of the four measured values was calculated to be the oxygen permeability.
  • OXTRAN registered trademark
  • P1/P2 was calculated at three different positions, and the values at the three points were averaged to obtain P1/P2 for that sample.
  • Light source High brightness ceramic light source
  • Detector TGS Beam splitter: Ge/KBr
  • Measurement mode ATR method (Ge prism, incident angle 45°) Measurement wave number range: 4,000 cm -1 to 600 cm -1 ⁇ Resolution: 4cm -1 Number of accumulations: 32 Analysis: Peaks were detected using the spectrum analysis program Spectra Manager Version 2.
  • Electron beam curable ink A was transferred to various laminates.
  • the transfer method involved spreading the ink using an RI tester. Then, using an electron beam irradiation device (EC250/30/90LS manufactured by Iwasaki Electric Co., Ltd.), the ink was cured by irradiating it with electron beams at an acceleration voltage of 110 kV and an exposure dose of 30 kGy to obtain solid prints.
  • an electron beam irradiation device EC250/30/90LS manufactured by Iwasaki Electric Co., Ltd.
  • Solvent ink B was transferred onto various laminates.
  • a bar coater number 8 was used for the transfer method. Solid prints were then obtained by drying in an oven at 80°C for 1 minute.
  • a mixed lamination adhesive Mitsubishi Chemicals, Inc.'s "Takelac (registered trademark)” A626 / "Takenate (registered trademark)” A50
  • the coating amount was 3.0 g / m 2
  • CPP non-oriented polypropylene film
  • the obtained laminate sample was cut into a strip shape with a width of 15 mm, and a peel test was performed using a Tensilon universal testing machine (Orientec Co., Ltd.'s RTG-1210), and the peel strength (unit: N / 15 mm) when peeled at 90 ° at 300 mm / min was measured. Each was measured twice, and the average value was calculated to evaluate the adhesion.
  • the adhesion is judged to be extremely good.
  • Example 1 (Formation of Metal Layer or Inorganic Compound Layer) An aluminum oxide layer having a thickness of 12 nm was formed as an inorganic compound layer on one side of a 12 ⁇ m-thick biaxially stretched polyethylene terephthalate film (Lumirror (registered trademark) P60 manufactured by Toray Industries, Inc.) The aluminum oxide layer was deposited by a reactive deposition method in which aluminum is evaporated and then oxidized by introducing oxygen into the deposition section.
  • Limirror registered trademark
  • P60 manufactured by Toray Industries, Inc.
  • PVA polyvinyl alcohol
  • a solution of 6.7 g of TEOS and 2.7 g of methanol was mixed and stirred while adding dropwise 10.6 g of 0.02N hydrochloric acid solution to obtain a TEOS hydrolyzed solution.
  • the (meth)acryloyl group-containing hydrolyzed solution was added to the resulting mixed solution so that the (meth)acryloyl group content was 1.12 mol% relative to the total molar amount of metal elements contained in the coating layer, and the coating solution was diluted with water so that the total solid content was 13 mass% to obtain a coating solution.
  • the coating solution was applied onto the above-mentioned aluminum oxide layer and dried at 150°C for 1 minute to obtain a laminate.
  • Example 2 A laminate was obtained in the same manner as in Example 1, except that the coating layer was dried and then further heat-treated at 80° C. for one week.
  • Example 3 A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 0.17 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Example 4 A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 0.28 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Example 5 A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 0.34 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Example 6 A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 0.56 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Example 7 A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 0.79 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Example 8 A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Example 9 A laminate was obtained in the same manner as in Example 2, except that the water-soluble polymer in the coating layer was a modified polyvinyl alcohol ("Exceval (registered trademark)" RS-1717 manufactured by Kuraray Co., Ltd.) and the (meth)acryloyl group-containing hydrolyzed liquid was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Exceval (registered trademark)" RS-1717 manufactured by Kuraray Co., Ltd. modified polyvinyl alcohol
  • the (meth)acryloyl group-containing hydrolyzed liquid was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Example 10 A laminate was obtained in the same manner as in Example 9, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 1.12 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Example 11 A laminate was obtained in the same manner as in Example 2, except that the water-soluble polymer of the coating layer was modified polyvinyl alcohol (ZF-15 manufactured by Nippon Vinyl Acetate & Poval Co., Ltd.) and the (meth)acryloyl group-containing hydrolyzed liquid was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of the metal elements contained in the coating layer.
  • the water-soluble polymer of the coating layer was modified polyvinyl alcohol (ZF-15 manufactured by Nippon Vinyl Acetate & Poval Co., Ltd.) and the (meth)acryloyl group-containing hydrolyzed liquid was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of the metal elements contained in the coating layer.
  • Example 12 A laminate was obtained in the same manner as in Example 2, except that the water-soluble polymer in the coating layer was a modified polyvinyl alcohol ("Exceval (registered trademark)" HR-3010 manufactured by Kuraray Co., Ltd.) and the (meth)acryloyl group-containing hydrolyzed liquid was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Exceval (registered trademark) HR-3010 manufactured by Kuraray Co., Ltd.
  • Example 13 A laminate was obtained in the same manner as in Example 2, except that the water-soluble polymer of the coating layer was modified polyvinyl alcohol (DF-20 manufactured by Japan Vinyl Acetate & Poval Co., Ltd.) and the (meth)acryloyl group-containing hydrolyzed liquid was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of the metal elements contained in the coating layer.
  • modified polyvinyl alcohol DF-20 manufactured by Japan Vinyl Acetate & Poval Co., Ltd.
  • Example 14 A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 1.68 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Example 15 A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 5.59 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • Example 16 (Formation of Metal Layer or Inorganic Compound Layer) An aluminum oxide layer having a thickness of 12 nm was formed as an inorganic compound layer on one side of a 12 ⁇ m-thick biaxially stretched polyethylene terephthalate film (Lumirror (registered trademark) P60 manufactured by Toray Industries, Inc.) The aluminum oxide layer was deposited by a reactive deposition method in which aluminum is evaporated and then oxidized by introducing oxygen into the deposition section.
  • Limirror registered trademark
  • P60 manufactured by Toray Industries, Inc.
  • the solution was diluted with water to a total solid content of 13 mass% to obtain a coating solution.
  • the coating solution was applied onto the above-mentioned aluminum oxide layer, dried at 150°C for 1 minute, and then heat-treated at 80°C for 1 week to obtain a laminate.
  • Example 21 to 23 A laminate was obtained in the same manner as in Example 8, except that the coating thickness of the coating layer was changed.
  • Example 24 A laminate was obtained in the same manner as in Example 6, except that in the preparation of the coating liquid for the coating layer, zirconium chelate ("Orgatix (registered trademark)" ZC-300, manufactured by Matsumoto Fine Chemical Co., Ltd.: zirconium lactate ammonium salt, solid content concentration 12 mass%) was further added in an amount of 2.98 mol % relative to the total molar amount of metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed liquid of the coating layer), and the coating liquid was applied onto the aluminum oxide layer, dried at 120°C for 1 minute, and then heat-treated at 80°C for 1 week.
  • zirconium chelate (“Orgatix (registered trademark)" ZC-300, manufactured by Matsumoto Fine Chemical Co., Ltd.: zirconium lactate ammonium salt, solid content concentration 12 mass%) was further added in an amount of 2.98 mol % relative to the total molar amount of metal elements contained in the coating layer (excluding
  • Example 25 A laminate was obtained in the same manner as in Example 24, except that a biaxially oriented polypropylene film having a thickness of 12 ⁇ m (polypropylene film manufactured by Toray Industries, Inc., melting point 170° C., Sa 21 nm) was used in forming the metal layer or inorganic compound layer.
  • a biaxially oriented polypropylene film having a thickness of 12 ⁇ m polypropylene film manufactured by Toray Industries, Inc., melting point 170° C., Sa 21 nm
  • Example 26 A laminate was obtained in the same manner as in Example 24, except that a biaxially oriented polypropylene film having a thickness of 12 ⁇ m (polypropylene film manufactured by Toray Industries, Inc., melting point 170° C., Sa 21 nm) was used in the formation of the metal layer or inorganic compound layer, and a titanium chelate (TC-310 manufactured by Matsumoto Fine Chemical Co., Ltd.: titanium lactate, solid content concentration 44 mass%) was added in place of a zirconium chelate in the preparation of the coating liquid for the coating layer at 0.61 mol% relative to the total molar amount of the metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed liquid of the coating layer).
  • TC-310 manufactured by Matsumoto Fine Chemical Co., Ltd.: titanium lactate, solid content concentration 44 mass
  • Laminates were obtained in the same manner as in Example 26, except that in the preparation of the coating solution for the coating layer, the (meth)acryloyl group-containing hydrolyzed liquid was added in amounts of 0.17 mol%, 0.28 mol%, 0.34 mol%, 0.56 mol%, 0.79 mol%, 1.01 mol%, 1.12 mol%, 1.68 mol%, and 5.59 mol% based on the total molar amount of the metal elements contained in the coating layer, and further, titanium chelate (TC-310 manufactured by Matsumoto Fine Chemical Co., Ltd.: titanium lactate, solid content concentration 44 mass%) was added in an amount of 1.81 mol% based on the total molar amount of the metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed liquid of the coating layer).
  • titanium chelate TC-310 manufactured by Matsumoto Fine Chemical Co., Ltd.: titanium lactate, solid content concentration 44 mass
  • Example 36 A laminate was obtained in the same manner as in Example 26, except that in the preparation of the coating solution for the coating layer, titanium chelate (TC-310: titanium lactate manufactured by Matsumoto Fine Chemical Co., Ltd., solid content concentration 44 mass%) was added in an amount of 3.56 mol% based on the total molar amount of the metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed solution of the coating layer).
  • titanium chelate TC-310: titanium lactate manufactured by Matsumoto Fine Chemical Co., Ltd., solid content concentration 44 mass
  • Example 37 In preparing the coating solution for the coating layer, a titanium chelate (TC-400: titanium triethanolamine, manufactured by Matsumoto Fine Chemical Co., Ltd., solid content concentration 79 mass%) was added in an amount of 8.15 mol% based on the total molar amount of the metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed solution of the coating layer), except that a laminate was obtained in the same manner as in Example 26.
  • TC-400 titanium triethanolamine, manufactured by Matsumoto Fine Chemical Co., Ltd., solid content concentration 79 mass%
  • Examples 38 to 41 In preparing the coating solution for the coating layer, a zirconium chelate (Orgatix ZC-300 manufactured by Matsumoto Fine Chemical Co., Ltd.: zirconium lactate ammonium salt, solid content concentration 12 mass%) was added in amounts of 0.20 mol%, 0.41 mol%, 17.7 mol%, and 19.7 mol% relative to the total molar amount of the metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed solution of the coating layer), except that a laminate was obtained in the same manner as in Example 26.
  • a zirconium chelate Orgatix ZC-300 manufactured by Matsumoto Fine Chemical Co., Ltd.: zirconium lactate ammonium salt, solid content concentration 12 mass
  • Example 42 A laminate was obtained in the same manner as in Example 25, except that an undercoat layer was formed on one side of the biaxially oriented polypropylene film and then an inorganic compound layer was formed thereon.
  • the undercoat layer was formed by the following procedure. Six parts by mass of the melamine compound "Amidair (registered trademark)" APM (manufactured by DIC Corporation) were added as a crosslinking agent to 100 parts by mass of "Hydran (registered trademark)” AP-201 (manufactured by DIC Corporation, solids concentration 23%), which is a polyester urethane-based water-dispersible resin, and one part by mass of "Catalyst” PTS (manufactured by DIC Corporation), a water-soluble acidic compound, was added as a crosslinking catalyst. Pure water was then added to adjust the overall solids concentration to 10%, to obtain a mixed coating. This mixed coating liquid was applied to one side of a biaxially oriented polypropylene film and dried at 110°C for 30 seconds to form an undercoat layer with a thickness of 700 nm.
  • Example 1 A laminate was obtained in the same manner as in Example 1, except that no covering layer was formed.
  • Example 3 A laminate was obtained in the same manner as in Example 3, except that the amount of the (meth)acryloyl group-containing hydrolyzed liquid added was such that the (meth)acryloyl group accounted for 18.72 mol % of the total molar amount of metal elements contained in the coating layer.
  • Example 4 A laminate was obtained in the same manner as in Example 3, except that an isocyanate group-containing hydrolyzed liquid (a hydrolyzed liquid in which 3-isocyanatepropyltriethoxysilane (X-12-1308ES, with an isocyanate protecting group, manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of 3-acryloxypropyltrimethoxysilane (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) in the (meth)acryloyl group-containing hydrolyzed liquid in Example 1) was added in place of the (meth)acryloyl group-containing hydrolyzed liquid, such that the isocyanate group accounted for 1.12 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • an isocyanate group-containing hydrolyzed liquid a hydrolyzed liquid in which 3-isocyanatepropyltriethoxysilane (X-12-1308ES, with an isocyanate protecting group
  • Example 5 A laminate was obtained in the same manner as in Example 3, except that a vinyl group-containing hydrolyzed liquid (a (meth)acryloyl group-containing hydrolyzed liquid in Example 1 using vinyltriethoxysilane (Shin-Etsu Chemical Co., Ltd.: KBE-1003) instead of 3-acryloxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.: KBM-5103) in the (meth)acryloyl group-containing hydrolyzed liquid in Example 1) was added in place of the (meth)acryloyl group-containing hydrolyzed liquid, such that the vinyl group accounted for 1.12 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • a vinyl group-containing hydrolyzed liquid a (meth)acryloyl group-containing hydrolyzed liquid in Example 1 using vinyltriethoxysilane (Shin-Etsu Chemical Co., Ltd.: KBE-1003) instead of 3-acryl
  • Example 6 A laminate was obtained in the same manner as in Example 2, except that a biaxially oriented polypropylene film was used as the base film and that the (meth)acryloyl group-containing hydrolyzed liquid was not added.
  • Example 7 A laminate was obtained in the same manner as in Example 3, except that a biaxially oriented polypropylene film was used as the base film, that the (meth)acryloyl group-containing hydrolyzed liquid was not added, and that after applying the coating liquid, the coating liquid was dried at 160° C. for 1 minute.
  • Example 8 A laminate was obtained in the same manner as in Example 3, except that an epoxy group-containing hydrolyzed liquid (a liquid in which 3-glycidoxypropyltriethoxysilane (KBE-403 manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of 3-acryloxypropyltrimethoxysilane (KBM-5103 manufactured by Shin-Etsu Chemical Co., Ltd.) in the (meth)acryloyl group-containing hydrolyzed liquid in Example 1) was added in place of the (meth)acryloyl group-containing hydrolyzed liquid, such that the epoxy group accounted for 1.12 mol % relative to the total molar amount of metal elements contained in the coating layer.
  • an epoxy group-containing hydrolyzed liquid a liquid in which 3-glycidoxypropyltriethoxysilane (KBE-403 manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of 3-acryloxypropyltrimethoxysilane (KBM-5103 manufactured by
  • Example 9 A laminate was obtained in the same manner as in Example 3, except that a carboxyl group-containing hydrolyzed liquid (X-12-1135, manufactured by Shin-Etsu Chemical Co., Ltd., an aqueous silane coupling agent having a carboxyl group in an organic functional group, hydrolyzed) was added in place of the (meth)acryloyl group-containing hydrolyzed liquid so that the carboxyl group was 1.12 mol% relative to the total molar amount of the metal elements contained in the coating layer.
  • a carboxyl group-containing hydrolyzed liquid X-12-1135, manufactured by Shin-Etsu Chemical Co., Ltd., an aqueous silane coupling agent having a carboxyl group in an organic functional group, hydrolyzed
  • the PVA of the water-soluble polymer solution, 3-acryloxypropyltrimethoxysilane (KBM-5103 manufactured by Shin-Etsu Chemical Co., Ltd.), and titanium chelate (TC-310 manufactured by Matsumoto Fine Chemical Co., Ltd.: titanium lactate, solid content concentration 44 mass %) were mixed so that the solid content ratio was 4/5/1, and diluted with water to a total solid content of 13 mass % to obtain a coating liquid.
  • the coating liquid was applied onto the above-mentioned aluminum oxide layer and dried at 120 ° C. for 2 minutes to obtain a laminate.
  • the coating layer contains many (meth)acryloyl groups, so adhesion to the printed layer using electron beam curable ink is good, but the reduction in hydroxyl groups significantly deteriorates adhesion to gravure ink containing urethane resin, and the acryloyl groups, which are highly hydrophobic and have a large molecular weight, increase the voids in the coating layer, which is thought to have deteriorated the barrier properties.
  • Comparative Example 7 the drying temperature for the coating layer was high, and the coating layer was damaged by the shrinkage of the film, causing tiny cracks, etc., which is thought to have significantly deteriorated the oxygen barrier properties in particular.
  • the present invention can provide a laminate that has good adhesion to printed layers using various inks and also has good barrier properties. Furthermore, even in laminates using polyolefin resin substrates with low heat resistance, it is possible to provide laminates that have good adhesion to printed layers using various inks and also have good barrier properties.
  • Substrate film 2 Metal layer and/or inorganic oxide layer 3: Coating layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

The present invention provides a multilayer body which exhibits high adhesion to print layers that are formed of various inks, and which has high gas barrier properties. This multilayer body is obtained by stacking, on at least one surface of a base material film, a metal layer and/or an inorganic compound layer, and a coating layer in this order. With respect to this multilayer body, the ratio X/Y of the emission intensity X of an emission peak to the emission intensity Y of a reference peak is 5 to 300.

Description

積層体Laminate

 本発明は、印刷層との密着性に優れた積層体に関する。 The present invention relates to a laminate that has excellent adhesion to a printing layer.

 食品、医薬品、日用品などの包装材料には、内容物の劣化防止のために酸素バリア性や、水蒸気バリア性が求められる。これらバリア性包装材料として、ポリエステル等の樹脂フィルムにアルミニウム等の金属層や、金属酸化物層を積層したバリアフィルムが用いられてきた。特に、金属酸化物層を積層した場合は、透明フィルムとなるため視認性がよく、食品の包装においては電子レンジ加熱が可能になるなど利便性が高いため、広く用いられている。これらフィルム上に文字や絵柄など表示目的の印刷処理を施したり、他の樹脂フィルムと貼り合わせることで様々な用途の包装材料に適用している。 Packaging materials for food, medicines, daily necessities, etc. require oxygen and water vapor barrier properties to prevent deterioration of the contents. Barrier films made of resin films such as polyester with a metal layer such as aluminum or a metal oxide layer laminated onto them have been used as barrier packaging materials. In particular, when a metal oxide layer is laminated onto a transparent film, it has good visibility, and when packaging food, it can be heated in a microwave oven, making it highly convenient, and so it is widely used. These films can be printed with characters, pictures, etc. for display purposes, or laminated with other resin films, making them suitable for use as packaging materials for a variety of purposes.

 さらにガスバリア性能の悪化を防止する目的でガスバリア層の上に保護層を積層することも行われており、一般には保護層上に印刷がなされる。  In addition, to prevent deterioration of the gas barrier performance, a protective layer is sometimes laminated on top of the gas barrier layer, and generally printing is performed on the protective layer.

 こうした保護層に対する印刷は、印刷性、保護層への密着性に優れることから、軟包装印刷で主流のグラビア印刷が用いられている(特許文献1)。しかし、グラビア印刷は、溶剤を大量に含むインキを使用していることから、インキ溶剤の乾燥や排気処理に多量のエネルギーが必要となり、環境負荷も大きい。 The printing method used for such protective layers is gravure printing, which is the mainstream method for printing on flexible packaging, because it has excellent printability and adhesion to the protective layer (Patent Document 1). However, gravure printing uses ink that contains a large amount of solvent, so a large amount of energy is required to dry the ink solvent and to treat the exhaust, which places a large burden on the environment.

 一方近年、活性エネルギー線、特に電子線(EB)照射によりインキを硬化させる、EBフレキソ印刷やEBオフセット印刷を、軟包装印刷で実施する試みがなされている(特許文献2)。一般に、軟包装印刷ではロールトゥロールで印刷するため、インキの速乾性が重要であり、活性エネルギー線硬化型の印刷方式は、溶剤をほとんど含まないことによる環境面での利点に加えて、熱エネルギーを使用せずに乾燥工程を短縮するため、省エネかつ高い生産性を有するものである。また電子線照射による硬化は、透過性に優れ、またインキ中の光重合開始剤が不要となるため、印刷物臭気や内容物への開始剤分解成分の移行のおそれが低減され、内容物保護という安全面からも優れている。 In recent years, attempts have been made to use EB flexographic printing and EB offset printing, which cure ink by exposure to active energy rays, particularly electron beams (EB), in flexible packaging printing (Patent Document 2). Generally, flexible packaging printing is performed using a roll-to-roll method, so the quick drying of the ink is important, and active energy ray curing printing methods are not only environmentally advantageous because they contain almost no solvents, but also energy-saving and highly productive because they shorten the drying process without using thermal energy. In addition, curing by electron beam irradiation has excellent transparency and does not require a photopolymerization initiator in the ink, reducing the risk of odors on the printed material and migration of initiator decomposition components to the contents, and is also excellent in terms of safety in terms of protecting the contents.

 しかしながら、アクリレートが主成分である活性エネルギー線硬化型インキは、保護層に対する密着性が低い。そのため、保護層にも(メタ)アクリレート基を有するケイ素アルコキシドを導入することで、活性エネルギー線硬化型インキとの密着性に優れる積層体が報告されている(特許文献3)。 However, active energy beam-curable inks, which are mainly composed of acrylate, have poor adhesion to protective layers. For this reason, a laminate has been reported that has excellent adhesion to active energy beam-curable inks by introducing a silicon alkoxide having a (meth)acrylate group into the protective layer as well (Patent Document 3).

国際公開第2018/3596号International Publication No. 2018/3596 国際公開第2019/69736号International Publication No. 2019/69736 特開2022-20129号公報JP 2022-20129 A

 特許文献3に記載の発明では、(メタ)アクリレート基を有するケイ素アルコキシドの導入量が非常に多く、活性エネルギー線硬化型インキとの密着性は得られるものの、親水性の強いビニルアルコール系樹脂や、分子量の小さいケイ素アルコキシド等のその他保護層の成分を鑑みると、疎水性が強く分子量も大きい(メタ)アクリレート基を多く導入することは、膜中の空隙を増加させ、内容物の劣化を抑制するほど緻密に硬化できないためにバリア性を得るには十分ではなく、改善の余地があった。さらに、(メタ)アクリレート基を有するケイ素アルコキシドの導入量が非常に多いために、活性エネルギー線硬化型以外の乾燥型インキ(媒体である溶剤や水を熱乾燥)に対する密着性が低下する課題があった。 In the invention described in Patent Document 3, the amount of silicon alkoxide having a (meth)acrylate group introduced is very large, and adhesion to active energy ray-curable ink is obtained, but in consideration of other protective layer components such as highly hydrophilic vinyl alcohol resins and silicon alkoxides with small molecular weights, the introduction of a large number of highly hydrophobic and large molecular weight (meth)acrylate groups increases voids in the film and the film cannot be cured densely enough to suppress deterioration of the contents, which is not sufficient to obtain barrier properties and leaves room for improvement. Furthermore, because the amount of silicon alkoxide having a (meth)acrylate group introduced is very large, there is an issue of reduced adhesion to drying inks other than active energy ray-curable inks (solvents and water as a medium are thermally dried).

 そこで本発明では、多様なインキからなる印刷層との高い密着性を示し、かつ高いガスバリア性を示す積層体を提供することを課題とする。 The objective of the present invention is to provide a laminate that exhibits high adhesion to printed layers made of various inks and also exhibits high gas barrier properties.

 本発明の好ましい一態様は以下の通りである。
(1)基材フィルムの少なくとも一方の面に、金属層および/または無機化合物層と、被覆層とをこの順に積層した積層体であって、被覆層側から以下の測定条件で測定した発光ピークの発光強度Xと、基準ピークの発光強度Yの比率X/Yが、5以上300以下である積層体。
<測定条件>
積層体の被覆層側を1×10-4mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF(テトラヒドロフラン)溶液に60℃30分接触させた後、積層体をTHFに2度浸漬洗浄し、その後15mm×15mmに切り出し、発光スペクトル測定において、470nmにて励起し、520~550nmに見られる発光極大のピーク強度を算出。
<基準ピーク>
1×10-5mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF溶液を、光路長10mmの石英ガラス製セルを用いて積層体と同様に測定。
(2)前記被覆層が、水溶性樹脂と金属アルコキシドの加水分解物および/またはその重縮合物を含む(1)に記載の積層体。
(3)前記被覆層の厚さが200nm以上600nm以下である、(1)または(2)に記載の積層体。
(4)前記金属層および/または無機化合物層がアルミニウムを含む、(1)~(3)のいずれかに記載の積層体。
(5)前記積層体の水蒸気透過率が1.0g/m/day以下、かつ酸素透過率が1.0cc/m/day以下である、(1)~(4)のいずれかに記載の積層体。
(6)被覆層に含まれる金属元素の総mol量に対して、被覆層が(メタ)アクリロイル基を0.25mol%以上1.25mol%以下含む(2)~(5)のいずれかに記載の積層体。
(7)前記積層体の被覆層側から以下の測定条件で測定した発光ピークの発光強度Xと、基準ピークの発光強度Yの比率X/Yが、18以上100以下である(1)~(6)のいずれかに記載の積層体。
<測定条件>
積層体の被覆層側を1×10-4mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF溶液に60℃30分接触させた後、積層体をTHFに2度浸漬洗浄し、その後15mm×15mmに切り出し、発光スペクトル測定において、470nmにて励起し、520~550nmに見られる発光極大のピーク強度を算出。
<基準ピーク>
1×10-5mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF溶液を、光路長10mmの石英ガラス製セルを用いて積層体と同様に測定。
(8)前記基材フィルムがポリオレフィン系樹脂フィルムである(1)~(7)のいずれかに記載の積層体。
(9)前記被覆層をFT-IR-ATR法(全反射フーリエ変換赤外分光法)で測定して検出される下記ピーク強度P1とP2の比P1/P2の値が3.5以上8.0以下である、(1)~(8)のいずれかに記載の積層体。
P1:1,050~1,080cm-1に存在する最大ピークの強度
P2:920~970cm-1に存在する最大ピークの強度
(10)前記被覆層が、水溶性樹脂と、金属アルコキシドの加水分解物および/またはその重縮合物に加え、金属元素Mを含み、飛行時間型2次イオン質量分析計(TOF-SIMS)により測定される、金属元素Mに由来するフラグメントイオンのピーク強度mと、Si-O結合を有するセグメントに由来するフラグメントイオンのピーク強度sの比率m/sが、0.05以上10.00以下である、(1)~(9)のいずれかに記載の積層体。
<測定条件>
一次イオン種 :Bi(2pA、50μs)
加速電圧:25kV 
検出イオン極性:positive 
測定範囲   :100μm×100μm 
分解能    :128×128
エッチングイオン種:O2+(2keV、170nA)
エッチング面積:300μm×300μm
エッチングレート:1sec/cycle
(11)前記基材フィルムが、リサイクル由来のフィルムである、(1)~(10)のいずれかに記載の積層体。
(12)包装材料用途に用いられる、(1)~(11)のいずれかに記載の積層体。
(13)電子線硬化型インキの印刷に用いられる、(1)~(12)のいずれかに記載の積層体。
A preferred embodiment of the present invention is as follows.
(1) A laminate in which a metal layer and/or an inorganic compound layer and a coating layer are laminated in this order on at least one surface of a base film, in which the ratio X/Y of the emission intensity X of an emission peak to the emission intensity Y of a reference peak measured under the following measurement conditions from the coating layer side is 5 or more and 300 or less.
<Measurement conditions>
The coating layer side of the laminate was brought into contact with a 1× 10-4 mol/L solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole in THF (tetrahydrofuran) at 60°C for 30 minutes, and the laminate was then immersed and washed twice in THF. Thereafter, a piece was cut to a size of 15 mm×15 mm. In the emission spectrum measurement, the sample was excited at 470 nm, and the peak intensity of the emission maximum observed at 520 to 550 nm was calculated.
<Base Peak>
A 1×10 −5 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole was measured in a quartz glass cell with an optical path length of 10 mm in the same manner as for the laminate.
(2) The laminate according to (1), wherein the coating layer contains a hydrolysate of a water-soluble resin and a metal alkoxide and/or a polycondensate thereof.
(3) The laminate according to (1) or (2), wherein the thickness of the coating layer is 200 nm or more and 600 nm or less.
(4) The laminate according to any one of (1) to (3), wherein the metal layer and/or the inorganic compound layer contains aluminum.
(5) The laminate according to any one of (1) to (4), wherein the laminate has a water vapor permeability of 1.0 g/m 2 /day or less and an oxygen permeability of 1.0 cc/m 2 /day or less.
(6) The laminate according to any one of (2) to (5), wherein the coating layer contains 0.25 mol % or more and 1.25 mol % or less of (meth)acryloyl groups relative to the total molar amount of metal elements contained in the coating layer.
(7) The laminate according to any one of (1) to (6), wherein the ratio X/Y of the emission intensity X of an emission peak to the emission intensity Y of a reference peak measured under the following measurement conditions from the coating layer side of the laminate is 18 or more and 100 or less.
<Measurement conditions>
The coating layer side of the laminate was brought into contact with a 1× 10-4 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole at 60° C. for 30 minutes, and the laminate was then immersed and washed twice in THF. Thereafter, a 15 mm×15 mm piece was cut out and the emission spectrum was measured by exciting at 470 nm, and the peak intensity of the emission maximum observed at 520 to 550 nm was calculated.
<Base Peak>
A 1×10 −5 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole was measured in a quartz glass cell with an optical path length of 10 mm in the same manner as for the laminate.
(8) The laminate according to any one of (1) to (7), wherein the base film is a polyolefin-based resin film.
(9) The laminate according to any one of (1) to (8), wherein the ratio P1/P2 of the following peak intensities P1 and P2 detected by measuring the coating layer by an FT-IR-ATR method (total reflection Fourier transform infrared spectroscopy) is 3.5 or more and 8.0 or less.
P1: Intensity of the maximum peak present at 1,050 to 1,080 cm -1 P2: Intensity of the maximum peak present at 920 to 970 cm -1 (10) The laminate according to any one of (1) to (9), wherein the coating layer contains a metal element M in addition to a water-soluble resin and a hydrolysate of a metal alkoxide and/or a polycondensate thereof, and the ratio m/s of the peak intensity m of a fragment ion derived from the metal element M to the peak intensity s of a fragment ion derived from a segment having a Si-O bond, as measured by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), is 0.05 or more and 10.00 or less.
<Measurement conditions>
Primary ion species: Bi + (2 pA, 50 μs)
Acceleration voltage: 25 kV
Detected ion polarity: positive
Measurement range: 100 μm x 100 μm
Resolution: 128×128
Etching ion species: O 2+ (2 keV, 170 nA)
Etching area: 300 μm × 300 μm
Etching rate: 1 sec/cycle
(11) The laminate according to any one of (1) to (10), wherein the base film is a film derived from recycling.
(12) The laminate according to any one of (1) to (11), which is used for packaging material applications.
(13) The laminate according to any one of (1) to (12), which is used for printing with an electron beam curable ink.

 本発明によれば、多様なインキからなる印刷層との高い密着性を示し、かつ高いガスバリア性を示す積層体を提供することができる。 The present invention makes it possible to provide a laminate that exhibits high adhesion to printed layers made of various inks and also exhibits high gas barrier properties.

本発明の積層体の構成を示す断面概略図である。1 is a schematic cross-sectional view showing a configuration of a laminate of the present invention.

 以下、本発明の積層体の好ましい一態様についてさらに詳しく説明する。 Below, a preferred embodiment of the laminate of the present invention will be described in more detail.

 基材フィルム
 本発明にかかる基材フィルムを構成する樹脂は特に限定はなく、例えば、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系樹脂、環状ポリオレフィン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリエステルアミド系樹脂、ポリエーテルエステル系樹脂、アクリル系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、あるいはポリ塩化ビニル系樹脂、さらにはポリ乳酸、ポリカプロラクトン、ポリグリコール酸、ポリビニルアルコールなどの生分解性樹脂等が挙げられる。中でも、無機化合物層との密着力やハンドリングの観点からはポリエステル系樹脂が好ましく、リサイクルのしやすさという観点からはポリオレフィン系樹脂が好ましい。またリサイクル性に加えこれら樹脂全体に対し3~55質量%のリサイクル原料を含むことが好ましい。尚、リサイクル原料は、メカニカルリサイクルにてリサイクルされたものであっても、ケミカルリサイクルにてリサイクルされたものであってもよく、特に限定されるものではない。さらに、前記基材フィルムを構成する樹脂にバイオマス由来(植物由来)の原料を含んでいてもよく、例えばポリエステルの場合、その原料であるジオールもしくはジカルボン酸のいずれか一方または両方が、樹脂組成物全体に対し10~95質量%のバイオマス由来(植物由来)の原料を含むことが好ましい。基材フィルムは、未延伸であっても、延伸(一軸又は二軸)されていてもよいが、熱寸法安定性の観点から二軸延伸されていることが好ましい。
Substrate Film The resin constituting the substrate film according to the present invention is not particularly limited, and examples thereof include polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, and polybutylene terephthalate; polyolefin resins such as polyethylene, polystyrene, polypropylene, polyisobutylene, polybutene, and polymethylpentene; cyclic polyolefin resins, polyamide resins, polyimide resins, polyether resins, polyesteramide resins, polyetherester resins, acrylic resins, polyurethane resins, polycarbonate resins, and polyvinyl chloride resins; and biodegradable resins such as polylactic acid, polycaprolactone, polyglycolic acid, and polyvinyl alcohol. Among these, polyester resins are preferred from the viewpoint of adhesion to the inorganic compound layer and handling, and polyolefin resins are preferred from the viewpoint of ease of recycling. In addition to recyclability, it is preferable that the resin contains 3 to 55% by mass of recycled raw materials relative to the entire resin. The recycled raw materials may be those recycled by mechanical recycling or chemical recycling, and are not particularly limited. Furthermore, the resin constituting the base film may contain a biomass-derived (plant-derived) raw material, and for example, in the case of polyester, it is preferable that either one or both of the raw materials, diol or dicarboxylic acid, contain 10 to 95 mass % of a biomass-derived (plant-derived) raw material with respect to the entire resin composition. The base film may be unstretched or stretched (monoaxially or biaxially), but is preferably biaxially stretched from the viewpoint of thermal dimensional stability.

 基材フィルムの厚みは、3μm以上100μm以下が好ましく、5μm以上50μm以下がより好ましく、8μm以上30μm以下がさらに好ましい。基材フィルムの厚さを3μm以上とすることで支持体としての剛性を保つことができ、100μm以下とすることで、包装材料としての柔軟性を維持しつつ、追従性が向上するため好ましい。なお、基材フィルムの厚さは実施例に記載の方法で求めるものとする。 The thickness of the base film is preferably 3 μm or more and 100 μm or less, more preferably 5 μm or more and 50 μm or less, and even more preferably 8 μm or more and 30 μm or less. A thickness of 3 μm or more of the base film allows the rigidity of the support to be maintained, while a thickness of 100 μm or less is preferable because it maintains the flexibility of the film as a packaging material while improving conformability. The thickness of the base film is determined by the method described in the examples.

 前記基材フィルムに用いられるポリオレフィン系樹脂フィルムは、オレフィン系炭化水素を主構成単位とする樹脂を主成分とするフィルムであることが好ましい。主構成単位とは、樹脂に含まれるモノマー単位のうち最も含有量(個数単位)の多いものをいい、主成分とは、構成するすべての成分の中で最も含有量(質量%)の多いものをいう。ポリオレフィン系樹脂としては、例えば、エチレンの他、プロピレンや4-メチル-1ペンテンなど側鎖にアルキル基を有するα-オレフィンの重合体およびこれらの共重合体、または、α-オレフィンとアクリル酸、C=C結合含有カルボン酸、C=C結合含有カルボン酸塩あるいはC=C結合含有カルボン酸アルキルエステル等を共重合して得られる共重合体、ノルボルネンやシクロジエンの重合体およびこれらの重合体であり、単層であっても複数層であってもよい。これらの中でも、比較的安価であることから、ポリエチレンまたはポリプロピレンを含むことが好ましく、耐熱性の点でポリプロピレンを含むことがより好ましく、同様の観点でポリプロピレンを主成分とすることがさらに好ましい。また、フィルムは未延伸であっても、延伸されていてもよいが、熱寸法安定性の観点から二軸延伸されていることが好ましい。ポリオレフィン系樹脂フィルムは、融点が150℃以上であることが好ましい。融点を150℃以上とすることで、金属酸化物層を形成したり、包装材構成に加工したりする工程の熱による熱負けを防止し、加工後の耐熱性も高くなるため、バリア性の劣化を抑制できる。なお、フィルムの融点は、DSC(示差走査熱量測定)で以下の方法で測定することができる。 The polyolefin resin film used for the base film is preferably a film mainly composed of a resin whose main constituent unit is an olefin hydrocarbon. The main constituent unit refers to the monomer unit contained in the resin that has the highest content (unit number), and the main component refers to the monomer unit contained in the resin that has the highest content (mass%) among all the constituent components. Examples of polyolefin resins include, in addition to ethylene, polymers of α-olefins having alkyl groups on the side chains such as propylene and 4-methyl-1-pentene, and copolymers thereof, or copolymers obtained by copolymerizing α-olefins with acrylic acid, C=C bond-containing carboxylic acid, C=C bond-containing carboxylate, C=C bond-containing carboxylate alkyl ester, etc., polymers of norbornene and cyclodiene, and polymers thereof, which may be single-layered or multi-layered. Among these, it is preferable to include polyethylene or polypropylene because they are relatively inexpensive, and it is more preferable to include polypropylene in terms of heat resistance, and it is even more preferable to use polypropylene as the main component from the same viewpoint. In addition, the film may be unstretched or stretched, but it is preferable to be biaxially stretched from the viewpoint of thermal dimensional stability. The polyolefin resin film preferably has a melting point of 150°C or higher. By setting the melting point at 150°C or higher, heat damage caused by the heat during the process of forming the metal oxide layer or processing into a packaging material can be prevented, and the heat resistance after processing is also increased, so deterioration of the barrier properties can be suppressed. The melting point of the film can be measured by DSC (differential scanning calorimetry) using the following method.

 <フィルムの融点の測定方法>
 示差走査熱量計(セイコーインスツル株式会社製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgの試料を30℃から260℃まで、昇温速度20℃/分で昇温し、次いで、260℃で5分間保持した後、20℃/分の条件で30℃まで降温する。さらに、30℃で5分間保持した後、30℃から260℃まで20℃/分の条件で再昇温し、この再昇温時に得られる吸熱カーブのピーク温度を樹脂組成物の融点とする。なお複数のピーク温度が観測できる場合には最も高温の温度を樹脂組成物の融点とする。
<Method of measuring the melting point of the film>
Using a differential scanning calorimeter (EXSTAR DSC6220 manufactured by Seiko Instruments Inc.), a 3 mg sample is heated from 30°C to 260°C in a nitrogen atmosphere at a heating rate of 20°C/min, then held at 260°C for 5 minutes, and cooled to 30°C at a rate of 20°C/min. After being held at 30°C for 5 minutes, the sample is heated again from 30°C to 260°C at a rate of 20°C/min, and the peak temperature of the endothermic curve obtained during this heating again is taken as the melting point of the resin composition. When multiple peak temperatures are observed, the highest temperature is taken as the melting point of the resin composition.

 前記ポリオレフィン系樹脂フィルムのガラス転移温度(Tg)は50℃以下であることが好ましい。本態様とすることにより、低温においてもフィルムの柔軟性が高くなり、包装体としたときに低温でも硬くなることがなく、広い温度範囲で安定した使用が可能となる。 The glass transition temperature (Tg) of the polyolefin resin film is preferably 50°C or lower. This embodiment increases the flexibility of the film even at low temperatures, and when used as a package, it does not harden even at low temperatures, allowing for stable use over a wide temperature range.

 また、ポリオレフィン系樹脂フィルムは表面が平滑であることが好ましい。表面平滑性は、ISO25178(2012)で定義される算術平均高さSaで表すことができ、Saは50nm以下が好ましく、30nm以下がより好ましい。Saは、非接触の表面観察装置、例えば株式会社日立ハイテクサイエンス製走査型白色干渉顕微鏡で測定することができる。本発明においてSaは実施例に記載の方法で求めるものとする。表面を平滑にすることで、表面に積層する無機酸化物層の欠点を減らすことができ、良好な無機酸化物層とすることができ、バリア性を向上させることができる。 Furthermore, it is preferable that the polyolefin resin film has a smooth surface. Surface smoothness can be expressed by the arithmetic mean height Sa defined in ISO25178 (2012), and Sa is preferably 50 nm or less, more preferably 30 nm or less. Sa can be measured using a non-contact surface observation device, for example, a scanning white light interference microscope manufactured by Hitachi High-Tech Science Corporation. In the present invention, Sa is determined by the method described in the examples. By making the surface smooth, defects in the inorganic oxide layer laminated on the surface can be reduced, a good inorganic oxide layer can be obtained, and the barrier properties can be improved.

 金属層および/または無機化合物層
 本発明の積層体は、基材フィルムの少なくとも一方の面に、金属層および/または無機化合物層を有することが好ましい。
Metal Layer and/or Inorganic Compound Layer The laminate of the present invention preferably has a metal layer and/or an inorganic compound layer on at least one surface of the substrate film.

 前記金属層および/または前記無機化合物層は、周期表の2族から14族(ただし炭素を除く)より選ばれる1種以上の元素を含み、無機化合物層はさらに、酸素、窒素の少なくとも1種を含む層であることが好ましい。これらの中でも加工コストやガスバリア性の観点から、金属層はアルミニウムを含有することが好ましく、アルミニウムを主成分とすることがより好ましい。主成分とは、構成する成分の中で最も含有量(質量%)の多いものをいう。また、同様の観点から、前記無機化合物層は少なくともアルミニウム、マグネシウム、チタン、スズ、インジウム、及びケイ素より選ばれる1種以上を含むことが好ましく、ケイ素またはアルミニウムを含むことがより好ましい。好ましい無機化合物層としては、例えば、酸化ケイ素、酸窒化ケイ素、酸化アルミニウムが挙げられ、特に酸化アルミニウムが好ましい。さらに、前記無機酸化物層において、周期表の2族から14族(ただし炭素を除く)の元素の総和に占めるアルミニウムの割合が50atomic%以上であることが好ましい。 The metal layer and/or the inorganic compound layer preferably contains one or more elements selected from Groups 2 to 14 (excluding carbon) of the periodic table, and the inorganic compound layer further contains at least one of oxygen and nitrogen. Among these, from the viewpoint of processing cost and gas barrier properties, the metal layer preferably contains aluminum, and more preferably has aluminum as the main component. The main component refers to the component that has the largest content (mass%) among the components. From the same viewpoint, the inorganic compound layer preferably contains at least one or more selected from aluminum, magnesium, titanium, tin, indium, and silicon, and more preferably contains silicon or aluminum. Examples of preferable inorganic compound layers include silicon oxide, silicon oxynitride, and aluminum oxide, and aluminum oxide is particularly preferable. Furthermore, in the inorganic oxide layer, the ratio of aluminum to the total of elements from Groups 2 to 14 (excluding carbon) of the periodic table is preferably 50 atomic % or more.

 金属層を有する場合、前記金属層の厚さは、5nm以上500nm以下であることが好ましく、10nm以上100nm以下であることが好ましい。厚さを5nm以上とすることで、バリア性を向上することができ、500nm以下とすることで、成膜中に基材が熱負けすることを抑制できるので好ましい。 If a metal layer is present, the thickness of the metal layer is preferably 5 nm or more and 500 nm or less, and more preferably 10 nm or more and 100 nm or less. A thickness of 5 nm or more can improve the barrier properties, and a thickness of 500 nm or less is preferable because it can prevent the substrate from being damaged by heat during film formation.

 無機化合物層を有する場合、前記無機化合物層の厚さは、2nm以上50nm以下が好ましく、2nm以上20nm以下がより好ましく、4nm以上10m以下がさらに好ましい。厚さを2nm以上とすることで無機化合物層のピンホールなどの欠陥を減らすことができ、50nm以下とすることでクラックを抑制することができ好ましい。 If an inorganic compound layer is present, the thickness of the inorganic compound layer is preferably 2 nm to 50 nm, more preferably 2 nm to 20 nm, and even more preferably 4 nm to 10 nm. A thickness of 2 nm or more can reduce defects such as pinholes in the inorganic compound layer, and a thickness of 50 nm or less can suppress cracks, which is preferable.

 なお、金属層や無機化合物層の厚さは実施例に記載の方法で求めることとする。 The thickness of the metal layer and inorganic compound layer will be determined by the method described in the examples.

 本発明の積層体は、基材フィルムの少なくとも一方の面に、金属層および/または無機化合物層、被覆層とをこの順に積層した積層体であることが好ましい。本態様には、基材フィルムと、金属層と、被覆層とをこの順に積層した積層体や、基材フィルムと、無機化合物層と、被覆層とをこの順に積層した積層体に加え、基材フィルムと、金属層と、無機化合物層と、被覆層とをこの順に積層した積層体や、基材フィルムと、無機化合物層と、金属層と、被覆層とをこの順に積層した積層体や、基材フィルムと、無機化合物層と、金属層と、無機化合物層と、被覆層とをこの順に積層した積層体などを含む。 The laminate of the present invention is preferably a laminate in which a metal layer and/or an inorganic compound layer, and a coating layer are laminated in this order on at least one surface of a base film. This embodiment includes a laminate in which a base film, a metal layer, and a coating layer are laminated in this order, a laminate in which a base film, an inorganic compound layer, and a coating layer are laminated in this order, as well as a laminate in which a base film, a metal layer, an inorganic compound layer, and a coating layer are laminated in this order, a laminate in which a base film, an inorganic compound layer, a metal layer, and a coating layer are laminated in this order, and a laminate in which a base film, an inorganic compound layer, a metal layer, and a coating layer are laminated in this order.

 被覆層
 本発明における被覆層とは、前記積層体の少なくとも一方の最表層をいい、水溶性樹脂と金属アルコキシドの加水分解物および/またはその重縮合物を含む層であることが好ましい。
Coating Layer In the present invention, the coating layer refers to at least one outermost layer of the laminate, and is preferably a layer containing a water-soluble resin and a hydrolysate of a metal alkoxide and/or a polycondensate thereof.

 本発明の積層体は、基材フィルムの少なくとも一方の面に、金属層および/または無機化合物層、被覆層とをこの順に積層した積層体であることが好ましく、被覆層は水溶性樹脂と金属アルコキシドの加水分解物および/またはその重縮合物を含む層であることが好ましく、最表層が被覆層であることが好ましい。 The laminate of the present invention is preferably a laminate in which a metal layer and/or an inorganic compound layer and a coating layer are laminated in this order on at least one surface of a base film, the coating layer is preferably a layer containing a water-soluble resin and a hydrolysate of a metal alkoxide and/or a polycondensate thereof, and the outermost layer is preferably the coating layer.

 水溶性樹脂とは、当該樹脂を5質量%の濃度になるように水に分散させ、90℃で1時間加熱攪拌した後、室温まで冷却した液30mLを、濾紙1種(JIS P 3801(1995)に準拠)に通したとき、濾紙上に残留物がないものを指す。 Water-soluble resin refers to a resin that is dispersed in water to a concentration of 5% by mass, heated and stirred at 90°C for 1 hour, and then cooled to room temperature. When 30 mL of the liquid is passed through filter paper type 1 (compliant with JIS P 3801 (1995)), no residue remains on the filter paper.

 前記被覆層の水溶性樹脂は、ビニルアルコール系樹脂に由来するセグメント、多糖類に由来するセグメント、及びアクリルポリオール樹脂に由来するセグメント、より選ばれる1種以上のセグメントを含むことが好ましい。 The water-soluble resin of the coating layer preferably contains one or more segments selected from a segment derived from a vinyl alcohol resin, a segment derived from a polysaccharide, and a segment derived from an acrylic polyol resin.

 ビニルアルコール系樹脂に由来するセグメント、多糖類に由来するセグメント、及びアクリルポリオール樹脂に由来するセグメントを含む樹脂はそれぞれ、ビニルアルコール系樹脂、メチルセルロース等の多糖類、アクリルポリオール系樹脂などが好ましく挙げられるが、酸素バリア性をより向上できる点から、ビニルアルコール系樹脂が好ましい。ビニルアルコール系樹脂としては例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、変性ポリビニルアルコール等が挙げられ、これらの樹脂は単独で用いても、2種以上の混合物であってもよい。ビニルアルコール系樹脂の平均分子量(JIS K 6726(1994)に準拠)は、500以上3,000以下が好ましい。分子量がこれより小さい場合、層中でポリマーが固定されにくく、バリア性が低下する場合がある。 Preferred examples of resins containing segments derived from vinyl alcohol resins, segments derived from polysaccharides, and segments derived from acrylic polyol resins are vinyl alcohol resins, polysaccharides such as methyl cellulose, and acrylic polyol resins, respectively, with vinyl alcohol resins being preferred in terms of improved oxygen barrier properties. Examples of vinyl alcohol resins include polyvinyl alcohol, ethylene-vinyl alcohol copolymers, and modified polyvinyl alcohol, and these resins may be used alone or in mixtures of two or more. The average molecular weight of the vinyl alcohol resin (in accordance with JIS K 6726 (1994)) is preferably 500 or more and 3,000 or less. If the molecular weight is smaller than this, the polymer is less likely to be fixed in the layer, and the barrier properties may be reduced.

 ビニルアルコール系樹脂は、一般に、ポリ酢酸ビニルをけん化して得られるものであり、酢酸基の一部をけん化して得られる部分けん化であっても、完全けん化であってもよいが、けん化度が高い方が好ましい。けん化度(JIS K 6727(1994)に準拠)は、好ましくは90%以上であり、より好ましくは95%以上である。けん化度が高いと、立体障害の大きい酢酸基が少なく、被覆層の自由体積が小さくなるとともに、樹脂の結晶化度が上がるため、バリア性向上に有利になり好ましい。 Vinyl alcohol resins are generally obtained by saponifying polyvinyl acetate. They may be partially saponified by saponifying some of the acetate groups, or completely saponified, but a higher degree of saponification is preferable. The degree of saponification (based on JIS K 6727 (1994)) is preferably 90% or more, and more preferably 95% or more. A higher degree of saponification means fewer acetate groups with large steric hindrance, a smaller free volume for the coating layer, and a higher degree of crystallization of the resin, which is advantageous for improving barrier properties and is therefore preferable.

 変性ポリビニルアルコール系樹脂は、ポリビニルアルコールに異なる化学構造の単量体を化学反応させたもの、または異なる化学構造の単量体を共重合させたものを指す。変性ポリビニルアルコール系樹脂としては、酢酸ビニル、プロピオンビニル等のビニルエステル系、カルボン酸系、メタアクリル酸エステル系、メチルビニルエーテル等のビニルエーテル系、グリコール系、などが挙げられる。 Modified polyvinyl alcohol resins are those made by chemically reacting polyvinyl alcohol with monomers of different chemical structures, or by copolymerizing monomers of different chemical structures. Modified polyvinyl alcohol resins include vinyl esters such as vinyl acetate and vinyl propionate, carboxylic acids, methacrylic esters, vinyl ethers such as methyl vinyl ether, and glycols.

 前記被覆層に含まれるビニルアルコール系樹脂に由来するセグメント、多糖類に由来するセグメント、及びアクリルポリオール樹脂に由来するセグメント、については、以下の方法で分析することができる。 The segments derived from the vinyl alcohol resin, the polysaccharide, and the acrylic polyol resin contained in the coating layer can be analyzed by the following method.

 フィルム片を重水素化イソプロパノールへ浸漬し、被覆層組成物を溶媒に溶解させる、または被覆層をスパチュラ等を用いて物理的に削る。被覆層が溶解したかどうか、または被覆層を削り取れたかは、後述する膜厚み評価方法と同様に被覆層の膜厚みを測定することで確認できる。次いで、溶媒に溶解させた試料を液体NMRで、または削り出した試料を固体NMRで、13Cについて分析し、各ピークを帰属することで各セグメントが含まれているかを確認できる。 The film piece is immersed in deuterated isopropanol, and the coating layer composition is dissolved in the solvent, or the coating layer is physically scraped off using a spatula or the like. Whether the coating layer has been dissolved or scraped off can be confirmed by measuring the thickness of the coating layer in the same manner as in the thickness evaluation method described below. Next, the sample dissolved in the solvent is analyzed by liquid NMR, or the scraped sample is analyzed by solid NMR for 13 C, and it can be confirmed whether each segment is included by assigning each peak.

 前記金属アルコキシドは、Si-O結合を有するセグメントとなる、Si(OR)で表されるシリコンアルコキシド、シリコンアルコキシドの加水分解物、及びシリコンアルコキシドの加水分解物の重縮合物より選ばれる1種以上、および/または一般式 M(OR)で表される。式中nは自然数であり、Mは金属原子であり、例えば、チタン、アルミニウム、ジルコニウムなどであることが好ましい。ここでは、Rはアルキル基であり、特に炭素数1~4の低級アルキル基が好ましい。とりわけ、反応性と安定性、コストの観点から例えばテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランを好適に用いることができ、これらは単独であっても、2種類以上の混合物であってもよい。これら金属アルコキシドは、ネットワークを形成するために加水分解したり、重縮合してもよい。 The metal alkoxide is one or more selected from silicon alkoxides represented by Si(OR) 4 , hydrolysates of silicon alkoxides, and polycondensates of hydrolysates of silicon alkoxides, which become segments having Si-O bonds, and/or is represented by the general formula M(OR) n . In the formula, n is a natural number, and M is a metal atom, preferably titanium, aluminum, zirconium, etc. Here, R is an alkyl group, and in particular, a lower alkyl group having 1 to 4 carbon atoms is preferable. In particular, from the viewpoints of reactivity, stability, and cost, for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane can be preferably used, and these may be used alone or in a mixture of two or more kinds. These metal alkoxides may be hydrolyzed or polycondensed to form a network.

 金属アルコキシドの加水分解および/または重縮合は、水、触媒、有機溶媒の存在下で進めることができる。反応に使用する水は、Si(OR)および/またはM(OR)のアルコキシ基に対して0.8当量以上5当量以下であることが好ましい。水の量を0.8当量以上とすることで、十分に加水分解を進行させてネットワークを形成できるため好ましい。水の量を5当量以下にすることで、加水分解進行度を調整してランダムなネットワーク形成を抑制でき、膜の自由体積を小さくしてバリア性が向上するため好ましい。 The hydrolysis and/or polycondensation of the metal alkoxide can be carried out in the presence of water, a catalyst, and an organic solvent. The amount of water used in the reaction is preferably 0.8 equivalents or more and 5 equivalents or less relative to the alkoxy groups of Si(OR) 4 and/or M(OR) n . By setting the amount of water to 0.8 equivalents or more, it is preferable that the hydrolysis can be sufficiently advanced to form a network. By setting the amount of water to 5 equivalents or less, it is preferable that the degree of hydrolysis can be adjusted to suppress random network formation, and the free volume of the film can be reduced to improve the barrier property.

 金属アルコキシドの反応に使用する触媒は、酸触媒であることが好ましい。酸触媒の例としては、塩酸、硫酸、硝酸、リン酸、酢酸、酒石酸等が挙げられ、特に限定されない。通常、金属アルコキシドの加水分解および重縮合反応は、酸触媒であっても塩基触媒であっても進めることができる。酸触媒を用いた場合、系中のモノマーは平均的に加水分解されやすく、直鎖状やネットワーク構造で縮合が進みやすい。一方、塩基触媒を用いた場合は、同一分子に結合したアルコキシドの加水分解・重縮合反応が進みやすい反応機構となるため、反応生成物は自由体積が大きく空隙の多い粒状になりやすい。膜中の空隙は、水蒸気や酸素の透過経路となるため、酸触媒を用いることが好ましい。触媒の使用量は、金属アルコキシド総mol量に対して、0.1mol%以上0.5mol%以下であることが好ましい。 The catalyst used for the reaction of the metal alkoxide is preferably an acid catalyst. Examples of acid catalysts include, but are not limited to, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, tartaric acid, etc. Usually, the hydrolysis and polycondensation reaction of the metal alkoxide can be carried out with either an acid catalyst or a base catalyst. When an acid catalyst is used, the monomers in the system are easily hydrolyzed on average, and condensation is likely to proceed in a linear or network structure. On the other hand, when a base catalyst is used, the reaction mechanism is such that the hydrolysis and polycondensation reaction of alkoxides bonded to the same molecule is easily promoted, so the reaction product tends to be granular with a large free volume and many voids. Since the voids in the film become a permeation path for water vapor and oxygen, it is preferable to use an acid catalyst. The amount of catalyst used is preferably 0.1 mol% to 0.5 mol% of the total molar amount of the metal alkoxide.

 金属アルコキシドの反応に使用する有機溶媒は、水および金属アルコキシドと混合可能なメチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール等のアルコール類を用いることができる。 The organic solvent used in the reaction of the metal alkoxide can be water and alcohols that are miscible with the metal alkoxide, such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, and n-butyl alcohol.

 なお、金属アルコキシドの重縮合物として、市販のシリケートオリゴマーやポリシロキサンを用いることもできる。シリケートオリゴマーやポリシロキサンは単独で用いても、低分子の金属アルコキシドと混合して用いてもよいが、過剰な架橋によるクラック発生を抑制するため、低分子の金属アルコキシドと混合して用いることが好ましい。なお、シリケートオリゴマーやポリシロキサンを使用する場合も、直鎖状やネットワーク構造のものを選定すると、膜の自由体積が小さくなり、バリア性が向上しやすく好ましい。 Commercially available silicate oligomers and polysiloxanes can also be used as polycondensates of metal alkoxides. Although silicate oligomers and polysiloxanes can be used alone or mixed with low molecular weight metal alkoxides, it is preferable to use them mixed with low molecular weight metal alkoxides to prevent cracks caused by excessive crosslinking. When using silicate oligomers or polysiloxanes, it is preferable to select those with a linear or network structure, as this reduces the free volume of the film and tends to improve the barrier properties.

 前記被覆層に含まれる金属アルコキシドは、被覆層表面をFT-IR-ATR法を用いて分析し、各ピークを帰属することでSi-O結合を有するセグメント、およびM-O結合が含まれているかを確認できる。 The metal alkoxide contained in the coating layer can be analyzed by FT-IR-ATR analysis of the coating layer surface, and by assigning each peak, it can be confirmed whether or not the coating layer contains segments with Si-O bonds and M-O bonds.

 本発明における被覆層は、前記水溶性樹脂と、前記金属アルコキシドの加水分解および/または重縮合物を混合して得られる塗剤を、金属層および/または無機化合物層に塗布・乾燥して得ることが好ましい。被覆層に含まれる樹脂と金属アルコキシドの加水分解物および/またはその重縮合物の比率は、金属アルコキシドの中心原子が完全酸化した場合の質量(SiO、MOの換算質量)と樹脂の質量比率で、樹脂/金属アルコキシドの酸化物の換算質量=15/85~85/15の範囲が好ましく、20/80~65/35の範囲がより好ましく、20/80~50/50の範囲がさらに好ましく20/80~40/60の範囲が特に好ましい。この比率を15/85以上とすることで、過剰量の金属アルコキシドの加水分解物および/または重縮合物成分によって膜が脆弱化してクラックが発生することを抑制でき、好ましい。85/15以下とすることで、金属アルコキシドの加水分解物および/または重縮合物のネットワークで樹脂を固定化し、水蒸気バリア性の低下を抑制することができ、好ましい。 The coating layer in the present invention is preferably obtained by mixing the water-soluble resin with the hydrolysis and/or polycondensation product of the metal alkoxide, and applying and drying the coating agent to the metal layer and/or inorganic compound layer. The ratio of the resin and the hydrolysis product and/or polycondensation product of the metal alkoxide contained in the coating layer is preferably in the range of 15/85 to 85/15, more preferably in the range of 20/80 to 65/35, more preferably in the range of 20/80 to 50/50, and particularly preferably in the range of 20/80 to 40/60, in terms of the mass ratio of the resin to the mass (converted mass of SiO 2 and MO n) when the central atom of the metal alkoxide is completely oxidized. By making this ratio 15/85 or more, it is possible to suppress the occurrence of cracks due to the weakening of the film caused by an excess amount of the hydrolysis product and/or polycondensation product of the metal alkoxide, which is preferable. By making the ratio 85/15 or less, the resin can be fixed by a network of a hydrolysate and/or a polycondensate of the metal alkoxide, and deterioration of the water vapor barrier property can be suppressed, which is preferable.

 本発明における被覆層は、前記水溶性樹脂と、前記金属アルコキシドの加水分解および/または重縮合物を混合して得られる塗剤中に、(メタ)アクリロイル基を有するシランカップリング剤を添加することにより、被覆層中に(メタ)アクリロイル基を導入することが可能となり、好ましい。被覆層中に(メタ)アクリロイル基を有することにより、被覆層上に活性エネルギー線硬化型インキを用いて印刷層を形成した際に、被覆層の(メタ)アクリロイル基と活性エネルギー線硬化型インキとがラジカル重合で架橋することができ、被覆層と印刷層との密着性を向上させることができる。 The coating layer in the present invention is preferably prepared by adding a silane coupling agent having a (meth)acryloyl group to the coating agent obtained by mixing the water-soluble resin with the hydrolysis and/or polycondensation product of the metal alkoxide, which makes it possible to introduce a (meth)acryloyl group into the coating layer. By having a (meth)acryloyl group in the coating layer, when a printing layer is formed on the coating layer using an active energy ray-curable ink, the (meth)acryloyl group in the coating layer and the active energy ray-curable ink can be crosslinked by radical polymerization, improving the adhesion between the coating layer and the printing layer.

 前記(メタ)アクリロイル基は、活性エネルギー線硬化型インキのフィルム密着性を向上させることから、前記被覆層に含まれる金属元素の総mol量に対して、0.25mol%以上であることが好ましく、0.30mol%以上がより好ましい。またガスバリア性が良好に維持されることから、1.25mol%以下であることが好ましく、1.10mol%以下がより好ましい。これは前記(メタ)アクリロイル基が、炭素数4以下のアルコキシドやその加水分解物であるヒドロキシル基と比べると自由体積が大きく、添加量が増えるにつれて被覆層中の空隙を拡大し、結果としてガスバリア性が低下する場合があるためである。また(メタ)アクリロイル基の添加量が増えると、その分ヒドロキシル基が減るため、分子間力で密着性が発現するウレタン等の乾燥型インキではフィルム密着性が低下する場合がある。 The (meth)acryloyl group is preferably 0.25 mol% or more, more preferably 0.30 mol% or more, based on the total molar amount of metal elements contained in the coating layer, since it improves the film adhesion of active energy ray-curable ink. Also, since the gas barrier properties are well maintained, it is preferably 1.25 mol% or less, more preferably 1.10 mol% or less. This is because the (meth)acryloyl group has a large free volume compared to alkoxides having 4 or less carbon atoms and hydroxyl groups which are their hydrolysates, and as the amount added increases, the voids in the coating layer expand, which may result in a decrease in gas barrier properties. Also, as the amount of (meth)acryloyl group added increases, the number of hydroxyl groups decreases accordingly, which may result in a decrease in film adhesion in dry inks such as urethane, which exhibit adhesion through intermolecular forces.

 発光ピークの発光強度Xと、基準ピークの発光強度Yの比率X/Y
 本発明の積層体の好ましい一態様は、被覆層側から以下の測定条件で測定した発光ピークの発光強度Xと、基準ピークの発光強度Yの比率X/Yが、5以上300以下の積層体である。
The ratio X/Y of the emission intensity of the emission peak X to the emission intensity of the reference peak Y
A preferred embodiment of the laminate of the present invention is a laminate in which the ratio X/Y of the emission intensity X of the emission peak to the emission intensity Y of the reference peak measured under the following measurement conditions from the coating layer side is 5 or more and 300 or less.

 <測定条件>
 積層体の被覆層側を1×10-4mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF溶液に60℃30分接触させた後、積層体をTHFに2度浸漬洗浄し、その後15mm×15mmに切り出し、発光スペクトル測定において、470nmにて励起し、520~550nmに見られる発光極大のピーク強度を算出。
<Measurement conditions>
The coating layer side of the laminate was brought into contact with a 1× 10-4 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole at 60° C. for 30 minutes, and the laminate was then immersed and washed twice in THF. Thereafter, a 15 mm×15 mm piece was cut out and the emission spectrum was measured by exciting at 470 nm, and the peak intensity of the emission maximum observed at 520 to 550 nm was calculated.

 <基準ピーク>
 1×10-5mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF溶液を、光路長10mmの石英ガラス製セルを用いて積層体と同様に測定。
<Base Peak>
A 1×10 −5 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole was measured in a quartz glass cell with an optical path length of 10 mm in the same manner as for the laminate.

 前記(メタ)アクリロイル基は、α-β不飽和カルボニル化合物であるため、求核性の高い1級または2級アミン類が1,4共役付加して、3-アミノプロピオネート構造に変換することが可能である(マイケル付加反応)。この反応を利用して、2級アミノ基を有する蛍光色素である、4-Nitro-7-piperazino-2,1,3-benzoxadiazoleを(メタ)アクリロイル基に選択的に導入することで、フィルムの(メタ)アクリロイル基を定量することが可能となる。前記蛍光色素は、2級アミノ基を1つだけ有するため、(メタ)アクリロイル基と当量比1:1で反応する。また求核性が高い脂肪族アミンであるため、無触媒で常温でも反応が進行する。また、400nm以上の可視光領域に吸収と蛍光発光を有するため、分光的に検出することができる。なお、接触時間が短いこともあり被覆層の厚みはXの値にあまり影響しない。詳細な測定方法は実施例に記載の方法で求めるものとする。 The (meth)acryloyl group is an α-β unsaturated carbonyl compound, and therefore can be converted to a 3-aminopropionate structure by 1,4 conjugate addition of highly nucleophilic primary or secondary amines (Michael addition reaction). By using this reaction to selectively introduce 4-Nitro-7-piperazino-2,1,3-benzoxadiazole, a fluorescent dye with a secondary amino group, into the (meth)acryloyl group, it is possible to quantify the (meth)acryloyl group in the film. The fluorescent dye has only one secondary amino group, so it reacts with the (meth)acryloyl group at an equivalent ratio of 1:1. In addition, since it is an aliphatic amine with high nucleophilicity, the reaction proceeds even at room temperature without a catalyst. In addition, since it has absorption and fluorescence emission in the visible light region of 400 nm or more, it can be detected spectroscopically. In addition, since the contact time is short, the thickness of the coating layer does not affect the value of X very much. The detailed measurement method is determined by the method described in the examples.

 被覆層中に(メタ)アクリロイル基が一定量以上存在することにより、インキとの密着性が向上する。本発明においては、被覆層中における(メタ)アクリロイル基量の指標として、X/Yに着目した。X/Yが5未満であると、インキとフィルム積層体との密着性が低下する場合がある。密着性の観点からX/Yは、18以上がより好ましい。一方、X/Yが300を超えると、被覆層中の(メタ)アクリロイル基量の増大により、層内部の空隙を拡大し、ガスバリア性が低下する場合がある。また、分子間力で密着性が発現するウレタン等の乾燥型インキとの密着性が低下する場合がある。ガスバリア性と密着性の観点からX/Yは、100以下がより好ましい。 The presence of a certain amount or more of (meth)acryloyl groups in the coating layer improves adhesion to ink. In the present invention, attention is focused on X/Y as an index of the amount of (meth)acryloyl groups in the coating layer. If X/Y is less than 5, adhesion between the ink and the film laminate may decrease. From the viewpoint of adhesion, X/Y is more preferably 18 or more. On the other hand, if X/Y exceeds 300, the increase in the amount of (meth)acryloyl groups in the coating layer may expand the voids inside the layer, decreasing the gas barrier properties. In addition, adhesion to dry inks such as urethane, which exhibit adhesion through intermolecular forces, may decrease. From the viewpoints of gas barrier properties and adhesion, X/Y is more preferably 100 or less.

 本発明における被覆層は、厚さが200nm以上600nm以下であることが好ましく、200nm以上500nm以下がより好ましい。厚さを200nm以上とすることで、金属層および/または無機化合物層を欠点なく被覆できるとともに、バリア性を向上することができる。厚さを600nm以下とすることで、硬化時の熱収縮によるクラックや、硬化不足を防止することができ、好ましい。なお、被覆層の厚さは実施例に記載の方法で求めることとする。 The coating layer in the present invention preferably has a thickness of 200 nm or more and 600 nm or less, and more preferably 200 nm or more and 500 nm or less. By making the thickness 200 nm or more, the metal layer and/or inorganic compound layer can be coated without defects and the barrier properties can be improved. By making the thickness 600 nm or less, cracks due to thermal shrinkage during curing and insufficient curing can be prevented, which is preferable. The thickness of the coating layer will be determined by the method described in the examples.

 本発明における被覆層は、FT-IR-ATR法で測定して検出されるピーク強度P1とP2の比P1/P2の値が3.5以上8.0以下であることが好ましく、4.0以上6.5以下であることがより好ましい(ただし、P1:1,050~1,080cm-1に存在する最大ピークの強度、P2:920~970cm-1に存在する最大ピークの強度を示す。なお、ピーク強度とは、ピーク位置における吸光度(単位無し)である。)。FT-IR-ATR法では、表面の被覆層の特徴をとらえることができ、P1は反応生成物であるSi-O-Siを示し、P2は反応原料であるSi-OHの量を示す。したがって、ピーク強度のP1とP2の比P1/P2は、金属アルコキシドの重縮合が進行するほど大きくなる。金属アルコキシドの重縮合反応が進行すると、末端のOHが減少して強固な膜となり、バリア性が向上するとともに、包装材料としてレトルト処理される際の耐湿熱性も向上する。P1/P2を3.5以上にすると、末端OHが減少して強固な膜となっておりバリア性、耐湿熱性に優れる層とすることができる。P1/P2を8.0以下にすることで、膜の収縮によるクラックや脆化を抑制することができ、好ましい。なお、P1、P2は実施例に記載の方法で求めることとする。前記FT-IR-ATR法で測定して検出されるピーク強度P1とP2の比P1/P2を好ましい範囲にするためには、金属アルコキシドの反応を十分に進行させる必要がある。金属アルコキシドの重縮合は脱水反応であるため、加熱によって進行させることができるが、本発明のより好ましい積層体を構成する基材フィルムに用いられるポリオレフィン系樹脂フィルムは、従来のポリエステル系樹脂と比較して耐熱性が低いため、反応を十分に進行させることが難しい課題があった。発明者らは鋭意検討した結果、低温でネットワークを形成できる成分を混合することによって、低温の加工でも適切な特性の膜を得ることに成功した。また、P1/P2を3.5以上8.0以下に調整することで、後工程におけるバリア性の劣化も抑制できることを見出した。 In the present invention, the coating layer preferably has a ratio P1/P2 of peak intensities P1 and P2 detected by FT-IR-ATR measurement of 3.5 to 8.0, more preferably 4.0 to 6.5 (where P1 indicates the intensity of the maximum peak present at 1,050 to 1,080 cm -1 , and P2 indicates the intensity of the maximum peak present at 920 to 970 cm -1 . Note that peak intensity is the absorbance (unitless) at the peak position). The FT-IR-ATR method can capture the characteristics of the surface coating layer, where P1 indicates the reaction product Si-O-Si, and P2 indicates the amount of the reaction raw material Si-OH. Therefore, the ratio P1/P2 of peak intensities P1 and P2 increases as the polycondensation of metal alkoxide proceeds. When the polycondensation reaction of the metal alkoxide proceeds, the terminal OH is reduced to form a strong film, improving the barrier properties and improving the moist heat resistance when retorted as a packaging material. When P1/P2 is 3.5 or more, the terminal OH is reduced to form a strong film, and a layer excellent in barrier properties and moist heat resistance can be obtained. When P1/P2 is 8.0 or less, cracks and embrittlement due to shrinkage of the film can be suppressed, which is preferable. P1 and P2 are determined by the method described in the examples. In order to set the ratio P1/P2 of the peak intensities P1 and P2 detected by the FT-IR-ATR method to a preferred range, it is necessary to sufficiently proceed with the reaction of the metal alkoxide. Since the polycondensation of the metal alkoxide is a dehydration reaction, it can be proceeded by heating, but the polyolefin resin film used in the base film constituting the more preferable laminate of the present invention has a low heat resistance compared to conventional polyester resins, so there was a problem that it was difficult to sufficiently proceed with the reaction. As a result of extensive research, the inventors have succeeded in obtaining a film with suitable properties even in low-temperature processing by mixing a component that can form a network at low temperatures. They also discovered that the deterioration of barrier properties in post-processing can be suppressed by adjusting P1/P2 to 3.5 or more and 8.0 or less.

 本発明の積層体を包装材料として使用する場合、印刷や製袋の工程を通るため、加熱されたり、圧力がかかったりする。このとき、適度にネットワークを構成した被覆は保護膜としても機能でき、好ましい。一方で、たとえばP1/P2が3.5未満であると、未反応の金属アルコキシドが多いため、被覆層が硬化できておらずキズが入ってバリア性が劣化しやすかったり、加工条件によっては未反応の金属アルコキシドが硬化収縮し、バリア劣化したりする。一方、P1/P2が8.0を超える場合は、被覆層が脆化してしまい、貼合時の圧力や搬送張力によってクラックが発生しやすくバリア劣化することがある。 When the laminate of the present invention is used as a packaging material, it is subjected to heat and pressure as it goes through printing and bag making processes. In this case, a coating that forms an appropriate network can function as a protective film, which is preferable. On the other hand, for example, if P1/P2 is less than 3.5, there is a lot of unreacted metal alkoxide, so the coating layer does not harden and is prone to scratches and deterioration of barrier properties, or, depending on the processing conditions, the unreacted metal alkoxide hardens and shrinks, causing barrier deterioration. On the other hand, if P1/P2 exceeds 8.0, the coating layer becomes embrittled, and cracks are likely to occur due to the pressure during lamination and the transport tension, causing barrier deterioration.

 本発明における被覆層は、ビニルアルコール系樹脂に由来するセグメント、多糖類に由来するセグメント、及びアクリルポリオール樹脂に由来するセグメント、より選ばれる1種以上のセグメント、並びに、Si-O結合を有するセグメント、に加え、金属元素Mを含む層であることが好ましい。 The coating layer in the present invention is preferably a layer that contains one or more segments selected from a segment derived from a vinyl alcohol resin, a segment derived from a polysaccharide, and a segment derived from an acrylic polyol resin, as well as a segment having an Si-O bond, and also contains a metal element M.

 ビニルアルコール系樹脂に由来するセグメント、多糖類に由来するセグメント、及びアクリルポリオール樹脂に由来するセグメントは、前述の水溶性樹脂であり、Si-O結合を有するセグメントは、前述の金属アルコキシドのうち、Si(OR)で表されるシリコンアルコキシド、シリコンアルコキシドの加水分解物、及びシリコンアルコキシドの加水分解物の重縮合物より選ばれる1種以上のことである。 The segment derived from a vinyl alcohol resin, the segment derived from a polysaccharide, and the segment derived from an acrylic polyol resin are the water-soluble resins described above, and the segment having a Si—O bond is at least one selected from the group consisting of a silicon alkoxide represented by Si(OR) 4 , a hydrolysate of a silicon alkoxide, and a polycondensate of a hydrolysate of a silicon alkoxide, among the metal alkoxides described above.

 被覆層に含まれる金属元素Mはケイ素Siを除くものとする。被覆層が金属元素Mを有することにより、被覆層を緻密なものとすることができる。被覆層が金属元素Mを有することにより、被覆層を緻密なものとすることができるのは、金属元素Mを含有する化合物がSi-O結合の繰り返しの中に適度に入り込むことで、結合に適度な自由度を生み、Si-O結合のみの繰り返しと比べて、非常に微細な構造欠陥やクラックが入ることを抑制できるためであると考えている。 The metal element M contained in the coating layer excludes silicon Si. The inclusion of the metal element M in the coating layer makes it possible to make the coating layer dense. It is believed that the reason the inclusion of the metal element M in the coating layer makes it dense is that the compound containing the metal element M penetrates moderately into the repetition of Si-O bonds, creating a moderate degree of freedom in the bonds and making it possible to suppress the occurrence of very fine structural defects and cracks compared to repetition of only Si-O bonds.

 金属元素Mを含有する化合物は、ケイ素を除く少なくとも1種の金属や半金属の金属元素のうち少なくとも1種の金属元素の錯体(キレート)、またはアルコレートであることが好ましく、2種類の金属元素を含んでもよい。金属元素Mは、空軌道を有する金属元素を含むことが好ましく、金属元素M(ケイ素を除く)の総和100atom%中、空軌道を有する金属元素の元素比率の和が80atom%以上であることが好ましい。金属元素Mは、アルミニウム、チタン、ジルコニウムのうちの少なくとも1種の金属元素を含むことが好ましく、金属元素M(ケイ素を除く)の総和100atom%中、アルミニウム、チタン、ジルコニウムの元素比率の和が80atom%以上であることがより好ましく、アルミニウム、チタン、ジルコニウム、から選ばれる少なくとも1種以上のみからなることがさらに好ましく、金属元素M(Siを除く)の総和100atom%中、チタン、ジルコニウムの元素比率の和が80atom%以上であることが特に好ましく、ジルコニウム、および/またはチタンからなることが最も好ましい。 The compound containing the metal element M is preferably a complex (chelate) or alcoholate of at least one metal element selected from at least one metal element selected from metals and semimetals excluding silicon, and may contain two types of metal elements. The metal element M preferably contains a metal element having an empty orbital, and the sum of the elemental ratios of the metal elements having an empty orbital is preferably 80 atom% or more in the total of 100 atom% of the metal elements M (excluding silicon). The metal element M preferably contains at least one metal element selected from aluminum, titanium, and zirconium, and more preferably the sum of the elemental ratios of aluminum, titanium, and zirconium is 80 atom% or more in the total of 100 atom% of the metal elements M (excluding silicon), and further preferably consists of at least one selected from aluminum, titanium, and zirconium, and particularly preferably the sum of the elemental ratios of titanium and zirconium is 80 atom% or more in the total of 100 atom% of the metal elements M (excluding Si), and most preferably consists of zirconium and/or titanium.

 アルミニウム元素を含むキレート、またはアルコレートの例としては、アルミニウムトリス(アセチルアセトネ-ト)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウム-ジ-n-ブトキシド-モノエチルアセトアセテート、アルミニウム-ジ-イソ-プロポキシド-モノメチルアセトアセテート、アルミニウムトリス(エチルアセトアセテート)等が例示される。 Examples of chelates or alcoholates containing aluminum element include aluminum tris(acetylacetonate), aluminum monoacetylacetonate bis(ethylacetoacetate), aluminum di-n-butoxide monoethylacetoacetate, aluminum di-iso-propoxide monomethylacetoacetate, aluminum tris(ethylacetoacetate), etc.

 チタン元素を含むキレート、またはアルコレートの例としては、テトラノルマルブチルチタネート、テトライソプロピルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート、テトラメチルチタネート等のチタンオルソエステル類;チタンアセチルアセトナート、チタンテトラアセチルアセトナート、ポリチタンアセチルアセトナート、チタンオクチレングリコレート、チタンラクテート、チタントリエタノールアミネート、チタンエチルアセトアセテート等のチタンキレート類等が例示される。 Examples of chelates or alcoholates containing titanium element include titanium orthoesters such as tetra-normal-butyl titanate, tetraisopropyl titanate, butyl titanate dimer, tetra(2-ethylhexyl) titanate, and tetramethyl titanate; and titanium chelates such as titanium acetylacetonate, titanium tetraacetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, titanium lactate, titanium triethanolamine, and titanium ethylacetoacetate.

 ジルコニウム元素を含むキレート、またはアルコレートの例としては、ジルコニウムアセテート、ジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラアセチルアセトナート、ジルコニウムモノアセチルアセトナート、ジルコニウムビスアセチルアセトナート等が例示される。 Examples of chelates or alcoholates containing zirconium element include zirconium acetate, zirconium normal propylate, zirconium normal butylate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, etc.

 これらを添加した場合の塗液安定性を確保するためには、キレートとして混合することが好ましく、例えば、アルミニウムトリス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、チタンラクテート、チタンジエタノールアミネート、ジイソプロポキシチタンビス(トリエタノールアミネート)、ジルコニウムラクテート等が挙げられる。中でも、反応後の配位子残渣を小さくすると、配位子由来の自由体積増大を抑えられるため、小さい配位子でも安定性が得られるチタンキレートが好ましい。 In order to ensure coating liquid stability when these are added, it is preferable to mix them as chelates, such as aluminum tris(ethylacetoacetate), aluminum monoacetylacetonate bis(ethylacetoacetate), titanium lactate, titanium diethanolaminate, diisopropoxytitanium bis(triethanolaminate), zirconium lactate, etc. Among these, titanium chelates are preferred because they provide stability even with small ligands, since reducing the amount of ligand residue after the reaction can suppress an increase in free volume derived from the ligands.

 被覆層を形成するシリコンアルコキシドの重縮合物は、バリア性の観点から十分に反応を進行させる必要がある。そこで、反応性の高い金属キレートを混合することで、適度な反応性と塗液の安定性を両立出来る。 The polycondensation product of silicon alkoxide that forms the coating layer needs to undergo a sufficient reaction in order to provide a barrier. Therefore, by mixing a highly reactive metal chelate, it is possible to achieve both appropriate reactivity and stability of the coating liquid.

 本発明における被覆層は、被覆層厚みの中央部において飛行時間型2次イオン質量分析計(TOF-SIMS)により測定される、金属元素Mに由来するフラグメントイオンのピーク強度mと、Si-O結合を有するセグメントに由来するフラグメントイオンのピーク強度sの比率m/sが、0.05以上10.00以下であることが好ましい。 The coating layer of the present invention preferably has a ratio m/s of the peak intensity m of the fragment ion derived from the metal element M to the peak intensity s of the fragment ion derived from the segment having a Si-O bond, measured at the center of the coating layer thickness using a time-of-flight secondary ion mass spectrometer (TOF-SIMS), of 0.05 or more and 10.00 or less.

 飛行時間型2次イオン質量分析計(TOF-SIMS)により測定される、金属元素Mに由来するフラグメントイオンのピーク強度mと、Si-O結合を有するセグメントに由来するフラグメントイオンのピーク強度sの比率m/sは以下の方法で求めるものとする。 The ratio m/s of the peak intensity m of the fragment ion derived from the metal element M to the peak intensity s of the fragment ion derived from the segment having a Si-O bond, as measured by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), is determined by the following method.

 <装置・測定条件>
 ION TOF社製、飛行時間型2次イオン質量分析計TOF-SIMS5
 <測定条件>
 一次イオン種 :Bi(2pA、50μs)
 加速電圧   :25kV 
 検出イオン極性:positive
 測定範囲   :100μm×100μm 
 分解能    :128×128
 エッチングイオン種:O2+(2keV、170nA)
 エッチング面積:300μm×300μm 
 エッチングレート:1sec/cycle。
<Apparatus and measurement conditions>
Time-of-flight secondary ion mass spectrometer TOF-SIMS5 manufactured by ION TOF
<Measurement conditions>
Primary ion species: Bi + (2 pA, 50 μs)
Acceleration voltage: 25 kV
Detected ion polarity: positive
Measurement range: 100 μm x 100 μm
Resolution: 128×128
Etching ion species: O 2+ (2 keV, 170 nA)
Etching area: 300 μm × 300 μm
Etching rate: 1 sec/cycle.

 <被覆層中央部の特定>
 実施例に記載の膜厚算出方法にて被覆層の膜厚を算出し、膜厚の2分の1を中央部とする。次いで被覆層の膜厚み分を上記測定条件にてエッチングしながら分析する。分析後の試料を触針式の段差計(BRUKER社製 Dektak XTL)を用いて、実測のクレータ深さを求める。求めた深さをエッチング時間で割った平均のエッチングレートを用いて換算し、中央部の値を読み取る。なお、ちょうど膜厚の2分の1となる部分のTOF-SIMS測定データが無い場合は、膜厚の2分の1となる部分に最も近い測定点のTOF-SIMS測定データを用いることとする。膜厚の2分の1となる部分に最も近い測定点が1つで無い場合は、各測定点の測定データから求められるm/sの平均値を膜厚の2分の1となる部分のm/sとする。
<Identifying the center of the coating layer>
The thickness of the coating layer is calculated by the thickness calculation method described in the examples, and half of the thickness is set as the central part. Next, the coating layer is analyzed while etching the thickness under the above measurement conditions. The analyzed sample is measured for the crater depth using a stylus-type step gauge (Dektak XTL, manufactured by BRUKER). The measured depth is converted using the average etching rate obtained by dividing the measured depth by the etching time, and the value of the central part is read. If there is no TOF-SIMS measurement data for the part that is exactly half the thickness, the TOF-SIMS measurement data of the measurement point closest to the part that is half the thickness is used. If there is not one measurement point closest to the part that is half the thickness, the average value of m/s calculated from the measurement data of each measurement point is set as the m/s of the part that is half the thickness.

 <前処理条件>
 被覆層が最表面に露出している状態であれば特に前処理は必要ないが、被覆層上に他の層が形成されている場合は、それらの層を除去してから被覆層を分析する。被覆層上に形成される層を除去する方法は、各層の膜厚み分をアルゴンイオンビーム等の各種イオンエッチングや薬液処理により除去することができる。また、各層の膜厚みについては実施例に記載の方法で求めることとする。
<Pretreatment conditions>
If the coating layer is exposed on the outermost surface, no pretreatment is required, but if other layers are formed on the coating layer, those layers are removed before analyzing the coating layer. The method for removing the layers formed on the coating layer can be various ion etching methods such as argon ion beam etching or chemical treatment to remove the thickness of each layer. The thickness of each layer is determined by the method described in the examples.

 <解析方法>
 ION TOF社製、飛行時間型2次イオン質量分析計TOF-SIMS5測定ソフトSURFACE LAB 7.1を用いてraw dataを読み込み、質量スペクトルから各種イオンに帰属されるピークを読み取る。
<Analysis method>
The raw data is read using a time-of-flight secondary ion mass spectrometer TOF-SIMS5 manufactured by ION TOF and measurement software SURFACE LAB 7.1, and peaks assigned to various ions are read from the mass spectrum.

 m/sを0.05以上にすると、低温の加工条件においても反応促進効果が得られ、また、金属元素Mの効果により被覆層を緻密なものとすることができ、バリア性、耐湿熱性に優れる層とすることができる。m/sは0.30以上であることがより好ましく、0.50以上がさらに好ましい。m/sを0.05以上にすると、被覆層内に存在する金属元素Mの量を一定量以上とすることができ、金属元素Mが触媒として作用するため、低温の加工条件においても反応促進効果が得られる。 When m/s is 0.05 or more, a reaction promotion effect can be obtained even under low-temperature processing conditions, and the effect of the metal element M can make the coating layer dense, resulting in a layer with excellent barrier properties and moist heat resistance. m/s is more preferably 0.30 or more, and even more preferably 0.50 or more. When m/s is 0.05 or more, the amount of metal element M present in the coating layer can be made to be a certain amount or more, and since the metal element M acts as a catalyst, a reaction promotion effect can be obtained even under low-temperature processing conditions.

 金属元素Mはキレートを形成しやすいものであることが好ましい。キレートを形成することで反応性を確保しながら塗液状態での安定性を両立することができる。このような金属元素として、アルミニウム、チタン、ジルコニウムなどが挙げられる。金属元素Mを含む金属キレートを使用する場合では、価数と配位数の差である空位の配位座を持つことが好ましい。すなわち当該金属キレートはルイス酸として機能する。空位の配位座は電子的に不安定となり、その部分が攻撃されやすいため反応性が向上し、より低温での反応促進効果を得ることができる。また、金属元素Mを含む金属キレートは、シリコンアルコキシドが複数結合することができるため、近接したシリコンアルコキシド同士の反応を促進できる。すなわち、反応性の高い金属キレートは、シリコンアルコキシド同士の反応の活性化エネルギーを下げることとなり、重縮合を進めるために必要とされる熱エネルギーを小さくすることができるため、より低温での反応促進効果を得ることができる。 The metal element M is preferably one that easily forms a chelate. By forming a chelate, it is possible to ensure reactivity while simultaneously achieving stability in the coating liquid state. Examples of such metal elements include aluminum, titanium, and zirconium. When using a metal chelate containing the metal element M, it is preferable that it has an empty coordination site, which is the difference between the valence and the coordination number. In other words, the metal chelate functions as a Lewis acid. The empty coordination site is electronically unstable and is easily attacked, improving reactivity and providing a reaction promotion effect at a lower temperature. In addition, a metal chelate containing the metal element M can bond multiple silicon alkoxides, thereby promoting the reaction between adjacent silicon alkoxides. In other words, a highly reactive metal chelate lowers the activation energy of the reaction between silicon alkoxides, and can reduce the thermal energy required to promote polycondensation, thereby providing a reaction promotion effect at a lower temperature.

 積層体
 本発明の積層体は、包装材料の回収・リサイクルが可能になるように、ポリオレフィン系樹脂フィルムを基材として用いることがより好ましい。ポリオレフィン系樹脂フィルムは、従来のポリエステル系樹脂やポリアミド系樹脂と比較して、ガラス転移温度が低い。そのため、ロールで保存している間にも、周囲の温度変化でフィルムが収縮して巻き締まりが起こりやすい。そのとき、被覆層は巻き外のフィルムの背面に強く押しつけられることになり、従来の樹脂基材よりも劣化しやすい課題があった。
Laminate The laminate of the present invention preferably uses a polyolefin-based resin film as a substrate so that the packaging material can be recovered and recycled. The polyolefin-based resin film has a lower glass transition temperature than conventional polyester-based resins and polyamide-based resins. Therefore, even during storage in a roll, the film is likely to shrink and become tightly wound due to changes in the surrounding temperature. At that time, the coating layer is strongly pressed against the back surface of the film outside the roll, which causes a problem that the coating layer is more likely to deteriorate than conventional resin substrates.

 この課題に対して鋭意検討した結果、ポリオレフィン系樹脂フィルムで巻き締まりが起こる場合であっても、m/sを0.05以上10.00以下とすることで、バリア劣化が抑制できることがわかった。m/sを0.05以上にすると、低温の加工条件においても反応促進効果が得られるため低温加工が可能となり、追加硬化による被覆層の収縮でフィルムに応力がかかることを抑制でき、m/sを10.00以下にすることで、過度な反応の進行を制御することができ、被覆層の脆化を抑え、巻き締まりによってフィルムが押しつけられたときのバリア劣化を抑えることができる。 After extensive research into this issue, it was found that even when tight rolling occurs with polyolefin resin films, barrier degradation can be suppressed by setting m/s to 0.05 or more and 10.00 or less. Setting m/s to 0.05 or more provides a reaction promotion effect even under low-temperature processing conditions, making low-temperature processing possible and suppressing stress on the film due to shrinkage of the coating layer caused by additional curing, while setting m/s to 10.00 or less makes it possible to control the progress of excessive reaction, suppressing embrittlement of the coating layer and suppressing barrier degradation when the film is pressed down by tight rolling.

 また、この課題に対して、鋭意検討した結果、ポリオレフィン系樹脂フィルムで巻き締まりが起こる場合であってもP1/P2を3.5以上8.0以下とすることで、バリア劣化が抑制できることがわかった。P1/P2を3.5以上とすることで、追加硬化による被覆層の収縮でフィルムに応力がかかることを抑制でき、8.0以下とすることで被覆層の脆化を抑え、巻き締まりによってフィルムが押しつけられたときのバリア劣化を抑えることができる。 Furthermore, after thorough investigation into this issue, it was found that barrier degradation can be suppressed by setting P1/P2 to 3.5 or more and 8.0 or less, even when tight rolling occurs with polyolefin resin film. Setting P1/P2 to 3.5 or more can suppress the stress placed on the film due to shrinkage of the coating layer caused by additional curing, while setting it to 8.0 or less can suppress embrittlement of the coating layer and suppress barrier degradation when the film is pressed down by tight rolling.

 本発明の積層体は、水蒸気透過率が1.0g/m/day以下であることが好ましく、0.5g/m/day以下であることがより好ましい。また、酸素透過率は1.0cc/m/day以下であることが好ましく、0.3cc/m/day以下であることがより好ましい。水蒸気透過率、酸素透過率は小さいほど好ましく、下限は特に限定されないが、実質的には水蒸気透過率は0.01g/m/day、酸素透過率は0.01cc/m/dayである。水蒸気透過率を1.0g/m/day以下、酸素透過率を1.0cc/m/day以下とすることで、包装体としたときの内容物の吸湿や酸化による劣化を防止できるので好ましい。なお、水蒸気透過率および酸素透過率の測定方法は実施例に記載の方法で求めるものとする。 The laminate of the present invention preferably has a water vapor transmission rate of 1.0 g/m 2 /day or less, more preferably 0.5 g/m 2 /day or less. Also, the oxygen transmission rate is preferably 1.0 cc/m 2 /day or less, more preferably 0.3 cc/m 2 /day or less. The smaller the water vapor transmission rate and oxygen transmission rate, the more preferable, and the lower limit is not particularly limited, but the water vapor transmission rate is substantially 0.01 g/m 2 /day and the oxygen transmission rate is 0.01 cc/m 2 /day. By making the water vapor transmission rate 1.0 g/m 2 /day or less and the oxygen transmission rate 1.0 cc/m 2 /day or less, it is preferable that the deterioration due to moisture absorption and oxidation of the contents when made into a package can be prevented. The water vapor transmission rate and the oxygen transmission rate are measured by the method described in the examples.

 本発明の積層体は、基材フィルムの少なくとも一方の面に、金属層および/または無機化合物層を形成した後、さらに被覆層を積層して得ることができる。金属層および/または無機化合物層は、真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマ気相成長法などの公知の方法を用いて形成することができるが、特に、生産性よく高速で成膜できる点から、蒸着法を好適に用いることができる。真空蒸着法の蒸着方式は、電子線(EB)蒸着法、抵抗加熱法、誘導加熱法などが挙げられるが、それらに限定されるものではない。なお、長尺の樹脂フィルムロール体に金属層および/または無機化合物層を形成する場合、蒸着のメインロールは、フィルムの熱負けを防止するために冷却することが好ましく、その温度は、好ましくは20℃以下、より好ましくは0℃以下である。金属層を得る方法としては、目的の金属を原料として蒸着する例が挙げられる。無機化合物層を得る方法としては、目的とする組成の化合物を原料として蒸着する他、金属を原料として使用し、蒸着した金属蒸気に反応ガスを導入して無機化合物を得る方法を例示することができる。例えば、酸化アルミニウム層を得る場合は、アルミニウムを蒸着原料として使用し、蒸発させたアルミニウム蒸気に酸素を含むガスを導入してフィルム上に無機酸化物層を形成する。導入するガスは、蒸発金属と反応し、層に取り込まれる組成のガスを含んでいれば良く、膜質制御のために不活性ガスなどを含んでいても構わない。金属層および/または無機化合物層を形成する樹脂フィルムの表面は、層間密着力を向上するために、表面改質処理をしてもよい。表面改質処理は、インラインでもオフラインでも良く、改質処理方法は特に限定されないが、例えば、コロナ処理、プラズマ処理、イオンビーム処理、フレーム処理等、公知のものが挙げられる。これらの表面改質処理は、大気中の他、アルゴン、窒素、酸素、炭酸ガス、水素、アンモニア、炭化水素(C2n+2、ただしnは1~4の整数)等の各種ガスもしくはこれらの混合ガスの雰囲気下で処理されてもよい。表面改質処理に使用するガスは、放電のしやすさや得られる活性種のエネルギー、導入したい官能基の種類によって選定できるが、官能基を導入するために炭酸ガスや酸素ガス、安定放電しやすいアルゴンや窒素を含むことが好ましい。 The laminate of the present invention can be obtained by forming a metal layer and/or an inorganic compound layer on at least one surface of a substrate film, and then laminating a coating layer. The metal layer and/or the inorganic compound layer can be formed by using known methods such as vacuum deposition, sputtering, ion plating, and plasma vapor phase growth, but the deposition method can be used preferably because it can form a film at high speed with good productivity. The deposition method of the vacuum deposition method includes, but is not limited to, electron beam (EB) deposition, resistance heating, and induction heating. In addition, when forming a metal layer and/or an inorganic compound layer on a long resin film roll body, it is preferable to cool the main roll of the deposition in order to prevent the film from being damaged by heat, and the temperature is preferably 20° C. or less, more preferably 0° C. or less. As a method for obtaining a metal layer, an example of deposition using a target metal as a raw material can be mentioned. As a method for obtaining an inorganic compound layer, in addition to deposition using a compound of a target composition as a raw material, a method of using a metal as a raw material and introducing a reaction gas into the deposited metal vapor to obtain an inorganic compound can be exemplified. For example, when an aluminum oxide layer is obtained, aluminum is used as a deposition material, and a gas containing oxygen is introduced into the evaporated aluminum vapor to form an inorganic oxide layer on the film. The gas introduced may contain a gas having a composition that reacts with the evaporated metal and is incorporated into the layer, and may contain an inert gas or the like for controlling the film quality. The surface of the resin film on which the metal layer and/or inorganic compound layer is formed may be subjected to a surface modification treatment in order to improve interlayer adhesion. The surface modification treatment may be in-line or off-line, and the modification treatment method is not particularly limited, but examples thereof include known methods such as corona treatment, plasma treatment, ion beam treatment, and flame treatment. These surface modification treatments may be performed in air, or in an atmosphere of various gases such as argon, nitrogen, oxygen, carbon dioxide, hydrogen, ammonia, and hydrocarbons (C n H 2n+2 , where n is an integer of 1 to 4), or a mixture of these gases. The gas used for the surface modification treatment can be selected based on the ease of discharge, the energy of the active species obtained, and the type of functional group to be introduced. However, it is preferable for the gas to contain carbon dioxide gas or oxygen gas for introducing functional groups, or argon or nitrogen gas, which are easy to stably discharge.

 本発明の積層体は、基材フィルムの少なくとも一方の面に金属層および/または無機化合物層を有する積層体の、金属層および/または無機化合物層を有する面に、水溶性樹脂と金属アルコキシドの加水分解物および/またはその重縮合物と、(メタ)アクリロイル基を有するシランカップリング剤を含む塗剤を塗布する工程、および乾燥する工程を含む製造方法で製造されることが好ましい。本態様とすることにより、積層体上に印刷層を形成した際に、インキの種別によらず高い密着性を示し、かつバリア性良好な積層体を得ることができる。 The laminate of the present invention is preferably manufactured by a manufacturing method including a step of applying a coating agent containing a hydrolyzate of a water-soluble resin and a metal alkoxide and/or a polycondensate thereof, and a silane coupling agent having a (meth)acryloyl group, to the surface of the laminate having a metal layer and/or an inorganic compound layer on at least one surface of a base film, and a drying step. By adopting this embodiment, when a printing layer is formed on the laminate, it is possible to obtain a laminate that exhibits high adhesion regardless of the type of ink and has good barrier properties.

 本発明の積層体の別の好ましい態様は、ポリオレフィン系樹脂フィルムの少なくとも一方の面に金属層および/または無機化合物層を有する積層体の、金属層および/または無機化合物層を有する面に、水溶性樹脂と金属アルコキシドの加水分解物および/またはその重縮合物と、(メタ)アクリロイル基を有するシランカップリング剤を含む塗剤を塗布する工程、および乾燥する工程を含む製造方法で製造されることが好ましい。また、ポリオレフィン系樹脂フィルムの少なくとも一方の面に金属層および/または無機化合物層を有する積層体の、金属層および/または無機化合物層を有する面に、シリコンアルコキシド、シリコンアルコキシドの加水分解物、及びシリコンアルコキシドの加水分解物の重縮合物より選ばれる1種以上と、ビニルアルコール系樹脂、多糖類、及びアクリルポリオール樹脂、より選ばれる1種以上の樹脂と、(メタ)アクリロイル基を有するシランカップリング剤、並びに金属元素Mを含有する化合物を含む塗剤を塗布する工程、および乾燥する工程を含む、積層体の製造方法により得られることが好ましい。本態様とすることにより、積層体上に印刷層を形成した際に、インキの種別によらず高い密着性を示し、かつバリア性良好な積層体を得ることができる。また、製造時の環境負荷を抑えつつも水蒸気バリア性と酸素バリア性の高い積層体を得ることができる。特に、本態様とすることにより、低温でも十分硬化できたり、高温であっても特に短時間で十分硬化できたりすることから、製造時の環境負荷を低減でき、好ましい。すなわち、本発明の積層体の製造方法の好ましい一態様は、基材フィルムの少なくとも一方の面に金属層および/または無機化合物層を有する積層体の、金属層および/または無機化合物層を有する面に、水溶性樹脂と金属アルコキシドの加水分解物および/またはその重縮合物と、(メタ)アクリロイル基を有するシランカップリング剤を含む塗剤を塗布する工程、および乾燥する工程を含む、積層体の製造方法である。より好ましい態様としては、前記基材フィルムがポリオレフィン系樹脂フィルムである態様であり、さらに好ましい態様としては、前記塗剤がシリコンアルコキシド、シリコンアルコキシドの加水分解物、及びシリコンアルコキシドの加水分解物の重縮合物より選ばれる1種以上と、ビニルアルコール系樹脂、多糖類、及びアクリルポリオール樹脂、より選ばれる1種以上の樹脂と、(メタ)アクリロイル基を有するシランカップリング剤、並びに金属元素Mを含有する化合物を含む塗剤である態様である。 Another preferred embodiment of the laminate of the present invention is preferably produced by a production method including a step of applying a coating agent containing a water-soluble resin, a hydrolyzate of a metal alkoxide and/or a polycondensate thereof, and a silane coupling agent having a (meth)acryloyl group to the surface of the metal layer and/or inorganic compound layer of a laminate having a metal layer and/or an inorganic compound layer on at least one surface of a polyolefin resin film, and a drying step. Also, it is preferable that the laminate is obtained by a production method of a laminate including a step of applying a coating agent containing one or more resins selected from silicon alkoxide, a hydrolyzate of silicon alkoxide, and a polycondensate of a hydrolyzate of silicon alkoxide, one or more resins selected from vinyl alcohol resins, polysaccharides, and acrylic polyol resins, a silane coupling agent having a (meth)acryloyl group, and a compound containing a metal element M to the surface of the metal layer and/or inorganic compound layer of a laminate having a metal layer and/or an inorganic compound layer on at least one surface of a polyolefin resin film, and a drying step. By adopting this embodiment, when a printed layer is formed on the laminate, a laminate exhibiting high adhesion and having good barrier properties can be obtained regardless of the type of ink. In addition, a laminate having high water vapor barrier properties and oxygen barrier properties can be obtained while suppressing the environmental load during production. In particular, by adopting this embodiment, the laminate can be sufficiently cured even at low temperatures, and can be sufficiently cured even at high temperatures in a short time, which is preferable because it reduces the environmental load during production. That is, a preferred embodiment of the method for producing a laminate of the present invention is a method for producing a laminate including a step of applying a coating agent containing a water-soluble resin, a hydrolyzate of a metal alkoxide and/or a polycondensate thereof, and a silane coupling agent having a (meth)acryloyl group to the surface having the metal layer and/or the inorganic compound layer of a laminate having a metal layer and/or an inorganic compound layer on at least one surface of a base film, and a step of drying. A more preferred embodiment is one in which the substrate film is a polyolefin resin film, and an even more preferred embodiment is one in which the coating agent is a coating agent containing at least one selected from silicon alkoxides, hydrolysates of silicon alkoxides, and polycondensates of hydrolysates of silicon alkoxides, at least one resin selected from vinyl alcohol resins, polysaccharides, and acrylic polyol resins, a silane coupling agent having a (meth)acryloyl group, and a compound containing a metal element M.

 また、前記塗剤は、水溶性樹脂と金属アルコキシドの加水分解物および/またはその重縮合物とを含有する塗剤1と、(メタ)アクリロイル基を有するシランカップリング剤の加水分解物および/またはその重縮合物を含む塗剤2を混合して得られるものであることが、密着性とガスバリア性の観点で好ましい。本態様とすることで、被覆層表面に特に多く(メタ)アクリロイル基を導入することができる。また、本態様とすることにより、被覆層に含まれる金属元素の総mol量に対して、被覆層が(メタ)アクリロイル基を0.25mol%以上1.25mol%以下としつつも、X/Yが、5以上300以下である積層体とすることが容易となる。 In addition, from the viewpoint of adhesion and gas barrier properties, it is preferable that the coating agent is obtained by mixing coating agent 1 containing a water-soluble resin and a hydrolysate and/or polycondensate of a metal alkoxide with coating agent 2 containing a hydrolysate and/or polycondensate of a silane coupling agent having a (meth)acryloyl group. By adopting this embodiment, a particularly large number of (meth)acryloyl groups can be introduced onto the surface of the coating layer. In addition, by adopting this embodiment, it is easy to form a laminate in which the coating layer has 0.25 mol % or more and 1.25 mol % or less of (meth)acryloyl groups relative to the total molar amount of metal elements contained in the coating layer, while the ratio X/Y is 5 or more and 300 or less.

 塗布方法は、ダイレクトグラビア方式、リバースグラビア方式、マイクログラビア方式、ロッドコート方式、バーコート方式、ダイコート方式、スプレーコート方式等、特に限定はなく既知の方法を用いることができる。塗布後の乾燥温度は、70℃以上150℃以下であることが好ましく、90℃以上130℃以下であることがより好ましい。なお、乾燥温度は、フィルム表面の最高到達温度を指す。70℃以上とすることで溶媒を除去し、層とすることができ、150℃以下とすることで、基材フィルムの熱収縮や変形を抑制することができる。塗布・乾燥後、本発明の積層体は、シリコンアルコキシドの重縮合反応を進行させてバリア性を向上させるために、さらに熱処理してもよい。熱処理温度は、30℃以上100℃以下が好ましく、40℃以上80℃以下がより好ましい。熱処理時間は、1日以上14日以下が好ましく、3日以上7日以下がより好ましい。熱処理温度を30℃以上とすることで、被覆層の架橋を進行させてバリア性を向上でき、100℃以下とすることで、熱処理によるフィルムのカールや収縮を抑制することができる。なお、熱処理温度は雰囲気温度を指す。 The coating method is not particularly limited, and known methods can be used, such as direct gravure, reverse gravure, microgravure, rod coating, bar coating, die coating, spray coating, etc. The drying temperature after coating is preferably 70°C or higher and 150°C or lower, and more preferably 90°C or higher and 130°C or lower. The drying temperature refers to the maximum temperature reached on the film surface. By setting the temperature at 70°C or higher, the solvent can be removed to form a layer, and by setting the temperature at 150°C or lower, the thermal shrinkage and deformation of the base film can be suppressed. After coating and drying, the laminate of the present invention may be further heat-treated to promote the polycondensation reaction of silicon alkoxide to improve the barrier properties. The heat treatment temperature is preferably 30°C or higher and 100°C or lower, and more preferably 40°C or higher and 80°C or lower. The heat treatment time is preferably 1 day or higher and 14 days or lower, and more preferably 3 days or higher and 7 days or lower. By setting the heat treatment temperature at 30°C or higher, crosslinking of the coating layer can be promoted to improve the barrier properties, and by setting the temperature at 100°C or lower, curling and shrinkage of the film due to heat treatment can be suppressed. Note that the heat treatment temperature refers to the atmospheric temperature.

 本発明の積層体は、包装材料用途に用いられることが好ましい。包装材料用途に用いるため、印刷等や、製袋のためのヒートシール層、剛性を向上させるために別の樹脂フィルムと積層されていてもよい。また、リサイクル性を向上させるため、基材フィルムやヒートシール層、剛性向上のための樹脂フィルムは、ポリオレフィン系樹脂であることが好ましい。 The laminate of the present invention is preferably used for packaging material applications. For use in packaging material applications, it may be laminated with another resin film for printing or other purposes, a heat seal layer for bag making, or to improve rigidity. In addition, in order to improve recyclability, the base film, heat seal layer, and resin film for improving rigidity are preferably polyolefin-based resins.

 本発明の積層体は、電子線硬化型インキの印刷に用いられることが好ましい。電子線硬化型インキの印刷に前記積層体を含むことで、印刷層との密着性が向上し、かつ良好なバリア性が得られるため、内容物の劣化を抑えつつ、電子線硬化型インキを用いることにより印刷層製造時の環境負荷を低減できるため好ましい。 The laminate of the present invention is preferably used for printing with electron beam curable ink. By including the laminate in printing with electron beam curable ink, adhesion with the printed layer is improved and good barrier properties are obtained, so that it is preferable because the deterioration of the contents can be suppressed while the environmental load during the production of the printed layer can be reduced by using electron beam curable ink.

 以下に本発明を実施例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを発明の範囲から除外するものではない。 The present invention will be described below based on examples. Note that the present invention is not limited to these examples, and these examples can be modified or changed based on the spirit of the present invention, and are not excluded from the scope of the invention.

 [評価方法]
 (1)基材フィルムの厚み
 任意の10箇所の厚みを、23℃65%RHの雰囲気下で、アンリツ株式会社製電子マイクロメータ(K-312A型)を用いて測定した。得られた10点の厚みの算術平均値を基材フィルムの厚み(単位:μm)とした。
[Evaluation method]
(1) Thickness of the Base Film The thickness of ten randomly selected points was measured in an atmosphere of 23° C. and 65% RH using an electronic micrometer (K-312A type) manufactured by Anritsu Corp. The arithmetic mean value of the thicknesses at the ten points was taken as the thickness of the base film (unit: μm).

 (2)基材フィルムの算術平均高さSa
 三次元非接触表面形状の測定器である、株式会社日立ハイテクサイエンスの走査型白色干渉顕微鏡VertscanVS1540を使用して測定した。解析においては付属の解析ソフトにより、撮影画面を多項式4次近似面補正にてうねり成分を除去し、次いでメジアン(3×3)フィルタにて処理後、補間処理(高さデータの取得ができなかった画素に対し周囲の画素より算出した高さデータで補う処理)を施した。測定条件は下記の通りとした。
・測定条件:対物レンズ 10×
      鏡筒 1×
      ズームレンズ 1×
      波長フィルタ 530nm white
・測定モード:Wave
・測定ソフトウェア:VS-Measure Version10.0.4.0
・解析ソフトフェア:VS-Viewer Version10.0.3.0
・測定面積:0.561×0.561mm
(2) Arithmetic mean height Sa of the base film
The measurements were made using a scanning white light interference microscope, Vertscan VS1540, manufactured by Hitachi High-Tech Science Corporation, which is a three-dimensional non-contact surface shape measuring instrument. In the analysis, the waviness components of the photographed image were removed using polynomial quartic approximation surface correction using the attached analysis software, and then the image was processed using a median (3 x 3) filter, followed by an interpolation process (a process in which pixels for which height data could not be obtained are supplemented with height data calculated from surrounding pixels). The measurement conditions were as follows.
Measurement conditions: Objective lens 10x
1x telescope tube
Zoom lens x 1
Wavelength filter 530nm white
Measurement mode: Wave
Measurement software: VS-Measure Version 10.0.4.0
・Analysis software: VS-Viewer Version 10.0.3.0
-Measurement area: 0.561 x 0.561 mm 2 .

 (3)金属層および/または無機化合物層の厚み
 透過型電子顕微鏡(TEM)を用いた断面観察により測定した。株式会社日立製作所製マイクロサンプリングシステムFB-2000Aを使用して、FIB法により(具体的には「高分子表面加工学」(岩森暁著)p.118~119に記載の方法に基づいて)観察用サンプルを作製した。続いて、株式会社日立製作所製透過型電子顕微鏡H-9000UHRIIにより、加速電圧300kVとして、観察用サンプルの断面を観察し、任意の10箇所について金属層および/または無機酸化物層の厚みを確認した。それらの算術平均値を金属層および/または無機酸化物層の厚み(単位:nm)とした。
(3) Thickness of the metal layer and/or inorganic compound layer The thickness was measured by cross-sectional observation using a transmission electron microscope (TEM). Using a microsampling system FB-2000A manufactured by Hitachi, Ltd., an observation sample was prepared by the FIB method (specifically, based on the method described in "Polymer Surface Processing Science" (by Akira Iwamori), pp. 118-119). Next, the cross-section of the observation sample was observed using a transmission electron microscope H-9000UHRII manufactured by Hitachi, Ltd., at an acceleration voltage of 300 kV, and the thickness of the metal layer and/or inorganic oxide layer was confirmed at any 10 points. The arithmetic average value of these values was taken as the thickness (unit: nm) of the metal layer and/or inorganic oxide layer.

 (4)被覆層の厚み
 積層体をミクロトームでフィルム表面に対して垂直方向に切削し、積層体断面を走査透過型電子顕微鏡で観察して測定した。観察は、株式会社日立製作所製STEM(走査透過型電子顕微鏡/H-9000UHRII)を使用し、100,000倍の倍率で3点撮像した。得られた3つの画像で、被覆層の厚さを測定し、それらを平均した値を被覆層の厚み(単位:nm)とした。
(4) Thickness of the coating layer The laminate was cut in a direction perpendicular to the film surface with a microtome, and the cross section of the laminate was observed and measured with a scanning transmission electron microscope. The observation was performed using a STEM (scanning transmission electron microscope/H-9000UHRII) manufactured by Hitachi, Ltd., and images were taken at three points at a magnification of 100,000 times. The thickness of the coating layer was measured in the three images obtained, and the average value was taken as the thickness of the coating layer (unit: nm).

 (5)発光強度Xと、基準ピークの発光強度Yの比率X/Y
 作成した積層体を40mm×40mmにカットし、被覆層側を1×10-4mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF溶液に60℃30分表面接触させた。次に、積層体をTHFに2度浸漬洗浄した後、洗浄したフィルム片の四隅をカットして、15mm×15mmに切り出し、石英板に固定して測定サンプルとした。測定サンプルを、蛍光リン光分光光度計(堀場製作所製、FluoroMax-4P)を用い、470nmの励起光、励起光スリット2nm、発光スリット2nmで、500~700nmを受光範囲として透過法にて蛍光測定を実施した。520~550nmに発光強度のピークが見られる場合に、そのピーク強度を発光強度Xとして算出した。
(5) Ratio X/Y of emission intensity X to emission intensity Y of the reference peak
The prepared laminate was cut to 40 mm x 40 mm, and the coating layer side was surface-contacted with a 1 x 10 -4 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole at 60 ° C. for 30 minutes. Next, the laminate was immersed and washed twice in THF, and then the four corners of the washed film piece were cut, cut into 15 mm x 15 mm pieces, and fixed to a quartz plate to obtain a measurement sample. The measurement sample was subjected to fluorescence measurement by a transmission method using a fluorescent phosphorescence spectrophotometer (manufactured by Horiba, FluoroMax-4P) with 470 nm excitation light, excitation light slit 2 nm, emission slit 2 nm, and a light receiving range of 500 to 700 nm. When a peak of emission intensity was observed at 520 to 550 nm, the peak intensity was calculated as the emission intensity X.

 さらに1×10-5mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF溶液を、光路長10mmの石英ガラス製セルを用いて測定した。測定して得られる520~550nmの発光強度のピークを、基準ピークの発光強度Yとして算出し、発光強度Xと基準ピークの発光強度Yの比率X/Yを算出した。 Furthermore, a 1× 10 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole was measured using a quartz glass cell with an optical path length of 10 mm. The peak of the emission intensity at 520 to 550 nm obtained by the measurement was calculated as the emission intensity Y of the reference peak, and the ratio X/Y of the emission intensity X to the emission intensity Y of the reference peak was calculated.

 (6)水蒸気透過率
 JIS K 7129(2008)のB法に従い、MOCON/Modern Controls社製の水蒸気透過率透過率測定装置(“PERMATRAN(登録商標)”W3/31)を使用して、温度40℃湿度90%RHの条件で測定した。測定は2枚の試験片について2回ずつ行い、合計4つの測定値の平均値を算出し、水蒸気透過率とした。
(6) Water vapor transmission rate According to the B method of JIS K 7129 (2008), a water vapor transmission rate measuring device ("PERMATRAN (registered trademark)" W3/31) manufactured by MOCON/Modern Controls was used to measure water vapor transmission rate at a temperature of 40°C and a humidity of 90% RH. The measurement was performed twice for two test pieces, and the average value of the four measured values was calculated to obtain the water vapor transmission rate.

 (7)酸素透過率
 JIS K 7126-2(2006)の等圧法に従い、MOCON/Modern Controls社製の酸素透過率測定装置(“OXTRAN(登録商標)”2/20)を用いて、温度23℃湿度90%RHの条件で測定した。測定は2枚の試験片について2回ずつ行い、得られた4つの測定値の平均値を算出し、酸素透過率とした。
(7) Oxygen permeability According to the isobaric method of JIS K 7126-2 (2006), oxygen permeability was measured using an oxygen permeability measuring device ("OXTRAN (registered trademark)" 2/20) manufactured by MOCON/Modern Controls, Inc., under conditions of a temperature of 23°C and a humidity of 90% RH. The measurement was performed twice for each of two test pieces, and the average value of the four measured values was calculated to be the oxygen permeability.

 (8)FT-IR-ATR法での分析(P1/P2)
 30mm×30mmにサンプリングした積層体を用い、日本分光株式会社製フーリエ変換赤外分光光度計FT/IR-6100を使用してスペクトル測定し、解析ソフトのピーク検出モードで所定のピークP1、P2を検出した。得られたP1とP2の値からP1/P2を算出した。
(8) Analysis by FT-IR-ATR method (P1/P2)
A 30 mm x 30 mm sample of the laminate was used to perform spectrum measurement using a Fourier transform infrared spectrophotometer FT/IR-6100 manufactured by JASCO Corporation, and predetermined peaks P1 and P2 were detected in the peak detection mode of the analysis software. P1/P2 was calculated from the obtained values of P1 and P2.

 位置の異なる3点でP1/P2を算出し、3点の値を平均してそのサンプルのP1/P2とした。
・光源:高輝度セラミック光源
・検出器:TGS
・ビームスプリッター:Ge/KBr
・測定モード:ATR法(Geプリズム、入射角45°)
・測定波数範囲:4,000cm-1~600cm-1
・分解能:4cm-1
・積算回数:32回
・解析:Spectra Manager Version2 スペクトル解析プログラムでピーク検出した。
P1/P2 was calculated at three different positions, and the values at the three points were averaged to obtain P1/P2 for that sample.
Light source: High brightness ceramic light source Detector: TGS
Beam splitter: Ge/KBr
Measurement mode: ATR method (Ge prism, incident angle 45°)
Measurement wave number range: 4,000 cm -1 to 600 cm -1
・Resolution: 4cm -1
Number of accumulations: 32 Analysis: Peaks were detected using the spectrum analysis program Spectra Manager Version 2.

 (9)金属元素Mに由来するフラグメントイオンのピーク強度mと、Si-O結合を有するセグメントに由来するフラグメントイオンのピーク強度sの比率m/s
 ION TOF社製、飛行時間型2次イオン質量分析計TOF-SIMS5および同社 測定ソフトSURFACE LAB 7.1を用い、被覆層の中央部について、2次イオン質量分析法によって金属元素Mに由来するフラグメントイオンのピーク強度mとSi-O結合を有するセグメントに由来するフラグメントイオンのピーク強度sを測定し、ピーク強度比m/sを求めた。測定条件は以下の通りである。
(9) The ratio m/s of the peak intensity m of a fragment ion derived from a metal element M to the peak intensity s of a fragment ion derived from a segment having a Si—O bond
Using a time-of-flight secondary ion mass spectrometer TOF-SIMS5 manufactured by ION TOF and measurement software SURFACE LAB 7.1 manufactured by the same company, the peak intensity m of the fragment ion derived from the metal element M and the peak intensity s of the fragment ion derived from the segment having a Si-O bond were measured by secondary ion mass spectrometry for the center part of the coating layer, and the peak intensity ratio m/s was calculated. The measurement conditions are as follows.

 ・一次イオン種 :Bi(2pA、50μs)
 ・加速電圧:25kV 
 ・検出イオン極性:positive 
 ・測定範囲   :100μm×100μm 
 ・分解能:    :128×128
 ・エッチングイオン種:O2+(2keV、170nA)
 ・エッチング面積:300μm×300μm
 ・エッチングレート:1sec/cycle。
Primary ion species: Bi + (2 pA, 50 μs)
Acceleration voltage: 25 kV
Detected ion polarity: positive
Measurement range: 100 μm x 100 μm
・Resolution: :128×128
Etching ion species: O 2+ (2 keV, 170 nA)
Etching area: 300 μm × 300 μm
Etching rate: 1 sec/cycle.

 (10)剥離強度
 各実施例1~42および、比較例1~9で得た積層体上に、下記インキA、インキBを用いてベタ印刷層を設けた。
(10) Peel Strength A solid print layer was formed on each of the laminates obtained in Examples 1 to 42 and Comparative Examples 1 to 9 using the following inks A and B.

 [インキA:Richcure WL EB Cyan(内外インキ製造(株)製、電子線硬化型水なしオフセットインキ)、感光性樹脂を含む。アクリル当量166g/eq]。 [Ink A: Richcure WL EB Cyan (electron beam curable waterless offset ink manufactured by Naigai Ink Mfg. Co., Ltd.), contains photosensitive resin. Acrylic equivalent: 166 g/eq].

 各種の積層体に対して、電子線硬化型インキAを転写させた。転写方法は、RIテスターを用いて展色した。そして、電子線照射装置(岩崎電気(株)製EC250/30/90LS)を用いて、加速電圧110kV、照射線量30kGyの電子線照射により硬化させることで、ベタ印刷物を得た。 Electron beam curable ink A was transferred to various laminates. The transfer method involved spreading the ink using an RI tester. Then, using an electron beam irradiation device (EC250/30/90LS manufactured by Iwasaki Electric Co., Ltd.), the ink was cured by irradiating it with electron beams at an acceleration voltage of 110 kV and an exposure dose of 30 kGy to obtain solid prints.

 [インキB:“リオアルファ(登録商標)”S R39 藍(東洋インキ(株)製、裏刷り用溶剤グラビアインキ)、ポリウレタン樹脂含有]。 [Ink B: "Rio Alpha (registered trademark)" S R39 indigo (manufactured by Toyo Ink Co., Ltd., solvent gravure ink for reverse printing), contains polyurethane resin].

 各種の積層体に対して、溶剤インキBを転写させた。転写方法は、バーコーターの8番を用いた。そして、オーブンで80℃で1分乾燥させることで、ベタ印刷物を得た。 Solvent ink B was transferred onto various laminates. A bar coater number 8 was used for the transfer method. Solid prints were then obtained by drying in an oven at 80°C for 1 minute.

 次いで、それぞれで得られたベタ印刷物に、混合ラミネート接着剤(三井化学(株)製“タケラック(登録商標)”A626/“タケネート(登録商標)”A50)を、塗工量3.0g/mとなるように塗工し、厚み70μmの無延伸ポリプロピレンフィルム(CPP)(東レフィルム加工(株)製ZK-207)とラミネートした。その後、40℃で3日間エージングし、ラミネートサンプルを得た。得られたラミネートサンプルを15mm幅で短冊状にカットし、テンシロン万能試験機((株)オリエンテック製RTG-1210)を用いて剥離試験を行い、300mm/分で90°剥離した際の剥離強度(単位:N/15mm)を測定した。各2回ずつ測定し、その平均値を算出して密着性を評価した。 Next, a mixed lamination adhesive (Mitsui Chemicals, Inc.'s "Takelac (registered trademark)" A626 / "Takenate (registered trademark)" A50) was applied to the solid print obtained in each case so that the coating amount was 3.0 g / m 2 , and laminated with a 70 μm thick non-oriented polypropylene film (CPP) (Toray Film Processing Co., Ltd.'s ZK-207). Then, it was aged at 40 ° C for 3 days to obtain a laminate sample. The obtained laminate sample was cut into a strip shape with a width of 15 mm, and a peel test was performed using a Tensilon universal testing machine (Orientec Co., Ltd.'s RTG-1210), and the peel strength (unit: N / 15 mm) when peeled at 90 ° at 300 mm / min was measured. Each was measured twice, and the average value was calculated to evaluate the adhesion.

 剥離強度が2.0N/15mm未満であると密着性が不十分であり、2.0N/15mm以上3.0N/15mm未満であると密着性が良好であり、3.0N/15mm以上4.0N/15mm未満であると密着性がより良好であり、4.0N/15mm以上であると密着性が極めて良好と判断した。 If the peel strength is less than 2.0 N/15 mm, the adhesion is insufficient; if it is between 2.0 N/15 mm and 3.0 N/15 mm, the adhesion is good; if it is between 3.0 N/15 mm and 4.0 N/15 mm, the adhesion is better; and if it is 4.0 N/15 mm or more, the adhesion is judged to be extremely good.

 [実施例1]
 (金属層または無機化合物層の形成)
 厚さ12μmの二軸延伸ポリエチレンテレフタレートフィルム(東レ株式会社製“ルミラー(登録商標)”P60)の片面に、無機化合物層として酸化アルミニウム層を12nm形成した。酸化アルミニウム層は、アルミニウムを蒸発させ、蒸着部に酸素を導入して酸化させる反応蒸着法で蒸着した。
[Example 1]
(Formation of Metal Layer or Inorganic Compound Layer)
An aluminum oxide layer having a thickness of 12 nm was formed as an inorganic compound layer on one side of a 12 μm-thick biaxially stretched polyethylene terephthalate film (Lumirror (registered trademark) P60 manufactured by Toray Industries, Inc.) The aluminum oxide layer was deposited by a reactive deposition method in which aluminum is evaporated and then oxidized by introducing oxygen into the deposition section.

 (被覆層の形成)
 水溶性高分子として、ポリビニルアルコール(以下PVAと略することもある、株式会社クラレ製ポバール28-98)を質量比で水/イソプロピルアルコール=97/3の溶媒に投入し、90℃で加熱撹拌して固形分10質量%の水溶性高分子液を得た。次に、TEOS6.7gとメタノール2.7gを混合した溶液に、0.02N塩酸水溶液10.6gを液滴しながら撹拌して、TEOS加水分解液を得た。さらに、3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製:KBM-5103)6.1gとメタノール10.6gを混合した溶液に、0.1N塩酸水溶液2.4gを液滴しながら撹拌して、(メタ)アクリロイル基含有加水分解液を得た。
(Formation of coating layer)
As a water-soluble polymer, polyvinyl alcohol (hereinafter sometimes abbreviated as PVA, Poval 28-98 manufactured by Kuraray Co., Ltd.) was added to a solvent of water/isopropyl alcohol = 97/3 by mass ratio, and heated and stirred at 90 ° C. to obtain a water-soluble polymer solution with a solid content of 10 mass %. Next, a solution of 6.7 g of TEOS and 2.7 g of methanol was mixed and stirred while adding dropwise 10.6 g of 0.02N hydrochloric acid solution to obtain a TEOS hydrolyzed solution. Furthermore, a solution of 6.1 g of 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBM-5103) and 10.6 g of methanol was mixed and stirred while adding dropwise 2.4 g of 0.1N hydrochloric acid solution to obtain a (meth)acryloyl group-containing hydrolyzed solution.

 水溶性高分子液のPVA固形分と、TEOSのSiO換算質量の比率がPVA固形分/SiO換算質量=35/65になるように水溶性高分子液とTEOS加水分解液を混合した。得られた混合液に(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基量が1.12mol%となるよう添加し、全体の固形分が13質量%になるように水で希釈して塗工液を得た。塗工液を、上述の酸化アルミニウム層上に塗布し、150℃で1分間乾燥させて積層体を得た。 The water-soluble polymer solution and the TEOS hydrolyzed solution were mixed so that the ratio of the PVA solid content of the water-soluble polymer solution to the SiO2 equivalent mass of TEOS was PVA solid content/ SiO2 equivalent mass=35/65. The (meth)acryloyl group-containing hydrolyzed solution was added to the resulting mixed solution so that the (meth)acryloyl group content was 1.12 mol% relative to the total molar amount of metal elements contained in the coating layer, and the coating solution was diluted with water so that the total solid content was 13 mass% to obtain a coating solution. The coating solution was applied onto the above-mentioned aluminum oxide layer and dried at 150°C for 1 minute to obtain a laminate.

 [実施例2]
 被覆層を乾燥させた後、さらに80℃で1週間熱処理した以外は実施例1と同様にして積層体を得た。
[Example 2]
A laminate was obtained in the same manner as in Example 1, except that the coating layer was dried and then further heat-treated at 80° C. for one week.

 [実施例3]
 被覆層の(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が0.17mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[Example 3]
A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 0.17 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [実施例4]
 被覆層の(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が0.28mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[Example 4]
A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 0.28 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [実施例5]
 被覆層の(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が0.34mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[Example 5]
A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 0.34 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [実施例6]
 被覆層の(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が0.56mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[Example 6]
A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 0.56 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [実施例7]
 被覆層の(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が0.79mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[Example 7]
A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 0.79 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [実施例8]
 被覆層の(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が1.01mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[Example 8]
A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [実施例9]
 被覆層の水溶性高分子を変性ポリビニルアルコール(株式会社クラレ製“エクセバール(登録商標)”RS-1717)にしたこと、(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が1.01mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[実施例10]
 被覆層の(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が1.12mol%となるよう添加したこと以外は実施例9と同様にして積層体を得た。
[Example 9]
A laminate was obtained in the same manner as in Example 2, except that the water-soluble polymer in the coating layer was a modified polyvinyl alcohol ("Exceval (registered trademark)" RS-1717 manufactured by Kuraray Co., Ltd.) and the (meth)acryloyl group-containing hydrolyzed liquid was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of metal elements contained in the coating layer.
[Example 10]
A laminate was obtained in the same manner as in Example 9, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 1.12 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [実施例11]
 被覆層の水溶性高分子を変性ポリビニルアルコール(日本酢ビ・ポバール株式会社製ZF-15)にしたこと、(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が1.01mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[Example 11]
A laminate was obtained in the same manner as in Example 2, except that the water-soluble polymer of the coating layer was modified polyvinyl alcohol (ZF-15 manufactured by Nippon Vinyl Acetate & Poval Co., Ltd.) and the (meth)acryloyl group-containing hydrolyzed liquid was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of the metal elements contained in the coating layer.

 [実施例12]
 被覆層の水溶性高分子を変性ポリビニルアルコール(株式会社クラレ製“エクセバール(登録商標)”HR-3010)にしたこと、(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が1.01mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[Example 12]
A laminate was obtained in the same manner as in Example 2, except that the water-soluble polymer in the coating layer was a modified polyvinyl alcohol ("Exceval (registered trademark)" HR-3010 manufactured by Kuraray Co., Ltd.) and the (meth)acryloyl group-containing hydrolyzed liquid was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [実施例13]
 被覆層の水溶性高分子を変性ポリビニルアルコール(日本酢ビ・ポバール株式会社製DF-20)にしたこと、(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が1.01mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[Example 13]
A laminate was obtained in the same manner as in Example 2, except that the water-soluble polymer of the coating layer was modified polyvinyl alcohol (DF-20 manufactured by Japan Vinyl Acetate & Poval Co., Ltd.) and the (meth)acryloyl group-containing hydrolyzed liquid was added so that the (meth)acryloyl group was 1.01 mol % relative to the total molar amount of the metal elements contained in the coating layer.

 [実施例14]
 被覆層の(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が1.68mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[Example 14]
A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 1.68 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [実施例15]
 被覆層の(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が5.59mol%となるよう添加したこと以外は実施例2と同様にして積層体を得た。
[Example 15]
A laminate was obtained in the same manner as in Example 2, except that the (meth)acryloyl group-containing hydrolyzed liquid for the coating layer was added so that the (meth)acryloyl group was 5.59 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [実施例16]
(金属層または無機化合物層の形成)
 厚さ12μmの二軸延伸ポリエチレンテレフタレートフィルム(東レ株式会社製“ルミラー(登録商標)”P60)の片面に、無機化合物層として酸化アルミニウム層を12nm形成した。酸化アルミニウム層は、アルミニウムを蒸発させ、蒸着部に酸素を導入して酸化させる反応蒸着法で蒸着した。
(被覆層の形成)
 水溶性高分子として、ポリビニルアルコール(株式会社クラレ製ポバール28-98)を質量比で水/イソプロピルアルコール=97/3の溶媒に投入し、90℃で加熱撹拌して固形分10質量%の水溶性高分子液を得た。次に、TEOS6.4gと3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製:KBM-5103)0.3g、メタノール2.7gを混合した溶液に、0.02N塩酸水溶液10.6gを液滴しながら撹拌して、(メタ)アクリロイル基含有TEOS加水分解液を得た。
[Example 16]
(Formation of Metal Layer or Inorganic Compound Layer)
An aluminum oxide layer having a thickness of 12 nm was formed as an inorganic compound layer on one side of a 12 μm-thick biaxially stretched polyethylene terephthalate film (Lumirror (registered trademark) P60 manufactured by Toray Industries, Inc.) The aluminum oxide layer was deposited by a reactive deposition method in which aluminum is evaporated and then oxidized by introducing oxygen into the deposition section.
(Formation of coating layer)
As a water-soluble polymer, polyvinyl alcohol (Poval 28-98 manufactured by Kuraray Co., Ltd.) was added to a solvent of water/isopropyl alcohol = 97/3 by mass ratio, and heated and stirred at 90 ° C. to obtain a water-soluble polymer solution with a solid content of 10 mass %. Next, a solution of 6.4 g of TEOS, 0.3 g of 3-acryloxypropyltrimethoxysilane (KBM-5103 manufactured by Shin-Etsu Chemical Co., Ltd.), and 2.7 g of methanol was mixed with 10.6 g of 0.02 N hydrochloric acid solution while being added dropwise, to obtain a (meth)acryloyl group-containing TEOS hydrolyzed solution.

 水溶性高分子液のPVA固形分と、TEOSのSiO換算質量の比率がPVA固形分/SiO換算質量=35/65になるように水溶性高分子液と(メタ)アクリロイル基含有TEOS加水分解液を混合した。全体の固形分が13質量%になるように水で希釈して塗工液を得た。塗工液を、上述の酸化アルミニウム層上に塗布し、150℃で1分間乾燥させた後、80℃で1週間熱処理して積層体を得た。 The water-soluble polymer solution was mixed with the (meth)acryloyl group-containing TEOS hydrolyzed solution so that the ratio of the PVA solid content of the water-soluble polymer solution to the SiO2 -equivalent mass of TEOS was PVA solid content/ SiO2 -equivalent mass = 35/65. The solution was diluted with water to a total solid content of 13 mass% to obtain a coating solution. The coating solution was applied onto the above-mentioned aluminum oxide layer, dried at 150°C for 1 minute, and then heat-treated at 80°C for 1 week to obtain a laminate.

 [実施例17]
 被覆層の塗液調合において、水溶性高分子液のPVA固形分とTEOS加水分解液のSiO換算質量の比率を、PVA固形分/SiO換算質量=20/80にしたこと以外は、実施例7と同様にして積層体を得た。
[Example 17]
A laminate was obtained in the same manner as in Example 7, except that in preparing the coating solution for the coating layer, the ratio of the PVA solid content of the water-soluble polymer solution to the SiO2 -equivalent mass of the TEOS hydrolyzed solution was set to PVA solid content/ SiO2 -equivalent mass = 20/80.

 [実施例18]
 被覆層の塗液調合において、水溶性高分子液のPVA固形分とTEOS加水分解液のSiO換算質量の比率を、PVA固形分/SiO換算質量=80/20にしたこと以外は、実施例4と同様にして積層体を得た。
[Example 18]
A laminate was obtained in the same manner as in Example 4, except that in preparing the coating solution for the coating layer, the ratio of the PVA solid content of the water-soluble polymer solution to the SiO2 -equivalent mass of the TEOS hydrolyzed solution was set to PVA solid content/ SiO2 -equivalent mass = 80/20.

 [実施例19]
 被覆層の塗液調合において、水溶性高分子液のPVA固形分とTEOS加水分解液のSiO換算質量の比率を、PVA固形分/SiO換算質量=55/45にしたこと以外は、実施例6と同様にして積層体を得た。
[Example 19]
A laminate was obtained in the same manner as in Example 6, except that in preparing the coating solution for the coating layer, the ratio of the PVA solid content of the water-soluble polymer solution to the SiO2 -equivalent mass of the TEOS hydrolyzed solution was set to PVA solid content/ SiO2 -equivalent mass = 55/45.

 [実施例20]
 被覆層の塗液調合において、水溶性高分子液のPVA固形分とTEOS加水分解液のSiO換算質量の比率を、PVA固形分/SiO換算質量=5/95にしたこと以外は、実施例2と同様にして積層体を得た。
[Example 20]
A laminate was obtained in the same manner as in Example 2, except that in preparing the coating solution for the coating layer, the ratio of the PVA solid content of the water-soluble polymer solution to the SiO2 -equivalent mass of the TEOS hydrolyzed solution was set to PVA solid content/ SiO2 -equivalent mass = 5/95.

 [実施例21~23]
 被覆層の塗工厚みを変えた以外は、実施例8と同様にして積層体を得た。
[Examples 21 to 23]
A laminate was obtained in the same manner as in Example 8, except that the coating thickness of the coating layer was changed.

 [実施例24]
 被覆層の塗液調合において、さらにジルコニウムキレート(マツモトファインケミカル株式会社製“オルガチックス(登録商標)”ZC-300:ジルコニウムラクテートアンモニウム塩、固形分濃度12質量%)を、被覆層に含まれる金属元素の総mol量(被覆層の(メタ)アクリロイル基含有加水分解液は除く)に対して2.98mol%添加したこと、塗工液を、酸化アルミニウム層上に塗布し、120℃で1分間乾燥させた後80℃1週間熱処理したこと以外は、実施例6と同様にして積層体を得た。
[Example 24]
A laminate was obtained in the same manner as in Example 6, except that in the preparation of the coating liquid for the coating layer, zirconium chelate ("Orgatix (registered trademark)" ZC-300, manufactured by Matsumoto Fine Chemical Co., Ltd.: zirconium lactate ammonium salt, solid content concentration 12 mass%) was further added in an amount of 2.98 mol % relative to the total molar amount of metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed liquid of the coating layer), and the coating liquid was applied onto the aluminum oxide layer, dried at 120°C for 1 minute, and then heat-treated at 80°C for 1 week.

 [実施例25]
 金属層または無機化合物層の形成において、厚さ12μmの二軸延伸ポリプロピレンフィルム(東レ株式会社製ポリプロピレンフィルム 融点170℃、Sa21nm)を用いたこと以外は、実施例24と同様にして積層体を得た。
[Example 25]
A laminate was obtained in the same manner as in Example 24, except that a biaxially oriented polypropylene film having a thickness of 12 μm (polypropylene film manufactured by Toray Industries, Inc., melting point 170° C., Sa 21 nm) was used in forming the metal layer or inorganic compound layer.

 [実施例26]
 金属層または無機化合物層の形成において、厚さ12μmの二軸延伸ポリプロピレンフィルム(東レ株式会社製ポリプロピレンフィルム 融点170℃、Sa21nm)を用いたこと、被覆層の塗液調合において、ジルコニウムキレートの代わりに、チタンキレート(マツモトファインケミカル株式会社製TC-310:チタンラクテート、固形分濃度44質量%)を、被覆層に含まれる金属元素の総mol量(被覆層の(メタ)アクリロイル基含有加水分解液は除く)に対して0.61mol%添加したこと以外は、実施例24と同様にして積層体を得た。
[Example 26]
A laminate was obtained in the same manner as in Example 24, except that a biaxially oriented polypropylene film having a thickness of 12 μm (polypropylene film manufactured by Toray Industries, Inc., melting point 170° C., Sa 21 nm) was used in the formation of the metal layer or inorganic compound layer, and a titanium chelate (TC-310 manufactured by Matsumoto Fine Chemical Co., Ltd.: titanium lactate, solid content concentration 44 mass%) was added in place of a zirconium chelate in the preparation of the coating liquid for the coating layer at 0.61 mol% relative to the total molar amount of the metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed liquid of the coating layer).

 [実施例27~35]
 被覆層の塗液調合において、(メタ)アクリロイル基含有加水分解液を、被覆層に含まれる金属元素の総mol量に対して0.17mol%、0.28mol%、0.34mol%、0.56mol%、0.79mol%、1.01mol%、1.12mol%、1.68mol%、5.59mol%添加したこと、さらにそれぞれチタンキレート(マツモトファインケミカル株式会社製TC-310:チタンラクテート、固形分濃度44質量%)を、被覆層に含まれる金属元素の総mol量(被覆層の(メタ)アクリロイル基含有加水分解液は除く)に対してそれぞれ1.81mol%添加したこと以外は、実施例26と同様にして積層体を得た。
[Examples 27 to 35]
Laminates were obtained in the same manner as in Example 26, except that in the preparation of the coating solution for the coating layer, the (meth)acryloyl group-containing hydrolyzed liquid was added in amounts of 0.17 mol%, 0.28 mol%, 0.34 mol%, 0.56 mol%, 0.79 mol%, 1.01 mol%, 1.12 mol%, 1.68 mol%, and 5.59 mol% based on the total molar amount of the metal elements contained in the coating layer, and further, titanium chelate (TC-310 manufactured by Matsumoto Fine Chemical Co., Ltd.: titanium lactate, solid content concentration 44 mass%) was added in an amount of 1.81 mol% based on the total molar amount of the metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed liquid of the coating layer).

 [実施例36]
 被覆層の塗液調合において、チタンキレート(マツモトファインケミカル株式会社製TC-310:チタンラクテート、固形分濃度44質量%)を、被覆層に含まれる金属元素の総mol量(被覆層の(メタ)アクリロイル基含有加水分解液は除く)に対して3.56mol%添加したこと以外は、実施例26と同様にして積層体を得た。
[Example 36]
A laminate was obtained in the same manner as in Example 26, except that in the preparation of the coating solution for the coating layer, titanium chelate (TC-310: titanium lactate manufactured by Matsumoto Fine Chemical Co., Ltd., solid content concentration 44 mass%) was added in an amount of 3.56 mol% based on the total molar amount of the metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed solution of the coating layer).

 [実施例37]
 被覆層の塗液調合において、チタンキレート(マツモトファインケミカル株式会社製TC-400:チタントリエタノールアミネート、固形分濃度79質量%)を、被覆層に含まれる金属元素の総mol量(被覆層の(メタ)アクリロイル基含有加水分解液は除く)に対して8.15mol%添加したこと以外は、実施例26と同様にして積層体を得た。
[Example 37]
In preparing the coating solution for the coating layer, a titanium chelate (TC-400: titanium triethanolamine, manufactured by Matsumoto Fine Chemical Co., Ltd., solid content concentration 79 mass%) was added in an amount of 8.15 mol% based on the total molar amount of the metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed solution of the coating layer), except that a laminate was obtained in the same manner as in Example 26.

 [実施例38~41]
 被覆層の塗液調合において、ジルコニウムキレート(マツモトファインケミカル株式会社製オルガチックスZC-300:ジルコニウムラクテートアンモニウム塩、固形分濃度12質量%)を、被覆層に含まれる金属元素の総mol量(被覆層の(メタ)アクリロイル基含有加水分解液は除く)に対して0.20mol%、0.41mol%、17.7mol%、19.7mol%添加したこと以外は、実施例26と同様にして積層体を得た。
[Examples 38 to 41]
In preparing the coating solution for the coating layer, a zirconium chelate (Orgatix ZC-300 manufactured by Matsumoto Fine Chemical Co., Ltd.: zirconium lactate ammonium salt, solid content concentration 12 mass%) was added in amounts of 0.20 mol%, 0.41 mol%, 17.7 mol%, and 19.7 mol% relative to the total molar amount of the metal elements contained in the coating layer (excluding the (meth)acryloyl group-containing hydrolyzed solution of the coating layer), except that a laminate was obtained in the same manner as in Example 26.

 [実施例42]
 二軸延伸ポリプロピレンフィルムの片面に、アンダーコート層を形成してから、無機化合物層を形成したこと以外は実施例25と同様にして積層体を得た。
[Example 42]
A laminate was obtained in the same manner as in Example 25, except that an undercoat layer was formed on one side of the biaxially oriented polypropylene film and then an inorganic compound layer was formed thereon.

 アンダーコート層は、以下の手順で形成した。ポリエステルウレタン系水分散性樹脂である“ハイドラン(登録商標)”AP-201(DIC株式会社製、固形分濃度23%)100質量部に対し、架橋剤としてメラミン化合物“アミディア(登録商標)”APM(DIC株式会社製)を6質量部添加し、さらに架橋触媒として水溶性の酸性化合物である“キャタリスト”PTS(DIC株式会社製)を1質量部添加した。続いて純水を添加し、全体の固形分濃度が10%となるように調整して、混合塗剤を得た。この混合塗液を二軸延伸ポリプロピレンフィルムの片面に塗布し、110℃で30秒乾燥して厚さ700nmのアンダーコート層を形成した。 The undercoat layer was formed by the following procedure. Six parts by mass of the melamine compound "Amidair (registered trademark)" APM (manufactured by DIC Corporation) were added as a crosslinking agent to 100 parts by mass of "Hydran (registered trademark)" AP-201 (manufactured by DIC Corporation, solids concentration 23%), which is a polyester urethane-based water-dispersible resin, and one part by mass of "Catalyst" PTS (manufactured by DIC Corporation), a water-soluble acidic compound, was added as a crosslinking catalyst. Pure water was then added to adjust the overall solids concentration to 10%, to obtain a mixed coating. This mixed coating liquid was applied to one side of a biaxially oriented polypropylene film and dried at 110°C for 30 seconds to form an undercoat layer with a thickness of 700 nm.

 [比較例1]
 被覆層を形成しないこと以外は実施例1と同様にして積層体を得た。
[Comparative Example 1]
A laminate was obtained in the same manner as in Example 1, except that no covering layer was formed.

 [比較例2]
 (メタ)アクリロイル基含有加水分解液を添加しないこと以外は実施例3と同様にして積層体を得た。
[Comparative Example 2]
A laminate was obtained in the same manner as in Example 3, except that the (meth)acryloyl group-containing hydrolyzed liquid was not added.

 [比較例3]
 (メタ)アクリロイル基含有加水分解液の添加量を、被覆層に含まれる金属元素の総mol量に対して(メタ)アクリロイル基が18.72mol%となるよう添加したこと以外は実施例3と同様にして積層体を得た。
[Comparative Example 3]
A laminate was obtained in the same manner as in Example 3, except that the amount of the (meth)acryloyl group-containing hydrolyzed liquid added was such that the (meth)acryloyl group accounted for 18.72 mol % of the total molar amount of metal elements contained in the coating layer.

 [比較例4]
 (メタ)アクリロイル基含有加水分解液の代わりに、イソシアネート基含有加水分解液(実施例1における(メタ)アクリロイル基含有加水分解液の3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製:KBM-5103)の代わりに、3-イソシアネートプロピルトリエトキシシラン(信越化学工業株式会社製:X-12-1308ES、イソシアネート保護基付き)を使用したもの)を、被覆層に含まれる金属元素の総mol量に対してイソシアネート基が1.12mol%となるよう添加したこと以外は、実施例3と同様にして積層体を得た。
[Comparative Example 4]
A laminate was obtained in the same manner as in Example 3, except that an isocyanate group-containing hydrolyzed liquid (a hydrolyzed liquid in which 3-isocyanatepropyltriethoxysilane (X-12-1308ES, with an isocyanate protecting group, manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of 3-acryloxypropyltrimethoxysilane (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) in the (meth)acryloyl group-containing hydrolyzed liquid in Example 1) was added in place of the (meth)acryloyl group-containing hydrolyzed liquid, such that the isocyanate group accounted for 1.12 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [比較例5]
 (メタ)アクリロイル基含有加水分解液の代わりに、ビニル基含有加水分解液(実施例1における(メタ)アクリロイル基含有加水分解液の3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製:KBM-5103)の代わりに、ビニルトリエトキシシラン(信越化学工業株式会社製:KBE-1003)を使用したもの)を、被覆層に含まれる金属元素の総mol量に対してビニル基が1.12mol%となるよう添加したこと以外は、実施例3と同様にして積層体を得た。
[Comparative Example 5]
A laminate was obtained in the same manner as in Example 3, except that a vinyl group-containing hydrolyzed liquid (a (meth)acryloyl group-containing hydrolyzed liquid in Example 1 using vinyltriethoxysilane (Shin-Etsu Chemical Co., Ltd.: KBE-1003) instead of 3-acryloxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.: KBM-5103) in the (meth)acryloyl group-containing hydrolyzed liquid in Example 1) was added in place of the (meth)acryloyl group-containing hydrolyzed liquid, such that the vinyl group accounted for 1.12 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [比較例6]
 基材フィルムとして二軸延伸ポリプロピレンフィルムを用いたこと、(メタ)アクリロイル基含有加水分解液を添加しないこと以外は、実施例2と同様にして積層体を得た。
[Comparative Example 6]
A laminate was obtained in the same manner as in Example 2, except that a biaxially oriented polypropylene film was used as the base film and that the (meth)acryloyl group-containing hydrolyzed liquid was not added.

 [比較例7]
 基材フィルムとして二軸延伸ポリプロピレンフィルムを用いたこと、(メタ)アクリロイル基含有加水分解液を添加しないこと、塗工液を塗布後、160℃で1分間乾燥したこと以外は実施例3と同様にして積層体を得た。
[Comparative Example 7]
A laminate was obtained in the same manner as in Example 3, except that a biaxially oriented polypropylene film was used as the base film, that the (meth)acryloyl group-containing hydrolyzed liquid was not added, and that after applying the coating liquid, the coating liquid was dried at 160° C. for 1 minute.

 [比較例8]
 (メタ)アクリロイル基含有加水分解液の代わりに、エポキシ基含有加水分解液(実施例1における(メタ)アクリロイル基含有加水分解液の3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製:KBM-5103)の代わりに、3-グリシドキシプロピルトリエトキシシラン(信越化学工業株式会社製:KBE-403)を使用したもの)を、被覆層に含まれる金属元素の総mol量に対してエポキシ基が1.12mol%となるよう添加したこと以外は、実施例3と同様にして積層体を得た。
[Comparative Example 8]
A laminate was obtained in the same manner as in Example 3, except that an epoxy group-containing hydrolyzed liquid (a liquid in which 3-glycidoxypropyltriethoxysilane (KBE-403 manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of 3-acryloxypropyltrimethoxysilane (KBM-5103 manufactured by Shin-Etsu Chemical Co., Ltd.) in the (meth)acryloyl group-containing hydrolyzed liquid in Example 1) was added in place of the (meth)acryloyl group-containing hydrolyzed liquid, such that the epoxy group accounted for 1.12 mol % relative to the total molar amount of metal elements contained in the coating layer.

 [比較例9]
 (メタ)アクリロイル基含有加水分解液の代わりに、カルボキシ基含有加水分解液(信越化学工業株式会社製:X-12-1135、有機官能基にカルボキシ基を持つ水系シランカップリング剤、加水分解済)を、被覆層に含まれる金属元素の総mol量に対してカルボキシ基が1.12mol%となるよう添加したこと以外は、実施例3と同様にして積層体を得た。
[Comparative Example 9]
A laminate was obtained in the same manner as in Example 3, except that a carboxyl group-containing hydrolyzed liquid (X-12-1135, manufactured by Shin-Etsu Chemical Co., Ltd., an aqueous silane coupling agent having a carboxyl group in an organic functional group, hydrolyzed) was added in place of the (meth)acryloyl group-containing hydrolyzed liquid so that the carboxyl group was 1.12 mol% relative to the total molar amount of the metal elements contained in the coating layer.

 [比較例10]
(金属層または無機化合物層の形成)
 厚さ12μmの二軸延伸ポリエチレンテレフタレートフィルム(東レ株式会社製“ルミラー(登録商標)”P60)の片面に、無機化合物層として酸化アルミニウム層を12nm形成した。酸化アルミニウム層は、アルミニウムを蒸発させ、蒸着部に酸素を導入して酸化させる反応蒸着法で蒸着した。
[Comparative Example 10]
(Formation of Metal Layer or Inorganic Compound Layer)
An aluminum oxide layer having a thickness of 12 nm was formed as an inorganic compound layer on one side of a 12 μm-thick biaxially stretched polyethylene terephthalate film (Lumirror (registered trademark) P60 manufactured by Toray Industries, Inc.) The aluminum oxide layer was deposited by a reactive deposition method in which aluminum is evaporated and then oxidized by introducing oxygen into the deposition section.

 (被覆層の形成)
 水溶性高分子として、ポリビニルアルコール(以下PVAと略することもある、株式会社クラレ製ポバール28-98)を質量比で水/イソプロピルアルコール=97/3の溶媒に投入し、90℃で加熱撹拌して固形分10質量%の水溶性高分子液を得た。次に、水溶性高分子液のPVAと、3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製:KBM-5103)と、チタンキレート(マツモトファインケミカル株式会社製TC-310:チタンラクテート、固形分濃度44質量%)の固形分比が4/5/1となるように混合し、全体の固形分が13質量%になるように水で希釈して塗工液を得た。塗工液を、上述の酸化アルミニウム層上に塗布し、120℃で2分間乾燥させて積層体を得た。
(Formation of coating layer)
As a water-soluble polymer, polyvinyl alcohol (hereinafter sometimes abbreviated as PVA, Poval 28-98 manufactured by Kuraray Co., Ltd.) was added to a solvent of water/isopropyl alcohol = 97/3 by mass ratio, and heated and stirred at 90 ° C. to obtain a water-soluble polymer solution with a solid content of 10 mass %. Next, the PVA of the water-soluble polymer solution, 3-acryloxypropyltrimethoxysilane (KBM-5103 manufactured by Shin-Etsu Chemical Co., Ltd.), and titanium chelate (TC-310 manufactured by Matsumoto Fine Chemical Co., Ltd.: titanium lactate, solid content concentration 44 mass %) were mixed so that the solid content ratio was 4/5/1, and diluted with water to a total solid content of 13 mass % to obtain a coating liquid. The coating liquid was applied onto the above-mentioned aluminum oxide layer and dried at 120 ° C. for 2 minutes to obtain a laminate.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

 比較例2では、バリア性は良好であるが、被覆層に(メタ)アクリロイル基を含有しないため、電子線硬化型インキを用いた印刷層との密着性は得られなかった。 In Comparative Example 2, the barrier properties were good, but because the coating layer did not contain a (meth)acryloyl group, adhesion to the printed layer using electron beam curable ink was not obtained.

 比較例3では、被覆層に(メタ)アクリロイル基を多く含有するため、電子線硬化型インキを用いた印刷層との密着性は良好であるが、ヒドロキシル基の減少によりウレタン樹脂を含むグラビアインキとの密着性が大幅に悪化し、さらに疎水性が強く分子量も大きいアクリロイル基が被覆層の空隙を大きくするため、バリア性が悪化したと考えられる。 In Comparative Example 3, the coating layer contains many (meth)acryloyl groups, so adhesion to the printed layer using electron beam curable ink is good, but the reduction in hydroxyl groups significantly deteriorates adhesion to gravure ink containing urethane resin, and the acryloyl groups, which are highly hydrophobic and have a large molecular weight, increase the voids in the coating layer, which is thought to have deteriorated the barrier properties.

 比較例4、5では、(メタ)アクリロイル基に代えて、イソシアネート基、ビニル基を含有させたが、バリア性は良好であるものの、電子線硬化型インキを用いた印刷層との密着性は得られなかった。イソシアネート基は被覆層中のその他の成分と反応してしまい失活したと考えられる。ビニル基は分子量も小さくバリア性の観点から有利であったが、(メタ)アクリロイル基と比較してラジカル発生量が少なく、十分な密着力を得られなかったと考えられる。 In Comparative Examples 4 and 5, isocyanate groups and vinyl groups were used instead of (meth)acryloyl groups, and although the barrier properties were good, no adhesion to the printed layer using electron beam curable ink was obtained. It is believed that the isocyanate groups reacted with other components in the coating layer and were deactivated. Vinyl groups had a small molecular weight and were advantageous in terms of barrier properties, but compared with (meth)acryloyl groups, they generated fewer radicals and it is believed that sufficient adhesion was not obtained.

 比較例7では、被覆層の乾燥温度が高く、フィルムの収縮によって被覆層がダメージを受け、微小なクラックなどがはいったため、特に酸素バリア性が大幅に劣化したと考えられる。 In Comparative Example 7, the drying temperature for the coating layer was high, and the coating layer was damaged by the shrinkage of the film, causing tiny cracks, etc., which is thought to have significantly deteriorated the oxygen barrier properties in particular.

 比較例8、9では、(メタ)アクリロイル基に代えて、エポキシ基、カルボキシ基を含有させたが、バリア性は良好であるものの、電子線硬化型インキを用いた印刷層との密着性は得られなかった。(メタ)アクリロイル基と比較してラジカル発生量が少なく、十分な密着力を得られなかったと考えられる。また、疎水性の強い(メタ)アクリロイル基は被覆層表層に偏在しやすいため少量で密着力が向上できるが、親水性の官能基は被覆層内部へ拡散しやすく、少量で密着力を向上させることは難しいと考えられる。 In Comparative Examples 8 and 9, epoxy groups and carboxy groups were used instead of (meth)acryloyl groups, and although the barrier properties were good, adhesion to the printed layer using electron beam curable ink was not obtained. It is thought that the amount of radicals generated was small compared to (meth)acryloyl groups, and sufficient adhesion was not obtained. In addition, the highly hydrophobic (meth)acryloyl group tends to be unevenly distributed on the surface of the coating layer, so adhesion can be improved with a small amount, but hydrophilic functional groups tend to diffuse into the coating layer, and it is thought that it is difficult to improve adhesion with a small amount.

 上記の結果から、本発明は各種インキを用いた印刷層との密着性が良好で、バリア性も良好な積層体を提供できる。さらに、耐熱性の低いポリオレフィン系樹脂基材を用いた積層体においても、各種インキを用いた印刷層との密着性が良好で、バリア性も良好な積層体を提供できる。 The above results show that the present invention can provide a laminate that has good adhesion to printed layers using various inks and also has good barrier properties. Furthermore, even in laminates using polyolefin resin substrates with low heat resistance, it is possible to provide laminates that have good adhesion to printed layers using various inks and also have good barrier properties.

1 基材フィルム
2 金属層および/または無機酸化物層
3 被覆層 
1: Substrate film 2: Metal layer and/or inorganic oxide layer 3: Coating layer

Claims (13)

 基材フィルムの少なくとも一方の面に、金属層および/または無機化合物層と、被覆層とをこの順に積層した積層体であって、被覆層側から以下の測定条件で測定した発光ピークの発光強度Xと、基準ピークの発光強度Yの比率X/Yが、5以上300以下である積層体。
<測定条件>
積層体の被覆層側を1×10-4mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF(テトラヒドロフラン)溶液に60℃30分接触させた後、積層体をTHFに2度浸漬洗浄し、その後15mm×15mmに切り出し、発光スペクトル測定において、470nmにて励起し、520~550nmに見られる発光極大のピーク強度を算出。
<基準ピーク>
1×10-5mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF溶液を、光路長10mmの石英ガラス製セルを用いて積層体と同様に測定。
A laminate in which a metal layer and/or an inorganic compound layer, and a coating layer are laminated in this order on at least one surface of a base film, wherein the ratio X/Y of the emission intensity X of an emission peak to the emission intensity Y of a reference peak measured under the following measurement conditions from the coating layer side is 5 or more and 300 or less.
<Measurement conditions>
The coating layer side of the laminate was brought into contact with a 1× 10-4 mol/L solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole in THF (tetrahydrofuran) at 60°C for 30 minutes, and the laminate was then immersed and washed twice in THF. Thereafter, a piece was cut to a size of 15 mm×15 mm. In the emission spectrum measurement, the sample was excited at 470 nm, and the peak intensity of the emission maximum observed at 520 to 550 nm was calculated.
<Base Peak>
A 1×10 −5 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole was measured in a quartz glass cell with an optical path length of 10 mm in the same manner as for the laminate.
 前記被覆層が、水溶性樹脂と金属アルコキシドの加水分解物および/またはその重縮合物を含む請求項1に記載の積層体。 The laminate according to claim 1, wherein the coating layer contains a hydrolysate of a water-soluble resin and a metal alkoxide and/or a polycondensate thereof.  前記被覆層の厚さが200nm以上600nm以下である、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the thickness of the coating layer is 200 nm or more and 600 nm or less.  前記金属層および/または無機化合物層がアルミニウムを含む、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the metal layer and/or the inorganic compound layer contains aluminum.  前記積層体の水蒸気透過率が1.0g/m/day以下、かつ酸素透過率が1.0cc/m/day以下である、請求項1または2に記載の積層体。 3. The laminate according to claim 1, wherein the laminate has a water vapor permeability of 1.0 g/ m2 /day or less and an oxygen permeability of 1.0 cc/ m2 /day or less.  被覆層に含まれる金属元素の総mol量に対して、被覆層が(メタ)アクリロイル基を0.25mol%以上1.25mol%以下含む請求項2に記載の積層体。 The laminate according to claim 2, wherein the coating layer contains 0.25 mol% or more and 1.25 mol% or less of (meth)acryloyl groups relative to the total molar amount of metal elements contained in the coating layer.  前記積層体の被覆層側から以下の測定条件で測定した発光ピークの発光強度Xと、基準ピークの発光強度Yの比率X/Yが、18以上100以下である請求項1または2に記載の積層体。
<測定条件>
積層体の被覆層側を1×10-4mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF溶液に60℃30分接触させた後、積層体をTHFに2度浸漬洗浄し、その後15mm×15mmに切り出し、発光スペクトル測定において、470nmにて励起し、520~550nmに見られる発光極大のピーク強度を算出。
<基準ピーク>
1×10-5mol/Lの4-Nitro-7-piperazino-2,1,3-benzoxadiazoleのTHF溶液を、光路長10mmの石英ガラス製セルを用いて積層体と同様に測定。
3. The laminate according to claim 1, wherein a ratio X/Y of an emission intensity X of an emission peak to an emission intensity Y of a reference peak measured under the following measurement conditions from the coating layer side of the laminate is 18 or more and 100 or less.
<Measurement conditions>
The coating layer side of the laminate was brought into contact with a 1× 10-4 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole at 60° C. for 30 minutes, and the laminate was then immersed and washed twice in THF. Thereafter, a 15 mm×15 mm piece was cut out and the emission spectrum was measured by exciting at 470 nm, and the peak intensity of the emission maximum observed at 520 to 550 nm was calculated.
<Base Peak>
A 1×10 −5 mol/L THF solution of 4-Nitro-7-piperazino-2,1,3-benzoxadiazole was measured in a quartz glass cell with an optical path length of 10 mm in the same manner as for the laminate.
 前記基材フィルムがポリオレフィン系樹脂フィルムである請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the substrate film is a polyolefin-based resin film.  前記被覆層をFT-IR-ATR法(全反射フーリエ変換赤外分光法)で測定して検出される下記ピーク強度P1とP2の比P1/P2の値が3.5以上8.0以下である、請求項1または2に記載の積層体。
P1:1,050~1,080cm-1に存在する最大ピークの強度
P2:920~970cm-1に存在する最大ピークの強度
The laminate according to claim 1 or 2, wherein the ratio P1/P2 of the following peak intensities P1 and P2 detected by measuring the coating layer by an FT-IR-ATR method (total reflection Fourier transform infrared spectroscopy) is 3.5 or more and 8.0 or less.
P1: Intensity of the maximum peak present at 1,050 to 1,080 cm −1 P2: Intensity of the maximum peak present at 920 to 970 cm −1
 前記被覆層が、水溶性樹脂と、金属アルコキシドの加水分解物および/またはその重縮合物に加え、金属元素Mを含み、飛行時間型2次イオン質量分析計(TOF-SIMS)により測定される、金属元素Mに由来するフラグメントイオンのピーク強度mと、Si-O結合を有するセグメントに由来するフラグメントイオンのピーク強度sの比率m/sが、0.05以上10.00以下である、請求項1または2に記載の積層体。
<測定条件>
一次イオン種 :Bi(2pA、50μs)
加速電圧:25kV 
検出イオン極性:positive 
測定範囲   :100μm×100μm 
分解能    :128×128
エッチングイオン種:O2+(2keV、170nA)
エッチング面積:300μm×300μm
エッチングレート:1sec/cycle
3. The laminate according to claim 1 or 2, wherein the coating layer contains a metal element M in addition to a water-soluble resin and a hydrolysate of a metal alkoxide and/or a polycondensate thereof, and a ratio m/s of a peak intensity m of a fragment ion derived from the metal element M to a peak intensity s of a fragment ion derived from a segment having a Si—O bond, as measured by a time-of-flight secondary ion mass spectrometer (TOF-SIMS), is 0.05 or more and 10.00 or less.
<Measurement conditions>
Primary ion species: Bi + (2 pA, 50 μs)
Acceleration voltage: 25 kV
Detected ion polarity: positive
Measurement range: 100 μm x 100 μm
Resolution: 128×128
Etching ion species: O 2+ (2 keV, 170 nA)
Etching area: 300 μm × 300 μm
Etching rate: 1 sec/cycle
 前記基材フィルムが、リサイクル由来のフィルムである、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the base film is a film derived from recycling.  包装材料用途に用いられる、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, which is used for packaging material applications.  電子線硬化型インキの印刷に用いられる、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, which is used for printing with electron beam curable ink.
PCT/JP2024/004514 2023-02-16 2024-02-09 Multilayer body WO2024171965A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024513915A JP7563653B1 (en) 2023-02-16 2024-02-09 Laminate
JP2024158781A JP2025000692A (en) 2023-02-16 2024-09-13 Multilayer body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-022397 2023-02-16
JP2023022397 2023-02-16
JP2023-114888 2023-07-13
JP2023114888 2023-07-13

Publications (1)

Publication Number Publication Date
WO2024171965A1 true WO2024171965A1 (en) 2024-08-22

Family

ID=92421859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/004514 WO2024171965A1 (en) 2023-02-16 2024-02-09 Multilayer body

Country Status (2)

Country Link
JP (2) JP7563653B1 (en)
WO (1) WO2024171965A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277426A (en) * 1996-04-18 1997-10-28 Teijin Ltd Transparent conductive film and its production
US6436498B1 (en) * 2000-03-03 2002-08-20 Dow Corning Corporation Reactive silicone/alkyleneimine barrier laminating adhesives having bis-silane additives
JP2011224875A (en) * 2010-04-20 2011-11-10 Mitsubishi Chemicals Corp Heat-ray-reflective laminated-body, and composition for forming heat-ray-reflective-layer protection layer
JP2013018188A (en) * 2011-07-11 2013-01-31 Mitsui Chemicals Tohcello Inc Gas barrier film
CN103507331A (en) * 2012-06-26 2014-01-15 刘德成 Aluminum plastic film
JP2022020129A (en) * 2020-07-20 2022-02-01 東レフィルム加工株式会社 Laminate and package using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277426A (en) * 1996-04-18 1997-10-28 Teijin Ltd Transparent conductive film and its production
US6436498B1 (en) * 2000-03-03 2002-08-20 Dow Corning Corporation Reactive silicone/alkyleneimine barrier laminating adhesives having bis-silane additives
JP2011224875A (en) * 2010-04-20 2011-11-10 Mitsubishi Chemicals Corp Heat-ray-reflective laminated-body, and composition for forming heat-ray-reflective-layer protection layer
JP2013018188A (en) * 2011-07-11 2013-01-31 Mitsui Chemicals Tohcello Inc Gas barrier film
CN103507331A (en) * 2012-06-26 2014-01-15 刘德成 Aluminum plastic film
JP2022020129A (en) * 2020-07-20 2022-02-01 東レフィルム加工株式会社 Laminate and package using the same

Also Published As

Publication number Publication date
JP2025000692A (en) 2025-01-07
JPWO2024171965A1 (en) 2024-08-22
JP7563653B1 (en) 2024-10-08

Similar Documents

Publication Publication Date Title
TWI388614B (en) Suitable for composite membranes for optoelectronic and electronic devices
JP4383077B2 (en) Gas barrier substrate
JP4971703B2 (en) Polyester film for organic EL display substrate and gas barrier laminated polyester film for organic EL display substrate comprising the same
JP6011337B2 (en) Gas barrier film
JP5835324B2 (en) Water vapor barrier film, method for producing the same, and electronic device using the same
JP4677692B2 (en) Transparent gas barrier material and method for producing the same
JP2016040119A (en) Protective sheet for electronic devices
TWI269709B (en) Laminated film and process for producing laminated film
TW200950971A (en) Coated and planarised polymeric films
JP2014073598A (en) Gas barrier film
JP2005262529A (en) Gas barrier film and organic electroluminescence element using it
CN111201119A (en) Release film for producing ceramic green sheet
JP7497240B2 (en) Laminate and packaging material using same
WO2007111098A1 (en) Transparent barrier sheet and method for producing same
JP7563653B1 (en) Laminate
JPWO2007111076A1 (en) Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111092A1 (en) Transparent barrier sheet and method for producing transparent barrier sheet
JP5543818B2 (en) Gas barrier film, gas barrier layer, apparatus, and method for producing gas barrier film
JP7106912B2 (en) Release film for manufacturing ceramic green sheets
JP4425106B2 (en) Gas barrier film and method for producing the same
JP5831025B2 (en) Gas barrier film
JP7323085B1 (en) LAMINATED BODY, PACKAGING BODY, LAMINATED PRODUCTION METHOD
JP3403882B2 (en) Transparent conductive film
WO2023176468A1 (en) Laminated body, packaging body, and method for producing laminated body
JP2002355931A (en) Laminated body and method for manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2024513915

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24756810

Country of ref document: EP

Kind code of ref document: A1