[go: up one dir, main page]

WO2024171651A1 - Conveyance device, laser irradiating device, conveyance method, and production method for organic el display device - Google Patents

Conveyance device, laser irradiating device, conveyance method, and production method for organic el display device Download PDF

Info

Publication number
WO2024171651A1
WO2024171651A1 PCT/JP2024/000096 JP2024000096W WO2024171651A1 WO 2024171651 A1 WO2024171651 A1 WO 2024171651A1 JP 2024000096 W JP2024000096 W JP 2024000096W WO 2024171651 A1 WO2024171651 A1 WO 2024171651A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
transport
unit
workpiece
belt
Prior art date
Application number
PCT/JP2024/000096
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 藤岡
保 小田嶋
Original Assignee
Jswアクティナシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jswアクティナシステム株式会社 filed Critical Jswアクティナシステム株式会社
Publication of WO2024171651A1 publication Critical patent/WO2024171651A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • This disclosure relates to a conveying device, a laser irradiation device, a conveying method, and a manufacturing method for an organic EL display device.
  • Patent Document 1 discloses a laser irradiation device that irradiates a substrate with laser light in a line shape.
  • This laser irradiation device includes a levitation unit that levitates the substrate, a holding mechanism that adsorbs and holds the substrate on the levitation unit, and a moving mechanism that moves the holding mechanism in the transport direction.
  • a moving mechanism is provided on each end side of the rectangular levitation unit. The four moving mechanisms transport the substrate in a circular manner.
  • the transport device transports a substrate to irradiate the substrate with a line-shaped laser beam, and includes a levitation unit that levitates the substrate on its upper surface, a first transport unit that moves the substrate in the transport direction to change the irradiation position of the laser beam on the substrate, and a second transport unit that moves the substrate outside the irradiation position in a top view, the first transport unit having a first holding mechanism that holds the substrate and a linear motor that moves the first holding mechanism linearly in the transport direction, and the second transport unit having a second holding mechanism that holds the substrate, a belt to which the second holding mechanism is connected, a pulley around which the belt is wound, and an AC servo motor that rotates the pulley.
  • the transport method transports a substrate so as to irradiate the substrate with a line-shaped laser beam, and includes the steps of: (A) a levitation unit levitating the substrate on its upper surface; (B) a first transport unit moving the substrate in the transport direction to change the irradiation position of the laser beam on the substrate; and (C) a second transport unit moving the substrate outside the irradiation position in a top view, the first transport unit having a first holding mechanism for holding the substrate and a linear motor for moving the first holding mechanism linearly in the transport direction, and the second transport unit having a second holding mechanism for holding the substrate, a belt to which the second holding mechanism is connected, a pulley around which the belt is wound, and an AC servo motor for rotating the pulley.
  • a method for manufacturing an organic EL display device includes the steps of (s1) forming an amorphous film on a substrate, and (s2) irradiating the substrate with a line-shaped laser beam to anneal the amorphous film so as to crystallize the amorphous film and form a crystallized film, and the annealing step (s2) includes the steps of (sa) a floating unit floating the substrate on its upper surface, and (sb) a first transport unit moving the substrate in a transport direction to anneal the substrate.
  • the device includes a levitation unit that levitates the substrate on its upper surface, a laser irradiation unit that irradiates the substrate with a line-shaped laser beam, a first transport unit that moves the substrate in the transport direction to change the irradiation position of the laser beam on the substrate, and a second transport unit that moves the substrate outside the irradiation position in a top view, the first transport unit having a first holding mechanism that holds the substrate and a linear motor that moves the first holding mechanism linearly in the transport direction, and the second transport unit having a second holding mechanism that holds the substrate, a belt to which the second holding mechanism is connected, a pulley around which the belt is wound, and an AC servo motor that rotates the pulley.
  • the substrate can be transported appropriately.
  • FIG. 2 is a perspective view showing the overall configuration of the conveying device.
  • FIG. 2 is an xy plan view showing a schematic configuration of the transport device.
  • 1 is an xz plan view showing a schematic configuration of a laser irradiation device equipped with a transport device;
  • FIG. 2 is a yz plan view showing a schematic configuration of a laser irradiation device equipped with a transport device.
  • FIG. 2 is a top view showing a schematic configuration of a transport unit using a linear motor.
  • FIG. 2 is a side view showing a schematic configuration of a transport unit using a linear motor.
  • FIG. 2 is a top view showing a schematic configuration of a transport unit using an AC servo motor.
  • FIG. 2 is a side view showing a schematic configuration of a transport unit using an AC servo motor.
  • FIG. 2 is a perspective view showing an AC servo motor and its peripheral configuration.
  • FIG. 4 is a side view showing a schematic diagram of an exhaust system of the transport unit.
  • 1 is a cross-sectional view illustrating an organic EL display device manufactured in a manufacturing process of a laser irradiation system.
  • 1A to 1C are cross-sectional views illustrating steps in a manufacturing process of an organic EL display device.
  • 1A to 1C are cross-sectional views illustrating steps in a manufacturing process of an organic EL display device.
  • the transport device and transport method are used in a laser irradiation device.
  • the workpiece to be irradiated with the laser is described as a glass substrate with an amorphous silicon film, but the workpiece is not particularly limited.
  • a laser irradiation device is an excimer laser annealing device that irradiates an amorphous silicon film formed on a substrate with laser light to form a polysilicon film. Therefore, laser irradiation devices are used to manufacture TFT (Thin Film Transistor) array substrates in the manufacturing process of liquid crystal display panels and organic EL (ElectroLuminescence) display panels. In other words, laser irradiation devices are used in the manufacturing process of semiconductor devices such as TFT array substrates.
  • TFT Thin Film Transistor
  • organic EL ElectroLuminescence
  • Fig. 1 is a perspective view for explaining the basic configuration of the transport device 6.
  • Fig. 2 is a top view of the transport device 6.
  • Fig. 3 is a side view showing the configuration of the laser irradiation device 1 equipped with the transport device 6.
  • Fig. 4 is a side view showing the configuration of the laser irradiation device 1 equipped with the transport device 6.
  • an xyz three-dimensional Cartesian coordinate system is shown where appropriate.
  • the z direction is the vertical direction
  • the y direction is the direction along the linear laser spot
  • the x direction is the transport direction. While transporting (scanning) in the x direction, the substrate is irradiated with linear laser light along the y direction. Additionally, the x and y directions are directions along the edges of the rectangular workpiece 66.
  • the levitation unit 60 is configured to eject gas from the surface of the levitation unit 60, and the gas ejected from the surface of the levitation unit 60 is sprayed onto the underside of the workpiece 66, causing the workpiece 66 to levitate.
  • the levitation unit 60 is disposed on a stand (not shown).
  • the rectangular levitation unit 60 is divided into six regions 60a to 60f when viewed in the xy plane.
  • the levitation unit 60 includes a first region 60a to a fourth region 60d, an irradiation region 60e, and a monitor region 60f.
  • the first region 60a is a rectangular region including a corner on the -x side and a corner on the +y side (the upper left corner in FIG. 2).
  • the second region 60b is a rectangular region including a corner on the +x side and a corner on the +y side (the upper right corner in FIG. 2).
  • the third region 60c is a rectangular region including a corner on the +x side and a corner on the -y side (the lower right corner in FIG. 2).
  • the fourth region 60d is a rectangular region including a corner on the -x side and a corner on the -y side (the lower left corner in FIG. 2).
  • the irradiation area 60e is disposed between the first area 60a and the second area 60b.
  • the irradiation area 60e is an area irradiated with the laser light. That is, the irradiation position 65 of the laser light 15 is included in the irradiation area 60e.
  • the monitor area 60f is disposed between the third area 60c and the fourth area 60d. Therefore, the half area on the +y side of the levitation unit 60 (the upper half area in FIG. 2) is the first area 60a, the irradiation area 60e, and the second area 60b, in order from the -x side (the left side in FIG. 2).
  • the half area on the -y side of the levitation unit 60 (the lower half area in FIG. 2) is the third area 60c, the monitor area 60f, and the fourth area 60d, in order from the +x side.
  • the transport device 6 circulates and transports the workpiece 66 on the levitation unit 60.
  • the first region 60a to the fourth region 60d may have approximately the same area.
  • the projection region 60e and the monitor region 60f may be rectangular and have approximately the same area.
  • the first region 60a and the fourth region 60d are arranged side by side in the y direction.
  • the second region 60b and the fourth region 60d are arranged side by side in the y direction.
  • the projection region 60e and the monitor region 60f are arranged side by side in the y direction.
  • an alignment mechanism 69 is provided in the first region 60a.
  • a rotation mechanism 68 is provided in the fourth region 60d.
  • an auxiliary levitation unit 67 is provided outside the fourth region 60d. The auxiliary levitation units 67 are respectively disposed on the -y and -x sides of the fourth region 60d. The operations of the rotation mechanism 68, alignment mechanism 69, and auxiliary levitation unit 67 will be described later.
  • the workpiece 66 is transported sequentially through the first region 60a to the fourth region 60d. That is, when the workpiece 66 is transported from the first region 60a in the +x direction, it passes through the irradiation region 60e and moves to the second region 60b. When passing through the irradiation region 60e, the workpiece 66 is irradiated with laser light. When the workpiece 66 is transported from the second region 60b in the -y direction, it moves to the third region 60c.
  • the workpiece 66 When the workpiece 66 is transported from the third region 60c in the -x direction, it passes through the monitor region 60f and moves to the fourth region 60d. In the monitor region 60f, the unevenness of the laser light irradiation is monitored. For example, in the monitor region 60f, the unevenness of the irradiation is monitored by a camera (not shown). When the workpiece 66 is transported from the fourth region 60d in the +y direction, it moves to the first region 60a.
  • the workpiece 66 is transported in changing directions: +x, -y, -x, +y.
  • the workpiece 66 is transported in a circulating manner between the first region 60a to the fourth region 60d.
  • the fourth region 60d is the loading/unloading position for the workpiece 66, so the workpiece 66 is transported in the order of the fourth region 60d, the first region 60a, the second region 60b, and the third region 60c.
  • the loading/unloading position is not limited to the fourth region 60d.
  • the workpiece 66 may be circulated in the opposite direction.
  • the workpiece 66 may be transported in the order of the fourth region 60d, the third region 60c, the second region 60b, and the first region 60a. That is, in the plan view of FIG. 2, the transport direction may be either clockwise or counterclockwise. The transport direction may be switched as appropriate depending on the processing of the laser irradiation device 1.
  • the laser irradiation device 1 is equipped with four transport units 61_1 to 61_4.
  • the transport units 61_1 to 61_4 are provided outside the levitation unit 60, near each side of the levitation unit 60.
  • the transport unit 61_1 is provided on the side of the levitation unit 60 on the +y direction side, and includes a holding mechanism 62_1 and a moving mechanism 63_1.
  • the holding mechanism 62_1 suctions and holds the workpiece 66.
  • the holding mechanism 62_1 can be configured using a vacuum suction mechanism equipped with a porous body.
  • the holding mechanism 62_1 vacuum suction mechanism
  • the holding mechanism 62_1 (vacuum suction mechanism) is connected to an exhaust port (not shown), which is connected to an ejector, a vacuum pump, or the like.
  • a negative pressure for sucking gas acts on the holding mechanism 62_1, and the workpiece 66 can be held using the holding mechanism 62_1.
  • the holding mechanism 62_1 also has a lifting mechanism (not shown in Figs. 1 to 4) for performing the suction operation.
  • the lifting mechanism includes, for example, an actuator such as an air cylinder or a motor.
  • the holding mechanism 62_1 lifts up to the suction position and then suctions the workpiece 66.
  • the holding mechanism 62_1 also lowers to the standby position when suction is released.
  • the holding mechanism 62_1 holds the workpiece 66 by sucking the surface (lower surface) of the workpiece 66 opposite to the surface (upper surface) irradiated with the laser light, that is, the surface of the workpiece 66 facing the levitation unit 60.
  • the holding mechanism 62_1 also holds the end of the workpiece 66 in the +y direction (i.e., the end perpendicular to the transport direction of the workpiece 66).
  • the moving mechanism 63_1 provided in the transport unit 61_1 is connected to the holding mechanism 62_1.
  • the moving mechanism 63_1 is configured to be able to move the holding mechanism 62_1 in the transport direction (x direction).
  • the transport unit 61_1 (holding mechanism 62_1 and moving mechanism 63_1) is provided on the end side of the levitation unit 60 in the +y direction, and the workpiece 66 is transported by the moving mechanism 63_1 moving in the transport direction while the holding mechanism 62_1 holds the workpiece 66.
  • the moving mechanism 63_1 is configured to slide the end of the levitation unit 60 in the +y direction along the +x direction.
  • the moving mechanism 63_1 slides the end of the levitation unit 60 in the +x direction, the workpiece 66 is transported along the x direction.
  • the transport speed of the workpiece 66 can be controlled by controlling the moving speed of the moving mechanism 63_1.
  • the moving mechanism 63_1 includes, for example, an actuator such as a motor and a linear guide mechanism, not shown. The configuration of the moving mechanism 63_1 will be described later.
  • the workpiece 66 is irradiated with the laser light 15.
  • the position where the laser light 15 is irradiated is the irradiation position 65.
  • the irradiation position 65 is a straight line extending in the y direction.
  • the laser irradiation device 1 is a laser annealing device, and in this case, an excimer laser or the like can be used for the laser irradiation unit 14.
  • the laser irradiation unit 14 includes an optical system (not shown) such as a laser light source and a cylindrical lens. The laser light supplied from the laser light source becomes a line in the optical system (not shown) having a cylindrical lens.
  • the workpiece 66 is irradiated with a line-shaped laser light 15 (line beam) whose focal point extends in the y direction (see FIG. 1).
  • the irradiation position 65 on the workpiece 66 extends in a direction (y direction) perpendicular to the transport direction (x direction) of the workpiece 66.
  • the workpiece 66 can be transported from the first region 60a to the second region 60b by moving the moving mechanism 63_1 in the +x direction while the holding mechanism 62_1 holds the workpiece 66.
  • the workpiece 66 passes through the irradiation region 60e during transport by the transport unit 61_1. Therefore, the laser light 15 is irradiated onto the workpiece 66 as it is transported from the first region 60a to the second region 60b.
  • the transport unit 61_1 moves the workpiece 66 in the x direction so as to change the irradiation position 65 of the laser light 15 on the workpiece 66.
  • the transport direction of the transport unit 61_1 is parallel to the x direction, but it may be inclined from the x direction. In other words, the transport direction may be any direction inclined from the line direction.
  • the transport unit 61_2 is provided on the side of the levitation unit 60 on the +x side, and includes a holding mechanism 62_2 and a moving mechanism 63_2.
  • the moving mechanism 63_2 moves in the -y direction while the holding mechanism 62_2 holds the workpiece 66, thereby transporting the workpiece 66 from the second region 60b to the third region 60c.
  • the moving mechanism 63_2 slides the end of the levitation unit 60 in the -y direction, transporting the workpiece 66 in the -y direction.
  • the transport unit 61_3 is provided on the side of the levitation unit 60 on the -y direction side, and includes a holding mechanism 62_3 and a moving mechanism 63_3.
  • the moving mechanism 63_3 moves in the -x direction while holding the workpiece 66, thereby transporting the workpiece 66 from the third region 60c to the fourth region 60d.
  • the workpiece 66 passes through the monitor region 60f as it is transported by the transport unit 61_3.
  • the moving mechanism 63_3 slides the end of the levitation unit 60 along the -x direction, thereby transporting the workpiece 66 along the -x direction.
  • the transport unit 61_4 is provided on the side of the levitation unit 60 on the -x direction side, and includes a holding mechanism 62_4 and a moving mechanism 63_4.
  • the moving mechanism 63_4 moves in the +y direction while the holding mechanism 62_4 holds the workpiece 66, thereby transporting the workpiece 66 from the fourth region 60d to the first region 60a.
  • the moving mechanism 63_4 slides the end of the levitation unit 60 along the +y direction, thereby transporting the workpiece 66 along the +y direction.
  • the moving mechanisms 63_2, 63_3, and 63_4 move the workpiece 66 outside the irradiation position 65. In other words, the moving mechanisms 63_2, 63_3, and 63_4 move the workpiece 66 that does not overlap with the irradiation position 65. Therefore, even if the moving mechanisms 63_2, 63_3, and 63_4 move the workpiece 66, the laser light 15 is not irradiated onto the workpiece 66.
  • the moving mechanisms 63_2, 63_3, and 63_4 each include, for example, an actuator such as a motor and a linear guide mechanism (not shown). The configurations of the moving mechanisms 63_2, 63_3, and 63_4 will be described later.
  • Holding mechanisms 62_2, 62_3, and 62_4 have the same configuration as holding mechanism 62_1, and adsorb the workpiece 66.
  • Holding mechanisms 62_2 and 62_4 are arranged in a different orientation from holding mechanisms 62_1 and 62_3. More specifically, in an xy plane view, holding mechanisms 62_1 and 62_3 are rectangular with the x direction as the longitudinal direction, as shown in FIG. 2. Holding mechanisms 62_2 and 62_4 are rectangular as shown in FIG. 2, but their installation directions are different by 90°.
  • holding mechanisms 62_1 and 62_3 have the x direction as the longitudinal direction and the y direction as the lateral direction
  • holding mechanisms 62_2 and 62_4 have the y direction as the longitudinal direction and the x direction as the lateral direction.
  • Holding mechanisms 62_1 to 62_4 are arranged so that their movement direction is the longitudinal direction.
  • the length of the irradiation position 65 in the y direction is approximately half the length of the workpiece 66 in the y direction. Therefore, when the workpiece 66 passes the irradiation position 65, half of the area of the workpiece 66 in the y direction is irradiated with laser light. Therefore, the workpiece 66 is transported so as to circulate twice above the levitation unit 60. In this way, the laser light is irradiated onto almost the entire surface of the workpiece 66.
  • a rotation mechanism 68 is provided in the fourth region 60d of the levitation unit 60.
  • the rotation axis of the rotation mechanism 68 is parallel to the z direction.
  • the rotation mechanism 68 rotates the workpiece 66 by 180 degrees while holding the horizontal plane (xy plane) of the workpiece 66. That is, the workpiece 66 is transported from the first region 60a to the second region 60b using the transport unit 61_1 and irradiated with the laser light 15, and then the workpiece 66 is transported using the transport units 61_2 to 61_4 while rotating the workpiece 66 by 180 degrees using the rotation mechanism 68. Then, the workpiece 66 is transported from the region 60a to the region 60b using the transport unit 61_1 again and irradiated with the laser light 15, so that the entire surface of the workpiece 66 can be irradiated with the laser light 15.
  • auxiliary levitation units 67 are provided outside the levitation unit 60.
  • the auxiliary levitation units 67 are disposed on the -x and -y sides of the fourth region 60d. Similar to the levitation unit 60, the auxiliary levitation units 67 levitate the workpiece 66 by ejecting gas toward the workpiece 66.
  • the rotating mechanism 68 While the rotating mechanism 68 is rotating the workpiece 66, a part of the workpiece 66 protrudes from the fourth region 60d.
  • the auxiliary levitation unit 67 ejects gas toward the end of the workpiece 66 that protrudes from the fourth region 60d.
  • a levitation force is generated on the part of the workpiece 66 that protrudes from the levitation unit 60. In this way, the rotating mechanism 68 can rotate the workpiece 66 without damaging it.
  • the holding mechanism 62_4 moves between the auxiliary levitation unit 67 and the levitation unit 60.
  • the alignment mechanism 69 like the holding mechanism 62_1, adsorbs and holds the workpiece 66 via a porous body.
  • the alignment mechanism 69 then adjusts the position and rotation angle of the workpiece 66.
  • the alignment mechanism 69 performs alignment operations for the position in the x direction (hereinafter, x coordinate), the position in the y direction (hereinafter, y coordinate), and the rotation angle around the z axis (hereinafter, angle ⁇ ).
  • the position and rotation angle of the workpiece 66 may shift slightly due to the loading, transport, and rotation operations of the workpiece 66.
  • the alignment mechanism 69 corrects the shift in position and rotation angle. This allows the irradiation position of the laser light on the workpiece 66 to be controlled with high precision.
  • the workpiece 66 is irradiated with laser light by the transport of the transport unit 61_1. Therefore, high positional accuracy is required for the transport of the transport unit 61_1. That is, to make the irradiation intensity of the laser light uniform, the transport speed of the transport unit 61_1 needs to be constant. Alternatively, the transport height of the workpiece 66 needs to be constant during laser irradiation. On the other hand, the workpiece 66 is not irradiated with laser light during transport by the transport units 61_2, 61_3, and 61_4. High positional accuracy is not required for the transport of the transport units 61_2, 61_3, and 61_4.
  • a linear motor is used as the moving mechanism 63_1 of the transport unit 61_1.
  • AC (alternating current) servo motors and belts are used as the moving mechanisms 63_2 to 63_4 of the transport units 61_2 to 61_4.
  • a linear motion mechanism using a linear motor has higher positioning accuracy than a linear motion mechanism using an AC servo motor and belt. This allows the irradiation intensity of the laser light to be constant, enabling a stable process.
  • a linear motion mechanism using an AC servo motor and belt is cheaper than a linear motion mechanism using a linear motor.
  • the three moving mechanisms 63_2 to 63_4 can be realized with an inexpensive configuration.
  • Fig. 5 is a top view showing the configuration of the transport unit 61_1.
  • Fig. 6 is a side view showing the schematic configuration of the transport unit 61_1.
  • the transport unit 61_1 includes a holding mechanism 62_1 and a moving mechanism 63_1.
  • the moving mechanism 63_1 includes a linear motor 601, a guide mechanism 603, a base 606, and a damper 607.
  • the linear motor 601 includes a mover 601a and a stator 601b.
  • the holding mechanism 62_1 includes a lifting mechanism 621 and an adsorption section 622.
  • the base 606 is a stage that supports the guide mechanism 603 and the like.
  • the guide mechanism 603 is fixed onto the base 606.
  • the guide mechanism 603 is a linear guide that has a rail or the like extending along the x direction.
  • the guide mechanism 603 may have a guide groove or the like formed therein.
  • the guide mechanism 603 guides the linear movement of the mover 601a.
  • a damper 607 is attached to the end of the guide mechanism 603.
  • the damper 607 defines the moving end of the mover 601a.
  • the stator 601b of the linear motor 601 is attached to the guide mechanism 603.
  • the stator 601b has, for example, a permanent magnet.
  • multiple permanent magnets are arranged along the x direction.
  • north and south poles are arranged alternately and repeatedly at regular intervals in the x direction.
  • the mover 601a of the linear motor 601 has an electromagnet. By controlling the current to the electromagnet, the mover 601a moves along the guide mechanism 603. The mover 601a moves linearly without contacting the guide mechanism 603. A holding mechanism 62_1 for attracting and holding the workpiece 66 is disposed above the linear motor 601.
  • the moving mechanism 63_1 can move the holding mechanism 62_1 in the x direction.
  • the transport unit 61_1 uses the moving mechanism 63_1 having a linear motor 601. Therefore, the transport unit 61_1 can move the workpiece 66 with high precision. Therefore, the transport device 6 can appropriately transport the workpiece 66, thereby improving productivity.
  • the holding mechanism 62_1 is also provided with a lifting mechanism 621 and an adsorption unit 622.
  • the adsorption unit 622 has a porous body for vacuum adsorbing the workpiece 66.
  • the lifting mechanism 621 lifts and lowers the adsorption unit 622 of the holding mechanism 62_1.
  • the lifting mechanism 621 lifts and lowers the adsorption unit 622 to transfer the workpiece 66.
  • the lifting mechanism 621 lifts and lowers the adsorption unit 622 to transfer the workpiece 66 to the holding mechanism 62_2.
  • the lifting mechanism 621 also lifts and lowers the adsorption unit 622 to receive the workpiece 66 from the holding mechanism 62_4.
  • Transport units 61_2 to 61_4 use AC servo motors instead of linear motors.
  • Fig. 7 is a top view showing the configuration of the transport unit 61_3.
  • Fig. 8 is a side view showing the configuration of the transport unit 61_3.
  • Fig. 9 is an enlarged perspective view showing the configuration of the drive section of the transport unit 61_3.
  • Fig. 10 is an xz cross-sectional view showing a schematic diagram of the exhaust system, etc., of the transport unit 61_3.
  • the transport unit 61_3 includes a holding mechanism 62_3 and a moving mechanism 63_3.
  • the moving mechanism 63_3 includes a guide mechanism 703, a movable part 704, a base 706, an AC servo motor 711, and a pulley 716.
  • the moving mechanism 63_3 further includes a cover 715 and an exhaust flange 714.
  • the holding mechanism 62_3 includes a lifting mechanism 721 and an adsorption part 722.
  • the base 706 is a stage that supports the guide mechanism 703 and the like.
  • the guide mechanism 703 is fixed onto the base 706.
  • the guide mechanism 703 is a linear guide that has a rail or the like extending along the x direction.
  • the guide mechanism 703 may have a guide groove or the like.
  • a damper 707 is attached to the end of the guide mechanism 703. The damper 707 determines the moving end of the movable part 704.
  • the guide mechanism 703 holds the movable part 704 so that it can slide.
  • the guide mechanism 703 guides the linear movement of the movable part 704.
  • the movable part 704 is attached to the upper surface of the belt 709. Furthermore, a holding mechanism 62_3 is attached above the movable part 704.
  • the holding mechanism 62_3 is connected to the belt 709 via the movable part 704. Therefore, the holding mechanism 62_3 moves back and forth in the x direction together with the movable part 704.
  • Belt 709 is a timing belt or the like, and is arranged along the x direction. As shown in FIG. 10, pulleys 716 are attached to both ends of belt 709. Belt 709 is, for example, an endless belt or the like, and is formed in a ring shape when viewed in the xz plane. Two pulleys 716 are arranged inside ring-shaped belt 709. Belt 709 may be a belt other than an endless belt.
  • Two pulleys 716 are spaced apart in the x direction.
  • the rotation axis of the pulley 716 is parallel to the y direction.
  • a belt 709 is looped around the pulley 716. Between the two pulleys 716, the belt 709 is parallel to the x direction.
  • the belt 709 is, for example, a toothed belt or a flat belt.
  • the pulley 716 is, for example, a toothed pulley or a flat pulley.
  • the rotating shaft 711a of the AC servo motor 711 is connected to one of the pulleys 716.
  • the belt 709 rotates.
  • the movable part 704 moves in the x direction in accordance with the rotation of the belt 709.
  • the movable part 704 slides in the x direction between the two pulleys 716. This causes the holding mechanism 62_2 to move back and forth in the x direction, so that the workpiece 66 can be transported in the -x direction.
  • the holding mechanism 62_3 is also provided with a lifting mechanism 721 and an adsorption unit 722.
  • the adsorption unit 722 has a porous body for vacuum adsorbing the workpiece 66.
  • the lifting mechanism 721 lifts and lowers the adsorption unit 722 of the holding mechanism 62_3.
  • the lifting mechanism 721 lifts and lowers the adsorption unit 722 to transfer the workpiece 66.
  • the lifting mechanism 721 lifts and lowers the adsorption unit 722 to receive the workpiece 66 from the holding mechanism 62_2.
  • the lifting mechanism 721 also lifts and lowers the adsorption unit 722 to transfer the workpiece 66 to the holding mechanism 62_4.
  • the moving mechanism 63_2 moves the workpiece 66 using the AC servo motor 711 and the belt 709. This allows the transport device 6 to transport the workpiece 66 with an inexpensive configuration. Since the transport device 6 can transport the workpiece 66 appropriately, productivity can be improved.
  • the basic configuration of the moving mechanisms 63_2 and 63_4 is similar to that of the moving mechanism 63_3, so a detailed description will be omitted.
  • the moving mechanisms 63_2 and 63_4 also use an AC servo motor 711 and a belt 709, just like the moving mechanism 63_3.
  • the moving mechanisms 63_2 and 63_4 differ from the moving mechanism 63_3 in that the moving direction is the y direction. Therefore, it is sufficient to change the orientation of the guide mechanism 703, the belt 709, the AC servo motor 711, etc. by 90 degrees when they are installed.
  • a cover 715 is provided on the end of the belt 709 on the -x side.
  • the contact area between the pulley 716 and the belt 709 is covered with the cover 715.
  • the cover 715 is a case that houses the rotating shaft 711a, bearings, etc.
  • Cover 715 has an opening 715a and an exhaust flange 714. Belt 709 is taken out from opening 715a of cover 715. Cover 715 has exhaust flange 714 on the opposite side of opening 715a. Exhaust flange 714 serves as an exhaust port connected to the internal space of cover 715. As shown in FIG. 10, exhaust flange 714 is connected to pipe 740.
  • opening 715a is located on the +x side of cover 715
  • exhaust flange 714 is located on the -x side of cover 715.
  • the piping 740 is routed to the outside of the chamber 730 of the laser irradiation device 1.
  • the chamber 730 is disposed so as to entirely surround the transport device 6 (not shown in FIG. 10).
  • the piping 740 is connected to a dust collector 742 together with piping 741 from other exhaust points.
  • the dust collector 742 serves as an exhaust mechanism that exhausts the internal space of the cover 715.
  • the dust collector 742 exhausts the gas in the chamber 730 through the piping 740 and 741.
  • the semiconductor device having the polysilicon film is suitable for a TFT (Thin Film Transistor) array substrate for an organic EL (ElectroLuminescence) display. That is, the polysilicon film is used as a semiconductor layer having a source region, a channel region, and a drain region of the TFT.
  • TFT Thin Film Transistor
  • organic EL ElectroLuminescence
  • the substrate 310 is a glass substrate or a metal substrate.
  • a TFT layer 311 is provided on the substrate 310.
  • the TFT layer 311 has a TFT 311a arranged in each pixel PX. Furthermore, the TFT layer 311 has wiring (not shown) connected to the TFT 311a, etc.
  • the TFT 311a and the wiring etc. constitute a pixel circuit.
  • the current flowing through the organic EL element 312a of the organic layer 312 changes depending on the display signal supplied to the pixel circuit. Therefore, by supplying a display signal corresponding to the display image to each pixel PX, the amount of light emitted by each pixel PX can be controlled. This makes it possible to display the desired image.
  • Figs. 12 and 13 are cross-sectional views showing the manufacturing process of a semiconductor device.
  • a manufacturing method of a semiconductor device having an inverted staggered type TFT will be described.
  • Figs. 12 and 13 show the process of forming a polysilicon film in the semiconductor manufacturing method. It should be noted that the other manufacturing processes can be performed by known methods, and therefore the description will be omitted.
  • a gate electrode 402 is formed on a glass substrate 401.
  • a gate insulating film 403 is formed on the gate electrode 402.
  • An amorphous silicon film 404 is formed on the gate insulating film 403.
  • the amorphous silicon film 404 is disposed so as to overlap the gate electrode 402 with the gate insulating film 403 interposed therebetween.
  • the gate insulating film 403 and the amorphous silicon film 404 are successively formed by a CVD (Chemical Vapor Deposition) method.
  • the method for manufacturing a semiconductor device may include the following steps.
  • (s1) A step of forming an amorphous film on a substrate.
  • (s2) irradiating the substrate with a line-shaped laser beam to anneal the amorphous film so as to crystallize the amorphous film and form a crystallized film.
  • the above-mentioned transfer device is used to transfer the processing object 66, which will become the substrate, by another transfer method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A conveyance device (6) according to the present embodiment comprises: a conveyance unit that moves a substrate in a conveyance direction; and a conveyance unit that, in a plan view, moves the substrate outside an irradiation position (65). The conveyance unit has a holding mechanism which holds the substrate and a linear motor (601) which moves the holding mechanism linearly. The conveyance unit has a holding mechanism which holds the substrate, a belt (709) to which the holding mechanism is connected, a pulley (716) on which the belt (709) is installed, and an AC servo motor (711) which rotates the pulley (716).

Description

搬送装置、レーザ照射装置、搬送方法、及び有機ELディスプレイ装置の製造方法TRANSPORTATION DEVICE, LASER IRRADIATION DEVICE, TRANSPORTATION METHOD, AND METHOD FOR MANUFACTURING ORGANIC EL DISPLAY DEVICE
 本開示は、搬送装置、レーザ照射装置、搬送方法、及び有機ELディスプレイ装置の製造方法に関する。 This disclosure relates to a conveying device, a laser irradiation device, a conveying method, and a manufacturing method for an organic EL display device.
 特許文献1には、ライン状にレーザ光を基板に照射するレーザ照射装置が開示されている。このレーザ照射装置は、基板を浮上する浮上ユニットと、浮上ユニット上の基板を吸着保持する保持機構と、保持機構を搬送方向に移動する移動機構とを備えている。上面視において、矩形状の浮上ユニットの端辺にそれぞれ移動機構が設けられている。4つの移動機構が基板を循環搬送している。 Patent Document 1 discloses a laser irradiation device that irradiates a substrate with laser light in a line shape. This laser irradiation device includes a levitation unit that levitates the substrate, a holding mechanism that adsorbs and holds the substrate on the levitation unit, and a moving mechanism that moves the holding mechanism in the transport direction. When viewed from above, a moving mechanism is provided on each end side of the rectangular levitation unit. The four moving mechanisms transport the substrate in a circular manner.
特許第6887234号公報Patent No. 6887234
 このようなレーザ照射装置に用いられる搬送装置では、基板を適切に搬送することが望まれる。 It is desirable for the transport device used in such a laser irradiation device to be able to transport the substrate appropriately.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other objects and novel features will become apparent from the description of this specification and the accompanying drawings.
 一実施の形態によれば、搬送装置は、ライン状のレーザ光を基板に照射するために、前記基板を搬送する搬送装置であって、前記基板をその上面で浮上させる浮上ユニットと、前記基板に対する前記レーザ光の照射位置を変えるよう、搬送方向に前記基板を移動する第1搬送ユニットと、上面視において、前記照射位置の外側で前記基板を移動する第2搬送ユニットと、を備え、前記第1搬送ユニットが、前記基板を保持する第1保持機構と、前記第1保持機構を搬送方向に直進移動させるリニアモータと、を有しており、前記第2搬送ユニットが、前記基板を保持する第2保持機構と、前記第2保持機構が連結されたベルトと、前記ベルトが掛け回されたプーリと、前記プーリを回転させるACサーボモータと、を有している。 According to one embodiment, the transport device transports a substrate to irradiate the substrate with a line-shaped laser beam, and includes a levitation unit that levitates the substrate on its upper surface, a first transport unit that moves the substrate in the transport direction to change the irradiation position of the laser beam on the substrate, and a second transport unit that moves the substrate outside the irradiation position in a top view, the first transport unit having a first holding mechanism that holds the substrate and a linear motor that moves the first holding mechanism linearly in the transport direction, and the second transport unit having a second holding mechanism that holds the substrate, a belt to which the second holding mechanism is connected, a pulley around which the belt is wound, and an AC servo motor that rotates the pulley.
 一実施の形態によれば、搬送方法は、ライン状のレーザ光を基板に照射するために、前記基板を搬送する搬送方法であって、(A)浮上ユニットが、その上面で前記基板を浮上させるステップと、(B)第1搬送ユニットが、搬送方向に前記基板を移動することで、前記基板に対する前記レーザ光の照射位置を変えるステップと、(C)第2搬送ユニットが、上面視において、前記照射位置の外側で前記基板を移動するステップと、を備え、前記第1搬送ユニットが、前記基板を保持する第1保持機構と、前記第1保持機構を搬送方向に直進移動させるリニアモータと、を有しており、前記第2搬送ユニットが、前記基板を保持する第2保持機構と、前記第2保持機構が連結されたベルトと、前記ベルトが掛け回されたプーリと、前記プーリを回転させるACサーボモータと、を有している。 According to one embodiment, the transport method transports a substrate so as to irradiate the substrate with a line-shaped laser beam, and includes the steps of: (A) a levitation unit levitating the substrate on its upper surface; (B) a first transport unit moving the substrate in the transport direction to change the irradiation position of the laser beam on the substrate; and (C) a second transport unit moving the substrate outside the irradiation position in a top view, the first transport unit having a first holding mechanism for holding the substrate and a linear motor for moving the first holding mechanism linearly in the transport direction, and the second transport unit having a second holding mechanism for holding the substrate, a belt to which the second holding mechanism is connected, a pulley around which the belt is wound, and an AC servo motor for rotating the pulley.
 一実施の形態によれば、有機ELディスプレイ装置の製造方法は、(s1)基板上に非晶質膜を形成するステップと、(s2)前記非晶質膜を結晶化して結晶化膜を形成するように、ライン状のレーザ光を前記基板に照射して、前記非晶質膜をアニールするステップと、を備えた半導体装置の製造方法であって、前記(s2)アニールするステップは、(sa)浮上ユニットが、その上面で前記基板を浮上させるステップと、(sb)第1搬送ユニットが、搬送方向に前記基板を移動することで、前記基板に対する前記レーザ光の照射位置を変えるステップと、(sc)第2搬送ユニットが、上面視において、前記照射位置の外側で前記基板を移動するステップと、を備え、前記第1搬送ユニットが、前記基板を保持する第1保持機構と、前記第1保持機構を搬送方向に直進移動させるリニアモータと、を有しており、前記第2搬送ユニットが、前記基板を保持する第2保持機構と、前記第2保持機構が連結されたベルトと、前記ベルトが掛け回されたプーリと、前記プーリを回転させるACサーボモータと、を有している。 According to one embodiment, a method for manufacturing an organic EL display device includes the steps of (s1) forming an amorphous film on a substrate, and (s2) irradiating the substrate with a line-shaped laser beam to anneal the amorphous film so as to crystallize the amorphous film and form a crystallized film, and the annealing step (s2) includes the steps of (sa) a floating unit floating the substrate on its upper surface, and (sb) a first transport unit moving the substrate in a transport direction to anneal the substrate. (sc) changing the irradiation position of the laser light, and (sc) a step of a second transport unit moving the substrate outside the irradiation position in a top view, the first transport unit having a first holding mechanism that holds the substrate and a linear motor that moves the first holding mechanism linearly in the transport direction, the second transport unit having a second holding mechanism that holds the substrate, a belt to which the second holding mechanism is connected, a pulley around which the belt is wound, and an AC servo motor that rotates the pulley.
 一実施の形態によれば、基板をその上面で浮上させる浮上ユニットと、前記基板にライン状のレーザ光を照射するレーザ照射部と、前記基板に対する前記レーザ光の照射位置を変えるよう、搬送方向に前記基板を移動する第1搬送ユニットと、上面視において、前記照射位置の外側で前記基板を移動する第2搬送ユニットと、を備え、前記第1搬送ユニットが、前記基板を保持する第1保持機構と、前記第1保持機構を搬送方向に直進移動させるリニアモータと、を有しており、前記第2搬送ユニットが、前記基板を保持する第2保持機構と、前記第2保持機構が連結されたベルトと、前記ベルトが掛け回されたプーリと、前記プーリを回転させるACサーボモータと、を有している。 According to one embodiment, the device includes a levitation unit that levitates the substrate on its upper surface, a laser irradiation unit that irradiates the substrate with a line-shaped laser beam, a first transport unit that moves the substrate in the transport direction to change the irradiation position of the laser beam on the substrate, and a second transport unit that moves the substrate outside the irradiation position in a top view, the first transport unit having a first holding mechanism that holds the substrate and a linear motor that moves the first holding mechanism linearly in the transport direction, and the second transport unit having a second holding mechanism that holds the substrate, a belt to which the second holding mechanism is connected, a pulley around which the belt is wound, and an AC servo motor that rotates the pulley.
 前記一実施の形態によれば、基板を適切に搬送することができる。 According to the embodiment described above, the substrate can be transported appropriately.
搬送装置の全体構成を示す斜視図である。FIG. 2 is a perspective view showing the overall configuration of the conveying device. 搬送装置の構成を模式的に示すxy平面図である。FIG. 2 is an xy plan view showing a schematic configuration of the transport device. 搬送装置を備えたレーザ照射装置の構成を模式的に示すxz平面図である。1 is an xz plan view showing a schematic configuration of a laser irradiation device equipped with a transport device; 搬送装置を備えたレーザ照射装置の構成を模式的に示すyz平面図である。FIG. 2 is a yz plan view showing a schematic configuration of a laser irradiation device equipped with a transport device. リニアモータを用いた搬送ユニットの構成を模式的に示す上面図である。FIG. 2 is a top view showing a schematic configuration of a transport unit using a linear motor. リニアモータを用いた搬送ユニットの構成を模式的に示す側面図である。FIG. 2 is a side view showing a schematic configuration of a transport unit using a linear motor. ACサーボモータを用いた搬送ユニットの構成を模式的に示す上面図である。FIG. 2 is a top view showing a schematic configuration of a transport unit using an AC servo motor. ACサーボモータを用いた搬送ユニットの構成を模式的に示す側面図である。FIG. 2 is a side view showing a schematic configuration of a transport unit using an AC servo motor. ACサーボモータとその周辺の構成を示す斜視図である。FIG. 2 is a perspective view showing an AC servo motor and its peripheral configuration. 搬送ユニットの排気系統を模式的に示す側面図である。FIG. 4 is a side view showing a schematic diagram of an exhaust system of the transport unit. レーザ照射システムの製造プロセスで製造された有機ELディスプレイ装置を模式的に示す断面図である。1 is a cross-sectional view illustrating an organic EL display device manufactured in a manufacturing process of a laser irradiation system. 有機ELディスプレイ装置の製造プロセスを説明する工程断面図である。1A to 1C are cross-sectional views illustrating steps in a manufacturing process of an organic EL display device. 有機ELディスプレイ装置の製造プロセスを説明する工程断面図である。1A to 1C are cross-sectional views illustrating steps in a manufacturing process of an organic EL display device.
 以下、図面を参照して本実施の形態にかかる搬送装置、搬送方法、有機ELディスプレイ装置の製造方法について説明する。搬送装置及び搬送方法は、レーザ照射装置に用いられる。なお、以下の説明において、レーザが照射される被処理体をアモルファスシリコン膜付きガラス基板であるとして説明するが、被処理体は、特に限定されるものではない。 The following describes the transport device, transport method, and manufacturing method for an organic EL display device according to the present embodiment with reference to the drawings. The transport device and transport method are used in a laser irradiation device. In the following description, the workpiece to be irradiated with the laser is described as a glass substrate with an amorphous silicon film, but the workpiece is not particularly limited.
 レーザ照射装置の一例は、基板上に形成されたアモルファスシリコン膜にレーザ光を照射して、ポリシリコン膜を形成するエキシマレーザアニール装置である。したがって、レーザ照射装置は、液晶表示パネルや有機EL(ElectroLuminescence)表示パネルの製造工程において、TFT(Thin Film transistor)アレイ基板を製造するために使用される。すなわち、レーザ照射装置は、TFTアレイ基板などの半導体装置の製造工程に用いられる。 One example of a laser irradiation device is an excimer laser annealing device that irradiates an amorphous silicon film formed on a substrate with laser light to form a polysilicon film. Therefore, laser irradiation devices are used to manufacture TFT (Thin Film Transistor) array substrates in the manufacturing process of liquid crystal display panels and organic EL (ElectroLuminescence) display panels. In other words, laser irradiation devices are used in the manufacturing process of semiconductor devices such as TFT array substrates.
(レーザ照射装置の基本構成)
 まず、レーザ照射装置1及び搬送装置6の基本構成について、図1~図4を用いて説明する。図1は、搬送装置6の基本構成を説明するための斜視図である。図2は、搬送装置6の上面図である。図3は、搬送装置6を備えたレーザ照射装置1の構成を示す側面図である。図4は、搬送装置6を備えたレーザ照射装置1の構成を示す側面図である。
(Basic configuration of laser irradiation device)
First, the basic configurations of the laser irradiation device 1 and the transport device 6 will be described with reference to Fig. 1 to Fig. 4. Fig. 1 is a perspective view for explaining the basic configuration of the transport device 6. Fig. 2 is a top view of the transport device 6. Fig. 3 is a side view showing the configuration of the laser irradiation device 1 equipped with the transport device 6. Fig. 4 is a side view showing the configuration of the laser irradiation device 1 equipped with the transport device 6.
 なお、以下に示す図では、説明の簡略化のため、適宜、xyz3次元直交座標系を示している。z方向は鉛直上下方向であり、y方向はライン状のレーザスポットに沿った方向であり、x方向は、搬送方向である。x方向に搬送(スキャン)しながら、y方向に沿ったライン状のレーザ光を基板に照射している。また、x方向とy方向は矩形状の被処理体66の端辺に沿った方向である。 In the figures below, for ease of explanation, an xyz three-dimensional Cartesian coordinate system is shown where appropriate. The z direction is the vertical direction, the y direction is the direction along the linear laser spot, and the x direction is the transport direction. While transporting (scanning) in the x direction, the substrate is irradiated with linear laser light along the y direction. Additionally, the x and y directions are directions along the edges of the rectangular workpiece 66.
 浮上ユニット60は、浮上ユニット60の表面からガスを噴出するように構成されており、浮上ユニット60の表面から噴出されたガスが被処理体66の下面に吹き付けられることで、被処理体66が浮上する。浮上ユニット60は架台(不図示)の上に配置されている。 The levitation unit 60 is configured to eject gas from the surface of the levitation unit 60, and the gas ejected from the surface of the levitation unit 60 is sprayed onto the underside of the workpiece 66, causing the workpiece 66 to levitate. The levitation unit 60 is disposed on a stand (not shown).
 また、xy平面視において矩形状の浮上ユニット60が6つの領域60a~60fに分割されている。具体的には、浮上ユニット60が第1の領域60a~第4の領域60dと、照射領域60eと、モニタ領域60fとを備えている。第1の領域60aは、‐x側かつ+y側の角(図2における左上角)を含む矩形状の領域である。第2の領域60bは、+x側かつ+y側の角(図2における右上角)を含む矩形状の領域である。第3の領域60cは、+x側かつ‐y側の角(図2における右下角)を含む矩形状の領域である。第4の領域60dは、‐x側かつ‐y側の角(図2における左下角)を含む矩形状の領域である。 Furthermore, the rectangular levitation unit 60 is divided into six regions 60a to 60f when viewed in the xy plane. Specifically, the levitation unit 60 includes a first region 60a to a fourth region 60d, an irradiation region 60e, and a monitor region 60f. The first region 60a is a rectangular region including a corner on the -x side and a corner on the +y side (the upper left corner in FIG. 2). The second region 60b is a rectangular region including a corner on the +x side and a corner on the +y side (the upper right corner in FIG. 2). The third region 60c is a rectangular region including a corner on the +x side and a corner on the -y side (the lower right corner in FIG. 2). The fourth region 60d is a rectangular region including a corner on the -x side and a corner on the -y side (the lower left corner in FIG. 2).
 照射領域60eは、第1の領域60aと第2の領域60bとの間に配置されている。照射領域60eは、レーザ光が照射される領域である。すなわち、照射領域60eにレーザ光15の照射位置65が含まれている。モニタ領域60fは、第3の領域60cと第4の領域60dとの間に配置されている。したがって、浮上ユニット60の+y側の半分の領域(図2の上半分の領域)は、-x側(図2の左側)から順に、第1の領域60a、照射領域60e、第2の領域60bとなっている。浮上ユニット60の‐y側の半分の領域(図2の下半分の領域)は、+x側から順に、第3の領域60c、モニタ領域60f、第4の領域60dとなっている。特許文献1で示したように、搬送装置6は、浮上ユニット60上において、被処理体66を循環搬送する。 The irradiation area 60e is disposed between the first area 60a and the second area 60b. The irradiation area 60e is an area irradiated with the laser light. That is, the irradiation position 65 of the laser light 15 is included in the irradiation area 60e. The monitor area 60f is disposed between the third area 60c and the fourth area 60d. Therefore, the half area on the +y side of the levitation unit 60 (the upper half area in FIG. 2) is the first area 60a, the irradiation area 60e, and the second area 60b, in order from the -x side (the left side in FIG. 2). The half area on the -y side of the levitation unit 60 (the lower half area in FIG. 2) is the third area 60c, the monitor area 60f, and the fourth area 60d, in order from the +x side. As shown in Patent Document 1, the transport device 6 circulates and transports the workpiece 66 on the levitation unit 60.
 xy平面視において、第1の領域60a~第4の領域60dはほぼ同じ面積となっていてもよい。xy平面視において、照射領域60eと、モニタ領域60fとは、ほぼ同じ面積の矩形状となっていてもよい。この場合、第1の領域60aと第4の領域60dがy方向に並んで配置されている。第2の領域60bと第4の領域60dがy方向に並んで配置されている。照射領域60eとモニタ領域60fがy方向に並んで配置されている。 In the xy plane view, the first region 60a to the fourth region 60d may have approximately the same area. In the xy plane view, the projection region 60e and the monitor region 60f may be rectangular and have approximately the same area. In this case, the first region 60a and the fourth region 60d are arranged side by side in the y direction. The second region 60b and the fourth region 60d are arranged side by side in the y direction. The projection region 60e and the monitor region 60f are arranged side by side in the y direction.
 また、第1の領域60aにはアライメント機構69が設けられている。第4の領域60dには、回転機構68が設けられている。さらに、第4の領域60dの外側には、補助浮上ユニット67が設けられている。補助浮上ユニット67は、第4の領域60dの-y側と-x側にそれぞれ配置されている。回転機構68、アライメント機構69、及び補助浮上ユニット67の動作については後述する。 Furthermore, an alignment mechanism 69 is provided in the first region 60a. A rotation mechanism 68 is provided in the fourth region 60d. Furthermore, an auxiliary levitation unit 67 is provided outside the fourth region 60d. The auxiliary levitation units 67 are respectively disposed on the -y and -x sides of the fourth region 60d. The operations of the rotation mechanism 68, alignment mechanism 69, and auxiliary levitation unit 67 will be described later.
 図1に示すように、被処理体66は、第1の領域60a~第4の領域60dを順次搬送される。すなわち、被処理体66は、第1の領域60aから+x方向に搬送されると、照射領域60eを通過して、第2の領域60bまで移動する。照射領域60eを通過する際に、被処理体66にレーザ光が照射される。被処理体66は第2の領域60bから‐y方向に搬送されると、第3の領域60cまで移動する。 As shown in FIG. 1, the workpiece 66 is transported sequentially through the first region 60a to the fourth region 60d. That is, when the workpiece 66 is transported from the first region 60a in the +x direction, it passes through the irradiation region 60e and moves to the second region 60b. When passing through the irradiation region 60e, the workpiece 66 is irradiated with laser light. When the workpiece 66 is transported from the second region 60b in the -y direction, it moves to the third region 60c.
 被処理体66が第3の領域60cから‐x方向に搬送されると、モニタ領域60fを通過して、第4の領域60dに移動する。モニタ領域60fでは、レーザ光の照射ムラをモニタする。例えば、モニタ領域60fにおいて、図示しないカメラなどにより、照射ムラをモニタする。被処理体66が第4の領域60dから+y方向に搬送されると、第1の領域60aに移動する。 When the workpiece 66 is transported from the third region 60c in the -x direction, it passes through the monitor region 60f and moves to the fourth region 60d. In the monitor region 60f, the unevenness of the laser light irradiation is monitored. For example, in the monitor region 60f, the unevenness of the irradiation is monitored by a camera (not shown). When the workpiece 66 is transported from the fourth region 60d in the +y direction, it moves to the first region 60a.
 このように、被処理体66は、+x方向、-y方向、-x方向、+y方向と方向を変えて搬送されていく。換言すると、被処理体66は、第1の領域60a~第4の領域60dを循環するように搬送される。なお、厳密には、第4の領域60dが被処理体66の搬入/搬出位置となっているため、被処理体66は、第4の領域60d、第1の領域60a、第2の領域60b、第3の領域60cの順番で搬送されていく。もちろん、搬入/搬出位置は、第4の領域60dに限られるものではない。 In this way, the workpiece 66 is transported in changing directions: +x, -y, -x, +y. In other words, the workpiece 66 is transported in a circulating manner between the first region 60a to the fourth region 60d. Strictly speaking, the fourth region 60d is the loading/unloading position for the workpiece 66, so the workpiece 66 is transported in the order of the fourth region 60d, the first region 60a, the second region 60b, and the third region 60c. Of course, the loading/unloading position is not limited to the fourth region 60d.
 さらには、被処理体66を反対方向に循環してもよい。例えば、第4の領域60d、第3の領域60c、第2の領域60b、第1の領域60aの順番で被処理体66を搬送してもよい。すなわち、図2の平面図において、搬送方向は、時計回りでもよく、反時計回りでもよい。レーザ照射装置1の処理に応じて、搬送方向を適宜切り替えるようにしてもよい。 Furthermore, the workpiece 66 may be circulated in the opposite direction. For example, the workpiece 66 may be transported in the order of the fourth region 60d, the third region 60c, the second region 60b, and the first region 60a. That is, in the plan view of FIG. 2, the transport direction may be either clockwise or counterclockwise. The transport direction may be switched as appropriate depending on the processing of the laser irradiation device 1.
 上記のように、被処理体66を循環して搬送するため、レーザ照射装置1は、4つの搬送ユニット61_1~61_4を備える。搬送ユニット61_1~61_4は浮上ユニット60の外側であって、浮上ユニット60の各辺の近傍に設けられている。 As described above, in order to circulate and transport the workpiece 66, the laser irradiation device 1 is equipped with four transport units 61_1 to 61_4. The transport units 61_1 to 61_4 are provided outside the levitation unit 60, near each side of the levitation unit 60.
 浮上ユニット60はxy平面視した際の形状が矩形状であり、各々の搬送ユニット61_1~61_4は、浮上ユニット60の各々の辺に沿って被処理体66を搬送するように設けられている。なお、各搬送ユニット61_1~61_4は、浮上ユニット60の各辺の外側に設けられているが、浮上ユニット60の内側に設けられていてもよい。 The levitation unit 60 has a rectangular shape when viewed in the xy plane, and each of the transport units 61_1 to 61_4 is arranged to transport the workpiece 66 along each side of the levitation unit 60. Note that each of the transport units 61_1 to 61_4 is arranged on the outside of each side of the levitation unit 60, but may also be arranged on the inside of the levitation unit 60.
 各搬送ユニット61_1~61_4は被処理体66を直進移動する。搬送ユニット61_1は被処理体66を+x方向に移動させる。これにより、被処理体66が第1の領域60aから第2の領域60bに移動する。搬送ユニット61_2は被処理体66を-y方向に移動させる。これにより、被処理体66が第2の領域60bから第3の領域60cに移動する。搬送ユニット61_3は被処理体66を-x方向に移動させる。これにより、被処理体66が第3の領域60cから第4の領域60dに移動する。搬送ユニット61_4は被処理体66を+y方向に移動させる。これにより、被処理体66が第4の領域60dから第1の領域60aに移動する。 Each of the transport units 61_1 to 61_4 moves the workpiece 66 in a straight line. The transport unit 61_1 moves the workpiece 66 in the +x direction. This moves the workpiece 66 from the first region 60a to the second region 60b. The transport unit 61_2 moves the workpiece 66 in the -y direction. This moves the workpiece 66 from the second region 60b to the third region 60c. The transport unit 61_3 moves the workpiece 66 in the -x direction. This moves the workpiece 66 from the third region 60c to the fourth region 60d. The transport unit 61_4 moves the workpiece 66 in the +y direction. This moves the workpiece 66 from the fourth region 60d to the first region 60a.
 具体的には、搬送ユニット61_1は浮上ユニット60の+y方向側の辺に設けられており、保持機構62_1と移動機構63_1とを備える。保持機構62_1は被処理体66を吸着保持する。保持機構62_1は、多孔質体を備える真空吸着機構を用いて構成することができる。保持機構62_1(真空吸着機構)は、排気ポート(不図示)に接続されており、排気ポートはエジェクタや真空ポンプなどに接続されている。よって、保持機構62_1にはガスを吸引するための負圧が作用するため、保持機構62_1を用いて被処理体66を保持することができる。 Specifically, the transport unit 61_1 is provided on the side of the levitation unit 60 on the +y direction side, and includes a holding mechanism 62_1 and a moving mechanism 63_1. The holding mechanism 62_1 suctions and holds the workpiece 66. The holding mechanism 62_1 can be configured using a vacuum suction mechanism equipped with a porous body. The holding mechanism 62_1 (vacuum suction mechanism) is connected to an exhaust port (not shown), which is connected to an ejector, a vacuum pump, or the like. Thus, a negative pressure for sucking gas acts on the holding mechanism 62_1, and the workpiece 66 can be held using the holding mechanism 62_1.
 また、保持機構62_1は吸着動作を行うための昇降機構(図1~図4では不図示)を備えている。昇降機構は、例えば、エアシリンダやモータなどのアクチュエータ等を備えている。例えば、保持機構62_1は吸着位置まで上昇した状態で、被処理体66を吸着する。また、保持機構62_1は、吸着を解除した状態で、待機位置まで下降する。 The holding mechanism 62_1 also has a lifting mechanism (not shown in Figs. 1 to 4) for performing the suction operation. The lifting mechanism includes, for example, an actuator such as an air cylinder or a motor. For example, the holding mechanism 62_1 lifts up to the suction position and then suctions the workpiece 66. The holding mechanism 62_1 also lowers to the standby position when suction is released.
 本実施の形態では、図4に示すように、保持機構62_1は、被処理体66のレーザ光が照射される面(上面)と逆側の面(下面)、つまり、被処理体66の浮上ユニット60と対向する側の面を吸引することで、被処理体66を保持している。また、保持機構62_1は、被処理体66の+y方向における端部(つまり、被処理体66の搬送方向と垂直な方向における端部)を保持している。 In this embodiment, as shown in FIG. 4, the holding mechanism 62_1 holds the workpiece 66 by sucking the surface (lower surface) of the workpiece 66 opposite to the surface (upper surface) irradiated with the laser light, that is, the surface of the workpiece 66 facing the levitation unit 60. The holding mechanism 62_1 also holds the end of the workpiece 66 in the +y direction (i.e., the end perpendicular to the transport direction of the workpiece 66).
 搬送ユニット61_1が備える移動機構63_1は保持機構62_1と連結されている。移動機構63_1は、保持機構62_1を搬送方向(x方向)に移動可能に構成されている。搬送ユニット61_1(保持機構62_1及び移動機構63_1)は、浮上ユニット60の+y方向の端部側に設けられており、保持機構62_1で被処理体66を保持しつつ、移動機構63_1が搬送方向に移動することで被処理体66が搬送される。 The moving mechanism 63_1 provided in the transport unit 61_1 is connected to the holding mechanism 62_1. The moving mechanism 63_1 is configured to be able to move the holding mechanism 62_1 in the transport direction (x direction). The transport unit 61_1 (holding mechanism 62_1 and moving mechanism 63_1) is provided on the end side of the levitation unit 60 in the +y direction, and the workpiece 66 is transported by the moving mechanism 63_1 moving in the transport direction while the holding mechanism 62_1 holds the workpiece 66.
 図2に示すように、例えば、移動機構63_1は浮上ユニット60の+y方向の端部を+x方向に沿ってスライドするように構成されている。移動機構63_1が浮上ユニット60の端部を+x方向に沿ってスライドすることで、被処理体66がx方向に沿って搬送される。このとき、移動機構63_1の移動速度を制御することで、被処理体66の搬送速度を制御することができる。移動機構63_1は、例えば、図示しないモータなどのアクチュエータとリニアガイド機構等を備えている。移動機構63_1の構成については後述する。 As shown in FIG. 2, for example, the moving mechanism 63_1 is configured to slide the end of the levitation unit 60 in the +y direction along the +x direction. When the moving mechanism 63_1 slides the end of the levitation unit 60 in the +x direction, the workpiece 66 is transported along the x direction. At this time, the transport speed of the workpiece 66 can be controlled by controlling the moving speed of the moving mechanism 63_1. The moving mechanism 63_1 includes, for example, an actuator such as a motor and a linear guide mechanism, not shown. The configuration of the moving mechanism 63_1 will be described later.
 図3、図4に示すように、被処理体66にはレーザ光15が照射される。図1、図2では、レーザ光15が照射される位置を照射位置65とする。照射位置65はy方向に延びた直線状となる。例えば、レーザ照射装置1はレーザアニール装置であり、この場合はレーザ照射部14にエキシマレーザ等を用いることができる。レーザ照射部14は、レーザ光源とシリンドリカルレンズなどの光学系(いずれも不図示)を備えている。レーザ光源から供給されたレーザ光は、シリンドリカルレンズを有する光学系(不図示)においてライン状となる。被処理体66にはライン状、具体的には焦点がy方向に伸びるレーザ光15(ラインビーム)が照射される(図1参照)。換言すると、被処理体66上における照射位置65は被処理体66の搬送方向(x方向)と垂直な方向(y方向)に伸びている。 3 and 4, the workpiece 66 is irradiated with the laser light 15. In FIG. 1 and FIG. 2, the position where the laser light 15 is irradiated is the irradiation position 65. The irradiation position 65 is a straight line extending in the y direction. For example, the laser irradiation device 1 is a laser annealing device, and in this case, an excimer laser or the like can be used for the laser irradiation unit 14. The laser irradiation unit 14 includes an optical system (not shown) such as a laser light source and a cylindrical lens. The laser light supplied from the laser light source becomes a line in the optical system (not shown) having a cylindrical lens. The workpiece 66 is irradiated with a line-shaped laser light 15 (line beam) whose focal point extends in the y direction (see FIG. 1). In other words, the irradiation position 65 on the workpiece 66 extends in a direction (y direction) perpendicular to the transport direction (x direction) of the workpiece 66.
 搬送装置6では、浮上ユニット60を用いて被処理体66を浮上させながら、搬送ユニット61_1を用いて被処理体66の下面を保持して、被処理体66を搬送方向に搬送している。このとき、レーザ照射装置1が備える搬送ユニット61_1は、被処理体66を搬送した際に、平面視において(つまりz方向からみて)、搬送ユニット61_1が照射位置65と重畳しない位置を保持して被処理体66を搬送している。つまり、図2に示すように、被処理体66を搬送方向に搬送した際に、搬送ユニット61_1が被処理体66を保持する位置(保持機構62_1の位置に対応)が、照射位置65と重畳しないようにしている。 In the transport device 6, the workpiece 66 is floated using the levitation unit 60 while the transport unit 61_1 is used to hold the underside of the workpiece 66 and transport the workpiece 66 in the transport direction. At this time, the transport unit 61_1 provided in the laser irradiation device 1 transports the workpiece 66 while holding a position that does not overlap with the irradiation position 65 in a plan view (i.e., when viewed from the z direction). In other words, as shown in FIG. 2, when the workpiece 66 is transported in the transport direction, the position where the transport unit 61_1 holds the workpiece 66 (corresponding to the position of the holding mechanism 62_1) does not overlap with the irradiation position 65.
 このように、保持機構62_1で被処理体66を保持しつつ、移動機構63_1が+x方向に移動することで、被処理体66を第1の領域60aから第2の領域60bに搬送することができる。搬送ユニット61_1による搬送で、被処理体66が照射領域60eを通過する。よって、被処理体66が第1の領域60aから第2の領域60bに搬送される際にレーザ光15が被処理体66に照射される。 In this way, the workpiece 66 can be transported from the first region 60a to the second region 60b by moving the moving mechanism 63_1 in the +x direction while the holding mechanism 62_1 holds the workpiece 66. The workpiece 66 passes through the irradiation region 60e during transport by the transport unit 61_1. Therefore, the laser light 15 is irradiated onto the workpiece 66 as it is transported from the first region 60a to the second region 60b.
 被処理体66に対するレーザ光15の照射位置65を変えるように、搬送ユニット61_1が被処理体66をx方向に移動する。なお、搬送ユニット61_1の搬送方向はx方向と平行になっているが、x方向から傾いた方向であってもよい。つまり、搬送方向はライン方向から傾いた方向であればよい。 The transport unit 61_1 moves the workpiece 66 in the x direction so as to change the irradiation position 65 of the laser light 15 on the workpiece 66. Note that the transport direction of the transport unit 61_1 is parallel to the x direction, but it may be inclined from the x direction. In other words, the transport direction may be any direction inclined from the line direction.
 搬送ユニット61_2は浮上ユニット60の+x方向側の辺に設けられており、保持機構62_2と移動機構63_2とを備える。そして、保持機構62_2で被処理体66を保持しつつ、移動機構63_2が‐y方向側に移動することで、被処理体66を第2の領域60bから第3の領域60cに搬送することができる。移動機構63_2が浮上ユニット60の端部を-y方向に沿ってスライドすることで、被処理体66が-y方向に沿って搬送される。 The transport unit 61_2 is provided on the side of the levitation unit 60 on the +x side, and includes a holding mechanism 62_2 and a moving mechanism 63_2. The moving mechanism 63_2 moves in the -y direction while the holding mechanism 62_2 holds the workpiece 66, thereby transporting the workpiece 66 from the second region 60b to the third region 60c. The moving mechanism 63_2 slides the end of the levitation unit 60 in the -y direction, transporting the workpiece 66 in the -y direction.
 搬送ユニット61_3は浮上ユニット60の‐y方向側の辺に設けられており、保持機構62_3と移動機構63_3とを備える。そして、保持機構62_3で被処理体66を保持しつつ、移動機構63_3が‐x方向に移動することで、被処理体66を第3の領域60cから第4の領域60dに搬送することができる。搬送ユニット61_3による搬送で、被処理体66がモニタ領域60fを通過する。移動機構63_3が浮上ユニット60の端部を-x方向に沿ってスライドすることで、被処理体66が-x方向に沿って搬送される。 The transport unit 61_3 is provided on the side of the levitation unit 60 on the -y direction side, and includes a holding mechanism 62_3 and a moving mechanism 63_3. The moving mechanism 63_3 moves in the -x direction while holding the workpiece 66, thereby transporting the workpiece 66 from the third region 60c to the fourth region 60d. The workpiece 66 passes through the monitor region 60f as it is transported by the transport unit 61_3. The moving mechanism 63_3 slides the end of the levitation unit 60 along the -x direction, thereby transporting the workpiece 66 along the -x direction.
 搬送ユニット61_4は浮上ユニット60の‐x方向側の辺に設けられており、保持機構62_4と移動機構63_4とを備える。そして、保持機構62_4で被処理体66を保持しつつ、移動機構63_4が+y方向に移動することで、被処理体66を第4の領域60dから第1の領域60aに搬送することができる。移動機構63_4が浮上ユニット60の端部を+y方向に沿ってスライドすることで、被処理体66が+y方向に沿って搬送される。 The transport unit 61_4 is provided on the side of the levitation unit 60 on the -x direction side, and includes a holding mechanism 62_4 and a moving mechanism 63_4. The moving mechanism 63_4 moves in the +y direction while the holding mechanism 62_4 holds the workpiece 66, thereby transporting the workpiece 66 from the fourth region 60d to the first region 60a. The moving mechanism 63_4 slides the end of the levitation unit 60 along the +y direction, thereby transporting the workpiece 66 along the +y direction.
 移動機構63_2、移動機構63_3、及び移動機構63_4は、照射位置65の外側で、被処理体66を移動する。つまり、移動機構63_2、移動機構63_3、及び移動機構63_4は、照射位置65と重複していない被処理体66を移動する。従って、移動機構63_2、移動機構63_3、及び移動機構63_4が被処理体66を移動しても、被処理体66にレーザ光15が照射されない。移動機構63_2、移動機構63_3、及び移動機構63_4は、例えば、図示しないモータなどのアクチュエータとリニアガイド機構等を備えている。移動機構63_2、移動機構63_3、及び移動機構63_4の構成については後述する。 The moving mechanisms 63_2, 63_3, and 63_4 move the workpiece 66 outside the irradiation position 65. In other words, the moving mechanisms 63_2, 63_3, and 63_4 move the workpiece 66 that does not overlap with the irradiation position 65. Therefore, even if the moving mechanisms 63_2, 63_3, and 63_4 move the workpiece 66, the laser light 15 is not irradiated onto the workpiece 66. The moving mechanisms 63_2, 63_3, and 63_4 each include, for example, an actuator such as a motor and a linear guide mechanism (not shown). The configurations of the moving mechanisms 63_2, 63_3, and 63_4 will be described later.
 保持機構62_2、保持機構62_3、保持機構62_4は、保持機構62_1と同様の構成となっており、被処理体66を吸着する。保持機構62_2、62_4は、保持機構62_1、62_3と異なる向きで配置されている。より具体的には、xy平面視において、保持機構62_1、62_3は、図2で示したように、x方向を長手方向とする矩形状になっている。また、保持機構62_2、62_4は、図2で示すように矩形状になっているが、設置方向が90°異なっている。すなわち、保持機構62_1、62_3では長手方向がx方向、短手方向がy方向になっているのに対して、保持機構62_2、62_4では長手方向がy方向、短手方向がx方向になっている。保持機構62_1~62_4は、その移動方向が長手方向となるように設けられている。 Holding mechanisms 62_2, 62_3, and 62_4 have the same configuration as holding mechanism 62_1, and adsorb the workpiece 66. Holding mechanisms 62_2 and 62_4 are arranged in a different orientation from holding mechanisms 62_1 and 62_3. More specifically, in an xy plane view, holding mechanisms 62_1 and 62_3 are rectangular with the x direction as the longitudinal direction, as shown in FIG. 2. Holding mechanisms 62_2 and 62_4 are rectangular as shown in FIG. 2, but their installation directions are different by 90°. That is, while holding mechanisms 62_1 and 62_3 have the x direction as the longitudinal direction and the y direction as the lateral direction, holding mechanisms 62_2 and 62_4 have the y direction as the longitudinal direction and the x direction as the lateral direction. Holding mechanisms 62_1 to 62_4 are arranged so that their movement direction is the longitudinal direction.
 レーザ照射装置1では、照射位置65のy方向における長さは、被処理体66のy方向における長さの半分程度の長さである。よって、被処理体66が照射位置65を通過した際に、被処理体66のy方向の半分の領域にレーザ光が照射される。したがって、被処理体66が、浮上ユニット60の上を2回循環するように搬送されていく。このようにすることで、被処理体66のほぼ全面に、レーザ光が照射される。 In the laser irradiation device 1, the length of the irradiation position 65 in the y direction is approximately half the length of the workpiece 66 in the y direction. Therefore, when the workpiece 66 passes the irradiation position 65, half of the area of the workpiece 66 in the y direction is irradiated with laser light. Therefore, the workpiece 66 is transported so as to circulate twice above the levitation unit 60. In this way, the laser light is irradiated onto almost the entire surface of the workpiece 66.
 被処理体66のほぼ全面にレーザ光を照射する場合は、図1、2に示すように、浮上ユニット60の第4の領域60dに回転機構68を設ける。回転機構68の回転軸はz方向と平行になっている。回転機構68は、被処理体66の水平面(xy平面)を保持しながら被処理体66を180度回転させる。つまり、搬送ユニット61_1を用いて被処理体66を第1の領域60aから第2の領域60bに搬送して被処理体66にレーザ光15を照射した後、搬送ユニット61_2~61_4を用いて被処理体66を搬送させつつ、回転機構68を用いて被処理体66を180度回転させる。そして、再度、搬送ユニット61_1を用いて被処理体66を領域60aから領域60bに搬送して被処理体66にレーザ光15を照射することで、被処理体66の全面にレーザ光15を照射することができる。 When the laser light is irradiated to almost the entire surface of the workpiece 66, as shown in Figs. 1 and 2, a rotation mechanism 68 is provided in the fourth region 60d of the levitation unit 60. The rotation axis of the rotation mechanism 68 is parallel to the z direction. The rotation mechanism 68 rotates the workpiece 66 by 180 degrees while holding the horizontal plane (xy plane) of the workpiece 66. That is, the workpiece 66 is transported from the first region 60a to the second region 60b using the transport unit 61_1 and irradiated with the laser light 15, and then the workpiece 66 is transported using the transport units 61_2 to 61_4 while rotating the workpiece 66 by 180 degrees using the rotation mechanism 68. Then, the workpiece 66 is transported from the region 60a to the region 60b using the transport unit 61_1 again and irradiated with the laser light 15, so that the entire surface of the workpiece 66 can be irradiated with the laser light 15.
 図2に示すように、浮上ユニット60の外側には、補助浮上ユニット67が設けられている。補助浮上ユニット67は、第4の領域60dの-x側及び-y側にそれぞれ配置されている。補助浮上ユニット67は、浮上ユニット60と同様に、被処理体66に対して気体を噴出することで、被処理体66を浮上する。 As shown in FIG. 2, auxiliary levitation units 67 are provided outside the levitation unit 60. The auxiliary levitation units 67 are disposed on the -x and -y sides of the fourth region 60d. Similar to the levitation unit 60, the auxiliary levitation units 67 levitate the workpiece 66 by ejecting gas toward the workpiece 66.
 例えば、回転機構68が被処理体66を回転中に、被処理体66の一部が第4の領域60dからはみ出す。回転中において、第4の領域60dからはみ出す被処理体66の端部に対して、補助浮上ユニット67が気体を噴出する。被処理体66の浮上ユニット60からはみ出した部分に浮上力が発生する。このようにすることで、被処理体66を損傷することなく、回転機構68が被処理体66を回転させることができる。なお、保持機構62_4は、補助浮上ユニット67と浮上ユニット60との間を移動する。 For example, while the rotating mechanism 68 is rotating the workpiece 66, a part of the workpiece 66 protrudes from the fourth region 60d. During rotation, the auxiliary levitation unit 67 ejects gas toward the end of the workpiece 66 that protrudes from the fourth region 60d. A levitation force is generated on the part of the workpiece 66 that protrudes from the levitation unit 60. In this way, the rotating mechanism 68 can rotate the workpiece 66 without damaging it. The holding mechanism 62_4 moves between the auxiliary levitation unit 67 and the levitation unit 60.
 アライメント機構69は、保持機構62_1等と同様に、多孔質体を介して被処理体66を吸着して保持する。そして、アライメント機構69は被処理体66の位置、及び回転角度を調整する。アライメント機構69は、x方向の位置(以下、x座標)、y方向の位置(以下、y座標)、z軸周りの回転角度(以下、角度θ)のアライメント動作を行う。例えば、被処理体66の搬入動作、搬送動作、回転動作によって、被処理体66の位置や回転角度が微小にずれることがある。アライメント機構69は、位置や回転角度のずれを補正している。これにより、被処理体66におけるレーザ光の照射位置を精度よく制御することができる。 The alignment mechanism 69, like the holding mechanism 62_1, adsorbs and holds the workpiece 66 via a porous body. The alignment mechanism 69 then adjusts the position and rotation angle of the workpiece 66. The alignment mechanism 69 performs alignment operations for the position in the x direction (hereinafter, x coordinate), the position in the y direction (hereinafter, y coordinate), and the rotation angle around the z axis (hereinafter, angle θ). For example, the position and rotation angle of the workpiece 66 may shift slightly due to the loading, transport, and rotation operations of the workpiece 66. The alignment mechanism 69 corrects the shift in position and rotation angle. This allows the irradiation position of the laser light on the workpiece 66 to be controlled with high precision.
 ここで、搬送ユニット61_1の搬送によって、被処理体66にレーザ光が照射される。従って、搬送ユニット61_1の搬送には、高い位置精度が要求される。つまり、レーザ光の照射強度を均一にするためには、搬送ユニット61_1の搬送速度を一定にする必要がある。あるいは、レーザ照射中において、被処理体66の搬送高さを一定にする必要がある。一方、搬送ユニット61_2、搬送ユニット61_3、搬送ユニット61_4の搬送では、被処理体66にレーザ光が照射されない。搬送ユニット61_2、搬送ユニット61_3、搬送ユニット61_4の搬送には、高い位置精度が要求されない。 Here, the workpiece 66 is irradiated with laser light by the transport of the transport unit 61_1. Therefore, high positional accuracy is required for the transport of the transport unit 61_1. That is, to make the irradiation intensity of the laser light uniform, the transport speed of the transport unit 61_1 needs to be constant. Alternatively, the transport height of the workpiece 66 needs to be constant during laser irradiation. On the other hand, the workpiece 66 is not irradiated with laser light during transport by the transport units 61_2, 61_3, and 61_4. High positional accuracy is not required for the transport of the transport units 61_2, 61_3, and 61_4.
 従って、本実施の形態では、搬送ユニット61_1の移動機構63_1として、リニアモータが用いられている。一方、搬送ユニット61_2~61_4の移動機構63_2~63_4として、AC(alternating current)サーボモータ及びベルトが用いられている。リニアモータを用いた直動機構は、ACサーボモータ及びベルトを用いた直動機構よりも位置精度が高い。これにより、レーザ光の照射強度を一定にすることができるため、安定したプロセスが可能となる。また、ACサーボモータ及びベルトを用いた直動機構は、リニアモータを用いた直動機構よりも安価である。3つの移動機構63_2~63_4については、安価な構成で実現することができる。 Therefore, in this embodiment, a linear motor is used as the moving mechanism 63_1 of the transport unit 61_1. On the other hand, AC (alternating current) servo motors and belts are used as the moving mechanisms 63_2 to 63_4 of the transport units 61_2 to 61_4. A linear motion mechanism using a linear motor has higher positioning accuracy than a linear motion mechanism using an AC servo motor and belt. This allows the irradiation intensity of the laser light to be constant, enabling a stable process. In addition, a linear motion mechanism using an AC servo motor and belt is cheaper than a linear motion mechanism using a linear motor. The three moving mechanisms 63_2 to 63_4 can be realized with an inexpensive configuration.
(搬送ユニット61_1)
 図5、図6を用いて、搬送ユニット61_1の移動機構63_1について説明する。図5は、搬送ユニット61_1の構成を示す上面図である。図6は、搬送ユニット61_1の構成を模式的に示す側面図である。
(Transport unit 61_1)
The moving mechanism 63_1 of the transport unit 61_1 will be described with reference to Fig. 5 and Fig. 6. Fig. 5 is a top view showing the configuration of the transport unit 61_1. Fig. 6 is a side view showing the schematic configuration of the transport unit 61_1.
 搬送ユニット61_1は、上記のように、保持機構62_1と、移動機構63_1と、を備えている。移動機構63_1は、リニアモータ601と、ガイド機構603と、ベース606と、ダンパ607と、を備えている。リニアモータ601は、可動子601aと、固定子601bとを備えている。保持機構62_1は、昇降機構621と吸着部622とを備えている。 As described above, the transport unit 61_1 includes a holding mechanism 62_1 and a moving mechanism 63_1. The moving mechanism 63_1 includes a linear motor 601, a guide mechanism 603, a base 606, and a damper 607. The linear motor 601 includes a mover 601a and a stator 601b. The holding mechanism 62_1 includes a lifting mechanism 621 and an adsorption section 622.
 ベース606は、ガイド機構603等を支持するステージである。ガイド機構603は、ベース606の上に固定されている。ガイド機構603は、x方向に沿って延びたレールなどを有するリニアガイドである。ガイド機構603にはガイド溝などが形成されていてもよい。ガイド機構603は可動子601aの直動移動をガイドする。また、ガイド機構603の端部には、ダンパ607が取り付けられている。ダンパ607は、可動子601aの移動端を規定する。 The base 606 is a stage that supports the guide mechanism 603 and the like. The guide mechanism 603 is fixed onto the base 606. The guide mechanism 603 is a linear guide that has a rail or the like extending along the x direction. The guide mechanism 603 may have a guide groove or the like formed therein. The guide mechanism 603 guides the linear movement of the mover 601a. In addition, a damper 607 is attached to the end of the guide mechanism 603. The damper 607 defines the moving end of the mover 601a.
 例えば、ガイド機構603には、リニアモータ601の固定子601bが取り付けられている。固定子601bは、例えば、永久磁石を有している。つまり、x方向に沿って、複数の永久磁石が配列されている。例えば、x方向において、N極とS極が一定間隔で交互に繰り返し配列されている。 For example, the stator 601b of the linear motor 601 is attached to the guide mechanism 603. The stator 601b has, for example, a permanent magnet. In other words, multiple permanent magnets are arranged along the x direction. For example, north and south poles are arranged alternately and repeatedly at regular intervals in the x direction.
 リニアモータ601の可動子601aは、電磁石を有している。そして、電磁石に対する電流を制御することで、可動子601aがガイド機構603に沿って移動する。可動子601aは、ガイド機構603と非接触で直進移動する。リニアモータ601の上には、被処理体66を吸着保持するための保持機構62_1が配置されている。 The mover 601a of the linear motor 601 has an electromagnet. By controlling the current to the electromagnet, the mover 601a moves along the guide mechanism 603. The mover 601a moves linearly without contacting the guide mechanism 603. A holding mechanism 62_1 for attracting and holding the workpiece 66 is disposed above the linear motor 601.
 移動機構63_1が、保持機構62_1をx方向に移動することができる。このように、搬送ユニット61_1がリニアモータ601を有する移動機構63_1を用いている。よって、搬送ユニット61_1が、被処理体66を精度よく移動することができる。よって、搬送装置6は被処理体66を適切に搬送することができるため、生産性を向上することができる。 The moving mechanism 63_1 can move the holding mechanism 62_1 in the x direction. In this way, the transport unit 61_1 uses the moving mechanism 63_1 having a linear motor 601. Therefore, the transport unit 61_1 can move the workpiece 66 with high precision. Therefore, the transport device 6 can appropriately transport the workpiece 66, thereby improving productivity.
 また、保持機構62_1には昇降機構621と吸着部622が設けられている。吸着部622は、被処理体66を真空吸着するための多孔質体を有している。昇降機構621は、保持機構62_1の吸着部622を昇降させる。昇降機構621は、被処理体66の受渡しのため、吸着部622を昇降させる。昇降機構621は、保持機構62_2に被処理体66を受け渡すため、吸着部622を昇降させる。また、昇降機構621は、被処理体66を保持機構62_4から受け取るため、吸着部622を昇降させる。 The holding mechanism 62_1 is also provided with a lifting mechanism 621 and an adsorption unit 622. The adsorption unit 622 has a porous body for vacuum adsorbing the workpiece 66. The lifting mechanism 621 lifts and lowers the adsorption unit 622 of the holding mechanism 62_1. The lifting mechanism 621 lifts and lowers the adsorption unit 622 to transfer the workpiece 66. The lifting mechanism 621 lifts and lowers the adsorption unit 622 to transfer the workpiece 66 to the holding mechanism 62_2. The lifting mechanism 621 also lifts and lowers the adsorption unit 622 to receive the workpiece 66 from the holding mechanism 62_4.
(搬送ユニット61_2~61_4)
 搬送ユニット61_2~61_4は、リニアモータの代わりにACサーボモータを用いている。以下、搬送ユニット61_2~61_4を代表して、搬送ユニット61_3の構成について、図7~図10を用いて説明する。図7は、搬送ユニット61_3の構成を示す上面図である。図8は、搬送ユニット61_3の構成を示す側面図である。図9は、搬送ユニット61_3の駆動部の構成を拡大して示す斜視図である。図10は、搬送ユニット61_3の排気系統などを模式的に示すxz断面図である。
(Transport units 61_2 to 61_4)
The transport units 61_2 to 61_4 use AC servo motors instead of linear motors. Below, the configuration of the transport unit 61_3 will be described with reference to Figs. 7 to 10, as a representative of the transport units 61_2 to 61_4. Fig. 7 is a top view showing the configuration of the transport unit 61_3. Fig. 8 is a side view showing the configuration of the transport unit 61_3. Fig. 9 is an enlarged perspective view showing the configuration of the drive section of the transport unit 61_3. Fig. 10 is an xz cross-sectional view showing a schematic diagram of the exhaust system, etc., of the transport unit 61_3.
 搬送ユニット61_3は、保持機構62_3と、移動機構63_3とを備えている。移動機構63_3は、ガイド機構703と、可動部704と、ベース706と、ACサーボモータ711と、プーリ716とを備えている。さらに、移動機構63_3は、カバー715と排気フランジ714とを備えている。保持機構62_3は、昇降機構721と吸着部722とを備えている。 The transport unit 61_3 includes a holding mechanism 62_3 and a moving mechanism 63_3. The moving mechanism 63_3 includes a guide mechanism 703, a movable part 704, a base 706, an AC servo motor 711, and a pulley 716. The moving mechanism 63_3 further includes a cover 715 and an exhaust flange 714. The holding mechanism 62_3 includes a lifting mechanism 721 and an adsorption part 722.
 ベース706は、ガイド機構703等を支持するステージである。ガイド機構703は、ベース706の上に固定されている。ガイド機構703は、x方向に沿って延びたレールなどを有するリニアガイドである。ガイド機構703は、ガイド溝などを有していてもよい。また、ガイド機構703の端部には、ダンパ707が取り付けられている。ダンパ707は、可動部704の移動端を規定する。 The base 706 is a stage that supports the guide mechanism 703 and the like. The guide mechanism 703 is fixed onto the base 706. The guide mechanism 703 is a linear guide that has a rail or the like extending along the x direction. The guide mechanism 703 may have a guide groove or the like. In addition, a damper 707 is attached to the end of the guide mechanism 703. The damper 707 determines the moving end of the movable part 704.
 ガイド機構703は、可動部704を摺動可能に保持している。ガイド機構703は可動部704の直動移動をガイドする。可動部704は、ベルト709の上面に取り付けられている。さらに、可動部704の上には、保持機構62_3が取り付けられている。保持機構62_3は、可動部704を介して、ベルト709と連結されている。よって、保持機構62_3は可動部704とともにx方向に往復移動する。 The guide mechanism 703 holds the movable part 704 so that it can slide. The guide mechanism 703 guides the linear movement of the movable part 704. The movable part 704 is attached to the upper surface of the belt 709. Furthermore, a holding mechanism 62_3 is attached above the movable part 704. The holding mechanism 62_3 is connected to the belt 709 via the movable part 704. Therefore, the holding mechanism 62_3 moves back and forth in the x direction together with the movable part 704.
 ベルト709はタイミングベルト等であり、x方向に沿って設けられている。図10に示すように、ベルト709の両端には、プーリ716が取り付けられている。ベルト709は、例えば、無端ベルト等であり、xz平面視において、リング状に形成されている。リング状のベルト709の内側には、2つのプーリ716が配置されている。ベルト709は、無端ベルト以外のベルトであってもよい。 Belt 709 is a timing belt or the like, and is arranged along the x direction. As shown in FIG. 10, pulleys 716 are attached to both ends of belt 709. Belt 709 is, for example, an endless belt or the like, and is formed in a ring shape when viewed in the xz plane. Two pulleys 716 are arranged inside ring-shaped belt 709. Belt 709 may be a belt other than an endless belt.
 2つのプーリ716がx方向に離れて配置されている。プーリ716の回転軸はy方向と平行になっている。図9に示すように、ベルト709は、プーリ716に掛け回されている。2つのプーリ716の間において、ベルト709は、x方向と平行になっている。ベルト709は、例えば、歯付きベルト、平ベルトとなっている。プーリ716は、例えば、歯付きプーリ、平プーリとなっている。 Two pulleys 716 are spaced apart in the x direction. The rotation axis of the pulley 716 is parallel to the y direction. As shown in FIG. 9, a belt 709 is looped around the pulley 716. Between the two pulleys 716, the belt 709 is parallel to the x direction. The belt 709 is, for example, a toothed belt or a flat belt. The pulley 716 is, for example, a toothed pulley or a flat pulley.
 一方のプーリ716には、ACサーボモータ711の回転軸711aが連結されている。ACサーボモータ711がプーリ716を回転させると、ベルト709が回転する。ベルト709の回転動作にしたがって、可動部704がx方向に移動する。可動部704は2つのプーリ716の間をx方向にスライド移動する。これにより、保持機構62_2がx方向に往復移動するため、被処理体66を-x方向に搬送することができる。 The rotating shaft 711a of the AC servo motor 711 is connected to one of the pulleys 716. When the AC servo motor 711 rotates the pulley 716, the belt 709 rotates. The movable part 704 moves in the x direction in accordance with the rotation of the belt 709. The movable part 704 slides in the x direction between the two pulleys 716. This causes the holding mechanism 62_2 to move back and forth in the x direction, so that the workpiece 66 can be transported in the -x direction.
 また、保持機構62_3には昇降機構721と吸着部722が設けられている。吸着部722は、被処理体66を真空吸着するための多孔質体を有している。昇降機構721は、保持機構62_3の吸着部722を昇降させる。昇降機構721は、被処理体66の受渡しのため、吸着部722を昇降させる。昇降機構721は、保持機構62_2から被処理体66を受け取るため、吸着部722を昇降させる。また、昇降機構721は、被処理体66を保持機構62_4に受け渡すため、吸着部722を昇降させる。 The holding mechanism 62_3 is also provided with a lifting mechanism 721 and an adsorption unit 722. The adsorption unit 722 has a porous body for vacuum adsorbing the workpiece 66. The lifting mechanism 721 lifts and lowers the adsorption unit 722 of the holding mechanism 62_3. The lifting mechanism 721 lifts and lowers the adsorption unit 722 to transfer the workpiece 66. The lifting mechanism 721 lifts and lowers the adsorption unit 722 to receive the workpiece 66 from the holding mechanism 62_2. The lifting mechanism 721 also lifts and lowers the adsorption unit 722 to transfer the workpiece 66 to the holding mechanism 62_4.
 このように、移動機構63_2は、ACサーボモータ711と、ベルト709とを用いて、被処理体66を移動している。これにより、搬送装置6は、安価な構成で、被処理体66を搬送することができる。搬送装置6は被処理体66を適切に搬送することができるため、生産性を向上することができる。 In this way, the moving mechanism 63_2 moves the workpiece 66 using the AC servo motor 711 and the belt 709. This allows the transport device 6 to transport the workpiece 66 with an inexpensive configuration. Since the transport device 6 can transport the workpiece 66 appropriately, productivity can be improved.
 なお、移動機構63_2、63_4は、基本的な構成は、移動機構63_3と同様であるため、詳細な説明を省略する。移動機構63_2、63_4も、移動機構63_3と同様にACサーボモータ711とベルト709とを用いている。移動機構63_2、63_4は、移動方向がy方向になっている点が移動機構63_3と異なっている。したがって、ガイド機構703、ベルト709、ACサーボモータ711等の向きを90度変えて設置すれば良い。 The basic configuration of the moving mechanisms 63_2 and 63_4 is similar to that of the moving mechanism 63_3, so a detailed description will be omitted. The moving mechanisms 63_2 and 63_4 also use an AC servo motor 711 and a belt 709, just like the moving mechanism 63_3. The moving mechanisms 63_2 and 63_4 differ from the moving mechanism 63_3 in that the moving direction is the y direction. Therefore, it is sufficient to change the orientation of the guide mechanism 703, the belt 709, the AC servo motor 711, etc. by 90 degrees when they are installed.
 プーリ716の回転に伴って、ベルト709とプーリ716との接触部分から粉塵が発生することがある。そこで、本実施の形態では、-x側におけるベルト709の端部は、カバー715が設けられている。つまり、プーリ716とベルト709の接触部分はカバー715で覆われている。図9に示すように、カバー715は回転軸711aやベアリングなどを収容するケースとなる。カバー715がベルト709の端部を覆うことで、粉塵による汚染を防止することができる。被処理体66に粉塵が付着するのを防ぐことができる。 As the pulley 716 rotates, dust may be generated from the contact area between the belt 709 and the pulley 716. Therefore, in this embodiment, a cover 715 is provided on the end of the belt 709 on the -x side. In other words, the contact area between the pulley 716 and the belt 709 is covered with the cover 715. As shown in FIG. 9, the cover 715 is a case that houses the rotating shaft 711a, bearings, etc. By covering the end of the belt 709 with the cover 715, contamination by dust can be prevented. Dust can be prevented from adhering to the workpiece 66.
 カバー715には、開口部715aと排気フランジ714が設けられている。ベルト709は、カバー715の開口部715aから取り出されている。カバー715において、開口部715aの反対側には、排気フランジ714が設けられている。排気フランジ714は、カバー715の内部空間に繋がっている排気ポートとなる。排気フランジ714には、図10に示すように、配管740が接続されている。ここでは、開口部715aがカバー715の+x側に配置され、排気フランジ714がカバー715の-x側に配置されている。 Cover 715 has an opening 715a and an exhaust flange 714. Belt 709 is taken out from opening 715a of cover 715. Cover 715 has exhaust flange 714 on the opposite side of opening 715a. Exhaust flange 714 serves as an exhaust port connected to the internal space of cover 715. As shown in FIG. 10, exhaust flange 714 is connected to pipe 740. Here, opening 715a is located on the +x side of cover 715, and exhaust flange 714 is located on the -x side of cover 715.
 図10に示すように、配管740は、レーザ照射装置1のチャンバ730の外側まで引き回されている。なお、チャンバ730は、搬送装置6(図10では不図示)の全体を囲むように配置されている。具体的には、配管740は、その他の排気箇所からの配管741と合わせて集塵機742に接続されている。集塵機742は、カバー715の内部空間を排気する排気機構となる。集塵機742は、配管740、741を通じて、チャンバ730内の気体を排気する。 As shown in FIG. 10, the piping 740 is routed to the outside of the chamber 730 of the laser irradiation device 1. The chamber 730 is disposed so as to entirely surround the transport device 6 (not shown in FIG. 10). Specifically, the piping 740 is connected to a dust collector 742 together with piping 741 from other exhaust points. The dust collector 742 serves as an exhaust mechanism that exhausts the internal space of the cover 715. The dust collector 742 exhausts the gas in the chamber 730 through the piping 740 and 741.
 このようにすることで、カバー715内で発生した粉塵をチャンバの730外側に排出することができる。よって、被処理体66の汚染を防止することができ、レーザ照射プロセスの生産性を向上することができる。 In this way, dust generated inside the cover 715 can be discharged to the outside of the chamber 730. This prevents contamination of the workpiece 66 and improves the productivity of the laser irradiation process.
 上記の搬送装置6を用いた搬送方法は、例えば、以下のステップを備えている。
 (A)浮上ユニットが、その上面で前記基板を浮上させるステップ。
 (B)第1搬送ユニットが、搬送方向に前記基板を移動することで、前記基板に対する前記レーザ光の照射位置を変えるステップ。
 (C)第2搬送ユニットが、上面視において、前記照射位置の外側で前記基板を移動するステップ。
The transport method using the transport device 6 described above includes, for example, the following steps.
(A) A step in which a levitation unit levitates the substrate on its upper surface.
(B) A step in which a first transport unit moves the substrate in a transport direction to change the irradiation position of the laser light on the substrate.
(C) A step in which a second transport unit moves the substrate outside the irradiation position in a top view.
(有機ELディスプレイ)
 上記のポリシリコン膜を有する半導体装置は、有機EL(ElectroLuminescence)ディスプレイ用のTFT(Thin Film transistor)アレイ基板に好適である。すなわち、ポリシリコン膜は、TFTのソース領域、チャネル領域、ドレイン領域を有する半導体層として用いられる。
(Organic EL display)
The semiconductor device having the polysilicon film is suitable for a TFT (Thin Film Transistor) array substrate for an organic EL (ElectroLuminescence) display. That is, the polysilicon film is used as a semiconductor layer having a source region, a channel region, and a drain region of the TFT.
 以下、本実施の形態にかかる半導体装置を有機ELディスプレイディスプレイに適用した構成について説明する。図11は、有機ELディスプレイの画素回路を簡略化して示す断面図である。図11に示す有機ELディスプレイ300は、各画素PXにTFTが配置されたアクティブマトリクス型の表示装置である。 Below, a configuration in which the semiconductor device according to this embodiment is applied to an organic EL display will be described. FIG. 11 is a cross-sectional view showing a simplified pixel circuit of an organic EL display. The organic EL display 300 shown in FIG. 11 is an active matrix display device in which a TFT is arranged in each pixel PX.
 有機ELディスプレイ300は、基板310、TFT層311、有機層312、カラーフィルタ層313、及び封止基板314を備えている。図11では、封止基板314側が視認側となるトップエミッション方式の有機ELディスプレイを示している。なお、以下の説明は、有機ELディスプレイの一構成例を示すものであり、本実施の形態は、以下に説明される構成に限られるものではない。例えば、本実施の形態にかかる半導体装置は、ボトムエミッション方式の有機ELディスプレイに用いられていてもよい。 The organic EL display 300 includes a substrate 310, a TFT layer 311, an organic layer 312, a color filter layer 313, and a sealing substrate 314. FIG. 11 shows a top-emission organic EL display in which the sealing substrate 314 side is the viewing side. Note that the following description shows one configuration example of an organic EL display, and the present embodiment is not limited to the configuration described below. For example, the semiconductor device according to the present embodiment may be used in a bottom-emission organic EL display.
 基板310は、ガラス基板又は金属基板である。基板310の上には、TFT層311が設けられている。TFT層311は、各画素PXに配置されたTFT311aを有している。さらに、TFT層311は、TFT311aに接続される配線(図示を省略)等を有している。TFT311a、及び配線等が画素回路を構成する。 The substrate 310 is a glass substrate or a metal substrate. A TFT layer 311 is provided on the substrate 310. The TFT layer 311 has a TFT 311a arranged in each pixel PX. Furthermore, the TFT layer 311 has wiring (not shown) connected to the TFT 311a, etc. The TFT 311a and the wiring etc. constitute a pixel circuit.
 TFT層311の上には、有機層312が設けられている。有機層312は、画素PXごとに配置された有機EL発光素子312aを有している。さらに、有機層312には、画素PX間において、有機EL発光素子312aを分離するための隔壁312bが設けられている。 An organic layer 312 is provided on the TFT layer 311. The organic layer 312 has an organic EL element 312a arranged for each pixel PX. Furthermore, the organic layer 312 is provided with partition walls 312b for separating the organic EL elements 312a between the pixels PX.
 有機層312の上には、カラーフィルタ層313が設けられている。カラーフィルタ層313は、カラー表示を行うためのカラーフィルタ313aが設けられている。すなわち、各画素PXには、R(赤色)、G(緑色)、又はB(青色)に着色された樹脂層がカラーフィルタ313aとして設けられている。 A color filter layer 313 is provided on the organic layer 312. The color filter layer 313 is provided with a color filter 313a for color display. That is, in each pixel PX, a resin layer colored R (red), G (green), or B (blue) is provided as the color filter 313a.
 カラーフィルタ層313の上には、封止基板314が設けられている。封止基板314は、ガラス基板などの透明基板であり、有機層312の有機EL発光素子の劣化を防ぐために設けられている。 A sealing substrate 314 is provided on the color filter layer 313. The sealing substrate 314 is a transparent substrate such as a glass substrate, and is provided to prevent deterioration of the organic EL light-emitting element of the organic layer 312.
 有機層312の有機EL発光素子312aに流れる電流は、画素回路に供給される表示信号によって変化する。よって、表示画像に応じた表示信号を各画素PXに供給することで、各画素PXでの発光量を制御することができる。これにより、所望の画像を表示することができる。 The current flowing through the organic EL element 312a of the organic layer 312 changes depending on the display signal supplied to the pixel circuit. Therefore, by supplying a display signal corresponding to the display image to each pixel PX, the amount of light emitted by each pixel PX can be controlled. This makes it possible to display the desired image.
 有機ELディスプレイ等のアクティブマトリクス型表示装置では、1つの画素PXに、1つ以上のTFT(例えば、スイッチング用TFT、又は駆動用TFT)が設けられている。そして、各画素PXのTFTには、ソース領域、チャネル領域、及びドレイン領域を有する半導体層が設けられている。本実施の形態にかかるポリシリコン膜は、TFTの半導体層に好適である。すなわち、上記の製造方法により製造したポリシリコン膜をTFTアレイ基板の半導体層に用いることで、TFT特性の面内ばらつきを抑制することができる。よって、表示特性の優れた表示装置を高い生産性で製造することができる。 In an active matrix display device such as an organic EL display, one pixel PX is provided with one or more TFTs (e.g., a switching TFT or a driving TFT). The TFT of each pixel PX is provided with a semiconductor layer having a source region, a channel region, and a drain region. The polysilicon film of this embodiment is suitable for the semiconductor layer of a TFT. In other words, by using a polysilicon film manufactured by the above manufacturing method as the semiconductor layer of a TFT array substrate, it is possible to suppress in-plane variations in TFT characteristics. Therefore, a display device with excellent display characteristics can be manufactured with high productivity.
<半導体装置の製造工程>
 本実施の形態にかかるレーザ照射装置を用いた半導体装置の製造方法は、TFTアレイ基板の製造に好適である。TFTを有する半導体装置の製造方法について、図12、図13を用いて説明する。図12、図13は半導体装置の製造工程を示す工程断面図である。以下の説明では、逆スタガード(inverted staggered)型のTFTを有する半導体装置の製造方法について説明する。図12,図13では、半導体製造方法におけるポリシリコン膜の形成工程を示している。なお、その他の製造工程については、公知の手法を用いることができるため、説明を省略する。
<Semiconductor device manufacturing process>
The manufacturing method of a semiconductor device using the laser irradiation device according to the present embodiment is suitable for manufacturing a TFT array substrate. The manufacturing method of a semiconductor device having TFTs will be described with reference to Figs. 12 and 13. Figs. 12 and 13 are cross-sectional views showing the manufacturing process of a semiconductor device. In the following description, a manufacturing method of a semiconductor device having an inverted staggered type TFT will be described. Figs. 12 and 13 show the process of forming a polysilicon film in the semiconductor manufacturing method. It should be noted that the other manufacturing processes can be performed by known methods, and therefore the description will be omitted.
 図12に示すように、ガラス基板401上に、ゲート電極402が形成されている。ゲート電極402の上に、ゲート絶縁膜403が形成されている。ゲート絶縁膜403の上に、アモルファスシリコン膜404を形成する。アモルファスシリコン膜404は、ゲート絶縁膜403を介して、ゲート電極402と重複するように配置されている。例えば、CVD(Chemical Vapor Deposition)法により、ゲート絶縁膜403とアモルファスシリコン膜404とを連続成膜する。 As shown in FIG. 12, a gate electrode 402 is formed on a glass substrate 401. A gate insulating film 403 is formed on the gate electrode 402. An amorphous silicon film 404 is formed on the gate insulating film 403. The amorphous silicon film 404 is disposed so as to overlap the gate electrode 402 with the gate insulating film 403 interposed therebetween. For example, the gate insulating film 403 and the amorphous silicon film 404 are successively formed by a CVD (Chemical Vapor Deposition) method.
 そして、アモルファスシリコン膜404にレーザ光L1を照射することで、図13に示すように、ポリシリコン膜405が形成される。すなわち、図3等で示したレーザ照射装置1によって、アモルファスシリコン膜404を結晶化する。これにより、シリコンが結晶化したポリシリコン膜405がゲート絶縁膜403上に形成される。ポリシリコン膜405は、上記したポリシリコン膜に相当する。 Then, by irradiating the amorphous silicon film 404 with laser light L1, a polysilicon film 405 is formed as shown in FIG. 13. That is, the amorphous silicon film 404 is crystallized by the laser irradiation device 1 shown in FIG. 3 etc. As a result, a polysilicon film 405 made of crystallized silicon is formed on the gate insulating film 403. The polysilicon film 405 corresponds to the polysilicon film described above.
 本実施の形態にかかる半導体装置の製造方法は、以下のステップを有していてもよい。
 (s1)基板上に非晶質膜を形成するステップ。
 (s2)前記非晶質膜を結晶化して結晶化膜を形成するように、ライン状のレーザ光を前記基板に照射して、前記非晶質膜をアニールするステップ。
 そして、s2のステップで、上記の搬送装置を用い他搬送方法で,基板となる被処理体66を搬送する。
The method for manufacturing a semiconductor device according to this embodiment may include the following steps.
(s1) A step of forming an amorphous film on a substrate.
(s2) irradiating the substrate with a line-shaped laser beam to anneal the amorphous film so as to crystallize the amorphous film and form a crystallized film.
Then, in step s2, the above-mentioned transfer device is used to transfer the processing object 66, which will become the substrate, by another transfer method.
 さらに、上記の説明では、本実施の形態にかかるレーザアニール装置が、アモルファスシリコン膜にレーザ光を照射してポリシリコン膜を形成するものとして説明したが、アモルファスシリコン膜にレーザ光を照射してマイクロクリスタルシリコン膜を形成するものであってもよい。さらには、アニールを行うレーザ光はエキシマレーザに限定されるものではなく、Nd:YAGレーザ等であってもよい。また、本実施の形態にかかる方法は、シリコン膜以外の薄膜を結晶化するレーザアニール装置に適用することも可能である。すなわち、非晶質膜にレーザ光を照射して、結晶化膜を形成するレーザアニール装置であれば、本実施の形態にかかる方法は適用可能である。本実施の形態にかかるレーザアニール装置によれば、結晶化膜付き基板を適切に改質することができる。 Furthermore, in the above description, the laser annealing apparatus according to the present embodiment has been described as irradiating an amorphous silicon film with laser light to form a polysilicon film, but it may also be irradiating an amorphous silicon film with laser light to form a microcrystalline silicon film. Furthermore, the laser light used for annealing is not limited to an excimer laser, and may be an Nd:YAG laser or the like. The method according to the present embodiment can also be applied to a laser annealing apparatus that crystallizes a thin film other than a silicon film. In other words, the method according to the present embodiment can be applied to any laser annealing apparatus that irradiates an amorphous film with laser light to form a crystallized film. The laser annealing apparatus according to the present embodiment can appropriately modify a substrate with a crystallized film.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 The present invention is not limited to the above embodiment, and can be modified as appropriate without departing from the spirit of the invention.
 この出願は、2023年2月16日に出願された日本出願特願2023-022575を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2023-022575, filed on February 16, 2023, the entire disclosure of which is incorporated herein by reference.
 1 レーザ照射装置
 6 搬送装置
 14 レーザ照射部
 15 レーザ光
 61_1~61_4 搬送ユニット
 62_1~62_4 保持機構
 63_1~63_4 移動機構
 60a 第1の領域
 60b 第2の領域
 60c 第3の領域
 60d 第4の領域
 60e 照射領域
 60f モニタ領域
 65 照射位置
 66 被処理体
 67 補助浮上ユニット
 68 回転機構
 69 アライメント機構
 300 有機ELディスプレイ
 311 TFT層
 311a TFT
 312 有機層
 312a 有機EL発光素子
 312b 隔壁
 313 カラーフィルタ層
 313a カラーフィルタ(CF)
 314 封止基板
 PX 画素
 601 リニアモータ
 601a 可動子
 601b 固定子
 603 ガイド機構
 606 ベース
 607 ダンパ
 621 昇降機構
 622 吸着部
 703 ガイド機構
 704 可動部
 706 ベース
 709 ベルト
 711 ACサーボモータ
 714 排気フランジ
 715 カバー
 716 プーリ
 730 チャンバ
 740 配管
 741 配管
 742 集塵機
REFERENCE SIGNS LIST 1 laser irradiation device 6 transport device 14 laser irradiation section 15 laser light 61_1 to 61_4 transport unit 62_1 to 62_4 holding mechanism 63_1 to 63_4 moving mechanism 60a first region 60b second region 60c third region 60d fourth region 60e irradiation region 60f monitor region 65 irradiation position 66 processing target object 67 auxiliary floating unit 68 rotation mechanism 69 alignment mechanism 300 organic EL display 311 TFT layer 311a TFT
312 organic layer 312a organic EL light emitting element 312b partition wall 313 color filter layer 313a color filter (CF)
314 Sealing substrate PX Pixel 601 Linear motor 601a Movable element 601b Stator 603 Guide mechanism 606 Base 607 Damper 621 Lifting mechanism 622 Suction portion 703 Guide mechanism 704 Movable element 706 Base 709 Belt 711 AC servo motor 714 Exhaust flange 715 Cover 716 Pulley 730 Chamber 740 Pipe 741 Pipe 742 Dust collector

Claims (10)

  1.  ライン状のレーザ光を基板に照射するために、前記基板を搬送する搬送装置であって、
     前記基板をその上面で浮上させる浮上ユニットと、
     前記基板に対する前記レーザ光の照射位置を変えるよう、搬送方向に前記基板を移動する第1搬送ユニットと、
     上面視において、前記照射位置の外側で前記基板を移動する第2搬送ユニットと、を備え、
     前記第1搬送ユニットが、
     前記基板を保持する第1保持機構と、
     前記第1保持機構を搬送方向に直進移動させるリニアモータと、を有しており、
     前記第2搬送ユニットが、
     前記基板を保持する第2保持機構と、
     前記第2保持機構が連結されたベルトと、
     前記ベルトが掛け回されたプーリと、
     前記プーリを回転させるACサーボモータと、を有している搬送装置。
    A conveying device that conveys a substrate in order to irradiate the substrate with a line-shaped laser beam, comprising:
    a levitation unit that levitates the substrate on its upper surface;
    a first transport unit that moves the substrate in a transport direction so as to change an irradiation position of the laser light on the substrate;
    a second transport unit configured to move the substrate outside the irradiation position when viewed from above,
    The first conveying unit,
    a first holding mechanism for holding the substrate;
    a linear motor that moves the first holding mechanism linearly in a conveying direction,
    The second transport unit,
    a second holding mechanism for holding the substrate;
    a belt to which the second retaining mechanism is connected;
    A pulley around which the belt is wound;
    and an AC servo motor for rotating the pulley.
  2.  前記プーリと前記ベルトとの接触部分を覆うカバーと、
     前記カバーの内部の空間を排気する排気機構と、を備えた請求項1に記載の搬送装置。
    a cover for covering a contact portion between the pulley and the belt;
    The transport device according to claim 1 , further comprising an exhaust mechanism for exhausting the space inside the cover.
  3.  前記第2搬送ユニットが、前記搬送方向と直交する方向、又は前記搬送方向の反対方向に前記基板を搬送する請求項1、又は2に記載の搬送装置。 The transport device according to claim 1 or 2, wherein the second transport unit transports the substrate in a direction perpendicular to the transport direction or in a direction opposite to the transport direction.
  4.  ライン状のレーザ光を基板に照射するために、前記基板を搬送する搬送方法であって、
     (A)浮上ユニットが、その上面で前記基板を浮上させるステップと、
     (B)第1搬送ユニットが、搬送方向に前記基板を移動することで、前記基板に対する前記レーザ光の照射位置を変えるステップと、
     (C)第2搬送ユニットが、上面視において、前記照射位置の外側で前記基板を移動するステップと、を備え、
     前記第1搬送ユニットが、
     前記基板を保持する第1保持機構と、
     前記第1保持機構を搬送方向に直進移動させるリニアモータと、を有しており、
     前記第2搬送ユニットが、
     前記基板を保持する第2保持機構と、
     前記第2保持機構が連結されたベルトと、
     前記ベルトが掛け回されたプーリと、
     前記プーリを回転させるACサーボモータと、を有している搬送方法。
    A method for transporting a substrate in order to irradiate the substrate with a line-shaped laser beam, comprising the steps of:
    (A) a levitation unit levitating the substrate on its upper surface;
    (B) a first transport unit moves the substrate in a transport direction to change an irradiation position of the laser light on the substrate;
    (C) a second transport unit moving the substrate outside the irradiation position in a top view,
    The first conveying unit,
    a first holding mechanism for holding the substrate;
    a linear motor that moves the first holding mechanism linearly in a conveying direction,
    The second transport unit,
    a second holding mechanism for holding the substrate;
    a belt to which the second retaining mechanism is connected;
    A pulley around which the belt is wound;
    and an AC servo motor for rotating the pulley.
  5.  前記プーリと前記ベルトとの接触部分を覆うカバーが設けられ、
     前記カバーの内部の空間を排気する請求項4に記載の搬送方法。
    a cover is provided to cover a contact portion between the pulley and the belt;
    The transport method according to claim 4, further comprising the step of evacuating the space inside the cover.
  6.  前記第2搬送ユニットが、前記搬送方向と直交する方向、又は前記搬送方向の反対方向に前記基板を搬送する請求項4、又は5に記載の搬送方法。 The transport method according to claim 4 or 5, wherein the second transport unit transports the substrate in a direction perpendicular to the transport direction or in a direction opposite to the transport direction.
  7.  (s1)基板上に非晶質膜を形成するステップと、
     (s2)前記非晶質膜を結晶化して結晶化膜を形成するように、ライン状のレーザ光を前記基板に照射して、前記非晶質膜をアニールするステップと、を備えた半導体装置の製造方法であって、
     前記(s2)アニールするステップは、
     (sa)浮上ユニットが、その上面で前記基板を浮上させるステップと、
     (sb)第1搬送ユニットが、上面視において、搬送方向に前記基板を移動することで、前記基板に対する前記レーザ光の照射位置を変えるステップと、
     (sc)第2搬送ユニットが、上面視において、前記照射位置の外側で前記基板を移動するステップと、を備え、
     前記第1搬送ユニットが、
     前記基板を保持する第1保持機構と、
     前記第1保持機構を搬送方向に直進移動させるリニアモータと、を有しており、
     前記第2搬送ユニットが、
     前記基板を保持する第2保持機構と、
     前記第2保持機構が連結されたベルトと、
     前記ベルトが掛け回されたプーリと、
     前記プーリを回転させるACサーボモータと、を有している有機ELディスプレイの製造方法。
    (s1) forming an amorphous film on a substrate;
    (s2) irradiating the substrate with a line-shaped laser beam to anneal the amorphous film so as to crystallize the amorphous film to form a crystallized film,
    The annealing step (s2) includes:
    (sa) a levitation unit levitating the substrate on its upper surface;
    (sb) a step in which a first transport unit moves the substrate in a transport direction in a top view to change an irradiation position of the laser light on the substrate;
    (sc) a second transport unit moving the substrate outside the irradiation position in a top view,
    The first conveying unit,
    a first holding mechanism for holding the substrate;
    a linear motor that moves the first holding mechanism linearly in a conveying direction,
    The second transport unit,
    a second holding mechanism for holding the substrate;
    a belt to which the second retaining mechanism is connected;
    A pulley around which the belt is wound;
    and an AC servo motor that rotates the pulley.
  8.  前記プーリと前記ベルトとの接触部分を覆うカバーが設けられ、
     前記カバーの内部の空間を排気する請求項7に記載の有機ELディスプレイの製造方法。
    a cover is provided to cover a contact portion between the pulley and the belt;
    The method for manufacturing an organic electroluminescence display according to claim 7, further comprising the step of evacuating the space inside the cover.
  9.  前記第2搬送ユニットが、前記搬送方向と直交する方向、又は前記搬送方向の反対方向に前記基板を搬送する請求項7、又は8に記載の有機ELディスプレイの製造方法。 The method for manufacturing an organic EL display according to claim 7 or 8, wherein the second transport unit transports the substrate in a direction perpendicular to the transport direction or in a direction opposite to the transport direction.
  10.  基板をその上面で浮上させる浮上ユニットと、
     前記基板にライン状のレーザ光を照射するレーザ照射部と、
     前記基板に対する前記レーザ光の照射位置を変えるよう、搬送方向に前記基板を移動する第1搬送ユニットと、
     上面視において、前記照射位置の外側で前記基板を移動する第2搬送ユニットと、を備え、
     前記第1搬送ユニットが、
     前記基板を保持する第1保持機構と、
     前記第1保持機構を搬送方向に直進移動させるリニアモータと、を有しており、
     前記第2搬送ユニットが、
     前記基板を保持する第2保持機構と、
     前記第2保持機構が連結されたベルトと、
     前記ベルトが掛け回されたプーリと、
     前記プーリを回転させるACサーボモータと、を有しているレーザ照射装置。
    a levitation unit that levitates the substrate on its upper surface;
    a laser irradiation unit that irradiates the substrate with a line-shaped laser beam;
    a first transport unit that moves the substrate in a transport direction so as to change an irradiation position of the laser light on the substrate;
    a second transport unit configured to move the substrate outside the irradiation position when viewed from above,
    The first conveying unit,
    a first holding mechanism for holding the substrate;
    a linear motor that moves the first holding mechanism linearly in a conveying direction,
    The second transport unit,
    a second holding mechanism for holding the substrate;
    a belt to which the second retaining mechanism is connected;
    A pulley around which the belt is wound;
    and an AC servo motor that rotates the pulley.
PCT/JP2024/000096 2023-02-16 2024-01-09 Conveyance device, laser irradiating device, conveyance method, and production method for organic el display device WO2024171651A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023022575A JP2024116774A (en) 2023-02-16 2023-02-16 TRANSPORTATION DEVICE, LASER IRRADIATION DEVICE, TRANSPORTATION METHOD, AND METHOD FOR MANUFACTURING ORGANIC EL DISPLAY DEVICE
JP2023-022575 2023-02-16

Publications (1)

Publication Number Publication Date
WO2024171651A1 true WO2024171651A1 (en) 2024-08-22

Family

ID=92421461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/000096 WO2024171651A1 (en) 2023-02-16 2024-01-09 Conveyance device, laser irradiating device, conveyance method, and production method for organic el display device

Country Status (2)

Country Link
JP (1) JP2024116774A (en)
WO (1) WO2024171651A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113924A (en) * 1997-06-10 1999-01-06 Dainippon Screen Mfg Co Ltd Linearly driving device and substrate-carrying device provided with it
JP2013098482A (en) * 2011-11-04 2013-05-20 Olympus Corp Wafer conveying device
JP6887234B2 (en) * 2016-09-21 2021-06-16 株式会社日本製鋼所 Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113924A (en) * 1997-06-10 1999-01-06 Dainippon Screen Mfg Co Ltd Linearly driving device and substrate-carrying device provided with it
JP2013098482A (en) * 2011-11-04 2013-05-20 Olympus Corp Wafer conveying device
JP6887234B2 (en) * 2016-09-21 2021-06-16 株式会社日本製鋼所 Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2024116774A (en) 2024-08-28

Similar Documents

Publication Publication Date Title
JP6968243B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
JP6754266B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
US11676831B2 (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
WO2022163783A1 (en) Conveyance device, conveyance method, and method for manufacturing semiconductor device
US11348787B2 (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
CN109690739B (en) Laser irradiation apparatus, laser irradiation method, and semiconductor device manufacturing method
WO2024171651A1 (en) Conveyance device, laser irradiating device, conveyance method, and production method for organic el display device
US20190393064A1 (en) Apparatus for routing a carrier in a processing system, a system for processing a substrate on the carrier, and method of routing a carrier in a vacuum chamber
JP2025012185A (en) TRANSPORTATION DEVICE, LASER IRRADIATION DEVICE, TRANSPORTATION METHOD, AND METHOD FOR MANUFACTURING ORGANIC EL DISPLAY DEVICE
JP2023108195A (en) Conveying device and film forming device
JP6775449B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
WO2024214213A1 (en) Transport device, laser irradiation device, transport method, and method for manufacturing semiconductor device
JP7159363B2 (en) Laser irradiation device
JP7095166B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
WO2024009470A1 (en) Conveyance device, conveyance method, and method for producing semiconductor device
US20250239475A1 (en) Conveyance apparatus, transfer method, conveyance method, and semiconductor apparatus manufacturing method
US20250232996A1 (en) Conveyance apparatus, conveyance method, and semiconductor apparatus manufacturing method
WO2024134777A1 (en) Observation device, observation method, and method for manufacturing semiconductor device
WO2025083797A1 (en) Laser irradiation device, laser irradiation method, and method for manufacturing semiconductor device
CN120380588A (en) Observation device, observation method, and method for manufacturing semiconductor device
CN118985037A (en) Transport device, transfer method, transport method, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24756503

Country of ref document: EP

Kind code of ref document: A1