WO2024171487A1 - Powder lamination shaping assistance system, powder lamination shaping assistance method, and program - Google Patents
Powder lamination shaping assistance system, powder lamination shaping assistance method, and program Download PDFInfo
- Publication number
- WO2024171487A1 WO2024171487A1 PCT/JP2023/028723 JP2023028723W WO2024171487A1 WO 2024171487 A1 WO2024171487 A1 WO 2024171487A1 JP 2023028723 W JP2023028723 W JP 2023028723W WO 2024171487 A1 WO2024171487 A1 WO 2024171487A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- additive manufacturing
- powder additive
- support system
- recipe
- manufacturing support
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 180
- 238000000034 method Methods 0.000 title claims description 193
- 238000003475 lamination Methods 0.000 title abstract description 5
- 238000007493 shaping process Methods 0.000 title abstract 6
- 239000000463 material Substances 0.000 claims abstract description 255
- 239000000654 additive Substances 0.000 claims abstract description 172
- 230000007613 environmental effect Effects 0.000 claims abstract description 28
- 238000002156 mixing Methods 0.000 claims abstract description 19
- 238000003860 storage Methods 0.000 claims abstract description 19
- 230000008569 process Effects 0.000 claims description 183
- 238000004519 manufacturing process Methods 0.000 claims description 151
- 230000000996 additive effect Effects 0.000 claims description 150
- 238000004364 calculation method Methods 0.000 claims description 59
- 239000004615 ingredient Substances 0.000 claims description 46
- 238000000465 moulding Methods 0.000 claims description 38
- 238000004458 analytical method Methods 0.000 claims description 16
- 238000002425 crystallisation Methods 0.000 claims description 14
- 230000008025 crystallization Effects 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 6
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 4
- 230000004927 fusion Effects 0.000 claims description 3
- 230000003746 surface roughness Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 description 47
- 229920005989 resin Polymers 0.000 description 37
- 239000011347 resin Substances 0.000 description 37
- 238000004891 communication Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 229920006038 crystalline resin Polymers 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 5
- 229920000571 Nylon 11 Polymers 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920000299 Nylon 12 Polymers 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/80—Data acquisition or data processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
- B29C64/268—Arrangements for irradiation using laser beams; using electron beams [EB]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/295—Heating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/314—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a powder additive manufacturing support system, a powder additive manufacturing support method, and a program.
- the present invention claims priority to Japanese patent application number 2023-021736 filed on February 15, 2023, and the contents of that application are incorporated by reference into this application in designated countries where incorporation by reference of literature is permitted.
- Patent Document 1 describes the additive manufacturing device as including "a chamber filled with an inert gas of a predetermined concentration, a modeling table that is arranged in the chamber and can move up and down, a material supplying device that supplies material powder onto the modeling table, a powder holding wall that surrounds the modeling table and holds the material powder supplied from the material supplying device onto the modeling table, a material recovery bucket that contains the excess material powder discharged outside the powder holding wall together with impurities, and an impurity removal device that removes impurities from the impurity-containing material powder in the material recovery bucket, and returns the material powder from which impurities have been removed by the impurity removal device to the material supplying device for reuse, and includes a material drying device that dries the material powder returned from the material recovery bucket to the material supplying device.”
- Powder additive manufacturing equipment can manufacture objects (modeled products) of various three-dimensional shapes by executing the powder additive manufacturing process.
- the powder additive manufacturing process is a type of additive manufacturing (3D printing) process that obtains objects of the desired three-dimensional shape by repeatedly executing the process of laying material powder (forming a powder bed) and the process of melting and sintering the material powder by irradiating the powder bed with a laser.
- Patent Document 1 describes a method for efficiently reusing powdered material that has been used once by using a material recovery bucket and an impurity removal device.
- the method described in Patent Document 1 does not take into consideration optimizing the material recipe and modeling process conditions to prevent deformation during modeling. Therefore, with the technology in this document, it is difficult to obtain appropriate material recipes and modeling process conditions when using materials that are prone to deformation during modeling (e.g., recycled powder materials), making it difficult to solve the above problem.
- the present invention was made in consideration of the above problems, and aims to obtain a material recipe that takes into account costs and environmental impact, and appropriate molding process conditions that can achieve the desired molding quality.
- a powder additive manufacturing support system for solving the above problems comprises a storage unit that stores material information in which information regarding materials, additives, and material properties of the materials used in powder additive manufacturing is registered, and a material recipe generation unit that uses the material information to generate material recipe information including multiple material recipe candidates that represent combinations of the materials and the additives and the blending ratios for each combination, and a predetermined type of index value for selecting a specific material recipe from the material recipe candidates.
- the present invention makes it possible to obtain a material recipe that takes into account costs and environmental impact, and appropriate molding process conditions that can achieve the desired molding quality.
- FIG. 1A to 1C are diagrams illustrating an example of a powder additive manufacturing process using a powder additive manufacturing apparatus.
- FIG. 1 is a diagram showing an example of a schematic configuration of a powder additive manufacturing support system.
- FIG. 11 is a diagram showing an example of material information.
- FIG. 4 is a diagram showing an example of ingredient recipe information.
- FIG. 11 is a flow diagram showing an example of a powder additive manufacturing support process.
- FIG. 11 is a flow diagram showing an example of a material recipe generation process.
- FIG. 11 is a flowchart illustrating an example of a modeling process condition calculation process.
- FIG. 1 is a diagram showing an example of a slice model and a lamination direction.
- FIG. 1 is a diagram illustrating an example of a hardware configuration of a powder additive manufacturing support system.
- the processing performed by executing a program may be described.
- the computer executes the program using a processor (e.g., CPU: Central Processing Unit, GPU: Graphics Processing Unit) and performs the processing defined in the program using storage resources (e.g., memory resources) and interface devices (e.g., communication ports). Therefore, the subject of the processing performed by executing the program may be the processor.
- the subject of the processing performed by executing the program may be a controller, device, system, computer, or node having a processor.
- the subject of the processing performed by executing the program may be a calculation unit (processing unit), and may include a dedicated circuit that performs specific processing.
- a dedicated circuit is, for example, an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), or a CPLD (Complex Programmable Logic Device).
- the program may also be installed on the computer from a program source.
- the program source may be, for example, a program distribution server or a computer-readable storage medium.
- the program distribution server may include a processor and a storage resource that stores the program to be distributed, and the processor of the program distribution server may distribute the program to be distributed to other computers.
- two or more programs may be realized as one program, and one program may be realized as two or more programs.
- the powder additive manufacturing support system is a system that supports processing in a powder additive manufacturing device (e.g., a 3D printer, etc.) by calculating and generating information used in the powder additive manufacturing process by the device.
- a powder additive manufacturing device e.g., a 3D printer, etc.
- the powder additive manufacturing support system generates candidates for material recipes that combine materials used in the powder additive manufacturing process (e.g., crystalline resin, etc.; the crystalline resin may be recycled material) with additives in a specified ratio.
- the powder additive manufacturing support system calculates the quality characteristics and costs of a standard modeling shape for each material recipe candidate and presents them to the user.
- the powder additive manufacturing support system also performs modeling analysis processing using material recipes selected by the user and 3D models of the products to be manufactured, and calculates appropriate modeling process conditions to obtain quality characteristics that meet the user's desired quality standards.
- the powder additive manufacturing support system presents the user with the quality characteristics, cost, etc. of each material recipe candidate for a standard modeling shape along with the generated material recipe candidates. This allows the user to select an appropriate material recipe by taking into account the presented quality characteristics, etc.
- the powder additive manufacturing support system also calculates the modeling process conditions for the product to be manufactured using the selected material recipe, while making corrections based on certain rules. This allows the user to obtain modeling process conditions that will result in quality characteristics that meet the desired quality standards.
- Figure 1 shows an example of a powder additive manufacturing process using a powder additive manufacturing device.
- the powder additive manufacturing process is performed using a powder additive manufacturing device, it is possible to manufacture (create) an integrated three-dimensional object, and it is also possible to manufacture shapes that are difficult to create using mechanical processing.
- the powder additive manufacturing process in this embodiment achieves additive manufacturing by laying down thermoplastic resin material powder using a roller or blade, and then irradiating it with a laser to melt and sinter the material powder.
- the material powder is supplied and laid down on the part bed section using a roller from the left feed section where the material powder is stored.
- the laid material powder is irradiated with a laser from the laser light source to melt and sinter the material powder, obtaining the first layer of sintered body.
- rollers are again used to supply and lay the powder material from the right feed section onto the part bed.
- second laser scan a laser is irradiated from the laser light source onto the laid powder, melting and sintering the powder material, and a second layer of sintered compact is obtained that is bonded to the first layer of sintered compact.
- the powder additive manufacturing device repeats the steps of this powder additive manufacturing process to create three-dimensional objects of any shape.
- crystalline resins are used as the material powder from the standpoint of precision and strength.
- crystalline resins such as PA12 (polyamide 12), PA11 (polyamide 11), PP (polypropylene), PE (polyethylene), POM (polyoxymethylene), PBT (polybutylene terephthalate), PA6 (polyamide 6), PA6-6 (polyamide 6-6), PPS, and PEEK are the target material powders. Note that the material powders are not limited to these crystalline resins.
- crystalline resin is the main material
- alloys and blends with non-crystalline resins can be considered material powders.
- [Outline of Powder Additive Manufacturing Support System] 2 is a diagram showing an example of a schematic configuration of the powder additive manufacturing support system 100 A.
- the powder additive manufacturing support system 100 A calculates and generates various information used in the powder additive manufacturing process described above for the powder additive manufacturing apparatus 100B.
- the powder additive manufacturing support system 100A has an input unit 110, a processing unit 120, a storage unit 130, an output unit 140, and a communication unit 150.
- the powder additive manufacturing support system 100A is also communicatively connected to an external device 200 via, for example, a communication cable or a predetermined network N (for example, the Internet, LAN: Local Area Network, WAN: Wide Area Network, etc.).
- a communication cable or a predetermined network N for example, the Internet, LAN: Local Area Network, WAN: Wide Area Network, etc.
- the external device 200 may include, for example, a device that provides various information used in the processing of the powder additive manufacturing support system 100A, or a device that acquires information output from the powder additive manufacturing support system 100A and displays the acquired information.
- the input unit 110 is a functional unit that accepts information input from a user or the external device 200. Specifically, the input unit 110 acquires information input by a user via the input device 310 of the powder additive manufacturing support system 100A. The input unit 110 also acquires various types of information used in processing by the powder additive manufacturing support system 100A from the external device 200. The input unit 110 registers the input information accepted from the user to the corresponding information in the storage unit 130, and stores the information acquired from the external device 200 in a corresponding database in the storage unit 130.
- the processing unit 120 is a functional unit that performs processing executed by the powder additive manufacturing support system 100A. Specifically, the processing unit 120 generates material recipes (material recipe candidates) and calculates the modeling process conditions. The processing unit 120 has a material recipe generation unit 121 and a process condition calculation unit 122 for performing these processes.
- the ingredient recipe generation unit 121 is a functional unit that generates ingredient recipes. Note that an ingredient recipe indicates the combination of a specific type of ingredient as the main ingredient with other ingredients and additives, and the mixing ratios of these ingredients.
- the material recipe generation unit 121 generates a material recipe by executing a material recipe generation process. Specifically, the material recipe generation unit 121 generates multiple material recipe candidates that combine materials (e.g., crystalline resins, etc.) used in the powder additive manufacturing process with additives in a predetermined ratio. In addition, the material recipe generation unit 121 calculates the quality characteristics, cost, and environmental impact level for a standard molding shape for each material recipe candidate. The material recipe generation process will be described in detail later.
- the process condition calculation unit 122 is a functional unit that calculates the modeling process conditions.
- the modeling process conditions are various parameters that can affect the quality characteristics of the modeled product in the powder additive manufacturing process, and include, for example, the laser output, laser scanning speed, laser irradiation profile, part bed temperature conditions, feed temperature conditions, powder laying (recoating) period, and the arrangement (position and angle) of the modeled product 3D model.
- the process condition calculation unit 122 calculates the modeling process conditions by executing a modeling process condition calculation process. Specifically, the process condition calculation unit 122 calculates the quality characteristics of a modeled product based on the material recipe by performing a modeling analysis process using a material recipe selected by the user from among the material recipe candidates, a 3D model of the product to be manufactured, and predetermined modeling process conditions.
- the process condition calculation unit 122 also corrects the modeling process conditions so as to obtain quality characteristics that satisfy the user's desired quality standards, and calculates appropriate modeling process conditions. Details of the modeling process condition calculation process will be described later.
- the memory unit 130 is a functional unit that stores various types of information. Specifically, the memory unit 130 stores information used for various processes by the processing unit 120, information generated and calculated by the processing unit 120, and the like. More specifically, the memory unit 130 has a material information database (DB) 131, a material recipe information DB 132, and a modeling-related information DB 133.
- DB material information database
- the material information DB 131 stores material information in which information about materials is registered.
- the material information includes information about materials used in the powder additive manufacturing process.
- FIG. 3 shows an example of material information stored in the material information DB 131.
- the material information has records in which resin type 131a, material characteristics 131b, additive candidates 131c, resin unit cost 131d, additive unit cost 131e, and environmental load unit cost 131f are associated with each other.
- resin type 131a is information that indicates the resin type of the main raw material (principal material) used in the powder additive manufacturing process.
- crystalline resins such as PA12 (polyamide 12) and PA11 (polyamide 11) and alloys with amorphous resins are registered as resin type 131a.
- resin materials with different model numbers and grades are registered as different types of resin materials, even if they are the same type.
- the material properties 131b are physical and chemical properties that may affect the quality characteristics of the product produced in the powder additive manufacturing process.
- the material properties 131b include at least one of the following: degree of crystallinity, crystallization temperature, crystallization rate, enthalpy of fusion, melting point, thermal decomposition point, laser absorptivity, emissivity, linear expansion coefficient, PVT (Pressure/Specific Volume/Temperature) properties, glass transition temperature, storage modulus, and loss modulus.
- Additive candidates 131c are information that indicates candidates for additives to be added to the resin type that is the main material.
- the types of additives include, for example, inorganic filler beads, flow aids, crystallization retarders, and crystal nucleating agents.
- Resin unit price 131d and additive unit price 131e are information indicating the unit price of the associated resin type and additive, respectively.
- Environmental load unit price 131f is information indicating the unit environmental load of the associated resin type and additive. In environmental load unit price 131f, information indicating, for example, the amount of carbon dioxide emissions is registered in association with each resin type and additive.
- the material information may be obtained from the external device 200 or may be input by the user. Such material information is used in the material recipe generation process described below.
- the material recipe information DB132 stores material recipe information in which information on multiple material recipe candidates is registered.
- the material recipe information includes the combination of the main material resin type and additives, the mixing ratio, and information such as the quality characteristics and cost of standard molding shapes using each material recipe.
- FIG. 4 shows an example of ingredient recipe information stored in the ingredient recipe information DB 132.
- the ingredient recipe information has records in which ingredients 132a, mixture ratios 132b, costs 132c, environmental impact levels 132d, and standard quality characteristics 132e are associated with each other.
- material 132a is the material used in the powder additive manufacturing process, and is information indicating the combination of the main raw material resin type and additives.
- Mixing ratio 132b is information indicating the mixing ratio of resin type and additives.
- Cost 132c is information indicating the cost of manufacturing (molding) a molded product of a standard shape based on the associated material and its mixing ratio.
- Environmental impact level 132d is information indicating the degree of environmental impact when manufacturing (molding) a molded product of a standard shape based on the associated material and its mixing ratio.
- the standard quality characteristics 132e are information indicating the quality characteristics of a molded product of a standard shape molded based on the associated material and its blending ratio. Specifically, the standard quality characteristics 132e indicate the quality characteristics obtained when a molded product of a standard shape (e.g., a test piece shape) is manufactured (molded) based on the associated material and its blending ratio, and standard molding process conditions.
- the standard molding process conditions refer to standard molding process conditions that are determined in advance according to, for example, the type of resin that is the main raw material.
- the standard quality characteristics 132e also include precision and mechanical characteristics.
- deformation amount such as warping, density, surface roughness, and color.
- mechanical characteristics at least one of the following characteristics is registered: modulus of elasticity, tensile strength, and elongation.
- Such ingredient recipe information is generated and calculated by executing the ingredient recipe generation process, and is registered in ingredient recipe information DB132.
- the modeling-related information DB 133 stores various information related to the modeling of a modeled product. Specifically, the modeling-related information DB 133 stores information such as the standard modeled product shape, standard modeling process conditions, a 3D model of the product to be manufactured, initial values of modeling process conditions, and quality standards.
- the standard modeling product shape is shape data for manufacturing (modeling) a modeling product with a relatively simplified shape, such as a test piece shape.
- the standard modeling process conditions are information that registers standard modeling process conditions that are determined in advance according to the type of resin that is the main raw material, for example.
- the 3D model is shape data that indicates the molding shape of the product to be manufactured.
- the initial values of the molding process conditions are information that indicates the initial values of the molding process conditions used in the molding analysis processing for the product to be manufactured. Note that, for the initial values of the laser conditions, temperature conditions, and powder laying conditions, predetermined standard molding process conditions according to the resin type may be used, or conditions that have been set and input in advance by the user may be used. In addition, for the positioning of the 3D model of the molded product, the conditions that have been set and input in advance by the user are basically used as the initial values.
- the quality standards are information that registers the quality standards desired by the user. Specifically, the quality standards are registered as user-specified quality standards selected and specified by the user from among characteristic values related to molding accuracy such as the amount of deformation such as warping, density, surface roughness, and color, and characteristic values related to mechanical properties such as elastic modulus, tensile strength, and elongation.
- such standard molded product shapes, 3D models, and standard molding process conditions may be acquired, for example, from the external device 200 and stored in the molding-related information DB 133.
- the quality standards may be generated based on input operations by the user and stored in the molding-related information DB 133.
- the output unit 140 is a functional unit that outputs various information. Specifically, the output unit 140 outputs information calculated and generated by the powder additive manufacturing support system 100A and information stored in the memory unit 130 to the external device 200 via the communication unit 150.
- the output unit 140 generates screen information for displaying information calculated and generated by the powder additive manufacturing support system 100A and information stored in the memory unit 130, and outputs the information to an output device (e.g., a display device such as a monitor) of the system or to an external device 200.
- an output device e.g., a display device such as a monitor
- the communication unit 150 is a functional unit that communicates information with the external device 200. Specifically, the communication unit 150 acquires information such as material information, 3D models, and standard modeling process conditions from the external device 200. The communication unit 150 also transmits to the external device 200 information calculated and generated by the powder additive manufacturing support system 100A, information stored in the memory unit 130, and screen information for displaying this information.
- FIG. 5 is a flow diagram showing an example of the powder additive manufacturing support process. This process starts, for example, when the input unit 110 receives an execution instruction from the user.
- the input unit 110 acquires material information (step S10). Specifically, the input unit 110 acquires material information from the material information DB 131.
- the ingredient recipe generating unit 121 executes the ingredient recipe generating process (step S20). Specifically, the ingredient recipe generating unit 121 generates multiple ingredient recipe candidates using the acquired ingredient information, and calculates standard quality characteristics, etc. for each ingredient recipe candidate. Details of the ingredient recipe generating process will be described later with reference to FIG. 6.
- the input unit 110 accepts the user's selection of a specific ingredient recipe from among the ingredient recipe candidates (step S30). Specifically, the input unit 110 displays information about the generated ingredient recipe candidates on the output device via the output unit 140, and accepts the selection of a specific ingredient recipe from the user.
- the process condition calculation unit 122 executes a modeling process condition calculation process (step S40). Specifically, the process condition calculation unit 122 calculates modeling process conditions that satisfy the user's desired quality standards through a modeling analysis process based on the selected material recipe, a 3D model of the product to be manufactured, and standard modeling process conditions. Details of the process condition calculation process will be described later with reference to FIG. 7.
- step S40 the process condition calculation unit 122 has performed the processing of step S40, it ends the powder additive manufacturing support processing.
- step S20 we will explain the details of the material recipe generation process in step S20.
- FIG. 6 is a flow diagram showing an example of the material recipe generation process.
- the material recipe generation unit 121 uses material information to generate combinations of resin types and additive candidates, and generates material recipe candidates to which multiple blending ratios are assigned for each combination.
- each material recipe candidate can be assigned multiple combination ratios that fall within a predetermined range.
- the material recipe generation unit 121 generates material recipe candidates in which multiple combination ratios of resin type and additive candidate are assigned with a difference of 1% in each combination ratio, so that the combination ratios of the resin type and additive candidate are each within a range of 70%:30% to 90%:10%, for example.
- 20 material recipe candidates are generated within a predetermined combination ratio range, such as 71% resin type:29% additive candidate, or 84% resin type:16% additive candidate.
- the blending ratio is not limited to the above range, but may be set to an appropriate range depending on the type of resin, etc. Furthermore, setting information (not shown) indicating the range may be stored in advance in the storage unit 130.
- the material recipe generation unit 121 calculates the cost and environmental load for each material recipe candidate (step S022). Specifically, the material recipe generation unit 121 calculates the cost of each material recipe candidate based on the resin unit price and additive unit price of the material information and the mixing ratio of each material recipe candidate.
- the cost is information used as a reference index value when a user selects a specific material recipe from multiple material recipe candidates. Therefore, the cost may be calculated according to a certain rule (for example, a predetermined arithmetic formula), for example, by adding or multiplying the resin unit price and the additive unit price.
- the material recipe generation unit 121 also calculates the environmental load level of each material recipe candidate based on the environmental load unit of the material information and each compounding ratio of the material recipe candidate.
- the environmental load unit like the cost, is information used as a reference index value when the user selects a specific material recipe from among multiple material recipe candidates. Therefore, the environmental load level only needs to be calculated according to a certain rule (for example, a predetermined arithmetic formula), for example, by adding or multiplying the unit of the resin and additives registered in the environmental load unit.
- the material recipe generation unit 121 calculates standard quality characteristics for each material recipe candidate (step S023). Specifically, the material recipe generation unit 121 acquires the standard molded product shape and the standard molding process conditions from the molding-related information DB 133. In addition, the material recipe generation unit 121 executes a molding analysis process based on the standard molded product shape and the standard molding process conditions for each material recipe candidate, and calculates standard quality characteristics for each material recipe candidate.
- the molding analysis process is a simulation process for calculating the standard quality characteristics using the standard molded product shape and the standard molding process conditions, and publicly known technology may be used for the analysis process.
- the ingredient recipe generation unit 121 generates ingredient recipe information that associates the corresponding cost and environmental impact level with the calculated standard quality characteristics for each of the generated ingredient recipe candidates, and stores the information in the ingredient recipe information DB 132.
- the ingredient recipe generating unit 121 outputs the cost, environmental impact, and standard quality characteristics of the ingredient recipe candidates (step S024). Specifically, the ingredient recipe generating unit 121 generates screen information for displaying, for example, each record of the ingredient recipe information via the output unit 140, and outputs it to the display device.
- the material recipe generating unit 121 may obtain thresholds (e.g., upper limits) for cost and environmental impact from the user via the input unit 110, and display only information (records) such as cost related to material recipe candidates with costs and environmental impacts below the thresholds.
- the threshold may be obtained for at least either the cost or the environmental impact.
- the material recipe generating unit 121 may obtain thresholds for standard quality characteristics via the input unit 110, and display only information related to material recipe candidates with standard quality characteristics below the thresholds via the output unit 140.
- the ingredient recipe generating unit 121 determines whether or not a specific ingredient recipe has been selected (step S025). Specifically, the ingredient recipe generating unit 121 determines whether or not a specific ingredient recipe has been selected by the user from the displayed ingredient recipe candidates via the input unit 110. If it is determined that a specific ingredient recipe has not been selected (No in step S025), the ingredient recipe generating unit 121 performs the process of step S025 again. On the other hand, if it is determined that a specific ingredient recipe has been selected (Yes in step S025), the ingredient recipe generating unit 121 ends the process of this flow.
- the powder additive manufacturing support system 100A can present the user with combinations of resin types and additives, potential material recipes consisting of their mixing ratios, and reference index values corresponding to the potential material recipes.
- the powder additive manufacturing support system 100A not only supports the creation of material recipes, but also the selection of material recipes by the user by presenting information such as cost and environmental impact to the user.
- FIG. 7 is a flow diagram showing an example of the modeling process condition calculation process.
- the process condition calculation unit 122 acquires the material recipe selected by the user, a 3D model of the product to be manufactured, initial modeling process condition values, and a quality standard (step S041). Specifically, the process condition calculation unit 122 acquires the material recipe selected by the user, i.e., the combination of resin material and additives, and their mixing ratio, from the material recipe information. In addition, the process condition calculation unit 122 acquires the 3D model of the product to be manufactured, the initial modeling process condition values corresponding to the resin material in the material recipe, and the quality standard from the modeling-related information DB 133.
- the process condition calculation unit 122 executes a modeling analysis process based on the acquired material recipe, the 3D model, and the modeling process conditions (initial values in this case), and calculates the quality characteristics of the material recipe (step S042).
- the modeling analysis process is similar to the modeling analysis process for obtaining the standard quality characteristics described above, so a detailed description will be omitted.
- the process condition calculation unit 122 determines whether the calculated quality characteristics satisfy the quality standard (step S043). Specifically, the process condition calculation unit 122 determines whether the quality characteristics satisfy the quality standard based on a comparison between the quality characteristics and the quality standard.
- step S043 If the process condition calculation unit 122 determines that the quality characteristics do not satisfy the quality standard (No in step S043), the process condition calculation unit 122 transitions the process to step S044. On the other hand, if the process condition calculation unit 122 determines that the quality characteristics satisfy the quality standard (Yes in step S043), the process condition calculation unit 122 transitions the process to step S045.
- the process condition calculation unit 122 changes the values of the modeling process conditions based on certain rules. Specifically, the process condition calculation unit 122 changes the values of the modeling process conditions, such as the laser control conditions (e.g., laser output conditions, etc.), the part bed and feed temperature conditions, the powder laying cycle, and the arrangement of the modeled product 3D model, based on certain rules.
- the laser control conditions e.g., laser output conditions, etc.
- the part bed and feed temperature conditions e.g., the powder laying cycle
- the arrangement of the modeled product 3D model based on certain rules.
- a known method such as Newton's method or the calculus of variations may be used.
- process condition calculation unit 122 may change one of the modeling process conditions, or may change multiple modeling process conditions or all of the modeling process conditions in the processing of this step.
- step S042 the process condition calculation unit 122 calculates the quality characteristics of the material recipe again using the changed modeling process conditions.
- step S045 which is performed when it is determined that the quality characteristics satisfy the quality standards (Yes in step S043), the process condition calculation unit 122 outputs the calculated modeling process conditions via the output unit 140.
- the process condition calculation unit 122 outputs the modeling process conditions, which are used when it is determined that the quality characteristics satisfy the quality standards, to the powder additive manufacturing device 100B via the output unit 140.
- the process condition calculation unit 122 may generate screen information for displaying the modeling process conditions via the output unit 140 and output (display) it on the display device. Alternatively, the process condition calculation unit 122 may output (transmit) the calculated modeling process conditions or screen information of the modeling process conditions to the external device 200 via the communication unit 150. In this case, the user inputs the modeling process conditions to the powder additive manufacturing apparatus 100B, and the powder additive manufacturing process is executed in the apparatus.
- step S045 the process condition calculation unit 122 ends the processing of this flow.
- This type of powder additive manufacturing support system can determine material recipes that take into account costs and environmental impact, as well as appropriate manufacturing process conditions that can achieve the desired modeling quality.
- the powder additive manufacturing support system presents the user with the quality characteristics, cost, etc. of each material recipe candidate for a standard modeling shape along with the generated material recipe candidates. This allows the user to select an appropriate material recipe by taking into account the presented quality characteristics, etc.
- the powder additive manufacturing support system also calculates the modeling process conditions for the product to be manufactured using the selected material recipe, while making corrections based on certain rules. This allows the user to obtain modeling process conditions that will result in quality characteristics that meet the desired quality standards.
- the Powder Additive Manufacturing Support System automates the calculation of modeling process conditions, which would normally require multiple prototypes to optimize, making it possible to obtain optimized modeling process conditions more quickly.
- the Powder Additive Manufacturing Support System makes it possible to obtain appropriate material recipes and modeling process conditions more quickly.
- the powder additive manufacturing support system 100A corrects the manufacturing process conditions (temperature conditions and recoating period) so as to suppress warpage deformation caused by crystallization of molten and sintered material powder in the powder additive manufacturing process and prevent modeling errors.
- the powder additive manufacturing device 100B lays down thermoplastic resin powder using a roller or blade, and then irradiates it with a laser to melt and sinter it to obtain a three-dimensional object.
- the layer thickness per layer is often set to a range of 0.05 mm to 0.3 mm, for example, and if warping deformation equal to or greater than the layer thickness occurs during the modeling process, the three-dimensional object being modeled will interfere with the roller or blade.
- the process condition calculation unit 122 corrects the temperature condition of the part bed, which is one of the modeling process conditions, within the range above the crystallization temperature and below the melting point, which are material properties of the resin type.
- the powder additive manufacturing process can delay the crystallization of the material powder that occurs after melting and sintering, and can also prevent the material powder in the parts of the part bed that are not irradiated with the laser from melting.
- the process condition calculation unit 122 performs modeling analysis processing based on the crystallization rate, which is a material property of the resin type, and the modeling process conditions, which are the part bed temperature conditions, the feed temperature conditions, and the recoating period, and calculates the predicted amount of warpage deformation during the modeling process.
- the process condition calculation unit 122 also repeatedly performs correction of the part bed temperature conditions, feed temperature conditions, and recoat cycle (step S044), calculation of quality characteristics through modeling analysis processing (step S042), and comparison with quality standards (step S043) so that the calculated warpage deformation amount is equal to or less than the layer thickness per layer.
- the powder additive manufacturing support system 100A corrects various laser conditions so as to prevent density reduction due to insufficient laser irradiation of a material powder and thermal degradation due to excessive laser irradiation in a powder additive manufacturing process.
- the laser In the powder additive manufacturing process, the laser must be irradiated with thermal energy equal to or greater than the enthalpy of fusion of the powder material, and the laser irradiation conditions must be adjusted so that the maximum temperature reached during laser irradiation does not exceed the thermal decomposition temperature of the powder material.
- the process condition calculation unit 122 performs modeling analysis processing based on the laser absorptance, which is a material property of the resin type, and the modeling process conditions, which are the laser output, laser scanning speed, and laser irradiation profile, to calculate the predicted thermal energy and maximum temperature.
- the process condition calculation unit 122 also corrects the laser output, laser scanning speed, and laser irradiation profile so that the calculated thermal energy is equal to or greater than the melting enthalpy of the material property and the maximum temperature reached is equal to or less than the thermal decomposition temperature of the material property (step S044).
- the powder additive manufacturing support system 100A according to this embodiment suppresses warpage deformation caused by crystallization of molten and sintered material powder in the powder additive manufacturing process, and corrects the arrangement of the molded product to prevent molding errors.
- Warpage in the powder additive manufacturing process is caused by shrinkage that occurs when the molten and sintered material powder crystallizes. Therefore, the larger the area that is melted and sintered, the greater the amount of shrinkage, making warpage more likely to occur.
- Figure 8 shows an example of a slice model and stacking direction in the powder additive manufacturing process.
- the molded products (three-dimensional objects) OJ1 and OJ2 in the illustrated arrangements A and B are three-dimensional objects of the same shape, but their arrangements (stacking directions) during molding are different.
- the area that is melted and sintered at one time is smaller in position B compared to arrangement A, making it less likely for warping deformation to occur.
- the process condition calculation unit 122 creates a slice model by dividing the 3D model of the product to be manufactured in the stacking direction, and corrects the arrangement of the molded product, such as its position and angle, so as to reduce the area of the slice with the largest area in the slice model.
- the process condition calculation unit 122 can calculate the arrangement during the execution of the powder additive manufacturing process that can reduce or suppress the probability of warping and the degree of deformation, even for products that are prone to warping depending on their size and shape.
- the process in step S044 of the modeling process condition calculation process may be performed by executing at least one of the processes described in the first to fourth embodiments.
- the process in step S044 may be performed by executing a combination of the corresponding processes in any one or more of the first to fourth embodiments, or may be performed by executing the corresponding processes in all of the embodiments.
- FIG. 9 shows an example of the hardware configuration of powder additive manufacturing support system 100A.
- Powder additive manufacturing support system 100A is a computer such as a server (including a cloud server), a workstation, or a personal computer. As shown in the figure, powder additive manufacturing support system 100A has an input device 310, an output device 320, a processing device 330, a main memory device 340, an auxiliary memory device 350, a communication device 360, and a bus 370 that electrically connects each of these devices.
- the input device 310 is a device that allows a user to input information and instructions to the powder additive manufacturing support system 100A.
- the input device 310 is, for example, a touch panel, a keyboard, a mouse, or a voice input device such as a microphone.
- the output device 320 is a device that outputs information generated by the powder additive manufacturing support system 100A. Specifically, the output device 320 is a display (display device), a printer, or a speaker.
- the processing device 330 is, for example, a device that performs arithmetic processing.
- the processing device 330 is a CPU, a microprocessor, a GPU, an FPGA, or other semiconductor device capable of performing calculations.
- the main memory device 340 is a memory device such as a RAM (Random Access Memory) that temporarily stores various read information, or a non-volatile memory device such as a ROM (Read Only Memory) that stores programs and application programs executed by the processing device 330 and various other information.
- the auxiliary memory device 350 is a non-volatile memory device such as an HDD (Hard Disk Drive), SSD (Solid State Drive), or flash memory that can store digital information.
- the communication device 360 is a device that performs wireless or wired information communication with the external device 200.
- the processing unit 120 of the powder additive manufacturing support system 100A is realized by a program that causes the processing device 330 (CPU, etc.) to perform processing. These programs are stored, for example, in the main memory device 340 or the auxiliary memory device 350, and are loaded onto the main memory device 340 for execution and executed by the processing device 330.
- the memory unit 130 may be realized by the main memory device 340 or the auxiliary memory device 350, or a combination of these.
- the communication unit 150 is realized by the communication device 360.
- the programs executed by the powder additive manufacturing support system 100A may be stored in a non-volatile storage medium that can be read by a processor such as a CPU.
- the programs stored in the non-volatile storage medium may be directly read by the powder additive manufacturing support system 100A, but may also be in other forms.
- Other forms include, for example, a form in which a processor system for program distribution reads the program from the medium, and then the program is transmitted (distributed) from the processor system for program distribution to the powder additive manufacturing support system 100A.
- Examples of non-volatile storage media include the ROM described as the main storage device 340, the HDD or SSD described as the auxiliary storage device 350, or other optical disk media.
- the functional blocks of the powder additive manufacturing support system 100A are classified according to the main processing content in order to facilitate understanding of the functions realized in this embodiment. Therefore, the present invention is not limited by the manner in which the functions are classified or their names. Furthermore, each configuration of the powder additive manufacturing support system 100A can be further classified into more components according to the processing content. Furthermore, a single component can be classified to perform even more processes.
- each functional unit may be constructed using hardware implemented in a computer (such as an integrated circuit such as an ASIC). Furthermore, the processing of each functional unit may be executed by a single piece of hardware, or may be executed by multiple pieces of hardware.
- the present invention is not limited to the above-mentioned embodiments and modifications, but includes various other embodiments and modifications.
- the above-mentioned embodiments have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described.
- it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment or modification and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
- control lines and information lines are those that are considered necessary for the explanation, and do not necessarily show all the control lines and information lines in the product. In reality, it can be assumed that almost all components are interconnected.
- 100A Powder additive manufacturing support system
- 110 Input unit
- 120 Processing unit
- 121 Material recipe generation unit
- 122 Process condition calculation unit
- 130 Storage unit
- 132 Material recipe information DB
- 133 Molding related information DB
- 140 Output unit
- 150 Communication unit
- 100B Powder additive manufacturing device
- 200 External device
- 310 Input device
- 320 Output device
- 330 Processing device
- 340 Main memory device
- 350 Auxiliary memory device
- 360 Communication device
- 370 Bus
- N Network
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Powder Metallurgy (AREA)
Abstract
[Problem] To obtain a material recipe that takes cost and environmental burden into account, and an appropriate shaping process condition under which the desired shaping quality can be achieved. [Solution] This powder lamination shaping assistance system comprises: a storage unit that stores material information in which is registered information relating to materials used in powder lamination shaping, additives, and material properties of said materials; and a material recipe generation unit that uses the material information to generate material recipe information, which includes candidates of a plurality of material recipes representing combinations of the materials and the additives and the mixing ratio for each combination, and a prescribed type of indicator value for selecting a specific material recipe from among the candidates of the material recipes.
Description
本発明は、粉末積層造形支援システム、粉末積層造形支援方法およびプログラムに関する。本発明は2023年2月15日に出願された日本国特許の出願番号2023-021736の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。
The present invention relates to a powder additive manufacturing support system, a powder additive manufacturing support method, and a program. The present invention claims priority to Japanese patent application number 2023-021736 filed on February 15, 2023, and the contents of that application are incorporated by reference into this application in designated countries where incorporation by reference of literature is permitted.
粉末積層造形装置で使用された材料粉末を再利用し自動で積層造形を行う技術は、例えば特許文献1に開示されている。具体的には、特許文献1には「所定濃度の不活性ガスで充満されるチャンバと、チャンバ内に配置されかつ上下方向に移動可能な造形テーブルと、造形テーブル上に材料粉体を供給する材料供給装置と、造形テーブルを取り囲みかつ造形テーブル上に材料供給装置から供給される材料粉体を保持する粉体保持壁と、粉体保持壁の外に排出される余剰の材料粉体と不純物を一緒に収容する材料回収用バケットと、材料回収用バケットの中の不純物を含む材料粉体から不純物を除去する不純物除去装置と、を含んで不純物除去装置で不純物が取り除かれた材料粉体を材料供給装置に戻して再利用する積層造形装置であって、材料回収用バケットから材料供給装置に戻される材料粉体を乾燥させる材料乾燥装置を含む。」と記載されている。
A technology for automatically performing additive manufacturing by reusing the material powder used in a powder additive manufacturing device is disclosed in, for example, Patent Document 1. Specifically, Patent Document 1 describes the additive manufacturing device as including "a chamber filled with an inert gas of a predetermined concentration, a modeling table that is arranged in the chamber and can move up and down, a material supplying device that supplies material powder onto the modeling table, a powder holding wall that surrounds the modeling table and holds the material powder supplied from the material supplying device onto the modeling table, a material recovery bucket that contains the excess material powder discharged outside the powder holding wall together with impurities, and an impurity removal device that removes impurities from the impurity-containing material powder in the material recovery bucket, and returns the material powder from which impurities have been removed by the impurity removal device to the material supplying device for reuse, and includes a material drying device that dries the material powder returned from the material recovery bucket to the material supplying device."
近年、処理の高速化および低価格化が進んだことにより、粉末積層造形装置が保守部品などをはじめとした少量生産品の製造に用いられる事例が増えている。粉末積層造形装置では、粉末積層造形プロセスの実行により、様々な立体形状の造形物(造形品)を製造することができる。なお、粉末積層造形プロセスは、材料粉末の敷設(パウダーベッドの形成)工程と、パウダーベッドへのレーザ照射による材料粉末の溶融・焼結工程と、を繰り返し実行することで、所望の立体形状をした造形物を得る付加製造(3Dプリント)プロセスの一種である。
In recent years, with the advances being made in processing speed and cost reduction, powder additive manufacturing equipment is increasingly being used to manufacture small-volume products such as maintenance parts. Powder additive manufacturing equipment can manufacture objects (modeled products) of various three-dimensional shapes by executing the powder additive manufacturing process. The powder additive manufacturing process is a type of additive manufacturing (3D printing) process that obtains objects of the desired three-dimensional shape by repeatedly executing the process of laying material powder (forming a powder bed) and the process of melting and sintering the material powder by irradiating the powder bed with a laser.
一方で、粉末積層造形プロセスの実行には、造形中の微小な反り変形を抑止するために、材料レシピ(材料と添加剤の組み合わせとその配合比率)や造形パラメータ(造形プロセス条件)を調整する必要があり、これらの適正化に工数を要するという課題がある。特に、使用済みの粉末材料や、廃棄プラスチックをベースとしたリサイクル粉末材料を用いる場合は、熱劣化や不純物の影響を考慮する必要がある。そのため、材料レシピや造形パラメータの調整は、バージン材を用いる場合に比べて困難であり、その適正化には多大な工数を要することが課題となっている。
On the other hand, to execute the powder additive manufacturing process, it is necessary to adjust the material recipe (the combination of materials and additives and their mixing ratios) and modeling parameters (modeling process conditions) to prevent minute warping deformation during modeling, and there is an issue that optimizing these requires labor. In particular, when using used powder materials or recycled powder materials based on discarded plastics, it is necessary to take into account the effects of thermal degradation and impurities. For this reason, adjusting the material recipe and modeling parameters is more difficult than when using virgin materials, and there is an issue that optimizing them requires a lot of labor.
なお、特許文献1には、材料回収用バケットや不純物除去装置を用いることで、一度使用された材料粉末を効率良く再利用する方法が記載されている。しかしながら、特許文献1に記載の方法では、造形中の変形を抑止するための材料レシピや造形プロセス条件の適正化については考慮されていない。そのため、同文献の技術では、造形中に変形が生じ易い材料(例えば、リサイクル粉末材料)を用いた場合の適正な材料レシピや造形プロセス条件を得ることが困難であり、上記課題を解決することは難しい。
Patent Document 1 describes a method for efficiently reusing powdered material that has been used once by using a material recovery bucket and an impurity removal device. However, the method described in Patent Document 1 does not take into consideration optimizing the material recipe and modeling process conditions to prevent deformation during modeling. Therefore, with the technology in this document, it is difficult to obtain appropriate material recipes and modeling process conditions when using materials that are prone to deformation during modeling (e.g., recycled powder materials), making it difficult to solve the above problem.
本発明は、上記課題に鑑みてなされたものであり、コストや環境負荷度を考慮した材料レシピと、所望の造形品質を達成できる適正な造形プロセス条件と、を得ることを目的とする。
The present invention was made in consideration of the above problems, and aims to obtain a material recipe that takes into account costs and environmental impact, and appropriate molding process conditions that can achieve the desired molding quality.
本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下のとおりである。上記の課題を解決する本発明の一態様に係る粉末積層造形支援システムは、粉末積層造形に用いられる材料、添加剤および当該材料の材料特性に関する情報が登録された材料情報を記憶する記憶部と、前記材料情報を用いて、前記材料および前記添加剤の組み合わせと、当該組み合わせごとの配合比率と、を表す複数の材料レシピの候補、および、前記材料レシピの候補の中から特定の材料レシピを選定するための所定種類の指標値、を含む材料レシピ情報を生成する材料レシピ生成部と、を備える。
The present application includes multiple means for solving at least part of the above problems, examples of which are as follows: A powder additive manufacturing support system according to one aspect of the present invention for solving the above problems comprises a storage unit that stores material information in which information regarding materials, additives, and material properties of the materials used in powder additive manufacturing is registered, and a material recipe generation unit that uses the material information to generate material recipe information including multiple material recipe candidates that represent combinations of the materials and the additives and the blending ratios for each combination, and a predetermined type of index value for selecting a specific material recipe from the material recipe candidates.
本発明によれば、コストや環境負荷度を考慮した材料レシピと、所望の造形品質を達成できる適正な造形プロセス条件と、を得ることができる。
The present invention makes it possible to obtain a material recipe that takes into account costs and environmental impact, and appropriate molding process conditions that can achieve the desired molding quality.
なお、上記以外の課題、構成および効果等は、以下の実施形態の説明により明らかにされる。
Note that issues, configurations, effects, etc. other than those mentioned above will become clear from the explanation of the embodiments below.
以下、図面を参照して本発明の実施形態を説明する。なお、実施形態は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施することが可能である。また、特に限定しない限り、各構成要素は、単数でも複数でも構わない。
Below, an embodiment of the present invention will be described with reference to the drawings. Note that the embodiment is an example for explaining the present invention, and appropriate omissions and simplifications have been made to clarify the explanation. The present invention can also be implemented in various other forms. Furthermore, unless otherwise specified, each component may be singular or plural.
また、図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
Furthermore, in order to facilitate understanding of the invention, the position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. Therefore, the present invention is not necessarily limited to the position, size, shape, range, etc. disclosed in the drawings.
また、各種情報の例として、「テーブル」や「リスト」等の表現を用いて説明することがあるが、各種情報はこれら以外のデータ構造で表現されてもよい。例えば、「**テーブル」等の各種情報は、「**情報」としてもよい。また、識別情報について説明する際に、「識別情報」、「識別子」、「名」、「ID」、「番号」等の表現を用いるが、これらについてはお互いに置換が可能である。
Furthermore, while various types of information may be described using expressions such as "table" and "list" as examples, the various types of information may be expressed in other data structures. For example, various types of information such as a "** table" may be expressed as "** information." Furthermore, when describing identification information, expressions such as "identification information," "identifier," "name," "ID," and "number" are used, but these are interchangeable.
また、同一あるいは同様の機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。また、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
In addition, when there are multiple components with the same or similar functions, they may be described using the same reference numerals with different subscripts. In addition, when there is no need to distinguish between these multiple components, the subscripts may be omitted.
また、実施形態において、プログラムを実行して行う処理について説明する場合がある。ここで、計算機は、プロセッサ(例えばCPU:Central Processing Unit、GPU:Graphics Processing Unit)によりプログラムを実行し、記憶資源(例えばメモリリソース)やインターフェースデバイス(例えば通信ポート)等を用いながら、プログラムで定められた処理を行う。そのため、プログラムを実行して行う処理の主体を、プロセッサとしてもよい。同様に、プログラムを実行して行う処理の主体が、プロセッサを有するコントローラ、装置、システム、計算機、ノードであってもよい。プログラムを実行して行う処理の主体は、演算部(処理部)であれば良く、特定の処理を行う専用回路を含んでいてもよい。ここで、専用回路とは、例えばFPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)、CPLD(Complex Programmable Logic Device)等である。
In addition, in the embodiments, the processing performed by executing a program may be described. Here, the computer executes the program using a processor (e.g., CPU: Central Processing Unit, GPU: Graphics Processing Unit) and performs the processing defined in the program using storage resources (e.g., memory resources) and interface devices (e.g., communication ports). Therefore, the subject of the processing performed by executing the program may be the processor. Similarly, the subject of the processing performed by executing the program may be a controller, device, system, computer, or node having a processor. The subject of the processing performed by executing the program may be a calculation unit (processing unit), and may include a dedicated circuit that performs specific processing. Here, a dedicated circuit is, for example, an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), or a CPLD (Complex Programmable Logic Device).
また、プログラムは、プログラムソースから計算機にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバまたは計算機が読み取り可能な記憶メディアであってもよい。プログラムソースがプログラム配布サーバの場合、プログラム配布サーバはプロセッサと配布対象のプログラムを記憶する記憶資源を含み、プログラム配布サーバのプロセッサが配布対象のプログラムを他の計算機に配布してもよい。また、実施例において、2以上のプログラムが1つのプログラムとして実現されてもよいし、1つのプログラムが2以上のプログラムとして実現されてもよい。
The program may also be installed on the computer from a program source. The program source may be, for example, a program distribution server or a computer-readable storage medium. When the program source is a program distribution server, the program distribution server may include a processor and a storage resource that stores the program to be distributed, and the processor of the program distribution server may distribute the program to be distributed to other computers. In the embodiments, two or more programs may be realized as one program, and one program may be realized as two or more programs.
<第一実施形態>
本実施形態に係る粉末積層造形支援システムは、粉末積層造形装置(例えば、3Dプリンタなど)による粉末積層造形プロセスに用いられる情報を算出および生成することで、当該装置における処理を支援するシステムである。 First Embodiment
The powder additive manufacturing support system according to this embodiment is a system that supports processing in a powder additive manufacturing device (e.g., a 3D printer, etc.) by calculating and generating information used in the powder additive manufacturing process by the device.
本実施形態に係る粉末積層造形支援システムは、粉末積層造形装置(例えば、3Dプリンタなど)による粉末積層造形プロセスに用いられる情報を算出および生成することで、当該装置における処理を支援するシステムである。 First Embodiment
The powder additive manufacturing support system according to this embodiment is a system that supports processing in a powder additive manufacturing device (e.g., a 3D printer, etc.) by calculating and generating information used in the powder additive manufacturing process by the device.
具体的には、粉末積層造形支援システムは、粉末積層造形プロセスに用いられる材料(例えば、結晶性樹脂など。なお、結晶性樹脂はリサイクル材であっても良い。)と添加剤とを所定の比率で配合した材料レシピの候補を生成する。また、粉末積層造形支援システムは、材料レシピ候補ごとに標準的な造形形状における品質特性やコスト等を算出し、ユーザに提示する。
Specifically, the powder additive manufacturing support system generates candidates for material recipes that combine materials used in the powder additive manufacturing process (e.g., crystalline resin, etc.; the crystalline resin may be recycled material) with additives in a specified ratio. In addition, the powder additive manufacturing support system calculates the quality characteristics and costs of a standard modeling shape for each material recipe candidate and presents them to the user.
また、粉末積層造形支援システムは、ユーザにより選定された材料レシピや製造対象製品の3Dモデル等を用いた造形解析処理を行うことで、ユーザ所望の品質基準を満たす品質特性が得られるように適正な造形プロセス条件を算出する。
The powder additive manufacturing support system also performs modeling analysis processing using material recipes selected by the user and 3D models of the products to be manufactured, and calculates appropriate modeling process conditions to obtain quality characteristics that meet the user's desired quality standards.
これにより、粉末積層造形支援システムは、コストや環境負荷度を考慮した材料レシピと、所望の造形品質を達成できる適正な造形プロセス条件と、を得ることができる。
This allows the powder additive manufacturing support system to obtain material recipes that take into account costs and environmental impact, as well as appropriate manufacturing process conditions that can achieve the desired modeling quality.
特に、粉末積層造形支援システムは、生成した材料レシピ候補と併せて、標準的な造形形状における材料レシピ候補ごとの品質特性やコスト等をユーザに提示する。これにより、ユーザは、提示された品質特性等を考慮して適切な材料レシピを選定することができる。
In particular, the powder additive manufacturing support system presents the user with the quality characteristics, cost, etc. of each material recipe candidate for a standard modeling shape along with the generated material recipe candidates. This allows the user to select an appropriate material recipe by taking into account the presented quality characteristics, etc.
また、粉末積層造形支援システムは、選定された材料レシピによる製造対象製品の造形プロセス条件を、一定ルールに基づき補正しながら算出する。これにより、ユーザは、所望の品質基準を満たす品質特性が得られる造形プロセス条件を取得することができる。
The powder additive manufacturing support system also calculates the modeling process conditions for the product to be manufactured using the selected material recipe, while making corrections based on certain rules. This allows the user to obtain modeling process conditions that will result in quality characteristics that meet the desired quality standards.
図1は、粉末積層造形装置による粉末積層造形プロセスの一例を示した図である。粉末積層造形装置で粉末積層造形プロセスが実行されると、一体となった立体物を製造(造形)でき、機械加工では困難な形状も製造することができる。
Figure 1 shows an example of a powder additive manufacturing process using a powder additive manufacturing device. When the powder additive manufacturing process is performed using a powder additive manufacturing device, it is possible to manufacture (create) an integrated three-dimensional object, and it is also possible to manufacture shapes that are difficult to create using mechanical processing.
本実施形態における粉末積層造形プロセスは、熱可塑性樹脂の材料粉末をローラまたはブレードを用いて敷設し、そこにレーザを照射して材料粉末を溶融・焼結させることで積層造形を実現するものである。
The powder additive manufacturing process in this embodiment achieves additive manufacturing by laying down thermoplastic resin material powder using a roller or blade, and then irradiating it with a laser to melt and sinter the material powder.
図示するように、粉末積層造形プロセス(粉面形成1回目)では、材料粉末が蓄えられた左側フィード部からローラを使ってパートベッド部に材料粉末を供給・敷設する。次に、粉末積層造形プロセス(レーザスキャン1回目)では、敷設された材料粉末(パウダーベッド)にレーザ光源からレーザを照射することで材料粉末を溶融・焼結させ、第1層目の焼結体を得る。
As shown in the figure, in the powder additive manufacturing process (first powder surface formation), the material powder is supplied and laid down on the part bed section using a roller from the left feed section where the material powder is stored. Next, in the powder additive manufacturing process (first laser scan), the laid material powder (powder bed) is irradiated with a laser from the laser light source to melt and sinter the material powder, obtaining the first layer of sintered body.
また次に、粉末積層造形プロセス(粉面形成2回目)では、再びローラを使って右側フィード部からパートベッドに材料粉末を供給・敷設する。また次に、粉末積層造形プロセス(レーザスキャン2回目)では、敷設した粉末にレーザ光源からレーザを照射することで材料粉末を溶融・焼結させ、第1層目の焼結体と結合した、第2層目の焼結体を得る。
Next, in the powder additive manufacturing process (second powder surface formation), rollers are again used to supply and lay the powder material from the right feed section onto the part bed. Next, in the powder additive manufacturing process (second laser scan), a laser is irradiated from the laser light source onto the laid powder, melting and sintering the powder material, and a second layer of sintered compact is obtained that is bonded to the first layer of sintered compact.
粉末積層造形装置は、このような粉末積層造形プロセスの工程を繰り返すことで、任意形状の立体物を積層造形する。
The powder additive manufacturing device repeats the steps of this powder additive manufacturing process to create three-dimensional objects of any shape.
なお、粉末積層造形プロセスでは、精度と強度の観点から、材料粉末として結晶性樹脂が用いられる。具体的には、PA12(ポリアミド12)、PA11(ポリアミド11)、PP(ポリプロピレン)、PE(ポリエチレン)、POM(ポリオキシメチレン)、PBT(ポリブチレンテレフタレート)、PA6(ポリアミド6)、PA6-6(ポリアミド6-6)、PPSおよびPEEKなどの結晶性樹脂が材料粉末の対象となる。なお、材料粉末は、これらの結晶性樹脂に限定されるものではない。
In addition, in the powder additive manufacturing process, crystalline resins are used as the material powder from the standpoint of precision and strength. Specifically, crystalline resins such as PA12 (polyamide 12), PA11 (polyamide 11), PP (polypropylene), PE (polyethylene), POM (polyoxymethylene), PBT (polybutylene terephthalate), PA6 (polyamide 6), PA6-6 (polyamide 6-6), PPS, and PEEK are the target material powders. Note that the material powders are not limited to these crystalline resins.
また、結晶性樹脂が主材料であれば、非結晶性樹脂とのアロイ、ブレンドした樹脂は、材料粉末の対象となる。
In addition, if crystalline resin is the main material, alloys and blends with non-crystalline resins can be considered material powders.
[粉末積層造形支援システムの概略構成]
図2は、粉末積層造形支援システム100Aの概略構成の一例を示した図である。粉末積層造形支援システム100Aは、粉末積層造形装置100Bに対して、上記の粉末積層造形プロセスに用いられる各種の情報を算出および生成する。 [Outline of Powder Additive Manufacturing Support System]
2 is a diagram showing an example of a schematic configuration of the powder additivemanufacturing support system 100 A. The powder additive manufacturing support system 100 A calculates and generates various information used in the powder additive manufacturing process described above for the powder additive manufacturing apparatus 100B.
図2は、粉末積層造形支援システム100Aの概略構成の一例を示した図である。粉末積層造形支援システム100Aは、粉末積層造形装置100Bに対して、上記の粉末積層造形プロセスに用いられる各種の情報を算出および生成する。 [Outline of Powder Additive Manufacturing Support System]
2 is a diagram showing an example of a schematic configuration of the powder additive
図示するように、粉末積層造形支援システム100Aは、入力部110と、処理部120と、記憶部130と、出力部140と、通信部150と、を有している。また、粉末積層造形支援システム100Aは、例えば通信ケーブルや所定のネットワーク(例えば、インターネット、LAN:Local Area Network、WAN:Wide Area Networkなど)Nにより外部装置200と通信可能に接続されている。
As shown in the figure, the powder additive manufacturing support system 100A has an input unit 110, a processing unit 120, a storage unit 130, an output unit 140, and a communication unit 150. The powder additive manufacturing support system 100A is also communicatively connected to an external device 200 via, for example, a communication cable or a predetermined network N (for example, the Internet, LAN: Local Area Network, WAN: Wide Area Network, etc.).
なお、外部装置200には、例えば、粉末積層造形支援システム100Aの処理に用いられる様々な情報を提供する装置、あるいは粉末積層造形支援システム100Aから出力された情報を取得したり、取得した情報を表示する装置が含まれる。
The external device 200 may include, for example, a device that provides various information used in the processing of the powder additive manufacturing support system 100A, or a device that acquires information output from the powder additive manufacturing support system 100A and displays the acquired information.
入力部110は、ユーザや外部装置200から情報の入力を受け付ける機能部である。具体的には、入力部110は、粉末積層造形支援システム100Aが有する入力装置310を介してユーザが入力した情報を取得する。また、入力部110は、粉末積層造形支援システム100Aによる処理に用いられる各種の情報を外部装置200から取得する。なお、入力部110は、ユーザから受け付けた入力情報を記憶部130内の対応する情報に登録したり、外部装置200から取得した情報を記憶部130内の対応するデータベースに格納する。
The input unit 110 is a functional unit that accepts information input from a user or the external device 200. Specifically, the input unit 110 acquires information input by a user via the input device 310 of the powder additive manufacturing support system 100A. The input unit 110 also acquires various types of information used in processing by the powder additive manufacturing support system 100A from the external device 200. The input unit 110 registers the input information accepted from the user to the corresponding information in the storage unit 130, and stores the information acquired from the external device 200 in a corresponding database in the storage unit 130.
処理部120は、粉末積層造形支援システム100Aで実行される処理を行う機能部である。具体的には、処理部120は、材料レシピ(材料レシピ候補)の生成や造形プロセス条件の算出を行う。なお、処理部120は、これらの処理を行うための材料レシピ生成部121と、プロセス条件算出部122と、を有している。
The processing unit 120 is a functional unit that performs processing executed by the powder additive manufacturing support system 100A. Specifically, the processing unit 120 generates material recipes (material recipe candidates) and calculates the modeling process conditions. The processing unit 120 has a material recipe generation unit 121 and a process condition calculation unit 122 for performing these processes.
材料レシピ生成部121は、材料レシピを生成する機能部である。なお、材料レシピとは、所定種類の材料を主原料として、その他の材料や添加剤との組み合わせ、および、それらの配合比率を示すものである。
The ingredient recipe generation unit 121 is a functional unit that generates ingredient recipes. Note that an ingredient recipe indicates the combination of a specific type of ingredient as the main ingredient with other ingredients and additives, and the mixing ratios of these ingredients.
材料レシピ生成部121は、材料レシピ生成処理の実行により材料レシピを生成する。具体的には、材料レシピ生成部121は、粉末積層造形プロセスに用いられる材料(例えば、結晶性樹脂など)と添加剤とを所定の比率で配合した複数の材料レシピ候補を生成する。また、材料レシピ生成部121は、材料レシピ候補ごとに標準的な造形形状における品質特性、コストおよび環境負荷度を算出する。なお、材料レシピ生成処理の詳細は後述する。
The material recipe generation unit 121 generates a material recipe by executing a material recipe generation process. Specifically, the material recipe generation unit 121 generates multiple material recipe candidates that combine materials (e.g., crystalline resins, etc.) used in the powder additive manufacturing process with additives in a predetermined ratio. In addition, the material recipe generation unit 121 calculates the quality characteristics, cost, and environmental impact level for a standard molding shape for each material recipe candidate. The material recipe generation process will be described in detail later.
プロセス条件算出部122は、造形プロセス条件を算出する機能部である。なお、造形プロセス条件とは、粉末積層造形プロセスにおいて、造形品の品質特性に影響を及ぼし得る各種のパラメータであり、例えばレーザ出力、レーザ走査速度、レーザ照射プロファイル、パートベッドの温度条件、フィードの温度条件、粉末敷設(リコート)周期、造形品3Dモデルの配置(位置および角度)などが含まれる。
The process condition calculation unit 122 is a functional unit that calculates the modeling process conditions. The modeling process conditions are various parameters that can affect the quality characteristics of the modeled product in the powder additive manufacturing process, and include, for example, the laser output, laser scanning speed, laser irradiation profile, part bed temperature conditions, feed temperature conditions, powder laying (recoating) period, and the arrangement (position and angle) of the modeled product 3D model.
プロセス条件算出部122は、造形プロセス条件算出処理の実行により造形プロセス条件を算出する。具体的には、プロセス条件算出部122は、材料レシピ候補の中からユーザにより選定された材料レシピ、製造対象製品の3Dモデルおよび所定の造形プロセス条件を用いた造形解析処理を行うことで、当該材料レシピに基づく造形品の品質特性を算出する。
The process condition calculation unit 122 calculates the modeling process conditions by executing a modeling process condition calculation process. Specifically, the process condition calculation unit 122 calculates the quality characteristics of a modeled product based on the material recipe by performing a modeling analysis process using a material recipe selected by the user from among the material recipe candidates, a 3D model of the product to be manufactured, and predetermined modeling process conditions.
また、プロセス条件算出部122は、ユーザ所望の品質基準を満たす品質特性が得られるように造形プロセス条件を補正し、適正な造形プロセス条件を算出する。なお、造形プロセス条件算出処理の詳細は後述する。
The process condition calculation unit 122 also corrects the modeling process conditions so as to obtain quality characteristics that satisfy the user's desired quality standards, and calculates appropriate modeling process conditions. Details of the modeling process condition calculation process will be described later.
次に、記憶部130について説明する。記憶部130は、各種の情報を記憶する機能部である。具体的には、記憶部130は、処理部120による各種の処理に用いられる情報や、処理部120によって生成および算出された情報などを記憶している。より具体的には、記憶部130は、材料情報DB(Database)131と、材料レシピ情報DB132と、造形関連情報DB133と、を有している。
Next, the memory unit 130 will be described. The memory unit 130 is a functional unit that stores various types of information. Specifically, the memory unit 130 stores information used for various processes by the processing unit 120, information generated and calculated by the processing unit 120, and the like. More specifically, the memory unit 130 has a material information database (DB) 131, a material recipe information DB 132, and a modeling-related information DB 133.
材料情報DB131は、材料に関する情報が登録された材料情報を格納している。材料情報には、粉末積層造形プロセスに用いられる材料に関する情報が登録されている。
The material information DB 131 stores material information in which information about materials is registered. The material information includes information about materials used in the powder additive manufacturing process.
図3は、材料情報DB131に格納されている材料情報の一例を示した図である。図示するように、材料情報は、樹脂種類131aと、材料特性131bと、添加剤候補131cと、樹脂単価131dと、添加剤単価131eと、環境負荷原単位131fと、が対応付けられたレコードを有している。
FIG. 3 shows an example of material information stored in the material information DB 131. As shown in the figure, the material information has records in which resin type 131a, material characteristics 131b, additive candidates 131c, resin unit cost 131d, additive unit cost 131e, and environmental load unit cost 131f are associated with each other.
ここで、樹脂種類131aは、粉末積層造形プロセスに用いられる主原料(主材料)の樹脂種類を示す情報である。樹脂種類131aには、例えばPA12(ポリアミド12)やPA11(ポリアミド11)などの結晶性樹脂や非結晶性樹脂とのアロイが登録されている。なお、樹脂材料は、同じ種類であっても、製造メーカやリサイクルの由来に応じて異なる型番やグレードが割り付けられ、相互に材料特性や単価などが異なる。そのため、材料情報では、同じ種類であっても、異なる型番やグレードの樹脂材料が別種類の樹脂材料として登録されている。
Here, resin type 131a is information that indicates the resin type of the main raw material (principal material) used in the powder additive manufacturing process. For example, crystalline resins such as PA12 (polyamide 12) and PA11 (polyamide 11) and alloys with amorphous resins are registered as resin type 131a. Note that even if the resin materials are of the same type, different model numbers and grades are assigned depending on the manufacturer or recycling origin, and the material properties and unit price are different. For this reason, in the material information, resin materials with different model numbers and grades are registered as different types of resin materials, even if they are the same type.
材料特性131bは、粉末積層造形プロセスにおいて、造形品の品質特性に影響を及ぼし得る物理・化学的な特性である。具体的には、材料特性131bには、例えば結晶化度、結晶化温度、結晶化速度、融解エンタルピー、結晶化エンタルピー、融点、熱分解点、レーザ吸収率、輻射率、線膨張係数、PVT(Pressure/Specific Volume/Temperature)特性、ガラス転移温度、貯蔵弾性率および損失弾性率のうち、少なくとも1つ以上が含まれる。
The material properties 131b are physical and chemical properties that may affect the quality characteristics of the product produced in the powder additive manufacturing process. Specifically, the material properties 131b include at least one of the following: degree of crystallinity, crystallization temperature, crystallization rate, enthalpy of fusion, melting point, thermal decomposition point, laser absorptivity, emissivity, linear expansion coefficient, PVT (Pressure/Specific Volume/Temperature) properties, glass transition temperature, storage modulus, and loss modulus.
添加剤候補131cは、主材料である樹脂種類に添加される添加剤の候補を示す情報である。なお、添加剤の種類には、例えば、無機フィラ・ビーズ、流動助剤、結晶化遅延剤、結晶核剤などがある。
Additive candidates 131c are information that indicates candidates for additives to be added to the resin type that is the main material. The types of additives include, for example, inorganic filler beads, flow aids, crystallization retarders, and crystal nucleating agents.
樹脂単価131d、添加剤単価131eは各々、対応付けられている樹脂種類および添加剤の単価を示す情報である。環境負荷原単位131fは、対応付けられている樹脂種類および添加剤の環境負荷の原単位を示す情報である。環境負荷原単位131fには、例えば、二酸化炭素の排出量などを示す情報が樹脂種類や添加剤ごとに対応付けられて登録されている。
Resin unit price 131d and additive unit price 131e are information indicating the unit price of the associated resin type and additive, respectively. Environmental load unit price 131f is information indicating the unit environmental load of the associated resin type and additive. In environmental load unit price 131f, information indicating, for example, the amount of carbon dioxide emissions is registered in association with each resin type and additive.
なお、材料情報は、外部装置200から取得されても良く、あるいはユーザによって入力されても良い。このような材料情報は、後述の材料レシピ生成処理に用いられる。
The material information may be obtained from the external device 200 or may be input by the user. Such material information is used in the material recipe generation process described below.
材料レシピ情報DB132は、複数の材料レシピ候補に関する情報が登録された材料レシピ情報を格納している。材料レシピ情報には、主材料である樹脂種類と添加剤の組み合わせ、配合比率、各材料レシピによる標準的な造形形状における品質特性およびコスト等の情報が登録されている。
The material recipe information DB132 stores material recipe information in which information on multiple material recipe candidates is registered. The material recipe information includes the combination of the main material resin type and additives, the mixing ratio, and information such as the quality characteristics and cost of standard molding shapes using each material recipe.
図4は、材料レシピ情報DB132に格納されている材料レシピ情報の一例を示した図である。図示するように、材料レシピ情報は、材料132aと、配合比率132bと、コスト132cと、環境負荷度132dと、標準品質特性132eと、が対応付けられたレコードを有している。
FIG. 4 shows an example of ingredient recipe information stored in the ingredient recipe information DB 132. As shown in the figure, the ingredient recipe information has records in which ingredients 132a, mixture ratios 132b, costs 132c, environmental impact levels 132d, and standard quality characteristics 132e are associated with each other.
ここで、材料132aは、粉末積層造形プロセスに用いられる材料であって、主原料である樹脂種類と添加剤の組み合わせを示す情報である。配合比率132bは、樹脂種類と添加剤の配合比率を示す情報である。コスト132cは、対応付けられている材料とその配合比率に基づき標準的な造形形状の造形品を製造(造形)した場合のコストを示す情報である。環境負荷度132dは、対応付けられている材料とその配合比率に基づき標準的な造形形状の造形品を製造(造形)した場合の環境負荷の度合いを示す情報である。
Here, material 132a is the material used in the powder additive manufacturing process, and is information indicating the combination of the main raw material resin type and additives. Mixing ratio 132b is information indicating the mixing ratio of resin type and additives. Cost 132c is information indicating the cost of manufacturing (molding) a molded product of a standard shape based on the associated material and its mixing ratio. Environmental impact level 132d is information indicating the degree of environmental impact when manufacturing (molding) a molded product of a standard shape based on the associated material and its mixing ratio.
標準品質特性132eは、対応付けられている材料とその配合比率に基づき造形した標準的な造形形状の造形品の品質特性を示す情報である。具体的には、標準品質特性132eは、対応付けられている材料およびその配合比率と、標準的な造形プロセス条件と、に基づき標準的な造形形状(例えば、試験片形状)の造形品を製造(造形)した際に得られる品質特性を示す。なお、標準的な造形プロセス条件とは、例えば主原料である樹脂種類に応じて予め決定されている標準的な造形プロセス条件を指す。
The standard quality characteristics 132e are information indicating the quality characteristics of a molded product of a standard shape molded based on the associated material and its blending ratio. Specifically, the standard quality characteristics 132e indicate the quality characteristics obtained when a molded product of a standard shape (e.g., a test piece shape) is manufactured (molded) based on the associated material and its blending ratio, and standard molding process conditions. Note that the standard molding process conditions refer to standard molding process conditions that are determined in advance according to, for example, the type of resin that is the main raw material.
また、標準品質特性132eには、精度と機械特性とが含まれている。ここで、精度には、例えば、反りなどの変形量、密度、表面粗さ、色彩のうち、少なくとも1つ以上の特性値が登録されている。また、機械特性には、例えば、弾性率、引張強度および伸び率のうち、少なくとも1つ以上の特性値が登録されている。
The standard quality characteristics 132e also include precision and mechanical characteristics. For precision, at least one of the following characteristics is registered: deformation amount such as warping, density, surface roughness, and color. For mechanical characteristics, at least one of the following characteristics is registered: modulus of elasticity, tensile strength, and elongation.
このような材料レシピ情報は、材料レシピ生成処理の実行により生成および算出され、材料レシピ情報DB132に登録される。
Such ingredient recipe information is generated and calculated by executing the ingredient recipe generation process, and is registered in ingredient recipe information DB132.
造形関連情報DB133は、造形品の造形に関する各種の情報を格納している。具体的には、造形関連情報DB133には、標準造形品形状、標準造形プロセス条件、製造対象製品の3Dモデル、造形プロセス条件初期値および品質基準といった情報が格納されている。
The modeling-related information DB 133 stores various information related to the modeling of a modeled product. Specifically, the modeling-related information DB 133 stores information such as the standard modeled product shape, standard modeling process conditions, a 3D model of the product to be manufactured, initial values of modeling process conditions, and quality standards.
標準造形品形状は、例えば、試験片形状など比較的単純化された形状の造形品を製造(造形)するための形状データである。標準造形プロセス条件は、例えば主原料である樹脂種類に応じて予め決定されている標準的な造形プロセス条件が登録された情報である。
The standard modeling product shape is shape data for manufacturing (modeling) a modeling product with a relatively simplified shape, such as a test piece shape. The standard modeling process conditions are information that registers standard modeling process conditions that are determined in advance according to the type of resin that is the main raw material, for example.
3Dモデルは、製造対象製品の造形形状を示す形状データである。造形プロセス条件初期値は、製造対象製品に関する造形解析処理に用いられる造形プロセス条件の初期値を示す情報である。なお、レーザに関する条件、温度に関する条件および粉末敷設に関する条件の初期値については、樹脂種類に応じた所定の標準造形プロセス条件が使用されても良く、ユーザが事前に設定・入力した条件が使用されても良い。また、造形品3Dモデルの配置については、基本的にはユーザが事前に設定・入力した条件が初期値として使用される。
The 3D model is shape data that indicates the molding shape of the product to be manufactured. The initial values of the molding process conditions are information that indicates the initial values of the molding process conditions used in the molding analysis processing for the product to be manufactured. Note that, for the initial values of the laser conditions, temperature conditions, and powder laying conditions, predetermined standard molding process conditions according to the resin type may be used, or conditions that have been set and input in advance by the user may be used. In addition, for the positioning of the 3D model of the molded product, the conditions that have been set and input in advance by the user are basically used as the initial values.
品質基準は、ユーザ所望の品質基準が登録されている情報である。具体的には、品質基準には、反りなどの変形量、密度、表面粗さ、色彩などの造形精度に関する特性値と、弾性率、引張強度および伸び率などの機械特性に関する特性値と、の中からユーザにより選択・指定されたユーザ所望の品質基準が登録されている。
The quality standards are information that registers the quality standards desired by the user. Specifically, the quality standards are registered as user-specified quality standards selected and specified by the user from among characteristic values related to molding accuracy such as the amount of deformation such as warping, density, surface roughness, and color, and characteristic values related to mechanical properties such as elastic modulus, tensile strength, and elongation.
なお、このような標準造形品形状、3Dモデルおよび標準造形プロセス条件は、例えば外部装置200から取得され、造形関連情報DB133に格納されれば良い。また、品質基準は、ユーザによる入力操作に基づき生成され、造形関連情報DB133に格納されれば良い。
In addition, such standard molded product shapes, 3D models, and standard molding process conditions may be acquired, for example, from the external device 200 and stored in the molding-related information DB 133. In addition, the quality standards may be generated based on input operations by the user and stored in the molding-related information DB 133.
次に、出力部140について説明する。出力部140は、各種の情報を出力する機能部である。具体的には、出力部140は、粉末積層造形支援システム100Aで算出および生成された情報や記憶部130に格納されている情報を、通信部150を介して外部装置200に出力する。
Next, the output unit 140 will be described. The output unit 140 is a functional unit that outputs various information. Specifically, the output unit 140 outputs information calculated and generated by the powder additive manufacturing support system 100A and information stored in the memory unit 130 to the external device 200 via the communication unit 150.
また、出力部140は、粉末積層造形支援システム100Aで算出および生成された情報や記憶部130に格納されている情報を表示するための画面情報を生成し、当該システムが有する出力装置(例えば、ディスプレイなどの表示装置)あるいは外部装置200に出力する。
In addition, the output unit 140 generates screen information for displaying information calculated and generated by the powder additive manufacturing support system 100A and information stored in the memory unit 130, and outputs the information to an output device (e.g., a display device such as a monitor) of the system or to an external device 200.
通信部150は、外部装置200との間で情報通信を行う機能部である。具体的には、通信部150は、材料情報、3Dモデルおよび標準造形プロセス条件などの情報を外部装置200から取得する。また、通信部150は、粉末積層造形支援システム100Aで算出および生成された情報、記憶部130に格納されている情報、および、これらの情報を表示するための画面情報を外部装置200に送信する。
The communication unit 150 is a functional unit that communicates information with the external device 200. Specifically, the communication unit 150 acquires information such as material information, 3D models, and standard modeling process conditions from the external device 200. The communication unit 150 also transmits to the external device 200 information calculated and generated by the powder additive manufacturing support system 100A, information stored in the memory unit 130, and screen information for displaying this information.
以上、粉末積層造形支援システム100Aの概略構成の一例について説明した。
The above describes an example of the general configuration of the powder additive manufacturing support system 100A.
[処理の説明]
次に、粉末積層造形支援システム100Aで実行される処理について説明する。 [Processing Description]
Next, the processing executed by the powder rapidprototyping support system 100A will be described.
次に、粉末積層造形支援システム100Aで実行される処理について説明する。 [Processing Description]
Next, the processing executed by the powder rapid
図5は、粉末積層造形支援処理の一例を示したフロー図である。当該処理は、例えば、入力部110がユーザからの実行指示を受け付けると開始される。
FIG. 5 is a flow diagram showing an example of the powder additive manufacturing support process. This process starts, for example, when the input unit 110 receives an execution instruction from the user.
処理が開始されると、入力部110は、材料情報を取得する(ステップS10)。具体的には、入力部110は、材料情報DB131から材料情報を取得する。
When the process starts, the input unit 110 acquires material information (step S10). Specifically, the input unit 110 acquires material information from the material information DB 131.
次に、材料レシピ生成部121は、材料レシピ生成処理を実行する(ステップS20)。具体的には、材料レシピ生成部121は、取得された材料情報を用いて複数の材料レシピの候補を生成し、材料レシピ候補ごとに標準品質特性等を算出する。なお、材料レシピ生成処理の詳細は、図6を用いて後述する。
Next, the ingredient recipe generating unit 121 executes the ingredient recipe generating process (step S20). Specifically, the ingredient recipe generating unit 121 generates multiple ingredient recipe candidates using the acquired ingredient information, and calculates standard quality characteristics, etc. for each ingredient recipe candidate. Details of the ingredient recipe generating process will be described later with reference to FIG. 6.
次に、入力部110は、材料レシピ候補の中から特定の材料レシピについてユーザによる選定を受け付ける(ステップS30)。具体的には、入力部110は、出力部140を介して、生成された材料レシピ候補に関する情報を出力装置に表示し、特定の材料レシピの選定をユーザから受け付ける。
Next, the input unit 110 accepts the user's selection of a specific ingredient recipe from among the ingredient recipe candidates (step S30). Specifically, the input unit 110 displays information about the generated ingredient recipe candidates on the output device via the output unit 140, and accepts the selection of a specific ingredient recipe from the user.
次に、プロセス条件算出部122は、造形プロセス条件算出処理を実行する(ステップS40)。具体的には、プロセス条件算出部122は、選定された材料レシピと、製造対象製品の3Dモデルと、標準造形プロセス条件と、に基づく造形解析処理によりユーザ所望の品質基準を満足する造形プロセス条件を算出する。なお、プロセス条件算出処理の詳細は、図7を用いて後述する。
Next, the process condition calculation unit 122 executes a modeling process condition calculation process (step S40). Specifically, the process condition calculation unit 122 calculates modeling process conditions that satisfy the user's desired quality standards through a modeling analysis process based on the selected material recipe, a 3D model of the product to be manufactured, and standard modeling process conditions. Details of the process condition calculation process will be described later with reference to FIG. 7.
また、プロセス条件算出部122は、ステップS40の処理を行うと、粉末積層造形支援処理を終了する。
In addition, once the process condition calculation unit 122 has performed the processing of step S40, it ends the powder additive manufacturing support processing.
以上、粉末積層造形支援処理について説明した。
The above explains the powder additive manufacturing support process.
次に、ステップS20における材料レシピ生成処理の詳細について説明する。
Next, we will explain the details of the material recipe generation process in step S20.
図6は、材料レシピ生成処理の一例を示したフロー図である。処理が開始されると、材料レシピ生成部121は、材料レシピ候補を生成する(ステップS021)。具体的には、材料レシピ生成部121は、材料情報を用いて、樹脂種類と添加剤候補の組み合わせを生成し、組み合わせごとに複数通りの配合比率を割り付けた材料レシピ候補を生成する。
FIG. 6 is a flow diagram showing an example of the material recipe generation process. When the process starts, the material recipe generation unit 121 generates material recipe candidates (step S021). Specifically, the material recipe generation unit 121 uses material information to generate combinations of resin types and additive candidates, and generates material recipe candidates to which multiple blending ratios are assigned for each combination.
なお、各材料レシピ候補には各々、所定範囲に収まる複数通りの配合比率が割り付けられれば良い。具体的には、材料レシピ生成部121は、例えば樹脂種類と添加剤候補の配合比率が各々、70%:30%~90%:10%の範囲内に収まるように、樹脂種類と添加剤候補の配合比率が1%ずつ異なる複数通りの配合比率を割り付けた材料レシピ候補を生成する。これにより、1つの樹脂種類および添加剤候補の組み合わせに対して、例えば、樹脂種類71%:添加剤候補29%、樹脂種類84%:添加剤候補16%といった所定の配合比率の範囲内における20通りの材料レシピ候補が生成される。
It should be noted that each material recipe candidate can be assigned multiple combination ratios that fall within a predetermined range. Specifically, the material recipe generation unit 121 generates material recipe candidates in which multiple combination ratios of resin type and additive candidate are assigned with a difference of 1% in each combination ratio, so that the combination ratios of the resin type and additive candidate are each within a range of 70%:30% to 90%:10%, for example. As a result, for one combination of resin type and additive candidate, 20 material recipe candidates are generated within a predetermined combination ratio range, such as 71% resin type:29% additive candidate, or 84% resin type:16% additive candidate.
なお、配合比率は上記の範囲内に限定されるものではなく、樹脂種類などに応じて適宜、適正な範囲が設定されていれば良い。また、当該範囲を示す設定情報(図示せず)は、予め記憶部130内に記憶されていれば良い。
The blending ratio is not limited to the above range, but may be set to an appropriate range depending on the type of resin, etc. Furthermore, setting information (not shown) indicating the range may be stored in advance in the storage unit 130.
次に、材料レシピ生成部121は、材料レシピ候補ごとにコストおよび環境負荷度を算出する(ステップS022)。具体的には、材料レシピ生成部121は、材料情報の樹脂単価および添加剤単価と、材料レシピ候補の各配合比率と、に基づき、各材料レシピ候補のコストを算出する。なお、コストは、複数の材料レシピ候補の中からユーザが特定の材料レシピを選定する際の参考指標値として用いられる情報である。そのため、コストは、一定のルール(例えば、所定の演算式)に従って算出されれば良く、例えば樹脂単価と添加剤単価とを加算または乗算することで算出されれば良い。
Next, the material recipe generation unit 121 calculates the cost and environmental load for each material recipe candidate (step S022). Specifically, the material recipe generation unit 121 calculates the cost of each material recipe candidate based on the resin unit price and additive unit price of the material information and the mixing ratio of each material recipe candidate. The cost is information used as a reference index value when a user selects a specific material recipe from multiple material recipe candidates. Therefore, the cost may be calculated according to a certain rule (for example, a predetermined arithmetic formula), for example, by adding or multiplying the resin unit price and the additive unit price.
また、材料レシピ生成部121は、材料情報の環境負荷原単位と、材料レシピ候補の各配合比率と、に基づき、各材料レシピ候補の環境負荷度を算出する。なお、環境負荷原単位は、コストと同様、複数の材料レシピ候補の中からユーザが特定の材料レシピを選定する際の参考指標値として用いられる情報である。そのため、環境負荷度は、一定のルール(例えば、所定の演算式)に従って算出されれば良く、例えば環境負荷原単位に登録されている樹脂と添加剤の原単位を加算または乗算することで算出されれば良い。
The material recipe generation unit 121 also calculates the environmental load level of each material recipe candidate based on the environmental load unit of the material information and each compounding ratio of the material recipe candidate. The environmental load unit, like the cost, is information used as a reference index value when the user selects a specific material recipe from among multiple material recipe candidates. Therefore, the environmental load level only needs to be calculated according to a certain rule (for example, a predetermined arithmetic formula), for example, by adding or multiplying the unit of the resin and additives registered in the environmental load unit.
次に、材料レシピ生成部121は、材料レシピ候補ごとに標準品質特性を算出する(ステップS023)。具体的には、材料レシピ生成部121は、造形関連情報DB133から標準造形品形状および標準造形プロセス条件を取得する。また、材料レシピ生成部121は、各材料レシピ候補について、標準造形品形状および標準造形プロセス条件に基づく造形解析処理を実行し、材料レシピ候補ごとに標準品質特性を算出する。ここで、造形解析処理は、標準造形品形状および標準造形プロセス条件を用いて標準品質特性を算出するためのシミュレーション処理であり、当該解析処理には公知技術が用いられれば良い。
Next, the material recipe generation unit 121 calculates standard quality characteristics for each material recipe candidate (step S023). Specifically, the material recipe generation unit 121 acquires the standard molded product shape and the standard molding process conditions from the molding-related information DB 133. In addition, the material recipe generation unit 121 executes a molding analysis process based on the standard molded product shape and the standard molding process conditions for each material recipe candidate, and calculates standard quality characteristics for each material recipe candidate. Here, the molding analysis process is a simulation process for calculating the standard quality characteristics using the standard molded product shape and the standard molding process conditions, and publicly known technology may be used for the analysis process.
なお、材料レシピ生成部121は、生成した材料レシピ候補の各々に、対応するコストおよび環境負荷度と、算出した標準品質特性と、を対応付けた材料レシピ情報を生成し、材料レシピ情報DB132に格納する。
The ingredient recipe generation unit 121 generates ingredient recipe information that associates the corresponding cost and environmental impact level with the calculated standard quality characteristics for each of the generated ingredient recipe candidates, and stores the information in the ingredient recipe information DB 132.
次に、材料レシピ生成部121は、材料レシピ候補のコスト、環境負荷度および標準品質特性を出力する(ステップS024)。具体的には、材料レシピ生成部121は、出力部140を介して、例えば材料レシピ情報の各レコードを表示するための画面情報を生成し、表示装置に出力する。
Next, the ingredient recipe generating unit 121 outputs the cost, environmental impact, and standard quality characteristics of the ingredient recipe candidates (step S024). Specifically, the ingredient recipe generating unit 121 generates screen information for displaying, for example, each record of the ingredient recipe information via the output unit 140, and outputs it to the display device.
なお、材料レシピ生成部121は、入力部110を介して、コストおよび環境負荷度の閾値(例えば、上限値)をユーザから取得し、閾値未満のコストおよび環境負荷度の材料レシピ候補に関するコスト等の情報(レコード)のみが表示されるようにしても良い。また、閾値は、少なくとも、コストおよび環境負荷度のいずれか一方についてのみ取得されても良い。また、材料レシピ生成部121は、入力部110を介して、標準品質特性に関する閾値を取得し、出力部140を介して、閾値未満の標準品質特性の材料レシピ候補に関する情報のみを表示しても良い。
The material recipe generating unit 121 may obtain thresholds (e.g., upper limits) for cost and environmental impact from the user via the input unit 110, and display only information (records) such as cost related to material recipe candidates with costs and environmental impacts below the thresholds. The threshold may be obtained for at least either the cost or the environmental impact. The material recipe generating unit 121 may obtain thresholds for standard quality characteristics via the input unit 110, and display only information related to material recipe candidates with standard quality characteristics below the thresholds via the output unit 140.
このようにすれば、ユーザの許容範囲を超えるコスト、環境負荷度あるいは標準品質特性の材料レシピ候補がユーザに提示されなくなる。そのため、ユーザは、多数の材料レシピ候補の中から特定の材料レシピを選定し易くなる。
In this way, material recipe candidates with costs, environmental impacts, or standard quality characteristics that exceed the user's tolerance range will not be presented to the user. This makes it easier for the user to select a specific material recipe from among a large number of material recipe candidates.
次に、材料レシピ生成部121は、特定の材料レシピが選定されたか否かを判定する(ステップS025)。具体的には、材料レシピ生成部121は、入力部110を介して、表示した材料レシピ候補の中から特定の材料レシピがユーザにより選定されたか否かを判定する。そして、選定されていないと判定した場合(ステップS025でNo)、材料レシピ生成部121は、再度、ステップS025の処理を行う。一方で、選定されたと判定した場合(ステップS025でYes)、材料レシピ生成部121は、本フローの処理を終了する。
Next, the ingredient recipe generating unit 121 determines whether or not a specific ingredient recipe has been selected (step S025). Specifically, the ingredient recipe generating unit 121 determines whether or not a specific ingredient recipe has been selected by the user from the displayed ingredient recipe candidates via the input unit 110. If it is determined that a specific ingredient recipe has not been selected (No in step S025), the ingredient recipe generating unit 121 performs the process of step S025 again. On the other hand, if it is determined that a specific ingredient recipe has been selected (Yes in step S025), the ingredient recipe generating unit 121 ends the process of this flow.
このような材料レシピ生成処理によれば、粉末積層造形支援システム100Aは、樹脂種類と添加剤の組み合わせと、その配合比率からなる材料レシピ候補と、材料レシピ候補に対応する参考指標値をユーザに提示することができる。
By using this material recipe generation process, the powder additive manufacturing support system 100A can present the user with combinations of resin types and additives, potential material recipes consisting of their mixing ratios, and reference index values corresponding to the potential material recipes.
特に、主原料である樹脂材料にリサイクル材を用いた場合、コストや環境負荷度といった情報は、重要な選定要素となる。そのため、本実施形態に係る粉末積層造形支援システム100Aは、コストおよび環境負荷度等についてもユーザに提示することで、材料レシピの生成のみならず、ユーザによる材料レシピの選定をも支援する。
In particular, when recycled materials are used for the resin material, which is the main raw material, information such as cost and environmental impact are important selection factors. Therefore, the powder additive manufacturing support system 100A according to this embodiment not only supports the creation of material recipes, but also the selection of material recipes by the user by presenting information such as cost and environmental impact to the user.
次に、ステップS40における造形プロセス条件算出処理の詳細について説明する。
Next, we will explain the details of the modeling process condition calculation process in step S40.
図7は、造形プロセス条件算出処理の一例を示したフロー図である。処理が開始されると、プロセス条件算出部122は、ユーザが選定した材料レシピと、製造対象製品の3Dモデルと、造形プロセス条件初期値と、品質基準と、を取得する(ステップS041)。具体的には、プロセス条件算出部122は、ユーザが選定した材料レシピすなわち樹脂材料と添加剤の組み合わせ、および、その配合比率を材料レシピ情報から取得する。また、プロセス条件算出部122は、製造対象製品の3Dモデルと、材料レシピの樹脂材料に対応する造形プロセス条件初期値と、品質基準と、を造形関連情報DB133から取得する。
FIG. 7 is a flow diagram showing an example of the modeling process condition calculation process. When the process starts, the process condition calculation unit 122 acquires the material recipe selected by the user, a 3D model of the product to be manufactured, initial modeling process condition values, and a quality standard (step S041). Specifically, the process condition calculation unit 122 acquires the material recipe selected by the user, i.e., the combination of resin material and additives, and their mixing ratio, from the material recipe information. In addition, the process condition calculation unit 122 acquires the 3D model of the product to be manufactured, the initial modeling process condition values corresponding to the resin material in the material recipe, and the quality standard from the modeling-related information DB 133.
次に、プロセス条件算出部122は、取得した材料レシピと、3Dモデルと、造形プロセス条件(この場合、初期値)と、に基づく造形解析処理を実行し、材料レシピの品質特性を算出する(ステップS042)。なお、造形解析処理は、前述の標準品質特性を得るための造形解析処理と同様のため、詳細な説明は省略する。
Next, the process condition calculation unit 122 executes a modeling analysis process based on the acquired material recipe, the 3D model, and the modeling process conditions (initial values in this case), and calculates the quality characteristics of the material recipe (step S042). Note that the modeling analysis process is similar to the modeling analysis process for obtaining the standard quality characteristics described above, so a detailed description will be omitted.
次に、プロセス条件算出部122は、算出された品質特性が品質基準を満たしているか否かを判定する(ステップS043)。具体的には、プロセス条件算出部122は、品質特性と品質基準との比較に基づき、品質特性が品質基準を満たしているか否かを判定する。
Next, the process condition calculation unit 122 determines whether the calculated quality characteristics satisfy the quality standard (step S043). Specifically, the process condition calculation unit 122 determines whether the quality characteristics satisfy the quality standard based on a comparison between the quality characteristics and the quality standard.
そして、品質特定が品質基準を満たしていないと判定した場合(ステップS043でNo)、プロセス条件算出部122は、処理をステップS044に移行する。一方で品質特定が品質基準を満たしていると判定した場合(ステップS043でYes)、プロセス条件算出部122は、処理をステップS045に移行する。
If the process condition calculation unit 122 determines that the quality characteristics do not satisfy the quality standard (No in step S043), the process condition calculation unit 122 transitions the process to step S044. On the other hand, if the process condition calculation unit 122 determines that the quality characteristics satisfy the quality standard (Yes in step S043), the process condition calculation unit 122 transitions the process to step S045.
ステップS044では、プロセス条件算出部122は、一定のルールに基づき造形プロセス条件の値を変更する。具体的には、プロセス条件算出部122は、レーザの制御条件(例えば、レーザ出力条件など)、パートベッドやフィードの温度条件、粉末敷設周期および造形品3Dモデルの配置といった造形プロセス条件の各値を一定のルールに基づいて変更する。
In step S044, the process condition calculation unit 122 changes the values of the modeling process conditions based on certain rules. Specifically, the process condition calculation unit 122 changes the values of the modeling process conditions, such as the laser control conditions (e.g., laser output conditions, etc.), the part bed and feed temperature conditions, the powder laying cycle, and the arrangement of the modeled product 3D model, based on certain rules.
なお、これらの値を変更する方法の一例としては、ニュートン法や変分法など公知の方法が用いられれば良い。
As an example of a method for changing these values, a known method such as Newton's method or the calculus of variations may be used.
また、プロセス条件算出部122は、当該ステップの処理において、造形プロセス条件のいずれか1つを変更しても良く、あるいは、複数の造形プロセス条件または全ての造形プロセス条件を変更しても良い。
In addition, the process condition calculation unit 122 may change one of the modeling process conditions, or may change multiple modeling process conditions or all of the modeling process conditions in the processing of this step.
また、プロセス条件算出部122は、造形プロセス条件の値を変更すると、処理をステップS042に移行する。なお、ステップS042では、プロセス条件算出部122は、変更後の造形プロセス条件を用いて、再度、材料レシピの品質特性を算出する。
When the process condition calculation unit 122 changes the values of the modeling process conditions, the process proceeds to step S042. In step S042, the process condition calculation unit 122 calculates the quality characteristics of the material recipe again using the changed modeling process conditions.
また、品質特性が品質基準を満たしていると判定された場合(ステップS043でYes)に移行するステップS045では、プロセス条件算出部122は、出力部140を介して、算出した造形プロセス条件を出力する。例えば、プロセス条件算出部122は、出力部140を介して、品質特性が品質基準を満たしていると判定された場合における造形プロセス条件を粉末積層造形装置100Bに出力する。
Furthermore, in step S045, which is performed when it is determined that the quality characteristics satisfy the quality standards (Yes in step S043), the process condition calculation unit 122 outputs the calculated modeling process conditions via the output unit 140. For example, the process condition calculation unit 122 outputs the modeling process conditions, which are used when it is determined that the quality characteristics satisfy the quality standards, to the powder additive manufacturing device 100B via the output unit 140.
なお、プロセス条件算出部122は、出力部140を介して、造形プロセス条件を表示するための画面情報を生成し、表示装置に出力(表示)しても良い。あるいは、プロセス条件算出部122は、通信部150を介して、算出された造形プロセス条件や造形プロセス条件の画面情報を外部装置200に出力(送信)しても良い。この場合、ユーザが造形プロセス条件を粉末積層造形装置100Bに入力することで、当該装置における粉末積層造形プロセスが実行される。
The process condition calculation unit 122 may generate screen information for displaying the modeling process conditions via the output unit 140 and output (display) it on the display device. Alternatively, the process condition calculation unit 122 may output (transmit) the calculated modeling process conditions or screen information of the modeling process conditions to the external device 200 via the communication unit 150. In this case, the user inputs the modeling process conditions to the powder additive manufacturing apparatus 100B, and the powder additive manufacturing process is executed in the apparatus.
また、プロセス条件算出部122は、ステップS045の処理を行うと、本フローの処理を終了する。
In addition, after performing the processing of step S045, the process condition calculation unit 122 ends the processing of this flow.
以上、造形プロセス条件算出処理について説明した。
The above explains the modeling process condition calculation process.
このような粉末積層造形支援システムによれば、コストや環境負荷度を考慮した材料レシピと、所望の造形品質を達成できる適正な造形プロセス条件と、を求めることができる。
This type of powder additive manufacturing support system can determine material recipes that take into account costs and environmental impact, as well as appropriate manufacturing process conditions that can achieve the desired modeling quality.
特に、粉末積層造形支援システムは、生成した材料レシピ候補と併せて、標準的な造形形状における材料レシピ候補ごとの品質特性やコスト等をユーザに提示する。これにより、ユーザは、提示された品質特性等を考慮して適切な材料レシピを選定することができる。
In particular, the powder additive manufacturing support system presents the user with the quality characteristics, cost, etc. of each material recipe candidate for a standard modeling shape along with the generated material recipe candidates. This allows the user to select an appropriate material recipe by taking into account the presented quality characteristics, etc.
また、粉末積層造形支援システムは、選定された材料レシピによる製造対象製品の造形プロセス条件を、一定ルールに基づき補正しながら算出する。これにより、ユーザは、所望の品質基準を満たす品質特性が得られる造形プロセス条件を取得することができる。
The powder additive manufacturing support system also calculates the modeling process conditions for the product to be manufactured using the selected material recipe, while making corrections based on certain rules. This allows the user to obtain modeling process conditions that will result in quality characteristics that meet the desired quality standards.
その結果、粉末積層造形支援システムは、通常、適正化に複数回の試作が必要となる造形プロセス条件の算出を自動化し、より迅速に適正化された造形プロセス条件を得ることができる。特に、バージン材料に比べて造形プロセス条件の適正化が困難なリサイクル材料を扱う場合でも、粉末積層造形支援システムを用いることで、より迅速かつ適正な材料レシピおよび造形プロセス条件を得ることができる。
As a result, the Powder Additive Manufacturing Support System automates the calculation of modeling process conditions, which would normally require multiple prototypes to optimize, making it possible to obtain optimized modeling process conditions more quickly. In particular, even when dealing with recycled materials, for which optimizing modeling process conditions is more difficult than with virgin materials, the Powder Additive Manufacturing Support System makes it possible to obtain appropriate material recipes and modeling process conditions more quickly.
<第二実施形態>
次に、本発明の第二実施形態について説明する。本実施形態に係る粉末積層造形支援システム100Aは、粉末積層造形プロセスにおいて、溶融・焼結した材料粉末が結晶化することで発生する反り変形を抑制し、造形エラーを防ぐように、造形プロセス条件(温度条件やリコート周期)を補正する。 Second Embodiment
Next, a second embodiment of the present invention will be described. The powder additivemanufacturing support system 100A according to this embodiment corrects the manufacturing process conditions (temperature conditions and recoating period) so as to suppress warpage deformation caused by crystallization of molten and sintered material powder in the powder additive manufacturing process and prevent modeling errors.
次に、本発明の第二実施形態について説明する。本実施形態に係る粉末積層造形支援システム100Aは、粉末積層造形プロセスにおいて、溶融・焼結した材料粉末が結晶化することで発生する反り変形を抑制し、造形エラーを防ぐように、造形プロセス条件(温度条件やリコート周期)を補正する。 Second Embodiment
Next, a second embodiment of the present invention will be described. The powder additive
なお、第一実施形態と同一の構成および処理については、同一の符号およびステップ番号を符して詳細な説明は省略する。
Note that the same configurations and processes as those in the first embodiment are denoted by the same reference numerals and step numbers, and detailed descriptions are omitted.
前述の通り、粉末積層造形装置100Bは、粉末積層造形プロセスにおいて、熱可塑性樹脂の粉末をローラまたはブレードを用いて敷設し、そこにレーザを照射して溶融・焼結させることで立体物を得る。このとき、一層当りの積層厚さは、例えば0.05mm-0.3mmの範囲とされることが多く、造形プロセスの実行中に積層厚さ以上の反り変形が発生した場合、造形途中の立体物がローラまたはブレードと干渉する。
As mentioned above, in the powder additive manufacturing process, the powder additive manufacturing device 100B lays down thermoplastic resin powder using a roller or blade, and then irradiates it with a laser to melt and sinter it to obtain a three-dimensional object. At this time, the layer thickness per layer is often set to a range of 0.05 mm to 0.3 mm, for example, and if warping deformation equal to or greater than the layer thickness occurs during the modeling process, the three-dimensional object being modeled will interfere with the roller or blade.
このような造形エラーを防ぐためには、反り変形の主な要因である樹脂の結晶化を遅延させ、それに伴う収縮を抑制する必要がある。そのため、プロセス条件算出部122は、前述のステップS044において、樹脂種類の材料特性である結晶化温度以上かつ融点以下の範囲内で、造形プロセス条件の1つであるパートベッドの温度条件を補正する。
To prevent such modeling errors, it is necessary to delay the crystallization of the resin, which is the main cause of warpage, and suppress the associated shrinkage. Therefore, in the aforementioned step S044, the process condition calculation unit 122 corrects the temperature condition of the part bed, which is one of the modeling process conditions, within the range above the crystallization temperature and below the melting point, which are material properties of the resin type.
このような補正後の温度条件によれば、粉末積層造形プロセスは、溶融・焼結後に発生する材料粉末の結晶化を遅延させることができ、パートベッドのレーザを照射していない部分の材料粉末が溶融する現象をも防ぐことができる。
Using these corrected temperature conditions, the powder additive manufacturing process can delay the crystallization of the material powder that occurs after melting and sintering, and can also prevent the material powder in the parts of the part bed that are not irradiated with the laser from melting.
なお、本実施形態における造形プロセス条件の補正は、これに限られるものではない。例えば、プロセス条件算出部122は、前述のステップS044において、樹脂種類の材料特性である結晶化速度と、造形プロセス条件であるパートベッドの温度条件、フィードの温度条件およびリコート周期に基づく造形解析処理を行い、予測される造形プロセス中の反り変形量を算出する。
Note that the correction of the modeling process conditions in this embodiment is not limited to this. For example, in the above-mentioned step S044, the process condition calculation unit 122 performs modeling analysis processing based on the crystallization rate, which is a material property of the resin type, and the modeling process conditions, which are the part bed temperature conditions, the feed temperature conditions, and the recoating period, and calculates the predicted amount of warpage deformation during the modeling process.
また、プロセス条件算出部122は、算出した反り変形量が一層当りの積層厚さ以下となるように、パートベッドの温度条件、フィードの温度条件およびリコート周期の補正(ステップS044)と、造形解析処理による品質特性の算出(ステップS042)と、品質基準との比較(ステップS043)と、を繰り返し実行する。
The process condition calculation unit 122 also repeatedly performs correction of the part bed temperature conditions, feed temperature conditions, and recoat cycle (step S044), calculation of quality characteristics through modeling analysis processing (step S042), and comparison with quality standards (step S043) so that the calculated warpage deformation amount is equal to or less than the layer thickness per layer.
これにより、プロセス条件算出部122は、ローラおよびブレードの干渉を発生させない立体物を造形するための造形プロセス条件を算出することができる。
This allows the process condition calculation unit 122 to calculate the modeling process conditions for forming a three-dimensional object without causing interference between the rollers and the blades.
<第三実施形態>
次に、本発明の第三実施形態について説明する。本実施形態に係る粉末積層造形支援システム100Aは、粉末積層造形プロセスにおいて、材料粉末へのレーザ照射不足による密度低下やレーザ過剰照射による熱劣化を防止するように、各種レーザ条件を補正する。 Third Embodiment
Next, a third embodiment of the present invention will be described. The powder additivemanufacturing support system 100A according to this embodiment corrects various laser conditions so as to prevent density reduction due to insufficient laser irradiation of a material powder and thermal degradation due to excessive laser irradiation in a powder additive manufacturing process.
次に、本発明の第三実施形態について説明する。本実施形態に係る粉末積層造形支援システム100Aは、粉末積層造形プロセスにおいて、材料粉末へのレーザ照射不足による密度低下やレーザ過剰照射による熱劣化を防止するように、各種レーザ条件を補正する。 Third Embodiment
Next, a third embodiment of the present invention will be described. The powder additive
なお、第一実施形態および第二実施形態と同一の構成および処理については、同一の符号およびステップ番号を符して詳細な説明は省略する。
Note that the same configurations and processes as those in the first and second embodiments are denoted by the same reference numerals and step numbers, and detailed descriptions are omitted.
粉末積層造形プロセスにおいては、材料粉末の融解エンタルピー以上の熱エネルギーをレーザにより照射し、なおかつレーザ照射時の最高到達温度が材料粉末の熱分解温度以上とならないようにレーザ照射の条件を調整する必要がある。
In the powder additive manufacturing process, the laser must be irradiated with thermal energy equal to or greater than the enthalpy of fusion of the powder material, and the laser irradiation conditions must be adjusted so that the maximum temperature reached during laser irradiation does not exceed the thermal decomposition temperature of the powder material.
そのため、プロセス条件算出部122、前述のステップS044において、樹脂種類の材料特性であるレーザ吸収率と、造形プロセス条件であるレーザ出力、レーザ走査速度およびレーザ照射プロファイルに基づく造形解析処理を行い、予測される熱エネルギーおよび最高到達温度を算出する。
Therefore, in step S044 described above, the process condition calculation unit 122 performs modeling analysis processing based on the laser absorptance, which is a material property of the resin type, and the modeling process conditions, which are the laser output, laser scanning speed, and laser irradiation profile, to calculate the predicted thermal energy and maximum temperature.
また、プロセス条件算出部122は、算出された熱エネルギーが材料特性の融解エンタルピー以上、かつ、最高到達温度が材料特性の熱分解温度以下の範囲内となるように、レーザ出力、レーザ走査速度およびレーザ照射プロファイルを補正する(ステップS044)。
The process condition calculation unit 122 also corrects the laser output, laser scanning speed, and laser irradiation profile so that the calculated thermal energy is equal to or greater than the melting enthalpy of the material property and the maximum temperature reached is equal to or less than the thermal decomposition temperature of the material property (step S044).
これにより、プロセス条件算出部122は、密度低下および熱劣化が引き起こされない適正なレーザ条件を算出することができる。
This allows the process condition calculation unit 122 to calculate appropriate laser conditions that do not cause density reduction or thermal degradation.
<第四実施形態>
次に、本発明の第四実施形態について説明する。本実施形態に係る粉末積層造形支援システム100Aは、粉末積層造形プロセスにおいて、溶融・焼結した材料粉末が結晶化することで発生する反り変形を抑制し、造形エラーを防ぐように造形品の配置を補正する。 <Fourth embodiment>
Next, a fourth embodiment of the present invention will be described. The powder additivemanufacturing support system 100A according to this embodiment suppresses warpage deformation caused by crystallization of molten and sintered material powder in the powder additive manufacturing process, and corrects the arrangement of the molded product to prevent molding errors.
次に、本発明の第四実施形態について説明する。本実施形態に係る粉末積層造形支援システム100Aは、粉末積層造形プロセスにおいて、溶融・焼結した材料粉末が結晶化することで発生する反り変形を抑制し、造形エラーを防ぐように造形品の配置を補正する。 <Fourth embodiment>
Next, a fourth embodiment of the present invention will be described. The powder additive
なお、第一実施形態~第三実施形態と同一の構成および処理については、同一の符号およびステップ番号を符して詳細な説明は省略する。
Note that the same configurations and processes as those in the first to third embodiments are denoted by the same reference numerals and step numbers, and detailed descriptions are omitted.
粉末積層造形プロセスにおける反り変形は、溶融・焼結した材料粉末が結晶化する際の収縮によって引き起こされる。そのため、反り変形は、溶融・焼結する面積が大きいほど収縮量が大きくなり、それに伴って発生し易くなる。
Warpage in the powder additive manufacturing process is caused by shrinkage that occurs when the molten and sintered material powder crystallizes. Therefore, the larger the area that is melted and sintered, the greater the amount of shrinkage, making warpage more likely to occur.
図8は、粉末積層造形プロセスにおけるスライスモデルと積層方向の一例を示した図である。なお、図示する配置Aと配置Bの造形品(立体物)OJ1およびOJ2は、同一形状の立体物であるが、造形時の配置(積層方向)が異なっている。図示するように、同じ造形形状の3Dモデルであっても、配置Aに比べて位置Bの方が、一度に溶融・焼結する面積が小さくなり、反り変形が発生し難くなる。
Figure 8 shows an example of a slice model and stacking direction in the powder additive manufacturing process. Note that the molded products (three-dimensional objects) OJ1 and OJ2 in the illustrated arrangements A and B are three-dimensional objects of the same shape, but their arrangements (stacking directions) during molding are different. As shown in the figure, even in 3D models with the same molding shape, the area that is melted and sintered at one time is smaller in position B compared to arrangement A, making it less likely for warping deformation to occur.
そのため、プロセス条件算出部122は、前述のステップS044において、製造対象製品の3Dモデルを積層方向に分割したスライスモデルを作成し、スライスモデルの中で最大面積を持つスライスの面積を減少させるように、造形品の位置および角度といった配置を補正する。
Therefore, in step S044 described above, the process condition calculation unit 122 creates a slice model by dividing the 3D model of the product to be manufactured in the stacking direction, and corrects the arrangement of the molded product, such as its position and angle, so as to reduce the area of the slice with the largest area in the slice model.
これにより、プロセス条件算出部122は、大きさや形状に応じて反り変形が発生し易い造形品であっても、反り変形の発生確率や変形度合いを低減・抑制可能な粉末積層造形プロセス実行時の配置を算出することができる。
As a result, the process condition calculation unit 122 can calculate the arrangement during the execution of the powder additive manufacturing process that can reduce or suppress the probability of warping and the degree of deformation, even for products that are prone to warping depending on their size and shape.
なお、造形プロセス条件算出処理のステップS044における処理は、第一実施形態~第四実施形態で説明した処理のうち、少なくともいずれか1つ以上が実行されれば良い。言い換えれば、ステップS044の処理は、第一実施形態~第四実施形態のうち、いずれか1つ、または、複数の実施形態における該当処理が組み合わせられて実行されても良く、あるいは、全ての実施形態における該当処理が実行されても良い。
The process in step S044 of the modeling process condition calculation process may be performed by executing at least one of the processes described in the first to fourth embodiments. In other words, the process in step S044 may be performed by executing a combination of the corresponding processes in any one or more of the first to fourth embodiments, or may be performed by executing the corresponding processes in all of the embodiments.
<ハードウェア構成>
次に、粉末積層造形支援システム100Aのハードウェア構成の一例について説明する。 <Hardware Configuration>
Next, an example of the hardware configuration of the powder additivemanufacturing support system 100A will be described.
次に、粉末積層造形支援システム100Aのハードウェア構成の一例について説明する。 <Hardware Configuration>
Next, an example of the hardware configuration of the powder additive
図9は、粉末積層造形支援システム100Aのハードウェア構成の一例を示した図である。粉末積層造形支援システム100Aは、例えばサーバ(クラウドサーバを含む)、ワークステーションあるいはパーソナルコンピュータなどの計算機である。図示するように、粉末積層造形支援システム100Aは、入力装置310と、出力装置320と、処理装置330と、主記憶装置340と、補助記憶装置350と、通信装置360と、これらの各装置を電気的に接続するバス370と、を有している。
FIG. 9 shows an example of the hardware configuration of powder additive manufacturing support system 100A. Powder additive manufacturing support system 100A is a computer such as a server (including a cloud server), a workstation, or a personal computer. As shown in the figure, powder additive manufacturing support system 100A has an input device 310, an output device 320, a processing device 330, a main memory device 340, an auxiliary memory device 350, a communication device 360, and a bus 370 that electrically connects each of these devices.
入力装置310は、ユーザが粉末積層造形支援システム100Aに情報や指示を入力するための装置である。具体的には、入力装置310は、例えばタッチパネル、キーボード、マウスあるいはマイクロフォンのような音声入力装置である。
The input device 310 is a device that allows a user to input information and instructions to the powder additive manufacturing support system 100A. Specifically, the input device 310 is, for example, a touch panel, a keyboard, a mouse, or a voice input device such as a microphone.
出力装置320は、粉末積層造形支援システム100Aにより生成された情報を出力する装置である。具体的には、出力装置320は、ディスプレイ(表示装置)、プリンタあるいはスピーカである。
The output device 320 is a device that outputs information generated by the powder additive manufacturing support system 100A. Specifically, the output device 320 is a display (display device), a printer, or a speaker.
処理装置330は、例えば演算処理を行う装置である。具体的には、処理装置330は、CPU、マイクロプロセッサ、GPU、FPGA、あるいはその他の演算できる半導体デバイス等である。
The processing device 330 is, for example, a device that performs arithmetic processing. Specifically, the processing device 330 is a CPU, a microprocessor, a GPU, an FPGA, or other semiconductor device capable of performing calculations.
主記憶装置340は、読み出した各種情報を一時的に格納するRAM(Random Access Memory)などのメモリ装置や、処理装置330で実行されるプログラムやアプリケーションプログラムおよびその他の様々な情報等を格納するROM(Read Only Memory)などの不揮発性記憶装置である。補助記憶装置350は、デジタル情報を記憶可能なHDD(Hard Disk Drive)やSSD(Solid State Drive)あるいはフラッシュメモリなどの不揮発性記憶装置である。
The main memory device 340 is a memory device such as a RAM (Random Access Memory) that temporarily stores various read information, or a non-volatile memory device such as a ROM (Read Only Memory) that stores programs and application programs executed by the processing device 330 and various other information. The auxiliary memory device 350 is a non-volatile memory device such as an HDD (Hard Disk Drive), SSD (Solid State Drive), or flash memory that can store digital information.
通信装置360は、外部装置200との間で無線あるいは有線による情報通信を行う装置である。
The communication device 360 is a device that performs wireless or wired information communication with the external device 200.
以上、粉末積層造形支援システム100Aのハードウェア構成について説明した。
The above describes the hardware configuration of the powder additive manufacturing support system 100A.
なお、粉末積層造形支援システム100Aの処理部120は、処理装置330(CPU等)に処理を行わせるプログラムによって実現される。これらのプログラムは、例えば主記憶装置340あるいは補助記憶装置350に格納されており、実行にあたって主記憶装置340上にロードされ、処理装置330により実行される。また、記憶部130は、主記憶装置340あるいは補助記憶装置350によって実現されても良く、これらの組み合わせによって実現されても良い。また、通信部150は、通信装置360によって実現される。
The processing unit 120 of the powder additive manufacturing support system 100A is realized by a program that causes the processing device 330 (CPU, etc.) to perform processing. These programs are stored, for example, in the main memory device 340 or the auxiliary memory device 350, and are loaded onto the main memory device 340 for execution and executed by the processing device 330. The memory unit 130 may be realized by the main memory device 340 or the auxiliary memory device 350, or a combination of these. The communication unit 150 is realized by the communication device 360.
なお、粉末積層造形支援システム100Aで実行されるプログラムは、CPUなどのプロセッサが読み込み可能な不揮発性記憶媒体に格納されていても良い。また、不揮発性記憶媒体に格納されたプログラムは、直接、粉末積層造形支援システム100Aが読み込んでも良いが、その他の形態であっても良い。その他の形態には、例えば、プログラム配信用のプロセッサシステムが当該媒体からプログラムを読み込み、その後、プログラム配信用のプロセッサシステムから粉末積層造形支援システム100Aに当該プログラムが送信(配信)される形態がある。また、不揮発性記憶媒体の例は、主記憶装置340として説明したROM、補助記憶装置350として説明したHDDやSSD、あるいはそれ以外の光ディスク媒体などがある。
The programs executed by the powder additive manufacturing support system 100A may be stored in a non-volatile storage medium that can be read by a processor such as a CPU. The programs stored in the non-volatile storage medium may be directly read by the powder additive manufacturing support system 100A, but may also be in other forms. Other forms include, for example, a form in which a processor system for program distribution reads the program from the medium, and then the program is transmitted (distributed) from the processor system for program distribution to the powder additive manufacturing support system 100A. Examples of non-volatile storage media include the ROM described as the main storage device 340, the HDD or SSD described as the auxiliary storage device 350, or other optical disk media.
なお、粉末積層造形支援システム100Aの各機能ブロックは、本実施形態において実現される各機能を理解容易にするために、主な処理内容に応じて分類したものである。したがって、各機能の分類の仕方やその名称によって、本発明が制限されることはない。また、粉末積層造形支援システム100Aの各構成は、処理内容に応じて、さらに多くの構成要素に分類することもできる。また、1つの構成要素がさらに多くの処理を実行するように分類することもできる。
The functional blocks of the powder additive manufacturing support system 100A are classified according to the main processing content in order to facilitate understanding of the functions realized in this embodiment. Therefore, the present invention is not limited by the manner in which the functions are classified or their names. Furthermore, each configuration of the powder additive manufacturing support system 100A can be further classified into more components according to the processing content. Furthermore, a single component can be classified to perform even more processes.
また、各機能部の全部または一部は、コンピュータに実装されるハードウェア(ASICといった集積回路など)により構築されてもよい。また、各機能部の処理が1つのハードウェアで実行されてもよいし、複数のハードウェアで実行されてもよい。
Furthermore, all or part of each functional unit may be constructed using hardware implemented in a computer (such as an integrated circuit such as an ASIC). Furthermore, the processing of each functional unit may be executed by a single piece of hardware, or may be executed by multiple pieces of hardware.
また、本発明は、上記の実施形態や変形例などに限られるものではなく、これら以外にも様々な実施形態および変形例が含まれる。例えば、上記の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態や変形例の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
Furthermore, the present invention is not limited to the above-mentioned embodiments and modifications, but includes various other embodiments and modifications. For example, the above-mentioned embodiments have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described. Furthermore, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment or modification, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace part of the configuration of each embodiment with other configurations.
また、上記説明では、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。
In addition, in the above explanation, the control lines and information lines are those that are considered necessary for the explanation, and do not necessarily show all the control lines and information lines in the product. In reality, it can be assumed that almost all components are interconnected.
100A・・・粉末積層造形支援システム、110・・・入力部、120・・・処理部、121・・・材料レシピ生成部、122・・・プロセス条件算出部、130・・・記憶部、131・・・材料情報DB、132・・・材料レシピ情報DB、133・・・造形関連情報DB、140・・・出力部、150・・・通信部、100B・・・粉末積層造形装置、200・・・外部装置、310・・・入力装置、320・・・出力装置、330・・・処理装置、340・・・主記憶装置、350・・・補助記憶装置、360・・・通信装置、370・・・バス、N・・・ネットワーク
100A: Powder additive manufacturing support system, 110: Input unit, 120: Processing unit, 121: Material recipe generation unit, 122: Process condition calculation unit, 130: Storage unit, 131: Material information DB, 132: Material recipe information DB, 133: Molding related information DB, 140: Output unit, 150: Communication unit, 100B: Powder additive manufacturing device, 200: External device, 310: Input device, 320: Output device, 330: Processing device, 340: Main memory device, 350: Auxiliary memory device, 360: Communication device, 370: Bus, N: Network
Claims (15)
- 粉末積層造形に用いられる材料、添加剤および当該材料の材料特性に関する情報が登録された材料情報を記憶する記憶部と、
前記材料情報を用いて、前記材料および前記添加剤の組み合わせと、当該組み合わせごとの配合比率と、を表す複数の材料レシピの候補、および、
前記材料レシピの候補の中から特定の材料レシピを選定するための所定種類の指標値、を含む材料レシピ情報を生成する材料レシピ生成部と、を備える
ことを特徴とする粉末積層造形支援システム。 a storage unit that stores material information in which information regarding materials, additives, and material properties of the materials used in powder additive manufacturing is registered;
Using the material information, a plurality of material recipe candidates representing combinations of the materials and the additives and blending ratios for each combination are obtained; and
and a material recipe generation unit that generates material recipe information including a predetermined type of index value for selecting a specific material recipe from the candidate material recipes. - 請求項1に記載の粉末積層造形支援システムであって、
前記材料特性には、結晶化度、結晶化温度、結晶化速度、融解エンタルピー、結晶化エンタルピー、融点、レーザ吸収率のうち、少なくとも1つ以上が含まれる
ことを特徴とする粉末積層造形支援システム。 The powder additive manufacturing support system according to claim 1 ,
A powder additive manufacturing support system, characterized in that the material properties include at least one of crystallinity, crystallization temperature, crystallization rate, fusion enthalpy, crystallization enthalpy, melting point, and laser absorptivity. - 請求項1に記載の粉末積層造形支援システムであって、
前記所定種類の指標値には、前記材料レシピの候補ごとのコスト、環境負荷度および前記材料レシピの候補を用いて標準的な造形形状の造形物を造形した場合の品質特性が含まれる
ことを特徴とする粉末積層造形支援システム。 The powder additive manufacturing support system according to claim 1 ,
A powder additive manufacturing support system, characterized in that the specified types of index values include the cost, environmental impact, and quality characteristics of each of the material recipe candidates when manufacturing an object of a standard shape using the material recipe candidates. - 請求項3に記載の粉末積層造形支援システムであって、
前記品質特性には、前記造形物の変形量、機械特性、密度、表面粗さ、色彩のうち、少なくとも1つ以上の特徴値が含まれる
ことを特徴とする粉末積層造形支援システム。 The powder additive manufacturing support system according to claim 3,
A powder additive manufacturing support system, characterized in that the quality characteristics include at least one of the characteristic values of the deformation amount, mechanical properties, density, surface roughness, and color of the object. - 請求項3に記載の粉末積層造形支援システムであって、
前記材料レシピの候補と、各々の前記材料レシピの候補ごとの前記指標値と、を出力する出力部をさらに備えることを特徴とする粉末積層造形支援システム。 The powder additive manufacturing support system according to claim 3,
The powder additive manufacturing support system further comprises an output unit that outputs the material recipe candidates and the index value for each of the material recipe candidates. - 請求項1に記載の粉末積層造形支援システムであって、
前記材料レシピの候補の中から選定された前記材料レシピと、造形対象製品の形状データと、所定の造形プロセス条件初期値と、に基づく解析処理を実行し、所定の品質基準を満たす品質特性を得るための造形プロセス条件を算出するプロセス条件算出部をさらに備える
ことを特徴とする粉末積層造形支援システム。 The powder additive manufacturing support system according to claim 1 ,
A powder additive manufacturing support system, further comprising a process condition calculation unit that executes an analysis process based on the material recipe selected from the candidate material recipes, shape data of the product to be molded, and predetermined initial values of molding process conditions, and calculates molding process conditions for obtaining quality characteristics that satisfy predetermined quality standards. - 請求項6に記載の粉末積層造形支援システムであって、
前記プロセス条件算出部は、
前記品質特性が前記品質基準を満たさない場合、一定のルールに基づいて、前記造形プロセス条件を補正することで、所定の前記品質基準を満たす品質特性を得るための前記造形プロセス条件を算出する
ことを特徴とする粉末積層造形支援システム。 The powder additive manufacturing support system according to claim 6,
The process condition calculation unit
A powder additive manufacturing support system characterized in that, if the quality characteristics do not satisfy the quality standard, the modeling process conditions are corrected based on certain rules, thereby calculating the modeling process conditions to obtain quality characteristics that satisfy the specified quality standard. - 請求項6に記載の粉末積層造形支援システムであって、
前記プロセス条件算出部は、
前記材料特性に含まれる結晶化温度以上かつ融点以下の範囲内で、パートベッドの温度条件に関する前記造形プロセス条件初期値を補正することで、前記造形プロセス条件を算出する
ことを特徴とする粉末積層造形支援システム。 The powder additive manufacturing support system according to claim 6,
The process condition calculation unit
A powder additive manufacturing support system characterized by calculating the manufacturing process conditions by correcting the initial values of the manufacturing process conditions related to the temperature conditions of the part bed within the range above the crystallization temperature and below the melting point included in the material properties. - 請求項6に記載の粉末積層造形支援システムであって、
前記プロセス条件算出部は、
前記材料特性に含まれる結晶化速度と、前記造形プロセス条件初期値のパートベッドの温度条件、フィードの温度条件およびリコート周期と、に基づいて、予測される造形プロセス中の反り変形量を算出し、
前記反り変形量が一層当りの積層厚さ以下となるように、前記パートベッドの温度条件、前記フィードの温度条件および前記リコート周期を補正することで、前記造形プロセス条件を算出する
ことを特徴とする粉末積層造形支援システム。 The powder additive manufacturing support system according to claim 6,
The process condition calculation unit
Calculating a predicted amount of warpage deformation during the molding process based on the crystallization rate included in the material characteristics, and the part bed temperature condition, feed temperature condition, and recoating period of the initial values of the molding process conditions;
A powder additive manufacturing support system characterized by calculating the manufacturing process conditions by correcting the temperature conditions of the part bed, the temperature conditions of the feed, and the recoating period so that the amount of warping deformation is less than the layer thickness per layer. - 請求項6に記載の粉末積層造形支援システムであって、
前記プロセス条件算出部は、
前記材料特性に含まれるレーザ吸収率と、粉末積層造形の実行時に照射されるレーザの出力、当該レーザの走査速度および当該レーザの照射プロファイルと、に基づいて、予測される照射エネルギーおよび最高到達温度を算出し、
前記照射エネルギーが前記材料特性に含まれる融解エンタルピー以上、かつ、最高到達温度が前記材料特性に含まれる熱分解温度以下の範囲内となるように、前記レーザの出力、前記レーザの走査速度および前記レーザの照射プロファイルを補正することで、前記造形プロセス条件を算出する
ことを特徴とする粉末積層造形支援システム。 The powder additive manufacturing support system according to claim 6,
The process condition calculation unit
Calculating a predicted irradiation energy and a maximum temperature based on the laser absorptivity included in the material properties, the output of a laser irradiated during powder additive manufacturing, the scanning speed of the laser, and the irradiation profile of the laser;
A powder additive manufacturing support system, characterized in that the manufacturing process conditions are calculated by correcting the laser output, the laser scanning speed, and the laser irradiation profile so that the irradiation energy is equal to or greater than the melting enthalpy included in the material properties, and the maximum temperature reached is within a range equal to or less than the thermal decomposition temperature included in the material properties. - 請求項6に記載の粉末積層造形支援システムであって、
前記プロセス条件算出部は、
前記造形対象製品の形状データを積層方向に分割したスライスモデルを作成し、スライスモデルの中で最大面積を持つスライスの面積を減少させるように、造形品の位置および角度に関する配置条件を補正することで、前記造形プロセス条件を算出する
ことを特徴とする粉末積層造形支援システム。 The powder additive manufacturing support system according to claim 6,
The process condition calculation unit
A powder additive manufacturing support system, characterized in that it calculates the manufacturing process conditions by creating a slice model by dividing the shape data of the product to be manufactured in the stacking direction, and correcting the placement conditions related to the position and angle of the product to be manufactured so as to reduce the area of the slice with the largest area in the slice model. - 粉末積層造形支援システムが行う粉末積層造形支援方法であって、
前記粉末積層造形支援システムは、
粉末積層造形に用いられる材料、添加剤および当該材料の材料特性に関する情報が登録された材料情報を記憶する記憶ステップと、
前記材料情報を用いて、前記材料および前記添加剤の組み合わせと、当該組み合わせごとの配合比率と、を表す複数の材料レシピの候補、および、
前記材料レシピの候補の中から特定の材料レシピを選定するための所定種類の指標値、を含む材料レシピ情報を生成する材料レシピ生成ステップと、を行う
ことを特徴とする粉末積層造形支援方法。 A powder additive manufacturing support method performed by a powder additive manufacturing support system, comprising:
The powder additive manufacturing support system includes:
A storage step of storing material information in which information regarding materials, additives, and material properties of the materials used in powder additive manufacturing is registered;
Using the material information, a plurality of material recipe candidates representing combinations of the materials and the additives and blending ratios for each combination are obtained; and
a material recipe generating step of generating material recipe information including a predetermined type of index value for selecting a specific material recipe from the candidate material recipes. - 請求項12に記載の粉末積層造形支援方法であって、
前記粉末積層造形支援システムは、
前記材料レシピの候補の中から選定された前記材料レシピと、造形対象製品の形状データと、所定の造形プロセス条件初期値と、に基づく解析処理を実行し、所定の品質基準を満たす品質特性を得るための造形プロセス条件を算出するプロセス条件算出ステップをさらに行う
ことを特徴とする粉末積層造形支援方法。 The powder additive manufacturing support method according to claim 12,
The powder additive manufacturing support system includes:
A powder additive manufacturing support method, characterized by further performing a process condition calculation step of executing an analysis process based on the material recipe selected from the candidate material recipes, shape data of the product to be molded, and specified initial values of the molding process conditions, and calculating molding process conditions for obtaining quality characteristics that satisfy specified quality standards. - コンピュータを粉末積層造形支援システムとして機能させるプログラムであって、
前記コンピュータを、
粉末積層造形に用いられる材料、添加剤および当該材料の材料特性に関する情報が登録された材料情報を記憶する記憶部と、
前記材料情報を用いて、前記材料および前記添加剤の組み合わせと、当該組み合わせごとの配合比率と、を表す複数の材料レシピの候補、および、
前記材料レシピの候補の中から特定の材料レシピを選定するための所定種類の指標値、を含む材料レシピ情報を生成する材料レシピ生成部と、して機能させる
ことを特徴とするプログラム。 A program for causing a computer to function as a powder additive manufacturing support system,
The computer,
a storage unit that stores material information in which information regarding materials, additives, and material properties of the materials used in powder additive manufacturing is registered;
Using the material information, a plurality of material recipe candidates representing combinations of the materials and the additives and blending ratios for each combination are obtained; and
A program that functions as an ingredient recipe generating unit that generates ingredient recipe information including a predetermined type of index value for selecting a specific ingredient recipe from among the ingredient recipe candidates. - 請求項14に記載のプログラムであって、
前記コンピュータを、
前記材料レシピの候補の中から選定された前記材料レシピと、造形対象製品の形状データと、所定の造形プロセス条件初期値と、に基づく解析処理を実行し、所定の品質基準を満たす品質特性を得るための造形プロセス条件を算出するプロセス条件算出部として機能させる
ことを特徴とするプログラム。 The program according to claim 14,
The computer,
A program that functions as a process condition calculation unit that executes an analysis process based on the material recipe selected from the candidate material recipes, shape data of a product to be molded, and predetermined initial values of molding process conditions, and calculates molding process conditions for obtaining quality characteristics that satisfy predetermined quality standards.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-021736 | 2023-02-15 | ||
JP2023021736A JP2024115860A (en) | 2023-02-15 | 2023-02-15 | Powder additive manufacturing support system, powder additive manufacturing support method, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024171487A1 true WO2024171487A1 (en) | 2024-08-22 |
Family
ID=92421137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/028723 WO2024171487A1 (en) | 2023-02-15 | 2023-08-07 | Powder lamination shaping assistance system, powder lamination shaping assistance method, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024115860A (en) |
WO (1) | WO2024171487A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019082790A (en) * | 2017-10-30 | 2019-05-30 | 日本システム開発株式会社 | Information processing apparatus, method and program |
JP2020183549A (en) * | 2019-04-26 | 2020-11-12 | 株式会社日立製作所 | Laminated modeling condition generation method, laminated modeling support software and laminated modeling support system |
JP2021088736A (en) * | 2019-12-03 | 2021-06-10 | 株式会社ジェイテクト | Quality prediction system |
JP2021522580A (en) * | 2018-04-23 | 2021-08-30 | マテリアライズ・ナムローゼ・フエンノートシャップMaterialise Nv | Thermal control in laser sintering |
-
2023
- 2023-02-15 JP JP2023021736A patent/JP2024115860A/en active Pending
- 2023-08-07 WO PCT/JP2023/028723 patent/WO2024171487A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019082790A (en) * | 2017-10-30 | 2019-05-30 | 日本システム開発株式会社 | Information processing apparatus, method and program |
JP2021522580A (en) * | 2018-04-23 | 2021-08-30 | マテリアライズ・ナムローゼ・フエンノートシャップMaterialise Nv | Thermal control in laser sintering |
JP2020183549A (en) * | 2019-04-26 | 2020-11-12 | 株式会社日立製作所 | Laminated modeling condition generation method, laminated modeling support software and laminated modeling support system |
JP2021088736A (en) * | 2019-12-03 | 2021-06-10 | 株式会社ジェイテクト | Quality prediction system |
Also Published As
Publication number | Publication date |
---|---|
JP2024115860A (en) | 2024-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bähr et al. | Correlations between influencing parameters and quality properties of components produced by fused deposition modeling | |
Zhou et al. | Parametric process optimization to improve the accuracy of rapid prototyped stereolithography parts | |
Kudelski et al. | Comparison of cost, material and time usage in FDM and SLS 3D printing methods | |
KR102285242B1 (en) | Screw shape estimation device, screw shape estimation method and screw shape estimation program | |
JP6749582B2 (en) | Three-dimensional data generation device, three-dimensional modeling device, method of manufacturing modeled object, and program | |
JP6552771B1 (en) | Additive manufacturing method and processing path generation method | |
Hadi et al. | The effect of printing temperature and moisture on tensile properties of 3D printed glass fiber reinforced nylon 6 | |
Gurrala et al. | DOE based parametric study of volumetric change of FDM parts | |
US10471651B2 (en) | Repair system, repair-data providing apparatus and repair-data generation method | |
JP2016175404A (en) | Additive manufacturing method using additive manufacturing equipment | |
CN110918988B (en) | Laser scanning path planning method and additive manufacturing method | |
CN105463452A (en) | Method for forming laser rapidly-formed element | |
WO2024171487A1 (en) | Powder lamination shaping assistance system, powder lamination shaping assistance method, and program | |
US11989487B2 (en) | Geometrical compensation models | |
US20180043622A1 (en) | Infill apparatus and method for output of 3d printer | |
US20220075347A1 (en) | Geometrical compensations | |
CN113905874A (en) | Geometric compensation | |
KR20170042458A (en) | Three-dimensioanl printing method and three-dimensional printing apparatus thereof | |
JP2018024196A (en) | Data generation device, three-dimensional molding device, manufacturing method of three-dimensional molded article, evaluation method and program of output device | |
TW201538304A (en) | Method and equipment for generating a numerical representation of a three-dimensional object, said numerical representation being suited to be used for making said three-dimensional object through stereolithography | |
JP2018001660A (en) | Three-dimensional data-generating device, three-dimensional molding apparatus, production method of molded article, and program | |
US20240051232A1 (en) | Controlling toolpaths during additive manufacturing | |
Latiff et al. | Dimensional accuracy evaluation of rapid prototyping fused deposition modeling process of FDM200mc machine on basic engineering profiles | |
US11654632B2 (en) | Validation of object model dimensions for additive manufacturing | |
Muzli et al. | Effects of Infill Density and Printing Speed on The Tensile Behaviour of Fused Deposition Modelling 3D Printed PLA Specimens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23922821 Country of ref document: EP Kind code of ref document: A1 |