[go: up one dir, main page]

WO2024171341A1 - Inference device, inference method, and method for manufacturing compressor - Google Patents

Inference device, inference method, and method for manufacturing compressor Download PDF

Info

Publication number
WO2024171341A1
WO2024171341A1 PCT/JP2023/005248 JP2023005248W WO2024171341A1 WO 2024171341 A1 WO2024171341 A1 WO 2024171341A1 JP 2023005248 W JP2023005248 W JP 2023005248W WO 2024171341 A1 WO2024171341 A1 WO 2024171341A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
data
assembly
rolling piston
vane
Prior art date
Application number
PCT/JP2023/005248
Other languages
French (fr)
Japanese (ja)
Inventor
航希 杉浦
勇二 廣澤
浩二 矢部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2023/005248 priority Critical patent/WO2024171341A1/en
Publication of WO2024171341A1 publication Critical patent/WO2024171341A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present disclosure relates to an inference device, an inference method, and a method for manufacturing a compressor that infers assembly feasibility data regarding whether or not to permit the assembly of a compressor that compresses a refrigerant.
  • JP 2009-209774 A discloses a compressor that includes a cylinder and a rolling piston that rotates along the inner circumferential surface of the cylinder, and compresses the refrigerant by the rotation of the rolling piston inside the cylinder.
  • Patent Document 1 According to the compressor disclosed in JP 2009-209774 A (Patent Document 1), by setting the size of the gap between the rolling piston and the cylinder to 0.3% to 0.4% of the displacement volume, it is possible to prevent a decrease in the performance of the compressor.
  • the value of 0.3% to 0.4% of the displacement volume is merely a value derived through experimentation, even if the size of the gap between the rolling piston and the cylinder is set to 0.3% to 0.4% of the displacement volume, it is not necessarily the case that the performance of the compressor actually manufactured will be good.
  • the compressor when the compressor is assembled by combining multiple parts and the characteristics of the compressor, such as its performance, are checked, and if the characteristics of the compressor do not meet the standards, the assembled compressor must be corrected by hand or must be discarded. In this case, the time required to assemble the compressor and the parts used in assembling the compressor are wasted.
  • This disclosure has been made to solve the above problems, and aims to provide technology that can eliminate waste in the assembly of compressors.
  • the inference device is an inference device that infers assembly feasibility data regarding whether or not to permit assembly of a compressor that compresses a refrigerant.
  • the inference device includes a data acquisition unit that acquires input data that is correlated with the assembly feasibility data, and an inference unit that infers the assembly feasibility data based on the input data acquired by the data acquisition unit, using a trained model for inferring the assembly feasibility data based on the input data.
  • the inference method disclosed herein is an inference method in which a computer infers assembly feasibility data regarding whether or not assembly of a compressor that compresses a refrigerant is permitted.
  • the inference method includes, as processing executed by the computer, a step of acquiring input data correlated with the assembly feasibility data, and a step of inferring the assembly feasibility data based on the input data acquired in the acquiring step, using a trained model for inferring the assembly feasibility data based on the input data.
  • the manufacturing method disclosed herein is a method for manufacturing a compressor by a computer.
  • the manufacturing method includes, as processing executed by the computer, a step of combining a first part with a second part, and a step of inferring assembly feasibility data based on at least one of input data of data indicating individual variations of the first part, data indicating individual variations of the second part, and data indicating individual variations of a combined part formed by combining the first part and the second part, using a trained model for inferring assembly feasibility data regarding whether or not assembly of a compressor is permitted based on the input data.
  • the manufacturing method is a method for manufacturing a compressor by a computer.
  • the manufacturing method includes, as processing executed by the computer, a step of combining a first part with a second part, and a step of inferring assembly feasibility data using a trained model for inferring assembly feasibility data regarding whether or not assembly of a compressor is permitted based on input data, based on input data including at least one of data indicating individual variations of the first part and data indicating individual variations of the second part, data indicating individual variations of a combined part formed by combining the first part and the second part, and data indicating individual variations of a third part to be combined with the combined part.
  • a trained model can be used to infer whether or not to permit assembly of a compressor based on input data that is correlated with whether or not to permit assembly of a compressor, thereby eliminating waste associated with compressor assembly.
  • FIG. 1 is a diagram showing a configuration of a compressor according to a first embodiment
  • FIG. FIG. 2 is a cross-sectional view of a compression mechanism portion.
  • FIG. 4 is a diagram showing an example of an assembly of a compression mechanism portion.
  • 1 is a diagram showing a configuration of an inference device according to a first embodiment
  • FIG. 1 is a diagram for explaining an overview of supervised learning
  • 3 is a diagram for explaining input and output of supervised learning in the inference device according to the first embodiment.
  • FIG. FIG. 2 is a diagram illustrating a configuration of a learning device in a learning phase.
  • FIG. 1 is a diagram illustrating a configuration of a neural network.
  • 11 is a flowchart showing a process executed by a learning device (control unit) in a learning phase.
  • FIG. 3 is a diagram for explaining an example of input and output of supervised learning in the inference device according to embodiment 1.
  • FIG. 4 is a flowchart relating to a method of manufacturing a compressor in the inference device according to the first embodiment.
  • 13 is a flowchart relating to a method of manufacturing a compressor in the inference device of embodiment 2.
  • 13 is a flowchart relating to a method of manufacturing a compressor in the inference device of embodiment 3.
  • Embodiment 1 A compressor 6 according to a first embodiment will be described with reference to Fig. 1 to Fig. 4.
  • the compressor 6 can be used in an air conditioner that cools or heats an object to be air-conditioned, such as a room, by circulating a refrigerant through a refrigerant circuit.
  • the compressor 6 may also be used in a refrigeration device that cools an object to be cooled, such as a showcase or a unit cooler, by circulating a refrigerant.
  • FIG. 1 is a diagram showing the configuration of a compressor 6 according to the first embodiment.
  • the horizontal direction of the compressor 6 is defined as the X-axis direction
  • the vertical direction of the compressor 6 is defined as the Y-axis direction
  • the direction perpendicular to the X-axis and Y-axis is defined as the Z-axis direction.
  • a longitudinal cross section of the compressor 6 taken along the X-Y plane is shown.
  • the compressor 6 is a rotary compressor and includes a shell (housing) 60, a compression mechanism 62 for compressing a refrigerant (e.g., a refrigerant gas), an electric motor 61 for supplying power to the compression mechanism 62 for compressing the refrigerant, a shaft 613, a glass terminal 67 for supplying power to the electric motor 61, an accumulator 63 for drawing the refrigerant into the shell 60, and a discharge pipe 66 for discharging the refrigerant compressed by the compression mechanism 62 from inside the shell 60.
  • a refrigerant e.g., a refrigerant gas
  • an electric motor 61 for supplying power to the compression mechanism 62 for compressing the refrigerant
  • a shaft 613 for supplying power to the electric motor 61
  • a glass terminal 67 for supplying power to the electric motor 61
  • an accumulator 63 for drawing the refrigerant into the shell 60
  • a discharge pipe 66 for dis
  • the shell 60 houses the electric motor 61, the compression mechanism 62, and the shaft 613.
  • the electric motor 61 is fixed in the shell 60 by press fitting or shrink fitting.
  • the electric motor 61 may have a stator 611 (described later) directly attached to the shell 60 by welding.
  • the compression mechanism 62 is disposed below the electric motor 61. Refrigeration oil is stored at the bottom of the shell 60 to lubricate sliding parts such as the rolling piston 622 (described later).
  • the compression mechanism 62 is connected to the electric motor 61 via the shaft 613.
  • the accumulator 63 has a suction pipe 64 through which the refrigerant is drawn into the accumulator 63, and a supply pipe 65 that supplies the refrigerant to the compression mechanism 62.
  • the compressor 6 described above is assembled by joining multiple parts by welding using wax or the like.
  • the shell 60 is constructed by welding shell part 60A arranged on the upper surface of the compressor 6 to shell part 60C arranged on the side of the compressor 6 at welding part W1, and by welding shell part 60B arranged on the lower surface of the compressor 6 to shell part 60C at welding part W2.
  • the shell 60 and the accumulator 63 are welded at welding part W3.
  • the shell 60 and the supply pipe 65 are welded at welding part W4.
  • the shell 60 and the discharge pipe 66 are welded at welding part W5.
  • FIG. 2 is a diagram showing a cross section of the electric motor 61.
  • FIG. 2 shows a cross section of the electric motor 61 when the electric motor 61 is cut along the X-Z plane at the line A-A' shown in FIG. 1.
  • the electric motor 61 comprises a stator 611, a winding 615 wound around the stator 611, and a rotor 612 arranged inside the stator 611.
  • the electric motor 61 is, for example, a PM (Permanent Magnet) motor in which a permanent magnet is provided in the rotor 612.
  • PM Permanent Magnet
  • the stator 611 is formed of an iron core or coil, and includes a stator core 610 with a circular or nearly circular cross section.
  • a central hole 619 with a circular cross section is formed in the center of the stator core 610 for positioning the rotor 612.
  • the rotor 612 can rotate in a direction along the X-Z plane in the central hole 619 formed in the stator core 610.
  • the stator core 610 has a plurality of slots 614 formed in the circumferential direction.
  • a winding 615 is attached to each of the plurality of slots 614. Power is supplied to the winding 615 via glass terminals 67.
  • the winding 615 may be attached to the stator core 610 using any known winding method, such as distributed winding or concentrated winding, and there are no particular limitations on the method of attaching the winding 615.
  • the rotor 612 has a circular or nearly circular cross section.
  • the outer diameter of the rotor 612 is smaller than the inner diameter of the stator 611.
  • the rotor 612 is disposed inside the stator 611 so as to fit into the central hole 619 of the stator core 610 without contacting the stator 611.
  • a shaft hole 616 having a circular cross section for passing the shaft 613 along the Y-axis direction is formed in the center of the rotor 612.
  • a plurality of air hole portions 617 are formed in the rotor 612 so as to surround the shaft hole portion 616.
  • a plurality of permanent magnets 618 are provided outside the plurality of air hole portions 617.
  • the electric motor 61 is not limited to an IPM (Interior Permanent Magnet) motor in which the permanent magnet 618 is embedded inside the rotor 612, but may be an SPM (Surface Permanent Magnet) motor in which the permanent magnet 618 is attached to the outer circumferential surface of the rotor 612.
  • IPM Interior Permanent Magnet
  • SPM Surface Permanent Magnet
  • FIG. 3 is a diagram showing a cross section of the compression mechanism 62.
  • FIG. 3 shows a cross section of the compression mechanism 62 when the compression mechanism 62 is cut along the X-Z plane at line B-B' shown in FIG. 1.
  • the compression mechanism 62 includes a cylinder 621 and a rolling piston 622 arranged inside the cylinder 621.
  • Cylinder 621 has a circular or nearly circular cross section.
  • a compression chamber 630 having a circular cross section for compressing the refrigerant is formed in the center of cylinder 621 and in which rolling piston 622 is disposed.
  • Rolling piston 622 can rotate in a direction along the X-Z plane in compression chamber 630 formed in cylinder 621.
  • a back pressure chamber 628 and a vane groove 624 are formed in the cylinder 621.
  • the vane groove 624 connects the compression chamber 630 and the back pressure chamber 628.
  • a long vane 625 is provided in the vane groove 624. In the example of FIG. 3, the vane 625 can slide in the Z-axis direction along the vane groove 624.
  • the rolling piston 622 has a circular or nearly circular cross section.
  • the rolling piston 622 is attached to the outer periphery of an eccentric shaft portion 626 that has a circular or nearly circular cross section.
  • a shaft hole portion 627 having a circular cross section for passing the shaft 613 along the Y-axis direction is formed in the eccentric shaft portion 626 at a position offset from the center of the rolling piston 622 and the eccentric shaft portion 626. In other words, the shaft 613 is inserted into the rolling piston 622 and the eccentric shaft portion 626 along the Y-axis direction.
  • the tip of the vane 625 is ideally in contact with a portion of the outer circumferential surface of the rolling piston 622, dividing the compression chamber 630 formed by the inner circumferential surface of the cylinder 621 and the outer circumferential surface of the rolling piston 622 into an intake side and a compression side.
  • the rolling piston 622 rotates in a direction along the XZ plane in accordance with the rotation of the shaft 613. However, because the shaft 613 is inserted at a position that is off-center of the rolling piston 622, the rolling piston 622 rotates eccentrically along the inner circumferential surface of the cylinder 621, with the off-center position as its axis. When the rolling piston 622 rotates eccentrically within the cylinder 621, part of the outer circumferential surface of the rolling piston 622 ideally comes into close contact with part of the inner circumferential surface of the cylinder 621.
  • FIG. 4 is a diagram showing an example of the assembly of the compression mechanism 62. As shown in FIG. 4, the vane 625 is attached to the vane groove 624 formed in the cylinder 621, and the rolling piston 622 is attached to the center of the hollow cylindrical cylinder 621, thereby assembling the compression mechanism 62.
  • the compression mechanism 62 further includes an upper frame 623A, a lower frame 623B, an upper muffler 624A, and a lower muffler 624B.
  • the upper frame 623A and the lower frame 623B support the cylinder 621 and rolling piston 622 of the compression mechanism 62 by sandwiching them from above and below (Y-axis direction).
  • the upper frame 623A supports the cylinder 621 and rolling piston 622 by ideally coming into close contact with the upper parts of the cylinder 621 and rolling piston 622.
  • the lower frame 623B supports the cylinder 621 and rolling piston 622 by ideally coming into close contact with the lower parts of the cylinder 621 and rolling piston 622.
  • the upper frame 623A and the lower frame 623B allow the shaft 613 to be inserted along the Y-axis direction, and bearings (not shown) support the shaft 613 for rotation in a direction along the X-Z plane.
  • An upper shaft portion 613A constituting part of the long shaft 613 is inserted into the upper frame 623A, and the shaft 613 is rotatably supported by the upper frame 623A at the upper shaft portion 613A.
  • a lower shaft portion 613B constituting part of the long shaft 613 is inserted into the lower frame 623B, and the shaft 613 is rotatably supported by the lower frame 623B at the lower shaft portion 613B.
  • the central axis of each part along the Y-axis direction will coincide.
  • the central axis of the upper frame 623A coincides with the central axis of the lower frame 623B.
  • the central axis of the shell 60 also coincides with the central axis of the shaft 613.
  • the refrigerant sucked by the accumulator 63 is supplied to the compression chamber 630 of the compression mechanism 62 via the supply pipe 65.
  • the rolling piston 622 rotates to compress the refrigerant.
  • the compression chamber 630 includes an intake side region where the sucked refrigerant exists, and a compression side region where the compressed refrigerant (hereinafter also referred to as "compressed refrigerant") exists. These intake side and compression side regions are created by the outer circumferential surface of the rolling piston 622 contacting the inner circumferential surface of the cylinder 621 and the tip of the vane 625, respectively.
  • the compressed refrigerant is discharged from the compression side region and rises inside the shell 60 through the upper muffler 624A. Refrigerant oil is mixed into the compressed refrigerant.
  • the mixture of compressed refrigerant and refrigeration oil is separated into compressed refrigerant and refrigeration oil when passing through the air hole 617 formed in the rotor 612. This makes it possible to prevent the refrigeration oil from flowing into the discharge pipe 66.
  • the compressed refrigerant separated from the refrigeration oil is supplied through the discharge pipe 66 to the high-pressure side of the refrigerant circuit in which the refrigerant circulates.
  • the characteristics of the compressor 6 include the performance of the compressor 6.
  • the performance of the compressor 6 is represented by a coefficient of performance (COP) calculated from the input power of the compressor 6 (input power supplied from the glass terminal 67) and the refrigeration capacity.
  • the coefficient of performance (COP) is characteristic data of the compressor 6 indicating the refrigeration capacity per unit of power (for example, 1 kW).
  • the characteristics of the compressor 6 also include noise data and vibration data of the compressor 6.
  • the noise data of the compressor 6 includes a sound pressure level (for example, in decibels) of the sound (noise) generated from the compressor 6 when the compressor 6 is driven.
  • the vibration data of the compressor 6 includes a vibration level indicating the degree to which the compressor 6 vibrates when the compressor 6 is driven.
  • Factors that reduce the performance of the compressor 6 include individual variations in each part of the compression mechanism 62.
  • major factors that affect the performance of the compressor 6 in the compression mechanism 62 include the size of the gap (G1 in FIG. 1) between the rolling piston 622 and the upper frame 623A, the size of the gap (G2 in FIG. 1) between the rolling piston 622 and the lower frame 623B, the size of the gap (G3 in FIG. 3) between the outer circumferential surface of the rolling piston 622 and the inner circumferential surface of the cylinder 621, the size of the gap (G4 in FIG. 3) between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622, the size of the gap (G5 in FIG.
  • the coefficient of performance of the compressor 6 is the refrigeration capacity per unit of power, so if the refrigeration capacity decreases, the coefficient of performance decreases. In other words, if the gaps between the components are large, the performance of the compressor 6 decreases.
  • the main factors that affect the performance of the compressor 6 include the degree of welding at the welded parts W1 and W2 of the shell 60, the welded part W3 between the shell 60 and the accumulator 63, the welded part W4 between the shell 60 and the supply pipe 65, and the welded part W5 between the shell 60 and the discharge pipe 66. If the weld strength at each weld is low, gaps will occur at the joints between multiple components, and refrigerant may leak.
  • the noise data and vibration data of the compressor 6 can also fluctuate due to individual variations in each part of the compression mechanism 62.
  • the main factors that affect the noise data and vibration data of the compressor 6 in the compression mechanism 62 include the concentricity of the upper shaft portion 613A and the lower shaft portion 613B, and the size of the gap (G1 in FIG. 3) between the vane 625 and the vane groove 624.
  • the concentricity of the upper shaft portion 613A and the lower shaft portion 613B represents the degree of misalignment between the central axis of the upper shaft portion 613A and the central axis of the lower shaft portion 613B, and when the concentricity is 0, the central axis of the upper shaft portion 613A and the central axis of the lower shaft portion 613B completely coincide.
  • the greater the concentricity of the upper shaft portion 613A and the lower shaft portion 613B the greater the misalignment of the center of rotation of the shaft 613 above and below the cylinder 621, preventing the transmission of rotational energy from the electric motor 61 to the compression mechanism portion 62 and converting the rotational energy into vibration energy.
  • the vane 625 and the vane groove 624 If the gap between the vane 625 and the vane groove 624 is too large, the vane 625 will be more likely to vibrate in the vane groove 624, and the vane 625 will collide with the vane groove 624, generating vibration energy. In other words, if the gap between the vane 625 and the vane groove 624 is too large, qualitatively the sound pressure level of the noise of the compressor 6 will increase, and the vibration level of the compressor 6 will also increase. Also, if the gap between the vane 625 and the vane groove 624 is too small, vibration energy will be generated due to the frictional force generated between the vane 625 and the vane groove 624.
  • the rotational speed of the motor 61 will pulsate due to the frictional force generated between the vane 625 and the vane groove 624, making the compressor 6 more likely to vibrate and generate noise.
  • the gap between the vane 625 and the vane groove 624 is too small, qualitatively the sound pressure level of the noise of the compressor 6 increases, and the vibration level of the compressor 6 increases. In this way, variations in the gap between the vane 625 and the vane groove 624 tend to deteriorate the noise and vibration characteristics of the compressor 6.
  • each component of the compression mechanism 62 described above is precisely machined and surface treated before assembly.
  • the compressor 6 is manufactured by combining the various parts of the compression mechanism 62, and it can be qualitatively understood that the dimensions of each part affect the performance of the compressor 6. However, even if the dimensions of each part of the compression mechanism 62 are within the allowable range, this does not necessarily mean that the dimensions of each gap in the assembled compressor 6 are within the allowable range.
  • the gap between those parts becomes large and the gap dimension may exceed the tolerance range.
  • a part having a dimension close to the upper limit of the tolerance range e.g., the outer diameter of rolling piston 622
  • the gap between those parts becomes small and the gap dimension may fall below the tolerance range.
  • multiple gaps occur when the various parts of the compression mechanism 62 are combined, and these multiple gaps may affect each other. For this reason, even if it is possible to grasp the gaps between two parts to some extent, it is not possible to grasp the individual gaps after the various parts of the compression mechanism 62 are combined, and ultimately, it is difficult to confirm the performance of the compressor 6 as a whole until after the compressor 6 has been manufactured.
  • the main factors that affect the performance of the compressor 6 in the motor 61 include the amount of magnetic flux of the rotor 612 that links with the windings 615 and the resistance value of the windings 615. Due to the amount of magnetic flux of the rotor 612 that links with the windings 615, an induced voltage occurs based on the law of electromagnetic induction. The magnitude of the induced voltage is proportional to the amount of magnetic flux of the rotor 612 that links with the windings 615. In other words, the amount of magnetic flux of the rotor 612 that links with the windings 615 corresponds to the induced voltage.
  • the main factors that affect the noise data and vibration data of the compressor 6 in the motor 61 include the amount of magnetic flux of the rotor 612 that links with the windings 615, the inner diameter roundness of the stator 611, and the amount of eccentricity of the rotor 612.
  • the amount of magnetic flux of the rotor 612 interlinked with the winding 615 varies mainly depending on the magnetic flux density of the permanent magnet 618 inserted in the rotor 612, the dimensions of the permanent magnet 618, the outer diameter of the rotor 612, and the inner diameter of the stator 611, and the variations in these factors also tend to cause the input power of the compressor 6 (input power supplied from the glass terminal 67) to vary.
  • the amount of magnetic flux of the rotor 612 decreases, the current flowing to the winding 615 of the motor 61 also increases, causing copper loss to increase, and the driving power supplied to the motor 61 increases. This causes the input power of the motor 61 to vary.
  • the amount of magnetic flux input in advance is a representative value that does not reflect the individual variations of the compressor 6. Therefore, the greater the deviation of the actual magnetic flux amount from the representative value input to the control device, the more likely the input to the compressor 6 will fluctuate, making the operation of the motor 61 unstable.
  • the input power of the compressor 6 varies due to variations in the resistance value of the windings 615.
  • the coefficient of performance of the compressor 6 is the refrigeration capacity per unit of power, so as the input power of the compressor 6 increases, the coefficient of performance decreases. In other words, the performance of the compressor 6 varies depending on the amount of magnetic flux of the rotor 612 that links with the windings 615 and the resistance value of the windings 615.
  • the inner diameter roundness of the stator 611 indicates whether the circle forming the inner peripheral surface of the stator 611 having a circular cross section is close to a perfect circle, and when the inner diameter roundness is 0, the stator 611 is a perfect circle. As shown in FIG. 2, a gap is generated between the inner peripheral surface of the stator 611 and the outer peripheral surface of the rotating rotor 612, and the size of the gap between the inner peripheral surface of the stator 611 and the outer peripheral surface of the rotor 612 increases or decreases depending on the inner diameter roundness of the stator 611.
  • the eccentricity of the rotor 612 represents the amount of deviation between the rotation axis of the rotor 612 and the ideal position when the rotation axis of the rotor 612 deviates from the ideal position, and when the eccentricity is 0, the rotation axis is located at the ideal position.
  • the outer peripheral surface of the rolling piston 622 and the inner peripheral surface of the cylinder 621 are ideally in close contact with each other, but depending on the eccentricity of the rotor 612, a gap (G2 in FIG. 3) may be generated between the outer peripheral surface of the rolling piston 622 and the inner peripheral surface of the cylinder 621. Also, as shown in FIG.
  • the tip of the vane 625 and the outer peripheral surface of the rotating rolling piston 622 are ideally in close contact with each other, but depending on the eccentricity of the rotor 612, a gap (G3 in FIG. 3) may be generated between the tip of the vane 625 and the outer peripheral surface of the rolling piston 622. That is, depending on the amount of eccentricity of the rotor 612, the size of the gap between the inner circumferential surface of the stator 611 and the outer circumferential surface of the rotor 612, and the size of the gap between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622, increase or decrease.
  • the individual variation of the individual parts, the accuracy of the combination of the multiple parts, and the state of the welding that joins the multiple parts as described above can be affected by the dimensional accuracy of each part processed by the manufacturing device and the working environment of the worker at the manufacturing site. Therefore, the individual variation of the individual parts, the combination of the multiple parts, and the state of the welding that joins the multiple parts can vary depending on the identification information of the manufacturing device, the current generated in the manufacturing device, the voltage generated in the manufacturing device, the time required to manufacture the compressor 6, the welding temperature during the manufacturing of the compressor 6, the welding amount (for example, the amount of wax) in the welding, the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
  • the expansion rate of the parts and the work efficiency of the worker can vary depending on the temperature and humidity at the manufacturing site.
  • a current or voltage is generated when the blade comes into contact with the parts.
  • the processing state of the parts by the manufacturing device depends on the current or voltage generated in the manufacturing device.
  • any abnormality occurs in the manufacturing of the compressor 6, the time required to manufacture the compressor 6 may be extended.
  • the characteristics of the compressor 6 can vary depending on the identification information of the manufacturing device, the current generated in the manufacturing device, the voltage generated in the manufacturing device, the time required to manufacture the compressor 6, the temperature (heat) of the welding during the manufacturing of the compressor 6, the amount of welding (for example, the amount of wax), the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
  • the characteristics of the compressor are determined by the complex intertwining of the various components in the compression mechanism 62 and the various components in the electric motor 61, so it is difficult to accurately confirm the characteristics of the compressor 6 as a whole until the various components in the compression mechanism 62 and the various components in the electric motor 61 have been combined to manufacture the compressor 6.
  • the assembled compressor 6 when the characteristics of the compressor 6 are checked after assembling the compressor 6 by combining multiple parts, if the characteristics of the compressor 6 do not meet the standard values, the assembled compressor 6 must be corrected by manual adjustment or the assembled compressor 6 must be discarded.
  • inspection items during assembly of the compressor 6 include the gap between the stator 611 and the rotor 612 of the electric motor 61, the airtightness or welding state of the compressor 6 to confirm that refrigerant is not leaking from the compressor 6, and noise or vibration during operation of the compressor 6. If the characteristics of the compressor 6 do not meet the standards in these inspections, the compressor 6 must be corrected by manual adjustment or the compressor 6 must be discarded. In this case, the time required to assemble the compressor 6 and the parts used in assembling the compressor 6 are wasted. If it were possible to determine whether or not the compressor 6 can be assembled during the assembly process, taking into account the individual variations of individual parts and the effects of combining multiple parts, workers could avoid the waste of having to rework or discard the assembled compressor 6.
  • the present disclosure therefore provides a technology that uses AI (Artificial Intelligence) to infer assembly feasibility data based on input data that is correlated with assembly feasibility data regarding whether or not assembly of the compressor 6 is permitted.
  • AI Artificial Intelligence
  • FIG. 5 is a diagram showing the configuration of inference device 10 according to embodiment 1.
  • inference device 10 includes, as main functional components, a control unit 11, a storage unit 12, and an input unit 13.
  • the control unit 11 is a computing entity that executes various processes by executing various programs, and an example of such a computing entity is a computer such as a processor.
  • the processor is, for example, configured with a microcontroller, a CPU (central processing unit), or an MPU (micro-processing unit).
  • the processor has the function of executing various processes by executing programs, but some or all of these functions may be implemented using dedicated hardware circuits such as an ASIC (Application Specific Integrated Circuit), a GPU (Graphics Processing Unit), or an FPGA (Field-Programmable Gate Array).
  • processor is not limited to a processor in the narrow sense that executes processes using a stored program method such as a CPU or an MPU, but may also include hardwired circuits such as an ASIC, a GPU, or an FPGA. For this reason, the processor may also be interpreted as a processing circuit in which processing is defined in advance by computer-readable code and/or hardwired circuits.
  • the processor may be configured with one chip or multiple chips.
  • the processor and associated processing circuitry may be configured as multiple computers interconnected by wire or wirelessly, such as via a local area network or wireless network.
  • the processor and associated processing circuitry may be configured as a cloud computer that performs remote calculations based on input data and outputs the results of the calculations to other devices in remote locations.
  • the memory unit 12 is a memory that provides a storage area for temporarily storing program codes or work memory when the control unit 11 executes various programs.
  • the memory unit 12 may be one or more non-transitory computer readable mediums. Examples of the memory unit 12 include volatile memories such as dynamic random access memory (DRAM) and static random access memory (SRAM), or non-volatile memories such as read only memory (ROM) and flash memory.
  • the memory unit 12 may be a storage device that provides a storage area for storing various data required for the control unit 11 to execute various programs.
  • the memory unit 12 may be one or more computer readable storage mediums. Examples of the memory unit 12 include storage devices such as solid state drives (SSDs) and hard disk drives (HDDs).
  • the input unit 13 is an interface into which input data that is correlated with whether or not the compressor can be assembled is input.
  • the input data input into the input unit 13 includes individual data that indicates individual variations of individual parts, data related to the manufacture of the compressor 6, and data that may arise from the combination of multiple parts.
  • the control unit 11 includes a data acquisition unit 111, a model generation unit 112, and an inference unit 113.
  • the data acquisition unit 111 acquires input data input from the input unit 13. For example, the data acquisition unit 111 acquires input data via the input unit 13.
  • the model generation unit 112 generates a trained model 20 (described later) for inferring the assembly feasibility data based on the input data, using learning data 30 (described later) which is a set of the input data and assembly feasibility data relating to whether or not assembly of the compressor 6 is permitted, which is correct answer data corresponding to the input data.
  • the inference unit 113 uses the trained model 20 to infer the assembly feasibility data based on the input data.
  • the inference device 10 performs supervised learning using learning data 30, which is a set of input data correlated with assembly feasibility data and assembly feasibility data that is answer data corresponding to the input data.
  • Learning data 30 is a set of input data correlated with assembly feasibility data and assembly feasibility data that is answer data corresponding to the input data.
  • Supervised learning is a method of learning the features of the learning data 30 using a data set of factors and results (labels) and inferring results from the input.
  • FIG. 6 is a diagram for explaining an overview of supervised learning.
  • the inference device 10 executes a learning program 40 to generate (update) a trained model 20 based on training data 30 including an input 1 and an input 2 (correct answer).
  • the inference device 10 uses the trained model 20 to obtain an output based on the input 1.
  • FIG. 7 is a diagram for explaining the input and output of supervised learning in the inference device 10 according to the first embodiment.
  • data correlated with whether the compressor 6 can be assembled is used as the input data for input 1.
  • the input data includes individual data showing individual variations of individual parts, data related to the manufacture of the compressor 6, and data that may arise from the combination of multiple parts.
  • the input data for input 1 can be obtained before assembling the compressor 6 or during the assembly of the compressor 6.
  • assembling feasibility data regarding whether or not the compressor 6 can be assembled is used as input 2, which is the correct answer data.
  • assembling feasibility data regarding whether or not the compressor 6 can be assembled is obtained as output.
  • FIG. 8 is a diagram showing the configuration of the learning device 110 in the learning phase.
  • the learning device 110 is realized by the control unit 11 of the inference device 10.
  • the learning device 110 is capable of transferring data to and from each of the learning program storage unit 121 and the learned model storage unit 122.
  • the learning program storage unit 121 and the learned model storage unit 122 are realized by the storage unit 12 of the inference device 10.
  • the learning device 110 includes a data acquisition unit 111 and a model generation unit 112.
  • the learning device 110 executes a learning program 40 stored in a learning program storage unit 121 to generate a trained model 20 based on learning data 30 including an input 1 and an input 2 (correct answer).
  • the data acquisition unit 111 acquires learning data 30 including input 1 and input 2 (correct answer). Specifically, the data acquisition unit 111 acquires, as input 1, input data that is correlated with the assembly feasibility data of the compressor 6. The data acquisition unit 111 acquires, as input 2 (correct answer), the assembly feasibility data of the compressor 6. Specific examples of the input data and the assembly feasibility data will be described later with reference to Figures 13 to 18.
  • the model generation unit 112 uses the learning data 30 including the input 1 and the input 2 (correct answer) acquired by the data acquisition unit 111 to generate a trained model 20 that infers assembly feasibility data for the compressor 6 based on the input data.
  • the model generation unit 112 stores the generated trained model 20 in the trained model storage unit 122.
  • FIG. 9 is a diagram showing the configuration of a neural network.
  • the model generation unit 112 generates a trained model 20 by supervised learning, for example, according to a neural network model.
  • a neural network is composed of an input layer consisting of multiple neurons, an intermediate layer (hidden layer) consisting of multiple neurons, and an output layer consisting of multiple neurons. There may be one intermediate layer, or two or more layers.
  • FIG. 9 a three-layer neural network is shown.
  • a configuration with three inputs and three outputs is shown.
  • the values multiplied by weights w11 to w16 are input to the intermediate layers Y1 and Y2, and the results are further multiplied by weights w21 to w26 to be output from the output layers Z1, Z2, and Z3.
  • This output result changes depending on the values of the weights w11 to w16 and w21 to w26.
  • the neural network performs supervised learning based on learning data 30 including input 1 and input 2 (correct answer) acquired by data acquisition unit 111.
  • the neural network learns by inputting input 1 into the input layer and adjusting the weights so that the result output from the output layer approaches input 2 (correct answer).
  • the model generation unit 112 generates the trained model 20 by performing supervised learning as described above.
  • FIG. 10 is a flowchart of the processing executed by the learning device 110 (inference device 10) in the learning phase. Note that FIG. 10 shows the processing executed by the inference device 10 corresponding to the learning device 110. Also, in FIG. 10, "S” is used as an abbreviation for "STEP.”
  • the inference device 10 acquires learning data 30 including input 1 and input 2 (correct answer) by the data acquisition unit 111 (S1). Note that the inference device 10 is not limited to acquiring input 1 and input 2 (correct answer) simultaneously, and may acquire input 1 and input 2 (correct answer) at different times.
  • the inference device 10 generates a trained model 20 by performing supervised learning based on the training data 30 using the model generation unit 112 (S2).
  • the inference device 10 stores the generated trained model 20 in the trained model storage unit 122 (S3) and ends this process.
  • Fig. 11 is a diagram showing the configuration of the inference device 10 in the utilization phase.
  • the inference device 10 is capable of transferring data to and from a trained model storage unit 122.
  • the inference device 10 includes a data acquisition unit 111 and an inference unit 113.
  • the inference device 10 uses a trained model 20 to obtain an output based on an input 1.
  • the data acquisition unit 111 acquires input 1. Specifically, the data acquisition unit 111 acquires input data that is correlated with the assembly feasibility data of the compressor 6 as input 1.
  • the inference unit 113 uses the trained model 20 to obtain assembly feasibility data of the compressor 6 as output based on the input 1. Specifically, the inference unit 113 reads out the trained model 20 from the trained model storage unit 122. The inference unit 113 uses the trained model 20 to infer assembly feasibility data of the compressor 6 as output based on the input data, which is the input 1 acquired by the data acquisition unit 111.
  • FIG. 12 is a flowchart of the process executed by the inference device 10 (control unit 11) in the utilization phase.
  • “S” is used as an abbreviation for "STEP.”
  • the inference device 10 acquires input 1 by the data acquisition unit 111 (S11).
  • the inference device 10 inputs the acquired input 1 to the trained model 20 (S12).
  • the inference device 10 uses the trained model 20 to infer as output the assembly feasibility data of the compressor 6 based on the input data that is correlated with the assembly feasibility data of the compressor 6, which is the input 1 (S13).
  • the inference device 10 can use the trained model 20 to obtain the assembly feasibility data of the compressor 6 based on the input data that is correlated with the assembly feasibility data of the compressor 6 (for example, individual data that indicates individual variations of the compressor 6).
  • the inference device 10 then ends this process.
  • Figures 13 to 18 are diagrams for explaining an example of input and output of supervised learning in inference device 10 according to embodiment 1.
  • the size of the gap (hereinafter also referred to as the "air gap") between the stator 611 and rotor 612 of the electric motor 61 is used as the assembly feasibility data for determining whether or not assembly of the compressor 6 is permitted. If the air gap is small, the reliability of the compressor 6 decreases, and the noise or vibration of the compressor 6 worsens. If the air gap is large, the performance of the compressor 6 decreases.
  • the dimensions of the air gap may be affected by the misalignment of the assembly centers of the stator 611 and the rotor 612, the inner diameter of the stator 611, the outer diameter of the rotor 612, the inclination of the shaft 613, and the state of fixation between the stator 611 and the rotor 612.
  • one factor that may cause the dimensions of the air gap to not meet the standard values is that the shaft 613 is inclined beyond an acceptable range from the central axis of the compressor 6.
  • each of the upper frame 623A and the lower frame 623B is too small, there is a risk of damaging the shaft 613 when assembling the compressor 6, and the gap between each of the upper frame 623A and the lower frame 623B and the shaft 613 becomes small, making it impossible to form an appropriate oil film.
  • each of the upper frame 623A and the lower frame 623B and the shaft 613 will seize up, making it impossible for the shaft 613 to rotate.
  • the shaft 613 will tilt.
  • shaft 613 If the minor axis dimension of shaft 613 is short, the bearings in lower frame 623B are reduced, causing shaft 613 to tilt. If the diameter dimension of shaft 613 is large, upper frame 623A and lower frame 623B each come into contact with shaft 613. If the diameter dimension of shaft 613 is small, upper frame 623A and lower frame 623B prevent the central axis from being exposed, causing shaft 613 to tilt.
  • the inference device 10 trains the learned model 20 by machine learning to infer the air gap dimensions as assembly feasibility data using at least one of data on individual variations of individual components and data that can be generated by combining multiple components as input data, the inference device 10 can infer the air gap dimensions with high accuracy based on the input data.
  • the inference device 10 can check whether the air gap dimensions are appropriate by performing such inference before, during, or after the assembly of the compressor 6. If the inference device 10 determines that the inferred air gap dimensions are appropriate, it proceeds to the next process and continues assembling the compressor 6, and if it determines that the inferred air gap dimensions are not appropriate, it is sufficient to either correct the assembled compressor 6 by hand or to discard the assembled compressor 6.
  • the data on individual variation of the single component which is the input data in FIG. 13, includes at least one of the dimensions of the upper frame 623A, the dimensions of the lower frame 623B, the dimensions of the shaft 613, the outer diameter of the rotor 612, and the inner diameter of the stator 611.
  • the dimensions of the upper frame 623A include, for example, the height of the upper frame 623A (length in the Y direction in FIG. 1).
  • the dimensions of the lower frame 623B include, for example, the height of the lower frame 623B (length in the Y direction in FIG. 1).
  • the dimensions of the shaft 613 include the diameter dimension in the cross section of the shaft 613 (X-Z cross section in FIG. 2).
  • the data that can be generated by combining multiple parts includes the size of the gap between the shaft 613 and the upper frame 623A, the size of the gap between the shaft 613 and the lower frame 623B, a value indicating the deviation between the central axis of the shell 60 and the central axis of the shaft 613, the shrink fit (tightening) between the stator 611 and the rotor 612, and a value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B.
  • the airtightness or welding state of the compressor 6 is applied as assembly feasibility data for determining whether or not assembly of the compressor 6 is permitted.
  • the airtightness of the compressor 6 can be confirmed, for example, by detecting the amount of refrigerant or gas bubbles that appear on the liquid surface when the compressor 6 is submerged in liquid, the size of the bubbles, or the frequency at which the bubbles appear.
  • the value indicating the airtightness of the compressor 6 can be a value obtained by quantifying or dividing the amount of bubbles, the size of the bubbles, or the frequency at which the bubbles appear. For example, the amount or dimensions of the wax attached to the welded parts W1 to W5 shown in FIG.
  • the width, thickness, or height of the welded parts can be applied as a value indicating the welded state of the compressor 6. If the airtightness or welding state of the compressor 6 is poor, refrigerant leakage may occur from the welded parts.
  • the airtightness or welding state of the compressor 6 may be affected by individual variations in individual parts, the state of welding that joins multiple parts, and the accuracy of the combination of multiple parts.
  • the individual variations in individual parts, the state of welding that joins multiple parts, and the combination of multiple parts may vary depending on the identification information of the manufacturing device (not shown) for manufacturing the compressor 6, the current generated in the manufacturing device, the voltage generated in the manufacturing device, the time required to manufacture the compressor 6, the welding temperature during the manufacturing of the compressor 6, the welding amount in the welding (for example, the amount of wax), the temperature (heat) at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
  • the expansion rate of the parts and the work efficiency of the worker may vary depending on the temperature and humidity at the manufacturing site.
  • a current or voltage is generated when a blade comes into contact with the part.
  • the processing state of the part by the manufacturing device depends on the current or voltage generated in the manufacturing device.
  • the time required to manufacture the compressor 6 may be extended. If the amount of wax used during welding (brazing) is small, the welding will be poor, leading to refrigerant leakage from the compressor 6. If the heat temperature during welding is low or the welding time is short, the welding will be poor, leading to refrigerant leakage from the compressor 6. If the discharge current of the manufacturing equipment during welding is small, the welding will be poor, leading to refrigerant leakage from the compressor 6.
  • Data that may result from the combination of multiple parts includes the dimensions of the shell 60 after welding, and the dimensions of the accumulator 63 after welding.
  • the dimensions of the shell 60 include the width dimension of the shell 60 in its cross section (X-Z cross section).
  • the dimensions of the accumulator 63 include the width dimension of the accumulator 63 in its cross section (X-Z cross section). If the dimensions of the shell 60 after welding or the dimensions of the accumulator 63 after welding are large, the welding will be weak, which may reduce the sealing performance of the compressor 6.
  • the inference device 10 can accurately infer the airtightness or welding state of the compressor 6 based on the input data by training the learned model 20 by machine learning to infer the airtightness or welding state of the compressor 6 as assembly feasibility data using at least one of data on individual variations of individual parts, data on the manufacture of the compressor 6, and data that may be generated by combining multiple parts as input data.
  • the inference device 10 can check whether the airtightness or welding state of the compressor 6 is appropriate by performing such inference before, during, or after the assembly of the compressor 6.
  • the inference device 10 determines that the inferred airtightness or welding state of the compressor 6 is appropriate, it proceeds to the next process and continues assembling the compressor 6, and if it determines that the inferred airtightness or welding state of the compressor 6 is not appropriate, it is sufficient to either correct the assembled compressor 6 by reworking it or to discard the assembled compressor 6.
  • the input data in Figure 14 which is data regarding individual variations of individual parts, includes the dimensions of the shell 60 before welding and the dimensions of the accumulator 63 before welding.
  • the data relating to the manufacture of the compressor 6, which is the input data in FIG. 14, includes at least one of the following: identification information of the manufacturing equipment, the current generated in the manufacturing equipment, the voltage generated in the manufacturing equipment, the noise generated in the manufacturing equipment, the vibration generated in the manufacturing equipment, the time required to manufacture the compressor 6, the welding temperature during the manufacture of the compressor 6, the amount of welding (e.g., the amount of wax), the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
  • the manufacture of the compressor 6 includes processing a number of parts, such as the stator 611, rotor 612, shaft 613, shell 60, and accumulator 63, and assembling these parts to form the compressor 6.
  • the manufacturing equipment also includes, for example, equipment that uses a blade to process each of the parts, such as the stator 611, rotor 612, and shaft 613.
  • the identification information of the manufacturing equipment includes, for example, a serial number and a management number that identify the manufacturing equipment.
  • the data that can be generated by combining multiple parts which is the input data in Figure 14, includes the dimensions of the shell 60 after welding and the dimensions of the accumulator 63 after welding.
  • the noise or vibration of the compressor 6 is applied as assembly feasibility data for determining whether or not assembly of the compressor 6 is permitted.
  • the individual variations of individual components are cited as factors that cause the noise data and vibration data of the compressor 6 to fluctuate.
  • the change in the eigenvalue due to welding or assembly is cited as a factor that causes the noise data and vibration data of the compressor 6 to fluctuate.
  • the eigenvalue of the compressor 6 is the natural frequency (resonance frequency) of the compressor 6.
  • the eigenvalue of the compressor 6 can change depending on the strength of the welding. For example, if there is a large amount of wax during welding (brazing), the welding will be strong, and the eigenvalue of the compressor 6 may change.
  • the temperature of the heat during welding is high or the welding time is long, distortion may occur in the compression mechanism part 62, and the noise of the compressor 6 will worsen. If the discharge current of the manufacturing device during welding is large, the welding will be strong, and the eigenvalue of the compressor 6 may change.
  • the accuracy of the combination of multiple parts can be cited as a factor that causes the noise data and vibration data of the compressor 6 to fluctuate.
  • Data that can arise from the combination of multiple parts includes the dimensions of the shell 60 after welding and the dimensions of the accumulator 63 after welding. If the dimensions of the shell 60 after welding or the dimensions of the accumulator 63 after welding are small, the welds will be strong, causing the characteristic values of the compressor 6 to fluctuate and the noise to worsen.
  • the inference device 10 trains the learned model 20 by machine learning to infer the noise data and vibration data of the compressor 6 as assembly feasibility data using at least one of data on individual variations of individual parts, data on the manufacture of the compressor 6, and data that may be generated by combining multiple parts as input data, the inference device 10 can infer the noise data and vibration data of the compressor 6 with high accuracy based on the input data.
  • the inference device 10 can check whether the noise data and vibration data of the compressor 6 are appropriate by performing such inference before, during, or after the assembly of the compressor 6.
  • the inference device 10 determines that the inferred noise data and vibration data are appropriate, it proceeds to the next process and continues assembling the compressor 6, and if it determines that the inferred noise data and vibration data are not appropriate, it is sufficient to either correct the assembled compressor 6 by reworking it or to discard the assembled compressor 6.
  • the dimensions of rolling piston 622 includes at least one of the dimensions of rolling piston 622, the dimensions of cylinder 621, the dimensions of vane 625, the dimensions of upper frame 623A, the dimensions of lower frame 623B, the outer diameter of stator 611, the inner diameter of stator 611, the width of stator 611, the outer diameter of rotor 612, the inner diameter of rotor 612, the dimensions of shaft 613, the dimensions of shell 60, and the dimensions of accumulator 63.
  • the dimensions of rolling piston 622 include, for example, at least one of the dimensions (outer diameter) of the outer peripheral surface of rolling piston 622 that contacts the inner peripheral surface of cylinder 621 and the tip of vane 625, and the height of rolling piston 622 (length in the Y direction in FIG. 1).
  • the dimensions of the cylinder 621 include, for example, at least one of the dimensions (inner diameter) of the inner peripheral surface of the cylinder 621 in contact with the outer peripheral surface of the rolling piston 622, and the thickness (length in the X direction in FIG. 3) of the vane groove 624 of the cylinder 621 in contact with the side surface in the sliding direction of the vane 625.
  • the dimensions of the vane 625 include, for example, the dimension of the side surface in the sliding direction of the vane 625 in contact with the vane groove 624 of the cylinder 621 (length in the Z direction in FIG. 3), and the width of the vane groove 624 in the direction perpendicular to the sliding direction of the vane 625 (X direction in FIG. 3).
  • the dimensions of the upper frame 623A include, for example, the height of the upper frame 623A (length in the Y direction in FIG. 1).
  • the dimensions of the lower frame 623B include, for example, the height of the lower frame 623B (length in the Y direction in FIG. 1).
  • the width dimension of the stator 611 includes the dimension 610A between the outer and inner circumferences of the stator 611 (stator core 610).
  • the data relating to the manufacture of the compressor 6, which is the input data in FIG. 15, includes at least one of the following: identification information of a manufacturing device (not shown) used to manufacture the compressor 6, the current generated in the manufacturing device, the voltage generated in the manufacturing device, the noise generated in the manufacturing device, the vibration generated in the manufacturing device, the time required to manufacture the compressor 6, the welding temperature during the manufacture of the compressor 6, the amount of welding (e.g., the amount of wax), the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
  • Data that can be generated by combining multiple parts, which are the input data of Figure 15, include the dimension of the gap between the rolling piston 622 and the upper frame 623A (G1 in Figure 1), the dimension of the gap between the rolling piston 622 and the lower frame 623B (G2 in Figure 1), the dimension of the gap between the outer circumferential surface of the rolling piston 622 and the inner circumferential surface of the cylinder 621 (G3 in Figure 3), the dimension of the gap between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622 (G4 in Figure 3), the dimension of the gap between the side of the vane 625 in the sliding direction and the vane groove 624 of the cylinder 621 (G5 in Figure 3), the dimension of the gap between the vane 625 and At least one of the following is included: the size of the gap with the upper frame 623A (not shown), the size of the gap between the vane 625 and the lower frame 623B (not shown), the size of the gap between the shaft 613 and the upper frame 6
  • the performance (coefficient of performance) of the compressor 6 is applied as assembly feasibility data for determining whether or not assembly of the compressor 6 is permitted.
  • factors that cause fluctuations in the performance of the compressor 6 include individual variations in individual components.
  • Another factor that causes fluctuations in the performance of the compressor 6 is refrigerant leakage from the compression mechanism 62.
  • the cause of refrigerant leakage from the compression mechanism 62 is gaps that can occur between components when multiple components are combined.
  • the inference device 10 trains the learned model 20 by machine learning to infer the performance of the compressor 6 as assembly feasibility data using at least one of data related to individual variations of individual components and data that may arise from the combination of multiple components as input data, the inference device 10 can infer the performance of the compressor 6 with high accuracy based on the input data.
  • the inference device 10 can check whether the performance of the compressor 6 is appropriate by performing such inference before, during, or after the assembly of the compressor 6.
  • the inference device 10 determines that the inferred performance of the compressor 6 is appropriate, it proceeds to the next process and continues assembling the compressor 6, and if it determines that the inferred performance of the compressor 6 is not appropriate, it is sufficient to either correct the assembled compressor 6 by reworking it or to discard the assembled compressor 6.
  • the input data in FIG. 16, which is data relating to individual variations of individual components, includes at least one of the dimensions of the rolling piston 622, the dimensions of the cylinder 621, the dimensions of the vane 625, the dimensions of the upper frame 623A, and the dimensions of the lower frame 623B.
  • the data that can be generated by combining multiple parts includes at least one of the following: the dimension of the gap between the rolling piston 622 and the upper frame 623A (G1 in FIG. 1), the dimension of the gap between the rolling piston 622 and the lower frame 623B (G2 in FIG. 1), the dimension of the gap between the outer circumferential surface of the rolling piston 622 and the inner circumferential surface of the cylinder 621 (G3 in FIG. 3), the dimension of the gap between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622 (G4 in FIG.
  • Data that can be generated by combining multiple parts includes the dimension of the gap between the rolling piston 622 and the upper frame 623A (G1 in Figure 1), the dimension of the gap between the rolling piston 622 and the lower frame 623B (G2 in Figure 1), the dimension of the gap between the outer circumferential surface of the rolling piston 622 and the inner circumferential surface of the cylinder 621 (G3 in Figure 3), the dimension of the gap between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622 (G4 in Figure 3), the dimension of the gap between the side of the vane 625 in the sliding direction and the vane groove 624 of the cylinder 621 (G5 in Figure 3), the dimension of the gap between the vane 625 and the upper frame 623A (not shown), the dimension of the gap between the vane 625 and the lower frame 623B (not shown), the dimension of the gap between the shaft 613 and the upper frame 623A, the dimension of the gap between the shaft 613 and the lower frame 623B, a value
  • the inference device 10 trains the learned model 20 by machine learning to infer data that may result from a combination of multiple parts as assembly feasibility data using at least one of data on individual variations of individual parts and data on the manufacture of the compressor 6 as input data, the inference device 10 can accurately infer data that may result from a combination of multiple parts based on the input data.
  • the inference device 10 can check whether the data that may result from a combination of multiple parts is appropriate by performing such inference before, during, or after the assembly of the compressor 6.
  • the inference device 10 determines that the data that may result from the inferred combination of multiple parts is appropriate, it proceeds to the next process and continues assembling the compressor 6, and if it determines that the data that may result from the inferred combination of multiple parts is not appropriate, it can either correct the assembled compressor 6 by reworking it or discard the assembled compressor 6.
  • the data relating to the individual variation of the individual components includes at least one of the following: the dimensions of the rolling piston 622, the dimensions of the cylinder 621, the dimensions of the vane 625, the dimensions of the upper frame 623A, the dimensions of the lower frame 623B, the outer diameter of the stator 611, the inner diameter of the stator 611, the width of the stator 611, the outer diameter of the rotor 612, the inner diameter of the rotor 612, the dimensions of the shaft 613, the dimensions of the shell 60, the dimensions of the accumulator 63, the amount of magnetic flux of the rotor 612 interlinked with the winding 615, and the resistance value of the winding 615.
  • the data relating to the manufacture of the compressor 6, which is the input data in FIG. 17, includes at least one of the following: identification information of the manufacturing equipment, the current generated in the manufacturing equipment, the voltage generated in the manufacturing equipment, the noise generated in the manufacturing equipment, the vibration generated in the manufacturing equipment, the time required to manufacture the compressor 6, the welding temperature during the manufacture of the compressor 6, the amount of welding (e.g., the amount of wax), the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
  • At least one of the noise data of the compressor 6, the vibration data of the compressor 6, the assembly data related to the assembly state of the compressor 6, whether the compressor 6 can be assembled, and the performance (coefficient of performance) of the compressor 6 is applied as the assembly feasibility data for determining whether the assembly of the compressor 6 is permitted.
  • the assembly data of the compressor 6 includes at least one of the dimensions of the gap between the stator 611 and rotor 612 of the electric motor 61, a value indicating the airtightness of the compressor 6, a value indicating the welding state of the compressor 6, and a characteristic value of the compressor 6.
  • quality check items there are a wide variety of quality check items during assembly of the compressor 6, and multiple parts are combined in a complex manner during assembly of the compressor 6. For this reason, it is difficult for a human being to determine which parts and processing states affect the assembly data related to the assembly state of the compressor 6 described above.
  • the inference device 10 can use the trained model 20 to infer the assembly data based on input data that is correlated with the assembly data.
  • the inference device 10 can accurately infer the assembly feasibility data shown in FIG. 18 based on the input data by training the learned model 20 by machine learning using at least one of data on individual variations of individual components, data on the manufacture of the compressor 6, and data that may arise from the combination of multiple components.
  • the inference device 10 can check whether the assembly feasibility data shown in FIG. 18 is appropriate by performing such inference before, during, or after the assembly of the compressor 6. If the inference device 10 determines that the inferred assembly feasibility data shown in FIG. 18 is appropriate, it proceeds to the next process and continues assembling the compressor 6. If the inferred assembly feasibility data shown in FIG. 18 is determined to be inappropriate, it may be possible to either correct the assembled compressor 6 by reworking it or to discard the assembled compressor 6.
  • the data relating to the individual variation of the individual components includes at least one of the dimensions of the rolling piston 622, the dimensions of the cylinder 621, the dimensions of the vane 625, the dimensions of the upper frame 623A, the dimensions of the lower frame 623B, the outer diameter of the stator 611, the inner diameter of the stator 611, the width of the stator 611, the outer diameter of the rotor 612, the inner diameter of the rotor 612, the dimensions of the shaft 613, the dimensions of the shell 60, the dimensions of the accumulator 63, the amount of magnetic flux of the rotor 612 interlinked with the winding 615, and the resistance value of the winding 615.
  • the data relating to the manufacture of the compressor 6, which is the input data in FIG. 18, includes at least one of the following: identification information of the manufacturing equipment, the current generated in the manufacturing equipment, the voltage generated in the manufacturing equipment, the noise generated in the manufacturing equipment, the vibration generated in the manufacturing equipment, the time required to manufacture the compressor 6, the welding temperature during the manufacture of the compressor 6, the amount of welding (e.g., the amount of wax), the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
  • Data that can be generated by combining multiple parts, which are the input data of Figure 18, include the dimension of the gap between the rolling piston 622 and the upper frame 623A (G1 in Figure 1), the dimension of the gap between the rolling piston 622 and the lower frame 623B (G2 in Figure 1), the dimension of the gap between the outer circumferential surface of the rolling piston 622 and the inner circumferential surface of the cylinder 621 (G3 in Figure 3), the dimension of the gap between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622 (G4 in Figure 3), the dimension of the gap between the side of the vane 625 in the sliding direction and the vane groove 624 of the cylinder 621 (G5 in Figure 3), the dimension of the gap between the vane 625 and At least one of the following is included: the size of the gap with the upper frame 623A (not shown), the size of the gap between the vane 625 and the lower frame 623B (not shown), the size of the gap between the shaft 613 and the upper frame 6
  • the output (assembly feasibility data) of the trained model 20 is not limited to the data exemplified in the above-mentioned Figures 13 to 18, and other data may be applied as long as the data is related to whether or not assembly of the compressor 6 is permitted.
  • the input 1 (input data) of the trained model 20 is not limited to the data exemplified in the above-mentioned Figures 13 to 18, and other data may be applied as long as the data is correlated with the output (assembly feasibility data).
  • the combination of input 1 (input data) and output (assembly feasibility data) may be any combination of data as long as there is a correlation between the two.
  • FIG. 19 is a flowchart relating to the manufacturing method of the compressor 6 in the inference device 10 according to the first embodiment.
  • the flowchart shown in Fig. 19 specifies various processing steps (manufacturing method) for manufacturing the compressor 6 by a computer having the functions of the inference device 10 (control unit 11).
  • "S" is used as an abbreviation for "STEP”.
  • the inference device 10 combines a first part with a second part (S21).
  • the inference device 10 combines a first part, a cylinder 621, with a second part, a vane 625.
  • the inference device 10 infers assembly feasibility data using the trained model 20 based on data indicating the individual variation of the first part, data indicating the individual variation of the second part, and data that may result from the combination of the first part and the second part (S22).
  • the data indicating the individual variation of the first part is, for example, the dimension of the vane 625.
  • the data indicating the individual variation of the second part is, for example, the dimension of the cylinder 621.
  • the data that may result from the combination of the first part and the second part is, for example, data indicating the individual variation of the combined part obtained by combining the first part and the second part, and is the dimension of the gap between the vane 625 and the cylinder 621 in the combined part obtained by combining the vane 625 and the cylinder 621.
  • the inference device 10 uses the dimensions of the vane 625, the dimensions of the cylinder 621, and the dimensions of the gap between the vane 625 and the cylinder 621 as input 1 (input data), and uses the trained model 20 based on the input data to infer assembly feasibility data regarding whether or not assembly of the compressor 6 in the next process is permitted.
  • the assembly feasibility data indicates either that assembly of the compressor 6 is permitted, or that assembly of the compressor 6 is not permitted.
  • the inference device 10 infers assembly feasibility data indicating that assembly of the compressor 6 is permitted, and if the dimensions of the gap between the vane 625 and the cylinder 621 do not meet a reference value, the inference device 10 infers assembly feasibility data indicating that assembly of the compressor 6 is not permitted.
  • the inference device 10 determines whether or not assembly of the compressor 6 can continue based on the inferred assembly feasibility data (S23).
  • the inference device 10 If the inference device 10 is unable to continue assembling the compressor 6 (NO in S23), for example if the dimension of the gap between the vane 625 and the cylinder 621 does not satisfy the reference value, it performs a process for manually correcting the combined part formed by combining the first part and the second part, or a disposal process for discarding the combined part (S24). For example, the inference device 10 displays an image on a display (not shown) that prompts the worker to manually correct the combined part, or moves the combined part to a disposal route. The inference device 10 then ends this process.
  • the inference device 10 if it is able to continue assembling the compressor 6 (YES in S23), for example if the dimension of the gap between the vane 625 and the cylinder 621 meets the reference value, it combines a third part with the combined parts (S25).
  • the inference device 10 assembles the compression mechanism 62 that constitutes the compressor 6 by combining the third part, the rolling piston 622, with the combined part that combines the first part, the cylinder 621, with the second part, the vane 625. After that, the inference device 10 ends this process.
  • the inference device 10 (control unit 11) executes each process, but the inference device 10 (control unit 11) may execute only the inference process of S22, and the remaining processes may be executed by a functional unit other than the inference device 10 (control unit 11) included in the computer.
  • FIG. 19 illustrates the process of assembling one combined part (e.g., compression mechanism 62) by combining a first part (e.g., cylinder 621), a second part (e.g., vane 625), and a third part (e.g., rolling piston 622).
  • a first part e.g., cylinder 621
  • a second part e.g., vane 625
  • a third part e.g., rolling piston 622
  • the flowchart shown in FIG. 19 may also be applied to the process of assembling two or more combined parts including other combined parts (e.g., electric motor 61).
  • the inference device 10 uses the trained model 20 to infer assembly feasibility data based on input data correlated with assembly feasibility data regarding whether assembly of the compressor 6 is permitted. Specifically, the inference device 10 infers assembly feasibility data based on data indicating the individual variation of the first part, data indicating the individual variation of the second part, and data indicating the individual variation of a combined part combining the first part and the second part. This eliminates the need for the inference device 10 to modify the assembled compressor 6 or to discard the assembled compressor 6 after the assembly of the compressor 6 is completed, and can prevent the time required to assemble the compressor 6 and the parts used in the assembly of the compressor 6 from being wasted.
  • the inference device 10 can rework the combined part made up of the first part and the second part. This allows the inference device 10 to reduce the effort and time required for rework compared to detecting that the characteristics of the compressor 6 do not satisfy the reference values during inspection after the assembly of the compressor 6 is completed.
  • the input data input to the trained model 20 is not limited to including all of data indicating the individual variation of the first part, data indicating the individual variation of the second part, and data indicating the individual variation of the combined part combining the first part and the second part, but may include, for example, only data indicating the individual variation of the first part and data indicating the individual variation of the second part, or only data indicating the individual variation of the combined part combining the first part and the second part.
  • the input data input to the trained model 20 may include at least one of data indicating the individual variation of the first part and data indicating the individual variation of the second part, and data indicating the individual variation of the combined part combining the first part and the second part.
  • Embodiment 2 An inference device 10 according to the second embodiment will be described with reference to Fig. 20. Note that, in the following, only the parts of the inference device 10 according to the second embodiment that are different from the inference device 10 according to the first embodiment will be described.
  • FIG. 20 is a flowchart of a manufacturing method of a compressor 6 in the inference device 10 according to the second embodiment.
  • the input data input to the trained model 20 may include data of parts used in the previous process (e.g., dimensions) plus data of parts used in the next process (e.g., dimensions).
  • the flowchart shown in FIG. 20 specifies various processing steps (manufacturing method) for manufacturing a compressor 6 by a computer having the functions of the inference device 10 (control unit 11). Note that in FIG. 20, "S” is used as an abbreviation for "STEP".
  • the inference device 10 combines a first part with a second part (S31).
  • the inference device 10 combines a first part, a cylinder 621, with a second part, a vane 625.
  • the inference device 10 acquires data indicating the individual variation of the third part to be used in the next process (S32). For example, the inference device 10 acquires the dimensions of the rolling piston 622, which is the third part to be used in the next process.
  • the inference device 10 infers assembly feasibility data using the trained model 20 based on the data indicating the individual variation of the first part, the data indicating the individual variation of the second part, the data that may arise from the combination of the first part and the second part, and the data indicating the individual variation of the third part (S33).
  • the data indicating the individual variation of the first part is, for example, the dimension of the vane 625.
  • the data indicating the individual variation of the second part is, for example, the dimension of the cylinder 621.
  • the data that may arise from the combination of the first part and the second part is, for example, data indicating the individual variation of the combined part obtained by combining the first part and the second part, and is the dimension of the gap between the vane 625 and the cylinder 621 in the combined part obtained by combining the vane 625 and the cylinder 621.
  • the inference device 10 uses the dimensions of the vane 625, the dimensions of the cylinder 621, the dimensions of the gap between the vane 625 and the cylinder 621, and the dimensions of the rolling piston 622 as input 1 (input data), and uses the trained model 20 based on the input data to infer assembly feasibility data regarding whether or not assembly of the compressor 6 in the next process is permitted.
  • the assembly feasibility data indicates whether assembly of the compressor 6 is permitted or not permitted.
  • the inference device 10 considers the relationship between the dimensions of the gap between the vane 625 and the cylinder 621 and the dimensions of the rolling piston 622, and infers assembly feasibility data indicating that assembly of the compressor 6 is permitted if these dimensions meet a reference value, and considers the relationship between the dimensions of the gap between the vane 625 and the cylinder 621 and the dimensions of the rolling piston 622, and infers assembly feasibility data indicating that assembly of the compressor 6 is not permitted if these dimensions do not meet a reference value.
  • the inference device 10 determines whether or not assembly of the compressor 6 can continue based on the inferred assembly feasibility data (S34).
  • the inference device 10 If the inference device 10 is unable to continue assembling the compressor 6 (NO in S34), for example if the dimensions of the gap between the vane 625 and the cylinder 621 and the dimensions of the rolling piston 622 do not meet the reference values, a problem has occurred with the combined part combining the first and second parts, so the inference device 10 performs a process to manually correct the combined part combining the first and second parts, or a disposal process to discard the combined part (S35). For example, the inference device 10 displays an image on a display (not shown) that prompts the worker to manually correct the combined part to match the third part, or moves the combined part to a disposal route. The inference device 10 then ends this process.
  • the inference device 10 if the inference device 10 is able to continue assembling the compressor 6 (YES in S34), for example, if the dimension of the gap between the vane 625 and the cylinder 621 and the dimension of the rolling piston 622 meet the reference values, the inference device 10 combines a third part with the combined parts (S36). This allows the inference device 10 to assemble the compressor 6 by combining the first part, the second part, and the third part. For example, the inference device 10 assembles the compression mechanism unit 62 that constitutes the compressor 6 by combining the third part, the rolling piston 622, with the combined part that combines the first part, the cylinder 621, with the second part, the vane 625. After that, the inference device 10 ends this process.
  • the inference device 10 infers assembly feasibility data based on data indicating the individual variation of the first part, data indicating the individual variation of the second part, data indicating the individual variation of a combined part formed by combining the first part and the second part, and data indicating the individual variation of the third part. This makes it unnecessary for the inference device 10 to modify the assembled compressor 6 by hand or to discard the assembled compressor 6 after the assembly of the compressor 6 is completed, and it is possible to prevent the time required to assemble the compressor 6 and the parts used in the assembly of the compressor 6 from being wasted.
  • the inference device 10 infers the assembly feasibility data by considering the relationship between the data indicating the individual variation of the combined part formed by combining the first part and the second part and the data indicating the individual variation of the third part. This allows the inference device 10 to infer with higher accuracy whether or not to permit the assembly of the compressor 6, and can reduce the number of compressors 6 for which assembly is not permitted.
  • the input data input to the trained model 20 is not limited to including all of the data indicating the individual variation of the first part, the data indicating the individual variation of the second part, and the data indicating the individual variation of the combined part combining the first part and the second part, in addition to the data indicating the individual variation of the third part.
  • the input data input to the trained model 20 may include data indicating the individual variation of the first part and the data indicating the individual variation of the second part, and data indicating the individual variation of the third part, or data indicating the individual variation of the combined part combining the first part and the second part, and data indicating the individual variation of the third part.
  • the input data input to the trained model 20 may include at least one of the data indicating the individual variation of the first part and the data indicating the individual variation of the second part, and the data indicating the individual variation of the combined part combining the first part and the second part, and data indicating the individual variation of the third part to be combined with the combined part.
  • the data indicating the individual variation of the third part acquired in S32 is not limited to data indicating the individual variation of the third part to be used in the next process (e.g., dimensions), but may be data (e.g., average value, standard deviation) obtained when the variation of the data indicating the individual variation of the multiple third parts for each lot to be used in the next process (e.g., dimensions) is applied to a normal distribution.
  • the inference device 10 may apply data such as the average value for each lot or the standard deviation with respect to a predetermined control value assumed from the data indicating the individual variation of the multiple third parts to be used in the next process as input data for input 1, and use the trained model 20 to infer assembly feasibility data.
  • Embodiment 3 An inference device 10 according to the third embodiment will be described with reference to Fig. 21. Note that, in the following, only the parts of the inference device 10 according to the third embodiment that are different from the inference device 10 according to the second embodiment described with reference to Fig. 20 will be described.
  • FIG. 21 is a flowchart relating to a manufacturing method of a compressor 6 in an inference device 10 according to embodiment 3.
  • the inference device 10 according to embodiment 3 may change the third part that is to be combined with the combined part of the first part and the second part to another third part.
  • the inference device 10 according to embodiment 3 determines in S34 that assembly of the compressor 6 cannot be continued based on the assembly feasibility data inferred in S33 (NO in S34), and then determines whether the number of NO determinations in S34 has reached a predetermined number (S37).
  • the inference device 10 changes the data indicating the individual variation of the third part to be combined with the combined part obtained by combining the first part and the second part (S38). For example, the data indicating the individual variation of the first rolling piston 622 to be combined is changed to data indicating the individual variation of the second rolling piston 622.
  • the inference device 10 then proceeds to the process of S33, and infers assembly feasibility data using the trained model 20 based on the data indicating the individual variation of the first part, the data indicating the individual variation of the second part, the data that may arise from the combination of the first part and the second part, and the data indicating the individual variation of the changed third part (S33). That is, the inference device 10 changes the third part (rolling piston 622) and again infers whether the compressor 6 can be assembled.
  • the inference device 10 judges NO in S34 reaches a predetermined number (YES in S37), a problem has occurred in the combined part that combines the first part and the second part, so the inference device 10 performs a process to correct the combined part by reworking it, or performs a disposal process to discard the combined part (S35).
  • the inference device 10 changes the planned third part to another third part without immediately correcting the combination part by rework or discarding the combination part, and infers again whether the assembly of the compressor 6 can be continued. This allows the inference device 10 to prevent the time required to correct the combination part by rework or discard the combination part, and to prevent the combination part from being wasted.
  • Embodiment 4 An inference device 10 according to embodiment 4 will be described with reference to Fig. 22. Note that, in the following, only the parts of the inference device 10 according to embodiment 4 that are different from the inference devices 10 according to embodiments 1 to 3 will be described.
  • FIG. 22 is a diagram for explaining the trained model 20 in the inference device 10 according to embodiment 4.
  • the inference device 10 according to embodiment 4 may include multiple trained models.
  • the trained model 20 may include a first trained model 201 and a second trained model 202.
  • the first trained model 201 is trained by machine learning to output data that may result from a combination of multiple parts, using at least one of data on individual variations of individual parts and data on the manufacture of the compressor 6 as input 1 (input data).
  • the second trained model 202 is trained by machine learning to output assembly feasibility data indicating whether the compressor 6 can be assembled, using data that may result from a combination of multiple parts as input 1 (input data).
  • the inference device 10 may use the first trained model 201 and the second trained model 202 as described above to infer assembly feasibility data indicating whether the compressor 6 can be assembled, based on input data including at least one of data on individual variations of individual parts and data on the manufacture of the compressor 6.
  • the inference device 10 may use the first trained model 201 to infer data that may result from a combination of multiple parts, based on input data including at least one of data on individual variations of individual parts and data on the manufacture of the compressor 6, and may further use the second trained model 202 to infer assembly feasibility data indicating whether the compressor 6 can be assembled, based on input data including data that may result from a combination of multiple parts inferred using the first trained model 201.
  • the inference device 10 may use one trained model 20 to infer assembly feasibility data indicating whether the compressor 6 can be assembled based on input data including at least one of data on individual variations of individual components and data on the manufacture of the compressor 6, rather than using multiple trained models such as the first trained model 201 and the second trained model 202.
  • the data of each part used in the input 1 may be data obtained by a sampling inspection carried out during the manufacture of the compressor 6. In this way, the more compressors 6 are manufactured and the longer the manufacturing period, the more individual data that can be used for the learning data 30 can be collected.
  • the individual data on the individual variation of the single component of the input 1 may include data showing individual variation outside the tolerance range of the compressor 6.
  • a combination of components that will cause the performance of the compressor 6 to be outside the specification range may be deliberately produced in advance, and the inference device 10 may perform machine learning using learning data including the obtained assembly feasibility data and the individual data of each component used.
  • the inference accuracy of the inference device 10 can be improved.
  • the individual variation of the components gathers around the median, so components that deviate from the median are not used.
  • the inference device 10 may be a server device communicatively connected to a control device that controls the compressor 6 via a network, or may be a cloud server.
  • the inference device 10 may acquire input data and assembly feasibility data collected from multiple compressors 6 in the same area as the learning data 30, or may acquire input data and assembly feasibility data collected from multiple compressors 6 in different areas as the learning data 30.
  • machine learning can be performed taking into account differences in areas by including area information in the learning data 30. The areas may be treated as different areas even if the individual inspection devices that inspect the performance of the compressors 6 are different. After machine learning is performed on a certain compressor 6, machine learning may be performed again on another compressor 6.
  • the learning algorithm used by the model generation unit 112 of the inference device 10 may be deep learning, which learns to extract the features themselves, or other known methods.
  • the model generation unit 112 may perform machine learning according to genetic programming, functional logic programming, support vector machines, etc.
  • the inference device 10 described above uses supervised learning, but known learning methods such as unsupervised learning, semi-supervised learning, or reinforcement learning may also be used. For example, when performing unsupervised learning, the inference device 10 may use only the input data of input 1 shown in Figures 13 to 18 as the learning data 30. In the learning phase, the inference device 10 learns the characteristics or trends of the collected input data by clustering the collected input data. Then, in the utilization phase, the inference device 10 uses the learned model 20 to identify the class to which the input data belongs, and outputs the assembly feasibility data of the compressor 6 corresponding to that class as the inference result.
  • unsupervised learning the inference device 10 may use only the input data of input 1 shown in Figures 13 to 18 as the learning data 30.
  • the inference device 10 learns the characteristics or trends of the collected input data by clustering the collected input data. Then, in the utilization phase, the inference device 10 uses the learned model 20 to identify the class to which the input data belongs, and outputs the assembly feasibility data of the compressor 6 corresponding to that class
  • An inference device 10 infers assembly feasibility data regarding whether or not to permit assembly of a compressor 6 that compresses a refrigerant.
  • the inference device 10 includes a data acquisition unit 111 that acquires input data correlated with the assembly feasibility data, and an inference unit 113 that infers the assembly feasibility data based on the input data acquired by the data acquisition unit 111, using a trained model 20 for inferring the assembly feasibility data based on the input data.
  • the inference device 10 can use the trained model 20 to infer assembly feasibility data regarding whether or not assembly of the compressor 6 is permitted based on input data that is correlated with whether or not assembly of the compressor 6 is permitted, thereby eliminating waste related to the assembly of the compressor 6.
  • the compressor 6 includes a compression mechanism 62 for compressing the refrigerant, an electric motor 61 for supplying power to the compression mechanism 62 for compressing the refrigerant, a shaft 613 for connecting the compression mechanism 62 and the electric motor 61, a shell 60 for housing the compression mechanism 62, the electric motor 61, and the shaft 613, and an accumulator 63 for drawing the refrigerant into the shell 60.
  • the input data indicates individual variations of at least one of the compression mechanism 62, the electric motor 61, the shaft 613, the shell 60, and the accumulator 63.
  • the inference device 10 can allow the user to check the assembly feasibility data of the compressor 6 based on the individual variation of at least one of the compression mechanism 62, the electric motor 61, the shaft 613, the shell 60, and the accumulator 63.
  • the compression mechanism 62 comprises a cylinder 621, a rolling piston 622 that rotates along the inner surface of the cylinder 621 based on power from the electric motor 61, a vane 625 that divides the compression chamber 630 formed by the inner surface of the cylinder 621 and the outer surface of the rolling piston 622 into a suction side and a compression side, an upper frame 623A that supports the rolling piston 622 from above, and a lower frame 623B that supports the rolling piston 622 from below.
  • the input data includes at least one of the following: the dimensions of the rolling piston 622, the dimensions of the cylinder 621, the dimensions of the vane 625, the dimensions of the upper frame 623A, the dimensions of the lower frame 623B, the dimensions of the gap between the rolling piston 622 and the upper frame 623A, the dimensions of the gap between the rolling piston 622 and the lower frame 623B, the dimensions of the gap between the rolling piston 622 and the cylinder 621, the dimensions of the gap between the vane 625 and the rolling piston 622, the dimensions of the gap between the vane 625 and the cylinder 621, the dimensions of the gap between the vane 625 and the upper frame 623A, the dimensions of the gap between the vane 625 and the lower frame 623B, the dimensions of the gap between the shaft 613 and the upper frame 623A, the dimensions of the gap between the shaft 613 and the lower frame 623B, a value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame
  • the inference device 10 can calculate the dimensions of the rolling piston 622, the dimensions of the cylinder 621, the dimensions of the vane 625, the dimensions of the upper frame 623A, the dimensions of the lower frame 623B, the dimensions of the gap between the rolling piston 622 and the upper frame 623A, the dimensions of the gap between the rolling piston 622 and the lower frame 623B, the dimensions of the gap between the rolling piston 622 and the cylinder 621, the dimensions of the gap between the vane 625 and the rolling piston 622, and the dimensions of the gap between the vane 625 and the cylinder 621.
  • the user can confirm the assembly feasibility data for the compressor 6 based on at least one of the following: the dimension, the dimension of the gap between the vane 625 and the upper frame 623A, the dimension of the gap between the vane 625 and the lower frame 623B, the dimension of the gap between the shaft 613 and the upper frame 623A, the dimension of the gap between the shaft 613 and the lower frame 623B, a value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B, and a value indicating the deviation between the central axis of the shell 60 and the central axis of the shaft 613.
  • the electric motor 61 includes a stator 611, a winding 615 wound around the stator 611, and a rotor 612 provided inside the stator 611.
  • the input data includes at least one of the following: the outer diameter of the stator 611, the inner diameter of the stator 611, the width of the stator 611, the outer diameter of the rotor 612, the inner diameter of the rotor 612, the amount of magnetic flux of the rotor 612 interlinked with the winding 615, the resistance of the winding 615, and the shrink fit between the stator 611 and the rotor 612.
  • the inference device 10 can allow the user to confirm the assembly feasibility data of the compressor 6 based on at least one of the compression mechanism 62, the outer diameter of the stator 611, the inner diameter of the stator 611, the width of the stator 611, the outer diameter of the rotor 612, the inner diameter of the rotor 612, the amount of magnetic flux of the rotor 612 interlinked with the windings 615, the resistance value of the windings 615, and the shrink fit between the stator 611 and the rotor 612.
  • the input data includes at least one of the following: identification information of a manufacturing device for manufacturing the compressor 6 by processing or combining multiple parts; the current generated in the manufacturing device; the voltage generated in the manufacturing device; the noise generated in the manufacturing device; the vibration generated in the manufacturing device; the time required to manufacture the compressor 6; the welding temperature during the manufacturing of the compressor 6; the welding amount during welding; the temperature at the manufacturing site of the compressor 6; and the humidity at the manufacturing site.
  • the inference device 10 can allow the user to confirm the assembly feasibility data for the compressor 6 based on at least one of the identification information of the manufacturing equipment, the current generated in the manufacturing equipment, the voltage generated in the manufacturing equipment, the noise generated in the manufacturing equipment, the vibration generated in the manufacturing equipment, the time required to manufacture the compressor 6, the welding temperature during the manufacturing of the compressor 6, the welding amount during welding, the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
  • the assembly feasibility data includes at least one of the following: the size of the gap between the stator 611 and rotor 612 of the electric motor 61 of the compressor 6, a value indicating the airtightness of the compressor 6, a value indicating the welding condition of the compressor 6, noise data indicating the noise of the compressor 6, vibration data indicating the vibration of the compressor 6, and the performance of the compressor 6.
  • the inference device 10 can allow the user to confirm at least one of the following based on the input data of the compressor 6: the dimension of the gap between the stator 611 and the rotor 612, a value indicating the airtightness of the compressor 6, a value indicating the welding condition of the compressor 6, noise data indicating the noise of the compressor 6, vibration data indicating the vibration of the compressor 6, and the performance of the compressor 6.
  • Assembly feasibility data includes combination data that is generated by combining multiple parts.
  • the inference device 10 can allow the user to check combination data that is generated by combining multiple parts based on the input data of the compressor 6.
  • the compressor 6 includes a compression mechanism 62 for compressing the refrigerant, an electric motor 61 for supplying power to the compression mechanism 62 for compressing the refrigerant, a shaft 613 for connecting the compression mechanism 62 and the electric motor 61, a shell 60 for housing the compression mechanism 62, the electric motor 61, and the shaft 613, and an accumulator 63 for drawing the refrigerant into the shell 60.
  • the compression mechanism 62 includes a cylinder 621, a rolling piston 622 that rotates along the inner circumferential surface of the cylinder 621 based on power from the electric motor 61, a vane 625 that divides the compression chamber 630 formed by the inner circumferential surface of the cylinder 621 and the outer circumferential surface of the rolling piston 622 into a suction side and a compression side, an upper frame 623A that supports the rolling piston 622 from above, and a lower frame 623B that supports the rolling piston 622 from below.
  • the electric motor 61 includes a stator 611 , a winding 615 wound around the stator 611 , and a rotor 612 provided inside the stator 611 .
  • the combination data includes at least one of the following: the gap size between the rolling piston 622 and the upper frame 623A, the gap size between the rolling piston 622 and the lower frame 623B, the gap size between the rolling piston 622 and the cylinder 621, the gap size between the vane 625 and the rolling piston 622, the gap size between the vane 625 and the cylinder 621, the gap size between the vane 625 and the upper frame 623A, the gap size between the vane 625 and the lower frame 623B, the gap size between the shaft 613 and the upper frame 623A, the gap size between the shaft 613 and the lower frame 623B, a value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B, a value indicating the deviation between the central axis of the shell 60 and the central axis of the shaft 613, the shrink fit between the stator 611 and the rotor 612, the dimensions of the shell 60 after welding, and the dimensions of the
  • the inference device 10 determines the size of the gap between the rolling piston 622 and the upper frame 623A, the size of the gap between the rolling piston 622 and the lower frame 623B, the size of the gap between the rolling piston 622 and the cylinder 621, the size of the gap between the vane 625 and the rolling piston 622, the size of the gap between the vane 625 and the cylinder 621, the size of the gap between the vane 625 and the upper frame 623A, the size of the gap between the vane 625 and the lower frame 623B,
  • the user can confirm at least one of the following: the size of the gap between the stator 611 and the rotor 612; the size of the gap between the shaft 613 and the upper frame 623A; the size of the gap between the shaft 613 and the lower frame 623B; the value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B; the value indicating
  • the trained model 20 includes a first trained model 201 and a second trained model 202.
  • the inference unit 113 uses the first trained model 201 to infer combination data based on the input data acquired by the data acquisition unit 111, and uses the second trained model 202 to infer assembly feasibility data.
  • the inference device 10 can use the first trained model 201 and the second trained model 202 to allow the user to confirm the assembly feasibility data of the compressor 6 based on the input data of the compressor 6.
  • the inference unit 113 uses the trained model 20 to infer whether or not assembly of the compressor is permitted based on the input data acquired by the data acquisition unit 111 as assembly feasibility data.
  • the inference device 10 can prompt the user to confirm whether or not to allow assembly of the compressor 6 based on the input data of the compressor 6.
  • the inference method is an inference method in which a computer infers assembly feasibility data regarding whether or not assembly of a compressor 6 that compresses a refrigerant is permitted.
  • the inference method includes, as processing executed by the computer, a step (S11) of acquiring input data correlated with the assembly feasibility data, and a step (S13) of inferring the assembly feasibility data based on the input data acquired in the acquiring step, using a trained model 20 for inferring the assembly feasibility data based on the input data.
  • the computer can use the trained model 20 to infer assembly feasibility data regarding whether or not assembly of the compressor 6 is permitted based on input data that is correlated with whether or not assembly of the compressor 6 is permitted, thereby eliminating waste associated with the assembly of the compressor 6.
  • the manufacturing method of the compressor 6 includes, as a process executed by a computer, a step (S21) of combining a first part with a second part, and a step (S22) of inferring assembly feasibility data based on at least one of input data of data indicating individual variations of the first part, data indicating individual variations of the second part, and data indicating individual variations of a combined part formed by combining the first part and the second part, using a trained model 20 for inferring assembly feasibility data regarding whether or not assembly of the compressor 6 is permitted based on the input data.
  • the computer can use the trained model 20 to infer assembly feasibility data regarding whether or not assembly of the compressor 6 is permitted based on data indicating individual variations of the first and second parts that constitute the compressor 6, thereby eliminating waste associated with the assembly of the compressor 6.
  • the manufacturing method of a compressor 6 includes, as a process executed by a computer, a step (S31) of combining a first part with a second part, and a step (S33) of inferring assembly feasibility data based on input data including at least one of data indicating individual variations of the first part and data indicating individual variations of the second part, data indicating individual variations of a combined part formed by combining the first part and the second part, and data indicating individual variations of a third part to be combined with the combined part, using a trained model for inferring assembly feasibility data regarding whether or not assembly of a compressor is permitted based on the input data.
  • the computer can use the trained model 20 to infer assembly feasibility data regarding whether or not to permit assembly of the compressor 6 based on data indicating the individual variations of the first and second parts that make up the compressor 6, as well as data indicating the individual variations of the third part that is planned to be combined with the first and second parts, thereby eliminating waste associated with the assembly of the compressor 6.
  • the computer infers that assembly of the compressor 6 is not permitted during the manufacturing process of the compressor 6, it can change the third part that is to be combined with the combined part to another third part, thereby preventing the time required to rework or discard the combined part and preventing the combined part from being wasted.
  • 6 Compressor 10 Inference device, 11 Control unit, 12 Memory unit, 13 Input unit, 20 Learned model, 30 Learning data, 40 Learning program, 60 Shell, 60A, 60B, 60C Shell parts, 61 Electric motor, 62 Compression mechanism unit, 63 Accumulator, 64 Suction pipe, 65 Supply pipe, 66 Discharge pipe, 67 Glass terminal, 110 Learning device, 111 Data acquisition unit, 112 Model generation unit, 113 Inference unit, 121 Learning program memory unit, 122 Learned model memory unit, 201 First learned model, 202 Second 2 trained model, 610 stator core, 611 stator, 612 rotor, 613 shaft, 613A upper shaft section, 613B lower shaft section, 614 slot, 615 winding, 616, 627 shaft hole section, 617 air hole section, 618 permanent magnet, 619 central hole section, 621 cylinder, 622 rolling piston, 623A upper frame, 623B lower frame, 624 vane groove, 624A upper muffler, 624B lower muff

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

An inference device (10) that infers assembly propriety data relating to whether or not to permit assembly of a compressor (6) for compressing refrigerant includes a data acquisition unit (111) for acquiring input data correlated with the assembly propriety data, and an inference unit (113) for inferring the assembly propriety data, on the basis of the input data acquired by the data acquisition unit (111), by using a trained model (20) for inferring the assembly propriety data, on the basis of the input data.

Description

推論装置、推論方法、および圧縮機の製造方法Inference device, inference method, and method for manufacturing compressor
 本開示は、冷媒を圧縮する圧縮機の組立を許可するか否かに関する組立可否データを推論する推論装置、推論方法、および圧縮機の製造方法に関する。 The present disclosure relates to an inference device, an inference method, and a method for manufacturing a compressor that infers assembly feasibility data regarding whether or not to permit the assembly of a compressor that compresses a refrigerant.
 従来、冷媒を圧縮する圧縮機が知られている。たとえば、特開2009-209774号公報(特許文献1)には、シリンダと、シリンダの内周面に沿って回転するローリングピストンとを備え、シリンダ内でローリングピストンが回転することによって冷媒を圧縮する圧縮機が開示されている。  Conventionally, compressors that compress refrigerants are known. For example, JP 2009-209774 A (Patent Document 1) discloses a compressor that includes a cylinder and a rolling piston that rotates along the inner circumferential surface of the cylinder, and compresses the refrigerant by the rotation of the rolling piston inside the cylinder.
特開2009-209774号公報JP 2009-209774 A
 特開2009-209774号公報(特許文献1)に開示された圧縮機によれば、ローリングピストンとシリンダとの隙間の寸法を押しのけ容積の0.3%~0.4%にすることによって、圧縮機の性能が低下することを防止することができる。しかしながら、押しのけ容積の0.3%~0.4%という値は、実験により導き出された値に過ぎないため、ローリングピストンとシリンダとの隙間の寸法を押しのけ容積の0.3%~0.4%にしたとしても、実際に製造された圧縮機の性能が必ずしも良好であるとは限らない。 According to the compressor disclosed in JP 2009-209774 A (Patent Document 1), by setting the size of the gap between the rolling piston and the cylinder to 0.3% to 0.4% of the displacement volume, it is possible to prevent a decrease in the performance of the compressor. However, because the value of 0.3% to 0.4% of the displacement volume is merely a value derived through experimentation, even if the size of the gap between the rolling piston and the cylinder is set to 0.3% to 0.4% of the displacement volume, it is not necessarily the case that the performance of the compressor actually manufactured will be good.
 また、複数の部品を組み合わせて圧縮機を組み立てた後に圧縮機の性能などの特性を確認した場合、圧縮機の特性が基準値を満たさなければ、組み立てた圧縮機を手直しで修正するか、あるいは、組み立てた圧縮機を廃棄しなければならない。この場合、圧縮機を組み立てるために要した時間、および圧縮機の組立に用いられた部品が無駄になってしまう。 In addition, when the compressor is assembled by combining multiple parts and the characteristics of the compressor, such as its performance, are checked, and if the characteristics of the compressor do not meet the standards, the assembled compressor must be corrected by hand or must be discarded. In this case, the time required to assemble the compressor and the parts used in assembling the compressor are wasted.
 本開示は、上記課題を解決するためになされたものであって、圧縮機の組立に係る無駄を省くことができる技術を提供することを目的とする。 This disclosure has been made to solve the above problems, and aims to provide technology that can eliminate waste in the assembly of compressors.
 本開示に係る推論装置は、冷媒を圧縮する圧縮機の組立を許可するか否かに関する組立可否データを推論する推論装置である。推論装置は、組立可否データと相関のある入力データを取得するデータ取得部と、入力データに基づき組立可否データを推論するための学習済モデルを用いて、データ取得部によって取得された入力データに基づき組立可否データを推論する推論部とを備える。 The inference device according to the present disclosure is an inference device that infers assembly feasibility data regarding whether or not to permit assembly of a compressor that compresses a refrigerant. The inference device includes a data acquisition unit that acquires input data that is correlated with the assembly feasibility data, and an inference unit that infers the assembly feasibility data based on the input data acquired by the data acquisition unit, using a trained model for inferring the assembly feasibility data based on the input data.
 本開示に係る推論方法は、冷媒を圧縮する圧縮機の組立を許可するか否かに関する組立可否データをコンピュータによって推論する推論方法である。推論方法は、コンピュータが実行する処理として、組立可否データと相関のある入力データを取得するステップと、入力データに基づき組立可否データを推論するための学習済モデルを用いて、取得するステップによって取得された入力データに基づき組立可否データを推論するステップとを含む。 The inference method disclosed herein is an inference method in which a computer infers assembly feasibility data regarding whether or not assembly of a compressor that compresses a refrigerant is permitted. The inference method includes, as processing executed by the computer, a step of acquiring input data correlated with the assembly feasibility data, and a step of inferring the assembly feasibility data based on the input data acquired in the acquiring step, using a trained model for inferring the assembly feasibility data based on the input data.
 本開示に係る製造方法は、コンピュータによる圧縮機の製造方法である。製造方法は、コンピュータが実行する処理として、第1部品に第2部品を組み合わせるステップと、第1部品の個体ばらつきを示すデータおよび第2部品の個体ばらつきを示すデータと、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータとのうちの少なくとも1つの入力データに基づき、入力データに基づき圧縮機の組立を許可するか否かに関する組立可否データを推論するための学習済モデルを用いて、組立可否データを推論するステップとを含む。 The manufacturing method disclosed herein is a method for manufacturing a compressor by a computer. The manufacturing method includes, as processing executed by the computer, a step of combining a first part with a second part, and a step of inferring assembly feasibility data based on at least one of input data of data indicating individual variations of the first part, data indicating individual variations of the second part, and data indicating individual variations of a combined part formed by combining the first part and the second part, using a trained model for inferring assembly feasibility data regarding whether or not assembly of a compressor is permitted based on the input data.
 本開示に係る製造方法は、コンピュータによる圧縮機の製造方法である。製造方法は、コンピュータが実行する処理として、第1部品に第2部品を組み合わせるステップと、第1部品の個体ばらつきを示すデータおよび第2部品の個体ばらつきを示すデータと、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータとのうちの少なくとも1つと、組み合わせ部品に組み合わせる予定の第3部品の個体ばらつきを示すデータとを含む入力データに基づき、入力データに基づき圧縮機の組立を許可するか否かに関する組立可否データを推論するための学習済モデルを用いて、組立可否データを推論するステップとを含む。 The manufacturing method according to the present disclosure is a method for manufacturing a compressor by a computer. The manufacturing method includes, as processing executed by the computer, a step of combining a first part with a second part, and a step of inferring assembly feasibility data using a trained model for inferring assembly feasibility data regarding whether or not assembly of a compressor is permitted based on input data, based on input data including at least one of data indicating individual variations of the first part and data indicating individual variations of the second part, data indicating individual variations of a combined part formed by combining the first part and the second part, and data indicating individual variations of a third part to be combined with the combined part.
 本開示によれば、学習済モデルを用いて、圧縮機の組立を許可するか否かと相関のある入力データに基づき圧縮機の組立を許可するか否かを推論することができるため、圧縮機の組立に係る無駄を省くことができる。 According to the present disclosure, a trained model can be used to infer whether or not to permit assembly of a compressor based on input data that is correlated with whether or not to permit assembly of a compressor, thereby eliminating waste associated with compressor assembly.
実施の形態1に係る圧縮機の構成を示す図である。1 is a diagram showing a configuration of a compressor according to a first embodiment; 電動機の断面を示す図である。FIG. 圧縮機構部の断面を示す図である。FIG. 2 is a cross-sectional view of a compression mechanism portion. 圧縮機構部の組立の一例を示す図である。FIG. 4 is a diagram showing an example of an assembly of a compression mechanism portion. 実施の形態1に係る推論装置の構成を示す図である。1 is a diagram showing a configuration of an inference device according to a first embodiment; 教師あり学習の概要を説明するための図である。FIG. 1 is a diagram for explaining an overview of supervised learning. 実施の形態1に係る推論装置における教師あり学習の入力および出力を説明するための図である。3 is a diagram for explaining input and output of supervised learning in the inference device according to the first embodiment. FIG. 学習フェーズにおける学習装置の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of a learning device in a learning phase. ニューラルネットワークの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a neural network. 学習装置(制御部)が学習フェーズにおいて実行する処理に関するフローチャートである。11 is a flowchart showing a process executed by a learning device (control unit) in a learning phase. 活用フェーズにおける推論装置の構成を示す図である。FIG. 13 is a diagram showing the configuration of an inference device in the utilization phase. 推論装置(制御部)が活用フェーズにおいて実行する処理に関するフローチャートである。13 is a flowchart showing the processing executed by the inference device (control unit) in the utilization phase. 実施の形態1に係る推論装置における教師あり学習の入力および出力の一例を説明するための図である。3 is a diagram for explaining an example of input and output of supervised learning in the inference device according to embodiment 1. FIG. 実施の形態1に係る推論装置における教師あり学習の入力および出力の一例を説明するための図である。3 is a diagram for explaining an example of input and output of supervised learning in the inference device according to embodiment 1. FIG. 実施の形態1に係る推論装置における教師あり学習の入力および出力の一例を説明するための図である。3 is a diagram for explaining an example of input and output of supervised learning in the inference device according to embodiment 1. FIG. 実施の形態1に係る推論装置における教師あり学習の入力および出力の一例を説明するための図である。3 is a diagram for explaining an example of input and output of supervised learning in the inference device according to embodiment 1. FIG. 実施の形態1に係る推論装置における教師あり学習の入力および出力の一例を説明するための図である。3 is a diagram for explaining an example of input and output of supervised learning in the inference device according to embodiment 1. FIG. 実施の形態1に係る推論装置における教師あり学習の入力および出力の一例を説明するための図である。3 is a diagram for explaining an example of input and output of supervised learning in the inference device according to embodiment 1. FIG. 実施の形態1に係る推論装置における圧縮機の製造方法に関するフローチャートである。4 is a flowchart relating to a method of manufacturing a compressor in the inference device according to the first embodiment. 実施の形態2に係る推論装置における圧縮機の製造方法に関するフローチャートである。13 is a flowchart relating to a method of manufacturing a compressor in the inference device of embodiment 2. 実施の形態3に係る推論装置における圧縮機の製造方法に関するフローチャートである。13 is a flowchart relating to a method of manufacturing a compressor in the inference device of embodiment 3. 実施の形態4に係る推論装置における学習済モデルを説明するための図である。A figure for explaining a learned model in an inference device related to embodiment 4.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Below, the embodiments of the present disclosure will be described in detail with reference to the drawings. Several embodiments will be described below, but it is planned from the beginning of the application that the configurations described in each embodiment will be appropriately combined. Note that the same or equivalent parts in the drawings will be given the same reference numerals and their description will not be repeated.
 実施の形態1.
 [圧縮機の構成]
 図1~図4を参照しながら、実施の形態1に係る圧縮機6を説明する。圧縮機6は、冷媒回路を冷媒が循環することによって室内などの空調対象を冷房または暖房する空気調和機に用いられ得る。なお、圧縮機6は、冷媒が循環することによってショーケースまたはユニットクーラーなどの冷却対象を冷却する冷凍装置に用いられてもよい。
Embodiment 1.
[Compressor configuration]
A compressor 6 according to a first embodiment will be described with reference to Fig. 1 to Fig. 4. The compressor 6 can be used in an air conditioner that cools or heats an object to be air-conditioned, such as a room, by circulating a refrigerant through a refrigerant circuit. The compressor 6 may also be used in a refrigeration device that cools an object to be cooled, such as a showcase or a unit cooler, by circulating a refrigerant.
 図1は、実施の形態1に係る圧縮機6の構成を示す図である。なお、図1においては、圧縮機6を正しく設置した場合において、圧縮機6の横方向をX軸方向、圧縮機6の上下方向をY軸方向、X軸およびY軸に直交する方向をZ軸方向と定義する。図1においては、X-Y平面に沿って圧縮機6を切断した場合の圧縮機6の縦断面が示されている。 FIG. 1 is a diagram showing the configuration of a compressor 6 according to the first embodiment. In FIG. 1, when the compressor 6 is correctly installed, the horizontal direction of the compressor 6 is defined as the X-axis direction, the vertical direction of the compressor 6 is defined as the Y-axis direction, and the direction perpendicular to the X-axis and Y-axis is defined as the Z-axis direction. In FIG. 1, a longitudinal cross section of the compressor 6 taken along the X-Y plane is shown.
 圧縮機6は、ロータリ圧縮機であり、シェル(ハウジング)60と、冷媒(たとえば、冷媒ガス)を圧縮させるための圧縮機構部62と、圧縮機構部62に冷媒を圧縮させるための動力を供給する電動機61と、シャフト613と、電動機61に電力を供給するためのガラス端子67と、シェル60内に冷媒を吸入するアキュムレータ63と、圧縮機構部62によって圧縮された冷媒をシェル60の内部から吐出する吐出管66とを備える。 The compressor 6 is a rotary compressor and includes a shell (housing) 60, a compression mechanism 62 for compressing a refrigerant (e.g., a refrigerant gas), an electric motor 61 for supplying power to the compression mechanism 62 for compressing the refrigerant, a shaft 613, a glass terminal 67 for supplying power to the electric motor 61, an accumulator 63 for drawing the refrigerant into the shell 60, and a discharge pipe 66 for discharging the refrigerant compressed by the compression mechanism 62 from inside the shell 60.
 シェル60は、電動機61、圧縮機構部62、およびシャフト613を収容する。電動機61は、圧入または焼き嵌めによってシェル60内に固定されている。なお、電動機61は、溶接によって後述する固定子611がシェル60に直接的に取り付けられてもよい。シェル60内においては、電動機61の下側に圧縮機構部62が配置されている。シェル60の底部には、後述するローリングピストン622などの摺動部を潤滑するための冷凍機油が貯留されている。圧縮機構部62は、シャフト613を介して電動機61に接続されている。 The shell 60 houses the electric motor 61, the compression mechanism 62, and the shaft 613. The electric motor 61 is fixed in the shell 60 by press fitting or shrink fitting. The electric motor 61 may have a stator 611 (described later) directly attached to the shell 60 by welding. Inside the shell 60, the compression mechanism 62 is disposed below the electric motor 61. Refrigeration oil is stored at the bottom of the shell 60 to lubricate sliding parts such as the rolling piston 622 (described later). The compression mechanism 62 is connected to the electric motor 61 via the shaft 613.
 アキュムレータ63は、アキュムレータ63の内部に冷媒が吸入される吸入管64と、圧縮機構部62に冷媒を供給する供給管65とを有する。 The accumulator 63 has a suction pipe 64 through which the refrigerant is drawn into the accumulator 63, and a supply pipe 65 that supplies the refrigerant to the compression mechanism 62.
 上述した圧縮機6は、複数の部品が蝋を用いた溶接などによって接合されることで組み立てられている。たとえば、シェル60は、圧縮機6の上面側に配置されるシェル部品60Aと圧縮機6の側面側に配置されるシェル部品60Cとが溶接部分W1で溶接され、圧縮機6の下面側に配置されるシェル部品60Bとシェル部品60Cとが溶接部分W2で溶接されることによって、構成される。シェル60とアキュムレータ63とは、溶接部分W3で溶接される。シェル60と供給管65とは、溶接部分W4で溶接される。シェル60と吐出管66とは、溶接部分W5で溶接される。 The compressor 6 described above is assembled by joining multiple parts by welding using wax or the like. For example, the shell 60 is constructed by welding shell part 60A arranged on the upper surface of the compressor 6 to shell part 60C arranged on the side of the compressor 6 at welding part W1, and by welding shell part 60B arranged on the lower surface of the compressor 6 to shell part 60C at welding part W2. The shell 60 and the accumulator 63 are welded at welding part W3. The shell 60 and the supply pipe 65 are welded at welding part W4. The shell 60 and the discharge pipe 66 are welded at welding part W5.
 図2は、電動機61の横断面を示す図である。図2においては、図1に示すA-A’線においてX-Z平面に沿って電動機61を切断した場合の電動機61の横断面が示されている。図2に示すように、電動機61は、固定子611と、固定子611に巻き付けられた巻線615と、固定子611の内側に配置された回転子612とを備える。電動機61は、たとえば、回転子612に永久磁石が設けられたPM(Permanent Magnet)モータである。 FIG. 2 is a diagram showing a cross section of the electric motor 61. FIG. 2 shows a cross section of the electric motor 61 when the electric motor 61 is cut along the X-Z plane at the line A-A' shown in FIG. 1. As shown in FIG. 2, the electric motor 61 comprises a stator 611, a winding 615 wound around the stator 611, and a rotor 612 arranged inside the stator 611. The electric motor 61 is, for example, a PM (Permanent Magnet) motor in which a permanent magnet is provided in the rotor 612.
 固定子611は、鉄心またはコイルなどで形成され、円形または略円形の断面を有する固定子コア610を備える。固定子コア610の中央部には、回転子612を配置するための円形断面を有する中央穴部619が形成されている。回転子612は、固定子コア610に形成された中央穴部619において、X-Z平面に沿った方向に回転可能である。 The stator 611 is formed of an iron core or coil, and includes a stator core 610 with a circular or nearly circular cross section. A central hole 619 with a circular cross section is formed in the center of the stator core 610 for positioning the rotor 612. The rotor 612 can rotate in a direction along the X-Z plane in the central hole 619 formed in the stator core 610.
 さらに、固定子コア610には、周方向に沿って複数のスロット614が形成されている。複数のスロット614の各々には、巻線615が取り付けられている。巻線615には、ガラス端子67を介して電力が供給される。なお、巻線615は、分布巻き方式および集中巻き方式など、周知の巻き方で固定子コア610に取り付けられればよく、巻線615の取り付け方は特に限定されない。 Furthermore, the stator core 610 has a plurality of slots 614 formed in the circumferential direction. A winding 615 is attached to each of the plurality of slots 614. Power is supplied to the winding 615 via glass terminals 67. Note that the winding 615 may be attached to the stator core 610 using any known winding method, such as distributed winding or concentrated winding, and there are no particular limitations on the method of attaching the winding 615.
 回転子612は、円形または略円形の断面を有する。回転子612の外径は、固定子611の内径よりも小さい。これにより、回転子612は、固定子611に接触することなく固定子コア610の中央穴部619に収まるように固定子611の内側に配置される。回転子612の中央部には、Y軸方向に沿ってシャフト613を通すための円形断面を有するシャフト穴部616が形成されている。また、回転子612には、シャフト穴部616を取り囲むように複数の風穴部617が形成されている。複数の風穴部617の外側には複数の永久磁石618が設けられている。なお、電動機61は、永久磁石618が回転子612の内部に埋め込まれたIPM(Interior Permanent Magnet)モータに限らず、永久磁石618が回転子612の外周面に貼り付けられたSPM(Surface Permanent Magnet)モータであってもよい。 The rotor 612 has a circular or nearly circular cross section. The outer diameter of the rotor 612 is smaller than the inner diameter of the stator 611. As a result, the rotor 612 is disposed inside the stator 611 so as to fit into the central hole 619 of the stator core 610 without contacting the stator 611. A shaft hole 616 having a circular cross section for passing the shaft 613 along the Y-axis direction is formed in the center of the rotor 612. In addition, a plurality of air hole portions 617 are formed in the rotor 612 so as to surround the shaft hole portion 616. A plurality of permanent magnets 618 are provided outside the plurality of air hole portions 617. Note that the electric motor 61 is not limited to an IPM (Interior Permanent Magnet) motor in which the permanent magnet 618 is embedded inside the rotor 612, but may be an SPM (Surface Permanent Magnet) motor in which the permanent magnet 618 is attached to the outer circumferential surface of the rotor 612.
 図3は、圧縮機構部62の断面を示す図である。図3においては、図1に示すB-B’線においてX-Z平面に沿って圧縮機構部62を切断した場合の圧縮機構部62の横断面が示されている。図3に示すように、圧縮機構部62は、シリンダ621と、シリンダ621の内側に配置されたローリングピストン622とを備える。 FIG. 3 is a diagram showing a cross section of the compression mechanism 62. FIG. 3 shows a cross section of the compression mechanism 62 when the compression mechanism 62 is cut along the X-Z plane at line B-B' shown in FIG. 1. As shown in FIG. 3, the compression mechanism 62 includes a cylinder 621 and a rolling piston 622 arranged inside the cylinder 621.
 シリンダ621は、円形または略円形の断面を有する。シリンダ621の中央部には、ローリングピストン622を配置するとともに冷媒を圧縮するための円形断面を有する圧縮室630が形成されている。ローリングピストン622は、シリンダ621に形成された圧縮室630において、X-Z平面に沿った方向に回転可能である。 Cylinder 621 has a circular or nearly circular cross section. A compression chamber 630 having a circular cross section for compressing the refrigerant is formed in the center of cylinder 621 and in which rolling piston 622 is disposed. Rolling piston 622 can rotate in a direction along the X-Z plane in compression chamber 630 formed in cylinder 621.
 さらに、シリンダ621には、背圧室628およびベーン溝624が形成されている。ベーン溝624は、圧縮室630と背圧室628とを接続する。ベーン溝624には、長尺上のベーン625が設けられている。図3の例では、ベーン625は、ベーン溝624に沿ってZ軸方向に摺動可能である。 Furthermore, a back pressure chamber 628 and a vane groove 624 are formed in the cylinder 621. The vane groove 624 connects the compression chamber 630 and the back pressure chamber 628. A long vane 625 is provided in the vane groove 624. In the example of FIG. 3, the vane 625 can slide in the Z-axis direction along the vane groove 624.
 ローリングピストン622は、円形または略円形の断面を有する。ローリングピストン622は、円形または略円形の断面を有する偏心軸部626の外周に取り付けられている。偏心軸部626には、ローリングピストン622および偏心軸部626の中心から外れた位置において、Y軸方向に沿ってシャフト613を通すための円形断面を有するシャフト穴部627が形成されている。すなわち、ローリングピストン622および偏心軸部626には、Y軸方向に沿ってシャフト613が挿入されている。 The rolling piston 622 has a circular or nearly circular cross section. The rolling piston 622 is attached to the outer periphery of an eccentric shaft portion 626 that has a circular or nearly circular cross section. A shaft hole portion 627 having a circular cross section for passing the shaft 613 along the Y-axis direction is formed in the eccentric shaft portion 626 at a position offset from the center of the rolling piston 622 and the eccentric shaft portion 626. In other words, the shaft 613 is inserted into the rolling piston 622 and the eccentric shaft portion 626 along the Y-axis direction.
 ベーン625の先端は、ローリングピストン622の外周面の一部に理想的には接しており、シリンダ621の内周面とローリングピストン622の外周面とで形成される圧縮室630を吸入側と圧縮側とに分ける。 The tip of the vane 625 is ideally in contact with a portion of the outer circumferential surface of the rolling piston 622, dividing the compression chamber 630 formed by the inner circumferential surface of the cylinder 621 and the outer circumferential surface of the rolling piston 622 into an intake side and a compression side.
 ローリングピストン622は、シャフト613の回転に従ってX-Z平面に沿った方向に回転する。但し、ローリングピストン622の中心から外れた位置にシャフト613が挿入されているため、ローリングピストン622の中心から外れた位置を軸として、ローリングピストン622がシリンダ621の内周面に沿って偏心回転する。ローリングピストン622がシリンダ621内で偏心回転すると、ローリングピストン622の外周面の一部がシリンダ621の内周面の一部に理想的には密着する。 The rolling piston 622 rotates in a direction along the XZ plane in accordance with the rotation of the shaft 613. However, because the shaft 613 is inserted at a position that is off-center of the rolling piston 622, the rolling piston 622 rotates eccentrically along the inner circumferential surface of the cylinder 621, with the off-center position as its axis. When the rolling piston 622 rotates eccentrically within the cylinder 621, part of the outer circumferential surface of the rolling piston 622 ideally comes into close contact with part of the inner circumferential surface of the cylinder 621.
 図4は、圧縮機構部62の組立の一例を示す図である。図4に示すように、シリンダ621に形成されたベーン溝624にベーン625が取り付けられるとともに、中空円柱型のシリンダ621の中央部にローリングピストン622が取り付けられることで、圧縮機構部62が組み立てられる。 FIG. 4 is a diagram showing an example of the assembly of the compression mechanism 62. As shown in FIG. 4, the vane 625 is attached to the vane groove 624 formed in the cylinder 621, and the rolling piston 622 is attached to the center of the hollow cylindrical cylinder 621, thereby assembling the compression mechanism 62.
 図1に示すように、圧縮機構部62は、上部フレーム623Aと、下部フレーム623Bと、上部マフラ624Aと、下部マフラ624Bとをさらに備える。 As shown in FIG. 1, the compression mechanism 62 further includes an upper frame 623A, a lower frame 623B, an upper muffler 624A, and a lower muffler 624B.
 上部フレーム623Aおよび下部フレーム623Bは、上下方向(Y軸方向)から挟み込むように圧縮機構部62のシリンダ621およびローリングピストン622を支持する。上部フレーム623Aは、シリンダ621およびローリングピストン622の上部に理想的には密着することによって、シリンダ621およびローリングピストン622を支持する。下部フレーム623Bは、シリンダ621およびローリングピストン622の下部に理想的には密着することによって、シリンダ621およびローリングピストン622を支持する。 The upper frame 623A and the lower frame 623B support the cylinder 621 and rolling piston 622 of the compression mechanism 62 by sandwiching them from above and below (Y-axis direction). The upper frame 623A supports the cylinder 621 and rolling piston 622 by ideally coming into close contact with the upper parts of the cylinder 621 and rolling piston 622. The lower frame 623B supports the cylinder 621 and rolling piston 622 by ideally coming into close contact with the lower parts of the cylinder 621 and rolling piston 622.
 また、上部フレーム623Aおよび下部フレーム623Bは、Y軸方向に沿ってシャフト613を挿入することが可能であり、図示しない軸受けによって、シャフト613をX-Z平面に沿った方向に回転可能に支持する。上部フレーム623Aには、長尺上のシャフト613の一部を構成する上側シャフト部613Aが挿入され、シャフト613は、上側シャフト部613Aにおいて上部フレーム623Aによって回転可能に支持される。下部フレーム623Bには、長尺上のシャフト613の一部を構成する下側シャフト部613Bが挿入され、シャフト613は、下側シャフト部613Bにおいて下部フレーム623Bによって回転可能に支持される。 The upper frame 623A and the lower frame 623B allow the shaft 613 to be inserted along the Y-axis direction, and bearings (not shown) support the shaft 613 for rotation in a direction along the X-Z plane. An upper shaft portion 613A constituting part of the long shaft 613 is inserted into the upper frame 623A, and the shaft 613 is rotatably supported by the upper frame 623A at the upper shaft portion 613A. A lower shaft portion 613B constituting part of the long shaft 613 is inserted into the lower frame 623B, and the shaft 613 is rotatably supported by the lower frame 623B at the lower shaft portion 613B.
 電動機61、圧縮機構部62、およびシャフト613の各々が、シェル60内で正確な位置で組み合わされ、かつ各部品の寸法が正確であった場合、理想的には、Y軸方向に沿った各部品の中心軸が一致する。たとえば、図1に示すように、上部フレーム623Aの中心軸と下部フレーム623Bの中心軸とが一致する。また、シェル60の中心軸とシャフト613の中心軸とが一致する。 If the electric motor 61, compression mechanism 62, and shaft 613 are assembled in the shell 60 in the correct position, and the dimensions of each part are accurate, ideally the central axes of each part along the Y-axis direction will coincide. For example, as shown in FIG. 1, the central axis of the upper frame 623A coincides with the central axis of the lower frame 623B. The central axis of the shell 60 also coincides with the central axis of the shaft 613.
 [圧縮機の動作]
 上述のように構成された圧縮機6においては、ガラス端子67から供給された電力によって固定子611の巻線615に電流が流れると、固定子611に回転磁界が発生する。固定子611に発生した回転磁界に永久磁石618が吸い寄せられるように回転磁界に作用して、回転子612が回転する。回転子612の回転に従って、回転子612に挿入されたシャフト613が回転する。そして、シャフト613の回転力がローリングピストン622に伝わることによって、ローリングピストン622がシリンダ621の内周面に沿って偏心回転する。
[Compressor operation]
In the compressor 6 configured as described above, when a current flows through the windings 615 of the stator 611 by the power supplied from the glass terminal 67, a rotating magnetic field is generated in the stator 611. The permanent magnets 618 act on the rotating magnetic field generated in the stator 611 so as to be attracted to the rotating magnetic field, causing the rotor 612 to rotate. As the rotor 612 rotates, the shaft 613 inserted in the rotor 612 rotates. The rotational force of the shaft 613 is then transmitted to the rolling piston 622, causing the rolling piston 622 to rotate eccentrically along the inner circumferential surface of the cylinder 621.
 アキュムレータ63によって吸入された冷媒は、供給管65を介して圧縮機構部62の圧縮室630に供給される。圧縮室630においては、ローリングピストン622が回転することによって冷媒が圧縮される。図3に示すように、圧縮室630は、吸入された冷媒が存在する吸入側の領域と、圧縮された冷媒(以下、「圧縮冷媒」とも称する。)が存在する圧縮側の領域とを含む。これら吸入側および圧縮側の領域は、ローリングピストン622の外周面がシリンダ621の内周面およびベーン625の先端の各々と接することによって作られる。圧縮冷媒は、圧縮側の領域から排出されて、上部マフラ624Aを通ってシェル60内を上昇する。圧縮冷媒には、冷凍機油が混入されている。 The refrigerant sucked by the accumulator 63 is supplied to the compression chamber 630 of the compression mechanism 62 via the supply pipe 65. In the compression chamber 630, the rolling piston 622 rotates to compress the refrigerant. As shown in FIG. 3, the compression chamber 630 includes an intake side region where the sucked refrigerant exists, and a compression side region where the compressed refrigerant (hereinafter also referred to as "compressed refrigerant") exists. These intake side and compression side regions are created by the outer circumferential surface of the rolling piston 622 contacting the inner circumferential surface of the cylinder 621 and the tip of the vane 625, respectively. The compressed refrigerant is discharged from the compression side region and rises inside the shell 60 through the upper muffler 624A. Refrigerant oil is mixed into the compressed refrigerant.
 圧縮冷媒および冷凍機油の混合物は、回転子612に形成された風穴部617を通過する際に圧縮冷媒と冷凍機油とに分離される。これにより、冷凍機油が吐出管66に流入することを防止することができる。冷凍機油と分離した圧縮冷媒は、吐出管66を通って冷媒が循環する冷媒回路の高圧側へと供給される。 The mixture of compressed refrigerant and refrigeration oil is separated into compressed refrigerant and refrigeration oil when passing through the air hole 617 formed in the rotor 612. This makes it possible to prevent the refrigeration oil from flowing into the discharge pipe 66. The compressed refrigerant separated from the refrigeration oil is supplied through the discharge pipe 66 to the high-pressure side of the refrigerant circuit in which the refrigerant circulates.
 [圧縮機の個体ばらつきと圧縮機の特性との相関関係]
 圧縮機6の特性は、圧縮機6の性能を含む。圧縮機6の性能は、圧縮機6の入力電力(ガラス端子67から供給される入力電力)と冷凍能力とから算出される成績係数(COP:Coefficient of Performance)によって表される。成績係数(COP)とは、単位電力(たとえば、1kW)当たりの冷凍能力を示す圧縮機6の特性データである。また、圧縮機6の特性は、圧縮機6の騒音データおよび振動データを含む。圧縮機6の騒音データは、圧縮機6が駆動した際に圧縮機6から生じる音(騒音)の音圧レベル(たとえば、単位はデシベル)を含む。圧縮機6の振動データは、圧縮機6が駆動した際に圧縮機6が振動する度合いを示す振動レベルを含む。
[Correlation between individual compressor variations and compressor characteristics]
The characteristics of the compressor 6 include the performance of the compressor 6. The performance of the compressor 6 is represented by a coefficient of performance (COP) calculated from the input power of the compressor 6 (input power supplied from the glass terminal 67) and the refrigeration capacity. The coefficient of performance (COP) is characteristic data of the compressor 6 indicating the refrigeration capacity per unit of power (for example, 1 kW). The characteristics of the compressor 6 also include noise data and vibration data of the compressor 6. The noise data of the compressor 6 includes a sound pressure level (for example, in decibels) of the sound (noise) generated from the compressor 6 when the compressor 6 is driven. The vibration data of the compressor 6 includes a vibration level indicating the degree to which the compressor 6 vibrates when the compressor 6 is driven.
 圧縮機6の性能を低下させる要因としては、圧縮機構部62の各部品における固体ばらつきが挙げられる。特に、圧縮機構部62において圧縮機6の性能に影響を与える主な要因としては、ローリングピストン622と上部フレーム623Aとの隙間(図1のG1)の寸法、ローリングピストン622と下部フレーム623Bとの隙間(図1のG2)の寸法、ローリングピストン622の外周面とシリンダ621の内周面との隙間(図3のG3)の寸法、ベーン625の先端部とローリングピストン622の外周面との隙間(図3のG4)の寸法、ベーン625の摺動方向における側面とシリンダ621のベーン溝624との隙間(図3のG5)の寸法、ベーン625と上部フレーム623Aとの隙間(図示は省略する。)の寸法、およびベーン625と下部フレーム623Bとの隙間(図示は省略する。)の寸法が挙げられる。上述した圧縮機構部62の各部品における隙間が大きいと、その隙間から漏れる冷媒の量が大きくなり、圧縮能力が低下する。さらに、ローリングピストン622の内径が基準よりも大きい場合は、電動機61の力が圧縮機構部62に伝わりきらず、圧縮能力が低下するおそれがあり、ローリングピストン622の内径が基準よりも小さい場合は、ローリングピストン622とシャフト613とが接触するおそれがある。 Factors that reduce the performance of the compressor 6 include individual variations in each part of the compression mechanism 62. In particular, major factors that affect the performance of the compressor 6 in the compression mechanism 62 include the size of the gap (G1 in FIG. 1) between the rolling piston 622 and the upper frame 623A, the size of the gap (G2 in FIG. 1) between the rolling piston 622 and the lower frame 623B, the size of the gap (G3 in FIG. 3) between the outer circumferential surface of the rolling piston 622 and the inner circumferential surface of the cylinder 621, the size of the gap (G4 in FIG. 3) between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622, the size of the gap (G5 in FIG. 3) between the side surface of the vane 625 in the sliding direction and the vane groove 624 of the cylinder 621, the size of the gap (not shown) between the vane 625 and the upper frame 623A, and the size of the gap (not shown) between the vane 625 and the lower frame 623B. If the gaps between the components of the compression mechanism 62 described above are large, the amount of refrigerant that leaks from the gaps increases, and the compression capacity decreases. Furthermore, if the inner diameter of the rolling piston 622 is larger than the standard, the force of the electric motor 61 is not fully transmitted to the compression mechanism 62, and the compression capacity may decrease. If the inner diameter of the rolling piston 622 is smaller than the standard, the rolling piston 622 and the shaft 613 may come into contact with each other.
 上述した圧縮機構部62の各部品における隙間が大きいと、その隙間から漏れる冷媒の量が大きくなり、冷凍能力が低下する。圧縮機6の成績係数は、単位電力当たりの冷凍能力であるため、冷凍能力が低下すると、成績係数が小さくなる。すなわち、各部品の隙間が大きいと、圧縮機6の性能が低下する。特に、圧縮機6の性能に影響を与える主な要因としては、シェル60における溶接部分W1および溶接部分W2、シェル60とアキュムレータ63との溶接部分W3、シェル60と供給管65との溶接部分W4、およびシェル60と吐出管66との溶接部分W5の各々における溶接度合が挙げられる。各溶接部分における溶接強度が小さいと、複数の部品の接合部分に隙間が生じて、冷媒が漏れるおそれがある。 If the gaps between the components of the compression mechanism 62 are large, the amount of refrigerant that leaks from the gaps increases, and the refrigeration capacity decreases. The coefficient of performance of the compressor 6 is the refrigeration capacity per unit of power, so if the refrigeration capacity decreases, the coefficient of performance decreases. In other words, if the gaps between the components are large, the performance of the compressor 6 decreases. In particular, the main factors that affect the performance of the compressor 6 include the degree of welding at the welded parts W1 and W2 of the shell 60, the welded part W3 between the shell 60 and the accumulator 63, the welded part W4 between the shell 60 and the supply pipe 65, and the welded part W5 between the shell 60 and the discharge pipe 66. If the weld strength at each weld is low, gaps will occur at the joints between multiple components, and refrigerant may leak.
 圧縮機6の騒音データおよび振動データが変動する要因としても、圧縮機構部62の各部品における固体ばらつきが挙げられる。特に、圧縮機構部62において圧縮機6の騒音データおよび振動データに影響を与える主な要因としては、上側シャフト部613Aと下側シャフト部613Bの同軸度、およびベーン625とベーン溝624との隙間(図3のG1)の寸法が挙げられる。 The noise data and vibration data of the compressor 6 can also fluctuate due to individual variations in each part of the compression mechanism 62. In particular, the main factors that affect the noise data and vibration data of the compressor 6 in the compression mechanism 62 include the concentricity of the upper shaft portion 613A and the lower shaft portion 613B, and the size of the gap (G1 in FIG. 3) between the vane 625 and the vane groove 624.
 上側シャフト部613Aと下側シャフト部613Bの同軸度は、上側シャフト部613Aの中心軸と下側シャフト部613Bの中心軸とのずれ度合いを表しており、同軸度が0であるときに上側シャフト部613Aの中心軸と下側シャフト部613Bの中心軸とが完全に一致する。すなわち、上側シャフト部613Aと下側シャフト部613Bの同軸度が大きいほど、シリンダ621の上下でシャフト613の回転中心がずれるため、電動機61から圧縮機構部62に対する回転エネルギーの伝達が妨げられるとともに、回転エネルギーが振動エネルギーへと変換される。よって、上側シャフト部613Aと下側シャフト部613Bの同軸度が大きいほど、定性的には圧縮機6の騒音の音圧レベルが大きくなるとともに、圧縮機6の振動レベルが大きくなる。このように、上側シャフト部613Aと下側シャフト部613Bの同軸度のばらつきは、圧縮機6の騒音特性および振動特性を悪化させる傾向にある。 The concentricity of the upper shaft portion 613A and the lower shaft portion 613B represents the degree of misalignment between the central axis of the upper shaft portion 613A and the central axis of the lower shaft portion 613B, and when the concentricity is 0, the central axis of the upper shaft portion 613A and the central axis of the lower shaft portion 613B completely coincide. In other words, the greater the concentricity of the upper shaft portion 613A and the lower shaft portion 613B, the greater the misalignment of the center of rotation of the shaft 613 above and below the cylinder 621, preventing the transmission of rotational energy from the electric motor 61 to the compression mechanism portion 62 and converting the rotational energy into vibration energy. Therefore, the greater the concentricity of the upper shaft portion 613A and the lower shaft portion 613B, the greater the sound pressure level of the noise of the compressor 6 and the greater the vibration level of the compressor 6, qualitatively. In this way, variations in the concentricity of the upper shaft portion 613A and the lower shaft portion 613B tend to deteriorate the noise and vibration characteristics of the compressor 6.
 ベーン625とベーン溝624との隙間が大き過ぎると、ベーン625がベーン溝624の中で振動し易くなり、ベーン625がベーン溝624に衝突することによって振動エネルギーが発生する。すなわち、ベーン625とベーン溝624との隙間が大き過ぎると、定性的には圧縮機6の騒音の音圧レベルが大きくなるとともに、圧縮機6の振動レベルが大きくなる。また、ベーン625とベーン溝624との隙間が小さ過ぎると、ベーン625とベーン溝624との間に生じる摩擦力に起因して、振動エネルギーが発生する。ベーン625とベーン溝624との間に生じる摩擦力によって電動機61の回転速度が脈動するため、圧縮機6が振動し易くなるとともに、圧縮機6から騒音が発生し易くなる。すなわち、ベーン625とベーン溝624との隙間が小さ過ぎると、定性的には圧縮機6の騒音の音圧レベルが大きくなるとともに、圧縮機6の振動レベルが大きくなる。このように、ベーン625とベーン溝624との隙間のばらつきは、圧縮機6の騒音特性および振動特性を悪化させる傾向にある。 If the gap between the vane 625 and the vane groove 624 is too large, the vane 625 will be more likely to vibrate in the vane groove 624, and the vane 625 will collide with the vane groove 624, generating vibration energy. In other words, if the gap between the vane 625 and the vane groove 624 is too large, qualitatively the sound pressure level of the noise of the compressor 6 will increase, and the vibration level of the compressor 6 will also increase. Also, if the gap between the vane 625 and the vane groove 624 is too small, vibration energy will be generated due to the frictional force generated between the vane 625 and the vane groove 624. The rotational speed of the motor 61 will pulsate due to the frictional force generated between the vane 625 and the vane groove 624, making the compressor 6 more likely to vibrate and generate noise. In other words, if the gap between the vane 625 and the vane groove 624 is too small, qualitatively the sound pressure level of the noise of the compressor 6 increases, and the vibration level of the compressor 6 increases. In this way, variations in the gap between the vane 625 and the vane groove 624 tend to deteriorate the noise and vibration characteristics of the compressor 6.
 圧縮機6の特性が低下することを防止するためには、圧縮機構部62における密閉性が重要である。このため、上述した圧縮機構部62の各部品は、組立前から精度よく機械加工および表面処理が施されている。しかしながら、各部品の寸法には必ず個体ばらつきがあるため、各部品の個体ばらつきに起因して隙間が発生することがあり得る。圧縮機6の製造時においては、これらの各部品の寸法が予め決められた許容範囲内であるか否かを検査するようになっており、寸法が許容範囲内であると認められた部品を用いて圧縮機6が製造される。 In order to prevent the characteristics of the compressor 6 from deteriorating, it is important to ensure that the compression mechanism 62 is airtight. For this reason, each component of the compression mechanism 62 described above is precisely machined and surface treated before assembly. However, there is always individual variation in the dimensions of each component, and gaps may occur due to individual variation in each component. When the compressor 6 is manufactured, the dimensions of each of these components are inspected to see if they are within a predetermined tolerance range, and the compressor 6 is manufactured using components whose dimensions are determined to be within the tolerance range.
 圧縮機構部62の各部品が組み合わさることによって圧縮機6が製造され、各部品の寸法が圧縮機6の性能に影響していることは定性的には把握することができる。しかしながら、圧縮機構部62の各部品の寸法が許容範囲内であったとしても、組み立てられた圧縮機6における各隙間の寸法が許容範囲内であるとは限らない。 The compressor 6 is manufactured by combining the various parts of the compression mechanism 62, and it can be qualitatively understood that the dimensions of each part affect the performance of the compressor 6. However, even if the dimensions of each part of the compression mechanism 62 are within the allowable range, this does not necessarily mean that the dimensions of each gap in the assembled compressor 6 are within the allowable range.
 たとえば、許容範囲の下限値に近い寸法を有する部品(たとえば、ローリングピストン622の外径)と、許容範囲の上限値に近い寸法を有する部品(たとえば、シリンダ621の内径)とが組み合わさると、それらの部品の隙間は大きくなり、隙間の寸法が許容範囲を超えるおそれがある。また、許容範囲の上限値に近い寸法を有する部品(たとえば、ローリングピストン622の外径)と、許容範囲の下限値に近い寸法を有する部品(たとえば、シリンダ621の内径)とが組み合わさると、それらの部品の隙間は小さくなり、隙間の寸法が許容範囲未満になるおそれがある。 For example, when a part having a dimension close to the lower limit of the tolerance range (e.g., the outer diameter of rolling piston 622) is combined with a part having a dimension close to the upper limit of the tolerance range (e.g., the inner diameter of cylinder 621), the gap between those parts becomes large and the gap dimension may exceed the tolerance range. Also, when a part having a dimension close to the upper limit of the tolerance range (e.g., the outer diameter of rolling piston 622) is combined with a part having a dimension close to the lower limit of the tolerance range (e.g., the inner diameter of cylinder 621), the gap between those parts becomes small and the gap dimension may fall below the tolerance range.
 さらに、圧縮機構部62の各部品が組み合わさることによって複数の隙間が生じ、これらの複数の隙間が互いに影響し合うこともある。このため、2つの部品間の隙間をある程度把握できたとしても、圧縮機構部62の各部品が組み合わさった後の各隙間を把握することはできず、結局は圧縮機6を製造した後でなければ、圧縮機6全体としての性能を確認することは難しい。 Furthermore, multiple gaps occur when the various parts of the compression mechanism 62 are combined, and these multiple gaps may affect each other. For this reason, even if it is possible to grasp the gaps between two parts to some extent, it is not possible to grasp the individual gaps after the various parts of the compression mechanism 62 are combined, and ultimately, it is difficult to confirm the performance of the compressor 6 as a whole until after the compressor 6 has been manufactured.
 また、圧縮機6の特性を低下させるもう1つの要因としては、電動機61の各部品における固体ばらつきが挙げられる。特に、電動機61において圧縮機6の性能に影響を与える主な要因としては、巻線615に鎖交する回転子612の磁束量、および巻線615の抵抗値が挙げられる。巻線615に鎖交する回転子612の磁束量に起因して、電磁誘導の法則に基づいて誘起電圧が生じる。誘起電圧の大きさは、巻線615に鎖交する回転子612の磁束量の大きさに比例する。言い換えると、巻線615に鎖交する回転子612の磁束量は、誘起電圧に対応する。また、電動機61において圧縮機6の騒音データおよび振動データに影響を与える主な要因としては、巻線615に鎖交する回転子612の磁束量、固定子611の内径真円度、および回転子612の偏心量が挙げられる。 Another factor that reduces the characteristics of the compressor 6 is individual variation in each part of the motor 61. In particular, the main factors that affect the performance of the compressor 6 in the motor 61 include the amount of magnetic flux of the rotor 612 that links with the windings 615 and the resistance value of the windings 615. Due to the amount of magnetic flux of the rotor 612 that links with the windings 615, an induced voltage occurs based on the law of electromagnetic induction. The magnitude of the induced voltage is proportional to the amount of magnetic flux of the rotor 612 that links with the windings 615. In other words, the amount of magnetic flux of the rotor 612 that links with the windings 615 corresponds to the induced voltage. In addition, the main factors that affect the noise data and vibration data of the compressor 6 in the motor 61 include the amount of magnetic flux of the rotor 612 that links with the windings 615, the inner diameter roundness of the stator 611, and the amount of eccentricity of the rotor 612.
 巻線615に鎖交する回転子612の磁束量は、主に回転子612に挿入された永久磁石618の磁束密度、永久磁石618の寸法、回転子612の外径寸法、および固定子611の内径寸法などによって変動し、これらがばらつくことによって圧縮機6の入力電力(ガラス端子67から供給される入力電力)も変動し易くなる。一般的に、回転子612の磁束量が小さくなると、電動機61の巻線615へ流れる電流も大きくなって銅損が大きくなり、電動機61に供給される駆動電力が大きくなる。これにより、電動機61の入力電力が変動する。さらに、電動機61を制御するために、固定子611の巻線615に鎖交する回転子612の磁束量を示すデータが電動機61の制御装置に予め入力される。しかしながら、予め入力される磁束量は、圧縮機6の個体ばらつきが反映されていない代表値である。したがって、制御装置に入力された磁束量の代表値から実際の磁束量の値が乖離しているほど、圧縮機6の入力も変動し易くなり、電動機61の駆動が不安定になる。 The amount of magnetic flux of the rotor 612 interlinked with the winding 615 varies mainly depending on the magnetic flux density of the permanent magnet 618 inserted in the rotor 612, the dimensions of the permanent magnet 618, the outer diameter of the rotor 612, and the inner diameter of the stator 611, and the variations in these factors also tend to cause the input power of the compressor 6 (input power supplied from the glass terminal 67) to vary. In general, when the amount of magnetic flux of the rotor 612 decreases, the current flowing to the winding 615 of the motor 61 also increases, causing copper loss to increase, and the driving power supplied to the motor 61 increases. This causes the input power of the motor 61 to vary. Furthermore, in order to control the motor 61, data indicating the amount of magnetic flux of the rotor 612 interlinked with the winding 615 of the stator 611 is input in advance to the control device of the motor 61. However, the amount of magnetic flux input in advance is a representative value that does not reflect the individual variations of the compressor 6. Therefore, the greater the deviation of the actual magnetic flux amount from the representative value input to the control device, the more likely the input to the compressor 6 will fluctuate, making the operation of the motor 61 unstable.
 また、巻線615の抵抗値がばらつくことによっても、圧縮機6の入力電力がばらつく。圧縮機6の成績係数は、単位電力当たりの冷凍能力であるため、圧縮機6の入力電力が大きくなると、成績係数が小さくなる。すなわち、巻線615に鎖交する回転子612の磁束量、および巻線615の抵抗値に依存して、圧縮機6の性能が変動する。 Furthermore, the input power of the compressor 6 varies due to variations in the resistance value of the windings 615. The coefficient of performance of the compressor 6 is the refrigeration capacity per unit of power, so as the input power of the compressor 6 increases, the coefficient of performance decreases. In other words, the performance of the compressor 6 varies depending on the amount of magnetic flux of the rotor 612 that links with the windings 615 and the resistance value of the windings 615.
 さらに、巻線615に鎖交する回転子612の磁束量がばらつくほど、定性的には圧縮機6の騒音の音圧レベルが変動し易くなるとともに、圧縮機6の振動レベルが変動し易くなる。このように、固定子611の巻線615に鎖交する回転子612の磁束量のばらつきは、圧縮機6の騒音特性および振動特性を悪化させる傾向にある。 Furthermore, the greater the variation in the amount of magnetic flux of the rotor 612 interlinked with the windings 615, the more likely the sound pressure level of the noise of the compressor 6 and the more likely the vibration level of the compressor 6 are to fluctuate qualitatively. In this way, the variation in the amount of magnetic flux of the rotor 612 interlinked with the windings 615 of the stator 611 tends to deteriorate the noise and vibration characteristics of the compressor 6.
 固定子611の内径真円度は、円形断面を有する固定子611の内周面を形成する円が真円に近いか否かを表しており、内径真円度が0であるときに固定子611が真円になる。図2に示すように、固定子611の内周面と、回転する回転子612の外周面との間には隙間が生じるが、固定子611の内径真円度に応じて、固定子611の内周面と回転子612の外周面との隙間の寸法が大きくなったり、小さくなったりする。この隙間の寸法が変動すると、固定子611と回転子612との間に働く磁気吸引力が不安定になり、定性的には圧縮機6の騒音の音圧レベルが大きくなるとともに、圧縮機6の振動レベルが大きくなる。このように、固定子611の内径真円度のばらつきは、圧縮機6の騒音特性および振動特性を悪化させる傾向にある。 The inner diameter roundness of the stator 611 indicates whether the circle forming the inner peripheral surface of the stator 611 having a circular cross section is close to a perfect circle, and when the inner diameter roundness is 0, the stator 611 is a perfect circle. As shown in FIG. 2, a gap is generated between the inner peripheral surface of the stator 611 and the outer peripheral surface of the rotating rotor 612, and the size of the gap between the inner peripheral surface of the stator 611 and the outer peripheral surface of the rotor 612 increases or decreases depending on the inner diameter roundness of the stator 611. If the size of this gap fluctuates, the magnetic attraction force acting between the stator 611 and the rotor 612 becomes unstable, and qualitatively, the sound pressure level of the noise of the compressor 6 increases, and the vibration level of the compressor 6 increases. In this way, the variation in the inner diameter roundness of the stator 611 tends to deteriorate the noise and vibration characteristics of the compressor 6.
 回転子612の偏心量は、回転子612の回転中心軸が理想位置からずれた場合における回転中心軸と理想位置とのずれ量を表しており、偏心量が0であるときに回転中心軸が理想位置に位置する。上述したように、ローリングピストン622の外周面とシリンダ621の内周面とは理想的には密着するが、回転子612の偏心量に依存して、ローリングピストン622の外周面とシリンダ621の内周面との間に隙間(図3のG2)が生じ得る。また、図3に示すように、ベーン625の先端部と、回転するローリングピストン622の外周面とは、理想的には密着するが、回転子612の偏心量に依存して、ベーン625の先端部とローリングピストン622の外周面との間に隙間(図3のG3)が生じ得る。すなわち、回転子612の偏心量に応じて、固定子611の内周面と回転子612の外周面との隙間の寸法、およびベーン625の先端部とローリングピストン622の外周面との隙間の寸法が大きくなったり、小さくなったりする。これらの隙間の寸法が変動すると、固定子611と回転子612との間に働く磁気吸引力が不安定になり、定性的には圧縮機6の騒音の音圧レベルが大きくなるとともに、圧縮機6の振動レベルが大きくなる。このように、回転子612の偏心量のばらつきは、圧縮機6の騒音特性および振動特性を悪化させる傾向にある。 The eccentricity of the rotor 612 represents the amount of deviation between the rotation axis of the rotor 612 and the ideal position when the rotation axis of the rotor 612 deviates from the ideal position, and when the eccentricity is 0, the rotation axis is located at the ideal position. As described above, the outer peripheral surface of the rolling piston 622 and the inner peripheral surface of the cylinder 621 are ideally in close contact with each other, but depending on the eccentricity of the rotor 612, a gap (G2 in FIG. 3) may be generated between the outer peripheral surface of the rolling piston 622 and the inner peripheral surface of the cylinder 621. Also, as shown in FIG. 3, the tip of the vane 625 and the outer peripheral surface of the rotating rolling piston 622 are ideally in close contact with each other, but depending on the eccentricity of the rotor 612, a gap (G3 in FIG. 3) may be generated between the tip of the vane 625 and the outer peripheral surface of the rolling piston 622. That is, depending on the amount of eccentricity of the rotor 612, the size of the gap between the inner circumferential surface of the stator 611 and the outer circumferential surface of the rotor 612, and the size of the gap between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622, increase or decrease. If the size of these gaps fluctuates, the magnetic attraction force acting between the stator 611 and the rotor 612 becomes unstable, and qualitatively, the sound pressure level of the noise of the compressor 6 increases, and the vibration level of the compressor 6 increases. In this way, the variation in the amount of eccentricity of the rotor 612 tends to deteriorate the noise and vibration characteristics of the compressor 6.
 さらに、圧縮機構部62の個体ばらつきと電動機61の個体ばらつきとの間にも相互作用がある。たとえば、圧縮機構部62における隙間から漏れる冷媒の量が大きいと、圧縮対象となる冷媒が少なくなるため、冷凍能力が小さくなるとともに、圧縮トルクが小さくなり、その結果、電動機61において発生するトルクも小さくなる。電動機61のトルクが小さいと、電動機61の入力電力が小さくなるなどの影響がある。また、圧縮機構部62において発生する隙間の箇所によっても電動機61に与える影響も異なる。 Furthermore, there is an interaction between individual variations in the compression mechanism 62 and individual variations in the electric motor 61. For example, if a large amount of refrigerant leaks through the gaps in the compression mechanism 62, less refrigerant is available for compression, resulting in a smaller refrigeration capacity and a smaller compression torque, which in turn results in a smaller torque generated in the electric motor 61. If the torque of the electric motor 61 is small, this has the effect of reducing the input power to the electric motor 61, and so on. Furthermore, the effect on the electric motor 61 differs depending on the location of the gaps that occur in the compression mechanism 62.
 上述したような単体部品の個体ばらつき、複数の部品の組み合わせの精度、および、複数の部品を接合する溶接の状態は、製造装置によって加工された各部品の寸法精度、および製造現場における作業者の作業環境などによって影響され得る。このため、単体部品の個体ばらつき、複数の部品の組み合わせ、および、複数の部品を接合する溶接の状態は、製造装置の識別情報、製造装置に生じる電流、製造装置に生じる電圧、圧縮機6の製造に要する時間、圧縮機6の製造時における溶接の温度、溶接における溶接量(たとえば、蝋の量)、圧縮機6の製造現場の温度、および製造現場の湿度などによって変動し得る。たとえば、部品の膨張率および作業者の作業効率は、製造現場の温度および湿度によって変動し得る。また、製造装置によって部品を加工する際、刃物が部品に接触するときに電流または電圧が生じる。製造装置による部品の加工状態は、製造装置に生じる電流または電圧に依存する。さらに、圧縮機6の製造において何らかの異常が生じた場合、圧縮機6の製造に要する時間が長くなる場合がある。このように、圧縮機6の特性は、製造装置の識別情報、製造装置に生じる電流、製造装置に生じる電圧、圧縮機6の製造に要する時間、圧縮機6の製造時における溶接の温度(火力)、溶接における溶接量(たとえば、蝋の量)、圧縮機6の製造現場の温度、および製造現場の湿度などによって変動し得る。 The individual variation of the individual parts, the accuracy of the combination of the multiple parts, and the state of the welding that joins the multiple parts as described above can be affected by the dimensional accuracy of each part processed by the manufacturing device and the working environment of the worker at the manufacturing site. Therefore, the individual variation of the individual parts, the combination of the multiple parts, and the state of the welding that joins the multiple parts can vary depending on the identification information of the manufacturing device, the current generated in the manufacturing device, the voltage generated in the manufacturing device, the time required to manufacture the compressor 6, the welding temperature during the manufacturing of the compressor 6, the welding amount (for example, the amount of wax) in the welding, the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site. For example, the expansion rate of the parts and the work efficiency of the worker can vary depending on the temperature and humidity at the manufacturing site. In addition, when the parts are processed by the manufacturing device, a current or voltage is generated when the blade comes into contact with the parts. The processing state of the parts by the manufacturing device depends on the current or voltage generated in the manufacturing device. Furthermore, if any abnormality occurs in the manufacturing of the compressor 6, the time required to manufacture the compressor 6 may be extended. In this way, the characteristics of the compressor 6 can vary depending on the identification information of the manufacturing device, the current generated in the manufacturing device, the voltage generated in the manufacturing device, the time required to manufacture the compressor 6, the temperature (heat) of the welding during the manufacturing of the compressor 6, the amount of welding (for example, the amount of wax), the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
 このように、圧縮機構部62における各部品と電動機61における各部品とが複雑に絡み合うことによって圧縮機の特性が決まるため、圧縮機構部62における各部品と電動機61における各部品とを組み合わせて圧縮機6を製造した後でなければ、圧縮機6全体としての特性を正確に確認することは難しい。 As such, the characteristics of the compressor are determined by the complex intertwining of the various components in the compression mechanism 62 and the various components in the electric motor 61, so it is difficult to accurately confirm the characteristics of the compressor 6 as a whole until the various components in the compression mechanism 62 and the various components in the electric motor 61 have been combined to manufacture the compressor 6.
 圧縮機6の特性を確認するためには、製造後の圧縮機6を検査すればよいが、圧縮機6を検査する度に検査装置における圧力条件を安定させる必要があり、製造工程において圧縮機6の性能を全数検査しようとすると、多大な時間を要してしまう。このため、通常は抜き取り検査によって圧縮機6の特性検査が行われている。しかしながら、上述したように、圧縮機構部62および電動機61における各部品には、個体ばらつきがあるため、複数の部品を組み合わせた場合の圧縮機6の特性は、圧縮機6ごとにばらついている。すなわち、圧縮機構部62および電動機61における各部品の寸法および特性を単体で保証していたとしても、これらを組み合わせた場合の相乗効果までは把握することができず、抜き取り検査では、製造される圧縮機6の全数の特性を保証することは難しい。 In order to check the characteristics of the compressor 6, it is sufficient to inspect the compressor 6 after it has been manufactured. However, it is necessary to stabilize the pressure conditions in the inspection device each time the compressor 6 is inspected, and it would take a lot of time to inspect the performance of all the compressors 6 during the manufacturing process. For this reason, the characteristics of the compressor 6 are usually inspected by sampling inspection. However, as described above, there are individual variations in each component of the compression mechanism 62 and the electric motor 61, and therefore the characteristics of the compressor 6 when multiple components are combined vary from compressor to compressor 6. In other words, even if the dimensions and characteristics of each component of the compression mechanism 62 and the electric motor 61 are guaranteed individually, it is not possible to grasp the synergistic effect when these are combined, and it is difficult to guarantee the characteristics of all the compressors 6 manufactured by sampling inspection.
 また、複数の部品を組み合わせて圧縮機6を組み立てた後に圧縮機6の特性を確認した場合、圧縮機6の特性が基準値を満たさなければ、組み立てた圧縮機6を手直しで修正するか、あるいは、組み立てた圧縮機6を廃棄しなければならない。たとえば、圧縮機6の組立時の検査項目の一例として、電動機61の固定子611と回転子612との間の空隙、圧縮機6から冷媒が漏れていないことを確認するための圧縮機6の密閉性または溶接状態、圧縮機6の運転時における騒音または振動などが挙げられる。これらの検査において、圧縮機6の特性が基準を満たしていない場合、圧縮機6を手直しで修正するか、あるいは、圧縮機6を廃棄しなければならない。この場合、圧縮機6を組み立てるために要した時間、および圧縮機6の組立に用いられた部品が無駄になってしまう。仮に、圧縮機6の組立の途中で、単体部品の個体ばらつきおよび複数部品の組み合わせによる影響などを考慮して、圧縮機6の組立可否を判断することができれば、作業者は、組み立てた圧縮機6を手直しで修正したり廃棄したりするといった無駄を省くことができる。 Furthermore, when the characteristics of the compressor 6 are checked after assembling the compressor 6 by combining multiple parts, if the characteristics of the compressor 6 do not meet the standard values, the assembled compressor 6 must be corrected by manual adjustment or the assembled compressor 6 must be discarded. For example, examples of inspection items during assembly of the compressor 6 include the gap between the stator 611 and the rotor 612 of the electric motor 61, the airtightness or welding state of the compressor 6 to confirm that refrigerant is not leaking from the compressor 6, and noise or vibration during operation of the compressor 6. If the characteristics of the compressor 6 do not meet the standards in these inspections, the compressor 6 must be corrected by manual adjustment or the compressor 6 must be discarded. In this case, the time required to assemble the compressor 6 and the parts used in assembling the compressor 6 are wasted. If it were possible to determine whether or not the compressor 6 can be assembled during the assembly process, taking into account the individual variations of individual parts and the effects of combining multiple parts, workers could avoid the waste of having to rework or discard the assembled compressor 6.
 そこで、本開示は、AI(Artificial Intelligence)を利用して、圧縮機6の組立を許可するか否かに関する組立可否データと相関のある入力データに基づき、組立可否データを推論する技術を提供する。 The present disclosure therefore provides a technology that uses AI (Artificial Intelligence) to infer assembly feasibility data based on input data that is correlated with assembly feasibility data regarding whether or not assembly of the compressor 6 is permitted.
 [推論装置]
 図5は、実施の形態1に係る推論装置10の構成を示す図である。図5に示すように、推論装置10は、主な機能構成として、制御部11と、記憶部12と、入力部13とを備える。
[Inference device]
Fig. 5 is a diagram showing the configuration of inference device 10 according to embodiment 1. As shown in Fig. 5, inference device 10 includes, as main functional components, a control unit 11, a storage unit 12, and an input unit 13.
 制御部11は、各種のプログラムを実行することで各種の処理を実行する演算主体であり、一例として、プロセッサなどのコンピュータが挙げられる。プロセッサは、たとえば、マイクロコントローラ(microcontroller)、CPU(central processing unit)、またはMPU(Micro-processing unit)などで構成される。なお、プロセッサは、プログラムを実行することによって各種の処理を実行する機能を有するが、これらの機能の一部または全部を、ASIC(Application Specific Integrated Circuit)、GPU(Graphics Processing Unit)、またはFPGA(Field-Programmable Gate Array)などの専用のハードウェア回路を用いて実装してもよい。「プロセッサ」は、CPUまたはMPUのようにストアードプログラム方式で処理を実行する狭義のプロセッサに限らず、ASIC、GPU、またはFPGAなどのハードワイヤード回路を含み得る。このため、プロセッサは、コンピュータ読み取り可能なコードおよび/またはハードワイヤード回路によって予め処理が定義されている、処理回路(processing circuitry)と読み替えることもできる。なお、プロセッサは、1つのチップで構成されてもよいし、複数のチップで構成されてもよい。さらに、プロセッサおよび関連する処理回路は、ローカルエリアネットワークまたは無線ネットワークなどを介して、有線または無線で相互接続された複数のコンピュータで構成されてもよい。プロセッサおよび関連する処理回路は、入力データに基づきリモートで演算し、その演算結果を離れた位置にある他のデバイスへと出力するような、クラウドコンピュータで構成されてもよい。 The control unit 11 is a computing entity that executes various processes by executing various programs, and an example of such a computing entity is a computer such as a processor. The processor is, for example, configured with a microcontroller, a CPU (central processing unit), or an MPU (micro-processing unit). The processor has the function of executing various processes by executing programs, but some or all of these functions may be implemented using dedicated hardware circuits such as an ASIC (Application Specific Integrated Circuit), a GPU (Graphics Processing Unit), or an FPGA (Field-Programmable Gate Array). The term "processor" is not limited to a processor in the narrow sense that executes processes using a stored program method such as a CPU or an MPU, but may also include hardwired circuits such as an ASIC, a GPU, or an FPGA. For this reason, the processor may also be interpreted as a processing circuit in which processing is defined in advance by computer-readable code and/or hardwired circuits. The processor may be configured with one chip or multiple chips. Furthermore, the processor and associated processing circuitry may be configured as multiple computers interconnected by wire or wirelessly, such as via a local area network or wireless network. The processor and associated processing circuitry may be configured as a cloud computer that performs remote calculations based on input data and outputs the results of the calculations to other devices in remote locations.
 記憶部12は、制御部11が各種のプログラムを実行するにあたって、プログラムコードまたはワークメモリなどを一時的に格納する記憶領域を提供するメモリである。記憶部12は、1または複数の非一時的コンピュータ可読媒体(non-transitory computer readable medium)であってもよい。記憶部12の一例としては、DRAM(dynamic random access memory)およびSRAM(static random access memory)などの揮発性メモリ、または、ROM(Read Only Memory)およびフラッシュメモリなどの不揮発性メモリが挙げられる。さらに、記憶部12は、制御部11が各種のプログラムを実行するために必要な各種のデータを格納する記憶領域を提供する記憶装置であってもよい。記憶部12は、1または複数のコンピュータ読み取り可能な記憶媒体(computer readable storage medium)であってもよい。記憶部12の一例としては、SSD(solid state drive)またはHDD(hard disk drive)などの記憶装置が挙げられる。 The memory unit 12 is a memory that provides a storage area for temporarily storing program codes or work memory when the control unit 11 executes various programs. The memory unit 12 may be one or more non-transitory computer readable mediums. Examples of the memory unit 12 include volatile memories such as dynamic random access memory (DRAM) and static random access memory (SRAM), or non-volatile memories such as read only memory (ROM) and flash memory. Furthermore, the memory unit 12 may be a storage device that provides a storage area for storing various data required for the control unit 11 to execute various programs. The memory unit 12 may be one or more computer readable storage mediums. Examples of the memory unit 12 include storage devices such as solid state drives (SSDs) and hard disk drives (HDDs).
 入力部13は、圧縮機の組立可否と相関のある入力データが入力されるインターフェースである。たとえば、入力部13には、入力データとして、単体部品の個体ばらつきを示す個体データ、圧縮機6の製造に関するデータ、および複数部品の組み合わせによって生じ得るデータが入力される。 The input unit 13 is an interface into which input data that is correlated with whether or not the compressor can be assembled is input. For example, the input data input into the input unit 13 includes individual data that indicates individual variations of individual parts, data related to the manufacture of the compressor 6, and data that may arise from the combination of multiple parts.
 制御部11は、データ取得部111と、モデル生成部112と、推論部113とを備える。 The control unit 11 includes a data acquisition unit 111, a model generation unit 112, and an inference unit 113.
 データ取得部111は、入力部13から入力された入力データを取得する。たとえば、データ取得部111は、入力部13を介して入力データを取得する。モデル生成部112は、入力データと、入力データに対応する正解データである圧縮機6の組立を許可するか否かに関する組立可否データとをセットにした後述する学習用データ30を用いて、入力データに基づき組立可否データを推論するための後述する学習済モデル20を生成する。推論部113は、学習済モデル20を用いて、入力データに基づき組立可否データを推論する。 The data acquisition unit 111 acquires input data input from the input unit 13. For example, the data acquisition unit 111 acquires input data via the input unit 13. The model generation unit 112 generates a trained model 20 (described later) for inferring the assembly feasibility data based on the input data, using learning data 30 (described later) which is a set of the input data and assembly feasibility data relating to whether or not assembly of the compressor 6 is permitted, which is correct answer data corresponding to the input data. The inference unit 113 uses the trained model 20 to infer the assembly feasibility data based on the input data.
 [学習フェーズ]
 図6~図10を参照しながら、学習フェーズにおける推論装置10の適用例を説明する。上述したように、推論装置10は、組立可否データと相関のある入力データと、入力データに対応する正解データである組立可否データとをセットにした学習用データ30を用いて、教師あり学習を行う。教師あり学習とは、要因と結果(ラベル)のデータセットを用いて、これらの学習用データ30にある特徴を学習し、入力から結果を推論する手法である。
[Learning Phase]
6 to 10, an application example of the inference device 10 in the learning phase will be described. As described above, the inference device 10 performs supervised learning using learning data 30, which is a set of input data correlated with assembly feasibility data and assembly feasibility data that is answer data corresponding to the input data. Supervised learning is a method of learning the features of the learning data 30 using a data set of factors and results (labels) and inferring results from the input.
 図6は、教師あり学習の概要を説明するための図である。図6に示すように、学習フェーズにおいて、推論装置10は、学習用プログラム40を実行することで、入力1と入力2(正解)とを含む学習用データ30に基づき、学習済モデル20を生成(更新)する。 FIG. 6 is a diagram for explaining an overview of supervised learning. As shown in FIG. 6, in the learning phase, the inference device 10 executes a learning program 40 to generate (update) a trained model 20 based on training data 30 including an input 1 and an input 2 (correct answer).
 活用フェーズにおいて、推論装置10は、学習済モデル20を用いて、入力1に基づき、出力を得る。 In the utilization phase, the inference device 10 uses the trained model 20 to obtain an output based on the input 1.
 図7は、実施の形態1に係る推論装置10における教師あり学習の入力および出力を説明するための図である。図7に示すように、推論装置10においては、入力1の入力データとして、圧縮機6の組立可否と相関のあるデータが用いられる。たとえば、入力データは、単体部品の個体ばらつきを示す個体データ、圧縮機6の製造に関するデータ、および複数部品の組み合わせによって生じ得るデータを含む。入力1の入力データは、圧縮機6を組み立てる前または圧縮機6の組立の途中から取得することが可能である。 FIG. 7 is a diagram for explaining the input and output of supervised learning in the inference device 10 according to the first embodiment. As shown in FIG. 7, in the inference device 10, data correlated with whether the compressor 6 can be assembled is used as the input data for input 1. For example, the input data includes individual data showing individual variations of individual parts, data related to the manufacture of the compressor 6, and data that may arise from the combination of multiple parts. The input data for input 1 can be obtained before assembling the compressor 6 or during the assembly of the compressor 6.
 推論装置10においては、正解データである入力2として、圧縮機6の組立可否に関する組立可否データが用いられる。また、推論装置10においては、出力として、圧縮機6の組立可否に関する組立可否データが得られる。 In the inference device 10, assembling feasibility data regarding whether or not the compressor 6 can be assembled is used as input 2, which is the correct answer data. In addition, in the inference device 10, assembling feasibility data regarding whether or not the compressor 6 can be assembled is obtained as output.
 図8は、学習フェーズにおける学習装置110の構成を示す図である。学習装置110は、推論装置10の制御部11によって実現される。学習装置110は、学習用プログラム記憶部121および学習済モデル記憶部122の各々とデータの受け渡しが可能である。学習用プログラム記憶部121および学習済モデル記憶部122は、推論装置10の記憶部12によって実現される。 FIG. 8 is a diagram showing the configuration of the learning device 110 in the learning phase. The learning device 110 is realized by the control unit 11 of the inference device 10. The learning device 110 is capable of transferring data to and from each of the learning program storage unit 121 and the learned model storage unit 122. The learning program storage unit 121 and the learned model storage unit 122 are realized by the storage unit 12 of the inference device 10.
 図8に示すように、学習装置110は、データ取得部111と、モデル生成部112とを備える。学習装置110は、学習用プログラム記憶部121によって記憶された学習用プログラム40を実行することで、入力1と入力2(正解)とを含む学習用データ30に基づき、学習済モデル20を生成する。 As shown in FIG. 8, the learning device 110 includes a data acquisition unit 111 and a model generation unit 112. The learning device 110 executes a learning program 40 stored in a learning program storage unit 121 to generate a trained model 20 based on learning data 30 including an input 1 and an input 2 (correct answer).
 データ取得部111は、入力1と入力2(正解)とを含む学習用データ30を取得する。具体的には、データ取得部111は、入力1として、圧縮機6の組立可否データと相関のある入力データを取得する。データ取得部111は、入力2(正解)として、圧縮機6の組立可否データを取得する。入力データおよび組立可否データの具体例については、図13~図18を用いて後述する。 The data acquisition unit 111 acquires learning data 30 including input 1 and input 2 (correct answer). Specifically, the data acquisition unit 111 acquires, as input 1, input data that is correlated with the assembly feasibility data of the compressor 6. The data acquisition unit 111 acquires, as input 2 (correct answer), the assembly feasibility data of the compressor 6. Specific examples of the input data and the assembly feasibility data will be described later with reference to Figures 13 to 18.
 モデル生成部112は、データ取得部111によって取得された入力1と入力2(正解)とを含む学習用データ30を用いて、入力データに基づき圧縮機6の組立可否データを推論する学習済モデル20を生成する。モデル生成部112は、生成した学習済モデル20を学習済モデル記憶部122に記憶させる。 The model generation unit 112 uses the learning data 30 including the input 1 and the input 2 (correct answer) acquired by the data acquisition unit 111 to generate a trained model 20 that infers assembly feasibility data for the compressor 6 based on the input data. The model generation unit 112 stores the generated trained model 20 in the trained model storage unit 122.
 図9は、ニューラルネットワークの構成を示す図である。モデル生成部112は、たとえば、ニューラルネットワークモデルに従って、教師あり学習によって学習済モデル20を生成する。 FIG. 9 is a diagram showing the configuration of a neural network. The model generation unit 112 generates a trained model 20 by supervised learning, for example, according to a neural network model.
 ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層(隠れ層)、および複数のニューロンからなる出力層で構成される。中間層は、1層、または2層以上でもよい。 A neural network is composed of an input layer consisting of multiple neurons, an intermediate layer (hidden layer) consisting of multiple neurons, and an output layer consisting of multiple neurons. There may be one intermediate layer, or two or more layers.
 図9においては、3層のニューラルネットワークが表されている。図9においては、入力が3個、出力が3個の構成が表されている。複数の入力が入力層X1,X2,X3に入力されると、その値に重みw11~w16を掛けた値が中間層Y1,Y2に入力され、その結果にさらに重みw21~w26を掛けた値が出力層Z1,Z2,Z3から出力される。この出力結果は、重みw11~w16,w21~w26の値によって変わる。 In Figure 9, a three-layer neural network is shown. In Figure 9, a configuration with three inputs and three outputs is shown. When multiple inputs are input to the input layers X1, X2, and X3, the values multiplied by weights w11 to w16 are input to the intermediate layers Y1 and Y2, and the results are further multiplied by weights w21 to w26 to be output from the output layers Z1, Z2, and Z3. This output result changes depending on the values of the weights w11 to w16 and w21 to w26.
 ニューラルネットワークは、データ取得部111によって取得された入力1と入力2(正解)とを含む学習用データ30に基づき、教師あり学習を行う。すなわち、ニューラルネットワークは、入力層に入力1を入力して出力層から出力された結果が、入力2(正解)に近づくように重みを調整することで学習する。 The neural network performs supervised learning based on learning data 30 including input 1 and input 2 (correct answer) acquired by data acquisition unit 111. In other words, the neural network learns by inputting input 1 into the input layer and adjusting the weights so that the result output from the output layer approaches input 2 (correct answer).
 モデル生成部112は、上述したような教師あり学習を行うことで、学習済モデル20を生成する。 The model generation unit 112 generates the trained model 20 by performing supervised learning as described above.
 図10は、学習装置110(推論装置10)が学習フェーズにおいて実行する処理に関するフローチャートである。なお、図10においては、学習装置110に対応する推論装置10が実行する処理が示されている。また、図10において、「S」は「STEP」の略称として用いられる。 FIG. 10 is a flowchart of the processing executed by the learning device 110 (inference device 10) in the learning phase. Note that FIG. 10 shows the processing executed by the inference device 10 corresponding to the learning device 110. Also, in FIG. 10, "S" is used as an abbreviation for "STEP."
 図10に示すように、推論装置10は、データ取得部111によって、入力1と入力2(正解)とを含む学習用データ30を取得する(S1)。なお、推論装置10は、入力1および入力2(正解)を同時に取得する場合に限らず、入力1および入力2(正解)を互いに異なるタイミングで取得してもよい。 As shown in FIG. 10, the inference device 10 acquires learning data 30 including input 1 and input 2 (correct answer) by the data acquisition unit 111 (S1). Note that the inference device 10 is not limited to acquiring input 1 and input 2 (correct answer) simultaneously, and may acquire input 1 and input 2 (correct answer) at different times.
 推論装置10は、モデル生成部112によって、学習用データ30に基づき、教師あり学習を行うことで、学習済モデル20を生成する(S2)。推論装置10は、生成した学習済モデル20を、学習済モデル記憶部122に記憶し(S3)、本処理を終了する。 The inference device 10 generates a trained model 20 by performing supervised learning based on the training data 30 using the model generation unit 112 (S2). The inference device 10 stores the generated trained model 20 in the trained model storage unit 122 (S3) and ends this process.
 [活用フェーズ]
 図11および図12を参照しながら、活用フェーズにおける推論装置10の適用例を説明する。図11は、活用フェーズにおける推論装置10の構成を示す図である。推論装置10は、学習済モデル記憶部122とデータの受け渡しが可能である。
[Utilization phase]
An application example of the inference device 10 in the utilization phase will be described with reference to Fig. 11 and Fig. 12. Fig. 11 is a diagram showing the configuration of the inference device 10 in the utilization phase. The inference device 10 is capable of transferring data to and from a trained model storage unit 122.
 図11に示すように、推論装置10は、データ取得部111と、推論部113とを備える。推論装置10は、学習済モデル20を用いて、入力1に基づき出力を得る。 As shown in FIG. 11, the inference device 10 includes a data acquisition unit 111 and an inference unit 113. The inference device 10 uses a trained model 20 to obtain an output based on an input 1.
 データ取得部111は、入力1を取得する。具体的には、データ取得部111は、入力1として、圧縮機6の組立可否データと相関のある入力データを取得する。 The data acquisition unit 111 acquires input 1. Specifically, the data acquisition unit 111 acquires input data that is correlated with the assembly feasibility data of the compressor 6 as input 1.
 推論部113は、学習済モデル20を用いて、入力1に基づき出力として圧縮機6の組立可否データを得る。具体的には、推論部113は、学習済モデル記憶部122から、学習済モデル20を読み出す。推論部113は、学習済モデル20を用いて、データ取得部111によって取得された入力1である入力データに基づき、出力として圧縮機6の組立可否データを推論する。 The inference unit 113 uses the trained model 20 to obtain assembly feasibility data of the compressor 6 as output based on the input 1. Specifically, the inference unit 113 reads out the trained model 20 from the trained model storage unit 122. The inference unit 113 uses the trained model 20 to infer assembly feasibility data of the compressor 6 as output based on the input data, which is the input 1 acquired by the data acquisition unit 111.
 図12は、推論装置10(制御部11)が活用フェーズにおいて実行する処理に関するフローチャートである。なお、図12において、「S」は「STEP」の略称として用いられる。 FIG. 12 is a flowchart of the process executed by the inference device 10 (control unit 11) in the utilization phase. In FIG. 12, "S" is used as an abbreviation for "STEP."
 図12に示すように、推論装置10は、データ取得部111によって、入力1を取得する(S11)。推論装置10は、取得した入力1を学習済モデル20に入力する(S12)。推論装置10は、学習済モデル20を用いて、入力1である圧縮機6の組立可否データと相関のある入力データに基づき、出力として圧縮機6の組立可否データを推論する(S13)。これにより、推論装置10は、学習済モデル20を用いて、圧縮機6の組立可否データと相関のある入力データ(たとえば、圧縮機6の個体ばらつきを示す個体データ)に基づき、圧縮機6の組立可否データを得ることができる。その後、推論装置10は、本処理を終了する。 As shown in FIG. 12, the inference device 10 acquires input 1 by the data acquisition unit 111 (S11). The inference device 10 inputs the acquired input 1 to the trained model 20 (S12). The inference device 10 uses the trained model 20 to infer as output the assembly feasibility data of the compressor 6 based on the input data that is correlated with the assembly feasibility data of the compressor 6, which is the input 1 (S13). In this way, the inference device 10 can use the trained model 20 to obtain the assembly feasibility data of the compressor 6 based on the input data that is correlated with the assembly feasibility data of the compressor 6 (for example, individual data that indicates individual variations of the compressor 6). The inference device 10 then ends this process.
 [教師あり学習の入力および出力の一例]
 図13~図18を参照しながら、推論装置10における教師あり学習の入力および出力の一例を説明する。図13~図18は、実施の形態1に係る推論装置10における教師あり学習の入力および出力の一例を説明するための図である。
[An example of input and output in supervised learning]
An example of input and output of supervised learning in inference device 10 will be described with reference to Figures 13 to 18. Figures 13 to 18 are diagrams for explaining an example of input and output of supervised learning in inference device 10 according to embodiment 1.
 図13の例においては、圧縮機6の組立を許可するか否かを判定するための組立可否データとして、電動機61の固定子611と回転子612との間の空隙(以下、「エアギャップ」とも称する。)の寸法が適用される。エアギャップが小さい場合、圧縮機6の信頼性が低下し、圧縮機6の騒音または振動が悪化する。エアギャップが大きい場合、圧縮機6の性能が低下する。 In the example of FIG. 13, the size of the gap (hereinafter also referred to as the "air gap") between the stator 611 and rotor 612 of the electric motor 61 is used as the assembly feasibility data for determining whether or not assembly of the compressor 6 is permitted. If the air gap is small, the reliability of the compressor 6 decreases, and the noise or vibration of the compressor 6 worsens. If the air gap is large, the performance of the compressor 6 decreases.
 エアギャップの寸法は、固定子611と回転子612との組立中心のずれ、固定子611の内径の寸法、回転子612の外径の寸法、およびシャフト613の傾き、および固定子611と回転子612との固定状態などが影響し得る。たとえば、エアギャップの寸法が基準値を満たさない要因として、シャフト613が圧縮機6の中心軸から許容されない範囲で傾いてしまうことが挙げられる。シャフト613の傾きが許容範囲内である場合でも、たとえば、回転子612の外径の寸法が基準よりも大きく、かつ、固定子611の内径の寸法が基準よりも小さい場合は、これらの寸法誤差が積み上がることによってエアギャップの寸法が基準値を満たさなくなることもある。 The dimensions of the air gap may be affected by the misalignment of the assembly centers of the stator 611 and the rotor 612, the inner diameter of the stator 611, the outer diameter of the rotor 612, the inclination of the shaft 613, and the state of fixation between the stator 611 and the rotor 612. For example, one factor that may cause the dimensions of the air gap to not meet the standard values is that the shaft 613 is inclined beyond an acceptable range from the central axis of the compressor 6. Even if the inclination of the shaft 613 is within the acceptable range, for example, if the outer diameter of the rotor 612 is larger than the standard and the inner diameter of the stator 611 is smaller than the standard, these dimensional errors may accumulate and cause the dimensions of the air gap to not meet the standard values.
 また、回転子612の外径の寸法が小さいほどエアギャップが大きくなり、回転子612の外径の寸法が大きいほどエアギャップが小さくなる。固定子611の内径の寸法が小さいほどエアギャップが小さくなり、固定子611の内径の寸法が大きいほどエアギャップが大きくなる。 Furthermore, the smaller the outer diameter of the rotor 612, the larger the air gap, and the larger the outer diameter of the rotor 612, the smaller the air gap. The smaller the inner diameter of the stator 611, the smaller the air gap, and the larger the inner diameter of the stator 611, the larger the air gap.
 上部フレーム623Aおよび下部フレーム623Bの各々の内径が小さ過ぎる場合、圧縮機6の組立時にシャフト613を傷つけてしまう危険があり、上部フレーム623Aおよび下部フレーム623Bの各々とシャフト613との隙間が小さくなって、適切な油膜が形成できない。その結果、圧縮機6の運転時に、上部フレーム623Aおよび下部フレーム623Bの各々とシャフト613とが焼きついてしまい、シャフト613が回転できなくなる。一方、上部フレーム623Aおよび下部フレーム623Bの各々の内径が小さ過ぎる場合、シャフト613が傾いてしまう。 If the inner diameter of each of the upper frame 623A and the lower frame 623B is too small, there is a risk of damaging the shaft 613 when assembling the compressor 6, and the gap between each of the upper frame 623A and the lower frame 623B and the shaft 613 becomes small, making it impossible to form an appropriate oil film. As a result, when the compressor 6 is in operation, each of the upper frame 623A and the lower frame 623B and the shaft 613 will seize up, making it impossible for the shaft 613 to rotate. On the other hand, if the inner diameter of each of the upper frame 623A and the lower frame 623B is too small, the shaft 613 will tilt.
 シャフト613の短軸寸法が短い場合、下部フレーム623Bにおいて軸受けが減るため、シャフト613が傾いてしまう。シャフト613の径の寸法が大きい場合、上部フレーム623Aおよび下部フレーム623Bの各々とシャフト613とが接触する。シャフト613の径の寸法が小さい場合、上部フレーム623Aおよび下部フレーム623Bによって中心軸が出せず、シャフト613が傾いてしまう。 If the minor axis dimension of shaft 613 is short, the bearings in lower frame 623B are reduced, causing shaft 613 to tilt. If the diameter dimension of shaft 613 is large, upper frame 623A and lower frame 623B each come into contact with shaft 613. If the diameter dimension of shaft 613 is small, upper frame 623A and lower frame 623B prevent the central axis from being exposed, causing shaft 613 to tilt.
 したがって、推論装置10は、入力データとして、単体部品の個体ばらつきに関するデータ、および複数の部品の組み合わせによって生じ得るデータのうち、少なくとも1つを用いて、組立可否データとしてエアギャップの寸法を推論するように機械学習によって学習済モデル20を訓練すれば、入力データに基づき、エアギャップの寸法を精度高く推論することができる。推論装置10は、このような推論を、圧縮機6の組立前、組立の途中、または組立後に行うことで、エアギャップの寸法が適正であるか否かを確認することができる。そして、推論装置10は、推論したエアギャップの寸法が適正であると判定した場合は、次工程に進んで圧縮機6の組立を継続し、推論したエアギャップの寸法が適正でないと判定した場合は、組み立てた圧縮機6を手直しで修正するか、あるいは、組み立てた圧縮機6を廃棄すればよい。 Therefore, if the inference device 10 trains the learned model 20 by machine learning to infer the air gap dimensions as assembly feasibility data using at least one of data on individual variations of individual components and data that can be generated by combining multiple components as input data, the inference device 10 can infer the air gap dimensions with high accuracy based on the input data. The inference device 10 can check whether the air gap dimensions are appropriate by performing such inference before, during, or after the assembly of the compressor 6. If the inference device 10 determines that the inferred air gap dimensions are appropriate, it proceeds to the next process and continues assembling the compressor 6, and if it determines that the inferred air gap dimensions are not appropriate, it is sufficient to either correct the assembled compressor 6 by hand or to discard the assembled compressor 6.
 図13の入力データである単体部品の個体ばらつきに関するデータは、上部フレーム623Aの寸法、下部フレーム623Bの寸法、シャフト613の寸法、回転子612の外径の寸法、および固定子611の内径の寸法のうちの少なくとも1つを含む。上部フレーム623Aの寸法は、たとえば、上部フレーム623Aの高さ(図1のY方向の長さ)を含む。下部フレーム623Bの寸法は、たとえば、下部フレーム623Bの高さ(図1のY方向の長さ)を含む。シャフト613の寸法は、シャフト613の横断面(図2のX-Z断面)における直径の寸法を含む。 The data on individual variation of the single component, which is the input data in FIG. 13, includes at least one of the dimensions of the upper frame 623A, the dimensions of the lower frame 623B, the dimensions of the shaft 613, the outer diameter of the rotor 612, and the inner diameter of the stator 611. The dimensions of the upper frame 623A include, for example, the height of the upper frame 623A (length in the Y direction in FIG. 1). The dimensions of the lower frame 623B include, for example, the height of the lower frame 623B (length in the Y direction in FIG. 1). The dimensions of the shaft 613 include the diameter dimension in the cross section of the shaft 613 (X-Z cross section in FIG. 2).
 図13の入力データである複数の部品の組み合わせによって生じ得るデータは、シャフト613と上部フレーム623Aとの隙間の寸法、シャフト613と下部フレーム623Bとの隙間の寸法、シェル60の中心軸とシャフト613の中心軸とのずれを示す値、固定子611と回転子612との焼き嵌め代(締め代)、および上部フレーム623Aの中心軸と下部フレーム623Bの中心軸とのずれを示す値を含む。 The data that can be generated by combining multiple parts, which is the input data in Figure 13, includes the size of the gap between the shaft 613 and the upper frame 623A, the size of the gap between the shaft 613 and the lower frame 623B, a value indicating the deviation between the central axis of the shell 60 and the central axis of the shaft 613, the shrink fit (tightening) between the stator 611 and the rotor 612, and a value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B.
 図14の例においては、圧縮機6の組立を許可するか否かを判定するための組立可否データとして、圧縮機6の密閉性または溶接状態が適用される。圧縮機6の密閉性は、たとえば、圧縮機6を液体に沈めたときに液体表面に現れる冷媒または気体の泡の量、泡の大きさ、または泡が現れる頻度を検出することで確認することができる。このため、圧縮機6の密閉性を示す値には、上述した泡の量、泡の大きさ、または泡が現れる頻度を数値化またはレベル分けした値を適用することができる。圧縮機6における溶接状態を示す値には、たとえば、図1に示す溶接部分W1~W5に付着した蝋の量または寸法(たとえば、溶接部分の幅、太さ、または高さ)などを適用することができる。圧縮機6の密閉性または溶接状態が乏しい場合、溶接部分から冷媒漏れが生じ得る。 In the example of FIG. 14, the airtightness or welding state of the compressor 6 is applied as assembly feasibility data for determining whether or not assembly of the compressor 6 is permitted. The airtightness of the compressor 6 can be confirmed, for example, by detecting the amount of refrigerant or gas bubbles that appear on the liquid surface when the compressor 6 is submerged in liquid, the size of the bubbles, or the frequency at which the bubbles appear. For this reason, the value indicating the airtightness of the compressor 6 can be a value obtained by quantifying or dividing the amount of bubbles, the size of the bubbles, or the frequency at which the bubbles appear. For example, the amount or dimensions of the wax attached to the welded parts W1 to W5 shown in FIG. 1 (for example, the width, thickness, or height of the welded parts) can be applied as a value indicating the welded state of the compressor 6. If the airtightness or welding state of the compressor 6 is poor, refrigerant leakage may occur from the welded parts.
 圧縮機6の密閉性または溶接状態は、単体部品の個体ばらつき、複数の部品を接合する溶接の状態、および複数の部品の組み合わせの精度が影響し得る。単体部品の個体ばらつき、複数の部品を接合する溶接の状態、および複数の部品の組み合わせは、圧縮機6を製造するための図示しない製造装置の識別情報、製造装置に生じる電流、製造装置に生じる電圧、圧縮機6の製造に要する時間、圧縮機6の製造時における溶接の温度、溶接における溶接量(たとえば、蝋の量)、圧縮機6の製造現場の温度(火力)、および製造現場の湿度などによって変動し得る。たとえば、部品の膨張率および作業者の作業効率は、製造現場の温度および湿度によって変動し得る。また、製造装置によって部品を加工する際、刃物が部品に接触するときに電流または電圧が生じる。製造装置による部品の加工状態は、製造装置に生じる電流または電圧に依存する。さらに、圧縮機6の製造において何らかの異常が生じた場合、圧縮機6の製造に要する時間が長くなる場合がある。溶接時(蝋付け時)の蝋の量が少ない場合、溶接が甘くなるため、圧縮機6からの冷媒漏れにつながる。溶接時の熱の温度が低い場合または溶接時間が短い場合、溶接が甘くなるため、圧縮機6の冷媒漏れにつながる。溶接時における製造装置の放電の電流が小さい場合、溶接が甘くなるため、圧縮機6からの冷媒漏れにつながる。 The airtightness or welding state of the compressor 6 may be affected by individual variations in individual parts, the state of welding that joins multiple parts, and the accuracy of the combination of multiple parts. The individual variations in individual parts, the state of welding that joins multiple parts, and the combination of multiple parts may vary depending on the identification information of the manufacturing device (not shown) for manufacturing the compressor 6, the current generated in the manufacturing device, the voltage generated in the manufacturing device, the time required to manufacture the compressor 6, the welding temperature during the manufacturing of the compressor 6, the welding amount in the welding (for example, the amount of wax), the temperature (heat) at the manufacturing site of the compressor 6, and the humidity at the manufacturing site. For example, the expansion rate of the parts and the work efficiency of the worker may vary depending on the temperature and humidity at the manufacturing site. In addition, when a part is processed by the manufacturing device, a current or voltage is generated when a blade comes into contact with the part. The processing state of the part by the manufacturing device depends on the current or voltage generated in the manufacturing device. Furthermore, if any abnormality occurs in the manufacturing of the compressor 6, the time required to manufacture the compressor 6 may be extended. If the amount of wax used during welding (brazing) is small, the welding will be poor, leading to refrigerant leakage from the compressor 6. If the heat temperature during welding is low or the welding time is short, the welding will be poor, leading to refrigerant leakage from the compressor 6. If the discharge current of the manufacturing equipment during welding is small, the welding will be poor, leading to refrigerant leakage from the compressor 6.
 複数の部品の組み合わせによって生じ得るデータは、溶接後のシェル60の寸法、および溶接後のアキュムレータ63の寸法を含む。シェル60の寸法は、シェル60の横断面(X-Z断面)における幅の寸法を含む。アキュムレータ63の寸法は、アキュムレータ63の横断面(X-Z断面)における幅の寸法を含む。溶接後のシェル60の寸法または溶接後のアキュムレータ63の寸法が大きい場合、溶接が甘くなるため、圧縮機6の密閉性が低下し得る。 Data that may result from the combination of multiple parts includes the dimensions of the shell 60 after welding, and the dimensions of the accumulator 63 after welding. The dimensions of the shell 60 include the width dimension of the shell 60 in its cross section (X-Z cross section). The dimensions of the accumulator 63 include the width dimension of the accumulator 63 in its cross section (X-Z cross section). If the dimensions of the shell 60 after welding or the dimensions of the accumulator 63 after welding are large, the welding will be weak, which may reduce the sealing performance of the compressor 6.
 したがって、推論装置10は、入力データとして、単体部品の個体ばらつきに関するデータ、圧縮機6の製造に関するデータ、および複数の部品の組み合わせによって生じ得るデータのうち、少なくとも1つを用いて、組立可否データとして圧縮機6の密閉性または溶接状態を推論するように機械学習によって学習済モデル20を訓練すれば、入力データに基づき、圧縮機6の密閉性または溶接状態を精度高く推論することができる。推論装置10は、このような推論を、圧縮機6の組立前、組立の途中、または組立後に行うことで、圧縮機6の密閉性または溶接状態が適正であるか否かを確認することができる。そして、推論装置10は、推論した圧縮機6の密閉性または溶接状態が適正であると判定した場合は、次工程に進んで圧縮機6の組立を継続し、推論した圧縮機6の密閉性または溶接状態が適正でないと判定した場合は、組み立てた圧縮機6を手直しで修正するか、あるいは、組み立てた圧縮機6を廃棄すればよい。 Therefore, the inference device 10 can accurately infer the airtightness or welding state of the compressor 6 based on the input data by training the learned model 20 by machine learning to infer the airtightness or welding state of the compressor 6 as assembly feasibility data using at least one of data on individual variations of individual parts, data on the manufacture of the compressor 6, and data that may be generated by combining multiple parts as input data. The inference device 10 can check whether the airtightness or welding state of the compressor 6 is appropriate by performing such inference before, during, or after the assembly of the compressor 6. Then, if the inference device 10 determines that the inferred airtightness or welding state of the compressor 6 is appropriate, it proceeds to the next process and continues assembling the compressor 6, and if it determines that the inferred airtightness or welding state of the compressor 6 is not appropriate, it is sufficient to either correct the assembled compressor 6 by reworking it or to discard the assembled compressor 6.
 図14の入力データである単体部品の個体ばらつきに関するデータは、溶接前のシェル60の寸法、および溶接前のアキュムレータ63の寸法を含む。 The input data in Figure 14, which is data regarding individual variations of individual parts, includes the dimensions of the shell 60 before welding and the dimensions of the accumulator 63 before welding.
 図14の入力データである圧縮機6の製造に関するデータは、製造装置の識別情報、製造装置に生じる電流、製造装置に生じる電圧、製造装置に生じる騒音、製造装置に生じる振動、圧縮機6の製造に要する時間、圧縮機6の製造時における溶接の温度、溶接における溶接量(たとえば、蝋の量)、圧縮機6の製造現場の温度、および製造現場の湿度のうちの少なくとも1つを含む。 The data relating to the manufacture of the compressor 6, which is the input data in FIG. 14, includes at least one of the following: identification information of the manufacturing equipment, the current generated in the manufacturing equipment, the voltage generated in the manufacturing equipment, the noise generated in the manufacturing equipment, the vibration generated in the manufacturing equipment, the time required to manufacture the compressor 6, the welding temperature during the manufacture of the compressor 6, the amount of welding (e.g., the amount of wax), the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
 圧縮機6の製造は、固定子611、回転子612、シャフト613、シェル60、およびアキュムレータ63などの複数の部品を加工すること、および、これらの複数の部品を組み合わせて圧縮機6を組み立てることを含む。また、製造装置は、たとえば、刃物を用いて、固定子611、回転子612、およびシャフト613などの各部品を加工する装置を含む。製造装置の識別情報は、たとえば、製造装置を識別する製造番号および管理番号などを含む。 The manufacture of the compressor 6 includes processing a number of parts, such as the stator 611, rotor 612, shaft 613, shell 60, and accumulator 63, and assembling these parts to form the compressor 6. The manufacturing equipment also includes, for example, equipment that uses a blade to process each of the parts, such as the stator 611, rotor 612, and shaft 613. The identification information of the manufacturing equipment includes, for example, a serial number and a management number that identify the manufacturing equipment.
 図14の入力データである複数の部品の組み合わせによって生じ得るデータは、溶接後のシェル60の寸法、および溶接後のアキュムレータ63の寸法を含む。 The data that can be generated by combining multiple parts, which is the input data in Figure 14, includes the dimensions of the shell 60 after welding and the dimensions of the accumulator 63 after welding.
 図15の例においては、圧縮機6の組立を許可するか否かを判定するための組立可否データとして、圧縮機6の騒音または振動が適用される。上述したように、圧縮機6の騒音データおよび振動データが変動する要因として、単体部品の個体ばらつきが挙げられる。また、圧縮機6の騒音データおよび振動データが変動する要因として、溶接または組立による固有値の変化が挙げられる。圧縮機6の固有値は、圧縮機6の固有振動数(共振周波数)である。圧縮機6の固有値は、溶接の強弱によって変化し得る。たとえば、溶接時(蝋付け時)の蝋の量が多い場合、溶接が強くなるため、圧縮機6の固有値が変化し得る。また、溶接時の熱の温度が高い場合または溶接時間が長い場合、圧縮機構部62にひずみが生じ得るため、圧縮機6の騒音が悪化する。溶接時における製造装置の放電の電流が大きい場合、溶接が強くなるため、圧縮機6の固有値が変化し得る。 In the example of FIG. 15, the noise or vibration of the compressor 6 is applied as assembly feasibility data for determining whether or not assembly of the compressor 6 is permitted. As described above, the individual variations of individual components are cited as factors that cause the noise data and vibration data of the compressor 6 to fluctuate. In addition, the change in the eigenvalue due to welding or assembly is cited as a factor that causes the noise data and vibration data of the compressor 6 to fluctuate. The eigenvalue of the compressor 6 is the natural frequency (resonance frequency) of the compressor 6. The eigenvalue of the compressor 6 can change depending on the strength of the welding. For example, if there is a large amount of wax during welding (brazing), the welding will be strong, and the eigenvalue of the compressor 6 may change. In addition, if the temperature of the heat during welding is high or the welding time is long, distortion may occur in the compression mechanism part 62, and the noise of the compressor 6 will worsen. If the discharge current of the manufacturing device during welding is large, the welding will be strong, and the eigenvalue of the compressor 6 may change.
 さらに、圧縮機6の騒音データおよび振動データが変動する要因として、複数の部品の組み合わせの精度が挙げられる。複数の部品の組み合わせによって生じ得るデータは、溶接後のシェル60の寸法、および溶接後のアキュムレータ63の寸法を含む。溶接後のシェル60の寸法または溶接後のアキュムレータ63の寸法が小さい場合、溶接が強くなるため、圧縮機6の固有値が変動してしまい、騒音が悪化し得る。 Furthermore, the accuracy of the combination of multiple parts can be cited as a factor that causes the noise data and vibration data of the compressor 6 to fluctuate. Data that can arise from the combination of multiple parts includes the dimensions of the shell 60 after welding and the dimensions of the accumulator 63 after welding. If the dimensions of the shell 60 after welding or the dimensions of the accumulator 63 after welding are small, the welds will be strong, causing the characteristic values of the compressor 6 to fluctuate and the noise to worsen.
 したがって、推論装置10は、入力データとして、単体部品の個体ばらつきに関するデータ、圧縮機6の製造に関するデータ、および複数の部品の組み合わせによって生じ得るデータのうち、少なくとも1つを用いて、組立可否データとして圧縮機6の騒音データおよび振動データを推論するように機械学習によって学習済モデル20を訓練すれば、入力データに基づき、圧縮機6の騒音データおよび振動データを精度高く推論することができる。推論装置10は、このような推論を、圧縮機6の組立前、組立の途中、または組立後に行うことで、圧縮機6の騒音データおよび振動データが適正であるか否かを確認することができる。そして、推論装置10は、推論した騒音データおよび振動データが適正であると判定した場合は、次工程に進んで圧縮機6の組立を継続し、推論した騒音データおよび振動データが適正でないと判定した場合は、組み立てた圧縮機6を手直しで修正するか、あるいは、組み立てた圧縮機6を廃棄すればよい。 Therefore, if the inference device 10 trains the learned model 20 by machine learning to infer the noise data and vibration data of the compressor 6 as assembly feasibility data using at least one of data on individual variations of individual parts, data on the manufacture of the compressor 6, and data that may be generated by combining multiple parts as input data, the inference device 10 can infer the noise data and vibration data of the compressor 6 with high accuracy based on the input data. The inference device 10 can check whether the noise data and vibration data of the compressor 6 are appropriate by performing such inference before, during, or after the assembly of the compressor 6. Then, if the inference device 10 determines that the inferred noise data and vibration data are appropriate, it proceeds to the next process and continues assembling the compressor 6, and if it determines that the inferred noise data and vibration data are not appropriate, it is sufficient to either correct the assembled compressor 6 by reworking it or to discard the assembled compressor 6.
 図15の入力データである単体部品の個体ばらつきに関するデータは、ローリングピストン622の寸法、シリンダ621の寸法、ベーン625の寸法、上部フレーム623Aの寸法、下部フレーム623Bの寸法、固定子611の外径の寸法、固定子611の内径の寸法、固定子611の幅の寸法、回転子612の外径の寸法、回転子612の内径の寸法、シャフト613の寸法、シェル60の寸法、およびアキュムレータ63の寸法のうちの少なくとも1つを含む。ローリングピストン622の寸法は、たとえば、シリンダ621の内周面およびベーン625の先端部に接するローリングピストン622の外周面の寸法(外径)、およびローリングピストン622の高さ(図1のY方向の長さ)のうちの少なくとも1つを含む。シリンダ621の寸法は、たとえば、ローリングピストン622の外周面に接するシリンダ621の内周面の寸法(内径)、およびベーン625の摺動方向における側面に接するシリンダ621のベーン溝624の厚み(図3のX方向の長さ)のうちの少なくとも1つを含む。ベーン625の寸法は、たとえば、シリンダ621のベーン溝624に接するベーン625の摺動方向における側面の寸法(図3のZ方向の長さ)、およびベーン625の摺動方向と直交する方向(図3のX方向)におけるベーン溝624の幅の寸法を含む。上部フレーム623Aの寸法は、たとえば、上部フレーム623Aの高さ(図1のY方向の長さ)を含む。下部フレーム623Bの寸法は、たとえば、下部フレーム623Bの高さ(図1のY方向の長さ)を含む。図2に示すように、固定子611の幅の寸法は、固定子611(固定子コア610)の外周と内周との間の寸法610Aを含む。 15, which is input data relating to individual variation of a single component, includes at least one of the dimensions of rolling piston 622, the dimensions of cylinder 621, the dimensions of vane 625, the dimensions of upper frame 623A, the dimensions of lower frame 623B, the outer diameter of stator 611, the inner diameter of stator 611, the width of stator 611, the outer diameter of rotor 612, the inner diameter of rotor 612, the dimensions of shaft 613, the dimensions of shell 60, and the dimensions of accumulator 63. The dimensions of rolling piston 622 include, for example, at least one of the dimensions (outer diameter) of the outer peripheral surface of rolling piston 622 that contacts the inner peripheral surface of cylinder 621 and the tip of vane 625, and the height of rolling piston 622 (length in the Y direction in FIG. 1). The dimensions of the cylinder 621 include, for example, at least one of the dimensions (inner diameter) of the inner peripheral surface of the cylinder 621 in contact with the outer peripheral surface of the rolling piston 622, and the thickness (length in the X direction in FIG. 3) of the vane groove 624 of the cylinder 621 in contact with the side surface in the sliding direction of the vane 625. The dimensions of the vane 625 include, for example, the dimension of the side surface in the sliding direction of the vane 625 in contact with the vane groove 624 of the cylinder 621 (length in the Z direction in FIG. 3), and the width of the vane groove 624 in the direction perpendicular to the sliding direction of the vane 625 (X direction in FIG. 3). The dimensions of the upper frame 623A include, for example, the height of the upper frame 623A (length in the Y direction in FIG. 1). The dimensions of the lower frame 623B include, for example, the height of the lower frame 623B (length in the Y direction in FIG. 1). As shown in FIG. 2, the width dimension of the stator 611 includes the dimension 610A between the outer and inner circumferences of the stator 611 (stator core 610).
 図15の入力データである圧縮機6の製造に関するデータは、圧縮機6を製造するための図示しない製造装置の識別情報、製造装置に生じる電流、製造装置に生じる電圧、製造装置に生じる騒音、製造装置に生じる振動、圧縮機6の製造に要する時間、圧縮機6の製造時における溶接の温度、溶接における溶接量(たとえば、蝋の量)、圧縮機6の製造現場の温度、および製造現場の湿度のうちの少なくとも1つを含む。 The data relating to the manufacture of the compressor 6, which is the input data in FIG. 15, includes at least one of the following: identification information of a manufacturing device (not shown) used to manufacture the compressor 6, the current generated in the manufacturing device, the voltage generated in the manufacturing device, the noise generated in the manufacturing device, the vibration generated in the manufacturing device, the time required to manufacture the compressor 6, the welding temperature during the manufacture of the compressor 6, the amount of welding (e.g., the amount of wax), the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
 図15の入力データである複数の部品の組み合わせによって生じ得るデータは、ローリングピストン622と上部フレーム623Aとの隙間(図1のG1)の寸法、ローリングピストン622と下部フレーム623Bとの隙間(図1のG2)の寸法、ローリングピストン622の外周面とシリンダ621の内周面との隙間(図3のG3)の寸法、ベーン625の先端部とローリングピストン622の外周面との隙間(図3のG4)の寸法、ベーン625の摺動方向における側面とシリンダ621のベーン溝624との隙間(図3のG5)の寸法、ベーン625と上部フレーム623Aとの隙間(図示は省略する。)の寸法、ベーン625と下部フレーム623Bとの隙間(図示は省略する。)の寸法、シャフト613と上部フレーム623Aとの隙間の寸法、シャフト613と下部フレーム623Bとの隙間の寸法、上部フレーム623Aの中心軸と下部フレーム623Bの中心軸とのずれを示す値、シェル60の中心軸とシャフト613の中心軸とのずれを示す値、固定子611と回転子612との焼き嵌め代(締め代)、溶接後のシェル60の寸法、および溶接後のアキュムレータ63の寸法の少なくとも1つを含む。 Data that can be generated by combining multiple parts, which are the input data of Figure 15, include the dimension of the gap between the rolling piston 622 and the upper frame 623A (G1 in Figure 1), the dimension of the gap between the rolling piston 622 and the lower frame 623B (G2 in Figure 1), the dimension of the gap between the outer circumferential surface of the rolling piston 622 and the inner circumferential surface of the cylinder 621 (G3 in Figure 3), the dimension of the gap between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622 (G4 in Figure 3), the dimension of the gap between the side of the vane 625 in the sliding direction and the vane groove 624 of the cylinder 621 (G5 in Figure 3), the dimension of the gap between the vane 625 and At least one of the following is included: the size of the gap with the upper frame 623A (not shown), the size of the gap between the vane 625 and the lower frame 623B (not shown), the size of the gap between the shaft 613 and the upper frame 623A, the size of the gap between the shaft 613 and the lower frame 623B, a value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B, a value indicating the deviation between the central axis of the shell 60 and the central axis of the shaft 613, the shrink fit (tightening) between the stator 611 and the rotor 612, the dimensions of the shell 60 after welding, and the dimensions of the accumulator 63 after welding.
 図16の例においては、圧縮機6の組立を許可するか否かを判定するための組立可否データとして、圧縮機6の性能(成績係数)が適用される。上述したように、圧縮機6の性能が変動する要因として、単体部品の個体ばらつきが挙げられる。また、圧縮機6の性能が変動する要因として、圧縮機構部62からの冷媒漏れが挙げられる。圧縮機構部62からの冷媒漏れの要因は、複数の部品を組み合わせたときに生じ得る部品間の隙間である。 In the example of FIG. 16, the performance (coefficient of performance) of the compressor 6 is applied as assembly feasibility data for determining whether or not assembly of the compressor 6 is permitted. As described above, factors that cause fluctuations in the performance of the compressor 6 include individual variations in individual components. Another factor that causes fluctuations in the performance of the compressor 6 is refrigerant leakage from the compression mechanism 62. The cause of refrigerant leakage from the compression mechanism 62 is gaps that can occur between components when multiple components are combined.
 したがって、推論装置10は、入力データとして、単体部品の個体ばらつきに関するデータ、および複数の部品の組み合わせによって生じ得るデータのうち、少なくとも1つを用いて、組立可否データとして圧縮機6の性能を推論するように機械学習によって学習済モデル20を訓練すれば、入力データに基づき、圧縮機6の性能を精度高く推論することができる。推論装置10は、このような推論を、圧縮機6の組立前、組立の途中、または組立後に行うことで、圧縮機6の性能が適正であるか否かを確認することができる。そして、推論装置10は、推論した圧縮機6の性能が適正であると判定した場合は、次工程に進んで圧縮機6の組立を継続し、推論した圧縮機6の性能が適正でないと判定した場合は、組み立てた圧縮機6を手直しで修正するか、あるいは、組み立てた圧縮機6を廃棄すればよい。 Therefore, if the inference device 10 trains the learned model 20 by machine learning to infer the performance of the compressor 6 as assembly feasibility data using at least one of data related to individual variations of individual components and data that may arise from the combination of multiple components as input data, the inference device 10 can infer the performance of the compressor 6 with high accuracy based on the input data. The inference device 10 can check whether the performance of the compressor 6 is appropriate by performing such inference before, during, or after the assembly of the compressor 6. Then, if the inference device 10 determines that the inferred performance of the compressor 6 is appropriate, it proceeds to the next process and continues assembling the compressor 6, and if it determines that the inferred performance of the compressor 6 is not appropriate, it is sufficient to either correct the assembled compressor 6 by reworking it or to discard the assembled compressor 6.
 図16の入力データである単体部品の個体ばらつきに関するデータは、ローリングピストン622の寸法、シリンダ621の寸法、ベーン625の寸法、上部フレーム623Aの寸法、および下部フレーム623Bの寸法のうちの少なくとも1つを含む。 The input data in FIG. 16, which is data relating to individual variations of individual components, includes at least one of the dimensions of the rolling piston 622, the dimensions of the cylinder 621, the dimensions of the vane 625, the dimensions of the upper frame 623A, and the dimensions of the lower frame 623B.
 図16の入力データである複数の部品の組み合わせによって生じ得るデータは、ローリングピストン622と上部フレーム623Aとの隙間(図1のG1)の寸法、ローリングピストン622と下部フレーム623Bとの隙間(図1のG2)の寸法、ローリングピストン622の外周面とシリンダ621の内周面との隙間(図3のG3)の寸法、ベーン625の先端部とローリングピストン622の外周面との隙間(図3のG4)の寸法、ベーン625の摺動方向における側面とシリンダ621のベーン溝624との隙間(図3のG5)の寸法、ベーン625と上部フレーム623Aとの隙間(図示は省略する。)の寸法、およびベーン625と下部フレーム623Bとの隙間(図示は省略する。)の寸法の少なくとも1つを含む。 The data that can be generated by combining multiple parts, which is the input data of FIG. 16, includes at least one of the following: the dimension of the gap between the rolling piston 622 and the upper frame 623A (G1 in FIG. 1), the dimension of the gap between the rolling piston 622 and the lower frame 623B (G2 in FIG. 1), the dimension of the gap between the outer circumferential surface of the rolling piston 622 and the inner circumferential surface of the cylinder 621 (G3 in FIG. 3), the dimension of the gap between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622 (G4 in FIG. 3), the dimension of the gap between the side surface of the vane 625 in the sliding direction and the vane groove 624 of the cylinder 621 (G5 in FIG. 3), the dimension of the gap between the vane 625 and the upper frame 623A (not shown), and the dimension of the gap between the vane 625 and the lower frame 623B (not shown).
 図17の例においては、圧縮機6の組立を許可するか否かを判定するための組立可否データとして、複数の部品の組み合わせによって生じ得るデータが適用される。 In the example of FIG. 17, data that may result from a combination of multiple parts is applied as assembly feasibility data for determining whether or not assembly of compressor 6 is permitted.
 複数の部品の組み合わせによって生じ得るデータは、ローリングピストン622と上部フレーム623Aとの隙間(図1のG1)の寸法、ローリングピストン622と下部フレーム623Bとの隙間(図1のG2)の寸法、ローリングピストン622の外周面とシリンダ621の内周面との隙間(図3のG3)の寸法、ベーン625の先端部とローリングピストン622の外周面との隙間(図3のG4)の寸法、ベーン625の摺動方向における側面とシリンダ621のベーン溝624との隙間(図3のG5)の寸法、ベーン625と上部フレーム623Aとの隙間(図示は省略する。)の寸法、ベーン625と下部フレーム623Bとの隙間(図示は省略する。)の寸法、シャフト613と上部フレーム623Aとの隙間の寸法、シャフト613と下部フレーム623Bとの隙間の寸法、上部フレーム623Aの中心軸と下部フレーム623Bの中心軸とのずれを示す値、シェル60の中心軸とシャフト613の中心軸とのずれを示す値、固定子611と回転子612との焼き嵌め代(締め代)、溶接後のシェル60の寸法、および溶接後のアキュムレータ63の寸法の少なくとも1つを含む。 Data that can be generated by combining multiple parts includes the dimension of the gap between the rolling piston 622 and the upper frame 623A (G1 in Figure 1), the dimension of the gap between the rolling piston 622 and the lower frame 623B (G2 in Figure 1), the dimension of the gap between the outer circumferential surface of the rolling piston 622 and the inner circumferential surface of the cylinder 621 (G3 in Figure 3), the dimension of the gap between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622 (G4 in Figure 3), the dimension of the gap between the side of the vane 625 in the sliding direction and the vane groove 624 of the cylinder 621 (G5 in Figure 3), the dimension of the gap between the vane 625 and the upper frame 623A (not shown), the dimension of the gap between the vane 625 and the lower frame 623B (not shown), the dimension of the gap between the shaft 613 and the upper frame 623A, the dimension of the gap between the shaft 613 and the lower frame 623B, a value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B, a value indicating the deviation between the central axis of the shell 60 and the central axis of the shaft 613, the shrink fit (tightening) between the stator 611 and the rotor 612, the dimensions of the shell 60 after welding, and at least one of the dimensions of the accumulator 63 after welding.
 上述したような各種の隙間、中心軸のずれ、および焼き嵌め代(締め代)などのデータは、電動機61のエアギャップ、圧縮機6の密閉性または溶接状態、圧縮機6の騒音データまたは振動データ、および圧縮機6の性能などに影響を与える要因となる。 The above-mentioned data on the various gaps, misalignment of the central axis, and shrink fit (tightening) are factors that affect the air gap of the motor 61, the airtightness or welding condition of the compressor 6, the noise data or vibration data of the compressor 6, and the performance of the compressor 6.
 したがって、推論装置10は、入力データとして、単体部品の個体ばらつきに関するデータ、および圧縮機6の製造に関するデータのうち、少なくとも1つを用いて、組立可否データとして複数の部品の組み合わせによって生じ得るデータを推論するように機械学習によって学習済モデル20を訓練すれば、入力データに基づき、複数の部品の組み合わせによって生じ得るデータを精度高く推論することができる。推論装置10は、このような推論を、圧縮機6の組立前、組立の途中、または組立後に行うことで、複数の部品の組み合わせによって生じ得るデータが適正であるか否かを確認することができる。そして、推論装置10は、推論した複数の部品の組み合わせによって生じ得るデータが適正であると判定した場合は、次工程に進んで圧縮機6の組立を継続し、推論した複数の部品の組み合わせによって生じ得るデータが適正でないと判定した場合は、組み立てた圧縮機6を手直しで修正するか、あるいは、組み立てた圧縮機6を廃棄すればよい。 Therefore, if the inference device 10 trains the learned model 20 by machine learning to infer data that may result from a combination of multiple parts as assembly feasibility data using at least one of data on individual variations of individual parts and data on the manufacture of the compressor 6 as input data, the inference device 10 can accurately infer data that may result from a combination of multiple parts based on the input data. The inference device 10 can check whether the data that may result from a combination of multiple parts is appropriate by performing such inference before, during, or after the assembly of the compressor 6. If the inference device 10 determines that the data that may result from the inferred combination of multiple parts is appropriate, it proceeds to the next process and continues assembling the compressor 6, and if it determines that the data that may result from the inferred combination of multiple parts is not appropriate, it can either correct the assembled compressor 6 by reworking it or discard the assembled compressor 6.
 図17の入力データである単体部品の個体ばらつきに関するデータは、ローリングピストン622の寸法、シリンダ621の寸法、ベーン625の寸法、上部フレーム623Aの寸法、下部フレーム623Bの寸法、固定子611の外径の寸法、固定子611の内径の寸法、固定子611の幅の寸法、回転子612の外径の寸法、回転子612の内径の寸法、シャフト613の寸法、シェル60の寸法、アキュムレータ63の寸法、巻線615に鎖交する回転子612の磁束量、および巻線615の抵抗値のうちの少なくとも1つを含む。 The data relating to the individual variation of the individual components, which is the input data in FIG. 17, includes at least one of the following: the dimensions of the rolling piston 622, the dimensions of the cylinder 621, the dimensions of the vane 625, the dimensions of the upper frame 623A, the dimensions of the lower frame 623B, the outer diameter of the stator 611, the inner diameter of the stator 611, the width of the stator 611, the outer diameter of the rotor 612, the inner diameter of the rotor 612, the dimensions of the shaft 613, the dimensions of the shell 60, the dimensions of the accumulator 63, the amount of magnetic flux of the rotor 612 interlinked with the winding 615, and the resistance value of the winding 615.
 図17の入力データである圧縮機6の製造に関するデータは、製造装置の識別情報、製造装置に生じる電流、製造装置に生じる電圧、製造装置に生じる騒音、製造装置に生じる振動、圧縮機6の製造に要する時間、圧縮機6の製造時における溶接の温度、溶接における溶接量(たとえば、蝋の量)、圧縮機6の製造現場の温度、および製造現場の湿度のうちの少なくとも1つを含む。 The data relating to the manufacture of the compressor 6, which is the input data in FIG. 17, includes at least one of the following: identification information of the manufacturing equipment, the current generated in the manufacturing equipment, the voltage generated in the manufacturing equipment, the noise generated in the manufacturing equipment, the vibration generated in the manufacturing equipment, the time required to manufacture the compressor 6, the welding temperature during the manufacture of the compressor 6, the amount of welding (e.g., the amount of wax), the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
 図18の例においては、圧縮機6の組立を許可するか否かを判定するための組立可否データとして、圧縮機6の騒音データ、圧縮機6の振動データ、圧縮機6の組立状態に関する組立データ、圧縮機6の組立可否、および圧縮機6の性能(成績係数)のうちの少なくとも1つが適用される。 In the example of FIG. 18, at least one of the noise data of the compressor 6, the vibration data of the compressor 6, the assembly data related to the assembly state of the compressor 6, whether the compressor 6 can be assembled, and the performance (coefficient of performance) of the compressor 6 is applied as the assembly feasibility data for determining whether the assembly of the compressor 6 is permitted.
 圧縮機6の組立データは、電動機61の固定子611と回転子612との間の空隙の寸法、圧縮機6の密閉性を示す値、圧縮機6における溶接状態を示す値、および圧縮機6の固有値のうちの少なくとも1つを含む。圧縮機6の組立時の品質チェック項目は多岐にわたるが、圧縮機6の組立においては、複数の部品が複雑に組み合わされる。このため、どの部品および加工状態が上述した圧縮機6の組立状態に関する組立データに影響しているか、人間では判断し難い。しかしながら、推論装置10によれば、学習済モデル20を用いて、組立データと相関のある入力データに基づき、組立データを推論することができる。 The assembly data of the compressor 6 includes at least one of the dimensions of the gap between the stator 611 and rotor 612 of the electric motor 61, a value indicating the airtightness of the compressor 6, a value indicating the welding state of the compressor 6, and a characteristic value of the compressor 6. There are a wide variety of quality check items during assembly of the compressor 6, and multiple parts are combined in a complex manner during assembly of the compressor 6. For this reason, it is difficult for a human being to determine which parts and processing states affect the assembly data related to the assembly state of the compressor 6 described above. However, the inference device 10 can use the trained model 20 to infer the assembly data based on input data that is correlated with the assembly data.
 推論装置10は、入力データとして、単体部品の個体ばらつきに関するデータ、圧縮機6の製造に関するデータ、および複数の部品の組み合わせによって生じ得るデータのうち、少なくとも1つを用いて、図18に示す組立可否データを推論するように機械学習によって学習済モデル20を訓練すれば、入力データに基づき、図18に示す組立可否データを精度高く推論することができる。推論装置10は、このような推論を、圧縮機6の組立前、組立の途中、または組立後に行うことで、図18に示す組立可否データが適正であるか否かを確認することができる。そして、推論装置10は、推論した図18に示す組立可否データが適正であると判定した場合は、次工程に進んで圧縮機6の組立を継続し、推論した図18に示す組立可否データが適正でないと判定した場合は、組み立てた圧縮機6を手直しで修正するか、あるいは、組み立てた圧縮機6を廃棄すればよい。 The inference device 10 can accurately infer the assembly feasibility data shown in FIG. 18 based on the input data by training the learned model 20 by machine learning using at least one of data on individual variations of individual components, data on the manufacture of the compressor 6, and data that may arise from the combination of multiple components. The inference device 10 can check whether the assembly feasibility data shown in FIG. 18 is appropriate by performing such inference before, during, or after the assembly of the compressor 6. If the inference device 10 determines that the inferred assembly feasibility data shown in FIG. 18 is appropriate, it proceeds to the next process and continues assembling the compressor 6. If the inferred assembly feasibility data shown in FIG. 18 is determined to be inappropriate, it may be possible to either correct the assembled compressor 6 by reworking it or to discard the assembled compressor 6.
 図18の入力データである単体部品の個体ばらつきに関するデータは、ローリングピストン622の寸法、シリンダ621の寸法、ベーン625の寸法、上部フレーム623Aの寸法、下部フレーム623Bの寸法、固定子611の外径の寸法、固定子611の内径の寸法、固定子611の幅の寸法、回転子612の外径の寸法、回転子612の内径の寸法、シャフト613の寸法、シェル60の寸法、アキュムレータ63の寸法、巻線615に鎖交する回転子612の磁束量、および巻線615の抵抗値のうちの少なくとも1つを含む。 The data relating to the individual variation of the individual components, which is the input data in FIG. 18, includes at least one of the dimensions of the rolling piston 622, the dimensions of the cylinder 621, the dimensions of the vane 625, the dimensions of the upper frame 623A, the dimensions of the lower frame 623B, the outer diameter of the stator 611, the inner diameter of the stator 611, the width of the stator 611, the outer diameter of the rotor 612, the inner diameter of the rotor 612, the dimensions of the shaft 613, the dimensions of the shell 60, the dimensions of the accumulator 63, the amount of magnetic flux of the rotor 612 interlinked with the winding 615, and the resistance value of the winding 615.
 図18の入力データである圧縮機6の製造に関するデータは、製造装置の識別情報、製造装置に生じる電流、製造装置に生じる電圧、製造装置に生じる騒音、製造装置に生じる振動、圧縮機6の製造に要する時間、圧縮機6の製造時における溶接の温度、溶接における溶接量(たとえば、蝋の量)、圧縮機6の製造現場の温度、および製造現場の湿度のうちの少なくとも1つを含む。 The data relating to the manufacture of the compressor 6, which is the input data in FIG. 18, includes at least one of the following: identification information of the manufacturing equipment, the current generated in the manufacturing equipment, the voltage generated in the manufacturing equipment, the noise generated in the manufacturing equipment, the vibration generated in the manufacturing equipment, the time required to manufacture the compressor 6, the welding temperature during the manufacture of the compressor 6, the amount of welding (e.g., the amount of wax), the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
 図18の入力データである複数の部品の組み合わせによって生じ得るデータは、ローリングピストン622と上部フレーム623Aとの隙間(図1のG1)の寸法、ローリングピストン622と下部フレーム623Bとの隙間(図1のG2)の寸法、ローリングピストン622の外周面とシリンダ621の内周面との隙間(図3のG3)の寸法、ベーン625の先端部とローリングピストン622の外周面との隙間(図3のG4)の寸法、ベーン625の摺動方向における側面とシリンダ621のベーン溝624との隙間(図3のG5)の寸法、ベーン625と上部フレーム623Aとの隙間(図示は省略する。)の寸法、ベーン625と下部フレーム623Bとの隙間(図示は省略する。)の寸法、シャフト613と上部フレーム623Aとの隙間の寸法、シャフト613と下部フレーム623Bとの隙間の寸法、上部フレーム623Aの中心軸と下部フレーム623Bの中心軸とのずれを示す値、シェル60の中心軸とシャフト613の中心軸とのずれを示す値、固定子611と回転子612との焼き嵌め代(締め代)、溶接後のシェル60の寸法、および溶接後のアキュムレータ63の寸法の少なくとも1つを含む。 Data that can be generated by combining multiple parts, which are the input data of Figure 18, include the dimension of the gap between the rolling piston 622 and the upper frame 623A (G1 in Figure 1), the dimension of the gap between the rolling piston 622 and the lower frame 623B (G2 in Figure 1), the dimension of the gap between the outer circumferential surface of the rolling piston 622 and the inner circumferential surface of the cylinder 621 (G3 in Figure 3), the dimension of the gap between the tip of the vane 625 and the outer circumferential surface of the rolling piston 622 (G4 in Figure 3), the dimension of the gap between the side of the vane 625 in the sliding direction and the vane groove 624 of the cylinder 621 (G5 in Figure 3), the dimension of the gap between the vane 625 and At least one of the following is included: the size of the gap with the upper frame 623A (not shown), the size of the gap between the vane 625 and the lower frame 623B (not shown), the size of the gap between the shaft 613 and the upper frame 623A, the size of the gap between the shaft 613 and the lower frame 623B, a value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B, a value indicating the deviation between the central axis of the shell 60 and the central axis of the shaft 613, the shrink fit (tightening) between the stator 611 and the rotor 612, the dimensions of the shell 60 after welding, and the dimensions of the accumulator 63 after welding.
 学習済モデル20の出力(組立可否データ)は、圧縮機6の組立を許可するか否かに関するデータであれば、上述した図13~図18において例示したデータに限らず、その他のデータが適用され得る。さらに、学習済モデル20の入力1(入力データ)は、出力(組立可否データ)と相関のあるデータであれば、上述した図13~図18において例示したデータに限らず、その他のデータが適用され得る。さらに、入力1(入力データ)と出力(組立可否データ)との組み合わせは、両者の間に相関関係のあるデータであれば、如何なるデータの組み合わせが適用されてもよい。 The output (assembly feasibility data) of the trained model 20 is not limited to the data exemplified in the above-mentioned Figures 13 to 18, and other data may be applied as long as the data is related to whether or not assembly of the compressor 6 is permitted. Furthermore, the input 1 (input data) of the trained model 20 is not limited to the data exemplified in the above-mentioned Figures 13 to 18, and other data may be applied as long as the data is correlated with the output (assembly feasibility data). Furthermore, the combination of input 1 (input data) and output (assembly feasibility data) may be any combination of data as long as there is a correlation between the two.
 [圧縮機の製造方法に関するフローチャート]
 図19を参照しながら、圧縮機6の製造の途中における組立可否データの推論について詳細に説明する。図19は、実施の形態1に係る推論装置10における圧縮機6の製造方法に関するフローチャートである。図19に示すフローチャートは、推論装置10(制御部11)の機能を有するコンピュータによって圧縮機6を製造するための各種の処理ステップ(製造方法)を規定する。なお、図19において、「S」は「STEP」の略称として用いられる。
[Flowchart for manufacturing a compressor]
With reference to Fig. 19, the inference of assembly feasibility data during the manufacture of the compressor 6 will be described in detail. Fig. 19 is a flowchart relating to the manufacturing method of the compressor 6 in the inference device 10 according to the first embodiment. The flowchart shown in Fig. 19 specifies various processing steps (manufacturing method) for manufacturing the compressor 6 by a computer having the functions of the inference device 10 (control unit 11). In Fig. 19, "S" is used as an abbreviation for "STEP".
 図19に示すように、推論装置10は、第1部品に第2部品を組み合わせる(S21)。たとえば、推論装置10は、第1部品であるシリンダ621に第2部品であるベーン625を組み合わせる。 As shown in FIG. 19, the inference device 10 combines a first part with a second part (S21). For example, the inference device 10 combines a first part, a cylinder 621, with a second part, a vane 625.
 推論装置10は、第1部品の個体ばらつきを示すデータ、第2部品の個体ばらつきを示すデータ、および第1部品と第2部品との組み合わせによって生じ得るデータに基づき、学習済モデル20を用いて、組立可否データを推論する(S22)。第1部品の個体ばらつきを示すデータは、たとえば、ベーン625の寸法である。第2部品の個体ばらつきを示すデータは、たとえば、シリンダ621の寸法である。第1部品と第2部品との組み合わせによって生じ得るデータは、たとえば、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータであり、ベーン625とシリンダ621を組み合わせた組み合わせ部品におけるベーン625とシリンダ621との隙間の寸法である。 The inference device 10 infers assembly feasibility data using the trained model 20 based on data indicating the individual variation of the first part, data indicating the individual variation of the second part, and data that may result from the combination of the first part and the second part (S22). The data indicating the individual variation of the first part is, for example, the dimension of the vane 625. The data indicating the individual variation of the second part is, for example, the dimension of the cylinder 621. The data that may result from the combination of the first part and the second part is, for example, data indicating the individual variation of the combined part obtained by combining the first part and the second part, and is the dimension of the gap between the vane 625 and the cylinder 621 in the combined part obtained by combining the vane 625 and the cylinder 621.
 推論装置10は、ベーン625の寸法、シリンダ621の寸法、およびベーン625とシリンダ621との隙間の寸法を入力1(入力データ)として、当該入力データに基づき、学習済モデル20を用いて、次工程における圧縮機6の組立を許可するか否かに関する組立可否データを推論する。組立可否データは、圧縮機6の組立を許可する旨、または圧縮機6の組立を許可しない旨のいずれかを示す。たとえば、推論装置10は、ベーン625とシリンダ621との隙間の寸法が基準値を満たしている場合は、圧縮機6の組立を許可する旨の組立可否データを推論し、ベーン625とシリンダ621との隙間の寸法が基準値を満たしていない場合は、圧縮機6の組立を許可しない旨の組立可否データを推論する。 The inference device 10 uses the dimensions of the vane 625, the dimensions of the cylinder 621, and the dimensions of the gap between the vane 625 and the cylinder 621 as input 1 (input data), and uses the trained model 20 based on the input data to infer assembly feasibility data regarding whether or not assembly of the compressor 6 in the next process is permitted. The assembly feasibility data indicates either that assembly of the compressor 6 is permitted, or that assembly of the compressor 6 is not permitted. For example, if the dimensions of the gap between the vane 625 and the cylinder 621 meet a reference value, the inference device 10 infers assembly feasibility data indicating that assembly of the compressor 6 is permitted, and if the dimensions of the gap between the vane 625 and the cylinder 621 do not meet a reference value, the inference device 10 infers assembly feasibility data indicating that assembly of the compressor 6 is not permitted.
 推論装置10は、推論した組立可否データに基づき、圧縮機6の組立を継続可能か否かを判定する(S23)。 The inference device 10 determines whether or not assembly of the compressor 6 can continue based on the inferred assembly feasibility data (S23).
 推論装置10は、圧縮機6の組立を継続可能でない場合(S23でNO)、たとえば、ベーン625とシリンダ621との隙間の寸法が基準値を満たしていない場合、第1部品と第2部品とを組み合わせた組み合わせ部品を手直しで修正するための処理、または、組み合わせ部品を廃棄するための廃棄処理を行う(S24)。たとえば、推論装置10は、組み合わせ部品を作業者に手直しで修正させることを促す画像を図示しないディスプレイに表示させたり、組み合わせ部品を廃棄ルートに移動させたりする。その後、推論装置10は、本処理を終了する。 If the inference device 10 is unable to continue assembling the compressor 6 (NO in S23), for example if the dimension of the gap between the vane 625 and the cylinder 621 does not satisfy the reference value, it performs a process for manually correcting the combined part formed by combining the first part and the second part, or a disposal process for discarding the combined part (S24). For example, the inference device 10 displays an image on a display (not shown) that prompts the worker to manually correct the combined part, or moves the combined part to a disposal route. The inference device 10 then ends this process.
 一方、推論装置10は、圧縮機6の組立を継続可能である場合(S23でYES)、たとえば、ベーン625とシリンダ621との隙間の寸法が基準値を満たしている場合、組み合わせ部品に対して、第3部品を組み合わせる(S25)。これにより、推論装置10は、第1部品と第2部品と第3部品とを組み合わせて圧縮機6を組み立てることができる。たとえば、推論装置10は、第1部品であるシリンダ621に第2部品であるベーン625を組み合わせた組み合わせ部品に対して、第3部品であるローリングピストン622を組み合わせることで、圧縮機6を構成する圧縮機構部62を組み立てる。その後、推論装置10は、本処理を終了する。 On the other hand, if the inference device 10 is able to continue assembling the compressor 6 (YES in S23), for example if the dimension of the gap between the vane 625 and the cylinder 621 meets the reference value, it combines a third part with the combined parts (S25). This allows the inference device 10 to assemble the compressor 6 by combining the first part, the second part, and the third part. For example, the inference device 10 assembles the compression mechanism 62 that constitutes the compressor 6 by combining the third part, the rolling piston 622, with the combined part that combines the first part, the cylinder 621, with the second part, the vane 625. After that, the inference device 10 ends this process.
 なお、図19においては、推論装置10(制御部11)が各処理を実行する例を説明したが、推論装置10(制御部11)がS22の推論処理のみを実行し、残りの処理は、コンピュータに含まれる推論装置10(制御部11)以外の機能部によって実行されてもよい。 Note that in FIG. 19, an example has been described in which the inference device 10 (control unit 11) executes each process, but the inference device 10 (control unit 11) may execute only the inference process of S22, and the remaining processes may be executed by a functional unit other than the inference device 10 (control unit 11) included in the computer.
 また、図19においては、第1部品(たとえば、シリンダ621)、第2部品(たとえば、ベーン625)、および第3部品(たとえば、ローリングピストン622)を組み合わせて、1つの組み合わせ部品(たとえば、圧縮機構部62)を組み立てる際の処理を例示したが、その他の組み合わせ部品(たとえば、電動機61)を含む2つ以上の組み合わせ部品を組み立てる際の処理に図19に示すフローチャートを適用してもよい。 In addition, FIG. 19 illustrates the process of assembling one combined part (e.g., compression mechanism 62) by combining a first part (e.g., cylinder 621), a second part (e.g., vane 625), and a third part (e.g., rolling piston 622). However, the flowchart shown in FIG. 19 may also be applied to the process of assembling two or more combined parts including other combined parts (e.g., electric motor 61).
 以上のように、実施の形態1に係る推論装置10は、学習済モデル20を用いて、圧縮機6の組立を許可するか否かに関する組立可否データと相関のある入力データに基づき、組立可否データを推論する。具体的には、推論装置10は、第1部品の個体ばらつきを示すデータ、第2部品の個体ばらつきを示すデータ、および第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータに基づき、組立可否データを推論する。これにより、推論装置10は、圧縮機6の組立が完了した後に、組み立てた圧縮機6を手直しで修正したり、組み立てた圧縮機6を廃棄したりする必要がなく、圧縮機6を組み立てるために要した時間、および圧縮機6の組立に用いられた部品が無駄になってしまうことを防止することができる。 As described above, the inference device 10 according to the first embodiment uses the trained model 20 to infer assembly feasibility data based on input data correlated with assembly feasibility data regarding whether assembly of the compressor 6 is permitted. Specifically, the inference device 10 infers assembly feasibility data based on data indicating the individual variation of the first part, data indicating the individual variation of the second part, and data indicating the individual variation of a combined part combining the first part and the second part. This eliminates the need for the inference device 10 to modify the assembled compressor 6 or to discard the assembled compressor 6 after the assembly of the compressor 6 is completed, and can prevent the time required to assemble the compressor 6 and the parts used in the assembly of the compressor 6 from being wasted.
 さらに、推論装置10は、圧縮機6の組立が継続可能でない場合は、第1部品と第2部品とを組み合わせた組み合わせ部品を手直しすることができる。これにより、推論装置10は、圧縮機6の組立が完了した後の検査で圧縮機6の特性が基準値を満たさないことを検出するよりも、手直しに要する手間および時間を少なくすることができる。 Furthermore, if the assembly of the compressor 6 cannot be continued, the inference device 10 can rework the combined part made up of the first part and the second part. This allows the inference device 10 to reduce the effort and time required for rework compared to detecting that the characteristics of the compressor 6 do not satisfy the reference values during inspection after the assembly of the compressor 6 is completed.
 なお、学習済モデル20に入力される入力データは、第1部品の個体ばらつきを示すデータ、第2部品の個体ばらつきを示すデータ、および第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータの全てを含む場合に限らず、たとえば、第1部品の個体ばらつきを示すデータおよび第2部品の個体ばらつきを示すデータのみを含む場合、あるいは、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータのみを含む場合であってもよい。学習済モデル20に入力される入力データは、第1部品の個体ばらつきを示すデータおよび第2部品の個体ばらつきを示すデータと、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータとのうちの少なくとも1つを含んでいればよい。 The input data input to the trained model 20 is not limited to including all of data indicating the individual variation of the first part, data indicating the individual variation of the second part, and data indicating the individual variation of the combined part combining the first part and the second part, but may include, for example, only data indicating the individual variation of the first part and data indicating the individual variation of the second part, or only data indicating the individual variation of the combined part combining the first part and the second part. The input data input to the trained model 20 may include at least one of data indicating the individual variation of the first part and data indicating the individual variation of the second part, and data indicating the individual variation of the combined part combining the first part and the second part.
 実施の形態2.
 図20を参照しながら、実施の形態2に係る推論装置10について説明する。なお、以下では、実施の形態2に係る推論装置10について、実施の形態1に係る推論装置10と異なる部分のみを説明する。
Embodiment 2.
An inference device 10 according to the second embodiment will be described with reference to Fig. 20. Note that, in the following, only the parts of the inference device 10 according to the second embodiment that are different from the inference device 10 according to the first embodiment will be described.
 図20は、実施の形態2に係る推論装置10における圧縮機6の製造方法に関するフローチャートである。図20に示すように、学習済モデル20に入力される入力データには、前工程で用いる部品のデータ(たとえば、寸法)に、次工程で用いる部品のデータ(たとえば、寸法)を加えてもよい。図20に示すフローチャートは、推論装置10(制御部11)の機能を有するコンピュータによって圧縮機6を製造するための各種の処理ステップ(製造方法)を規定する。なお、図20において、「S」は「STEP」の略称として用いられる。 FIG. 20 is a flowchart of a manufacturing method of a compressor 6 in the inference device 10 according to the second embodiment. As shown in FIG. 20, the input data input to the trained model 20 may include data of parts used in the previous process (e.g., dimensions) plus data of parts used in the next process (e.g., dimensions). The flowchart shown in FIG. 20 specifies various processing steps (manufacturing method) for manufacturing a compressor 6 by a computer having the functions of the inference device 10 (control unit 11). Note that in FIG. 20, "S" is used as an abbreviation for "STEP".
 図20に示すように、推論装置10は、第1部品に第2部品を組み合わせる(S31)。たとえば、推論装置10は、第1部品であるシリンダ621に第2部品であるベーン625を組み合わせる。 As shown in FIG. 20, the inference device 10 combines a first part with a second part (S31). For example, the inference device 10 combines a first part, a cylinder 621, with a second part, a vane 625.
 推論装置10は、次工程で用いる予定の第3部品の個体ばらつきを示すデータを取得する(S32)。たとえば、推論装置10は、次工程で用いる予定の第3部品であるローリングピストン622の寸法を取得する。 The inference device 10 acquires data indicating the individual variation of the third part to be used in the next process (S32). For example, the inference device 10 acquires the dimensions of the rolling piston 622, which is the third part to be used in the next process.
 推論装置10は、第1部品の個体ばらつきを示すデータ、第2部品の個体ばらつきを示すデータ、第1部品と第2部品との組み合わせによって生じ得るデータ、および第3部品の個体ばらつきを示すデータに基づき、学習済モデル20を用いて、組立可否データを推論する(S33)。第1部品の個体ばらつきを示すデータは、たとえば、ベーン625の寸法である。第2部品の個体ばらつきを示すデータは、たとえば、シリンダ621の寸法である。第1部品と第2部品との組み合わせによって生じ得るデータは、たとえば、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータであり、ベーン625とシリンダ621を組み合わせた組み合わせ部品におけるベーン625とシリンダ621との隙間の寸法である。 The inference device 10 infers assembly feasibility data using the trained model 20 based on the data indicating the individual variation of the first part, the data indicating the individual variation of the second part, the data that may arise from the combination of the first part and the second part, and the data indicating the individual variation of the third part (S33). The data indicating the individual variation of the first part is, for example, the dimension of the vane 625. The data indicating the individual variation of the second part is, for example, the dimension of the cylinder 621. The data that may arise from the combination of the first part and the second part is, for example, data indicating the individual variation of the combined part obtained by combining the first part and the second part, and is the dimension of the gap between the vane 625 and the cylinder 621 in the combined part obtained by combining the vane 625 and the cylinder 621.
 推論装置10は、ベーン625の寸法、シリンダ621の寸法、ベーン625とシリンダ621との隙間の寸法、およびローリングピストン622の寸法を入力1(入力データ)として、当該入力データに基づき、学習済モデル20を用いて、次工程における圧縮機6の組立を許可するか否かに関する組立可否データを推論する。組立可否データは、圧縮機6の組立を許可する旨、または圧縮機6の組立を許可しない旨のいずれかを示す。たとえば、推論装置10は、ベーン625とシリンダ621との隙間の寸法と、ローリングピストン622の寸法との関係を考慮して、これらの寸法が基準値を満たしている場合は、圧縮機6の組立を許可する旨の組立可否データを推論し、ベーン625とシリンダ621との隙間の寸法と、ローリングピストン622の寸法との関係を考慮して、これらの寸法が基準値を満たしていない場合は、圧縮機6の組立を許可しない旨の組立可否データを推論する。 The inference device 10 uses the dimensions of the vane 625, the dimensions of the cylinder 621, the dimensions of the gap between the vane 625 and the cylinder 621, and the dimensions of the rolling piston 622 as input 1 (input data), and uses the trained model 20 based on the input data to infer assembly feasibility data regarding whether or not assembly of the compressor 6 in the next process is permitted. The assembly feasibility data indicates whether assembly of the compressor 6 is permitted or not permitted. For example, the inference device 10 considers the relationship between the dimensions of the gap between the vane 625 and the cylinder 621 and the dimensions of the rolling piston 622, and infers assembly feasibility data indicating that assembly of the compressor 6 is permitted if these dimensions meet a reference value, and considers the relationship between the dimensions of the gap between the vane 625 and the cylinder 621 and the dimensions of the rolling piston 622, and infers assembly feasibility data indicating that assembly of the compressor 6 is not permitted if these dimensions do not meet a reference value.
 推論装置10は、推論した組立可否データに基づき、圧縮機6の組立を継続可能か否かを判定する(S34)。 The inference device 10 determines whether or not assembly of the compressor 6 can continue based on the inferred assembly feasibility data (S34).
 推論装置10は、圧縮機6の組立を継続可能でない場合(S34でNO)、たとえば、ベーン625とシリンダ621との隙間の寸法とローリングピストン622の寸法とが基準値を満たしていない場合、第1部品と第2部品とを組み合わせた組み合わせ部品に問題が生じているため、第1部品と第2部品とを組み合わせた組み合わせ部品を手直しで修正するための処理、または、組み合わせ部品を廃棄するための廃棄処理を行う(S35)。たとえば、推論装置10は、第3部品に合わせるように、組み合わせ部品を作業者に手直しで修正させることを促す画像を図示しないディスプレイに表示させたり、組み合わせ部品を廃棄ルートに移動させたりする。その後、推論装置10は、本処理を終了する。 If the inference device 10 is unable to continue assembling the compressor 6 (NO in S34), for example if the dimensions of the gap between the vane 625 and the cylinder 621 and the dimensions of the rolling piston 622 do not meet the reference values, a problem has occurred with the combined part combining the first and second parts, so the inference device 10 performs a process to manually correct the combined part combining the first and second parts, or a disposal process to discard the combined part (S35). For example, the inference device 10 displays an image on a display (not shown) that prompts the worker to manually correct the combined part to match the third part, or moves the combined part to a disposal route. The inference device 10 then ends this process.
 一方、推論装置10は、圧縮機6の組立を継続可能である場合(S34でYES)、たとえば、ベーン625とシリンダ621との隙間の寸法とローリングピストン622の寸法とが基準値を満たしている場合、組み合わせ部品に対して、第3部品を組み合わせる(S36)。これにより、推論装置10は、第1部品と第2部品と第3部品とを組み合わせて圧縮機6を組み立てることができる。たとえば、推論装置10は、第1部品であるシリンダ621に第2部品であるベーン625を組み合わせた組み合わせ部品に対して、第3部品であるローリングピストン622を組み合わせることで、圧縮機6を構成する圧縮機構部62を組み立てる。その後、推論装置10は、本処理を終了する。 On the other hand, if the inference device 10 is able to continue assembling the compressor 6 (YES in S34), for example, if the dimension of the gap between the vane 625 and the cylinder 621 and the dimension of the rolling piston 622 meet the reference values, the inference device 10 combines a third part with the combined parts (S36). This allows the inference device 10 to assemble the compressor 6 by combining the first part, the second part, and the third part. For example, the inference device 10 assembles the compression mechanism unit 62 that constitutes the compressor 6 by combining the third part, the rolling piston 622, with the combined part that combines the first part, the cylinder 621, with the second part, the vane 625. After that, the inference device 10 ends this process.
 以上のように、実施の形態2に係る推論装置10は、第1部品の個体ばらつきを示すデータ、第2部品の個体ばらつきを示すデータ、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータ、および第3部品の個体ばらつきを示すデータに基づき、組立可否データを推論する。これにより、推論装置10は、圧縮機6の組立が完了した後に、組み立てた圧縮機6を手直しで修正したり、組み立てた圧縮機6を廃棄したりする必要がなく、圧縮機6を組み立てるために要した時間、および圧縮機6の組立に用いられた部品が無駄になってしまうことを防止することができる。 As described above, the inference device 10 according to the second embodiment infers assembly feasibility data based on data indicating the individual variation of the first part, data indicating the individual variation of the second part, data indicating the individual variation of a combined part formed by combining the first part and the second part, and data indicating the individual variation of the third part. This makes it unnecessary for the inference device 10 to modify the assembled compressor 6 by hand or to discard the assembled compressor 6 after the assembly of the compressor 6 is completed, and it is possible to prevent the time required to assemble the compressor 6 and the parts used in the assembly of the compressor 6 from being wasted.
 さらに、推論装置10は、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータと第3部品の個体ばらつきを示すデータとの関係を考慮して、組立可否データを推論する。これにより、推論装置10は、圧縮機6の組立を許可するか否かをより精度高く推論することができ、圧縮機6の組立を許可しない数を減らすことができる。 Furthermore, the inference device 10 infers the assembly feasibility data by considering the relationship between the data indicating the individual variation of the combined part formed by combining the first part and the second part and the data indicating the individual variation of the third part. This allows the inference device 10 to infer with higher accuracy whether or not to permit the assembly of the compressor 6, and can reduce the number of compressors 6 for which assembly is not permitted.
 なお、学習済モデル20に入力される入力データは、第3部品の個体ばらつきを示すデータに加えて、第1部品の個体ばらつきを示すデータ、第2部品の個体ばらつきを示すデータ、および第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータの全てを含む場合に限らない。たとえば、学習済モデル20に入力される入力データは、第1部品の個体ばらつきを示すデータおよび第2部品の個体ばらつきを示すデータと、第3部品の個体ばらつきを示すデータとを含む場合、あるいは、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータと、第3部品の個体ばらつきを示すデータとを含む場合であってもよい。学習済モデル20に入力される入力データは、第1部品の個体ばらつきを示すデータおよび第2部品の個体ばらつきを示すデータと、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータとのうちの少なくとも1つと、組み合わせ部品に組み合わせる予定の第3部品の個体ばらつきを示すデータとを含んでいればよい。 The input data input to the trained model 20 is not limited to including all of the data indicating the individual variation of the first part, the data indicating the individual variation of the second part, and the data indicating the individual variation of the combined part combining the first part and the second part, in addition to the data indicating the individual variation of the third part. For example, the input data input to the trained model 20 may include data indicating the individual variation of the first part and the data indicating the individual variation of the second part, and data indicating the individual variation of the third part, or data indicating the individual variation of the combined part combining the first part and the second part, and data indicating the individual variation of the third part. The input data input to the trained model 20 may include at least one of the data indicating the individual variation of the first part and the data indicating the individual variation of the second part, and the data indicating the individual variation of the combined part combining the first part and the second part, and data indicating the individual variation of the third part to be combined with the combined part.
 なお、S32で取得する第3部品の個体ばらつきを示すデータは、次工程で用いる予定の第3部品の個体ばらつきを示すデータ(たとえば、寸法)に限らず、次工程で用いる予定のロットごとの複数の第3部品の個体ばらつきを示すデータ(たとえば、寸法)のばらつきを正規分布に適用した場合のデータ(たとえば、平均値、標準偏差)であってもよい。すなわち、推論装置10は、次工程で用いる予定の第3部品が未だ決まっていなくても、次工程で用いる予定の複数の第3部品の個体ばらつきを示すデータから仮定したロットごとの平均値または所定の管理値に対する標準偏差などのデータを、入力1の入力データとして適用して、学習済モデル20を用いて、組立可否データを推論してもよい。 The data indicating the individual variation of the third part acquired in S32 is not limited to data indicating the individual variation of the third part to be used in the next process (e.g., dimensions), but may be data (e.g., average value, standard deviation) obtained when the variation of the data indicating the individual variation of the multiple third parts for each lot to be used in the next process (e.g., dimensions) is applied to a normal distribution. In other words, even if the third part to be used in the next process has not yet been decided, the inference device 10 may apply data such as the average value for each lot or the standard deviation with respect to a predetermined control value assumed from the data indicating the individual variation of the multiple third parts to be used in the next process as input data for input 1, and use the trained model 20 to infer assembly feasibility data.
 実施の形態3.
 図21を参照しながら、実施の形態3に係る推論装置10について説明する。なお、以下では、実施の形態3に係る推論装置10について、図20を用いて説明した実施の形態2に係る推論装置10と異なる部分のみを説明する。
Embodiment 3.
An inference device 10 according to the third embodiment will be described with reference to Fig. 21. Note that, in the following, only the parts of the inference device 10 according to the third embodiment that are different from the inference device 10 according to the second embodiment described with reference to Fig. 20 will be described.
 図21は、実施の形態3に係る推論装置10における圧縮機6の製造方法に関するフローチャートである。実施の形態3に係る推論装置10は、圧縮機6の組立を許可しないと推論した場合に、第1部品と第2部品とを組み合わせた組み合わせ部品に組み合わせる予定の第3部品を他の第3部品に変更してもよい。具体的には、図21に示すように、実施の形態3に係る推論装置10は、S33で推論した組立可否データに基づき、S34で圧縮機6の組立を継続可能でないと判定した後(S34でNO)、S34でNOと判定した回数が所定回数に達しているか否かを判定する(S37)。 FIG. 21 is a flowchart relating to a manufacturing method of a compressor 6 in an inference device 10 according to embodiment 3. When the inference device 10 according to embodiment 3 infers that assembly of the compressor 6 is not permitted, the inference device 10 according to embodiment 3 may change the third part that is to be combined with the combined part of the first part and the second part to another third part. Specifically, as shown in FIG. 21, the inference device 10 according to embodiment 3 determines in S34 that assembly of the compressor 6 cannot be continued based on the assembly feasibility data inferred in S33 (NO in S34), and then determines whether the number of NO determinations in S34 has reached a predetermined number (S37).
 推論装置10は、S34でNOと判定した回数が所定回数に達していない場合(S37でNO)、第1部品と第2部品とを組み合わせた組み合わせ部品に組み合わせる予定の第3部品の個体ばらつきを示すデータを変更する(S38)。たとえば、組み合わせる予定の第1のローリングピストン622の個体ばらつきを示すデータを、第2のローリングピストン622の個体ばらつきを示すデータに変更する。その後、推論装置10は、S33の処理に移行して、第1部品の個体ばらつきを示すデータ、第2部品の個体ばらつきを示すデータ、第1部品と第2部品との組み合わせによって生じ得るデータ、および変更後の第3部品の個体ばらつきを示すデータに基づき、学習済モデル20を用いて、組立可否データを推論する(S33)。すなわち、推論装置10は、第3部品(ローリングピストン622)を変更して、再度、圧縮機6の組立可否を推論する。 If the number of times that the inference device 10 has determined NO in S34 has not reached a predetermined number (NO in S37), the inference device 10 changes the data indicating the individual variation of the third part to be combined with the combined part obtained by combining the first part and the second part (S38). For example, the data indicating the individual variation of the first rolling piston 622 to be combined is changed to data indicating the individual variation of the second rolling piston 622. The inference device 10 then proceeds to the process of S33, and infers assembly feasibility data using the trained model 20 based on the data indicating the individual variation of the first part, the data indicating the individual variation of the second part, the data that may arise from the combination of the first part and the second part, and the data indicating the individual variation of the changed third part (S33). That is, the inference device 10 changes the third part (rolling piston 622) and again infers whether the compressor 6 can be assembled.
 一方、推論装置10は、S34でNOと判定した回数が所定回数に達した場合(S37でYES)、第1部品と第2部品とを組み合わせた組み合わせ部品に問題が生じているため、組み合わせ部品を手直しで修正するための処理、または、組み合わせ部品を廃棄するための廃棄処理を行う(S35)。 On the other hand, if the number of times that the inference device 10 judges NO in S34 reaches a predetermined number (YES in S37), a problem has occurred in the combined part that combines the first part and the second part, so the inference device 10 performs a process to correct the combined part by reworking it, or performs a disposal process to discard the combined part (S35).
 以上のように、実施の形態3に係る推論装置10は、第1部品と第2部品とを組み合わせた組み合わせ部品と、第3部品との組み合わせによって、圧縮機6の組立が継続することができなかった場合でも、即座に組み合わせ部品を手直しで修正したり、組み合わせ部品を廃棄したりすることなく、予定していた第3部品を他の第3部品に変更して、再度、圧縮機6の組立可否を推論する。これにより、推論装置10は、組み合わせ部品を手直しで修正したり、組み合わせ部品を廃棄したりするために要する時間、および組み合わせ部品が無駄になってしまうことを防止することができる。 As described above, even if the assembly of the compressor 6 cannot be continued due to the combination of a combination part that combines the first part and the second part with a third part, the inference device 10 according to the third embodiment changes the planned third part to another third part without immediately correcting the combination part by rework or discarding the combination part, and infers again whether the assembly of the compressor 6 can be continued. This allows the inference device 10 to prevent the time required to correct the combination part by rework or discard the combination part, and to prevent the combination part from being wasted.
 実施の形態4.
 図22を参照しながら、実施の形態4に係る推論装置10について説明する。なお、以下では、実施の形態4に係る推論装置10について、実施の形態1~3に係る推論装置10と異なる部分のみを説明する。
Embodiment 4.
An inference device 10 according to embodiment 4 will be described with reference to Fig. 22. Note that, in the following, only the parts of the inference device 10 according to embodiment 4 that are different from the inference devices 10 according to embodiments 1 to 3 will be described.
 図22は、実施の形態4に係る推論装置10における学習済モデル20を説明するための図である。実施の形態4に係る推論装置10は、複数の学習済モデルを備えていてもよい。たとえば、図22に示すように、実施の形態4に係る推論装置10において、学習済モデル20は、第1学習済モデル201と第2学習済モデル202とを含んでいてもよい。 FIG. 22 is a diagram for explaining the trained model 20 in the inference device 10 according to embodiment 4. The inference device 10 according to embodiment 4 may include multiple trained models. For example, as shown in FIG. 22, in the inference device 10 according to embodiment 4, the trained model 20 may include a first trained model 201 and a second trained model 202.
 第1学習済モデル201は、図17に示すように、単体部品の個体ばらつきに関するデータ、および圧縮機6の製造に関するデータのうちの少なくとも1つを入力1(入力データ)として、複数の部品の組み合わせによって生じ得るデータを出力するように、機械学習によって訓練されている。また、第2学習済モデル202は、図18に示すように、複数の部品の組み合わせによって生じ得るデータを入力1(入力データ)として、圧縮機6の組立可否を示す組立可否データを出力するように、機械学習によって訓練されている。 The first trained model 201, as shown in FIG. 17, is trained by machine learning to output data that may result from a combination of multiple parts, using at least one of data on individual variations of individual parts and data on the manufacture of the compressor 6 as input 1 (input data). The second trained model 202, as shown in FIG. 18, is trained by machine learning to output assembly feasibility data indicating whether the compressor 6 can be assembled, using data that may result from a combination of multiple parts as input 1 (input data).
 推論装置10は、上述したような第1学習済モデル201および第2学習済モデル202を用いて、単体部品の個体ばらつきに関するデータ、および圧縮機6の製造に関するデータのうちの少なくとも1つを含む入力データに基づき、圧縮機6の組立可否を示す組立可否データを推論してもよい。たとえば、推論装置10は、単体部品の個体ばらつきに関するデータ、および圧縮機6の製造に関するデータのうちの少なくとも1つを含む入力データに基づき、第1学習済モデル201を用いて、複数の部品の組み合わせによって生じ得るデータを推論し、さらに、第1学習済モデル201を用いて推論した複数の部品の組み合わせによって生じ得るデータを含む入力データに基づき、第2学習済モデル202を用いて、圧縮機6の組立可否を示す組立可否データを推論してもよい。 The inference device 10 may use the first trained model 201 and the second trained model 202 as described above to infer assembly feasibility data indicating whether the compressor 6 can be assembled, based on input data including at least one of data on individual variations of individual parts and data on the manufacture of the compressor 6. For example, the inference device 10 may use the first trained model 201 to infer data that may result from a combination of multiple parts, based on input data including at least one of data on individual variations of individual parts and data on the manufacture of the compressor 6, and may further use the second trained model 202 to infer assembly feasibility data indicating whether the compressor 6 can be assembled, based on input data including data that may result from a combination of multiple parts inferred using the first trained model 201.
 もちろん、推論装置10は、第1学習済モデル201および第2学習済モデル202といったように複数の学習済モデルを用いるのではなく、1つの学習済モデル20を用いて、単体部品の個体ばらつきに関するデータ、および圧縮機6の製造に関するデータのうちの少なくとも1つを含む入力データに基づき、圧縮機6の組立可否を示す組立可否データを推論してもよい。 Of course, the inference device 10 may use one trained model 20 to infer assembly feasibility data indicating whether the compressor 6 can be assembled based on input data including at least one of data on individual variations of individual components and data on the manufacture of the compressor 6, rather than using multiple trained models such as the first trained model 201 and the second trained model 202.
 <変形例>
 入力1に用いられる各部品のデータは、圧縮機6の製造時に実行される抜き取り検査によって得られたデータを用いてもよい。このようにすれば、製造された圧縮機6の数が多く、製造期間が長くなるほど、学習用データ30に用いられる多くの個体データを集めることができる。
<Modification>
The data of each part used in the input 1 may be data obtained by a sampling inspection carried out during the manufacture of the compressor 6. In this way, the more compressors 6 are manufactured and the longer the manufacturing period, the more individual data that can be used for the learning data 30 can be collected.
 入力1の単体部品の個体ばらつきに関する個体データは、圧縮機6における公差の範囲外の個体ばらつきを示すデータを含んでいてもよい。具体的には、事前に圧縮機6の性能が仕様の範囲外となる部品の組み合わせを敢えて試作し、得られた組立可否データと、使用した各部品の個体データとを含む学習用データを用いて、推論装置10の機械学習を行ってもよい。このように、敢えて公差の範囲外の個体ばらつきを示す個体データを学習用データ30に含ませることによって、推論装置10の推論精度を向上させることができる。圧縮機6の量産時においては、部品の個体ばらつきが中央値付近に集まるため、中央値付近から外れた部品は用いられない。すなわち、圧縮機6の量産時には中央値付近の部品寸法または隙間が多くなるため、抜き取り検査においても中央値付近の組立可否データが多くなる。よって、仮に仕様の上下限に近い部品寸法または隙間を用いて圧縮機6の性能を推論しようとした場合、推論装置10による推論精度が低下するおそれがある。このため、上述したように、圧縮機6における公差の範囲外の個体ばらつきを示す個体データを用いて機械学習を行うことによって、部品寸法または隙間が上下限に近い部品を用いた圧縮機6に対する組立可否データの推論精度を向上させることができる。 The individual data on the individual variation of the single component of the input 1 may include data showing individual variation outside the tolerance range of the compressor 6. Specifically, a combination of components that will cause the performance of the compressor 6 to be outside the specification range may be deliberately produced in advance, and the inference device 10 may perform machine learning using learning data including the obtained assembly feasibility data and the individual data of each component used. In this way, by deliberately including individual data showing individual variation outside the tolerance range in the learning data 30, the inference accuracy of the inference device 10 can be improved. During mass production of the compressor 6, the individual variation of the components gathers around the median, so components that deviate from the median are not used. In other words, during mass production of the compressor 6, there are many component dimensions or gaps around the median, so there is also a lot of assembly feasibility data around the median in sampling inspection. Therefore, if an attempt is made to infer the performance of the compressor 6 using component dimensions or gaps close to the upper and lower limits of the specifications, there is a risk that the inference accuracy of the inference device 10 will decrease. Therefore, as described above, by performing machine learning using individual data that indicates individual variations in the compressor 6 that are outside the tolerance range, it is possible to improve the accuracy of inferring assembly feasibility data for compressors 6 that use parts whose part dimensions or gaps are close to the upper and lower limits.
 推論装置10は、ネットワークを介して圧縮機6を制御する制御装置と通信可能に接続されたサーバ装置であってもよく、クラウドサーバであってもよい。また、推論装置10は、同一のエリアに存在する複数の圧縮機6から収集される入力データおよび組立可否データを学習用データ30として取得してもよいし、異なるエリアに存在する複数の圧縮機6から収集される入力データおよび組立可否データを学習用データ30として取得してもよい。また、その際はエリアの情報も学習用データ30に含ませることによってエリアの違いを考慮して機械学習を行うこともできる。このエリアとは、圧縮機6の性能を検査する検査装置の個体が異なる場合も異なるエリアとして扱ってもよい。また、ある圧縮機6に関して機械学習を行った後、他の圧縮機6に関して再度機械学習を行ってもよい。 The inference device 10 may be a server device communicatively connected to a control device that controls the compressor 6 via a network, or may be a cloud server. The inference device 10 may acquire input data and assembly feasibility data collected from multiple compressors 6 in the same area as the learning data 30, or may acquire input data and assembly feasibility data collected from multiple compressors 6 in different areas as the learning data 30. In this case, machine learning can be performed taking into account differences in areas by including area information in the learning data 30. The areas may be treated as different areas even if the individual inspection devices that inspect the performance of the compressors 6 are different. After machine learning is performed on a certain compressor 6, machine learning may be performed again on another compressor 6.
 推論装置10のモデル生成部112に用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習(Deep Learning)が用いられてもよいし、他の公知の方法が用いられてもよい。たとえば、モデル生成部112は、遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。 The learning algorithm used by the model generation unit 112 of the inference device 10 may be deep learning, which learns to extract the features themselves, or other known methods. For example, the model generation unit 112 may perform machine learning according to genetic programming, functional logic programming, support vector machines, etc.
 上述した推論装置10は、教師あり学習を用いていたが、教師なし学習、半教師あり学習、または強化学習などの公知の学習方法を用いてもよい。たとえば、教師なし学習を行う場合、推論装置10は、学習用データ30として、図13~図18に示す入力1の入力データのみを用いればよい。推論装置10は、学習フェーズにおいて、集めた入力データをクラスタリングすることによって、集めた入力データの特徴または傾向を学習する。そして、推論装置10は、活用フェーズにおいて、学習済モデル20を用いて、入力された入力データが所属するクラスを特定することによって、当該クラスに対応する圧縮機6の組立可否データを推論結果として出力すればよい。 The inference device 10 described above uses supervised learning, but known learning methods such as unsupervised learning, semi-supervised learning, or reinforcement learning may also be used. For example, when performing unsupervised learning, the inference device 10 may use only the input data of input 1 shown in Figures 13 to 18 as the learning data 30. In the learning phase, the inference device 10 learns the characteristics or trends of the collected input data by clustering the collected input data. Then, in the utilization phase, the inference device 10 uses the learned model 20 to identify the class to which the input data belongs, and outputs the assembly feasibility data of the compressor 6 corresponding to that class as the inference result.
 <まとめ>
 一態様に係る推論装置10は、冷媒を圧縮する圧縮機6の組立を許可するか否かに関する組立可否データを推論する。推論装置10は、組立可否データと相関のある入力データを取得するデータ取得部111と、入力データに基づき組立可否データを推論するための学習済モデル20を用いて、データ取得部111によって取得された入力データに基づき組立可否データを推論する推論部113とを備える。
<Summary>
An inference device 10 according to one embodiment infers assembly feasibility data regarding whether or not to permit assembly of a compressor 6 that compresses a refrigerant. The inference device 10 includes a data acquisition unit 111 that acquires input data correlated with the assembly feasibility data, and an inference unit 113 that infers the assembly feasibility data based on the input data acquired by the data acquisition unit 111, using a trained model 20 for inferring the assembly feasibility data based on the input data.
 上記の構成によれば、推論装置10は、学習済モデル20を用いて、圧縮機6の組立を許可するか否かと相関のある入力データに基づき圧縮機6の組立を許可するか否かに関する組立可否データを推論することができるため、圧縮機6の組立に係る無駄を省くことができる。 With the above configuration, the inference device 10 can use the trained model 20 to infer assembly feasibility data regarding whether or not assembly of the compressor 6 is permitted based on input data that is correlated with whether or not assembly of the compressor 6 is permitted, thereby eliminating waste related to the assembly of the compressor 6.
 圧縮機6は、冷媒を圧縮させるための圧縮機構部62と、圧縮機構部62に冷媒を圧縮させるための動力を供給する電動機61と、圧縮機構部62と電動機61とを接続するシャフト613と、圧縮機構部62、電動機61、およびシャフト613を収容するシェル60と、シェル60内に冷媒を吸入するアキュムレータ63とを備える。入力データは、圧縮機構部62、電動機61、シャフト613、シェル60、およびアキュムレータ63のうちの少なくとも1つの個体ばらつきを示す。 The compressor 6 includes a compression mechanism 62 for compressing the refrigerant, an electric motor 61 for supplying power to the compression mechanism 62 for compressing the refrigerant, a shaft 613 for connecting the compression mechanism 62 and the electric motor 61, a shell 60 for housing the compression mechanism 62, the electric motor 61, and the shaft 613, and an accumulator 63 for drawing the refrigerant into the shell 60. The input data indicates individual variations of at least one of the compression mechanism 62, the electric motor 61, the shaft 613, the shell 60, and the accumulator 63.
 上記の構成によれば、推論装置10は、圧縮機構部62、電動機61、シャフト613、シェル60、およびアキュムレータ63のうちの少なくとも1つの個体ばらつきに基づき、圧縮機6の組立可否データをユーザに確認させることができる。 With the above configuration, the inference device 10 can allow the user to check the assembly feasibility data of the compressor 6 based on the individual variation of at least one of the compression mechanism 62, the electric motor 61, the shaft 613, the shell 60, and the accumulator 63.
 圧縮機構部62は、シリンダ621と、電動機61からの動力に基づきシリンダ621の内周面に沿って回転するローリングピストン622と、シリンダ621の内周面とローリングピストン622の外周面とで形成される圧縮室630を吸入側と圧縮側とに分けるベーン625と、ローリングピストン622を上側から支持する上部フレーム623Aと、ローリングピストン622を下側から支持する下部フレーム623Bとを備える。入力データは、ローリングピストン622の寸法、シリンダ621の寸法、ベーン625の寸法、上部フレーム623Aの寸法、下部フレーム623Bの寸法、ローリングピストン622と上部フレーム623Aとの隙間の寸法、ローリングピストン622と下部フレーム623Bとの隙間の寸法、ローリングピストン622とシリンダ621との隙間の寸法、ベーン625とローリングピストン622との隙間の寸法、ベーン625とシリンダ621との隙間の寸法、ベーン625と上部フレーム623Aとの隙間の寸法、ベーン625と下部フレーム623Bとの隙間の寸法、シャフト613と上部フレーム623Aとの隙間の寸法、シャフト613と下部フレーム623Bとの隙間の寸法、上部フレーム623Aの中心軸と下部フレーム623Bの中心軸とのずれを示す値、およびシェル60の中心軸とシャフト613の中心軸とのずれを示す値のうちの少なくとも1つを含む。 The compression mechanism 62 comprises a cylinder 621, a rolling piston 622 that rotates along the inner surface of the cylinder 621 based on power from the electric motor 61, a vane 625 that divides the compression chamber 630 formed by the inner surface of the cylinder 621 and the outer surface of the rolling piston 622 into a suction side and a compression side, an upper frame 623A that supports the rolling piston 622 from above, and a lower frame 623B that supports the rolling piston 622 from below. The input data includes at least one of the following: the dimensions of the rolling piston 622, the dimensions of the cylinder 621, the dimensions of the vane 625, the dimensions of the upper frame 623A, the dimensions of the lower frame 623B, the dimensions of the gap between the rolling piston 622 and the upper frame 623A, the dimensions of the gap between the rolling piston 622 and the lower frame 623B, the dimensions of the gap between the rolling piston 622 and the cylinder 621, the dimensions of the gap between the vane 625 and the rolling piston 622, the dimensions of the gap between the vane 625 and the cylinder 621, the dimensions of the gap between the vane 625 and the upper frame 623A, the dimensions of the gap between the vane 625 and the lower frame 623B, the dimensions of the gap between the shaft 613 and the upper frame 623A, the dimensions of the gap between the shaft 613 and the lower frame 623B, a value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B, and a value indicating the deviation between the central axis of the shell 60 and the central axis of the shaft 613.
 上記の構成によれば、推論装置10は、ローリングピストン622の寸法、シリンダ621の寸法、ベーン625の寸法、上部フレーム623Aの寸法、下部フレーム623Bの寸法、ローリングピストン622と上部フレーム623Aとの隙間の寸法、ローリングピストン622と下部フレーム623Bとの隙間の寸法、ローリングピストン622とシリンダ621との隙間の寸法、ベーン625とローリングピストン622との隙間の寸法、ベーン625とシリンダ621との隙間の寸法、ベーン625と上部フレーム623Aとの隙間の寸法、ベーン625と下部フレーム623Bとの隙間の寸法、シャフト613と上部フレーム623Aとの隙間の寸法、シャフト613と下部フレーム623Bとの隙間の寸法、上部フレーム623Aの中心軸と下部フレーム623Bの中心軸とのずれを示す値、およびシェル60の中心軸とシャフト613の中心軸とのずれを示す値のうちの少なくとも1つに基づき、圧縮機6の組立可否データをユーザに確認させることができる。 According to the above configuration, the inference device 10 can calculate the dimensions of the rolling piston 622, the dimensions of the cylinder 621, the dimensions of the vane 625, the dimensions of the upper frame 623A, the dimensions of the lower frame 623B, the dimensions of the gap between the rolling piston 622 and the upper frame 623A, the dimensions of the gap between the rolling piston 622 and the lower frame 623B, the dimensions of the gap between the rolling piston 622 and the cylinder 621, the dimensions of the gap between the vane 625 and the rolling piston 622, and the dimensions of the gap between the vane 625 and the cylinder 621. The user can confirm the assembly feasibility data for the compressor 6 based on at least one of the following: the dimension, the dimension of the gap between the vane 625 and the upper frame 623A, the dimension of the gap between the vane 625 and the lower frame 623B, the dimension of the gap between the shaft 613 and the upper frame 623A, the dimension of the gap between the shaft 613 and the lower frame 623B, a value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B, and a value indicating the deviation between the central axis of the shell 60 and the central axis of the shaft 613.
 電動機61は、固定子611と、固定子611に巻き付けられた巻線615と、固定子611の内側に設けられた回転子612とを備える。入力データは、固定子611の外径の寸法、固定子611の内径の寸法、固定子611の幅の寸法、回転子612の外径の寸法、回転子612の内径の寸法、巻線615に鎖交する回転子612の磁束量、巻線615の抵抗値、および固定子611と回転子612との焼き嵌め代のうちの少なくとも1つを含む。 The electric motor 61 includes a stator 611, a winding 615 wound around the stator 611, and a rotor 612 provided inside the stator 611. The input data includes at least one of the following: the outer diameter of the stator 611, the inner diameter of the stator 611, the width of the stator 611, the outer diameter of the rotor 612, the inner diameter of the rotor 612, the amount of magnetic flux of the rotor 612 interlinked with the winding 615, the resistance of the winding 615, and the shrink fit between the stator 611 and the rotor 612.
 上記の構成によれば、推論装置10は、圧縮機構部62、固定子611の外径の寸法、固定子611の内径の寸法、固定子611の幅の寸法、回転子612の外径の寸法、回転子612の内径の寸法、巻線615に鎖交する回転子612の磁束量、巻線615の抵抗値、および固定子611と回転子612との焼き嵌め代のうちの少なくとも1つに基づき、圧縮機6の組立可否データをユーザに確認させることができる。 With the above configuration, the inference device 10 can allow the user to confirm the assembly feasibility data of the compressor 6 based on at least one of the compression mechanism 62, the outer diameter of the stator 611, the inner diameter of the stator 611, the width of the stator 611, the outer diameter of the rotor 612, the inner diameter of the rotor 612, the amount of magnetic flux of the rotor 612 interlinked with the windings 615, the resistance value of the windings 615, and the shrink fit between the stator 611 and the rotor 612.
 入力データは、複数の部品を加工または組み合わせて圧縮機6を製造するための製造装置の識別情報、製造装置に生じる電流、製造装置に生じる電圧、製造装置に生じる騒音、製造装置に生じる振動、圧縮機6の製造に要する時間、圧縮機6の製造時における溶接の温度、溶接における溶接量、圧縮機6の製造現場の温度、および製造現場の湿度のうちの少なくとも1つを含む。 The input data includes at least one of the following: identification information of a manufacturing device for manufacturing the compressor 6 by processing or combining multiple parts; the current generated in the manufacturing device; the voltage generated in the manufacturing device; the noise generated in the manufacturing device; the vibration generated in the manufacturing device; the time required to manufacture the compressor 6; the welding temperature during the manufacturing of the compressor 6; the welding amount during welding; the temperature at the manufacturing site of the compressor 6; and the humidity at the manufacturing site.
 上記の構成によれば、推論装置10は、製造装置の識別情報、製造装置に生じる電流、製造装置に生じる電圧、製造装置に生じる騒音、製造装置に生じる振動、圧縮機6の製造に要する時間、圧縮機6の製造時における溶接の温度、溶接における溶接量、圧縮機6の製造現場の温度、および製造現場の湿度のうちの少なくとも1つに基づき、圧縮機6の組立可否データをユーザに確認させることができる。 With the above configuration, the inference device 10 can allow the user to confirm the assembly feasibility data for the compressor 6 based on at least one of the identification information of the manufacturing equipment, the current generated in the manufacturing equipment, the voltage generated in the manufacturing equipment, the noise generated in the manufacturing equipment, the vibration generated in the manufacturing equipment, the time required to manufacture the compressor 6, the welding temperature during the manufacturing of the compressor 6, the welding amount during welding, the temperature at the manufacturing site of the compressor 6, and the humidity at the manufacturing site.
 組立可否データは、圧縮機6が備える電動機61の固定子611と回転子612との間の空隙の寸法、圧縮機6の密閉性を示す値、圧縮機6における溶接状態を示す値、圧縮機6の騒音を示す騒音データ、圧縮機6の振動を示す振動データ、および圧縮機6の性能のうちの少なくとも1つを含む。 The assembly feasibility data includes at least one of the following: the size of the gap between the stator 611 and rotor 612 of the electric motor 61 of the compressor 6, a value indicating the airtightness of the compressor 6, a value indicating the welding condition of the compressor 6, noise data indicating the noise of the compressor 6, vibration data indicating the vibration of the compressor 6, and the performance of the compressor 6.
 上記の構成によれば、推論装置10は、圧縮機6の入力データに基づき、固定子611と回転子612との間の空隙の寸法、圧縮機6の密閉性を示す値、圧縮機6における溶接状態を示す値、圧縮機6の騒音を示す騒音データ、圧縮機6の振動を示す振動データ、および圧縮機6の性能のうちの少なくとも1つをユーザに確認させることができる。 With the above configuration, the inference device 10 can allow the user to confirm at least one of the following based on the input data of the compressor 6: the dimension of the gap between the stator 611 and the rotor 612, a value indicating the airtightness of the compressor 6, a value indicating the welding condition of the compressor 6, noise data indicating the noise of the compressor 6, vibration data indicating the vibration of the compressor 6, and the performance of the compressor 6.
 組立可否データは、複数の部品を組み合わせることによって生じる組み合わせデータを含む。 Assembly feasibility data includes combination data that is generated by combining multiple parts.
 上記の構成によれば、推論装置10は、圧縮機6の入力データに基づき、複数の部品を組み合わせることによって生じる組み合わせデータをユーザに確認させることができる。 With the above configuration, the inference device 10 can allow the user to check combination data that is generated by combining multiple parts based on the input data of the compressor 6.
 圧縮機6は、冷媒を圧縮させるための圧縮機構部62と、圧縮機構部62に冷媒を圧縮させるための動力を供給する電動機61と、圧縮機構部62と電動機61とを接続するシャフト613と、圧縮機構部62、電動機61、およびシャフト613を収容するシェル60と、シェル60内に冷媒を吸入するアキュムレータ63とを備える。圧縮機構部62は、シリンダ621と、電動機61からの動力に基づきシリンダ621の内周面に沿って回転するローリングピストン622と、シリンダ621の内周面とローリングピストン622の外周面とで形成される圧縮室630を吸入側と圧縮側とに分けるベーン625と、ローリングピストン622を上側から支持する上部フレーム623Aと、ローリングピストン622を下側から支持する下部フレーム623Bとを備える。電動機61は、固定子611と、固定子611に巻き付けられた巻線615と、固定子611の内側に設けられた回転子612とを備える。組み合わせデータは、ローリングピストン622と上部フレーム623Aとの隙間の寸法、ローリングピストン622と下部フレーム623Bとの隙間の寸法、ローリングピストン622とシリンダ621との隙間の寸法、ベーン625とローリングピストン622との隙間の寸法、ベーン625とシリンダ621との隙間の寸法、ベーン625と上部フレーム623Aとの隙間の寸法、ベーン625と下部フレーム623Bとの隙間の寸法、シャフト613と上部フレーム623Aとの隙間の寸法、シャフト613と下部フレーム623Bとの隙間の寸法、上部フレーム623Aの中心軸と下部フレーム623Bの中心軸とのずれを示す値、およびシェル60の中心軸とシャフト613の中心軸とのずれを示す値、固定子611と回転子612との焼き嵌め代、溶接後のシェル60の寸法、および溶接後のアキュムレータ63の寸法のうちの少なく1つを含む。 The compressor 6 includes a compression mechanism 62 for compressing the refrigerant, an electric motor 61 for supplying power to the compression mechanism 62 for compressing the refrigerant, a shaft 613 for connecting the compression mechanism 62 and the electric motor 61, a shell 60 for housing the compression mechanism 62, the electric motor 61, and the shaft 613, and an accumulator 63 for drawing the refrigerant into the shell 60. The compression mechanism 62 includes a cylinder 621, a rolling piston 622 that rotates along the inner circumferential surface of the cylinder 621 based on power from the electric motor 61, a vane 625 that divides the compression chamber 630 formed by the inner circumferential surface of the cylinder 621 and the outer circumferential surface of the rolling piston 622 into a suction side and a compression side, an upper frame 623A that supports the rolling piston 622 from above, and a lower frame 623B that supports the rolling piston 622 from below. The electric motor 61 includes a stator 611 , a winding 615 wound around the stator 611 , and a rotor 612 provided inside the stator 611 . The combination data includes at least one of the following: the gap size between the rolling piston 622 and the upper frame 623A, the gap size between the rolling piston 622 and the lower frame 623B, the gap size between the rolling piston 622 and the cylinder 621, the gap size between the vane 625 and the rolling piston 622, the gap size between the vane 625 and the cylinder 621, the gap size between the vane 625 and the upper frame 623A, the gap size between the vane 625 and the lower frame 623B, the gap size between the shaft 613 and the upper frame 623A, the gap size between the shaft 613 and the lower frame 623B, a value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B, a value indicating the deviation between the central axis of the shell 60 and the central axis of the shaft 613, the shrink fit between the stator 611 and the rotor 612, the dimensions of the shell 60 after welding, and the dimensions of the accumulator 63 after welding.
 上記の構成によれば、推論装置10は、圧縮機6の入力データに基づき、ローリングピストン622と上部フレーム623Aとの隙間の寸法、ローリングピストン622と下部フレーム623Bとの隙間の寸法、ローリングピストン622とシリンダ621との隙間の寸法、ベーン625とローリングピストン622との隙間の寸法、ベーン625とシリンダ621との隙間の寸法、ベーン625と上部フレーム623Aとの隙間の寸法、ベーン625と下部フレーム623Bとの隙間の寸法、シャフト613と上部フレーム623Aとの隙間の寸法、シャフト613と下部フレーム623Bとの隙間の寸法、上部フレーム623Aの中心軸と下部フレーム623Bの中心軸とのずれを示す値、およびシェル60の中心軸とシャフト613の中心軸とのずれを示す値、固定子611と回転子612との焼き嵌め代、溶接後のシェル60の寸法、および溶接後のアキュムレータ63の寸法のうちの少なく1つをユーザに確認させることができる。 With the above configuration, the inference device 10, based on the input data of the compressor 6, determines the size of the gap between the rolling piston 622 and the upper frame 623A, the size of the gap between the rolling piston 622 and the lower frame 623B, the size of the gap between the rolling piston 622 and the cylinder 621, the size of the gap between the vane 625 and the rolling piston 622, the size of the gap between the vane 625 and the cylinder 621, the size of the gap between the vane 625 and the upper frame 623A, the size of the gap between the vane 625 and the lower frame 623B, The user can confirm at least one of the following: the size of the gap between the stator 611 and the rotor 612; the size of the gap between the shaft 613 and the upper frame 623A; the size of the gap between the shaft 613 and the lower frame 623B; the value indicating the deviation between the central axis of the upper frame 623A and the central axis of the lower frame 623B; the value indicating the deviation between the central axis of the shell 60 and the central axis of the shaft 613; the shrink fit between the stator 611 and the rotor 612; the dimensions of the shell 60 after welding; and the dimensions of the accumulator 63 after welding.
 学習済モデル20は、第1学習済モデル201と第2学習済モデル202とを含む。推論部113は、第1学習済モデル201を用いて、データ取得部111によって取得された入力データに基づき組み合わせデータを推論し、第2学習済モデル202を用いて、組立可否データを推論する。 The trained model 20 includes a first trained model 201 and a second trained model 202. The inference unit 113 uses the first trained model 201 to infer combination data based on the input data acquired by the data acquisition unit 111, and uses the second trained model 202 to infer assembly feasibility data.
 上記の構成によれば、推論装置10は、第1学習済モデル201および第2学習済モデル202を用いて、圧縮機6の入力データに基づき、圧縮機6の組立可否データをユーザに確認させることができる。 With the above configuration, the inference device 10 can use the first trained model 201 and the second trained model 202 to allow the user to confirm the assembly feasibility data of the compressor 6 based on the input data of the compressor 6.
 推論部113は、学習済モデル20を用いて、データ取得部111によって取得された入力データに基づき組立可否データとして圧縮機の組立を許可するか否かを推論する。 The inference unit 113 uses the trained model 20 to infer whether or not assembly of the compressor is permitted based on the input data acquired by the data acquisition unit 111 as assembly feasibility data.
 上記の構成によれば、推論装置10は、圧縮機6の入力データに基づき、圧縮機6の組立を許可するか否かをユーザに確認させることができる。 With the above configuration, the inference device 10 can prompt the user to confirm whether or not to allow assembly of the compressor 6 based on the input data of the compressor 6.
 一態様に係る推論方法は、冷媒を圧縮する圧縮機6の組立を許可するか否かに関する組立可否データをコンピュータによって推論する推論方法である。推論方法は、コンピュータが実行する処理として、組立可否データと相関のある入力データを取得するステップ(S11)と、入力データに基づき組立可否データを推論するための学習済モデル20を用いて、取得するステップによって取得された入力データに基づき組立可否データを推論するステップ(S13)とを含む。 The inference method according to one embodiment is an inference method in which a computer infers assembly feasibility data regarding whether or not assembly of a compressor 6 that compresses a refrigerant is permitted. The inference method includes, as processing executed by the computer, a step (S11) of acquiring input data correlated with the assembly feasibility data, and a step (S13) of inferring the assembly feasibility data based on the input data acquired in the acquiring step, using a trained model 20 for inferring the assembly feasibility data based on the input data.
 上記の構成によれば、コンピュータは、学習済モデル20を用いて、圧縮機6の組立を許可するか否かと相関のある入力データに基づき圧縮機6の組立を許可するか否かに関する組立可否データを推論することができるため、圧縮機6の組立に係る無駄を省くことができる。 With the above configuration, the computer can use the trained model 20 to infer assembly feasibility data regarding whether or not assembly of the compressor 6 is permitted based on input data that is correlated with whether or not assembly of the compressor 6 is permitted, thereby eliminating waste associated with the assembly of the compressor 6.
 一態様に係る圧縮機6の製造方法は、コンピュータが実行する処理として、第1部品に第2部品を組み合わせるステップ(S21)と、第1部品の個体ばらつきを示すデータおよび第2部品の個体ばらつきを示すデータと、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータとのうちの少なくとも1つの入力データに基づき、入力データに基づき圧縮機6の組立を許可するか否かに関する組立可否データを推論するための学習済モデル20を用いて、組立可否データを推論するステップ(S22)とを含む。 The manufacturing method of the compressor 6 according to one embodiment includes, as a process executed by a computer, a step (S21) of combining a first part with a second part, and a step (S22) of inferring assembly feasibility data based on at least one of input data of data indicating individual variations of the first part, data indicating individual variations of the second part, and data indicating individual variations of a combined part formed by combining the first part and the second part, using a trained model 20 for inferring assembly feasibility data regarding whether or not assembly of the compressor 6 is permitted based on the input data.
 上記の構成によれば、コンピュータは、圧縮機6の製造工程において、学習済モデル20を用いて、圧縮機6を構成する第1部品および第2部品の個体ばらつきを示すデータに基づき、圧縮機6の組立を許可するか否かに関する組立可否データを推論することができるため、圧縮機6の組立に係る無駄を省くことができる。 With the above configuration, during the manufacturing process of the compressor 6, the computer can use the trained model 20 to infer assembly feasibility data regarding whether or not assembly of the compressor 6 is permitted based on data indicating individual variations of the first and second parts that constitute the compressor 6, thereby eliminating waste associated with the assembly of the compressor 6.
 一態様に係る圧縮機6の製造方法は、コンピュータが実行する処理として、第1部品に第2部品を組み合わせるステップ(S31)と、第1部品の個体ばらつきを示すデータおよび第2部品の個体ばらつきを示すデータと、第1部品と第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータとのうちの少なくとも1つと、組み合わせ部品に組み合わせる予定の第3部品の個体ばらつきを示すデータとを含む入力データに基づき、入力データに基づき圧縮機の組立を許可するか否かに関する組立可否データを推論するための学習済モデルを用いて、組立可否データを推論するステップ(S33)とを含む。 The manufacturing method of a compressor 6 according to one embodiment includes, as a process executed by a computer, a step (S31) of combining a first part with a second part, and a step (S33) of inferring assembly feasibility data based on input data including at least one of data indicating individual variations of the first part and data indicating individual variations of the second part, data indicating individual variations of a combined part formed by combining the first part and the second part, and data indicating individual variations of a third part to be combined with the combined part, using a trained model for inferring assembly feasibility data regarding whether or not assembly of a compressor is permitted based on the input data.
 上記の構成によれば、コンピュータは、圧縮機6の製造工程において、学習済モデル20を用いて、圧縮機6を構成する第1部品および第2部品の個体ばらつきを示すデータに加えて、組み合わせが予定されている第3部品の個体ばらつきを示すデータに基づき、圧縮機6の組立を許可するか否かに関する組立可否データを推論することができるため、圧縮機6の組立に係る無駄を省くことができる。 With the above configuration, during the manufacturing process of the compressor 6, the computer can use the trained model 20 to infer assembly feasibility data regarding whether or not to permit assembly of the compressor 6 based on data indicating the individual variations of the first and second parts that make up the compressor 6, as well as data indicating the individual variations of the third part that is planned to be combined with the first and second parts, thereby eliminating waste associated with the assembly of the compressor 6.
 推論するステップによって圧縮機6の組立を許可しないと推論された場合に、組み合わせ部品に組み合わせる予定の第3部品を他の第3部品に変更するステップ(S38)をさらに含む。  Further includes a step (S38) of changing the third part to be combined with the combination part to another third part when the inference step infers that assembly of the compressor 6 is not permitted.
 上記の構成によれば、コンピュータは、圧縮機6の製造工程において、圧縮機6の組立を許可しないと推論された場合に、組み合わせ部品に組み合わせる予定の第3部品を他の第3部品に変更することができるため、組み合わせ部品を手直しで修正したり、組み合わせ部品を廃棄したりするために要する時間、および組み合わせ部品が無駄になってしまうことを防止することができる。 With the above configuration, if the computer infers that assembly of the compressor 6 is not permitted during the manufacturing process of the compressor 6, it can change the third part that is to be combined with the combined part to another third part, thereby preventing the time required to rework or discard the combined part and preventing the combined part from being wasted.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. The scope of the present disclosure is indicated by the claims, not by the description of the embodiments above, and is intended to include all modifications within the meaning and scope of the claims.
 6 圧縮機、10 推論装置、11 制御部、12 記憶部、13 入力部、20 学習済モデル、30 学習用データ、40 学習用プログラム、60 シェル、60A,60B,60C シェル部品、61 電動機、62 圧縮機構部、63 アキュムレータ、64 吸入管、65 供給管、66 吐出管、67 ガラス端子、110 学習装置、111 データ取得部、112 モデル生成部、113 推論部、121 学習用プログラム記憶部、122 学習済モデル記憶部、201 第1学習済モデル、202 第2学習済モデル、610 固定子コア、611 固定子、612 回転子、613 シャフト、613A 上側シャフト部、613B 下側シャフト部、614 スロット、615 巻線、616,627 シャフト穴部、617 風穴部、618 永久磁石、619 中央穴部、621 シリンダ、622 ローリングピストン、623A 上部フレーム、623B 下部フレーム、624 ベーン溝、624A 上部マフラ、624B 下部マフラ、625 ベーン、626 偏心軸部、628 背圧室、630 圧縮室。 6 Compressor, 10 Inference device, 11 Control unit, 12 Memory unit, 13 Input unit, 20 Learned model, 30 Learning data, 40 Learning program, 60 Shell, 60A, 60B, 60C Shell parts, 61 Electric motor, 62 Compression mechanism unit, 63 Accumulator, 64 Suction pipe, 65 Supply pipe, 66 Discharge pipe, 67 Glass terminal, 110 Learning device, 111 Data acquisition unit, 112 Model generation unit, 113 Inference unit, 121 Learning program memory unit, 122 Learned model memory unit, 201 First learned model, 202 Second 2 trained model, 610 stator core, 611 stator, 612 rotor, 613 shaft, 613A upper shaft section, 613B lower shaft section, 614 slot, 615 winding, 616, 627 shaft hole section, 617 air hole section, 618 permanent magnet, 619 central hole section, 621 cylinder, 622 rolling piston, 623A upper frame, 623B lower frame, 624 vane groove, 624A upper muffler, 624B lower muffler, 625 vane, 626 eccentric shaft section, 628 back pressure chamber, 630 compression chamber.

Claims (14)

  1.  冷媒を圧縮する圧縮機の組立を許可するか否かに関する組立可否データを推論する推論装置であって、
     前記組立可否データと相関のある入力データを取得するデータ取得部と、
     前記入力データに基づき前記組立可否データを推論するための学習済モデルを用いて、前記データ取得部によって取得された前記入力データに基づき前記組立可否データを推論する推論部とを備える、推論装置。
    An inference device that infers assembly feasibility data regarding whether or not assembly of a compressor that compresses a refrigerant is permitted,
    A data acquisition unit that acquires input data correlated with the assembly feasibility data;
    an inference unit that infers the assembly possible/prohibited data based on the input data acquired by the data acquisition unit, using a trained model for inferring the assembly possible/prohibited data based on the input data.
  2.  前記圧縮機は、前記冷媒を圧縮させるための圧縮機構部と、前記圧縮機構部に前記冷媒を圧縮させるための動力を供給する電動機と、前記圧縮機構部と前記電動機とを接続するシャフトと、前記圧縮機構部、前記電動機、および前記シャフトを収容するシェルと、前記シェル内に冷媒を吸入するアキュムレータとを備え、
     前記入力データは、前記圧縮機構部、前記電動機、前記シャフト、前記シェル、および前記アキュムレータのうちの少なくとも1つの個体ばらつきを示す、請求項1に記載の推論装置。
    The compressor includes a compression mechanism for compressing the refrigerant, an electric motor for supplying power to the compression mechanism for compressing the refrigerant, a shaft for connecting the compression mechanism and the electric motor, a shell for accommodating the compression mechanism, the electric motor, and the shaft, and an accumulator for drawing the refrigerant into the shell,
    The inference device according to claim 1 , wherein the input data indicates individual variations of at least one of the compression mechanism, the electric motor, the shaft, the shell, and the accumulator.
  3.  前記圧縮機構部は、シリンダと、前記電動機からの前記動力に基づき前記シリンダの内周面に沿って回転するローリングピストンと、前記シリンダの内周面と前記ローリングピストンの外周面とで形成される圧縮室を吸入側と圧縮側とに分けるベーンと、前記ローリングピストンを上側から支持する上部フレームと、前記ローリングピストンを下側から支持する下部フレームとを備え、
     前記入力データは、前記ローリングピストンの寸法、前記シリンダの寸法、前記ベーンの寸法、前記上部フレームの寸法、前記下部フレームの寸法、前記ローリングピストンと前記上部フレームとの隙間の寸法、前記ローリングピストンと前記下部フレームとの隙間の寸法、前記ローリングピストンと前記シリンダとの隙間の寸法、前記ベーンと前記ローリングピストンとの隙間の寸法、前記ベーンと前記シリンダとの隙間の寸法、前記ベーンと前記上部フレームとの隙間の寸法、前記ベーンと前記下部フレームとの隙間の寸法、前記シャフトと前記上部フレームとの隙間の寸法、前記シャフトと前記下部フレームとの隙間の寸法、前記上部フレームの中心軸と前記下部フレームの中心軸とのずれを示す値、および前記シェルの中心軸と前記シャフトの中心軸とのずれを示す値のうちの少なくとも1つを含む、請求項2に記載の推論装置。
    the compression mechanism includes a cylinder, a rolling piston that rotates along an inner peripheral surface of the cylinder based on the power from the electric motor, a vane that divides a compression chamber formed by the inner peripheral surface of the cylinder and the outer peripheral surface of the rolling piston into a suction side and a compression side, an upper frame that supports the rolling piston from above, and a lower frame that supports the rolling piston from below,
    3. The inference apparatus of claim 2, wherein the input data includes at least one of a dimension of the rolling piston, a dimension of the cylinder, a dimension of the vane, a dimension of the upper frame, a dimension of the lower frame, a gap dimension between the rolling piston and the upper frame, a gap dimension between the rolling piston and the lower frame, a gap dimension between the rolling piston and the cylinder, a gap dimension between the vane and the rolling piston, a gap dimension between the vane and the cylinder, a gap dimension between the vane and the upper frame, a gap dimension between the vane and the lower frame, a gap dimension between the shaft and the upper frame, a gap dimension between the shaft and the lower frame, a value indicating a deviation between a central axis of the upper frame and a central axis of the lower frame, and a value indicating a deviation between a central axis of the shell and a central axis of the shaft.
  4.  前記電動機は、固定子と、前記固定子に巻き付けられた巻線と、前記固定子の内側に設けられた回転子とを備え、
     前記入力データは、前記固定子の外径の寸法、前記固定子の内径の寸法、前記固定子の幅の寸法、前記回転子の外径の寸法、前記回転子の内径の寸法、前記巻線に鎖交する前記回転子の磁束量、前記巻線の抵抗値、および前記固定子と前記回転子との焼き嵌め代のうちの少なくとも1つを含む、請求項2または請求項3に記載の推論装置。
    The electric motor includes a stator, a winding wound around the stator, and a rotor provided inside the stator,
    4. The inference device according to claim 2 or claim 3, wherein the input data includes at least one of an outer diameter dimension of the stator, an inner diameter dimension of the stator, a width dimension of the stator, an outer diameter dimension of the rotor, an inner diameter dimension of the rotor, an amount of magnetic flux of the rotor interlinked with the winding, a resistance value of the winding, and a shrink fit between the stator and the rotor.
  5.  前記入力データは、複数の部品を加工または組み合わせて前記圧縮機を製造するための製造装置の識別情報、前記製造装置に生じる電流、前記製造装置に生じる電圧、前記製造装置に生じる騒音、前記製造装置に生じる振動、前記圧縮機の製造に要する時間、前記圧縮機の製造時における溶接の温度、前記溶接における溶接量、前記圧縮機の製造現場の温度、および前記製造現場の湿度のうちの少なくとも1つを含む、請求項1~請求項4のいずれか1項に記載の推論装置。 The inference device according to any one of claims 1 to 4, wherein the input data includes at least one of the following: identification information of a manufacturing device for manufacturing the compressor by processing or combining a plurality of parts; a current generated in the manufacturing device; a voltage generated in the manufacturing device; a noise generated in the manufacturing device; a vibration generated in the manufacturing device; a time required to manufacture the compressor; a welding temperature during the manufacturing of the compressor; a welding amount in the welding; a temperature at the manufacturing site of the compressor; and a humidity at the manufacturing site.
  6.  前記組立可否データは、前記圧縮機が備える電動機の固定子と回転子との間の空隙の寸法、前記圧縮機の密閉性を示す値、前記圧縮機における溶接状態を示す値、前記圧縮機の騒音を示す騒音データ、前記圧縮機の振動を示す振動データ、および前記圧縮機の性能のうちの少なくとも1つを含む、請求項1~請求項5のいずれか1項に記載の推論装置。 The inference device according to any one of claims 1 to 5, wherein the assembly feasibility data includes at least one of the following: the size of the gap between the stator and rotor of the electric motor included in the compressor, a value indicating the airtightness of the compressor, a value indicating the welding condition of the compressor, noise data indicating the noise of the compressor, vibration data indicating the vibration of the compressor, and performance of the compressor.
  7.  前記組立可否データは、複数の部品を組み合わせることによって生じる組み合わせデータを含む、請求項1~請求項6のいずれか1項に記載の推論装置。 The inference device according to any one of claims 1 to 6, wherein the assembly feasibility data includes combination data resulting from combining multiple parts.
  8.  前記圧縮機は、前記冷媒を圧縮させるための圧縮機構部と、前記圧縮機構部に前記冷媒を圧縮させるための動力を供給する電動機と、前記圧縮機構部と前記電動機とを接続するシャフトと、前記圧縮機構部、前記電動機、および前記シャフトを収容するシェルと、前記シェル内に冷媒を吸入するアキュムレータとを備え、
     前記圧縮機構部は、シリンダと、前記電動機からの前記動力に基づき前記シリンダの内周面に沿って回転するローリングピストンと、前記シリンダの内周面と前記ローリングピストンの外周面とで形成される圧縮室を吸入側と圧縮側とに分けるベーンと、前記ローリングピストンを上側から支持する上部フレームと、前記ローリングピストンを下側から支持する下部フレームとを備え、
     前記電動機は、固定子と、前記固定子に巻き付けられた巻線と、前記固定子の内側に設けられた回転子とを備え、
     前記組み合わせデータは、前記ローリングピストンと前記上部フレームとの隙間の寸法、前記ローリングピストンと前記下部フレームとの隙間の寸法、前記ローリングピストンと前記シリンダとの隙間の寸法、前記ベーンと前記ローリングピストンとの隙間の寸法、前記ベーンと前記シリンダとの隙間の寸法、前記ベーンと前記上部フレームとの隙間の寸法、前記ベーンと前記下部フレームとの隙間の寸法、前記シャフトと前記上部フレームとの隙間の寸法、前記シャフトと前記下部フレームとの隙間の寸法、前記上部フレームの中心軸と前記下部フレームの中心軸とのずれを示す値、および前記シェルの中心軸と前記シャフトの中心軸とのずれを示す値、前記固定子と前記回転子との焼き嵌め代、溶接後の前記シェルの寸法、および前記溶接後の前記アキュムレータの寸法のうちの少なく1つを含む、請求項7に記載の推論装置。
    The compressor includes a compression mechanism for compressing the refrigerant, an electric motor for supplying power to the compression mechanism for compressing the refrigerant, a shaft for connecting the compression mechanism and the electric motor, a shell for accommodating the compression mechanism, the electric motor, and the shaft, and an accumulator for drawing the refrigerant into the shell,
    the compression mechanism includes a cylinder, a rolling piston that rotates along an inner peripheral surface of the cylinder based on the power from the electric motor, a vane that divides a compression chamber formed by the inner peripheral surface of the cylinder and the outer peripheral surface of the rolling piston into a suction side and a compression side, an upper frame that supports the rolling piston from above, and a lower frame that supports the rolling piston from below,
    The electric motor includes a stator, a winding wound around the stator, and a rotor provided inside the stator,
    8. The inference device of claim 7, wherein the combination data includes at least one of a gap dimension between the rolling piston and the upper frame, a gap dimension between the rolling piston and the lower frame, a gap dimension between the rolling piston and the cylinder, a gap dimension between the vane and the rolling piston, a gap dimension between the vane and the cylinder, a gap dimension between the vane and the upper frame, a gap dimension between the vane and the lower frame, a gap dimension between the shaft and the upper frame, a gap dimension between the shaft and the lower frame, a value indicating a deviation between a central axis of the upper frame and a central axis of the lower frame, and a value indicating a deviation between a central axis of the shell and a central axis of the shaft, a shrink fit between the stator and the rotor, a dimension of the shell after welding, and a dimension of the accumulator after welding.
  9.  前記学習済モデルは、第1学習済モデルと第2学習済モデルとを含み、
     前記推論部は、
     前記第1学習済モデルを用いて、前記データ取得部によって取得された前記入力データに基づき前記組み合わせデータを推論し、
     前記第2学習済モデルを用いて、前記組み合わせデータに基づき前記組立可否データを推論する、請求項7または請求項8に記載の推論装置。
    The trained model includes a first trained model and a second trained model,
    The inference unit is
    Using the first trained model, inferring the combination data based on the input data acquired by the data acquisition unit;
    The inference device according to claim 7 or claim 8, wherein the assembly feasibility data is inferred based on the combination data by using the second trained model.
  10.  前記推論部は、前記学習済モデルを用いて、前記データ取得部によって取得された前記入力データに基づき前記組立可否データとして前記圧縮機の組立を許可するか否かを推論する、請求項1~請求項9のいずれか1項に記載の推論装置。 The inference device according to any one of claims 1 to 9, wherein the inference unit uses the trained model to infer whether or not assembly of the compressor is permitted as the assembly feasibility data based on the input data acquired by the data acquisition unit.
  11.  冷媒を圧縮する圧縮機の組立を許可するか否かに関する組立可否データをコンピュータによって推論する推論方法であって、
     前記コンピュータが実行する処理として、
     前記組立可否データと相関のある入力データを取得するステップと、
     前記入力データに基づき前記組立可否データを推論するための学習済モデルを用いて、前記取得するステップによって取得された前記入力データに基づき前記組立可否データを推論するステップとを含む、推論方法。
    An inference method for inferring assembly feasibility data regarding whether or not assembly of a compressor that compresses a refrigerant is permitted, by a computer, comprising:
    The process executed by the computer is
    acquiring input data correlated with the assembly feasibility data;
    and inferring the assembly feasibility data based on the input data acquired by the acquiring step, using a trained model for inferring the assembly feasibility data based on the input data.
  12.  コンピュータによる圧縮機の製造方法であって、
     前記コンピュータが実行する処理として、
     第1部品に第2部品を組み合わせるステップと、
     前記第1部品の個体ばらつきを示すデータおよび前記第2部品の個体ばらつきを示すデータと、前記第1部品と前記第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータとのうちの少なくとも1つの入力データに基づき、前記入力データに基づき前記圧縮機の組立を許可するか否かに関する組立可否データを推論するための学習済モデルを用いて、前記組立可否データを推論するステップとを含む、圧縮機の製造方法。
    1. A computer-implemented method for manufacturing a compressor, comprising:
    The process executed by the computer is
    combining a second part with the first part;
    inferring assembly feasibility data regarding whether or not assembly of the compressor is permitted based on at least one input data of data indicating individual variations of the first part, data indicating individual variations of the second part, and data indicating individual variations of a combined part obtained by combining the first part and the second part, using a trained model for inferring assembly feasibility data regarding whether or not assembly of the compressor is permitted based on the input data.
  13.  コンピュータによる圧縮機の製造方法であって、
     前記コンピュータが実行する処理として、
     第1部品に第2部品を組み合わせるステップと、
     前記第1部品の個体ばらつきを示すデータおよび前記第2部品の個体ばらつきを示すデータと、前記第1部品と前記第2部品とを組み合わせた組み合わせ部品の個体ばらつきを示すデータとのうちの少なくとも1つと、前記組み合わせ部品に組み合わせる予定の第3部品の個体ばらつきを示すデータとを含む入力データに基づき、前記入力データに基づき前記圧縮機の組立を許可するか否かに関する組立可否データを推論するための学習済モデルを用いて、前記組立可否データを推論するステップとを含む、圧縮機の製造方法。
    1. A computer-implemented method for manufacturing a compressor, comprising:
    The process executed by the computer is
    combining a second part with the first part;
    and inferring assembly feasibility data regarding whether or not assembly of the compressor is permitted based on input data including at least one of data indicating individual variations of the first part and data indicating individual variations of the second part, data indicating individual variations of a combined part formed by combining the first part and the second part, and data indicating individual variations of a third part to be combined with the combined part, using a trained model for inferring assembly feasibility data regarding whether or not assembly of the compressor is permitted based on the input data.
  14.  前記推論するステップによって前記圧縮機の組立を許可しないと推論された場合に、前記組み合わせ部品に組み合わせる予定の前記第3部品を他の第3部品に変更するステップをさらに含む、請求項13に記載の圧縮機の製造方法。 The method for manufacturing a compressor according to claim 13, further comprising the step of changing the third part to be combined with the combination part to another third part when the inference step infers that assembly of the compressor is not permitted.
PCT/JP2023/005248 2023-02-15 2023-02-15 Inference device, inference method, and method for manufacturing compressor WO2024171341A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/005248 WO2024171341A1 (en) 2023-02-15 2023-02-15 Inference device, inference method, and method for manufacturing compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/005248 WO2024171341A1 (en) 2023-02-15 2023-02-15 Inference device, inference method, and method for manufacturing compressor

Publications (1)

Publication Number Publication Date
WO2024171341A1 true WO2024171341A1 (en) 2024-08-22

Family

ID=92421181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005248 WO2024171341A1 (en) 2023-02-15 2023-02-15 Inference device, inference method, and method for manufacturing compressor

Country Status (1)

Country Link
WO (1) WO2024171341A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026376A1 (en) * 2017-07-31 2019-02-07 ダイキン工業株式会社 Production management system and production management method
JP2019192794A (en) * 2018-04-25 2019-10-31 パナソニックIpマネジメント株式会社 Component mounting line, component mounting method, and quality control system
CN113361958A (en) * 2021-06-30 2021-09-07 李炳集 Defect early warning method and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026376A1 (en) * 2017-07-31 2019-02-07 ダイキン工業株式会社 Production management system and production management method
JP2019192794A (en) * 2018-04-25 2019-10-31 パナソニックIpマネジメント株式会社 Component mounting line, component mounting method, and quality control system
CN113361958A (en) * 2021-06-30 2021-09-07 李炳集 Defect early warning method and system

Similar Documents

Publication Publication Date Title
EP1379927B1 (en) System and method for monitoring and control
KR101695021B1 (en) Tuning frequency of rotating body torsional mode by adding detuner
US10767890B2 (en) Load operation control system
JP2008208714A (en) Electric compressor
WO2024171341A1 (en) Inference device, inference method, and method for manufacturing compressor
CN105241026A (en) Vibration controlling method and device
WO2024209589A1 (en) Estimation device, estimation method, and compressor production method
US10436226B2 (en) Compressor having sound control system
JP2008223621A (en) Compressor and refrigeration cycle apparatus
WO2023181717A1 (en) Inference device, inference method, and learning device
CN101512864A (en) Apparatus and method for power transmission system
CN107429959B (en) Compressor with lubricant management system for bearing life
WO2024127671A1 (en) Inference device and inference method
JP6918240B2 (en) Motors, compressors, blowers, and refrigerating air conditioners
JP6892004B1 (en) Motor system and turbo compressor equipped with it
JP5195962B2 (en) Rotary compressor
CN107329080A (en) A kind of design method of dynamic power system simulations pilot system synchronous motor
CN112204853A (en) Stator, Electric Motor, Compressor and Air Conditioning Device
WO2018131436A1 (en) Compressor comprising shaft support
JP2018096272A (en) Compressor equipped with compression mechanism fixed to casing
JPS63253189A (en) Scroll compressor
WO2023084676A1 (en) Reluctance motor, compressor, air conditioning device, and method for manufacturing reluctance motor
CN115773572B (en) Multi-split air conditioner and control method and device thereof
CN210265127U (en) Hermetic compressor and refrigeration cycle device
WO2023112076A1 (en) Electric motor, compressor, and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23922678

Country of ref document: EP

Kind code of ref document: A1