[go: up one dir, main page]

WO2024170751A1 - Method for forming a weakened zone in a semiconductor substrate - Google Patents

Method for forming a weakened zone in a semiconductor substrate Download PDF

Info

Publication number
WO2024170751A1
WO2024170751A1 PCT/EP2024/054019 EP2024054019W WO2024170751A1 WO 2024170751 A1 WO2024170751 A1 WO 2024170751A1 EP 2024054019 W EP2024054019 W EP 2024054019W WO 2024170751 A1 WO2024170751 A1 WO 2024170751A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
face
screen layer
profile
Prior art date
Application number
PCT/EP2024/054019
Other languages
French (fr)
Inventor
Pamela RUEDA
Ludovic Ecarnot
Carine Duret
Vincent Joseph
Original Assignee
Soitec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec filed Critical Soitec
Publication of WO2024170751A1 publication Critical patent/WO2024170751A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers

Definitions

  • TITLE METHOD FOR FORMING A WEAKENING ZONE IN A SEMICONDUCTOR SUBSTRATE
  • the present disclosure relates to a method for forming a weakening zone in a semiconductor substrate.
  • This method advantageously finds its application in the manufacture of substrates of the semiconductor-on-insulator type.
  • the manufacture of such semiconductor components can in particular be used for the manufacture of waveguides.
  • the manufacture of components in the field of microelectronics, optics and/or optronics, and more particularly the manufacture of waveguides uses substrates of the semiconductor-on-insulator type.
  • substrates comprise, from their rear face to their front face, a support substrate, an electrically insulating layer and a monocrystalline semiconductor layer, called the active layer.
  • the active layer of such substrates is generally, but not limited to, made of silicon, and the substrate is called a silicon-on-insulator (SOI) substrate.
  • SOI silicon-on-insulator
  • Smart CutTM Processes called Smart CutTM, known in the state of the art, make it possible to manufacture semiconductor substrates on insulators. They include in particular a step of implanting species through a surface of a donor substrate in order to create a weakening zone at a desired thickness thereof.
  • the electrically insulating layer is formed on the donor substrate, in particular by oxidation, and the implantation of species is carried out in the donor substrate through the oxide layer.
  • the implanted species must then be able to cross the electrically insulating layer, as well as the desired depth of the donor substrate in order to form the active layer of the SOI substrate.
  • the desired electrically insulating layer and/or active layer is particularly thick, it is difficult in practice to impart enough energy to the implanted species to pass through the electrically insulating layer and the desired depth of the donor substrate.
  • the electrically insulating layer is then formed on a receiving substrate, intended to receive the donor substrate by bonding, rather than on the donor substrate itself, and the implantation is done directly through the surface of the donor substrate, without the species having to pass through the electrically insulating layer.
  • the implanted donor substrate is bonded to the electrically insulating layer arranged on the receiving substrate, then the donor substrate is detached along the weakening zone on the receiving substrate.
  • the inventors found that the uniformity of the implantation depth of the species is degraded. This non-uniformity of depth implantation results in a non-uniformity in the thickness of the active layer, which adopts a typically concave or convex profile, which is detrimental to the quality of the components subsequently formed in this active layer.
  • Single-wafer cleaning is a notable method. This involves cleaning the semiconductor-on-insulator substrate by distributing a chemical etching agent at its center, which then spreads by centrifugal effect due to rotation of the substrate around a central axis. This makes it possible to obtain a higher silicon consumption rate by etching at the center of the substrate than at its edges, and thus to correct a convex active layer profile.
  • these correction methods are only effective for limited depths, of the order of a nanometer, and the use of several SWC steps to treat highly convex surfaces is very costly.
  • these methods do not allow the correction of a concave active layer profile, i.e. one with a greater thickness in its peripheral region than in its central region.
  • Another post-implantation correction method is to form a sacrificial electrically insulating layer on the active layer after its transfer to the recipient substrate. If the oxide formation consumes the active layer at different rates at its center and edges, such a method can then correct concave or convex implantation profiles. However, this consumption rate is difficult to control, which compromises the accuracy of such methods. In addition, the formation of the sacrificial oxide layer often requires subjecting the substrate to complex temperature variations, which precludes the implementation of such methods on an industrial scale.
  • the present disclosure provides a method for forming a weakening zone in a semiconductor substrate, successively comprising the following steps: a. forming a screen layer having a controlled non-planar profile on a first face of the substrate, b. implantation of species through the shield layer and the first face of the substrate to form the weakening zone, the profile of the shield layer being chosen to compensate for a non-uniformity in the depth of implantation of the species so that the weakening zone is substantially included in a plane parallel to the first face.
  • a shielding layer with a controlled and non-planar profile makes it possible to compensate for variations in implantation depth that could occur on the implanted surface of the substrate, so as to obtain a substantially flat weakening zone, along a plane parallel to the implanted surface.
  • This produces a superinsulating semiconductor substrate having a flat active layer and in particular allowing the manufacture of better quality components.
  • the screen layer has a convex or concave profile.
  • the species implanted in the first face of the substrate comprise hydrogen ions and helium ions.
  • a distance between any two points of a free surface of the screen layer along an axis normal to the first face is between 0.2 nm and 5 nm.
  • the substrate comprises silicon
  • the screen layer comprises an oxide of a semiconductor material, in particular silicon dioxide.
  • the screen layer is obtained by thermal oxidation of a surface region of the semiconductor substrate.
  • forming the shielding layer by oxidation comprises heating the substrate under a neutral atmosphere to a temperature above an oxidation temperature of the substrate, then cooling the substrate to said oxidation temperature, and applying an oxidizing atmosphere to form the shielding layer.
  • the method comprises, before thermal oxidation, a selective application of an oxidizing plasma to an area of the first face of the substrate so as to form an excess thickness of oxide in said area.
  • the method comprises, prior to the formation of the screen layer, a calibration of the profile of the screen layer comprising the following steps: - implantation of atoms through a first face of a calibration substrate, so as to create a weakening zone,
  • the target profile being used to define the profile of the screen layer during its formation.
  • the present disclosure further relates to a method of manufacturing a semiconductor component of the semiconductor-on-insulator type, successively comprising the steps of:
  • the electrically insulating layer and the shielding layer are formed by heat treatment in the same oven.
  • the electrically insulating layer has a thickness of at least 150 nanometers.
  • FIG. 1 illustrates a typical SOI substrate.
  • FIG. 2 illustrates a method of manufacturing a semiconductor component by reverse bonding, known from the state of the art.
  • FIG. 3 illustrates a proposed method of forming a weakening zone in a semiconductor substrate.
  • FIG. 4 illustrates a calibration performed as part of the process of forming a weakening zone in a semiconductor substrate.
  • FIG. 5 illustrates a proposed method of fabricating a semiconductor-on-insulator component.
  • Figure 1 illustrates a conventional semiconductor-on-insulator (SOI) substrate, successively comprising a base substrate 11 made of semiconductor material, generally silicon, an intermediate layer 2 made of electrically insulating material, in particular silicon oxide, and a layer made of monocrystalline semiconductor material 13, called the “active layer”, also generally formed of silicon.
  • the thickness of the monocrystalline semiconductor layer is typically between 50 nanometers and a few micrometers.
  • the electrically insulating layer 2 being arranged between the two substrates
  • the active layer 13 thus obtained often has a thickness that is not uniform over its entire length, that is to say that the weakening zone 5 is not flat. A difference in thickness of a few nanometers is generally observed between different zones of the active layer 13.
  • thickness we mean the direction normal to the plane formed by a first face 61 of the substrate e through which the implantation of species is carried out.
  • Figure 2 illustrates a convex implantation profile, resulting in a convex transferred active layer 13, but depending on the implementation of the reverse bonding method, other non-planar implantation profiles can be obtained.
  • the present disclosure provides a method for forming the weakening zone 5 which makes it possible to improve the thickness uniformity of the active layer 13.
  • the method successively comprises: - a step 102 of forming a screen layer 4, having a controlled non-planar profile, on a first face 61 of a substrate intended to form the donor substrate 6,
  • the method optionally comprises a step 104 of removing the screen layer 4 before bonding the donor substrate to the recipient substrate.
  • This removal can for example be carried out by chemical etching with an etching agent suitable for etching the screen layer without attacking the material of the donor substrate.
  • controlled profile it is meant that the profile of the screen layer 4 thus formed has a predefined thickness profile, so as to compensate for any non-uniformity in the depth of implantation of the species, and so as to obtain a weakening zone 5 which is substantially included in a plane parallel to the first face 61. Subsequently, the “non-compensated” profile will be called the weakening zone profile 5 resulting from an implantation of species without compensation.
  • An advantage of the proposed method is to compensate for a non-planar weakening zone profile 5 without requiring consumption of the semiconductor active layer after its transfer.
  • the known weakening zone formation methods which implement compensation of its profile, such as single-plate cleaning or the formation of a sacrificial oxide layer described above, involve consumption of the transferred active layer occurring after the bonding and layer transfer steps.
  • the proposed method makes it possible to perform the compensation during the species implantation step, i.e. before the active layer transfer, so as to obtain a substantially planar active layer profile without requiring consumption of the active layer.
  • the active layer obtained by a reverse bonding process can have different irregular thickness profiles, it is common for the uncompensated profile to be concave (the active layer is thicker at its edges than at its center) or convex (the active layer is thicker at its center than at its edges).
  • the screen layer 4 has a convex or concave profile, so as to precisely compensate for the non-compensated convex or concave profile generated by the implantation of species.
  • a concave screen layer 4 i.e. whose thickness is greater at the edge than at the center
  • a convex screen layer 4 i.e. whose thickness is greater at the center than at the edge
  • the implanted species comprise hydrogen ions and/or helium ions.
  • the co-implantation of hydrogen ions and helium ions makes it possible in particular to improve the quality of the detachment obtained during the step of separating the active layer.
  • a distance between any two points of a free surface 41 of the screen layer 4 along an axis normal to the first face 61 can be between 0.2 and 5 nanometers.
  • the donor substrate 6 comprises a semiconductor material
  • the screen layer 4 is an oxide layer of this material, obtained by thermal oxidation of a surface region of the donor substrate 6.
  • the donor substrate 6 comprises silicon
  • the screen layer 4 comprises silicon dioxide obtained by thermal oxidation of a surface region of the substrate 6.
  • Thermal oxidation is generally carried out in a furnace, in an oxidizing atmosphere.
  • the oxidation allowing the formation of the screen layer 4 with a controlled convex profile is carried out in several steps: initially, the substrate 6 is heated in a neutral atmosphere, i.e. non-oxidizing, to a temperature slightly higher than an oxidation temperature of the substrate, generally a few degrees higher than the oxidation temperature, for example to a temperature between 5 and 20°C above the oxidation temperature.
  • the substrate is then cooled in an oxidizing atmosphere until said oxidation temperature is reached, then the substrate is maintained at its oxidation temperature, still in an oxidizing atmosphere.
  • the substrate Due to the thermal inertia of the substrate, the substrate is thus cooled more quickly at its edges than at its center, so that the depth of the oxidized surface part of the substrate will be greater at its center than at its edges. This therefore contributes to obtaining a screen layer convex.
  • the step of cooling the substrate under an oxidizing atmosphere aims to control the concavity or convexity of the screen layer 4, while the step of maintaining the substrate at its oxidation temperature makes it possible to control the thickness of the screen layer 4.
  • an oxide shield layer 4 can be formed by selectively applying an oxidizing plasma to one or more zones of the first face 61 of the donor substrate 6. It will thus be possible to form an excess thickness of oxide in these zones, for example by suitable confinement of the plasma, before implementing conventional thermal oxidation.
  • a screen layer 4 of uniform thickness by thermal oxidation of the donor substrate 6, before treating the screen layer 4 so as to form the desired thickness profile.
  • the screen layer 4 can be etched by applying hydrofluoric acid, or according to a cleaning method known from the state of the art, called “RCA clean”, which consists of using a solution of water, hydrogen peroxide and ammonia in order to etch the oxide layer.
  • Thermal oxidation with the controlled temperature profile is particularly advantageous in that it requires only one piece of equipment and one type of treatment to form the controlled profile shield layer.
  • the method may comprise a calibration of the profile of the screen layer 4, so as to allow precise compensation of the implantation profile.
  • a calibration substrate 600 of the same material as the donor substrate is provided, on which an implantation 701 of atomic or ionic species is carried out, through a first face 601 of the calibration substrate 600, so as to create a weakening zone 500.
  • the calibration then comprises a step 702 of separating the calibration substrate into two parts along the weakening zone 500: a first part 602 which comprises the first face 601 and a second part 603.
  • a step of bonding the calibration substrate 600 to a support substrate is preferably provided.
  • the support substrate acts as a mechanical stiffener intended to facilitate the separation of the layer 621 from the calibration substrate 600.
  • the first part 602 then has a profile identical to an active layer 13 which would be obtained in the context of a manufacturing method by reverse bonding, without compensation as proposed.
  • Calibration finally comprises a step 703 of defining a target profile 400 defined substantially by the shape of the surface 621 of the first part 602 along the weakening zone 500, exposed by the separation.
  • the present disclosure also relates to a method of manufacturing a semiconductor-on-insulator type component 10, shown in FIG. 5. This method comprises the following steps:
  • a donor substrate 6 and a recipient substrate 7 comprising a semiconductor material, for example but not limited to silicon,
  • this layer 2 has a thickness of at least 150 nanometers, so as to ensure optimal insulation of the active layer 13 relative to the base 11 of the substrate,
  • This step therefore comprises the formation 102 of the screen layer 4 on the first face 61 of the donor substrate, as well as the implantation 103 of species through this first face.
  • a planar weakening zone 5 is obtained, substantially parallel to the first face 61,
  • the first face 61 of the donor substrate is bonded on the receiving substrate 7, the electrically insulating layer 2 being arranged between the two substrates,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

The present disclosure relates to a method for forming a weakened zone (5) in a semiconductor substrate (6), successively comprising the following steps: a. forming a screen layer (4) having a non-planar controlled profile on a first face (61) of the substrate, b. implanting species through the screen layer and the first face (61) of the substrate to form the weakened zone, the profile of the screen layer being selected to compensate for a non-uniformity in the implantation depth of the species so that the weakened zone (5) is substantially located in a plane parallel to the first face (61).

Description

TITRE : PROCÉDÉ DE FORMATION D’UNE ZONE DE FRAGILISATION DANS UN SUBSTRAT SEMI-CONDUCTEUR TITLE: METHOD FOR FORMING A WEAKENING ZONE IN A SEMICONDUCTOR SUBSTRATE

DOMAINE TECHNIQUE TECHNICAL AREA

La présente divulgation concerne un procédé de formation d’une zone de fragilisation dans un substrat semi-conducteur. Ce procédé trouve avantageusement son application dans la fabrication de substrats du type semi-conducteurs sur isolant. La fabrication de tels composants semiconducteurs peut notamment servir pour la fabrication de guides d’ondes. The present disclosure relates to a method for forming a weakening zone in a semiconductor substrate. This method advantageously finds its application in the manufacture of substrates of the semiconductor-on-insulator type. The manufacture of such semiconductor components can in particular be used for the manufacture of waveguides.

ETAT DE LA TECHNIQUE STATE OF THE ART

La fabrication de composants dans le domaine de la microélectronique, de l'optique et/ou de l'optronique, et plus particulièrement la fabrication de guide d’ondes, fait appel à des substrats de type semi-conducteur sur isolant. De tels substrats comprennent, de leur face arrière vers leur face avant, un substrat support, une couche électriquement isolante et une couche semi-conductrice monocristalline, dite couche active. La couche active de tels substrats est généralement, mais de manière non limitative, constituée de silicium, et le substrat est dit substrat silicium-sur-isolant (en anglais silicon on insulator ou SOI). The manufacture of components in the field of microelectronics, optics and/or optronics, and more particularly the manufacture of waveguides, uses substrates of the semiconductor-on-insulator type. Such substrates comprise, from their rear face to their front face, a support substrate, an electrically insulating layer and a monocrystalline semiconductor layer, called the active layer. The active layer of such substrates is generally, but not limited to, made of silicon, and the substrate is called a silicon-on-insulator (SOI) substrate.

Des procédés appelés Smart Cut™, connus de l’état de la technique, permettent de fabriquer des substrats semi-conducteurs sur isolant. Ils comprennent notamment une étape d’implantation d’espèces au travers d’une surface d’un substrat donneur afin de créer une zone de fragilisation à une épaisseur voulue de celui-ci. Processes called Smart Cut™, known in the state of the art, make it possible to manufacture semiconductor substrates on insulators. They include in particular a step of implanting species through a surface of a donor substrate in order to create a weakening zone at a desired thickness thereof.

Classiquement, la couche électriquement isolante est formée sur le substrat donneur, notamment par oxydation, et l’implantation d’espèces est pratiquée dans le substrat donneur à travers la couche d’oxyde. Les espèces implantées doivent alors être capables de traverser la couche électriquement isolante, ainsi que la profondeur voulue du substrat donneur afin de former la couche active du substrat SOI. Conventionally, the electrically insulating layer is formed on the donor substrate, in particular by oxidation, and the implantation of species is carried out in the donor substrate through the oxide layer. The implanted species must then be able to cross the electrically insulating layer, as well as the desired depth of the donor substrate in order to form the active layer of the SOI substrate.

Lorsque la couche électriquement isolante et/ou la couche active souhaitée est particulièrement épaisse, il est difficile en pratique d’impartir assez d’énergie aux espèces implantées pour traverser la couche électriquement isolante et la profondeur voulue du substrat donneur. Dans ce cas, il est connu de fabriquer le substrat SOI avec un collage dit « inverse » : la couche électriquement isolante est alors formée sur un substrat receveur, destiné à recevoir le substrat donneur par collage, plutôt que sur le substrat donneur lui-même, et l’implantation se fait directement au travers de la surface du substrat donneur, sans que les espèces aient à traverser la couche électriquement isolante. Suite à l’implantation, le substrat donneur implanté est collé sur la couche électriquement isolante disposée sur le substrat receveur, puis le substrat donneur est détaché le long de la zone de fragilisation sur le substrat receveur. When the desired electrically insulating layer and/or active layer is particularly thick, it is difficult in practice to impart enough energy to the implanted species to pass through the electrically insulating layer and the desired depth of the donor substrate. In this case, it is known to manufacture the SOI substrate with so-called "reverse" bonding: the electrically insulating layer is then formed on a receiving substrate, intended to receive the donor substrate by bonding, rather than on the donor substrate itself, and the implantation is done directly through the surface of the donor substrate, without the species having to pass through the electrically insulating layer. Following implantation, the implanted donor substrate is bonded to the electrically insulating layer arranged on the receiving substrate, then the donor substrate is detached along the weakening zone on the receiving substrate.

Cependant, suite à l’étape d’implantation, les inventeurs ont constaté que l’uniformité de profondeur d’implantation des espèces est dégradée. Cette non-uniformité de profondeur d’implantation se traduit par une non-uniformité d’épaisseur de la couche active, qui adopte un profil typiquement concave ou convexe, ce qui est préjudiciable à la qualité des composants formés ultérieurement dans cette couche active. However, following the implantation step, the inventors found that the uniformity of the implantation depth of the species is degraded. This non-uniformity of depth implantation results in a non-uniformity in the thickness of the active layer, which adopts a typically concave or convex profile, which is detrimental to the quality of the components subsequently formed in this active layer.

Certains procédés de l’état de la technique ont tenté une correction du profil de la couche active après son transfert sur le substrat receveur. Some state-of-the-art methods have attempted to correct the profile of the active layer after its transfer to the receiving substrate.

On retiendra notamment le nettoyage monoplaque (en anglais, single-wafer cleaning ou SWC). Selon ce procédé, on nettoie le substrat semi-conducteur sur isolant par distribution d’un agent de gravure chimique à son centre, qui se répand ensuite par effet centrifuge dû à une rotation du substrat autour d’un axe central. Ceci permet d’obtenir un taux de consommation du silicium par la gravure plus important au centre du substrat qu’à ses bords, et ainsi de corriger un profil de couche active convexe. Cependant, ces procédés de correction ne sont efficaces que pour des profondeurs limitées, de l’ordre du nanomètre, et l’utilisation de plusieurs étapes de SWC pour traiter des surfaces hautement convexes est très coûteuse. De plus, ces procédés ne permettent pas de corriger un profil de couche active concave, c’est- à-dire d’épaisseur plus grande dans sa région périphérique que dans sa région centrale. Single-wafer cleaning (SWC) is a notable method. This involves cleaning the semiconductor-on-insulator substrate by distributing a chemical etching agent at its center, which then spreads by centrifugal effect due to rotation of the substrate around a central axis. This makes it possible to obtain a higher silicon consumption rate by etching at the center of the substrate than at its edges, and thus to correct a convex active layer profile. However, these correction methods are only effective for limited depths, of the order of a nanometer, and the use of several SWC steps to treat highly convex surfaces is very costly. In addition, these methods do not allow the correction of a concave active layer profile, i.e. one with a greater thickness in its peripheral region than in its central region.

Un autre procédé de correction post-implantation consiste à former une couche électriquement isolante sacrificielle sur la couche active après son transfert sur le substrat receveur. Si la formation d’oxyde consomme la couche active à des taux différents à son centre et à ses bords, un tel procédé permet alors de rectifier des profils d’implantation concaves ou convexes. Toutefois, ce taux de consommation est difficile à maîtriser, ce qui compromet la précision de tels procédés. En outre, la formation de la couche d’oxyde sacrificielle nécessite souvent de soumettre le substrat à des variations de températures complexes, ce qui s’oppose à la mise en œuvre de tels procédés à l’échelle industrielle. Another post-implantation correction method is to form a sacrificial electrically insulating layer on the active layer after its transfer to the recipient substrate. If the oxide formation consumes the active layer at different rates at its center and edges, such a method can then correct concave or convex implantation profiles. However, this consumption rate is difficult to control, which compromises the accuracy of such methods. In addition, the formation of the sacrificial oxide layer often requires subjecting the substrate to complex temperature variations, which precludes the implementation of such methods on an industrial scale.

EXPOSE EXPOSED

Il est donc nécessaire de développer des procédés d’implantation qui permettent d’obtenir une profondeur d’implantation uniforme sur toute la surface du substrat, ou en d’autres termes de former une zone de fragilisation plane, parallèle à une surface principale du substrat, et qui puissent être mis en œuvre plus facilement que les procédés mentionnés ci-avant. Il est également nécessaire de développer des procédés d’implantation qui permettent de corriger précisément tout profil d’implantation obtenu, en fonction des conditions d’implantations utilisées. It is therefore necessary to develop implantation methods that allow to obtain a uniform implantation depth over the entire surface of the substrate, or in other words to form a flat weakening zone, parallel to a main surface of the substrate, and that can be implemented more easily than the methods mentioned above. It is also necessary to develop implantation methods that allow to precisely correct any implantation profile obtained, depending on the implantation conditions used.

À cet effet, la présente divulgation propose un procédé de formation d’une zone de fragilisation dans un substrat semi-conducteur, comprenant successivement les étapes suivantes : a. formation d’une couche écran présentant un profil contrôlé non-plan sur une première face du substrat, b. implantation d’espèces au travers de la couche écran et de la première face du substrat pour former la zone de fragilisation, le profil de la couche écran étant choisi pour compenser une non-uniformité de profondeur d’implantation des espèces de sorte que la zone de fragilisation soit sensiblement comprise dans un plan parallèle à la première face. For this purpose, the present disclosure provides a method for forming a weakening zone in a semiconductor substrate, successively comprising the following steps: a. forming a screen layer having a controlled non-planar profile on a first face of the substrate, b. implantation of species through the shield layer and the first face of the substrate to form the weakening zone, the profile of the shield layer being chosen to compensate for a non-uniformity in the depth of implantation of the species so that the weakening zone is substantially included in a plane parallel to the first face.

La formation d’une couche écran dont le profil est contrôlé et non-plan permet de compenser les variations de profondeur d’implantation qui pourraient avoir lieu sur la surface implantée du substrat, de sorte à obtenir une zone de fragilisation sensiblement plane, selon un plan parallèle à la surface implantée. On obtient ainsi un substrat semiconducteur surisolant présentant une couche active plane et permettant notamment la fabrication de composants de meilleure qualité. The formation of a shielding layer with a controlled and non-planar profile makes it possible to compensate for variations in implantation depth that could occur on the implanted surface of the substrate, so as to obtain a substantially flat weakening zone, along a plane parallel to the implanted surface. This produces a superinsulating semiconductor substrate having a flat active layer and in particular allowing the manufacture of better quality components.

Selon une mise en œuvre du procédé, la couche écran présente un profil convexe ou concave. According to one implementation of the method, the screen layer has a convex or concave profile.

Selon une mise en œuvre du procédé, les espèces implantées dans la première face du substrat comprenant des ions hydrogène et des ions hélium. According to one implementation of the method, the species implanted in the first face of the substrate comprise hydrogen ions and helium ions.

Selon une mise en œuvre du procédé, une distance entre deux points quelconques d’une surface libre de la couche écran selon un axe normal à la première face est comprise entre 0.2 nm et 5 nm. According to one implementation of the method, a distance between any two points of a free surface of the screen layer along an axis normal to the first face is between 0.2 nm and 5 nm.

Selon une mise en œuvre du procédé, le substrat comprend du silicium. According to one implementation of the method, the substrate comprises silicon.

Selon une mise en œuvre du procédé, la couche écran comprend un oxyde d’un matériau semi-conducteur, notamment du dioxyde de silicium. According to one implementation of the method, the screen layer comprises an oxide of a semiconductor material, in particular silicon dioxide.

Selon une mise en œuvre du procédé, la couche écran est obtenue par oxydation thermique d’une région superficielle du substrat semi-conducteur. According to one implementation of the method, the screen layer is obtained by thermal oxidation of a surface region of the semiconductor substrate.

Selon une mise en œuvre du procédé, la formation de la couche écran par oxydation comprend un chauffage du substrat sous une atmosphère neutre jusqu’à une température supérieure à une température d'oxydation du substrat, puis un refroidissement du substrat à ladite température d’oxydation, et une application d’une atmosphère oxydante pour former la couche écran. According to one implementation of the method, forming the shielding layer by oxidation comprises heating the substrate under a neutral atmosphere to a temperature above an oxidation temperature of the substrate, then cooling the substrate to said oxidation temperature, and applying an oxidizing atmosphere to form the shielding layer.

Selon une mise en œuvre, le procédé comprend, avant l’oxydation thermique, une application sélective d’un plasma oxydant sur une zone de la première face du substrat de sorte à former une surépaisseur d’oxyde dans ladite zone. According to one implementation, the method comprises, before thermal oxidation, a selective application of an oxidizing plasma to an area of the first face of the substrate so as to form an excess thickness of oxide in said area.

Selon une mise en œuvre, le procédé comprend, préalablement à la formation de la couche écran une calibration du profil de la couche écran comprenant les étapes suivantes : - implantation d’atomes au travers d’une première face d’un substrat de calibration, de sorte à créer une zone de fragilisation, According to one implementation, the method comprises, prior to the formation of the screen layer, a calibration of the profile of the screen layer comprising the following steps: - implantation of atoms through a first face of a calibration substrate, so as to create a weakening zone,

- séparation du substrat de calibration le long de la zone de fragilisation en une première partie, comprenant la première face, et une deuxième partie, - separation of the calibration substrate along the weakening zone into a first part, comprising the first face, and a second part,

- définition d’un profil cible dont la forme est sensiblement identique à une surface de la première partie exposée par la séparation, le profil cible étant utilisé pour définir le profil de la couche écran lors de sa formation.- defining a target profile whose shape is substantially identical to a surface of the first part exposed by the separation, the target profile being used to define the profile of the screen layer during its formation.

La présente divulgation porte en outre sur un procédé de fabrication d’un composant semiconducteur de type semi-conducteur sur isolant, comprenant successivement les étapes de : The present disclosure further relates to a method of manufacturing a semiconductor component of the semiconductor-on-insulator type, successively comprising the steps of:

- fourniture d’un substrat donneur et d’un substrat receveur en matériau semiconducteur,- supply of a donor substrate and a recipient substrate made of semiconductor material,

- formation d’une couche électriquement isolante sur une face du substrat receveur,- formation of an electrically insulating layer on one side of the receiving substrate,

- formation d’une zone de fragilisation dans le substrat donneur au moyen du procédé de formation selon l’une quelconque des revendications précédentes, la zone de fragilisation ainsi formée délimitant une couche semi-conductrice, - forming a weakening zone in the donor substrate by means of the forming method according to any one of the preceding claims, the weakening zone thus formed delimiting a semi-conductor layer,

- retrait de la couche écran, - removal of the screen layer,

- collage de la première face du substrat donneur sur la couche électriquement isolante du substrat receveur, - bonding the first face of the donor substrate to the electrically insulating layer of the recipient substrate,

- séparation du substrat donneur au niveau de la zone de fragilisation de sorte à transférer la couche semi-conductrice du substrat donneur sur le substrat receveur. - separation of the donor substrate at the weakening zone so as to transfer the semiconductor layer from the donor substrate to the recipient substrate.

Selon une mise en œuvre du procédé de fabrication d’un composant semi-conducteur, la couche électriquement isolante et la couche écran sont formées par traitement thermique dans un même four. According to one implementation of the method for manufacturing a semiconductor component, the electrically insulating layer and the shielding layer are formed by heat treatment in the same oven.

Selon une mise en œuvre du procédé de fabrication d’un composant semi-conducteur, la couche électriquement isolante présente une épaisseur d’au moins 150 nanomètres. According to an implementation of the method for manufacturing a semiconductor component, the electrically insulating layer has a thickness of at least 150 nanometers.

DESCRIPTION DES FIGURES DESCRIPTION OF FIGURES

La [Fig. 1] illustre un substrat SOI classique. [Fig. 1] illustrates a typical SOI substrate.

La [Fig. 2] illustre un procédé de fabrication d’un composant de type semi-conducteur par collage inverse, connu de l’état de la technique. [Fig. 2] illustrates a method of manufacturing a semiconductor component by reverse bonding, known from the state of the art.

La [Fig. 3] illustre un procédé proposé de formation d’une zone de fragilisation dans un substrat semi-conducteur. La [Fig. 4] illustre une calibration réalisée dans le cadre du procédé de formation d’une zone de fragilisation dans un substrat semi-conducteur. [Fig. 3] illustrates a proposed method of forming a weakening zone in a semiconductor substrate. [Fig. 4] illustrates a calibration performed as part of the process of forming a weakening zone in a semiconductor substrate.

La [Fig. 5] illustre un procédé proposé de fabrication d’un composant de type semi- conducteur sur isolant. [Fig. 5] illustrates a proposed method of fabricating a semiconductor-on-insulator component.

DESCRIPTION DETAILLEE DE MODES DE REALISATION DETAILED DESCRIPTION OF EMBODIMENTS

La figure 1 illustre un substrat de type semiconducteur sur isolant (SOI) classique, comprenant successivement un substrat de base 11 en matériau semiconducteur, généralement du silicium, une couche intermédiaire 2 en matériau électriquement isolant, notamment de l’oxyde de silicium, et une couche en matériau semiconducteur monocristallin 13, dite « couche active », généralement formée de silicium également. L’épaisseur de la couche semiconductrice monocristalline est typiquement comprise entre 50 nanomètres et quelques micromètres. Figure 1 illustrates a conventional semiconductor-on-insulator (SOI) substrate, successively comprising a base substrate 11 made of semiconductor material, generally silicon, an intermediate layer 2 made of electrically insulating material, in particular silicon oxide, and a layer made of monocrystalline semiconductor material 13, called the “active layer”, also generally formed of silicon. The thickness of the monocrystalline semiconductor layer is typically between 50 nanometers and a few micrometers.

Pour la formation de substrats SOI dont la couche active 13 est particulièrement épaisse et/ou dont la couche intermédiaire 2 est particulièrement épaisse, c’est-à-dire qui présente une épaisseur supérieure ou égale à 200 nm, il est connu d’utiliser un procédé Smart-Cut™ par collage inversé, illustré sur la figure 2 et comprenant les étapes : For the formation of SOI substrates whose active layer 13 is particularly thick and/or whose intermediate layer 2 is particularly thick, i.e. which has a thickness greater than or equal to 200 nm, it is known to use a Smart-Cut™ process by reverse bonding, illustrated in FIG. 2 and comprising the steps:

- formation d’une couche électriquement isolante 2 sur un substrat receveur 7, - formation of an electrically insulating layer 2 on a receiving substrate 7,

- implantation d’espèces dans un substrat donneur 6, de sorte à former une zone de fragilisation 5 dans ce substrat, - implantation of species in a donor substrate 6, so as to form a weakening zone 5 in this substrate,

- collage du substrat donneur 6 sur le substrat receveur 7, la couche électriquement isolante 2 étant disposée entre les deux substrats, - bonding the donor substrate 6 to the recipient substrate 7, the electrically insulating layer 2 being arranged between the two substrates,

- séparation du substrat donneur le long de la zone de fragilisation, de sorte à transférer une couche active 13 depuis le substrat donneur 6 sur le substrat receveur 7. - separation of the donor substrate along the weakening zone, so as to transfer an active layer 13 from the donor substrate 6 onto the recipient substrate 7.

La couche active 13 ainsi obtenue présente souvent une épaisseur qui n’est pas uniforme sur toute sa longueur, c’est-à-dire que la zone de fragilisation 5 n’est pas plane. On observe généralement une différence d’épaisseur de quelques nanomètres entre différentes zones de la couche active 13. Par épaisseur, on entend la direction normale au plan formé par une première face 61 du substrat e à travers laquelle l’implantation d’espèces est pratiquée. La figure 2 illustre un profil d’implantation convexe, résultant en une couche active 13 transférée convexe, mais selon la mise en œuvre du procédé de collage inverse, d’autres profils d’implantation non-plans peuvent être obtenus. The active layer 13 thus obtained often has a thickness that is not uniform over its entire length, that is to say that the weakening zone 5 is not flat. A difference in thickness of a few nanometers is generally observed between different zones of the active layer 13. By thickness, we mean the direction normal to the plane formed by a first face 61 of the substrate e through which the implantation of species is carried out. Figure 2 illustrates a convex implantation profile, resulting in a convex transferred active layer 13, but depending on the implementation of the reverse bonding method, other non-planar implantation profiles can be obtained.

La présente divulgation propose un procédé de formation de la zone de fragilisation 5 qui permette d’améliorer l’uniformité d’épaisseur de la couche active 13. Dans son mode de réalisation général, illustré sur la figure 3, le procédé comprend successivement : - une étape de formation 102 d’une couche écran 4, présentant un profil contrôlé non- plan, sur une première face 61 d’un substrat destiné à former le substrat donneur 6, The present disclosure provides a method for forming the weakening zone 5 which makes it possible to improve the thickness uniformity of the active layer 13. In its general embodiment, illustrated in FIG. 3, the method successively comprises: - a step 102 of forming a screen layer 4, having a controlled non-planar profile, on a first face 61 of a substrate intended to form the donor substrate 6,

- une étape d’implantation d’espèces 103 au travers de la couche écran 4 et de la première face 61 du substrat 6 afin de former la zone de fragilisation 5. - a step of implanting species 103 through the screen layer 4 and the first face 61 of the substrate 6 in order to form the weakening zone 5.

Le procédé comprend éventuellement une étape de retrait 104 de la couche écran 4 avant le collage du substrat donneur sur le substrat receveur. Ce retrait peut par exemple être réalisé par gravure chimique avec un agent de gravure adapté pour graver la couche écran sans attaquer le matériau du substrat donneur. The method optionally comprises a step 104 of removing the screen layer 4 before bonding the donor substrate to the recipient substrate. This removal can for example be carried out by chemical etching with an etching agent suitable for etching the screen layer without attacking the material of the donor substrate.

Par profil « contrôlé », on entend que le profil de la couche écran 4 ainsi formée présente un profil d’épaisseur prédéfini, de façon à permettre de compenser toute non-uniformité de profondeur d’implantation des espèces, et de façon à obtenir une zone de fragilisation 5 qui soit sensiblement comprise dans un plan parallèle à la première face 61. Par la suite, on appellera profil « non-compensé » le profil de zone de fragilisation 5 résultant d’une implantation d’espèces sans compensation. By “controlled” profile, it is meant that the profile of the screen layer 4 thus formed has a predefined thickness profile, so as to compensate for any non-uniformity in the depth of implantation of the species, and so as to obtain a weakening zone 5 which is substantially included in a plane parallel to the first face 61. Subsequently, the “non-compensated” profile will be called the weakening zone profile 5 resulting from an implantation of species without compensation.

Un avantage du procédé proposé est de compenser un profil de zone de fragilisation 5 non plan sans nécessiter de consommation de la couche active semiconductrice après son transfert. En effet, les procédés de formation de la zone de fragilisation connus qui mettent en œuvre une compensation de son profil, tels que le nettoyage monoplaque ou la formation d’une couche d’oxyde sacrificielle décrits précédemment, font intervenir une consommation de la couche active transférée ayant lieu postérieurement aux étapes de collage et de transfert de couche. En comparaison, le procédé proposé permet d’effectuer la compensation durant l’étape d’implantation d’espèces, c’est-à-dire avant le transfert de couche active, de sorte à obtenir un profil de couche active sensiblement plan sans nécessiter de consommation de la couche active. Il faut en effet tenir compte du ratio volumique entre le silicium et le dioxyde de silicium qui est de 0,44, c’est-à-dire que la formation d’une couche d’oxyde de silicium de 0,1 nm d’épaisseur consomme 0,044 nm de silicium de la couche active transférée. Par conséquent, pour uniformiser, postérieurement aux étapes de collage et de transfert, l’épaisseur d’une couche active transférée convexe présentant une surépaisseur déterminée au centre par rapport au bord, il est nécessaire de former une couche d’oxyde présentant une épaisseur correspondant sensiblement au double de la surépaisseur à supprimer. Au contraire, grâce au procédé proposé, le profil d’implantation étant conforme au profil de la couche écran, une couche écran convexe présentant une épaisseur correspondant sensiblement à la surépaisseur à éviter est suffisante. An advantage of the proposed method is to compensate for a non-planar weakening zone profile 5 without requiring consumption of the semiconductor active layer after its transfer. Indeed, the known weakening zone formation methods which implement compensation of its profile, such as single-plate cleaning or the formation of a sacrificial oxide layer described above, involve consumption of the transferred active layer occurring after the bonding and layer transfer steps. In comparison, the proposed method makes it possible to perform the compensation during the species implantation step, i.e. before the active layer transfer, so as to obtain a substantially planar active layer profile without requiring consumption of the active layer. It is indeed necessary to take into account the volume ratio between silicon and silicon dioxide which is 0.44, that is to say that the formation of a silicon oxide layer of 0.1 nm thickness consumes 0.044 nm of silicon of the transferred active layer. Consequently, to standardize, after the bonding and transfer steps, the thickness of a convex transferred active layer having a determined excess thickness at the center relative to the edge, it is necessary to form an oxide layer having a thickness corresponding substantially to twice the excess thickness to be removed. On the contrary, thanks to the proposed method, the implantation profile being in accordance with the profile of the screen layer, a convex screen layer having a thickness corresponding substantially to the excess thickness to be avoided is sufficient.

Bien que la couche active obtenue par un procédé de collage inverse puisse présenter différents profils d’épaisseur irréguliers, il est fréquent que le profil non-compensé soit concave (la couche active est plus épaisse à ses bords qu’en son centre) ou convexe (la couche active est plus épaisse en son centre qu’à ses bords). Although the active layer obtained by a reverse bonding process can have different irregular thickness profiles, it is common for the uncompensated profile to be concave (the active layer is thicker at its edges than at its center) or convex (the active layer is thicker at its center than at its edges).

Ainsi, selon une mise en œuvre du procédé, la couche écran 4 présente un profil convexe ou concave, de façon à compenser de manière précise le profil non-compensé convexe ou concave généré par l’implantation d’espèces. En effet, une couche écran 4 concave (c’est-à- dire dont l’épaisseur est plus importante au bord qu’au centre) permet de compenser une implantation qui résulterait, sans compensation, en une couche active 13 concave, et une couche écran 4 convexe (c’est-à-dire dont l’épaisseur est plus importante au centre qu’au bord) permet de compenser une implantation qui résulterait, sans compensation, en une couche active 13 convexe - c’est ce dernier cas de figure qui est illustré sur les figures 2 et 3. Thus, according to one implementation of the method, the screen layer 4 has a convex or concave profile, so as to precisely compensate for the non-compensated convex or concave profile generated by the implantation of species. Indeed, a concave screen layer 4 (i.e. whose thickness is greater at the edge than at the center) makes it possible to compensate for an implantation which would result, without compensation, in a concave active layer 13, and a convex screen layer 4 (i.e. whose thickness is greater at the center than at the edge) makes it possible to compensate for an implantation which would result, without compensation, in a convex active layer 13 - it is this latter case which is illustrated in FIGS. 2 and 3.

Selon une mise en œuvre du procédé, les espèces implantées comprennent des ions hydrogènes et/ou des ions hélium. La co-implantation d’ions hydrogène et d’ions hélium permet notamment d’améliorer la qualité du détachement obtenu lors de l’étape de séparation de la couche active. According to one implementation of the method, the implanted species comprise hydrogen ions and/or helium ions. The co-implantation of hydrogen ions and helium ions makes it possible in particular to improve the quality of the detachment obtained during the step of separating the active layer.

De façon à assurer une variation d’épaisseur de la couche écran qui permette de compenser la non-uniformité de profondeur d’implantation, une distance entre deux points quelconques d’une surface libre 41 de la couche écran 4 selon un axe normal à la première face 61 peut être comprise entre 0.2 et 5 nanomètres. In order to ensure a variation in thickness of the screen layer which makes it possible to compensate for the non-uniformity of implantation depth, a distance between any two points of a free surface 41 of the screen layer 4 along an axis normal to the first face 61 can be between 0.2 and 5 nanometers.

L’étape de formation de la couche écran 4 peut être mise en œuvre de plusieurs façons. De manière préférentielle, le substrat donneur 6 comprend un matériau semi-conducteur, et la couche écran 4 est une couche d’oxyde de ce matériau, obtenue par oxydation thermique d’une région superficielle du substrat donneur 6. Préférentiellement, le substrat donneur 6 comprend du silicium, et la couche écran 4 comprend du dioxyde de silicium obtenu par oxydation thermique d’une région superficielle du substrat 6. The step of forming the screen layer 4 can be implemented in several ways. Preferably, the donor substrate 6 comprises a semiconductor material, and the screen layer 4 is an oxide layer of this material, obtained by thermal oxidation of a surface region of the donor substrate 6. Preferably, the donor substrate 6 comprises silicon, and the screen layer 4 comprises silicon dioxide obtained by thermal oxidation of a surface region of the substrate 6.

L’oxydation thermique est généralement pratiquée dans un four, dans une atmosphère oxydante. Selon une mise en œuvre du procédé, l’oxydation permettant la formation de la couche écran 4 avec un profil contrôlé convexe est réalisée en plusieurs étapes : initialement, on chauffe le substrat 6 sous atmosphère neutre, c’est-à-dire non oxydante, jusqu’à une température légèrement supérieure à une température d’oxydation du substrat, généralement supérieure de quelques degrés à la température d’oxydation, par exemple à une température entre 5 et 20°C au-dessus de la température d’oxydation. On refroidit ensuite le substrat sous atmosphère oxydante jusqu’à atteindre ladite température d’oxydation, puis on maintient le substrat à sa température d’oxydation, toujours sous atmosphère oxydante. Du fait de l’inertie thermique du substrat, on refroidit ainsi le substrat plus rapidement à ses bords qu’en son centre, de sorte que la profondeur de partie superficielle oxydée du substrat sera plus importante en son centre qu’à ses bords. Ceci contribue donc à l’obtention d’une couche écran convexe. On notera que l’étape de refroidissement du substrat sous atmosphère oxydante vise à contrôler la concavité ou la convexité de la couche écran 4, alors que l’étape de maintien du substrat à sa température d’oxydation permet de contrôler l’épaisseur de la couche écran 4. Thermal oxidation is generally carried out in a furnace, in an oxidizing atmosphere. According to one implementation of the method, the oxidation allowing the formation of the screen layer 4 with a controlled convex profile is carried out in several steps: initially, the substrate 6 is heated in a neutral atmosphere, i.e. non-oxidizing, to a temperature slightly higher than an oxidation temperature of the substrate, generally a few degrees higher than the oxidation temperature, for example to a temperature between 5 and 20°C above the oxidation temperature. The substrate is then cooled in an oxidizing atmosphere until said oxidation temperature is reached, then the substrate is maintained at its oxidation temperature, still in an oxidizing atmosphere. Due to the thermal inertia of the substrate, the substrate is thus cooled more quickly at its edges than at its center, so that the depth of the oxidized surface part of the substrate will be greater at its center than at its edges. This therefore contributes to obtaining a screen layer convex. It will be noted that the step of cooling the substrate under an oxidizing atmosphere aims to control the concavity or convexity of the screen layer 4, while the step of maintaining the substrate at its oxidation temperature makes it possible to control the thickness of the screen layer 4.

D’autres mises en œuvre de la formation de la couche écran 4 peuvent être envisagées.Other implementations of the formation of the screen layer 4 can be considered.

Par exemple, on peut former une couche écran 4 d’oxyde en appliquant sélectivement un plasma oxydant sur une ou des zone(s) de la première face 61 du substrat donneur 6. On pourra ainsi former une surépaisseur d’oxyde dans ces zones, par exemple par un confinement adapté du plasma, avant de mettre en œuvre une oxydation thermique conventionnelle. For example, an oxide shield layer 4 can be formed by selectively applying an oxidizing plasma to one or more zones of the first face 61 of the donor substrate 6. It will thus be possible to form an excess thickness of oxide in these zones, for example by suitable confinement of the plasma, before implementing conventional thermal oxidation.

Selon une autre mise en œuvre, il est possible de former une couche écran 4 d’épaisseur uniforme par oxydation thermique du substrat donneur 6, avant de traiter la couche écran 4 de façon à former le profil d’épaisseur voulu. Par exemple, on peut graver la couche écran 4 par application d’acide fluorhydrique, ou selon un procédé de nettoyage connu de l’état de la technique, dit « RCA clean », qui consiste à utiliser une solution d’eau, de peroxyde d’hydrogène et d’ammoniaque afin de graver la couche d’oxyde. According to another implementation, it is possible to form a screen layer 4 of uniform thickness by thermal oxidation of the donor substrate 6, before treating the screen layer 4 so as to form the desired thickness profile. For example, the screen layer 4 can be etched by applying hydrofluoric acid, or according to a cleaning method known from the state of the art, called “RCA clean”, which consists of using a solution of water, hydrogen peroxide and ammonia in order to etch the oxide layer.

Les différents modes de réalisation susmentionnés peuvent éventuellement être combinés. The various embodiments mentioned above may optionally be combined.

L’oxydation thermique avec le profil de température contrôlé est particulièrement avantageuse en ce qu’elle ne nécessite qu’un seul équipement et un seul type de traitement pour former la couche écran à profil contrôlé. Thermal oxidation with the controlled temperature profile is particularly advantageous in that it requires only one piece of equipment and one type of treatment to form the controlled profile shield layer.

Préalablement à l’étape de formation de la couche écran 4, le procédé peut comprendre une calibration du profil de la couche écran 4, de façon à permettre une compensation précise du profil d’implantation. Prior to the step of forming the screen layer 4, the method may comprise a calibration of the profile of the screen layer 4, so as to allow precise compensation of the implantation profile.

En référence à la figure 4, on prévoit un substrat de calibration 600 du même matériau que le substrat donneur, sur lequel on effectue une implantation 701 d’espèces atomiques ou ioniques, au travers d’une première face 601 du substrat de calibration 600, de sorte à créer une zone de fragilisation 500. La calibration comprend ensuite une étape 702 de séparation du substrat de calibration en deux parties le long de la zone de fragilisation 500 : une première partie 602 qui comprend la première face 601 et une deuxième partie 603. Par ailleurs, une étape de collage du substrat de calibration 600 sur un substrat support est préférentiellement prévue. Le substrat support joue le rôle d’un raidisseur mécanique destiné à faciliter la séparation de la couche 621 du substrat de calibration 600. La première partie 602 présente alors un profil identique à une couche active 13 qui serait obtenue dans le cadre d’un procédé de fabrication par collage inverse, sans compensation telle que proposée. La calibration comprend finalement une étape de définition 703 d’un profil cible 400 défini sensiblement par la forme de la surface 621 de la première partie 602 le long de la zone de fragilisation 500, exposée par la séparation. 4, a calibration substrate 600 of the same material as the donor substrate is provided, on which an implantation 701 of atomic or ionic species is carried out, through a first face 601 of the calibration substrate 600, so as to create a weakening zone 500. The calibration then comprises a step 702 of separating the calibration substrate into two parts along the weakening zone 500: a first part 602 which comprises the first face 601 and a second part 603. Furthermore, a step of bonding the calibration substrate 600 to a support substrate is preferably provided. The support substrate acts as a mechanical stiffener intended to facilitate the separation of the layer 621 from the calibration substrate 600. The first part 602 then has a profile identical to an active layer 13 which would be obtained in the context of a manufacturing method by reverse bonding, without compensation as proposed. Calibration finally comprises a step 703 of defining a target profile 400 defined substantially by the shape of the surface 621 of the first part 602 along the weakening zone 500, exposed by the separation.

La présente divulgation concerne également un procédé de fabrication d’un composant 10 de type semiconducteur sur isolant, représenté à la figure 5. Ce procédé comprend les étapes suivantes : The present disclosure also relates to a method of manufacturing a semiconductor-on-insulator type component 10, shown in FIG. 5. This method comprises the following steps:

- la fourniture d’un substrat donneur 6 et d’un substrat receveur 7 comprenant un matériau semiconducteur, par exemple mais non limitativement du silicium, - the provision of a donor substrate 6 and a recipient substrate 7 comprising a semiconductor material, for example but not limited to silicon,

- la formation d’une couche électriquement isolante 2 sur une face 71 du substrat receveur. On peut notamment prévoir que cette couche 2 présente une épaisseur d’au moins 150 nanomètres, de sorte à assurer une isolation optimale de la couche active 13 par rapport à la base 11 du substrat, - the formation of an electrically insulating layer 2 on a face 71 of the receiving substrate. It may in particular be provided that this layer 2 has a thickness of at least 150 nanometers, so as to ensure optimal insulation of the active layer 13 relative to the base 11 of the substrate,

- la formation d’une zone de fragilisation 5 dans le substrat donneur 6 au moyen du procédé selon la présente divulgation. Cette étape comprend donc la formation 102 de la couche écran 4 sur la première face 61 du substrat donneur, ainsi que l’implantation 103 d’espèces au travers de cette première face. À l’issue de cette étape, on obtient une zone de fragilisation 5 plane, sensiblement parallèle à la première face 61 , - the formation of a weakening zone 5 in the donor substrate 6 by means of the method according to the present disclosure. This step therefore comprises the formation 102 of the screen layer 4 on the first face 61 of the donor substrate, as well as the implantation 103 of species through this first face. At the end of this step, a planar weakening zone 5 is obtained, substantially parallel to the first face 61,

- le retrait 104 de la couche écran 4, de sorte à exposer la première face 61 , - the removal 104 of the screen layer 4, so as to expose the first face 61,

- le collage 105 du substrat donneur 6 sur le substrat receveur 7. La première face 61 du substrat donneur est collée sur le substrat receveur 7, la couche électriquement isolante 2 étant disposée entre les deux substrats, - the bonding 105 of the donor substrate 6 on the receiving substrate 7. The first face 61 of the donor substrate is bonded on the receiving substrate 7, the electrically insulating layer 2 being arranged between the two substrates,

- la séparation 106 du substrat donneur 6 au niveau de la zone de fragilisation 5, de sorte à transférer une couche semi-conductrice du substrat donneur 6 sur le substrat receveur 7. Cette couche semi-conductrice forme la couche active 13 du substrat SOI. - the separation 106 of the donor substrate 6 at the level of the weakening zone 5, so as to transfer a semi-conductor layer from the donor substrate 6 onto the recipient substrate 7. This semi-conductor layer forms the active layer 13 of the SOI substrate.

Claims

REVENDICATIONS 1. Procédé de formation d’une zone de fragilisation (5) dans un substrat (6) semi- conducteur, comprenant successivement les étapes suivantes : a. formation d’une couche écran (4) présentant un profil contrôlé non-plan sur une première face (61) du substrat, b. implantation d’espèces au travers de la couche écran et de la première face (61) du substrat pour former la zone de fragilisation, le profil de la couche écran étant choisi pour compenser une non-uniformité de profondeur d’implantation des espèces de sorte que la zone de fragilisation (5) soit sensiblement comprise dans un plan parallèle à la première face (61). 1. Method for forming a weakening zone (5) in a semiconductor substrate (6), successively comprising the following steps: a. forming a shielding layer (4) having a controlled non-planar profile on a first face (61) of the substrate, b. implanting species through the shielding layer and the first face (61) of the substrate to form the weakening zone, the profile of the shielding layer being chosen to compensate for a non-uniformity in the depth of implantation of the species so that the weakening zone (5) is substantially included in a plane parallel to the first face (61). 2. Procédé selon la revendication précédente, la couche écran (4) présentant un profil convexe ou concave. 2. Method according to the preceding claim, the screen layer (4) having a convex or concave profile. 3. Procédé selon l’une quelconque des revendications précédentes, les espèces implantées dans la première face (61) du substrat comprenant des ions hydrogène et des ions hélium. 3. Method according to any one of the preceding claims, the species implanted in the first face (61) of the substrate comprising hydrogen ions and helium ions. 4. Procédé selon l’une quelconque des revendications précédentes, une distance entre deux points quelconques d’une surface libre (41) de la couche écran (4) selon un axe normal à la première face (61) étant comprise entre 0.2 nm et 5 nm. 4. Method according to any one of the preceding claims, a distance between any two points of a free surface (41) of the screen layer (4) along an axis normal to the first face (61) being between 0.2 nm and 5 nm. 5. Procédé selon l’une quelconque des revendications précédentes, le substrat (6) comprenant du silicium. 5. Method according to any one of the preceding claims, the substrate (6) comprising silicon. 6. Procédé selon l’une quelconque des revendications précédentes, la couche écran (4) comprenant un oxyde d’un matériau semi-conducteur, notamment du dioxyde de silicium.6. Method according to any one of the preceding claims, the screen layer (4) comprising an oxide of a semiconductor material, in particular silicon dioxide. 7. Procédé selon la revendication précédente, la couche écran (4) étant obtenue par oxydation thermique d’une région superficielle du substrat semi-conducteur (6) 7. Method according to the preceding claim, the screen layer (4) being obtained by thermal oxidation of a surface region of the semiconductor substrate (6) 8. Procédé selon la revendication précédente, la formation de la couche écran (4) par oxydation comprenant un chauffage du substrat (6) sous une atmosphère neutre jusqu’à une température supérieure à une température d'oxydation du substrat, puis un refroidissement du substrat à ladite température d’oxydation, et une application d’une atmosphère oxydante pour former la couche écran (4). 8. Method according to the preceding claim, the formation of the screen layer (4) by oxidation comprising heating the substrate (6) under a neutral atmosphere to a temperature above an oxidation temperature of the substrate, then cooling the substrate to said oxidation temperature, and applying an oxidizing atmosphere to form the screen layer (4). 9. Procédé selon la revendication 7, comprenant, avant l’oxydation thermique, une application sélective d’un plasma oxydant sur une zone de la première face (61) du substrat (6) de sorte à former une surépaisseur d’oxyde dans ladite zone. 9. Method according to claim 7, comprising, before the thermal oxidation, a selective application of an oxidizing plasma on a zone of the first face (61) of the substrate (6) so as to form an excess thickness of oxide in said zone. 10. Procédé selon l’une quelconque des revendications précédentes, comprenant préalablement à la formation de la couche écran (4) une calibration du profil de la couche écran (4) comprenant les étapes suivantes : 10. Method according to any one of the preceding claims, comprising, prior to the formation of the screen layer (4), a calibration of the profile of the screen layer (4) comprising the following steps: - implantation (701) d’atomes au travers d’une première face (601) d’un substrat de calibration (600), de sorte à créer une zone de fragilisation (500), - implantation (701) of atoms through a first face (601) of a calibration substrate (600), so as to create a weakening zone (500), - séparation (702) du substrat de calibration le long de la zone de fragilisation en une première partie (602), comprenant la première face (601), et une deuxième partie (603), - définition (703) d’un profil cible (400) dont la forme est sensiblement identique à une surface (621) de la première partie (602) exposée par la séparation, le profil cible (400) étant utilisé pour définir le profil de la couche écran (4) lors de sa formation. - separation (702) of the calibration substrate along the weakening zone into a first part (602), comprising the first face (601), and a second part (603), - defining (703) a target profile (400) whose shape is substantially identical to a surface (621) of the first part (602) exposed by the separation, the target profile (400) being used to define the profile of the screen layer (4) during its formation. 11 . Procédé de fabrication d’un composant semiconducteur (10) de type semi-conducteur sur isolant, comprenant successivement les étapes de : 11. Method for manufacturing a semiconductor component (10) of the semiconductor-on-insulator type, successively comprising the steps of: - fourniture d’un substrat donneur (6) et d’un substrat receveur (7) en matériau semiconducteur, - supply of a donor substrate (6) and a recipient substrate (7) made of semiconductor material, - formation (101 ) d’une couche électriquement isolante (2) sur une face (71 ) du substrat receveur, - formation (101) of an electrically insulating layer (2) on one face (71) of the receiving substrate, - formation (102, 103) d’une zone de fragilisation (5) dans le substrat donneur (6) au moyen du procédé de formation selon l’une quelconque des revendications précédentes, la zone de fragilisation (5) ainsi formée délimitant une couche semi-conductrice, - formation (102, 103) of a weakening zone (5) in the donor substrate (6) by means of the forming method according to any one of the preceding claims, the weakening zone (5) thus formed delimiting a semi-conductor layer, - retrait (104) de la couche écran (4), - removal (104) of the screen layer (4), - collage (105) de la première face (601) du substrat donneur (6) sur la couche électriquement isolante (2) du substrat receveur (7), - bonding (105) of the first face (601) of the donor substrate (6) to the electrically insulating layer (2) of the recipient substrate (7), - séparation (106) du substrat donneur (6) au niveau de la zone de fragilisation (5) de sorte à transférer la couche semi-conductrice du substrat donneur (6) sur le substrat receveur (7). - separation (106) of the donor substrate (6) at the weakening zone (5) so as to transfer the semiconductor layer from the donor substrate (6) to the recipient substrate (7). 12. Procédé selon la revendication précédente, dans lequel la couche électriquement isolante (2) et la couche écran (4) sont formées par traitement thermique dans un même four. 12. Method according to the preceding claim, in which the electrically insulating layer (2) and the screen layer (4) are formed by heat treatment in the same oven. 13. Procédé selon l’une quelconque des revendications 11 et 12, la couche électriquement isolante (2) présentant une épaisseur d’au moins 150 nanomètres. 13. Method according to any one of claims 11 and 12, the electrically insulating layer (2) having a thickness of at least 150 nanometers.
PCT/EP2024/054019 2023-02-16 2024-02-16 Method for forming a weakened zone in a semiconductor substrate WO2024170751A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2301463A FR3146019A1 (en) 2023-02-16 2023-02-16 METHOD FOR FORMING AN EMBRITTLEMENT ZONE IN A SEMICONDUCTOR SUBSTRATE
FR2301463 2023-02-16

Publications (1)

Publication Number Publication Date
WO2024170751A1 true WO2024170751A1 (en) 2024-08-22

Family

ID=86942542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2024/054019 WO2024170751A1 (en) 2023-02-16 2024-02-16 Method for forming a weakened zone in a semiconductor substrate

Country Status (3)

Country Link
FR (1) FR3146019A1 (en)
TW (1) TW202449987A (en)
WO (1) WO2024170751A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010016401A1 (en) * 1998-07-07 2001-08-23 Shin-Etsu Handotai Co., Ltd. Method of fabricating an SOI wafer and SOI wafer fabricated by the method
US20090133819A1 (en) * 2007-11-28 2009-05-28 Hubert Moriceau Deformation moderation method
US20150243550A1 (en) * 2012-11-21 2015-08-27 Shin-Etsu Handotai Co., Ltd. Method for manufacturing soi wafer
CN112997290A (en) * 2019-01-09 2021-06-18 索泰克公司 Method of manufacturing a receiver substrate for a semiconductor-on-insulator structure for radio frequency applications and method of manufacturing such a structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010016401A1 (en) * 1998-07-07 2001-08-23 Shin-Etsu Handotai Co., Ltd. Method of fabricating an SOI wafer and SOI wafer fabricated by the method
US20090133819A1 (en) * 2007-11-28 2009-05-28 Hubert Moriceau Deformation moderation method
US20150243550A1 (en) * 2012-11-21 2015-08-27 Shin-Etsu Handotai Co., Ltd. Method for manufacturing soi wafer
CN112997290A (en) * 2019-01-09 2021-06-18 索泰克公司 Method of manufacturing a receiver substrate for a semiconductor-on-insulator structure for radio frequency applications and method of manufacturing such a structure

Also Published As

Publication number Publication date
TW202449987A (en) 2024-12-16
FR3146019A1 (en) 2024-08-23

Similar Documents

Publication Publication Date Title
EP1208593B1 (en) Method for treating substrates for microelectronics
EP1412972A2 (en) Method for reducing surface rugosity
WO1999052145A1 (en) Heat treatment method for semiconductor substrates
FR3098642A1 (en) method of manufacturing a structure comprising a thin layer transferred to a support provided with a charge trapping layer
FR2845523A1 (en) METHOD FOR MAKING A SUBSTRATE BY TRANSFERRING A DONOR WAFER HAVING FOREIGN SPECIES, AND ASSOCIATED DONOR WAFER
FR3094573A1 (en) PROCESS FOR PREPARING A THIN LAYER OF FERROELECTRIC MATERIAL
FR3108774A1 (en) PROCESS FOR MANUFACTURING A COMPOSITE STRUCTURE INCLUDING A THIN SIC MONOCRISTALLINE SIC LAYER ON A SIC SUPPORT SUBSTRATE
FR2952224A1 (en) METHOD FOR CONTROLLING THE DISTRIBUTION OF CONSTRAINTS IN A SEMICONDUCTOR TYPE STRUCTURE ON INSULATION AND CORRESPONDING STRUCTURE
WO2004112125A1 (en) Method for production of a very thin layer with thinning by means of induced self-support
WO2021144534A1 (en) Method for manufacturing an image sensor
WO2024170751A1 (en) Method for forming a weakened zone in a semiconductor substrate
FR2987935A1 (en) PROCESS FOR SLURNING THE ACTIVE SILICON LAYER OF A "SILICON ON INSULATION" SUBSTRATE (SOI)
FR3085538A1 (en) SOI WAFER AND METHOD FOR PRODUCING THE SAME
EP4000090B1 (en) Process for hydrophilically bonding substrates
EP3503174B1 (en) Useful film transfer method
EP4154306A1 (en) Method for manufacturing a semiconductor-on-insulator substrate for radiofrequency applications
WO2020201003A1 (en) Method for manufacturing a semiconductor-on-insulator substrate
WO2024170757A1 (en) Method for reducing the boron concentration in a semiconductor layer
WO2023143818A1 (en) Method for transferring a thin layer onto a support substrate
WO2021234280A1 (en) Method for manufacturing a semiconductor-on-insulator substrate for radiofrequency applications
FR3121281A1 (en) METHOD FOR MANUFACTURING A COMPOSITE STRUCTURE COMPRISING A THIN LAYER OF SINGLE-CRYSTALLINE SEMICONDUCTOR ON A SUPPORT SUBSTRATE
WO2024251417A1 (en) Substrate comprising a thick buried dielectric layer and method for preparing such a substrate
FR3151939A1 (en) Process for manufacturing a constrained layer
WO2023144495A1 (en) Process for fabricating a double semiconductor-on-insulator structure
EP4505510A1 (en) Method for transferring a thin film onto a support substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24705175

Country of ref document: EP

Kind code of ref document: A1