WO2024169471A1 - 电解发生器、水处理组件、热水器组件及热水系统 - Google Patents
电解发生器、水处理组件、热水器组件及热水系统 Download PDFInfo
- Publication number
- WO2024169471A1 WO2024169471A1 PCT/CN2024/071364 CN2024071364W WO2024169471A1 WO 2024169471 A1 WO2024169471 A1 WO 2024169471A1 CN 2024071364 W CN2024071364 W CN 2024071364W WO 2024169471 A1 WO2024169471 A1 WO 2024169471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- anode
- cathode
- water inlet
- electrolytic generator
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 453
- 238000010438 heat treatment Methods 0.000 title abstract 2
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 79
- 238000007789 sealing Methods 0.000 claims description 73
- 239000000463 material Substances 0.000 claims description 64
- 238000009434 installation Methods 0.000 claims description 34
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 description 65
- 229910052739 hydrogen Inorganic materials 0.000 description 65
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 64
- 238000000034 method Methods 0.000 description 21
- 230000008569 process Effects 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- 230000005684 electric field Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000887 hydrating effect Effects 0.000 description 3
- 230000003020 moisturizing effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000003287 bathing Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 229920002385 Sodium hyaluronate Polymers 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000002101 nanobubble Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 229940010747 sodium hyaluronate Drugs 0.000 description 1
- YWIVKILSMZOHHF-QJZPQSOGSA-N sodium;(2s,3s,4s,5r,6r)-6-[(2s,3r,4r,5s,6r)-3-acetamido-2-[(2s,3s,4r,5r,6r)-6-[(2r,3r,4r,5s,6r)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2- Chemical compound [Na+].CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 YWIVKILSMZOHHF-QJZPQSOGSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- the present application relates to the technical field of water treatment, and in particular to an electrolytic generator, a water treatment component, a water heater component and a hot water system.
- micro-nano bubbles (hereinafter referred to as microbubbles) have the characteristics of small size, large specific surface area, and surface charge, which can achieve deep skin cleansing and hydration and moisturizing functions. Therefore, devices that realize multifunctional water use of hydrogen-rich microbubbles are gradually becoming popular among users.
- hydrogen-rich water is produced mainly through physical hydrogen production, chemical reaction hydrogen production or electrolysis hydrogen production, but it is mainly based on drinking water, with slow production speed and small production volume, and is not suitable for bathing and deep cleaning water.
- an auxiliary anode is usually provided in the inner tank of the water heater to use the inner tank of the water heater as the cathode.
- the hypochlorous acid produced by electrolysis cannot be released, which will accelerate the corrosion of the inner tank and other structures, thereby affecting the service life of the water heater; and the method of producing microbubbles is mainly based on the dissolved air release method.
- This technology has the disadvantages of complex device structure, high cost, poor bubble continuity, etc., and it cannot produce hydrogen-rich water, but can only produce microbubbles, thus failing to meet multi-functional water needs.
- the main purpose of the present application is to propose an electrolytic generator, a water treatment component, a water heater component and a hot water system, aiming to at least partially solve one of the technical problems existing in the prior art.
- an electrolytic generator comprising:
- a shell wherein an electrolysis chamber is formed in the shell, and the shell is provided with a first water inlet and a first water outlet connected to the electrolysis chamber, wherein the first water inlet is used to be connected to a drain outlet of the water heater;
- an anode comprising an anode plate, the anode plate being disposed in the electrolysis chamber;
- the cathode has a cathode plate, which is arranged in the electrolysis chamber and spaced apart from the anode plate.
- a plurality of spaced-apart limiting ribs are provided in the electrolysis chamber.
- a limiting groove is formed between two adjacent limiting ribs.
- the anode plate and the cathode plate are respectively clamped in the two limiting slots.
- the anode plates are provided in a plurality
- the cathode plates are provided in a plurality
- the anode plates and the cathode plates are arranged alternately, and a water flow channel is formed between adjacent cathode plates and anode plates.
- the number of the anode plates is defined as n
- the number of the cathode plates is defined as m
- the width of each of the water flow channels is consistent.
- the anode further includes an anode rod, which is connected to the anode plate and at least partially extends out of the electrolysis chamber.
- the cathode further includes a cathode rod, which is connected to the cathode plate and at least partially extends out of the electrolysis chamber.
- the housing is further provided with a first opening and a second opening which are spaced apart from each other, the anode rod and the cathode rod are respectively passed through the first opening and the second opening, and a first sealing ring is provided between the anode rod and the inner wall of the first opening.
- a second sealing ring is provided between the cathode rod and the inner wall of the second opening.
- a first sealing groove is formed on the outer side wall of the anode rod, and part of the first sealing ring is disposed in the first sealing groove.
- a second sealing groove is formed on the outer side wall of the cathode rod, and part of the second sealing ring is disposed in the second sealing groove.
- the electrolytic generator further includes a first fastener, and the anode rod is fixed to the housing via the first fastener.
- the electrolytic generator further includes a second fastener, and the cathode rod is fixed to the housing via the second fastener.
- the first fastener is a first fastening nut
- one end of the anode rod extending into the electrolysis chamber is provided with a first external thread
- the first fastening nut is threadably matched with the first external thread
- the second fastener is a second fastening nut
- one end of the cathode rod extending into the electrolysis chamber is provided with a second external thread
- the second fastening nut is threadably matched with the second external thread
- a first elastic gasket is provided between the first fastening nut and the outer side wall of the shell.
- a second elastic gasket is provided between the second fastening nut and the outer side wall of the shell.
- the outer shell includes: a lower shell, the lower shell is provided with the first water inlet and the first water outlet; and an upper cover, the upper cover is covered on the lower shell and enclosed with the lower shell to form the electrolysis chamber.
- an inserting portion is protruding from the inner side wall of the upper cover, and the outer peripheral wall of the inserting portion abuts against the inner side wall of the lower shell.
- a third sealing ring is provided between the plug-in portion and the lower shell.
- a third sealing groove is formed on the outer peripheral wall of the plug-in portion, and part of the third sealing ring is disposed in the third sealing groove.
- the lower shell is provided with a fastening hole
- the outer peripheral wall of the plug-in portion is also provided with a fastening groove corresponding to the fastening hole
- the outer shell also includes a connecting piece, which is passed through the fastening hole and inserted into the fastening groove.
- the present application also proposes a water treatment component, comprising:
- a bubble filter module wherein the bubble filter module has a second water inlet and a second water outlet, wherein the second water inlet is connected to the first water outlet of the electrolytic generator, so that the bubble filter module is used to increase the microbubble concentration of water entering the bubble filter module.
- the bubble filter element module includes: a shell, an installation cavity is formed in the shell, the shell is provided with the second water inlet and the second water outlet connected to the installation cavity, the second water inlet is connected to the first water outlet of the electrolysis generator; and a microbubble slow-release filter element, the microbubble slow-release filter element is arranged in the installation cavity, and the microbubble slow-release filter element is used to increase the microbubble concentration of water entering the installation cavity.
- the microbubble slow-release filter element includes: a filter material tube, the filter material tube is arranged in the installation cavity, the filter material tube is provided with a third water inlet and a third water outlet, the third water inlet is connected to the second water inlet, and the third water outlet is connected to the second water outlet; and filter material, the filter material is filled in the filter material tube.
- the second water inlet and the second water outlet are respectively arranged on two sides of the shell facing away from each other, and the third water inlet and the third water outlet are both arranged close to the second water inlet.
- a water channel is formed between the filter material tube and the cavity wall of the installation cavity, and the third water outlet is connected to the second water outlet through the water channel.
- the shell includes: a bottom shell, the bottom shell is provided with the second water outlet; and a top cover, the top cover is covered on the bottom shell and enclosed with the bottom shell to form the installation cavity, and the top cover is provided with the second water inlet.
- the present application also proposes a water heater assembly, comprising:
- the water heater having a water inlet and a water outlet, the water inlet being connected to a water supply pipe;
- the drain port is communicated with the first water inlet of the electrolytic generator.
- the water heater assembly also includes a bubble filter module, which has a second water inlet and a second water outlet, and the second water inlet is connected to the first water outlet of the electrolysis generator, so that the bubble filter module is used to increase the microbubble concentration of water entering the bubble filter module.
- the present application also proposes a hot water system, comprising:
- the water heater having a water inlet and a water outlet, the water inlet being connected to a water supply pipe;
- the water treatment component as described above includes an electrolytic generator and a bubble filter module, the drain port is connected to the first water inlet of the electrolytic generator, the bubble filter module has a second water inlet and a second water outlet, the second water inlet is connected to the first water outlet of the electrolytic generator, so that the bubble filter module is used to increase the microbubble concentration of water entering the interior of the bubble filter module.
- FIG1 is a schematic structural diagram of an electrolytic generator according to an embodiment of the present application.
- FIG2 is a partial cross-sectional view of an embodiment of an electrolytic generator of the present application.
- FIG3 is a cross-sectional view of an embodiment of an electrolytic generator of the present application at a certain position
- FIG4 is a cross-sectional view of an embodiment of the electrolytic generator of the present application at another position
- FIG5 is an exploded view of an embodiment of an electrolytic generator of the present application.
- FIG6 is a schematic diagram of the structure of the lower shell of an electrolytic generator in one embodiment of the present application.
- FIG7 is a schematic structural diagram of an upper cover from one perspective in an embodiment of an electrolytic generator of the present application.
- FIG8 is a schematic structural diagram of an upper cover from another perspective of an embodiment of an electrolytic generator of the present application.
- FIG9 is a schematic diagram of the structure of the anode in an embodiment of the electrolytic generator of the present application.
- FIG10 is a schematic diagram of the structure of the cathode in an embodiment of the electrolytic generator of the present application.
- FIG11 is a schematic structural diagram of an embodiment of a water treatment component of the present application.
- FIG. 12 is a cross-sectional view of a shell and a microbubble slow-release filter element in an embodiment of a water treatment component of the present application.
- the present application proposes an electrolytic generator 100, a water treatment component 1000, a water heater component and a hot water system, aiming to provide an electrolytic generator 100 capable of simultaneously producing hydrogen and microbubbles, so as to meet multifunctional water demand, while preventing the hypochlorous acid generated by electrolysis from affecting the service life of the water heater.
- the electrolytic generator 100 includes a shell 10, an anode 20 and a cathode 30; an electrolytic chamber 10a is formed in the shell 10, and the shell 10 is provided with a first water inlet 111 and a first water outlet 112 connected to the electrolytic chamber 10a, and the first water inlet 111 is used to communicate with the drain outlet of the water heater;
- the anode 20 has an anode plate 21, and the anode plate 21 is arranged in the electrolytic chamber 10a;
- the cathode 30 has a cathode plate 31, and the cathode plate 31 is arranged in the electrolytic chamber 10a and is spaced apart from the anode plate 21.
- the electrolytic generator 100 proposed in this scheme can produce hydrogen and microbubbles at the same time, and can meet multifunctional water demand; at the same time, the electrolytic generator 100 is arranged outside the water heater and has an independent anode 20 and cathode 30. Therefore, when the electrolysis reaction of water occurs, the inner tank and other structures of the water heater will not be corroded, so that it can Prevent hypochlorous acid produced by electrolysis from affecting the service life of the water heater.
- the anode plate 21 and the cathode plate 31 are spaced apart so that a water flow channel 10b is formed between the anode plate 21 and the cathode plate 31.
- a water flow channel 10b is formed between the anode plate 21 and the cathode plate 31.
- the electrolysis generator 100 of this scheme performs an electrolysis reaction on flowing water when the electrolysis reaction of water occurs, so that the water discharged from the water heater can flow out from the first water outlet 112 to the use terminal (faucet or shower) after the water electrolysis reaction passes through the electrolysis generator 100, so that multifunctional water rich in hydrogen and microbubbles can be continuously discharged.
- the oxygen bubbles generated on the anode plate 21 and the hydrogen bubbles generated on the cathode plate 31 are both microbubbles, which can achieve deep cleansing and hydrating functions for the skin.
- the hydrogen generated on the cathode plate 31 can be dissolved in water to produce hydrogen-rich water, which can have antioxidant and anti-inflammatory effects. Therefore, hydrogen-rich microbubble water is produced to provide domestic water that can remove oxidative free radicals, has antioxidant and deep cleansing effects, and hydrating and moisturizing effects, which can meet the user's multi-functional water needs.
- the anode plate 21 may be a sheet-like or mesh-like structure; similarly, the cathode plate 31 may also be a sheet-like or mesh-like structure.
- the positive electrode of an external power source can be electrically connected to the anode 20
- the negative electrode of the external power source can be electrically connected to the cathode 30 , so as to apply a DC electric field to the anode and cathode 30 .
- the first water inlet 111 and the first water outlet 112 can be arranged on two adjacent sides of the outer shell 10; or, the first water inlet 111 and the first water outlet 112 can also be arranged on two opposite sides of the outer shell 10; or, the first water inlet 111 and the first water outlet 112 can also be arranged on the same side of the outer shell 10; as long as the water entering from the first water inlet 111 can submerge the anode plate 21 and the cathode plate 31 for electrolysis, and then flow out from the first water outlet 112, the specific conditions can be determined according to the actual usage.
- a plurality of spaced-apart limiting ribs 113 are provided in the electrolytic chamber 10a, and a limiting groove 1131 is formed between two adjacent limiting ribs 113, and the anode plate 21 and the cathode plate 31 are respectively clamped in the two limiting grooves 1131.
- the anode plate 21 and the cathode plate 31 can be respectively clamped in the two limit slots 1131, and the anode plate 21 and the cathode plate 31 can be limited to reduce the risk of short circuit between the anode plate 21 and the cathode plate 31, thereby ensuring the stability of electrolysis of the anode plate 21 and the cathode plate 31.
- a plurality of spaced limiting ribs 113 may be provided on two opposite chamber walls of the electrolysis chamber 10a, so that a plurality of spaced limiting grooves 1131 may be formed on two opposite chamber walls of the electrolysis chamber 10a.
- the opposite side edges of the anode plate 21 may be respectively clamped in two opposite side limiting grooves 1131, and the opposite side edges of the cathode plate 31 may be respectively clamped in two opposite side limiting grooves 1131.
- the extending direction of the limiting rib 113 may be consistent with the extending direction of the anode plate 21 or the cathode plate 31 , so as to further enhance the limiting strength of the anode plate 21 and the cathode plate 31 .
- the anode plates 21 are provided with a plurality of blocks
- the cathode plates 31 are provided with a plurality of blocks
- the plurality of anode plates 21 and the plurality of cathode plates 31 are arranged alternately
- a water flow channel 10b is formed between adjacent cathode plates 31 and the anode plates 21.
- each anode plate 21 and a cathode plate 31 can form an electrode system
- multiple electrode systems can be formed by the arrangement of multiple anode plates 21 and multiple cathode plates 31.
- the concentration of hydrogen and microbubbles can be increased under the action of multiple electrode systems to achieve better antioxidant, anti-inflammatory, deep cleansing, hydrating and moisturizing effects.
- the number of the anode plates 21 is defined as n
- the number of the cathode plates 31 is defined as m
- the number is one more than the number of the anode plates 21, so that more hydrogen can be produced to obtain hydrogen-rich microbubble water with a higher hydrogen concentration.
- At least two anode plates 21 may be provided, and at least three cathode plates 31 may be provided, so that one anode plate 21 is provided between two adjacent cathode plates 31 , thereby forming at least four sets of electrode systems.
- the width of each of the water flow channels 10b is consistent, that is, in adjacent anode plates 21 and cathode plates 31, each group of anode plates 21 and cathode plates 31 maintains the same spacing.
- Such a setting is conducive to the full mixing of the produced hydrogen and water, and can effectively increase the hydrogen content of the water.
- the anode 20 also includes an anode rod 22, which is connected to the anode plate 21 and at least partially extends out of the electrolysis chamber 10a;
- the cathode 30 also includes a cathode rod 32, which is connected to the cathode plate 31 and at least partially extends out of the electrolysis chamber 10a.
- the anode plate 21 of the anode 20 is inserted into the electrolysis chamber 10a, and the anode rod 22 of the anode 20 is at least partially extended out of the electrolysis chamber 10a, so that the anode rod 22 is electrically connected to the positive pole of the external power supply; similarly, the cathode plate 31 of the cathode 30 is inserted into the electrolysis chamber 10a, and the cathode rod 32 of the cathode 30 is at least partially extended out of the electrolysis chamber 10a, so that the cathode rod 32 is electrically connected to the negative pole of the external power supply.
- the anode plate 21 and the anode rod 22 can be connected by welding.
- the anode plate 21 and the anode rod 22 can also be connected by bonding, screwing, etc.; similarly, the cathode plate 31 and the cathode rod 32 can be connected by welding.
- the cathode plate 31 and the cathode rod 32 can also be connected by bonding, screwing, etc.
- an anode connecting plate 23 can be connected to the end of the anode rod 22 located in the electrolysis chamber 10a, so that several anode plates 21 are connected to the anode connecting plate 23 at intervals, that is, the anode rod 22 and the anode plate 21 are respectively connected to the two surfaces of the anode connecting plate 23 facing away from each other, and the anode connecting plate 23 and the anode plate 21 are arranged at an angle;
- a cathode connecting plate 33 can be connected to the end of the cathode rod 32 located in the electrolysis chamber 10a, so that several cathode plates 31 are connected to the cathode connecting plate 33 at intervals, that is, the cathode rod 32 and the cathode plate 31 are
- the anode connecting plate 23 can be connected to the anode rod 22 and the anode plate 21 by welding; similarly, the cathode connecting plate 33 can be connected to the cathode rod 32 and the cathode plate 31 by welding.
- the outer shell 10 is also provided with a first opening 121 and a second opening 122 that are spaced apart, the anode rod 22 and the cathode rod 32 are respectively inserted into the first opening 121 and the second opening 122, a first sealing ring 40 is provided between the anode rod 22 and the inner wall of the first opening 121, and a second sealing ring 50 is provided between the cathode rod 32 and the inner wall of the second opening 122.
- a first sealing ring 40 is sleeved on the outer side of the anode rod 22, and then the anode plate 21 is inserted into the electrolysis chamber 10a, and the anode rod 22 is passed through the first opening 121 of the shell 10, and at least partially extends out of the electrolysis chamber 10a to be electrically connected to the positive electrode of the external power supply.
- the sealing between the anode rod 22 and the shell 10 can be achieved by the arrangement of the first sealing ring 40, so as to prevent the water in the electrolysis chamber 10a from leaking outward from the gap between the anode rod 22 and the shell 10; at the same time, a second sealing ring 50 is sleeved on the outer side of the cathode rod 32, and then the cathode plate 31 is inserted into the electrolysis chamber 10a, and the cathode rod 32 is passed through the second opening 122 of the shell 10, and at least partially extends out of the electrolysis chamber 10a to be electrically connected to the negative electrode of the external power supply.
- the sealing between the cathode rod 32 and the shell 10 can be achieved by the arrangement of the second sealing ring 50, so as to prevent the water in the electrolysis chamber 10a from leaking outward from the gap between the cathode rod 32 and the shell 10.
- a plurality of first sealing rings 40 may be provided between the anode rod 22 and the inner wall of the first opening 121, and the plurality of first sealing rings 40 may be provided at intervals along the extension direction of the anode rod 22; similarly, in order to further improve the sealing between the cathode rod 32 and the outer shell 10, a plurality of second sealing rings 50 may be provided between the cathode rod 32 and the inner wall of the second opening 122, and the plurality of second sealing rings 50 may be provided at intervals along the extension direction of the cathode rod 32.
- a first sealing groove 221 can be opened on the outer wall of the anode rod 22 to arrange part of the first sealing ring 40 in the first sealing groove 221; in this way, during the assembly process, part of the first sealing ring 40 can be embedded in the first sealing groove 221 to limit and fix the first sealing ring 40, thereby ensuring the sealing effect of the first sealing ring 40.
- a second sealing groove 321 can be opened on the outer wall of the cathode rod 32 to arrange part of the second sealing ring 50 in the second sealing groove 321; in this way, during the assembly process, part of the second sealing ring 50 can be embedded in the second sealing groove 321 first to limit and fix the second sealing ring 50, thereby ensuring the sealing effect of the second sealing ring 50.
- the electrolytic generator 100 also includes a first fastener 60 and a second fastener 70, the anode rod 22 is fixed to the outer shell 10 by the first fastener 60, and the cathode rod 32 is fixed to the outer shell 10 by the second fastener 70.
- the first fastener 60 can be used to fix the anode rod 22 to the outer shell 10, and then the anode 20 is fixed to the outer shell 10; similarly, after the cathode rod 32 passes through the outer shell 10, the second fastener 70 can be used to fix the cathode rod 32 to the outer shell 10, and then the cathode rod 32 is fixed to the outer shell 10.
- first fastener 60 and the second fastener 70 can both be structures such as nuts, buckles, adhesives, welding layers, etc., as long as they can fix the anode 20 and the cathode 30 to the housing 10.
- the first fastener 60 can be designed as a first fastening nut, and a first external thread 222 is provided at one end of the anode rod 22 extending into the electrolysis chamber 10a, so that the first fastening nut is threadedly matched with the first external thread 222; in this way, during the assembly process, the first fastening nut is directly screwed into one end of the anode rod 22 extending into the electrolysis chamber 10a, so as to threadably match with the first external thread 222 on the anode rod 22, and the anode 20 can be fixed to the outer casing 10.
- the second fastener 70 can be designed as a second fastening nut, and a second external thread 322 can be provided at one end of the cathode rod 32 extending into the electrolysis chamber 10a, so that the second fastening nut can be threadedly matched with the second external thread 322; in this way, during the assembly process, the second fastening nut can be directly screwed into one end of the cathode rod 32 extending into the electrolysis chamber 10a to threadably match with the second external thread 322 on the cathode rod 32, so that the cathode 30 can be fixed to the outer shell 10.
- At least two first fastening nuts may be provided, so that the at least two first fastening nuts are screwed into the anode rod 22 in sequence and extended to one end of the electrolysis chamber 10a, so as to be threadedly matched with the first external thread 222 on the anode rod 22; similarly, in order to further improve the installation stability of the cathode 30, at least two second fastening nuts may be provided, so that the at least two second fastening nuts are screwed into the cathode rod 32 in sequence and extended to one end of the electrolysis chamber 10a, so as to be threadedly matched with the second external thread 322 on the cathode rod 32.
- a first elastic gasket 80 is provided between the first fastening nut and the outer wall of the outer shell 10; a second elastic gasket 90 is provided between the second fastening nut and the outer wall of the outer shell 10.
- first elastic gasket 80 between the first fastening nut and the outer wall of the outer shell 10
- second elastic gasket 90 between the second fastening nut and the outer wall of the outer shell 10
- the material of the first elastic gasket 80 and the second elastic gasket 90 can be at least one of a spring, a spring, a silicone, and a sponge.
- the outer shell 10 includes a lower shell 11 and an upper cover 12; the lower shell 11 is provided with the first water inlet 111 and the first water outlet 112; the upper cover 12 is covered on the lower shell 11, and enclosed with the lower shell 11 to form the electrolytic chamber 10a.
- the anode rod 22 and the cathode rod 32 can be first passed through the upper cover 12, and then the upper cover 12 can be placed on the upper cover 12, so that the anode plate 21 and the cathode plate 31 can be inserted into the electrolytic chamber 10a formed by the upper cover 12 and the lower shell 11, thereby facilitating the rapid assembly of the anode 20 and the cathode 30.
- a boss 124 is provided on the outer wall of the upper cover 12.
- the anode rod 22 and the cathode rod 32 both pass through the boss 124, and then a first fastening nut is sleeved on the end of the anode rod 22 extending outside the electrolysis chamber 10a, so that the first elastic gasket 80 is clamped between the first fastening nut and the surface of the boss 124.
- a second fastening nut can be sleeved on the end of the cathode rod 32 extending outside the electrolysis chamber 10a, so that the second elastic gasket 90 is clamped between the second fastening nut and the surface of the boss 124.
- an inserting portion 123 is protruding from the inner wall of the upper cover 12 , and the outer peripheral wall of the inserting portion 123 abuts against the inner wall of the lower shell 11 .
- the plug-in portion 123 of the upper cover 12 can be inserted into the interior of the lower shell 11 so that the outer peripheral wall of the plug-in portion 123 and the inner wall of the lower shell 11 abut against each other, thereby allowing the upper cover 12 to be limited and fixed to the lower shell 11; in addition, the arrangement of the plug-in portion 123 can increase the contact area between the anode rod 22 and the cathode rod 32 and the upper cover 12, thereby increasing the limiting strength of the anode rod 22 and the cathode rod 32.
- a third sealing ring 110 is provided between the plug-in portion 123 and the lower shell 11.
- the third sealing ring 110 is firstly sleeved on the outer peripheral wall of the plug-in portion 123, and then the upper cover 12 is covered on the lower shell 11, and the plug-in portion 123 of the upper cover 12 is inserted into the interior of the lower shell 11, so that the third sealing ring 110 is located between the plug-in portion 123 and the lower shell 11, and the sealing between the plug-in portion 123 of the upper cover 12 and the lower shell 11 can be achieved by the configuration of the third sealing ring 110, so as to prevent the water in the electrolytic chamber 10a from leaking outward from the gap between the plug-in portion 123 of the upper cover 12 and the lower shell 11.
- a plurality of third sealing rings 110 may be provided between the plug-in portion 123 of the upper cover 12 and the lower shell 11 , and the plurality of third sealing rings 110 may be provided at intervals along the plug-in direction of the plug-in portion 123 .
- a third sealing groove 1231 is opened on the outer wall of the plug-in portion 123, and part of the third sealing ring 110 is arranged in the third sealing groove 1231; in this way, during the assembly process, part of the third sealing ring 110 can be first embedded in the third sealing groove 1231 to limit and fix the third sealing ring 110, thereby ensuring the sealing effect of the third sealing ring 110.
- the lower shell 11 may be provided with a fastening hole 114, and the outer peripheral wall of the plug-in portion 123 may also be provided with a fastening groove 1232 corresponding to the fastening hole 114.
- the outer shell 10 may also include a connecting piece.
- the connecting piece may be used to pass through the fastening hole 114 of the lower shell 11 and be inserted into the fastening groove 1232 of the plug-in portion 123, so that the upper cover 12 can be fixed to the lower shell 11 with the cooperation of the connecting piece, the fastening hole 114 and the fastening groove 1232.
- the connecting member may be a screw.
- the electrolytic generator 100 further includes a fixing pin 120 , which is connected to the housing 10 , and the fixing pin 120 is used to be fixed to a wall or a water heater.
- the entire electrolytic generator 100 can be fixed to a wall or a water heater using the fixing pins 120 to ensure the stability of the electrolytic generator 100 during operation.
- a plurality of fixing pins 120 may be provided, and the plurality of pins may be connected to the housing 10 at intervals, which may improve the installation stability of the entire electrolytic generator 100 and facilitate fixing the electrolytic generator 100 from different directions.
- the fixing pin 120 may be welded to the housing 10 , and the fixing pin 120 may be fixed to a wall or a water heater using a fastening screw.
- the first water inlet of the shell is connected to the drain outlet of the water heater.
- the water is discharged through the drain outlet of the water heater, and water flows into the electrolytic chamber from the first water inlet of the shell to form a water path and a current loop between the anode plate and the cathode plate.
- a DC electric field to the anode and the cathode, an electrolysis reaction of water occurs on the anode plate and the cathode plate, so that oxygen bubbles are generated on the anode plate, and hydrogen and hydrogen bubbles are generated on the cathode plate.
- water rich in hydrogen and microbubbles flows out from the first water outlet of the shell.
- the electrolytic generator proposed in this scheme can produce hydrogen and microbubbles at the same time, and can meet multi-functional water use needs; at the same time, the electrolytic generator is arranged outside the water heater and has independent anodes and cathodes. Therefore, when the electrolysis reaction of water occurs, it will not corrode the heat.
- the inner tank and other structures of the water heater can prevent the hypochlorous acid produced by electrolysis from affecting the service life of the water heater.
- the present application also proposes a water treatment component 1000, which includes a bubble filter module and the electrolysis generator 100 as described above.
- the specific structure of the electrolysis generator 100 refers to the above embodiment. Since the present water treatment component 1000 adopts all the technical solutions of all the above embodiments, it at least has all the beneficial effects brought by the technical solutions of the above embodiments, which will not be described one by one here.
- the bubble filter module has a second water inlet 2201 and a second water outlet 2101, and the second water inlet 2201 is connected to the first water outlet 112 of the electrolysis generator 100, so that the bubble filter module is used to increase the microbubble concentration of the water entering the bubble filter module.
- the water treatment component 1000 by connecting the first water inlet 111 of the housing 10 to the drain outlet of the water heater, during use, water is discharged through the drain outlet of the water heater, and water flows from the first water inlet 111 of the housing 10 into the electrolysis chamber 10a, so that a water path and a current loop are formed between the anode plate 21 and the cathode plate 31, and a direct current electric field is applied to the anode 20 and the cathode 30, so that an electrolysis reaction of water occurs on the anode plate 21 and the cathode plate 31, so that oxygen bubbles are generated on the anode plate 21, and oxygen bubbles are generated on the cathode plate 31.
- Hydrogen and hydrogen bubbles, and finally water rich in hydrogen and microbubbles flows out from the first water outlet 112 of the outer shell 10; then, the water flowing out from the first water outlet 112 of the outer shell 10 can flow into the interior of the bubble filter module from the second water inlet 2201 of the bubble filter module, so as to reduce the surface tension of the water through the bubble filter module and increase the microbubble concentration of the water, and finally obtain hydrogen-rich microbubble water with a high microbubble concentration, and the hydrogen-rich microbubble water with a high microbubble concentration can flow out from the second water outlet 2101 of the bubble filter module to the use terminal (faucet or shower).
- the bubble filter module includes a shell 200 and a microbubble slow-release filter 300; an installation cavity 20a is formed in the shell 200, and the shell 200 is provided with a second water inlet 2201 and a second water outlet 2101 connected to the installation cavity 20a, and the second water inlet 2201 is connected to the first water outlet 112 of the electrolysis generator 100; the microbubble slow-release filter 300 is arranged in the installation cavity 20a, and the microbubble slow-release filter 300 is used to increase the microbubble concentration of water entering the installation cavity 20a.
- the water flowing out from the first water outlet 112 of the shell 10 can flow into the installation cavity 20a from the second water inlet 2201 of the shell 200, so as to flow through the microbubble slow-release filter element 300 located in the installation cavity 20a, and react with the microbubble slow-release filter element 300 to reduce the surface tension of the water and increase the microbubble concentration of the water, and finally obtain hydrogen-rich microbubble water with a high microbubble concentration.
- the hydrogen-rich microbubble water with a high microbubble concentration can flow out from the second water outlet 2101 of the shell 200 to the use terminal (faucet or shower).
- the microbubble slow-release filter element 300 includes a filter material tube 310 and filter material 320; the filter material tube 310 is arranged in the installation cavity 20a, and the filter material tube 310 is provided with a third water inlet 3101 and a third water outlet 3102, the third water inlet 3101 is connected to the second water inlet 2201, and the third water outlet 3102 is connected to the second water outlet 2101; the filter material 320 is filled in the filter material tube 310.
- water flowing out from the first water outlet 112 of the shell 10 can flow into the installation cavity 20a from the second water inlet 2201 of the shell 200, and then enter the filter material tube 310 through the third water inlet 3101 of the filter material tube 310, and react with the filter material 320 inside the filter material tube 310, thereby increasing the microbubble concentration of the water, and finally obtaining hydrogen-rich microbubble water with a high microbubble concentration.
- the hydrogen-rich microbubble water with a high microbubble concentration can flow out from the third water outlet 3102 of the filter material tube 310 and the second water outlet 2101 of the shell 200 in turn to the use terminal (faucet or shower).
- the filter material 320 can be made by mixing polyethylene glycol, sodium hyaluronate, soothing anti-inflammatory agents, water-soluble oils, citric acid, residual chlorine removers and fragrances in a certain proportion, and then safely melted and fully reacted at a certain temperature to finally form the filter material 320 required for this solution.
- the filter material tube 310 may include a tube body and a cover body, the bottom of the tube body is a closed structure, the cover body can be covered on the top of the tube body, and the third water inlet 3101 and the third water outlet 3102 are both opened on the cover body.
- the filter material 320 can be filled into the interior of the tube body first, and then the cover body can be covered on the tube body, so that the filter material 320 can be accommodated in the interior of the filter material tube 310, thereby facilitating the rapid filling of the filter material 320.
- the tube body and the cover body can be connected by means of screws, snaps, adhesives, welding layers, etc., which are not limited here, as long as the tube body and the cover body can be detachably connected.
- the second water inlet 2201 and the second water outlet 2101 are respectively arranged on two sides of the housing 200 facing away from each other, and the third water inlet 3101 and the third water outlet 3102 are both close to each other.
- a second water inlet 2201 is provided.
- the contact time between the water entering the filter material tube 310 and the filter material 320 can be prolonged, so that the water entering the filter material tube 310 can fully react with the filter material 320 in the filter material tube 310 and then flow out from the third water outlet 3102, thereby fully improving the microbubble concentration of the water.
- the second water inlet 2201 and the second water outlet 2101 can be respectively arranged at the top and bottom of the shell 200, and the third water inlet 3101 and the third water outlet 3102 can both be arranged at the top of the filter material tube 310, so that the third water inlet 3101 and the third water outlet 3102 are both arranged close to the second water inlet 2201.
- a water channel 20b is formed between the filter material tube 310 and the cavity wall of the installation cavity 20a, and the third water outlet 3102 is connected to the second water outlet 2101 through the water channel 20b.
- the hydrogen-rich microbubble water with a high microbubble concentration flows out from the third water outlet 3102 of the filter material tube 310, and can flow to the water channel 20b between the filter material tube 310 and the wall of the installation cavity 20a, and then be guided to the second water outlet 2101 of the shell 200 through the water channel 20b, and finally smoothly flow out from the second water outlet 2101 of the shell 200 to the use terminal (faucet or shower).
- part of the water entering from the second water inlet 2201 of the shell 200 can flow directly into the water channel 20b between the filter material tube 310 and the wall of the installation cavity 20a.
- This part of the water is hydrogen-rich microbubble water A with a low microbubble concentration.
- Part of the water entering from the second water inlet 2201 of the shell 200 can enter the interior of the filter material tube 310 through the third water inlet 3101 of the filter material tube 310, and react with the filter material 320 inside the filter material tube 310 to form hydrogen-rich microbubble water B with a high microbubble concentration.
- the hydrogen-rich microbubble water B with a high microbubble concentration can flow from the third water outlet 3102 of the filter material tube 310 to the water channel 20b between the filter material tube 310 and the wall of the installation cavity 20a, and mix with the hydrogen-rich microbubble water A with a low microbubble concentration to form hydrogen-rich microbubble water C with a moderate microbubble concentration, and finally flow out from the second water outlet 2101 of the shell 200 to the user terminal (faucet or shower).
- all the water entering from the second water inlet 2201 of the shell 200 can enter the interior of the filter material tube 310 through the third water inlet 3101 of the filter material tube 310, so as to react with the filter material 320 inside the filter material tube 310 to form hydrogen-rich microbubble water B with a very high microbubble concentration.
- the hydrogen-rich microbubble water B with a very high microbubble concentration can flow from the third water outlet 3102 of the filter material tube 310 to the water channel 20b between the filter material tube 310 and the wall of the installation cavity 20a, and finally flow out from the second water outlet 2101 of the shell 200 to the use terminal (faucet or shower).
- the shell 200 includes a bottom shell 210 and a top cover 220; the bottom shell 210 is provided with the second water outlet 2101; the top cover 220 is covered on the bottom shell 210, and is enclosed with the bottom shell 210 to form the installation cavity 20a, and the top cover 220 is provided with the second water inlet 2201.
- the microbubble slow-release filter element 300 can be first placed inside the bottom shell 210, and then the top cover 220 can be placed on the bottom shell 210, so that the microbubble slow-release filter element 300 can be accommodated in the installation cavity 20a formed by the top cover 220 and the bottom shell 210, thereby facilitating the rapid assembly of the microbubble slow-release filter element 300.
- top cover 220 and the bottom shell 210 can be connected by means of screws, snaps, adhesives, welding layers, etc., which are not limited here, as long as the detachable connection between the top cover 220 and the bottom shell 210 can be achieved.
- the shell 200 can be directly connected to the lower shell 11 of the electrolytic generator 100 through the top cover 220, so that the second water inlet 2201 of the top cover 220 is connected to the first water outlet 112 of the lower shell 11.
- a mounting groove can be opened on the top of the top cover 220, and an internal thread is provided on the groove side wall of the mounting groove, and a mounting cylinder is protruding from the bottom of the lower shell 11, the mounting cylinder is arranged around the first water outlet 112, and the outer side wall of the mounting cylinder is provided with an external thread.
- the mounting cylinder of the lower shell 11 can be inserted into the mounting groove of the top cover 220, and the external thread of the mounting cylinder is threadedly matched with the internal thread of the mounting groove, so that the top cover 220 can be connected to the lower shell 11.
- the top cover 220 may also be connected to the lower shell 11 of the electrolytic generator 100 through a connecting pipe.
- a mounting groove may also be provided at the top of the top cover 220, and an internal thread may be provided on the groove side wall of the mounting groove, and a mounting cylinder may be convexly provided at the bottom of the lower shell 11, the mounting cylinder is provided around the first water outlet 112, and an external thread may be provided on the outer side wall of the mounting cylinder.
- one end of the connecting pipe may be inserted into the mounting groove of the top cover 220 and threadedly connected to the top cover 220, and the other end of the connecting pipe may be sleeved on the mounting cylinder of the lower shell 11. And it is threadedly connected with the installation tube, so that the top cover 220 can be connected to the lower shell 11 of the electrolytic generator 100 through the connecting pipe.
- the first water inlet 111 of the electrolytic generator 100 can be connected to the drain outlet of the water heater through a threaded structure or a quick-insert structure
- the first water outlet 112 of the electrolytic generator can be connected to the second water inlet 2201 of the shell 200 directly or through a connecting pipe
- the second water inlet 2201 of the shell 200 is connected to the third water inlet 3101 of the filter material tube 310
- the third water outlet 3102 of the filter material tube 210 can be connected to the second water outlet 2101 of the shell 200 through the waterway channel 20b
- the second water outlet 2101 of the shell 200 can be connected to a user terminal (faucet or shower) to form a series waterway.
- the warm water flowing out of the water heater passes through the first water inlet 111 of the electrolytic generator 100 into the electrolytic chamber 10a. After the water flows through the anode plate 21 and the cathode plate 31, electrolysis occurs under the action of an external direct current, and microbubbles can be generated on the anode plate 21, and hydrogen and microbubbles can be generated on the cathode plate 31, so that the water in the electrolytic chamber forms hydrogen-rich microbubble water A.
- the hydrogen-rich microbubble water A flows out through the first water outlet 112 of the electrolytic generator 100, and flows into the filter material tube 310 and the water channel 20b from the second water inlet 2201 of the shell 200, wherein a portion of the hydrogen-rich microbubbles A flowing into the filter material tube 310 reacts with the filter material 320 in the filter material tube 310 to generate a large number of microbubbles to form hydrogen-rich microbubbles B with a very high microbubble concentration, and then flows out from the third water outlet 3101 of the filter material tube 310, and mixes with the hydrogen-rich microbubbles A in the water channel 20b to form hydrogen-rich microbubble water C with a high microbubble concentration, and flows out to the user terminal (faucet or shower) through the second water outlet 2101.
- the present application also proposes a water heater assembly, which includes a water heater and the electrolytic generator 100 as described above.
- the specific structure of the electrolytic generator 100 refers to the above embodiment. Since the water heater assembly adopts all the technical solutions of all the above embodiments, it at least has all the beneficial effects brought by the technical solutions of the above embodiments, which will not be repeated here.
- the water heater has a water inlet and a drain, the water inlet is used to communicate with the water supply pipe; the drain is connected to the first water inlet 111 of the electrolytic generator 100.
- the water heater assembly also includes a bubble filter module, which has a second water inlet 2201 and a second water outlet 2101.
- the second water inlet 2201 is connected to the first water outlet 112 of the electrolytic generator 100, so that the bubble filter module is used to increase the microbubble concentration of water entering the bubble filter module.
- the water flowing out from the first water outlet 112 of the electrolysis generator 100 can flow into the interior of the bubble filter module from the second water inlet 2201 of the bubble filter module, so as to reduce the surface tension of the water through the bubble filter module and increase the microbubble concentration of the water, and finally obtain hydrogen-rich microbubble water with a high microbubble concentration.
- the hydrogen-rich microbubble water with a high microbubble concentration can flow out from the second water outlet 2101 of the bubble filter module to the use terminal (faucet or shower).
- the electrolytic generator 100 and/or the bubble filter module can be housed inside the water heater or placed outside the water heater.
- the present application also proposes a hot water system, which includes a water heater and a water treatment component 1000 as described above.
- the specific structure of the water treatment component 1000 refers to the above embodiment. Since the present water heater system adopts all the technical solutions of all the above embodiments, it at least has all the beneficial effects brought by the technical solutions of the above embodiments, which will not be repeated here.
- the water heater has a water inlet and a drain, and the water inlet is used to connect with the water supply pipe;
- the water treatment component 100 includes an electrolytic generator 100 and a bubble filter module, the drain is connected to the first water inlet 111 of the electrolytic generator 100, and the bubble filter module has a second water inlet 2201 and a second water outlet 2101, and the second water inlet 2201 is connected to the first water outlet 112 of the electrolytic generator 100, so that the bubble filter module is used to increase the microbubble concentration of water entering the bubble filter module.
- water rich in hydrogen and microbubbles flows out from the first water outlet 112 of the electrolysis generator 100; then, the water flowing out from the first water outlet 112 can flow into the interior of the bubble filter module from the second water inlet 2201 of the bubble filter module, so as to reduce the surface tension of the water through the bubble filter module and increase the microbubble concentration of the water, and finally obtain hydrogen-rich microbubble water with a high microbubble concentration.
- the hydrogen-rich microbubble water with a high microbubble concentration can flow out from the second water outlet 2101 of the bubble filter module to the use terminal (faucet or shower).
- the hot water system also includes structures such as a pipeline connecting the water heater and the electrolytic generator 100, and a pipeline connecting the electrolytic generator 100 and the bubble filter module.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Electrochemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
一种电解发生器(100)、水处理组件(1000)、热水器组件及热水系统,其中电解发生器(100)包括外壳(10)、阳极(20)以及阴极(30)。外壳(10)内形成有电解腔(10a),外壳(10)开设有连通电解腔(10a)的第一进水口(111)和第一出水口(112),第一进水口(111)用于与热水器的排水口连通;阳极(20)具有阳极板(21),阳极板(21)设于电解腔(20)内;阴极(30)具有阴极板(31),阴极板(31)设于电解腔(10a)内,并与阳极板(21)间隔设置。
Description
相关申请的交叉引用
本申请要求于2023年02月15日提交的申请号为202320279069.7、名称为“电解发生器、水处理组件、热水器组件及热水系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及水处理技术领域,特别涉及一种电解发生器、水处理组件、热水器组件及热水系统。
随着人们生活质量的提升,对于日常用水提出了更高的需求,要求健康用水、清洁用水,甚至希望做到一水多用等功能。
在众多研究中表明,氢具有很强的还原性,能够有效中和清除人体过剩的羟基自由基,将氢气溶解在水中制成富氢水能够起到抗氧化、消炎等功效。另一方面,相比于普通气泡,微纳米气泡(以下简称微气泡)具有体积小、比表面积大、表面荷电等特点,能够实现皮肤深层清洁和补水保湿功能。因此,实现富氢微气泡多功能用水的装置逐渐受用户欢迎。
在相关技术中,产生富氢水的方式主要通过物理制氢、化学反应制氢或者电解制氢,但是主要以饮用水为主,制造速度慢,制作量小,不适用洗浴和深层清洁用水,而在洗浴和深层清洁用水上,通常在热水器的内胆中设置有辅助阳极,以将热水器的内胆作为阴极,电解产生的次氯酸无法释放,会加快对内胆和其他结构的腐蚀,从而影响热水器的使用寿命;而产生微气泡的方式主要以溶气释气法为主,该技术存在着装置结构复杂、成本较高、气泡连续性差等缺点,并且无法制造富氢水,只能制造微气泡,从而无法实现多功能用水需求。
发明内容
本申请的主要目的是提出一种电解发生器、水处理组件、热水器组件及热水系统,旨在至少部分解决现有技术中存在的技术问题之一。
为实现上述目的,本申请提出的一种电解发生器,包括:
外壳,所述外壳内形成有电解腔,所述外壳开设有连通所述电解腔的第一进水口和第一出水口,所述第一进水口用于与热水器的排水口连通;
阳极,所述阳极具有阳极板,所述阳极板设于所述电解腔内;以及
阴极,所述阴极具有阴极板,所述阴极板设于所述电解腔内,并与所述阳极板间隔设置。
在本申请的一实施例中,所述电解腔内设有多个间隔设置的限位凸筋。
在本申请的一实施例中,相邻的两所述限位凸筋之间形成有一限位卡槽。
在本申请的一实施例中,所述阳极板和所述阴极板分别卡设于两所述限位卡槽。
在本申请的一实施例中,所述阳极板设有若干块,所述阴极板设有若干块,若干所述阳极板与若干所述阴极板交错排布,且相邻的所述阴极板与所述阳极板之间形成有一水流通道。
在本申请的一实施例中,定义所述阳极板的数量为n,所述阴极板的数量为m,则满足条件:m-n=1。
在本申请的一实施例中,每一所述水流通道的宽度一致。
在本申请的一实施例中,所述阳极还包括阳极杆,所述阳极杆连接于所述阳极板,且至少部分伸出至所述电解腔之外。
在本申请的一实施例中,所述阴极还包括阴极杆,所述阴极杆连接于所述阴极板,且至少部分伸出至所述电解腔之外。
在本申请的一实施例中,所述外壳还开设有间隔设置的第一开口和第二开口,所述阳极杆和所述阴极杆分别穿设于所述第一开口和所述第二开口,所述阳极杆与所述第一开口的内壁之间设有第一密封圈,
所述阴极杆与所述第二开口的内壁之间设有第二密封圈。
在本申请的一实施例中,所述阳极杆的外侧壁开设有第一密封沟槽,部分所述第一密封圈设于所述第一密封沟槽内。
在本申请的一实施例中,所述阴极杆的外侧壁开设有第二密封沟槽,部分所述第二密封圈设于所述第二密封沟槽内。
在本申请的一实施例中,所述电解发生器还包括第一紧固件,所述阳极杆通过所述第一紧固件固定于所述外壳。
在本申请的一实施例中,所述电解发生器还包括第二紧固件,所述阴极杆通过所述第二紧固件固定于所述外壳。
在本申请的一实施例中,所述第一紧固件为第一紧固螺母,所述阳极杆伸出至所述电解腔的一端设有第一外螺纹,所述第一紧固螺母与所述第一外螺纹螺纹配合。
在本申请的一实施例中,所述第二紧固件为第二紧固螺母,所述阴极杆伸出至所述电解腔的一端设有第二外螺纹,所述第二紧固螺母与所述第二外螺纹螺纹配合。
在本申请的一实施例中,所述第一紧固螺母与所述外壳的外侧壁之间设有第一弹性垫片。
在本申请的一实施例中,所述第二紧固螺母与所述外壳的外侧壁之间设有第二弹性垫片。
在本申请的一实施例中,所述外壳包括:下壳,所述下壳开设有所述第一进水口和所述第一出水口;以及上盖,所述上盖盖设于所述下壳,并与所述下壳围合形成有所述电解腔。
在本申请的一实施例中,所述上盖的内侧壁凸设有插接部,所述插接部的外周壁与所述下壳的内侧壁抵接。
在本申请的一实施例中,所述插接部与所述下壳之间设有第三密封圈。
在本申请的一实施例中,所述插接部的外周壁开设有第三密封沟槽,部分所述第三密封圈设于所述第三密封沟槽内。
在本申请的一实施例中,所述下壳开设有紧固孔,所述插接部的外周壁还开设有与所述紧固孔对应设置的紧固槽,所述外壳还包括连接件,所述连接件穿设于所述紧固孔并插设于所述紧固槽。
本申请还提出一种水处理组件,包括:
如上所述的电解发生器;以及
气泡滤芯模块,所述气泡滤芯模块具有第二进水口和第二出水口,所述第二进水口与所述电解发生器的第一出水口连通,以使所述气泡滤芯模块用于提升进入所述气泡滤芯模块内部的水的微气泡浓度。
在本申请的一实施例中,所述气泡滤芯模块包括:壳体,所述壳体内形成有安装腔,所述壳体开设有连通所述安装腔的所述第二进水口和所述第二出水口,所述第二进水口与所述电解发生器的第一出水口连通;以及微气泡缓释滤芯,所述微气泡缓释滤芯设于所述安装腔内,所述微气泡缓释滤芯用于提升进入所述安装腔内的水的微气泡浓度。
在本申请的一实施例中,所述微气泡缓释滤芯包括:滤料管,所述滤料管设于所述安装腔内,所述滤料管开设有第三进水口和第三出水口,所述第三进水口与所述第二进水口连通,所述第三出水口与所述第二出水口连通;以及滤料,所述滤料填充于所述滤料管内。
在本申请的一实施例中,所述第二进水口和所述第二出水口分设在所述壳体背对的两侧,所述第三进水口和所述第三出水口均靠近第二进水口设置。
在本申请的一实施例中,所述滤料管与所述安装腔的腔壁之间形成有水路通道,所述第三出水口通过所述水路通道连通于所述第二出水口。
在本申请的一实施例中,所述壳体包括:底壳,所述底壳开设有所述第二出水口;以及顶盖,所述顶盖盖设于所述底壳,并与所述底壳围合形成有所述安装腔,所述顶盖开设有所述第二进水口。
本申请还提出一种热水器组件,包括:
热水器,所述热水器具有入水口和排水口,所述入水口用于与供水管连通;以及
如上所述的电解发生器,所述排水口与所述电解发生器的第一进水口连通。
在本申请的一实施例中,所述热水器组件还包括气泡滤芯模块,所述气泡滤芯模块具有第二进水口和第二出水口,所述第二进水口与所述电解发生器的第一出水口连通,以使所述气泡滤芯模块用于提升进入所述气泡滤芯模块内部的水的微气泡浓度。
本申请还提出一种热水系统,包括:
热水器,所述热水器具有入水口和排水口,所述入水口用于与供水管连通;以及
如上所述的水处理组件,所述水处理组件包括电解发生器和气泡滤芯模块,所述排水口与所述电解发生器的第一进水口连通,所述气泡滤芯模块具有第二进水口和第二出水口,所述第二进水口与所述电解发生器的第一出水口连通,以使所述气泡滤芯模块用于提升进入所述气泡滤芯模块内部的水的微气泡浓度。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请电解发生器一实施例的结构示意图;
图2为本申请电解发生器一实施例的部分剖视图;
图3为本申请电解发生器一实施例在一位置处的剖视图;
图4为本申请电解发生器一实施例在另一位置处的剖视图;
图5为本申请电解发生器一实施例的爆炸图;
图6为本申请电解发生器一实施例中下壳的结构示意图;
图7为本申请电解发生器一实施例中上盖一视角的结构示意图;
图8为本申请电解发生器一实施例中上盖另一视角的结构示意图;
图9为本申请电解发生器一实施例中阳极的结构示意图;
图10为本申请电解发生器一实施例中阴极的结构示意图;
图11为本申请水处理组件一实施例的结构示意图;以及
图12为本申请水处理组件一实施例中壳体和微气泡缓释滤芯的剖视图。
附图标号说明:
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种电解发生器100、水处理组件1000、热水器组件及热水系统,旨在提供一种能够同时制取氢气和微气泡的电解发生器100,以实现多功能用水需求,同时避免电解产生的次氯酸影响热水器的使用寿命。
以下将就本申请电解发生器100、水处理组件1000、热水器组件及热水系统的具体结构进行说明:
结合参阅图1至图5,在本申请电解发生器100的一实施例中,该电解发生器100包括外壳10、阳极20以及阴极30;所述外壳10内形成有电解腔10a,所述外壳10开设有连通所述电解腔10a的第一进水口111和第一出水口112,所述第一进水口111用于与热水器的排水口连通;所述阳极20具有阳极板21,所述阳极板21设于所述电解腔10a内;所述阴极30具有阴极板31,所述阴极板31设于所述电解腔10a内,并与所述阳极板21间隔设置。
可以理解的是,本申请提出的电解发生器100中,通过使外壳10的第一进水口111与热水器的排水口连通,在使用过程中,通过热水器的排水口进行排水,水从外壳10的第一进水口111流入电解腔10a内,以使阳极板21和阴极板31之间形成水路和电流回路,通过向阳极20和阴极30施加直流电场,阳极板21和阴极板31上发生水的电解反应,以使阳极板21上产生氧气泡,并使阴极板31上产生氢气和氢气泡,最终富含氢气和微气泡的水从外壳10的第一出水口112流出。因此,本方案提出的电解发生器100能够同时制取氢气和微气泡,可以实现多功能用水需求;同时,该电解发生器100是设置在热水器的外部的,并具有独立的阳极20和阴极30,因此,在发生水的电解反应时,不会腐蚀热水器的内胆和其他结构,从而能够
避免电解产生的次氯酸影响热水器的使用寿命。
本实施例中,阳极板21与阴极板31间隔设置,以使阳极板21与阴极板31之间形成有水流通道10b,水从第一进水口111进入电解腔10a后,水将填满水流通道10b,以使阳极板21与阴极板31之间形成电流回路;并且,本方案的电解发生器100在发生水的电解反应时,是对流动的水进行的电解反应,可以使得从热水器排出的水通过该电解发生器100进行水的电解反应后可以由第一出水口112流出至使用终端(龙头或花洒),从而可以持续流出富含氢气和微气泡的多功能用水。
阳极板21上产生的氧气泡和阴极板31上产生的氢气泡均为微气泡,能够实现皮肤深层清洁和补水保湿功能,阴极板31上产生的氢气溶解在水中可以制成富氢水,能够起到抗氧化、消炎等功效,因此,制取富氢微气泡水,提供能够清除氧化性自由基、具有抗氧化和深层清洁、补水保湿功效的生活用水,可以满足用户的多功能用水需求。
示例性的,阳极板21可以为片状或者网状结构;同样地,阴极板31也可以为片状或者网状结构。
需要说明的是,在使用之前,可以使用外部电源的正极电连接于阳极20,并使用外部电源的负极电连接于阴极30,以向阴阳和阴极30施加直流电场。
在实际应用过程中,第一进水口111和第一出水口112可以分设在外壳10相邻的两侧;或者,第一进水口111和第一出水口112也可以分设在外壳10相对的两侧;又或者,第一进水口111和第一出水口112还可以分设在外壳10的同一侧;只要满足由第一进水口111进入的水可以淹没阳极板21和阴极板31进行电解后,再从第一出水口112流出即可,具体可以根据实际的使用情况而定。
进一步地,结合参阅图6,在本申请电解发生器100的一实施例中,所述电解腔10a内设有多个间隔设置的限位凸筋113,相邻的两所述限位凸筋113之间形成有一限位卡槽1131,所述阳极板21和所述阴极板31分别卡设于两所述限位卡槽1131。
如此设置,在装配过程中,可以将阳极板21和阴极板31分别卡设在两个限位卡槽1131内,可以对阳极板21和阴极板31进行限位,以降低阳极板21和阴极板31发生短接的风险,从而保证阳极板21和阴极板31进行电解的稳定性。
示例性的,为了提升对阳极板21和阴极板31的限位强度的同时,避免限位凸筋113影响阳极板21与阴极板31之间的电流回路,可以在电解腔10a相对的两腔壁均设置有多个间隔设置的限位凸筋113,以使电解腔10a相对的两腔壁上均可以形成有多个间隔设置的限位卡槽1131,如此,在装配过程中,可以使阳极板21相对的两侧边缘分别卡设在相对设置的两个限位卡槽1131内,并且可以使阴极板31相对的两侧边缘分别卡设在相对设置的两个限位卡槽1131内。
示例性的,限位凸筋113的延伸方向可以与阳极板21或阴极板31的延伸方向一致,以进一步提升对阳极板21和阴极板31的限位强度。
进一步地,结合参阅图2、图4、图9和图10,在本申请电解发生器100的一实施例中,所述阳极板21设有若干块,所述阴极板31设有若干块,若干所述阳极板21与若干所述阴极板31交错排布,且相邻的所述阴极板31与所述阳极板21之间形成有一水流通道10b。
如此设置,由于每一个阳极板21与一个阴极板31可以构成一组电极体系,因此,通过若干阳极板21和若干阴极板31的设置可以构成多组电极体系,便可以在多组电极体系的作用下提升制备氢气和微气泡的浓度,以达到更好的抗氧化、消炎、深层清洁、补水保湿等功效。
在本实施例中,当阳极板21和阴极板31均设置有若干个时,限位凸筋113也需要设置有若干个,以使形成的限位卡槽1131的数量与阳极板21加上阴极板31的数量总和,以使每一阳极板21和每一阴极板31均可以通过限位卡槽1131进行限位。
进一步地,结合参阅图2、图4、图9和图10,在本申请电解发生器100的一实施例中,定义所述阳极板21的数量为n,所述阴极板31的数量为m,则满足条件:m-n=1,也即,阴极板31的数量比阳极板21的数量多一个;如此设置,由于在进行水的电解反应时,阴极板31可以产生氢气,因此,通过使阴极板31的
数量比阳极板21的数量多一个,可以产生更多的氢气,以得到氢气浓度更高的富氢微气泡水。
在一实施例中,阳极板21可以设置有至少两个,阴极板31可以设置有至少三个,以使相邻的两个阴极板31之间设置有一个阳极板21,如此,便可以形成至少四组电极体系。
进一步地,结合参阅图2和图4,在本申请电解发生器100的一实施例中,每一所述水流通道10b的宽度一致,也即,在相邻的阳极板21和阴极板31中,每一组阳极板21与阴极板31之间保持相同的间距。如此设置,有利于制出的氢气与水的充分混合,可以有效提高水的含氢量。
进一步地,结合参阅图3至图5、图9和图10,在本申请电解发生器100的一实施例中,所述阳极20还包括阳极杆22,所述阳极杆22连接于所述阳极板21,且至少部分伸出至所述电解腔10a之外;所述阴极30还包括阴极杆32,所述阴极杆32连接于所述阴极板31,且至少部分伸出至所述电解腔10a之外。
如此设置,在装配过程中,通过将阳极20的阳极板21插入电解腔10a中,并使阳极20的阳极杆22至少部分伸出至电解腔10a之外,以便于阳极杆22与外部电源的正极电连接;同样地,通过将阴极30的阴极板31插入电解腔10a中,并使阴极30的阴极杆32至少部分伸出至电解腔10a之外,以便于阴极杆32与外部电源的负极电连接。
示例性的,阳极板21与阳极杆22之间可以采用焊接的方式实现连接,当然,在其他实施例中,阳极板21与阳极杆22之间也可以采用粘接、螺钉连接等方式实现连接;同样地,阴极板31与阴极杆32之间可以采用焊接的方式实现连接,当然,在其他实施例中,阴极板31与阴极杆32之间也可以采用粘接、螺钉连接等方式实现连接。
在一实施例中,当阳极板21设有若干个时,为了便于实现阳极板21与阳极杆22的连接,可以在阳极杆22位于电解腔10a的一端连接有阳极连接板23,以使若干个阳极板21间隔连接在阳极连接板23上,即可将阳极杆22和阳极板21分别连接在阳极连接板23背对的两个表面上,且阳极连接板23与阳极板21呈夹角设置;同样地,当阴极板31设有若干个时,为了便于实现阴极板31与阴极杆32的连接,可以在阴极杆32位于电解腔10a的一端连接有阴极连接板33,以使若干个阴极板31间隔连接在阴极连接板33上,即可将阴极杆32和阴极板31分别连接在阴极连接板33背对的两个表面上,且阴极连接板33与阴极板31呈夹角设置。
示例性的,阳极连接板23与阳极杆22和阳极板21均可以采用焊接的方式实现连接;同样地,阴极连接板33与阴极杆32和阴极板31均可以采用焊接的方式实现连接。
进一步地,结合参阅图3至图5、图7和图8,在本申请电解发生器100的一实施例中,所述外壳10还开设有间隔设置的第一开口121和第二开口122,所述阳极杆22和所述阴极杆32分别穿设于所述第一开口121和所述第二开口122,所述阳极杆22与所述第一开口121的内壁之间设有第一密封圈40,所述阴极杆32与所述第二开口122的内壁之间设有第二密封圈50。
如此设置,在装配过程中,首先在阳极杆22的外侧套设有第一密封圈40,然后将阳极板21插入电解腔10a中,并使阳极杆22穿过外壳10的第一开口121,并至少部分伸出至电解腔10a之外,以与外部电源的正极电连接,如此,便可以通过第一密封圈40的设置来实现阳极杆22与外壳10之间的密封性,以防止电解腔10a内的水从阳极杆22与外壳10之间的间隙处向外渗漏;同时在阴极杆32的外侧套设有第二密封圈50,然后将阴极板31插入电解腔10a中,并使阴极杆32穿过外壳10的第二开口122,并至少部分伸出至电解腔10a之外,以与外部电源的负极电连接,如此,便可以通过第二密封圈50的设置来实现阴极杆32与外壳10之间的密封性,以防止电解腔10a内的水从阴极杆32与外壳10之间的间隙处向外渗漏。
并且,为了进一步提升阳极杆22与外壳10之间的密封性,可以在阳极杆22与第一开口121的内壁之间设置有若干第一密封圈40,若干第一密封圈40可以沿阳极杆22的延伸方向间隔设置;同样地,为了进一步提升阴极杆32与外壳10之间的密封性,可以在阴极杆32与第二开口122的内壁之间设置有若干第二密封圈50,若干第二密封圈50可以沿阴极杆32的延伸方向间隔设置。
进一步地,为了提升第一密封圈40的安装稳定性,结合参阅图9,在本申请电解发生器100的一实
施例中,可以在所述阳极杆22的外侧壁开设有第一密封沟槽221,以将部分所述第一密封圈40设于所述第一密封沟槽221内;如此,在装配过程中,便可以先将部分第一密封圈40嵌入到第一密封沟槽221内,以对第一密封圈40进行限位固定,进而保证第一密封圈40的密封效果。
同样地,为了提升第二密封圈50的安装稳定性,结合参阅图10,可以在所述阴极杆32的外侧壁开设有第二密封沟槽321,以将部分所述第二密封圈50设于所述第二密封沟槽321内;如此,在装配过程中,便可以先将部分第二密封圈50嵌入到第二密封沟槽321内,以对第二密封圈50进行限位固定,进而保证第二密封圈50的密封效果。
进一步地,结合参阅图3至图5,在本申请电解发生器100的一实施例中,所述电解发生器100还包括第一紧固件60和第二紧固件70,所述阳极杆22通过所述第一紧固件60固定于所述外壳10,所述阴极杆32通过所述第二紧固件70固定于所述外壳10。
如此设置,在装配过程中,将阳极杆22穿过外壳10后,可以使用第一紧固件60将阳极杆22固定在外壳10上,进而将阳极20固定在外壳10上;同样地,将阴极杆32穿过外壳10后,可以使用第二紧固件70将阴极杆32固定在外壳10上,进而将阴极杆32固定在外壳10上。
在实际应用过程中,第一紧固件60和第二紧固件70可以均为螺母、卡扣、粘接胶、焊层等结构,只要满足可以将阳极20和阴极30固定于外壳10即可。
进一步地,为了便于固定阳极20,结合参阅图3至图5,在本申请电解发生器100的一实施例中,可以使所述第一紧固件60设计为第一紧固螺母,并在所述阳极杆22伸出至所述电解腔10a的一端设有第一外螺纹222,以使所述第一紧固螺母与所述第一外螺纹222螺纹配合;如此,在装配过程中,直接将第一紧固螺母拧入阳极杆22伸出至电解腔10a的一端,以与阳极杆22上的第一外螺纹222螺纹配合,即可将阳极20固定于外壳10。
同样地,可以使所述第二紧固件70设计为第二紧固螺母,并在所述阴极杆32伸出至所述电解腔10a的一端设有第二外螺纹322,以使所述第二紧固螺母与所述第二外螺纹322螺纹配合;如此,在装配过程中,直接将第二紧固螺母拧入阴极杆32伸出至电解腔10a的一端,以与阴极杆32上的第二外螺纹322螺纹配合,即可将阴极30固定于外壳10。
并且,为了进一步提升阳极20的安装稳定性,可以设置有至少两个第一紧固螺母,以将至少两个第一紧固螺母依次拧入阳极杆22伸出至电解腔10a的一端,以与阳极杆22上的第一外螺纹222螺纹配合;同样地,为了进一步提升阴极30的安装稳定性,可以设置有至少两个第二紧固螺母,以将至少两个第二紧固螺母依次拧入阴极杆32伸出至电解腔10a的一端,以与阴极杆32上的第二外螺纹322螺纹配合。
进一步地,结合参阅图3至图5,在本申请电解发生器100的一实施例中,所述第一紧固螺母与所述外壳10的外侧壁之间设有第一弹性垫片80;所述第二紧固螺母与所述外壳10的外侧壁之间设有第二弹性垫片90。
如此设置,通过在第一紧固螺母与外壳10的外侧壁之间设有第一弹性垫片80,可以用于防止第一紧固螺母松动,从而可以起到辅助紧固阳极20的作用;同样地,通过在第二紧固螺母与外壳10的外侧壁之间设有第二弹性垫片90,可以用于防止第二紧固螺母松动,从而可以起到辅助紧固阴极30的作用。
在实际应用过程中,第一弹性垫片80和第二弹性垫片90的材质均可以为弹簧、弹片、硅胶、海绵中的至少一种。
进一步地,结合参阅图3至图8,在本申请电解发生器100的一实施例中,所述外壳10包括下壳11和上盖12;所述下壳11开设有所述第一进水口111和所述第一出水口112;所述上盖12盖设于所述下壳11,并与所述下壳11围合形成有所述电解腔10a。
如此设置,在装配过程中,可以先将阳极杆22和阴极杆32穿过上盖12,然后将上盖12盖设在上盖12上,即可使阳极板21和阴极板31插入上盖12与下壳11围合形成的电解腔10a内,从而便于阳极20和阴极30的快速装配。
示例性的,上盖12的外侧壁设有凸台124,在装配过程中,阳极杆22和阴极杆32均穿过凸台124,然后使用第一紧固螺母套设在阳极杆22伸出至电解腔10a之外的一端,以使第一弹性垫片80夹设在第一紧固螺母与凸台124的台面之间,同样地,可以使用第二紧固螺母套设在阴极杆32伸出至电解腔10a之外的一端,以使第二弹性垫片90夹设在第二紧固螺母与凸台124的台面之间。
进一步地,结合参阅图3至图8,在本申请电解发生器100的一实施例中,所述上盖12的内侧壁凸设有插接部123,所述插接部123的外周壁与所述下壳11的内侧壁抵接。
如此设置,在装配过程中,可将上盖12的插接部123插入下壳11的内部,以使插接部123的外周壁与下壳11的内侧壁相互抵接,即可使上盖12限位固定于下壳11;另外,插接部123的设置可以增大阳极杆22和阴极杆32与上盖12的接触面积,进而增加对阳极杆22和阴极杆32的限位强度。
进一步地,结合参阅图3至图5,在本申请电解发生器100的一实施例中,所述插接部123与所述下壳11之间设有第三密封圈110。如此设置,在装配过程中,首先在插接部123的外周壁套设有第三密封圈110,然后将上盖12盖设于下壳11,并将上盖12的插接部123插入下壳11的内部,以使第三密封圈110位于插接部123与下壳11之间,即可通过第三密封圈110的设置来实现上盖12的插接部123与下壳11之间的密封性,以防止电解腔10a内的水从上盖12的插接部123与下壳11之间的间隙处向外渗漏。
并且,为了进一步提升上盖12的插接部123与下壳11之间的密封性,可以在上盖12的插接部123与下壳11之间设置有若干第三密封圈110,若干第三密封圈110可以沿插接部123的插接方向间隔设置。
进一步地,为了提升第三密封圈110的安装稳定性,结合参阅图7,在本申请电解发生器100的一实施例中,所述插接部123的外周壁开设有第三密封沟槽1231,部分所述第三密封圈110设于所述第三密封沟槽1231内;如此,在装配过程中,便可以先将部分第三密封圈110嵌入第三密封沟槽1231内,以对第三密封圈110进行限位固定,进而保证第三密封圈110的密封效果。
进一步地,为了提升上盖12与下壳11之间的连接强度,以防止在使用过程中上盖12与下壳11发生脱离,结合参阅图1至图3、图7,在本申请电解发生器100的一实施例中,所述下壳11可以开设有紧固孔114,并在所述插接部123的外周壁还开设有与所述紧固孔114对应设置的紧固槽1232,所述外壳10还可以包括连接件,如此,在装配过程中,可以使用连接件穿过下壳11的紧固孔114并插入插接部123的紧固槽1232内,即可在连接件与紧固孔114和紧固槽1232的配合下将上盖12固定于下壳11。
示例性的,连接件可以为螺钉。
进一步地,结合参阅图1、图3至图5,在本申请电解发生器100的一实施例中,所述电解发生器100还包括固定引脚120,所述固定引脚120连接于所述外壳10,所述固定引脚120用于固定于墙壁或热水器。
如此设置,在使用之前,可以使用固定引脚120将整个电解发生器100固定于墙壁上或者热水器上,以保证电解发生器100在工作过程中的稳定性。
并且,固定引脚120可以设置有多个,多个引脚可以间隔连接在外壳10上,可以提升整个电解发生器100的安装稳定性,同时可以便于从不同方向对电解发生器100进行固定。
示例性的,固定引脚120可以焊接于外壳10,并且可以使用紧固螺钉将固定引脚120固定于墙壁或热水器。
本申请提出的电解发生器中,通过使外壳的第一进水口与热水器的排水口连通,在使用过程中,通过热水器的排水口进行排水,水从外壳的第一进水口流入电解腔内,以使阳极板和阴极板之间形成水路和电流回路,通过向阳极和阴极施加直流电场,阳极板和阴极板上发生水的电解反应,以使阳极板上产生氧气泡,并使阴极板上产生氢气和氢气泡,最终富含氢气和微气泡的水从外壳的第一出水口流出。因此,本方案提出的电解发生器能够同时制取氢气和微气泡,可以实现多功能用水需求;同时,该电解发生器是设置在热水器的外部的,并具有独立的阳极和阴极,因此,在发生水的电解反应时,不会腐蚀热
水器的内胆和其他结构,从而能够避免电解产生的次氯酸影响热水器的使用寿命。
结合参阅图11和图12,本申请还提出一种水处理组件1000,该水处理组件1000包括气泡滤芯模块及如上所述的电解发生器100,该电解发生器100的具体结构参照上述实施例,由于本水处理组件1000采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,气泡滤芯模块具有第二进水口2201和第二出水口2101,第二进水口2201与电解发生器100的第一出水口112连通,以使气泡滤芯模块用于提升进入气泡滤芯模块内部的水的微气泡浓度。
可以理解的是,本申请提出的水处理组件1000中,通过使外壳10的第一进水口111与热水器的排水口连通,在使用过程中,通过热水器的排水口进行排水,水从外壳10的第一进水口111流入电解腔10a内,以使阳极板21和阴极板31之间形成水路和电流回路,通过向阳极20和阴极30施加直流电场,阳极板21和阴极板31上发生水的电解反应,以使阳极板21上产生氧气泡,并使阴极板31上产生氢气和氢气泡,最终富含氢气和微气泡的水从外壳10的第一出水口112流出;紧接着,从外壳10的第一出水口112流出的水可以从气泡滤芯模块的第二进水口2201流入气泡滤芯模块的内部,以通过气泡滤芯模块来降低水的表面张力,并提升水的微气泡浓度,最终获得高微气泡浓度的富氢微气泡水,高微气泡浓度的富氢微气泡水可以从气泡滤芯模块的第二出水口2101向外流出至使用终端(龙头或花洒)。
进一步地,结合参阅图11和图12,在本申请水处理组件1000的一实施例中,气泡滤芯模块包括壳体200和微气泡缓释滤芯300;壳体200内形成有安装腔20a,壳体200开设有连通安装腔20a的第二进水口2201和第二出水口2101,第二进水口2201与电解发生器100的第一出水口112连通;微气泡缓释滤芯300设于安装腔20a内,微气泡缓释滤芯300用于提升进入安装腔20a内的水的微气泡浓度。
如此设置,从外壳10的第一出水口112流出的水可以从壳体200的第二进水口2201流入安装腔20a内,以流经位于安装腔20a内的微气泡缓释滤芯300,并与微气泡缓释滤芯300发生反应,以降低水的表面张力,并提升水的微气泡浓度,最终获得高微气泡浓度的富氢微气泡水,高微气泡浓度的富氢微气泡水可以从壳体200的第二出水口2101向外流出至使用终端(龙头或花洒)。
进一步地,结合参阅图11和图12,在本申请水处理组件1000的一实施例中,所述微气泡缓释滤芯300包括滤料管310和滤料320;所述滤料管310设于所述安装腔20a内,所述滤料管310开设有第三进水口3101和第三出水口3102,所述第三进水口3101与所述第二进水口2201连通,所述第三出水口3102与所述第二出水口2101连通;所述滤料320填充于所述滤料管310内。
如此设置,从外壳10的第一出水口112流出的水可以从壳体200的第二进水口2201流入安装腔20a内,进而通过滤料管310的第三进水口3101进入滤料管310内,并与滤料管310内部的滤料320发生反应,即可提升水的微气泡浓度,最终获得高微气泡浓度的富氢微气泡水,高微气泡浓度的富氢微气泡水可以依次从滤料管310的第三出水口3102和壳体200的第二出水口2101向外流出至使用终端(龙头或花洒)。
示例性的,滤料320可以由聚乙二醇、透明质酸钠、舒缓抗炎剂、水溶性油脂、柠檬酸、余氯去除剂和香精按照一定比例混合,然后在一定温度下安全熔化、充分反应,最终形成本方案所需的滤料320。
示例性的,滤料管310可以包括管体和盖体,管体的底部为封闭结构,盖体可以盖设在管体的顶部,且第三进水口3101和第三出水口3102均开设在盖体上,如此,在装配过程中,可以先将滤料320填充在管体的内部,然后再将盖体盖设在管体上,即可使滤料320容置在滤料管310的内部,从而便于滤料320的快速填充。
在实际应用过程中,管体和盖体具体可以采用螺钉、卡扣、粘接胶、焊层等方式实现连接,在此不作限定,只要可以满足管体和盖体之间的可拆卸连接即可。
进一步地,结合参阅图12,在本申请水处理组件1000的一实施例中,所述第二进水口2201和所述第二出水口2101分设在所述壳体200背对的两侧,所述第三进水口3101和所述第三出水口3102均靠近
第二进水口2201设置。
如此设置,从第二进水口2201流入的水通过第三进水口3101进入滤料管310的内部后,可以延长进入滤料管310中的水与滤料320的接触时间,进而使得进入滤料管310中的水可以充分与滤料管310中的滤料320反应后再从第三出水口3102流出,从而可以充分提升水的微气泡浓度。
示例性的,第二进水口2201和第二出水口2101可以分设在壳体200的顶部和底部,第三进水口3101和第三出水口3102可以均设置在滤料管310的顶部,以使第三进水口3101和第三出水口3102均靠近第二进水口2201设置。
进一步地,结合参阅图11和图12,在本申请水处理组件1000的一实施例中,所述滤料管310与所述安装腔20a的腔壁之间形成有水路通道20b,所述第三出水口3102通过所述水路通道20b连通于所述第二出水口2101。
如此设置,与滤料320反应后的高微气泡浓度的富氢微气泡水从滤料管310的第三出水口3102流出后,可以流向滤料管310与安装腔20a腔壁之间的水路通道20b,进而通过水路通道20b导向至壳体200的第二出水口2101,最终顺利从壳体200的第二出水口2101向外流出至使用终端(龙头或花洒)。
在一实施例中,从壳体200的第二进水口2201进入的水可以部分可以直接流向滤料管310与安装腔20a腔壁之间的水路通道20b内,该部分的水为微气泡浓度较低的富氢微气泡水A,从壳体200的第二进水口2201进入的水部分可以通过滤料管310的第三进水口3101进入滤料管310的内部,以与滤料管310内部的滤料320发生反应后,形成微气泡浓度很高的富氢微气泡水B,如此,微气泡浓度很高的富氢微气泡水B可以从滤料管310的第三出水口3102流向滤料管310与安装腔20a腔壁之间的水路通道20b内,并与微气泡浓度较低的富氢微气泡水A混合,以形成微气泡浓度适中的富氢微气泡水C,最终从壳体200的第二出水口2101向外流出至使用终端(龙头或花洒)。
当然,在另一实施例中,当需要直接流出微气泡浓度很高的富氢微气泡水时,可以使从壳体200的第二进水口2201进入的水全部通过滤料管310的第三进水口3101进入滤料管310的内部,以与滤料管310内部的滤料320发生反应后,形成微气泡浓度很高的富氢微气泡水B,微气泡浓度很高的富氢微气泡水B可以从滤料管310的第三出水口3102流向滤料管310与安装腔20a腔壁之间的水路通道20b内最终从壳体200的第二出水口2101向外流出至使用终端(龙头或花洒)。
进一步地,结合参阅图12,在本申请水处理组件1000的一实施例中,所述壳体200包括底壳210和顶盖220;所述底壳210开设有所述第二出水口2101;所述顶盖220盖设于所述底壳210,并与所述底壳210围合形成有所述安装腔20a,所述顶盖220开设有所述第二进水口2201。
如此设置,在装配过程中,可以先将微气泡缓释滤芯300放置在底壳210的内部,然后再将顶盖220盖设在底壳210上,即可使微气泡缓释滤芯300容置在顶盖220与底壳210围合形成的安装腔20a内,从而便于微气泡缓释滤芯300的快速装配。
在实际应用过程中,顶盖220和底壳210具体可以采用螺钉、卡扣、粘接胶、焊层等方式实现连接,在此不作限定,只要可以满足顶盖220与底壳210之间的可拆卸连接即可。
在实际应用过程中,壳体200可以通过顶盖220直接与电解发生器100的下壳11连接,以使顶盖220的第二进水口2201与下壳11的第一出水口112连通,在一实施例中,可以在顶盖220的顶部开设有安装槽,并在安装槽的槽侧壁设置有内螺纹,并在下壳11的底部凸设有安装筒,安装筒环绕第一出水口112设置,且安装筒的外侧壁设置有外螺纹,如此,在装配过程中,可以将下壳11的安装筒插入顶盖220的安装槽内,并使安装筒的外螺纹与安装槽的内螺纹进行螺纹配合,即可将顶盖220连接于下壳11。或者,顶盖220也可以通过连接管与电解发生器100的下壳11连接,在一实施例中,同样可以在顶盖220的顶部开设有安装槽,并在安装槽的槽侧壁设置有内螺纹,并在下壳11的底部凸设有安装筒,安装筒环绕第一出水口112设置,且安装筒的外侧壁设置有外螺纹,如此,在装配过程中,可以将连接管的一端插入顶盖220的安装槽内,并与顶盖220螺纹连接,并将连接管的另一端套设在下壳11的安装筒上,
并与安装筒螺纹连接,即可使顶盖220通过连接管与电解发生器100的下壳11连接。
在一些实施例中,结合参阅图11,电解发生器100的第一进水口111可以通过螺纹结构或快插结构与热水器的排水口连接,电解发生器的第一出水口112可以直接或通过连接管与壳体200的第二进水口2201连接,壳体200的第二进水口2201与滤料管310的第三进水口3101连通,滤料管210的第三出水口3102可以通过水路通道20b与壳体200的第二出水口2101连通,壳体200的第二出水口2101可以与使用终端(龙头或花洒)连接,以构成串联水路。由热水器流出的温水通过电解发生器100的第一进水口111机内电解腔10a中,水流经阳极板21和阴极板31后在外加直流电作用下发生电解,可以在阳极板21上产生微气泡,并可以在阴极板31上产生氢气和微气泡,以使电解腔内的水形成富氢微气泡水A。然后富氢微气泡水A经电解发生器100的第一出水口112流出,从壳体200的第二进水口2201流入滤料管310中和水路通道20b中,其中,流入滤料管310中的一部分富氢微气泡A与滤料管310中的滤料320发生反应,产生大量微气泡,以形成微气泡浓度很高的富氢微气泡B,再从滤料管310的第三出水口3101流出,并与水路通道20b中的富氢微气泡A混合,以形成高微气泡浓度的富氢微气泡水C,经由第二出水口2101流出至使用终端(龙头或花洒)。
本申请还提出一种热水器组件,该热水器组件包括热水器及如上所述的电解发生器100,该电解发生器100的具体结构参照上述实施例,由于本热水器组件采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,热水器具有入水口和排水口,入水口用于与供水管连通;排水口与电解发生器100的第一进水口111连通。
可以理解的是,本申请提出的热水器组件中,通过使电解发生器100的第一进水口111与热水器的排水口连通,在使用过程中,通过热水器的排水口进行排水,水从第一进水口111流入电解腔10a内,以使阳极板21和阴极板31之间形成水路和电流回路,通过向阳极20和阴极30施加直流电场,阳极板21和阴极板31上发生水的电解反应,以使阳极板21上产生氧气泡,并使阴极板31上产生氢气和氢气泡,最终富含氢气和微气泡的水从外壳10的第一出水口112流出。
进一步地,热水器组件还包括气泡滤芯模块,气泡滤芯模块具有第二进水口2201和第二出水口2101,第二进水口2201与电解发生器100的第一出水口112连通,以使所述气泡滤芯模块用于提升进入所述气泡滤芯模块内部的水的微气泡浓度。
如此设置,从电解发生器100的第一出水口112流出的水可以从气泡滤芯模块的第二进水口2201流入气泡滤芯模块的内部,以通过气泡滤芯模块来降低水的表面张力,并提升水的微气泡浓度,最终获得高微气泡浓度的富氢微气泡水,高微气泡浓度的富氢微气泡水可以从气泡滤芯模块的第二出水口2101向外流出至使用终端(龙头或花洒)。
在实际应用过程中,电解发生器100和/或气泡滤芯模块可以容置在热水器的内部,也可以外置在热水器的外部。
本申请还提出一种热水系统,该热水系统包括热水器及如上所述的水处理组件1000,该水处理组件1000的具体结构参照上述实施例,由于本热水器系统采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,热水器具有入水口和排水口,入水口用于与供水管连通;水处理组件100包括电解发生器100和气泡滤芯模块,排水口与电解发生器100的第一进水口111连通,气泡滤芯模块具有第二进水口2201和第二出水口2101,第二进水口2201与电解发生器100的第一出水口112连通,以使气泡滤芯模块用于提升进入气泡滤芯模块内部的水的微气泡浓度。
可以理解的是,本申请提出的热水系统中,通过使电解发生器100的第一进水口111与热水器的排水口连通,在使用过程中,通过热水器的排水口进行排水,水从第一进水口111流入电解腔10a内,以使阳极板21和阴极板31之间形成水路和电流回路,通过向阳极20和阴极30施加直流电场,阳极板21和阴极板31上发生水的电解反应,以使阳极板21上产生氧气泡,并使阴极板31上产生氢气和氢气泡,
最终富含氢气和微气泡的水从电解发生器100的第一出水口112流出;紧接着,从第一出水口112流出的水可以从气泡滤芯模块的第二进水口2201流入气泡滤芯模块的内部,以通过气泡滤芯模块来降低水的表面张力,并提升水的微气泡浓度,最终获得高微气泡浓度的富氢微气泡水,高微气泡浓度的富氢微气泡水可以从气泡滤芯模块的第二出水口2101向外流出至使用终端(龙头或花洒)。
当然,热水系统还包括连接热水器和电解发生器100的管路,以及连接电解发生器100和气泡滤芯模块的管路等结构。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。
Claims (24)
- 一种电解发生器,包括:外壳,所述外壳内形成有电解腔,所述外壳开设有连通所述电解腔的第一进水口和第一出水口,所述第一进水口用于与热水器的排水口连通;阳极,所述阳极具有阳极板,所述阳极板设于所述电解腔内;以及阴极,所述阴极具有阴极板,所述阴极板设于所述电解腔内,并与所述阳极板间隔设置。
- 如权利要求1所述的电解发生器,其中,所述电解腔内设有多个间隔设置的限位凸筋,相邻的两所述限位凸筋之间形成有一限位卡槽,所述阳极板和所述阴极板分别卡设于两所述限位卡槽。
- 如权利要求1或2所述的电解发生器,其中,所述阳极板设有若干块,所述阴极板设有若干块,若干所述阳极板与若干所述阴极板交错排布,且相邻的所述阴极板与所述阳极板之间形成有一水流通道。
- 如权利要求3所述的电解发生器,其中,定义所述阳极板的数量为n,所述阴极板的数量为m,则满足条件:m-n=1;和/或,每一所述水流通道的宽度一致。
- 如权利要求1至4中任一项所述的电解发生器,其中,所述阳极还包括阳极杆,所述阳极杆连接于所述阳极板,且至少部分伸出至所述电解腔之外;所述阴极还包括阴极杆,所述阴极杆连接于所述阴极板,且至少部分伸出至所述电解腔之外。
- 如权利要求5所述的电解发生器,其中,所述外壳还开设有间隔设置的第一开口和第二开口,所述阳极杆和所述阴极杆分别穿设于所述第一开口和所述第二开口,所述阳极杆与所述第一开口的内壁之间设有第一密封圈,所述阴极杆与所述第二开口的内壁之间设有第二密封圈。
- 如权利要求6所述的电解发生器,其中,所述阳极杆的外侧壁开设有第一密封沟槽,部分所述第一密封圈设于所述第一密封沟槽内;和/或,所述阴极杆的外侧壁开设有第二密封沟槽,部分所述第二密封圈设于所述第二密封沟槽内。
- 如权利要求5至7中任一项所述的电解发生器,其中,所述电解发生器还包括第一紧固件和第二紧固件,所述阳极杆通过所述第一紧固件固定于所述外壳,所述阴极杆通过所述第二紧固件固定于所述外壳。
- 如权利要求8所述的电解发生器,其中,所述第一紧固件为第一紧固螺母,所述阳极杆伸出至所述电解腔的一端设有第一外螺纹,所述第一紧固螺母与所述第一外螺纹螺纹配合;所述第二紧固件为第二紧固螺母,所述阴极杆伸出至所述电解腔的一端设有第二外螺纹,所述第二紧固螺母与所述第二外螺纹螺纹配合。
- 如权利要求9所述的电解发生器,其中,所述第一紧固螺母与所述外壳的外侧壁之间设有第一弹性垫片;和/或,所述第二紧固螺母与所述外壳的外侧壁之间设有第二弹性垫片。
- 如权利要求1至10中任一项所述的电解发生器,其中,所述外壳包括:下壳,所述下壳开设有所述第一进水口和所述第一出水口;以及上盖,所述上盖盖设于所述下壳,并与所述下壳围合形成有所述电解腔。
- 如权利要求11所述的电解发生器,其中,所述上盖的内侧壁凸设有插接部,所述插接部的外周壁与所述下壳的内侧壁抵接。
- 如权利要求12所述的电解发生器,其中,所述插接部与所述下壳之间设有第三密封圈。
- 如权利要求13所述的电解发生器,其中,所述插接部的外周壁开设有第三密封沟槽,部分所述第三密封圈设于所述第三密封沟槽内。
- 如权利要求12至14中任一项所述的电解发生器,其中,所述下壳开设有紧固孔,所述插接部 的外周壁还开设有与所述紧固孔对应设置的紧固槽,所述外壳还包括连接件,所述连接件穿设于所述紧固孔并插设于所述紧固槽。
- 一种水处理组件,包括:如权利要求1至15中任一项所述的电解发生器;以及气泡滤芯模块,所述气泡滤芯模块具有第二进水口和第二出水口,所述第二进水口与所述电解发生器的第一出水口连通,以使所述气泡滤芯模块用于提升进入所述气泡滤芯模块内部的水的微气泡浓度。
- 如权利要求16所述的水处理组件,其中,所述气泡滤芯模块包括:壳体,所述壳体内形成有安装腔,所述壳体开设有连通所述安装腔的所述第二进水口和所述第二出水口;以及微气泡缓释滤芯,所述微气泡缓释滤芯设于所述安装腔内,所述微气泡缓释滤芯用于提升进入所述安装腔内的水的微气泡浓度。
- 如权利要求17所述的水处理组件,其中,所述微气泡缓释滤芯包括:滤料管,所述滤料管设于所述安装腔内,所述滤料管开设有第三进水口和第三出水口,所述第三进水口与所述第二进水口连通,所述第三出水口与所述第二出水口连通;以及滤料,所述滤料填充于所述滤料管内。
- 如权利要求18所述的水处理组件,其中,所述第二进水口和所述第二出水口分设在所述壳体背对的两侧,所述第三进水口和所述第三出水口均靠近第二进水口设置。
- 如权利要求19所述的水处理组件,其中,所述滤料管与所述安装腔的腔壁之间形成有水路通道,所述第三出水口通过所述水路通道连通于所述第二出水口。
- 如权利要求16至20中任一项所述的水处理组件,其中,所述壳体包括:底壳,所述底壳开设有所述第二出水口;以及顶盖,所述顶盖盖设于所述底壳,并与所述底壳围合形成有所述安装腔,所述顶盖开设有所述第二进水口。
- 一种热水器组件,包括:热水器,所述热水器具有入水口和排水口,所述入水口用于与供水管连通;以及如权利要求1至15中任一项所述的电解发生器,所述排水口与所述电解发生器的第一进水口连通。
- 如权利要求22所述的热水器组件,还包括:气泡滤芯模块,所述气泡滤芯模块具有第二进水口和第二出水口,所述第二进水口与所述电解发生器的第一出水口连通,以使所述气泡滤芯模块用于提升进入所述气泡滤芯模块内部的水的微气泡浓度。
- 一种热水系统,包括:热水器,所述热水器具有入水口和排水口,所述入水口用于与供水管连通;以及如权利要求16至21中任一项所述的水处理组件,所述水处理组件包括电解发生器和气泡滤芯模块,所述排水口与所述电解发生器的第一进水口连通,所述气泡滤芯模块具有第二进水口和第二出水口,所述第二进水口与所述电解发生器的第一出水口连通,以使所述气泡滤芯模块用于提升进入所述气泡滤芯模块内部的水的微气泡浓度。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202320279069.7 | 2023-02-15 | ||
CN202320279069.7U CN219429772U (zh) | 2023-02-15 | 2023-02-15 | 电解发生器、水处理组件、热水器组件及热水系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024169471A1 true WO2024169471A1 (zh) | 2024-08-22 |
Family
ID=87342957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/071364 WO2024169471A1 (zh) | 2023-02-15 | 2024-01-09 | 电解发生器、水处理组件、热水器组件及热水系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN219429772U (zh) |
WO (1) | WO2024169471A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN219429772U (zh) * | 2023-02-15 | 2023-07-28 | 芜湖美的智能厨电制造有限公司 | 电解发生器、水处理组件、热水器组件及热水系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011127212A (ja) * | 2009-12-21 | 2011-06-30 | Honda Motor Co Ltd | 水電解装置 |
CN108238666A (zh) * | 2017-06-12 | 2018-07-03 | 大连双迪创新科技研究院有限公司 | 超饱和富氢饮水机 |
CN208500451U (zh) * | 2018-07-05 | 2019-02-15 | 苏州铂瑞电极工业有限公司 | 一种家用洗涤水电解槽 |
CN110217859A (zh) * | 2019-05-08 | 2019-09-10 | 芜湖美的厨卫电器制造有限公司 | 过流式电解杀菌装置和具有其的家用电器 |
CN210505717U (zh) * | 2019-05-17 | 2020-05-12 | 成都氢润医疗科技有限公司 | 富氢水制备装置 |
CN212051664U (zh) * | 2020-01-08 | 2020-12-01 | 浙江水熊科技有限公司 | 混合电解设备 |
CN212712873U (zh) * | 2020-07-10 | 2021-03-16 | 苏州铂瑞电极工业有限公司 | 一种阻垢电极组 |
CN113354160A (zh) * | 2020-03-07 | 2021-09-07 | 东莞宝杰康氢科技有限公司 | 一种富氢水和富氧水沐浴系统 |
CN114963506A (zh) * | 2021-04-26 | 2022-08-30 | 青岛经济技术开发区海尔热水器有限公司 | 一种微气泡热水器 |
CN219429772U (zh) * | 2023-02-15 | 2023-07-28 | 芜湖美的智能厨电制造有限公司 | 电解发生器、水处理组件、热水器组件及热水系统 |
-
2023
- 2023-02-15 CN CN202320279069.7U patent/CN219429772U/zh active Active
-
2024
- 2024-01-09 WO PCT/CN2024/071364 patent/WO2024169471A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011127212A (ja) * | 2009-12-21 | 2011-06-30 | Honda Motor Co Ltd | 水電解装置 |
CN108238666A (zh) * | 2017-06-12 | 2018-07-03 | 大连双迪创新科技研究院有限公司 | 超饱和富氢饮水机 |
CN208500451U (zh) * | 2018-07-05 | 2019-02-15 | 苏州铂瑞电极工业有限公司 | 一种家用洗涤水电解槽 |
CN110217859A (zh) * | 2019-05-08 | 2019-09-10 | 芜湖美的厨卫电器制造有限公司 | 过流式电解杀菌装置和具有其的家用电器 |
CN210505717U (zh) * | 2019-05-17 | 2020-05-12 | 成都氢润医疗科技有限公司 | 富氢水制备装置 |
CN212051664U (zh) * | 2020-01-08 | 2020-12-01 | 浙江水熊科技有限公司 | 混合电解设备 |
CN113354160A (zh) * | 2020-03-07 | 2021-09-07 | 东莞宝杰康氢科技有限公司 | 一种富氢水和富氧水沐浴系统 |
CN212712873U (zh) * | 2020-07-10 | 2021-03-16 | 苏州铂瑞电极工业有限公司 | 一种阻垢电极组 |
CN114963506A (zh) * | 2021-04-26 | 2022-08-30 | 青岛经济技术开发区海尔热水器有限公司 | 一种微气泡热水器 |
CN219429772U (zh) * | 2023-02-15 | 2023-07-28 | 芜湖美的智能厨电制造有限公司 | 电解发生器、水处理组件、热水器组件及热水系统 |
Also Published As
Publication number | Publication date |
---|---|
CN219429772U (zh) | 2023-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108220994B (zh) | 一种便携式富氢机 | |
WO2024169471A1 (zh) | 电解发生器、水处理组件、热水器组件及热水系统 | |
WO2011143868A1 (zh) | 即热式沐浴器 | |
CN108570688A (zh) | 一种电解水装置 | |
CN216006031U (zh) | 一种臭氧出水设备及其臭氧喷雾装置 | |
CN201458794U (zh) | 一种流水式电解水制造装置 | |
CN111118527B (zh) | 臭氧电解发生器及其清洗臭氧发生器的方法 | |
CN218459837U (zh) | 淋浴花洒 | |
US20230050351A1 (en) | Skin cleaning device | |
TWM643093U (zh) | 充電型電解式臭氧蓮蓬頭 | |
JP2008073189A (ja) | 循環浴槽水を用いた炭酸泉の製造装置 | |
CN212293763U (zh) | 一种臭氧电解发生器 | |
CN107981666A (zh) | 一种新型富氢水杯 | |
CN213707836U (zh) | 一种家用式电解水机 | |
CN214936322U (zh) | 通配型富氢适配装置 | |
CN215424303U (zh) | 具有微纳米气泡水发生装置的洗脚盆 | |
CN206108996U (zh) | 结合出水装置的水素生成系统 | |
CN221890132U (zh) | 一种可拆卸的智能富氢沐浴花洒 | |
CN2396807Y (zh) | 电解臭氧淋浴器 | |
CN218459836U (zh) | 多功能洗浴花洒 | |
KR100506767B1 (ko) | 전해수 생성장치 | |
CN212983076U (zh) | 杀菌液制作系统 | |
CN220351821U (zh) | 一种电解装置及衣物处理设备 | |
CN212854034U (zh) | 一种基于一清二补三治的皮肤护理辅助装置 | |
CN221166176U (zh) | 一种连续型电去离子装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24755846 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401007815 Country of ref document: TH |