[go: up one dir, main page]

WO2024166481A1 - Biometric information measuring device - Google Patents

Biometric information measuring device Download PDF

Info

Publication number
WO2024166481A1
WO2024166481A1 PCT/JP2023/041263 JP2023041263W WO2024166481A1 WO 2024166481 A1 WO2024166481 A1 WO 2024166481A1 JP 2023041263 W JP2023041263 W JP 2023041263W WO 2024166481 A1 WO2024166481 A1 WO 2024166481A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
bioinformation
measuring device
calculation unit
Prior art date
Application number
PCT/JP2023/041263
Other languages
French (fr)
Japanese (ja)
Inventor
直明 松岡
卓 草薙
研人 藤木
愛 河原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2024576115A priority Critical patent/JPWO2024166481A1/ja
Publication of WO2024166481A1 publication Critical patent/WO2024166481A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/024Measuring pulse rate or heart rate
    • A61B5/0245Measuring pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing

Definitions

  • the present invention relates to a bioinformation measuring device.
  • a bioinformation measuring device that measures bioinformation by analyzing biosignals such as pulse waves is known (Patent Document 1).
  • This bioinformation measuring device includes a phase-locked loop circuit to which the biosignal is input.
  • the phase-locked loop circuit includes a phase frequency comparator, a loop filter, and a voltage-controlled oscillator.
  • a variable low-pass filter blocks signals of a predetermined frequency band contained in the deviation signal that has passed through the loop filter. The bioinformation is obtained from the signal that has passed through the variable low-pass filter.
  • Biological signals include signals related to the biological information of the measurement target as well as signals related to biological information that is not the target of measurement.
  • a ballistocardiogram (BCG) obtained to measure heart rate includes low-frequency signals caused by breathing, etc. If signals generated by other biological phenomena are superimposed on the signals related to the biological information of the measurement target, the measurement accuracy of the biological information of the measurement target will decrease.
  • the obtained signals may also include noise caused by the environment, such as vibration.
  • the object of the present invention is to provide a bioinformation measuring device that can suppress a decrease in the measurement accuracy of bioinformation even if signals generated due to other biological phenomena or the environment are superimposed on a signal related to the bioinformation of the measurement subject.
  • a bandpass filter that receives a biological signal having a harmonic structure, passes a component of a frequency band including a fundamental frequency and one of a plurality of harmonics included in the biological signal, and attenuates components of other frequencies to output a first signal; a frequency calculation unit that receives the first signal and outputs a second signal including information about a frequency of the input signal; and a biological information acquiring unit that acquires biological information from the second signal.
  • FIG. 1A is a block diagram of a bioinformation measuring device according to a first embodiment and a diagram showing an example of a signal waveform
  • FIG. 1B is a graph showing a heart rate waveform as an example of a biosignal SigB.
  • FIG. 2 is a graph showing an example of a spectrum obtained by performing a spectral analysis on the biological signal SigB.
  • FIG. 3 is a block diagram of the bandpass filter and the frequency calculation unit.
  • FIG. 4 is a diagram showing an example of the spectrum and signal waveform of the biological signal SigB to be measured and the signal SigR caused by respiration or the like superimposed on the biological signal SigB.
  • FIG. 1A is a block diagram of a bioinformation measuring device according to a first embodiment and a diagram showing an example of a signal waveform
  • FIG. 1B is a graph showing a heart rate waveform as an example of a biosignal SigB.
  • FIG. 2 is a graph showing an example of a spectrum
  • FIG. 5 is a graph showing an example of waveforms of the biological signal SigB and the first signal Sig1, and a time change in the frequency of the fundamental wave of the biological signal SigB and the first signal Sig1.
  • FIG. 6 is a block diagram of a biological information measuring device according to the second embodiment.
  • FIG. 7 is a flowchart showing a procedure for the signal analysis unit to determine the target order n.
  • FIG. 8 is a flowchart showing a control procedure executed by the input control unit.
  • FIG. 9 is a graph for explaining the control of the input control unit.
  • FIG. 10A is a block diagram of a biological information measuring device according to the third embodiment
  • FIG. 10B is a block diagram of a frequency calculation unit.
  • FIG. 11 is a block diagram of a biological information measuring device according to the fourth embodiment.
  • FIG. 12 is a graph showing the relationship between the pass frequency bands of a plurality of filter units BPF i .
  • FIG. 13 is a block diagram of the output control unit.
  • FIG. 14 is a graph showing the relationship between the previous frequency ft p , the pass frequency band of the filter unit BPF i , and the selected phase locked loop PLL i .
  • FIG. 15 is a table showing an example of cutoff frequencies and threshold values for switching the phase locked loop.
  • FIG. 16 is a block diagram of a biological information measuring device according to a modification of the fourth embodiment.
  • FIG. 1A is a block diagram of the bioinformation measuring device according to the first embodiment, and a diagram showing an example of a signal waveform.
  • Fig. 1B is a graph showing a heart rate waveform as an example of a biosignal SigB.
  • the horizontal axis of Fig. 1B represents time, and the vertical axis represents sensor output.
  • the bioinformation measuring device includes a sensor 70, a bandpass filter 10, a frequency calculation unit 20, a bioinformation acquisition unit 30, and a display device 60.
  • the sensor 70 is, for example, an acceleration sensor that acquires a ballistocardiogram (BCG).
  • BCG ballistocardiogram
  • the sensor 70 is used by being placed around the human body, for example on a seat or bed, or by being in direct contact with the human body. Heartbeat vibrations are detected by the sensor 70.
  • the functions of the bandpass filter 10, frequency calculation unit 20, and bioinformation acquisition unit 30 are realized in software by a microcontrol unit (MCU).
  • the sensor 70 detects the biosignal SigB, and the biosignal SigB shown in FIG. 1B is input to the bandpass filter 10.
  • the signal output from the sensor 70 may be an analog signal or a digital signal. If the signal output from the sensor 70 is an analog signal, it is converted to a digital signal by an AD converter in the MCU.
  • a general formula expressing the biosignal SigB will be described.
  • a heartbeat signal is captured by a ballistocardiogram, an electrocardiogram, a pulse wave signal, or the like
  • these signals often mimic a structure composed of multiple sine waves.
  • a signal representing breathing can also be confirmed to have a similar structure if it is periodic.
  • the waveform y'(t) of these periodic biosignals SigB, such as heartbeat and breathing can often be described by the following equation:
  • t represents time
  • f r represents frequency
  • ⁇ r represents phase
  • a r represents amplitude.
  • the waveform y(t, f 0 ) of the biosignal SigB can be expressed by the following equation.
  • the first term on the right side of equation (2) represents the fundamental wave, and the second term represents the harmonic wave.
  • the fundamental frequency f0 In a biosignal such as a heartbeat signal, in addition to the change in intensity depending on time t, the fundamental frequency f0 also changes.
  • the change in fundamental frequency f0 is a factor that changes the heartbeat interval.
  • the argument of the function y includes the fundamental frequency f0 .
  • the amplitude components ( a0 , ar ), frequency components ( f0 , kr ), phase components ( ⁇ 0 , ⁇ r ), etc. become values specific to the vibration transmission path or the living body.
  • the biosignal SigB can be expressed as a sum of a fundamental wave and harmonics up to order N
  • the waveform y(t, f0 ) of the biosignal SigB can be expressed by the following formula.
  • the frequency components of a heartbeat signal (e.g., a BCG waveform) acquired by a specific sensor are f0 , 2f0 , 3f0 , 4f0 , and 5f0 , assuming that the maximum order N of the constituent signals is 5.
  • Each frequency component has its own amplitude A1 , A2 , A3 , A4 , and A5 .
  • the fundamental frequency f0 is called the heartbeat frequency
  • its reciprocal 1/ f0 is called the heartbeat (pulse wave) interval.
  • the biosignal SigB ( Figure 1B) has a harmonic structure expressed by equation (3). That is, the biosignal SigB is composed of a fundamental wave and its harmonics.
  • the period of the fundamental wave of the heartbeat waveform is marked as T.
  • the period T of the fundamental wave corresponds to the heartbeat interval, and its reciprocal corresponds to the heartbeat frequency.
  • the bandpass filter 10 passes signals in one of the fundamental frequency band and the frequency bands of the multiple harmonics of the inputted biosignal SigB, and attenuates signals in the other frequency bands.
  • the pass frequency band of the bandpass filter 10 corresponds to the frequency band of the nth harmonic of the biosignal SigB.
  • the bandpass filter 10 passes signals in the fundamental frequency band of the biosignal SigB.
  • the fundamental frequency of the biosignal SigB is f0
  • the waveform of the first signal Sig1 that has passed through the bandpass filter 10 becomes a shape close to a sine wave with a frequency of nf0 .
  • the frequency calculation unit 20 analyzes the first signal Sig1 that has passed through the band-pass filter 10, and outputs a second signal Sig2 that includes information about the frequency nf 0 of the first signal Sig1.
  • the second signal Sig2 has a value of frequency nf 0.
  • the second signal Sig2 has a voltage value corresponding to the frequency nf 0 .
  • the bioinformation acquiring unit 30 acquires the bioinformation infB from the second signal Sig2. For example, the bioinformation acquiring unit 30 obtains a fundamental frequency f0 from the second signal Sig2.
  • the biosignal infB is a heartbeat signal
  • the bioinformation infB is a heartbeat frequency
  • its value is given by the fundamental frequency f0
  • the heartbeat interval is given by its reciprocal 1/ f0 .
  • the display device 60 displays information related to the bioinformation infB acquired by the bioinformation acquisition unit 30. For example, it displays the heartbeat frequency or heartbeat interval as numbers or a graph.
  • FIG. 2 is a graph showing an example of a spectrum obtained by spectral analysis of the biosignal SigB.
  • the horizontal axis represents frequency, and the vertical axis represents signal strength for each frequency.
  • the biological signal SigB includes a fundamental wave with a fundamental frequency f0 and second to fifth harmonics with frequencies 2f0 , 3f0 , 4f0 , and 5f0 .
  • the bandpass filter 10 passes signals in a frequency band including the second harmonic frequency 2f0 , for example.
  • the lower cutoff frequency on the low frequency side of the bandpass filter 10 is higher than the fundamental frequency f0
  • the upper cutoff frequency on the high frequency side is lower than the third harmonic frequency 3f0 .
  • the bandpass filter 10 passes signals in one of the frequency bands of the fundamental wave and each of the multiple harmonics of the biological signal SigB, and attenuates signals in the other frequency bands.
  • the frequency calculation unit 20 uses the first signal Sig1 (second harmonic) that has passed through the bandpass filter 10 to calculate its frequency 2f0 , and outputs it as the second signal Sig2.
  • the order of the harmonic that is the subject of calculation by the frequency calculation unit 20 is referred to as the target order n.
  • the bioinformation acquisition unit 30 calculates the fundamental frequency f0 by dividing the value indicated by the second signal Sig2 by 2.
  • the fundamental frequency f0 is calculated without directly using the signal in the fundamental frequency band of the biological signal SigB. Note that when the bandpass filter 10 passes the signal in the fundamental frequency band and attenuates the signal in the harmonic frequency band, the second signal Sig2 output from the frequency calculation unit 20 represents the fundamental frequency f0 .
  • FIG. 3 is a block diagram of the bandpass filter 10 and the frequency calculation unit 20.
  • the functions of each block of the frequency calculation unit 20 are realized, for example, by software. Note that it is also possible to realize these functions by hardware circuits.
  • the bandpass filter 10 passes signals in a predetermined specific frequency band among the frequency bands of the fundamental wave and multiple harmonics of the biosignal SigB.
  • a fourth-order infinite impulse response (IIR) digital filter can be used as the bandpass filter 10 that passes signals in a frequency band including the second harmonic.
  • the lower cutoff frequency is set to, for example, 2 Hz, and the upper cutoff frequency is set to 4 Hz. If large output delay is not a problem or if a steep cutoff characteristic is not required, a finite impulse response (FIR) digital filter may be used as the bandpass filter 10.
  • the frequency calculation unit 20 includes a phase locked loop 21, a frequency conversion unit 26, and a low pass filter 27.
  • the phase locked loop 21 includes a phase comparison unit 22, a loop filter 23, and a numerically controlled oscillator 24.
  • the phase locked loop 21 is designed to be able to track signals in the frequency band that is passed by the band pass filter 10, among the frequency bands of the fundamental wave and multiple harmonics of the biosignal SigB.
  • the numerically controlled oscillator 24 changes the frequency and phase of the tracking signal Sigt that it outputs according to the output of the loop filter 23.
  • the initial frequency at the start of operation of the numerically controlled oscillator 24 and the range of frequencies that the tracking signal Sigt tracks (hereinafter sometimes referred to as tracking frequencies) can be initialized by an external control signal.
  • the operation of the phase locked loop circuit 21 can be stopped (tracking stopped) by an external control signal.
  • the phase locked loop circuit 21 may be a free-running phase locked loop circuit that can track a specific frequency band without parameter settings or external control signal input.
  • a voltage controlled oscillator is used instead of the numerically controlled oscillator 24.
  • the phase comparator 22 compares the input first signal Sig1 with the tracking signal Sigt output from the numerically controlled oscillator 24, and calculates the phase difference between them.
  • the loop filter 23 outputs an appropriate control signal for controlling the numerically controlled oscillator 24 based on the phase difference calculated by the phase comparator 22.
  • the frequency conversion unit 26 converts the control signal output from the loop filter 23 into frequency information. More specifically, it converts the control value of the control signal input to the numerically controlled oscillator 24 into the current tracking frequency of the phase-locked loop circuit 21. Depending on the configurations of the loop filter 23 and the numerically controlled oscillator 24, the output of the loop filter 23 may contain frequency information. In such cases, the frequency conversion unit 26 is not necessary.
  • the low-pass filter 27 smooths the time change in the control value of the control signal output from the loop filter 23. For example, depending on the design of the loop filter 23 and the numerically controlled oscillator 24, ripple noise of a magnitude that cannot be ignored may be superimposed on the output of the loop filter 23.
  • the low-pass filter 27 is provided for the purpose of removing this ripple noise. Note that if the design of the loop filter 23 and the numerically controlled oscillator 24 can suppress the ripple noise to a negligible level, or if the ripple noise is not a problem for downstream display control or applications, then the low-pass filter 27 does not need to be provided.
  • the initial frequency of the phase locked loop 21 is 2.5 Hz
  • the tracking frequency range of the numerically controlled oscillator 24 is 2 Hz to 4 Hz.
  • a fourth-order IIR digital filter is used as the low-pass filter 27, and the cutoff frequency of the low-pass filter 27 is 0.6 Hz. Note that if a large output delay is not a problem or if a steep cutoff characteristic is not required, an FIR digital filter may be used as the low-pass filter 27.
  • FIG. 4 is a diagram showing an example of the spectrum and signal waveform of the biological signal SigB to be measured and the signal SigR caused by respiration or the like superimposed on the biological signal SigB.
  • the spectrum Sph of the biological signal SigB shows peaks of the fundamental wave at frequency f 0 , the second harmonic at frequency 2f 0 , the third harmonic at frequency 3f 0 , the fourth harmonic at frequency 4f 0 , and the fifth harmonic at frequency 5f 0.
  • the spectrum Spr of the signal SigR caused by breathing, etc. appears.
  • the frequency band of the spectrum Spr overlaps with the frequency band of the fundamental wave of the biological signal SigB.
  • the heart rate is generally said to be between 60 and 85 bpm, which, when converted to frequency, gives a heart rate of between 1 and 1.4 Hz.
  • the respiratory rate is generally between 12 and 20 bpm, which, when converted to frequency, gives a respiratory rate of between 0.2 and 0.3 Hz. In terms of frequency, the two do not overlap.
  • movement caused by breathing is often several times greater than movement caused by the heart rate. When body surface movement is captured with an acceleration sensor, the signal due to movement caused by breathing appears relatively large.
  • the signal SigR caused by breathing has a gentle triangular wave shape, and as shown in FIG. 4, its harmonics can extend into the frequency band of the fundamental wave of the biosignal SigB while maintaining a large amplitude level. If a signal combining the signal SigR caused by breathing, etc. and the biosignal SigB caused by the heartbeat is directly input to the phase-locked loop 21 (FIG. 3), it will be influenced by the signal SigR caused by breathing, etc., and will make it difficult to accurately track the fundamental wave of the biosignal SigB caused by the heartbeat.
  • the second harmonic rather than the fundamental wave of the biological signal SigB, is input to the frequency calculation unit 20 (FIG. 1A), and the fundamental wave of the biological signal SigB and the signal SigR caused by breathing, etc. are attenuated by the bandpass filter 10 (FIG. 1A) and are not input to the frequency calculation unit 20 (FIG. 1A). Therefore, the frequency 2f 0 of the second harmonic can be calculated with high accuracy without being affected by the signal SigR caused by breathing, etc.
  • the biological information acquisition unit 30 calculates the frequency f 0 of the fundamental wave from the frequency 2f 0 calculated by the frequency calculation unit 20, so that the frequency f 0 of the fundamental wave can be calculated without being affected by the signal SigR caused by breathing, etc.
  • FIG. 5 is a graph showing an example of the waveforms of the biosignal SigB and the first signal Sig1, and the time change in frequency of the fundamental wave of the biosignal SigB and the first signal Sig1.
  • the horizontal axis represents time
  • the first graph represents the waveform of the biosignal SigB
  • the second graph represents the waveform of the first signal Sig1 that has passed through the bandpass filter 10. Note that the waveform shown in the upper part of FIG. 5 has signals other than BCG and noise excluded.
  • the target order n is set to 2.
  • the frequency of the first signal Sig1, which is the second harmonic is in the range of 2 Hz to 4 Hz.
  • the vertical axis of the third graph represents frequency.
  • the solid line in the third graph represents the change over time in frequency of the first signal Sig1 (i.e., the change over time in frequency of the second harmonic of the biosignal SigB), and the dashed line represents the change over time in the fundamental wave of the biosignal SigB (i.e., the change over time in heart rate frequency).
  • the frequency range of the spectrum Spr ( Figure 4) of the signal SigR resulting from breathing, etc. is hatched.
  • the heartbeat frequency may fall within the frequency range of the spectrum Spr of the signal SigR caused by breathing, etc.
  • the heartbeat frequency cannot be accurately determined based on the fundamental wave of the biosignal SigB. Since the frequency of the first signal Sig1, which is the second harmonic of the biosignal SigB, does not overlap with the frequency range of the spectrum of the signal caused by breathing, etc., the frequency of the first signal Sig1 can be accurately determined in any time period. As a result, it becomes possible to accurately determine the heartbeat frequency.
  • the bandpass filter 10 passes the second harmonic of the biosignal SigB, but may pass harmonics of other orders.
  • the frequency band of the third or higher harmonics does not overlap with the frequency band of the spectrum of the signal SigR caused by breathing or the like. Therefore, the bandpass filter 10 may pass any of the third or higher harmonics.
  • the bioinformation acquisition unit 30 may divide the value of the second signal Sig2 by the order of the harmonic passing through the bandpass filter 10.
  • the bandpass filter 10 may pass the fundamental wave and attenuate the second and higher harmonics.
  • an acceleration sensor is used as the sensor 70 (FIG. 1A), but other sensors capable of acquiring a BCG, such as a piezoelectric sensor, may also be used.
  • a signal representing a BCG waveform is adopted as the biosignal SigB input to the bandpass filter 10, but other signals may also be used.
  • a signal representing an electrocardiogram (ECG) waveform or a signal representing a pulse wave waveform may be used as the biosignal SigB.
  • ECG electrocardiogram
  • the signal representing an ECG waveform can be acquired, for example, using an electrocardiograph.
  • the signal representing a pulse wave waveform can be acquired, for example, using a photoplethysmograph sensor.
  • the biosignal SigB is a signal corresponding to the heartbeat of the living body, but the biosignal SigB may be a signal having another harmonic structure.
  • a signal that changes in response to respiration may be used as the biosignal SigB.
  • the signal to be calculated by the frequency calculation unit 20 is selected from a fundamental wave or a harmonic having a frequency that is an integer multiple of the frequency of the fundamental wave, but the frequency band of the signal to be calculated by the frequency calculation unit 20 does not have to be an integer multiple of the fundamental frequency.
  • FIG. 6 is a block diagram of a bioinformation measuring device according to the second embodiment.
  • the bioinformation measuring device according to the second embodiment includes a signal analysis unit 40 and an input control unit 50 in addition to the sensor 70, bandpass filter 10, frequency calculation unit 20, bioinformation acquisition unit 30, and display unit 60 of the bioinformation measuring device according to the first embodiment.
  • a biosignal SigB is input to the signal analysis unit 40.
  • the harmonic order n (target order n) that the bandpass filter 10 passes is determined in advance, but in the second embodiment, the signal analysis unit 40 analyzes the biosignal SigB to determine the target order n.
  • FIG. 7 is a flowchart showing the procedure by which the signal analysis unit 40 determines the target order n.
  • the signal analysis unit 40 analyzes the input signal (step SA1). Based on the analysis result, it is determined whether or not the input signal contains a biosignal SigB such as a heartbeat signal (step SA2). For example, in step SA1, the input signal is Fourier transformed, and if the result of the Fourier transform has a harmonic structure expressed by equation (3), it is determined in step SA2 that a biosignal SigB is present. Alternatively, in step SA1, the root mean square (RMS) of the intensity of the input signal is calculated, and if the calculation result is equal to or greater than a threshold value, it is determined in step SA2 that a biosignal SigB is present.
  • RMS root mean square
  • steps SA1 and SA2 are repeated until it is determined that the biosignal SigB is present. If it is determined that the input signal contains the biosignal SigB, the target order n is determined, and various parameters of the bandpass filter 10 and the frequency calculation unit 20 are determined and set (step SA3).
  • the target order n may be, for example, the order of a peak that appears in the frequency band with the smallest noise floor on the frequency axis in the spectrum obtained by performing a Fourier transform or the like on the biosignal SigB.
  • the cutoff frequency of the bandpass filter 10 the initial frequency of the numerically controlled oscillator 24 ( Figure 3), and the parameters of the loop filter 23 are determined and set.
  • the value of the second signal Sig2 output from the frequency calculation section 20 becomes the frequency nf0 of the nth harmonic.
  • the bioinformation acquisition unit 30 includes a divider 32 and an inverse calculator 33.
  • the signal analysis unit 40 notifies the divider 32 of the target order n.
  • the divider 32 divides the frequency nf 0 indicated by the second signal Sig2 input from the frequency calculation unit 20 by the target order n to generate bioinformation infB indicating the value of the fundamental frequency f 0 of the biosignal SigB.
  • the bioinformation infB represents the heartbeat frequency.
  • the inverse calculator 33 calculates the inverse of the bioinformation infB output from the divider 32 to generate information T representing the heartbeat interval.
  • the obtained heartbeat frequency and heartbeat interval information are displayed on the display device 60.
  • FIG. 8 is a flowchart showing the control procedure executed by the input control unit 50.
  • the input control unit 50 analyzes the first signal Sig1 output from the bandpass filter 10 (step SB1). Based on the analysis result, it is determined whether the bandpass filter 10 outputs a first signal Sig1 (hereinafter referred to as a significant first signal Sig1) whose magnitude can be calculated by the frequency calculation unit 20 (step SB2). If the bandpass filter 10 outputs a significant first signal Sig1, it turns on the signal input to the frequency calculation unit 20 (step SB3). This causes the frequency calculation unit 20 to calculate the frequency (step SB4). If the bandpass filter 10 does not output a significant first signal Sig1, it turns off the signal input to the frequency calculation unit 20 (step SB5). In other words, no signal is input to the frequency calculation unit 20. Furthermore, it initializes the frequency calculation unit 20 (step SB6).
  • FIG. 9 is a graph for explaining the control of the input control unit 50.
  • the upper graph in FIG. 9 represents the time change in the root mean square (RMS) of the intensity of the first signal Sig1 output from the bandpass filter 10, and the lower graph is a timing chart of the on/off of the signal input to the frequency calculation unit 20 (FIG. 6).
  • the horizontal axis represents time
  • the vertical axis of the upper graph represents RMS
  • the vertical axis of the lower graph represents the on/off of the signal input to the frequency calculation unit 20.
  • the input control unit 50 calculates the RMS of the first signal Sig1.
  • the input control unit 50 switches the signal input to the frequency calculation unit 20 from off to on.
  • the signal input to the frequency calculation unit 20 is currently on, if the RMS value becomes equal to or less than the off threshold THoff (time t2 ), the input control unit 50 switches the signal input to the frequency calculation unit 20 from on to off.
  • the on threshold THon is greater than the off threshold THoff.
  • the input of the signal to the frequency calculation unit 20 can be turned off to prevent the phase synchronization circuit 21 ( Figure 3) of the frequency calculation unit 20 from tracking a signal of an incorrect frequency.
  • the input control unit 50 may have functions to adjust the gain of the input signal to the frequency calculation unit 20 and adjust the sampling rate.
  • step SB1 the output signal of the bandpass filter 10 is Fourier transformed, and in the determination of step SB2, if a peak exists in the frequency band of the target order n, it may be determined that a significant first signal Sig1 is being output.
  • the target order n is determined by analyzing the signal input from the sensor 70 (FIG. 6). For this reason, among the fundamental wave and multiple harmonics of the biological signal SigB, the fundamental wave or the harmonic of the order that is least susceptible to noise is input to the frequency calculation unit 20. By determining a preferable target order n according to the noise situation, the calculation accuracy of the frequency calculation unit 20 can be improved.
  • FIG. 10A is a block diagram of a bioinformation measuring device according to the third embodiment
  • FIG. 10B is a block diagram of a frequency calculation unit 20.
  • the control value that the loop filter 23 (FIG. 3) uses to control the numerically controlled oscillator 24 is output from the frequency calculation unit 20 as a second signal Sig2 via the frequency conversion unit 26 and the low-pass filter 27.
  • the frequency calculation unit 20 includes a frequency counter 29.
  • the tracking signal Sigt generated by the numerically controlled oscillator 24 is input to the frequency counter 29.
  • the frequency counter 29 counts the frequency of the tracking signal Sigt and outputs the counting result as the second signal Sig2.
  • the frequency counter 29 has a function of sequentially resetting the counter value internally.
  • a function may be provided to initialize the counter value by a command from the input control unit 50 depending on the state of the first signal Sig1 that has passed through the bandpass filter 10.
  • the tracking signal Sigt generated by the numerically controlled oscillator 24 is divided by the frequency divider 25 and input to the phase comparison unit 22.
  • the frequency division ratio m is set so that the frequency of the signal divided by the frequency divider 25 and the frequency of the first signal Sig1 are included in the same frequency band.
  • a fractional PLL may be used as the frequency calculation unit 20.
  • the control value output by the loop filter 23 to the numerically controlled oscillator 24 becomes nf 0.
  • the numerically controlled oscillator 24 generates a signal having a frequency of mnf 0 as the tracking signal Sigt. Therefore, the value of the second signal Sig2 output from the frequency counter 29 becomes mnf 0 .
  • the input control unit 50 has the same functions as the input control unit 50 (FIG. 6) of the bioinformation measuring device according to the second embodiment.
  • the input control unit 50 may have a function of initializing the phase synchronization circuit 21 and the frequency counter 29 of the frequency calculation unit 20 in step SB6 of FIG. 8.
  • the signal analysis unit 40 has the same functions as the signal analysis unit 40 (Fig. 6) of the bioinformation measuring device according to the second embodiment. Furthermore, the signal analysis unit 40 determines the division ratio m to be set in the divider 25 based on the oscillation frequency of the numerically controlled oscillator 24 (Fig. 10B) and the target order n. The division ratio m can be determined by dividing the oscillation frequency of the numerically controlled oscillator 24 (Fig. 10B) when the heartbeat frequency is 1 Hz by the target order n.
  • the division ratio m is 512. Also, when the target order n is 4, the division ratio m is 256.
  • the oscillation frequency of the numerically controlled oscillator 24 is designed to be 1000 Hz when the heartbeat frequency is 1 Hz. If the heartbeat frequency range is assumed to be 0.5 Hz or more and 2.5 Hz or less, a numerically controlled oscillator 24 capable of oscillating in a frequency range of 500 Hz or more and 2500 Hz or less is used. When the target order n is 2, the division ratio m should be set to 500.
  • the signal analysis unit 40 notifies the phase synchronization circuit 21 of the frequency calculation unit 20 of the division ratio m, and notifies the divider 32 of the bioinformation acquisition unit 30 of the division ratio m and the target order n.
  • the divider 25 of the phase synchronization circuit 21 divides the tracking signal Sigt by the division ratio m, and provides the divided signal to the phase comparison unit 22.
  • the divider 32 obtains bioinformation infB by dividing the value mnf0 of the second signal Sig2 counted by the frequency counter 29 by the product of the target order n and the division ratio m.
  • the value of the bioinformation infB is equal to the fundamental frequency f0 of the bioinformation measuring device SigB.
  • the reciprocal calculator 33 has the same function as the reciprocal calculator 33 of the bioinformation measuring device according to the second embodiment.
  • the product of the target order n and the division ratio m may be stored in the divider 32 as the heartbeat calculation counter value.
  • the divider 32 can obtain the bioinformation infB by dividing the value of the second signal Sig2 by the heartbeat calculation counter value.
  • the bioinformation infB (heartbeat frequency) is 1.025.
  • the calculation accuracy of the frequency calculation unit 20 can be improved by determining a preferable target order n depending on the noise situation.
  • the loop filter 23 (FIG. 3) outputs the second signal Sig2 by counting the frequency of the tracking signal Sigt generated by the phase locked loop circuit 21 with the frequency counter 29 without referring to the control value that controls the numerically controlled oscillator 24. This makes it easier to realize the function of the frequency calculation unit 20 with hardware.
  • the counter value by the frequency counter 29 may be interpreted as a fixed-point number, and the divider 32 may be omitted.
  • the product of the target order n and the division ratio m is 1000, it may be interpreted that there is a decimal point between the hundreds and thousands digits of the counter value by the frequency counter 29.
  • the counter value is 1000, the bioinformation infB (heartbeat frequency) is 1.000, and when the counter value is 825, the bioinformation infB (heartbeat frequency) is 0.825.
  • the counter value may be displayed as it is on the display device 60.
  • Fig. 11 is a block diagram of a bioinformation measuring device according to the fourth embodiment.
  • the bandpass filter 10 includes a plurality of filter units BPF i having different pass frequency bands.
  • i represents a serial number assigned to the plurality of filter units.
  • a common biosignal SigB is input to the plurality of filter units BPF i .
  • Fig. 12 is a graph showing the relationship of the pass frequency band of a plurality of filter units BPF i .
  • the horizontal axis represents frequency, and the vertical axis represents pass rate.
  • Fig. 12 shows an example in which the number of filter units BPF i is five.
  • the plurality of filter units BPF i are labeled BPF 1 , BPF 2 , BPF 3 , BPF 4 , and BPF 5 in order from the lowest center frequency of the pass frequency band.
  • the pass frequency bands of two filter units BPF i whose center frequencies are adjacent to each other partially overlap. For example, a part of the high frequency side of the pass frequency band of filter unit BPF i and a part of the low frequency side of the pass frequency band of filter unit BPF i+1 overlap with each other. Also, the pass frequency bands of filter units BPF i whose center frequencies are not adjacent to each other do not overlap with each other. For example, the pass frequency band of filter unit BPF i and the pass frequency band of filter unit BPF i+2 do not overlap with each other.
  • the lower cutoff frequency of the filter unit BPF i is denoted as f iL
  • the upper cutoff frequency is denoted as f iH .
  • the cutoff frequencies of the multiple filter units BPF i are set so that the following inequality is satisfied. f i+1,L ⁇ f iH f iH ⁇ f i+2,L
  • the frequency calculation section 20 (FIG. 11) includes a plurality of phase synchronization circuits 21 and an output control section 28.
  • the number of phase synchronization circuits 21 is the same as the number of filter units BPF i , and there is a one-to-one correspondence between the phase synchronization circuits 21 and the filter units BPF i .
  • the phase synchronization circuits 21 corresponding to the filter units BPF 1 , BPF 2 , BPF 3 , BPF 4 , and BPF 5 are denoted as PLL 1 , PLL 2 , PLL 3 , PLL 4 , and PLL 5 , respectively.
  • the first signal Sig1 that has passed through the filter unit BPF i is input to the corresponding phase locked loop PLL i .
  • the phase locked loop PLL i outputs the frequency (tracking frequency) value nf 0 of the tracking signal Sigt.
  • the output control unit 28 selects one of the tracking frequency values output from each of the multiple phase locked loops PLL i and outputs it as the second signal Sig2.
  • the function of the biometric information acquisition unit 30 is the same as the function of the biometric information acquisition unit 30 of the biometric information measuring device according to the second embodiment.
  • the input control unit 50 inputs the first signal Sig1, which is the output of the filter unit BPF i , to the corresponding phase locked loop PLL i . Furthermore, the input control unit 50 performs the same control as the input control unit 50 of the bioinformation measuring device according to the second embodiment (FIG. 6) for the pair of the mutually corresponding filter unit BPF i and the phase locked loop PLL i .
  • the input control unit 50 also controls the output control unit 28.
  • the control of the output control unit 28 will be explained later.
  • the signal analysis unit 40 has the same functions as the signal analysis unit 40 of the bioinformation measuring device according to the second embodiment (FIG. 6). For example, the signal analysis unit 40 determines the target order n by analyzing the input biosignal SigB. Once the target order n is determined, the signal analysis unit 40 determines the cutoff frequency of each of the multiple filter units BPF i , and sets the cutoff frequency to each of the filter units BPF i . Furthermore, the signal analysis unit 40 individually controls each of the multiple phase-locked loops PLL i .
  • the signal analysis unit 40 also controls the output control unit 28.
  • the control of the output control unit 28 will be explained later.
  • Fig. 13 is a block diagram of the output control unit 28.
  • the output control unit 28 includes a selector 28A and a delay unit 28B.
  • the tracking frequency ft i output from each of the phase locked loops PLL i is input to the selector 28A.
  • the tracking frequency ft output from the selector 28A is delayed by the delay unit 28B and input to the selector 28A.
  • the tracking frequency delayed by the delay unit 28B and input to the selector 28A is referred to as the previous frequency ft p .
  • the selector 28A compares the previous frequency ftp with a threshold value set in the selector 28A, and determines the tracking frequency ft to be output this time from among a plurality of tracking frequencies fti based on the comparison result.
  • An initial value finit of the previous frequency ftp is set in the delay unit 28B.
  • the delay unit 28B outputs the initial value finit as the previous frequency ftp .
  • the initial value finit is set by a command from the signal analysis unit 40 or the input control unit 50.
  • Fig. 14 is a graph showing the relationship between the previous frequency ftp , the pass frequency band of the filter unit BPF i , and the selected phase locked loop PLL i .
  • the horizontal axis represents the previous tracking frequency ftp
  • the vertical axis represents the selected phase locked loop PLL i .
  • the lower cutoff frequency of the pass frequency band of the filter unit BPF i is marked as f iL
  • the upper cutoff frequency is marked as f iH .
  • An upper threshold value f i,i+1 and a lower threshold value f i+1,i are set in the range where the pass frequency bands of filter units BPF i and BPF i+1 overlap.
  • the upper threshold value f i,i+1 is higher than the lower threshold value f i+1,i .
  • a case where the output of phase locked loop circuit PLL i is currently selected will be described.
  • the output of phase locked loop circuit PLL i is also selected this time.
  • the output of the phase locked loop PLL i+1 is selected this time. If the previous tracking frequency ft p is less than the lower threshold value f i,i-1 , the output of the phase locked loop PLL i-1 is selected this time.
  • the selected phase locked loop is switched to the output of the phase locked loop PLL i+1 , which covers a higher frequency band.
  • the selected phase locked loop is switched to the output of the phase locked loop PLL i-1 , which covers a lower frequency band.
  • Hysteresis is provided to prevent frequent switching near the threshold for switching the output of the phase locked loop.
  • the filter unit BPF2 is 1.8 Hz
  • the upper cutoff frequency f2H is 2.8 Hz
  • the lower threshold f21 for switching the phase locked loop from PLL2 to PLL1 is 1.9 Hz
  • the upper threshold f23 for switching from PLL2 to PLL3 is 2.7 Hz.
  • the control of the output control unit 28 by the input control unit 50 (FIG. 11) will be described.
  • the output of the phase control circuit PLL i selected by the selector 28A is controlled to be fixed.
  • the previous tracking frequency ft p of the delay unit 28B (FIG. 13) is initialized. That is, the previous tracking frequency ft p is controlled to be set to an initial value f init .
  • the signal analysis unit 40 has a function of determining the initial value f init of the previous tracking frequency ftp of the delay unit 28B (FIG. 13) of the output control unit 28. For example, when the subject is at rest and there is no body movement, the signal analysis unit 40 extracts signals from the lower cutoff frequency f1L of the filter unit BPF1 on the lowest frequency side to the upper cutoff frequency f5H of the filter unit BPF5 on the highest frequency side through a bandpass filter. The signal that has passed through the bandpass filter is subjected to a spectrum analysis to detect a spectrum peak. The frequency at which the peak appears is adopted as the initial value f init of the previous tracking frequency ftp of the delay unit 28B.
  • a control may be performed in which a predetermined initial frequency is provided as the initial value f init of the delay section 28B.
  • a pass frequency band covered by a plurality of filter units BPF i as a whole i.e., a frequency band from the lower cutoff frequency f 1L of filter unit BPF 1 to the upper cutoff frequency f 5H of filter unit BPF 5 , is realized by one filter unit.
  • a specific harmonic of the target order n but also harmonics of other orders and noise are likely to be input to the frequency calculation unit 20.
  • the frequency calculation unit 20 is affected by signals other than the harmonic of the target order n, and the frequency calculation accuracy decreases.
  • the bandpass filter 10 ( Figure 11) is realized by a single filter unit with a narrow pass frequency bandwidth.
  • fluctuations in the frequency of the fundamental wave of the biological signal SigB make it easier for the frequency of the harmonic of the target order n to fall outside the pass frequency band of the bandpass filter 10. If the frequency of the harmonic of the target order n falls outside the pass frequency band of the bandpass filter 10, the frequency calculation unit 20 will no longer be able to track the harmonic of the target order n. This narrows the range of measurable heartbeat frequencies.
  • a wide pass frequency band can be covered as a whole by using a plurality of filter units BPF i , thereby widening the range of measurable frequencies of biosignals.
  • the number of filter units BPF i constituting the bandpass filter 10 (FIG. 11) is five, but it may be any other number.
  • FIG. 16 is a block diagram of a bioinformation measuring device according to this modified example.
  • the frequency calculation unit 20 is composed of a plurality of phase synchronization circuits PLL i , and an output control unit 28 is arranged in the subsequent stage of the plurality of phase synchronization circuits PLL i .
  • one phase synchronization circuit 21 is arranged in the subsequent stage of the output control unit 28.
  • the output control unit 28 selects one of the plurality of filter units BPF i , and inputs the first signal Sig1 output from the selected filter unit BPF i to the phase synchronization circuit 21.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Physiology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

In the present invention, a biological signal having a harmonic structure is input to a bandpass filter. The bandpass filter passes components of a frequency band including the fundamental frequency and one frequency among a plurality of harmonics contained in the biological signal, attenuates other frequency components, and outputs a first signal. A frequency analysis unit that receives the first signal outputs a second signal that includes information about the frequency of the input signal. A biometric information acquisition unit acquires biometric information from the second signal.

Description

生体情報計測装置Biological information measuring device

 本発明は、生体情報計測装置に関する。 The present invention relates to a bioinformation measuring device.

 脈波等の生体信号を解析して生体情報を計測する生体情報計測装置が公知である(特許文献1)。この生体情報計測装置は、生体信号が入力される位相同期回路を含む。位相同期回路は、位相周波数比較部、ループフィルタ、及び電圧制御発振器を含む。ループフィルタを通過した偏差信号に含まれる所定の周波数帯域の信号を、可変ローパスフィルタによって遮断する。可変ローパスフィルタを通過した信号から、生体情報を取得する。 A bioinformation measuring device that measures bioinformation by analyzing biosignals such as pulse waves is known (Patent Document 1). This bioinformation measuring device includes a phase-locked loop circuit to which the biosignal is input. The phase-locked loop circuit includes a phase frequency comparator, a loop filter, and a voltage-controlled oscillator. A variable low-pass filter blocks signals of a predetermined frequency band contained in the deviation signal that has passed through the loop filter. The bioinformation is obtained from the signal that has passed through the variable low-pass filter.

国際公開第2015/045939号International Publication No. 2015/045939

 生体信号には、計測対象の生体情報に関する信号の他に、計測対象ではない生体情報に関する信号が含まれる。例えば、心拍数を計測するために取得する心弾動図(BCG)に、呼吸等に起因する低周波数帯の信号が含まれる。計測対象の生体情報に関する信号に、他の生体現象に起因して発生する信号が重畳されると、計測対象の生体情報の計測精度が低下してしまう。また、得られた信号に、振動等の環境起因のノイズが含まれる場合もある。 Biological signals include signals related to the biological information of the measurement target as well as signals related to biological information that is not the target of measurement. For example, a ballistocardiogram (BCG) obtained to measure heart rate includes low-frequency signals caused by breathing, etc. If signals generated by other biological phenomena are superimposed on the signals related to the biological information of the measurement target, the measurement accuracy of the biological information of the measurement target will decrease. Furthermore, the obtained signals may also include noise caused by the environment, such as vibration.

 本発明の目的は、計測対象の生体情報に関する信号に、他の生体現象や環境に起因して発生する信号が重畳されても、生体情報の計測精度の低下を抑制することが可能な生体情報計測装置を提供することである。 The object of the present invention is to provide a bioinformation measuring device that can suppress a decrease in the measurement accuracy of bioinformation even if signals generated due to other biological phenomena or the environment are superimposed on a signal related to the bioinformation of the measurement subject.

 本発明の一観点によると、
 調波構造を持つ生体信号が入力され、前記生体信号に含まれる基本波の周波数及び複数の高調波のそれぞれの周波数のうち1つの周波数を含む周波数帯の成分を通過させ、他の周波数の成分を減衰させて第1信号を出力するバンドパスフィルタと、
 前記第1信号が入力され、入力された信号の周波数に関する情報を含む第2信号を出力する周波数算出部と、
 前記第2信号から生体情報を取得する生体情報取得部と
を備えた生体情報計測装置が提供される。
According to one aspect of the present invention,
a bandpass filter that receives a biological signal having a harmonic structure, passes a component of a frequency band including a fundamental frequency and one of a plurality of harmonics included in the biological signal, and attenuates components of other frequencies to output a first signal;
a frequency calculation unit that receives the first signal and outputs a second signal including information about a frequency of the input signal;
and a biological information acquiring unit that acquires biological information from the second signal.

 バンドパスフィルタから出力された第1信号が周波数算出部に入力されることにより、バンドパスフィルタで減衰された周波数域の信号の影響を受けることなく、周波数の解析を行うことができる。その結果、生体情報の計測精度の低下を抑制することができる。 By inputting the first signal output from the bandpass filter to the frequency calculation unit, it is possible to perform frequency analysis without being affected by signals in the frequency range attenuated by the bandpass filter. As a result, it is possible to suppress a decrease in the measurement accuracy of biological information.

図1Aは、第1実施例による生体情報計測装置のブロック図、及び信号波形の一例を示す図であり、図1Bは、生体信号SigBの一例として心拍波形を示すグラフである。FIG. 1A is a block diagram of a bioinformation measuring device according to a first embodiment and a diagram showing an example of a signal waveform, and FIG. 1B is a graph showing a heart rate waveform as an example of a biosignal SigB. 図2は、生体信号SigBをスペクトル解析して得られたスペクトルの一例を示すグラフである。FIG. 2 is a graph showing an example of a spectrum obtained by performing a spectral analysis on the biological signal SigB. 図3は、バンドパスフィルタ及び周波数算出部のブロック図である。FIG. 3 is a block diagram of the bandpass filter and the frequency calculation unit. 図4は、計測対象の生体信号SigB、及び生体信号SigBに重畳されている呼吸等に起因する信号SigRのスペクトル、及び信号波形の一例を示す図である。FIG. 4 is a diagram showing an example of the spectrum and signal waveform of the biological signal SigB to be measured and the signal SigR caused by respiration or the like superimposed on the biological signal SigB. 図5は、生体信号SigB及び第1信号Sig1の波形、及び生体信号SigBの基本波と第1信号Sig1との周波数の時間変化の一例を示すグラフである。FIG. 5 is a graph showing an example of waveforms of the biological signal SigB and the first signal Sig1, and a time change in the frequency of the fundamental wave of the biological signal SigB and the first signal Sig1. 図6は、第2実施例による生体情報計測装置のブロック図である。FIG. 6 is a block diagram of a biological information measuring device according to the second embodiment. 図7は、信号解析部が対象次数nを決定する手順を示すフローチャートである。FIG. 7 is a flowchart showing a procedure for the signal analysis unit to determine the target order n. 図8は、入力制御部が実行する制御の手順を示すフローチャートである。FIG. 8 is a flowchart showing a control procedure executed by the input control unit. 図9は、入力制御部の制御を説明するためのグラフである。FIG. 9 is a graph for explaining the control of the input control unit. 図10Aは、第3実施例による生体情報計測装置のブロック図であり、図10Bは、周波数算出部のブロック図である。FIG. 10A is a block diagram of a biological information measuring device according to the third embodiment, and FIG. 10B is a block diagram of a frequency calculation unit. 図11は、第4実施例による生体情報計測装置のブロック図である。FIG. 11 is a block diagram of a biological information measuring device according to the fourth embodiment. 図12は、複数のフィルタユニットBPFの通過周波数帯域の関係を示すグラフである。FIG. 12 is a graph showing the relationship between the pass frequency bands of a plurality of filter units BPF i . 図13は、出力制御部のブロック図である。FIG. 13 is a block diagram of the output control unit. 図14は、前回周波数ft、フィルタユニットBPFの通過周波数帯域、及び選択される位相同期回路PLLの関係を示すグラフである。FIG. 14 is a graph showing the relationship between the previous frequency ft p , the pass frequency band of the filter unit BPF i , and the selected phase locked loop PLL i . 図15は、カットオフ周波数及び位相同期回路切り換えの閾値の一例を示す図表である。FIG. 15 is a table showing an example of cutoff frequencies and threshold values for switching the phase locked loop. 図16は、第4実施例の変形例による生体情報計測装置のブロック図である。FIG. 16 is a block diagram of a biological information measuring device according to a modification of the fourth embodiment.

 [第1実施例]
 図1Aから図5までの図面を参照して、第1実施例による生体情報計測装置について説明する。図1Aは、第1実施例による生体情報計測装置のブロック図、及び信号波形の一例を示す図である。図1Bは、生体信号SigBの一例として心拍波形を示すグラフである。図1Bの横軸は時間を表し、縦軸はセンサ出力を表す。
[First embodiment]
A bioinformation measuring device according to a first embodiment will be described with reference to Fig. 1A to Fig. 5. Fig. 1A is a block diagram of the bioinformation measuring device according to the first embodiment, and a diagram showing an example of a signal waveform. Fig. 1B is a graph showing a heart rate waveform as an example of a biosignal SigB. The horizontal axis of Fig. 1B represents time, and the vertical axis represents sensor output.

 第1実施例による生体情報計測装置は、センサ70、バンドパスフィルタ10、周波数算出部20、生体情報取得部30、及び表示装置60を含む。センサ70には、例えば心弾動図(BCG)を取得する加速度センサが用いられる。 The bioinformation measuring device according to the first embodiment includes a sensor 70, a bandpass filter 10, a frequency calculation unit 20, a bioinformation acquisition unit 30, and a display device 60. The sensor 70 is, for example, an acceleration sensor that acquires a ballistocardiogram (BCG).

 第1実施例では、センサ70が、人体の周囲、例えば座席やベッド等に置かれて使用されたり、人体に直接接触して使用されたりする場合を想定する。心拍の振動がセンサ70によって検知される。バンドパスフィルタ10、周波数算出部20、及び生体情報取得部30の機能は、マイクロコントロールユニット(MCU)によってソフトウェア的に実現される。センサ70が生体信号SigBを検出し、図1Bに示した生体信号SigBがバンドパスフィルタ10に入力される。センサ70から出力される信号はアナログ信号であってもよいし、デジタル信号であってもよい。センサ70から出力される信号がアナログ信号である場合は、MCU内のAD変換器により、デジタル信号に変換される。 In the first embodiment, it is assumed that the sensor 70 is used by being placed around the human body, for example on a seat or bed, or by being in direct contact with the human body. Heartbeat vibrations are detected by the sensor 70. The functions of the bandpass filter 10, frequency calculation unit 20, and bioinformation acquisition unit 30 are realized in software by a microcontrol unit (MCU). The sensor 70 detects the biosignal SigB, and the biosignal SigB shown in FIG. 1B is input to the bandpass filter 10. The signal output from the sensor 70 may be an analog signal or a digital signal. If the signal output from the sensor 70 is an analog signal, it is converted to a digital signal by an AD converter in the MCU.

 次に、生体信号SigBを表す一般式について説明する。
 例えば、心拍信号を心弾動図、心電図、脈波信号等でとらえた場合、それらの信号は、複数の正弦波で構成された構造を模していることが多い。呼吸を表す信号も、周期的に行われている場合は、同様の構造を有していることが確認できる。心拍や呼吸など、これらの周期的な生体信号SigBの波形y’(t)は、多くの場合以下の式で記述することができる。

Figure JPOXMLDOC01-appb-M000001
ここで、tは時間、fは周波数、φは位相、aは振幅を表す。 Next, a general formula expressing the biosignal SigB will be described.
For example, when a heartbeat signal is captured by a ballistocardiogram, an electrocardiogram, a pulse wave signal, or the like, these signals often mimic a structure composed of multiple sine waves. A signal representing breathing can also be confirmed to have a similar structure if it is periodic. The waveform y'(t) of these periodic biosignals SigB, such as heartbeat and breathing, can often be described by the following equation:
Figure JPOXMLDOC01-appb-M000001
Here, t represents time, f r represents frequency, φ r represents phase, and a r represents amplitude.

 生体信号SigBが基本周波数fを持つ基本波と、そのk倍の周波数を持つ高調波で構成される場合、生体信号SigBの波形y(t,f)は、以下の式で表すことができる。

Figure JPOXMLDOC01-appb-M000002
式(2)の右辺の第1項が基本波を表しており、第2項が高調波を表している。 When the biosignal SigB is composed of a fundamental wave having a fundamental frequency f 0 and a harmonic having a frequency kr times the fundamental wave, the waveform y(t, f 0 ) of the biosignal SigB can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
The first term on the right side of equation (2) represents the fundamental wave, and the second term represents the harmonic wave.

 心拍信号のような生体信号においては、時刻tに依存する強度の変化のほかに、基本周波数fも変化する。基本周波数fの変化が、心拍間隔を変化させる要素となる。この心拍間隔の変化を表すために、関数yの引数に基本周波数fが含まれている。 In a biosignal such as a heartbeat signal, in addition to the change in intensity depending on time t, the fundamental frequency f0 also changes. The change in fundamental frequency f0 is a factor that changes the heartbeat interval. To represent this change in the heartbeat interval, the argument of the function y includes the fundamental frequency f0 .

 式(2)において、外乱の影響が無視できる場合は、振幅成分(a,a)、周波数成分(f,k)、位相成分(φ,φ)等は、振動の伝達経路や生体由来の特有な値になる。生体信号SigBが、基本波、及び次数Nまでの高調波の和で表現できる場合は、生体信号SigBの波形y(t,f)を、以下の式で表すことができる。

Figure JPOXMLDOC01-appb-M000003
In formula (2), when the influence of disturbances can be ignored, the amplitude components ( a0 , ar ), frequency components ( f0 , kr ), phase components ( φ0 , φr ), etc. become values specific to the vibration transmission path or the living body. When the biosignal SigB can be expressed as a sum of a fundamental wave and harmonics up to order N, the waveform y(t, f0 ) of the biosignal SigB can be expressed by the following formula.
Figure JPOXMLDOC01-appb-M000003

 例えば、特定のセンサで取得した心拍信号(例えばBCGの波形)が持つ周波数成分は、その構成信号の最大次数Nを5とした場合、f、2f、3f、4f、5fとなる。それぞれの周波数成分は、独自の振幅A、A、A、A、Aを持つ。このとき、基本周波数fを心拍周波数といい、その逆数1/fを心拍(脈波)間隔という。 For example, the frequency components of a heartbeat signal (e.g., a BCG waveform) acquired by a specific sensor are f0 , 2f0 , 3f0 , 4f0 , and 5f0 , assuming that the maximum order N of the constituent signals is 5. Each frequency component has its own amplitude A1 , A2 , A3 , A4 , and A5 . In this case, the fundamental frequency f0 is called the heartbeat frequency, and its reciprocal 1/ f0 is called the heartbeat (pulse wave) interval.

 一般的に、生体信号SigB(図1B)は、式(3)で表される調波構造を有する。すなわち、生体信号SigBは、基本波と、その高調波とで構成される。図1Bにおいて、心拍波形の基本波の周期をTと標記している。基本波の周期Tが心拍間隔に相当し、その逆数が心拍周波数に相当する。 Generally, the biosignal SigB (Figure 1B) has a harmonic structure expressed by equation (3). That is, the biosignal SigB is composed of a fundamental wave and its harmonics. In Figure 1B, the period of the fundamental wave of the heartbeat waveform is marked as T. The period T of the fundamental wave corresponds to the heartbeat interval, and its reciprocal corresponds to the heartbeat frequency.

 バンドパスフィルタ10は、入力された生体信号SigBのうち、基本波の周波数帯域及び複数の高調波のそれぞれの周波数帯域のうち1つの周波数帯域の信号を通過させ、その他の周波数帯域の信号を減衰させる。以下、バンドパスフィルタ10の通過周波数帯域が、生体信号SigBのn次高調波の周波数帯域に相当する場合について説明する。n=1のとき、バンドパスフィルタ10は、生体信号SigBの基本波の周波数帯域の信号を通過させる。生体信号SigBの基本周波数がfのとき、バンドパスフィルタ10を通過した第1信号Sig1の波形は、周波数がnfの正弦波に近い形状になる。 The bandpass filter 10 passes signals in one of the fundamental frequency band and the frequency bands of the multiple harmonics of the inputted biosignal SigB, and attenuates signals in the other frequency bands. Hereinafter, a case will be described in which the pass frequency band of the bandpass filter 10 corresponds to the frequency band of the nth harmonic of the biosignal SigB. When n=1, the bandpass filter 10 passes signals in the fundamental frequency band of the biosignal SigB. When the fundamental frequency of the biosignal SigB is f0 , the waveform of the first signal Sig1 that has passed through the bandpass filter 10 becomes a shape close to a sine wave with a frequency of nf0 .

 周波数算出部20は、バンドパスフィルタ10を通過した第1信号Sig1を解析し、第1信号Sig1の周波数nfに関する情報を含む第2信号Sig2を出力する。例えば、第2信号Sig2は、周波数nfの値を持つ。なお、周波数算出部20をアナログ回路で構成する場合は、第2信号Sig2は、周波数nfに対応する電圧値を持つ。 The frequency calculation unit 20 analyzes the first signal Sig1 that has passed through the band-pass filter 10, and outputs a second signal Sig2 that includes information about the frequency nf 0 of the first signal Sig1. For example, the second signal Sig2 has a value of frequency nf 0. Note that when the frequency calculation unit 20 is configured with an analog circuit, the second signal Sig2 has a voltage value corresponding to the frequency nf 0 .

 生体情報取得部30は、第2信号Sig2から生体情報infBを取得する。例えば、生体情報取得部30は、第2信号Sig2から、基本周波数fを求める。生体信号infBが心拍信号である場合、生体情報infBは心拍周波数であり、その値は基本周波数fで与えられる。また、心拍間隔は、その逆数1/fで与えられる。 The bioinformation acquiring unit 30 acquires the bioinformation infB from the second signal Sig2. For example, the bioinformation acquiring unit 30 obtains a fundamental frequency f0 from the second signal Sig2. When the biosignal infB is a heartbeat signal, the bioinformation infB is a heartbeat frequency, and its value is given by the fundamental frequency f0 . The heartbeat interval is given by its reciprocal 1/ f0 .

 表示装置60は、生体情報取得部30で取得された生体情報infBに関する情報を表示する。例えば、心拍周波数または心拍間隔を、数字またはグラフで表示する。 The display device 60 displays information related to the bioinformation infB acquired by the bioinformation acquisition unit 30. For example, it displays the heartbeat frequency or heartbeat interval as numbers or a graph.

 次に、図2を参照して、第1実施例による生体情報計測装置のバンドパスフィルタ10、周波数算出部20、及び生体情報取得部30が行う処理の概略について説明する。図2は、生体信号SigBをスペクトル解析して得られたスペクトルの一例を示すグラフである。横軸は周波数を表し、縦軸は周波数ごとの信号強度を表す。 Next, referring to FIG. 2, an overview of the processing performed by the bandpass filter 10, frequency calculation unit 20, and bioinformation acquisition unit 30 of the bioinformation measuring device according to the first embodiment will be described. FIG. 2 is a graph showing an example of a spectrum obtained by spectral analysis of the biosignal SigB. The horizontal axis represents frequency, and the vertical axis represents signal strength for each frequency.

 生体信号SigBは、基本周波数fの基本波、及び周波数が2f、3f、4f、5fの2次から5次までの高調波を含んでいる。バンドパスフィルタ10は、例えば、2次高調波の周波数2fを含む周波数帯域の信号を通過させる。バンドパスフィルタ10の低周波数側の下側カットオフ周波数は、基本周波数fより高く、高周波数側の上側カットオフ周波数は、3次高調波の周波数3fより低い。すなわち、バンドパスフィルタ10は、生体信号SigBの基本波の周波数帯域、及び複数の高調波のそれぞれの周波数帯域のうち1つの周波数帯域の信号を通過させ、他の周波数帯域の信号を減衰させる。 The biological signal SigB includes a fundamental wave with a fundamental frequency f0 and second to fifth harmonics with frequencies 2f0 , 3f0 , 4f0 , and 5f0 . The bandpass filter 10 passes signals in a frequency band including the second harmonic frequency 2f0 , for example. The lower cutoff frequency on the low frequency side of the bandpass filter 10 is higher than the fundamental frequency f0 , and the upper cutoff frequency on the high frequency side is lower than the third harmonic frequency 3f0 . In other words, the bandpass filter 10 passes signals in one of the frequency bands of the fundamental wave and each of the multiple harmonics of the biological signal SigB, and attenuates signals in the other frequency bands.

 周波数算出部20は、バンドパスフィルタ10を通過した第1信号Sig1(2次高調波)を用いて、その周波数2fを求め、第2信号Sig2として出力する。周波数算出部20が算出する対象となる高調波の次数を、対象次数nということとする。生体情報取得部30は、第2信号Sig2が示す値を2で除算することにより、基本周波数fを求める。 The frequency calculation unit 20 uses the first signal Sig1 (second harmonic) that has passed through the bandpass filter 10 to calculate its frequency 2f0 , and outputs it as the second signal Sig2. The order of the harmonic that is the subject of calculation by the frequency calculation unit 20 is referred to as the target order n. The bioinformation acquisition unit 30 calculates the fundamental frequency f0 by dividing the value indicated by the second signal Sig2 by 2.

 図2では、バンドパスフィルタ10が通過させる高調波の次数nを2としたが、n=3、4、5の場合も同様の処理により、基本周波数fを求めることができる。このように、生体信号SigBの基本波の周波数帯域の信号を直接利用することなく、基本周波数fが算出される。なお、バンドパスフィルタ10が基本波の周波数帯域の信号を通過させ、高調波の周波数帯域の信号を減衰させる場合は、周波数算出部20から出力される第2信号Sig2は基本周波数fを表すことになる。 2, the order n of the harmonic wave passed by the bandpass filter 10 is set to 2, but the fundamental frequency f0 can be obtained by similar processing when n=3, 4, or 5. In this manner, the fundamental frequency f0 is calculated without directly using the signal in the fundamental frequency band of the biological signal SigB. Note that when the bandpass filter 10 passes the signal in the fundamental frequency band and attenuates the signal in the harmonic frequency band, the second signal Sig2 output from the frequency calculation unit 20 represents the fundamental frequency f0 .

 次に、図3を参照して周波数算出部20の構成について説明する。図3は、バンドパスフィルタ10及び周波数算出部20のブロック図である。周波数算出部20の各ブロックの機能は、例えばソフトウェアで実現される。なお、これらの機能をハードウェア回路で実現することも可能である。 Next, the configuration of the frequency calculation unit 20 will be described with reference to FIG. 3. FIG. 3 is a block diagram of the bandpass filter 10 and the frequency calculation unit 20. The functions of each block of the frequency calculation unit 20 are realized, for example, by software. Note that it is also possible to realize these functions by hardware circuits.

 バンドパスフィルタ10は、生体信号SigBの基本波及び複数の高調波の周波数帯域のうち、予め決められた特定の周波数帯域の信号を通過させる。想定される心拍周波数帯域を考慮して、2次高調波を含む周波数帯域の信号を通過させるバンドパスフィルタ10として、4次の無限インパルス応答(IIR)デジタルフィルタを用いることができる。下側カットオフ周波数を、例えば2Hzとし、上側カットオフ周波数を4Hzに設定する。大きな出力遅延が問題にならない場合や、急峻な遮断特性が不要な場合は、バンドパスフィルタ10として、有限インパルス応答(FIR)デジタルフィルタを用いてもよい。 The bandpass filter 10 passes signals in a predetermined specific frequency band among the frequency bands of the fundamental wave and multiple harmonics of the biosignal SigB. Taking into account the expected heart rate frequency band, a fourth-order infinite impulse response (IIR) digital filter can be used as the bandpass filter 10 that passes signals in a frequency band including the second harmonic. The lower cutoff frequency is set to, for example, 2 Hz, and the upper cutoff frequency is set to 4 Hz. If large output delay is not a problem or if a steep cutoff characteristic is not required, a finite impulse response (FIR) digital filter may be used as the bandpass filter 10.

 周波数算出部20は、位相同期回路21(Phase Locked Loop)、周波数変換部26、及びローパスフィルタ27を含む。位相同期回路21は、位相比較部22、ループフィルタ23、及び数値制御発振器24を含む。位相同期回路21は、生体信号SigBの基本波及び複数の高調波の周波数帯域のうち、バンドパスフィルタ10が通過させる周波数帯域の信号に追従できるように設計されている。 The frequency calculation unit 20 includes a phase locked loop 21, a frequency conversion unit 26, and a low pass filter 27. The phase locked loop 21 includes a phase comparison unit 22, a loop filter 23, and a numerically controlled oscillator 24. The phase locked loop 21 is designed to be able to track signals in the frequency band that is passed by the band pass filter 10, among the frequency bands of the fundamental wave and multiple harmonics of the biosignal SigB.

 数値制御発振器24は、ループフィルタ23の出力に応じて、出力する追従信号Sigtの周波数及び位相を変化させる。数値制御発振器24の動作開始時の初期周波数、及び追従信号Sigtが追従する周波数(以下、追従周波数という場合がある。)の範囲は、外部からの制御信号によって初期化することができる。また、外部からの制御信号によって、位相同期回路21の動作を停止(追従を停止)させることができる。なお、位相同期回路21として、パラメータ設定や外部からの制御信号の入力のない特定周波数帯を追従できるフリーランの位相同期回路を用いてもよい。また、位相同期回路21の機能をハードウェア回路で実現する場合は、数値制御発振器24に代えて、電圧制御発振器が用いられる。 The numerically controlled oscillator 24 changes the frequency and phase of the tracking signal Sigt that it outputs according to the output of the loop filter 23. The initial frequency at the start of operation of the numerically controlled oscillator 24 and the range of frequencies that the tracking signal Sigt tracks (hereinafter sometimes referred to as tracking frequencies) can be initialized by an external control signal. In addition, the operation of the phase locked loop circuit 21 can be stopped (tracking stopped) by an external control signal. Note that the phase locked loop circuit 21 may be a free-running phase locked loop circuit that can track a specific frequency band without parameter settings or external control signal input. In addition, when the function of the phase locked loop circuit 21 is realized by a hardware circuit, a voltage controlled oscillator is used instead of the numerically controlled oscillator 24.

 位相比較部22は、入力される第1信号Sig1と、数値制御発振器24から出力される追従信号Sigtとを比較し、その位相差を算出する。ループフィルタ23は、位相比較部22で算出された位相差に基づいて、数値制御発振器24を制御するための適切な制御信号を出力する。 The phase comparator 22 compares the input first signal Sig1 with the tracking signal Sigt output from the numerically controlled oscillator 24, and calculates the phase difference between them. The loop filter 23 outputs an appropriate control signal for controlling the numerically controlled oscillator 24 based on the phase difference calculated by the phase comparator 22.

 周波数変換部26は、ループフィルタ23から出力された制御信号を周波数情報に変換する。より具体的には、数値制御発振器24に入力される制御信号の制御値を、現在の位相同期回路21の追従周波数に変換する。なお、ループフィルタ23及び数値制御発振器24の構成によっては、ループフィルタ23の出力が周波数情報を含んでいる場合がある。このような場合は、周波数変換部26は不要である。 The frequency conversion unit 26 converts the control signal output from the loop filter 23 into frequency information. More specifically, it converts the control value of the control signal input to the numerically controlled oscillator 24 into the current tracking frequency of the phase-locked loop circuit 21. Depending on the configurations of the loop filter 23 and the numerically controlled oscillator 24, the output of the loop filter 23 may contain frequency information. In such cases, the frequency conversion unit 26 is not necessary.

 ローパスフィルタ27は、ループフィルタ23から出力される制御信号の制御値の時間変化をなだらかにする。例えば、ループフィルタ23や数値制御発振器24の設計によっては、ループフィルタ23の出力に、無視できない大きさのリプル状のノイズが重畳される場合がある。ローパスフィルタ27は、このリプル状のノイズを除去する目的で設置される。なお、ループフィルタ23や数値制御発振器24の設計によりリプル状のノイズを無視できる程度に抑制できる場合や、後段の表示制御やアプリケーション上、リプル状のノイズが問題にならない場合は、ローパスフィルタ27を配置しなくてもよい。 The low-pass filter 27 smooths the time change in the control value of the control signal output from the loop filter 23. For example, depending on the design of the loop filter 23 and the numerically controlled oscillator 24, ripple noise of a magnitude that cannot be ignored may be superimposed on the output of the loop filter 23. The low-pass filter 27 is provided for the purpose of removing this ripple noise. Note that if the design of the loop filter 23 and the numerically controlled oscillator 24 can suppress the ripple noise to a negligible level, or if the ripple noise is not a problem for downstream display control or applications, then the low-pass filter 27 does not need to be provided.

 第1実施例では、一例として、位相同期回路21の初期周波数を2.5Hz、数値制御発振器24の追従周波数の範囲を2Hz以上4Hz以下とする。ローパスフィルタ27として4次のIIRデジタルフィルタを用い、ローパスフィルタ27のカットオフ周波数を0.6Hzとする。なお、大きな出力遅延が問題にならない場合や、急峻な遮断特性が不要である場合は、ローパスフィルタ27としてFIRデジタルフィルタを用いてもよい。 In the first embodiment, as an example, the initial frequency of the phase locked loop 21 is 2.5 Hz, and the tracking frequency range of the numerically controlled oscillator 24 is 2 Hz to 4 Hz. A fourth-order IIR digital filter is used as the low-pass filter 27, and the cutoff frequency of the low-pass filter 27 is 0.6 Hz. Note that if a large output delay is not a problem or if a steep cutoff characteristic is not required, an FIR digital filter may be used as the low-pass filter 27.

 次に、図4及び図5を参照して、第1実施例の優れた効果について説明する。
 図4は、計測対象の生体信号SigB、及び生体信号SigBに重畳されている呼吸等に起因する信号SigRのスペクトル、及び信号波形の一例を示す図である。
Next, the advantageous effects of the first embodiment will be described with reference to FIGS.
FIG. 4 is a diagram showing an example of the spectrum and signal waveform of the biological signal SigB to be measured and the signal SigR caused by respiration or the like superimposed on the biological signal SigB.

 生体信号SigBのスペクトルSphに、周波数fの基本波、周波数2fの2次高調波、周波数3fの3次高調波、周波数4fの4次高調波、及び周波数5fの5次高調波のピークが現れている。さらに、呼吸等に起因する信号SigRのスペクトルSprが現れている。スペクトルSprの周波数帯域は、生体信号SigBの基本波の周波数帯域と重なっている。 The spectrum Sph of the biological signal SigB shows peaks of the fundamental wave at frequency f 0 , the second harmonic at frequency 2f 0 , the third harmonic at frequency 3f 0 , the fourth harmonic at frequency 4f 0 , and the fifth harmonic at frequency 5f 0. In addition, the spectrum Spr of the signal SigR caused by breathing, etc. appears. The frequency band of the spectrum Spr overlaps with the frequency band of the fundamental wave of the biological signal SigB.

 例えば、一般に心拍数は60bpm以上85bpm以下といわれており、これを周波数に換算すると、心拍周波数は1Hz以上1.4Hz以下になる。一方、呼吸数は、一般的に12bpm以上20bpm以下であり、これを周波数に換算すると、呼吸の周波数は0.2Hz以上0.3Hz以下になる。周波数的には、両者は重なっていない。ところが、体表面においては、呼吸に起因する動きが心拍に起因する動きより数倍程度大きい場合が多い。体表面の動きを加速度センサでとらえると、呼吸に起因する動きによる信号が相対的に大きく現れる。 For example, the heart rate is generally said to be between 60 and 85 bpm, which, when converted to frequency, gives a heart rate of between 1 and 1.4 Hz. On the other hand, the respiratory rate is generally between 12 and 20 bpm, which, when converted to frequency, gives a respiratory rate of between 0.2 and 0.3 Hz. In terms of frequency, the two do not overlap. However, on the body surface, movement caused by breathing is often several times greater than movement caused by the heart rate. When body surface movement is captured with an acceleration sensor, the signal due to movement caused by breathing appears relatively large.

 また、呼吸に起因する信号SigRは緩やかな三角波の形状を成しており、図4に示すように、その高調波が大きな振幅レベルを維持したまま生体信号SigBの基本波の周波数帯域まで及ぶことがある。呼吸等に起因する信号SigRと心拍に起因する生体信号SigBとを合成した信号を位相同期回路21(図3)に直接入力すると、呼吸等に起因する信号SigRの影響を受けて、心拍に起因する生体信号SigBの基本波に正確に追従することが困難になる。 Furthermore, the signal SigR caused by breathing has a gentle triangular wave shape, and as shown in FIG. 4, its harmonics can extend into the frequency band of the fundamental wave of the biosignal SigB while maintaining a large amplitude level. If a signal combining the signal SigR caused by breathing, etc. and the biosignal SigB caused by the heartbeat is directly input to the phase-locked loop 21 (FIG. 3), it will be influenced by the signal SigR caused by breathing, etc., and will make it difficult to accurately track the fundamental wave of the biosignal SigB caused by the heartbeat.

 第1実施例では、生体信号SigBの基本波ではなく、2次高調波が周波数算出部20(図1A)に入力され、生体信号SigBの基本波、及び呼吸等に起因する信号SigRは、バンドパスフィルタ10(図1A)で減衰され、周波数算出部20(図1A)に入力されない。このため、呼吸等に起因する信号SigRの影響を受けることなく、2次高調波の周波数2fを高精度に算出することができる。生体情報取得部30が、周波数算出部20で算出された周波数2fから、基本波の周波数fを求めるため、呼吸等に起因する信号SigRの影響を受けることなく、基本波の周波数fを求めることができる。 In the first embodiment, the second harmonic, rather than the fundamental wave of the biological signal SigB, is input to the frequency calculation unit 20 (FIG. 1A), and the fundamental wave of the biological signal SigB and the signal SigR caused by breathing, etc. are attenuated by the bandpass filter 10 (FIG. 1A) and are not input to the frequency calculation unit 20 (FIG. 1A). Therefore, the frequency 2f 0 of the second harmonic can be calculated with high accuracy without being affected by the signal SigR caused by breathing, etc. The biological information acquisition unit 30 calculates the frequency f 0 of the fundamental wave from the frequency 2f 0 calculated by the frequency calculation unit 20, so that the frequency f 0 of the fundamental wave can be calculated without being affected by the signal SigR caused by breathing, etc.

 図5は、生体信号SigB及び第1信号Sig1の波形、及び生体信号SigBの基本波と第1信号Sig1との周波数の時間変化の一例を示すグラフである。横軸は時間を表し、1段目のグラフは生体信号SigBの波形を表し、2段目のグラフはバンドパスフィルタ10を通過した第1信号Sig1の波形を表す。なお、図5の上段に示した波形は、BCG以外の信号やノイズを除外したものである。図5に示した例では、対象次数nを2に設定している。一例として、2次高調波である第1信号Sig1の周波数は、2Hz以上4Hz以下の範囲である。 FIG. 5 is a graph showing an example of the waveforms of the biosignal SigB and the first signal Sig1, and the time change in frequency of the fundamental wave of the biosignal SigB and the first signal Sig1. The horizontal axis represents time, the first graph represents the waveform of the biosignal SigB, and the second graph represents the waveform of the first signal Sig1 that has passed through the bandpass filter 10. Note that the waveform shown in the upper part of FIG. 5 has signals other than BCG and noise excluded. In the example shown in FIG. 5, the target order n is set to 2. As an example, the frequency of the first signal Sig1, which is the second harmonic, is in the range of 2 Hz to 4 Hz.

 3段目のグラフの縦軸は周波数を表す。3段目のグラフの実線は、第1信号Sig1の周波数の時間変化(すなわち、生体信号SigBの2次高調波の周波数の時間変化)を示し、破線は、生体信号SigBの基本波の時間変化(すなわち、心拍周波数の時間変化)を示す。図5において、呼吸等に起因する信号SigRのスペクトルSpr(図4)の周波数範囲にハッチングを付している。 The vertical axis of the third graph represents frequency. The solid line in the third graph represents the change over time in frequency of the first signal Sig1 (i.e., the change over time in frequency of the second harmonic of the biosignal SigB), and the dashed line represents the change over time in the fundamental wave of the biosignal SigB (i.e., the change over time in heart rate frequency). In Figure 5, the frequency range of the spectrum Spr (Figure 4) of the signal SigR resulting from breathing, etc. is hatched.

 時間帯によっては、心拍周波数が、呼吸等に起因する信号SigRのスペクトルSprの周波数範囲に含まれる場合がある。この場合、図4を参照して説明したように、生体信号SigBの基本波に基づいて心拍周波数を精度よく求めることができない。生体信号SigBの2次高調波である第1信号Sig1の周波数は、呼吸等に起因する信号のスペクトルの周波数範囲と重ならないため、いずれの時間帯においても、第1信号Sig1の周波数を精度よく求めることができる。その結果、心拍周波数を精度よく求めることが可能になる。 Depending on the time period, the heartbeat frequency may fall within the frequency range of the spectrum Spr of the signal SigR caused by breathing, etc. In this case, as explained with reference to FIG. 4, the heartbeat frequency cannot be accurately determined based on the fundamental wave of the biosignal SigB. Since the frequency of the first signal Sig1, which is the second harmonic of the biosignal SigB, does not overlap with the frequency range of the spectrum of the signal caused by breathing, etc., the frequency of the first signal Sig1 can be accurately determined in any time period. As a result, it becomes possible to accurately determine the heartbeat frequency.

 次に、第1実施例の変形例について説明する。
 第1実施例では、バンドパスフィルタ10(図1A)が、生体信号SigBの2次高調波を通過させているが、その他の次数の高調波を通過させるようにしてもよい。図4に示した例では、3次以上の高調波の周波数帯域も、呼吸等に起因する信号SigRのスペクトルの周波数帯域と重なっていない。このため、バンドパスフィルタ10が、3次以上の高調波のいずれかを通過させるようにしてもよい。この場合、生体情報取得部30(図1A)は、第2信号Sig2の値を、バンドパスフィルタ10を通過する高調波の次数で除算すればよい。
Next, a modification of the first embodiment will be described.
In the first embodiment, the bandpass filter 10 (FIG. 1A) passes the second harmonic of the biosignal SigB, but may pass harmonics of other orders. In the example shown in FIG. 4, the frequency band of the third or higher harmonics does not overlap with the frequency band of the spectrum of the signal SigR caused by breathing or the like. Therefore, the bandpass filter 10 may pass any of the third or higher harmonics. In this case, the bioinformation acquisition unit 30 (FIG. 1A) may divide the value of the second signal Sig2 by the order of the harmonic passing through the bandpass filter 10.

 また、生体信号SigBの基本波の周波数帯域に、他の信号のスペクトルが重なっておらず、高調波の周波数帯域に、他の信号のスペクトルが重なっているような場合は、バンドパスフィルタ10が基本波を通過させ、2次以上の高調波を減衰させるようにしてもよい。 In addition, if the spectrum of another signal does not overlap the frequency band of the fundamental wave of the biological signal SigB, but the spectrum of another signal overlaps the frequency band of the harmonic, the bandpass filter 10 may pass the fundamental wave and attenuate the second and higher harmonics.

 第1実施例では、センサ70(図1A)として、加速度センサを用いたが、BCGを取得することができるその他のセンサ、例えば圧電センサを用いてもよい。また、第1実施例では、バンドパスフィルタ10に入力される生体信号SigBとして、BCGの波形を表す信号を採用しているが、その他の信号を用いてもよい。例えば、心電図(ECG)の波形を表す信号、脈波の波形を表す信号を生体信号SigBとして用いてもよい。ECGの波形を表す信号は、例えば心電計を用いて取得することができる。脈波の波形を表す信号は、例えば光電脈波センサを用いて取得することができる。 In the first embodiment, an acceleration sensor is used as the sensor 70 (FIG. 1A), but other sensors capable of acquiring a BCG, such as a piezoelectric sensor, may also be used. Also, in the first embodiment, a signal representing a BCG waveform is adopted as the biosignal SigB input to the bandpass filter 10, but other signals may also be used. For example, a signal representing an electrocardiogram (ECG) waveform or a signal representing a pulse wave waveform may be used as the biosignal SigB. The signal representing an ECG waveform can be acquired, for example, using an electrocardiograph. The signal representing a pulse wave waveform can be acquired, for example, using a photoplethysmograph sensor.

 第1実施例では、生体の心拍に応じた信号を生体信号SigBとしているが、その他の調波構造を持つ信号を生体信号SigBとしてもよい。例えば、呼吸に応じて変化する信号を生体信号SigBとして採用してもよい。また、第1実施例では、周波数算出部20の算出対象の信号を、基本波、または基本波の周波数の整数倍の周波数を持つ高調波から選択しているが、周波数算出部20の算出対象の信号の周波数帯域は、基本の周波数の整数倍である必要はない。 In the first embodiment, the biosignal SigB is a signal corresponding to the heartbeat of the living body, but the biosignal SigB may be a signal having another harmonic structure. For example, a signal that changes in response to respiration may be used as the biosignal SigB. Also, in the first embodiment, the signal to be calculated by the frequency calculation unit 20 is selected from a fundamental wave or a harmonic having a frequency that is an integer multiple of the frequency of the fundamental wave, but the frequency band of the signal to be calculated by the frequency calculation unit 20 does not have to be an integer multiple of the fundamental frequency.

 [第2実施例]
 次に、図6から図9までの図面を参照して、第2実施例による生体情報計測装置について説明する。以下、図1Aから図5までの図面を参照して説明した第1実施例による生体情報計測装置と共通の構成については、説明を省略する。
[Second embodiment]
Next, a biological information measuring device according to a second embodiment will be described with reference to Figures 6 to 9. Below, a description of the configuration common to the biological information measuring device according to the first embodiment described with reference to Figures 1A to 5 will be omitted.

 図6は、第2実施例による生体情報計測装置のブロック図である。第2実施例による生体情報計測装置は、第1実施例による生体情報計測装置のセンサ70、バンドパスフィルタ10、周波数算出部20、生体情報取得部30、及び表示装置60の他に、信号解析部40及び入力制御部50を含む。信号解析部40に、生体信号SigBが入力される。 FIG. 6 is a block diagram of a bioinformation measuring device according to the second embodiment. The bioinformation measuring device according to the second embodiment includes a signal analysis unit 40 and an input control unit 50 in addition to the sensor 70, bandpass filter 10, frequency calculation unit 20, bioinformation acquisition unit 30, and display unit 60 of the bioinformation measuring device according to the first embodiment. A biosignal SigB is input to the signal analysis unit 40.

 第1実施例では、バンドパスフィルタ10が通過させる高調波の次数n(対象次数n)が予め決められているが、第2実施例では、信号解析部40が生体信号SigBを解析して、対象次数nを決定する。 In the first embodiment, the harmonic order n (target order n) that the bandpass filter 10 passes is determined in advance, but in the second embodiment, the signal analysis unit 40 analyzes the biosignal SigB to determine the target order n.

 次に、図7を参照して対象次数nを決定する方法について説明する。図7は、信号解析部40が対象次数nを決定する手順を示すフローチャートである。 Next, a method for determining the target order n will be described with reference to FIG. 7. FIG. 7 is a flowchart showing the procedure by which the signal analysis unit 40 determines the target order n.

 まず、人体安静時において、信号解析部40が入力信号を解析する(ステップSA1)。解析結果に基づいて、入力信号に心拍信号等の生体信号SigBが含まれているか否かを判定する(ステップSA2)。例えば、ステップSA1において、入力信号をフーリエ変換し、フーリエ変換された結果が式(3)で表される調波構造を有する場合は、ステップSA2において生体信号SigBありと判定する。または、ステップSA1において、入力信号の強度の二乗平均平方根(RMS)を計算し、計算結果が閾値以上であれば、ステップSA2において生体信号SigBありと判定する。 First, while the human body is at rest, the signal analysis unit 40 analyzes the input signal (step SA1). Based on the analysis result, it is determined whether or not the input signal contains a biosignal SigB such as a heartbeat signal (step SA2). For example, in step SA1, the input signal is Fourier transformed, and if the result of the Fourier transform has a harmonic structure expressed by equation (3), it is determined in step SA2 that a biosignal SigB is present. Alternatively, in step SA1, the root mean square (RMS) of the intensity of the input signal is calculated, and if the calculation result is equal to or greater than a threshold value, it is determined in step SA2 that a biosignal SigB is present.

 入力信号に生体信号SigBが含まれていない場合は、生体信号SigBありと判定されるまでステップSA1及びステップSA2を繰り返す。入力信号に生体信号SigBが含まれていると判定された場合は、対象次数nを決定するとともに、バンドパスフィルタ10及び周波数算出部20の種々のパラメータを決定し、設定する(ステップSA3)。対象次数nは、例えば、生体信号SigBをフーリエ変換等して得られたスペクトルにおいて、周波数軸上でノイズフロアが最も小さい周波数帯域に現れているピークの次数を対象次数nとするとよい。例えば、バンドパスフィルタ10のカットオフ周波数、数値制御発振器24(図3)の初期周波数、及びループフィルタ23のパラメータ等を決定し、設定する。 If the input signal does not contain the biosignal SigB, steps SA1 and SA2 are repeated until it is determined that the biosignal SigB is present. If it is determined that the input signal contains the biosignal SigB, the target order n is determined, and various parameters of the bandpass filter 10 and the frequency calculation unit 20 are determined and set (step SA3). The target order n may be, for example, the order of a peak that appears in the frequency band with the smallest noise floor on the frequency axis in the spectrum obtained by performing a Fourier transform or the like on the biosignal SigB. For example, the cutoff frequency of the bandpass filter 10, the initial frequency of the numerically controlled oscillator 24 (Figure 3), and the parameters of the loop filter 23 are determined and set.

 これらのパラメータを設定して生体情報計測装置を動作させると、周波数算出部20(図6)から出力される第2信号Sig2の値は、n次高調波の周波数nfになる。 When the biological information measuring device is operated with these parameters set, the value of the second signal Sig2 output from the frequency calculation section 20 (FIG. 6) becomes the frequency nf0 of the nth harmonic.

 第2実施例では、生体情報取得部30(図6)が、除算器32及び逆数器33を含む。信号解析部40が除算器32に、対象次数nを通知する。除算器32は、周波数算出部20から入力される第2信号Sig2で示される周波数nfを、対象次数nで除することにより、生体信号SigBの基本周波数fの値を示す生体情報infBを生成する。生体情報infBは、心拍周波数を表している。逆数器33は、除算器32から出力された生体情報infBの逆数を計算することにより、心拍間隔を表す情報Tを生成する。求められた心拍周波数及び心拍間隔の情報が、表示装置60に表示される。 In the second embodiment, the bioinformation acquisition unit 30 (FIG. 6) includes a divider 32 and an inverse calculator 33. The signal analysis unit 40 notifies the divider 32 of the target order n. The divider 32 divides the frequency nf 0 indicated by the second signal Sig2 input from the frequency calculation unit 20 by the target order n to generate bioinformation infB indicating the value of the fundamental frequency f 0 of the biosignal SigB. The bioinformation infB represents the heartbeat frequency. The inverse calculator 33 calculates the inverse of the bioinformation infB output from the divider 32 to generate information T representing the heartbeat interval. The obtained heartbeat frequency and heartbeat interval information are displayed on the display device 60.

 次に、図8を参照して、入力制御部50(図6)の機能について説明する。図8は、入力制御部50が実行する制御の手順を示すフローチャートである。 Next, the function of the input control unit 50 (FIG. 6) will be described with reference to FIG. 8. FIG. 8 is a flowchart showing the control procedure executed by the input control unit 50.

 入力制御部50は、バンドパスフィルタ10から出力される第1信号Sig1を解析する(ステップSB1)。解析結果に基づいて、バンドパスフィルタ10が、周波数算出部20によって算出可能な大きさの第1信号Sig1(以下、有意な第1信号Sig1という。)を出力しているか否かを判定する(ステップSB2)。バンドパスフィルタ10が有意な第1信号Sig1を出力している場合は、周波数算出部20への信号入力をオンにする(ステップSB3)。これにより、周波数算出部20は周波数の算出を実行する(ステップSB4)。バンドパスフィルタ10が有意な第1信号Sig1を出力していない場合は、周波数算出部20への信号の入力をオフにする(ステップSB5)。すなわち、周波数算出部20に信号を入力させない。さらに、周波数算出部20を初期化する(ステップSB6)。 The input control unit 50 analyzes the first signal Sig1 output from the bandpass filter 10 (step SB1). Based on the analysis result, it is determined whether the bandpass filter 10 outputs a first signal Sig1 (hereinafter referred to as a significant first signal Sig1) whose magnitude can be calculated by the frequency calculation unit 20 (step SB2). If the bandpass filter 10 outputs a significant first signal Sig1, it turns on the signal input to the frequency calculation unit 20 (step SB3). This causes the frequency calculation unit 20 to calculate the frequency (step SB4). If the bandpass filter 10 does not output a significant first signal Sig1, it turns off the signal input to the frequency calculation unit 20 (step SB5). In other words, no signal is input to the frequency calculation unit 20. Furthermore, it initializes the frequency calculation unit 20 (step SB6).

 次に、図9を参照して、入力制御部50が行う制御について説明する。図9は、入力制御部50の制御を説明するためのグラフである。図9の上段のグラフは、バンドパスフィルタ10から出力される第1信号Sig1の強度の二乗平均平方根(RMS)の時間変化を表し、下段のグラフは、周波数算出部20(図6)への信号入力のオンオフのタイミングチャートである。横軸は時間を表し、上段のグラフの縦軸はRMSを表し、下段のグラフの縦軸は周波数算出部20への信号入力のオンオフを表す。 Next, the control performed by the input control unit 50 will be described with reference to FIG. 9. FIG. 9 is a graph for explaining the control of the input control unit 50. The upper graph in FIG. 9 represents the time change in the root mean square (RMS) of the intensity of the first signal Sig1 output from the bandpass filter 10, and the lower graph is a timing chart of the on/off of the signal input to the frequency calculation unit 20 (FIG. 6). The horizontal axis represents time, the vertical axis of the upper graph represents RMS, and the vertical axis of the lower graph represents the on/off of the signal input to the frequency calculation unit 20.

 入力制御部50は、第1信号Sig1のRMSを計算する。現時点において周波数算出部20への信号の入力がオフになっているとき、RMS値がオン閾値THon以上になる(時刻t)と、周波数算出部20への信号の入力をオフからオンに切換える。現時点において周波数算出部20への信号の入力がオンになっているとき、RMS値がオフ閾値THoff以下になる(時刻t)と、周波数算出部20への信号の入力をオンからオフに切換える。オン閾値THonは、オフ閾値THoffより大きい。 The input control unit 50 calculates the RMS of the first signal Sig1. When the signal input to the frequency calculation unit 20 is currently off, if the RMS value becomes equal to or greater than the on threshold THon (time t1 ), the input control unit 50 switches the signal input to the frequency calculation unit 20 from off to on. When the signal input to the frequency calculation unit 20 is currently on, if the RMS value becomes equal to or less than the off threshold THoff (time t2 ), the input control unit 50 switches the signal input to the frequency calculation unit 20 from on to off. The on threshold THon is greater than the off threshold THoff.

 バンドパスフィルタ10が有意な第1信号Sig1を出力しておらず、第1信号Sig1がホワイトノイズであるような場合、周波数算出部20への信号の入力をオフにすることにより、周波数算出部20の位相同期回路21(図3)が誤った周波数の信号に追従してしまうことを防止することができる。ステップSB6において周波数算出部20を初期化することにより、次に有意な第1信号Sig1が入力された場合に、初期状態から解析を行うことができる。 If the bandpass filter 10 is not outputting a significant first signal Sig1 and the first signal Sig1 is white noise, the input of the signal to the frequency calculation unit 20 can be turned off to prevent the phase synchronization circuit 21 (Figure 3) of the frequency calculation unit 20 from tracking a signal of an incorrect frequency. By initializing the frequency calculation unit 20 in step SB6, the next time a significant first signal Sig1 is input, analysis can be performed from the initial state.

 なお、第1信号Sig1がホワイトノイズのような場合でも、位相同期回路21が誤作動しないような特性を持っている場合は、入力制御部50を設けなくてもよい。入力制御部50に、周波数算出部20への入力信号のゲインの調整や、サンプリングレートの調整の機能を持たせてもよい。 In addition, if the phase-locked loop 21 has characteristics that prevent malfunction even when the first signal Sig1 is white noise, the input control unit 50 does not need to be provided. The input control unit 50 may have functions to adjust the gain of the input signal to the frequency calculation unit 20 and adjust the sampling rate.

 ステップSB1の解析において、バンドパスフィルタ10の出力信号をフーリエ変換し、ステップSB2の判定において、対象次数nの周波数帯域にピークが存在する場合は、有意な第1信号Sig1が出力されていると判定してもよい。 In the analysis of step SB1, the output signal of the bandpass filter 10 is Fourier transformed, and in the determination of step SB2, if a peak exists in the frequency band of the target order n, it may be determined that a significant first signal Sig1 is being output.

 次に、第2実施例の優れた効果について説明する。
 第2実施例では、センサ70(図6)から入力された信号を解析することにより、対象次数nを決定する。このため、生体信号SigBの基本波、及び複数の高調波のうち、雑音の影響を受けにくい次数の基本波または高調波を、周波数算出部20に入力することになる。雑音の状況に応じて好ましい対象次数nを決定することにより、周波数算出部20の算出精度を高めることができる。
Next, the advantageous effects of the second embodiment will be described.
In the second embodiment, the target order n is determined by analyzing the signal input from the sensor 70 (FIG. 6). For this reason, among the fundamental wave and multiple harmonics of the biological signal SigB, the fundamental wave or the harmonic of the order that is least susceptible to noise is input to the frequency calculation unit 20. By determining a preferable target order n according to the noise situation, the calculation accuracy of the frequency calculation unit 20 can be improved.

 [第3実施例]
 次に、図10A及び図10Bを参照して、第3実施例による生体情報計測装置について説明する。以下、図6から図9までの図面を参照して説明した第2実施例による生体情報計測装置と共通の構成については、説明を省略する。
[Third Example]
Next, a biological information measuring device according to a third embodiment will be described with reference to Fig. 10A and Fig. 10B. Below, a description of the configuration common to the biological information measuring device according to the second embodiment described with reference to Figs. 6 to 9 will be omitted.

 図10Aは、第3実施例による生体情報計測装置のブロック図であり、図10Bは、周波数算出部20のブロック図である。第2実施例(図6)では、ループフィルタ23(図3)が数値制御発振器24を制御する制御値が、周波数変換部26及びローパスフィルタ27を介して周波数算出部20から第2信号Sig2として出力される。 FIG. 10A is a block diagram of a bioinformation measuring device according to the third embodiment, and FIG. 10B is a block diagram of a frequency calculation unit 20. In the second embodiment (FIG. 6), the control value that the loop filter 23 (FIG. 3) uses to control the numerically controlled oscillator 24 is output from the frequency calculation unit 20 as a second signal Sig2 via the frequency conversion unit 26 and the low-pass filter 27.

 これに対して第3実施例においては、周波数算出部20が周波数カウンタ29を含む。図10Bに示すように、数値制御発振器24が生成する追従信号Sigtが、周波数カウンタ29に入力される。周波数カウンタ29は、追従信号Sigtの周波数を計数し、計数結果を第2信号Sig2として出力する。周波数カウンタ29は、内部でカウンタ値を逐次リセットする機能を有している。また、バンドパスフィルタ10を通過した第1信号Sig1の状況に応じて、入力制御部50からの指令によりカウンタ値を初期化する機能を設けてもよい。 In contrast, in the third embodiment, the frequency calculation unit 20 includes a frequency counter 29. As shown in FIG. 10B, the tracking signal Sigt generated by the numerically controlled oscillator 24 is input to the frequency counter 29. The frequency counter 29 counts the frequency of the tracking signal Sigt and outputs the counting result as the second signal Sig2. The frequency counter 29 has a function of sequentially resetting the counter value internally. In addition, a function may be provided to initialize the counter value by a command from the input control unit 50 depending on the state of the first signal Sig1 that has passed through the bandpass filter 10.

 さらに、第3実施例では、数値制御発振器24で生成された追従信号Sigtが、分周器25で分周されて位相比較部22に入力される。分周器25によって分周された信号の周波数と、第1信号Sig1の周波数とが、同一の周波数帯に含まれるように分周比mが設定される。周波数算出部20として、フラクショナルPLLを用いてもよい。 Furthermore, in the third embodiment, the tracking signal Sigt generated by the numerically controlled oscillator 24 is divided by the frequency divider 25 and input to the phase comparison unit 22. The frequency division ratio m is set so that the frequency of the signal divided by the frequency divider 25 and the frequency of the first signal Sig1 are included in the same frequency band. A fractional PLL may be used as the frequency calculation unit 20.

 周波数算出部20に入力される第1信号Sig1の周波数がnfであるとき、ループフィルタ23が数値制御発振器24に対して出力する制御値はnfになる。このとき、数値制御発振器24は、追従信号Sigtとして、周波数がmnfの信号を生成する。このため、周波数カウンタ29から出力される第2信号Sig2の値はmnfになる。 When the frequency of the first signal Sig1 input to the frequency calculation unit 20 is nf 0 , the control value output by the loop filter 23 to the numerically controlled oscillator 24 becomes nf 0. At this time, the numerically controlled oscillator 24 generates a signal having a frequency of mnf 0 as the tracking signal Sigt. Therefore, the value of the second signal Sig2 output from the frequency counter 29 becomes mnf 0 .

 入力制御部50は、第2実施例による生体情報計測装置の入力制御部50(図6)の機能と同一の機能を有する。さらに、図8のステップSB6において、周波数算出部20の位相同期回路21及び周波数カウンタ29を初期化する機能を有していてもよい。 The input control unit 50 has the same functions as the input control unit 50 (FIG. 6) of the bioinformation measuring device according to the second embodiment. In addition, the input control unit 50 may have a function of initializing the phase synchronization circuit 21 and the frequency counter 29 of the frequency calculation unit 20 in step SB6 of FIG. 8.

 信号解析部40は、第2実施例による生体情報計測装置の信号解析部40(図6)の機能と同一の機能を有する。さらに、信号解析部40は、数値制御発振器24(図10B)の発振周波数と、対象次数nとにより、分周器25に設定する分周比mを決定する。心拍周波数が1Hzのときの数値制御発振器24(図10B)の発振周波数を、対象次数nで除した値を分周比mとすればよい。 The signal analysis unit 40 has the same functions as the signal analysis unit 40 (Fig. 6) of the bioinformation measuring device according to the second embodiment. Furthermore, the signal analysis unit 40 determines the division ratio m to be set in the divider 25 based on the oscillation frequency of the numerically controlled oscillator 24 (Fig. 10B) and the target order n. The division ratio m can be determined by dividing the oscillation frequency of the numerically controlled oscillator 24 (Fig. 10B) when the heartbeat frequency is 1 Hz by the target order n.

 例えば、心拍周波数が1Hzのときにおける数値制御発振器24の発振周波数が1024Hzであり、追従信号の周波数帯が心拍信号の2次高調波(対象次数n=2)である場合、分周比mは512になる。また、対象次数nが4である場合は、分周比mは256になる。 For example, when the heartbeat frequency is 1 Hz, if the oscillation frequency of the numerically controlled oscillator 24 is 1024 Hz and the frequency band of the tracking signal is the second harmonic of the heartbeat signal (target order n=2), the division ratio m is 512. Also, when the target order n is 4, the division ratio m is 256.

 第3実施例では、一例として、心拍周波数が1Hzのときに数値制御発振器24の発振周波数が1000Hzになるように設計する。心拍周波数の範囲が0.5Hz以上2.5Hz以下と想定される場合、数値制御発振器24として、500Hz以上2500Hz以下の周波数範囲で発振可能なものを用いる。対象次数nが2のとき、分周比mを500にすればよい。 In the third embodiment, as an example, the oscillation frequency of the numerically controlled oscillator 24 is designed to be 1000 Hz when the heartbeat frequency is 1 Hz. If the heartbeat frequency range is assumed to be 0.5 Hz or more and 2.5 Hz or less, a numerically controlled oscillator 24 capable of oscillating in a frequency range of 500 Hz or more and 2500 Hz or less is used. When the target order n is 2, the division ratio m should be set to 500.

 信号解析部40は、分周比mを周波数算出部20の位相同期回路21に通知し、分周比m及び対象次数nを生体情報取得部30の除算器32に通知する。位相同期回路21の分周器25は、追従信号Sigtに対して分周比mで分周し、分周後の信号を位相比較部22に与える。 The signal analysis unit 40 notifies the phase synchronization circuit 21 of the frequency calculation unit 20 of the division ratio m, and notifies the divider 32 of the bioinformation acquisition unit 30 of the division ratio m and the target order n. The divider 25 of the phase synchronization circuit 21 divides the tracking signal Sigt by the division ratio m, and provides the divided signal to the phase comparison unit 22.

 除算器32は、周波数カウンタ29で計数された第2信号Sig2の値mnfを、対象次数nと分周比mとの積で除することにより、生体情報infBを求める。生体情報infBの値は、生体信号SigBの基本周波数fに等しくなる。逆数器33は、第2実施例による生体情報計測装置の逆数器33の機能と同一の機能を有する。 The divider 32 obtains bioinformation infB by dividing the value mnf0 of the second signal Sig2 counted by the frequency counter 29 by the product of the target order n and the division ratio m. The value of the bioinformation infB is equal to the fundamental frequency f0 of the bioinformation measuring device SigB. The reciprocal calculator 33 has the same function as the reciprocal calculator 33 of the bioinformation measuring device according to the second embodiment.

 対象次数nと分周比mとの積を、心拍算出カウンタ値として除算器32に記憶させておいてもよい。除算器32は、第2信号Sig2の値を心拍算出カウンタ値で除することにより、生体情報infBを求めることができる。一例として、周波数カウンタ29のカウンタ値が1050であり、心拍算出カウンタ値が1024である場合、生体情報infB(心拍周波数)は、1.025になる。 The product of the target order n and the division ratio m may be stored in the divider 32 as the heartbeat calculation counter value. The divider 32 can obtain the bioinformation infB by dividing the value of the second signal Sig2 by the heartbeat calculation counter value. As an example, when the counter value of the frequency counter 29 is 1050 and the heartbeat calculation counter value is 1024, the bioinformation infB (heartbeat frequency) is 1.025.

 次に、第3実施例の優れた効果について説明する。
 第3実施例においても第2実施例と同様に、雑音の状況に応じて好ましい対象次数nを決定することにより、周波数算出部20の算出精度を高めることができる。また、第3実施例では、ループフィルタ23(図3)が数値制御発振器24を制御する制御値を参照することなく、位相同期回路21で発生する追従信号Sigtの周波数を周波数カウンタ29で計数することにより、第2信号Sig2を出力する。このため、周波数算出部20の機能をハードウェアで実現しやすくなる。
Next, the advantageous effects of the third embodiment will be described.
In the third embodiment, similarly to the second embodiment, the calculation accuracy of the frequency calculation unit 20 can be improved by determining a preferable target order n depending on the noise situation. Also, in the third embodiment, the loop filter 23 (FIG. 3) outputs the second signal Sig2 by counting the frequency of the tracking signal Sigt generated by the phase locked loop circuit 21 with the frequency counter 29 without referring to the control value that controls the numerically controlled oscillator 24. This makes it easier to realize the function of the frequency calculation unit 20 with hardware.

 次に、第3実施例の変形例による生体情報計測装置について説明する。
 周波数カウンタ29によるカウンタ値を固定小数点表示された数値として解釈し、除算器32を省略してもよい。例えば、対象次数nと分周比mとの積が1000である場合、周波数カウンタ29によるカウンタ値の百の位と千の位との間に、小数点があると解釈するとよい。例えば、カウンタ値が1000の場合、生体情報infB(心拍周波数)は1.000であり、カウンタ値が825の場合、生体情報infB(心拍周波数)は0.825であると読み取ればよい。この場合、カウンタ値をそのまま表示装置60に表示すればよい。
Next, a biological information measuring device according to a modification of the third embodiment will be described.
The counter value by the frequency counter 29 may be interpreted as a fixed-point number, and the divider 32 may be omitted. For example, when the product of the target order n and the division ratio m is 1000, it may be interpreted that there is a decimal point between the hundreds and thousands digits of the counter value by the frequency counter 29. For example, when the counter value is 1000, the bioinformation infB (heartbeat frequency) is 1.000, and when the counter value is 825, the bioinformation infB (heartbeat frequency) is 0.825. In this case, the counter value may be displayed as it is on the display device 60.

 [第4実施例]
 次に、図11から図14までの図面を参照して第4実施例による生体情報計測装置について説明する。以下、図6から図9までの図面を参照して説明した第2実施例による生体情報計測装置と共通の構成については、説明を省略する。
[Fourth embodiment]
Next, a biological information measuring device according to a fourth embodiment will be described with reference to Fig. 11 to Fig. 14. Hereinafter, a description of the configuration common to the biological information measuring device according to the second embodiment described with reference to Fig. 6 to Fig. 9 will be omitted.

 図11は、第4実施例による生体情報計測装置のブロック図である。第2実施例(図6)では、対象次数nが決まると、対象次数nに応じてバンドパスフィルタ10の下側及び上側のカットオフ周波数が決まる。これに対して第4実施例では、バンドパスフィルタ10が、通過周波数帯域の異なる複数のフィルタユニットBPFを含んでいる。ここで、iは、複数のフィルタユニットに付された通し番号を表す。複数のフィルタユニットBPFに、共通の生体信号SigBが入力される。 Fig. 11 is a block diagram of a bioinformation measuring device according to the fourth embodiment. In the second embodiment (Fig. 6), when the target order n is determined, the upper and lower cutoff frequencies of the bandpass filter 10 are determined according to the target order n. In contrast, in the fourth embodiment, the bandpass filter 10 includes a plurality of filter units BPF i having different pass frequency bands. Here, i represents a serial number assigned to the plurality of filter units. A common biosignal SigB is input to the plurality of filter units BPF i .

 図12は、複数のフィルタユニットBPFの通過周波数帯域の関係を示すグラフである。横軸は周波数を表し、縦軸は通過率を表す。図12では、フィルタユニットBPFの個数が5個の例を示している。複数のフィルタユニットBPFを、通過周波数帯の中心周波数が低いものから順番にBPF、BPF、BPF、BPF、BPFと標記する。 Fig. 12 is a graph showing the relationship of the pass frequency band of a plurality of filter units BPF i . The horizontal axis represents frequency, and the vertical axis represents pass rate. Fig. 12 shows an example in which the number of filter units BPF i is five. The plurality of filter units BPF i are labeled BPF 1 , BPF 2 , BPF 3 , BPF 4 , and BPF 5 in order from the lowest center frequency of the pass frequency band.

 複数のフィルタユニットBPFのうち、通過周波数帯の中心周波数が隣り合う2つのフィルタユニットBPFの通過周波数帯は部分的に重なっている。例えば、フィルタユニットBPFの通過周波数帯の高周波側の一部分と、フィルタユニットBPFi+1の通過周波数帯の低周波側の一部分とが、相互に重なっている。また、通過周波数帯の中心周波数が隣り合わないフィルタユニットBPFの通過周波数帯は重なりを持たない。例えば、フィルタユニットBPFの通過周波数帯と、フィルタユニットBPFi+2の通過周波数帯とは、相互に重なりを持たない。 Among the multiple filter units BPF i , the pass frequency bands of two filter units BPF i whose center frequencies are adjacent to each other partially overlap. For example, a part of the high frequency side of the pass frequency band of filter unit BPF i and a part of the low frequency side of the pass frequency band of filter unit BPF i+1 overlap with each other. Also, the pass frequency bands of filter units BPF i whose center frequencies are not adjacent to each other do not overlap with each other. For example, the pass frequency band of filter unit BPF i and the pass frequency band of filter unit BPF i+2 do not overlap with each other.

 フィルタユニットBPFの下側のカットオフ周波数をfiLと標記し、上側のカットオフ周波数をfiHと標記する。このとき、以下の不等式が満足されるように、複数のフィルタユニットBPFのカットオフ周波数が設定されている。
 fi+1,L<fiH
 fiH<fi+2,L
The lower cutoff frequency of the filter unit BPF i is denoted as f iL , and the upper cutoff frequency is denoted as f iH . At this time, the cutoff frequencies of the multiple filter units BPF i are set so that the following inequality is satisfied.
f i+1,L < f iH
f iH < f i+2,L

 周波数算出部20(図11)は、複数の位相同期回路21と、出力制御部28とを含む。位相同期回路21の個数はフィルタユニットBPFの個数と同一であり、位相同期回路21とフィルタユニットBPFとが、1対1に対応する。フィルタユニットBPF、BPF、BPF、BPF、BPFに対応する位相同期回路21を、それぞれPLL、PLL、PLL、PLL、PLLと標記する。 The frequency calculation section 20 (FIG. 11) includes a plurality of phase synchronization circuits 21 and an output control section 28. The number of phase synchronization circuits 21 is the same as the number of filter units BPF i , and there is a one-to-one correspondence between the phase synchronization circuits 21 and the filter units BPF i . The phase synchronization circuits 21 corresponding to the filter units BPF 1 , BPF 2 , BPF 3 , BPF 4 , and BPF 5 are denoted as PLL 1 , PLL 2 , PLL 3 , PLL 4 , and PLL 5 , respectively.

 フィルタユニットBPFを通過した第1信号Sig1が、対応する位相同期回路PLLに入力される。位相同期回路PLLは、追従信号Sigtの周波数(追従周波数)の値nfを出力する。出力制御部28は、複数の位相同期回路PLLのそれぞれから出力された追従周波数の値のうち1つを選択して、第2信号Sig2として出力する。 The first signal Sig1 that has passed through the filter unit BPF i is input to the corresponding phase locked loop PLL i . The phase locked loop PLL i outputs the frequency (tracking frequency) value nf 0 of the tracking signal Sigt. The output control unit 28 selects one of the tracking frequency values output from each of the multiple phase locked loops PLL i and outputs it as the second signal Sig2.

 生体情報取得部30の機能は、第2実施例による生体情報計測装置の生体情報取得部30の機能と同一である。 The function of the biometric information acquisition unit 30 is the same as the function of the biometric information acquisition unit 30 of the biometric information measuring device according to the second embodiment.

 入力制御部50は、フィルタユニットBPFの出力である第1信号Sig1を、対応する位相同期回路PLLに入力させる。さらに、入力制御部50は、相互に対応するフィルタユニットBPFと位相同期回路PLLとのペアに対して、第2実施例(図6)による生体情報計測装置の入力制御部50と同様の制御を行う。 The input control unit 50 inputs the first signal Sig1, which is the output of the filter unit BPF i , to the corresponding phase locked loop PLL i . Furthermore, the input control unit 50 performs the same control as the input control unit 50 of the bioinformation measuring device according to the second embodiment (FIG. 6) for the pair of the mutually corresponding filter unit BPF i and the phase locked loop PLL i .

 また、入力制御部50は、出力制御部28を制御する。出力制御部28の制御については、後に説明する。 The input control unit 50 also controls the output control unit 28. The control of the output control unit 28 will be explained later.

 信号解析部40は、第2実施例(図6)による生体情報計測装置の信号解析部40の機能と同一の機能を有する。例えば、信号解析部40は、入力される生体信号SigBを解析することにより対象次数nを決定する。対象次数nが決まると、複数のフィルタユニットBPFのそれぞれのカットオフ周波数を決定し、カットオフ周波数をフィルタユニットBPFの各々に設定する。さらに、信号解析部40は、複数の位相同期回路PLLのそれぞれを個別に制御する。 The signal analysis unit 40 has the same functions as the signal analysis unit 40 of the bioinformation measuring device according to the second embodiment (FIG. 6). For example, the signal analysis unit 40 determines the target order n by analyzing the input biosignal SigB. Once the target order n is determined, the signal analysis unit 40 determines the cutoff frequency of each of the multiple filter units BPF i , and sets the cutoff frequency to each of the filter units BPF i . Furthermore, the signal analysis unit 40 individually controls each of the multiple phase-locked loops PLL i .

 また、信号解析部40は、出力制御部28を制御する。出力制御部28の制御については、後に説明する。 The signal analysis unit 40 also controls the output control unit 28. The control of the output control unit 28 will be explained later.

 次に、図13を参照して出力制御部28の機能について説明する。図13は、出力制御部28のブロック図である。出力制御部28は、セレクタ28A及び遅延部28Bを含む。位相同期回路PLLのそれぞれから出力された追従周波数ftがセレクタ28Aに入力される。さらに、セレクタ28Aから出力された追従周波数ftが、遅延部28Bで遅延されてセレクタ28Aに入力される。遅延部28Bで遅延されてセレクタ28Aに入力される追従周波数を前回周波数ftということとする。 Next, the function of the output control unit 28 will be described with reference to Fig. 13. Fig. 13 is a block diagram of the output control unit 28. The output control unit 28 includes a selector 28A and a delay unit 28B. The tracking frequency ft i output from each of the phase locked loops PLL i is input to the selector 28A. Furthermore, the tracking frequency ft output from the selector 28A is delayed by the delay unit 28B and input to the selector 28A. The tracking frequency delayed by the delay unit 28B and input to the selector 28A is referred to as the previous frequency ft p .

 セレクタ28Aは、前回周波数ftと、セレクタ28A内に設定された閾値とを比較し、比較結果に基づいて、複数の追従周波数ftの中から今回出力する追従周波数ftを決定する。遅延部28Bには、前回周波数ftの初期値finitが設定されている。初回の制御時、または初期化後の最初の制御時は、遅延部28Bは、前回周波数ftとして初期値finitを出力する。初期値finitは、信号解析部40または入力制御部50からの指令によって設定される。 The selector 28A compares the previous frequency ftp with a threshold value set in the selector 28A, and determines the tracking frequency ft to be output this time from among a plurality of tracking frequencies fti based on the comparison result. An initial value finit of the previous frequency ftp is set in the delay unit 28B. At the time of the first control or the first control after initialization, the delay unit 28B outputs the initial value finit as the previous frequency ftp . The initial value finit is set by a command from the signal analysis unit 40 or the input control unit 50.

 次に、図14を参照してセレクタ28Aの動作について説明する。図14は、前回周波数ft、フィルタユニットBPFの通過周波数帯域、及び選択される位相同期回路PLLの関係を示すグラフである。横軸は前回追従周波数ftを表し、縦軸は、選択される位相同期回路PLLを表す。 Next, the operation of the selector 28A will be described with reference to Fig. 14. Fig. 14 is a graph showing the relationship between the previous frequency ftp , the pass frequency band of the filter unit BPF i , and the selected phase locked loop PLL i . The horizontal axis represents the previous tracking frequency ftp , and the vertical axis represents the selected phase locked loop PLL i .

 図14において、フィルタユニットBPFの通過周波数帯域の下側カットオフ周波数をfiLと標記し、上側カットオフ周波数をfiHと標記している。 In FIG. 14, the lower cutoff frequency of the pass frequency band of the filter unit BPF i is marked as f iL , and the upper cutoff frequency is marked as f iH .

 フィルタユニットBPFとBPFi+1との通過周波数帯域が重なる範囲に、上側閾値fi,i+1、及び下側閾値fi+1,iが設定されている。上側閾値fi,i+1は、下側閾値fi+1,iより高い。現在、位相同期回路PLLの出力が選択されている場合について説明する。前回追従周波数ftが、下側閾値fi,i-1以上であって、かつ上側閾値fi,i+1以下であるとき、今回も位相同期回路PLLの出力を選択する。 An upper threshold value f i,i+1 and a lower threshold value f i+1,i are set in the range where the pass frequency bands of filter units BPF i and BPF i+1 overlap. The upper threshold value f i,i+1 is higher than the lower threshold value f i+1,i . A case where the output of phase locked loop circuit PLL i is currently selected will be described. When the previous tracking frequency ft p is equal to or higher than the lower threshold value f i,i-1 and equal to or lower than the upper threshold value f i,i+1 , the output of phase locked loop circuit PLL i is also selected this time.

 前回追従周波数ftが、上側閾値fi,i+1を超えている場合、今回は、位相同期回路PLLi+1の出力を選択する。前回追従周波数ftが、下側閾値fi,i-1未満である場合、今回は、位相同期回路PLLi-1の出力を選択する。 If the previous tracking frequency ft p exceeds the upper threshold value f i,i+1 , the output of the phase locked loop PLL i+1 is selected this time.If the previous tracking frequency ft p is less than the lower threshold value f i,i-1 , the output of the phase locked loop PLL i-1 is selected this time.

 すなわち、前回追従周波数ftが、現在選択されている位相同期回路PLLの出力がカバーする周波数帯域の上限に近づくと、選択する位相同期回路を、より高い周波数帯域をカバーする位相同期回路PLLi+1の出力に切換える。前回追従周波数ftが、現在選択されている位相同期回路PLLの出力がカバーする周波数帯域の下限に近づくと、選択する位相同期回路の出力を、より低い周波数帯域をカバーする位相同期回路PLLi-1の出力に切換える。位相同期回路の出力を切り換える閾値の近傍で切り換えが頻繁に発生しないように、ヒステリシスが設けられている。 That is, when the previous tracking frequency ft p approaches the upper limit of the frequency band covered by the output of the currently selected phase locked loop PLL i , the selected phase locked loop is switched to the output of the phase locked loop PLL i+1 , which covers a higher frequency band. When the previous tracking frequency ft p approaches the lower limit of the frequency band covered by the output of the currently selected phase locked loop PLL i , the selected phase locked loop is switched to the output of the phase locked loop PLL i-1 , which covers a lower frequency band. Hysteresis is provided to prevent frequent switching near the threshold for switching the output of the phase locked loop.

 図15は、カットオフ周波数及び位相同期回路切り換えの閾値の一例を示す図表である。例えば、フィルタユニットBPFの下側カットオフ周波数f2Lは1.8Hzであり、上側カットオフ周波数f2Hは2.8Hzである。位相同期回路をPLLからPLLに切換える下側閾値f21は1.9Hzであり、PLLからPLLに切換える上側閾値f23は2.7Hzである。 15 is a table showing an example of cutoff frequencies and thresholds for switching the phase locked loop. For example, the lower cutoff frequency f2L of the filter unit BPF2 is 1.8 Hz, and the upper cutoff frequency f2H is 2.8 Hz. The lower threshold f21 for switching the phase locked loop from PLL2 to PLL1 is 1.9 Hz, and the upper threshold f23 for switching from PLL2 to PLL3 is 2.7 Hz.

 次に、入力制御部50(図11)による出力制御部28の制御について説明する。
 フィルタユニットBPFのいずれの出力にも有意な第1信号Sig1が含まれていない場合、セレクタ28Aによって選択される位相制御回路PLLの出力を固定するように制御する。また、フィルタユニットBPFのいずれの出力にも有意な第1信号Sig1が含まれていない場合、遅延部28B(図13)の前回追従周波数ftを初期化する。すなわち前回追従周波数ftに初期値finitを設定する制御を行う。
Next, the control of the output control unit 28 by the input control unit 50 (FIG. 11) will be described.
When the significant first signal Sig1 is not included in any output of the filter unit BPF i , the output of the phase control circuit PLL i selected by the selector 28A is controlled to be fixed. Also, when the significant first signal Sig1 is not included in any output of the filter unit BPF i , the previous tracking frequency ft p of the delay unit 28B (FIG. 13) is initialized. That is, the previous tracking frequency ft p is controlled to be set to an initial value f init .

 次に、信号解析部40(図11)による出力制御部28の制御について説明する。
 信号解析部40は、出力制御部28の遅延部28B(図13)の前回追従周波数ftの初期値finitを決める機能を有する。例えば、体動が無い安静時において、信号解析部40は、最も低周波側のフィルタユニットBPFの下側カットオフ周波数f1Lから、最も高周波側のフィルタユニットBPFの上側カットオフ周波数f5Hまでの信号を、バンドパスフィルタを通して取り出す。バンドパスフィルタを通過した信号のスペクトル解析を行い、スペクトルのピークを検出する。ピークが現れた周波数を遅延部28Bの前回追従周波数ftの初期値finitとして採用する。
Next, the control of the output control unit 28 by the signal analysis unit 40 (FIG. 11) will be described.
The signal analysis unit 40 has a function of determining the initial value f init of the previous tracking frequency ftp of the delay unit 28B (FIG. 13) of the output control unit 28. For example, when the subject is at rest and there is no body movement, the signal analysis unit 40 extracts signals from the lower cutoff frequency f1L of the filter unit BPF1 on the lowest frequency side to the upper cutoff frequency f5H of the filter unit BPF5 on the highest frequency side through a bandpass filter. The signal that has passed through the bandpass filter is subjected to a spectrum analysis to detect a spectrum peak. The frequency at which the peak appears is adopted as the initial value f init of the previous tracking frequency ftp of the delay unit 28B.

 その他に、信号解析部40に入力される生体信号SigBに有意な信号が含まれていない場合、予め決められた初期周波数を、遅延部28Bの初期値finitとして与える制御を行ってもよい。 Alternatively, when the biological signal SigB input to the signal analysis section 40 does not contain a significant signal, a control may be performed in which a predetermined initial frequency is provided as the initial value f init of the delay section 28B.

 次に、第4実施例の優れた効果について、比較例と比較して説明する。
 比較例においては、複数のフィルタユニットBPFが全体としてカバーする通過周波数帯域、すなわち、フィルタユニットBPFの下側カットオフ周波数f1LからフィルタユニットBPFの上側カットオフ周波数f5Hまでの周波数帯域を1つのフィルタユニットで実現する。この構成では、対象次数nの特定の高調波のみならず、他の次数の高調波や、ノイズが周波数算出部20に入力されやすくなる。その結果、周波数算出部20が、対象次数nの高調波以外の信号の影響を受けることにより、周波数の算出精度が低下する。
Next, the excellent effects of the fourth embodiment will be described in comparison with a comparative example.
In the comparative example, a pass frequency band covered by a plurality of filter units BPF i as a whole, i.e., a frequency band from the lower cutoff frequency f 1L of filter unit BPF 1 to the upper cutoff frequency f 5H of filter unit BPF 5 , is realized by one filter unit. In this configuration, not only a specific harmonic of the target order n, but also harmonics of other orders and noise are likely to be input to the frequency calculation unit 20. As a result, the frequency calculation unit 20 is affected by signals other than the harmonic of the target order n, and the frequency calculation accuracy decreases.

 これに対して第4実施例では、1つの位相同期回路PLLに、通過周波数帯域の狭い1つのフィルタユニットBPFを通過した信号しか入力されない。このため、位相同期回路PLLがノイズの影響を受けにくくなり、周波数の算出精度を高めることが可能になる。 In contrast to this, in the fourth embodiment, only a signal that has passed through one filter unit BPF i having a narrow pass frequency band is input to one phase locked loop PLL i , which makes the phase locked loop PLL i less susceptible to noise, and makes it possible to improve the accuracy of frequency calculation.

 他の比較例では、バンドパスフィルタ10(図11)が、通過周波数帯域幅の狭い1つのフィルタユニットで実現される。この比較例では、生体信号SigBの基本波の周波数が変動することによって、対象次数nの高調波の周波数がバンドパスフィルタ10の通過周波数帯域から外れやすくなる。対象次数nの高調波の周波数がバンドパスフィルタ10の通過周波数帯域から外れると、周波数算出部20が対象次数nの高調波に追従できなくなってしまう。このため、計測可能な心拍周波数の範囲が狭くなってしまう。 In another comparative example, the bandpass filter 10 (Figure 11) is realized by a single filter unit with a narrow pass frequency bandwidth. In this comparative example, fluctuations in the frequency of the fundamental wave of the biological signal SigB make it easier for the frequency of the harmonic of the target order n to fall outside the pass frequency band of the bandpass filter 10. If the frequency of the harmonic of the target order n falls outside the pass frequency band of the bandpass filter 10, the frequency calculation unit 20 will no longer be able to track the harmonic of the target order n. This narrows the range of measurable heartbeat frequencies.

 これに対して第4実施例では、複数のフィルタユニットBPFによって、全体として広い通過周波数帯域をカバーすることができる。これにより、生体信号の計測可能な周波数の範囲を広くすることができる。 In contrast to this, in the fourth embodiment, a wide pass frequency band can be covered as a whole by using a plurality of filter units BPF i , thereby widening the range of measurable frequencies of biosignals.

 次に、第4実施例の変形例による生体情報計測装置について説明する。
 第4実施例では、バンドパスフィルタ10(図11)を構成するフィルタユニットBPFの個数を5個にしているが、その他の個数にしてもよい。
Next, a biological information measuring device according to a modification of the fourth embodiment will be described.
In the fourth embodiment, the number of filter units BPF i constituting the bandpass filter 10 (FIG. 11) is five, but it may be any other number.

 次に、図16を参照して、第4実施例の他の変形例による生体情報計測装置について説明する。図16は、本変形例による生体情報計測装置のブロック図である。 Next, a bioinformation measuring device according to another modified example of the fourth embodiment will be described with reference to FIG. 16. FIG. 16 is a block diagram of a bioinformation measuring device according to this modified example.

 第4実施例では、図11に示すように、周波数算出部20を複数の位相同期回路PLLで構成し、複数の位相同期回路PLLの後段に出力制御部28を配置している。本変形例では、図16に示すように、1つの位相同期回路21を出力制御部28の後段に配置している。出力制御部28は、複数のフィルタユニットBPFのうち1つを選択し、選択したフィルタユニットBPFから出力された第1信号Sig1を位相同期回路21に入力する。 In the fourth embodiment, as shown in Fig. 11, the frequency calculation unit 20 is composed of a plurality of phase synchronization circuits PLL i , and an output control unit 28 is arranged in the subsequent stage of the plurality of phase synchronization circuits PLL i . In this modification, as shown in Fig. 16, one phase synchronization circuit 21 is arranged in the subsequent stage of the output control unit 28. The output control unit 28 selects one of the plurality of filter units BPF i , and inputs the first signal Sig1 output from the selected filter unit BPF i to the phase synchronization circuit 21.

 本変形例においても、第4実施例と同様に、生体信号の周波数の算出精度を高め、かつ計測可能な周波数の範囲を広くすることが可能である。 In this modified example, as in the fourth embodiment, it is possible to improve the accuracy of calculating the frequency of a biological signal and widen the range of measurable frequencies.

 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 The above-described embodiments are merely illustrative, and it goes without saying that partial substitution or combination of the configurations shown in different embodiments is possible. No reference is made to similar effects resulting from similar configurations in multiple embodiments. Furthermore, the present invention is not limited to the above-described embodiments. For example, it will be obvious to those skilled in the art that various modifications, improvements, combinations, etc. are possible.

10 バンドパスフィルタ
20 周波数算出部
21 位相同期回路
22 位相比較部
23 ループフィルタ
24 数値制御発振器
25 分周器
26 周波数変換部
27 ローパスフィルタ
28 出力制御部
28A セレクタ
28B 遅延部
29 周波数カウンタ
30 生体情報取得部
32 除算器
33 逆数器
40 信号解析部
50 入力制御部
60 表示装置
70 センサ
 
REFERENCE SIGNS LIST 10 Band-pass filter 20 Frequency calculation unit 21 Phase synchronization circuit 22 Phase comparison unit 23 Loop filter 24 Numerical control oscillator 25 Frequency divider 26 Frequency conversion unit 27 Low-pass filter 28 Output control unit 28A Selector 28B Delay unit 29 Frequency counter 30 Biometric information acquisition unit 32 Divider 33 Reciprocal calculator 40 Signal analysis unit 50 Input control unit 60 Display device 70 Sensor

Claims (9)

 調波構造を持つ生体信号が入力され、前記生体信号に含まれる基本波の周波数及び複数の高調波のそれぞれの周波数のうち1つの周波数を含む周波数帯の成分を通過させ、他の周波数の成分を減衰させて第1信号を出力するバンドパスフィルタと、
 前記第1信号が入力され、入力された信号の周波数に関する情報を含む第2信号を出力する周波数算出部と、
 前記第2信号から生体情報を取得する生体情報取得部と
を備えた生体情報計測装置。
a bandpass filter that receives a biological signal having a harmonic structure, passes a component of a frequency band including a fundamental frequency and one of a plurality of harmonics included in the biological signal, and attenuates components of other frequencies to output a first signal;
a frequency calculation unit that receives the first signal and outputs a second signal including information about a frequency of the input signal;
and a biological information acquiring unit that acquires biological information from the second signal.
 前記バンドパスフィルタは、前記生体信号の2次高調波以上のいずれかの高調波の周波数の成分を通過させる請求項1に記載の生体情報計測装置。 The bioinformation measuring device according to claim 1, wherein the bandpass filter passes components of any harmonic frequency of the second harmonic or higher of the biosignal.  前記生体情報取得部は、前記バンドパスフィルタが通過させる高調波の次数、及び前記第2信号に基づいて、前記生体信号の基本波の周波数を算出し、基本波の周波数に基づいて前記生体情報を取得する請求項2に記載の生体情報計測装置。 The bioinformation measuring device according to claim 2, wherein the bioinformation acquiring unit calculates the frequency of the fundamental wave of the biosignal based on the order of the harmonic passed by the bandpass filter and the second signal, and acquires the bioinformation based on the frequency of the fundamental wave.  前記周波数算出部は、入力された信号の位相に同期する追従信号を生成する位相同期回路を含み、
 前記第2信号は、前記追従信号の周波数の値を示す信号である請求項1乃至3のいずれか1項に記載の生体情報計測装置。
the frequency calculation unit includes a phase synchronous circuit that generates a tracking signal synchronized with the phase of an input signal;
The biological information measuring device according to claim 1 , wherein the second signal is a signal indicating a frequency value of the tracking signal.
 前記周波数算出部は、前記追従信号の周波数を計数する周波数カウンタを含み、前記周波数カウンタの計数結果を前記第2信号として出力する請求項4に記載の生体情報計測装置。 The bioinformation measuring device according to claim 4, wherein the frequency calculation unit includes a frequency counter that counts the frequency of the tracking signal and outputs the counting result of the frequency counter as the second signal.  前記バンドパスフィルタは、通過周波数帯域の中心周波数が異なる複数のフィルタユニットを含み、
 前記複数のフィルタユニットのうち、通過周波数帯の中心周波数が隣り合う2つのフィルタユニットの通過周波数帯は部分的に重なっており、
 前記複数のフィルタユニットのそれぞれが前記第1信号を出力し、
 前記周波数算出部は、前記複数のフィルタユニットのそれぞれを通過した前記第1信号から選択された1つの前記第1信号に基づいて前記第2信号を出力する請求項1乃至3のいずれか1項に記載の生体情報計測装置。
the bandpass filter includes a plurality of filter units having pass frequency bands with different center frequencies,
Among the plurality of filter units, the pass frequency bands of two filter units having center frequencies adjacent to each other partially overlap each other,
Each of the plurality of filter units outputs the first signal;
The bioinformation measuring device according to any one of claims 1 to 3, wherein the frequency calculation unit outputs the second signal based on one of the first signals selected from the first signals that have passed through each of the multiple filter units.
 前記周波数算出部は、前記複数のフィルタユニットのそれぞれから出力される前記第1信号が入力される複数の位相同期回路を含み、
 前記複数の位相同期回路は、それぞれ入力される前記第1信号に追従する追従信号を生成し、
 前記周波数算出部は、前記複数の位相同期回路で生成された前記追従信号から1つの前記追従信号を選択し、選択した1つの前記追従信号に基づいて前記第2信号を出力する請求項6に記載の生体情報計測装置。
the frequency calculation unit includes a plurality of phase locked loop circuits to which the first signals output from the plurality of filter units are input,
each of the plurality of phase locked loops generates a tracking signal that tracks the first signal input thereto;
The bioinformation measuring device of claim 6, wherein the frequency calculation unit selects one of the tracking signals generated by the multiple phase synchronization circuits, and outputs the second signal based on the selected one of the tracking signals.
 さらに、前記生体信号に基づいて、前記バンドパスフィルタ、前記周波数算出部、及び前記生体情報取得部の動作を規定するパラメータを設定する信号解析部を備えた請求項1乃至3のいずれか1項に記載の生体情報計測装置。 The bioinformation measuring device according to any one of claims 1 to 3 further comprises a signal analysis unit that sets parameters that define the operation of the bandpass filter, the frequency calculation unit, and the bioinformation acquisition unit based on the biosignal.  さらに、前記生体信号に基づいて、前記バンドパスフィルタ、前記周波数算出部、及び前記生体情報取得部の動作を規定するパラメータを設定する信号解析部を備えた請求項6に記載の生体情報計測装置。 The bioinformation measuring device of claim 6 further comprises a signal analysis unit that sets parameters that define the operation of the bandpass filter, the frequency calculation unit, and the bioinformation acquisition unit based on the biosignal.
PCT/JP2023/041263 2023-02-10 2023-11-16 Biometric information measuring device WO2024166481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024576115A JPWO2024166481A1 (en) 2023-02-10 2023-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023019368 2023-02-10
JP2023-019368 2023-02-10

Publications (1)

Publication Number Publication Date
WO2024166481A1 true WO2024166481A1 (en) 2024-08-15

Family

ID=92262864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041263 WO2024166481A1 (en) 2023-02-10 2023-11-16 Biometric information measuring device

Country Status (2)

Country Link
JP (1) JPWO2024166481A1 (en)
WO (1) WO2024166481A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135434A (en) * 2001-10-30 2003-05-13 Nippon Koden Corp Signal processing method and pulse wave signal processing method
US20080005838A1 (en) * 2006-07-05 2008-01-10 Stryker Corporation System for detecting and monitoring vital signs
US20090143692A1 (en) * 2007-11-30 2009-06-04 Transoma Medical, Inc. Physiologic Signal Processing To Determine A Cardiac Condition
JP2011194217A (en) * 2010-03-23 2011-10-06 General Electric Co <Ge> Use of frequency spectrum of artifact in oscillometry
JP2012502671A (en) * 2008-05-12 2012-02-02 アーリーセンス エルティディ Monitoring, prediction and treatment of clinical symptoms

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135434A (en) * 2001-10-30 2003-05-13 Nippon Koden Corp Signal processing method and pulse wave signal processing method
US20080005838A1 (en) * 2006-07-05 2008-01-10 Stryker Corporation System for detecting and monitoring vital signs
US20090143692A1 (en) * 2007-11-30 2009-06-04 Transoma Medical, Inc. Physiologic Signal Processing To Determine A Cardiac Condition
JP2012502671A (en) * 2008-05-12 2012-02-02 アーリーセンス エルティディ Monitoring, prediction and treatment of clinical symptoms
JP2011194217A (en) * 2010-03-23 2011-10-06 General Electric Co <Ge> Use of frequency spectrum of artifact in oscillometry

Also Published As

Publication number Publication date
JPWO2024166481A1 (en) 2024-08-15

Similar Documents

Publication Publication Date Title
Kohler et al. QRS detection using zero crossing counts
AU2004236400B2 (en) Operating method for a coriolis gyroscope and evaluation/adjustment electronic system and pulse modulator suitable therefor
JP2011115459A (en) Device and method for detecting biological information
US11183092B2 (en) Capacitance-type touch panel device and operation method for same
US6802815B2 (en) Noninvasive continuous blood pressure measuring apparatus and a method of noninvasively measuring continuous blood pressure
KR20090096803A (en) Method and apparatus for removing noise from pulse signal and recording medium
WO2024166481A1 (en) Biometric information measuring device
JP2016182165A (en) Biological signal processing device, biological signal processing program, computer readable recording medium recording biological signal processing program and biological signal processing method
JP2017169868A (en) Cardiopulmonary function measuring device
WO2024166483A1 (en) Biological information measurement device and variable filter circuit
US9717462B2 (en) Biological information measurement method and apparatus with variable loop filter
JP5800776B2 (en) Biological motion information detection device
JP2013183845A (en) Pulsation detector, electronic device and program
JP5741887B2 (en) Frequency measurement system, frequency measurement method, and electronic apparatus including frequency measurement system
JP7596208B2 (en) Frequency Measuring Instrument
JP6649037B2 (en) Specimen information processing apparatus, information processing method, information processing program, and computer-readable recording medium storing the program
JP2005214932A (en) Signal processor, and voltage measuring instrument and current measuring instrument using signal processor
US9928419B2 (en) Periodicity analysis system
JP2005214932A5 (en)
KR101107722B1 (en) Wideband digital frequency synthesizer
JP6213569B2 (en) Biological information measuring device
US6425872B1 (en) System for measuring physical parameter utilizing vibration transmission
JPH06165764A (en) Apparatus for measuring degree of vascular sclerosis
JPH01257233A (en) Signal detection method
JP5836225B2 (en) Living body presence / absence detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23921302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024576115

Country of ref document: JP