WO2024165370A1 - Power management method for a hybrid motor vehicle - Google Patents
Power management method for a hybrid motor vehicle Download PDFInfo
- Publication number
- WO2024165370A1 WO2024165370A1 PCT/EP2024/052139 EP2024052139W WO2024165370A1 WO 2024165370 A1 WO2024165370 A1 WO 2024165370A1 EP 2024052139 W EP2024052139 W EP 2024052139W WO 2024165370 A1 WO2024165370 A1 WO 2024165370A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- road
- motor vehicle
- hybrid motor
- management method
- energy management
- Prior art date
Links
- 238000007726 management method Methods 0.000 title claims abstract description 45
- 239000004148 curcumin Substances 0.000 claims abstract description 26
- 230000000930 thermomechanical effect Effects 0.000 claims abstract description 21
- 238000002485 combustion reaction Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 8
- 230000008859 change Effects 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 10
- 230000004913 activation Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 25
- 230000006399 behavior Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009194 climbing Effects 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/11—Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/12—Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/13—Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/30—Control strategies involving selection of transmission gear ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/40—Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/143—Speed control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/143—Speed control
- B60W30/146—Speed limiting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
- B60W40/064—Degree of grip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
- B60W40/068—Road friction coefficient
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
- B60W40/072—Curvature of the road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
- B60W40/076—Slope angle of the road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/12—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
- B60W40/13—Load or weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/0097—Predicting future conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0002—Automatic control, details of type of controller or control system architecture
- B60W2050/0013—Optimal controllers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0638—Engine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0657—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0666—Engine power
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/081—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/085—Power
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/10—Change speed gearings
- B60W2510/1005—Transmission ratio engaged
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/24—Energy storage means
- B60W2510/242—Energy storage means for electrical energy
- B60W2510/244—Charge state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2530/00—Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
- B60W2530/10—Weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2530/00—Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
- B60W2530/16—Driving resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/15—Road slope, i.e. the inclination of a road segment in the longitudinal direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/20—Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/25—Road altitude
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/40—Coefficient of friction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/20—Ambient conditions, e.g. wind or rain
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
- B60W2556/50—External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0644—Engine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0666—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0677—Engine power
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/081—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/086—Power
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/10—Change speed gearings
- B60W2710/1005—Transmission ratio engaged
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/24—Energy storage means
- B60W2710/242—Energy storage means for electrical energy
- B60W2710/244—Charge state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/10—Longitudinal speed
- B60W2720/103—Speed profile
Definitions
- the present invention relates generally to the control of a hybrid vehicle powertrain.
- the invention finds a particularly advantageous application in the energy management of a hybrid motor vehicle having insufficient maximum thermomechanical power to respond on its own to all the driving situations encountered.
- a powertrain comprising an electric machine powered by a storage battery and an internal combustion engine coupled to a multi-speed gearbox, and
- EML Energy Management Law
- the LGE traditionally provides two solutions.
- the first possibility is to leave the thermal engine at a low speed and to compensate with the electric machine.
- the disadvantage is that, if the energy reserve available to the electric machine is emptied, the vehicle will experience either a sudden increase in engine speed or a sudden drop in speed during the climb. Both of these actions cause driving discomfort.
- the second solution is to shift down from the start of the slope to obtain a higher engine speed.
- This solution may be ineffective in some cases; in fact, there is no way of knowing whether the high engine speed will allow the user to climb the entire slope without having to change gear again, causing driving discomfort for the user.
- Document US6, 487, 477 B1 describes a method of using a navigation system to optimize energy management in an electric or hybrid vehicle.
- its sole criterion is energy consumption and does not take into account exceptional driving situations, such as that explained above, which can significantly harm driving pleasure or even safety, particularly in vehicles with limited power.
- the present invention proposes an energy management method using the profile of the portion of road that the vehicle will follow in order to optimize the driving pleasure of the user.
- the invention proposes an energy management method as defined in the introduction, comprising the following steps:
- control instructions for the powertrain said control instructions being, in the case where the mechanical power required is greater than the thermomechanical power available, optimal instructions, involving a change in the gear ratio of the gearbox and/or a change in the electromechanical power delivered by the electric machine to enable the hybrid motor vehicle to travel the entire section of road, and, E10) control of the powertrain according to the control instructions.
- the powertrain can be controlled according to the profile of the upcoming road portion, and thus better anticipate the energy requirements of the vehicle on the road portion. This makes it possible in particular to avoid changes in rough vehicle behavior.
- control instructions are so-called normal instructions. These normal instructions do not require changing the gear ratio of the gearbox and changing the electromechanical power delivered by the electric machine to allow the hybrid motor vehicle to travel the R12 road portion in its entirety. Typically, these normal instructions can keep the electric machine deactivated, the internal combustion engine taking sole responsibility for the traction of the vehicle.
- the optimal instructions aim to limit any driving inconvenience on the portion of road, in particular to limit the number of gearbox gear changes and/or to limit the variation in the electromechanical power delivered by the electric machine;
- the optimal instructions include the longest gear allowing the entire portion of road to be covered at the initial speed, taking into account the electrical energy available in the storage battery;
- the optimal instructions include the activation of the electric machine to enable the entire portion of road to be traveled at the initial speed; [0019] - the hybrid motor vehicle having an initial speed at the time of its arrival on said portion of road, if it is not possible to travel the entire portion of road at the initial speed with the maximum power deliverable by the powertrain, the electric machine is configured to operate at a limited power over at least part of the portion of road in order to maintain a constant speed of the hybrid motor vehicle over the entire portion of road;
- the profile of the road portion includes the length and the slope of said road portion
- the profile of the road portion includes the maximum authorized driving speed
- the invention also provides a hybrid motor vehicle comprising: [0025] - a powertrain comprising an electric machine powered by a storage battery and an internal combustion engine coupled to a multi-speed gearbox, and
- FIG. 1 is a schematic perspective view of a hybrid motor vehicle comprising a powertrain and a computer capable of implementing an energy management method in accordance with the invention
- FIG. 2 is a flowchart illustrating the operation of an energy management method in the hybrid motor vehicle of FIG. 1,
- FIG. 3 is a flowchart of the steps of the energy management method illustrated in Figure 2;
- [Fig.4A], [Fig.4B], [Fig.4C] and [Fig.4D] illustrate the variations of parameters relating to the energy management method according to the invention as a function of the distance on the portion of road comprising a 4% slope
- [Fig.4A] illustrates the speed of the vehicle and the slope of the portion of road as a function of the distance on the portion of road
- [Fig.4B] illustrates the thermomechanical and electromechanical powers that the vehicle can provide and the power required by the vehicle to follow the portion of road as a function of the distance on the portion of road
- [Fig.4C] illustrates the gear engaged on the gearbox as a function of the distance on the portion of road
- [Fig.4D] illustrates the reserve of electrical energy available in a battery of accumulators of the electric vehicle as a function of the distance on the portion of road;
- [Fig.5A], [Fig.5B], [Fig.5C] and [Fig.5D] illustrate the variations of parameters relating to the energy management method according to the invention as a function of the distance on the portion of road comprising a 7% slope
- [Fig.5A] illustrates the speed of the vehicle and the slope of the portion of road as a function of the distance on the portion of road
- [Fig.5B] illustrates the thermomechanical and electromechanical powers that the vehicle can provide and the power required by the vehicle to follow the road portion as a function of the distance on the road portion
- [Fig.5C] illustrates the gear engaged on the gearbox as a function of the distance on the road portion
- [Fig.5D] illustrates the electrical energy reserve available in a battery of accumulators of the electric vehicle as a function of the distance on the road portion.
- FIG. 1 a four-wheeled hybrid motor vehicle 1 is shown.
- such a motor vehicle comprises a chassis which supports in particular a powertrain 20, bodywork elements and passenger compartment elements, and which is carried by wheels, at least two of which are driven.
- the powertrain 20 comprises a thermal drive train and an electric drive train.
- the thermal powertrain comprises in particular a fuel tank, a fuel supply circuit which originates in the tank, an internal combustion engine 25 supplied with fuel by the supply circuit and a gearbox 26 with several ratios which makes it possible to regulate the thermomechanical power supplied to the drive wheels by the internal combustion engine 25.
- the gearbox 26 may be of any type, for example mechanical or automatic. Here, the gearbox 26 is automatic.
- the electric drive train comprises a storage battery 22 and at least one electric machine 21 which is supplied with current by the storage battery 22 and which is adapted to regulate the electromechanical power which it supplies to the drive wheels.
- the hybrid motor vehicle 1 is capable of being towed by its thermal drivetrain alone (in thermal mode), or simultaneously by its two electric and thermal drivetrains (in hybrid mode). In thermal mode, the electric machine is not used. In hybrid mode, the electric machine is used discontinuously to participate in the traction of the vehicle.
- the motor vehicle also comprises an electronic control unit (or ECU for "Electronic Control Unit”), here called calculator 30, making it possible in particular to control the two aforementioned traction chains (in particular the powers and torques developed by the electric machine 21 and by the internal combustion engine 25).
- ECU Electronic Control Unit
- calculator 30 makes it possible in particular to control the two aforementioned traction chains (in particular the powers and torques developed by the electric machine 21 and by the internal combustion engine 25).
- the calculator here comprises a processor and a storage unit (hereinafter called memory).
- This memory can record, among other things, data used in the context of the method described below.
- the hybrid motor vehicle 1 finally comprises a navigation system 10 which is connected to the computer 30.
- This system comprises, on the one hand, means for geolocating the motor vehicle (for example using GPS or GMS signals - according to the English acronym for "Global System for Mobile communication"), and, on the other hand, a control unit for receiving data defining a profile P11 of a road portion R12 and transmitting them to the computer 30.
- This control unit can receive this data from outside, or can generate it from the position of the vehicle and a map recorded in its control unit.
- a portion of road R12 can be defined as a part of the route that the vehicle is about to take, which begins for example at the level where the vehicle is located and which extends over a predetermined length.
- a portion of road R12 can extend over a length of 10 km. This length could be set between 1 km and 100 km for example.
- a portion of road R12 may have a variable length and be defined according to other elements, such as the continuity of its profile.
- a portion of road R12 is characterized by a “profile”.
- the profile P11 of the portion of road R12 can in particular be defined by a combination of characteristics among:
- the calculator 30 is adapted to implement an energy management method. E100 based on a control law aimed at making the best use of the electric machine 21 and the internal combustion engine 25, depending on the circumstances, to optimize the user's driving pleasure.
- the user will be considered to be the driver of the vehicle.
- the computer receives data from the navigation system 10, and sends control instructions to the powertrain 20.
- the energy required to drive the vehicle can be quantified in terms of power (here at the level of the drive wheels).
- thermomechanical power The power supplied by the internal combustion engine 25 to the drive wheels is herein referred to as thermomechanical power.
- the power supplied by the electric machine 21 to the drive wheels is herein referred to as electromechanical power.
- the power supplied by the entire powertrain 20, i.e. both by the internal combustion engine 25 and the electric machine 21, is herein referred to as mechanical power.
- the amount of energy available in the storage battery 22 can be defined by a charge level SOC which corresponds to the ratio between the instantaneous capacity of the battery and its nominal capacity.
- This charge level SOC is expressed as a percentage and is estimated for example as a function of the voltage at the terminals of the storage battery 22 and the amount of current having been delivered and having supplied the storage battery 22 since the vehicle was started.
- the energy management method which is more precisely the subject of the present invention, then aims to avoid sudden changes in the behavior of the vehicle when the powertrain 20 is controlled according to a control law such as that mentioned above.
- this E100 energy management method comprises the following main steps:
- control instructions for the powertrain 20 being, in the case where the necessary mechanical power Pnec is greater than the available thermomechanical power Pdisp, instructions optimal CO involving a change in the ratio of the gearbox 26 and/or a change in the electromechanical power delivered by the electric machine 21 to enable the hybrid motor vehicle 1 to travel the portion of road R12 in its entirety, and,
- the energy management method E100 begins at step E2 at which the computer 30 receives from the navigation system 10 the data relating to the profile P11 of the portion of road R12 that the hybrid motor vehicle 1 is likely to take.
- the navigation system 10 here receives data from an external server.
- the navigation system 10 sends data that can be directly used by the computer 30.
- the energy management method E100 then continues to step E4 in which the computer 30 acquires the state of the powertrain 20.
- the state of the powertrain 20 may comprise, for example, the SOC charge level of the storage battery 22, the gear ratio engaged on the gearbox 26, the speed of the hybrid motor vehicle 1 or even the speed of the internal combustion engine 25.
- the computer 30 can calculate the available thermomechanical power Pdisp that the internal combustion engine can provide in the current state (i.e. with the gear ratio engaged and at the speed of the hybrid motor vehicle 1).
- the calculator 30 determines at this stage the maximum power that the electric traction machine can supply to the drive wheels as a function of the speed of the vehicle, and the maximum electromechanical power that the storage battery can supply.
- the calculator 30 also defines the selectable gears, that is to say, the gears which can be engaged as a function of the speed of the hybrid motor vehicle 1 and the profile P11 of the road portion R12.
- step E6 the computer 30 calculates the necessary mechanical power Pnec that the powertrain 20 should provide so that the hybrid motor vehicle 1 travels the entire portion of road without changing speed.
- A, B and C are coefficients of friction
- M is the mass of the vehicle hybrid automobile 1
- a is the slope of the road portion P11
- v is the initial speed of the hybrid automobile vehicle 1.
- the initial speed is the speed of the vehicle at the time of calculating the power.
- the coefficients A, B and C make it possible to define the friction forces applying to the hybrid motor vehicle 1.
- the mass of the vehicle is here the initial mass of the vehicle.
- the friction forces can be calculated in real time. This makes it possible in particular to take into account the air temperature, the presence of a roof box or that of an external vehicle attached to the hybrid motor vehicle (such as a caravan for example).
- the mass can be calculated in real time using an on-board system allowing it to be measured or estimated.
- the energy management method E100 applies normal energy management instructions.
- the hybrid motor vehicle 1 then follows the normal instructions requested by the user.
- the normal instructions do not involve, here, a change in the gear ratio of the gearbox or a change in the electromechanical power delivered by the electric machine.
- these normal instructions are such that the hybrid motor vehicle can drive in thermal mode, in the same gear ratio as when entering the portion of road.
- the computer 30 determines optimal CO setpoints so that the powertrain 20 allows the hybrid motor vehicle 1 to travel the entire portion of road R12.
- the optimal setpoints aim to optimize driving pleasure. To do this, they are designed so that the hybrid motor vehicle 1 maintains a constant speed along the entire portion of road R12.
- the optimal CO instructions include, for example, an optimal ratio of the gearbox 26 and the optimal electromechanical power that the electric machine 21 must develop to travel the section of road R12.
- the optimum ratio is, for example, the longest ratio among the selectable ratios allowing the entire portion of road to be covered at an initial vehicle speed, taking into account the electrical energy available in the storage battery.
- the initial vehicle speed is the speed of the hybrid motor vehicle 1 when of the process calculation.
- the calculator 30 calculates the duration of the severe event, using the equation:
- I is the length of the severe event and v is the average speed expected over the severe event.
- the calculator 30 can then determine the necessary electromechanical power that the electric machine must provide to the hybrid motor vehicle 1 so that it travels the portion of road R12 at a determined speed, as a function of the thermomechanical power that the heat engine 25 can provide in its longest gear among the selected gears.
- the calculator 30 determines a new necessary electromechanical power and checks whether it is available.
- the computer commands the powertrain 20 to operate in the second longest gear and the electric machine 21 to operate at the necessary electromechanical power.
- the second longest gear and the necessary electromechanical power then define the optimal CO setpoints.
- the powertrain 20 is not able to provide enough energy for the hybrid motor vehicle 1 to travel the entire road portion R12 without speed variation.
- the electric machine is then configured to operate at a limited power over the entire road portion in order to maintain a constant speed.
- the computer 30 determines the maximum speed that the hybrid motor vehicle 1 must follow and the power that the electric machine 21 must provide in order to spread the consumption of electrical energy over the entire road portion R12.
- the energy management method E100 then continues at step E10 at which the computer 30 sends the optimal or normal instructions to the powertrain 20.
- the hybrid motor vehicle then travels the portion of road by applying the instructions provided by the computer 30.
- the energy management method E100 may be updated at a regular distance interval. For example, here, the energy management method E100 is updated every kilometer.
- the energy management method E100 could be updated at a regular time interval.
- Figures 4A, 4B, 4C and 4D illustrate the application of the energy management method E100 on the hybrid motor vehicle 1 when the road portion R12 includes a slope of 4%.
- Figure 4A shows the limit speed Vmax at 130 km/h, the slope a which is 0% at the start of the road portion and 4% from the middle of the road portion R12, and the speed Vveh of the hybrid motor vehicle 1 as a function of the road portion R12.
- Figure 4B illustrates the mechanical power required Pnec for the powertrain 20 for the hybrid motor vehicle 1 to travel the road portion R12, the thermomechanical power available with the longest gear among the selectable gears Pdis min, and the thermomechanical power available with the shortest gear among the selectable gears Pdis max as a function of the road portion R12.
- Figure 4C illustrates the gear ratio BV engaged on the gearbox 26 as a function of the road portion R12.
- Figure 4D illustrates the SOC charge level of the storage battery 22 as a function of the road portion R12.
- the E100 energy management method has made it possible to establish that the longest gearbox ratio 26 allowing continuity of the speed of the hybrid motor vehicle 1 over the entire stretch of road R12 is the fifth gear.
- the hybrid motor vehicle 1 can then travel the entire stretch of road R12 at 130 km/h without changing gear and without downshifting in the middle of the stretch of road R12.
- Figures 5A, 5B, 5C and 5D illustrate the application of the energy management method E100 on the hybrid motor vehicle 1 when the road portion R12 comprises a slope of 7%.
- Figure 5A shows the limit speed Vmax at 130 km/h, the slope a which is 0% at the start of the road portion and 7% from the middle of the road portion R12, and the speed Vveh of the hybrid motor vehicle 1 as a function of the road portion R12.
- Figure 5B illustrates the mechanical power required Pnec for the powertrain 20 for the hybrid motor vehicle 1 to travel the road portion R12, the thermomechanical power with the longest ratio among the selectable ratios Pdis min, and the thermomechanical power with the shortest ratio among the selectable ratios Pdis max as a function of the road portion R12.
- Figure 5C illustrates the gear ratio BV engaged on the gearbox 26 as a function of the road portion R12.
- Figure 5D illustrates the SOC charge level of the storage battery 22 as a function of the road portion R12.
- the energy management method E100 did not make it possible to establish a gearbox ratio 26 allowing continuity of the speed of the hybrid motor vehicle 1 over the entire portion of road R12.
- the SOC charge level of the storage battery does not make it possible to provide electromechanical power to maintain the vehicle at 130 km/h over the entire portion of road R12.
- the hybrid motor vehicle 1 then shifts down to fourth at the start of the slope, and reduces its speed to 115 km/h.
- the anticipation of this slope allowed the hybrid motor vehicle to travel the entire portion of road R12 at a constant speed without experiencing a sudden change in speed or gearbox ratio.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
T ITRE DE L’INVENTION : PROCEDE DE GESTION D’ENERGIE POUR UN VEHICULE AUTOMOBILETITLE OF THE INVENTION: ENERGY MANAGEMENT METHOD FOR A MOTOR VEHICLE
HYBRIDEHYBRID
DOMAINE TECHNIQUE DE L'INVENTION TECHNICAL FIELD OF THE INVENTION
[0001] La présente invention concerne de manière générale le pilotage d’un groupe motopropulseur de véhicule hybride. [0001] The present invention relates generally to the control of a hybrid vehicle powertrain.
[0002] Elle concerne plus particulièrement un procédé de gestion d’énergie pour un véhicule automobile hybride comportant un groupe motopropulseur comprenant une machine électrique alimentée par une batterie d’accumulateurs et un moteur à combustion interne accouplé à une boîte de vitesses à plusieurs rapports. [0002] It relates more particularly to an energy management method for a hybrid motor vehicle comprising a powertrain comprising an electric machine powered by a storage battery and an internal combustion engine coupled to a multi-speed gearbox.
[0003] L’invention trouve une application particulièrement avantageuse dans la gestion de l’énergie d’un véhicule automobile hybride disposant d’une puissance thermomécanique maximale insuffisante pour répondre à elle seule à toutes les situations de roulage rencontrées. [0003] The invention finds a particularly advantageous application in the energy management of a hybrid motor vehicle having insufficient maximum thermomechanical power to respond on its own to all the driving situations encountered.
[0004] Elle concerne aussi un véhicule automobile hybride comprenant : [0004] It also relates to a hybrid motor vehicle comprising:
- un groupe motopropulseur comprenant une machine électrique alimentée par une batterie d’accumulateurs et un moteur à combustion interne accouplé à une boîte de vitesses à plusieurs rapports, et - a powertrain comprising an electric machine powered by a storage battery and an internal combustion engine coupled to a multi-speed gearbox, and
- un calculateur programmé pour mettre en œuvre un procédé de gestion d’énergie. - a calculator programmed to implement an energy management process.
ETAT DE LA TECHNIQUE STATE OF THE ART
[0005] Aujourd’hui, un véhicule hybride gère l’énergie dont dispose le véhicule en utilisant une Loi de Gestion d’Energie (LGE) préprogrammée, qui se base principalement sur l’état courant du véhicule. [0005] Today, a hybrid vehicle manages the energy available to the vehicle using a pre-programmed Energy Management Law (EML), which is based mainly on the current state of the vehicle.
[0006] En fonction du dimensionnement des organes du groupe motopropulseur du véhicule hybride, celui-ci peut rencontrer des situations (par exemple la montée de pentes à grande vitesse) durant lesquelles la puissance mécanique nécessaire au véhicule pour maintenir sa vitesse est supérieure à la puissance que peut fournir le moteur thermique avec un régime moteur acceptable. [0006] Depending on the sizing of the powertrain components of the hybrid vehicle, the latter may encounter situations (for example climbing slopes at high speed) during which the mechanical power required by the vehicle to maintain its speed is greater than the power that the thermal engine can provide with an acceptable engine speed.
[0007] Dans ces situations, la LGE prévoit traditionnellement deux solutions. La première possibilité est de laisser le moteur thermique sur un régime faible et de compenser par la machine électrique. L’inconvénient est que, si la réserve d’énergie dont dispose la machine électrique se vide, le véhicule subira soit une augmentation du régime moteur brutale, soit une baisse de vitesse brutale au cours de la montée. Ces deux actions entrainent un désagrément de conduite. [0007] In these situations, the LGE traditionally provides two solutions. The first possibility is to leave the thermal engine at a low speed and to compensate with the electric machine. The disadvantage is that, if the energy reserve available to the electric machine is emptied, the vehicle will experience either a sudden increase in engine speed or a sudden drop in speed during the climb. Both of these actions cause driving discomfort.
[0008] La deuxième solution est de rétrograder dès le début de la pente pour obtenir un régime moteur plus élevé. Cette solution peut être inefficace dans certains cas ; en effet, rien ne permet de savoir que le régime moteur élevé permettra de monter toute la pente sans nouveau changement de vitesse entrainant un désagrément de conduite pour l’utilisateur. [0008] The second solution is to shift down from the start of the slope to obtain a higher engine speed. This solution may be ineffective in some cases; in fact, there is no way of knowing whether the high engine speed will allow the user to climb the entire slope without having to change gear again, causing driving discomfort for the user.
[0009] Afin d’améliorer l’agrément de conduite de l’utilisateur, il est donc nécessaire que les LGE permettent d’éviter ces situations. [0009] In order to improve the user's driving experience, it is therefore necessary for LGEs to make it possible to avoid these situations.
[0010] Le document US6, 487, 477 B1 décrit un procédé d’utilisation d’un système de navigation pour optimiser la gestion de l’énergie dans un véhicule électrique ou hybride. Toutefois, il a pour seul critère la consommation d’énergie et ne tient pas compte de situations de conduites exceptionnelles, comme celle expliquée précédemment, qui peuvent nuire significativement à l’agrément de conduite, voire à la sécurité, notamment dans des véhicules de puissance limitée. [0010] Document US6, 487, 477 B1 describes a method of using a navigation system to optimize energy management in an electric or hybrid vehicle. However, its sole criterion is energy consumption and does not take into account exceptional driving situations, such as that explained above, which can significantly harm driving pleasure or even safety, particularly in vehicles with limited power.
PRESENTATION DE L'INVENTION PRESENTATION OF THE INVENTION
[0011] Afin de remédier aux inconvénients précités de l’état de la technique, la présente invention propose un procédé de gestion d’énergie utilisant le profil de la portion de route que le véhicule va suivre afin d’optimiser l’agrément de conduite de l’utilisateur. [0011] In order to remedy the aforementioned drawbacks of the state of the art, the present invention proposes an energy management method using the profile of the portion of road that the vehicle will follow in order to optimize the driving pleasure of the user.
[0012] Plus particulièrement, on propose selon l’invention un procédé de gestion d’énergie tel que défini dans l’introduction, comprenant les étapes suivantes : [0012] More particularly, the invention proposes an energy management method as defined in the introduction, comprising the following steps:
E2) acquisition d’un profil d’une portion de route que le véhicule automobile est susceptible d’emprunter, E2) acquisition of a profile of a portion of road that the motor vehicle is likely to use,
E4) calcul d’une puissance thermomécanique disponible que le moteur à combustion interne peut fournir à des roues motrices du véhicule automobile hybride en fonction du rapport engagé sur la boîte de vitesse, E4) calculation of an available thermomechanical power that the internal combustion engine can supply to the drive wheels of the hybrid motor vehicle depending on the gear engaged on the gearbox,
E6) calcul d’une puissance mécanique nécessaire que le groupe motopropulseur (20) devrait fournir aux roues motrices pour que le véhicule automobile hybride parcoure la portion de route, en fonction du profil de la portion de route, E6) calculation of a necessary mechanical power that the powertrain (20) should provide to the drive wheels for the hybrid motor vehicle to travel the road portion, depending on the profile of the road portion,
E8) détermination de consignes de commande du groupe motopropulseur, lesdites consignes de commande étant, dans le cas où la puissance mécanique nécessaire est supérieure à la puissance thermomécanique disponible, des consignes optimales, impliquant un changement de rapport de la boîte de vitesse et/ou un changement de puissance électromécanique délivrée par la machine électrique pour permettre au véhicule automobile hybride de parcourir la portion de route dans son intégralité, et, E10) pilotage du groupe motopropulseur selon les consignes de commande. E8) determination of control instructions for the powertrain, said control instructions being, in the case where the mechanical power required is greater than the thermomechanical power available, optimal instructions, involving a change in the gear ratio of the gearbox and/or a change in the electromechanical power delivered by the electric machine to enable the hybrid motor vehicle to travel the entire section of road, and, E10) control of the powertrain according to the control instructions.
[0013] Ainsi, grâce à l’invention, le groupe motopropulseur peut être piloté en fonction du profil de portion de route à venir, et ainsi mieux anticiper les besoins en énergie du véhicule sur la portion de route. Cela permet notamment d’éviter des changements de comportements brutaux du véhicule. [0013] Thus, thanks to the invention, the powertrain can be controlled according to the profile of the upcoming road portion, and thus better anticipate the energy requirements of the vehicle on the road portion. This makes it possible in particular to avoid changes in rough vehicle behavior.
[0014] Dans le cas où la puissance mécanique nécessaire est inférieure ou égale à la puissance thermomécanique disponible, les consignes de commande sont des consignes dites normales. Ces consignes normales ne nécessitent pas de changer de rapport de la boîte de vitesse et de changer la puissance électromécanique délivrée par la machine électrique pour permettre au véhicule automobile hybride de parcourir la portion de route R12 dans son intégralité. Typiquement, ces consignes normales peuvent maintenir la machine électrique désactivée, le moteur à combustion interne se chargeant seul de la traction du véhicule. [0014] In the case where the mechanical power required is less than or equal to the available thermomechanical power, the control instructions are so-called normal instructions. These normal instructions do not require changing the gear ratio of the gearbox and changing the electromechanical power delivered by the electric machine to allow the hybrid motor vehicle to travel the R12 road portion in its entirety. Typically, these normal instructions can keep the electric machine deactivated, the internal combustion engine taking sole responsibility for the traction of the vehicle.
[0015] D’autres caractéristiques avantageuses et non limitatives du procédé de gestion d’énergie conforme à l’invention, prises individuellement ou selon toutes les combinaisons techniquement possibles, sont les suivantes : [0015] Other advantageous and non-limiting characteristics of the energy management method according to the invention, taken individually or in all technically possible combinations, are as follows:
[0016] - les consignes optimales visent à limiter tout désagrément de conduite sur la portion de route, notamment à y limiter le nombre de changement de rapport de boîte de vitesse et/ou à y limiter la variation de la puissance électromécanique délivrée par la machine électrique ; [0016] - the optimal instructions aim to limit any driving inconvenience on the portion of road, in particular to limit the number of gearbox gear changes and/or to limit the variation in the electromechanical power delivered by the electric machine;
[0017] - le véhicule automobile hybride présentant une vitesse initiale au moment de son arrivée sur ladite portion de route, les consignes optimales comprennent le rapport le plus long permettant de parcourir toute la portion de route à la vitesse initiale, compte tenu de l’énergie électrique disponible dans la batterie d’accumulateurs ; [0017] - the hybrid motor vehicle having an initial speed at the time of its arrival on said portion of road, the optimal instructions include the longest gear allowing the entire portion of road to be covered at the initial speed, taking into account the electrical energy available in the storage battery;
[0018] - le véhicule automobile hybride présentant une vitesse initiale au moment de son arrivée sur ladite portion de route, les consignes optimales comprennent l’activation de la machine électrique pour permettre de parcourir toute la portion de route à la vitesse initiale ; [0019] - le véhicule automobile hybride présentant une vitesse initiale au moment de son arrivée sur ladite portion de route, s'il n’est pas possible de parcourir l’intégralité de la portion de route à la vitesse initiale avec la puissance maximale délivrable par le groupe motopropulseur, la machine électrique est configurée pour fonctionner à une puissance limitée sur une partie au moins de la portion de route afin de maintenir une vitesse du véhicule automobile hybride constante sur l’intégralité de la portion de route ; [0018] - the hybrid motor vehicle having an initial speed at the time of its arrival on said portion of road, the optimal instructions include the activation of the electric machine to enable the entire portion of road to be traveled at the initial speed; [0019] - the hybrid motor vehicle having an initial speed at the time of its arrival on said portion of road, if it is not possible to travel the entire portion of road at the initial speed with the maximum power deliverable by the powertrain, the electric machine is configured to operate at a limited power over at least part of the portion of road in order to maintain a constant speed of the hybrid motor vehicle over the entire portion of road;
[0020] - le profil de la portion de route comprend la longueur et la pente de ladite portion de route ; [0020] - the profile of the road portion includes the length and the slope of said road portion;
[0021] - le profil de la portion de route comprend la vitesse de conduite maximum autorisée ; [0021] - the profile of the road portion includes the maximum authorized driving speed;
[0022] - le calcul de la puissance mécanique nécessaire est effectué en fonction de la vitesse initiale du véhicule, d’une masse du véhicule et de forces de frottement appliqués au véhicule ; et [0022] - the calculation of the necessary mechanical power is carried out as a function of the initial speed of the vehicle, a mass of the vehicle and friction forces applied to the vehicle; and
[0023] - les forces de frottement et/ou la masse sont estimés en temps réel. [0024] L’invention propose également un véhicule automobile hybride comprenant : [0025] - un groupe motopropulseur comprenant une machine électrique alimentée par une batterie d’accumulateurs et un moteur à combustion interne accouplé à une boîte de vitesses à plusieurs rapports, et [0023] - friction forces and/or mass are estimated in real time. [0024] The invention also provides a hybrid motor vehicle comprising: [0025] - a powertrain comprising an electric machine powered by a storage battery and an internal combustion engine coupled to a multi-speed gearbox, and
[0026] - un calculateur programmé pour mettre en œuvre un procédé de gestion d’énergie tel que précité. [0026] - a calculator programmed to implement an energy management method as mentioned above.
[0027] Bien entendu, les différentes caractéristiques, variantes et formes de réalisation de l'invention peuvent être associées les unes avec les autres selon diverses combinaisons dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres. [0027] Of course, the various features, variants and embodiments of the invention may be combined with each other in various combinations to the extent that they are not incompatible or mutually exclusive.
DESCRIPTION DETAILLEE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
[0028] La description qui va suivre en regard des dessins annexés, donnés à titre d’exemples non limitatifs, fera bien comprendre en quoi consiste l’invention et comment elle peut être réalisée. [0028] The description which follows with reference to the attached drawings, given as non-limiting examples, will make it clear what the invention consists of and how it can be implemented.
[0029] Sur les dessins annexés : [0029] In the attached drawings:
[0030] [Fig. 1] est une vue schématique en perspective d’un véhicule automobile hybride comportant un groupe motopropulseur et un calculateur apte à mettre en œuvre un procédé de gestion d’énergie conforme à l’invention ; [0030] [Fig. 1] is a schematic perspective view of a hybrid motor vehicle comprising a powertrain and a computer capable of implementing an energy management method in accordance with the invention;
[0031] [Fig. 2] est un logigramme illustrant le fonctionnement d’un procédé de gestion d’énergie dans le véhicule automobile hybride de la figure 1 , [0031] [Fig. 2] is a flowchart illustrating the operation of an energy management method in the hybrid motor vehicle of FIG. 1,
[0032] [Fig. 3] est un logigramme des étapes du procédé de gestion d’énergie illustré en figure 2 ; [0032] [Fig. 3] is a flowchart of the steps of the energy management method illustrated in Figure 2;
[0033] [Fig.4A], [Fig.4B], [Fig.4C] et [Fig.4D] illustrent les variations de paramètres relatifs au procédé de gestion d’énergie conforme à l’invention en fonction de la distance sur la portion de route comprenant une pente à 4%, [Fig.4A] illustre la vitesse du véhicule et la pente de la portion de route en fonction de la distance sur la portion de route, [Fig.4B] illustre les puissances thermomécaniques et électromécaniques que le véhicule peut fournir et la puissance nécessaire au véhicule pour suivre la portion de route en fonction de la distance sur la portion de route, [Fig.4C] illustre le rapport engagé sur la boîte de vitesse en fonction de la distance sur la portion de route, [Fig.4D] illustre la réserve d’énergie électrique disponible dans une batterie d’accumulateurs du véhicule électrique en fonction de la distance sur la portion de route ; et [0033] [Fig.4A], [Fig.4B], [Fig.4C] and [Fig.4D] illustrate the variations of parameters relating to the energy management method according to the invention as a function of the distance on the portion of road comprising a 4% slope, [Fig.4A] illustrates the speed of the vehicle and the slope of the portion of road as a function of the distance on the portion of road, [Fig.4B] illustrates the thermomechanical and electromechanical powers that the vehicle can provide and the power required by the vehicle to follow the portion of road as a function of the distance on the portion of road, [Fig.4C] illustrates the gear engaged on the gearbox as a function of the distance on the portion of road, [Fig.4D] illustrates the reserve of electrical energy available in a battery of accumulators of the electric vehicle as a function of the distance on the portion of road; and
[0034] [Fig.5A], [Fig.5B], [Fig.5C] et [Fig.5D] illustrent les variations de paramètres relatifs au procédé de gestion d’énergie conforme à l’invention en fonction de la distance sur la portion de route comprenant une pente à 7%, [Fig.5A] illustre la vitesse du véhicule et la pente de la portion de route en fonction de la distance sur la portion de route, [Fig.5B] illustre les puissances thermomécaniques et électromécaniques que le véhicule peut fournir et la puissance nécessaire au véhicule pour suivre la portion de route en fonction de la distance sur la portion de route, [Fig.5C] illustre le rapport engagé sur la boîte de vitesse en fonction de la distance sur la portion de route, [Fig.5D] illustre la réserve d’énergie électrique disponible dans une batterie d’accumulateurs du véhicule électrique en fonction de la distance sur la portion de route. [0034] [Fig.5A], [Fig.5B], [Fig.5C] and [Fig.5D] illustrate the variations of parameters relating to the energy management method according to the invention as a function of the distance on the portion of road comprising a 7% slope, [Fig.5A] illustrates the speed of the vehicle and the slope of the portion of road as a function of the distance on the portion of road, [Fig.5B] illustrates the thermomechanical and electromechanical powers that the vehicle can provide and the power required by the vehicle to follow the road portion as a function of the distance on the road portion, [Fig.5C] illustrates the gear engaged on the gearbox as a function of the distance on the road portion, [Fig.5D] illustrates the electrical energy reserve available in a battery of accumulators of the electric vehicle as a function of the distance on the road portion.
[0035] Sur la figure 1 , on a représenté un véhicule automobile hybride 1 à quatre roues. [0035] In Figure 1, a four-wheeled hybrid motor vehicle 1 is shown.
[0036] Classiquement, un tel véhicule automobile comporte un châssis qui supporte notamment un groupe motopropulseur 20, des éléments de carrosserie et des éléments d’habitacle, et qui est porté par des roues, dont au moins deux d’entre elles sont motrices. [0037] Le groupe motopropulseur 20 comporte une chaîne de traction thermique et une chaîne de traction électrique. [0036] Conventionally, such a motor vehicle comprises a chassis which supports in particular a powertrain 20, bodywork elements and passenger compartment elements, and which is carried by wheels, at least two of which are driven. [0037] The powertrain 20 comprises a thermal drive train and an electric drive train.
[0038] La chaîne de traction thermique comporte notamment un réservoir de carburant, un circuit d’alimentation en carburant qui prend naissance dans le réservoir, un moteur à combustion interne 25 alimenté en carburant par le circuit d’alimentation et une boîte de vitesse 26 à plusieurs rapports qui permet de réguler la puissance thermomécanique fournie aux roues motrices par le moteur à combustion interne 25. [0038] The thermal powertrain comprises in particular a fuel tank, a fuel supply circuit which originates in the tank, an internal combustion engine 25 supplied with fuel by the supply circuit and a gearbox 26 with several ratios which makes it possible to regulate the thermomechanical power supplied to the drive wheels by the internal combustion engine 25.
[0039] La boîte de vitesses 26 peut être d’un type quelconque, par exemple mécanique ou automatique. Ici, la boîte de vitesses 26 est automatique. [0039] The gearbox 26 may be of any type, for example mechanical or automatic. Here, the gearbox 26 is automatic.
[0040] La chaîne de traction électrique comporte quant à elle une batterie d’accumulateurs 22 et au moins une machine électrique 21 qui est alimentée en courant par la batterie d’accumulateurs 22 et qui est adaptée à réguler la puissance électromécanique qu’elle fournit aux roues motrices. [0040] The electric drive train comprises a storage battery 22 and at least one electric machine 21 which is supplied with current by the storage battery 22 and which is adapted to regulate the electromechanical power which it supplies to the drive wheels.
[0041] Le véhicule automobile hybride 1 est susceptible d’être tracté par sa seule chaîne de traction thermique (en mode thermique), ou simultanément par ses deux chaînes de traction électrique et thermique (en mode hybride). En mode thermique, la machine électrique n’est pas utilisée. En mode hybride, la machine électrique est utilisée de manière discontinue pour participer à la traction du véhicule. [0041] The hybrid motor vehicle 1 is capable of being towed by its thermal drivetrain alone (in thermal mode), or simultaneously by its two electric and thermal drivetrains (in hybrid mode). In thermal mode, the electric machine is not used. In hybrid mode, the electric machine is used discontinuously to participate in the traction of the vehicle.
[0042] Le véhicule automobile comprend par ailleurs une unité électronique de commande (ou ECU pour "Electronic Control Unit"), appelée ici calculateur 30, permettant notamment de commander les deux chaînes de traction précitées (notamment les puissances et couples développés par la machine électrique 21 et par le moteur à combustion interne 25). [0042] The motor vehicle also comprises an electronic control unit (or ECU for "Electronic Control Unit"), here called calculator 30, making it possible in particular to control the two aforementioned traction chains (in particular the powers and torques developed by the electric machine 21 and by the internal combustion engine 25).
[0043] Le calculateur comprend ici un processeur et une unité de mémorisation (appelée ci-après mémoire). [0043] The calculator here comprises a processor and a storage unit (hereinafter called memory).
[0044] Cette mémoire peut enregistrer entre autres des données utilisées dans le cadre du procédé décrit ci-dessous. [0044] This memory can record, among other things, data used in the context of the method described below.
[0045] Elle enregistre notamment une application informatique, constituée de programmes d’ordinateur comprenant des instructions dont l’exécution par le processeur permet la mise en œuvre par le calculateur du procédé décrit ci-après. [0045] It records in particular a computer application, consisting of computer programs comprising instructions whose execution by the processor allows the implementation by the computer of the method described below.
[0046] Le véhicule automobile hybride 1 comporte enfin un système de navigation 10 qui est connecté au calculateur 30. [0046] The hybrid motor vehicle 1 finally comprises a navigation system 10 which is connected to the computer 30.
[0047] Ce système comporte, d’une part, des moyens pour géolocaliser le véhicule automobile (par exemple grâce à des signaux GPS ou GMS - selon l’acronyme anglo-saxon de « Global System for Mobile communication »), et, d’autre part, une unité de commande permettant de recevoir des données définissant un profil P11 de portion de route R12 et de les transmettre au calculateur 30. Cette unité de commande peut recevoir ces données de l’extérieur, ou peut les générer à partir de la position du véhicule et d’une cartographie enregistrée dans son unité de commande. [0047] This system comprises, on the one hand, means for geolocating the motor vehicle (for example using GPS or GMS signals - according to the English acronym for "Global System for Mobile communication"), and, on the other hand, a control unit for receiving data defining a profile P11 of a road portion R12 and transmitting them to the computer 30. This control unit can receive this data from outside, or can generate it from the position of the vehicle and a map recorded in its control unit.
[0048] Une portion de route R12 peut être définie comme une partie du trajet que le véhicule s’apprête à emprunter, qui commence par exemple au niveau où se trouve le véhicule et qui s’étend sur une longueur prédéterminée. Par exemple, une portion de route R12 peut s’étendre sur une longueur de 10 km. Cette longueur pourrait être fixée entre 1 km et 100 km par exemple. [0048] A portion of road R12 can be defined as a part of the route that the vehicle is about to take, which begins for example at the level where the vehicle is located and which extends over a predetermined length. For example, a portion of road R12 can extend over a length of 10 km. This length could be set between 1 km and 100 km for example.
[0049] En variante, une portion de route R12 peut avoir une longueur variable et être définie en fonction d’autres éléments, comme la continuité de son profil. [0049] Alternatively, a portion of road R12 may have a variable length and be defined according to other elements, such as the continuity of its profile.
[0050] Une portion de route R12 est caractérisée par un « profil ». Le profil P11 de la portion de route R12 peut notamment être défini par une combinaison de caractéristiques parmi : [0050] A portion of road R12 is characterized by a “profile”. The profile P11 of the portion of road R12 can in particular be defined by a combination of characteristics among:
[0051] - la longueur de la portion de route, [0051] - the length of the road portion,
[0052] - le nombre de voies de circulation, [0052] - the number of traffic lanes,
[0053] - le type de route (autoroute, départementale, ...), [0053] - the type of road (motorway, departmental road, etc.),
[0054] - la vitesse maximale autorisée sur chaque voie de circulation, [0054] - the maximum speed authorized on each traffic lane,
[0055] - la pente de la route, [0055] - the slope of the road,
[0056] - le rayon de courbure des virages, [0056] - the radius of curvature of the turns,
[0057] - la vitesse moyenne statistique en fonction du jour de la semaine et de la tranche horaire, [0057] - the statistical average speed depending on the day of the week and the time slot,
[0058] - la signalétique (panneaux stop, céder le passage, feu de signalisation, etc.), [0059] - la position des péages, passages à niveau ou ralentisseurs. [0058] - signage (stop signs, give way signs, traffic lights, etc.), [0059] - the position of toll booths, level crossings or speed bumps.
[0060] Cette liste de caractéristiques est non exhaustive. [0060] This list of characteristics is not exhaustive.
[0061] On peut en outre prévoir que d’autres informations « temps réel » puissent être communiquées au système de navigation 10, comme la présence d’obstacles ou la présence d’embouteillages par exemple, ces données formant alors d’autres caractéristiques de la portion de route. [0061] It may also be provided that other “real time” information can be communicated to the navigation system 10, such as the presence of obstacles or the presence of traffic jams for example, this data then forming other characteristics of the portion of road.
[0062] Le calculateur 30 est adapté à mettre en œuvre un procédé de gestion d’énergie E100 basé sur une loi de commande visant à utiliser au mieux la machine électrique 21 et le moteur à combustion interne 25, selon les circonstances, pour optimiser l’agrément de conduite de l’utilisateur. Ici, on considérera que l’utilisateur est le conducteur du véhicule. [0062] The calculator 30 is adapted to implement an energy management method. E100 based on a control law aimed at making the best use of the electric machine 21 and the internal combustion engine 25, depending on the circumstances, to optimize the user's driving pleasure. Here, the user will be considered to be the driver of the vehicle.
[0063] Comme illustré sur la figure 2, le calculateur reçoit des données du système de navigation 10, et envoie des consignes de commande au groupe motopropulseur 20. [0063] As illustrated in FIG. 2, the computer receives data from the navigation system 10, and sends control instructions to the powertrain 20.
[0064] L’énergie nécessaire à la traction du véhicule pourra être quantifiée en termes de puissance (ici au niveau des roues motrices). [0064] The energy required to drive the vehicle can be quantified in terms of power (here at the level of the drive wheels).
[0065] En variante, il pourrait bien entendu en être autrement. [0065] Alternatively, it could of course be otherwise.
[0066] La puissance fournie par le moteur à combustion interne 25 aux roues motrices est nommée ici puissance thermomécanique. La puissance fournie par la machine électrique 21 aux roues motrices est nommée ici puissance électromécanique. La puissance fournie par l’ensemble du groupe motopropulseur 20, c’est-à-dire à la fois par le moteur à combustion interne 25 et la machine électrique 21 , est nommée ici puissance mécanique. [0066] The power supplied by the internal combustion engine 25 to the drive wheels is herein referred to as thermomechanical power. The power supplied by the electric machine 21 to the drive wheels is herein referred to as electromechanical power. The power supplied by the entire powertrain 20, i.e. both by the internal combustion engine 25 and the electric machine 21, is herein referred to as mechanical power.
[0067] La quantité d’énergie disponible dans la batterie d’accumulateur 22 peut être définie par un niveau de charge SOC qui correspond au rapport entre la capacité instantanée de la batterie sur sa capacité nominale. Ce niveau de charge SOC s’exprime en pourcentage et est estimé par exemple en fonction de la tension aux bornes de la batterie d’accumulateurs 22 et de la quantité de courant ayant été débité et ayant alimenté la batterie d’accumulateurs 22 depuis le démarrage du véhicule. [0067] The amount of energy available in the storage battery 22 can be defined by a charge level SOC which corresponds to the ratio between the instantaneous capacity of the battery and its nominal capacity. This charge level SOC is expressed as a percentage and is estimated for example as a function of the voltage at the terminals of the storage battery 22 and the amount of current having been delivered and having supplied the storage battery 22 since the vehicle was started.
[0068] Le procédé de gestion d’énergie, qui fait plus précisément l’objet de la présente invention, vise alors à éviter les changements brutaux de comportement du véhicule lorsque le groupe motopropulseur 20 est piloté selon une loi de commande telle que précitée. [0068] The energy management method, which is more precisely the subject of the present invention, then aims to avoid sudden changes in the behavior of the vehicle when the powertrain 20 is controlled according to a control law such as that mentioned above.
[0069] Selon une caractéristique particulièrement avantageuse de l’invention, ce procédé de gestion d’énergie E100 comporte les étapes principales suivantes : [0069] According to a particularly advantageous characteristic of the invention, this E100 energy management method comprises the following main steps:
[0070] E2) acquisition d’un profil P11 d’une portion de route R12 que le véhicule automobile 1 est susceptible d’emprunter, [0070] E2) acquisition of a profile P11 of a portion of road R12 that the motor vehicle 1 is likely to use,
[0071] E4) calcul d’une puissance thermomécanique disponible Pdisp que le moteur à combustion interne 25 peut fournir à des roues motrices du véhicule automobile hybride 1 en fonction du rapport engagé sur la boîte de vitesse 26, [0071] E4) calculation of an available thermomechanical power Pdisp that the internal combustion engine 25 can supply to the drive wheels of the hybrid motor vehicle 1 as a function of the gear engaged on the gearbox 26,
[0072] E6) calcul d’une puissance mécanique nécessaire Pnec que le groupe motopropulseur 20 devrait fournir aux roues motrices pour que le véhicule automobile hybride 1 parcoure la portion de route R12, en fonction du profil P11 de la portion de route R12, [0072] E6) calculation of a necessary mechanical power Pnec that the powertrain 20 should provide to the drive wheels so that the hybrid motor vehicle 1 travels the road portion R12, as a function of the profile P11 of the road portion R12,
[0073] E8) détermination de consignes de commande du groupe motopropulseur 20, lesdites consignes de commande étant, dans le cas où la puissance mécanique nécessaire Pnec est supérieure à la puissance thermomécanique disponible Pdisp, des consignes optimales CO impliquant un changement de rapport de la boîte de vitesse 26 et/ou un changement de puissance électromécanique délivrée par la machine électrique 21 pour permettre au véhicule automobile hybride 1 de parcourir la portion de route R12 dans son intégralité, et, [0073] E8) determination of control instructions for the powertrain 20, said control instructions being, in the case where the necessary mechanical power Pnec is greater than the available thermomechanical power Pdisp, instructions optimal CO involving a change in the ratio of the gearbox 26 and/or a change in the electromechanical power delivered by the electric machine 21 to enable the hybrid motor vehicle 1 to travel the portion of road R12 in its entirety, and,
[0074] E10) pilotage du groupe motopropulseur 20 selon les consignes de commande. [0074] E10) control of the power unit 20 according to the control instructions.
[0075] On peut décrire de manière plus détaillée ce procédé de la manière suivante, en référence à la figure 3. [0075] This method can be described in more detail as follows, with reference to FIG. 3.
[0076] Le procédé de gestion d’énergie E100 débute à l’étape E2 à laquelle le calculateur 30 reçoit du système de navigation 10 les données relatives au profil P11 de la portion de route R12 que le véhicule automobile hybride 1 est susceptible d’emprunter. [0076] The energy management method E100 begins at step E2 at which the computer 30 receives from the navigation system 10 the data relating to the profile P11 of the portion of road R12 that the hybrid motor vehicle 1 is likely to take.
[0077] Le système de navigation 10 reçoit ici les données d’un serveur extérieur. [0077] The navigation system 10 here receives data from an external server.
[0078] Le système de navigation 10 envoie les données directement exploitables par le calculateur 30. [0078] The navigation system 10 sends data that can be directly used by the computer 30.
[0079] Le procédé de gestion d’énergie E100 poursuit ensuite à l’étape E4 à laquelle le calculateur 30 acquiert l’état du groupe motopropulseur 20. L’état du groupe motopropulseur 20 peut comprendre par exemple le niveau de charge SOC de la batterie d’accumulateur 22, le rapport de vitesse engagée sur la boîte de vitesse 26, la vitesse du véhicule automobile hybride 1 ou encore le régime du moteur à combustion interne 25. [0079] The energy management method E100 then continues to step E4 in which the computer 30 acquires the state of the powertrain 20. The state of the powertrain 20 may comprise, for example, the SOC charge level of the storage battery 22, the gear ratio engaged on the gearbox 26, the speed of the hybrid motor vehicle 1 or even the speed of the internal combustion engine 25.
[0080] Grâce à ces informations, le calculateur 30 peut calculer la puissance thermomécanique disponible Pdisp que le moteur à combustion interne peut fournir à l’état actuel (c’est-à-dire avec le rapport de vitesse engagée et à la vitesse du véhicule automobile hybride 1). [0080] Using this information, the computer 30 can calculate the available thermomechanical power Pdisp that the internal combustion engine can provide in the current state (i.e. with the gear ratio engaged and at the speed of the hybrid motor vehicle 1).
[0081] Le calculateur 30 détermine à cette étape la puissance maximale que peut fournir la machine électrique de traction aux roues motrices en fonction de la vitesse du véhicule, et la puissance électromécanique maximale que peut fournir la batterie d’accumulateurs. [0081] The calculator 30 determines at this stage the maximum power that the electric traction machine can supply to the drive wheels as a function of the speed of the vehicle, and the maximum electromechanical power that the storage battery can supply.
[0082] Le calculateur 30 définit également les rapports sélectionnables, c’est-à-dire, les rapports pouvant être engagés en fonction de la vitesse du véhicule automobile hybride 1 et du profil P11 de la portion de route R12. [0082] The calculator 30 also defines the selectable gears, that is to say, the gears which can be engaged as a function of the speed of the hybrid motor vehicle 1 and the profile P11 of the road portion R12.
[0083] Le procédé de gestion d’énergie E100 se poursuit ensuite à l’étape E6 à laquelle le calculateur 30 calcule la puissance mécanique nécessaire Pnec que le groupe motopropulseur 20 devrait fournir pour que le véhicule automobile hybride 1 parcoure la portion de route dans son intégralité sans changement de vitesse. [0083] The energy management method E100 then continues at step E6 in which the computer 30 calculates the necessary mechanical power Pnec that the powertrain 20 should provide so that the hybrid motor vehicle 1 travels the entire portion of road without changing speed.
[0084] La puissance mécanique nécessaire est calculée grâce au principe fondamental de la dynamique donnée par l’équation : [0084] The mechanical power required is calculated using the fundamental principle of dynamics given by the equation:
[0085] [Math [0085] [Math
[0086] Pnec [0086] Pnec
[0087] où A, B et C sont des coefficients de frottement, M est la masse du véhicule automobile hybride 1 , a est la pente de la portion de route P11 et v est la vitesse initiale du véhicule automobile hybride 1. [0087] where A, B and C are coefficients of friction, M is the mass of the vehicle hybrid automobile 1, a is the slope of the road portion P11 and v is the initial speed of the hybrid automobile vehicle 1.
[0088] La vitesse initiale est la vitesse du véhicule au moment du calcul de la puissance. [0089] Les coefficients A, B et C permettent de définir les forces de frottement s’appliquant au véhicule automobile hybride 1. La masse du véhicule est ici la masse initiale du véhicule. [0090] En variante, les forces de frottement peuvent être calculées en temps réels. Cela permet notamment de prendre en compte la température de l’air, la présence d’un coffre de toit ou celle d’un véhicule extérieur attaché au véhicule automobile hybride (comme une caravane par exemple). [0088] The initial speed is the speed of the vehicle at the time of calculating the power. [0089] The coefficients A, B and C make it possible to define the friction forces applying to the hybrid motor vehicle 1. The mass of the vehicle is here the initial mass of the vehicle. [0090] Alternatively, the friction forces can be calculated in real time. This makes it possible in particular to take into account the air temperature, the presence of a roof box or that of an external vehicle attached to the hybrid motor vehicle (such as a caravan for example).
[0091] En variante, la masse peut être calculée en temps réel grâce à un système embarqué permettant de la mesurer ou de l’estimer. [0091] Alternatively, the mass can be calculated in real time using an on-board system allowing it to be measured or estimated.
[0092] Le procédé de gestion d’énergie E100 procède ensuite à l’étape E8. [0092] The energy management method E100 then proceeds to step E8.
[0093] Si la puissance nécessaire calculée Pnec est inférieure ou égale à la puissance thermomécanique disponible Pdisp, alors le procédé de gestion d’énergie E100 applique des consignes normales de gestion d’énergie. Le véhicule automobile hybride 1 suit alors les consignes normales demandées par l’utilisateur. [0093] If the calculated required power Pnec is less than or equal to the available thermomechanical power Pdisp, then the energy management method E100 applies normal energy management instructions. The hybrid motor vehicle 1 then follows the normal instructions requested by the user.
[0094] Les consignes normales n’impliquent pas, ici, de changement de rapport de la boîte de vitesse ou de changement de la puissance électromécanique délivrée par la machine électrique. Par exemple, ici, ces consignes normales sont telles que le véhicule automobile hybride peut rouler en mode thermique, sur le même rapport de vitesses qu’à l’entrée sur la portion de route. [0094] The normal instructions do not involve, here, a change in the gear ratio of the gearbox or a change in the electromechanical power delivered by the electric machine. For example, here, these normal instructions are such that the hybrid motor vehicle can drive in thermal mode, in the same gear ratio as when entering the portion of road.
[0095] Si la puissance mécanique nécessaire Pnec calculée est supérieure à la puissance thermomécanique disponible Pdisp, le véhicule automobile se trouve en face d’un évènement dit sévère et vis-à-vis duquel son groupe motopropulseur 20 peut être sous- dimensionné. [0095] If the calculated necessary mechanical power Pnec is greater than the available thermomechanical power Pdisp, the motor vehicle is facing a so-called severe event and in relation to which its powertrain 20 may be undersized.
[0096] Le calculateur 30 détermine alors des consignes optimales CO afin que le groupe motopropulseur 20 permette au véhicule automobile hybride 1 de parcourir la portion de route R12 dans son intégralité. Les consignes optimales visent à optimiser l’agrément de conduite. Pour cela, elles sont conçues de façon que le véhicule automobile hybride 1 conserve une vitesse constante le long de toute la portion de route R12. [0096] The computer 30 then determines optimal CO setpoints so that the powertrain 20 allows the hybrid motor vehicle 1 to travel the entire portion of road R12. The optimal setpoints aim to optimize driving pleasure. To do this, they are designed so that the hybrid motor vehicle 1 maintains a constant speed along the entire portion of road R12.
[0097] Les consignes optimales CO comprennent par exemple un rapport optimal de la boîte de vitesse 26 et la puissance électromécanique optimale que la machine électrique 21 doit développer pour parcourir la portion de route R12. [0097] The optimal CO instructions include, for example, an optimal ratio of the gearbox 26 and the optimal electromechanical power that the electric machine 21 must develop to travel the section of road R12.
[0098] Le rapport optimal est par exemple le rapport le plus long parmi les rapports sélectionnables permettant de parcourir toute la portion de route à une vitesse initiale du véhicule, compte tenu de l’énergie électrique disponible dans la batterie d’accumulateurs. [0098] The optimum ratio is, for example, the longest ratio among the selectable ratios allowing the entire portion of road to be covered at an initial vehicle speed, taking into account the electrical energy available in the storage battery.
[0099] La vitesse initiale du véhicule est la vitesse du véhicule automobile hybride 1 lors du calcul du procédé. [0099] The initial vehicle speed is the speed of the hybrid motor vehicle 1 when of the process calculation.
[0100] Afin de déterminer les consignes optimales CO, le calculateur 30 calcule la durée de l’évènement sévère, à l’aide de l’équation : [0100] In order to determine the optimal CO instructions, the calculator 30 calculates the duration of the severe event, using the equation:
[0101] [Math. 2\ Tevent = Z [0101] [Math. 2\ T event = Z
[0102] où I est la longueur de l’évènement sévère et v est la vitesse moyenne attendue sur l’évènement sévère. [0102] where I is the length of the severe event and v is the average speed expected over the severe event.
[0103] Le calculateur 30 peut alors déterminer la puissance électromécanique nécessaire que la machine électrique doit apporter au véhicule automobile hybride 1 afin qu’il parcoure la portion de route R12 à une vitesse déterminée, en fonction de la puissance thermomécanique que le moteur thermique 25 peut fournir sur son rapport le plus long parmi les rapports sélectionnâmes. [0103] The calculator 30 can then determine the necessary electromechanical power that the electric machine must provide to the hybrid motor vehicle 1 so that it travels the portion of road R12 at a determined speed, as a function of the thermomechanical power that the heat engine 25 can provide in its longest gear among the selected gears.
[0104] Si cette puissance électromécanique nécessaire est disponible (compte tenu par exemple du niveau de charge SOC de la batterie d’accumulateurs 22), alors les consignes optimales sont définies par le rapport de boîte le plus long parmi les rapports sélectionnâmes, généralement c’est alors le rapport déjà engagé, et la puissance électromécanique nécessaire. [0104] If this necessary electromechanical power is available (taking into account for example the SOC charge level of the accumulator battery 22), then the optimal instructions are defined by the longest gear ratio among the selected ratios, generally this is then the ratio already engaged, and the necessary electromechanical power.
[0105] Si cette puissance électromécanique nécessaire n’est pas disponible, alors le calculateur 30 reproduit le même calcul, en considérant toutefois le second rapport de boîte le plus long parmi les rapports sélectionnâmes, c’est-à-dire celui en dessous du rapport engagé actuel. [0105] If this necessary electromechanical power is not available, then the computer 30 reproduces the same calculation, while considering the second longest gear ratio among the selected gears, i.e. the one below the current engaged gear.
[0106] Le calculateur 30 détermine ensuite une nouvelle puissance électromécanique nécessaire et il vérifie si elle est disponible. [0106] The calculator 30 then determines a new necessary electromechanical power and checks whether it is available.
[0107] Si cette puissance électromécanique est disponible, alors le calculateur commande au groupe motopropulseur 20 de fonctionner sur le second rapport le plus long et à la machine électrique 21 de fonctionner à la puissance électromécanique nécessaire. Le second rapport le plus long et la puissance électromécanique nécessaire définissent alors les consignes optimales CO. [0107] If this electromechanical power is available, then the computer commands the powertrain 20 to operate in the second longest gear and the electric machine 21 to operate at the necessary electromechanical power. The second longest gear and the necessary electromechanical power then define the optimal CO setpoints.
[0108] Cette itération est effectuée jusqu’à arriver au plus petit des rapports de boîte considérés comme utilisables sur la portion de route R12, compte tenu de la vitesse du véhicule automobile hybride 1. [0108] This iteration is carried out until reaching the smallest of the gear ratios considered usable on the road portion R12, taking into account the speed of the hybrid motor vehicle 1.
[0109] Si aucune consigne optimale CO n’a été déterminé à ce stade, cela signifie que le groupe motopropulseur 20 n’est pas en mesure d’apporter assez d’énergie pour que le véhicule automobile hybride 1 parcoure la portion de route R12 dans son intégralité sans variation de vitesse. La machine électrique est alors configurée pour fonctionner à une puissance limitée sur l’intégralité de la portion de route afin de maintenir une vitesse constante. [0110] Afin d’éviter un changement de vitesse brutal lors du parcours de la portion de route R12 (induit par l’épuisement de l’énergie électrique stockée dans la batterie d’accumulateurs 22), le calculateur 30 détermine alors la vitesse maximale que le véhicule automobile hybride 1 doit suivre et la puissance que la machine électrique 21 doit fournir afin d’étaler la consommation de l’énergie électrique sur l’intégralité de la portion de route R12. [0109] If no optimal CO setpoint has been determined at this stage, this means that the powertrain 20 is not able to provide enough energy for the hybrid motor vehicle 1 to travel the entire road portion R12 without speed variation. The electric machine is then configured to operate at a limited power over the entire road portion in order to maintain a constant speed. [0110] In order to avoid a sudden change in speed when traveling along the road portion R12 (induced by the exhaustion of the electrical energy stored in the storage battery 22), the computer 30 then determines the maximum speed that the hybrid motor vehicle 1 must follow and the power that the electric machine 21 must provide in order to spread the consumption of electrical energy over the entire road portion R12.
[0111] L’étalement de l’énergie électrique sur l’intégralité de la portion de route permet d’éviter un désagrément de conduite à l’utilisateur. Il est préférentiellement calculé de manière que la vitesse du véhicule automobile hybride 1 reste constante sur toute la portion de route. [0111] Spreading the electrical energy over the entire portion of the road makes it possible to avoid driving inconvenience for the user. It is preferably calculated so that the speed of the hybrid motor vehicle 1 remains constant over the entire portion of the road.
[0112] Le procédé de gestion d’énergie E100 se poursuit alors à l’étape E10 à laquelle le calculateur 30 envoie les consignes optimales ou normales au groupe motopropulseur 20. [0113] Le véhicule automobile hybride parcourt alors la portion de route en appliquant les consignes fournies par le calculateur 30. [0112] The energy management method E100 then continues at step E10 at which the computer 30 sends the optimal or normal instructions to the powertrain 20. [0113] The hybrid motor vehicle then travels the portion of road by applying the instructions provided by the computer 30.
[0114] Le procédé de gestion d’énergie E100 peut être réactualisé à un intervalle de distance régulière. Par exemple, ici, le procédé de gestion d’énergie E100 est réactualisé tous les kilomètres. [0114] The energy management method E100 may be updated at a regular distance interval. For example, here, the energy management method E100 is updated every kilometer.
[0115] En variante, le procédé de gestion d’énergie E100 pourrait être actualisé à un intervalle de temps régulier. [0115] Alternatively, the energy management method E100 could be updated at a regular time interval.
[0116] Les figures 4A, 4B, 4C et4D illustrent l’application du procédé de gestion d’énergie E100 sur le véhicule automobile hybride 1 lorsque la portion de route R12 comprend une pente de 4%. [0116] Figures 4A, 4B, 4C and 4D illustrate the application of the energy management method E100 on the hybrid motor vehicle 1 when the road portion R12 includes a slope of 4%.
[0117] La figure 4A montre la vitesse limite Vmax à 130km/h, la pente a qui est de 0% au début de la portion de route et de 4% à partir du milieu de la portion de route R12, et la vitesse Vveh du véhicule automobile hybride 1 en fonction de la portion de route R12. [0117] Figure 4A shows the limit speed Vmax at 130 km/h, the slope a which is 0% at the start of the road portion and 4% from the middle of the road portion R12, and the speed Vveh of the hybrid motor vehicle 1 as a function of the road portion R12.
[0118] La figure 4B illustre la puissance mécanique nécessaire Pnec au groupe motopropulseur 20 pour que le véhicule automobile hybride 1 parcoure la portion de route R12, la puissance thermomécanique disponible avec le rapport le plus long parmi les rapports sélectionnables Pdis min, et la puissance thermomécanique disponible avec le rapport le plus court parmi les rapports sélectionnables Pdis max en fonction de la portion de route R12. [0118] Figure 4B illustrates the mechanical power required Pnec for the powertrain 20 for the hybrid motor vehicle 1 to travel the road portion R12, the thermomechanical power available with the longest gear among the selectable gears Pdis min, and the thermomechanical power available with the shortest gear among the selectable gears Pdis max as a function of the road portion R12.
[0119] La figure 4C illustre le rapport engagé BV sur la boîte de vitesse 26 en fonction de la portion de route R12. [0119] Figure 4C illustrates the gear ratio BV engaged on the gearbox 26 as a function of the road portion R12.
[0120] La figure 4D illustre le niveau de charge SOC de la batterie d’accumulateurs 22 en fonction de la portion de route R12. [0120] Figure 4D illustrates the SOC charge level of the storage battery 22 as a function of the road portion R12.
[0121] On constate que dans ce cas de figure, le procédé de gestion d’énergie E100 a permis d’établir que le rapport de boîte de vitesse 26 le plus long permettant une continuité de la vitesse du véhicule automobile hybride 1 sur toute la portion de route R12 est le cinquième rapport. Le véhicule automobile hybride 1 peut alors parcourir toute la portion de route R12 à 130km/h sans changement de vitesse et sans rétrograder au milieu de la portion de route R12. [0121] It is noted that in this case, the E100 energy management method has made it possible to establish that the longest gearbox ratio 26 allowing continuity of the speed of the hybrid motor vehicle 1 over the entire stretch of road R12 is the fifth gear. The hybrid motor vehicle 1 can then travel the entire stretch of road R12 at 130 km/h without changing gear and without downshifting in the middle of the stretch of road R12.
[0122] Les figures 5A, 5B, 5C et 5D illustrent l’application du procédé de gestion d’énergie E100 sur le véhicule automobile hybride 1 lorsque la portion de route R12 comprend une pente de 7%. La figure 5A montre la vitesse limite Vmax à 130km/h, la pente a qui est de 0% au début de la portion de route et de 7% à partir du milieu de la portion de route R12, et la vitesse Vveh du véhicule automobile hybride 1 en fonction de la portion de route R12. [0123] La figure 5B illustre la puissance mécanique nécessaire Pnec au groupe motopropulseur 20 pour que le véhicule automobile hybride 1 parcoure la portion de route R12, la puissance thermomécanique avec le rapport le plus long parmi les rapports sélectionnables Pdis min, et la puissance thermomécanique avec le rapport le plus court parmi les rapports sélectionnables Pdis max en fonction de la portion de route R12. [0122] Figures 5A, 5B, 5C and 5D illustrate the application of the energy management method E100 on the hybrid motor vehicle 1 when the road portion R12 comprises a slope of 7%. Figure 5A shows the limit speed Vmax at 130 km/h, the slope a which is 0% at the start of the road portion and 7% from the middle of the road portion R12, and the speed Vveh of the hybrid motor vehicle 1 as a function of the road portion R12. [0123] Figure 5B illustrates the mechanical power required Pnec for the powertrain 20 for the hybrid motor vehicle 1 to travel the road portion R12, the thermomechanical power with the longest ratio among the selectable ratios Pdis min, and the thermomechanical power with the shortest ratio among the selectable ratios Pdis max as a function of the road portion R12.
[0124] La figure 5C illustre le rapport engagé BV sur la boîte de vitesse 26 en fonction de la portion de route R12. [0124] Figure 5C illustrates the gear ratio BV engaged on the gearbox 26 as a function of the road portion R12.
[0125] La figure 5D illustre le niveau de charge SOC de la batterie d’accumulateurs 22 en fonction de la portion de route R12. [0125] Figure 5D illustrates the SOC charge level of the storage battery 22 as a function of the road portion R12.
[0126] On constate que dans ce cas de figure, le procédé de gestion d’énergie E100 n’a pas permis d’établir un rapport de boîte de vitesse 26 permettant une continuité de la vitesse du véhicule automobile hybride 1 sur toute la portion de route R12. Le niveau de charge SOC de la batterie d’accumulateur ne permet pas de fournir une puissance électromécanique sur maintenant le véhicule à 130km/h sur toute la portion de route R12. Le véhicule automobile hybride 1 rétrograde alors en quatrième au début de la pente, et diminue sa vitesse à 115km/h. L’anticipation de cette pente a permis au véhicule automobile hybride de parcourir toute la portion de route R12 à une vitesse constance sans subir de changement brutal de vitesse ou de rapport de boîte de vitesse. [0126] It is noted that in this scenario, the energy management method E100 did not make it possible to establish a gearbox ratio 26 allowing continuity of the speed of the hybrid motor vehicle 1 over the entire portion of road R12. The SOC charge level of the storage battery does not make it possible to provide electromechanical power to maintain the vehicle at 130 km/h over the entire portion of road R12. The hybrid motor vehicle 1 then shifts down to fourth at the start of the slope, and reduces its speed to 115 km/h. The anticipation of this slope allowed the hybrid motor vehicle to travel the entire portion of road R12 at a constant speed without experiencing a sudden change in speed or gearbox ratio.
[0127] La présente invention n’est nullement limitée au mode de réalisation décrit et représenté, mais l’homme du métier saura y apporter toute variante conforme à l’invention. [0127] The present invention is in no way limited to the embodiment described and shown, but those skilled in the art will be able to provide any variation in accordance with the invention.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2301080 | 2023-02-06 | ||
FR2301080A FR3145530A1 (en) | 2023-02-06 | 2023-02-06 | Energy management method for a hybrid motor vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024165370A1 true WO2024165370A1 (en) | 2024-08-15 |
Family
ID=86100297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2024/052139 WO2024165370A1 (en) | 2023-02-06 | 2024-01-30 | Power management method for a hybrid motor vehicle |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3145530A1 (en) |
WO (1) | WO2024165370A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6487477B1 (en) | 2001-05-09 | 2002-11-26 | Ford Global Technologies, Inc. | Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management |
US9669820B1 (en) * | 2016-04-13 | 2017-06-06 | GM Global Technology Operations LLC | Power prioritization in a vehicle using multiple power-sources |
US20170334436A1 (en) * | 2014-12-08 | 2017-11-23 | Nissan Motor Co., Ltd. | Hybrid Vehicle Control Device and Hybrid Vehicle Control Method |
US20210206365A1 (en) * | 2020-01-06 | 2021-07-08 | Hyundai Motor Company | Method and apparatus for controlling mild hybrid electric vehicle |
US11173782B2 (en) * | 2018-04-13 | 2021-11-16 | Dana Heavy Vehicle Systems Group, Llc | Control strategies for single and multi mode electric secondary or tag electric axles |
-
2023
- 2023-02-06 FR FR2301080A patent/FR3145530A1/en active Pending
-
2024
- 2024-01-30 WO PCT/EP2024/052139 patent/WO2024165370A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6487477B1 (en) | 2001-05-09 | 2002-11-26 | Ford Global Technologies, Inc. | Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management |
US20170334436A1 (en) * | 2014-12-08 | 2017-11-23 | Nissan Motor Co., Ltd. | Hybrid Vehicle Control Device and Hybrid Vehicle Control Method |
US9669820B1 (en) * | 2016-04-13 | 2017-06-06 | GM Global Technology Operations LLC | Power prioritization in a vehicle using multiple power-sources |
US11173782B2 (en) * | 2018-04-13 | 2021-11-16 | Dana Heavy Vehicle Systems Group, Llc | Control strategies for single and multi mode electric secondary or tag electric axles |
US20210206365A1 (en) * | 2020-01-06 | 2021-07-08 | Hyundai Motor Company | Method and apparatus for controlling mild hybrid electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
FR3145530A1 (en) | 2024-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3565748B1 (en) | Method for optimising the energy consumption of a hybrid vehicle | |
EP3317139B1 (en) | Method for calculating a setpoint for managing the fuel and electricity consumption of a hybrid motor vehicle | |
FR2941424A1 (en) | SYSTEM AND METHOD FOR MANAGING AN EXTENDER OF AUTONOMY OF AN ELECTRIC VEHICLE | |
FR2923438A1 (en) | METHOD AND SYSTEM FOR MANAGING THE OPERATION OF A MOTOR VEHICLE BASED ON ROLLING CONDITIONS | |
EP2011696B1 (en) | Process of assistance for the control of a motor vehicle | |
EP2727211B1 (en) | Method and system for managing the power of a hybrid vehicle | |
WO2009050406A2 (en) | Method for driving a hybrid traction chain based on the battery charge state | |
FR2994546A1 (en) | TORQUE LIMITING METHOD OF A HYBRID VEHICLE ELECTRIC MACHINE COMPRISING A SPEED CONTROL SYSTEM | |
EP3856600B1 (en) | Method for calculating a management setpoint for the comsumption of fuel and electric current by a hybrid motor vehicle | |
EP2401170A1 (en) | Device and method for the optimised management of electrical power from an electrochemical storage source on-board a hybrid vehicle | |
EP2318249B1 (en) | System for controlling a hybrid propulsion unit for a motor vehicle, and associated method | |
FR3052726A1 (en) | METHOD FOR ADAPTING THE TAKE-OFF OF A MOTOR VEHICLE | |
WO2024165370A1 (en) | Power management method for a hybrid motor vehicle | |
WO2021148728A1 (en) | Vehicle with an electric drivetrain and with autonomy determined on the basis of weighted consumptions, and associated method | |
EP3153369A1 (en) | Method for determining the ranges of use for a traction battery | |
WO2011073596A2 (en) | Vehicle integrating a hybrid drive train | |
EP3631250B1 (en) | Low-cost method for controlling a torque transmission device, particularly for an electric or hybrid vehicle | |
FR3075133B1 (en) | METHOD FOR DETERMINING A PREDICTIVE STARTING THRESHOLD FOR A THERMAL MOTOR OF A HYBRID VEHICLE | |
FR3145531A1 (en) | Method for controlling a motor vehicle, and motor vehicle implementing such a method | |
FR2982802A1 (en) | Method for optimizing consumption of electrical energy in rechargeable batteries for hybrid vehicle, involves determining estimated distance for total course between charging of batteries using statistics on types of driving | |
FR3047463B1 (en) | POWER MANAGEMENT METHOD FOR A HYBRID MOTOR VEHICLE | |
FR2988061A1 (en) | METHOD FOR DETERMINING THE MAXIMUM AUTONOMY OF A MOTOR VEHICLE WITH MULTIPLE ENERGY SOURCES | |
WO2024223497A1 (en) | Method for determining an operating range of a hybrid motor vehicle battery | |
FR2790428A1 (en) | ENERGY MANAGEMENT METHOD AND HYBRID PROPULSION VEHICLE | |
FR3080073A1 (en) | AUXILIARY POWER SUPPLY DEVICE FOR VEHICLE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24701983 Country of ref document: EP Kind code of ref document: A1 |