[go: up one dir, main page]

WO2024164244A1 - 端盖组件、储能装置和用电设备 - Google Patents

端盖组件、储能装置和用电设备 Download PDF

Info

Publication number
WO2024164244A1
WO2024164244A1 PCT/CN2023/075255 CN2023075255W WO2024164244A1 WO 2024164244 A1 WO2024164244 A1 WO 2024164244A1 CN 2023075255 W CN2023075255 W CN 2023075255W WO 2024164244 A1 WO2024164244 A1 WO 2024164244A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
electrode unit
holes
voltage block
upper plastic
Prior art date
Application number
PCT/CN2023/075255
Other languages
English (en)
French (fr)
Inventor
徐卫东
熊永锋
王烽
Original Assignee
深圳海润新能源科技有限公司
厦门海辰储能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳海润新能源科技有限公司, 厦门海辰储能科技股份有限公司 filed Critical 深圳海润新能源科技有限公司
Priority to PCT/CN2023/075255 priority Critical patent/WO2024164244A1/zh
Publication of WO2024164244A1 publication Critical patent/WO2024164244A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells

Definitions

  • the present application relates to the field of energy storage technology, and in particular to an end cover assembly, an energy storage device and an electrical equipment.
  • the conductive voltage block and the top cover are both made of metal, and a plastic upper layer is often used between the conductive voltage block and the top cover to insulate the two.
  • a potential difference between the conductive voltage block and the top cover which causes electrochemical corrosion, thereby reducing the safety and reliability of the energy storage device.
  • the present application provides an end cover assembly, an energy storage device and an electrical device, which improve the safety and reliability of the energy storage device.
  • the present application provides an end cap assembly, which is applied to an energy storage device.
  • the end cap assembly includes a top cap and a positive electrode unit, the positive electrode unit is mounted on the top cap, and the top cap is provided with a first blind hole;
  • the positive electrode unit includes a first upper plastic, a first conductive voltage block and a resistance member, the first upper plastic is mounted on the top cap and is located between the top cap and the first conductive voltage block, the first upper plastic is provided with a first through hole, and the first through hole is connected to the first blind hole;
  • the first conductive voltage block is fixedly connected to the first upper plastic, the first conductive voltage block is provided with a first hole, the opening of the first hole is located on the bottom surface of the first conductive voltage block, and the first hole is connected to the first through hole;
  • the resistance member is penetrated in the first through hole, one end of the resistance member abuts against the hole wall of the first hole, and is electrically connected to the first conductive voltage block, and the other end of the resistance
  • the resistivity of the resistance component is greater than the resistivity of the top cover and the resistivity of the first conductive voltage block.
  • the top cover is provided with two first blind holes, and the two first blind holes are arranged at intervals;
  • the first upper plastic is provided with two first through holes, and the two first through holes are arranged at intervals, and are respectively connected with the two first blind holes;
  • the first conductive voltage block is provided with two first holes, and the two first holes are arranged at intervals, and are respectively connected with the two first through holes;
  • the resistivity of the two resistance components connected in parallel is between 1 ⁇ 10 3 ohm/sq and 1 ⁇ 10 10 ohm/sq.
  • the top cover is provided with a first mounting hole, the first mounting hole penetrates the top cover along the thickness direction of the top cover, the two first blind holes are respectively located on opposite sides of the first mounting hole, and are both spaced apart from the first mounting hole;
  • the first upper plastic is provided with a first matching hole, the first matching hole penetrates the bottom surface of the first upper plastic along the thickness direction of the first upper plastic, and is connected with the first mounting hole, the two first through holes are respectively located on opposite sides of the first matching hole, and are both spaced apart from the first matching hole;
  • the first conductive voltage block is provided with a second matching hole, the second matching hole penetrates the first conductive voltage block along the thickness direction of the first conductive voltage block, and is connected with the first matching hole, the two first holes are respectively located on opposite sides of the second matching hole, and are both spaced apart from the second matching hole;
  • the positive electrode unit also includes a first pole, the first pole is penetrated through the first mounting hole, the first matching hole and the second matching hole, and is fixedly connected
  • the distance between the hole wall of each first hole close to the second matching hole and the hole wall of the second matching hole close to the first hole is between 2.5 mm and 5.5 mm.
  • the angle between the center line connecting the two first holes and the extension direction of the first upper plastic is an obtuse angle.
  • the first upper plastic is provided with a first convex ring
  • the first convex ring extends from the first upper plastic toward the first conductive voltage block and is arranged around the periphery of the first through hole
  • the resistance component is also penetrated through the inner side of the first convex ring
  • the outer surface of the resistance component is in contact with the inner surface of the first convex ring.
  • the resistivity of the resistance component is between 1 ⁇ 10 3 ohm/sq and 1 ⁇ 10 10 ohm/sq.
  • the end cover assembly also includes a negative electrode unit, which is installed on the top cover and is spaced apart from the positive electrode unit.
  • the negative electrode unit includes a second upper plastic and a second conductive voltage block.
  • the second upper plastic of the negative electrode unit is installed on the top side of the top cover and is located between the top cover and the second conductive voltage block of the negative electrode unit.
  • the second conductive voltage block is fixedly connected to the second upper plastic.
  • the top cover is also provided with a second blind hole, the opening of the second blind hole is located on the top surface of the top cover, and the second blind hole is spaced apart from the first blind hole;
  • the second upper plastic of the negative electrode unit is provided with a second through hole, and the second through hole penetrates the bottom surface of the second upper plastic of the negative electrode unit along the thickness direction of the second upper plastic of the negative electrode unit;
  • the second conductive voltage block of the negative electrode unit is provided with a second hole, the opening of the second hole is located on the bottom surface of the second conductive voltage block of the negative electrode unit, and the second hole is connected with the second through hole of the negative electrode unit;
  • the negative electrode unit also includes an insulating column, the insulating column is penetrated through the second through hole of the negative electrode unit, one end of the insulating column abuts against the hole wall surface of the second hole of the negative electrode unit, and the other end of the insulating column abuts against the hole wall surface of the second blind hole.
  • the insulating column is made of ceramic.
  • the first conductive voltage block of the positive electrode unit and the second conductive voltage block of the negative electrode unit are mirror-symmetrical.
  • the present application provides an energy storage device, comprising a shell and any one of the above-mentioned end cover assemblies, wherein the end cover assembly is installed on the top side of the shell.
  • the present application provides an electrical device, comprising the above-mentioned energy storage device, wherein the energy storage device supplies power to the electrical device.
  • the top cap and the first conductive voltage block can be made equal in potential, and electrochemical corrosion of the top cap due to the potential difference between the top cap and the first conductive voltage block can be avoided, thereby improving the safety and reliability of the energy storage device.
  • the resistance component is provided between the two first blind holes of the top cap and the two first holes of the first conductive voltage block, which can limit the first conductive voltage block and prevent it from rotating relative to the top cap, thereby improving the anti-torque capacity of the energy storage device during the assembly process.
  • FIG1 is a schematic diagram of the structure of an energy storage device provided in an embodiment of the present application.
  • FIG2 is a schematic structural diagram of an end cover assembly in the energy storage device shown in FIG1 ;
  • FIG3 is a schematic diagram of the exploded structure of the end cover assembly shown in FIG2;
  • FIG4 is a schematic cross-sectional view of the end cover assembly shown in FIG2 after being cut along A-A;
  • FIG5 is a schematic diagram of the structure of the lower plastic, the top cover, the explosion-proof valve, the positive electrode stressor and the negative electrode stressor in the end cover assembly shown in FIG3;
  • FIG6 is a schematic diagram of the exploded structure of the positive electrode unit in the end cap assembly shown in FIG3;
  • FIG7 is a schematic diagram of the cross-sectional structure of the first upper plastic in the positive electrode unit shown in FIG6 after being cut along the B-B direction;
  • FIG8 is a schematic structural diagram of the first upper plastic in the positive electrode unit shown in FIG6 from another angle;
  • FIG9 is a schematic structural diagram of the first conductive voltage block in the positive electrode unit shown in FIG6 from another angle;
  • FIG10 is a schematic diagram of the exploded structure of the negative electrode unit in the end cap assembly shown in FIG3;
  • FIG11 is a schematic diagram of the cross-sectional structure of the second upper plastic of the negative electrode unit shown in FIG10 after being cut along the C-C direction;
  • FIG12 is a schematic structural diagram of the second upper plastic in the negative electrode unit shown in FIG10 from another angle;
  • FIG. 13 is a schematic structural diagram of the second conductive voltage block in the negative electrode unit shown in FIG. 10 from another angle.
  • Energy storage device 100 housing 110, end cover assembly 120, lower plastic 10, top cover 20, explosion-proof valve 30, positive stress member 40, negative stress member 50, positive electrode unit 60, negative electrode unit 70, explosion-proof fence 11, first injection hole 101, first avoidance groove 102, second avoidance groove 103, third mounting hole 104, fourth mounting hole 105, explosion-proof hole 201, second injection hole 202, first assembly hole 203, second assembly hole 204, first mounting hole 205, second mounting hole 206, first blind hole 207, second blind hole 208, first upper plastic 61, first conductive voltage block 62, first pole 63, first sealing ring 64, first adapter 65, resistor member 66, first part 611, second part 612, first assembly groove 613, first avoidance hole 614, first identification through hole 615, first groove top wall 616, first groove bottom wall 617, identification part 611a, first installation groove 618, first matching hole 619, first through hole 620, first convex ring 620a, first extension part 621 , first welding part 622
  • Figure 1 is a schematic diagram of the structure of the energy storage device 100 provided in an embodiment of the present application.
  • the length direction of the energy storage device 100 is defined as the X-axis direction
  • the width direction of the energy storage device 100 is defined as the Y-axis direction
  • the height direction of the energy storage device 100 is defined as the Z-axis direction.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are perpendicular to each other.
  • the energy storage device 100 includes a shell 110, an electrode assembly (not shown) and an end cap assembly 120.
  • the shell 110 has an opening (not shown), and the shell 110 is provided with a receiving cavity (not shown).
  • the electrode assembly is received in the receiving cavity.
  • the receiving cavity is also used to receive an electrolyte, and the battery cell is immersed in the electrolyte.
  • the end cap assembly 120 is mounted on the top side of the shell 110 and closes the opening.
  • the energy storage device 100 is a square battery. In some other embodiments, the energy storage device 100 may also be a cylindrical battery or other batteries.
  • Figure 2 is a schematic diagram of the structure of the end cap assembly 120 in the energy storage device 100 shown in Figure 1
  • Figure 3 is a schematic diagram of the exploded structure of the end cap assembly 120 shown in Figure 2
  • Figure 4 is a schematic diagram of the cross-sectional structure of the end cap assembly 120 shown in Figure 2 after being cut along A-A.
  • "cut along A-A” means cutting along the plane where the A-A line is located, and similar descriptions in the following text can be understood in the same way.
  • the end cap assembly 120 includes a lower plastic 10, a top cap 20, an explosion-proof valve 30, a positive stressor 40, a negative stressor 50, a positive electrode unit 60 and a negative electrode unit 70.
  • the top cap 20 is installed on the top side of the lower plastic 10.
  • the explosion-proof valve 30, the positive stressor 40 and the negative electrode unit 70 are installed on the top side of the lower plastic 10.
  • the positive stressors 50 are all installed on the top cover 20.
  • the positive stressor 40 and the negative stressor 50 are respectively located on opposite sides of the explosion-proof valve 30, and are both spaced apart from the explosion-proof valve 30.
  • the positive unit 60 and the negative unit 70 are both installed on the top cover 20, and are respectively located on opposite sides of the explosion-proof valve 30.
  • the positive unit 60 and the positive stressor 40 are located on the same side of the explosion-proof valve 30, and the positive unit 60 covers the positive stressor 40.
  • the negative unit 70 and the negative stressor 50 are located on the same side of the explosion-proof valve 30, and the negative unit 70 covers the negative stressor 50.
  • the positive stressor 40 and the negative stressor 50 can both undergo stress deformation in response to the pressure increase inside the energy storage device 100.
  • the positive stressor 40 and the negative stressor 50 can undergo stress deformation and contact the first conductive voltage block 62 of the positive electrode unit 60 and the second conductive voltage block 72 of the negative electrode unit 70 respectively, so that the positive electrode unit 60 and the negative electrode unit 70 are externally short-circuited.
  • the positive stressor 40 and the bottom of the first conductive voltage block 62 of the positive electrode unit 60 and the bottom of the second conductive voltage block 72 of the negative electrode unit 70 are melted and top-cut and return to the open circuit state, thereby avoiding overcharging of the energy storage device 100, thereby avoiding explosion of the energy storage device 100 and ensuring the safety and reliability of the energy storage device 100.
  • FIG. 5 is a schematic structural diagram of the lower plastic 10 , the top cover 20 , the explosion-proof valve 30 , the positive stressor 40 and the negative stressor 50 in the end cover assembly 120 shown in FIG. 3 .
  • the lower plastic 10 includes an explosion-proof fence 11, and the explosion-proof fence 11 passes through the top surface (not marked in the figure) and the bottom surface (not marked in the figure) of the lower plastic 10. Among them, the explosion-proof fence 11 is located in the middle of the lower plastic 10.
  • the lower plastic 10 is provided with a first injection hole 101, a first avoidance groove 102, a second avoidance groove 103, a third mounting hole 104 and a fourth mounting hole 105.
  • the first injection hole 101 passes through the lower plastic 10 along the thickness direction of the lower plastic 10 (Z-axis direction shown in the figure). Specifically, the first injection hole 101 is located in the middle of the lower plastic 10, and is located on the right side of the explosion-proof fence 11, and is spaced apart from the explosion-proof fence 11.
  • the first injection hole 101 is a circular hole. In some other embodiments, the first injection hole 101 may also be a square hole or other special-shaped holes.
  • the first avoidance groove 102 and the second avoidance groove 103 are respectively located on opposite sides of the explosion-proof fence 11, and are spaced apart from the explosion-proof fence 11, and are mirror-symmetrical about the explosion-proof fence 11.
  • the first avoidance groove 102 is located on the right side of the explosion-proof fence 11, and is located on the side of the first injection hole 101 away from the explosion-proof fence 11, and is spaced apart from the first injection hole 101.
  • the second avoidance groove 103 is located on the left side of the first injection hole 101.
  • the openings of the first avoidance groove 102 and the second avoidance groove 103 are both located on the top surface of the lower plastic 10 (not marked in the figure).
  • the first avoidance groove 102 and the second avoidance groove 103 are both recessed in the direction (negative direction of the Z axis in the figure) from the top surface to the bottom surface (not marked in the figure) of the lower plastic 10.
  • the first avoidance groove 102 and the second avoidance groove 103 are both circular grooves.
  • the first avoidance groove 102 and the second avoidance groove 103 may also be square grooves or other special-shaped grooves.
  • the third mounting hole 104 is located on a side of the first avoidance groove 102 away from the first injection hole 101, and is spaced apart from the first avoidance groove 102.
  • the fourth mounting hole 105 is located on a side of the second avoidance groove 103 away from the explosion-proof fence 11, and is spaced apart from the second avoidance groove 103.
  • the third mounting hole 104 and the fourth mounting hole 105 are mirror-symmetrical about the explosion-proof fence 11.
  • the third mounting hole 104 and the fourth mounting hole 105 both penetrate the lower plastic 10 along the thickness direction of the lower plastic 10.
  • the third mounting hole 104 and the fourth mounting hole 105 are both circular holes.
  • the third mounting hole 104 and the fourth mounting hole 105 may also be square holes or other special-shaped holes.
  • the top cover 20 is provided with an explosion-proof hole 201, a second injection hole 202, a first assembly hole 203, a second assembly hole 204, a mounting hole and a blind hole.
  • the explosion-proof hole 201 penetrates the top cover 20 along the thickness direction of the top cover 20 (Z-axis direction shown in the figure).
  • the explosion-proof hole 201 is located in the middle of the top cover 20.
  • the explosion-proof hole 201 can be connected to the interior of the energy storage device 100 through the explosion-proof fence 11.
  • the explosion-proof hole 201 is an elliptical hole
  • the second injection hole 202 is a circular hole.
  • the explosion-proof hole 201 can be a circular hole, a square hole or other special-shaped holes.
  • the second injection hole 202 is located in the middle of the top cover 20, and is located on the right side of the explosion-proof hole 201, and is spaced apart from the explosion-proof hole 201. Specifically, the second injection hole 202 penetrates the top cover 20 along the thickness direction of the top cover 20. Among them, the second injection hole 202 is connected to the first injection hole 101 of the lower plastic 10.
  • the electrolyte can be injected into the receiving cavity of the shell 110 (as shown in Figure 1) through the second injection hole 202 of the top cover 20 and the second injection hole 202 of the lower plastic 10 in sequence to achieve the perfusion of the electrolyte of the energy storage device 100.
  • the second injection hole 202 is a circular hole. In some other embodiments, the second injection hole 202 can be a square hole or other special-shaped holes.
  • the first assembly hole 203 and the second assembly hole 204 are respectively located on opposite sides of the explosion-proof hole 201, and are spaced apart from the explosion-proof hole 201, and are mirror-symmetrical about the explosion-proof hole 201.
  • the first assembly hole 203 is located on the right side of the explosion-proof hole 201, and is located on the side of the second injection hole 202 away from the explosion-proof hole 201, and is spaced apart from the explosion-proof hole 201.
  • the second assembly hole 204 is located on the left side of the first injection hole 101. Specifically, the first assembly hole 203 and the second assembly hole 204 both penetrate the top cover 20 along the thickness direction of the top cover 20.
  • the first assembly hole 203 is connected to the first avoidance groove 102
  • the second assembly hole 204 is connected to the second avoidance groove 103.
  • the first assembly hole 203 and the second assembly hole 204 are both circular holes.
  • the first assembly hole 203 and the second assembly hole 204 can also be square holes or other special-shaped holes.
  • the mounting hole is located at the edge of the top cover 20, and is spaced apart from the first assembly hole 203 and the second assembly hole 204. Specifically, the mounting hole penetrates the top cover 20 along the thickness direction of the top cover 20.
  • there are two mounting holes and the two mounting holes are the first mounting hole 205 and the second mounting hole 206.
  • the first mounting hole 205 is located on the side of the first assembly hole 203 away from the second injection hole 202, and is spaced apart from the first assembly hole 203.
  • the second mounting hole 206 is located on the side of the second assembly hole 204 away from the explosion-proof hole 201, and is spaced apart from the second assembly hole 204.
  • the first mounting hole 205 and the second mounting hole 206 are mirror-symmetrical about the explosion-proof hole 201.
  • the first mounting hole 205 is connected to the third mounting hole 104 of the lower plastic 10
  • the second mounting hole 206 is connected to the fourth mounting hole 105 of the lower plastic 10.
  • the first mounting hole 205 and the second mounting hole 206 are both circular holes.
  • the first mounting hole 205 and the second mounting hole 206 may also be square holes or other special-shaped holes.
  • the blind hole is spaced apart from the first mounting hole 205 and the second mounting hole 206.
  • the opening of the blind hole is located on the top surface of the top cover 20, and is recessed in the direction from the top surface of the top cover 20 to the bottom surface of the top cover 20 (the negative direction of the Z axis in the figure).
  • there are four blind holes and the four blind holes are two first blind holes 207 and two second blind holes 208.
  • the two first blind holes 207 are located on opposite sides of the first mounting hole 205, and are spaced apart from the first mounting hole 205, and are mirror-symmetrical about the first mounting hole 205.
  • one first blind hole 207 is located on the side of the first mounting hole 205 away from the first assembly hole 203, and the other first blind hole 207 is located on the side of the first mounting hole 205 close to the first assembly hole 203, and is spaced apart from the first assembly hole 203.
  • the angle between the center line of the two first blind holes 207 and the length direction of the top cover 20 is an obtuse angle ⁇ .
  • the two first blind holes 207 are obliquely symmetrical about the first mounting hole 205.
  • the two second blind holes 208 are located on opposite sides of the second mounting hole 206, and are spaced apart from the second mounting hole 206, and are mirror-symmetrical about the second mounting hole 206. Specifically, one second blind hole 208 is located on the side of the second mounting hole 206 away from the second assembly hole 204, and the other second blind hole 208 is located on the side of the second mounting hole 206 close to the second assembly hole 204, and is spaced apart from the second assembly hole 204.
  • the angle between the center line of the two second blind holes 208 and the length direction of the top cover 20 is an obtuse angle ⁇ . In other words, the two second blind holes 208 are obliquely symmetrical about the second mounting hole 206.
  • the two first blind holes 207 and the two second blind holes 208 are mirror-symmetrical about the explosion-proof hole 201.
  • the first blind holes 207 and the second blind holes 208 are both circular holes.
  • the first blind holes 207 and the second blind holes 208 may also be square holes or other special-shaped holes.
  • the explosion-proof valve 30 is installed in the explosion-proof hole 201 and fixedly connected to the hole wall of the explosion-proof hole 201.
  • the explosion-proof valve 30 can be fixedly connected to the hole wall of the explosion-proof hole 201 by welding to be installed in the explosion-proof hole 201. It can be understood that The explosion-proof hole 201 connects the inside and outside of the energy storage device 100.
  • the explosion-proof valve 30 When the air pressure inside the energy storage device 100 is too high, the explosion-proof valve 30 will rupture under the action of the air pressure, and the gas inside the energy storage device 100 can be discharged to the outside of the energy storage device 100 in time through the explosion-proof fence 11 of the lower plastic 10 and the explosion-proof hole 201, thereby avoiding the explosion of the energy storage device 100 and improving the reliability of the energy storage device 100.
  • the positive stressor 40 is installed in the first assembly hole 203 and fixedly connected to the hole wall of the first assembly hole 203.
  • the negative stressor 50 is installed in the second assembly hole 204 and fixedly connected to the hole wall of the second assembly hole 204.
  • the first avoidance groove 102 can avoid the positive stressor 40
  • the second avoidance groove 103 can avoid the negative stressor 50.
  • the positive stressor 40 can be fixedly connected to the hole wall of the first assembly hole 203 by welding to be installed in the first assembly hole 203
  • the negative stressor 50 can be fixedly connected to the hole wall of the second assembly hole 204 by welding to be installed in the second assembly hole 204.
  • Figure 6 is a schematic diagram of the exploded structure of the positive electrode unit 60 in the end cover assembly 120 shown in Figure 3
  • Figure 7 is a schematic diagram of the cross-sectional structure of the first upper plastic 61 in the positive electrode unit 60 shown in Figure 6 after being cut along B-B.
  • the positive electrode unit 60 includes a first upper plastic 61, a first conductive voltage block 62, a first pole 63, a first sealing ring 64, a first adapter 65 and a resistance member 66.
  • the first upper plastic 61 is mounted on the top cover 20, the first conductive voltage block 62 is fixedly connected to the first upper plastic 61, and is insulated from the top cover 20 via the first upper plastic 61, the resistance member 66 electrically connects the first conductive voltage block 62 and the top cover 20, the first pole 63 is fixedly connected to the first conductive voltage block 62, the first sealing ring 64 is sleeved on the first pole 63, and is used to insulate the first pole 63 from the top cover 20, and the first adapter 65 is fixedly connected to the first pole 63.
  • the first upper plastic 61 includes a first portion 611 and a second portion 612, and the second portion 612 is fixedly connected to the right side of the first portion 611.
  • the first portion 611 and the second portion 612 are integrally formed.
  • the colors of the first portion 611 and the second portion 612 are both the first color.
  • the first upper plastic 61 is made of plastic, and the first color can be black or blue.
  • the first part 611 is provided with a first assembly groove 613, a first avoidance hole 614 and a first identification through hole 615.
  • the opening of the first assembly groove 613 is located on the right side of the first part 611.
  • the first assembly groove 613 is recessed in the direction (in the negative direction of the X axis in the figure) from the right side of the first part 611 to the left side (not marked in the figure).
  • the first assembly groove 613 includes a first groove top wall surface 616 and a first groove bottom wall surface 617. Along the Z-axis direction, the first groove top wall surface 616 and the first groove bottom wall surface 617 are spaced and arranged opposite to each other.
  • the opening of the first avoidance hole 614 is located on the bottom surface of the first part 611 (not marked in the figure). Specifically, the opening of the first avoidance hole 614 is located in the middle area of the bottom surface of the first part 611.
  • the first avoidance hole 614 is recessed from the bottom surface of the first part 611 in the direction of the first assembly groove 613 (the positive direction of the Z axis shown in the figure), and passes through the first groove bottom wall 617 of the first assembly groove 613 to communicate with the first assembly groove 613.
  • the first avoidance hole 614 is arranged opposite to the positive electrode stressor 40.
  • the first avoidance hole 614 is a circular hole. In some other embodiments, the first avoidance hole 614 may also be a square hole or other special-shaped holes.
  • the opening of the first identification through hole 615 is located on the top surface of the first part 611 (not marked in the figure). Specifically, the opening of the first identification through hole 615 is located in the middle area of the top surface of the first part 611.
  • the first identification through hole 615 is recessed from the top surface of the first part 611 in the direction of the first assembly slot 613 (the negative direction of the Z axis shown in the figure), and passes through the first slot top wall 616 of the first assembly slot 613 to communicate with the first assembly slot 613.
  • the first identification through hole 615 is in the shape of a "cross" to indicate that the polarity of the positive electrode unit 60 is positive. In some other embodiments, the first identification through hole 615 can also be in other shapes, as long as it can indicate that the polarity of the positive electrode unit 60 is positive.
  • the first portion 611 includes an identification portion 611a, which is located at one end of the first portion 611 away from the second portion 612 to identify the polarity of the positive electrode unit 60.
  • the identification portion 611a is a cut angle.
  • the operator or intelligent equipment can quickly identify the first upper plastic 61 of the positive electrode unit 60 based on the identification portion 611a to distinguish it from the second upper plastic 71 of the negative electrode unit 70, thereby improving assembly efficiency.
  • the design of the identification portion 611a can serve as a fool-proof structure for the first upper plastic 61 to prevent the operator from confusing the first upper plastic 61 of the positive electrode unit 60 with the second upper plastic 71 of the negative electrode unit 70. 2.
  • Plastic 71 is located at one end of the first portion 611 away from the second portion 612 to identify the polarity of the positive electrode unit 60.
  • the identification portion 611a is a cut angle.
  • the second part 612 is provided with a first mounting groove 618, a first matching hole 619 and a first through hole 620.
  • the opening of the first mounting groove 618 is located on the top surface (not marked in the figure) of the second part 612.
  • the first mounting groove 618 is recessed in a direction (negative direction of the Z axis in the figure) from the top surface to the bottom surface (not marked in the figure) of the second part 612, and is connected to the first assembly groove 613.
  • the first mounting groove 618 includes a groove bottom wall surface (not marked in the figure).
  • the first matching hole 619 penetrates the bottom surface of the second part 612 along the thickness direction of the second part 612. Specifically, the opening of the first matching hole 619 is located at the bottom surface of the second part 612.
  • the first matching hole 619 is recessed from the bottom surface of the second part 612 in the direction of the first mounting groove 618 (the positive direction of the Z axis in the figure), and penetrates the bottom wall of the first mounting groove 618 to communicate with the first mounting groove 618.
  • the first matching hole 619 is connected to the first mounting hole 205 of the top cover 20.
  • the first matching hole 619 is a circular hole. In some other embodiments, the first matching hole 619 can also be a square hole or other special-shaped holes.
  • the first through hole 620 penetrates the bottom surface of the second part 612 along the thickness direction of the first upper plastic 61. Specifically, the first through hole 620 is recessed from the bottom surface of the second part 612 in the direction of the first mounting groove 618 (the positive direction of the Z axis in the figure), and penetrates the bottom wall of the first mounting groove 618. In this embodiment, there are two first through holes 620, and the two first through holes 620 are located on opposite sides of the first matching hole 619, and are spaced apart from the first matching hole 619, and are mirror-symmetrical about the first matching hole 619.
  • one first through hole 620 is located on the side of the first matching hole 619 away from the first avoidance hole 614, and is connected to one first blind hole 207
  • the other first through hole 620 is located on the side of the first matching hole 619 close to the first avoidance hole 614, and is connected to the other first blind hole 207.
  • FIG. 8 is a schematic diagram of the structure of the first upper plastic 61 in the positive electrode unit 60 shown in FIG. 6 at another angle.
  • the angle between the center line of the two first through holes 620 and the length direction of the first upper plastic 61 is an obtuse angle R.
  • the two first through holes 620 are obliquely symmetrical relative to the first matching hole 619.
  • the first through hole 620 is a circular hole.
  • the first through hole 620 can also be a square hole or other special-shaped holes.
  • the first upper plastic 61 is further provided with two first convex rings 620a, both of which extend from the first upper plastic 61 toward the first conductive voltage block 62, and are respectively arranged around the periphery of the two first through holes 620.
  • the first convex rings 620a are arranged on the groove bottom wall surface of the first mounting groove 618, and extend from the groove bottom wall surface of the first mounting groove 618 in a direction away from the groove bottom wall surface of the first mounting groove 618 (in the positive direction of the Z axis in the figure).
  • the inner surface of the first convex ring 620a is flush with the hole wall of the first through hole 620.
  • FIG. 9 is a schematic structural diagram of the first conductive voltage block 62 in the positive electrode unit 60 shown in FIG. 6 from another angle.
  • the first conductive voltage block 62 is fixedly connected to the first upper plastic 61.
  • the first upper plastic 61 is located between the first conductive voltage block 62 and the top cover 20.
  • the first conductive voltage block 62 includes a first extension portion 621 and a first welding portion 622, and the first welding portion 622 is fixedly connected to the right side of the first extension portion 621.
  • the first welding portion 622 is a portion of the first conductive voltage block 62 used for welding with the bus.
  • the first extension portion 621 and the first welding portion 622 are integrally formed, and the colors of the first extension portion 621 and the first welding portion 622 are both the second color, and the second color is different from the first color.
  • the first conductive voltage block 62 can be made of aluminum, and the second color can be silver or gray.
  • the first extension portion 621 includes a first top surface 623 and a first bottom surface 624, and the first top surface 623 and the first bottom surface 624 are arranged opposite to each other.
  • the first top surface 623 and the first bottom surface 624 are both planes.
  • the first extension portion 621 is accommodated in the first assembly groove 613, and is partially exposed in the first avoidance hole 614, and is located directly above the positive electrode stressor 40.
  • the first extension portion 621 is interference fit with the first assembly groove 613.
  • the first top surface 623 of the first extension portion 621 abuts against the first groove top wall surface 616 of the first assembly groove 613, and blocks the first identification through hole 615 of the first upper plastic 61.
  • the first bottom surface 624 of the first extension portion 621 abuts against the first groove bottom wall surface 617 of the first assembly groove 613, and covers the first avoidance hole 614 of the first upper plastic 61.
  • the first identification through hole 615 exposes the first top surface 623 of the first extension part 621, and a positive electrode identification "+" with a strong color difference can be formed, thereby identifying the polarity of the positive electrode unit 60.
  • the first top surface 623 of the first extension part 621 and the first groove top wall surface 616 of the first assembly groove 613 are closely attached without any gap, and the first identification through hole 615 will not be suspended in the air and form a shadow on the first top surface 623 of the first extension part 621, thereby improving the recognition of the polarity identification.
  • the thickness of the first welding portion 622 is greater than the thickness of the first extension portion 621.
  • the first welding portion 622 includes a second top surface 625 and a second bottom surface 626, and the second top surface 625 and the second bottom surface 626 are arranged opposite to each other.
  • the second bottom surface 626 of the first welding portion 622 is flush with the first bottom surface 624 of the first extension portion 621, and the second top surface 625 of the first welding portion 622 protrudes relative to the first top surface 623 of the first extension portion 621.
  • the first welding portion 622 is provided with a second matching hole 627 and a first hole 630.
  • the second matching hole 627 is located in the middle of the first welding portion 622.
  • the second matching hole 627 penetrates the first welding portion 622 along the thickness direction (Z-axis direction in the figure) of the first welding portion 622.
  • the second matching hole 627 is a circular hole.
  • the second matching hole 627 can also be a square hole or other special-shaped holes.
  • the first hole 630 is spaced apart from the second matching hole 627. Specifically, the opening of the first hole 630 is located at the bottom surface of the first welding portion 622, and the first hole 630 is recessed in a direction (in the positive direction of the Z axis in the figure) from the bottom surface to the top surface of the first welding portion 622.
  • the first hole 630 can be formed by a mechanical cutting process.
  • first holes 630 which are located on opposite sides of the second matching hole 627, and are spaced apart from the second matching hole 627 and are mirror-symmetrical about the second matching hole 627.
  • one first hole 630 is located on the side of the second matching hole 627 away from the first extension portion 621
  • the other first hole 630 is located on the side of the second matching hole 627 close to the first extension portion 621.
  • the distance between the hole wall of each first hole 630 close to the second matching hole 627 and the hole wall of the second matching hole 627 close to the first hole 630 is between 2.5mm and 5.5mm, so as to avoid interference between the second matching hole 627 and the first hole 630.
  • the distance between the hole wall of each first hole 630 close to the second matching hole 627 and the hole wall of the second matching hole 627 close to the first hole 630 is 3mm.
  • the first hole 630 is a circular hole.
  • the first hole 630 may also be a square hole or other special-shaped holes.
  • the angle between the center line of the two first holes 630 and the length direction of the first conductive block 62 is an obtuse angle ⁇ .
  • the two first holes 630 are obliquely symmetrical with respect to the second matching hole 627. It can be understood that the two first holes 630 are obliquely symmetrical with respect to the second matching hole 627, and the distance between the first hole 630 and the second matching hole 627 can be ensured to be large enough without increasing the area of the first welding portion 622, so as to avoid interference between the second matching hole 627 and the first hole 630.
  • the first welding portion 622 is installed in the first installation groove 618, the second matching hole 627 of the first welding portion 622 is connected to the first matching hole 619 of the first upper plastic 61, and the two first holes 630 are respectively connected to the two first through holes 620 of the first upper plastic 61.
  • the second top surface 625 of the first welding portion 622 is protruding relative to the top surface of the first portion 611 in the first upper plastic 61, and the peripheral surface of the first welding portion 622 is spaced from the surface of the first portion 611 facing the second portion 612 (i.e., the right side surface of the first portion 611).
  • the second top surface 625 of the first welding portion 622 protrudes relative to the top surface of the first portion 611 of the first upper plastic 61, when the connecting piece is welded to the second top surface 625 of the first welding portion 622, it can not only prevent the connecting piece from scratching or damaging the first portion 611 of the first upper plastic 61, thereby ensuring the reliability of the energy storage device 100, but also prevent the energy storage device 100 from warping up when the connecting piece is connected to the first welding portion 622, thereby reducing the reliability of the electrical connection.
  • the first welding portion 622 includes an assembly portion 628 and a connecting portion 629, and the connecting portion 629 is fixedly connected to the top side of the assembly portion 628.
  • the circumference of the connecting portion 629 surrounds the circumference of the assembly portion 628 and is relatively close to the assembly portion 628.
  • the peripheral surface of the fitting portion 628 is convex.
  • the bottom surface of the fitting portion 628 is the bottom surface of the first welding portion 622
  • the top surface of the connecting portion 629 is the top surface of the first welding portion 622.
  • the assembly portion 628 is installed in the first installation groove 618; the connection portion 629 protrudes relative to the first installation groove 618 and abuts against the top surface of the second portion 612 in the first upper plastic 61.
  • the peripheral surface of the connection portion 629 is spaced apart from and arranged opposite to the right side surface of the first portion 611 in the first upper plastic 61. It should be understood that the gap between the right side surface of the first portion 611 in the first upper plastic 61 and the peripheral surface of the connection portion 629 can be used as an error tolerance area.
  • each resistor component 66 is inserted into a first through hole 620, one end of each resistor component 66 extends into a first blind hole 207, and abuts against the hole wall of the first blind hole 207, and is electrically connected to the top cover 20, and the other end of each resistor component 66 extends into a first hole 630, abuts against the hole wall of the first hole 630, and is electrically connected to the first conductive voltage block 62.
  • the resistor component 66 is electrically connected between the top cover 20 and the first conductive voltage block 62.
  • each resistance component 66 is greater than the resistivity of the top cover 20 and the resistivity of the first conductive voltage block 62. It should be noted that resistivity is a physical quantity that describes the conductive performance of a conductor, and the unit of resistivity is ohm/square meter, and the symbol is ohm/sq.
  • the resistance value of the resistor component 66 is tested first, and then the resistor components 66 with different resistance values are connected in parallel in pairs, so as to combine to obtain a parallel resistance value close to the standard weak conductive connection, thereby improving the consistency between different energy storage devices 100 in the electrical equipment, and then extending the service life of the electrical equipment.
  • the top cover 20 and the first conductive voltage block 62 can be positively charged, thereby preventing the top cover and the housing 110 of the energy storage device from being corroded by the electrolyte, thereby improving the safety and reliability of the energy storage device 100.
  • the resistance member 66 also has a limiting function, which can prevent the first conductive voltage block 62 from rotating relative to the top cover 20 during the assembly process of the end cover assembly 120, thereby improving the torque resistance of the energy storage device 100 during the assembly process.
  • the first pole 63 includes a first flange portion 631 and a first mounting portion 632, and the first mounting portion 632 is fixedly connected to the top side of the first flange portion 631.
  • the first mounting portion 632 is penetrated through the third mounting hole 104 of the lower plastic 10, the first mounting hole 205 of the top cover 20, the first matching hole 619 of the first upper plastic 61 and the second matching hole 627 of the first conductive voltage block 62, and is fixedly connected to the hole wall of the second matching hole 627 of the first conductive voltage block 62.
  • the first mounting portion 632 can be fixedly connected to the hole wall of the second matching hole 627 of the first conductive voltage block 62 by riveting or welding.
  • the first sealing ring 64 includes a first sealing portion 641 and a second sealing portion 642, wherein the second sealing portion 642 is fixedly connected to the bottom of the first sealing portion 641 and is arranged around the first sealing portion 641. Specifically, the first sealing ring 64 is sleeved on the first mounting portion 632 of the first pole 63.
  • the top surface (not shown) of the first sealing portion 641 is against the bottom surface of the first upper plastic 61, a portion of the first sealing portion 641 is clamped between the first mounting portion 632 of the first pole 63 and the hole wall of the first mounting hole 205 of the top cover 20, and a portion of the first sealing portion 641 is clamped between the first mounting portion 632 of the first pole 63 and the hole wall of the third mounting hole 104 of the lower plastic 10.
  • the second sealing portion 642 may be located inside the lower plastic 10, and may be clamped between the lower plastic 10 and the first flange portion 631 of the first pole 63.
  • first sealing ring 64 can not only ensure the assembly stability between the first pole 63 and the lower plastic 10 and the top cover 20 , but also prevent the first pole 63 and the top cover 20 from direct contact and conduction, thereby achieving insulation between the first pole 63 and the top cover 20 .
  • the first adapter 65 is installed on the inner side of the lower plastic 10 and is located on the side of the first flange portion 631 of the first pole 63 away from the first mounting portion 632. Specifically, one end of the first adapter 65 is electrically connected to the first flange portion 631 of the first pole 63, and the other end is electrically connected to the positive electrode ear of the battery cell. Exemplarily, the first adapter 65 can be electrically connected to the first flange portion 631 of the first pole 63 and/or the positive electrode ear of the battery cell by welding.
  • Figure 10 is a schematic diagram of the exploded structure of the negative electrode unit 70 in the end cover assembly 120 shown in Figure 3
  • Figure 11 is a schematic diagram of the cross-sectional structure of the second upper plastic of the negative electrode unit 70 shown in Figure 10 after being cut along C-C.
  • the negative electrode unit 70 includes a second upper plastic 71, a second conductive voltage block 72, a second pole 73, a second sealing ring 74, a second adapter 75 and an insulating pole 76.
  • the structures of the components in the negative electrode unit 70, the assembly relationship between the components, and the assembly relationship between the components and the lower plastic 10 and the top cover 20 can all be referred to the relevant description of the positive electrode unit 60 above, and will not be repeated here.
  • the second assembly groove 713 includes a second groove top wall surface 716 and a second groove bottom wall surface 717.
  • the second avoidance hole 714 is arranged opposite to the negative electrode stressor 50.
  • the second identification through hole 715 is in the shape of a "one" to indicate that the polarity of the negative electrode unit 70 is negative. In some other embodiments, the second identification through hole 715 may also be in other shapes as long as it can identify the polarity of the negative electrode unit 70 as negative.
  • the third portion 711 may also include an identification portion (not shown), which is used to identify the polarity of the negative electrode unit 70.
  • the identification portion of the third portion 711 is different from the identification portion 611a of the first portion 611, so that the operator can distinguish the second upper plastic 71 of the negative electrode unit 70 from the first upper plastic 61 of the positive electrode unit 60.
  • a first identification first through hole is opened on the first part of the first upper plastic, and the first part of the first upper plastic is matched with the first part of the first conductive voltage block to form a strong color difference between the first part of the first conductive voltage block and the first part of the first upper plastic, so as to realize the polarity identification of the positive electrode unit 60 and the negative electrode unit 70, without adding positive electrode rivets or negative electrode rivets and other components to identify the polarity, thereby reducing the number of accessories of the end cover assembly 120 and the structural complexity of the end cover assembly 120, which is conducive to realizing the lightweight design of the energy storage device 100.
  • the second through hole 720 penetrates the bottom surface of the fourth portion 712 along the thickness direction of the second upper plastic 71. 720 is recessed from the bottom surface of the fourth portion 712 in the direction of the second mounting groove 718 (in the positive direction of the Z axis in the figure), and penetrates the bottom wall of the second mounting groove 718. In this embodiment, there are two second through holes 720, and the two second through holes 720 are located on opposite sides of the third matching hole 719, and are spaced apart from the third matching hole 719, and are mirror-symmetrical about the third matching hole 719.
  • one second through hole 720 is located on the side of the third matching hole 719 away from the second avoidance hole 714, and is connected to one second blind hole 208, and the other second through hole 720 is located on the side of the third matching hole 719 close to the second avoidance hole 714, and is connected to the other second blind hole 208.
  • FIG. 12 is a schematic diagram of the structure of the second upper plastic 71 in the negative electrode unit 70 shown in FIG. 10 at another angle.
  • the angle between the center line of the two second through holes 720 and the length direction of the second upper plastic 71 is an obtuse angle ⁇ .
  • the two second through holes 720 are obliquely symmetrical with respect to the third matching hole 719.
  • the second through hole 720 is a circular hole.
  • the second through hole 720 may also be a square hole or other special-shaped holes.
  • the second upper plastic 71 is further provided with two second convex rings 720a, both of which extend from the second upper plastic 71 toward the second conductive voltage block 72, and are respectively arranged around the periphery of the two second through holes 720.
  • the second convex ring 720a is arranged on the groove bottom wall surface of the second mounting groove 718, and extends from the groove bottom wall surface of the second mounting groove 718 in a direction away from the groove bottom wall surface of the second mounting groove 718 (in the positive direction of the Z axis in the figure).
  • the inner surface of the second convex ring 720a is flush with the hole wall of the second through hole 720.
  • FIG. 13 is a schematic structural diagram of the second conductive voltage block 72 in the negative electrode unit 70 shown in FIG. 10 from another angle.
  • the second conductive voltage block 72 is fixedly connected to the second upper plastic 71, and the second conductive voltage block 72 is mirror-symmetrical to the first conductive voltage block 62.
  • the first conductive voltage block 62 and the second conductive voltage block 72 have the same structure, and the mirror-symmetrical arrangement of the two can improve the parts matching rate of the first conductive voltage block in the end cover assembly 120.
  • the second conductive voltage block 72 includes a second extension portion 721 and a second welding portion 722, and the second welding portion 722 is fixedly connected to the left side of the second extension portion 721.
  • the second extension portion 721 is installed in the second assembly groove 713
  • the second welding portion 722 is installed in the second installation groove 718
  • the fourth matching hole 727 of the second welding portion 722 is connected to the third matching hole 719 of the fourth portion 712.
  • the second extension portion 721 is interference fit with the second assembly groove 713.
  • the third top surface 723 of the second extension portion 721 abuts against the second groove top wall surface 716 of the second assembly groove 713, and covers the second identification through hole 715 of the second upper plastic 71.
  • the third bottom surface 724 of the second extension portion 721 abuts against the second groove bottom wall surface 717 of the second assembly groove 713, and covers the second avoidance hole 714 of the second upper plastic 71.
  • the positive electrode stressor 40 and the negative electrode stressor 50 are both pushed to flip by the air pressure, and the positive electrode stressor 40 passes through the second avoidance hole 714 and contacts the second welding portion 722, so that the top cover 20 is electrically connected to the second conductive voltage block 72, and the negative electrode stressor 50 passes through the second avoidance hole 714 and contacts the second welding portion 722, so that the top cover 20 is electrically connected to the second conductive voltage block 72, so that the positive electrode unit 60 and the negative electrode unit 70 are turned on and short-circuited, and the energy storage device 100 cannot work normally, and the air pressure inside the energy storage device 100 cannot be further increased, thereby improving the reliability of the energy storage device 100.
  • the second welding portion 722 is provided with a fourth matching hole 727 and a second hole 730.
  • the fourth matching hole 727 is located in the middle of the second welding portion 722.
  • the fourth matching hole 727 penetrates the second welding portion 722 along the thickness direction of the second welding portion 722 (Z-axis direction in the figure).
  • the fourth matching hole 727 is a circular hole.
  • the fourth matching hole 727 may also be a square hole or other special-shaped holes.
  • the second hole 730 is spaced apart from the fourth matching hole 727. Specifically, the opening of the second hole 730 is located on the bottom surface of the second welding portion 722, and the second hole 730 is concave from the bottom surface of the second welding portion 722 to the top surface (in the positive direction of the Z axis in the figure).
  • the second hole 730 may be formed by a mechanical cutting process.
  • one second hole 730 is located on the side of the fourth matching hole 727 away from the second extension portion 721
  • the other second hole 730 is located on the side of the fourth matching hole 727 close to the second extension portion 721.
  • the distance between the hole wall of each second hole 730 close to the fourth matching hole 727 and the hole wall of the fourth matching hole 727 close to the second hole 730 is between 2.5mm and 5.5mm, so as to avoid interference between the fourth matching hole 727 and the second hole 730.
  • the distance between the hole wall of each second hole 730 close to the fourth matching hole 727 and the hole wall of the fourth matching hole 727 close to the second hole 730 is 3mm.
  • the second hole 730 is a circular hole.
  • the second hole 730 may also be a square hole or other special-shaped hole.
  • the angle between the center line of the two second holes 730 and the length direction of the second conductive voltage block 72 of the negative electrode unit 70 is an obtuse angle ⁇ .
  • the two second holes 730 are obliquely symmetrical with respect to the fourth matching hole 727. It can be understood that the two second holes 730 are obliquely symmetrical with respect to the fourth matching hole 727, and the distance between the second hole 730 and the fourth matching hole 727 can be ensured to be large enough without increasing the area of the second welding portion 722, so as to avoid interference between the fourth matching hole 727 and the second hole 730.
  • each insulating column 76 is penetrated through a second through hole 720 of a second upper plastic 71, the bottom end of each insulating column 76 extends into a second blind hole 208 of the top cover 20, and the bottom surface of the insulating column 76 abuts against the hole wall of the second blind hole 208, and the top end of each insulating column 76 extends into a second hole 730 of the second conductive voltage block 72, and the top surface of the insulating column 76 abuts against the hole wall of the second hole 730 of the second conductive voltage block 72.
  • the insulating column 76 also has a limiting function, which can prevent the second conductive voltage block 72 from rotating during the assembly process of the end cover assembly 120, so as to facilitate the fixed riveting of the second conductive voltage block 72 and the second pole 73.
  • the insulating column 76 is made of an insulating material.
  • the material of the insulating column 76 can be ceramic. It is understandable that the insulating column 76 can be made of an insulating material with a high melting point such as ceramic, so that the insulating column 76 has an insulating effect, and is more resistant to high temperatures and less likely to melt than the insulating column 76 made of plastic, thereby improving the safety and reliability of the end energy storage device 100.
  • Each insulating column 76 is also inserted into the inner side of a second convex ring 720a, and the outer surface of the insulating column 76 is in contact with the inner surface of the second convex ring 720a.
  • the second convex ring 720a can play a role in positioning the insulating column 76 and can keep the insulating column 76 in a vertical state, thereby preventing the insulating column 76 from tilting or shifting during the assembly of the end cap assembly 120, and ensuring the assembly stability of the insulating column 76 in the end cap assembly 120.
  • the two second holes 730 in the negative electrode unit 70 are mirror-symmetrical with the two first holes 630 in the positive electrode unit 60, and the insulating column 76 of the negative electrode unit 70 is mirror-symmetrical with the resistance component 66 of the positive electrode unit 60.
  • the second pole 73 includes a second flange portion 731 and a second mounting portion 732, and the second mounting portion 732 is fixedly connected to the top side of the second flange portion 731. Specifically, the second mounting portion 732 is penetrated through the fourth mounting hole 105 of the lower plastic 10, the second mounting hole 206 of the top cover 20, the third matching hole 719 of the second upper plastic 71, and the fourth matching hole 727 of the second conductive voltage block 72, and is fixedly connected to the hole wall of the fourth matching hole 727 of the second conductive voltage block 72.
  • the second sealing ring 74 includes a third sealing portion 741 and a fourth sealing portion 742, wherein the fourth sealing portion 742 is fixedly connected to the bottom of the third sealing portion 741 and is disposed around the third sealing portion 741.
  • the top surface (not shown) of the third sealing portion 741 abuts against the bottom surface of the second upper plastic 71, a portion of the third sealing portion 741 is clamped between the second mounting portion 732 of the second pole 73 and the hole wall of the second mounting hole 206 of the top cover 20, and a portion of the third sealing portion 741 is clamped between the second mounting portion 732 of the second pole 73 and the hole wall of the fourth mounting hole 105 of the lower plastic 10.
  • the second adapter plate 75 is installed on the inner side of the lower plastic 10 and is located at the second flange portion 731 of the second pole 73 away from the first pole. One side of the second mounting portion 732. Specifically, one end of the second adapter 75 is electrically connected to the second flange portion 731 of the second pole 73, and the other end is electrically connected to the negative pole ear of the battery cell. Exemplarily, the second adapter 75 can be electrically connected to the second flange portion 731 of the second pole 73 and/or the negative pole ear of the battery cell by welding.
  • the resistor component 66 has weak conductivity, which can achieve the same potential as the top cover 20 and the first conductive voltage block 62, and avoid electrochemical corrosion of the top cover 20 due to the potential difference between the top cover 20 and the first conductive voltage block 62, thereby improving the safety and reliability of the energy storage device 100;
  • the insulating column 76 and the resistor component 66 both have a limiting function, which can prevent the first conductive voltage block 62 and the second conductive voltage block 72 from rotating during the assembly process of the end cover assembly 120, and facilitate the fixed riveting of the first conductive voltage block and the first pole in the end cover assembly 120.
  • the insulating column 76 is resistant to high temperatures and is not easy to melt, which can further improve the safety and reliability of the energy storage device 100.
  • the energy storage device 100 can also be a device with the function of storing electricity, such as a battery module, a battery pack or a battery system.
  • the energy storage device 100 is a battery module
  • the battery module includes a plurality of single cells and a plurality of connecting plates, each connecting plate being electrically connected between two single cells.
  • the single cell can adopt the structure shown in the energy storage device 100 shown in the above embodiment.
  • the multiple single cells can be arranged in series, and one end of each connecting plate is electrically connected to the positive electrode unit of a single cell, and the other end is electrically connected to the negative electrode unit of another single cell.
  • the multiple single cells can also be arranged in parallel, with some connecting plates being electrically connected between the positive electrode units of two single cells, and some connecting plates being electrically connected between the negative electrode units of two single cells.
  • the connecting plate can be an aluminum bar. It should be noted that some single cells can also be arranged in series, and some single cells can be arranged in parallel. The embodiment of the present application does not specifically limit the connection method of multiple single cells in the battery pack.
  • the present application also provides an electric device, which includes the energy storage device 100, and the energy storage device 100 supplies power to the electric device.
  • the electric device may be a new energy vehicle, a power storage station, a server, or other equipment that requires electricity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请提供一种端盖组件、储能装置和用电设备,设置电阻构件电连接顶盖与第一导电压块,避免发生电化学腐蚀,提高储能装置的使用可靠性。端盖组件包括顶盖和安装于顶盖的正极单元。正极单元包括第一上塑胶、第一导电压块和电阻构件。第一上塑胶安装于顶盖。第一通孔沿第一上塑胶的厚度方向贯穿第一上塑胶的底面,且与第一盲孔连通。第一导电压块固定连接于第一上塑胶,第一孔的开口位于第一导电压块的底面,第一孔与第一通孔连通;电阻构件穿设于第一通孔,且电连接于第一导电压块和顶盖之间,电阻构件的一端抵持第一孔的孔壁面,电阻构件的另一端抵持顶盖的第一盲孔的孔壁面。

Description

端盖组件、储能装置和用电设备 技术领域
本申请涉及储能技术领域,具体涉及一种端盖组件、储能装置和用电设备。
背景技术
现有的储能装置(如二次电池)中,导电压块与顶盖均为金属材质,往往采用位于导电压块和顶盖之间的上塑胶来使两者绝缘,然而导电压块和顶盖之间存在电位差而发生电化学腐蚀,从而降低了储能装置的安全性和使用可靠性。
发明内容
本申请提供一种端盖组件、储能装置和用电设备,提高储能装置的安全性和使用可靠性。
第一方面,本申请提供一种端盖组件,应用于储能装置。所述端盖组件包括顶盖和正极单元,所述正极单元安装于所述顶盖,所述顶盖设有第一盲孔;所述正极单元包括第一上塑胶、第一导电压块和电阻构件,所述第一上塑胶安装于所述顶盖,且位于所述顶盖和所述第一导电压块之间,所述第一上塑胶设有贯穿的第一通孔,所述第一通孔与所述第一盲孔连通;所述第一导电压块固定连接于所述第一上塑胶,所述第一导电压块设有第一孔,所述第一孔的开口位于所述第一导电压块的底面,所述第一孔与所述第一通孔连通;所述电阻构件穿设于所述第一通孔,所述电阻构件的一端抵持所述第一孔的孔壁面,且与所述第一导电压块电连接,所述电阻构件的另一端抵持于所述第一盲孔的孔壁面,且与所述顶盖电连接。
其中,所述电阻构件的电阻率大于所述顶盖的电阻率和所述第一导电压块的电阻率。
其中,所述顶盖设有两个第一盲孔,两个所述第一盲孔间隔设置;所述第一上塑胶设有两个所述第一通孔,两个所述第一通孔间隔设置,且分别与两个所述第一盲孔连通;所述第一导电压块设有两个所述第一孔,两个所述第一孔间隔设置,且分别与两个所述第一通孔连通;所述电阻构件有两个,每一所述电阻构件穿设于一个所述第一通孔,每一所述电阻构件的一端抵持一个所述第一孔的孔壁面,且与一个所述第一导电压块电连接,每一所述电阻构件的另一端抵持一个所述第一盲孔的孔壁面,且与一个所述顶盖电连接。
其中,两个所述电阻构件并联后的电阻率在1×103ohm/sq至1×1010ohm/sq之间。
其中,所述顶盖设有第一安装孔,所述第一安装孔沿所述顶盖的厚度方向贯穿所述顶盖,两个所述第一盲孔分别位于所述第一安装孔的相对两侧,且均与所述第一安装孔间隔设置;所述第一上塑胶设有第一配合孔,所述第一配合孔沿所述第一上塑胶的厚度方向贯穿所述第一上塑胶的底面,且与所述第一安装孔连通,两个所述第一通孔分别位于所述第一配合孔的相对两侧,且均与所述第一配合孔间隔设置;所述第一导电压块设有第二配合孔,所述第二配合孔沿所述第一导电压块的厚度方向贯穿所述第一导电压块,且与所述第一配合孔连通,两个所述第一孔分别位于所述第二配合孔的相对两侧,且均与所述第二配合孔间隔设置;所述正极单元还包括第一极柱,所述第一极柱穿设于所述第一安装孔、所述第一配合孔和所述第二配合孔,且固定连接于所述第一导电压块;所述第一极柱的电阻率小于所述电阻构件的电阻率。
其中,每一所述第一孔靠近所述第二配合孔一侧的孔壁与所述第二配合孔靠近所述第一孔一侧的孔壁之间的距离在2.5mm~5.5mm之间。
其中,两个所述第一孔的中心连线与所述第一上塑胶的延伸方向之间的夹角为钝角。
其中,所述第一上塑胶设有第一凸环,所述第一凸环自所述第一上塑胶向所述第一导电压块的方向延伸,且环绕所述第一通孔的周缘设置,所述电阻构件还穿设于所述第一凸环的内侧,所述电阻构件的外表面与所述第一凸环的内表面贴合。
其中,所述电阻构件的电阻率在1×103ohm/sq至1×1010ohm/sq之间。
其中,所述端盖组件还包括负极单元,所述负极单元安装于所述顶盖,且与所述正极单元间隔设置,所述负极单元包括第二上塑胶和第二导电压块,所述负极单元的第二上塑胶安装于所述顶盖的顶侧,且位于所述顶盖和所述负极单元的第二导电压块之间,所述第二导电压块固定连接于所述第二上塑胶。
其中,所述顶盖还设有第二盲孔,所述第二盲孔的开口位于所述顶盖的顶面,所述第二盲孔与所述第一盲孔间隔设置;所述负极单元的第二上塑胶设有第二通孔,所述第二通孔沿所述负极单元的第二上塑胶的厚度方向贯穿所述负极单元的第二上塑胶的底面;所述负极单元的第二导电压块设有第二孔,所述第二孔的开口位于所述负极单元的第二导电压块的底面,所述第二孔与所述负极单元的第二通孔连通;所述负极单元还包括绝缘柱,所述绝缘柱穿设于所述负极单元的第二通孔,所述绝缘柱的一端抵持所述负极单元的第二孔的孔壁面,所述绝缘柱的另一端抵持所述第二盲孔的孔壁面。
其中,所述绝缘柱采用陶瓷制成。
其中,所述正极单元的第一导电压块和所述负极单元的第二导电压块镜像对称。
第二方面,本申请提供一种储能装置,包括壳体和上述任一种端盖组件,所述端盖组件安装于所述壳体的顶侧。
第三方面,本申请提供一种用电设备,包括上述储能装置,所述储能装置为所述用电设备供电。
本申请所示的端盖组件中,通过设置电阻构件并使电连接于顶盖和第一导电压块之间,可以实现顶盖与第一导电压块等电位,避免顶盖因与第一导电压块之间存在电位差而发生电化学腐蚀,从而可以提高储能装置的安全性和使用可靠性。同时,电阻构件设于顶盖的两个第一盲孔和第一导电压块的两个第一孔之间,可以对第一导电压块进行限位,防止其相对于顶盖转动,从而可以提升储能装置在组装过程中的抗扭矩能力。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例所需要使用的附图进行说明。
图1是本申请实施例提供的储能装置的结构示意图;
图2是图1所示储能装置中端盖组件的结构示意图;
图3是图2所示端盖组件的分解结构示意图;
图4是图2所示端盖组件沿A-A处剖开后的剖面结构示意图;
图5是图3所示端盖组件中下塑胶、顶盖、防爆阀、正极应激件和负极应激件的结构示意图;
图6是图3所示端盖组件中正极单元的分解结构示意图;
图7是图6所示正极单元中第一上塑胶沿B-B方向剖开后的剖面结构示意图;
图8是图6所示正极单元中第一上塑胶的另一角度的结构示意图;
图9是图6所示正极单元中第一导电压块的另一角度的结构示意图;
图10是图3所示端盖组件中负极单元的分解结构示意图;
图11是图10所示负极单元的第二上塑胶沿C-C方向剖开后的剖面结构示意图;
图12是图10所示负极单元中第二上塑胶的另一角度的结构示意图;
图13是图10所示负极单元中第二导电压块的另一角度的结构示意图。
图中各附图标记对应的名称为:
储能装置100,壳体110,端盖组件120,下塑胶10,顶盖20,防爆阀30,正极应激件40,负极应激件50,正极单元60,负极单元70,防爆栅栏11,第一注液孔101,第一避让槽102,第二避让槽103,第三安装孔104,第四安装孔105,防爆孔201,第二注液孔202,第一装配孔203,第二装配孔204,第一安装孔205,第二安装孔206,第一盲孔207,第二盲孔208,第一上塑胶61,第一导电压块62,第一极柱63,第一密封圈64,第一转接片65,电阻构件66,第一部分611,第二部分612,第一装配槽613,第一避让孔614,第一标识通孔615,第一槽顶壁面616,第一槽底壁面617,标识部611a,第一安装槽618,第一配合孔619,第一通孔620,第一凸环620a,第一延伸部分621,第一焊接部分622,第一顶面623,第一底面624,第二顶面625,第二底面626,第二配合孔627,装配部分628,连接部分629,第一孔630,第一法兰部分631,第一安装部分632,第一密封部分641,第二密封部分642,第二上塑胶71,第二导电压块72,第二极柱73,第二密封圈74,第二转接片75,绝缘柱76,第三部分711,第四部分712,第二装配槽713、第二避让孔714,第二标识通孔715,第二槽顶壁面716,第二槽底壁面717,第二安装槽718,第三配合孔719,第二通孔720,第二凸环720a,第二延伸部分721,第二焊接部分722,第三顶面723,第三底面724,第四配合孔727,第二孔730,第二法兰部分731,第二安装部分732,第三密封部分741,第四密封部分742。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
请参阅图1,图1是本申请实施例提供的储能装置100的结构示意图。其中,为了便于描述,定义储能装置100的长度方向为X轴方向,储能装置100的宽度方向为Y轴方向,储能装置100的高度方向为Z轴方向,X轴方向、Y轴方向和Z轴方向两两相互垂直。
储能装置100包括壳体110、电极组件(图未示)和端盖组件120。壳体110具有开口(图未示),壳体110设有收容腔(图未示)。电极组件收容于收容腔。收容腔还用于收容电解液,电芯浸泡于电解液中。端盖组件120安装于壳体110的顶侧,且封闭开口。示例性的,储能装置100为方块电池。在其他一些实施例中,储能装置100也可以为圆柱电池或其他电池。
需要说明的是,本申请中涉及的“顶”、“底”、“左”和“右”等方位用词,是参考附图1所示的方位进行的描述,以朝向Z轴正方向为“顶”,以朝向Z轴负方向为“底”,以朝向X轴正方向为“右”,以朝向X轴负方向为“左”,其并不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
请参阅图2至图4,图2是图1所示储能装置100中端盖组件120的结构示意图,图3是图2所示端盖组件120的分解结构示意图,图4是图2所示端盖组件120沿A-A处剖开后的剖面结构示意图。其中,沿“A-A处剖开”是指沿A-A线所在的平面剖开,后文类似的描述可作相同理解。
端盖组件120包括下塑胶10、顶盖20、防爆阀30、正极应激件40、负极应激件50、正极单元60和负极单元70。顶盖20安装于下塑胶10的顶侧。防爆阀30、正极应激件40和负 极应激件50均安装于顶盖20。正极应激件40和负极应激件50分别位于防爆阀30的相对两侧,且均与防爆阀30间隔设置。正极单元60和负极单元70均安装于顶盖20,且分别位于防爆阀30的相对两侧。其中,正极单元60和正极应激件40位于防爆阀30的同一侧,正极单元60覆盖正极应激件40。负极单元70和负极应激件50位于防爆阀30的同一侧,负极单元70覆盖负极应激件50。
正极应激件40和负极应激件50可均响应于储能装置100内部的压力增加而发生应激变形,当储能装置100内部的气体压力超过预设的压力阈值时,正极应激件40和负极应激件50能够发生应激形变分别与正极单元60的第一导电压块62和负极单元70的第二导电压块72接触,使得正极单元60和负极单元70发生外部短接情况,继而由于强大的短路电流使得正极应激件40与正极单元60的第一导电压块62的底部、以及负极单元70的第二导电压块72的底部产生熔断削顶现象而回归断路状态,从而避免储能装置100发生过度充电的情况,因此能够避免储能装置100发生爆炸,保证储能装置100的安全可靠性。
请参阅图5,图5是图3所示端盖组件120中下塑胶10、顶盖20、防爆阀30、正极应激件40和负极应激件50的结构示意图。
下塑胶10包括防爆栅栏11,防爆栅栏11贯穿下塑胶10的顶面(图未标)和底面(图未标)。其中,防爆栅栏11位于下塑胶10的中部。下塑胶10设有第一注液孔101、第一避让槽102、第二避让槽103、第三安装孔104和第四安装孔105。第一注液孔101沿下塑胶10的厚度方向(图示Z轴方向)贯穿下塑胶10。具体的,第一注液孔101位于下塑胶10的中部,且位于防爆栅栏11的右侧,并与防爆栅栏11间隔设置。示例性的,第一注液孔101为圆形孔。在其他一些实施例中,第一注液孔101也可以为方形孔或者其他异形孔。
沿X轴方向上,第一避让槽102和第二避让槽103分别位于防爆栅栏11的相对两侧,且均与防爆栅栏11间隔设置,并关于防爆栅栏11镜像对称。具体的,第一避让槽102位于防爆栅栏11的右侧,且位于第一注液孔101远离防爆栅栏11的一侧,并与第一注液孔101间隔设置。第二避让槽103位于第一注液孔101的左侧。其中,第一避让槽102和第二避让槽103的开口均位于下塑胶10的顶面(图未标)。第一避让槽102和第二避让槽103均自下塑胶10的顶面向底面(图未标)的方向(图示Z轴负方向)凹陷。示例性的,第一避让槽102和第二避让槽103均为圆形槽。在其他一些实施例中,第一避让槽102和第二避让槽103也可以为方形槽或其他异形槽。
第三安装孔104位于第一避让槽102远离第一注液孔101的一侧,且与第一避让槽102间隔设置。第四安装孔105位于第二避让槽103远离防爆栅栏11的一侧,且与第二避让槽103间隔设置。其中,第三安装孔104和第四安装孔105关于防爆栅栏11镜像对称。具体的,第三安装孔104和第四安装孔105均沿下塑胶10的厚度方向贯穿下塑胶10。示例性的,第三安装孔104和第四安装孔105均为圆形孔。在其他一些实施例中,第三安装孔104和第四安装孔105也可以为方形孔或者其他异形孔。
请结合参阅图4和图5,顶盖20设有防爆孔201、第二注液孔202、第一装配孔203、第二装配孔204、安装孔和盲孔。本实施例中,防爆孔201沿顶盖20的厚度方向(图示Z轴方向)贯穿顶盖20。具体的,防爆孔201位于顶盖20的中部。其中,防爆孔201可通过防爆栅栏11连通储能装置100的内部。示例性的,防爆孔201为椭圆形孔,第二注液孔202为圆形孔。在其他一些实施例中,防爆孔201可以圆形孔、方形孔或其他异形孔。
需要说明的是,本申请实施例描述端盖组件120时所提及的“外”和“内”等方位词,均以图1所示储能装置100的方位进行描述,以背离壳体110的一侧为“外”,以朝向壳体 110的一侧为“内”,后文类似的描述可做相同理解。
第二注液孔202位于顶盖20的中部,且位于防爆孔201的右侧,并与防爆孔201间隔设置。具体的,第二注液孔202沿顶盖20的厚度方向贯穿顶盖20。其中,第二注液孔202与下塑胶10的第一注液孔101连通。电解液可依次经顶盖20的第二注液孔202和下塑胶10的第二注液孔202注入壳体110(如图1所示)的收容腔,以实现对储能装置100的电解液的灌注。示例性的,第二注液孔202为圆形孔。在其他一些实施例中,第二注液孔202可以为方形孔或者其他异形孔。
沿X轴方向上,第一装配孔203和第二装配孔204分别位于防爆孔201的相对两侧,且均与防爆孔201间隔设置,并关于防爆孔201镜像对称。本实施例中,第一装配孔203位于防爆孔201的右侧,且位于第二注液孔202远离防爆孔201的一侧,并与防爆孔201间隔设置。第二装配孔204位于第一注液孔101的左侧。具体的,第一装配孔203和第二装配孔204均沿顶盖20的厚度方向贯穿顶盖20。其中,第一装配孔203与第一避让槽102连通,第二装配孔204与第二避让槽103连通。示例性的,第一装配孔203和第二装配孔204均为圆形孔。在其他一些实施例中,第一装配孔203和第二装配孔204也可以为方形孔或其他异形孔。
安装孔位于顶盖20的边缘,且与第一装配孔203和第二装配孔204间隔设置。具体的,安装孔沿顶盖20的厚度方向贯穿顶盖20。本实施例中,安装孔有两个,两个安装孔分别为第一安装孔205和第二安装孔206。具体的,第一安装孔205位于第一装配孔203远离第二注液孔202的一侧,且与第一装配孔203间隔设置。第二安装孔206位于第二装配孔204远离防爆孔201的一侧,且与第二装配孔204间隔设置。其中,第一安装孔205和第二安装孔206关于防爆孔201镜像对称。此外,第一安装孔205与下塑胶10的第三安装孔104连通,第二安装孔206与下塑胶10的第四安装孔105连通。示例性的,第一安装孔205和第二安装孔206均为圆形孔。在其他一些实施例中,第一安装孔205和第二安装孔206也可以为方形孔或者其他异形孔。
盲孔与第一安装孔205和第二安装孔206间隔设置。具体的,盲孔的开口位于顶盖20的顶面,且自顶盖20的顶面向顶盖20的底面的方向(图示Z轴的负方向)凹陷。本实施例中,盲孔有四个,四个盲孔分别为两个第一盲孔207和两个第二盲孔208。两个第一盲孔207位于第一安装孔205的相对两侧,且与第一安装孔205间隔设置,并关于第一安装孔205镜像对称。具体的,一个第一盲孔207位于第一安装孔205远离第一装配孔203的一侧,另一个第一盲孔207位于第一安装孔205靠近第一装配孔203的一侧,且与第一装配孔203间隔设置。其中,两个第一盲孔207的中心连线与顶盖20的长度方向之间的夹角为钝角α。换言之,两个第一盲孔207关于第一安装孔205倾斜对称。
两个第二盲孔208位于第二安装孔206的相对两侧,且与第二安装孔206间隔设置,并关于第二安装孔206镜像对称。具体的,一个第二盲孔208位于第二安装孔206远离第二装配孔204的一侧,另一个第二盲孔208位于第二安装孔206靠近第二装配孔204的一侧,且与第二装配孔204间隔设置。其中,两个第二盲孔208的中心连线与顶盖20的长度方向之间的夹角为钝角β。换言之,两个第二盲孔208关于第二安装孔206倾斜对称。
本实施例中,沿X轴方向上,两个第一盲孔207和两个第二盲孔208关于防爆孔201镜像对称。示例性的,第一盲孔207和第二盲孔208均为圆形孔。在其他一些实施例中,第一盲孔207和第二盲孔208也可以为方形孔或者其他异形孔。
防爆阀30安装于防爆孔201,且固定连接于防爆孔201的孔壁。示例性的,防爆阀30可通过焊接的方式固定连接于防爆孔201的孔壁,以安装于防爆孔201。可以理解的是,由 于防爆孔201连通储能装置100的内部和外部,当储能装置100内部的气压过大时,防爆阀30会在气压的作用下发生破裂,储能装置100内部的气体能依次经过下塑胶10的防爆栅栏11和防爆孔201及时排向储能装置100的外部,避免储能装置100发生爆炸,提高储能装置100的使用可靠性。
正极应激件40安装于第一装配孔203,且固定连接于第一装配孔203的孔壁。负极应激件50安装于第二装配孔204,且固定连接于第二装配孔204的孔壁。其中,第一避让槽102可避让正极应激件40,第二避让槽103可避让负极应激件50。示例性的,正极应激件40可通过焊接的方式固定连接于第一装配孔203的孔壁,以安装于第一装配孔203,和/或,负极应激件50可通过焊接的方式固定连接于第二装配孔204的孔壁,以安装于第二装配孔204。
请参阅图4、图6和图7,图6是图3所示端盖组件120中正极单元60的分解结构示意图,图7是图6所示正极单元60中第一上塑胶61沿B-B处剖开后的剖面结构示意图。
正极单元60包括第一上塑胶61、第一导电压块62、第一极柱63、第一密封圈64、第一转接片65和电阻构件66。第一上塑胶61安装于顶盖20,第一导电压块62固定连接于第一上塑胶61,并经由第一上塑胶61与顶盖20绝缘,电阻构件66电连接第一导电压块62与顶盖20,第一极柱63固定连接于第一导电压块62,第一密封圈64套设于第一极柱63,且用于使第一极柱63和顶盖20绝缘,第一转接片65固定连接于第一极柱63。
第一上塑胶61包括第一部分611和第二部分612,第二部分612固定连接于第一部分611的右侧。本实施例中,第一部分611和第二部分612一体成型。其中,第一部分611和第二部分612的颜色均为第一颜色。示例性的,第一上塑胶61采用塑胶制成,第一颜色可为黑色或蓝色。
第一部分611设有第一装配槽613、第一避让孔614和第一标识通孔615。第一装配槽613的开口位于第一部分611的右侧面。第一装配槽613自第一部分611的右侧面向左侧面(图未标)的方向凹陷(图示X轴负方向)凹陷。其中,第一装配槽613包括第一槽顶壁面616和第一槽底壁面617,沿Z轴方向上,第一槽顶壁面616和第一槽底壁面617间隔且相对设置。
第一避让孔614的开口位于第一部分611的底面(图未标)。具体的,第一避让孔614的开口位于第一部分611的底面的中间区域。第一避让孔614自第一部分611的底面向第一装配槽613的方向(图示Z轴正方向)凹陷,且贯穿第一装配槽613的第一槽底壁面617,以与第一装配槽613连通。其中,第一避让孔614与正极应激件40相对设置。示例性的,第一避让孔614为圆形孔。在其他一些实施例中,第一避让孔614也可以为方形孔或其他异形孔。
第一标识通孔615的开口位于第一部分611的顶面(图未标)。具体的,第一标识通孔615的开口位于第一部分611的顶面的中间区域。第一标识通孔615自第一部分611的顶面向第一装配槽613的方向(图示Z轴负方向)凹陷,且贯穿第一装配槽613的第一槽顶壁面616,以与第一装配槽613连通。其中,第一标识通孔615呈“十”字型,以标识正极单元60的极性为正极。在其他一些实施例中,第一标识通孔615也可以呈其他形状,只要能标识正极单元60的极性为正极即可。
此外,第一部分611包括标识部611a,标识部611a位于第一部分611远离第二部分612的一端,以标识正极单元60的极性。其中,标识部611a为切角。在装配端盖组件120时,操作人员或智能化设备可依据标识部611a快速识别正极单元60的第一上塑胶61,以与负极单元70的第二上塑胶71区别开来,提高装配效率。换言之,标识部611a的设计可作为第一上塑胶61的防呆结构,防止操作人员弄混正极单元60的第一上塑胶61和负极单元70的第 二上塑胶71。
第二部分612设有第一安装槽618、第一配合孔619和第一通孔620。第一安装槽618的开口位于第二部分612的顶面(图未标)。第一安装槽618自第二部分612的顶面向底面(图未标)的方向(图示Z轴负方向)凹陷,且与第一装配槽613连通。其中,第一安装槽618包括槽底壁面(图未标)。
第一配合孔619沿第二部分612的厚度方向贯穿第二部分612的底面。具体的,第一配合孔619的开口位于第二部分612的底面。第一配合孔619自第二部分612的底面向第一安装槽618的方向(图示Z轴正方向)凹陷,且贯穿第一安装槽618的槽底壁面,以与第一安装槽618连通。其中,第一配合孔619与顶盖20的第一安装孔205连通。示例性的,第一配合孔619为圆形孔。在其他一些实施例中,第一配合孔619也可以为方形孔或其他异形孔。
第一通孔620沿第一上塑胶61的厚度方向贯穿第二部分612的底面。具体的,第一通孔620自第二部分612的底面向第一安装槽618的方向(图示Z轴正方向)凹陷,且贯穿第一安装槽618的槽底壁面。本实施例中,第一通孔620有两个,两个第一通孔620位于第一配合孔619的相对两侧,且与第一配合孔619间隔设置,并关于第一配合孔619镜像对称。具体的,一个第一通孔620位于第一配合孔619远离第一避让孔614的一侧,且与一个第一盲孔207连通,另一个第一通孔620位于第一配合孔619靠近第一避让孔614的一侧,且与另一个第一盲孔207连通。
请参阅图8,图8是图6所示正极单元60中第一上塑胶61的另一角度的结构示意图。两个第一通孔620的中心线与第一上塑胶61的长度方向的夹角为钝角R。换言之,两个第一通孔620相对于第一配合孔619倾斜对称。示例性的,第一通孔620为圆形孔。在其他一些实施例中,第一通孔620也可以为方形孔或其他异形孔。
此外,第一上塑胶61还设有两个第一凸环620a,两个第一凸环620a均自第一上塑胶61向第一导电压块62的方向延伸,且分别环绕两个第一通孔620的周缘设置。具体的,第一凸环620a设于第一安装槽618的槽底壁面,且自第一安装槽618的槽底壁面背离第一安装槽618的槽底壁面的方向(图示Z轴正方向)延伸。其中,第一凸环620a的内表面与第一通孔620的孔壁齐平。
请结合参阅图4、图6和图9,图9是图6所示正极单元60中第一导电压块62的另一角度的结构示意图。
第一导电压块62固定连接于第一上塑胶61。其中,第一上塑胶61位于第一导电压块62和顶盖20之间。第一导电压块62包括第一延伸部分621和第一焊接部分622,第一焊接部分622固定连接于第一延伸部分621的右侧。需要说明的是,第一焊接部分622为第一导电压块62中用于与汇流排焊接的部分。本实施例中,第一延伸部分621和第一焊接部分622一体成型,且第一延伸部分621和第一焊接部分622的颜色均为第二颜色,第二颜色与第一颜色不同。示例性的,第一导电压块62可采用铝制成,第二颜色可为银色或灰色。
第一延伸部分621包括第一顶面623和第一底面624,第一顶面623和第一底面624相背设置。示例性的,第一顶面623和第一底面624均为平面。具体的,第一延伸部分621容纳于第一装配槽613,且部分裸露于第一避让孔614,并位于正极应激件40的正上方。其中,第一延伸部分621与第一装配槽613过盈配合。第一延伸部分621的第一顶面623抵持第一装配槽613的第一槽顶壁面616,且遮挡第一上塑胶61的第一标识通孔615。第一延伸部分621的第一底面624抵持第一装配槽613的第一槽底壁面617,且覆盖第一上塑胶61的第一避让孔614。
可以理解的是,由于第一延伸部分621和第一上塑胶61的颜色不同,第一标识通孔615露出第一延伸部分621的第一顶面623,可形成具有强烈色差的正极标识“+”,从而标识正极单元60的极性。而且,由于第一延伸部分621与第一装配槽613过盈配合,第一延伸部分621的第一顶面623与第一装配槽613的第一槽顶壁面616紧密贴合而不会存在间隙,第一标识通孔615不会悬空而在第一延伸部分621的第一顶面623形成阴影,提高了极性标识的识别度。
第一焊接部分622的厚度大于第一延伸部分621的厚度。第一焊接部分622包括第二顶面625和第二底面626,第二顶面625和第二底面626相背设置。其中,第一焊接部分622的第二底面626与第一延伸部分621的第一底面624齐平,第一焊接部分622的第二顶面625相对第一延伸部分621的第一顶面623凸出。
第一焊接部分622设有第二配合孔627和第一孔630。第二配合孔627位于第一焊接部分622的中部。第二配合孔627沿第一焊接部分622的厚度方向(图示Z轴方向)贯穿第一焊接部分622。示例性的,第二配合孔627为圆形孔。在其他一些实施例中,第二配合孔627也可以为方形孔或其他异形孔。
第一孔630与第二配合孔627间隔设置。具体的,第一孔630的开口位于第一焊接部分622的底面,且第一孔630自第一焊接部分622的底面向顶面的方向(图示Z轴正方向)凹陷。示例性的,第一孔630可以通过机械切削工艺形成。
本实施例中,第一孔630有两个,两个第一孔630位于第二配合孔627的相对两侧,且均与第二配合孔627间隔设置,并关于第二配合孔627镜像对称。具体的,一个第一孔630位于第二配合孔627远离第一延伸部分621的一侧,另一个第一孔630位于第二配合孔627靠近第一延伸部分621的一侧。其中,每一第一孔630靠近第二配合孔627一侧的孔壁与第二配合孔627靠近第一孔630一侧的孔壁之间的距离在2.5mm~5.5mm之间,以避免第二配合孔627与第一孔630发生干涉。示例性的,每一第一孔630靠近第二配合孔627一侧的孔壁与第二配合孔627靠近第一孔630一侧的孔壁之间的距离为3mm。本实施例中,第一孔630为圆形孔。在其他一些实施例中,第一孔630也可以为方形孔或者其他异形孔。
此外,两个第一孔630的中心连线与第一导电压块62的长度方向之间的夹角为钝角γ。换言之,两个第一孔630相对于第二配合孔627倾斜对称。可以理解的是,两个第一孔630相对于第二配合孔627倾斜对称,可在不需要增大第一焊接部分622的面积的前提,保证第一孔630与第二配合孔627之间的距离足够大,以避免第二配合孔627与第一孔630之间发生干涉。
具体的,第一焊接部分622安装于第一安装槽618,第一焊接部分622的第二配合孔627与第一上塑胶61的第一配合孔619连通,两个第一孔630分别与第一上塑胶61的两个第一通孔620连通。其中,第一焊接部分622的第二顶面625相对第一上塑胶61中第一部分611的顶面凸出,第一焊接部分622的周面与第一部分611朝向第二部分612的表面(即第一部分611的右侧面)间隔设置。可以理解的是,由于第一焊接部分622的第二顶面625相对第一上塑胶61中第一部分611的顶面凸出,在连接片焊接于第一焊接部分622的第二顶面625时,不仅可避免连接片刮花或划伤第一上塑胶61的第一部分611,保证储能装置100的使用可靠性,还可以避免储能装置100连接巴片连接第一焊接部分622时发生翘起,导致电连接可靠性降低。
本实施例中,第一焊接部分622包括装配部分628和连接部分629,连接部分629固定连接于装配部分628的顶侧。连接部分629的周面环绕装配部分628的周面设置,且相对装 配部分628的周面凸出。其中,装配部分628的底面为第一焊接部分622的底面,连接部分629的顶面为第一焊接部分622的顶面。
具体的,装配部分628安装于第一安装槽618;连接部分629相对第一安装槽618凸出,且抵持于第一上塑胶61中第二部分612的顶面。其中,连接部分629的周面与第一上塑胶61中第一部分611的右侧面间隔且相对设置。应当理解的是,第一上塑胶61中第一部分611的右侧面与连接部分629的周面之间的间隙可作为误差容置区,当第一上塑胶61因热收缩而发生收缩时,第一上塑胶61与第一导电压块62之间仍能装配到位,从而保证第一上塑胶61和第一导电压块62之间的装配可靠性。
请参阅图6。本实施例中,电阻构件66有两个。具体的,每一电阻构件66穿设于一个第一通孔620,每一电阻构件66的一端伸入一个第一盲孔207,且抵持第一盲孔207的孔壁面,并与顶盖20电连接,每一电阻构件66的另一端伸入一个第一孔630,且抵持第一孔630的孔壁面,并与第一导电压块62电连接。换言之,电阻构件66电连接于顶盖20和第一导电压块62之间。
本实施例中,电阻构件66具有预定阻值。其中,每个电阻构件66的电阻值在0.1千欧~8000千欧之间,即,每个电阻构件66的电阻率在1×103ohm/sq至1×1010ohm/sq之间;两个电阻构件66并联后的电阻值在0.05千欧~4000千欧之间,即,两个电阻构件66并联后的电阻率在1×103ohm/sq至1×1010ohm/sq之间。另外,每一电阻构件66的电阻率大于顶盖20的电阻率和第一导电压块62的电阻率。需要说明的是,电阻率是描述导体导电性能的物理量,电阻率的单位为欧姆/平方米,符号为ohm/sq。
通过在具有密封性能的弹性材料中掺杂导电材料可以制成电阻构件66。示例性的,弹性材料可以为导电氟橡胶、导电三元乙丙橡胶和导电丁腈橡胶等材料中的一种或多种,导电材料可以为导电碳纤维、导电碳粉、导电陶瓷或者金属粉末等材料中的一种或多种。可以理解的是,在掺杂过程中,通常会出现导电材料分布不均匀的情况,使得制成的电阻构件66的电阻值并不完全相同,而是在一定范围内变化。本实施例中,采用两个电阻构件66,可以提高第一导电压块62和顶盖20之间的弱导电值的精确性,提高储能装置100的一致性。而且,将电阻构件66安装至储能装置100之前,先测试电阻构件66的电阻值,再通过两两配对的方式将不同电阻值的电阻构件66并联连接,以组合得到趋近于标准弱导电连接的并联电阻值,从而提升用电设备中不同储能装置100之间的一致性,进而延长用电设备的使用寿命。
本实施例中,通过在第一导电压块62和顶盖20之间设置电阻构件,可以使得顶盖20和第一导电压块62都带正电,从而防止顶盖和储能装置的壳体110被电解液腐蚀,从而可以提高储能装置100的安全性和使用可靠性。另外,电阻构件66还具有限位作用,可以防止第一导电压块62在端盖组件120的装配过程中相对于顶盖20发生转动,从而可以提升储能装置100在组装过程中的抗扭矩能力。
其中,每一电阻构件66还穿设于一个第一凸环620a的内侧,且电阻构件66的外表面与第一凸环620a的内表面贴合。第一凸环620a可以起到定位电阻构件66的作用,且能够使电阻构件66保持竖直状态,避免电阻构件66在端盖组件120的装配过程中倾斜或发生位移,保证电阻构件66在端盖组件120中的装配稳定性。
请继续参阅图4和图6。第一极柱63包括第一法兰部分631和第一安装部分632,第一安装部分632固定连接于第一法兰部分631的顶侧。具体的,第一安装部分632穿设于下塑胶10的第三安装孔104、顶盖20的第一安装孔205、第一上塑胶61的第一配合孔619和第一导电压块62的第二配合孔627,且固定连接于第一导电压块62的第二配合孔627的孔壁。 示例性的,第一安装部分632可通过铆接或焊接的方式固定连接于第一导电压块62的第二配合孔627的孔壁。其中,第一法兰部分631可位于下塑胶10的内侧,且第一法兰部分631的顶面可抵持下塑胶10。另外,第一极柱63的电导大于电阻构件66的电导。
第一密封圈64包括第一密封部分641和第二密封部分642,第二密封部分642固定连接于第一密封部分641的底部,且环绕第一密封部分641设置。具体的,第一密封圈64套设于第一极柱63的第一安装部分632。其中,第一密封部分641的顶面(图未标)抵持于第一上塑胶61的底面,部分第一密封部分641夹持于第一极柱63的第一安装部分632和顶盖20的第一安装孔205的孔壁之间,部分第一密封部分641夹持于第一极柱63的第一安装部分632和下塑胶10的第三安装孔104的孔壁之间。第二密封部分642可位于下塑胶10的内部,且可夹持于下塑胶10和第一极柱63的第一法兰部分631之间。
需要说明的是,第一密封圈64不仅可以保证第一极柱63与下塑胶10和顶盖20之间的装配稳定性,还可以避免第一极柱63与顶盖20直接接触导电,实现第一极柱63与顶盖20之间的绝缘。
第一转接片65安装于下塑胶10的内侧,且位于第一极柱63的第一法兰部分631背离第一安装部分632的一侧。具体的,第一转接片65的一端电连接第一极柱63的第一法兰部分631,另一端电连接电芯的正极耳。示例性的,第一转接片65可通过焊接的方式电连接于第一极柱63的第一法兰部分631和/或电芯的正极耳。
请参阅图4、图10和图11,图10是图3所示端盖组件120中负极单元70的分解结构示意图,图11是图10所示负极单元70的第二上塑胶沿C-C处剖开后的剖面结构示意图。
负极单元70包括第二上塑胶71、第二导电压块72、第二极柱73、第二密封圈74、第二转接片75和绝缘柱76。其中,负极单元70中各部件的结构、部件与部件之间的装配关系、以及部件与下塑胶10和顶盖20之间的装配关系,均可参阅上文中正极单元60的相关描述,在此不再赘述。
第二上塑胶71安装于顶盖20的顶侧,且位于第一上塑胶61的左侧,并与第一上塑胶61间隔设置。第二上塑胶71包括第三部分711和第四部分712,第四部分712固定连接于第三部分711的左侧。第三部分711设有第二装配槽713、第二避让孔714和第二标识通孔715。第四部分712设有第二安装槽718、第三配合孔719和第二通孔720。其中,第三配合孔719与顶盖20的第二安装孔206连通。其中,第二装配槽713包括第二槽顶壁面716和第二槽底壁面717。第二避让孔714与负极应激件50相对设置。第二标识通孔715呈“一”字型,以标识负极单元70的极性为负极。在其他一些实施例中,第二标识通孔715也可以呈其他形状,只要能标识负极单元70的极性为负极即可。
需要说明的是,在其他一些实施例中,第三部分711也可以包括标识部(图未示),标识部用于标识负极单元70的极性。其中,第三部分711的标识部与第一部分611的标识部611a不同,以便于操作人员将负极单元70的第二上塑胶71与正极单元60的第一上塑胶61区别开来。
本申请实施例中,在第一上塑胶的第一部分上开设第一标识第一通孔,利用第一上塑胶的第一部分和第一导电压块的第一部分相配合,来使第一导电压块的第一部分和第一上塑胶的第一部分之间形成强烈的色差,来实现对正极单元60和负极单元70的极性标识,而不需要增设正极铆钉或负极铆钉等部件来标识极性,减少了端盖组件120的配件数量,降低了端盖组件120的结构复杂性,有利于实现储能装置100的轻量化设计。
第二通孔720沿第二上塑胶71的厚度方向贯穿第四部分712的底面。具体的,第二通孔 720自第四部分712的底面向第二安装槽718的方向(图示Z轴正方向)凹陷,且贯穿第二安装槽718的槽底壁面。本实施例中,第二通孔720有两个,两个第二通孔720位于第三配合孔719的相对两侧,且与第三配合孔719间隔设置,并关于第三配合孔719镜像对称。具体的,一个第二通孔720位于第三配合孔719远离第二避让孔714的一侧,且与一个第二盲孔208连通,另一个第二通孔720位于第三配合孔719靠近第二避让孔714的一侧,且与另一个第二盲孔208连通。
请参阅图12,图12是图10所示负极单元70中第二上塑胶71的另一角度的结构示意图。本实施例中,两个第二通孔720的中心线与第二上塑胶71的长度方向的夹角为钝角θ。换言之,两个第二通孔720相对于第三配合孔719倾斜对称。示例性的,第二通孔720为圆形孔。在其他一些实施例中,第二通孔720也可以为方形孔或其他异形孔。
此外,第二上塑胶71还设有两个第二凸环720a,两个第二凸环720a均自第二上塑胶71向第二导电压块72的方向延伸,且分别环绕两个第二通孔720的周缘设置。具体的,第二凸环720a设于第二安装槽718的槽底壁面,且自第二安装槽718的槽底壁面背离第二安装槽718的槽底壁面的方向(图示Z轴正方向)延伸。其中,第二凸环720a的内表面与第二通孔720的孔壁齐平。
请参阅图4、图10和图13,图13是图10所示负极单元70中第二导电压块72的另一角度的结构示意图。
第二导电压块72固定连接于第二上塑胶71,且第二导电压块72与第一导电压块62镜像对称。本实施例中,第一导电压块62与第二导电压块72的结构相同,二者镜像对称设置可以提高端盖组件120中第一导电压块的零件通配率。
第二导电压块72包括第二延伸部分721和第二焊接部分722,第二焊接部分722固定连接于第二延伸部分721的左侧。具体的,第二延伸部分721安装于第二装配槽713,第二焊接部分722安装于第二安装槽718,第二焊接部分722的第四配合孔727与第四部分712的第三配合孔719连通。其中,第二延伸部分721与第二装配槽713过盈配合。第二延伸部分721的第三顶面723抵持第二装配槽713的第二槽顶壁面716,且覆盖第二上塑胶71的第二标识通孔715。第二延伸部分721的第三底面724抵持第二装配槽713的第二槽底壁面717,且覆盖第二上塑胶71的第二避让孔714。
可以理解的是,由于第二焊接部分722与第二上塑胶71的颜色不同,第二标识通孔715露出第二焊接部分722的第三顶面723,可形成具有强烈色差的正极标识“-”,从而标识负极单元70的极性。此外,当储能装置100内部的气压过大时,正极应激件40和负极应激件50均经气压推动翻转,正极应激件40穿过第二避让孔714与第二焊接部分722接触,使顶盖20与第二导电压块72电连接,负极应激件50穿过第二避让孔714与第二焊接部分722接触,使顶盖20与第二导电压块72电连接,从而正极单元60和负极单元70导通而发生短路,储能装置100无法正常工作,储能装置100内部的气压也就无法进一步增大,从而提升了储能装置100的使用可靠性。
本实施例中,第二焊接部分722设有第四配合孔727和第二孔730。第四配合孔727位于第二焊接部分722的中部。第四配合孔727沿第二焊接部分722的厚度方向(图示Z轴方向)贯穿第二焊接部分722。示例性的,第四配合孔727为圆形孔。在其他一些实施例中,第四配合孔727也可以为方形孔或其他异形孔。
第二孔730与第四配合孔727间隔设置。具体的,第二孔730的开口位于第二焊接部分722的底面,且第二孔730自第二焊接部分722的底面向顶面的方向(图示Z轴正方向)凹 陷。示例性的,第二孔730可以通过机械切削工艺形成。
本实施例中,第二孔730有两个,两个第二孔730位于第四配合孔727的相对两侧,且均与第四配合孔727间隔设置,并关于第四配合孔727镜像对称。具体的,一个第二孔730位于第四配合孔727远离第二延伸部分721的一侧,另一个第二孔730位于第四配合孔727靠近第二延伸部分721的一侧。其中,每一第二孔730靠近第四配合孔727一侧的孔壁与第四配合孔727靠近第二孔730一侧的孔壁之间的距离在2.5mm~5.5mm之间,以避免第四配合孔727与第二孔730发生干涉。示例性的,每一第二孔730靠近第四配合孔727一侧的孔壁与第四配合孔727靠近第二孔730一侧的孔壁之间的距离为3mm。本实施例中,第二孔730为圆形孔。在其他一些实施例中,第二孔730也可以为方形孔或者其他异形孔。
此外,两个第二孔730的中心连线与负极单元70的第二导电压块72的长度方向之间的夹角为钝角δ。换言之,两个第二孔730相对于第四配合孔727倾斜对称。可以理解的是,两个第二孔730相对于第四配合孔727倾斜对称,可在不需要增大第二焊接部分722的面积的前提,保证第二孔730与第四配合孔727之间的距离足够大,以避免第四配合孔727与第二孔730之间发生干涉。
请继续参阅图9。本实施例中,绝缘柱76有两个。具体的,每一绝缘柱76穿设于一个第二上塑胶71的第二通孔720,每一绝缘柱76的底端伸入顶盖20的一个第二盲孔208,且绝缘柱76的底面抵持第二盲孔208的孔壁面,每一绝缘柱76的顶端伸入第二导电压块72的一个第二孔730,且绝缘柱76的顶面抵持第二导电压块72的第二孔730的孔壁面。需要说明的是,绝缘柱76还具有限位作用,可以防止第二导电压块72在端盖组件120的装配过程中发生转动,便于第二导电压块72与第二极柱73固定铆接。
本实施例中,绝缘柱76采用绝缘材质制成。示例性的,绝缘柱76的材质可以为陶瓷。可以理解的是,绝缘柱76可以由陶瓷等具有高熔点的绝缘材料制成,使得绝缘柱76具有绝缘作用,且相比塑料材质的绝缘柱76更耐高温而不易熔化,从而能够提高端储能装置100的安全性和使用可靠性。
其中,每一绝缘柱76还穿设于一个第二凸环720a的内侧,且绝缘柱76的外表面与第二凸环720a的内表面贴合。第二凸环720a可以起到定位绝缘柱76的作用,且能够使绝缘柱76保持竖直状态,避免绝缘柱76在端盖组件120的装配过程中倾斜或发生位移,保证绝缘柱76在端盖组件120中的装配稳定性。
本实施例中,当正极单元60与负极单元70均安装至顶盖20上时,沿X轴方向上,负极单元70中两个第二孔730与正极单元60中的两个第一孔630镜像对称,负极单元70的绝缘柱76与正极单元60的电阻构件66镜像对称。
第二极柱73包括第二法兰部分731和第二安装部分732,第二安装部分732固定连接于第二法兰部分731的顶侧。具体的,第二安装部分732穿设于下塑胶10的第四安装孔105、顶盖20的第二安装孔206、第二上塑胶71的第三配合孔719和第二导电压块72的第四配合孔727,且固定连接于第二导电压块72的第四配合孔727的孔壁。
第二密封圈74包括第三密封部分741和第四密封部分742,第四密封部分742固定连接于第三密封部分741的底部,且环绕第三密封部分741设置。具体的,第三密封部分741的顶面(图未标)抵持于第二上塑胶71的底面,部分第三密封部分741夹持于第二极柱73的第二安装部分732和顶盖20的第二安装孔206的孔壁之间,部分第三密封部分741夹持于第二极柱73的第二安装部分732和下塑胶10的第四安装孔105的孔壁之间。
第二转接片75安装于下塑胶10的内侧,且位于第二极柱73的第二法兰部分731背离第 二安装部分732的一侧。具体的,第二转接片75的一端电连接第二极柱73的第二法兰部分731,另一端电连接电芯的负极耳。示例性的,第二转接片75可通过焊接的方式电连接于第二极柱73的第二法兰部分731和/或电芯的负极耳。
本申请的实施例中,通过在第一导电压块62和顶盖20之间设置电阻构件66、在第二导电压块72和顶盖20之间设置绝缘柱76,一方面,电阻构件66具有弱导电性,可以实现顶盖20与第一导电压块62等电位,避免顶盖20因与第一导电压块62之间存在电位差而发生电化学腐蚀,从而可以提高储能装置100的安全性和使用可靠性;另一方面,绝缘柱76和电阻构件66均具有限位作用,可以防止第一导电压块62和第二导电压块72在端盖组件120的装配过程中发生转动,便于端盖组件120中的第一导电压块与第一极柱固定铆接。此外,绝缘柱76耐高温,不易熔化,也可以进一步提升储能装置100的安全性和使用可靠性。
可以理解的是,储能装置100还可以为电池模组、电池包或电池系统等具有储存电力功能的装置。比如储能装置100为电池模组,电池模组包括多个单体电池和多个连接片,每一连接片电连接于两个单体电池之间。其中,单体电池可采用上述实施例所示储能装置100所示的结构。此时,多个单体电池之间可串联设置,每一连接片的一端电连接一个单体电池的正极单元,另一端电连接另一个单体电池的负极单元。或者,多个单体电池之间也可以并联设置,部分连接片电连接于两个单体电池的正极单元之间,部分连接片电连接于两个单体电池的负极单元之间。示例性的,连接片可为铝巴。需要说明的是,也可以部分单体电池串联设置,部分单体电池并联设置,本申请实施例对电池包中多个单体电池的连接方式不做具体限制。
本申请还提供一种用电设备,用电设备包括上述储能装置100,储能装置100为用电设备供电。其中,用电设备可为新能源汽车、储电站和服务器等需要用电的设备。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种端盖组件(120),应用于储能装置(100),其特征在于,所述端盖组件(120)包括顶盖(20)和正极单元(60),所述正极单元(60)安装于所述顶盖(20),所述顶盖(20)设有第一盲孔(207);
    所述正极单元(60)包括第一上塑胶(61)、第一导电压块(62)和电阻构件(66),所述第一上塑胶(61)安装于所述顶盖(20),且位于所述顶盖(20)和所述第一导电压块(62)之间,所述第一上塑胶(61)设有贯穿的第一通孔(620),所述第一通孔(620)与所述第一盲孔(207)连通;
    所述第一导电压块(62)固定连接于所述第一上塑胶(61),所述第一导电压块(62)设有第一孔(630),所述第一孔(630)的开口位于所述第一导电压块(62)的底面,所述第一孔(630)与所述第一通孔(620)连通;
    所述电阻构件(66)穿设于所述第一通孔(620),所述电阻构件(66)的一端抵持所述第一孔(630)的孔壁面,且与所述第一导电压块(62)电连接,所述电阻构件(66)的另一端抵持于所述第一盲孔(207)的孔壁面,且与所述顶盖(20)电连接。
  2. 根据权利要求1所述的端盖组件(120),所述电阻构件(66)的电阻率大于所述顶盖(20)的电阻率和所述第一导电压块(62)的电阻率。
  3. 根据权利要求1或2所述的端盖组件(120),其特征在于,所述顶盖(20)设有两个第一盲孔(207),两个所述第一盲孔(207)间隔设置;
    所述第一上塑胶(61)设有两个所述第一通孔(620),两个所述第一通孔(620)间隔设置,且分别与两个所述第一盲孔(207)连通;
    所述第一导电压块(62)设有两个所述第一孔(630),两个所述第一孔(630)间隔设置,且分别与两个所述第一通孔(620)连通;
    所述电阻构件(66)有两个,每一所述电阻构件(66)穿设于一个所述第一通孔(620),每一所述电阻构件(66)的一端抵持一个所述第一孔(630)的孔壁面,且与一个所述第一导电压块(62)电连接,每一所述电阻构件(66)的另一端抵持一个所述第一盲孔(207)的孔壁面,且与一个所述顶盖(20)电连接。
  4. 根据权利要求3所述的端盖组件(120),其特征在于,两个所述电阻构件(66)并联后的电阻率在1×103ohm/sq至1×1010ohm/sq之间。
  5. 根据权利要求3所述的端盖组件(120),其特征在于,所述顶盖(20)设有第一安装孔(205),所述第一安装孔(205)沿所述顶盖(20)的厚度方向贯穿所述顶盖(20),两个所述第一盲孔(207)分别位于所述第一安装孔(205)的相对两侧,且均与所述第一安装孔(205)间隔设置;
    所述第一上塑胶(61)设有第一配合孔(619),所述第一配合孔(619)沿所述第一上塑胶(61)的厚度方向贯穿所述第一上塑胶(61)的底面,且与所述第一安装孔(205)连通,两个所述第一通孔(620)分别位于所述第一配合孔(619)的相对两侧,且均与所述第一配 合孔(619)间隔设置;
    所述第一导电压块(62)设有第二配合孔(627),所述第二配合孔(627)沿所述第一导电压块(62)的厚度方向贯穿所述第一导电压块(62),且与所述第一配合孔(619)连通,两个所述第一孔(630)分别位于所述第二配合孔(627)的相对两侧,且均与所述第二配合孔(627)间隔设置;
    所述正极单元(60)还包括第一极柱(63),所述第一极柱(63)穿设于所述第一安装孔(205)、所述第一配合孔(619)和所述第二配合孔(627),且固定连接于所述第一导电压块(62);
    所述第一极柱(63)的电阻率小于所述电阻构件(66)的电阻率。
  6. 根据权利要求5所述的端盖组件(120),其特征在于,每一所述第一孔(630)靠近所述第二配合孔(627)一侧的孔壁与所述第二配合孔(627)靠近所述第一孔(630)一侧的孔壁之间的距离在2.5mm~5.5mm之间。
  7. 根据权利要求5或6所述的端盖组件(120),其特征在于,两个所述第一孔(630)的中心连线与所述第一上塑胶(61)的延伸方向之间的夹角为钝角。
  8. 根据权利要求1所述的端盖组件(120),其特征在于,所述第一上塑胶(61)设有第一凸环(620a),所述第一凸环(620a)自所述第一上塑胶(61)向所述第一导电压块(62)的方向延伸,且环绕所述第一通孔(620)的周缘设置,所述电阻构件(66)还穿设于所述第一凸环(620a)的内侧,所述电阻构件(66)的外表面与所述第一凸环(620a)的内表面贴合。
  9. 根据权利要求1所述的端盖组件(120),其特征在于,所述电阻构件(66)的电阻率在1×103ohm/sq至1×1010ohm/sq之间。
  10. 根据权利要求1所述的端盖组件(120),其特征在于,所述端盖组件(120)还包括负极单元(70),所述负极单元(70)安装于所述顶盖(20),且与所述正极单元(60)间隔设置,所述负极单元(70)包括第二上塑胶(71)和第二导电压块(72),所述负极单元(70)的第二上塑胶(71)安装于所述顶盖(20)的顶侧,且位于所述顶盖(20)和所述负极单元(70)的第二导电压块(72)之间,所述第二导电压块(72)固定连接于所述第二上塑胶(71)。
  11. 根据权利要求10所述的端盖组件(120),其特征在于,所述顶盖(20)还设有第二盲孔(208),所述第二盲孔(208)的开口位于所述顶盖(20)的顶面,所述第二盲孔(208)与所述第一盲孔(207)间隔设置;
    所述负极单元(70)的第二上塑胶(71)设有第二通孔(720),所述第二通孔(720)沿所述负极单元(70)的第二上塑胶(71)的厚度方向贯穿所述负极单元(70)的第二上塑胶(71)的底面;
    所述负极单元(70)的第二导电压块(72)设有第二孔(730),所述第二孔(730)的开口位于所述负极单元(70)的第二导电压块(72)的底面,所述第二孔(730)与所述负极单元(70)的第二通孔(720)连通;
    所述负极单元(70)还包括绝缘柱(76),所述绝缘柱(76)穿设于所述负极单元(70)的第二通孔(720),所述绝缘柱(76)的一端抵持所述负极单元(70)的第二孔(730)的孔壁面,所述绝缘柱(76)的另一端抵持所述第二盲孔(208)的孔壁面。
  12. 根据权利要求11所述的端盖组件(120),其特征在于,所述绝缘柱(76)采用陶瓷制成。
  13. 根据权利要求10至12中任一项所述的端盖组件(120),其特征在于,所述正极单元(60)的第一导电压块(62)和所述负极单元(70)的第二导电压块(72)镜像对称。
  14. 一种储能装置(100),其特征在于,包括壳体(110)和如权利要求1至13中任一项所述的端盖组件(120),所述端盖组件(120)安装于所述壳体(110)的顶侧。
  15. 一种用电设备,其特征在于,包括如权利要求14所述的储能装置(100),所述储能装置(100)为所述用电设备供电。
PCT/CN2023/075255 2023-02-09 2023-02-09 端盖组件、储能装置和用电设备 WO2024164244A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/075255 WO2024164244A1 (zh) 2023-02-09 2023-02-09 端盖组件、储能装置和用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/075255 WO2024164244A1 (zh) 2023-02-09 2023-02-09 端盖组件、储能装置和用电设备

Publications (1)

Publication Number Publication Date
WO2024164244A1 true WO2024164244A1 (zh) 2024-08-15

Family

ID=92261916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075255 WO2024164244A1 (zh) 2023-02-09 2023-02-09 端盖组件、储能装置和用电设备

Country Status (1)

Country Link
WO (1) WO2024164244A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205508892U (zh) * 2016-04-01 2016-08-24 宁德时代新能源科技股份有限公司 二次电池的顶盖
CN207199688U (zh) * 2017-09-20 2018-04-06 宁德时代新能源科技股份有限公司 二次电池的顶盖组件及二次电池
CN207338516U (zh) * 2017-10-18 2018-05-08 宁德时代新能源科技股份有限公司 二次电池顶盖组件及二次电池
CN113488730A (zh) * 2021-06-25 2021-10-08 山东圣阳电源股份有限公司 方形铝壳锂离子电池及其电池盖板
CN216015523U (zh) * 2021-05-26 2022-03-11 厦门海辰新能源科技有限公司 电芯的顶盖组件和电芯
CN216120657U (zh) * 2021-10-18 2022-03-22 厦门海辰新能源科技有限公司 顶盖组件及二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205508892U (zh) * 2016-04-01 2016-08-24 宁德时代新能源科技股份有限公司 二次电池的顶盖
CN207199688U (zh) * 2017-09-20 2018-04-06 宁德时代新能源科技股份有限公司 二次电池的顶盖组件及二次电池
CN207338516U (zh) * 2017-10-18 2018-05-08 宁德时代新能源科技股份有限公司 二次电池顶盖组件及二次电池
CN216015523U (zh) * 2021-05-26 2022-03-11 厦门海辰新能源科技有限公司 电芯的顶盖组件和电芯
CN113488730A (zh) * 2021-06-25 2021-10-08 山东圣阳电源股份有限公司 方形铝壳锂离子电池及其电池盖板
CN216120657U (zh) * 2021-10-18 2022-03-22 厦门海辰新能源科技有限公司 顶盖组件及二次电池

Similar Documents

Publication Publication Date Title
CN115863863A (zh) 端盖组件、储能装置和用电设备
EP3734692B1 (en) Battery module and battery pack
CN115939611B (zh) 端盖组件、储能装置和用电设备
JP2023004982A (ja) リチウムイオン電池及びリチウムイオン電池を備えた電気自動車
EP2204863B1 (en) Battery module
EP3048657B1 (en) No-welding type battery pack using forced-inserting type rivet
CN101414668B (zh) 电池组及其制造方法
US8237409B2 (en) Protection circuit module of secondary battery and secondary battery using the same
KR101744092B1 (ko) 미세전류 전달부재를 갖는 이차 전지
JP4933411B2 (ja) 2次電池
CN106356490B (zh) 可再充电电池和包括可再充电电池的电池模块
WO2019244392A1 (ja) 電池モジュール
CN102959766B (zh) 具有新型结构的二次电池组
JP2010073696A (ja) 二次電池及びその製造方法
CN101459235B (zh) 保护电路组件和具有该保护电路组件的电池组
KR101679413B1 (ko) 중공형 이차전지
KR19990031352A (ko) 전지의 안전장치
CN110165094B (zh) 动力电池顶盖
WO2013118970A1 (ko) 신규한 구조의 전지셀 제조방법
KR100821858B1 (ko) 무용접 체결 방식의 전지팩
WO2013118989A1 (ko) 신규한 구조의 전지셀 제조방법
KR100477754B1 (ko) 전지 팩
KR20190102817A (ko) 이차 전지
WO2024164264A1 (zh) 端盖组件、储能装置和用电设备
CN220628156U (zh) 圆柱电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23920452

Country of ref document: EP

Kind code of ref document: A1