WO2024162388A1 - Hot-rolled steel sheet - Google Patents
Hot-rolled steel sheet Download PDFInfo
- Publication number
- WO2024162388A1 WO2024162388A1 PCT/JP2024/003062 JP2024003062W WO2024162388A1 WO 2024162388 A1 WO2024162388 A1 WO 2024162388A1 JP 2024003062 W JP2024003062 W JP 2024003062W WO 2024162388 A1 WO2024162388 A1 WO 2024162388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- hot
- rolled steel
- steel sheet
- rolling
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- This application discloses a hot-rolled steel sheet.
- Hot-rolled steel sheets are used as materials for automobile suspension parts, structural parts, frameworks, frame parts, etc.
- Patent Document 1 discloses a high-strength hot-rolled steel sheet with excellent punching workability, which has a specified composition and a specified steel structure.
- the inventors have discovered that by (1) using a slab with an appropriate chemical composition, (2) controlling the morphology of prior austenite grains by adjusting the finish rolling conditions during hot rolling, and (3) controlling the transformation behavior by controlling the cooling rate during cooling (for example, controlling the cooling conditions on the runout table), it is possible to manufacture a hot-rolled steel sheet that has an excellent balance of strength, ductility, and hole expandability, and also has excellent impact properties. Furthermore, the inventors have discovered that the hot-rolled steel sheet manufactured in this manner has a predetermined chemical composition and a characteristic steel structure, and thus has an excellent balance of strength, ductility, and hole expandability, and also has excellent impact properties.
- the prior austenite grain size is 25 ⁇ m or less
- the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%
- the area ratio of the region having a GAM value of 0.6° or less is 0% or more and less than 50%
- the area ratio of the region having a GAM value of 2.0° or more is more than 0% and 50% or less
- LGr average area of the projection length in the rolling direction of the prior austenite grains
- LGt average area of the projection length in the sheet thickness direction of the prior austenite grains
- LMr average area of the projection length in the rolling direction of the region having a GAM value of 2.0° or more
- LMt average area of the projection length in the sheet thickness direction of the region having a GAM value of 2.0° or more Hot-rolled steel sheet.
- the hot-rolled steel sheet disclosed herein has an excellent balance of strength, elongation, and hole expansion properties, and also has excellent impact properties.
- Hot-rolled steel sheet Hereinafter, one embodiment of a hot-rolled steel sheet will be described, but the hot-rolled steel sheet of the present disclosure is not limited to the following embodiment.
- the hot-rolled steel sheet of the present disclosure has, in mass%, C: 0.045% or more, 0.120% or less, Si: 0% or more, 3.00% or less, Mn: 1.20% or more, 2.60% or less, Ti: 0.020% or more, 0.180% or less, Al: 0.010% or more, 0.400% or less, P: 0% or more, 0.080% or less, S: 0% or more, 0.0100% or less, N: 0% or more, 0.0050% or less, O: 0% or more, 0.010% or less, Nb: 0% or more, 0.100% or less, V: 0% or more, 1.000% or less, Cu: 0% or more, 1.000% or less, Cr: 0% or more, 2.000% or less, Mo: 0% or more, 3.000% or less, Ni: 0% or more, 0.500% or less, B: 0% or more, 0.0100% or less, Ca: 0% or more, 0.0500% or less, Mg: 0% or more
- the prior austenite grain size is 25 ⁇ m or less.
- the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%
- the area ratio of the region having a GAM value of 0.6° or less is 0% or more and less than 50%
- the area ratio of the region having a GAM value of 2.0° or more is more than 0% and less than 50%.
- LGr average area of the projection length in the rolling direction of prior austenite grains
- LGt average area of the projection length in the sheet thickness direction of prior austenite grains
- LMr average area of the projection length in the rolling direction of regions having a GAM value of 2.0° or more
- LMt average area of the projection length in the sheet thickness direction of regions having a GAM value of 2.0° or more
- C (C: 0.045% or more, 0.120% or less) C is an element that increases the strength of a hot-rolled steel sheet. If the C content is too low, the region in which the GAM value is 0.6° or less becomes excessive, and the strength of the hot-rolled steel sheet is likely to decrease. If the content is too high, the region in which the GAM value is 2.0° or more becomes excessive, and the elongation and hole expandability of the hot-rolled steel sheet are likely to decrease. By setting the C content to 0.045% or more and 0.120% or less, the balance between the strength, elongation and hole expandability of the hot-rolled steel sheet is improved. It may be 0.060% or more, or 0.115% or less, 0.110% or less, 0.105% or less, or 0.100% or less.
- Si 0% or more, 3.00% or less
- Silicon acts as a deoxidizer, affects the morphology of carbides, and increases the tensile strength of the hot-rolled steel sheet.
- the Si content is 0% or more and 3.00% or less, the balance between the strength, elongation and hole expandability of the hot-rolled steel sheet is improved.
- the Si content is more than 0%, 0.001% or more, 0.005% or more, 0.010% or more, 0.030% or more, 0.050% or more, 0.100% or more, and 0.200% or more. , 0.300% or more, 0.400% or more, or 0.500% or more, and 2.50% or less, 2.00% or less, 1.80% or less, or 1.50% or less. Good too.
- Mn is an element that can increase the tensile strength of a hot-rolled steel sheet. If the Mn content is too low, the region with a GAM value of 0.6° or less becomes excessive, and the strength of the hot-rolled steel sheet is likely to decrease. On the other hand, if the Mn content is too high, the region in which the GAM value is 2.0° or more becomes excessive, and the elongation of the hot-rolled steel sheet is likely to decrease. By setting the Mn content to 20% or more and 2.60% or less, the balance of strength, elongation and hole expandability of the hot rolled steel sheet is improved. It may be 35% or more, or 1.40% or more, and may be 2.50% or less, 2.40% or less, 2.30% or less, or 2.20% or less.
- Ti is a strengthening element and can contribute to increasing the strength of the hot-rolled steel sheet by precipitation strengthening, fine grain strengthening, and/or dislocation strengthening. Ti is also an element that can act as a nucleus for transformation. In other words, in the hot-rolled steel sheet of the present disclosure, TiC is precipitated at a high density, and this can function as a nucleus for transformation. If the Ti content is too low, this function is not exerted, and the old On the other hand, if the Ti content is too high, excessive precipitates are formed, and the balance between the strength, elongation, and hole expandability of the hot-rolled steel sheet is easily deteriorated.
- the Ti content is 0.020% or more and 0.180% or less, so that the strength, elongation and hole expandability of the hot-rolled steel sheet are easily deteriorated.
- the spreadability balance is improved.
- the Ti content may be 0.040% or more, 0.060% or more, 0.080% or more, or 0.100% or more, and may be 0.175% or less, 0.170% or less, 0.165% or less. It may be 0.160% or less or 0.160% or less.
- Al 0.010% or more, 0.400% or less
- Al is an element that acts as a deoxidizer. If the Al content is too low, deoxidization is likely to be insufficient, inclusions are likely to be excessively generated, and the hole expandability of the hot-rolled steel sheet is likely to decrease. On the other hand, if the Al content is too high, cracks in the slab may occur, making hot rolling difficult. By setting the Al content to 400% or less, cracks in the slab are suppressed, and the balance between the strength, elongation, and hole expandability of the hot-rolled steel sheet is improved. % or more, 0.040% or more, or 0.050% or more, and may be 0.350% or less, 0.300% or less, 0.250% or less, or 0.200% or less.
- P is an element that segregates at grain boundaries in steel and promotes embrittlement of the grain boundaries. If the P content is too high, the elongation and hole expandability of the hot-rolled steel sheet are likely to decrease, and further, the embrittlement may occur.
- the P content is 0% or more and 0.080% or less, so that the slab can be easily cracked and hot-rolled.
- the P content is 0.001% or more, 0.002% or more, 0.003% or more, or 0.004% or more. It may be 0.004% or more, or 0.050% or less, 0.030% or less, 0.015% or less, or 0.010% or less.
- S is an element that generates inclusions such as MnS in steel and reduces the ductility of the hot-rolled steel sheet. If the S content is too high, excessive inclusions are generated, which reduces the hole expansion properties of the hot-rolled steel sheet.
- the S content is 0% or more and 0.0100% or less, so that the balance of the strength, elongation and hole expandability of the hot-rolled steel sheet is improved.
- the S content may be 0.0001% or more, 0.0010% or more, 0.0015% or more, or 0.0020% or more, and may be 0.0090% or less, 0.0075% or less, 0. It may be 0.0060% or less or 0.0050% or less.
- N is an element that forms coarse nitrides in steel and reduces the workability of hot-rolled steel sheets. If the N content is too high, excessive nitrides are generated, and the workability of the hot-rolled steel sheets is reduced. The elongation and hole expandability are likely to decrease, and furthermore, there is a risk that cracks in the slab due to embrittlement may occur, making hot rolling difficult.
- the N content By setting the N content to 0.0050% or less, cracking of the slab is suppressed, and the balance between the strength, elongation, and hole expandability of the hot-rolled steel sheet is improved. , 0.0005% or more, 0.0010% or more, or 0.0015% or more, and 0.0048% or less, 0.0045% or less, 0.0042% or less, or 0.0040% or less. Good too.
- O is an element that forms oxides and reduces the workability of hot-rolled steel sheets. If the O content is too high, oxides are generated in excess, and the hole expandability of the hot-rolled steel sheet is reduced.
- the O content is 0% or more and 0.010% or less, so that the balance of the strength, elongation, and hole expandability of the hot-rolled steel sheet is improved.
- the content may be 0.001% or more, and may be 0.008% or less, 0.006% or less, 0.005% or less, or 0.004% or less.
- the basic chemical composition of the hot-rolled steel sheet disclosed herein is as described above. Furthermore, the hot-rolled steel sheet disclosed herein may contain at least one of the following elements as necessary. These elements do not necessarily need to be contained, so the lower limit of their content is 0%.
- Nb 0% or more, 0.100% or less
- Nb is an element effective for controlling the morphology of carbides, similar to Ti, and may be added as desired.
- the Nb content is 0% or more and 0.100% or less.
- the Nb content is 0.001% or more, 0.003% or more, 0.005% or more, or It may be 0.007% or more, and may be 0.090% or less, 0.070% or less, 0.050% or less, 0.045% or less, 0.040% or less, 0.035% or less, or 0.030% or less. % or less.
- V is an element that can contribute to increasing the strength of a hot-rolled steel sheet by precipitation strengthening, fine grain strengthening, and/or dislocation strengthening, and may be added as desired.
- the V content is 0% or more and 1.000% or less.
- the V content is 0.001% or more. , 0.003% or more, 0.005% or more, or 0.007% or more, and may be 0.900% or less, 0.700% or less, 0.500% or less, 0.300% or less, 0. It may be 250% or less, 0.200% or less, 0.150% or less, or 0.100% or less.
- Cu is an element that can contribute to improving at least one of strength and corrosion resistance, and may be added as desired. On the other hand, excessive Cu content may lead to a decrease in toughness, etc.
- the Cu content is 0% or more and 1.000% or less.
- the Cu content may be 0.001% or more, 0.005% or more, or 0.010% or more, It may be 0.800% or less, 0.600% or less, 0.400% or less, 0.350% or less, 0.250% or less, or 0.150% or less.
- Cr 0% or more, 2.000% or less
- Cr is an element that can improve the hardenability of steel and contribute to improving at least one of strength and corrosion resistance, and may be added as desired.
- an excessive Cr content increases the alloy cost and
- the Cr content is 0% or more and 2.000% or less.
- the Cr content is 0.001% or more and 0.005% or less. or 0.010% or more, and may be 1.500% or less, 1.000% or less, 0.800% or less, 0.700% or less, 0.600% or less, or 0.500% or less. This is also fine.
- Mo 0% or more, 3.000% or less
- Mo is an element that can improve the hardenability of steel and contribute to improving at least one of strength and corrosion resistance, and may be added as desired. On the other hand, if Mo is contained in excess, deformation resistance during processing increases.
- the Mo content is 0% or more and 3.000% or less. % or more, 2.500% or less, 2.000% or less, 1.500% or less, 1.000% or less, 0.600% or less, 0.500% or less, 0.400% or less, or It may be 0.300% or less.
- Ni is an element that can improve the hardenability of steel and contribute to improving at least one of strength and heat resistance, and may be added as desired. On the other hand, if Ni is contained in an excessive amount, the effect becomes saturated and There is a risk of an increase in manufacturing costs.
- the Ni content is 0% or more and 0.500% or less.
- the Ni content is 0.001% or more and 0.005% or less. or 0.010% or more, and may be 0.450% or less, 0.400% or less, 0.350% or less, 0.300% or less, 0.250% or less, 0.200% or less, or 0 It may be 150% or less.
- B is an element beneficial for increasing the strength of steel and may be added as desired.
- the B content is 0% or more and 0.0100% or less.
- the amount may be 0.0001% or more, 0.0003% or more, or 0.0005% or more, and may be 0.0080% or less, 0.0060% or less, 0.0040% or less, 0.0035% or less, It may be 0.0030% or less, or 0.0025% or less.
- Ca 0% or more, 0.0500% or less
- Ca is an element capable of controlling the morphology of sulfides and may be added as desired. However, if an excessive amount of Ca is added, the effect becomes saturated and there is a risk of an increase in the manufacturing cost.
- the Ca content is 0% or more and 0.0500% or less.
- the Ca content is 0.0001% or more, 0.0003% or more, or 0.0005% or more. 0.0300% or less, 0.0100% or less, 0.0080% or less, 0.0060% or less, 0.0040% or less, 0.0035% or less, 0.0030% or less, or 0.0025% It may be the following.
- Mg 0% or more, 0.050% or less
- Mg is an element that can contribute to controlling the morphology of sulfides and may be added as desired. On the other hand, if Mg is contained in an excessive amount, there is a risk that the toughness will decrease.
- the Mg content is 0% or more and 0.050% or less.
- the Mg content may be 0.001% or more and 0.040% or less, 0.030% or less, 0.020% or less. It may be 0.015% or less, 0.010% or less, or 0.005% or less.
- REM 0% or more, 0.100% or less
- REM is an element that can control the morphology of sulfides by adding a small amount of it, similar to Ca, and may be added as desired.
- the REM content is 0% or more and 0.100% or less.
- the REM content is 0.001% or more, 0.003% or more, or 0.005% or more.
- the REM content may be 0.080% or less, 0.060% or less, or 0.040% or less.
- the "REM content” is the total content of these elements. It is.
- Bi 0% or more, 0.100% or less
- Bi is an element that can contribute to improving corrosion resistance and the like, and may be added as desired.
- the Bi content is 0% or more and 0.100% or less.
- the Bi content may be 0.001% or more or 0.002% or more, and may be 0.070% or less. It may be 0.050% or less, 0.030% or less, 0.010% or less, 0.008% or less, 0.006% or less, or 0.004% or less.
- Ta 0% or more, 0.100% or less
- Ta is an element that can contribute to controlling the morphology of carbides and increasing strength, and may be added as desired. However, if Ta is contained in excess, there is a risk of the toughness decreasing due to the precipitation of Ta carbides, etc.
- the Ta content is 0% or more and 0.100% or less.
- the Ta content is 0.001% or more, 0.005% or more, or 0.010% or more. Alternatively, it may be 0.080% or less, 0.060% or less, or 0.040% or less.
- Zr 0% or more, 0.500% or less
- Zr is an element that can contribute to controlling the morphology of sulfides and may be added as desired. However, if Zr is contained in an excessive amount, the effect becomes saturated and there is a risk of an increase in production costs.
- the Zr content is 0% or more and 0.500% or less.
- the Zr content is 0.001% or more, 0.005% or more, or 0.010% or more. Alternatively, it may be 0.400% or less, 0.300% or less, or 0.200% or less.
- Co is an element that can contribute to improving at least one of hardenability and heat resistance, and may be added as desired.
- the Co content is 0% or more and 3.000% or less. It may be 0.030% or more or 0.050% or more, and may be 2.000% or less, 1.000% or less, 0.800% or less, 0.600% or less, 0.400% or less, or 0.200% or less. , 0.180% or less, 0.160% or less, or 0.140% or less.
- Zn 0% or more, 0.200% or less
- Zn is an element that can control the morphology of inclusions and may be added as desired.
- the Zn content is 0% or more and 0.200% or less.
- the Zn content is 0.001% or more, 0.010% or more, 0.030% or more, or 0.050% or more. or may be 0.180% or less, 0.160% or less, or 0.140% or less.
- W is an element that can improve the hardenability of steel and contribute to improving strength, and may be added as desired. However, if W is contained in an excessive amount, there is a risk of coarse inclusions being generated.
- the W content is 0% or more and 0.200% or less.
- the W content is 0.001% or more, 0.010% or more, 0.030% or more, or 0. It may be 0.050% or more, or 0.180% or less, 0.160% or less, or 0.140% or less.
- Sb is an element that can contribute to improving corrosion resistance and may be added as desired. On the other hand, if Sb is contained in an excessive amount, it may cause a decrease in toughness.
- the Sb content is 0% or more and 0.500% or less.
- the Sb content may be 0.001% or more, 0.010% or more, 0.030% or more, or 0.050% or more. It may be 0.400% or less, 0.300% or less, or 0.200% or less.
- the As content is 0% or more and 0.050% or less.
- the As content may be 0.001% or more or 0.005% or more, and may be 0.030% or less, 0. It may be 0.010% or less, 0.009% or less, 0.008% or less, or 0.007% or less.
- Sn is an element that can contribute to improving corrosion resistance and may be added as desired. On the other hand, if Sn is contained in an excessive amount, it may cause a decrease in toughness.
- the Sn content is 0% or more and 0.050% or less.
- the Sn content may be 0.001% or more, 0.005% or more, or 0.010% or more, and 0.047% or less. It may be 0.045% or less, or 0.043% or less.
- the chemical composition of the hot-rolled steel sheet of the present disclosure includes the balance other than the above-mentioned components, namely Fe and impurities.
- the impurities are components that are mixed in due to various factors in the manufacturing process, including raw materials such as ores and scraps, when industrially manufacturing the hot-rolled steel sheet.
- the chemical composition of the above-mentioned hot-rolled steel sheet may be analyzed using a spark discharge optical emission spectrometer or similar.
- Values identified for C and S are determined by burning the sheet in an oxygen stream using a gas composition analyzer or similar and measuring using an infrared absorption method.
- Values identified for N are determined by melting a test piece taken from the hot-rolled steel sheet in a helium stream and measuring using a thermal conductivity method.
- Prior austenite grain size in the hot-rolled steel sheet of the present disclosure is 25 ⁇ m or less.
- the concentration of strain in the microstructure is alleviated, the mechanical properties of the hot-rolled steel sheet are improved, and the hole expandability and impact properties of the hot-rolled steel sheet are improved.
- the prior austenite grain size is 20 ⁇ m or less, 18 ⁇ m or less, 15 ⁇ m or less, 12 ⁇ m or less, 10 ⁇ m or less, or 8 ⁇ m or less
- the lower limit of the prior austenite grain size is not particularly limited, and may be more than 0 ⁇ m, 1 ⁇ m or more, 3 ⁇ m or more, 5 ⁇ m or more, or 7 ⁇ m or more.
- the "prior austenite grain size" of the hot-rolled steel sheet is the average grain size of the prior austenite grains.
- the average grain size of the prior austenite grains is measured as follows. First, a sample is taken at a quarter position from the end face in the sheet width direction of the hot-rolled steel sheet so that the metal structure of the cross section (sheet thickness direction x rolling direction cross section) with the sheet width direction as the normal direction can be observed.
- the size of the sample depends on the measuring device, but for example, it may be a rectangular parallelepiped with the full thickness in the sheet thickness direction, 15 mm in the rolling direction, and 10 mm in the sheet width direction.
- the observation surface is mirror-polished, and then corroded by the Bechet-Beaujard method using a saturated aqueous solution of picric acid.
- the grains that appear black due to corrosion are considered to be prior austenite grains.
- the observation surface on which the prior austenite grains are revealed is observed by an optical microscope, and eight or more fields of view with an area of 0.05 mm2 or more (total of 0.40 mm2 or more) are photographed. Then, the circle-equivalent diameter is calculated for each prior austenite grain from the steel structure photograph taken by the optical microscope.
- the circle-equivalent diameter is calculated as described above for all prior austenite grains included in each photographed field of view, except for prior austenite grains not entirely included in the photographed field of view, such as the end of the photographed field of view.
- the average grain size of the prior austenite grains is obtained by calculating the area-average value (average value weighted by area) of the circle-equivalent diameters of the prior austenite grains obtained in each photographed field of view.
- x/y position from the end face refers to a position that is moved in the width direction from the end face of the steel plate by a distance of x/y of the plate width toward the center of the steel plate. For example, if the width of the steel plate is 1 m, “1/4 position from the end face” refers to a position that is 0.25 m away from the end face of the steel plate in the width direction.
- plate thickness x/y position (where x and y are natural numbers satisfying x ⁇ y) refers to a position moved in the plate thickness direction from the surface (plate surface) of the steel plate in the plate thickness direction toward the center of the steel plate by a distance (depth) of x/y of the plate thickness t. For example, if the plate thickness t of the steel plate is 2 mm, “plate thickness 1/8 position” refers to a position that is 0.25 mm deep in the plate thickness direction from the surface of the steel plate.
- the surface of the steel plate refers to the interface between the steel plate and the coating
- plate thickness t refers to the thickness of the steel plate (base material) excluding the coating.
- the plate width direction is the direction perpendicular to the rolling direction and plate thickness direction.
- the following method can be adopted, for example, to identify the rolling direction of the steel plate.
- the S concentration is measured using an electron probe microanalyzer (EPMA).
- the measurement conditions are an acceleration voltage of 15 kV and a measurement pitch of 1 ⁇ m, and a distribution image is measured in a 500 ⁇ m square range in the center of the plate thickness.
- the extended area with a high S concentration is determined to be an inclusion such as MnS.
- observation may be performed in multiple fields of view.
- a surface parallel to the surface rotated in 5° increments in the range of 0° to 180° around the plate thickness direction is observed by the above method.
- the average value of the long axis length of the multiple inclusions in each obtained cross section is calculated for each cross section, and the cross section with the largest average long axis length of the inclusions is identified.
- the direction parallel to the longitudinal axis of the inclusions in the cross section is determined to be the rolling direction.
- the area ratios of the region with a GAM (Grain Average Misorientation) value of more than 0.6° and less than 2.0°, the region with a GAM value of 0.6° or less, and the region with a GAM value of 2.0° or more are specified as follows.
- the "region with a GAM value of 0.6° or less” is often relatively soft.
- the "region with a GAM value of 2.0° or more” is often relatively hard.
- the "region with a GAM value of more than 0.6° and less than 2.0°” often has an intermediate hardness.
- the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%.
- the hot-rolled steel sheet is likely to have an excellent balance of strength, elongation and hole expandability.
- the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° may be 55% or more, 60% or more, 70% or more, 75% or more, 80% or more or 85% or more, or 99% or less, 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less or 55% or less.
- the hot-rolled steel sheet is likely to have an excellent balance of strength, elongation and hole expandability.
- the area ratio of the region having a GAM value of 0.6° or less is 0% or more and less than 50%.
- the hot-rolled steel sheet is likely to have an excellent balance of strength, elongation, and hole expandability.
- the hot-rolled steel sheet of the present disclosure may have the above-mentioned region having a GAM value of more than 0.6° and less than 2.0° and the below-described region having a GAM value of 2.0° or more, and the area ratio of the region having a GAM value of 0.6° or less may be 0%.
- the area ratio of the region having a GAM value of 0.6° or less may be 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less, or more than 0%, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 45% or more.
- the area ratio of the region having a GAM value of 0.6° or less is 0% or more and 45% or less, the heat-rolled steel sheet is likely to have a better balance of strength, elongation, and hole expandability.
- the area ratio of the region having a GAM value of 2.0° or more is more than 0% and not more than 50%.
- the hot-rolled steel sheet of the present disclosure has a region having a GAM value of 2.0° or more in addition to the above-mentioned region having a GAM value of more than 0.6° and less than 2.0°, it is likely to have an excellent balance of strength, elongation and hole expandability.
- the area ratio of the region having a GAM value of 2.0° or more may be 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less, or 1% or more, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 45% or more.
- the area ratio of the region having a GAM value of 2.0° or more is more than 0% and not more than 20%, in particular, 1% or more and not more than 20%, and particularly 1% or more and not more than 10%, the heat-rolled steel sheet is more likely to have a better balance of strength, elongation, and hole expandability.
- the "GAM value" of each region of the hot-rolled steel sheet is measured by the EBSP (Electron Backscatter Pattern) method, and the average value of the orientation difference between adjacent pixels (measurement points) in each measurement region (for example, within one crystal grain (defined as a region surrounded by grain boundaries with an orientation difference of 15° or more)) is taken as the GAM value of the measurement region (crystal grain).
- the area ratio of the region with a GAM value of more than 0.6° and less than 2.0°, the area ratio of the region with a GAM value of 0.6° or less, and the area ratio of the region with a GAM value of 2.0° or more are measured by the following method.
- a sample is taken at a quarter position from the end face in the sheet width direction of the hot-rolled steel sheet so that the metal structure of the cross section (sheet thickness direction x rolling direction cross section) normal to the sheet width direction can be observed.
- the size of the sample depends on the measuring device, but may be, for example, a rectangular parallelepiped with the full thickness in the thickness direction, 15 mm in the rolling direction, and 10 mm in the width direction.
- the observation surface of the sample is mirror-polished, and then polished for 8 minutes at room temperature using colloidal silica that does not contain an alkaline solution to remove the strain introduced into the surface of the sample.
- a region of 200 ⁇ m in the thickness direction and 400 ⁇ m or more at any position in the rolling direction from the surface in the thickness direction of the sample is measured by the EBSP method at measurement intervals of 0.2 ⁇ m.
- an EBSD analysis device consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (HIKARI detector manufactured by TSL) is used.
- the degree of vacuum in the EBSD analyzer is 9.6 ⁇ 10 ⁇ 5 Pa or less
- the acceleration voltage is 15 kV
- the irradiation current level is 13
- the electron beam irradiation level is 62.
- the GAM value can be calculated using the software "OIM Analysis (registered trademark)" that comes with the EBSD analyzer. Note that crystal grains with a defined circle equivalent diameter of 0.6 ⁇ m or less are excluded because there is a possibility of a large measurement error.
- 1.7 ⁇ LGr/LGt The hot-rolled steel sheet of the present disclosure satisfies the relationship (1) of 1.7 ⁇ LGr/LGt.
- LGr is the area average value of the projected length of the prior austenite grains in the rolling direction
- LGt is the area average value of the projected length of the prior austenite grains in the sheet thickness direction.
- the "area average value” means an average value weighted by area.
- the "area” is the area in a cross section (sheet thickness direction ⁇ rolling direction cross section) normal to the sheet width direction.
- the fact that the above relationship (1) is satisfied means, in other words, that the prior austenite grains are elongated in the rolling direction.
- the area ratio of the region in which the prior austenite grain size is small and the GAM value is more than 0.6° and less than 2.0° is 50% or more and less than 100%. That is, in the hot-rolled steel sheet of the present disclosure, it can be said that fine crystal grains having an excellent balance between strength and ductility are elongated along the rolling direction. In the conventional common sense, it has been thought that when LGr/LGt in a hot-rolled steel sheet is large, the elongation and hole expandability of the hot-rolled steel sheet are reduced.
- LGr/LGt was controlled to be small, that is, to be equiaxed.
- the balance between strength, elongation and hole expandability is improved by satisfying the relationship (2) described below together with the relationship (1).
- the prior austenite grains are elongated along the rolling direction, so that cracks are less likely to progress in the sheet thickness direction and the impact characteristics are excellent.
- LGr/LGt may be 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, or 5.0 or less.
- LGr/LGt may be 2.0 or more, 2.5 or more, 3.0 or more, or 4.0 or more. 1.7 ⁇ LGr/LGt ⁇ 10.0...(1-1)
- the "LGr/LGt" in the hot-rolled steel sheet is measured as follows. First, a sample is taken at a quarter position from the end face in the sheet width direction of the hot-rolled steel sheet so that the metal structure of the cross section (sheet thickness direction x rolling direction cross section) with the sheet width direction as the normal direction can be observed. The size of the sample depends on the measuring device, but it may be, for example, a rectangular parallelepiped with the full thickness in the sheet thickness direction, 15 mm in the rolling direction, and 10 mm in the sheet width direction. Next, the observation surface is mirror-polished, and then corroded by the Bechet-Beaujard method using a saturated aqueous solution of picric acid.
- the grains that appear black due to corrosion are considered to be prior austenite grains.
- the observation surface where prior austenite grains are revealed is observed by an optical microscope, and eight or more fields of view with an area of 0.05 mm2 or more (total of 0.40 mm2 or more) are photographed. Then, from the steel structure photograph taken by the optical microscope, the area of each prior austenite grain is calculated, and the projected length in the rolling direction and the projected length in the sheet thickness direction are measured, and the ratio of the area averages is defined as LGr/LGt.
- the prior austenite grains are identified by the reconstruction method described in "Study on High-Precision Reconstruction Method of Austenite Structure of Steel” (Hata Kengo, Wakita Masayuki, Fujiwara Tomoya, Kono Kaori, Nippon Steel & Sumitomo Metal Technical Report No. 404 (2016), pp. 24-30), and the LGr/LGt of the prior austenite grains is determined.
- the hard phase is dispersed and the variations in strength and ductility of the steel sheet as a whole are reduced, resulting in a hot-rolled steel sheet with an excellent balance of strength, elongation and hole expandability.
- the upper limit of (LGr/LGt)/(LMr/LMt) is not particularly limited.
- the following relationship (2-1) may be satisfied.
- (LGr/LGt)/(LMr/LMt) may be 5.00 or less, 4.80 or less, 4.50 or less, 4.30 or less, 4.00 or less, 3.80 or less, 3.60 or less, or 3.40 or less.
- (LGr/LGt)/(LMr/LMt) may be 1.40 or more, 1.60 or more, 1.80 or more, 2.00 or more, 2.20 or more, or 2.40 or more. 1.20 ⁇ (LGr/LGt)/(LMr/LMt) ⁇ 5.00...(2-1)
- the "LMr/LMt" of the hot-rolled steel sheet is measured as follows. First, a sample is taken at a quarter position from the end face in the sheet width direction of the hot-rolled steel sheet so that the metal structure of the cross section (sheet thickness direction x rolling direction cross section) normal to the sheet width direction can be observed. The size of the sample depends on the measuring device, but may be, for example, a rectangular parallelepiped with the full thickness in the sheet thickness direction, 15 mm in the rolling direction, and 10 mm in the sheet width direction. Next, the observation surface of the sample is mirror-polished, and then polished for 8 minutes at room temperature using colloidal silica that does not contain an alkaline solution to remove the strain introduced into the surface of the sample.
- a region of 200 ⁇ m in the thickness direction and 400 ⁇ m or more at any position in the rolling direction is measured by the EBSP method at a measurement interval of 0.2 ⁇ m.
- an EBSD analyzer consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (HIKARI detector manufactured by TSL) is used.
- the degree of vacuum in the EBSD analyzer is 9.6 ⁇ 10 ⁇ 5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the electron beam irradiation level is 62.
- the GAM value is calculated using the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer. In addition, crystal grains having a defined equivalent circle diameter of 0.6 ⁇ m or less are excluded because there is a possibility of a large measurement error. From the calculated GAM value information, a region having a GAM value of 2.0° or more is identified. The area of each of the identified regions having a GAM value of 2.0° or more is calculated, and from the shape, the rolling direction projected length and the plate thickness direction projected length are measured, and the ratio of the area averages in each region is defined as LMr/LMt.
- the hot-rolled steel sheet according to the present disclosure has the above-mentioned chemical composition and steel structure, and therefore has an excellent balance of strength, elongation, and hole expandability, and also has excellent impact properties.
- the hot-rolled steel sheet of the present disclosure has excellent strength.
- the hot-rolled steel sheet of the present disclosure may have a tensile strength TS of 960 MPa or more.
- the tensile strength TS may be 970 MPa or more or 980 MPa or more.
- the upper limit of the tensile strength TS is not particularly limited, and may be, for example, 1200 MPa or less, 1150 MPa or less, or 1100 MPa or less.
- the tensile test for measuring the tensile strength TS of the hot-rolled steel sheet is performed in accordance with JIS Z 2241, by taking a No.
- test piece from a direction in which the longitudinal direction of the test piece is parallel to the rolling transverse direction (sheet width direction) of the steel sheet. If the No. 5 test piece cannot be taken from the hot-rolled steel sheet to be measured, a small test piece with the sheet width direction as the longitudinal direction can be used as the test piece for measuring the tensile strength TS.
- the hot-rolled steel sheet of the present disclosure has excellent ductility.
- the hot-rolled steel sheet of the present disclosure may have a uniform elongation uEL of 4.0% or more and 12.0% or less.
- the uniform elongation uEL may be 5.0% or more, 6.0% or more, 6.5% or more, 7.0% or more, 7.5% or more, or 8.0% or more, and may be 11.5% or less, 11.0% or less, 10.5% or less, 10.0% or less, 9.5% or less, or 9.0% or less.
- the tensile test for measuring the uniform elongation uEL of the hot-rolled steel sheet is performed in accordance with JIS Z 2241, with the test piece No. 5 taken from a direction in which the longitudinal direction of the test piece is parallel to the rolling transverse direction (sheet width direction) of the steel sheet.
- the hot-rolled steel sheet of the present disclosure has excellent hole expansion properties.
- the hot-rolled steel sheet of the present disclosure may have a hole expansion ratio ⁇ of 40% or more and 110% or less.
- the hole expansion ratio ⁇ may be 45% or more or 50% or more, and may be 100% or less, 90% or less, 80% or less, or 70% or less.
- the hole expansion properties of the hot-rolled steel sheet are evaluated by punching a circular hole with a diameter of 10 mm under conditions where the clearance is 12.5%, forming the burr on the die side, and forming with a 60° conical punch. Five hole expansion tests are performed, and the average value is taken as the hole expansion ratio ⁇ .
- the hot-rolled steel sheet of the present disclosure has excellent impact properties.
- the impact properties of the hot-rolled steel sheet can be evaluated, for example, by the crack growth resistance in the thickness direction.
- the crack growth resistance in the thickness direction is determined by the displacement-load curve when the hot-rolled steel sheet is punched.
- W2/W1 the energy W2 to the energy W1.
- W2 ⁇ Fds (after the maximum load)
- W1 ⁇ Fds (before the maximum load).
- the hot-rolled steel sheet of the present disclosure may satisfy 0.15 ⁇ W2/W1.
- the value of the ratio W2/W1 may be 0.17 or more, 0.18 or more, 0.19 or more, or 0.20 or more.
- the thickness of the hot-rolled steel sheet is not particularly limited, and may be, for example, 0.5 mm or more and 10.0 mm or less.
- the upper limit of the thickness may be 8.0 mm, 6.0 mm, or 4.0 mm.
- the hot-rolled steel sheet of the present disclosure has an excellent balance of strength, ductility, and hole expandability, and also has excellent collision properties.
- a hot-rolled steel sheet can be used, for example, as a material for automobile suspension parts, structural parts, frameworks, frame parts, etc.
- it is suitable as a material for automobile suspension parts.
- Specific examples of automobile suspension parts include lower arms, upper arms, trail links, etc.
- the manufacturing method of the hot-rolled steel sheet is as follows: a heating step of heating the slab; a hot rolling step of hot rolling the heated slab; A cooling step of cooling the hot-rolled steel sheet obtained by hot rolling; A winding process of winding the cooled hot-rolled steel sheet,
- the slab comprises, in mass %, C: 0.045% or more, 0.120% or less, Si: 0% or more, 3.00% or less, Mn: 1.20% or more, 2.60% or less, Ti: 0.020% or more, 0.180% or less, Al: 0.010% or more, 0.400% or less, P: 0% or more, 0.080% or less, S: 0% or more, 0.0100% or less, N: 0% or more, 0.0050% or less, O: 0% or more,
- the hot rolling step includes rough rolling and finish rolling,
- the start temperature ST of the finish rolling is 1000° C. or more and 1150° C. or less
- the finish rolling includes high temperature difference rolling two or more times,
- the high temperature difference rolling is such that a temperature difference ⁇ T between the rolling temperature in a rolling stand performing the high temperature difference rolling and the rolling temperature in a rolling stand immediately preceding the high temperature difference rolling is 30° C. or more;
- the total rolling reduction after the second high temperature difference rolling is 50% or more
- the completion temperature FT of the finish rolling is 940° C.
- the time from the completion of the finish rolling to the start of the cooling is within 2.0 seconds,
- accelerated cooling is performed after the start of the cooling, and the cooling stop temperature of the accelerated cooling is 520° C. or more and 720° C. or less;
- the slow cooling time in the temperature range of 720 ° C. to 470 ° C. is 2.0 seconds or more. It is characterized by:
- the heating temperature of the slab in the heating process may be, for example, 1100°C or higher and 1300°C or lower.
- the heating temperature may be 1150°C or higher or 1200°C or higher, or 1260°C or lower.
- the heating time of the slab in the heating process may be a time that allows the entire slab to reach the target temperature.
- the heating time may be, for example, 6000 seconds (100 minutes) or more or 9000 seconds (150 minutes) or more. In particular, a higher effect is likely to be obtained by holding the temperature of 1150°C or higher for 6000 seconds (100 minutes) or more.
- the hot rolling step includes rough rolling and finish rolling.
- the conditions of the rough rolling are not particularly limited, and the slab may be rolled at a predetermined temperature and a predetermined reduction ratio.
- the temperature in the rough rolling may be, for example, equal to or lower than the heating temperature in the heating step and equal to or higher than the start temperature ST of the finish rolling described later.
- the reduction ratio in the rough rolling may be, for example, such that the thickness reduction at 800 to 1150 ° C. is 90% or more.
- the start temperature ST of the finish rolling is 1000°C or more and 1150°C or less. If the start temperature ST is too low, the finally manufactured hot-rolled steel sheet does not satisfy the above-mentioned requirements of the prior austenite grain size, and the hole expandability and the like are likely to be reduced. On the other hand, if the start temperature ST is too high, the structure of the steel cannot be appropriately controlled, and the finally manufactured hot-rolled steel sheet does not satisfy the above-mentioned requirements of the prior austenite grain size, the relationships (1) and (2), and the collision characteristics are likely to be reduced. These problems are solved by the start temperature ST being 1000°C or more and 1150°C or less.
- the start temperature ST may be 1050°C or more and 1150°C or less.
- the finishing rolling includes two or more high temperature difference rollings.
- the rolling temperature is the temperature at the entry side of the rolling stand, that is, the surface temperature of the steel plate measured immediately before the steel plate is rolled in the rolling stand.
- the first high temperature difference rolling causes TiC, which is the nucleus of transformation, to precipitate in the steel structure at a high density
- the second high temperature difference rolling provides the driving force for creating the steel structure.
- the high temperature difference rolling is performed once or less, the steel structure cannot be created, and the finally manufactured hot rolled steel plate does not satisfy the above relationship (2), and the hole expandability is likely to decrease. If the high temperature difference rolling is performed twice or more, the steel structure can be created, and the finally manufactured hot rolled steel plate has an excellent balance of strength, elongation, and hole expandability.
- the number of high temperature difference rolling may vary depending on the number of rolling stands in the finish rolling. The number of high temperature difference rolling may be, for example, 2 to 10 times, 3 to 4 times, or 7 to 6 times.
- the temperature difference ⁇ T of the high temperature difference rolling may be 30°C or more, 35°C or more, 40°C or more, 45°C or more, or 50°C or more, or 150°C or less, 100°C or less, 80°C or less, 60°C or less, or 50°C or less.
- the temperature difference ⁇ T of the high temperature difference rolling can be controlled, for example, by controlling the amount of coolant such as water sprayed from a cooling device such as a cooling spray immediately after rolling, or by controlling the conveying speed of the steel sheet during rolling.
- the total reduction ratio after the second high temperature difference rolling is 50% or more. If the total reduction ratio after the second high temperature difference rolling is too low, the structure of the steel cannot be properly controlled, and the finally manufactured hot-rolled steel sheet does not satisfy the above relationship (2), and the hole expandability is likely to decrease. If the total reduction ratio after the second high temperature difference rolling is 50% or more, this problem is solved.
- the total reduction ratio after the second high temperature difference rolling may be 55% or more, 60% or more, or 65% or more. If the total reduction ratio after the second high temperature difference rolling is too high, the anisotropy of the structure increases and the hole expandability is likely to decrease.
- the total reduction ratio after the second high temperature difference rolling is 80% or less, this problem is solved, so it is preferable that the total reduction ratio after the second high temperature difference rolling is 80% or less.
- the upper limit of the total reduction rate after the second high temperature difference rolling may be 75% or less or 70% or less. Even if high temperature difference rolling is performed three or more times, the above total reduction rate means the total reduction rate after the second high temperature difference rolling.
- the total reduction rate after the second high temperature difference rolling means the thickness reduction rate due to rolling (which may include high temperature difference rolling) after the second high temperature difference rolling, relative to the thickness after the second high temperature difference rolling. It goes without saying that the second high temperature difference rolling is not the final stage (final stand) of the finishing rolling.
- the second high temperature differential rolling is preferably performed at a specified temperature, since the densely precipitated TiC makes it easier to suppress the reduction of dislocations in the steel structure.
- This allows the value of (LGr/LGt)/(LMr/LMt) to be controlled in a favorable manner, improving the collision properties.
- it is preferable to set the rolling temperature of the second high temperature differential rolling to 980-1000°C.
- the completion temperature FT of the finish rolling is 940°C or less. If the completion temperature FT is too high, the structure of the steel cannot be properly controlled, and the hot-rolled steel sheet finally produced does not satisfy the above-mentioned requirements for the prior austenite grain size, relationships (1) and (2), and the collision properties are likely to deteriorate. If the completion temperature FT is 940°C or less, such problems are eliminated.
- the completion temperature FT may be 920°C or less or 900°C or less.
- the lower limit of the completion temperature FT is not particularly limited as long as the requirements for the cooling process described below can be achieved. For example, the completion temperature FT may be 750°C or more, 770°C or more, 800°C or more, 830°C or more, or 850°C or more.
- the hot-rolled steel sheet obtained by hot rolling is cooled.
- the time from the completion of the above-mentioned finish rolling to the start of cooling is within 2.0 seconds. If the time is too long, the prior austenite grain size exceeds 25 ⁇ m due to the coarsening of the crystal grains, and the finally manufactured hot-rolled steel sheet is likely to have a poor balance of strength, elongation, and hole expandability. By setting the time to within 2.0 seconds, such a problem is solved.
- the time may be within 1.8 seconds, within 1.6 seconds, within 1.4 seconds, or within 1.2 seconds.
- accelerated cooling is performed after the start of cooling.
- “Accelerated cooling” refers to cooling under conditions where the cooling rate is 20°C/s or more and 200°C/s or less. It is important that the accelerated cooling stop temperature is 520°C or more and 720°C or less. Transformation of the region with a GAM value of 2.0° mainly occurs during slow cooling after the accelerated cooling is stopped. By stopping the accelerated cooling at a temperature of 520°C or more and 720°C or less, the amount of regions with a GAM value of less than 2.0° is appropriate. Outside this temperature range, the proportion of regions with a GAM value of 2.0° or more may increase excessively, resulting in a decrease in uniform elongation.
- the slow cooling time in the temperature range from 720°C to 470°C is 2.0 seconds or more.
- “Slow cooling” means cooling under cooling conditions where the cooling rate is less than 20°C/s.
- the area ratio of the region with a GAM value of more than 0.6° and less than 2.0° is 50% or more.
- the slow cooling time in the temperature range from 720°C to 470°C can be 2.0 seconds or more.
- the slow cooling time may be 2.2 seconds or more, 2.4 seconds or more, 2.6 seconds or more, 2.8 seconds or more, or 3.0 seconds or more.
- the amount of the region with a GAM value of 2.0° or more can be more appropriately controlled.
- the upper limit of the slow cooling time is not particularly limited, and the optimal slow cooling time may be determined taking into consideration productivity, etc.
- the slow cooling time may be, for example, 5.0 seconds or less, 4.5 seconds or less, 4.0 seconds or less, or 3.5 seconds or less. If the slow cooling time is too short, the region with a GAM value of 2.0° or more is likely to be excessively generated, and the above relationship (2) will not be satisfied, and the finally manufactured hot-rolled steel sheet will likely have a poor balance of strength, elongation, and hole expandability.
- the average cooling rate until the temperature reaches 300°C is preferably 30°C/s or more. If the average cooling rate is slow, softening occurs due to tempering, and the strength of the hot-rolled steel sheet finally manufactured is likely to decrease. By setting the average cooling rate to 30°C/s or more, such problems can be more reliably solved.
- the average cooling rate may be 35°C/s or more, 40°C/s or more, 45°C/s or more, or 50°C/s or more.
- the upper limit of the average cooling rate is not particularly limited.
- the average cooling rate may be, for example, 120°C/s or less, 110°C/s or less, 100°C/s or less, 90°C/s or less, or 80°C/s or less.
- the average cooling rate from 300°C to the coiling temperature is not particularly limited.
- the winding temperature in the winding process is, for example, 300°C or less.
- the winding temperature may be 200°C or less, 100°C or less, or 50°C or less, and may be 0°C or more, or 20°C or more.
- the hot-rolled steel sheet of the present disclosure can be manufactured by (1) using a slab with an appropriate chemical composition, (2) controlling the morphology of the prior austenite grains by adjusting the finish rolling conditions during hot rolling, and (3) controlling the transformation behavior by controlling the cooling rate during cooling (for example, controlling the cooling conditions at the run-out table (ROT)).
- the cooling rate during cooling for example, controlling the cooling conditions at the run-out table (ROT)
- other steps may be performed.
- a tempering step may be optionally performed after the coiling step.
- High temperature difference rolling refers to a rolling stand in which the rolling temperature in the rolling stand performing the high temperature difference rolling and the rolling temperature in the rolling stand immediately before it are 30° C. or more.
- Table 3 the cases in which high temperature difference rolling was performed twice or more are indicated as “ ⁇ ", and the cases in which high temperature difference rolling was performed once or less are indicated as “ ⁇ ”.
- total reduction rate after the second temperature difference of ⁇ T occurs means “total reduction rate after the second high temperature difference rolling.”
- accelerated cooling means cooling after the start of cooling at a cooling rate of 20° C./s or more and 200° C./s or less.
- LGr/LGt and (LGr/LGt)/(LMr/LMt) For each hot-rolled steel sheet, LGr (area average value of the projection length in the rolling direction of the prior austenite grains), LGt (area average value of the projection length in the thickness direction of the prior austenite grains), LMr (area average value of the projection length in the rolling direction of the region having a GAM value of 2.0° or more), and LMt (area average value of the projection length in the thickness direction of the region having a GAM value of 2.0° or more) were measured, and "LGr/LGt" and "(LGr/LGt)/(LMr/LMt)" were calculated.
- the measurement and calculation method of LGr/LGt and LMr/LMt is as described above. The results are shown in Table 4 below.
- the impact characteristics of each hot-rolled steel sheet were evaluated based on the crack propagation resistance in the thickness direction of each hot-rolled steel sheet.
- the crack propagation resistance in the thickness direction is determined by the displacement-load curve when the hot-rolled steel sheet is punched. Specifically, it is determined by the ratio W2/W1 of the energy W2 to the energy W1 below.
- F is the punching load (N)
- S is the punching stroke (mm).
- those satisfying 0.15 ⁇ W2/W1 were evaluated as having excellent impact characteristics, and those satisfying 0.2 ⁇ W2/W1 were evaluated as having particularly excellent impact characteristics.
- Table 4 The results are shown in Table 4 below.
- the Ti content of the hot-rolled steel sheet was too low, so the strength increasing effect due to precipitation strengthening, fine grain strengthening and/or dislocation strengthening could not be obtained, and the transformation nuclei could not be sufficiently generated, so that the prior austenite grains became coarse, and the strength and hole expandability of the hot-rolled steel sheet were reduced.
- the Al content of the hot-rolled steel sheet was too high, which caused cracks in the slab and made hot rolling difficult.
- the Al content of the hot-rolled steel sheet was too low, so deoxidation was insufficient, and inclusions were excessively generated, resulting in a decrease in the hole expandability of the hot-rolled steel sheet.
- the P content of the hot-rolled steel sheet was too high, which caused embrittlement and resulted in cracking of the slab, making hot rolling difficult.
- the S content of the hot-rolled steel sheet was too high, so that inclusions were generated excessively, and the hole expandability of the hot-rolled steel sheet was deteriorated.
- the N content of the hot-rolled steel sheet was too high, which caused embrittlement and cracking of the slab, making hot rolling difficult.
- the O content of the hot-rolled steel sheet was too high, so that oxides were generated in excess, and the hole expandability of the hot-rolled steel sheet was reduced.
- the finish rolling start temperature ST was too low, so that the prior austenite grains became coarse and the hole expandability of the hot-rolled steel sheet was deteriorated.
- the finish rolling start temperature ST was too high, and further, the finish rolling completion temperature FT was also too high, so that the structure of the steel could not be appropriately controlled, the prior austenite grains of the hot-rolled steel sheet became coarse, and the predetermined relationships (1) and (2) were not satisfied, and the collision properties of the hot-rolled steel sheet were deteriorated.
- the high temperature difference rolling in which the rolling temperature difference ⁇ T was 30 ° C.
- the cooling stop temperature of the accelerated cooling was too high, so the region with a GAM value of 2.0° or more became excessively large, and the elongation of the hot-rolled steel sheet decreased.
- the cooling stop temperature of the accelerated cooling was too low, so the region with a GAM value of 2.0° or more became excessively large, and the elongation of the hot-rolled steel sheet decreased.
- the finish rolling start temperature ST was too high, so that the structure of the steel could not be appropriately controlled, the prior austenite grains of the hot-rolled steel sheet became coarse, the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the collision properties of the hot-rolled steel sheet were deteriorated.
- the finish rolling start temperature ST was appropriately controlled, the finish rolling completion temperature FT was too high, so that the structure of the steel could not be appropriately controlled, the prior austenite grains of the hot-rolled steel sheet became coarse, the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the collision properties of the hot-rolled steel sheet were deteriorated.
- the slow cooling time in the temperature range from 720 ° C. to 470 ° C. was too short, so the region in which the GAM value was more than 0.6 ° and less than 2.0 ° was not sufficiently generated in the hot-rolled steel sheet, and the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the elongation of the hot-rolled steel sheet was reduced.
- No. 44 like No.
- the Ti content of the hot-rolled steel sheet was too low, so that the strength increasing effect by precipitation strengthening, fine grain strengthening and/or dislocation strengthening could not be obtained, and the transformation nuclei could not be sufficiently generated, so that the prior austenite grains became coarse, and the strength and hole expandability of the hot-rolled steel sheet were deteriorated.
- the hot-rolled steel sheets had an excellent balance of strength, elongation, and hole expandability, and also had excellent impact properties.
- the second high-temperature differential rolling was performed at 990°C, and at a predetermined temperature between 980 and 1000°C, so that the impact properties were particularly excellent, even compared to No.
- the hot-rolled steel sheets satisfying the following requirements (A) to (D) have an excellent balance of strength, elongation, and hole expandability, and also have excellent impact properties.
- the hot-rolled steel sheet has, in mass%, C: 0.045% or more and 0.120% or less, Si: 0% or more and 3.00% or less, Mn: 1.20% or more and 2.60% or less, Ti: 0.020% or more and 0.180% or less, Al: 0.010% or more and 0.400% or less, P: 0% or more and 0.080% or less, S: 0% or more and 0.0100% or less, N: 0% or more and 0.0050% or less, O: 0% or more and 0.010% or less, Nb: 0% or more and 0.100% or less, V: 0% or more and 1.000% or less, Cu: 0% or more and 1.000% or less, Cr: 0% or more and 2.000% or less, and Mo: 0% or more and 3.000% or less.
- Ni 0% or more, 0.500% or less
- B 0% or more, 0.0100% or less
- Ca 0% or more, 0.0500% or less
- Mg 0% or more, 0.050% or less
- REM 0% or more, 0.100% or less
- Bi 0% or more, 0.100% or less
- Ta 0% or more, 0.100% or less
- Zr 0% or more, 0.500% or less
- Co 0% or more, 3.000% or less
- Zn 0% or more, 0.200% or less
- W 0% or more, 0.200% or less
- Sb 0% or more, 0.500% or less
- the prior austenite grain size of the hot-rolled steel sheet is 25 ⁇ m or less.
- C The area ratio of the area in the hot-rolled steel sheet having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%, the area ratio of the area having a GAM value of 0.6° or less is 0% or more and less than 50%, and the area ratio of the area having a GAM value of 2.0° or more is more than 0% and less than 50%.
- the hot-rolled steel sheet has the following relationships (1) and (2): 1.7 ⁇ LGr/LGt...(1) 1.20 ⁇ (LGr/LGt)/(LMr/LMt)...(2)
- LGr average area of the projection length in the rolling direction of prior austenite grains
- LGt average area of the projection length in the sheet thickness direction of prior austenite grains
- LMr average area of the projection length in the rolling direction of regions having a GAM value of 2.0° or more
- LMt average area of the projection length in the sheet thickness direction of regions having a GAM value of 2.0° or more.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Disclosed is a hot-rolled steel sheet that excels in a balance between strength, elongation, and hole expandability, and that also excels in a collision characteristic. The hot-rolled steel sheet according to the present disclosure has a specified chemical composition, and: has a prior austenite grain size of 25 μm or less; has an area ratio of a region having a GAM value greater than 0.6° and less than 2.0° of 50% or greater, and less than 100%; has an area ratio of a region having a GAM value of 0.6° or less of 0% or greater and less than 50%; has an area ratio of a region having a GAM value of 2.0° or greater of greater than 0% and 50% or less; and satisfies the relationships 1.7≤LGr/LGt and 1.20≤(LGr/LGt)/(LMr/LMt). Here, LGr is the area average value for the rolling-direction projection length of the prior austenite grains, LGt is the area average value for the sheet-thickness-direction projection length of the prior austenite grains, LMr is the area average value for the rolling-direction projection length of the region having the GAM value of 2.0° or greater, and LMt is the area average value for the sheet-thickness-direction projection length of the region having the GAM value of 2.0° or greater.
Description
本願は熱延鋼板を開示する。
This application discloses a hot-rolled steel sheet.
自動車の足回り部品、構造部品、骨格、フレーム部品等の素材として、熱延鋼板が採用されている。例えば、特許文献1には、打抜き加工性に優れた高強度熱延鋼板であって、所定の組成及び所定の鋼組織を有するものが開示されている。
Hot-rolled steel sheets are used as materials for automobile suspension parts, structural parts, frameworks, frame parts, etc. For example, Patent Document 1 discloses a high-strength hot-rolled steel sheet with excellent punching workability, which has a specified composition and a specified steel structure.
従来の熱延鋼板は、強度、伸び及び穴広げ性のバランス、並びに、衝突特性に関して、改善の余地がある。
Conventional hot-rolled steel sheets have room for improvement in terms of the balance of strength, elongation and hole expansion, as well as crash properties.
本発明者らは、鋭意研究の結果、(1)適正な化学組成を有するスラブを用い、(2)熱間圧延時の仕上げ圧延条件を工夫して、旧オーステナイト粒の形態等を制御し、(3)冷却時の冷却速度を制御して変態挙動を制御する(例えば、ランナウトテーブルでの冷却条件を制御する)ことにより、強度、延性及び穴広げ性のバランスに優れ、衝突特性にも優れる熱延鋼板を製造できることを知見した。また、このようにして製造された熱延鋼板は、所定の化学組成を有するとともに、特徴的な鋼組織を有することで、強度、延性及び穴広げ性のバランスに優れ、衝突特性にも優れることを知見した。
As a result of intensive research, the inventors have discovered that by (1) using a slab with an appropriate chemical composition, (2) controlling the morphology of prior austenite grains by adjusting the finish rolling conditions during hot rolling, and (3) controlling the transformation behavior by controlling the cooling rate during cooling (for example, controlling the cooling conditions on the runout table), it is possible to manufacture a hot-rolled steel sheet that has an excellent balance of strength, ductility, and hole expandability, and also has excellent impact properties. Furthermore, the inventors have discovered that the hot-rolled steel sheet manufactured in this manner has a predetermined chemical composition and a characteristic steel structure, and thus has an excellent balance of strength, ductility, and hole expandability, and also has excellent impact properties.
以上の知見に基づき、本願は上記課題を解決するための手段として、以下の複数の態様を開示する。
<態様1>
質量%で、
C:0.045%以上、0.120%以下、
Si:0%以上、3.00%以下、
Mn:1.20%以上、2.60%以下、
Ti:0.020%以上、0.180%以下、
Al:0.010%以上、0.400%以下、
P:0%以上、0.080%以下、
S:0%以上、0.0100%以下、
N:0%以上、0.0050%以下、
O:0%以上、0.010%以下、
Nb:0%以上、0.100%以下、
V:0%以上、1.000%以下、
Cu:0%以上、1.000%以下、
Cr:0%以上、2.000%以下、
Mo:0%以上、3.000%以下、
Ni:0%以上、0.500%以下、
B:0%以上、0.0100%以下、
Ca:0%以上、0.0500%以下、
Mg:0%以上、0.050%以下、
REM:0%以上、0.100%以下、
Bi:0%以上、0.100%以下、
Ta:0%以上、0.100%以下、
Zr:0%以上、0.500%以下、
Co:0%以上、3.000%以下、
Zn:0%以上、0.200%以下、
W:0%以上、0.200%以下、
Sb:0%以上、0.500%以下、
As:0%以上、0.050%以下、及び
Sn:0%以上、0.050%以下を含み、
残部:Fe及び不純物からなり、
旧オーステナイト粒径が25μm以下であり、
GAM値0.6°超、2.0°未満である領域の面積率が50%以上100%未満であり、
GAM値0.6°以下である領域の面積率が0%以上50%未満であり、
GAM値2.0°以上である領域の面積率が0%超50%以下であり、
以下の関係(1)及び(2):
1.7≦LGr/LGt …(1)
1.20≦(LGr/LGt)/(LMr/LMt) …(2)
LGr:旧オーステナイト粒の圧延方向投影長さの面積平均値
LGt:旧オーステナイト粒の板厚方向投影長さの面積平均値
LMr:GAM値2.0°以上である領域の圧延方向投影長さの面積平均値
LMt:GAM値2.0°以上である領域の板厚方向投影長さの面積平均値
が満たされる、
熱延鋼板。
<態様2>
GAM値0.6°以下である領域の面積率が0%以上45%以下である、
態様1の熱延鋼板。
<態様3>
GAM値2.0°以上である領域の面積率が0%超20%以下である、
態様1又は2の熱延鋼板。
<態様4>
以下の関係(1-1):
1.7≦LGr/LGt≦10.0 …(1-1)
が満たされる、
態様1~3のいずれかの熱延鋼板。
<態様5>
以下の関係(2-1):
1.20≦(LGr/LGt)/(LMr/LMt)≦5.00 …(2-1)
が満たされる、
態様1~4のいずれかの熱延鋼板。 Based on the above findings, the present application discloses the following aspects as means for solving the above problems.
<Aspect 1>
In mass percent,
C: 0.045% or more, 0.120% or less,
Si: 0% or more, 3.00% or less,
Mn: 1.20% or more, 2.60% or less,
Ti: 0.020% or more, 0.180% or less,
Al: 0.010% or more, 0.400% or less,
P: 0% or more, 0.080% or less,
S: 0% or more, 0.0100% or less,
N: 0% or more, 0.0050% or less,
O: 0% or more, 0.010% or less,
Nb: 0% or more, 0.100% or less,
V: 0% or more, 1.000% or less,
Cu: 0% or more, 1.000% or less,
Cr: 0% or more, 2.000% or less,
Mo: 0% or more, 3.000% or less,
Ni: 0% or more, 0.500% or less,
B: 0% or more, 0.0100% or less,
Ca: 0% or more, 0.0500% or less,
Mg: 0% or more, 0.050% or less,
REM: 0% or more, 0.100% or less,
Bi: 0% or more, 0.100% or less,
Ta: 0% or more, 0.100% or less,
Zr: 0% or more, 0.500% or less,
Co: 0% or more, 3.000% or less,
Zn: 0% or more, 0.200% or less,
W: 0% or more, 0.200% or less,
Sb: 0% or more, 0.500% or less,
As: 0% or more, 0.050% or less, and Sn: 0% or more, 0.050% or less;
The balance is composed of Fe and impurities.
The prior austenite grain size is 25 μm or less,
The area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%,
The area ratio of the region having a GAM value of 0.6° or less is 0% or more and less than 50%,
The area ratio of the region having a GAM value of 2.0° or more is more than 0% and 50% or less,
The following relationships (1) and (2):
1.7≦LGr/LGt…(1)
1.20≦(LGr/LGt)/(LMr/LMt)…(2)
LGr: average area of the projection length in the rolling direction of the prior austenite grains LGt: average area of the projection length in the sheet thickness direction of the prior austenite grains LMr: average area of the projection length in the rolling direction of the region having a GAM value of 2.0° or more LMt: average area of the projection length in the sheet thickness direction of the region having a GAM value of 2.0° or more
Hot-rolled steel sheet.
<Aspect 2>
The area ratio of the region having a GAM value of 0.6° or less is 0% or more and 45% or less.
The hot-rolled steel sheet of embodiment 1.
<Aspect 3>
The area ratio of the region having a GAM value of 2.0° or more is more than 0% and 20% or less.
The hot-rolled steel sheet according to embodiment 1 or 2.
<Aspect 4>
The following relationship (1-1):
1.7≦LGr/LGt≦10.0…(1-1)
is satisfied,
The hot-rolled steel sheet according to any one of aspects 1 to 3.
<Aspect 5>
The following relationship (2-1):
1.20≦(LGr/LGt)/(LMr/LMt)≦5.00…(2-1)
is satisfied,
The hot-rolled steel sheet according to any one of aspects 1 to 4.
<態様1>
質量%で、
C:0.045%以上、0.120%以下、
Si:0%以上、3.00%以下、
Mn:1.20%以上、2.60%以下、
Ti:0.020%以上、0.180%以下、
Al:0.010%以上、0.400%以下、
P:0%以上、0.080%以下、
S:0%以上、0.0100%以下、
N:0%以上、0.0050%以下、
O:0%以上、0.010%以下、
Nb:0%以上、0.100%以下、
V:0%以上、1.000%以下、
Cu:0%以上、1.000%以下、
Cr:0%以上、2.000%以下、
Mo:0%以上、3.000%以下、
Ni:0%以上、0.500%以下、
B:0%以上、0.0100%以下、
Ca:0%以上、0.0500%以下、
Mg:0%以上、0.050%以下、
REM:0%以上、0.100%以下、
Bi:0%以上、0.100%以下、
Ta:0%以上、0.100%以下、
Zr:0%以上、0.500%以下、
Co:0%以上、3.000%以下、
Zn:0%以上、0.200%以下、
W:0%以上、0.200%以下、
Sb:0%以上、0.500%以下、
As:0%以上、0.050%以下、及び
Sn:0%以上、0.050%以下を含み、
残部:Fe及び不純物からなり、
旧オーステナイト粒径が25μm以下であり、
GAM値0.6°超、2.0°未満である領域の面積率が50%以上100%未満であり、
GAM値0.6°以下である領域の面積率が0%以上50%未満であり、
GAM値2.0°以上である領域の面積率が0%超50%以下であり、
以下の関係(1)及び(2):
1.7≦LGr/LGt …(1)
1.20≦(LGr/LGt)/(LMr/LMt) …(2)
LGr:旧オーステナイト粒の圧延方向投影長さの面積平均値
LGt:旧オーステナイト粒の板厚方向投影長さの面積平均値
LMr:GAM値2.0°以上である領域の圧延方向投影長さの面積平均値
LMt:GAM値2.0°以上である領域の板厚方向投影長さの面積平均値
が満たされる、
熱延鋼板。
<態様2>
GAM値0.6°以下である領域の面積率が0%以上45%以下である、
態様1の熱延鋼板。
<態様3>
GAM値2.0°以上である領域の面積率が0%超20%以下である、
態様1又は2の熱延鋼板。
<態様4>
以下の関係(1-1):
1.7≦LGr/LGt≦10.0 …(1-1)
が満たされる、
態様1~3のいずれかの熱延鋼板。
<態様5>
以下の関係(2-1):
1.20≦(LGr/LGt)/(LMr/LMt)≦5.00 …(2-1)
が満たされる、
態様1~4のいずれかの熱延鋼板。 Based on the above findings, the present application discloses the following aspects as means for solving the above problems.
<Aspect 1>
In mass percent,
C: 0.045% or more, 0.120% or less,
Si: 0% or more, 3.00% or less,
Mn: 1.20% or more, 2.60% or less,
Ti: 0.020% or more, 0.180% or less,
Al: 0.010% or more, 0.400% or less,
P: 0% or more, 0.080% or less,
S: 0% or more, 0.0100% or less,
N: 0% or more, 0.0050% or less,
O: 0% or more, 0.010% or less,
Nb: 0% or more, 0.100% or less,
V: 0% or more, 1.000% or less,
Cu: 0% or more, 1.000% or less,
Cr: 0% or more, 2.000% or less,
Mo: 0% or more, 3.000% or less,
Ni: 0% or more, 0.500% or less,
B: 0% or more, 0.0100% or less,
Ca: 0% or more, 0.0500% or less,
Mg: 0% or more, 0.050% or less,
REM: 0% or more, 0.100% or less,
Bi: 0% or more, 0.100% or less,
Ta: 0% or more, 0.100% or less,
Zr: 0% or more, 0.500% or less,
Co: 0% or more, 3.000% or less,
Zn: 0% or more, 0.200% or less,
W: 0% or more, 0.200% or less,
Sb: 0% or more, 0.500% or less,
As: 0% or more, 0.050% or less, and Sn: 0% or more, 0.050% or less;
The balance is composed of Fe and impurities.
The prior austenite grain size is 25 μm or less,
The area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%,
The area ratio of the region having a GAM value of 0.6° or less is 0% or more and less than 50%,
The area ratio of the region having a GAM value of 2.0° or more is more than 0% and 50% or less,
The following relationships (1) and (2):
1.7≦LGr/LGt…(1)
1.20≦(LGr/LGt)/(LMr/LMt)…(2)
LGr: average area of the projection length in the rolling direction of the prior austenite grains LGt: average area of the projection length in the sheet thickness direction of the prior austenite grains LMr: average area of the projection length in the rolling direction of the region having a GAM value of 2.0° or more LMt: average area of the projection length in the sheet thickness direction of the region having a GAM value of 2.0° or more
Hot-rolled steel sheet.
<Aspect 2>
The area ratio of the region having a GAM value of 0.6° or less is 0% or more and 45% or less.
The hot-rolled steel sheet of embodiment 1.
<Aspect 3>
The area ratio of the region having a GAM value of 2.0° or more is more than 0% and 20% or less.
The hot-rolled steel sheet according to embodiment 1 or 2.
<Aspect 4>
The following relationship (1-1):
1.7≦LGr/LGt≦10.0…(1-1)
is satisfied,
The hot-rolled steel sheet according to any one of aspects 1 to 3.
<Aspect 5>
The following relationship (2-1):
1.20≦(LGr/LGt)/(LMr/LMt)≦5.00…(2-1)
is satisfied,
The hot-rolled steel sheet according to any one of aspects 1 to 4.
本開示の熱延鋼板は、強度、伸び及び穴広げ性のバランスに優れ、衝突特性にも優れる。
The hot-rolled steel sheet disclosed herein has an excellent balance of strength, elongation, and hole expansion properties, and also has excellent impact properties.
1.熱延鋼板
以下、熱延鋼板の一実施形態について説明するが、本開示の熱延鋼板は以下の実施形態に限定されるものではない。 1. Hot-rolled steel sheet Hereinafter, one embodiment of a hot-rolled steel sheet will be described, but the hot-rolled steel sheet of the present disclosure is not limited to the following embodiment.
以下、熱延鋼板の一実施形態について説明するが、本開示の熱延鋼板は以下の実施形態に限定されるものではない。 1. Hot-rolled steel sheet Hereinafter, one embodiment of a hot-rolled steel sheet will be described, but the hot-rolled steel sheet of the present disclosure is not limited to the following embodiment.
本開示の熱延鋼板は、質量%で、
C:0.045%以上、0.120%以下、
Si:0%以上、3.00%以下、
Mn:1.20%以上、2.60%以下、
Ti:0.020%以上、0.180%以下、
Al:0.010%以上、0.400%以下、
P:0%以上、0.080%以下、
S:0%以上、0.0100%以下、
N:0%以上、0.0050%以下、
O:0%以上、0.010%以下、
Nb:0%以上、0.100%以下、
V:0%以上、1.000%以下、
Cu:0%以上、1.000%以下、
Cr:0%以上、2.000%以下、
Mo:0%以上、3.000%以下、
Ni:0%以上、0.500%以下、
B:0%以上、0.0100%以下、
Ca:0%以上、0.0500%以下、
Mg:0%以上、0.050%以下、
REM:0%以上、0.100%以下、
Bi:0%以上、0.100%以下、
Ta:0%以上、0.100%以下、
Zr:0%以上、0.500%以下、
Co:0%以上、3.000%以下、
Zn:0%以上、0.200%以下、
W:0%以上、0.200%以下、
Sb:0%以上、0.500%以下、
As:0%以上、0.050%以下、及び
Sn:0%以上、0.050%以下を含み、
残部:Fe及び不純物からなる。
本開示の熱延鋼板においては、旧オーステナイト粒径が、25μm以下である。
本開示の熱延鋼板においては、GAM値0.6°超、2.0°未満である領域の面積率が、50%以上100%未満であり、GAM値0.6°以下である領域の面積率が、0%以上50%未満であり、GAM値2.0°以上である領域の面積率が、0%超50%以下である。
本開示の熱延鋼板においては、以下の関係(1)及び(2):
1.7≦LGr/LGt …(1)
1.20≦(LGr/LGt)/(LMr/LMt) …(2)
LGr:旧オーステナイト粒の圧延方向投影長さの面積平均値
LGt:旧オーステナイト粒の板厚方向投影長さの面積平均値
LMr:GAM値2.0°以上である領域の圧延方向投影長さの面積平均値
LMt:GAM値2.0°以上である領域の板厚方向投影長さの面積平均値
が満たされる。 The hot-rolled steel sheet of the present disclosure has, in mass%,
C: 0.045% or more, 0.120% or less,
Si: 0% or more, 3.00% or less,
Mn: 1.20% or more, 2.60% or less,
Ti: 0.020% or more, 0.180% or less,
Al: 0.010% or more, 0.400% or less,
P: 0% or more, 0.080% or less,
S: 0% or more, 0.0100% or less,
N: 0% or more, 0.0050% or less,
O: 0% or more, 0.010% or less,
Nb: 0% or more, 0.100% or less,
V: 0% or more, 1.000% or less,
Cu: 0% or more, 1.000% or less,
Cr: 0% or more, 2.000% or less,
Mo: 0% or more, 3.000% or less,
Ni: 0% or more, 0.500% or less,
B: 0% or more, 0.0100% or less,
Ca: 0% or more, 0.0500% or less,
Mg: 0% or more, 0.050% or less,
REM: 0% or more, 0.100% or less,
Bi: 0% or more, 0.100% or less,
Ta: 0% or more, 0.100% or less,
Zr: 0% or more, 0.500% or less,
Co: 0% or more, 3.000% or less,
Zn: 0% or more, 0.200% or less,
W: 0% or more, 0.200% or less,
Sb: 0% or more, 0.500% or less,
As: 0% or more, 0.050% or less, and Sn: 0% or more, 0.050% or less;
The balance is composed of Fe and impurities.
In the heat-rolled steel sheet of the present disclosure, the prior austenite grain size is 25 μm or less.
In the hot-rolled steel sheet disclosed herein, the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%, the area ratio of the region having a GAM value of 0.6° or less is 0% or more and less than 50%, and the area ratio of the region having a GAM value of 2.0° or more is more than 0% and less than 50%.
In the hot-rolled steel sheet of the present disclosure, the following relationships (1) and (2):
1.7≦LGr/LGt…(1)
1.20≦(LGr/LGt)/(LMr/LMt)…(2)
LGr: average area of the projection length in the rolling direction of prior austenite grains LGt: average area of the projection length in the sheet thickness direction of prior austenite grains LMr: average area of the projection length in the rolling direction of regions having a GAM value of 2.0° or more LMt: the average area of the projection length in the sheet thickness direction of regions having a GAM value of 2.0° or more is satisfied.
C:0.045%以上、0.120%以下、
Si:0%以上、3.00%以下、
Mn:1.20%以上、2.60%以下、
Ti:0.020%以上、0.180%以下、
Al:0.010%以上、0.400%以下、
P:0%以上、0.080%以下、
S:0%以上、0.0100%以下、
N:0%以上、0.0050%以下、
O:0%以上、0.010%以下、
Nb:0%以上、0.100%以下、
V:0%以上、1.000%以下、
Cu:0%以上、1.000%以下、
Cr:0%以上、2.000%以下、
Mo:0%以上、3.000%以下、
Ni:0%以上、0.500%以下、
B:0%以上、0.0100%以下、
Ca:0%以上、0.0500%以下、
Mg:0%以上、0.050%以下、
REM:0%以上、0.100%以下、
Bi:0%以上、0.100%以下、
Ta:0%以上、0.100%以下、
Zr:0%以上、0.500%以下、
Co:0%以上、3.000%以下、
Zn:0%以上、0.200%以下、
W:0%以上、0.200%以下、
Sb:0%以上、0.500%以下、
As:0%以上、0.050%以下、及び
Sn:0%以上、0.050%以下を含み、
残部:Fe及び不純物からなる。
本開示の熱延鋼板においては、旧オーステナイト粒径が、25μm以下である。
本開示の熱延鋼板においては、GAM値0.6°超、2.0°未満である領域の面積率が、50%以上100%未満であり、GAM値0.6°以下である領域の面積率が、0%以上50%未満であり、GAM値2.0°以上である領域の面積率が、0%超50%以下である。
本開示の熱延鋼板においては、以下の関係(1)及び(2):
1.7≦LGr/LGt …(1)
1.20≦(LGr/LGt)/(LMr/LMt) …(2)
LGr:旧オーステナイト粒の圧延方向投影長さの面積平均値
LGt:旧オーステナイト粒の板厚方向投影長さの面積平均値
LMr:GAM値2.0°以上である領域の圧延方向投影長さの面積平均値
LMt:GAM値2.0°以上である領域の板厚方向投影長さの面積平均値
が満たされる。 The hot-rolled steel sheet of the present disclosure has, in mass%,
C: 0.045% or more, 0.120% or less,
Si: 0% or more, 3.00% or less,
Mn: 1.20% or more, 2.60% or less,
Ti: 0.020% or more, 0.180% or less,
Al: 0.010% or more, 0.400% or less,
P: 0% or more, 0.080% or less,
S: 0% or more, 0.0100% or less,
N: 0% or more, 0.0050% or less,
O: 0% or more, 0.010% or less,
Nb: 0% or more, 0.100% or less,
V: 0% or more, 1.000% or less,
Cu: 0% or more, 1.000% or less,
Cr: 0% or more, 2.000% or less,
Mo: 0% or more, 3.000% or less,
Ni: 0% or more, 0.500% or less,
B: 0% or more, 0.0100% or less,
Ca: 0% or more, 0.0500% or less,
Mg: 0% or more, 0.050% or less,
REM: 0% or more, 0.100% or less,
Bi: 0% or more, 0.100% or less,
Ta: 0% or more, 0.100% or less,
Zr: 0% or more, 0.500% or less,
Co: 0% or more, 3.000% or less,
Zn: 0% or more, 0.200% or less,
W: 0% or more, 0.200% or less,
Sb: 0% or more, 0.500% or less,
As: 0% or more, 0.050% or less, and Sn: 0% or more, 0.050% or less;
The balance is composed of Fe and impurities.
In the heat-rolled steel sheet of the present disclosure, the prior austenite grain size is 25 μm or less.
In the hot-rolled steel sheet disclosed herein, the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%, the area ratio of the region having a GAM value of 0.6° or less is 0% or more and less than 50%, and the area ratio of the region having a GAM value of 2.0° or more is more than 0% and less than 50%.
In the hot-rolled steel sheet of the present disclosure, the following relationships (1) and (2):
1.7≦LGr/LGt…(1)
1.20≦(LGr/LGt)/(LMr/LMt)…(2)
LGr: average area of the projection length in the rolling direction of prior austenite grains LGt: average area of the projection length in the sheet thickness direction of prior austenite grains LMr: average area of the projection length in the rolling direction of regions having a GAM value of 2.0° or more LMt: the average area of the projection length in the sheet thickness direction of regions having a GAM value of 2.0° or more is satisfied.
1.1 化学組成
熱延鋼板の化学組成を限定した理由について説明する。以下の説明において、各成分についての「%」は質量%を意味する。 1.1 Chemical Composition The reasons for limiting the chemical composition of the hot-rolled steel sheet will be described below. In the following description, "%" for each component means mass %.
熱延鋼板の化学組成を限定した理由について説明する。以下の説明において、各成分についての「%」は質量%を意味する。 1.1 Chemical Composition The reasons for limiting the chemical composition of the hot-rolled steel sheet will be described below. In the following description, "%" for each component means mass %.
(C:0.045%以上、0.120%以下)
Cは、熱延鋼板の強度を増加させる元素である。C含有量が少な過ぎると、GAM値0.6°以下である領域が過剰となり、熱延鋼板の強度が低下し易い。一方、C含有量が多過ぎると、GAM値2.0°以上である領域が過剰となり、熱延鋼板の伸びや穴広げ性が低下し易い。本開示の熱延鋼板においては、C含有量が、0.045%以上、0.120%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。C含有量は、0.050%以上、0.055%以上又は0.060%以上であってもよく、0.115%以下、0.110%以下、0.105%以下又は0.100%以下であってもよい。 (C: 0.045% or more, 0.120% or less)
C is an element that increases the strength of a hot-rolled steel sheet. If the C content is too low, the region in which the GAM value is 0.6° or less becomes excessive, and the strength of the hot-rolled steel sheet is likely to decrease. If the content is too high, the region in which the GAM value is 2.0° or more becomes excessive, and the elongation and hole expandability of the hot-rolled steel sheet are likely to decrease. By setting the C content to 0.045% or more and 0.120% or less, the balance between the strength, elongation and hole expandability of the hot-rolled steel sheet is improved. It may be 0.060% or more, or 0.115% or less, 0.110% or less, 0.105% or less, or 0.100% or less.
Cは、熱延鋼板の強度を増加させる元素である。C含有量が少な過ぎると、GAM値0.6°以下である領域が過剰となり、熱延鋼板の強度が低下し易い。一方、C含有量が多過ぎると、GAM値2.0°以上である領域が過剰となり、熱延鋼板の伸びや穴広げ性が低下し易い。本開示の熱延鋼板においては、C含有量が、0.045%以上、0.120%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。C含有量は、0.050%以上、0.055%以上又は0.060%以上であってもよく、0.115%以下、0.110%以下、0.105%以下又は0.100%以下であってもよい。 (C: 0.045% or more, 0.120% or less)
C is an element that increases the strength of a hot-rolled steel sheet. If the C content is too low, the region in which the GAM value is 0.6° or less becomes excessive, and the strength of the hot-rolled steel sheet is likely to decrease. If the content is too high, the region in which the GAM value is 2.0° or more becomes excessive, and the elongation and hole expandability of the hot-rolled steel sheet are likely to decrease. By setting the C content to 0.045% or more and 0.120% or less, the balance between the strength, elongation and hole expandability of the hot-rolled steel sheet is improved. It may be 0.060% or more, or 0.115% or less, 0.110% or less, 0.105% or less, or 0.100% or less.
(Si:0%以上、3.00%以下)
Siは、脱酸剤として作用し、炭化物等の形態に影響を及ぼす元素であり、且つ、熱延鋼板の引張強さを増加させ得る元素である。ただし、本開示の熱延鋼板は、Siを含まずとも、十分な引張強さが確保され得る。一方で、Siの含有量が多過ぎると、延性が不足する等して熱間圧延が困難となる虞がある。本開示の熱延鋼板においては、Si含有量が、0%以上、3.00%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。Si含有量は、0%超、0.001%以上、0.005%以上、0.010%以上、0.030%以上、0.050%以上、0.100%以上、0.200%以上、0.300%以上、0.400%以上又は0.500%以上であってもよく、2.50%以下、2.00%以下、1.80%以下又は1.50%以下であってもよい。 (Si: 0% or more, 3.00% or less)
Silicon acts as a deoxidizer, affects the morphology of carbides, and increases the tensile strength of the hot-rolled steel sheet. On the other hand, if the Si content is too high, there is a risk that hot rolling may become difficult due to insufficient ductility. In the steel sheet, when the Si content is 0% or more and 3.00% or less, the balance between the strength, elongation and hole expandability of the hot-rolled steel sheet is improved. The Si content is more than 0%, 0.001% or more, 0.005% or more, 0.010% or more, 0.030% or more, 0.050% or more, 0.100% or more, and 0.200% or more. , 0.300% or more, 0.400% or more, or 0.500% or more, and 2.50% or less, 2.00% or less, 1.80% or less, or 1.50% or less. Good too.
Siは、脱酸剤として作用し、炭化物等の形態に影響を及ぼす元素であり、且つ、熱延鋼板の引張強さを増加させ得る元素である。ただし、本開示の熱延鋼板は、Siを含まずとも、十分な引張強さが確保され得る。一方で、Siの含有量が多過ぎると、延性が不足する等して熱間圧延が困難となる虞がある。本開示の熱延鋼板においては、Si含有量が、0%以上、3.00%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。Si含有量は、0%超、0.001%以上、0.005%以上、0.010%以上、0.030%以上、0.050%以上、0.100%以上、0.200%以上、0.300%以上、0.400%以上又は0.500%以上であってもよく、2.50%以下、2.00%以下、1.80%以下又は1.50%以下であってもよい。 (Si: 0% or more, 3.00% or less)
Silicon acts as a deoxidizer, affects the morphology of carbides, and increases the tensile strength of the hot-rolled steel sheet. On the other hand, if the Si content is too high, there is a risk that hot rolling may become difficult due to insufficient ductility. In the steel sheet, when the Si content is 0% or more and 3.00% or less, the balance between the strength, elongation and hole expandability of the hot-rolled steel sheet is improved. The Si content is more than 0%, 0.001% or more, 0.005% or more, 0.010% or more, 0.030% or more, 0.050% or more, 0.100% or more, and 0.200% or more. , 0.300% or more, 0.400% or more, or 0.500% or more, and 2.50% or less, 2.00% or less, 1.80% or less, or 1.50% or less. Good too.
(Mn:1.20%以上、2.60%以下)
Mnは、熱延鋼板の引張強さを増加させ得る元素である。Mn含有量が少な過ぎると、GAM値0.6°以下である領域が過剰となり、熱延鋼板の強度が低下し易い。一方、Mn含有量が多過ぎると、GAM値2.0°以上である領域が過剰となり、熱延鋼板の伸びが低下し易い。本開示の熱延鋼板においては、Mn含有量が、1.20%以上、2.60%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。Mn含有量は、1.25%以上、1.30%以上、1.35%以上又は1.40%以上であってもよく、2.50%以下、2.40%以下、2.30%以下又は2.20%以下であってもよい。 (Mn: 1.20% or more, 2.60% or less)
Mn is an element that can increase the tensile strength of a hot-rolled steel sheet. If the Mn content is too low, the region with a GAM value of 0.6° or less becomes excessive, and the strength of the hot-rolled steel sheet is likely to decrease. On the other hand, if the Mn content is too high, the region in which the GAM value is 2.0° or more becomes excessive, and the elongation of the hot-rolled steel sheet is likely to decrease. By setting the Mn content to 20% or more and 2.60% or less, the balance of strength, elongation and hole expandability of the hot rolled steel sheet is improved. It may be 35% or more, or 1.40% or more, and may be 2.50% or less, 2.40% or less, 2.30% or less, or 2.20% or less.
Mnは、熱延鋼板の引張強さを増加させ得る元素である。Mn含有量が少な過ぎると、GAM値0.6°以下である領域が過剰となり、熱延鋼板の強度が低下し易い。一方、Mn含有量が多過ぎると、GAM値2.0°以上である領域が過剰となり、熱延鋼板の伸びが低下し易い。本開示の熱延鋼板においては、Mn含有量が、1.20%以上、2.60%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。Mn含有量は、1.25%以上、1.30%以上、1.35%以上又は1.40%以上であってもよく、2.50%以下、2.40%以下、2.30%以下又は2.20%以下であってもよい。 (Mn: 1.20% or more, 2.60% or less)
Mn is an element that can increase the tensile strength of a hot-rolled steel sheet. If the Mn content is too low, the region with a GAM value of 0.6° or less becomes excessive, and the strength of the hot-rolled steel sheet is likely to decrease. On the other hand, if the Mn content is too high, the region in which the GAM value is 2.0° or more becomes excessive, and the elongation of the hot-rolled steel sheet is likely to decrease. By setting the Mn content to 20% or more and 2.60% or less, the balance of strength, elongation and hole expandability of the hot rolled steel sheet is improved. It may be 35% or more, or 1.40% or more, and may be 2.50% or less, 2.40% or less, 2.30% or less, or 2.20% or less.
(Ti:0.020%以上、0.180%以下)
Tiは、強化元素であり、析出物強化、細粒強化及び/又は転位強化にて、熱延鋼板の強度上昇に寄与し得る。また、Tiは、変態との核となり得る元素である。具体的には、本開示の熱延鋼板においては、TiCを高密度に析出させることで、これが変態の核として機能し得る。Ti含有量が少な過ぎると、このような機能が発揮されず、旧オーステナイト粒が粗大化する等して、熱延鋼板の強度、伸び及び穴広げ性のバランスが悪くなり易い。一方、Ti含有量が多過ぎると、析出物が過剰に生成する等して、熱延鋼板の穴広げ性が低下し易い。本開示の熱延鋼板においては、Ti含有量が、0.020%以上、0.180%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。Ti含有量は、0.040%以上、0.060%以上、0.080%以上又は0.100%以上であってもよく、0.175%以下、0.170%以下、0.165%以下又は0.160%以下であってもよい。 (Ti: 0.020% or more, 0.180% or less)
Ti is a strengthening element and can contribute to increasing the strength of the hot-rolled steel sheet by precipitation strengthening, fine grain strengthening, and/or dislocation strengthening. Ti is also an element that can act as a nucleus for transformation. In other words, in the hot-rolled steel sheet of the present disclosure, TiC is precipitated at a high density, and this can function as a nucleus for transformation. If the Ti content is too low, this function is not exerted, and the old On the other hand, if the Ti content is too high, excessive precipitates are formed, and the balance between the strength, elongation, and hole expandability of the hot-rolled steel sheet is easily deteriorated. In the hot-rolled steel sheet of the present disclosure, the Ti content is 0.020% or more and 0.180% or less, so that the strength, elongation and hole expandability of the hot-rolled steel sheet are easily deteriorated. The spreadability balance is improved. The Ti content may be 0.040% or more, 0.060% or more, 0.080% or more, or 0.100% or more, and may be 0.175% or less, 0.170% or less, 0.165% or less. It may be 0.160% or less or 0.160% or less.
Tiは、強化元素であり、析出物強化、細粒強化及び/又は転位強化にて、熱延鋼板の強度上昇に寄与し得る。また、Tiは、変態との核となり得る元素である。具体的には、本開示の熱延鋼板においては、TiCを高密度に析出させることで、これが変態の核として機能し得る。Ti含有量が少な過ぎると、このような機能が発揮されず、旧オーステナイト粒が粗大化する等して、熱延鋼板の強度、伸び及び穴広げ性のバランスが悪くなり易い。一方、Ti含有量が多過ぎると、析出物が過剰に生成する等して、熱延鋼板の穴広げ性が低下し易い。本開示の熱延鋼板においては、Ti含有量が、0.020%以上、0.180%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。Ti含有量は、0.040%以上、0.060%以上、0.080%以上又は0.100%以上であってもよく、0.175%以下、0.170%以下、0.165%以下又は0.160%以下であってもよい。 (Ti: 0.020% or more, 0.180% or less)
Ti is a strengthening element and can contribute to increasing the strength of the hot-rolled steel sheet by precipitation strengthening, fine grain strengthening, and/or dislocation strengthening. Ti is also an element that can act as a nucleus for transformation. In other words, in the hot-rolled steel sheet of the present disclosure, TiC is precipitated at a high density, and this can function as a nucleus for transformation. If the Ti content is too low, this function is not exerted, and the old On the other hand, if the Ti content is too high, excessive precipitates are formed, and the balance between the strength, elongation, and hole expandability of the hot-rolled steel sheet is easily deteriorated. In the hot-rolled steel sheet of the present disclosure, the Ti content is 0.020% or more and 0.180% or less, so that the strength, elongation and hole expandability of the hot-rolled steel sheet are easily deteriorated. The spreadability balance is improved. The Ti content may be 0.040% or more, 0.060% or more, 0.080% or more, or 0.100% or more, and may be 0.175% or less, 0.170% or less, 0.165% or less. It may be 0.160% or less or 0.160% or less.
(Al:0.010%以上、0.400%以下)
Alは、脱酸剤として作用する元素である。Al含有量が少な過ぎると、脱酸が不十分となり易く、介在物が過剰に生成し易く、熱延鋼板の穴広げ性が低下し易い。一方、Al含有量が多過ぎると、スラブの割れ等が生じて熱間圧延が困難となる虞がある。本開示の熱延鋼板においては、Al含有量が、0.010%以上、0.400%以下であることで、スラブの割れ等が抑制されるとともに、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。Al含有量は、0.020%以上、0.030%以上、0.040%以上又は0.050%以上であってもよく、0.350%以下、0.300%以下、0.250%以下又は0.200%以下であってもよい。 (Al: 0.010% or more, 0.400% or less)
Al is an element that acts as a deoxidizer. If the Al content is too low, deoxidization is likely to be insufficient, inclusions are likely to be excessively generated, and the hole expandability of the hot-rolled steel sheet is likely to decrease. On the other hand, if the Al content is too high, cracks in the slab may occur, making hot rolling difficult. By setting the Al content to 400% or less, cracks in the slab are suppressed, and the balance between the strength, elongation, and hole expandability of the hot-rolled steel sheet is improved. % or more, 0.040% or more, or 0.050% or more, and may be 0.350% or less, 0.300% or less, 0.250% or less, or 0.200% or less.
Alは、脱酸剤として作用する元素である。Al含有量が少な過ぎると、脱酸が不十分となり易く、介在物が過剰に生成し易く、熱延鋼板の穴広げ性が低下し易い。一方、Al含有量が多過ぎると、スラブの割れ等が生じて熱間圧延が困難となる虞がある。本開示の熱延鋼板においては、Al含有量が、0.010%以上、0.400%以下であることで、スラブの割れ等が抑制されるとともに、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。Al含有量は、0.020%以上、0.030%以上、0.040%以上又は0.050%以上であってもよく、0.350%以下、0.300%以下、0.250%以下又は0.200%以下であってもよい。 (Al: 0.010% or more, 0.400% or less)
Al is an element that acts as a deoxidizer. If the Al content is too low, deoxidization is likely to be insufficient, inclusions are likely to be excessively generated, and the hole expandability of the hot-rolled steel sheet is likely to decrease. On the other hand, if the Al content is too high, cracks in the slab may occur, making hot rolling difficult. By setting the Al content to 400% or less, cracks in the slab are suppressed, and the balance between the strength, elongation, and hole expandability of the hot-rolled steel sheet is improved. % or more, 0.040% or more, or 0.050% or more, and may be 0.350% or less, 0.300% or less, 0.250% or less, or 0.200% or less.
(P:0%以上、0.080%以下)
Pは、鋼中の粒界に偏析して、粒界の脆化を促す元素である。P含有量が多過ぎると、熱延鋼板の伸びや穴広げ性が低下し易く、さらには、脆化によるスラブの割れ等が生じて熱間圧延が困難となる虞がある。本開示の熱延鋼板においては、P含有量が、0%以上、0.080%以下であることで、スラブの割れ等が抑制されるとともに、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。P含有量は、0.001%以上、0.002%以上、0.003%以上又は0.004%以上であってもよく、0.050%以下、0.030%以下、0.015%以下又は0.010%以下であってもよい。 (P: 0% or more, 0.080% or less)
P is an element that segregates at grain boundaries in steel and promotes embrittlement of the grain boundaries. If the P content is too high, the elongation and hole expandability of the hot-rolled steel sheet are likely to decrease, and further, the embrittlement may occur. In the hot-rolled steel sheet of the present disclosure, the P content is 0% or more and 0.080% or less, so that the slab can be easily cracked and hot-rolled. The P content is 0.001% or more, 0.002% or more, 0.003% or more, or 0.004% or more. It may be 0.004% or more, or 0.050% or less, 0.030% or less, 0.015% or less, or 0.010% or less.
Pは、鋼中の粒界に偏析して、粒界の脆化を促す元素である。P含有量が多過ぎると、熱延鋼板の伸びや穴広げ性が低下し易く、さらには、脆化によるスラブの割れ等が生じて熱間圧延が困難となる虞がある。本開示の熱延鋼板においては、P含有量が、0%以上、0.080%以下であることで、スラブの割れ等が抑制されるとともに、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。P含有量は、0.001%以上、0.002%以上、0.003%以上又は0.004%以上であってもよく、0.050%以下、0.030%以下、0.015%以下又は0.010%以下であってもよい。 (P: 0% or more, 0.080% or less)
P is an element that segregates at grain boundaries in steel and promotes embrittlement of the grain boundaries. If the P content is too high, the elongation and hole expandability of the hot-rolled steel sheet are likely to decrease, and further, the embrittlement may occur. In the hot-rolled steel sheet of the present disclosure, the P content is 0% or more and 0.080% or less, so that the slab can be easily cracked and hot-rolled. The P content is 0.001% or more, 0.002% or more, 0.003% or more, or 0.004% or more. It may be 0.004% or more, or 0.050% or less, 0.030% or less, 0.015% or less, or 0.010% or less.
(S:0%以上、0.0100%以下)
Sは、鋼中でMnS等の介在物を生成し、熱延鋼板の延性を低下させる元素である。S含有量が多過ぎると、介在物が過剰に生成して、熱延鋼板の穴広げ性が低下し易い。本開示の熱延鋼板においては、S含有量が、0%以上、0.0100%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。S含有量は、0.0001%以上、0.0010%以上、0.0015%以上又は0.0020%以上であってもよく、0.0090%以下、0.0075%以下、0.0060%以下又は0.0050%以下であってもよい。 (S: 0% or more, 0.0100% or less)
S is an element that generates inclusions such as MnS in steel and reduces the ductility of the hot-rolled steel sheet. If the S content is too high, excessive inclusions are generated, which reduces the hole expansion properties of the hot-rolled steel sheet. In the hot-rolled steel sheet of the present disclosure, the S content is 0% or more and 0.0100% or less, so that the balance of the strength, elongation and hole expandability of the hot-rolled steel sheet is improved. The S content may be 0.0001% or more, 0.0010% or more, 0.0015% or more, or 0.0020% or more, and may be 0.0090% or less, 0.0075% or less, 0. It may be 0.0060% or less or 0.0050% or less.
Sは、鋼中でMnS等の介在物を生成し、熱延鋼板の延性を低下させる元素である。S含有量が多過ぎると、介在物が過剰に生成して、熱延鋼板の穴広げ性が低下し易い。本開示の熱延鋼板においては、S含有量が、0%以上、0.0100%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。S含有量は、0.0001%以上、0.0010%以上、0.0015%以上又は0.0020%以上であってもよく、0.0090%以下、0.0075%以下、0.0060%以下又は0.0050%以下であってもよい。 (S: 0% or more, 0.0100% or less)
S is an element that generates inclusions such as MnS in steel and reduces the ductility of the hot-rolled steel sheet. If the S content is too high, excessive inclusions are generated, which reduces the hole expansion properties of the hot-rolled steel sheet. In the hot-rolled steel sheet of the present disclosure, the S content is 0% or more and 0.0100% or less, so that the balance of the strength, elongation and hole expandability of the hot-rolled steel sheet is improved. The S content may be 0.0001% or more, 0.0010% or more, 0.0015% or more, or 0.0020% or more, and may be 0.0090% or less, 0.0075% or less, 0. It may be 0.0060% or less or 0.0050% or less.
(N:0%以上、0.0050%以下)
Nは、鋼中で粗大な窒化物を形成し、熱延鋼板の加工性を低下させる元素である。N含有量が多過ぎると、窒化物が過剰に生成する等して、熱延鋼板の伸びや穴広げ性が低下し易く、さらには、脆化によるスラブの割れ等が生じて熱間圧延が困難となる虞がある。本開示の熱延鋼板においては、N含有量が、0%以上、0.0050%以下であることで、スラブの割れ等が抑制されるとともに、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。N含有量は、0.0001%以上、0.0005%以上、0.0010%以上又は0.0015%以上であってもよく、0.0048%以下、0.0045%以下、0.0042%以下又は0.0040%以下であってもよい。 (N: 0% or more, 0.0050% or less)
N is an element that forms coarse nitrides in steel and reduces the workability of hot-rolled steel sheets. If the N content is too high, excessive nitrides are generated, and the workability of the hot-rolled steel sheets is reduced. The elongation and hole expandability are likely to decrease, and furthermore, there is a risk that cracks in the slab due to embrittlement may occur, making hot rolling difficult. By setting the N content to 0.0050% or less, cracking of the slab is suppressed, and the balance between the strength, elongation, and hole expandability of the hot-rolled steel sheet is improved. , 0.0005% or more, 0.0010% or more, or 0.0015% or more, and 0.0048% or less, 0.0045% or less, 0.0042% or less, or 0.0040% or less. Good too.
Nは、鋼中で粗大な窒化物を形成し、熱延鋼板の加工性を低下させる元素である。N含有量が多過ぎると、窒化物が過剰に生成する等して、熱延鋼板の伸びや穴広げ性が低下し易く、さらには、脆化によるスラブの割れ等が生じて熱間圧延が困難となる虞がある。本開示の熱延鋼板においては、N含有量が、0%以上、0.0050%以下であることで、スラブの割れ等が抑制されるとともに、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。N含有量は、0.0001%以上、0.0005%以上、0.0010%以上又は0.0015%以上であってもよく、0.0048%以下、0.0045%以下、0.0042%以下又は0.0040%以下であってもよい。 (N: 0% or more, 0.0050% or less)
N is an element that forms coarse nitrides in steel and reduces the workability of hot-rolled steel sheets. If the N content is too high, excessive nitrides are generated, and the workability of the hot-rolled steel sheets is reduced. The elongation and hole expandability are likely to decrease, and furthermore, there is a risk that cracks in the slab due to embrittlement may occur, making hot rolling difficult. By setting the N content to 0.0050% or less, cracking of the slab is suppressed, and the balance between the strength, elongation, and hole expandability of the hot-rolled steel sheet is improved. , 0.0005% or more, 0.0010% or more, or 0.0015% or more, and 0.0048% or less, 0.0045% or less, 0.0042% or less, or 0.0040% or less. Good too.
(O:0%以上、0.010%以下)
Oは、酸化物を形成し、熱延鋼板の加工性を低下させる元素である。O含有量が多過ぎると、酸化物が過剰に生成する等して、熱延鋼板の穴広げ性が低下し易い。本開示の熱延鋼板においては、O含有量が、0%以上、0.010%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。O含有量は、0.001%以上であってもよく、0.008%以下、0.006%以下、0.005%以下又は0.004%以下であってもよい。 (O: 0% or more, 0.010% or less)
O is an element that forms oxides and reduces the workability of hot-rolled steel sheets. If the O content is too high, oxides are generated in excess, and the hole expandability of the hot-rolled steel sheet is reduced. In the hot-rolled steel sheet of the present disclosure, the O content is 0% or more and 0.010% or less, so that the balance of the strength, elongation, and hole expandability of the hot-rolled steel sheet is improved. The content may be 0.001% or more, and may be 0.008% or less, 0.006% or less, 0.005% or less, or 0.004% or less.
Oは、酸化物を形成し、熱延鋼板の加工性を低下させる元素である。O含有量が多過ぎると、酸化物が過剰に生成する等して、熱延鋼板の穴広げ性が低下し易い。本開示の熱延鋼板においては、O含有量が、0%以上、0.010%以下であることで、熱延鋼板の強度、伸び及び穴広げ性のバランスが改善される。O含有量は、0.001%以上であってもよく、0.008%以下、0.006%以下、0.005%以下又は0.004%以下であってもよい。 (O: 0% or more, 0.010% or less)
O is an element that forms oxides and reduces the workability of hot-rolled steel sheets. If the O content is too high, oxides are generated in excess, and the hole expandability of the hot-rolled steel sheet is reduced. In the hot-rolled steel sheet of the present disclosure, the O content is 0% or more and 0.010% or less, so that the balance of the strength, elongation, and hole expandability of the hot-rolled steel sheet is improved. The content may be 0.001% or more, and may be 0.008% or less, 0.006% or less, 0.005% or less, or 0.004% or less.
本開示の熱延鋼板の基本化学組成は上記のとおりである。さらに、本開示の熱延鋼板は、必要に応じて、以下の元素のうちの少なくとも1種を含んでいてもよい。これらの元素は含まれなくてもよいため、その含有量の下限は0%である。
The basic chemical composition of the hot-rolled steel sheet disclosed herein is as described above. Furthermore, the hot-rolled steel sheet disclosed herein may contain at least one of the following elements as necessary. These elements do not necessarily need to be contained, so the lower limit of their content is 0%.
(Nb:0%以上、0.100%以下)
Nbは、Tiと同様に炭化物の形態制御等に有効な元素であり、任意に添加されてもよい。一方、Nb含有量が多過ぎると、効果が飽和するほか、析出物が生成する虞がある。本開示の熱延鋼板において、Nb含有量は、0%以上、0.100%以下である。Nb含有量は、0.001%以上、0.003%以上、0.005%以上又は0.007%以上であってもよく、0.090%以下、0.070%以下、0.050%以下、0.045%以下、0.040%以下、0.035%以下又は0.030%以下であってもよい。 (Nb: 0% or more, 0.100% or less)
Nb is an element effective for controlling the morphology of carbides, similar to Ti, and may be added as desired. On the other hand, if the Nb content is too high, the effect becomes saturated and there is a risk of precipitation. In the hot-rolled steel sheet of the present disclosure, the Nb content is 0% or more and 0.100% or less. The Nb content is 0.001% or more, 0.003% or more, 0.005% or more, or It may be 0.007% or more, and may be 0.090% or less, 0.070% or less, 0.050% or less, 0.045% or less, 0.040% or less, 0.035% or less, or 0.030% or less. % or less.
Nbは、Tiと同様に炭化物の形態制御等に有効な元素であり、任意に添加されてもよい。一方、Nb含有量が多過ぎると、効果が飽和するほか、析出物が生成する虞がある。本開示の熱延鋼板において、Nb含有量は、0%以上、0.100%以下である。Nb含有量は、0.001%以上、0.003%以上、0.005%以上又は0.007%以上であってもよく、0.090%以下、0.070%以下、0.050%以下、0.045%以下、0.040%以下、0.035%以下又は0.030%以下であってもよい。 (Nb: 0% or more, 0.100% or less)
Nb is an element effective for controlling the morphology of carbides, similar to Ti, and may be added as desired. On the other hand, if the Nb content is too high, the effect becomes saturated and there is a risk of precipitation. In the hot-rolled steel sheet of the present disclosure, the Nb content is 0% or more and 0.100% or less. The Nb content is 0.001% or more, 0.003% or more, 0.005% or more, or It may be 0.007% or more, and may be 0.090% or less, 0.070% or less, 0.050% or less, 0.045% or less, 0.040% or less, 0.035% or less, or 0.030% or less. % or less.
(V:0%以上、1.000%以下)
Vは、析出物強化、細粒強化及び/又は転位強化にて、熱延鋼板の強度上昇に寄与し得る元素であり、任意に添加されてもよい。一方、V含有量が多過ぎると、効果が飽和するほか、析出物が生成する虞がある。本開示の熱延鋼板において、V含有量は、0%以上、1.000%以下である。V含有量は、0.001%以上、0.003%以上、0.005%以上又は0.007%以上であってもよく、0.900%以下、0.700%以下、0.500%以下、0.300%以下、0.250%以下、0.200%以下、0.150%以下又は0.100%以下であってもよい。 (V: 0% or more, 1.000% or less)
V is an element that can contribute to increasing the strength of a hot-rolled steel sheet by precipitation strengthening, fine grain strengthening, and/or dislocation strengthening, and may be added as desired. On the other hand, if the V content is too high, In addition, the effect of the present invention may become saturated, and precipitates may be formed. In the hot-rolled steel sheet of the present disclosure, the V content is 0% or more and 1.000% or less. The V content is 0.001% or more. , 0.003% or more, 0.005% or more, or 0.007% or more, and may be 0.900% or less, 0.700% or less, 0.500% or less, 0.300% or less, 0. It may be 250% or less, 0.200% or less, 0.150% or less, or 0.100% or less.
Vは、析出物強化、細粒強化及び/又は転位強化にて、熱延鋼板の強度上昇に寄与し得る元素であり、任意に添加されてもよい。一方、V含有量が多過ぎると、効果が飽和するほか、析出物が生成する虞がある。本開示の熱延鋼板において、V含有量は、0%以上、1.000%以下である。V含有量は、0.001%以上、0.003%以上、0.005%以上又は0.007%以上であってもよく、0.900%以下、0.700%以下、0.500%以下、0.300%以下、0.250%以下、0.200%以下、0.150%以下又は0.100%以下であってもよい。 (V: 0% or more, 1.000% or less)
V is an element that can contribute to increasing the strength of a hot-rolled steel sheet by precipitation strengthening, fine grain strengthening, and/or dislocation strengthening, and may be added as desired. On the other hand, if the V content is too high, In addition, the effect of the present invention may become saturated, and precipitates may be formed. In the hot-rolled steel sheet of the present disclosure, the V content is 0% or more and 1.000% or less. The V content is 0.001% or more. , 0.003% or more, 0.005% or more, or 0.007% or more, and may be 0.900% or less, 0.700% or less, 0.500% or less, 0.300% or less, 0. It may be 250% or less, 0.200% or less, 0.150% or less, or 0.100% or less.
(Cu:0%以上、1.000%以下)
Cuは、強度及び耐食性のうちの少なくとも一方の向上に寄与し得る元素であり、任意に添加されてもよい。一方、Cuを過度に含有すると靭性の低下等を招く虞がある。本開示の熱延鋼板において、Cu含有量は、0%以上、1.000%以下である。Cu含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、0.800%以下、0.600%以下、0.400%以下、0.350%以下、0.250%以下又は0.150%以下であってもよい。 (Cu: 0% or more, 1.000% or less)
Cu is an element that can contribute to improving at least one of strength and corrosion resistance, and may be added as desired. On the other hand, excessive Cu content may lead to a decrease in toughness, etc. In the hot-rolled steel sheet, the Cu content is 0% or more and 1.000% or less. The Cu content may be 0.001% or more, 0.005% or more, or 0.010% or more, It may be 0.800% or less, 0.600% or less, 0.400% or less, 0.350% or less, 0.250% or less, or 0.150% or less.
Cuは、強度及び耐食性のうちの少なくとも一方の向上に寄与し得る元素であり、任意に添加されてもよい。一方、Cuを過度に含有すると靭性の低下等を招く虞がある。本開示の熱延鋼板において、Cu含有量は、0%以上、1.000%以下である。Cu含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、0.800%以下、0.600%以下、0.400%以下、0.350%以下、0.250%以下又は0.150%以下であってもよい。 (Cu: 0% or more, 1.000% or less)
Cu is an element that can contribute to improving at least one of strength and corrosion resistance, and may be added as desired. On the other hand, excessive Cu content may lead to a decrease in toughness, etc. In the hot-rolled steel sheet, the Cu content is 0% or more and 1.000% or less. The Cu content may be 0.001% or more, 0.005% or more, or 0.010% or more, It may be 0.800% or less, 0.600% or less, 0.400% or less, 0.350% or less, 0.250% or less, or 0.150% or less.
(Cr:0%以上、2.000%以下)
Crは、鋼の焼入れ性を高め、強度及び耐食性の少なくとも一方の向上に寄与し得る元素であり、任意に添加されてもよい。一方、Crを過度に含有すると、合金コストの増加に加えて靭性の低下等を招く虞がある。本開示の熱延鋼板において、Cr含有量は、0%以上、2.000%以下である。Cr含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、1.500%以下、1.000%以下、0.800%以下、0.700%以下、0.600%以下又は0.500%以下であってもよい。 (Cr: 0% or more, 2.000% or less)
Cr is an element that can improve the hardenability of steel and contribute to improving at least one of strength and corrosion resistance, and may be added as desired. On the other hand, an excessive Cr content increases the alloy cost and In the hot-rolled steel sheet of the present disclosure, the Cr content is 0% or more and 2.000% or less. The Cr content is 0.001% or more and 0.005% or less. or 0.010% or more, and may be 1.500% or less, 1.000% or less, 0.800% or less, 0.700% or less, 0.600% or less, or 0.500% or less. This is also fine.
Crは、鋼の焼入れ性を高め、強度及び耐食性の少なくとも一方の向上に寄与し得る元素であり、任意に添加されてもよい。一方、Crを過度に含有すると、合金コストの増加に加えて靭性の低下等を招く虞がある。本開示の熱延鋼板において、Cr含有量は、0%以上、2.000%以下である。Cr含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、1.500%以下、1.000%以下、0.800%以下、0.700%以下、0.600%以下又は0.500%以下であってもよい。 (Cr: 0% or more, 2.000% or less)
Cr is an element that can improve the hardenability of steel and contribute to improving at least one of strength and corrosion resistance, and may be added as desired. On the other hand, an excessive Cr content increases the alloy cost and In the hot-rolled steel sheet of the present disclosure, the Cr content is 0% or more and 2.000% or less. The Cr content is 0.001% or more and 0.005% or less. or 0.010% or more, and may be 1.500% or less, 1.000% or less, 0.800% or less, 0.700% or less, 0.600% or less, or 0.500% or less. This is also fine.
(Mo:0%以上、3.000%以下)
Moは、鋼の焼入れ性を高め、強度及び耐食性の少なくとも一方の向上に寄与し得る元素であり、任意に添加されてもよい。一方、Moを過度に含有すると、加工時の変形抵抗が増大する虞がある。本開示の熱延鋼板において、Mo含有量は、0%以上、3.000%以下である。Mo含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、2.500%以下、2.000%以下、1.500%以下、1.000%以下、0.600%以下、0.500%以下、0.400%以下又は0.300%以下であってもよい。 (Mo: 0% or more, 3.000% or less)
Mo is an element that can improve the hardenability of steel and contribute to improving at least one of strength and corrosion resistance, and may be added as desired. On the other hand, if Mo is contained in excess, deformation resistance during processing increases. In the hot-rolled steel sheet of the present disclosure, the Mo content is 0% or more and 3.000% or less. % or more, 2.500% or less, 2.000% or less, 1.500% or less, 1.000% or less, 0.600% or less, 0.500% or less, 0.400% or less, or It may be 0.300% or less.
Moは、鋼の焼入れ性を高め、強度及び耐食性の少なくとも一方の向上に寄与し得る元素であり、任意に添加されてもよい。一方、Moを過度に含有すると、加工時の変形抵抗が増大する虞がある。本開示の熱延鋼板において、Mo含有量は、0%以上、3.000%以下である。Mo含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、2.500%以下、2.000%以下、1.500%以下、1.000%以下、0.600%以下、0.500%以下、0.400%以下又は0.300%以下であってもよい。 (Mo: 0% or more, 3.000% or less)
Mo is an element that can improve the hardenability of steel and contribute to improving at least one of strength and corrosion resistance, and may be added as desired. On the other hand, if Mo is contained in excess, deformation resistance during processing increases. In the hot-rolled steel sheet of the present disclosure, the Mo content is 0% or more and 3.000% or less. % or more, 2.500% or less, 2.000% or less, 1.500% or less, 1.000% or less, 0.600% or less, 0.500% or less, 0.400% or less, or It may be 0.300% or less.
(Ni:0%以上、0.500%以下)
Niは、鋼の焼入れ性を高め、強度及び耐熱性の少なくとも一方の向上に寄与し得る元素であり、任意に添加されてもよい。一方、Niを過度に含有すると、効果が飽和するとともに、製造コストの上昇を招く虞がある。本開示の熱延鋼板において、Ni含有量は、0%以上、0.500%以下である。Ni含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、0.450%以下、0.400%以下、0.350%以下、0.300%以下、0.250%以下、0.200%以下又は0.150%以下であってもよい。 (Ni: 0% or more, 0.500% or less)
Ni is an element that can improve the hardenability of steel and contribute to improving at least one of strength and heat resistance, and may be added as desired. On the other hand, if Ni is contained in an excessive amount, the effect becomes saturated and There is a risk of an increase in manufacturing costs. In the hot-rolled steel sheet of the present disclosure, the Ni content is 0% or more and 0.500% or less. The Ni content is 0.001% or more and 0.005% or less. or 0.010% or more, and may be 0.450% or less, 0.400% or less, 0.350% or less, 0.300% or less, 0.250% or less, 0.200% or less, or 0 It may be 150% or less.
Niは、鋼の焼入れ性を高め、強度及び耐熱性の少なくとも一方の向上に寄与し得る元素であり、任意に添加されてもよい。一方、Niを過度に含有すると、効果が飽和するとともに、製造コストの上昇を招く虞がある。本開示の熱延鋼板において、Ni含有量は、0%以上、0.500%以下である。Ni含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、0.450%以下、0.400%以下、0.350%以下、0.300%以下、0.250%以下、0.200%以下又は0.150%以下であってもよい。 (Ni: 0% or more, 0.500% or less)
Ni is an element that can improve the hardenability of steel and contribute to improving at least one of strength and heat resistance, and may be added as desired. On the other hand, if Ni is contained in an excessive amount, the effect becomes saturated and There is a risk of an increase in manufacturing costs. In the hot-rolled steel sheet of the present disclosure, the Ni content is 0% or more and 0.500% or less. The Ni content is 0.001% or more and 0.005% or less. or 0.010% or more, and may be 0.450% or less, 0.400% or less, 0.350% or less, 0.300% or less, 0.250% or less, 0.200% or less, or 0 It may be 150% or less.
(B:0%以上、0.0100%以下)
Bは、鋼の高強度化に有益な元素であり、任意に添加されてもよい。本開示の熱延鋼板において、B含有量は、0%以上、0.0100%以下である。B含有量は、0.0001%以上、0.0003%以上又は0.0005%以上であってもよく、0.0080%以下、0.0060%以下、0.0040%以下、0.0035%以下、0.0030%以下又は0.0025%以下であってもよい。 (B: 0% or more, 0.0100% or less)
B is an element beneficial for increasing the strength of steel and may be added as desired. In the hot-rolled steel sheet of the present disclosure, the B content is 0% or more and 0.0100% or less. The amount may be 0.0001% or more, 0.0003% or more, or 0.0005% or more, and may be 0.0080% or less, 0.0060% or less, 0.0040% or less, 0.0035% or less, It may be 0.0030% or less, or 0.0025% or less.
Bは、鋼の高強度化に有益な元素であり、任意に添加されてもよい。本開示の熱延鋼板において、B含有量は、0%以上、0.0100%以下である。B含有量は、0.0001%以上、0.0003%以上又は0.0005%以上であってもよく、0.0080%以下、0.0060%以下、0.0040%以下、0.0035%以下、0.0030%以下又は0.0025%以下であってもよい。 (B: 0% or more, 0.0100% or less)
B is an element beneficial for increasing the strength of steel and may be added as desired. In the hot-rolled steel sheet of the present disclosure, the B content is 0% or more and 0.0100% or less. The amount may be 0.0001% or more, 0.0003% or more, or 0.0005% or more, and may be 0.0080% or less, 0.0060% or less, 0.0040% or less, 0.0035% or less, It may be 0.0030% or less, or 0.0025% or less.
(Ca:0%以上、0.0500%以下)
Caは、硫化物の形態を制御することができる元素であり、任意に添加されてもよい。一方で、Caを過度に含有すると、効果が飽和するとともに、製造コストの上昇を招く虞がある。本開示の熱延鋼板において、Ca含有量は、0%以上、0.0500%以下である。Ca含有量は、0.0001%以上、0.0003%以上又は0.0005%以上であってもよく、0.0300%以下、0.0100%以下、0.0080%以下、0.0060%以下、0.0040%以下、0.0035%以下、0.0030%以下又は0.0025%以下であってもよい。 (Ca: 0% or more, 0.0500% or less)
Ca is an element capable of controlling the morphology of sulfides and may be added as desired. However, if an excessive amount of Ca is added, the effect becomes saturated and there is a risk of an increase in the manufacturing cost. In the hot-rolled steel sheet of the present disclosure, the Ca content is 0% or more and 0.0500% or less. The Ca content is 0.0001% or more, 0.0003% or more, or 0.0005% or more. 0.0300% or less, 0.0100% or less, 0.0080% or less, 0.0060% or less, 0.0040% or less, 0.0035% or less, 0.0030% or less, or 0.0025% It may be the following.
Caは、硫化物の形態を制御することができる元素であり、任意に添加されてもよい。一方で、Caを過度に含有すると、効果が飽和するとともに、製造コストの上昇を招く虞がある。本開示の熱延鋼板において、Ca含有量は、0%以上、0.0500%以下である。Ca含有量は、0.0001%以上、0.0003%以上又は0.0005%以上であってもよく、0.0300%以下、0.0100%以下、0.0080%以下、0.0060%以下、0.0040%以下、0.0035%以下、0.0030%以下又は0.0025%以下であってもよい。 (Ca: 0% or more, 0.0500% or less)
Ca is an element capable of controlling the morphology of sulfides and may be added as desired. However, if an excessive amount of Ca is added, the effect becomes saturated and there is a risk of an increase in the manufacturing cost. In the hot-rolled steel sheet of the present disclosure, the Ca content is 0% or more and 0.0500% or less. The Ca content is 0.0001% or more, 0.0003% or more, or 0.0005% or more. 0.0300% or less, 0.0100% or less, 0.0080% or less, 0.0060% or less, 0.0040% or less, 0.0035% or less, 0.0030% or less, or 0.0025% It may be the following.
(Mg:0%以上、0.050%以下)
Mgは、硫化物の形態の制御に寄与し得る元素であり、任意に添加されてもよい。一方で、Mgを過度に含有すると、靭性が低下する虞がある。本開示の熱延鋼板において、Mg含有量は、0%以上、0.050%以下である。Mg含有量は、0.001%以上であってもよく、0.040%以下、0.030%以下、0.020%以下、0.015%以下、0.010%以下又は0.005%以下であってもよい。 (Mg: 0% or more, 0.050% or less)
Mg is an element that can contribute to controlling the morphology of sulfides and may be added as desired. On the other hand, if Mg is contained in an excessive amount, there is a risk that the toughness will decrease. The Mg content is 0% or more and 0.050% or less. The Mg content may be 0.001% or more and 0.040% or less, 0.030% or less, 0.020% or less. It may be 0.015% or less, 0.010% or less, or 0.005% or less.
Mgは、硫化物の形態の制御に寄与し得る元素であり、任意に添加されてもよい。一方で、Mgを過度に含有すると、靭性が低下する虞がある。本開示の熱延鋼板において、Mg含有量は、0%以上、0.050%以下である。Mg含有量は、0.001%以上であってもよく、0.040%以下、0.030%以下、0.020%以下、0.015%以下、0.010%以下又は0.005%以下であってもよい。 (Mg: 0% or more, 0.050% or less)
Mg is an element that can contribute to controlling the morphology of sulfides and may be added as desired. On the other hand, if Mg is contained in an excessive amount, there is a risk that the toughness will decrease. The Mg content is 0% or more and 0.050% or less. The Mg content may be 0.001% or more and 0.040% or less, 0.030% or less, 0.020% or less. It may be 0.015% or less, 0.010% or less, or 0.005% or less.
(REM:0%以上、0.100%以下)
REMは、Caと同様に微量添加により硫化物の形態を制御することができる元素であり、任意に添加されてもよい。一方で、REMを過度に含有すると、粗大な介在物が生成する虞がある。本開示の熱延鋼板において、REM含有量は、0%以上、0.100%以下である。REM含有量は、0.001%以上、0.003%以上又は0.005%以上であってもよく、0.080%以下、0.060%以下又は0.040%以下であってもよい。尚、「REM」とは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及びランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)の17元素の総称であり、「REM含有量」はこれら元素の合計含有量である。 (REM: 0% or more, 0.100% or less)
REM is an element that can control the morphology of sulfides by adding a small amount of it, similar to Ca, and may be added as desired. On the other hand, if REM is contained in an excessive amount, there is a risk of coarse inclusions being generated. In the hot-rolled steel sheet of the present disclosure, the REM content is 0% or more and 0.100% or less. The REM content is 0.001% or more, 0.003% or more, or 0.005% or more. The REM content may be 0.080% or less, 0.060% or less, or 0.040% or less. The "REM content" is the total content of these elements. It is.
REMは、Caと同様に微量添加により硫化物の形態を制御することができる元素であり、任意に添加されてもよい。一方で、REMを過度に含有すると、粗大な介在物が生成する虞がある。本開示の熱延鋼板において、REM含有量は、0%以上、0.100%以下である。REM含有量は、0.001%以上、0.003%以上又は0.005%以上であってもよく、0.080%以下、0.060%以下又は0.040%以下であってもよい。尚、「REM」とは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及びランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)の17元素の総称であり、「REM含有量」はこれら元素の合計含有量である。 (REM: 0% or more, 0.100% or less)
REM is an element that can control the morphology of sulfides by adding a small amount of it, similar to Ca, and may be added as desired. On the other hand, if REM is contained in an excessive amount, there is a risk of coarse inclusions being generated. In the hot-rolled steel sheet of the present disclosure, the REM content is 0% or more and 0.100% or less. The REM content is 0.001% or more, 0.003% or more, or 0.005% or more. The REM content may be 0.080% or less, 0.060% or less, or 0.040% or less. The "REM content" is the total content of these elements. It is.
(Bi:0%以上、0.100%以下)
Biは、耐食性の向上等に寄与し得る元素であり、任意に添加されてもよい。一方で、Biを過度に含有すると、効果が飽和するとともに、製造コストの上昇を招く虞がある。本開示の熱延鋼板において、Bi含有量は、0%以上、0.100%以下である。Bi含有量は、0.001%以上又は0.002%以上であってもよく、0.070%以下、0.050%以下、0.030%以下、0.010%以下、0.008%以下、0.006%以下又は0.004%以下であってもよい。 (Bi: 0% or more, 0.100% or less)
Bi is an element that can contribute to improving corrosion resistance and the like, and may be added as desired. On the other hand, if Bi is contained in an excessive amount, the effect becomes saturated and there is a risk of an increase in manufacturing costs. In the disclosed hot-rolled steel sheet, the Bi content is 0% or more and 0.100% or less. The Bi content may be 0.001% or more or 0.002% or more, and may be 0.070% or less. It may be 0.050% or less, 0.030% or less, 0.010% or less, 0.008% or less, 0.006% or less, or 0.004% or less.
Biは、耐食性の向上等に寄与し得る元素であり、任意に添加されてもよい。一方で、Biを過度に含有すると、効果が飽和するとともに、製造コストの上昇を招く虞がある。本開示の熱延鋼板において、Bi含有量は、0%以上、0.100%以下である。Bi含有量は、0.001%以上又は0.002%以上であってもよく、0.070%以下、0.050%以下、0.030%以下、0.010%以下、0.008%以下、0.006%以下又は0.004%以下であってもよい。 (Bi: 0% or more, 0.100% or less)
Bi is an element that can contribute to improving corrosion resistance and the like, and may be added as desired. On the other hand, if Bi is contained in an excessive amount, the effect becomes saturated and there is a risk of an increase in manufacturing costs. In the disclosed hot-rolled steel sheet, the Bi content is 0% or more and 0.100% or less. The Bi content may be 0.001% or more or 0.002% or more, and may be 0.070% or less. It may be 0.050% or less, 0.030% or less, 0.010% or less, 0.008% or less, 0.006% or less, or 0.004% or less.
(Ta:0%以上、0.100%以下)
Taは、炭化物の形態制御と強度の増加に寄与し得る元素であり、任意に添加されてもよい。一方で、Taを過度に含有すると、Ta炭化物の析出等によって靭性が低下する虞がある。本開示の熱延鋼板において、Ta含有量は、0%以上、0.100%以下である。Ta含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、0.080%以下、0.060%以下又は0.040%以下であってもよい。 (Ta: 0% or more, 0.100% or less)
Ta is an element that can contribute to controlling the morphology of carbides and increasing strength, and may be added as desired. However, if Ta is contained in excess, there is a risk of the toughness decreasing due to the precipitation of Ta carbides, etc. In the hot-rolled steel sheet of the present disclosure, the Ta content is 0% or more and 0.100% or less. The Ta content is 0.001% or more, 0.005% or more, or 0.010% or more. Alternatively, it may be 0.080% or less, 0.060% or less, or 0.040% or less.
Taは、炭化物の形態制御と強度の増加に寄与し得る元素であり、任意に添加されてもよい。一方で、Taを過度に含有すると、Ta炭化物の析出等によって靭性が低下する虞がある。本開示の熱延鋼板において、Ta含有量は、0%以上、0.100%以下である。Ta含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、0.080%以下、0.060%以下又は0.040%以下であってもよい。 (Ta: 0% or more, 0.100% or less)
Ta is an element that can contribute to controlling the morphology of carbides and increasing strength, and may be added as desired. However, if Ta is contained in excess, there is a risk of the toughness decreasing due to the precipitation of Ta carbides, etc. In the hot-rolled steel sheet of the present disclosure, the Ta content is 0% or more and 0.100% or less. The Ta content is 0.001% or more, 0.005% or more, or 0.010% or more. Alternatively, it may be 0.080% or less, 0.060% or less, or 0.040% or less.
(Zr:0%以上、0.500%以下)
Zrは、硫化物の形態の制御に寄与し得る元素であり、任意に添加されてもよい。一方で、Zrを過度に含有すると、効果が飽和するとともに、製造コストの上昇を招く虞がある。本開示の熱延鋼板において、Zr含有量は、0%以上、0.500%以下である。Zr含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、0.400%以下、0.300%以下又は0.200%以下であってもよい。 (Zr: 0% or more, 0.500% or less)
Zr is an element that can contribute to controlling the morphology of sulfides and may be added as desired. However, if Zr is contained in an excessive amount, the effect becomes saturated and there is a risk of an increase in production costs. In the hot-rolled steel sheet of the present disclosure, the Zr content is 0% or more and 0.500% or less. The Zr content is 0.001% or more, 0.005% or more, or 0.010% or more. Alternatively, it may be 0.400% or less, 0.300% or less, or 0.200% or less.
Zrは、硫化物の形態の制御に寄与し得る元素であり、任意に添加されてもよい。一方で、Zrを過度に含有すると、効果が飽和するとともに、製造コストの上昇を招く虞がある。本開示の熱延鋼板において、Zr含有量は、0%以上、0.500%以下である。Zr含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、0.400%以下、0.300%以下又は0.200%以下であってもよい。 (Zr: 0% or more, 0.500% or less)
Zr is an element that can contribute to controlling the morphology of sulfides and may be added as desired. However, if Zr is contained in an excessive amount, the effect becomes saturated and there is a risk of an increase in production costs. In the hot-rolled steel sheet of the present disclosure, the Zr content is 0% or more and 0.500% or less. The Zr content is 0.001% or more, 0.005% or more, or 0.010% or more. Alternatively, it may be 0.400% or less, 0.300% or less, or 0.200% or less.
(Co:0%以上、3.000%以下)
Coは、焼入れ性及び耐熱性の少なくとも一方の向上に寄与し得る元素であり、任意に添加されてもよい。一方で、Coを過度に含有すると、加工性が低下する虞があり、原料コストの増加にも繋がる。本開示の熱延鋼板において、Co含有量は、0%以上、3.000%以下である。Co含有量は、0.001%以上、0.010%以上、0.030%以上又は0.050%以上であってもよく、2.000%以下、1.000%以下、0.800%以下、0.600%以下、0.400%以下、0.200%以下、0.180%以下、0.160%以下又は0.140%以下であってもよい。 (Co: 0% or more, 3.000% or less)
Co is an element that can contribute to improving at least one of hardenability and heat resistance, and may be added as desired. On the other hand, if Co is contained in an excessive amount, there is a risk that workability will decrease and the raw material cost will increase. In the hot rolled steel sheet of the present disclosure, the Co content is 0% or more and 3.000% or less. It may be 0.030% or more or 0.050% or more, and may be 2.000% or less, 1.000% or less, 0.800% or less, 0.600% or less, 0.400% or less, or 0.200% or less. , 0.180% or less, 0.160% or less, or 0.140% or less.
Coは、焼入れ性及び耐熱性の少なくとも一方の向上に寄与し得る元素であり、任意に添加されてもよい。一方で、Coを過度に含有すると、加工性が低下する虞があり、原料コストの増加にも繋がる。本開示の熱延鋼板において、Co含有量は、0%以上、3.000%以下である。Co含有量は、0.001%以上、0.010%以上、0.030%以上又は0.050%以上であってもよく、2.000%以下、1.000%以下、0.800%以下、0.600%以下、0.400%以下、0.200%以下、0.180%以下、0.160%以下又は0.140%以下であってもよい。 (Co: 0% or more, 3.000% or less)
Co is an element that can contribute to improving at least one of hardenability and heat resistance, and may be added as desired. On the other hand, if Co is contained in an excessive amount, there is a risk that workability will decrease and the raw material cost will increase. In the hot rolled steel sheet of the present disclosure, the Co content is 0% or more and 3.000% or less. It may be 0.030% or more or 0.050% or more, and may be 2.000% or less, 1.000% or less, 0.800% or less, 0.600% or less, 0.400% or less, or 0.200% or less. , 0.180% or less, 0.160% or less, or 0.140% or less.
(Zn:0%以上、0.200%以下)
Znは、介在物の形態を制御し得る元素であり、任意に添加されてもよい。一方で、Znを過度に含有すると、析出物や介在物が多量に生成する虞がある。本開示の熱延鋼板において、Zn含有量は、0%以上、0.200%以下である。Zn含有量は、0.001%以上、0.010%以上、0.030%以上又は0.050%以上であってもよく、0.180%以下、0.160%以下又は0.140%以下であってもよい。 (Zn: 0% or more, 0.200% or less)
Zn is an element that can control the morphology of inclusions and may be added as desired. On the other hand, if Zn is contained in an excessive amount, there is a risk that a large amount of precipitates or inclusions will be generated. In the hot-rolled steel sheet, the Zn content is 0% or more and 0.200% or less. The Zn content is 0.001% or more, 0.010% or more, 0.030% or more, or 0.050% or more. or may be 0.180% or less, 0.160% or less, or 0.140% or less.
Znは、介在物の形態を制御し得る元素であり、任意に添加されてもよい。一方で、Znを過度に含有すると、析出物や介在物が多量に生成する虞がある。本開示の熱延鋼板において、Zn含有量は、0%以上、0.200%以下である。Zn含有量は、0.001%以上、0.010%以上、0.030%以上又は0.050%以上であってもよく、0.180%以下、0.160%以下又は0.140%以下であってもよい。 (Zn: 0% or more, 0.200% or less)
Zn is an element that can control the morphology of inclusions and may be added as desired. On the other hand, if Zn is contained in an excessive amount, there is a risk that a large amount of precipitates or inclusions will be generated. In the hot-rolled steel sheet, the Zn content is 0% or more and 0.200% or less. The Zn content is 0.001% or more, 0.010% or more, 0.030% or more, or 0.050% or more. or may be 0.180% or less, 0.160% or less, or 0.140% or less.
(W:0%以上、0.200%以下)
Wは、鋼の焼入れ性を高め、強度の向上に寄与し得る元素であり、任意に添加されてもよい。一方で、Wを過度に含有すると、粗大な介在物が生成する虞がある。本開示の熱延鋼板において、W含有量は、0%以上、0.200%以下である。W含有量は、0.001%以上、0.010%以上、0.030%以上又は0.050%以上であってもよく、0.180%以下、0.160%以下又は0.140%以下であってもよい。 (W: 0% or more, 0.200% or less)
W is an element that can improve the hardenability of steel and contribute to improving strength, and may be added as desired. However, if W is contained in an excessive amount, there is a risk of coarse inclusions being generated. In the hot-rolled steel sheet of the present disclosure, the W content is 0% or more and 0.200% or less. The W content is 0.001% or more, 0.010% or more, 0.030% or more, or 0. It may be 0.050% or more, or 0.180% or less, 0.160% or less, or 0.140% or less.
Wは、鋼の焼入れ性を高め、強度の向上に寄与し得る元素であり、任意に添加されてもよい。一方で、Wを過度に含有すると、粗大な介在物が生成する虞がある。本開示の熱延鋼板において、W含有量は、0%以上、0.200%以下である。W含有量は、0.001%以上、0.010%以上、0.030%以上又は0.050%以上であってもよく、0.180%以下、0.160%以下又は0.140%以下であってもよい。 (W: 0% or more, 0.200% or less)
W is an element that can improve the hardenability of steel and contribute to improving strength, and may be added as desired. However, if W is contained in an excessive amount, there is a risk of coarse inclusions being generated. In the hot-rolled steel sheet of the present disclosure, the W content is 0% or more and 0.200% or less. The W content is 0.001% or more, 0.010% or more, 0.030% or more, or 0. It may be 0.050% or more, or 0.180% or less, 0.160% or less, or 0.140% or less.
(Sb:0%以上、0.500%以下)
Sbは、耐食性の向上に寄与し得る元素であり、任意に添加されてもよい。一方で、Sbを過度に含有すると、靭性の低下を招く虞がある。本開示の熱延鋼板において、Sb含有量は、0%以上、0.500%以下である。Sb含有量は、0.001%以上、0.010%以上、0.030%以上又は0.050%以上であってもよく、0.400%以下、0.300%以下又は0.200%以下であってもよい。 (Sb: 0% or more, 0.500% or less)
Sb is an element that can contribute to improving corrosion resistance and may be added as desired. On the other hand, if Sb is contained in an excessive amount, it may cause a decrease in toughness. The Sb content is 0% or more and 0.500% or less. The Sb content may be 0.001% or more, 0.010% or more, 0.030% or more, or 0.050% or more. It may be 0.400% or less, 0.300% or less, or 0.200% or less.
Sbは、耐食性の向上に寄与し得る元素であり、任意に添加されてもよい。一方で、Sbを過度に含有すると、靭性の低下を招く虞がある。本開示の熱延鋼板において、Sb含有量は、0%以上、0.500%以下である。Sb含有量は、0.001%以上、0.010%以上、0.030%以上又は0.050%以上であってもよく、0.400%以下、0.300%以下又は0.200%以下であってもよい。 (Sb: 0% or more, 0.500% or less)
Sb is an element that can contribute to improving corrosion resistance and may be added as desired. On the other hand, if Sb is contained in an excessive amount, it may cause a decrease in toughness. The Sb content is 0% or more and 0.500% or less. The Sb content may be 0.001% or more, 0.010% or more, 0.030% or more, or 0.050% or more. It may be 0.400% or less, 0.300% or less, or 0.200% or less.
(As:0%以上、0.050%以下)
Asは、鋼の被削性の改善に寄与し得る元素であり、任意に添加されてもよい。一方で、Asを過度に含有すると、加工性が低下する虞がある。本開示の熱延鋼板において、As含有量は、0%以上、0.050%以下である。As含有量は、0.001%以上又は0.005%以上であってもよく、0.030%以下、0.010%以下、0.009%以下、0.008%以下又は0.007%以下であってもよい。 (As: 0% or more, 0.050% or less)
As is an element that can contribute to improving the machinability of steel and may be added as desired. On the other hand, if As is contained in an excessive amount, there is a risk that the workability will decrease. In the steel sheet, the As content is 0% or more and 0.050% or less. The As content may be 0.001% or more or 0.005% or more, and may be 0.030% or less, 0. It may be 0.010% or less, 0.009% or less, 0.008% or less, or 0.007% or less.
Asは、鋼の被削性の改善に寄与し得る元素であり、任意に添加されてもよい。一方で、Asを過度に含有すると、加工性が低下する虞がある。本開示の熱延鋼板において、As含有量は、0%以上、0.050%以下である。As含有量は、0.001%以上又は0.005%以上であってもよく、0.030%以下、0.010%以下、0.009%以下、0.008%以下又は0.007%以下であってもよい。 (As: 0% or more, 0.050% or less)
As is an element that can contribute to improving the machinability of steel and may be added as desired. On the other hand, if As is contained in an excessive amount, there is a risk that the workability will decrease. In the steel sheet, the As content is 0% or more and 0.050% or less. The As content may be 0.001% or more or 0.005% or more, and may be 0.030% or less, 0. It may be 0.010% or less, 0.009% or less, 0.008% or less, or 0.007% or less.
(Sn:0%以上、0.050%以下)
Snは、耐食性の向上に寄与し得る元素であり、任意に添加されてもよい。一方で、Snを過度に含有すると、靭性の低下を招く虞がある。本開示の熱延鋼板において、Sn含有量は、0%以上、0.050%以下である。Sn含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、0.047%以下、0.045%以下又は0.043%以下であってもよい。 (Sn: 0% or more, 0.050% or less)
Sn is an element that can contribute to improving corrosion resistance and may be added as desired. On the other hand, if Sn is contained in an excessive amount, it may cause a decrease in toughness. The Sn content is 0% or more and 0.050% or less. The Sn content may be 0.001% or more, 0.005% or more, or 0.010% or more, and 0.047% or less. It may be 0.045% or less, or 0.043% or less.
Snは、耐食性の向上に寄与し得る元素であり、任意に添加されてもよい。一方で、Snを過度に含有すると、靭性の低下を招く虞がある。本開示の熱延鋼板において、Sn含有量は、0%以上、0.050%以下である。Sn含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよく、0.047%以下、0.045%以下又は0.043%以下であってもよい。 (Sn: 0% or more, 0.050% or less)
Sn is an element that can contribute to improving corrosion resistance and may be added as desired. On the other hand, if Sn is contained in an excessive amount, it may cause a decrease in toughness. The Sn content is 0% or more and 0.050% or less. The Sn content may be 0.001% or more, 0.005% or more, or 0.010% or more, and 0.047% or less. It may be 0.045% or less, or 0.043% or less.
(残部:Fe及び不純物)
本開示の熱延鋼板の化学組成について、上記の成分以外の残部はFe及び不純物である。不純物とは、熱延鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。
(balance: Fe and impurities)
The chemical composition of the hot-rolled steel sheet of the present disclosure includes the balance other than the above-mentioned components, namely Fe and impurities. The impurities are components that are mixed in due to various factors in the manufacturing process, including raw materials such as ores and scraps, when industrially manufacturing the hot-rolled steel sheet.
本開示の熱延鋼板の化学組成について、上記の成分以外の残部はFe及び不純物である。不純物とは、熱延鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。
(balance: Fe and impurities)
The chemical composition of the hot-rolled steel sheet of the present disclosure includes the balance other than the above-mentioned components, namely Fe and impurities. The impurities are components that are mixed in due to various factors in the manufacturing process, including raw materials such as ores and scraps, when industrially manufacturing the hot-rolled steel sheet.
上述した熱延鋼板の化学組成は、スパーク放電発光分光分析装置などを用いて、分析すればよい。なお、CおよびSはガス成分分析装置などを用いて、酸素気流中で燃焼させ、赤外線吸収法によって測定することで同定された値を採用する。また、Nは、熱延鋼板から採取した試験片をヘリウム気流中で融解させ、熱伝導度法によって測定することで同定された値を採用する。
The chemical composition of the above-mentioned hot-rolled steel sheet may be analyzed using a spark discharge optical emission spectrometer or similar. Values identified for C and S are determined by burning the sheet in an oxygen stream using a gas composition analyzer or similar and measuring using an infrared absorption method. Values identified for N are determined by melting a test piece taken from the hot-rolled steel sheet in a helium stream and measuring using a thermal conductivity method.
1.2 旧オーステナイト粒径
本開示の熱延鋼板における旧オーステナイト粒径は、25μm以下である。このように、旧オーステナイト粒が微細化されることで、微視組織内のひずみの集中が緩和され、熱延鋼板の機械特性が向上し、熱延鋼板の穴広げ性や衝突特性が改善される。特に、旧オーステナイト粒径が、20μm以下、18μm以下、15μm以下、12μm以下、10μm以下又は8μm以下である場合に、熱延鋼板の強度、伸び、穴広げ性及び衝突特性のバランスが良好なものとなり易い。旧オーステナイト粒径の下限は特に限定されるものではなく、0μm超であり、1μm以上、3μm以上、5μm以上又は7μm以上であってもよい。 1.2 Prior austenite grain size The prior austenite grain size in the hot-rolled steel sheet of the present disclosure is 25 μm or less. In this way, by refining the prior austenite grains, the concentration of strain in the microstructure is alleviated, the mechanical properties of the hot-rolled steel sheet are improved, and the hole expandability and impact properties of the hot-rolled steel sheet are improved. In particular, when the prior austenite grain size is 20 μm or less, 18 μm or less, 15 μm or less, 12 μm or less, 10 μm or less, or 8 μm or less, the balance of strength, elongation, hole expandability, and impact properties of the hot-rolled steel sheet is likely to be good. The lower limit of the prior austenite grain size is not particularly limited, and may be more than 0 μm, 1 μm or more, 3 μm or more, 5 μm or more, or 7 μm or more.
本開示の熱延鋼板における旧オーステナイト粒径は、25μm以下である。このように、旧オーステナイト粒が微細化されることで、微視組織内のひずみの集中が緩和され、熱延鋼板の機械特性が向上し、熱延鋼板の穴広げ性や衝突特性が改善される。特に、旧オーステナイト粒径が、20μm以下、18μm以下、15μm以下、12μm以下、10μm以下又は8μm以下である場合に、熱延鋼板の強度、伸び、穴広げ性及び衝突特性のバランスが良好なものとなり易い。旧オーステナイト粒径の下限は特に限定されるものではなく、0μm超であり、1μm以上、3μm以上、5μm以上又は7μm以上であってもよい。 1.2 Prior austenite grain size The prior austenite grain size in the hot-rolled steel sheet of the present disclosure is 25 μm or less. In this way, by refining the prior austenite grains, the concentration of strain in the microstructure is alleviated, the mechanical properties of the hot-rolled steel sheet are improved, and the hole expandability and impact properties of the hot-rolled steel sheet are improved. In particular, when the prior austenite grain size is 20 μm or less, 18 μm or less, 15 μm or less, 12 μm or less, 10 μm or less, or 8 μm or less, the balance of strength, elongation, hole expandability, and impact properties of the hot-rolled steel sheet is likely to be good. The lower limit of the prior austenite grain size is not particularly limited, and may be more than 0 μm, 1 μm or more, 3 μm or more, 5 μm or more, or 7 μm or more.
尚、熱延鋼板の「旧オーステナイト粒径」とは、旧オーステナイト粒の平均粒径である。旧オーステナイト粒の平均粒径は、以下の通りにして測定する。まず、熱延鋼板の板幅方向の端面から1/4位置において、板幅方向を法線方向とする断面(板厚方向×圧延方向断面)の金属組織が観察できるように、試料を採取する。試料のサイズは、測定装置にもよるが、例えば、板厚方向全厚、圧延方向に15mm、板幅方向に10mmの直方体とすればよい。次に、観察面を鏡面研磨した後、ピクリン酸飽和水溶液を用いて、Bechet-Beaujard法で腐食する。腐食によって黒色に現出した粒を旧オーステナイト粒とする。旧オーステナイト粒を現出させた観察面を、光学顕微鏡により観察し、面積0.05mm2以上の視野を8視野以上(合計0.40mm2以上)撮影する。そして、光学顕微鏡により撮影した鋼組織写真から、各旧オーステナイト粒について、円相当直径を算出する。撮影視野の端部等、旧オーステナイト粒の全体が撮影視野に含まれていない旧オーステナイト粒を除き、各撮影視野に含まれる全ての旧オーステナイト粒について上記の通りに円相当直径を算出する。各撮影視野において得られた旧オーステナイト粒の円相当直径の面積平均値(面積によって重み付けされた平均値)を算出することで、旧オーステナイト粒の平均粒径を得る。ここで、面積平均値は、ある旧オーステナイト粒G1の円相当直径がD1、面積がA1であり、それとは別の旧オーステナイト粒G2の円相当直径がD2、面積がA2である場合、これら2つの旧オーステナイト粒の円相当直径の面積平均値Dは、D=(A1×D1+A2×D2)/(A1+A2)のように算出することができる。
The "prior austenite grain size" of the hot-rolled steel sheet is the average grain size of the prior austenite grains. The average grain size of the prior austenite grains is measured as follows. First, a sample is taken at a quarter position from the end face in the sheet width direction of the hot-rolled steel sheet so that the metal structure of the cross section (sheet thickness direction x rolling direction cross section) with the sheet width direction as the normal direction can be observed. The size of the sample depends on the measuring device, but for example, it may be a rectangular parallelepiped with the full thickness in the sheet thickness direction, 15 mm in the rolling direction, and 10 mm in the sheet width direction. Next, the observation surface is mirror-polished, and then corroded by the Bechet-Beaujard method using a saturated aqueous solution of picric acid. The grains that appear black due to corrosion are considered to be prior austenite grains. The observation surface on which the prior austenite grains are revealed is observed by an optical microscope, and eight or more fields of view with an area of 0.05 mm2 or more (total of 0.40 mm2 or more) are photographed. Then, the circle-equivalent diameter is calculated for each prior austenite grain from the steel structure photograph taken by the optical microscope. The circle-equivalent diameter is calculated as described above for all prior austenite grains included in each photographed field of view, except for prior austenite grains not entirely included in the photographed field of view, such as the end of the photographed field of view. The average grain size of the prior austenite grains is obtained by calculating the area-average value (average value weighted by area) of the circle-equivalent diameters of the prior austenite grains obtained in each photographed field of view. Here, when a prior austenite grain G1 has a circle-equivalent diameter D1 and an area A1 , and another prior austenite grain G2 has a circle-equivalent diameter D2 and an area A2 , the area-average value D of the circle-equivalent diameters of these two prior austenite grains can be calculated as follows: D=( A1 × D1 + A2 × D2 )/( A1 + A2 ).
本開示において、「端面からx/y位置(ここで、x、yは、x<yを満たす自然数とする。)」とは、鋼板の板幅方向における端面から、板幅方向に、板幅のx/yの距離だけ鋼板の中心部に向かって移動した位置を意味する。たとえば、鋼板の板幅が1mであった場合に「端面から1/4位置」とは、鋼板の端面から板幅方向に0.25mの距離となる位置を意味する。
In this disclosure, "x/y position from the end face (where x and y are natural numbers such that x<y)" refers to a position that is moved in the width direction from the end face of the steel plate by a distance of x/y of the plate width toward the center of the steel plate. For example, if the width of the steel plate is 1 m, "1/4 position from the end face" refers to a position that is 0.25 m away from the end face of the steel plate in the width direction.
本開示において、「板厚x/y位置(ここで、x、yは、x<yを満たす自然数とする。)」とは、鋼板の板厚方向における表面(板面)から、板厚方向に、板厚tのx/yの距離(深さ)だけ鋼板の中心部に向かって移動した位置を意味する。たとえば、鋼板の板厚tが2mmであった場合に「板厚1/8位置」とは、鋼板の表面から板厚方向に0.25mmの深さとなる位置を意味する。なお、鋼板が表面にめっき層等の被膜を有する場合、「鋼板の表面」は、鋼板と当該被膜との界面を意味し、「板厚t」は、当該被膜を除いた鋼板(母材)の板厚を意味するものとする。
In this disclosure, "plate thickness x/y position (where x and y are natural numbers satisfying x<y)" refers to a position moved in the plate thickness direction from the surface (plate surface) of the steel plate in the plate thickness direction toward the center of the steel plate by a distance (depth) of x/y of the plate thickness t. For example, if the plate thickness t of the steel plate is 2 mm, "plate thickness 1/8 position" refers to a position that is 0.25 mm deep in the plate thickness direction from the surface of the steel plate. Note that, if the steel plate has a coating such as a plating layer on its surface, "the surface of the steel plate" refers to the interface between the steel plate and the coating, and "plate thickness t" refers to the thickness of the steel plate (base material) excluding the coating.
本開示において、板幅方向は、圧延方向及び板厚方向に直交する方向である。
In this disclosure, the plate width direction is the direction perpendicular to the rolling direction and plate thickness direction.
鋼板の圧延方向が明らかでない場合には、鋼板の圧延方向を特定する方法として、例えば以下の方法を採用することができる。鋼板の板厚断面を鏡面研磨で仕上げた後、電子プローブマイクロアナライザ(EPMA、Electron Probe Micro Analyzer)にてS濃度を測定する。測定条件は加速電圧を15kVとし、測定ピッチを1μmとして板厚中心部の500μm角の範囲の分布像を測定する。このとき、S濃度が高い延伸した領域をMnS等の介在物と判定する。観察の際は複数の視野で観察してもよい。次に、上記方法により初めに観察した板厚断面を基準として、板厚方向を軸に0°~180°の範囲において5°刻みで回転させた面と平行となる面を上記の方法で断面観察する。得られた各断面における複数の介在物の長軸の長さの平均値を各断面ごとに算出し、介在物の長軸の長さの平均値が最大となる断面を特定する。その断面における介在物の長軸方向と平行な方向を圧延方向と判別する。
When the rolling direction of the steel plate is unclear, the following method can be adopted, for example, to identify the rolling direction of the steel plate. After mirror polishing the thickness cross section of the steel plate, the S concentration is measured using an electron probe microanalyzer (EPMA). The measurement conditions are an acceleration voltage of 15 kV and a measurement pitch of 1 μm, and a distribution image is measured in a 500 μm square range in the center of the plate thickness. At this time, the extended area with a high S concentration is determined to be an inclusion such as MnS. When observing, observation may be performed in multiple fields of view. Next, using the plate thickness cross section first observed by the above method as a reference, a surface parallel to the surface rotated in 5° increments in the range of 0° to 180° around the plate thickness direction is observed by the above method. The average value of the long axis length of the multiple inclusions in each obtained cross section is calculated for each cross section, and the cross section with the largest average long axis length of the inclusions is identified. The direction parallel to the longitudinal axis of the inclusions in the cross section is determined to be the rolling direction.
1.3 面積率
本開示の熱延鋼板においては、GAM(Grain Average Misorientation)値0.6°超、2.0°未満である領域と、GAM値0.6°以下である領域と、GAM値2.0°以上である領域との各々の面積率が、以下の通り特定される。尚、熱延鋼板において、「GAM値0.6°以下である領域」は、相対的に軟質である場合が多い。「GAM値2.0°以上である領域」は、相対的に硬質である場合が多い。「GAM値0.6°超、2.0°未満である領域」は、中間程度の硬さを有する場合が多い。 1.3 Area ratio In the hot-rolled steel sheet of the present disclosure, the area ratios of the region with a GAM (Grain Average Misorientation) value of more than 0.6° and less than 2.0°, the region with a GAM value of 0.6° or less, and the region with a GAM value of 2.0° or more are specified as follows. In the hot-rolled steel sheet, the "region with a GAM value of 0.6° or less" is often relatively soft. The "region with a GAM value of 2.0° or more" is often relatively hard. The "region with a GAM value of more than 0.6° and less than 2.0°" often has an intermediate hardness.
本開示の熱延鋼板においては、GAM(Grain Average Misorientation)値0.6°超、2.0°未満である領域と、GAM値0.6°以下である領域と、GAM値2.0°以上である領域との各々の面積率が、以下の通り特定される。尚、熱延鋼板において、「GAM値0.6°以下である領域」は、相対的に軟質である場合が多い。「GAM値2.0°以上である領域」は、相対的に硬質である場合が多い。「GAM値0.6°超、2.0°未満である領域」は、中間程度の硬さを有する場合が多い。 1.3 Area ratio In the hot-rolled steel sheet of the present disclosure, the area ratios of the region with a GAM (Grain Average Misorientation) value of more than 0.6° and less than 2.0°, the region with a GAM value of 0.6° or less, and the region with a GAM value of 2.0° or more are specified as follows. In the hot-rolled steel sheet, the "region with a GAM value of 0.6° or less" is often relatively soft. The "region with a GAM value of 2.0° or more" is often relatively hard. The "region with a GAM value of more than 0.6° and less than 2.0°" often has an intermediate hardness.
(GAM値0.6°超、2.0°未満である領域の面積率)
本開示の熱延鋼板においては、GAM値0.6°超、2.0°未満である領域の面積率が50%以上100%未満である。GAM値0.6°超、2.0°未満である領域の面積率が50%以上である場合、熱延鋼板が、強度、伸び及び穴広げ性のバランスに優れたものとなり易い。GAM値0.6°超、2.0°未満である領域の面積率は、55%以上、60%以上、70%以上、75%以上、80%以上又は85%以上であってもよく、99%以下、95%以下、90%以下、85%以下、80%以下、75%以下、70%以下、65%以下、60%以下又は55%以下であってもよい。特に、GAM値0.6°超、2.0°未満である領域の面積率が55%以上、95%以下である場合に、熱延鋼板が強度、伸び及び穴広げ性のバランスに優れたものとなり易い。 (Area ratio of region having GAM value greater than 0.6° and less than 2.0°)
In the hot-rolled steel sheet of the present disclosure, the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%. When the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more, the hot-rolled steel sheet is likely to have an excellent balance of strength, elongation and hole expandability. The area ratio of the region having a GAM value of more than 0.6° and less than 2.0° may be 55% or more, 60% or more, 70% or more, 75% or more, 80% or more or 85% or more, or 99% or less, 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less or 55% or less. In particular, when the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 55% or more and 95% or less, the hot-rolled steel sheet is likely to have an excellent balance of strength, elongation and hole expandability.
本開示の熱延鋼板においては、GAM値0.6°超、2.0°未満である領域の面積率が50%以上100%未満である。GAM値0.6°超、2.0°未満である領域の面積率が50%以上である場合、熱延鋼板が、強度、伸び及び穴広げ性のバランスに優れたものとなり易い。GAM値0.6°超、2.0°未満である領域の面積率は、55%以上、60%以上、70%以上、75%以上、80%以上又は85%以上であってもよく、99%以下、95%以下、90%以下、85%以下、80%以下、75%以下、70%以下、65%以下、60%以下又は55%以下であってもよい。特に、GAM値0.6°超、2.0°未満である領域の面積率が55%以上、95%以下である場合に、熱延鋼板が強度、伸び及び穴広げ性のバランスに優れたものとなり易い。 (Area ratio of region having GAM value greater than 0.6° and less than 2.0°)
In the hot-rolled steel sheet of the present disclosure, the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%. When the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more, the hot-rolled steel sheet is likely to have an excellent balance of strength, elongation and hole expandability. The area ratio of the region having a GAM value of more than 0.6° and less than 2.0° may be 55% or more, 60% or more, 70% or more, 75% or more, 80% or more or 85% or more, or 99% or less, 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less or 55% or less. In particular, when the area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 55% or more and 95% or less, the hot-rolled steel sheet is likely to have an excellent balance of strength, elongation and hole expandability.
(GAM値0.6°以下である領域の面積率)
本開示の熱延鋼板においては、GAM値0.6°以下である領域の面積率が0%以上50%未満である。GAM値0.6°以下である領域の面積率が50%未満である場合、熱延鋼板が、強度、伸び及び穴広げ性のバランスに優れたものとなり易い。本開示の熱延鋼板は、上述のGAM値0.6°超、2.0°未満である領域と、後述のGAM値2.0°以上である領域とを有するものであればよく、GAM値0.6°以下である領域の面積率は0%であってもよい。GAM値0.6°以下である領域の面積率は、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下又は5%以下であってもよく、0%超、5%以上、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上又は45%以上であってもよい。特に、GAM値0.6°以下である領域の面積率が0%以上45%以下である場合に、熱延鋼板が強度、伸び及び穴広げ性のバランスに一層優れたものとなり易い。 (Area ratio of region having GAM value of 0.6° or less)
In the hot-rolled steel sheet of the present disclosure, the area ratio of the region having a GAM value of 0.6° or less is 0% or more and less than 50%. When the area ratio of the region having a GAM value of 0.6° or less is less than 50%, the hot-rolled steel sheet is likely to have an excellent balance of strength, elongation, and hole expandability. The hot-rolled steel sheet of the present disclosure may have the above-mentioned region having a GAM value of more than 0.6° and less than 2.0° and the below-described region having a GAM value of 2.0° or more, and the area ratio of the region having a GAM value of 0.6° or less may be 0%. The area ratio of the region having a GAM value of 0.6° or less may be 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less, or more than 0%, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 45% or more. In particular, when the area ratio of the region having a GAM value of 0.6° or less is 0% or more and 45% or less, the heat-rolled steel sheet is likely to have a better balance of strength, elongation, and hole expandability.
本開示の熱延鋼板においては、GAM値0.6°以下である領域の面積率が0%以上50%未満である。GAM値0.6°以下である領域の面積率が50%未満である場合、熱延鋼板が、強度、伸び及び穴広げ性のバランスに優れたものとなり易い。本開示の熱延鋼板は、上述のGAM値0.6°超、2.0°未満である領域と、後述のGAM値2.0°以上である領域とを有するものであればよく、GAM値0.6°以下である領域の面積率は0%であってもよい。GAM値0.6°以下である領域の面積率は、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下又は5%以下であってもよく、0%超、5%以上、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上又は45%以上であってもよい。特に、GAM値0.6°以下である領域の面積率が0%以上45%以下である場合に、熱延鋼板が強度、伸び及び穴広げ性のバランスに一層優れたものとなり易い。 (Area ratio of region having GAM value of 0.6° or less)
In the hot-rolled steel sheet of the present disclosure, the area ratio of the region having a GAM value of 0.6° or less is 0% or more and less than 50%. When the area ratio of the region having a GAM value of 0.6° or less is less than 50%, the hot-rolled steel sheet is likely to have an excellent balance of strength, elongation, and hole expandability. The hot-rolled steel sheet of the present disclosure may have the above-mentioned region having a GAM value of more than 0.6° and less than 2.0° and the below-described region having a GAM value of 2.0° or more, and the area ratio of the region having a GAM value of 0.6° or less may be 0%. The area ratio of the region having a GAM value of 0.6° or less may be 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less, or more than 0%, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 45% or more. In particular, when the area ratio of the region having a GAM value of 0.6° or less is 0% or more and 45% or less, the heat-rolled steel sheet is likely to have a better balance of strength, elongation, and hole expandability.
(GAM値2.0°以上である領域の面積率)
本開示の熱延鋼板においては、GAM値2.0°以上である領域の面積率が0%超50%以下である。本開示の熱延鋼板は、上述のGAM値0.6°超、2.0°未満である領域に加えて、GAM値2.0°以上である領域を有する場合、強度、伸び及び穴広げ性のバランスに優れたものとなり易い。GAM値2.0°以上である領域の面積率は、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下又は5%以下であってもよく、1%以上、5%以上、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上又は45%以上であってもよい。特に、GAM値2.0°以上である領域の面積率が0%超20%以下、中でも、1%以上20%以下、特に、1%以上10%以下である場合に、熱延鋼板が強度、伸び及び穴広げ性のバランスに一層優れたものとなり易い。 (Area ratio of region having GAM value of 2.0° or more)
In the hot-rolled steel sheet of the present disclosure, the area ratio of the region having a GAM value of 2.0° or more is more than 0% and not more than 50%. When the hot-rolled steel sheet of the present disclosure has a region having a GAM value of 2.0° or more in addition to the above-mentioned region having a GAM value of more than 0.6° and less than 2.0°, it is likely to have an excellent balance of strength, elongation and hole expandability. The area ratio of the region having a GAM value of 2.0° or more may be 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less, or 1% or more, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 45% or more. In particular, when the area ratio of the region having a GAM value of 2.0° or more is more than 0% and not more than 20%, in particular, 1% or more and not more than 20%, and particularly 1% or more and not more than 10%, the heat-rolled steel sheet is more likely to have a better balance of strength, elongation, and hole expandability.
本開示の熱延鋼板においては、GAM値2.0°以上である領域の面積率が0%超50%以下である。本開示の熱延鋼板は、上述のGAM値0.6°超、2.0°未満である領域に加えて、GAM値2.0°以上である領域を有する場合、強度、伸び及び穴広げ性のバランスに優れたものとなり易い。GAM値2.0°以上である領域の面積率は、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下又は5%以下であってもよく、1%以上、5%以上、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上又は45%以上であってもよい。特に、GAM値2.0°以上である領域の面積率が0%超20%以下、中でも、1%以上20%以下、特に、1%以上10%以下である場合に、熱延鋼板が強度、伸び及び穴広げ性のバランスに一層優れたものとなり易い。 (Area ratio of region having GAM value of 2.0° or more)
In the hot-rolled steel sheet of the present disclosure, the area ratio of the region having a GAM value of 2.0° or more is more than 0% and not more than 50%. When the hot-rolled steel sheet of the present disclosure has a region having a GAM value of 2.0° or more in addition to the above-mentioned region having a GAM value of more than 0.6° and less than 2.0°, it is likely to have an excellent balance of strength, elongation and hole expandability. The area ratio of the region having a GAM value of 2.0° or more may be 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less, or 1% or more, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 45% or more. In particular, when the area ratio of the region having a GAM value of 2.0° or more is more than 0% and not more than 20%, in particular, 1% or more and not more than 20%, and particularly 1% or more and not more than 10%, the heat-rolled steel sheet is more likely to have a better balance of strength, elongation, and hole expandability.
尚、熱延鋼板の各々の領域の「GAM値」とは、EBSP(Electron Backscatter Pattern:電子後方散乱解析像)法によって測定されるものであって、各々の測定領域において(例えば、1つの結晶粒(方位差15°以上の粒界で囲まれた領域として定義される)内において)、隣接するピクセル(測定点)間の方位差を平均した値を当該測定領域(結晶粒)のGAM値とするものである。GAM値0.6°超、2.0°未満である領域の面積率、GAM値0.6°以下である領域の面積率及びGAM値2.0°以上である領域の面積率は以下の方法により測定する。まず、熱延鋼板の板幅方向の端面から1/4位置において、板幅方向を法線方向とする断面(板厚方向×圧延方向断面)の金属組織が観察できるように、試料を採取する。試料のサイズは、測定装置にもよるが、例えば、板厚方向全厚、圧延方向に15mm、板幅方向に10mmの直方体とすればよい。次に、試料の観察面を鏡面研磨した後、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、試料の表面に導入されたひずみを除去する。上記試料の板厚方向の表面から1/4深さ位置を中心に板厚方向に200μm及び圧延方向の任意の位置で400μm以上の領域(板厚方向1/4深さ位置に中心を有する長方形領域であって、板厚方向に200μmの長さ(短辺)、圧延方向に400μm以上の長さ(長辺)を有する長方形領域)を、0.2μmの測定間隔でEBSP法により測定する。上記測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製HIKARI検出器)とで構成されたEBSD解析装置を用いる。この際、EBSD解析装置内の真空度は9.6×10―5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。GAM値は、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」を用いて算出することができる。なお、定義された結晶粒の円相当径が0.6μm以下のものについては、測定誤差が大きい可能性があるため、除外する。
The "GAM value" of each region of the hot-rolled steel sheet is measured by the EBSP (Electron Backscatter Pattern) method, and the average value of the orientation difference between adjacent pixels (measurement points) in each measurement region (for example, within one crystal grain (defined as a region surrounded by grain boundaries with an orientation difference of 15° or more)) is taken as the GAM value of the measurement region (crystal grain). The area ratio of the region with a GAM value of more than 0.6° and less than 2.0°, the area ratio of the region with a GAM value of 0.6° or less, and the area ratio of the region with a GAM value of 2.0° or more are measured by the following method. First, a sample is taken at a quarter position from the end face in the sheet width direction of the hot-rolled steel sheet so that the metal structure of the cross section (sheet thickness direction x rolling direction cross section) normal to the sheet width direction can be observed. The size of the sample depends on the measuring device, but may be, for example, a rectangular parallelepiped with the full thickness in the thickness direction, 15 mm in the rolling direction, and 10 mm in the width direction. Next, the observation surface of the sample is mirror-polished, and then polished for 8 minutes at room temperature using colloidal silica that does not contain an alkaline solution to remove the strain introduced into the surface of the sample. A region of 200 μm in the thickness direction and 400 μm or more at any position in the rolling direction from the surface in the thickness direction of the sample (a rectangular region having a center at a 1/4 depth position in the thickness direction, with a length (short side) of 200 μm in the thickness direction and a length (long side) of 400 μm or more in the rolling direction) is measured by the EBSP method at measurement intervals of 0.2 μm. For the above measurement, an EBSD analysis device consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (HIKARI detector manufactured by TSL) is used. At this time, the degree of vacuum in the EBSD analyzer is 9.6×10 −5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the electron beam irradiation level is 62. The GAM value can be calculated using the software "OIM Analysis (registered trademark)" that comes with the EBSD analyzer. Note that crystal grains with a defined circle equivalent diameter of 0.6 μm or less are excluded because there is a possibility of a large measurement error.
1.4 関係(1):1.7≦LGr/LGt
本開示の熱延鋼板は、1.7≦LGr/LGtなる関係(1)を満たす。ここで、LGrは、旧オーステナイト粒の圧延方向投影長さの面積平均値であり、LGtは、旧オーステナイト粒の板厚方向投影長さの面積平均値である。尚、「面積平均値」とは、面積によって重み付けされた平均値を意味する。ここで、「面積」は、板幅方向を法線方向とする断面(板厚方向×圧延方向断面)における面積である。例えば、ある旧オーステナイト粒G1の圧延方向投影長さがLGr1、板厚方向の投影長さがLGt1、面積がA1であり、それとは別の旧オーステナイト粒G2の圧延方向投影長さがLGr2、板厚方向の投影長さがLGt2、面積がA2である場合、これら2つの旧オーステナイト粒の圧延方向投影長さの面積平均値LGrは、LGr=(A1×LGr1+A2×LGr2)/(A1+A2)であり、板厚方向投影長さの面積平均値LGtは、LGt=(A1×LGt1+A2×LGt2)/(A1+A2)である。本開示の熱延鋼板において、上記関係(1)が満たされることは、言い換えれば、旧オーステナイト粒が圧延方向に伸長していることを意味する。また、上述したように、本開示の熱延鋼板においては、旧オーステナイト粒径が小さく、且つ、GAM値0.6°超、2.0°未満である領域の面積率が50%以上100%未満である。すなわち、本開示の熱延鋼板においては、強度と延性とのバランスに優れる微細な結晶粒が、圧延方向に沿って伸長しているといえる。従来常識では、熱延鋼板におけるLGr/LGtが大きい場合、熱延鋼板の伸びや穴広げ性が低下するものと考えられてきた。そのため、従来においては、LGr/LGtが小さくなるように、すなわち、等軸となるように制御していた。これに対し、本開示の熱延鋼板においては、関係(1)とともに、後述の関係(2)が満たされることで、むしろ、強度、伸び及び穴広げ性のバランスが改善する。また、本開示の熱延鋼板は、旧オーステナイト粒が圧延方向に沿って伸長していることで、き裂が板厚方向に進展し難く、衝突特性に優れたものとなる。 1.4 Relationship (1): 1.7≦LGr/LGt
The hot-rolled steel sheet of the present disclosure satisfies the relationship (1) of 1.7≦LGr/LGt. Here, LGr is the area average value of the projected length of the prior austenite grains in the rolling direction, and LGt is the area average value of the projected length of the prior austenite grains in the sheet thickness direction. The "area average value" means an average value weighted by area. Here, the "area" is the area in a cross section (sheet thickness direction × rolling direction cross section) normal to the sheet width direction. For example, when a certain prior austenite grain G1 has a projected length in the rolling direction LGr1 , a projected length in the sheet thickness direction LGt1 , and an area A1 , and another prior austenite grain G2 has a projected length in the rolling direction LGr2 , a projected length in the sheet thickness direction LGt2 , and an area A2 , the area average value LGr of the projected lengths in the rolling direction of these two prior austenite grains is LGr = ( A1 x LGr1 + A2 x LGr2 ) / ( A1 + A2 ), and the area average value LGt of the projected lengths in the sheet thickness direction is LGt = ( A1 x LGt1 + A2 x LGt2 ) / ( A1 + A2 ). In the hot-rolled steel sheet of the present disclosure, the fact that the above relationship (1) is satisfied means, in other words, that the prior austenite grains are elongated in the rolling direction. As described above, in the hot-rolled steel sheet of the present disclosure, the area ratio of the region in which the prior austenite grain size is small and the GAM value is more than 0.6° and less than 2.0° is 50% or more and less than 100%. That is, in the hot-rolled steel sheet of the present disclosure, it can be said that fine crystal grains having an excellent balance between strength and ductility are elongated along the rolling direction. In the conventional common sense, it has been thought that when LGr/LGt in a hot-rolled steel sheet is large, the elongation and hole expandability of the hot-rolled steel sheet are reduced. Therefore, in the past, LGr/LGt was controlled to be small, that is, to be equiaxed. In contrast, in the hot-rolled steel sheet of the present disclosure, the balance between strength, elongation and hole expandability is improved by satisfying the relationship (2) described below together with the relationship (1). In addition, in the hot-rolled steel sheet of the present disclosure, the prior austenite grains are elongated along the rolling direction, so that cracks are less likely to progress in the sheet thickness direction and the impact characteristics are excellent.
本開示の熱延鋼板は、1.7≦LGr/LGtなる関係(1)を満たす。ここで、LGrは、旧オーステナイト粒の圧延方向投影長さの面積平均値であり、LGtは、旧オーステナイト粒の板厚方向投影長さの面積平均値である。尚、「面積平均値」とは、面積によって重み付けされた平均値を意味する。ここで、「面積」は、板幅方向を法線方向とする断面(板厚方向×圧延方向断面)における面積である。例えば、ある旧オーステナイト粒G1の圧延方向投影長さがLGr1、板厚方向の投影長さがLGt1、面積がA1であり、それとは別の旧オーステナイト粒G2の圧延方向投影長さがLGr2、板厚方向の投影長さがLGt2、面積がA2である場合、これら2つの旧オーステナイト粒の圧延方向投影長さの面積平均値LGrは、LGr=(A1×LGr1+A2×LGr2)/(A1+A2)であり、板厚方向投影長さの面積平均値LGtは、LGt=(A1×LGt1+A2×LGt2)/(A1+A2)である。本開示の熱延鋼板において、上記関係(1)が満たされることは、言い換えれば、旧オーステナイト粒が圧延方向に伸長していることを意味する。また、上述したように、本開示の熱延鋼板においては、旧オーステナイト粒径が小さく、且つ、GAM値0.6°超、2.0°未満である領域の面積率が50%以上100%未満である。すなわち、本開示の熱延鋼板においては、強度と延性とのバランスに優れる微細な結晶粒が、圧延方向に沿って伸長しているといえる。従来常識では、熱延鋼板におけるLGr/LGtが大きい場合、熱延鋼板の伸びや穴広げ性が低下するものと考えられてきた。そのため、従来においては、LGr/LGtが小さくなるように、すなわち、等軸となるように制御していた。これに対し、本開示の熱延鋼板においては、関係(1)とともに、後述の関係(2)が満たされることで、むしろ、強度、伸び及び穴広げ性のバランスが改善する。また、本開示の熱延鋼板は、旧オーステナイト粒が圧延方向に沿って伸長していることで、き裂が板厚方向に進展し難く、衝突特性に優れたものとなる。 1.4 Relationship (1): 1.7≦LGr/LGt
The hot-rolled steel sheet of the present disclosure satisfies the relationship (1) of 1.7≦LGr/LGt. Here, LGr is the area average value of the projected length of the prior austenite grains in the rolling direction, and LGt is the area average value of the projected length of the prior austenite grains in the sheet thickness direction. The "area average value" means an average value weighted by area. Here, the "area" is the area in a cross section (sheet thickness direction × rolling direction cross section) normal to the sheet width direction. For example, when a certain prior austenite grain G1 has a projected length in the rolling direction LGr1 , a projected length in the sheet thickness direction LGt1 , and an area A1 , and another prior austenite grain G2 has a projected length in the rolling direction LGr2 , a projected length in the sheet thickness direction LGt2 , and an area A2 , the area average value LGr of the projected lengths in the rolling direction of these two prior austenite grains is LGr = ( A1 x LGr1 + A2 x LGr2 ) / ( A1 + A2 ), and the area average value LGt of the projected lengths in the sheet thickness direction is LGt = ( A1 x LGt1 + A2 x LGt2 ) / ( A1 + A2 ). In the hot-rolled steel sheet of the present disclosure, the fact that the above relationship (1) is satisfied means, in other words, that the prior austenite grains are elongated in the rolling direction. As described above, in the hot-rolled steel sheet of the present disclosure, the area ratio of the region in which the prior austenite grain size is small and the GAM value is more than 0.6° and less than 2.0° is 50% or more and less than 100%. That is, in the hot-rolled steel sheet of the present disclosure, it can be said that fine crystal grains having an excellent balance between strength and ductility are elongated along the rolling direction. In the conventional common sense, it has been thought that when LGr/LGt in a hot-rolled steel sheet is large, the elongation and hole expandability of the hot-rolled steel sheet are reduced. Therefore, in the past, LGr/LGt was controlled to be small, that is, to be equiaxed. In contrast, in the hot-rolled steel sheet of the present disclosure, the balance between strength, elongation and hole expandability is improved by satisfying the relationship (2) described below together with the relationship (1). In addition, in the hot-rolled steel sheet of the present disclosure, the prior austenite grains are elongated along the rolling direction, so that cracks are less likely to progress in the sheet thickness direction and the impact characteristics are excellent.
上記関係(1)において、LGl/LGtの上限は特に限定されるものではない。本開示の熱延鋼板においては、以下の関係(1-1)が満たされてもよい。LGr/LGtは10.0以下、9.0以下、8.0以下、7.0以下、6.0以下又は5.0以下であってもよい。また、LGr/LGtは、2.0以上、2.5以上、3.0以上又は4.0以上であってもよい。
1.7≦LGr/LGt≦10.0 …(1-1) In the above relationship (1), the upper limit of LGl/LGt is not particularly limited. In the hot-rolled steel sheet of the present disclosure, the following relationship (1-1) may be satisfied. LGr/LGt may be 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, or 5.0 or less. In addition, LGr/LGt may be 2.0 or more, 2.5 or more, 3.0 or more, or 4.0 or more.
1.7≦LGr/LGt≦10.0…(1-1)
1.7≦LGr/LGt≦10.0 …(1-1) In the above relationship (1), the upper limit of LGl/LGt is not particularly limited. In the hot-rolled steel sheet of the present disclosure, the following relationship (1-1) may be satisfied. LGr/LGt may be 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, or 5.0 or less. In addition, LGr/LGt may be 2.0 or more, 2.5 or more, 3.0 or more, or 4.0 or more.
1.7≦LGr/LGt≦10.0…(1-1)
尚、熱延鋼板における「LGr/LGt」は、以下の通りにして測定する。まず、熱延鋼板の板幅方向の端面から1/4位置において、板幅方向を法線方向とする断面(板厚方向×圧延方向断面)の金属組織が観察できるように、試料を採取する。試料のサイズは、測定装置にもよるが、例えば、板厚方向全厚、圧延方向に15mm、板幅方向に10mmの直方体とすればよい。次に、観察面を鏡面研磨した後、ピクリン酸飽和水溶液を用いて、Bechet-Beaujard法で腐食する。腐食によって黒色に現出した粒を旧オーステナイト粒とする。旧オーステナイト粒を現出させた観察面を、光学顕微鏡により観察し、面積0.05mm2以上の視野を8視野以上(合計0.40mm2以上)撮影する。そして、光学顕微鏡により撮影した鋼組織写真から、各旧オーステナイト粒について、面積を算出すると共に、圧延方向投影長さと、板厚方向投影長さとをそれぞれ測定し、それぞれにおいて面積平均を取ったものの比をLGr/LGtとする。上記の方法で旧オーステナイト粒を十分に現出できない場合は、「鋼のオーステナイト組織の再構築法の高精度化に向けた検討」(畑顕吾、脇田昌幸、藤原知哉、河野佳織、新日鉄住金技報第404号(2016)、p.24~30)に記載される再構築法によって旧オーステナイト粒を特定し、旧オーステナイト粒のLGr/LGtを求めることとする。
The "LGr/LGt" in the hot-rolled steel sheet is measured as follows. First, a sample is taken at a quarter position from the end face in the sheet width direction of the hot-rolled steel sheet so that the metal structure of the cross section (sheet thickness direction x rolling direction cross section) with the sheet width direction as the normal direction can be observed. The size of the sample depends on the measuring device, but it may be, for example, a rectangular parallelepiped with the full thickness in the sheet thickness direction, 15 mm in the rolling direction, and 10 mm in the sheet width direction. Next, the observation surface is mirror-polished, and then corroded by the Bechet-Beaujard method using a saturated aqueous solution of picric acid. The grains that appear black due to corrosion are considered to be prior austenite grains. The observation surface where prior austenite grains are revealed is observed by an optical microscope, and eight or more fields of view with an area of 0.05 mm2 or more (total of 0.40 mm2 or more) are photographed. Then, from the steel structure photograph taken by the optical microscope, the area of each prior austenite grain is calculated, and the projected length in the rolling direction and the projected length in the sheet thickness direction are measured, and the ratio of the area averages is defined as LGr/LGt. If the prior austenite grains cannot be sufficiently revealed by the above method, the prior austenite grains are identified by the reconstruction method described in "Study on High-Precision Reconstruction Method of Austenite Structure of Steel" (Hata Kengo, Wakita Masayuki, Fujiwara Tomoya, Kono Kaori, Nippon Steel & Sumitomo Metal Technical Report No. 404 (2016), pp. 24-30), and the LGr/LGt of the prior austenite grains is determined.
1.5 関係(2):1.20≦(LGr/LGt)/(LMr/LMt)
本開示の熱延鋼板は、1.20≦(LGr/LGt)/(LMr/LMt)なる関係(2)を満たす。ここで、LGr及びLGtは、上述の通りであり、LMrは、GAM値2.0°以上である領域の圧延方向投影長さの面積平均値であり、LMtは、GAM値2.0°以上である領域の板厚方向投影長さの面積平均値である。すなわち、本開示の熱延鋼板においては、旧オーステナイト粒のLGr/LGtが、硬質相のLMr/LMtの1.20倍以上となっている。このように、旧オーステナイト粒のLGr/LGtが、硬質相のLMr/LMtよりも一定以上に大きい(硬質相のLMr/LMtが、旧オーステナイト粒のLGr/LGtよりも一定以上小さい)ことで、硬質相が分散して存在することとなり、鋼板全体としての強度及び延性のバラつきが小さくなり、熱延鋼板が、強度、伸び及び穴広げ性のバランスに優れたものとなる。 1.5 Relationship (2): 1.20≦(LGr/LGt)/(LMr/LMt)
The hot-rolled steel sheet of the present disclosure satisfies the relationship (2) of 1.20≦(LGr/LGt)/(LMr/LMt). Here, LGr and LGt are as described above, LMr is the average area of the rolling direction projected length of the region having a GAM value of 2.0° or more, and LMt is the average area of the thickness direction projected length of the region having a GAM value of 2.0° or more. That is, in the hot-rolled steel sheet of the present disclosure, LGr/LGt of the prior austenite grains is 1.20 times or more of LMr/LMt of the hard phase. In this way, since the LGr/LGt of the prior austenite grains is larger than the LMr/LMt of the hard phase by a certain amount (the LMr/LMt of the hard phase is smaller than the LGr/LGt of the prior austenite grains by a certain amount), the hard phase is dispersed and the variations in strength and ductility of the steel sheet as a whole are reduced, resulting in a hot-rolled steel sheet with an excellent balance of strength, elongation and hole expandability.
本開示の熱延鋼板は、1.20≦(LGr/LGt)/(LMr/LMt)なる関係(2)を満たす。ここで、LGr及びLGtは、上述の通りであり、LMrは、GAM値2.0°以上である領域の圧延方向投影長さの面積平均値であり、LMtは、GAM値2.0°以上である領域の板厚方向投影長さの面積平均値である。すなわち、本開示の熱延鋼板においては、旧オーステナイト粒のLGr/LGtが、硬質相のLMr/LMtの1.20倍以上となっている。このように、旧オーステナイト粒のLGr/LGtが、硬質相のLMr/LMtよりも一定以上に大きい(硬質相のLMr/LMtが、旧オーステナイト粒のLGr/LGtよりも一定以上小さい)ことで、硬質相が分散して存在することとなり、鋼板全体としての強度及び延性のバラつきが小さくなり、熱延鋼板が、強度、伸び及び穴広げ性のバランスに優れたものとなる。 1.5 Relationship (2): 1.20≦(LGr/LGt)/(LMr/LMt)
The hot-rolled steel sheet of the present disclosure satisfies the relationship (2) of 1.20≦(LGr/LGt)/(LMr/LMt). Here, LGr and LGt are as described above, LMr is the average area of the rolling direction projected length of the region having a GAM value of 2.0° or more, and LMt is the average area of the thickness direction projected length of the region having a GAM value of 2.0° or more. That is, in the hot-rolled steel sheet of the present disclosure, LGr/LGt of the prior austenite grains is 1.20 times or more of LMr/LMt of the hard phase. In this way, since the LGr/LGt of the prior austenite grains is larger than the LMr/LMt of the hard phase by a certain amount (the LMr/LMt of the hard phase is smaller than the LGr/LGt of the prior austenite grains by a certain amount), the hard phase is dispersed and the variations in strength and ductility of the steel sheet as a whole are reduced, resulting in a hot-rolled steel sheet with an excellent balance of strength, elongation and hole expandability.
上記関係(2)において、(LGr/LGt)/(LMr/LMt)の上限は特に限定されるものではない。本開示の熱延鋼板においては、以下の関係(2-1)が満たされてもよい。(LGr/LGt)/(LMr/LMt)は5.00以下、4.80以下、4.50以下、4.30以下、4.00以下、3.80以下、3.60以下又は3.40以下であってもよい。また、(LGr/LGt)/(LMr/LMt)は、1.40以上、1.60以上、1.80以上、2.00以上、2.20以上又は2.40以上であってもよい。
1.20≦(LGr/LGt)/(LMr/LMt)≦5.00 …(2-1) In the above relationship (2), the upper limit of (LGr/LGt)/(LMr/LMt) is not particularly limited. In the hot-rolled steel sheet of the present disclosure, the following relationship (2-1) may be satisfied. (LGr/LGt)/(LMr/LMt) may be 5.00 or less, 4.80 or less, 4.50 or less, 4.30 or less, 4.00 or less, 3.80 or less, 3.60 or less, or 3.40 or less. In addition, (LGr/LGt)/(LMr/LMt) may be 1.40 or more, 1.60 or more, 1.80 or more, 2.00 or more, 2.20 or more, or 2.40 or more.
1.20≦(LGr/LGt)/(LMr/LMt)≦5.00…(2-1)
1.20≦(LGr/LGt)/(LMr/LMt)≦5.00 …(2-1) In the above relationship (2), the upper limit of (LGr/LGt)/(LMr/LMt) is not particularly limited. In the hot-rolled steel sheet of the present disclosure, the following relationship (2-1) may be satisfied. (LGr/LGt)/(LMr/LMt) may be 5.00 or less, 4.80 or less, 4.50 or less, 4.30 or less, 4.00 or less, 3.80 or less, 3.60 or less, or 3.40 or less. In addition, (LGr/LGt)/(LMr/LMt) may be 1.40 or more, 1.60 or more, 1.80 or more, 2.00 or more, 2.20 or more, or 2.40 or more.
1.20≦(LGr/LGt)/(LMr/LMt)≦5.00…(2-1)
尚、熱延鋼板における「LMr/LMt」は、以下の通りにして測定する。まず、熱延鋼板の板幅方向の端面から1/4位置において、板幅方向を法線方向とする断面(板厚方向×圧延方向断面)の金属組織が観察できるように、試料を採取する。試料のサイズは、測定装置にもよるが、例えば、板厚方向全厚、圧延方向に15mm、板幅方向に10mmの直方体とすればよい。次に、試料の観察面を鏡面研磨した後、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、試料の表面に導入されたひずみを除去する。上記試料の板厚方向の表面から1/4深さ位置を中心に板厚方向に200μm及び圧延方向の任意の位置で400μm以上の領域(板厚方向1/4深さ位置に中心を有する長方形領域であって、板厚方向に200μmの長さ(短辺)、圧延方向に400μm以上の長さ(長辺)を有する長方形領域)を、0.2μmの測定間隔でEBSP法により測定する。上記測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製HIKARI検出器)とで構成されたEBSD解析装置を用いる。この際、EBSD解析装置内の真空度は9.6×10―5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。次に,EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」を用いてGAM値を算出する。なお、定義された結晶粒の円相当径が0.6μm以下のものについては、測定誤差が大きい可能性があるため、除外する。算出したGAM値の情報からGAM値2.0°以上である領域を特定する。当該特定されたGAM値2.0°以上の各領域の面積を算出すると共に、その形状から、圧延方向投影長さと、板厚方向投影長さとをそれぞれ測定し、それぞれにおいて面積平均を取ったものの比をLMr/LMtとする。
The "LMr/LMt" of the hot-rolled steel sheet is measured as follows. First, a sample is taken at a quarter position from the end face in the sheet width direction of the hot-rolled steel sheet so that the metal structure of the cross section (sheet thickness direction x rolling direction cross section) normal to the sheet width direction can be observed. The size of the sample depends on the measuring device, but may be, for example, a rectangular parallelepiped with the full thickness in the sheet thickness direction, 15 mm in the rolling direction, and 10 mm in the sheet width direction. Next, the observation surface of the sample is mirror-polished, and then polished for 8 minutes at room temperature using colloidal silica that does not contain an alkaline solution to remove the strain introduced into the surface of the sample. A region of 200 μm in the thickness direction and 400 μm or more at any position in the rolling direction (a rectangular region having a center at 1/4 depth position in the thickness direction and having a length (short side) of 200 μm in the thickness direction and a length (long side) of 400 μm or more in the rolling direction) is measured by the EBSP method at a measurement interval of 0.2 μm. For the above measurement, an EBSD analyzer consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (HIKARI detector manufactured by TSL) is used. At this time, the degree of vacuum in the EBSD analyzer is 9.6×10 −5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the electron beam irradiation level is 62. Next, the GAM value is calculated using the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer. In addition, crystal grains having a defined equivalent circle diameter of 0.6 μm or less are excluded because there is a possibility of a large measurement error. From the calculated GAM value information, a region having a GAM value of 2.0° or more is identified. The area of each of the identified regions having a GAM value of 2.0° or more is calculated, and from the shape, the rolling direction projected length and the plate thickness direction projected length are measured, and the ratio of the area averages in each region is defined as LMr/LMt.
1.6 機械特性等
本開示の熱延鋼板は、上述の化学組成及び鋼組織を有することにより、強度、伸び及び穴広げ性のバランスに優れ、且つ、衝突特性にも優れたものとなる。 1.6 Mechanical Properties, etc. The hot-rolled steel sheet according to the present disclosure has the above-mentioned chemical composition and steel structure, and therefore has an excellent balance of strength, elongation, and hole expandability, and also has excellent impact properties.
本開示の熱延鋼板は、上述の化学組成及び鋼組織を有することにより、強度、伸び及び穴広げ性のバランスに優れ、且つ、衝突特性にも優れたものとなる。 1.6 Mechanical Properties, etc. The hot-rolled steel sheet according to the present disclosure has the above-mentioned chemical composition and steel structure, and therefore has an excellent balance of strength, elongation, and hole expandability, and also has excellent impact properties.
(引張強さTS)
本開示の熱延鋼板は、優れた強度を有する。例えば、本開示の熱延鋼板は、960MPa以上の引張強さTSを有するものであってもよい。引張強さTSは、970MPa以上又は980MPa以上であってもよい。引張強さTSの上限は特に限定されず、例えば、1200MPa以下、1150MPa以下又は1100MPa以下であってもよい。尚、熱延鋼板の引張強さTSを測定するための引張試験は、JIS Z 2241に準拠し、試験片の長手方向が鋼板の圧延直角方向(板幅方向)と平行になる向きから5号試験片を採取して行う。測定対象の熱延鋼板から上記5号試験片を採取できない場合は、引張強さTSを測定するための試験片として、板幅方向を長手方向とする微小試験片を代用することができる。 (Tensile strength TS)
The hot-rolled steel sheet of the present disclosure has excellent strength. For example, the hot-rolled steel sheet of the present disclosure may have a tensile strength TS of 960 MPa or more. The tensile strength TS may be 970 MPa or more or 980 MPa or more. The upper limit of the tensile strength TS is not particularly limited, and may be, for example, 1200 MPa or less, 1150 MPa or less, or 1100 MPa or less. The tensile test for measuring the tensile strength TS of the hot-rolled steel sheet is performed in accordance with JIS Z 2241, by taking a No. 5 test piece from a direction in which the longitudinal direction of the test piece is parallel to the rolling transverse direction (sheet width direction) of the steel sheet. If the No. 5 test piece cannot be taken from the hot-rolled steel sheet to be measured, a small test piece with the sheet width direction as the longitudinal direction can be used as the test piece for measuring the tensile strength TS.
本開示の熱延鋼板は、優れた強度を有する。例えば、本開示の熱延鋼板は、960MPa以上の引張強さTSを有するものであってもよい。引張強さTSは、970MPa以上又は980MPa以上であってもよい。引張強さTSの上限は特に限定されず、例えば、1200MPa以下、1150MPa以下又は1100MPa以下であってもよい。尚、熱延鋼板の引張強さTSを測定するための引張試験は、JIS Z 2241に準拠し、試験片の長手方向が鋼板の圧延直角方向(板幅方向)と平行になる向きから5号試験片を採取して行う。測定対象の熱延鋼板から上記5号試験片を採取できない場合は、引張強さTSを測定するための試験片として、板幅方向を長手方向とする微小試験片を代用することができる。 (Tensile strength TS)
The hot-rolled steel sheet of the present disclosure has excellent strength. For example, the hot-rolled steel sheet of the present disclosure may have a tensile strength TS of 960 MPa or more. The tensile strength TS may be 970 MPa or more or 980 MPa or more. The upper limit of the tensile strength TS is not particularly limited, and may be, for example, 1200 MPa or less, 1150 MPa or less, or 1100 MPa or less. The tensile test for measuring the tensile strength TS of the hot-rolled steel sheet is performed in accordance with JIS Z 2241, by taking a No. 5 test piece from a direction in which the longitudinal direction of the test piece is parallel to the rolling transverse direction (sheet width direction) of the steel sheet. If the No. 5 test piece cannot be taken from the hot-rolled steel sheet to be measured, a small test piece with the sheet width direction as the longitudinal direction can be used as the test piece for measuring the tensile strength TS.
(一様伸びuEL)
本開示の熱延鋼板は、優れた延性を有する。例えば、本開示の熱延鋼板は、4.0%以上12.0%以下の一様伸びuELを有するものであってもよい。一様伸びuELは、5.0%以上、6.0%以上、6.5%以上、7.0%以上、7.5%以上又は8.0%以上であってもよく、11.5%以下、11.0%以下、10.5%以下、10.0%以下、9.5%以下又は9.0%以下であってもよい。尚、熱延鋼板の一様伸びuELを測定するための引張試験は、JIS Z 2241に準拠し、試験片の長手方向が鋼板の圧延直角方向(板幅方向)と平行になる向きから5号試験片を採取して行う。 (Uniform elongation uEL)
The hot-rolled steel sheet of the present disclosure has excellent ductility. For example, the hot-rolled steel sheet of the present disclosure may have a uniform elongation uEL of 4.0% or more and 12.0% or less. The uniform elongation uEL may be 5.0% or more, 6.0% or more, 6.5% or more, 7.0% or more, 7.5% or more, or 8.0% or more, and may be 11.5% or less, 11.0% or less, 10.5% or less, 10.0% or less, 9.5% or less, or 9.0% or less. The tensile test for measuring the uniform elongation uEL of the hot-rolled steel sheet is performed in accordance with JIS Z 2241, with the test piece No. 5 taken from a direction in which the longitudinal direction of the test piece is parallel to the rolling transverse direction (sheet width direction) of the steel sheet.
本開示の熱延鋼板は、優れた延性を有する。例えば、本開示の熱延鋼板は、4.0%以上12.0%以下の一様伸びuELを有するものであってもよい。一様伸びuELは、5.0%以上、6.0%以上、6.5%以上、7.0%以上、7.5%以上又は8.0%以上であってもよく、11.5%以下、11.0%以下、10.5%以下、10.0%以下、9.5%以下又は9.0%以下であってもよい。尚、熱延鋼板の一様伸びuELを測定するための引張試験は、JIS Z 2241に準拠し、試験片の長手方向が鋼板の圧延直角方向(板幅方向)と平行になる向きから5号試験片を採取して行う。 (Uniform elongation uEL)
The hot-rolled steel sheet of the present disclosure has excellent ductility. For example, the hot-rolled steel sheet of the present disclosure may have a uniform elongation uEL of 4.0% or more and 12.0% or less. The uniform elongation uEL may be 5.0% or more, 6.0% or more, 6.5% or more, 7.0% or more, 7.5% or more, or 8.0% or more, and may be 11.5% or less, 11.0% or less, 10.5% or less, 10.0% or less, 9.5% or less, or 9.0% or less. The tensile test for measuring the uniform elongation uEL of the hot-rolled steel sheet is performed in accordance with JIS Z 2241, with the test piece No. 5 taken from a direction in which the longitudinal direction of the test piece is parallel to the rolling transverse direction (sheet width direction) of the steel sheet.
(穴広げ性)
本開示の熱延鋼板は、優れた穴広げ性を有する。例えば、本開示の熱延鋼板は、40%以上110%以下の穴広げ率λを有するものであってもよい。穴広げ率λは、45%以上又は50%以上であってもよく、100%以下、90%以下、80%以下又は70%以下であってもよい。尚、熱延鋼板の穴広げ性は、直径10mmの円形穴を、クリアランスが12.5%となる条件で打ち抜き、かえりがダイ側となるようにし、60°円錐ポンチにて成形し、穴広げ率(%)で評価する。5回の穴広げ試験を実施し、その平均値を穴広げ率λとする。 (Hole expansion ability)
The hot-rolled steel sheet of the present disclosure has excellent hole expansion properties. For example, the hot-rolled steel sheet of the present disclosure may have a hole expansion ratio λ of 40% or more and 110% or less. The hole expansion ratio λ may be 45% or more or 50% or more, and may be 100% or less, 90% or less, 80% or less, or 70% or less. The hole expansion properties of the hot-rolled steel sheet are evaluated by punching a circular hole with a diameter of 10 mm under conditions where the clearance is 12.5%, forming the burr on the die side, and forming with a 60° conical punch. Five hole expansion tests are performed, and the average value is taken as the hole expansion ratio λ.
本開示の熱延鋼板は、優れた穴広げ性を有する。例えば、本開示の熱延鋼板は、40%以上110%以下の穴広げ率λを有するものであってもよい。穴広げ率λは、45%以上又は50%以上であってもよく、100%以下、90%以下、80%以下又は70%以下であってもよい。尚、熱延鋼板の穴広げ性は、直径10mmの円形穴を、クリアランスが12.5%となる条件で打ち抜き、かえりがダイ側となるようにし、60°円錐ポンチにて成形し、穴広げ率(%)で評価する。5回の穴広げ試験を実施し、その平均値を穴広げ率λとする。 (Hole expansion ability)
The hot-rolled steel sheet of the present disclosure has excellent hole expansion properties. For example, the hot-rolled steel sheet of the present disclosure may have a hole expansion ratio λ of 40% or more and 110% or less. The hole expansion ratio λ may be 45% or more or 50% or more, and may be 100% or less, 90% or less, 80% or less, or 70% or less. The hole expansion properties of the hot-rolled steel sheet are evaluated by punching a circular hole with a diameter of 10 mm under conditions where the clearance is 12.5%, forming the burr on the die side, and forming with a 60° conical punch. Five hole expansion tests are performed, and the average value is taken as the hole expansion ratio λ.
(衝突特性)
本開示の熱延鋼板は、優れた衝突特性を有する。熱延鋼板の衝突特性は、例えば、板厚方向のき裂進展抵抗によって評価され得る。板厚方向のき裂進展抵抗は、熱延鋼板を打抜いた際の変位-荷重曲線によって定められる。例えば、エネルギーW2とエネルギーW1との比W2/W1によって定められる。ここで、W2=∫Fds(最大荷重以降)であり、W1=∫Fds(最大荷重以前)である。本開示の熱延鋼板は、0.15≦W2/W1を満たすものであってもよい。比W2/W1の値は、0.17以上、0.18以上、0.19以上、0.20以上であってもよい。 (Collision characteristics)
The hot-rolled steel sheet of the present disclosure has excellent impact properties. The impact properties of the hot-rolled steel sheet can be evaluated, for example, by the crack growth resistance in the thickness direction. The crack growth resistance in the thickness direction is determined by the displacement-load curve when the hot-rolled steel sheet is punched. For example, it is determined by the ratio W2/W1 of the energy W2 to the energy W1. Here, W2=∫Fds (after the maximum load) and W1=∫Fds (before the maximum load). The hot-rolled steel sheet of the present disclosure may satisfy 0.15≦W2/W1. The value of the ratio W2/W1 may be 0.17 or more, 0.18 or more, 0.19 or more, or 0.20 or more.
本開示の熱延鋼板は、優れた衝突特性を有する。熱延鋼板の衝突特性は、例えば、板厚方向のき裂進展抵抗によって評価され得る。板厚方向のき裂進展抵抗は、熱延鋼板を打抜いた際の変位-荷重曲線によって定められる。例えば、エネルギーW2とエネルギーW1との比W2/W1によって定められる。ここで、W2=∫Fds(最大荷重以降)であり、W1=∫Fds(最大荷重以前)である。本開示の熱延鋼板は、0.15≦W2/W1を満たすものであってもよい。比W2/W1の値は、0.17以上、0.18以上、0.19以上、0.20以上であってもよい。 (Collision characteristics)
The hot-rolled steel sheet of the present disclosure has excellent impact properties. The impact properties of the hot-rolled steel sheet can be evaluated, for example, by the crack growth resistance in the thickness direction. The crack growth resistance in the thickness direction is determined by the displacement-load curve when the hot-rolled steel sheet is punched. For example, it is determined by the ratio W2/W1 of the energy W2 to the energy W1. Here, W2=∫Fds (after the maximum load) and W1=∫Fds (before the maximum load). The hot-rolled steel sheet of the present disclosure may satisfy 0.15≦W2/W1. The value of the ratio W2/W1 may be 0.17 or more, 0.18 or more, 0.19 or more, or 0.20 or more.
(板厚)
熱延鋼板の板厚は、特に限定されないが、例えば、0.5mm以上10.0mm以下であってもよい。板厚の上限は、8.0mm、6.0mm又は4.0mmであってもよい。 (Thickness)
The thickness of the hot-rolled steel sheet is not particularly limited, and may be, for example, 0.5 mm or more and 10.0 mm or less. The upper limit of the thickness may be 8.0 mm, 6.0 mm, or 4.0 mm.
熱延鋼板の板厚は、特に限定されないが、例えば、0.5mm以上10.0mm以下であってもよい。板厚の上限は、8.0mm、6.0mm又は4.0mmであってもよい。 (Thickness)
The thickness of the hot-rolled steel sheet is not particularly limited, and may be, for example, 0.5 mm or more and 10.0 mm or less. The upper limit of the thickness may be 8.0 mm, 6.0 mm, or 4.0 mm.
(用途)
以上の通り、本開示の熱延鋼板は、強度、延性及び穴広げ性のバランスに優れるとともに、衝突特性にも優れる。このような熱延鋼板は、例えば、自動車の足回り部品、構造部品、骨格、フレーム部品等の素材として使用され得る。特に、自動車の足回り部品の素材として好適である。自動車の足回り部品の具体例としては、ロアアーム、アッパーアーム、トレールリンク等が挙げられる。 (Application)
As described above, the hot-rolled steel sheet of the present disclosure has an excellent balance of strength, ductility, and hole expandability, and also has excellent collision properties. Such a hot-rolled steel sheet can be used, for example, as a material for automobile suspension parts, structural parts, frameworks, frame parts, etc. In particular, it is suitable as a material for automobile suspension parts. Specific examples of automobile suspension parts include lower arms, upper arms, trail links, etc.
以上の通り、本開示の熱延鋼板は、強度、延性及び穴広げ性のバランスに優れるとともに、衝突特性にも優れる。このような熱延鋼板は、例えば、自動車の足回り部品、構造部品、骨格、フレーム部品等の素材として使用され得る。特に、自動車の足回り部品の素材として好適である。自動車の足回り部品の具体例としては、ロアアーム、アッパーアーム、トレールリンク等が挙げられる。 (Application)
As described above, the hot-rolled steel sheet of the present disclosure has an excellent balance of strength, ductility, and hole expandability, and also has excellent collision properties. Such a hot-rolled steel sheet can be used, for example, as a material for automobile suspension parts, structural parts, frameworks, frame parts, etc. In particular, it is suitable as a material for automobile suspension parts. Specific examples of automobile suspension parts include lower arms, upper arms, trail links, etc.
2.熱延鋼板の製造方法
以下、本開示の熱延鋼板を製造する方法の一例について説明するが、熱延鋼板の製造方法は以下に説明されるものに限定されない。一実施形態に係る熱延鋼板の製造方法は、
スラブを加熱する加熱工程と、
加熱された前記スラブに熱間圧延を施す熱延工程と、
熱間圧延によって得られた熱延鋼板を冷却する冷却工程と、
冷却された前記熱延鋼板を巻き取る巻取工程と、を備え、
前記スラブは、質量%で、
C:0.045%以上、0.120%以下、
Si:0%以上、3.00%以下、
Mn:1.20%以上、2.60%以下、
Ti:0.020%以上、0.180%以下、
Al:0.010%以上、0.400%以下、
P:0%以上、0.080%以下、
S:0%以上、0.0100%以下、
N:0%以上、0.0050%以下、
O:0%以上、0.010%以下、
Nb:0%以上、0.100%以下、
V:0%以上、1.000%以下、
Cu:0%以上、1.000%以下、
Cr:0%以上、2.000%以下、
Mo:0%以上、3.000%以下、
Ni:0%以上、0.500%以下、
B:0%以上、0.0100%以下、
Ca:0%以上、0.0500%以下、
Mg:0%以上、0.050%以下、
REM:0%以上、0.100%以下、
Bi:0%以上、0.100%以下、
Ta:0%以上、0.100%以下、
Zr:0%以上、0.500%以下、
Co:0%以上、3.000%以下、
Zn:0%以上、0.200%以下、
W:0%以上、0.200%以下、
Sb:0%以上、0.500%以下、
As:0%以上、0.050%以下、及び
Sn:0%以上、0.050%以下を含み、
残部:Fe及び不純物からなるものであり、
前記熱延工程は、粗圧延と仕上げ圧延とを備え、
前記仕上げ圧延の開始温度STは、1000℃以上1150℃以下であり、
前記仕上げ圧延は、高温度差圧延を2回以上含み、
前記高温度差圧延は、該高温度差圧延を行う圧延スタンドにおける圧延温度と、その直前の圧延スタンドにおける圧延温度との温度差ΔTが、30℃以上となるものであり、
前記仕上げ圧延において、2回目の前記高温度差圧延よりも後における総圧下率は、50%以上であり、
前記仕上げ圧延の完了温度FTは、940℃以下であり、
前記仕上げ圧延の完了から前記冷却を開始するまでの時間は、2.0秒以内であり、
前記冷却工程において、前記冷却の開始後、加速冷却が行われ、且つ、前記加速冷却の冷却停止温度が、520℃以上720℃以下であり、
前記冷却工程において、720℃から470℃の温度域における緩冷却時間は、2.0秒以上である、
ことを特徴とする。 2. Manufacturing method of hot-rolled steel sheet Hereinafter, an example of a method for manufacturing a hot-rolled steel sheet according to the present disclosure will be described, but the manufacturing method of the hot-rolled steel sheet is not limited to the one described below. The manufacturing method of the hot-rolled steel sheet according to one embodiment is as follows:
a heating step of heating the slab;
a hot rolling step of hot rolling the heated slab;
A cooling step of cooling the hot-rolled steel sheet obtained by hot rolling;
A winding process of winding the cooled hot-rolled steel sheet,
The slab comprises, in mass %,
C: 0.045% or more, 0.120% or less,
Si: 0% or more, 3.00% or less,
Mn: 1.20% or more, 2.60% or less,
Ti: 0.020% or more, 0.180% or less,
Al: 0.010% or more, 0.400% or less,
P: 0% or more, 0.080% or less,
S: 0% or more, 0.0100% or less,
N: 0% or more, 0.0050% or less,
O: 0% or more, 0.010% or less,
Nb: 0% or more, 0.100% or less,
V: 0% or more, 1.000% or less,
Cu: 0% or more, 1.000% or less,
Cr: 0% or more, 2.000% or less,
Mo: 0% or more, 3.000% or less,
Ni: 0% or more, 0.500% or less,
B: 0% or more, 0.0100% or less,
Ca: 0% or more, 0.0500% or less,
Mg: 0% or more, 0.050% or less,
REM: 0% or more, 0.100% or less,
Bi: 0% or more, 0.100% or less,
Ta: 0% or more, 0.100% or less,
Zr: 0% or more, 0.500% or less,
Co: 0% or more, 3.000% or less,
Zn: 0% or more, 0.200% or less,
W: 0% or more, 0.200% or less,
Sb: 0% or more, 0.500% or less,
As: 0% or more, 0.050% or less, and Sn: 0% or more, 0.050% or less;
The balance is composed of Fe and impurities.
The hot rolling step includes rough rolling and finish rolling,
The start temperature ST of the finish rolling is 1000° C. or more and 1150° C. or less,
The finish rolling includes high temperature difference rolling two or more times,
The high temperature difference rolling is such that a temperature difference ΔT between the rolling temperature in a rolling stand performing the high temperature difference rolling and the rolling temperature in a rolling stand immediately preceding the high temperature difference rolling is 30° C. or more;
In the finish rolling, the total rolling reduction after the second high temperature difference rolling is 50% or more,
The completion temperature FT of the finish rolling is 940° C. or less,
The time from the completion of the finish rolling to the start of the cooling is within 2.0 seconds,
In the cooling step, accelerated cooling is performed after the start of the cooling, and the cooling stop temperature of the accelerated cooling is 520° C. or more and 720° C. or less;
In the cooling step, the slow cooling time in the temperature range of 720 ° C. to 470 ° C. is 2.0 seconds or more.
It is characterized by:
以下、本開示の熱延鋼板を製造する方法の一例について説明するが、熱延鋼板の製造方法は以下に説明されるものに限定されない。一実施形態に係る熱延鋼板の製造方法は、
スラブを加熱する加熱工程と、
加熱された前記スラブに熱間圧延を施す熱延工程と、
熱間圧延によって得られた熱延鋼板を冷却する冷却工程と、
冷却された前記熱延鋼板を巻き取る巻取工程と、を備え、
前記スラブは、質量%で、
C:0.045%以上、0.120%以下、
Si:0%以上、3.00%以下、
Mn:1.20%以上、2.60%以下、
Ti:0.020%以上、0.180%以下、
Al:0.010%以上、0.400%以下、
P:0%以上、0.080%以下、
S:0%以上、0.0100%以下、
N:0%以上、0.0050%以下、
O:0%以上、0.010%以下、
Nb:0%以上、0.100%以下、
V:0%以上、1.000%以下、
Cu:0%以上、1.000%以下、
Cr:0%以上、2.000%以下、
Mo:0%以上、3.000%以下、
Ni:0%以上、0.500%以下、
B:0%以上、0.0100%以下、
Ca:0%以上、0.0500%以下、
Mg:0%以上、0.050%以下、
REM:0%以上、0.100%以下、
Bi:0%以上、0.100%以下、
Ta:0%以上、0.100%以下、
Zr:0%以上、0.500%以下、
Co:0%以上、3.000%以下、
Zn:0%以上、0.200%以下、
W:0%以上、0.200%以下、
Sb:0%以上、0.500%以下、
As:0%以上、0.050%以下、及び
Sn:0%以上、0.050%以下を含み、
残部:Fe及び不純物からなるものであり、
前記熱延工程は、粗圧延と仕上げ圧延とを備え、
前記仕上げ圧延の開始温度STは、1000℃以上1150℃以下であり、
前記仕上げ圧延は、高温度差圧延を2回以上含み、
前記高温度差圧延は、該高温度差圧延を行う圧延スタンドにおける圧延温度と、その直前の圧延スタンドにおける圧延温度との温度差ΔTが、30℃以上となるものであり、
前記仕上げ圧延において、2回目の前記高温度差圧延よりも後における総圧下率は、50%以上であり、
前記仕上げ圧延の完了温度FTは、940℃以下であり、
前記仕上げ圧延の完了から前記冷却を開始するまでの時間は、2.0秒以内であり、
前記冷却工程において、前記冷却の開始後、加速冷却が行われ、且つ、前記加速冷却の冷却停止温度が、520℃以上720℃以下であり、
前記冷却工程において、720℃から470℃の温度域における緩冷却時間は、2.0秒以上である、
ことを特徴とする。 2. Manufacturing method of hot-rolled steel sheet Hereinafter, an example of a method for manufacturing a hot-rolled steel sheet according to the present disclosure will be described, but the manufacturing method of the hot-rolled steel sheet is not limited to the one described below. The manufacturing method of the hot-rolled steel sheet according to one embodiment is as follows:
a heating step of heating the slab;
a hot rolling step of hot rolling the heated slab;
A cooling step of cooling the hot-rolled steel sheet obtained by hot rolling;
A winding process of winding the cooled hot-rolled steel sheet,
The slab comprises, in mass %,
C: 0.045% or more, 0.120% or less,
Si: 0% or more, 3.00% or less,
Mn: 1.20% or more, 2.60% or less,
Ti: 0.020% or more, 0.180% or less,
Al: 0.010% or more, 0.400% or less,
P: 0% or more, 0.080% or less,
S: 0% or more, 0.0100% or less,
N: 0% or more, 0.0050% or less,
O: 0% or more, 0.010% or less,
Nb: 0% or more, 0.100% or less,
V: 0% or more, 1.000% or less,
Cu: 0% or more, 1.000% or less,
Cr: 0% or more, 2.000% or less,
Mo: 0% or more, 3.000% or less,
Ni: 0% or more, 0.500% or less,
B: 0% or more, 0.0100% or less,
Ca: 0% or more, 0.0500% or less,
Mg: 0% or more, 0.050% or less,
REM: 0% or more, 0.100% or less,
Bi: 0% or more, 0.100% or less,
Ta: 0% or more, 0.100% or less,
Zr: 0% or more, 0.500% or less,
Co: 0% or more, 3.000% or less,
Zn: 0% or more, 0.200% or less,
W: 0% or more, 0.200% or less,
Sb: 0% or more, 0.500% or less,
As: 0% or more, 0.050% or less, and Sn: 0% or more, 0.050% or less;
The balance is composed of Fe and impurities.
The hot rolling step includes rough rolling and finish rolling,
The start temperature ST of the finish rolling is 1000° C. or more and 1150° C. or less,
The finish rolling includes high temperature difference rolling two or more times,
The high temperature difference rolling is such that a temperature difference ΔT between the rolling temperature in a rolling stand performing the high temperature difference rolling and the rolling temperature in a rolling stand immediately preceding the high temperature difference rolling is 30° C. or more;
In the finish rolling, the total rolling reduction after the second high temperature difference rolling is 50% or more,
The completion temperature FT of the finish rolling is 940° C. or less,
The time from the completion of the finish rolling to the start of the cooling is within 2.0 seconds,
In the cooling step, accelerated cooling is performed after the start of the cooling, and the cooling stop temperature of the accelerated cooling is 520° C. or more and 720° C. or less;
In the cooling step, the slow cooling time in the temperature range of 720 ° C. to 470 ° C. is 2.0 seconds or more.
It is characterized by:
2.1 加熱工程
加熱工程においては、上記した化学組成を有するスラブを加熱する。加熱温度が低過ぎる場合、炭化物や窒化物の溶解が不十分となる。一方、加熱温度が高過ぎる場合、スケール生成量が増大し、歩留りが低下する。この点、加熱工程におけるスラブの加熱温度は、例えば、1100℃以上1300℃以下であってよい。加熱温度は1150℃以上又は1200℃以上であってもよく、1260℃以下であってもよい。加熱工程におけるスラブの加熱時間は、スラブ全体を目標温度に到達できる時間であればよい。加熱時間は、例えば、6000秒(100分)以上又は9000秒(150分)以上であってもよい。特に、1150℃以上の温度で6000秒(100分)以上保持することで、より高い効果が得られ易い。 2.1 Heating process In the heating process, the slab having the above-mentioned chemical composition is heated. If the heating temperature is too low, the dissolution of carbides and nitrides is insufficient. On the other hand, if the heating temperature is too high, the amount of scale generated increases and the yield decreases. In this regard, the heating temperature of the slab in the heating process may be, for example, 1100°C or higher and 1300°C or lower. The heating temperature may be 1150°C or higher or 1200°C or higher, or 1260°C or lower. The heating time of the slab in the heating process may be a time that allows the entire slab to reach the target temperature. The heating time may be, for example, 6000 seconds (100 minutes) or more or 9000 seconds (150 minutes) or more. In particular, a higher effect is likely to be obtained by holding the temperature of 1150°C or higher for 6000 seconds (100 minutes) or more.
加熱工程においては、上記した化学組成を有するスラブを加熱する。加熱温度が低過ぎる場合、炭化物や窒化物の溶解が不十分となる。一方、加熱温度が高過ぎる場合、スケール生成量が増大し、歩留りが低下する。この点、加熱工程におけるスラブの加熱温度は、例えば、1100℃以上1300℃以下であってよい。加熱温度は1150℃以上又は1200℃以上であってもよく、1260℃以下であってもよい。加熱工程におけるスラブの加熱時間は、スラブ全体を目標温度に到達できる時間であればよい。加熱時間は、例えば、6000秒(100分)以上又は9000秒(150分)以上であってもよい。特に、1150℃以上の温度で6000秒(100分)以上保持することで、より高い効果が得られ易い。 2.1 Heating process In the heating process, the slab having the above-mentioned chemical composition is heated. If the heating temperature is too low, the dissolution of carbides and nitrides is insufficient. On the other hand, if the heating temperature is too high, the amount of scale generated increases and the yield decreases. In this regard, the heating temperature of the slab in the heating process may be, for example, 1100°C or higher and 1300°C or lower. The heating temperature may be 1150°C or higher or 1200°C or higher, or 1260°C or lower. The heating time of the slab in the heating process may be a time that allows the entire slab to reach the target temperature. The heating time may be, for example, 6000 seconds (100 minutes) or more or 9000 seconds (150 minutes) or more. In particular, a higher effect is likely to be obtained by holding the temperature of 1150°C or higher for 6000 seconds (100 minutes) or more.
2.2 熱延工程
熱延工程においては、加熱工程によって加熱されたスラブに対して熱間圧延を施す。熱延工程は、粗圧延と仕上げ圧延とを備える。 2.2 Hot Rolling Step In the hot rolling step, the slab heated in the heating step is hot rolled. The hot rolling step includes rough rolling and finish rolling.
熱延工程においては、加熱工程によって加熱されたスラブに対して熱間圧延を施す。熱延工程は、粗圧延と仕上げ圧延とを備える。 2.2 Hot Rolling Step In the hot rolling step, the slab heated in the heating step is hot rolled. The hot rolling step includes rough rolling and finish rolling.
(粗圧延)
粗圧延の条件は、特に限定されるものではなく、スラブに対して所定の温度で所定の圧下率にて圧延を施せばよい。粗圧延における温度は、例えば、上記の加熱工程における加熱温度以下、且つ、後述の仕上げ圧延の開始温度ST以上であってよい。粗圧延における圧下率は、例えば、800~1150℃の板厚減が90%以上となるようなものであってもよい。 (Rough rolling)
The conditions of the rough rolling are not particularly limited, and the slab may be rolled at a predetermined temperature and a predetermined reduction ratio. The temperature in the rough rolling may be, for example, equal to or lower than the heating temperature in the heating step and equal to or higher than the start temperature ST of the finish rolling described later. The reduction ratio in the rough rolling may be, for example, such that the thickness reduction at 800 to 1150 ° C. is 90% or more.
粗圧延の条件は、特に限定されるものではなく、スラブに対して所定の温度で所定の圧下率にて圧延を施せばよい。粗圧延における温度は、例えば、上記の加熱工程における加熱温度以下、且つ、後述の仕上げ圧延の開始温度ST以上であってよい。粗圧延における圧下率は、例えば、800~1150℃の板厚減が90%以上となるようなものであってもよい。 (Rough rolling)
The conditions of the rough rolling are not particularly limited, and the slab may be rolled at a predetermined temperature and a predetermined reduction ratio. The temperature in the rough rolling may be, for example, equal to or lower than the heating temperature in the heating step and equal to or higher than the start temperature ST of the finish rolling described later. The reduction ratio in the rough rolling may be, for example, such that the thickness reduction at 800 to 1150 ° C. is 90% or more.
(仕上げ圧延)
仕上げ圧延においては、粗圧延が施されたスラブ(粗バー)に対して、複数のスタンドによって複数回圧延が施される。仕上げ圧延の開始温度STは、1000℃以上1150℃以下である。開始温度STが低過ぎると、最終的に製造される熱延鋼板が上記の旧オーステナイト粒径の要件を満たさないものとなり、穴広げ性等が低下し易い。一方、開始温度STが高過ぎると、鋼の組織を適切に制御することができなくなり、最終的に製造される熱延鋼板が上記の旧オーステナイト粒径の要件、関係(1)及び(2)を満たさないものとなり、衝突特性が低下し易い。開始温度STが1000℃以上1150℃以下であることで、これらの問題が解消される。開始温度STは、1050℃以上1150℃以下であってもよい。 (Finish rolling)
In the finish rolling, the slab (rough bar) subjected to the rough rolling is rolled multiple times by multiple stands. The start temperature ST of the finish rolling is 1000°C or more and 1150°C or less. If the start temperature ST is too low, the finally manufactured hot-rolled steel sheet does not satisfy the above-mentioned requirements of the prior austenite grain size, and the hole expandability and the like are likely to be reduced. On the other hand, if the start temperature ST is too high, the structure of the steel cannot be appropriately controlled, and the finally manufactured hot-rolled steel sheet does not satisfy the above-mentioned requirements of the prior austenite grain size, the relationships (1) and (2), and the collision characteristics are likely to be reduced. These problems are solved by the start temperature ST being 1000°C or more and 1150°C or less. The start temperature ST may be 1050°C or more and 1150°C or less.
仕上げ圧延においては、粗圧延が施されたスラブ(粗バー)に対して、複数のスタンドによって複数回圧延が施される。仕上げ圧延の開始温度STは、1000℃以上1150℃以下である。開始温度STが低過ぎると、最終的に製造される熱延鋼板が上記の旧オーステナイト粒径の要件を満たさないものとなり、穴広げ性等が低下し易い。一方、開始温度STが高過ぎると、鋼の組織を適切に制御することができなくなり、最終的に製造される熱延鋼板が上記の旧オーステナイト粒径の要件、関係(1)及び(2)を満たさないものとなり、衝突特性が低下し易い。開始温度STが1000℃以上1150℃以下であることで、これらの問題が解消される。開始温度STは、1050℃以上1150℃以下であってもよい。 (Finish rolling)
In the finish rolling, the slab (rough bar) subjected to the rough rolling is rolled multiple times by multiple stands. The start temperature ST of the finish rolling is 1000°C or more and 1150°C or less. If the start temperature ST is too low, the finally manufactured hot-rolled steel sheet does not satisfy the above-mentioned requirements of the prior austenite grain size, and the hole expandability and the like are likely to be reduced. On the other hand, if the start temperature ST is too high, the structure of the steel cannot be appropriately controlled, and the finally manufactured hot-rolled steel sheet does not satisfy the above-mentioned requirements of the prior austenite grain size, the relationships (1) and (2), and the collision characteristics are likely to be reduced. These problems are solved by the start temperature ST being 1000°C or more and 1150°C or less. The start temperature ST may be 1050°C or more and 1150°C or less.
仕上げ圧延は、高温度差圧延を2回以上含む。高温度差圧延は、該高温度差圧延を行う圧延スタンドにおける圧延温度と、その直前の圧延スタンドにおける圧延温度との温度差ΔTが、30℃以上となるものである。ここで、圧延温度は、圧延スタンドの入側の温度、すなわち、鋼板が圧延スタンドにおいて圧延される直前において測定される鋼板の表面温度である。1回目の高温度差圧延により、変態の核となるTiCが鋼組織中に高密度に析出し、2回目の高温度差圧延により、鋼組織を作り込むための駆動力が得られる。高温度差圧延が1回以下である場合、鋼組織を作り込むことができず、最終的に製造される熱延鋼板が上記の関係(2)を満たさないものとなり、穴広げ性が低下し易い。高温度差圧延が2回以上であれば、鋼組織を作り込むことができ、最終的に製造される熱延鋼板が、強度、伸び及び穴広げ性のバランスに優れたものとなる。高温度差圧延の回数は、仕上げ圧延の圧延スタンドの数によって変動させてもよい。高温度差圧延の回数は、例えば、2回以上10回以下であってもよく、3回以上又は4回以上であってもよく、7回以下又は6回以下であってもよい。高温度差圧延の温度差ΔTは、30℃以上であればよく、35℃以上、40℃以上、45℃以上又は50℃以上であってもよく、また、150℃以下、100℃以下、80℃以下、60℃以下又は50℃以下であってもよい。高温度差圧延の温度差ΔTは、例えば、圧延直後に、冷却スプレー等の冷却装置からの水等の冷却材の噴射量を制御することや、圧延の間における鋼板の搬送速度を制御すること等により、制御することができる。
The finishing rolling includes two or more high temperature difference rollings. In the high temperature difference rolling, the temperature difference ΔT between the rolling temperature in the rolling stand where the high temperature difference rolling is performed and the rolling temperature in the rolling stand immediately before that is 30°C or more. Here, the rolling temperature is the temperature at the entry side of the rolling stand, that is, the surface temperature of the steel plate measured immediately before the steel plate is rolled in the rolling stand. The first high temperature difference rolling causes TiC, which is the nucleus of transformation, to precipitate in the steel structure at a high density, and the second high temperature difference rolling provides the driving force for creating the steel structure. If the high temperature difference rolling is performed once or less, the steel structure cannot be created, and the finally manufactured hot rolled steel plate does not satisfy the above relationship (2), and the hole expandability is likely to decrease. If the high temperature difference rolling is performed twice or more, the steel structure can be created, and the finally manufactured hot rolled steel plate has an excellent balance of strength, elongation, and hole expandability. The number of high temperature difference rolling may vary depending on the number of rolling stands in the finish rolling. The number of high temperature difference rolling may be, for example, 2 to 10 times, 3 to 4 times, or 7 to 6 times. The temperature difference ΔT of the high temperature difference rolling may be 30°C or more, 35°C or more, 40°C or more, 45°C or more, or 50°C or more, or 150°C or less, 100°C or less, 80°C or less, 60°C or less, or 50°C or less. The temperature difference ΔT of the high temperature difference rolling can be controlled, for example, by controlling the amount of coolant such as water sprayed from a cooling device such as a cooling spray immediately after rolling, or by controlling the conveying speed of the steel sheet during rolling.
仕上げ圧延において、2回目の高温度差圧延よりも後における総圧下率は、50%以上である。2回目の高温度差圧延よりも後における総圧下率が低過ぎると、鋼の組織を適切に制御することができなくなり、最終的に製造される熱延鋼板が上記の関係(2)を満たさないものとなり、穴広げ性が低下し易い。2回目の高温度差圧延よりも後における総圧下率が50%以上であれば、このような問題が解消される。2回目の高温度差圧延よりも後における総圧下率は、55%以上、60%以上又は65%以上であってもよい。2回目の高温度差圧延よりも後における総圧下率が高過ぎると、組織の異方性が高まり、穴広げ性が低下し易い。2回目の高温度差圧延よりも後における総圧下率が80%以下であれば、このような問題が解消されるため、2回目の高温度差圧延よりも後における総圧下率は80%以下であることが好ましい。2回目の高温度差圧延よりも後における総圧下率の上限は、75%以下又は70%以下であってもよい。なお、高温度差圧延を3回以上行った場合であっても、上記総圧下率は、2回目の高温度差圧延よりも後における総圧下率を意味する。また、2回目の高温度差圧延よりも後における総圧下率は、2回目の高温度差圧延後の板厚に対する、2回目の高温度差圧延よりも後の圧延(高温度差圧延を含み得る)による板厚減少率を意味する。2回目の高温度差圧延は、仕上げ圧延の最終段(最終スタンド)とならないことは言うまでもない。
In the finish rolling, the total reduction ratio after the second high temperature difference rolling is 50% or more. If the total reduction ratio after the second high temperature difference rolling is too low, the structure of the steel cannot be properly controlled, and the finally manufactured hot-rolled steel sheet does not satisfy the above relationship (2), and the hole expandability is likely to decrease. If the total reduction ratio after the second high temperature difference rolling is 50% or more, this problem is solved. The total reduction ratio after the second high temperature difference rolling may be 55% or more, 60% or more, or 65% or more. If the total reduction ratio after the second high temperature difference rolling is too high, the anisotropy of the structure increases and the hole expandability is likely to decrease. If the total reduction ratio after the second high temperature difference rolling is 80% or less, this problem is solved, so it is preferable that the total reduction ratio after the second high temperature difference rolling is 80% or less. The upper limit of the total reduction rate after the second high temperature difference rolling may be 75% or less or 70% or less. Even if high temperature difference rolling is performed three or more times, the above total reduction rate means the total reduction rate after the second high temperature difference rolling. In addition, the total reduction rate after the second high temperature difference rolling means the thickness reduction rate due to rolling (which may include high temperature difference rolling) after the second high temperature difference rolling, relative to the thickness after the second high temperature difference rolling. It goes without saying that the second high temperature difference rolling is not the final stage (final stand) of the finishing rolling.
2回目の高温度差圧延は、所定の温度で行うことにより、高密度に析出したTiCが鋼組織の転位の減少を抑制しやすくなるため好ましい。これにより、(LGr/LGt)/(LMr/LMt)の値を好ましく制御することができ、衝突特性が向上する。例えば、Ti含有量が0.1~0.13%、Nb含有量が0.008~0.02%、V含有量が0.01%未満、Mo含有量が0.01%未満、B含有量が0.0001%未満の鋼の場合、2回目の高温度差圧延の圧延温度を980~1000℃とすることが好ましい。
The second high temperature differential rolling is preferably performed at a specified temperature, since the densely precipitated TiC makes it easier to suppress the reduction of dislocations in the steel structure. This allows the value of (LGr/LGt)/(LMr/LMt) to be controlled in a favorable manner, improving the collision properties. For example, in the case of steel with a Ti content of 0.1-0.13%, an Nb content of 0.008-0.02%, a V content of less than 0.01%, an Mo content of less than 0.01%, and a B content of less than 0.0001%, it is preferable to set the rolling temperature of the second high temperature differential rolling to 980-1000°C.
仕上げ圧延の完了温度FTは、940℃以下である。完了温度FTが高過ぎると、鋼の組織を適切に制御することができなくなり、最終的に製造される熱延鋼板が上記の旧オーステナイト粒径の要件、関係(1)及び(2)を満たさないものとなり、衝突特性が低下し易い。完了温度FTが940℃以下であれば、このような問題が解消される。完了温度FTは、920℃以下又は900℃以下であってもよい。完了温度FTの下限は、後述の冷却工程の要件等が達成できる限り、特に限定されるものではない。例えば、完了温度FTは、750℃以上、770℃以上、800℃以上、830℃以上又は850℃以上であってもよい。
The completion temperature FT of the finish rolling is 940°C or less. If the completion temperature FT is too high, the structure of the steel cannot be properly controlled, and the hot-rolled steel sheet finally produced does not satisfy the above-mentioned requirements for the prior austenite grain size, relationships (1) and (2), and the collision properties are likely to deteriorate. If the completion temperature FT is 940°C or less, such problems are eliminated. The completion temperature FT may be 920°C or less or 900°C or less. The lower limit of the completion temperature FT is not particularly limited as long as the requirements for the cooling process described below can be achieved. For example, the completion temperature FT may be 750°C or more, 770°C or more, 800°C or more, 830°C or more, or 850°C or more.
2.3 冷却工程
冷却工程においては、熱間圧延によって得られた熱延鋼板を冷却する。ここで、上記の仕上げ圧延の完了から冷却を開始するまでの時間は、2.0秒以内である。当該時間が長過ぎると、結晶粒の粗大化によって旧オーステナイト粒径が25μm超となり、最終的に製造される熱延鋼板が強度、伸び及び穴広げ性のバランスに劣るものとなり易い。当該時間が2.0秒以内であることで、このような問題が解消される。当該時間は、1.8秒以内、1.6秒以内、1.4秒以内又は1.2秒以内であってもよい。 2.3 Cooling Step In the cooling step, the hot-rolled steel sheet obtained by hot rolling is cooled. Here, the time from the completion of the above-mentioned finish rolling to the start of cooling is within 2.0 seconds. If the time is too long, the prior austenite grain size exceeds 25 μm due to the coarsening of the crystal grains, and the finally manufactured hot-rolled steel sheet is likely to have a poor balance of strength, elongation, and hole expandability. By setting the time to within 2.0 seconds, such a problem is solved. The time may be within 1.8 seconds, within 1.6 seconds, within 1.4 seconds, or within 1.2 seconds.
冷却工程においては、熱間圧延によって得られた熱延鋼板を冷却する。ここで、上記の仕上げ圧延の完了から冷却を開始するまでの時間は、2.0秒以内である。当該時間が長過ぎると、結晶粒の粗大化によって旧オーステナイト粒径が25μm超となり、最終的に製造される熱延鋼板が強度、伸び及び穴広げ性のバランスに劣るものとなり易い。当該時間が2.0秒以内であることで、このような問題が解消される。当該時間は、1.8秒以内、1.6秒以内、1.4秒以内又は1.2秒以内であってもよい。 2.3 Cooling Step In the cooling step, the hot-rolled steel sheet obtained by hot rolling is cooled. Here, the time from the completion of the above-mentioned finish rolling to the start of cooling is within 2.0 seconds. If the time is too long, the prior austenite grain size exceeds 25 μm due to the coarsening of the crystal grains, and the finally manufactured hot-rolled steel sheet is likely to have a poor balance of strength, elongation, and hole expandability. By setting the time to within 2.0 seconds, such a problem is solved. The time may be within 1.8 seconds, within 1.6 seconds, within 1.4 seconds, or within 1.2 seconds.
冷却工程においては、冷却の開始後、加速冷却を行う。「加速冷却」とは、冷却速度が20℃/s以上200℃/s以下の冷却条件での冷却を意味する。加速冷却の冷却停止温度は、520℃以上720℃以下であることが重要である。GAM値2.0°である領域の変態は、加速冷却の冷却停止後の緩冷却中に主に生じる。加速冷却の停止温度が520℃以上720℃以下であることで、GAM値2.0°未満である領域の生成量が適切なものとなる。この温度以外では、GAM値2.0°以上である領域の割合が過度に増加し、一様伸びが低下する場合がある。
In the cooling process, accelerated cooling is performed after the start of cooling. "Accelerated cooling" refers to cooling under conditions where the cooling rate is 20°C/s or more and 200°C/s or less. It is important that the accelerated cooling stop temperature is 520°C or more and 720°C or less. Transformation of the region with a GAM value of 2.0° mainly occurs during slow cooling after the accelerated cooling is stopped. By stopping the accelerated cooling at a temperature of 520°C or more and 720°C or less, the amount of regions with a GAM value of less than 2.0° is appropriate. Outside this temperature range, the proportion of regions with a GAM value of 2.0° or more may increase excessively, resulting in a decrease in uniform elongation.
冷却工程において、720℃から470℃の温度域における緩冷却時間は、2.0秒以上である。「緩冷却」とは、冷却速度が20℃/s未満の冷却条件での冷却を意味する。720℃から470℃の温度域における緩冷却時間が2.0秒以上であることで、GAM値0.6°超2.0°未満である領域の面積率が50%以上となる。例えば、ランナウトテーブル(ROT)において熱延鋼板を緩冷却することにより、720℃から470℃の温度域における緩冷却時間が2.0秒以上となり得る。当該緩冷却時間は、2.2秒以上、2.4秒以上、2.6秒以上、2.8秒以上又は3.0秒以上であってもよい。特に、680℃から580℃の温度域における緩冷却時間が3.0秒以上であることで、GAM値2.0°以上である領域の生成量をより適切に制御できる。当該緩冷却時間の上限は特に限定されるものではなく、生産性等を考慮して最適な緩冷却時間が決定されればよい。当該緩冷却時間は、例えば、5.0秒以下、4.5秒以下、4.0秒以下又は3.5秒以下であってもよい。当該緩冷却時間が短過ぎると、GAM値2.0°以上である領域が過剰に生成し易く、また、上記関係(2)を満たさないものとなり、最終的に製造される熱延鋼板が強度、伸び及び穴広げ性のバランスに劣るものとなり易い。
In the cooling process, the slow cooling time in the temperature range from 720°C to 470°C is 2.0 seconds or more. "Slow cooling" means cooling under cooling conditions where the cooling rate is less than 20°C/s. When the slow cooling time in the temperature range from 720°C to 470°C is 2.0 seconds or more, the area ratio of the region with a GAM value of more than 0.6° and less than 2.0° is 50% or more. For example, by slowly cooling the hot-rolled steel sheet on a run-out table (ROT), the slow cooling time in the temperature range from 720°C to 470°C can be 2.0 seconds or more. The slow cooling time may be 2.2 seconds or more, 2.4 seconds or more, 2.6 seconds or more, 2.8 seconds or more, or 3.0 seconds or more. In particular, when the slow cooling time in the temperature range from 680°C to 580°C is 3.0 seconds or more, the amount of the region with a GAM value of 2.0° or more can be more appropriately controlled. The upper limit of the slow cooling time is not particularly limited, and the optimal slow cooling time may be determined taking into consideration productivity, etc. The slow cooling time may be, for example, 5.0 seconds or less, 4.5 seconds or less, 4.0 seconds or less, or 3.5 seconds or less. If the slow cooling time is too short, the region with a GAM value of 2.0° or more is likely to be excessively generated, and the above relationship (2) will not be satisfied, and the finally manufactured hot-rolled steel sheet will likely have a poor balance of strength, elongation, and hole expandability.
冷却工程において、緩冷却完了後、300℃に至るまでの平均冷却速度は、30℃/s以上であることが好ましい。当該平均冷却速度が低速であると、焼き戻しによる軟化が生じ、最終的に製造される熱延鋼板の強度が低下し易い。当該平均冷却速度が30℃/s以上であることで、このような問題がより確実に解消される。当該平均冷却速度は、35℃/s以上、40℃/s以上、45℃/s以上又は50℃/s以上であってもよい。当該平均冷却速度の上限は特に限定されるものではない。当該平均冷却速度は、例えば、120℃/s以下、110℃/s以下、100℃/s以下、90℃/s以下又は80℃/s以下であってもよい。尚、巻取温度が300℃未満である場合、300℃から巻取温度に至るまでの平均冷却速度は、特に限定されるものではない。
In the cooling process, after the slow cooling is completed, the average cooling rate until the temperature reaches 300°C is preferably 30°C/s or more. If the average cooling rate is slow, softening occurs due to tempering, and the strength of the hot-rolled steel sheet finally manufactured is likely to decrease. By setting the average cooling rate to 30°C/s or more, such problems can be more reliably solved. The average cooling rate may be 35°C/s or more, 40°C/s or more, 45°C/s or more, or 50°C/s or more. The upper limit of the average cooling rate is not particularly limited. The average cooling rate may be, for example, 120°C/s or less, 110°C/s or less, 100°C/s or less, 90°C/s or less, or 80°C/s or less. In addition, when the coiling temperature is less than 300°C, the average cooling rate from 300°C to the coiling temperature is not particularly limited.
2.4 巻取工程
巻取工程においては、上記の冷却工程によって冷却された熱延鋼板を巻き取る。巻取の条件に特に制限はない。巻取工程の巻取温度は、例えば、300℃以下である。当該巻取温度は、200℃以下、100℃以下又は50℃以下であってもよく、また、0℃以上又は20℃以上であってもよい。 2.4 Winding process In the winding process, the hot-rolled steel sheet cooled in the cooling process is wound. There is no particular limitation on the winding conditions. The winding temperature in the winding process is, for example, 300°C or less. The winding temperature may be 200°C or less, 100°C or less, or 50°C or less, and may be 0°C or more, or 20°C or more.
巻取工程においては、上記の冷却工程によって冷却された熱延鋼板を巻き取る。巻取の条件に特に制限はない。巻取工程の巻取温度は、例えば、300℃以下である。当該巻取温度は、200℃以下、100℃以下又は50℃以下であってもよく、また、0℃以上又は20℃以上であってもよい。 2.4 Winding process In the winding process, the hot-rolled steel sheet cooled in the cooling process is wound. There is no particular limitation on the winding conditions. The winding temperature in the winding process is, for example, 300°C or less. The winding temperature may be 200°C or less, 100°C or less, or 50°C or less, and may be 0°C or more, or 20°C or more.
以上の通り、(1)適正な化学組成を有するスラブを用い、(2)熱間圧延時の仕上げ圧延条件を工夫して、旧オーステナイト粒の形態等を制御し、(3)冷却時の冷却速度を制御して変態挙動を制御する(例えば、ランナウトテーブル(ROT)での冷却条件を制御する)ことにより、本開示の熱延鋼板を製造することができる。尚、熱延鋼板を製造する際は、上記の工程に加えて、上記以外の工程を行ってもよい。例えば、巻取工程の後に、任意に焼き戻し工程を行ってもよい。
As described above, the hot-rolled steel sheet of the present disclosure can be manufactured by (1) using a slab with an appropriate chemical composition, (2) controlling the morphology of the prior austenite grains by adjusting the finish rolling conditions during hot rolling, and (3) controlling the transformation behavior by controlling the cooling rate during cooling (for example, controlling the cooling conditions at the run-out table (ROT)). Note that, when manufacturing the hot-rolled steel sheet, in addition to the above steps, other steps may be performed. For example, a tempering step may be optionally performed after the coiling step.
1.熱延鋼板の作製
下記表1及び2に示される化学成分を有するスラブについて、下記表3に示される条件で加熱工程及び熱延工程を施し、熱間圧延終了後、表3に示される条件で冷却工程及び巻取工程を順次施し、板厚3.0mmの熱延鋼板(鋼帯)を得た。熱延鋼板(鋼帯)における化学成分も、スラブにおける化学成分と実質的に同じであり、表1及び2に示されるものであることを確認した。尚、表3において、「ΔT≧30℃の圧延が2回以上」とは、「高温度差圧延が2回以上」であることを意味する。「高温度差圧延」とは、該高温度差圧延を行う圧延スタンドにおける圧延温度と、その直前の圧延スタンドにおける圧延温度との温度差ΔTが、30℃以上となるものをいう。表3においては、高温度差圧延が2回以上である場合を「○」、1回以下である場合を「×」として示した。また、表3において、「2回目のΔTの温度差が生じた後の総圧下率」とは、「2回目の高温度差圧延よりも後における総圧下率」を意味する。また、表3において、「加速冷却」とは、冷却開始後の冷却であって、冷却速度20℃/s以上200℃/s以下のものを意味する。 1. Preparation of hot-rolled steel sheet A slab having the chemical components shown in Tables 1 and 2 below was subjected to a heating step and a hot-rolling step under the conditions shown in Table 3 below, and after hot rolling, a cooling step and a coiling step were sequentially performed under the conditions shown in Table 3 to obtain a hot-rolled steel sheet (steel strip) having a thickness of 3.0 mm. It was confirmed that the chemical components in the hot-rolled steel sheet (steel strip) were substantially the same as those in the slab, and were those shown in Tables 1 and 2. In Table 3, "rolling at ΔT≧30° C. twice or more" means "high temperature difference rolling twice or more". "High temperature difference rolling" refers to a rolling stand in which the rolling temperature in the rolling stand performing the high temperature difference rolling and the rolling temperature in the rolling stand immediately before it are 30° C. or more. In Table 3, the cases in which high temperature difference rolling was performed twice or more are indicated as "○", and the cases in which high temperature difference rolling was performed once or less are indicated as "×". In addition, in Table 3, "total reduction rate after the second temperature difference of ΔT occurs" means "total reduction rate after the second high temperature difference rolling." In addition, in Table 3, "accelerated cooling" means cooling after the start of cooling at a cooling rate of 20° C./s or more and 200° C./s or less.
下記表1及び2に示される化学成分を有するスラブについて、下記表3に示される条件で加熱工程及び熱延工程を施し、熱間圧延終了後、表3に示される条件で冷却工程及び巻取工程を順次施し、板厚3.0mmの熱延鋼板(鋼帯)を得た。熱延鋼板(鋼帯)における化学成分も、スラブにおける化学成分と実質的に同じであり、表1及び2に示されるものであることを確認した。尚、表3において、「ΔT≧30℃の圧延が2回以上」とは、「高温度差圧延が2回以上」であることを意味する。「高温度差圧延」とは、該高温度差圧延を行う圧延スタンドにおける圧延温度と、その直前の圧延スタンドにおける圧延温度との温度差ΔTが、30℃以上となるものをいう。表3においては、高温度差圧延が2回以上である場合を「○」、1回以下である場合を「×」として示した。また、表3において、「2回目のΔTの温度差が生じた後の総圧下率」とは、「2回目の高温度差圧延よりも後における総圧下率」を意味する。また、表3において、「加速冷却」とは、冷却開始後の冷却であって、冷却速度20℃/s以上200℃/s以下のものを意味する。 1. Preparation of hot-rolled steel sheet A slab having the chemical components shown in Tables 1 and 2 below was subjected to a heating step and a hot-rolling step under the conditions shown in Table 3 below, and after hot rolling, a cooling step and a coiling step were sequentially performed under the conditions shown in Table 3 to obtain a hot-rolled steel sheet (steel strip) having a thickness of 3.0 mm. It was confirmed that the chemical components in the hot-rolled steel sheet (steel strip) were substantially the same as those in the slab, and were those shown in Tables 1 and 2. In Table 3, "rolling at ΔT≧30° C. twice or more" means "high temperature difference rolling twice or more". "High temperature difference rolling" refers to a rolling stand in which the rolling temperature in the rolling stand performing the high temperature difference rolling and the rolling temperature in the rolling stand immediately before it are 30° C. or more. In Table 3, the cases in which high temperature difference rolling was performed twice or more are indicated as "○", and the cases in which high temperature difference rolling was performed once or less are indicated as "×". In addition, in Table 3, "total reduction rate after the second temperature difference of ΔT occurs" means "total reduction rate after the second high temperature difference rolling." In addition, in Table 3, "accelerated cooling" means cooling after the start of cooling at a cooling rate of 20° C./s or more and 200° C./s or less.
2.旧オーステナイト粒径の測定
各々の熱延鋼板について、旧オーステナイト粒径を測定した。旧オーステナイト粒径の測定方法については上述した通りである。結果を下記表4に示す。 2. Measurement of Prior Austenite Grain Size The prior austenite grain size was measured for each of the hot-rolled steel sheets. The method for measuring the prior austenite grain size was as described above. The results are shown in Table 4 below.
各々の熱延鋼板について、旧オーステナイト粒径を測定した。旧オーステナイト粒径の測定方法については上述した通りである。結果を下記表4に示す。 2. Measurement of Prior Austenite Grain Size The prior austenite grain size was measured for each of the hot-rolled steel sheets. The method for measuring the prior austenite grain size was as described above. The results are shown in Table 4 below.
3.GAM値及び面積率の測定
各々の熱延鋼板について、GAM値0.6°超、2.0°未満である領域の面積率と、GAM値0.6°以下である領域の面積率と、GAM値2.0°以上である領域の面積率とを測定した。GAM値及び面積率の測定方法については上述した通りである。結果を下記表4に示す。 3. Measurement of GAM value and area ratio For each hot-rolled steel sheet, the area ratio of the region with a GAM value of more than 0.6° and less than 2.0°, the area ratio of the region with a GAM value of 0.6° or less, and the area ratio of the region with a GAM value of 2.0° or more were measured. The measurement method of the GAM value and the area ratio is as described above. The results are shown in Table 4 below.
各々の熱延鋼板について、GAM値0.6°超、2.0°未満である領域の面積率と、GAM値0.6°以下である領域の面積率と、GAM値2.0°以上である領域の面積率とを測定した。GAM値及び面積率の測定方法については上述した通りである。結果を下記表4に示す。 3. Measurement of GAM value and area ratio For each hot-rolled steel sheet, the area ratio of the region with a GAM value of more than 0.6° and less than 2.0°, the area ratio of the region with a GAM value of 0.6° or less, and the area ratio of the region with a GAM value of 2.0° or more were measured. The measurement method of the GAM value and the area ratio is as described above. The results are shown in Table 4 below.
4.LGr/LGt及び(LGr/LGt)/(LMr/LMt)の測定
各々の熱延鋼板について、LGr(旧オーステナイト粒の圧延方向投影長さの面積平均値)と、LGt(旧オーステナイト粒の板厚方向投影長さの面積平均値)と、LMr(GAM値2.0°以上である領域の圧延方向投影長さの面積平均値)と、LMt(GAM値2.0°以上である領域の板厚方向投影長さの面積平均値)とを測定し、「LGr/LGt」と「(LGr/LGt)/(LMr/LMt)」とを算出した。LGr/LGtやLMr/LMtの測定・算出方法については上述した通りである。結果を下記表4に示す。 4. Measurement of LGr/LGt and (LGr/LGt)/(LMr/LMt) For each hot-rolled steel sheet, LGr (area average value of the projection length in the rolling direction of the prior austenite grains), LGt (area average value of the projection length in the thickness direction of the prior austenite grains), LMr (area average value of the projection length in the rolling direction of the region having a GAM value of 2.0° or more), and LMt (area average value of the projection length in the thickness direction of the region having a GAM value of 2.0° or more) were measured, and "LGr/LGt" and "(LGr/LGt)/(LMr/LMt)" were calculated. The measurement and calculation method of LGr/LGt and LMr/LMt is as described above. The results are shown in Table 4 below.
各々の熱延鋼板について、LGr(旧オーステナイト粒の圧延方向投影長さの面積平均値)と、LGt(旧オーステナイト粒の板厚方向投影長さの面積平均値)と、LMr(GAM値2.0°以上である領域の圧延方向投影長さの面積平均値)と、LMt(GAM値2.0°以上である領域の板厚方向投影長さの面積平均値)とを測定し、「LGr/LGt」と「(LGr/LGt)/(LMr/LMt)」とを算出した。LGr/LGtやLMr/LMtの測定・算出方法については上述した通りである。結果を下記表4に示す。 4. Measurement of LGr/LGt and (LGr/LGt)/(LMr/LMt) For each hot-rolled steel sheet, LGr (area average value of the projection length in the rolling direction of the prior austenite grains), LGt (area average value of the projection length in the thickness direction of the prior austenite grains), LMr (area average value of the projection length in the rolling direction of the region having a GAM value of 2.0° or more), and LMt (area average value of the projection length in the thickness direction of the region having a GAM value of 2.0° or more) were measured, and "LGr/LGt" and "(LGr/LGt)/(LMr/LMt)" were calculated. The measurement and calculation method of LGr/LGt and LMr/LMt is as described above. The results are shown in Table 4 below.
5.機械特性の評価
5.1 引張強さTS、一様伸びuEL及び穴広げ率λ
各々の熱延鋼板について、引張強さTS、一様伸びuEL及び穴広げ率λを測定した。各々の測定方法については上述した通りである。結果を下記表4に示す。尚、下記表4では、自動車の足回り部品等への適用を想定した場合に特に好ましい機械特性である、「引張強さTS:960MPa以上」、「一様伸びuEL:4.0%以上12.0%以下」及び「穴広げ率λ:40%以上110%以下」を満たすものを、強度、伸び及び穴広げ性のバランスに優れるものと判定した。 5. Evaluation of mechanical properties 5.1 Tensile strength TS, uniform elongation uEL and hole expansion ratio λ
The tensile strength TS, uniform elongation uEL, and hole expansion ratio λ were measured for each hot-rolled steel sheet. The measurement methods for each were as described above. The results are shown in Table 4 below. In Table 4 below, those that satisfy the mechanical properties "tensile strength TS: 960 MPa or more", "uniform elongation uEL: 4.0% to 12.0%", and "hole expansion ratio λ: 40% to 110%", which are particularly preferable when applying to automobile suspension parts, etc., were judged to have an excellent balance of strength, elongation, and hole expansion property.
5.1 引張強さTS、一様伸びuEL及び穴広げ率λ
各々の熱延鋼板について、引張強さTS、一様伸びuEL及び穴広げ率λを測定した。各々の測定方法については上述した通りである。結果を下記表4に示す。尚、下記表4では、自動車の足回り部品等への適用を想定した場合に特に好ましい機械特性である、「引張強さTS:960MPa以上」、「一様伸びuEL:4.0%以上12.0%以下」及び「穴広げ率λ:40%以上110%以下」を満たすものを、強度、伸び及び穴広げ性のバランスに優れるものと判定した。 5. Evaluation of mechanical properties 5.1 Tensile strength TS, uniform elongation uEL and hole expansion ratio λ
The tensile strength TS, uniform elongation uEL, and hole expansion ratio λ were measured for each hot-rolled steel sheet. The measurement methods for each were as described above. The results are shown in Table 4 below. In Table 4 below, those that satisfy the mechanical properties "tensile strength TS: 960 MPa or more", "uniform elongation uEL: 4.0% to 12.0%", and "hole expansion ratio λ: 40% to 110%", which are particularly preferable when applying to automobile suspension parts, etc., were judged to have an excellent balance of strength, elongation, and hole expansion property.
5.2 衝突特性
各々の熱延鋼板の板厚方向のき裂進展抵抗に基づいて、各々の熱延鋼板の衝突特性を評価した。板厚方向のき裂進展抵抗は、熱延鋼板を打抜いた際の変位-荷重曲線によって定められる。具体的には、下記のエネルギーW2とエネルギーW1との比W2/W1によって定められる。ここで、W2=∫Fds(最大荷重以降)であり、W1=∫Fds(最大荷重以前)であり、また、Fは打ち抜き荷重(N)、Sは打ち抜きストローク(mm)である。本実施例においては、0.15≦W2/W1を満たすものを衝突特性に優れるもの、0.2<W2/W1を満たすものを衝突特性に特に優れるものと評価した。結果を下記表4に示す。 5.2 Impact characteristics The impact characteristics of each hot-rolled steel sheet were evaluated based on the crack propagation resistance in the thickness direction of each hot-rolled steel sheet. The crack propagation resistance in the thickness direction is determined by the displacement-load curve when the hot-rolled steel sheet is punched. Specifically, it is determined by the ratio W2/W1 of the energy W2 to the energy W1 below. Here, W2=∫Fds (after the maximum load) and W1=∫Fds (before the maximum load), F is the punching load (N), and S is the punching stroke (mm). In this embodiment, those satisfying 0.15≦W2/W1 were evaluated as having excellent impact characteristics, and those satisfying 0.2<W2/W1 were evaluated as having particularly excellent impact characteristics. The results are shown in Table 4 below.
各々の熱延鋼板の板厚方向のき裂進展抵抗に基づいて、各々の熱延鋼板の衝突特性を評価した。板厚方向のき裂進展抵抗は、熱延鋼板を打抜いた際の変位-荷重曲線によって定められる。具体的には、下記のエネルギーW2とエネルギーW1との比W2/W1によって定められる。ここで、W2=∫Fds(最大荷重以降)であり、W1=∫Fds(最大荷重以前)であり、また、Fは打ち抜き荷重(N)、Sは打ち抜きストローク(mm)である。本実施例においては、0.15≦W2/W1を満たすものを衝突特性に優れるもの、0.2<W2/W1を満たすものを衝突特性に特に優れるものと評価した。結果を下記表4に示す。 5.2 Impact characteristics The impact characteristics of each hot-rolled steel sheet were evaluated based on the crack propagation resistance in the thickness direction of each hot-rolled steel sheet. The crack propagation resistance in the thickness direction is determined by the displacement-load curve when the hot-rolled steel sheet is punched. Specifically, it is determined by the ratio W2/W1 of the energy W2 to the energy W1 below. Here, W2=∫Fds (after the maximum load) and W1=∫Fds (before the maximum load), F is the punching load (N), and S is the punching stroke (mm). In this embodiment, those satisfying 0.15≦W2/W1 were evaluated as having excellent impact characteristics, and those satisfying 0.2<W2/W1 were evaluated as having particularly excellent impact characteristics. The results are shown in Table 4 below.
6.結果と考察
表1~4に示される結果から、以下のことが分かる。
No.1については、熱延鋼板のC含有量が少な過ぎたため、GAM値0.6°以下である領域が過剰となり、熱延鋼板の強度が低下した。
No.2については、熱延鋼板のC含有量が多過ぎたため、GAM値2.0°以上である領域が過剰となり、熱延鋼板の伸びや穴広げ性が低下した。
No.3については、熱延鋼板のSiの含有量が多過ぎたため、延性が不足する等して熱間圧延が困難となった。
No.4については、熱延鋼板のMn含有量が多過ぎたため、GAM値2.0°以上である領域が過剰となり、熱延鋼板の伸びが低下した。
No.5については、熱延鋼板のMn含有量が少な過ぎたため、GAM値0.6°以下である領域が過剰となり、熱延鋼板の強度が低下した。
No.6については、熱延鋼板のTi含有量が多過ぎたため、析出物が過剰に生成する等して、熱延鋼板の穴広げ性が低下した。
No.7については、熱延鋼板のTi含有量が少な過ぎたため、析出物強化、細粒強化及び/又は転位強化による強度上昇効果が得られず、且つ、変態の核を十分に生成することができず、旧オーステナイト粒が粗大化し、熱延鋼板の強度及び穴広げ性が低下した。
No.8については、熱延鋼板のAl含有量が多過ぎたため、スラブの割れ等が生じて熱間圧延が困難となった。
No.9については、熱延鋼板のAl含有量が少な過ぎたため、脱酸が不十分となり、介在物が過剰に生成する等して、熱延鋼板の穴広げ性が低下した。
No.10については、熱延鋼板のP含有量が多過ぎたため、脆化によるスラブの割れ等が生じて熱間圧延が困難となった。
No.11については、熱延鋼板のS含有量が多過ぎたため、介在物が過剰に生成する等して、熱延鋼板の穴広げ性が低下した。
No.12については、熱延鋼板のN含有量が多過ぎたため、脆化によるスラブの割れ等が生じて熱間圧延が困難となった。
No.13については、熱延鋼板のO含有量が多過ぎたため、酸化物が過剰に生成する等して、熱延鋼板の穴広げ性が低下した。
No.15については、仕上げ圧延開始温度STが低過ぎたため、旧オーステナイト粒が粗大化し、熱延鋼板の穴広げ性が低下した。
No.16については、仕上げ圧延開始温度STが高過ぎ、さらには、仕上げ圧延の完了温度FTも高過ぎたため、鋼の組織を適切に制御することができなくなり、熱延鋼板の旧オーステナイト粒が粗大化し、所定の関係(1)及び(2)を満たさないものとなり、熱延鋼板の衝突特性が低下した。
No.17については、圧延温度差ΔTが30℃以上である高温度差圧延が1回以下であったため、鋼組織を作り込むことができず、熱延鋼板が所定の関係(2)を満たさないものとなり、熱延鋼板の穴広げ性が低下した。
No.18については、2回目の高温度差圧延よりも後における総圧下率が低過ぎたため、鋼の組織を適切に制御することができなくなり、熱延鋼板が所定の関係(2)を満たさないものとなり、熱延鋼板の穴広げ性が低下した。
No.19については、仕上げ圧延完了から冷却開始までの時間が長過ぎたため、結晶粒の粗大化によって旧オーステナイト粒径が25μm超となり、熱延鋼板の穴広げ性が低下した。
No.20については、加速冷却の冷却停止温度が高過ぎたため、GAM値2.0°以上である領域が過度に多くなり、熱延鋼板の伸びが低下した。
No.21については、加速冷却の冷却停止温度が低過ぎたため、GAM値2.0°以上である領域が過度に多くなり、熱延鋼板の伸びが低下した。
No.38については、仕上げ圧延開始温度STが高過ぎたため、鋼の組織を適切に制御することができなくなり、熱延鋼板の旧オーステナイト粒が粗大化し、熱延鋼板が所定の関係(2)を満たさないものとなり、熱延鋼板の衝突特性が低下した。
No.39については、仕上げ圧延開始温度STを適切に制御したものの、仕上げ圧延完了温度FTが高過ぎたため、鋼の組織を適切に制御することができなくなり、熱延鋼板の旧オーステナイト粒が粗大化し、熱延鋼板が所定の関係(2)を満たさないものとなり、熱延鋼板の衝突特性が低下した。
No.40については、720℃から470℃の温度域における緩冷却時間が短過ぎたため、熱延鋼板においてGAM値0.6°超2.0°未満である領域が十分に生成せず、熱延鋼板が所定の関係(2)を満たさないものとなり、熱延鋼板の伸びが低下した。
No.44については、No.7と同様に、熱延鋼板のTi含有量が少な過ぎたため、析出物強化、細粒強化及び/又は転位強化による強度上昇効果が得られず、且つ、変態の核を十分に生成することができず、旧オーステナイト粒が粗大化し、熱延鋼板の強度及び穴広げ性が低下した。
これに対し、No.14、22~37、41~43については、熱延鋼板が強度、伸び及び穴広げ性のバランスに優れ、且つ、衝突特性にも優れたものとなった。No.42においては、2回目の高温度差圧延を990℃で行い、980~1000℃の間の所定の温度で行ったことにより、2回目の高温度差圧延を965℃で行ったNo.34と比較しても、衝突特性が特に優れたものとなった。No.14、22~37、41~43の結果から、以下の要件(A)~(D)を満たす熱延鋼板は、強度、伸び及び穴広げ性のバランスに優れ、且つ、衝突特性にも優れたものといえる。 6. Results and Discussion The results shown in Tables 1 to 4 reveal the following:
In the case of No. 1, since the C content of the hot-rolled steel sheet was too low, the region in which the GAM value was 0.6° or less was excessive, and the strength of the hot-rolled steel sheet was reduced.
In No. 2, the C content of the hot-rolled steel sheet was too high, so the region with a GAM value of 2.0° or more was excessive, and the elongation and hole expandability of the hot-rolled steel sheet were reduced.
In the case of No. 3, the Si content of the hot-rolled steel sheet was too high, so that the ductility was insufficient, etc., making hot rolling difficult.
In No. 4, since the Mn content of the hot-rolled steel sheet was too high, the region in which the GAM value was 2.0° or more was excessive, and the elongation of the hot-rolled steel sheet was reduced.
In No. 5, the Mn content of the hot-rolled steel sheet was too low, so the region with a GAM value of 0.6° or less was excessive, and the strength of the hot-rolled steel sheet was reduced.
In the case of No. 6, the Ti content of the hot-rolled steel sheet was too high, so that the hole expandability of the hot-rolled steel sheet was deteriorated due to the excessive generation of precipitates, etc.
For No. 7, the Ti content of the hot-rolled steel sheet was too low, so the strength increasing effect due to precipitation strengthening, fine grain strengthening and/or dislocation strengthening could not be obtained, and the transformation nuclei could not be sufficiently generated, so that the prior austenite grains became coarse, and the strength and hole expandability of the hot-rolled steel sheet were reduced.
In the case of No. 8, the Al content of the hot-rolled steel sheet was too high, which caused cracks in the slab and made hot rolling difficult.
In the case of No. 9, the Al content of the hot-rolled steel sheet was too low, so deoxidation was insufficient, and inclusions were excessively generated, resulting in a decrease in the hole expandability of the hot-rolled steel sheet.
In the case of No. 10, the P content of the hot-rolled steel sheet was too high, which caused embrittlement and resulted in cracking of the slab, making hot rolling difficult.
In the case of No. 11, the S content of the hot-rolled steel sheet was too high, so that inclusions were generated excessively, and the hole expandability of the hot-rolled steel sheet was deteriorated.
In the case of No. 12, the N content of the hot-rolled steel sheet was too high, which caused embrittlement and cracking of the slab, making hot rolling difficult.
In the case of No. 13, the O content of the hot-rolled steel sheet was too high, so that oxides were generated in excess, and the hole expandability of the hot-rolled steel sheet was reduced.
In the case of No. 15, the finish rolling start temperature ST was too low, so that the prior austenite grains became coarse and the hole expandability of the hot-rolled steel sheet was deteriorated.
For No. 16, the finish rolling start temperature ST was too high, and further, the finish rolling completion temperature FT was also too high, so that the structure of the steel could not be appropriately controlled, the prior austenite grains of the hot-rolled steel sheet became coarse, and the predetermined relationships (1) and (2) were not satisfied, and the collision properties of the hot-rolled steel sheet were deteriorated.
For No. 17, the high temperature difference rolling in which the rolling temperature difference ΔT was 30 ° C. or more was performed once or less, so the steel structure could not be created, and the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the hole expandability of the hot-rolled steel sheet was reduced.
For No. 18, the total reduction rate after the second high temperature difference rolling was too low, so the structure of the steel could not be appropriately controlled, and the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the hole expandability of the hot-rolled steel sheet was reduced.
For No. 19, the time from the completion of finish rolling to the start of cooling was too long, so that the prior austenite grain size exceeded 25 μm due to the coarsening of the crystal grains, and the hole expandability of the hot-rolled steel sheet was reduced.
For No. 20, the cooling stop temperature of the accelerated cooling was too high, so the region with a GAM value of 2.0° or more became excessively large, and the elongation of the hot-rolled steel sheet decreased.
For No. 21, the cooling stop temperature of the accelerated cooling was too low, so the region with a GAM value of 2.0° or more became excessively large, and the elongation of the hot-rolled steel sheet decreased.
For No. 38, the finish rolling start temperature ST was too high, so that the structure of the steel could not be appropriately controlled, the prior austenite grains of the hot-rolled steel sheet became coarse, the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the collision properties of the hot-rolled steel sheet were deteriorated.
For No. 39, although the finish rolling start temperature ST was appropriately controlled, the finish rolling completion temperature FT was too high, so that the structure of the steel could not be appropriately controlled, the prior austenite grains of the hot-rolled steel sheet became coarse, the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the collision properties of the hot-rolled steel sheet were deteriorated.
For No. 40, the slow cooling time in the temperature range from 720 ° C. to 470 ° C. was too short, so the region in which the GAM value was more than 0.6 ° and less than 2.0 ° was not sufficiently generated in the hot-rolled steel sheet, and the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the elongation of the hot-rolled steel sheet was reduced.
As for No. 44, like No. 7, the Ti content of the hot-rolled steel sheet was too low, so that the strength increasing effect by precipitation strengthening, fine grain strengthening and/or dislocation strengthening could not be obtained, and the transformation nuclei could not be sufficiently generated, so that the prior austenite grains became coarse, and the strength and hole expandability of the hot-rolled steel sheet were deteriorated.
In contrast, for Nos. 14, 22 to 37, and 41 to 43, the hot-rolled steel sheets had an excellent balance of strength, elongation, and hole expandability, and also had excellent impact properties. In No. 42, the second high-temperature differential rolling was performed at 990°C, and at a predetermined temperature between 980 and 1000°C, so that the impact properties were particularly excellent, even compared to No. 34, in which the second high-temperature differential rolling was performed at 965°C. From the results of Nos. 14, 22 to 37, and 41 to 43, it can be said that the hot-rolled steel sheets satisfying the following requirements (A) to (D) have an excellent balance of strength, elongation, and hole expandability, and also have excellent impact properties.
表1~4に示される結果から、以下のことが分かる。
No.1については、熱延鋼板のC含有量が少な過ぎたため、GAM値0.6°以下である領域が過剰となり、熱延鋼板の強度が低下した。
No.2については、熱延鋼板のC含有量が多過ぎたため、GAM値2.0°以上である領域が過剰となり、熱延鋼板の伸びや穴広げ性が低下した。
No.3については、熱延鋼板のSiの含有量が多過ぎたため、延性が不足する等して熱間圧延が困難となった。
No.4については、熱延鋼板のMn含有量が多過ぎたため、GAM値2.0°以上である領域が過剰となり、熱延鋼板の伸びが低下した。
No.5については、熱延鋼板のMn含有量が少な過ぎたため、GAM値0.6°以下である領域が過剰となり、熱延鋼板の強度が低下した。
No.6については、熱延鋼板のTi含有量が多過ぎたため、析出物が過剰に生成する等して、熱延鋼板の穴広げ性が低下した。
No.7については、熱延鋼板のTi含有量が少な過ぎたため、析出物強化、細粒強化及び/又は転位強化による強度上昇効果が得られず、且つ、変態の核を十分に生成することができず、旧オーステナイト粒が粗大化し、熱延鋼板の強度及び穴広げ性が低下した。
No.8については、熱延鋼板のAl含有量が多過ぎたため、スラブの割れ等が生じて熱間圧延が困難となった。
No.9については、熱延鋼板のAl含有量が少な過ぎたため、脱酸が不十分となり、介在物が過剰に生成する等して、熱延鋼板の穴広げ性が低下した。
No.10については、熱延鋼板のP含有量が多過ぎたため、脆化によるスラブの割れ等が生じて熱間圧延が困難となった。
No.11については、熱延鋼板のS含有量が多過ぎたため、介在物が過剰に生成する等して、熱延鋼板の穴広げ性が低下した。
No.12については、熱延鋼板のN含有量が多過ぎたため、脆化によるスラブの割れ等が生じて熱間圧延が困難となった。
No.13については、熱延鋼板のO含有量が多過ぎたため、酸化物が過剰に生成する等して、熱延鋼板の穴広げ性が低下した。
No.15については、仕上げ圧延開始温度STが低過ぎたため、旧オーステナイト粒が粗大化し、熱延鋼板の穴広げ性が低下した。
No.16については、仕上げ圧延開始温度STが高過ぎ、さらには、仕上げ圧延の完了温度FTも高過ぎたため、鋼の組織を適切に制御することができなくなり、熱延鋼板の旧オーステナイト粒が粗大化し、所定の関係(1)及び(2)を満たさないものとなり、熱延鋼板の衝突特性が低下した。
No.17については、圧延温度差ΔTが30℃以上である高温度差圧延が1回以下であったため、鋼組織を作り込むことができず、熱延鋼板が所定の関係(2)を満たさないものとなり、熱延鋼板の穴広げ性が低下した。
No.18については、2回目の高温度差圧延よりも後における総圧下率が低過ぎたため、鋼の組織を適切に制御することができなくなり、熱延鋼板が所定の関係(2)を満たさないものとなり、熱延鋼板の穴広げ性が低下した。
No.19については、仕上げ圧延完了から冷却開始までの時間が長過ぎたため、結晶粒の粗大化によって旧オーステナイト粒径が25μm超となり、熱延鋼板の穴広げ性が低下した。
No.20については、加速冷却の冷却停止温度が高過ぎたため、GAM値2.0°以上である領域が過度に多くなり、熱延鋼板の伸びが低下した。
No.21については、加速冷却の冷却停止温度が低過ぎたため、GAM値2.0°以上である領域が過度に多くなり、熱延鋼板の伸びが低下した。
No.38については、仕上げ圧延開始温度STが高過ぎたため、鋼の組織を適切に制御することができなくなり、熱延鋼板の旧オーステナイト粒が粗大化し、熱延鋼板が所定の関係(2)を満たさないものとなり、熱延鋼板の衝突特性が低下した。
No.39については、仕上げ圧延開始温度STを適切に制御したものの、仕上げ圧延完了温度FTが高過ぎたため、鋼の組織を適切に制御することができなくなり、熱延鋼板の旧オーステナイト粒が粗大化し、熱延鋼板が所定の関係(2)を満たさないものとなり、熱延鋼板の衝突特性が低下した。
No.40については、720℃から470℃の温度域における緩冷却時間が短過ぎたため、熱延鋼板においてGAM値0.6°超2.0°未満である領域が十分に生成せず、熱延鋼板が所定の関係(2)を満たさないものとなり、熱延鋼板の伸びが低下した。
No.44については、No.7と同様に、熱延鋼板のTi含有量が少な過ぎたため、析出物強化、細粒強化及び/又は転位強化による強度上昇効果が得られず、且つ、変態の核を十分に生成することができず、旧オーステナイト粒が粗大化し、熱延鋼板の強度及び穴広げ性が低下した。
これに対し、No.14、22~37、41~43については、熱延鋼板が強度、伸び及び穴広げ性のバランスに優れ、且つ、衝突特性にも優れたものとなった。No.42においては、2回目の高温度差圧延を990℃で行い、980~1000℃の間の所定の温度で行ったことにより、2回目の高温度差圧延を965℃で行ったNo.34と比較しても、衝突特性が特に優れたものとなった。No.14、22~37、41~43の結果から、以下の要件(A)~(D)を満たす熱延鋼板は、強度、伸び及び穴広げ性のバランスに優れ、且つ、衝突特性にも優れたものといえる。 6. Results and Discussion The results shown in Tables 1 to 4 reveal the following:
In the case of No. 1, since the C content of the hot-rolled steel sheet was too low, the region in which the GAM value was 0.6° or less was excessive, and the strength of the hot-rolled steel sheet was reduced.
In No. 2, the C content of the hot-rolled steel sheet was too high, so the region with a GAM value of 2.0° or more was excessive, and the elongation and hole expandability of the hot-rolled steel sheet were reduced.
In the case of No. 3, the Si content of the hot-rolled steel sheet was too high, so that the ductility was insufficient, etc., making hot rolling difficult.
In No. 4, since the Mn content of the hot-rolled steel sheet was too high, the region in which the GAM value was 2.0° or more was excessive, and the elongation of the hot-rolled steel sheet was reduced.
In No. 5, the Mn content of the hot-rolled steel sheet was too low, so the region with a GAM value of 0.6° or less was excessive, and the strength of the hot-rolled steel sheet was reduced.
In the case of No. 6, the Ti content of the hot-rolled steel sheet was too high, so that the hole expandability of the hot-rolled steel sheet was deteriorated due to the excessive generation of precipitates, etc.
For No. 7, the Ti content of the hot-rolled steel sheet was too low, so the strength increasing effect due to precipitation strengthening, fine grain strengthening and/or dislocation strengthening could not be obtained, and the transformation nuclei could not be sufficiently generated, so that the prior austenite grains became coarse, and the strength and hole expandability of the hot-rolled steel sheet were reduced.
In the case of No. 8, the Al content of the hot-rolled steel sheet was too high, which caused cracks in the slab and made hot rolling difficult.
In the case of No. 9, the Al content of the hot-rolled steel sheet was too low, so deoxidation was insufficient, and inclusions were excessively generated, resulting in a decrease in the hole expandability of the hot-rolled steel sheet.
In the case of No. 10, the P content of the hot-rolled steel sheet was too high, which caused embrittlement and resulted in cracking of the slab, making hot rolling difficult.
In the case of No. 11, the S content of the hot-rolled steel sheet was too high, so that inclusions were generated excessively, and the hole expandability of the hot-rolled steel sheet was deteriorated.
In the case of No. 12, the N content of the hot-rolled steel sheet was too high, which caused embrittlement and cracking of the slab, making hot rolling difficult.
In the case of No. 13, the O content of the hot-rolled steel sheet was too high, so that oxides were generated in excess, and the hole expandability of the hot-rolled steel sheet was reduced.
In the case of No. 15, the finish rolling start temperature ST was too low, so that the prior austenite grains became coarse and the hole expandability of the hot-rolled steel sheet was deteriorated.
For No. 16, the finish rolling start temperature ST was too high, and further, the finish rolling completion temperature FT was also too high, so that the structure of the steel could not be appropriately controlled, the prior austenite grains of the hot-rolled steel sheet became coarse, and the predetermined relationships (1) and (2) were not satisfied, and the collision properties of the hot-rolled steel sheet were deteriorated.
For No. 17, the high temperature difference rolling in which the rolling temperature difference ΔT was 30 ° C. or more was performed once or less, so the steel structure could not be created, and the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the hole expandability of the hot-rolled steel sheet was reduced.
For No. 18, the total reduction rate after the second high temperature difference rolling was too low, so the structure of the steel could not be appropriately controlled, and the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the hole expandability of the hot-rolled steel sheet was reduced.
For No. 19, the time from the completion of finish rolling to the start of cooling was too long, so that the prior austenite grain size exceeded 25 μm due to the coarsening of the crystal grains, and the hole expandability of the hot-rolled steel sheet was reduced.
For No. 20, the cooling stop temperature of the accelerated cooling was too high, so the region with a GAM value of 2.0° or more became excessively large, and the elongation of the hot-rolled steel sheet decreased.
For No. 21, the cooling stop temperature of the accelerated cooling was too low, so the region with a GAM value of 2.0° or more became excessively large, and the elongation of the hot-rolled steel sheet decreased.
For No. 38, the finish rolling start temperature ST was too high, so that the structure of the steel could not be appropriately controlled, the prior austenite grains of the hot-rolled steel sheet became coarse, the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the collision properties of the hot-rolled steel sheet were deteriorated.
For No. 39, although the finish rolling start temperature ST was appropriately controlled, the finish rolling completion temperature FT was too high, so that the structure of the steel could not be appropriately controlled, the prior austenite grains of the hot-rolled steel sheet became coarse, the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the collision properties of the hot-rolled steel sheet were deteriorated.
For No. 40, the slow cooling time in the temperature range from 720 ° C. to 470 ° C. was too short, so the region in which the GAM value was more than 0.6 ° and less than 2.0 ° was not sufficiently generated in the hot-rolled steel sheet, and the hot-rolled steel sheet did not satisfy the predetermined relationship (2), and the elongation of the hot-rolled steel sheet was reduced.
As for No. 44, like No. 7, the Ti content of the hot-rolled steel sheet was too low, so that the strength increasing effect by precipitation strengthening, fine grain strengthening and/or dislocation strengthening could not be obtained, and the transformation nuclei could not be sufficiently generated, so that the prior austenite grains became coarse, and the strength and hole expandability of the hot-rolled steel sheet were deteriorated.
In contrast, for Nos. 14, 22 to 37, and 41 to 43, the hot-rolled steel sheets had an excellent balance of strength, elongation, and hole expandability, and also had excellent impact properties. In No. 42, the second high-temperature differential rolling was performed at 990°C, and at a predetermined temperature between 980 and 1000°C, so that the impact properties were particularly excellent, even compared to No. 34, in which the second high-temperature differential rolling was performed at 965°C. From the results of Nos. 14, 22 to 37, and 41 to 43, it can be said that the hot-rolled steel sheets satisfying the following requirements (A) to (D) have an excellent balance of strength, elongation, and hole expandability, and also have excellent impact properties.
(A)熱延鋼板が、質量%で、C:0.045%以上、0.120%以下、Si:0%以上、3.00%以下、Mn:1.20%以上、2.60%以下、Ti:0.020%以上、0.180%以下、Al:0.010%以上、0.400%以下、P:0%以上、0.080%以下、S:0%以上、0.0100%以下、N:0%以上、0.0050%以下、O:0%以上、0.010%以下、Nb:0%以上、0.100%以下、V:0%以上、1.000%以下、Cu:0%以上、1.000%以下、Cr:0%以上、2.000%以下、Mo:0%以上、3.000%以下、Ni:0%以上、0.500%以下、B:0%以上、0.0100%以下、Ca:0%以上、0.0500%以下、Mg:0%以上、0.050%以下、REM:0%以上、0.100%以下、Bi:0%以上、0.100%以下、Ta:0%以上、0.100%以下、Zr:0%以上、0.500%以下、Co:0%以上、3.000%以下、Zn:0%以上、0.200%以下、W:0%以上、0.200%以下、Sb:0%以上、0.500%以下、As:0%以上、0.050%以下、及び、Sn:0%以上、0.050%以下を含み、残部:Fe及び不純物からなる。
(B)熱延鋼板の旧オーステナイト粒径が25μm以下である。
(C)熱延鋼板におけるGAM値0.6°超、2.0°未満である領域の面積率が50%以上100%未満であり、GAM値0.6°以下である領域の面積率が0%以上50%未満であり、GAM値2.0°以上である領域の面積率が0%超50%以下である。
(D)熱延鋼板が以下の関係(1)及び(2):
1.7≦LGr/LGt …(1)
1.20≦(LGr/LGt)/(LMr/LMt) …(2)
LGr:旧オーステナイト粒の圧延方向投影長さの面積平均値
LGt:旧オーステナイト粒の板厚方向投影長さの面積平均値
LMr:GAM値2.0°以上である領域の圧延方向投影長さの面積平均値
LMt:GAM値2.0°以上である領域の板厚方向投影長さの面積平均値
を満たす。 (A) The hot-rolled steel sheet has, in mass%, C: 0.045% or more and 0.120% or less, Si: 0% or more and 3.00% or less, Mn: 1.20% or more and 2.60% or less, Ti: 0.020% or more and 0.180% or less, Al: 0.010% or more and 0.400% or less, P: 0% or more and 0.080% or less, S: 0% or more and 0.0100% or less, N: 0% or more and 0.0050% or less, O: 0% or more and 0.010% or less, Nb: 0% or more and 0.100% or less, V: 0% or more and 1.000% or less, Cu: 0% or more and 1.000% or less, Cr: 0% or more and 2.000% or less, and Mo: 0% or more and 3.000% or less. , Ni: 0% or more, 0.500% or less, B: 0% or more, 0.0100% or less, Ca: 0% or more, 0.0500% or less, Mg: 0% or more, 0.050% or less, REM: 0% or more, 0.100% or less, Bi: 0% or more, 0.100% or less, Ta: 0% or more, 0.100% or less, Zr: 0% or more, 0.500% or less, Co: 0% or more, 3.000% or less, Zn: 0% or more, 0.200% or less, W: 0% or more, 0.200% or less, Sb: 0% or more, 0.500% or less, As: 0% or more, 0.050% or less, and Sn: 0% or more, 0.050% or less, with the balance being Fe and impurities.
(B) The prior austenite grain size of the hot-rolled steel sheet is 25 μm or less.
(C) The area ratio of the area in the hot-rolled steel sheet having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%, the area ratio of the area having a GAM value of 0.6° or less is 0% or more and less than 50%, and the area ratio of the area having a GAM value of 2.0° or more is more than 0% and less than 50%.
(D) The hot-rolled steel sheet has the following relationships (1) and (2):
1.7≦LGr/LGt…(1)
1.20≦(LGr/LGt)/(LMr/LMt)…(2)
LGr: average area of the projection length in the rolling direction of prior austenite grains LGt: average area of the projection length in the sheet thickness direction of prior austenite grains LMr: average area of the projection length in the rolling direction of regions having a GAM value of 2.0° or more LMt: average area of the projection length in the sheet thickness direction of regions having a GAM value of 2.0° or more.
(B)熱延鋼板の旧オーステナイト粒径が25μm以下である。
(C)熱延鋼板におけるGAM値0.6°超、2.0°未満である領域の面積率が50%以上100%未満であり、GAM値0.6°以下である領域の面積率が0%以上50%未満であり、GAM値2.0°以上である領域の面積率が0%超50%以下である。
(D)熱延鋼板が以下の関係(1)及び(2):
1.7≦LGr/LGt …(1)
1.20≦(LGr/LGt)/(LMr/LMt) …(2)
LGr:旧オーステナイト粒の圧延方向投影長さの面積平均値
LGt:旧オーステナイト粒の板厚方向投影長さの面積平均値
LMr:GAM値2.0°以上である領域の圧延方向投影長さの面積平均値
LMt:GAM値2.0°以上である領域の板厚方向投影長さの面積平均値
を満たす。 (A) The hot-rolled steel sheet has, in mass%, C: 0.045% or more and 0.120% or less, Si: 0% or more and 3.00% or less, Mn: 1.20% or more and 2.60% or less, Ti: 0.020% or more and 0.180% or less, Al: 0.010% or more and 0.400% or less, P: 0% or more and 0.080% or less, S: 0% or more and 0.0100% or less, N: 0% or more and 0.0050% or less, O: 0% or more and 0.010% or less, Nb: 0% or more and 0.100% or less, V: 0% or more and 1.000% or less, Cu: 0% or more and 1.000% or less, Cr: 0% or more and 2.000% or less, and Mo: 0% or more and 3.000% or less. , Ni: 0% or more, 0.500% or less, B: 0% or more, 0.0100% or less, Ca: 0% or more, 0.0500% or less, Mg: 0% or more, 0.050% or less, REM: 0% or more, 0.100% or less, Bi: 0% or more, 0.100% or less, Ta: 0% or more, 0.100% or less, Zr: 0% or more, 0.500% or less, Co: 0% or more, 3.000% or less, Zn: 0% or more, 0.200% or less, W: 0% or more, 0.200% or less, Sb: 0% or more, 0.500% or less, As: 0% or more, 0.050% or less, and Sn: 0% or more, 0.050% or less, with the balance being Fe and impurities.
(B) The prior austenite grain size of the hot-rolled steel sheet is 25 μm or less.
(C) The area ratio of the area in the hot-rolled steel sheet having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%, the area ratio of the area having a GAM value of 0.6° or less is 0% or more and less than 50%, and the area ratio of the area having a GAM value of 2.0° or more is more than 0% and less than 50%.
(D) The hot-rolled steel sheet has the following relationships (1) and (2):
1.7≦LGr/LGt…(1)
1.20≦(LGr/LGt)/(LMr/LMt)…(2)
LGr: average area of the projection length in the rolling direction of prior austenite grains LGt: average area of the projection length in the sheet thickness direction of prior austenite grains LMr: average area of the projection length in the rolling direction of regions having a GAM value of 2.0° or more LMt: average area of the projection length in the sheet thickness direction of regions having a GAM value of 2.0° or more.
Claims (5)
- 質量%で、
C:0.045%以上、0.120%以下、
Si:0%以上、3.00%以下、
Mn:1.20%以上、2.60%以下、
Ti:0.020%以上、0.180%以下、
Al:0.010%以上、0.400%以下、
P:0%以上、0.080%以下、
S:0%以上、0.0100%以下、
N:0%以上、0.0050%以下、
O:0%以上、0.010%以下、
Nb:0%以上、0.100%以下、
V:0%以上、1.000%以下、
Cu:0%以上、1.000%以下、
Cr:0%以上、2.000%以下、
Mo:0%以上、3.000%以下、
Ni:0%以上、0.500%以下、
B:0%以上、0.0100%以下、
Ca:0%以上、0.0500%以下、
Mg:0%以上、0.050%以下、
REM:0%以上、0.100%以下、
Bi:0%以上、0.100%以下、
Ta:0%以上、0.100%以下、
Zr:0%以上、0.500%以下、
Co:0%以上、3.000%以下、
Zn:0%以上、0.200%以下、
W:0%以上、0.200%以下、
Sb:0%以上、0.500%以下、
As:0%以上、0.050%以下、及び
Sn:0%以上、0.050%以下を含み、
残部:Fe及び不純物からなり、
旧オーステナイト粒径が25μm以下であり、
GAM値0.6°超、2.0°未満である領域の面積率が50%以上100%未満であり、
GAM値0.6°以下である領域の面積率が0%以上50%未満であり、
GAM値2.0°以上である領域の面積率が0%超50%以下であり、
以下の関係(1)及び(2):
1.7≦LGr/LGt …(1)
1.20≦(LGr/LGt)/(LMr/LMt) …(2)
LGr:旧オーステナイト粒の圧延方向投影長さの面積平均値
LGt:旧オーステナイト粒の板厚方向投影長さの面積平均値
LMr:GAM値2.0°以上である領域の圧延方向投影長さの面積平均値
LMt:GAM値2.0°以上である領域の板厚方向投影長さの面積平均値
が満たされる、
熱延鋼板。 In mass percent,
C: 0.045% or more, 0.120% or less,
Si: 0% or more, 3.00% or less,
Mn: 1.20% or more, 2.60% or less,
Ti: 0.020% or more, 0.180% or less,
Al: 0.010% or more, 0.400% or less,
P: 0% or more, 0.080% or less,
S: 0% or more, 0.0100% or less,
N: 0% or more, 0.0050% or less,
O: 0% or more, 0.010% or less,
Nb: 0% or more, 0.100% or less,
V: 0% or more, 1.000% or less,
Cu: 0% or more, 1.000% or less,
Cr: 0% or more, 2.000% or less,
Mo: 0% or more, 3.000% or less,
Ni: 0% or more, 0.500% or less,
B: 0% or more, 0.0100% or less,
Ca: 0% or more, 0.0500% or less,
Mg: 0% or more, 0.050% or less,
REM: 0% or more, 0.100% or less,
Bi: 0% or more, 0.100% or less,
Ta: 0% or more, 0.100% or less,
Zr: 0% or more, 0.500% or less,
Co: 0% or more, 3.000% or less,
Zn: 0% or more, 0.200% or less,
W: 0% or more, 0.200% or less,
Sb: 0% or more, 0.500% or less,
As: 0% or more, 0.050% or less, and Sn: 0% or more, 0.050% or less;
The balance is composed of Fe and impurities.
The prior austenite grain size is 25 μm or less,
The area ratio of the region having a GAM value of more than 0.6° and less than 2.0° is 50% or more and less than 100%,
The area ratio of the region having a GAM value of 0.6° or less is 0% or more and less than 50%,
The area ratio of the region having a GAM value of 2.0° or more is more than 0% and 50% or less,
The following relationships (1) and (2):
1.7≦LGr/LGt…(1)
1.20≦(LGr/LGt)/(LMr/LMt)…(2)
LGr: average area of the projection length in the rolling direction of the prior austenite grains LGt: average area of the projection length in the sheet thickness direction of the prior austenite grains LMr: average area of the projection length in the rolling direction of the region having a GAM value of 2.0° or more LMt: average area of the projection length in the sheet thickness direction of the region having a GAM value of 2.0° or more
Hot-rolled steel sheet. - GAM値0.6°以下である領域の面積率が0%以上45%以下である、
請求項1に記載の熱延鋼板。 The area ratio of the region having a GAM value of 0.6° or less is 0% or more and 45% or less.
The hot rolled steel sheet according to claim 1. - GAM値2.0°以上である領域の面積率が0%超20%以下である、
請求項1又は2に記載の熱延鋼板。 The area ratio of the region having a GAM value of 2.0° or more is more than 0% and 20% or less.
The hot-rolled steel sheet according to claim 1 or 2. - 以下の関係(1-1):
1.7≦LGr/LGt≦10.0 …(1-1)
が満たされる、
請求項1~3のいずれか1項に記載の熱延鋼板。 The following relationship (1-1):
1.7≦LGr/LGt≦10.0…(1-1)
is satisfied,
The hot-rolled steel sheet according to any one of claims 1 to 3. - 以下の関係(2-1):
1.20≦(LGr/LGt)/(LMr/LMt)≦5.00 …(2-1)
が満たされる、
請求項1~4のいずれか1項に記載の熱延鋼板。 The following relationship (2-1):
1.20≦(LGr/LGt)/(LMr/LMt)≦5.00…(2-1)
is satisfied,
The hot-rolled steel sheet according to any one of claims 1 to 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-012796 | 2023-01-31 | ||
JP2023012796 | 2023-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024162388A1 true WO2024162388A1 (en) | 2024-08-08 |
Family
ID=92146747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/003062 WO2024162388A1 (en) | 2023-01-31 | 2024-01-31 | Hot-rolled steel sheet |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024162388A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018138898A1 (en) * | 2017-01-30 | 2018-08-02 | 新日鐵住金株式会社 | Steel sheet |
WO2021124864A1 (en) * | 2019-12-19 | 2021-06-24 | 日本製鉄株式会社 | Steel sheet and plated steel sheet |
WO2022070608A1 (en) * | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | Steel sheet and steel sheet manufacturing method |
WO2023171492A1 (en) * | 2022-03-11 | 2023-09-14 | 日本製鉄株式会社 | Hot-stamp-formed article |
-
2024
- 2024-01-31 WO PCT/JP2024/003062 patent/WO2024162388A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018138898A1 (en) * | 2017-01-30 | 2018-08-02 | 新日鐵住金株式会社 | Steel sheet |
WO2021124864A1 (en) * | 2019-12-19 | 2021-06-24 | 日本製鉄株式会社 | Steel sheet and plated steel sheet |
WO2022070608A1 (en) * | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | Steel sheet and steel sheet manufacturing method |
WO2023171492A1 (en) * | 2022-03-11 | 2023-09-14 | 日本製鉄株式会社 | Hot-stamp-formed article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6364968B1 (en) | High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same | |
WO2018026014A1 (en) | Steel sheet and plated steel sheet | |
CN110168126B (en) | Hot-rolled steel sheet and method for producing the same | |
WO2013047808A1 (en) | High-strength hot-dip galvanized steel sheet and process for producing same | |
US11028456B2 (en) | Electric resistance welded steel pipe for torsion beam | |
JP6065121B2 (en) | High carbon hot rolled steel sheet and manufacturing method thereof | |
WO2017168961A1 (en) | Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet | |
US11739866B2 (en) | Electric resistance welded steel pipe for torsion beam | |
JP5639573B2 (en) | High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same | |
JP2019173070A (en) | Al-CONTAINING FERRITIC STAINLESS STEEL MATERIAL EXCELLENT IN FABRICABILITY AND HIGH TEMPERATURE OXIDATION RESISTANCE AND WORKED ARTICLE | |
JP3737323B2 (en) | Steel wire rod and bar steel excellent in cold forgeability after spheronization and manufacturing method thereof | |
JP2008138237A (en) | Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same | |
JP2022122483A (en) | Hot rolled steel sheet and method for producing the same | |
JP7396512B2 (en) | Thick steel plate and method for manufacturing thick steel plate | |
JP5639572B2 (en) | High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same | |
WO2024162388A1 (en) | Hot-rolled steel sheet | |
JP7188618B2 (en) | hot rolled steel | |
JPH064891B2 (en) | Method for manufacturing non-magnetic steel wire rod | |
JP7440757B2 (en) | H-beam steel and its manufacturing method | |
JP7541640B1 (en) | HOT-ROLLED STEEL SHEET AND ITS MANUFACTURING METHOD | |
JPWO2019203251A1 (en) | Hot rolled steel sheet | |
JP7541639B1 (en) | HOT-ROLLED STEEL SHEET AND ITS MANUFACTURING METHOD | |
JP7160235B1 (en) | Hot shrinking ERW pipe | |
JP7680692B2 (en) | Hot rolled steel plate | |
WO2022085152A1 (en) | Electric resistance welded steel pipe for mechanical structure component and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24750337 Country of ref document: EP Kind code of ref document: A1 |