WO2024162382A1 - Hot-rolled steel sheet - Google Patents
Hot-rolled steel sheet Download PDFInfo
- Publication number
- WO2024162382A1 WO2024162382A1 PCT/JP2024/003023 JP2024003023W WO2024162382A1 WO 2024162382 A1 WO2024162382 A1 WO 2024162382A1 JP 2024003023 W JP2024003023 W JP 2024003023W WO 2024162382 A1 WO2024162382 A1 WO 2024162382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- hot
- steel sheet
- rolled steel
- content
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- the present invention relates to a hot rolled steel sheet.
- the present invention relates to a hot rolled steel sheet having high strength, excellent ductility and hole expansion properties, and excellent tensile bending properties in the rolling direction.
- Automotive parts are manufactured by subjecting steel plate to various processes, so steel plate used in automotive parts is required to have excellent formability, especially ductility and hole expansion properties.
- steel sheets When manufacturing automotive parts, steel sheets may be bent while tension is applied. Bending while tension is applied is often performed along the rolling direction of the steel sheet. Therefore, steel sheets used in automotive parts are required to have excellent tensile bending properties, especially in the rolling direction.
- Patent Document 1 discloses a hot-rolled steel sheet having a structure consisting of 70% or more ferrite and pearlite in terms of area fraction, a sheet thickness T0 of 6 to 25 mm, an average grain size GC of the ferrite grains inside the sheet thickness of 5 to 15 ⁇ m, the hot-rolled steel sheet having a fine grain layer formed from the surface in the sheet thickness direction and having an average grain size of the ferrite grains less than 1.0 times the average grain size GC, the fine grain layer including a specific fine grain layer having an average grain size of the ferrite grains of 0.1 to 0.4 times the average grain size GC, and satisfying a predetermined formula when the thickness of the specific fine grain layer is TF0 and the thickness of an ultrafine grain layer of the fine grain layer in which the average grain size of the ferrite grains is less than 0.1 times the average grain size GC is TF1, and the average grain size of the ferrite grains of the specific fine grain layer and the ultrafine grain layer is 0.1 to 0.4 times the average grain size GC.
- Patent Document 2 discloses a high-strength hot-rolled steel sheet with excellent hole expandability and weld fatigue properties, characterized in that the random strength ratio of the ⁇ 110 ⁇ 111> to ⁇ 110 ⁇ 001> orientation group in the thickness cross section in the region from the outermost layer to 1/6 of the sheet thickness is 3.5 or less.
- Patent Documents 1 and 2 do not take into consideration the tensile bending characteristics in the rolling direction.
- the present invention aims to provide a hot-rolled steel sheet that has high strength, excellent ductility and hole expansion properties, and excellent tensile bending properties in the rolling direction.
- the inventors also discovered that controlling the rough rolling conditions and finish rolling conditions of hot rolling is effective in controlling the texture in the surface region of a hot-rolled steel sheet.
- a hot-rolled steel sheet according to one embodiment of the present invention has a chemical composition, in mass%, C: 0.045-0.120%, Si: 0-3.00%, Mn: 1.20-2.60%, Ti: 0.020 to 0.180%, Al: 0.010-0.400%, P: 0.080% or less, S: 0.0100% or less, N: 0.0050% or less, O: 0.010% or less, Nb: 0 to 0.100%, V: 0 to 1.000%, Cu: 0 to 1.000%, Cr: 0-2.000%, Mo: 0-3.000%, Ni: 0 to 0.500%, B: 0 to 0.0100%, Ca: 0-0.0500%, Mg: 0 to 0.0500%, REM: 0-0.100%, Bi: 0-0.100%, Ta: 0-0.100%, Zr: 0 to 0.500%, Co: 0-3.000%, Zn: 0-0
- a hot-rolled steel sheet having high strength, excellent ductility and hole expandability, and excellent tensile bending properties in the rolling direction. Furthermore, according to a preferred embodiment of the present invention, it is possible to provide a hot-rolled steel sheet having not only the above-mentioned properties but also excellent tensile bending properties in the width direction.
- FIG. 13 is a diagram for explaining a tension bending test.
- the chemical composition of the hot-rolled steel sheet according to this embodiment is, in mass%, C: 0.045 to 0.120%, Si: 0 to 3.00%, Mn: 1.20 to 2.60%, Ti: 0.020 to 0.180%, Al: 0.010 to 0.400%, P: 0.080% or less, S: 0.0100% or less, N: 0.0050% or less, and the balance: Fe and impurities.
- C 0.045 to 0.120%
- Si 0 to 3.00%
- Mn 1.20 to 2.60%
- Ti 0.020 to 0.180%
- Al 0.010 to 0.400%
- P 0.080% or less
- S 0.0100% or less
- N 0.0050% or less
- Fe and impurities each element will be described in detail below.
- C 0.045-0.120%
- C is an element necessary for obtaining a desired tensile strength of the hot-rolled steel sheet. If the C content is less than 0.045%, the desired tensile strength cannot be obtained in the hot-rolled steel sheet. Therefore, the C content is set to 0.045% or more.
- the C content is preferably 0.050% or more, more preferably 0.060% or more, and even more preferably 0.080% or more. be. On the other hand, if the C content exceeds 0.120%, the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the C content is set to 0.120% or less.
- the C content is preferably 0.110% or less. and more preferably 0.100% or less.
- Si 0-3.00% Si is an element that improves the tensile strength of a hot-rolled steel sheet by solid solution strengthening.
- the hot-rolled steel sheet according to the present embodiment ensures sufficient tensile strength even without containing Si.
- the Si content may be 0%.
- the Si content is preferably 0.01% or more, and more preferably 0.03% or more.
- the Si content is set to 3.00% or less.
- the Si content is preferably 2.00% or less.
- the Si content is set to 0 to 3.00%, thereby improving the strength and It is possible to achieve a good balance between elongation and hole expandability.
- Mn 1.20-2.60%
- Mn is an element necessary for improving the strength of a hot-rolled steel sheet. If the Mn content is less than 1.20%, the desired tensile strength cannot be obtained in the hot-rolled steel sheet.
- the Mn content is 1.20% or more, preferably 1.40% or more, and more preferably 1.60% or more. On the other hand, if the Mn content exceeds 2.60%, the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the Mn content is set to 2.60% or less.
- the Mn content is preferably 2.30% or less. % or less, and more preferably 2.20% or less.
- Ti 0.020-0.180%
- Ti is an element that forms fine nitrides in steel to increase the strength of the hot-rolled steel sheet. If the Ti content is less than 0.020%, the desired tensile strength cannot be obtained in the hot-rolled steel sheet. Therefore, the Ti content is set to 0.020% or more, preferably 0.050% or more, and more preferably 0.080% or more. On the other hand, if the Ti content exceeds 0.180%, the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the Ti content is set to 0.180% or less.
- the Ti content is preferably 0. It is preferably 160% or less, and more preferably 0.150% or less.
- Al 0.010-0.400%
- Al is an element that acts as a deoxidizer and improves the cleanliness of steel. If the Al content is less than 0.010%, a sufficient deoxidizing effect cannot be obtained, and a large amount of Al inclusions in the steel are generated. Such inclusions deteriorate the workability, particularly the hole expandability, of the hot-rolled steel sheet. Therefore, the Al content is set to 0.010% or more.
- the Al content is , preferably 0.020% or more, and more preferably 0.030% or more. On the other hand, if the Al content exceeds 0.400%, casting becomes difficult. Therefore, the Al content is set to 0.400% or less.
- the Al content is preferably set to 0.300% or less, and more preferably 0.400% or less. It is preferably 0.200% or less, and even more preferably 0.100% or less.
- P 0.080% or less
- P is an element that segregates at grain boundaries in steel and promotes embrittlement of the grain boundaries. If the P content is too high, the elongation and hole expandability of the hot-rolled steel sheet are likely to decrease, and further, cracks in the slab due to embrittlement may occur, making hot rolling difficult. Therefore, the P content is set to 0.080% or less.
- the P content is preferably 0.020% or less, and more preferably 0.010% or less. The lower the P content, the better, and 0% is preferable. However, if the P content is excessively reduced, the dephosphorization cost increases significantly, so the P content may be 0.001% or more.
- S 0.0100% or less
- S is an element that embrittles the slab when present as a sulfide.
- S is also an element that deteriorates the workability of the hot-rolled steel sheet. If the S content exceeds 0.0100%, the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the S content is set to 0.0100% or less.
- the S content is preferably 0.0080% or less, more preferably 0.0050% or less. The lower the S content, the better, and 0% is preferable. However, if the S content is excessively reduced, the desulfurization cost increases significantly, so the S content may be 0.0005% or more.
- N 0.0050% or less
- N is an element that forms coarse nitrides in steel and deteriorates the hole expandability of hot-rolled steel sheets. If the N content is too high, excessive nitrides are generated, which tends to reduce the elongation and hole expandability of the hot-rolled steel sheet, and furthermore, cracks in the slab due to embrittlement may occur, making hot rolling difficult. Therefore, the N content is set to 0.0050% or less.
- the N content is preferably 0.0040% or less, and more preferably 0.0035% or less. The lower the N content, the better, and 0% is preferable. However, if the N content is excessively reduced, the cost of denitrification increases significantly, so the N content may be 0.0005% or more.
- O 0.010% or less
- O is an element that forms oxides and reduces the workability of hot-rolled steel sheets. If the O content exceeds 0.010%, the hole expandability of the hot-rolled steel sheet is likely to decrease due to excessive generation of oxides, etc. Therefore, the O content is set to 0.010% or less.
- the O content is preferably 0.008% or less, and more preferably 0.006% or less. The lower the O content, the better, and 0% is preferable. However, if the O content is excessively reduced, the cost of deoxidization increases significantly, so the O content may be 0.001% or more.
- the remainder of the chemical composition of the hot-rolled steel sheet according to this embodiment may be Fe and impurities.
- impurities refer to substances that are mixed in from the raw materials such as ore, scrap, or the manufacturing environment, or substances that are acceptable to the extent that they do not adversely affect the hot-rolled steel sheet according to this embodiment.
- the chemical composition of the hot-rolled steel sheet according to this embodiment may contain the following optional elements instead of a portion of Fe.
- the lower limit of the content is 0%.
- Nb 0.001-0.100%
- Nb is an element that suppresses abnormal grain growth of austenite grains during hot rolling.
- Nb is also an element that increases the strength of hot-rolled steel sheets by forming fine carbides.
- the Nb content is preferably 0.001% or more, more preferably 0.010% or more, and even more preferably 0.030% or more.
- the Nb content is set to 0.100% or less.
- the Nb content is preferably 0.080% or less, and more preferably 0.060% or less.
- V is an element that forms fine carbides in steel to increase the strength of the hot-rolled steel sheet.
- the V content is preferably 0.001% or more.
- the V content is more preferably 0.050% or more, and even more preferably 0.100% or more.
- the V content is set to 1.000% or less.
- the V content is preferably 0.500 % or less, and more preferably 0.300% or less.
- Cu 0.001-1.000%
- the Cu content is preferably 0.001% or more, more preferably 0.050% or more, and even more preferably 0.100% or more.
- the Cu content is set to 1.000% or less.
- the Cu content is preferably set to 0.500% or less. and more preferably 0.300% or less.
- Cr:0.001 ⁇ 2.000% Cr is an element that exerts an effect similar to that of Mn.
- the Cr content is preferably 0.001% or more.
- the content is more preferably 0.050% or more, and even more preferably 0.100% or more.
- the Cr content is set to 2.000% or less.
- the Cr content is preferably is 1.000% or less, and more preferably 0.500% or less.
- Mo 0.001 ⁇ 3.000%
- Mo is an element that increases the strength of a hot-rolled steel sheet by forming fine carbides in the steel.
- the Mo content is preferably 0.001% or more.
- the Mo content is more preferably 0.050% or more, and even more preferably 0.100% or more.
- the Mo content is set to 3.000% or less.
- the Mo content is preferably 2.000% or less. % or less, and more preferably 1.000% or less.
- Ni 0.001-0.500%
- Ni is an element that enhances the hardenability of hot-rolled steel sheets.
- Ni has the effect of effectively suppressing grain boundary cracking of slabs caused by Cu.
- the Ni content is preferably 0.001% or more, more preferably 0.050% or more, and even more preferably 0.100% or more. be.
- Ni is an expensive element, so it is economically undesirable to include a large amount of it. Therefore, the Ni content is set to 0.500% or less. From the viewpoint of reducing the alloy cost, the Ni content is , preferably 0.300% or less, and more preferably 0.200% or less.
- B 0.0001-0.0100%
- B is an element that increases the strength of a hot-rolled steel sheet.
- the B content is preferably 0.0001% or more.
- the B content is more preferably 0.0005% or more. % or more, and more preferably 0.0010% or more.
- the B content is set to 0.0100% or less.
- the B content is preferably set to 0.0070% or less. More preferably, it is 0.0050% or less.
- Ca 0.0001-0.0500%
- Ca is an element that enhances the ductility and hole expandability of the hot-rolled steel sheet by controlling the shape of inclusions to a preferred shape.
- the Ca content is set to 0.0001% or more.
- the Ca content is preferably 0.0010% or more, and more preferably 0.0050% or more.
- the Ca content exceeds 0.0500%, excessive inclusions are generated in the steel, which may deteriorate the ductility and hole expandability of the hot-rolled steel sheet.
- the Ca content is preferably 0.0300% or less, and more preferably 0.0100% or less.
- Mg 0.0001-0.0500%
- Mg is an element that enhances the ductility and hole expandability of the hot-rolled steel sheet by controlling the shape of inclusions to a preferred shape. In order to reliably obtain this effect, the Mg content should be 0.0001% or more.
- the Mg content is preferably 0.0010% or more, and more preferably 0.0020% or more.
- the Mg content exceeds 0.0500%, excessive inclusions are generated in the steel, which may deteriorate the ductility and hole expandability of the hot-rolled steel sheet.
- the Mg content is preferably 0.0300% or less, and more preferably 0.0100% or less.
- REM 0.001 ⁇ 0.100% REM is an element that improves the ductility and hole expandability of hot-rolled steel sheets by controlling the shape of inclusions to a preferred shape. To reliably obtain this effect, the REM content should be 0.001% or more.
- the REM content is preferably 0.003% or more, and more preferably 0.005% or more.
- the REM content exceeds 0.100%, excessive inclusions are generated in the steel, which may deteriorate the ductility and hole expandability of the hot-rolled steel sheet.
- the REM content is preferably 0.050% or less, and more preferably 0.030% or less.
- REM refers to a total of 17 elements consisting of Sc, Y and lanthanoids, and the content of the REM refers to the total content of these elements.
- lanthanoids they are industrially added in the form of misch metal. will be done.
- Bi 0.001 ⁇ 0.100%
- Bi is an element that refines the solidification structure and thereby improves the ductility and hole expandability of the hot-rolled steel sheet.
- the Bi content must be 0.001% or more.
- the Bi content is preferably 0.002% or more, and more preferably 0.003% or more.
- the Bi content is set to 0.100% or less. From the viewpoint of reducing alloy costs, The Bi content is preferably 0.050% or less, and more preferably 0.030% or less.
- Ta 0.001 ⁇ 0.100%
- Ta is an element that increases the strength of hot-rolled steel sheets by forming fine carbides in the steel.
- the Ta content is set to 0.001% or more.
- the Ta content is more preferably 0.005% or more, and even more preferably 0.010% or more.
- the Ta content is set to 0.100% or less.
- the Ta content is preferably 0.080 % or less, and more preferably 0.050% or less.
- Zr 0.001-0.500%
- Zr is an element that increases the strength of a hot-rolled steel sheet by solid solution strengthening.
- the Zr content is preferably 0.001% or more.
- the Zr content is more preferably is 0.005% or more, and more preferably 0.010% or more.
- the Zr content is set to 0.500% or less.
- the Zr content is preferably 0. It is preferably 0.300% or less, and more preferably 0.100% or less.
- Co is an element that increases the strength of a hot-rolled steel sheet by solid solution strengthening.
- the Co content is preferably 0.001% or more.
- the Co content is more preferably is 0.005% or more, and more preferably 0.010% or more.
- the Co content is set to 3.000% or less.
- the Co content is preferably 1. It is preferably 0.000% or less, and more preferably 0.500% or less.
- Zn 0.001-0.200%
- Zn is an element that increases the strength of a hot-rolled steel sheet by solid solution strengthening.
- the Zn content is preferably 0.001% or more.
- the Zn content is more preferably is 0.005% or more, and more preferably 0.010% or more.
- the Zn content is set to 0.200% or less.
- the Zn content is preferably 0. .150% or less, more preferably 0.100% or less.
- W 0.001-0.200%
- W is an element that increases the strength of a hot-rolled steel sheet by solid solution strengthening.
- the W content is preferably 0.001% or more.
- the W content is more preferably is 0.005% or more, and more preferably 0.010% or more.
- the W content is set to 0.200% or less.
- the W content is preferably 0. .150% or less, more preferably 0.100% or less.
- Sb 0.001-0.500%
- Sb is an element that suppresses the generation of oxides that are the starting points of fracture, thereby improving the ductility and hole expandability of the hot-rolled steel sheet.
- the Sb content is set to 0.001
- the Sb content is preferably 0.005% or more, and more preferably 0.10% or more.
- the Sb content is set to 0.500% or less.
- the Sb content is preferably 0.300% or less, and more preferably 0.100% or less. % or less.
- As is an element that reduces the austenite single-phase temperature, thereby refining prior austenite grains and improving the hole expandability of the hot-rolled steel sheet. To reliably obtain this effect, the As content should be kept at 0.
- the As content is preferably 0.001% or more.
- the As content is more preferably 0.005% or more, and even more preferably 0.010% or more.
- the As content is set to 0.050% or less.
- the As content is preferably set to 0.040% or less, and more preferably set to 0.030% or less. % or less.
- Sn is an element that suppresses the generation of oxides that are the starting points of fracture, thereby improving the ductility and hole expandability of hot-rolled steel sheets.
- the Sn content is 0.001% or more.
- the Sn content is more preferably 0.005% or more, and even more preferably 0.010% or more.
- the Sn content is set to 0.050% or less.
- the Sn content is preferably 0.040% or less, and more preferably 0.030% or less. % or less.
- the chemical composition of the above-mentioned hot-rolled steel sheet may be analyzed using a spark discharge optical emission spectrometer or the like. Note that, for C and S, values identified by burning in an oxygen stream using a gas composition analyzer or the like and measuring by an infrared absorption method are adopted. For N, values identified by melting a test piece taken from the steel sheet in a helium stream and measuring by a thermal conductivity method are adopted. When the hot-rolled steel sheet has a plating layer on the surface, the plating layer may be removed by mechanical grinding or the like, as necessary, before analyzing the chemical composition.
- a peak position of ⁇ where the maximum value A is located is defined as ⁇ A
- a peak position of ⁇ where the maximum value B is located is defined as ⁇ B
- the texture is defined in a region from the end face to a 1/4 position in the width direction and from the surface to a depth of 500 ⁇ m in the sheet thickness direction.
- the 1/4 position in the width direction from the end face here means a w/4 position from the end face in the width direction, where w is the length in the width direction. That is, "x/y position from the end face (here, x and y are natural numbers satisfying x ⁇ y)" means a position moved in the width direction from the end face in the width direction of the steel plate toward the center of the steel plate by a distance of x/y of the plate width.
- plate thickness x/y position refers to a position moved in the plate thickness direction from the surface (plate surface) of the steel plate in the plate thickness direction toward the center of the steel plate by a distance (depth) of x/y of the plate thickness t.
- depth the distance of x/y of the plate thickness t.
- the "surface of the steel sheet” means the interface between the steel sheet and the coating
- the "sheet thickness t” means the thickness of the steel sheet (base material) excluding the coating.
- ⁇ 2 , ⁇ , and ⁇ 1 in the crystal orientation distribution function are rotation angles in each of Bunge's Euler notations shown in FIG. 4 of Light Metals 60 (2010), 12, pp. 666-675.
- the maximum values A and B, and the peak positions of ⁇ at which these maximum values are located, are measured by the following method.
- a sample is taken at a quarter position in the width direction from the end face of the hot-rolled steel sheet so that the metal structure of the cross section (thickness direction x rolling direction cross section) normal to the width direction can be observed.
- the size of the sample depends on the measuring device, but it may be, for example, a rectangular parallelepiped with the full thickness in the thickness direction, 15 mm in the rolling direction, and 10 mm in the width direction.
- the observation surface of the sample is mirror-polished, and then polished for 8 minutes at room temperature using colloidal silica that does not contain an alkaline solution to remove the strain introduced into the surface of the sample.
- the region from the surface of the polished sample to a depth of 500 ⁇ m in the thickness direction and the region of 2000 ⁇ m or more at any position in the rolling direction are measured at measurement intervals of 5.0 ⁇ m.
- a device combining a scanning electron microscope and an EBSD analyzer and an OIM Analysis (registered trademark) manufactured by TSL are used.
- the above sample is analyzed using the EBSD (Electron Back Scattering Diffraction) method.
- the crystal orientation distribution function (ODF: Orientation Distribution Function) is calculated from the obtained orientation data.
- the rolling direction of the hot-rolled steel sheet is determined by the following method.
- a test piece is taken so that a cross section parallel to the plate surface of the hot-rolled steel sheet can be observed.
- a cross section at a position where the distance from the surface is 1/4 of the plate thickness is mirror-polished and then observed using an optical microscope.
- the observation range is 500 ⁇ m ⁇ 500 ⁇ m or more, and the direction parallel to the extension direction of the crystal grains is determined to be the rolling direction.
- the direction perpendicular to the determined rolling direction is determined to be the width direction of the hot-rolled steel sheet.
- the absolute value of the difference between maximum value A and maximum value B at the position 1/4 from the end face in the width direction, the absolute value of the difference between maximum value A and maximum value B at the position 1/4-15 mm from the end face in the width direction, and the absolute value of the difference between maximum value A and maximum value B at the position 1/4+15 mm from the end face in the width direction are all set to 3.0 or less.
- the position 1/4+15 mm in the width direction from the end face here refers to a position 15 mm away from the "w/4 position from the end face in the width direction" in the opposite direction to the end face, where w is the length in the width direction.
- the position 1/4-15 mm in the width direction from the end face here refers to a position 15 mm away from the "w/4 position from the end face in the width direction" in the direction of the end face, where w is the length in the width direction.
- the absolute value of the difference between maximum value A and maximum value B at each position is obtained by performing EBSD analysis using the method described above at a position 1/4 of the way from the end face in the width direction, a position 1/4-15 mm in the width direction from the end face, and a position 1/4+15 mm in the width direction from the end face, and calculating the crystal orientation distribution function.
- the metal structure of the hot-rolled steel sheet according to this embodiment will be described.
- the area ratio of the region where the GAM value exceeds 0.6° is 50% or more, and the sum of the area ratio of the region where the GAM value exceeds 3.0° and the area ratio of retained austenite is less than 15%.
- the metal structure is defined at a position that is 1/4 the width from the end face and 1/4 the depth from the surface in the plate thickness direction.
- the area ratio of the region where the GAM value is more than 0.6° is set to 50% or more.
- the area ratio of the region where the GAM value is more than 0.6° is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more.
- the area ratio of the region where the GAM value exceeds 0.6° may be set to 100%.
- Sum of the area ratio of the region where the GAM value is more than 3.0° and the area ratio of the retained austenite less than 15% If the sum of the area ratio of the region where the GAM value is more than 3.0° and the area ratio of the retained austenite is 15% or more, the desired hole expandability may not be obtained in the hot-rolled steel sheet. Therefore, the sum of the area ratio of the region where the GAM value is more than 3.0° and the area ratio of the retained austenite is less than 15%.
- the sum of the area ratio of the region where the GAM value is more than 3.0° and the area ratio of the retained austenite is preferably 10% or less, more preferably 5% or less.
- the sum of the area ratio of the region where the GAM value exceeds 3.0° and the area ratio of the retained austenite may be 0% or may be 1% or more.
- the hot-rolled steel sheet according to this embodiment has the above-mentioned chemical composition, texture, and metal structure, and may have either the first or second metal structure described below, depending on the desired strength, ductility, and tensile bending properties.
- the first aspect is a metal structure suitable for cases where a higher level of strength and ductility is required.
- the area ratio of the region where the GAM value is more than 0.6° and less than 2.0° is preferably 60% or more, more preferably 70% or more.
- the area ratio of the region where the GAM value is more than 0.6° and less than 2.0° may be 100%.
- the remaining structure other than the areas where the GAM value is greater than 0.6° and less than 2.0° may include areas where the GAM value is 2.0° or more and areas where the GAM value is 0.6° or less, with a total area ratio of 0 to 50%.
- the second aspect is a metal structure suitable for cases where relatively higher strength is required.
- the area ratio of the region where the GAM value is 2.0° or more is preferably 60% or more, more preferably 70% or more.
- the area ratio of the region having a GAM value of 2.0° or more may be 100%.
- the remaining structure other than the area where the GAM value is 2.0° or more may include an area ratio of 0 to 50% where the GAM value is less than 2.0°.
- the area ratio of the region where the GAM value exceeds 0.6°, the area ratio of the region where the GAM value is greater than 0.6° and less than 2.0°, the area ratio of the region where the GAM value is 2.0° or more, and the area ratio of the region where the GAM value is greater than 3.0° are measured by the following method.
- the "GAM value" of each structure of the hot-rolled steel sheet is measured by the EBSP (Electron Backscatter Pattern) method.
- a sample is taken at a 1/4 position in the width direction from the end face of the hot-rolled steel sheet so that the metal structure of the cross section (thickness direction x rolling direction cross section) with the width direction as the normal direction can be observed.
- the size of the sample depends on the measuring device, but it may be, for example, a rectangular parallelepiped with a total thickness in the thickness direction, 15 mm in the rolling direction, and 10 mm in the width direction.
- the observation surface of the sample is mirror-polished, and then polished for 8 minutes at room temperature using colloidal silica that does not contain an alkaline solution to remove the strain introduced into the surface of the sample.
- a region of 200 ⁇ m from the surface of the sample after the above polishing at a 1/4 depth position in the thickness direction and 400 ⁇ m or more at any position in the rolling direction is measured at a measurement interval of 0.2 ⁇ m to obtain crystal orientation information.
- an EBSD analysis device consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (HIKARI detector manufactured by TSL) is used. At this time, the degree of vacuum in the EBSD analysis device is 9.6 ⁇ 10 ⁇ 5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the electron beam irradiation level is 62.
- the "Phase Map” function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer is used to identify regions with fcc crystal structure and regions with bcc crystal structure.
- the region with bcc crystal structure a region surrounded by grain boundaries with an orientation difference of 15° or more is regarded as one crystal grain, and the GAM value of the crystal grain is calculated by calculating the average orientation difference between adjacent pixels within the crystal grain.
- the area ratio of each region is obtained by calculating the area ratio of crystal grains with the obtained GAM value exceeding 0.6°, the area ratio of crystal grains with an orientation difference of more than 0.6° and less than 2.0°, the area ratio of crystal grains with an orientation difference of 2.0° or more, and the area ratio of crystal grains with an orientation difference of more than 3.0°.
- the area ratio of retained austenite is measured by the following method.
- a sample is taken so that the metal structure can be observed in a region of 1 mm or more at any position in the rolling direction and 1 mm or more from the end face in the cross section at 1/4 position in the sheet thickness direction from the surface of the hot-rolled steel sheet.
- the sample is subjected to Co-K ⁇ radiation to obtain the integrated intensity of a total of six peaks, ⁇ (110), ⁇ (200), ⁇ (211), ⁇ (111), ⁇ (200), and ⁇ (220).
- the volume ratio of retained austenite is calculated from the integrated intensity using the intensity averaging method.
- the obtained volume ratio of retained austenite is regarded as the area ratio of retained austenite.
- the tensile strength may be 940 MPa or more.
- the upper limit of the tensile strength does not need to be particularly limited, but from the viewpoint of suppressing die wear, it may be 1400 MPa or less.
- Uniform elongation 3.0% or more
- the uniform elongation may be 3.0% or more.
- it can be suitably applied to automobile parts.
- the tensile strength and uniform elongation are measured by performing a tensile test in accordance with JIS Z 2241: 2022 using a No. 5 test piece of JIS Z 2241: 2022.
- the tensile test piece is taken from the center position in the width direction, and the direction perpendicular to the rolling direction and the plate thickness direction (width direction) is defined as the longitudinal direction.
- a minute test piece with the width direction as the longitudinal direction can be used instead as the test piece for measuring the tensile strength.
- the hole expansion ratio may be 40% or more. By setting the hole expansion ratio to 40% or more, it can be suitably applied to automobile parts. There is no need to particularly limit the upper limit of the hole expansion ratio, but it may be 80% or less.
- the hole expansion ratio is measured by performing a hole expansion test in accordance with JIS Z 2256:2020.
- Tensile bending properties can be evaluated by performing a tension bending test by the method shown in Fig. 1.
- LMAX / L0 when the tension bending test is performed in the rolling direction or width direction is used as an index of the tension bending properties.
- the rolling direction is arranged in the direction of L 0 in FIG. 1, the punch is pressed down, and the amount of pressing h when the steel sheet breaks is measured.
- the amount of pressing h is the stroke amount (mm) of the punch from when the punch contacts the steel sheet to when it breaks.
- L MAX is calculated as twice the length L in FIG.
- LMAX / L0 may be 1.028 or more when a tension bending test is performed in the rolling direction.
- LMAX / L0 is 1.028 or more when a tension bending test is performed in the rolling direction, it can be determined that the steel sheet has excellent tension bending properties in the rolling direction.
- L MAX /L 0 is 1.028 or more when a tension bending test is carried out in the width direction, it can be determined that the material has excellent tension bending properties also in the width direction.
- LMAX / L0 may be 1.018 or more when a tension bending test is performed in the rolling direction.
- the tensile strength is 1040 MPa or more
- LMAX / L0 is 1.018 or more when a tension bending test is performed in the rolling direction
- L MAX /L 0 is 1.018 or more when a tension bending test is carried out in the width direction
- the material has excellent tension bending properties also in the width direction.
- the tension bending test shown in Fig. 1 is performed under the following conditions.
- the pressing force applied by the blank holder may be such that the hot-rolled steel sheet does not move.
- the initial thickness t0 of the hot-rolled steel sheet before the test is 1.5 mm.
- one surface of the hot-rolled steel sheet is mechanically ground to a thickness of 1.5 mm, and the mechanically ground surface is then placed on the punch side to perform the test.
- the thickness of the hot-rolled steel plate is thinner than 1.5 mm, the test is performed without mechanical grinding.
- the tensile bending properties are evaluated using the index L MAX /L 0 - (1.5 - t 0 ) x 0.0242 instead of L MAX /L 0 .
- each embodiment may have the following strength, ductility, and tensile bending properties. Note that the desired hole expansion properties are the same in both embodiments, so explanations are omitted.
- Tensile strength 940 MPa or more, uniform elongation: 4.0% or more
- the tensile strength may be 940 MPa or more
- the uniform elongation may be 4.0% or more
- the tensile strength may be 980 MPa or less.
- the uniform elongation may be 5.0% or less.
- L MAX /L 0 may be set to 1.028 or more when a tension bending test is carried out in the rolling direction. In the first aspect, L MAX /L 0 may be 1.028 or more when a tension bending test is performed in the width direction.
- Tensile strength 1040 MPa or more, uniform elongation: 3.0% or more
- the tensile strength may be 1040 MPa or more, and the uniform elongation may be 3.0% or more.
- the tensile strength may be 1080 MPa or less.
- the uniform elongation may be 4.0% or less.
- L MAX /L 0 may be set to 1.018 or more when a tension bending test is carried out in the rolling direction. In the second aspect, L MAX /L 0 may be 1.018 or more when a tension bending test is performed in the width direction.
- the hot-rolled steel sheet according to this embodiment may be provided with a plating layer on the surface for the purpose of improving corrosion resistance, etc., to form a surface-treated steel sheet.
- the plating layer may be an electroplating layer or a hot-dip plating layer.
- electroplating layers include electrogalvanizing and electrogalvanizing Zn-Ni alloy plating.
- hot-dip plating layers include hot-dip galvanizing, alloyed hot-dip galvanizing, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, and hot-dip Zn-Al-Mg-Si alloy plating.
- an appropriate chemical conversion treatment for example, applying a silicate-based chromium-free chemical conversion treatment solution and drying
- the hot-rolled steel sheet according to this embodiment can be stably manufactured.
- the temperature of the slab and the temperature of the steel sheet in this embodiment refer to the surface temperature of the slab and the surface temperature of the steel sheet.
- Steps (1) to (3) described below are common to the first and second aspects. As for the subsequent steps, steps (4) and (5) correspond to the first aspect, and step (6) corresponds to the second aspect.
- a preferred method for producing a hot-rolled steel sheet according to this embodiment is as follows: (1) before rough rolling, a step of applying strain to a slab having the above-mentioned chemical composition one or more times so that the width direction strain is 3 to 15% in total; (2) performing rough rolling on the strained slab; (3) performing finish rolling so that the difference in the entry temperature between the immediately preceding final pass and the final pass is 30° C. or more and the finish rolling completion temperature is in a temperature range of 920° C. or more; Furthermore, the method includes one or more of the following steps (4) to (6).
- Imparting strain before rough rolling common to the first and second embodiments Before rough rolling, a slab having the above-mentioned chemical composition is subjected to one or more strains so that the total width direction strain is 3 to 15%. This can reduce the unevenness of the surface layer of the slab while increasing the uniformity of the texture.
- the imparting of strain may be performed after the slab is heated for rough rolling. If the strain imparted in the width direction of the slab is less than 3% or more than 15% in total, the peak positions of the maximum values A and B in the texture of the hot-rolled steel sheet may not be controlled within a preferred range.
- the "width direction of the slab” refers to a direction perpendicular to the transport direction and thickness direction of the slab, and the transport direction of the slab corresponds to the rolling direction in the subsequent process.
- the total strain imparted to the slab in the width direction can be expressed as (1-w1/w0) x 100 (%), where w0 is the width direction length of the slab before the first strain is imparted, and w1 is the width direction length of the slab after the final strain is imparted.
- a method for imparting strain in the width direction of a slab includes, for example, passing the slab between rolls whose rotation axes are perpendicular to the plate surface and conveying direction of the slab to impart strain in the width direction to the slab (pressing down in the width direction).
- the slab to which strain is applied is not particularly limited except for the chemical composition described above.
- a slab produced by melting molten steel of the above chemical composition using a converter or electric furnace, etc. and then by continuous casting can be used.
- an ingot casting method, thin slab casting method, etc. may be used.
- the heating temperature may be in the range of 1100 to 1300°C.
- Rough rolling common to the first and second aspects
- the conditions of rough rolling are not particularly limited, and the rough rolling can be, for example, a process in which rolling is performed multiple times at a temperature of 1100 ° C. or higher to reduce the plate thickness to 30 to 60 mm.
- finish rolling is performed so that the difference in the entry temperature between the pass immediately before the final pass and the final pass is 30°C or more, and the finish rolling completion temperature is in a temperature range of 920°C or more. If the difference in the entry temperature between the pass immediately before the final pass and the final pass is less than 30°C, the peak positions of maximum value A and maximum value B in the texture of the hot-rolled steel sheet may not be controlled to a preferred range. Also, if the finish rolling completion temperature is less than 920°C, maximum value A and maximum value B cannot be controlled to a preferred value.
- Examples of a method for making the difference in the inlet temperature between the immediately preceding final pass and the final pass 30°C or more include controlling the amount of coolant such as water sprayed from a cooling device such as a cooling spray immediately after rolling, or controlling the conveying speed of the steel sheet during rolling.
- the pass immediately before the final pass refers to the pass immediately before the final pass.
- the pass immediately before the final pass refers to the pass F6.
- the finish rolling completion temperature refers to the temperature at the outlet of the final pass of finish rolling.
- Slow cooling (air cooling) in a temperature range of 580 to 680°C corresponds to the first embodiment. After the completion of finish rolling, accelerated cooling is performed to a temperature range of 580 to 680°C at an average cooling rate of 30°C/s or more, and slow cooling (air cooling) is performed in this temperature range for 2.0 seconds or more.
- slow cooling air cooling
- the area ratio of the region where the GAM value is more than 0.6° and less than 2.0° can be increased.
- slow cooling (air cooling) refers to cooling at an average cooling rate of 20° C./s or less.
- Accelerated cooling after completion of slow cooling corresponds to the first embodiment After completion of slow cooling (air cooling) in the temperature range of 580 to 680° C. (first embodiment), accelerated cooling is performed at an average cooling rate of 30° C./s or more until the temperature reaches 300° C. After completion of slow cooling (air cooling), accelerated cooling is performed at an average cooling rate of 30° C./s or more until the temperature reaches 300° C., whereby a desired metal structure can be obtained. After accelerated cooling to 300° C., the wire may be left to cool to room temperature or may be wound into a coil and then water-cooled.
- Accelerated cooling down to 300° C. Corresponding to the second embodiment After the completion of finish rolling, accelerated cooling is performed at an average cooling rate of 30° C./s or more down to 300° C. By performing accelerated cooling down to 300° C. at an average cooling rate of 30° C./s or more without performing slow cooling (air cooling) during the accelerated cooling, the area ratio of the region having a GAM value of 2.0° or more can be increased. After accelerated cooling to 300° C., the wire may be left to cool to room temperature or may be wound into a coil and then water-cooled.
- the average cooling rate is the temperature difference between the start and end points of the set range divided by the elapsed time from the start point to the end point.
- the conditions in the embodiment are merely an example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this example of conditions.
- Various conditions may be adopted in the present invention as long as they do not deviate from the gist of the present invention and achieve the object of the present invention.
- accelerated cooling was performed at an average cooling rate of 30°C/s or more to the "start temperature of slow cooling" in the table.
- Slow cooling was performed by air cooling, and the average cooling rate during slow cooling was 20°C/s or less.
- accelerated cooling was performed at the "average cooling rate after completion of slow cooling until the temperature reaches 300°C" in the table. After accelerated cooling was stopped, coiling was performed immediately.
- the obtained hot-rolled steel sheets were evaluated for texture, metal structure, tensile strength (TS), uniform elongation (uEl), hole expansion ratio ( ⁇ ) and tensile bending properties (L MAX /L 0 in the rolling direction (L direction) and L MAX /L 0 in the width direction (C direction)) by the above-mentioned methods.
- the results obtained are shown in Tables 4A to 5C.
- the value L MAX /L 0 - (1.5 - t 0 ) x 0.0242 was recorded instead of L MAX /L 0 .
- TS tensile strength
- the hole expansion ratio ( ⁇ ) was 40% or more, it was judged to have excellent hole expansion properties and to pass. On the other hand, if the hole expansion ratio ( ⁇ ) was less than 40%, it was judged to have no excellent hole expansion properties and to fail.
- the tensile bending properties were evaluated according to the following criteria depending on the tensile strength.
- the tensile strength is less than 1,040 MPa
- the tensile bending property (L MAX /L 0 in the rolling direction (L direction)): 1.028 or more is pass, and less than 1.028 is fail.
- L MAX /L 0 in the width direction (C direction) was 1.028 or more
- the sheet had excellent tensile bending properties in the width direction as well.
- the tensile strength is 1040 MPa or more
- the tensile bending property (L MAX /L 0 in the rolling direction (L direction)): 1.018 or more is pass, and less than 1.018 is fail.
- L MAX /L 0 in the width direction (C direction) was 1.018 or more, it was determined that the sheet had excellent tensile bending properties also in the width direction.
- the hot-rolled steel sheets according to the examples of the present invention have high strength, as well as excellent ductility and hole expandability, and also have excellent tensile bending properties in the rolling direction.
- the steel sheets according to the comparative examples are inferior in at least one of the characteristics.
- a hot-rolled steel sheet having high strength, excellent ductility and hole expandability, and excellent tensile bending properties in the rolling direction. Furthermore, according to a preferred embodiment of the present invention, it is possible to provide a hot-rolled steel sheet having not only the above-mentioned properties but also excellent tensile bending properties in the width direction.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、熱延鋼板に関する。具体的には、本発明は、高い強度、並びに、優れた延性および穴広げ性を有し、且つ圧延方向において優れた張力曲げ特性を有する熱延鋼板に関する。
本願は、2023年1月31日に、日本に出願された特願2023-013128号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a hot rolled steel sheet. In particular, the present invention relates to a hot rolled steel sheet having high strength, excellent ductility and hole expansion properties, and excellent tensile bending properties in the rolling direction.
This application claims priority based on Japanese Patent Application No. 2023-013128, filed on January 31, 2023, the contents of which are incorporated herein by reference.
近年、自動車部品の軽量化が進められている。部品形状を最適な形状に設計することで剛性を確保することにより、自動車部品の軽量化が可能である。さらに、プレス成形部品等のブランク成形部品では、部品材料の板厚を減少させることで軽量化が可能となる。 In recent years, there has been progress in reducing the weight of automotive parts. It is possible to reduce the weight of automotive parts by ensuring rigidity through optimal design of the part shape. Furthermore, in the case of blank formed parts such as press molded parts, weight can be reduced by reducing the plate thickness of the part material.
板厚を減少させながら静破壊強度および降伏強度などの部品の強度特性を確保しようとした場合、強度の高い高強度材料を用いることが必要となる。自動車部品は鋼板に様々な加工を施すことで製造されるため、自動車部品に適用される鋼板は成形性、特に延性および穴広げ性に優れることが要求される。 When trying to maintain the strength properties of parts, such as static fracture strength and yield strength, while reducing plate thickness, it is necessary to use high-strength materials. Automotive parts are manufactured by subjecting steel plate to various processes, so steel plate used in automotive parts is required to have excellent formability, especially ductility and hole expansion properties.
自動車部品の製造時には、鋼板は張力を付与されながら曲げ加工される場合がある。張力を付与されながらの曲げ加工は、鋼板の圧延方向に沿って行われることが多い。そのため、自動車部品に適用される鋼板は、特に圧延方向において張力曲げ特性に優れることも要求される。 When manufacturing automotive parts, steel sheets may be bent while tension is applied. Bending while tension is applied is often performed along the rolling direction of the steel sheet. Therefore, steel sheets used in automotive parts are required to have excellent tensile bending properties, especially in the rolling direction.
例えば、特許文献1には、面積分率で70%以上のフェライトと、パーライトとからなる組織とを備え、6~25mmの板厚T0を有し、板厚内部のフェライト粒の平均粒径GCは5~15μmであり、前記熱延鋼板は、表面から板厚方向に形成され、フェライト粒の平均粒径が前記平均粒径GCの1.0倍未満である細粒層を備え、前記細粒層は、前記フェライト粒の平均粒径が前記平均粒径GCの0.1~0.4倍の特定細粒層を含み、前記特定細粒層の厚さをTF0とし、前記細粒層のうち、前記フェライト粒の平均粒径が前記平均粒径GCの0.1倍未満となる極細粒層の厚さをTF1とした場合、所定の式を満たし、前記特定細粒層および前記極細粒層の前記フェライト粒の平均粒径が前記平均粒径GCの0.1~0.4倍である、熱延鋼板が開示されている。 For example, Patent Document 1 discloses a hot-rolled steel sheet having a structure consisting of 70% or more ferrite and pearlite in terms of area fraction, a sheet thickness T0 of 6 to 25 mm, an average grain size GC of the ferrite grains inside the sheet thickness of 5 to 15 μm, the hot-rolled steel sheet having a fine grain layer formed from the surface in the sheet thickness direction and having an average grain size of the ferrite grains less than 1.0 times the average grain size GC, the fine grain layer including a specific fine grain layer having an average grain size of the ferrite grains of 0.1 to 0.4 times the average grain size GC, and satisfying a predetermined formula when the thickness of the specific fine grain layer is TF0 and the thickness of an ultrafine grain layer of the fine grain layer in which the average grain size of the ferrite grains is less than 0.1 times the average grain size GC is TF1, and the average grain size of the ferrite grains of the specific fine grain layer and the ultrafine grain layer is 0.1 to 0.4 times the average grain size GC.
特許文献2には、最表層から板厚1/6厚までの領域における板厚断面の{110}<111>~{110}<001>方位群のランダム強度比が3.5以下であることを特徴とする穴拡げ性と溶接部疲労特性に優れた高強度熱延鋼板が開示されている。 Patent Document 2 discloses a high-strength hot-rolled steel sheet with excellent hole expandability and weld fatigue properties, characterized in that the random strength ratio of the {110}<111> to {110}<001> orientation group in the thickness cross section in the region from the outermost layer to 1/6 of the sheet thickness is 3.5 or less.
しかしながら、特許文献1および2では圧延方向の張力曲げ特性について考慮されていない。 However, Patent Documents 1 and 2 do not take into consideration the tensile bending characteristics in the rolling direction.
上記実情に鑑み、本発明は、高い強度、並びに、優れた延性および穴広げ性を有し、且つ圧延方向において優れた張力曲げ特性を有する熱延鋼板を提供することを目的とする。 In view of the above circumstances, the present invention aims to provide a hot-rolled steel sheet that has high strength, excellent ductility and hole expansion properties, and excellent tensile bending properties in the rolling direction.
本発明者らは、熱延鋼板の表層領域(表面から板厚方向に500μm深さまでの領域)における集合組織の結晶方位分布関数において、φ2=45°断面でのΦ=0~60°、且つ、φ1=50~90°の範囲内における最大値A、およびφ2=45°断面でのΦ=120~180°、且つ、φ1=50~90°の範囲内における最大値Bを制御し、且つこれら最大値が位置するΦのピーク位置を所望の範囲内とすることで、熱延鋼板の曲げ性をより向上でき、且つ、張力曲げ特性を向上できることを知見した。 The present inventors have found that, in the crystal orientation distribution function of the texture in the surface region of a hot-rolled steel sheet (the region from the surface to a depth of 500 μm in the sheet thickness direction), by controlling the maximum value A in the range of Φ= 0 to 60° and Φ1 =50 to 90° at a φ2 =45° cross section, and the maximum value B in the range of Φ=120 to 180° and Φ1 =50 to 90° at a φ2=45° cross section, and by setting the peak positions of Φ where these maximum values are located within desired ranges, the bendability of the hot-rolled steel sheet can be further improved and the tensile bending characteristics can be improved.
また、本発明者らは、熱延鋼板の表層領域において集合組織を好ましく制御するためには、熱間圧延の粗圧延条件および仕上げ圧延条件を制御することが効果的であることを知見した。 The inventors also discovered that controlling the rough rolling conditions and finish rolling conditions of hot rolling is effective in controlling the texture in the surface region of a hot-rolled steel sheet.
上記知見に基づいてなされた本発明の要旨は以下の通りである。
(1)本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C :0.045~0.120%、
Si:0~3.00%、
Mn:1.20~2.60%、
Ti:0.020~0.180%、
Al:0.010~0.400%、
P :0.080%以下、
S :0.0100%以下、
N :0.0050%以下、
O :0.010%以下、
Nb:0~0.100%、
V :0~1.000%、
Cu:0~1.000%、
Cr:0~2.000%、
Mo:0~3.000%、
Ni:0~0.500%、
B :0~0.0100%、
Ca:0~0.0500%、
Mg:0~0.0500%、
REM:0~0.100%、
Bi:0~0.100%、
Ta:0~0.100%、
Zr:0~0.500%、
Co:0~3.000%、
Zn:0~0.200%、
W :0~0.200%、
Sb:0~0.500%、
As:0~0.050%、および
Sn:0~0.050%を含有し、
残部がFeおよび不純物からなり、
端面から幅方向に1/4位置、且つ、表面から板厚方向に500μm深さまでの領域における集合組織の結晶方位分布関数において、
φ2=45°断面でのΦ=0~60°、且つ、φ1=50~90°の範囲内における最大値Aが6.0以下であり、
前記φ2=45°断面でのΦ=120~180°、且つ、φ1=50~90°の範囲内における最大値Bが6.0以下であり、
前記最大値Aが位置するΦのピーク位置をΦAとし、前記最大値Bが位置するΦのピーク位置をΦBとしたとき、|ΦA-35°|が10°以下であり、且つ、|ΦB-145°|が10°以下であり、
前記表面から前記板厚方向に1/4深さの位置の金属組織において、
GAM値が0.6°超である領域の面積率が50%以上であり、
前記GAM値が3.0°超である領域の面積率と、残留オーステナイトの面積率との合計が15%未満である。
(2)上記(1)に記載の熱延鋼板は、前記化学組成が、質量%で、
Nb:0.001~0.100%、
V :0.001~1.000%、
Cu:0.001~1.000%、
Cr:0.001~2.000%、
Mo:0.001~3.000%、
Ni:0.001~0.500%、
B :0.0001~0.0100%、
Ca:0.0001~0.0500%、
Mg:0.0001~0.0500%、
REM:0.001~0.100%、
Bi:0.001~0.100%、
Ta:0.001~0.100%、
Zr:0.001~0.500%、
Co:0.001~3.000%、
Zn:0.001~0.200%、
W :0.001~0.200%、
Sb:0.001~0.500%、
As:0.001~0.050%、および
Sn:0.001~0.050%
からなる群から選択される1種以上を含有してもよい。
(3)上記(1)または(2)に記載の熱延鋼板は、
前記表面から前記板厚方向に500μm深さまでの領域における前記集合組織の結晶方位分布関数において、
前記端面から前記幅方向に1/4位置、前記端面から前記幅方向に1/4-15mm位置および前記端面から前記幅方向に1/4+15mm位置のそれぞれにおいて、前記最大値Aと前記最大値Bとの差の絶対値が3.0以下であってもよい。
(4)上記(1)~(3)のいずれか1項に記載の熱延鋼板は、
前記表面から前記板厚方向に1/4深さの位置の前記金属組織において、
前記GAM値が0.6°超、2.0°未満である領域の面積率が50%以上であってもよい。
(5)上記(1)~(3)のいずれか1項に記載の熱延鋼板は、
前記表面から前記板厚方向に1/4深さの位置の前記金属組織において、
前記GAM値が2.0°以上である領域の面積率が50%以上であってもよい。
The gist of the present invention, which has been made based on the above findings, is as follows.
(1) A hot-rolled steel sheet according to one embodiment of the present invention has a chemical composition, in mass%,
C: 0.045-0.120%,
Si: 0-3.00%,
Mn: 1.20-2.60%,
Ti: 0.020 to 0.180%,
Al: 0.010-0.400%,
P: 0.080% or less,
S: 0.0100% or less,
N: 0.0050% or less,
O: 0.010% or less,
Nb: 0 to 0.100%,
V: 0 to 1.000%,
Cu: 0 to 1.000%,
Cr: 0-2.000%,
Mo: 0-3.000%,
Ni: 0 to 0.500%,
B: 0 to 0.0100%,
Ca: 0-0.0500%,
Mg: 0 to 0.0500%,
REM: 0-0.100%,
Bi: 0-0.100%,
Ta: 0-0.100%,
Zr: 0 to 0.500%,
Co: 0-3.000%,
Zn: 0-0.200%,
W: 0-0.200%,
Sb: 0 to 0.500%,
Contains As: 0 to 0.050% and Sn: 0 to 0.050%;
The balance is Fe and impurities,
In the crystal orientation distribution function of the texture in the region from the end face to a 1/4 position in the width direction and from the surface to a depth of 500 μm in the sheet thickness direction,
The maximum value A in the range of Φ=0 to 60° and Φ= 50 to 90° at the cross section of φ 2 =45° is 6.0 or less;
the maximum value B in the range of Φ=120 to 180° and φ1 =50 to 90° at the φ2 =45° cross section is 6.0 or less;
When the peak position of Φ where the maximum value A is located is defined as Φ A , and the peak position of Φ where the maximum value B is located is defined as Φ B , |Φ A -35°| is 10° or less, and |Φ B -145°| is 10° or less;
In the metal structure at a position of 1/4 depth from the surface in the plate thickness direction,
The area ratio of the region having a GAM value exceeding 0.6° is 50% or more,
The sum of the area ratio of the region in which the GAM value exceeds 3.0° and the area ratio of retained austenite is less than 15%.
(2) The hot-rolled steel sheet according to the above (1), wherein the chemical composition is, in mass%,
Nb: 0.001 to 0.100%,
V: 0.001 to 1.000%,
Cu: 0.001 to 1.000%,
Cr: 0.001-2.000%,
Mo: 0.001-3.000%,
Ni: 0.001 to 0.500%,
B: 0.0001 to 0.0100%,
Ca: 0.0001-0.0500%,
Mg: 0.0001-0.0500%,
REM: 0.001-0.100%,
Bi: 0.001-0.100%,
Ta: 0.001 to 0.100%,
Zr: 0.001 to 0.500%,
Co: 0.001 to 3.000%,
Zn: 0.001-0.200%,
W: 0.001-0.200%,
Sb: 0.001 to 0.500%,
As: 0.001 to 0.050%, and Sn: 0.001 to 0.050%
may contain one or more selected from the group consisting of:
(3) The hot-rolled steel sheet according to (1) or (2) above,
In the crystal orientation distribution function of the texture in the region from the surface to a depth of 500 μm in the sheet thickness direction,
The absolute value of the difference between the maximum value A and the maximum value B may be 3.0 or less at each of a 1/4 position from the end face in the width direction, a 1/4-15 mm position from the end face in the width direction, and a 1/4+15 mm position from the end face in the width direction.
(4) The hot-rolled steel sheet according to any one of (1) to (3) above,
In the metal structure at a position of ¼ depth from the surface in the plate thickness direction,
The area ratio of the region in which the GAM value is more than 0.6° and less than 2.0° may be 50% or more.
(5) The hot-rolled steel sheet according to any one of (1) to (3) above,
In the metal structure at a position of ¼ depth from the surface in the plate thickness direction,
The area ratio of the region having a GAM value of 2.0° or more may be 50% or more.
本発明に係る上記態様によれば、高い強度、並びに、優れた延性および穴広げ性を有し、且つ圧延方向において優れた張力曲げ特性を有する熱延鋼板を提供することができる。
また、本発明に係る好ましい態様によれば、上記諸特性を有した上で更に、幅方向においても優れた張力曲げ特性を有する熱延鋼板を提供することができる。
According to the above-described aspects of the present invention, it is possible to provide a hot-rolled steel sheet having high strength, excellent ductility and hole expandability, and excellent tensile bending properties in the rolling direction.
Furthermore, according to a preferred embodiment of the present invention, it is possible to provide a hot-rolled steel sheet having not only the above-mentioned properties but also excellent tensile bending properties in the width direction.
以下、本実施形態に係る熱延鋼板について、詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 The hot-rolled steel sheet according to this embodiment will be described in detail below. However, the present invention is not limited to the configuration disclosed in this embodiment, and various modifications are possible without departing from the spirit of the present invention.
なお、以下に記載する「~」を挟んで記載される数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」、「超」と示す数値には、その値が数値範囲に含まれない。化学組成についての「%」は全て「質量%」のことを指す。 Note that the numerical ranges described below with "~" include the lower and upper limits. Values marked "less than" and "greater than" are not included in the numerical range. All "%" in chemical composition refers to "% by mass."
本実施形態に係る熱延鋼板の化学組成は、質量%で、C:0.045~0.120%、Si:0~3.00%、Mn:1.20~2.60%、Ti:0.020~0.180%、Al:0.010~0.400%、P:0.080%以下、S:0.0100%以下、N:0.0050%以下、並びに、残部:Feおよび不純物含む。
以下、各元素について詳細に説明する。
The chemical composition of the hot-rolled steel sheet according to this embodiment is, in mass%, C: 0.045 to 0.120%, Si: 0 to 3.00%, Mn: 1.20 to 2.60%, Ti: 0.020 to 0.180%, Al: 0.010 to 0.400%, P: 0.080% or less, S: 0.0100% or less, N: 0.0050% or less, and the balance: Fe and impurities.
Each element will be described in detail below.
C:0.045~0.120%
Cは、熱延鋼板の所望の引張強さを得るために必要な元素である。C含有量が0.045%未満であると、熱延鋼板において所望の引張強さを得ることができない。そのため、C含有量は0.045%以上とする。C含有量は、好ましくは0.050%以上であり、より好ましくは0.060%以上であり、より一層好ましくは0.080%以上である。
一方、C含有量が0.120%超では、熱延鋼板の穴広げ性が劣化する。そのため、C含有量は0.120%以下とする。C含有量は、好ましくは0.110%以下であり、より好ましくは0.100%以下である。
C: 0.045-0.120%
C is an element necessary for obtaining a desired tensile strength of the hot-rolled steel sheet. If the C content is less than 0.045%, the desired tensile strength cannot be obtained in the hot-rolled steel sheet. Therefore, the C content is set to 0.045% or more. The C content is preferably 0.050% or more, more preferably 0.060% or more, and even more preferably 0.080% or more. be.
On the other hand, if the C content exceeds 0.120%, the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the C content is set to 0.120% or less. The C content is preferably 0.110% or less. and more preferably 0.100% or less.
Si:0~3.00%
Siは、固溶強化によって熱延鋼板の引張強さを向上する元素である。ただし、本実施形態に係る熱延鋼板は、Siを含まずとも、十分な引張強さが確保される。そのため、Si含有量は0%であってもよい。Si含有量は、好ましくは0.01%以上であり、より好ましくは0.03%以上である。
一方、Siの含有量が多過ぎると、延性が不足する等により熱間圧延が困難となる場合がある。そのため、Si含有量は3.00%以下とする。Si含有量は、好ましくは2.50%以下であり、より好ましくは1.50%以下である。本実施形態に係る熱延鋼板においては、Si含有量を0~3.00%とすることで、熱延鋼板の強度、伸びおよび穴広げ性を高いバランスで実現することができる。
Si: 0-3.00%
Si is an element that improves the tensile strength of a hot-rolled steel sheet by solid solution strengthening. However, the hot-rolled steel sheet according to the present embodiment ensures sufficient tensile strength even without containing Si. The Si content may be 0%. The Si content is preferably 0.01% or more, and more preferably 0.03% or more.
On the other hand, if the Si content is too high, hot rolling may become difficult due to insufficient ductility, etc. Therefore, the Si content is set to 3.00% or less. The Si content is preferably 2.00% or less. In the hot-rolled steel sheet according to the present embodiment, the Si content is set to 0 to 3.00%, thereby improving the strength and It is possible to achieve a good balance between elongation and hole expandability.
Mn:1.20~2.60%
Mnは、熱延鋼板の強度を向上させるために必要な元素である。Mn含有量が、1.20%未満であると、熱延鋼板において所望の引張強さを得ることができない。そのため、Mn含有量は1.20%以上とする。Mn含有量は、好ましくは1.40%以上であり、より好ましくは1.60%以上である。
一方、Mn含有量が2.60%超であると、熱延鋼板の穴広げ性が劣化する。そのため、Mn含有量は2.60%以下とする。Mn含有量は、好ましくは2.30%以下であり、より好ましくは2.20%以下である。
Mn: 1.20-2.60%
Mn is an element necessary for improving the strength of a hot-rolled steel sheet. If the Mn content is less than 1.20%, the desired tensile strength cannot be obtained in the hot-rolled steel sheet. The Mn content is 1.20% or more, preferably 1.40% or more, and more preferably 1.60% or more.
On the other hand, if the Mn content exceeds 2.60%, the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the Mn content is set to 2.60% or less. The Mn content is preferably 2.30% or less. % or less, and more preferably 2.20% or less.
Ti:0.020~0.180%
Tiは、鋼中に微細な窒化物を形成することで、熱延鋼板の強度を高める元素である。Ti含有量が0.020%未満であると、熱延鋼板において所望の引張強さを得ることができない。そのため、Ti含有量は0.020%以上とする。Ti含有量は、好ましくは0.050%以上であり、より好ましくは0.080%以上である。
一方、Ti含有量が0.180%超であると、熱延鋼板の穴広げ性が劣化する。そのため、Ti含有量は、0.180%以下とする。Ti含有量は、好ましくは0.160%以下であり、より好ましくは0.150%以下である。
Ti: 0.020-0.180%
Ti is an element that forms fine nitrides in steel to increase the strength of the hot-rolled steel sheet. If the Ti content is less than 0.020%, the desired tensile strength cannot be obtained in the hot-rolled steel sheet. Therefore, the Ti content is set to 0.020% or more, preferably 0.050% or more, and more preferably 0.080% or more.
On the other hand, if the Ti content exceeds 0.180%, the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the Ti content is set to 0.180% or less. The Ti content is preferably 0. It is preferably 160% or less, and more preferably 0.150% or less.
Al:0.010~0.400%
Alは、脱酸剤として作用し、鋼の清浄度を向上させる元素である。Al含有量が0.010%未満であると、十分な脱酸効果が得られず、鋼中に多量の介在物(酸化物)が形成される。このような介在物は、熱延鋼板の加工性、特に穴広げ性を劣化させる。そのため、Al含有量は0.010%以上とする。Al含有量は、好ましくは0.020%以上であり、より好ましくは0.030%以上である。
一方、Al含有量が0.400%超では、鋳造が困難となる。そのため、Al含有量は、0.400%以下とする。Al含有量は、好ましくは0.300%以下であり、より好ましくは0.200%以下であり、より一層好ましくは0.100%以下である。
Al: 0.010-0.400%
Al is an element that acts as a deoxidizer and improves the cleanliness of steel. If the Al content is less than 0.010%, a sufficient deoxidizing effect cannot be obtained, and a large amount of Al inclusions in the steel are generated. Such inclusions deteriorate the workability, particularly the hole expandability, of the hot-rolled steel sheet. Therefore, the Al content is set to 0.010% or more. The Al content is , preferably 0.020% or more, and more preferably 0.030% or more.
On the other hand, if the Al content exceeds 0.400%, casting becomes difficult. Therefore, the Al content is set to 0.400% or less. The Al content is preferably set to 0.300% or less, and more preferably 0.400% or less. It is preferably 0.200% or less, and even more preferably 0.100% or less.
P:0.080%以下
Pは、鋼中の粒界に偏析して、粒界の脆化を促す元素である。P含有量が多過ぎると、熱延鋼板の伸びや穴広げ性が低下し易く、さらには、脆化によるスラブの割れ等が生じて熱間圧延が困難となる場合がある。そのため、P含有量は0.080%以下とする。P含有量は、好ましくは0.020%以下であり、より好ましくは0.010%以下である。
P含有量は低い程好ましく、0%であることが好ましい。しかし、P含有量を過剰に低減すると脱Pコストが著しく増加するため、P含有量は0.001%以上としてもよい。
P: 0.080% or less P is an element that segregates at grain boundaries in steel and promotes embrittlement of the grain boundaries. If the P content is too high, the elongation and hole expandability of the hot-rolled steel sheet are likely to decrease, and further, cracks in the slab due to embrittlement may occur, making hot rolling difficult. Therefore, the P content is set to 0.080% or less. The P content is preferably 0.020% or less, and more preferably 0.010% or less.
The lower the P content, the better, and 0% is preferable. However, if the P content is excessively reduced, the dephosphorization cost increases significantly, so the P content may be 0.001% or more.
S:0.0100%以下
Sは、硫化物として存在することで、スラブを脆化させる元素である。またSは、熱延鋼板の加工性を劣化させる元素でもある。S含有量が0.0100%超であると、熱延鋼板の穴広げ性が劣化する。そのため、S含有量は0.0100%以下とする。S含有量は、好ましくは0.0080%以下であり、より好ましくは0.0050%以下である。
S含有量は低い程好ましく、0%であることが好ましい。しかし、S含有量を過剰に低減すると脱Sコストが著しく増加するため、S含有量は0.0005%以上としてもよい。
S: 0.0100% or less S is an element that embrittles the slab when present as a sulfide. S is also an element that deteriorates the workability of the hot-rolled steel sheet. If the S content exceeds 0.0100%, the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the S content is set to 0.0100% or less. The S content is preferably 0.0080% or less, more preferably 0.0050% or less.
The lower the S content, the better, and 0% is preferable. However, if the S content is excessively reduced, the desulfurization cost increases significantly, so the S content may be 0.0005% or more.
N:0.0050%以下
Nは、鋼中に粗大な窒化物を形成し、熱延鋼板の穴広げ性を劣化させる元素である。N含有量が多過ぎると、窒化物が過剰に生成する等により、熱延鋼板の伸びや穴広げ性が低下し易く、さらには、脆化によるスラブの割れ等が生じて熱間圧延が困難となる場合がある。そのため、N含有量は0.0050%以下とする。N含有量は、好ましくは0.0040%以下であり、より好ましくは0.0035%以下である。
N含有量は低い程好ましく、0%であることが好ましい。しかし、N含有量を過剰に低減すると脱Nコストが著しく増加するため、N含有量は0.0005%以上としてもよい。
N: 0.0050% or less N is an element that forms coarse nitrides in steel and deteriorates the hole expandability of hot-rolled steel sheets. If the N content is too high, excessive nitrides are generated, which tends to reduce the elongation and hole expandability of the hot-rolled steel sheet, and furthermore, cracks in the slab due to embrittlement may occur, making hot rolling difficult. Therefore, the N content is set to 0.0050% or less. The N content is preferably 0.0040% or less, and more preferably 0.0035% or less.
The lower the N content, the better, and 0% is preferable. However, if the N content is excessively reduced, the cost of denitrification increases significantly, so the N content may be 0.0005% or more.
O:0.010%以下
Oは、酸化物を形成し、熱延鋼板の加工性を低下させる元素である。O含有量が0.010%超であると、酸化物が過剰に生成する等して、熱延鋼板の穴広げ性が低下し易い。そのため、O含有量は0.010%以下とする。O含有量は、好ましくは0.008%以下であり、より好ましくは0.006%以下である。
O含有量は低い程好ましく、0%であることが好ましい。しかし、O含有量を過剰に低減すると脱Oコストが著しく増加するため、O含有量は0.001%以上としてもよい。
O: 0.010% or less O is an element that forms oxides and reduces the workability of hot-rolled steel sheets. If the O content exceeds 0.010%, the hole expandability of the hot-rolled steel sheet is likely to decrease due to excessive generation of oxides, etc. Therefore, the O content is set to 0.010% or less. The O content is preferably 0.008% or less, and more preferably 0.006% or less.
The lower the O content, the better, and 0% is preferable. However, if the O content is excessively reduced, the cost of deoxidization increases significantly, so the O content may be 0.001% or more.
本実施形態に係る熱延鋼板の化学組成の残部は、Feおよび不純物であってもよい。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入されるもの、あるいは、本実施形態に係る熱延鋼板に悪影響を与えない範囲で許容されるものを意味する。 The remainder of the chemical composition of the hot-rolled steel sheet according to this embodiment may be Fe and impurities. In this embodiment, impurities refer to substances that are mixed in from the raw materials such as ore, scrap, or the manufacturing environment, or substances that are acceptable to the extent that they do not adversely affect the hot-rolled steel sheet according to this embodiment.
本実施形態に係る熱延鋼板の化学組成では、Feの一部に代えて、以下の任意元素を含んでもよい。任意元素を含有させない場合の含有量の下限は0%である。
以下、各任意元素について説明する。
The chemical composition of the hot-rolled steel sheet according to this embodiment may contain the following optional elements instead of a portion of Fe. When no optional element is contained, the lower limit of the content is 0%.
Each optional element will be described below.
Nb:0.001~0.100%
Nbは、熱間圧延でのオーステナイト粒の異常な粒成長を抑制する元素である。またNbは、微細な炭化物を形成することで熱延鋼板の強度を高める元素でもある。これらの効果を確実に得るためには、Nb含有量は0.001%以上とすることが好ましい。Nb含有量は、より好ましくは0.010%以上であり、より一層好ましくは0.030%以上である。
一方、Nb含有量が0.100%超であると、鋳造スラブの靱性が劣化し、熱間圧延を行うことが困難となる場合がある。そのため、Nb含有量は0.100%以下とする。Nb含有量は、好ましくは0.080%以下であり、より好ましくは0.060%以下である。
Nb: 0.001-0.100%
Nb is an element that suppresses abnormal grain growth of austenite grains during hot rolling. Nb is also an element that increases the strength of hot-rolled steel sheets by forming fine carbides. In order to obtain this, the Nb content is preferably 0.001% or more, more preferably 0.010% or more, and even more preferably 0.030% or more.
On the other hand, if the Nb content exceeds 0.100%, the toughness of the cast slab deteriorates, and hot rolling may become difficult. Therefore, the Nb content is set to 0.100% or less. The Nb content is preferably 0.080% or less, and more preferably 0.060% or less.
V:0.001~1.000%
Vは、鋼中に微細な炭化物を形成することで熱延鋼板の強度を高める元素である。この効果を確実に得るためには、V含有量は0.001%以上とすることが好ましい。V含有量は、より好ましくは0.050%以上であり、より一層好ましくは0.100%以上である。
一方、V含有量が1.000%超であると、熱延鋼板の穴広げ性が劣化する。そのため、V含有量は1.000%以下とする。V含有量は、好ましくは0.500%以下であり、より好ましくは0.300%以下である。
V:0.001~1.000%
V is an element that forms fine carbides in steel to increase the strength of the hot-rolled steel sheet. In order to reliably obtain this effect, the V content is preferably 0.001% or more. The V content is more preferably 0.050% or more, and even more preferably 0.100% or more.
On the other hand, if the V content exceeds 1.000%, the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the V content is set to 1.000% or less. The V content is preferably 0.500 % or less, and more preferably 0.300% or less.
Cu:0.001~1.000%
Cuは、熱延鋼板の焼入れ性を高める作用および低温で鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。これらの作用による効果をより確実に得るためには、Cu含有量は0.001%以上とすることが好ましい。Cu含有量は、より好ましくは0.050%以上であり、より一層好ましくは0.100%以上である。
一方、Cu含有量が1.000%超では、スラブの粒界割れが生じる場合がある。したがって、Cu含有量は1.000%以下とする。Cu含有量は、好ましくは0.500%以下であり、より好ましくは0.300%以下である。
Cu: 0.001-1.000%
Cu has the effect of increasing the hardenability of the hot-rolled steel sheet and the effect of increasing the strength of the hot-rolled steel sheet by precipitating as carbides in the steel at low temperatures. The Cu content is preferably 0.001% or more, more preferably 0.050% or more, and even more preferably 0.100% or more.
On the other hand, if the Cu content exceeds 1.000%, grain boundary cracking of the slab may occur. Therefore, the Cu content is set to 1.000% or less. The Cu content is preferably set to 0.500% or less. and more preferably 0.300% or less.
Cr:0.001~2.000%
Crは、Mnと類似した効果を発現する元素である。Cr含有による熱延鋼板の強度を高める効果を確実に得るためには、Cr含有量は0.001%以上とすることが好ましい。Cr含有量は、より好ましくは0.050%以上であり、より一層好ましくは0.100%以上である。
一方、2.000%を超えてCrを含有させても、上記効果は飽和する。そのため、Cr含有量は2.000%以下とする。合金コストの低減の観点から、Cr含有量は、好ましくは1.000%以下であり、より好ましくは0.500%以下である。
Cr:0.001~2.000%
Cr is an element that exerts an effect similar to that of Mn. In order to reliably obtain the effect of increasing the strength of the hot-rolled steel sheet by including Cr, the Cr content is preferably 0.001% or more. The content is more preferably 0.050% or more, and even more preferably 0.100% or more.
On the other hand, even if the Cr content exceeds 2.000%, the above effect is saturated. Therefore, the Cr content is set to 2.000% or less. From the viewpoint of reducing the alloy cost, the Cr content is preferably is 1.000% or less, and more preferably 0.500% or less.
Mo:0.001~3.000%
Moは、鋼中に微細な炭化物を形成することで熱延鋼板の強度を高める元素である。この効果を確実に得るためには、Mo含有量は0.001%以上とすることが好ましい。Mo含有量は、より好ましくは0.050%以上であり、より一層好ましくは0.100%以上である。
一方、Mo含有量が3.000%超であると、熱延鋼板の穴広げ性が劣化する。そのため、Mo含有量は3.000%以下とする。Mo含有量は、好ましくは2.000%以下であり、より好ましくは1.000%以下である。
Mo: 0.001~3.000%
Mo is an element that increases the strength of a hot-rolled steel sheet by forming fine carbides in the steel. In order to reliably obtain this effect, the Mo content is preferably 0.001% or more. The Mo content is more preferably 0.050% or more, and even more preferably 0.100% or more.
On the other hand, if the Mo content exceeds 3.000%, the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the Mo content is set to 3.000% or less. The Mo content is preferably 2.000% or less. % or less, and more preferably 1.000% or less.
Ni:0.001~0.500%
Niは、熱延鋼板の焼入性を高める元素である。またNiは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。上記作用による効果を確実に得るためには、Ni含有量を0.001%以上とすることが好ましい。Ni含有量は、より好ましくは0.050%以上であり、より一層好ましくは0.100%以上である。
一方、Niは、高価な元素であるため、多量に含有させることは経済的に好ましくない。したがって、Ni含有量は0.500%以下とする。合金コストの低減の観点から、Ni含有量は、好ましくは0.300%以下であり、より好ましくは0.200%以下である。
Ni: 0.001-0.500%
Ni is an element that enhances the hardenability of hot-rolled steel sheets. In addition, when Cu is contained, Ni has the effect of effectively suppressing grain boundary cracking of slabs caused by Cu. In order to reliably obtain the effect, the Ni content is preferably 0.001% or more, more preferably 0.050% or more, and even more preferably 0.100% or more. be.
On the other hand, Ni is an expensive element, so it is economically undesirable to include a large amount of it. Therefore, the Ni content is set to 0.500% or less. From the viewpoint of reducing the alloy cost, the Ni content is , preferably 0.300% or less, and more preferably 0.200% or less.
B:0.0001~0.0100%
Bは、熱延鋼板の強度を高める元素である。この効果を確実に得るためには、B含有量を0.0001%以上とすることが好ましい。B含有量は、より好ましくは0.0005%以上であり、より一層好ましくは0.0010%以上である。
一方、0.0100%を超えてBを含有させても上記効果は飽和する。そのため、B含有量は0.0100%以下とする。B含有量は、好ましくは0.0070%以下であり、より好ましくは0.0050%以下である。
B: 0.0001-0.0100%
B is an element that increases the strength of a hot-rolled steel sheet. To reliably obtain this effect, the B content is preferably 0.0001% or more. The B content is more preferably 0.0005% or more. % or more, and more preferably 0.0010% or more.
On the other hand, even if the B content exceeds 0.0100%, the above effect is saturated. Therefore, the B content is set to 0.0100% or less. The B content is preferably set to 0.0070% or less. More preferably, it is 0.0050% or less.
Ca:0.0001~0.0500%
Caは、介在物の形状を好ましい形状に制御することにより、熱延鋼板の延性および穴広げ性を高める元素である。この効果を確実に得るためには、Ca含有量を0.0001%以上とすることが好ましい。Ca含有量は、好ましくは0.0010%以上であり、より好ましくは0.0050%以上である。
一方、Ca含有量が0.0500%超であると、鋼中に介在物が過剰に生成され、却って熱延鋼板の延性および穴広げ性が劣化する場合がある。そのため、Ca含有量は0.0500%以下とする。Ca含有量は、好ましくは0.0300%以下であり、より好ましくは0.0100%以下である。
Ca: 0.0001-0.0500%
Ca is an element that enhances the ductility and hole expandability of the hot-rolled steel sheet by controlling the shape of inclusions to a preferred shape. In order to reliably obtain this effect, the Ca content is set to 0.0001% or more. The Ca content is preferably 0.0010% or more, and more preferably 0.0050% or more.
On the other hand, if the Ca content exceeds 0.0500%, excessive inclusions are generated in the steel, which may deteriorate the ductility and hole expandability of the hot-rolled steel sheet. The Ca content is preferably 0.0300% or less, and more preferably 0.0100% or less.
Mg:0.0001~0.0500%
Mgは、介在物の形状を好ましい形状に制御することにより、熱延鋼板の延性および穴広げ性を高める元素である。この効果を確実に得るためには、Mg含有量を0.0001%以上とすることが好ましい。Mg含有量は、好ましくは0.0010%以上であり、より好ましくは0.0020%以上である。
一方、Mg含有量が0.0500%超であると、鋼中に介在物が過剰に生成され、却って熱延鋼板の延性および穴広げ性が劣化する場合がある。そのため、Mg含有量は0.0500%以下とする。Mg含有量は、好ましくは0.0300%以下であり、より好ましくは0.0100%以下である。
Mg: 0.0001-0.0500%
Mg is an element that enhances the ductility and hole expandability of the hot-rolled steel sheet by controlling the shape of inclusions to a preferred shape. In order to reliably obtain this effect, the Mg content should be 0.0001% or more. The Mg content is preferably 0.0010% or more, and more preferably 0.0020% or more.
On the other hand, if the Mg content exceeds 0.0500%, excessive inclusions are generated in the steel, which may deteriorate the ductility and hole expandability of the hot-rolled steel sheet. The Mg content is preferably 0.0300% or less, and more preferably 0.0100% or less.
REM:0.001~0.100%
REMは、介在物の形状を好ましい形状に制御することにより、熱延鋼板の延性および穴広げ性を高める元素である。この効果を確実に得るためには、REM含有量を0.001%以上とすることが好ましい。REM含有量は、好ましくは0.003%以上であり、より好ましくは0.005%以上である。
一方、REM含有量が0.100%超であると、鋼中に介在物が過剰に生成され、却って熱延鋼板の延性および穴広げ性が劣化する場合がある。そのため、REM含有量は0.100%以下とする。REM含有量は、好ましくは0.050%以下であり、より好ましくは0.030%以下である。
ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
REM: 0.001~0.100%
REM is an element that improves the ductility and hole expandability of hot-rolled steel sheets by controlling the shape of inclusions to a preferred shape. To reliably obtain this effect, the REM content should be 0.001% or more. The REM content is preferably 0.003% or more, and more preferably 0.005% or more.
On the other hand, if the REM content exceeds 0.100%, excessive inclusions are generated in the steel, which may deteriorate the ductility and hole expandability of the hot-rolled steel sheet. The REM content is preferably 0.050% or less, and more preferably 0.030% or less.
Here, REM refers to a total of 17 elements consisting of Sc, Y and lanthanoids, and the content of the REM refers to the total content of these elements. In the case of lanthanoids, they are industrially added in the form of misch metal. will be done.
Bi:0.001~0.100%
Biは、凝固組織を微細化することにより、熱延鋼板の延性および穴広げ性を高める元素である。この効果を確実に得るためには、Bi含有量を0.001%以上とすることが好ましい。Bi含有量は、好ましくは0.002%以上であり、より好ましくは0.003%以上である。
一方、Bi含有量を0.100%超としても、上記効果は飽和してしまい、経済的に好ましくない。そのため、Bi含有量は0.100%以下とする。合金コストの低減の観点から、Bi含有量は、好ましくは0.050%以下であり、より好ましくは0.030%以下である。
Bi:0.001~0.100%
Bi is an element that refines the solidification structure and thereby improves the ductility and hole expandability of the hot-rolled steel sheet. To reliably obtain this effect, the Bi content must be 0.001% or more. The Bi content is preferably 0.002% or more, and more preferably 0.003% or more.
On the other hand, even if the Bi content exceeds 0.100%, the above effects are saturated, which is economically undesirable. Therefore, the Bi content is set to 0.100% or less. From the viewpoint of reducing alloy costs, The Bi content is preferably 0.050% or less, and more preferably 0.030% or less.
Ta:0.001~0.100%
Taは、Vと同様に、鋼中に微細な炭化物を形成することで熱延鋼板の強度を高める元素である。この効果を確実に得るためには、Ta含有量は0.001%以上とすることが好ましい。Ta含有量は、より好ましくは0.005%以上であり、より一層好ましくは0.010%以上である。
一方、Ta含有量が0.100%超であると、熱延鋼板の穴広げ性が劣化する。そのため、Ta含有量は0.100%以下とする。Ta含有量は、好ましくは0.080%以下であり、より好ましくは0.050%以下である。
Ta: 0.001~0.100%
Ta, like V, is an element that increases the strength of hot-rolled steel sheets by forming fine carbides in the steel. To reliably obtain this effect, the Ta content is set to 0.001% or more. The Ta content is more preferably 0.005% or more, and even more preferably 0.010% or more.
On the other hand, if the Ta content exceeds 0.100%, the hole expandability of the hot-rolled steel sheet deteriorates. Therefore, the Ta content is set to 0.100% or less. The Ta content is preferably 0.080 % or less, and more preferably 0.050% or less.
Zr:0.001~0.500%
Zrは、固溶強化により熱延鋼板の強度を高める元素である。この効果を確実に得るためには、Zr含有量を0.001%以上とすることが好ましい。Zr含有量は、より好ましくは0.005%以上であり、より一層好ましくは0.010%以上である。
一方、Zr含有量が0.500%超であると、熱延鋼板の延性および穴広げ性が劣化する。そのため、Zr含有量は0.500%以下とする。Zr含有量は、好ましくは0.300%以下であり、より好ましくは0.100%以下である。
Zr: 0.001-0.500%
Zr is an element that increases the strength of a hot-rolled steel sheet by solid solution strengthening. In order to reliably obtain this effect, the Zr content is preferably 0.001% or more. The Zr content is more preferably is 0.005% or more, and more preferably 0.010% or more.
On the other hand, if the Zr content exceeds 0.500%, the ductility and hole expandability of the hot-rolled steel sheet deteriorate. Therefore, the Zr content is set to 0.500% or less. The Zr content is preferably 0. It is preferably 0.300% or less, and more preferably 0.100% or less.
Co:0.001~3.000%
Coは、固溶強化により熱延鋼板の強度を高める元素である。この効果を確実に得るためには、Co含有量を0.001%以上とすることが好ましい。Co含有量は、より好ましくは0.005%以上であり、より一層好ましくは0.010%以上である。
一方、Co含有量が3.000%超であると、熱延鋼板の延性および穴広げ性が劣化する。そのため、Co含有量は3.000%以下とする。Co含有量は、好ましくは1.000%以下であり、より好ましくは0.500%以下である。
Co:0.001~3.000%
Co is an element that increases the strength of a hot-rolled steel sheet by solid solution strengthening. In order to reliably obtain this effect, the Co content is preferably 0.001% or more. The Co content is more preferably is 0.005% or more, and more preferably 0.010% or more.
On the other hand, if the Co content exceeds 3.000%, the ductility and hole expandability of the hot-rolled steel sheet deteriorate. Therefore, the Co content is set to 3.000% or less. The Co content is preferably 1. It is preferably 0.000% or less, and more preferably 0.500% or less.
Zn:0.001~0.200%
Znは、固溶強化により熱延鋼板の強度を高める元素である。この効果を確実に得るためには、Zn含有量を0.001%以上とすることが好ましい。Zn含有量は、より好ましくは0.005%以上であり、より一層好ましくは0.010%以上である。
一方、Zn含有量が0.200%超であると、熱延鋼板の延性および穴広げ性が劣化する。そのため、Zn含有量は0.200%以下とする。Zn含有量は、好ましくは0.150%以下であり、より好ましくは0.100%以下である。
Zn: 0.001-0.200%
Zn is an element that increases the strength of a hot-rolled steel sheet by solid solution strengthening. In order to reliably obtain this effect, the Zn content is preferably 0.001% or more. The Zn content is more preferably is 0.005% or more, and more preferably 0.010% or more.
On the other hand, if the Zn content exceeds 0.200%, the ductility and hole expandability of the hot-rolled steel sheet deteriorate. Therefore, the Zn content is set to 0.200% or less. The Zn content is preferably 0. .150% or less, more preferably 0.100% or less.
W:0.001~0.200%
Wは、固溶強化により熱延鋼板の強度を高める元素である。この効果を確実に得るためには、W含有量を0.001%以上とすることが好ましい。W含有量は、より好ましくは0.005%以上であり、より一層好ましくは0.010%以上である。
一方、W含有量が0.200%超であると、熱延鋼板の延性および穴広げ性が劣化する。そのため、W含有量は0.200%以下とする。W含有量は、好ましくは0.150%以下であり、より好ましくは0.100%以下である。
W: 0.001-0.200%
W is an element that increases the strength of a hot-rolled steel sheet by solid solution strengthening. In order to reliably obtain this effect, the W content is preferably 0.001% or more. The W content is more preferably is 0.005% or more, and more preferably 0.010% or more.
On the other hand, if the W content exceeds 0.200%, the ductility and hole expandability of the hot-rolled steel sheet deteriorate. Therefore, the W content is set to 0.200% or less. The W content is preferably 0. .150% or less, more preferably 0.100% or less.
Sb:0.001~0.500%
Sbは、破壊の起点となる酸化物の生成を抑制することで、熱延鋼板の延性および穴広げ性を高める元素である。この効果を確実に得るためには、Sb含有量は0.001%以上とすることが好ましい。Sb含有量は、より好ましくは0.005%以上であり、より一層好ましくは0.10%以上である。
一方、Sbを多量に含有させても上記効果は飽和するため、Sb含有量は0.500%以下とする。Sb含有量は、好ましくは0.300%以下であり、より好ましくは0.100%以下である。
Sb: 0.001-0.500%
Sb is an element that suppresses the generation of oxides that are the starting points of fracture, thereby improving the ductility and hole expandability of the hot-rolled steel sheet. To reliably obtain this effect, the Sb content is set to 0.001 The Sb content is preferably 0.005% or more, and more preferably 0.10% or more.
On the other hand, even if Sb is contained in a large amount, the above effect is saturated, so the Sb content is set to 0.500% or less. The Sb content is preferably 0.300% or less, and more preferably 0.100% or less. % or less.
As:0.001~0.050%
Asは、オーステナイト単相化温度を低下させることにより、旧オーステナイト粒を細粒化させて、熱延鋼板の穴広げ性を高める元素である。この効果を確実に得る場合、As含有量を0.001%以上とすることが好ましい。As含有量は、より好ましくは0.005%以上であり、より一層好ましくは0.010%以上である。
一方、Asを多量に含有させても上記効果は飽和するため、As含有量は0.050%以下とする。As含有量は、好ましくは0.040%以下であり、より好ましくは0.030%以下である。
As: 0.001-0.050%
As is an element that reduces the austenite single-phase temperature, thereby refining prior austenite grains and improving the hole expandability of the hot-rolled steel sheet. To reliably obtain this effect, the As content should be kept at 0. The As content is preferably 0.001% or more. The As content is more preferably 0.005% or more, and even more preferably 0.010% or more.
On the other hand, since the above effect is saturated even if As is contained in a large amount, the As content is set to 0.050% or less. The As content is preferably set to 0.040% or less, and more preferably set to 0.030% or less. % or less.
Sn:0.001~0.050%
Snは、破壊の起点となる酸化物の生成を抑制することで、熱延鋼板の延性および穴広げ性を高める元素である。この効果を確実に得る場合、Sn含有量は0.001%以上とすることが好ましい。Sn含有量は、より好ましくは0.005%以上であり、より一層好ましくは0.010%以上である。
一方、Snを多量に含有させても上記効果は飽和するため、Sn含有量は0.050%以下とする。Sn含有量は、好ましくは0.040%以下であり、より好ましくは0.030%以下である。
Sn: 0.001-0.050%
Sn is an element that suppresses the generation of oxides that are the starting points of fracture, thereby improving the ductility and hole expandability of hot-rolled steel sheets. To reliably obtain this effect, the Sn content is 0.001% or more. The Sn content is more preferably 0.005% or more, and even more preferably 0.010% or more.
On the other hand, even if a large amount of Sn is contained, the above effect is saturated, so the Sn content is set to 0.050% or less. The Sn content is preferably 0.040% or less, and more preferably 0.030% or less. % or less.
上述した熱延鋼板の化学組成は、スパーク放電発光分光分析装置などを用いて、分析すればよい。なお、CおよびSはガス成分分析装置などを用いて、酸素気流中で燃焼させ、赤外線吸収法によって測定することで同定された値を採用する。また、Nは、鋼板から採取した試験片をヘリウム気流中で融解させ、熱伝導度法によって測定することで同定された値を採用する。
熱延鋼板が表面にめっき層を備える場合は、必要に応じて、機械研削等によりめっき層を除去してから、化学組成の分析を行ってもよい。
The chemical composition of the above-mentioned hot-rolled steel sheet may be analyzed using a spark discharge optical emission spectrometer or the like. Note that, for C and S, values identified by burning in an oxygen stream using a gas composition analyzer or the like and measuring by an infrared absorption method are adopted. For N, values identified by melting a test piece taken from the steel sheet in a helium stream and measuring by a thermal conductivity method are adopted.
When the hot-rolled steel sheet has a plating layer on the surface, the plating layer may be removed by mechanical grinding or the like, as necessary, before analyzing the chemical composition.
次に、本実施形態に係る熱延鋼板の集合組織について説明する。
本実施形態に係る熱延鋼板では、表面から板厚方向に500μm深さまでの領域における集合組織の結晶方位分布関数において、φ2=45°断面でのΦ=0~60°、且つ、φ1=50~90°の範囲内における最大値Aが6.0以下であり、前記φ2=45°断面でのΦ=120~180°、且つ、φ1=50~90°の範囲内における最大値Bが6.0以下であり、前記最大値Aが位置するΦのピーク位置をΦAとし、前記最大値Bが位置するΦのピーク位置をΦBとしたとき、|ΦA-35°|が10°以下であり、且つ、|ΦB-145°|が10°以下である。
Next, the texture of the hot-rolled steel sheet according to this embodiment will be described.
In the hot-rolled steel sheet according to this embodiment, in a crystal orientation distribution function of the texture in a region from the surface to a depth of 500 μm in the sheet thickness direction, a maximum value A in the range of Φ= 0 to 60° and Φ= 50 to 90° at a Φ2 =45° cross section is 6.0 or less, a maximum value B in the range of Φ=120 to 180° and Φ1 =50 to 90° at the Φ2=45° cross section is 6.0 or less, and when a peak position of Φ where the maximum value A is located is defined as ΦA and a peak position of Φ where the maximum value B is located is defined as ΦB , | ΦA -35°| is 10° or less and | ΦB -145°| is 10° or less.
なお、本実施形態では、端面から幅方向に1/4位置、且つ、表面から板厚方向に500μm深さまでの領域における集合組織を規定する。ここでいう端面から幅方向に1/4位置とは、幅方向の長さをwとしたとき、幅方向の端面からw/4位置のことである。
すなわち、「端面からx/y位置(ここで、x、yは、x<yを満たす自然数とする。)」とは、鋼板の幅方向における端面から、幅方向に、板幅のx/yの距離だけ鋼板の中心部に向かって移動した位置を意味する。例えば、鋼板の板幅が1mであった場合に「端面から1/4位置」とは、鋼板の端面から幅方向に0.25mの距離となる位置を意味する。
「板厚x/y位置(ここで、x、yは、x<yを満たす自然数とする。)」とは、鋼板の板厚方向における表面(板面)から、板厚方向に、板厚tのx/yの距離(深さ)だけ鋼板の中心部に向かって移動した位置を意味する。例えば、鋼板の板厚tが2mmであった場合に「板厚1/8位置」とは、鋼板の表面から板厚方向に0.25mmの深さとなる位置を意味する。
なお、鋼板が表面にめっき層等の被膜を有する場合、「鋼板の表面」は、鋼板と当該被膜との界面を意味し、「板厚t」は、当該被膜を除いた鋼板(母材)の板厚を意味する。
以下、各規定について説明する。
In this embodiment, the texture is defined in a region from the end face to a 1/4 position in the width direction and from the surface to a depth of 500 μm in the sheet thickness direction. The 1/4 position in the width direction from the end face here means a w/4 position from the end face in the width direction, where w is the length in the width direction.
That is, "x/y position from the end face (here, x and y are natural numbers satisfying x<y)" means a position moved in the width direction from the end face in the width direction of the steel plate toward the center of the steel plate by a distance of x/y of the plate width. For example, when the width of the steel plate is 1 m, "1/4 position from the end face" means a position that is 0.25 m away from the end face in the width direction of the steel plate.
The term "plate thickness x/y position (where x and y are natural numbers satisfying x<y)" refers to a position moved in the plate thickness direction from the surface (plate surface) of the steel plate in the plate thickness direction toward the center of the steel plate by a distance (depth) of x/y of the plate thickness t. For example, when the plate thickness t of the steel plate is 2 mm, the "plate thickness 1/8 position" refers to a position that is 0.25 mm deep from the surface of the steel plate in the plate thickness direction.
In addition, when the steel sheet has a coating such as a plating layer on its surface, the "surface of the steel sheet" means the interface between the steel sheet and the coating, and the "sheet thickness t" means the thickness of the steel sheet (base material) excluding the coating.
Each provision will be explained below.
最大値A
表面から板厚方向に500μm深さまでの領域(以下、表層領域と記載する場合がある)における集合組織の結晶方位分布関数において、φ2=45°断面でのΦ=0~60°、且つ、φ1=50~90°の範囲内における極密度の最大値Aが6.0超であると、圧延方向において優れた張力曲げ特性を得ることができない。そのため、φ2=45°断面でのΦ=0~60°、且つ、φ1=50~90°の範囲内における最大値Aは6.0以下とする。φ2=45°断面でのΦ=0~60°、且つ、φ1=50~90°の範囲内における最大値Aは、好ましくは5.0以下であり、より好ましくは4.0以下である。なお、結晶方位分布関数におけるφ2、Φ、及びφ1は、例えば、軽金属60(2010), 12 p666-675の図4に記載のBungeのオイラー各表記における回転角である。
Maximum value A
In the crystal orientation distribution function of the texture in the region from the surface to a depth of 500 μm in the sheet thickness direction (hereinafter sometimes referred to as the surface region), if the maximum pole density A in the range of Φ=0 to 60° and Φ1 =50 to 90° at the φ2 =45° cross section exceeds 6.0, excellent tensile bending properties cannot be obtained in the rolling direction. Therefore, the maximum value A in the range of Φ=0 to 60° and Φ1 =50 to 90° at the φ2 =45° cross section is set to 6.0 or less. The maximum value A in the range of Φ=0 to 60° and Φ1 =50 to 90° at the φ2 =45° cross section is preferably 5.0 or less, more preferably 4.0 or less. In addition, φ 2 , Φ, and φ 1 in the crystal orientation distribution function are rotation angles in each of Bunge's Euler notations shown in FIG. 4 of Light Metals 60 (2010), 12, pp. 666-675.
φ2=45°断面でのΦ=0~60°、且つ、φ1=50~90°の範囲内における最大値Aが1.0未満であると、他の方位の極密度が高まり、圧延方向における張力曲げ特性が劣化する場合がある。そのため、φ2=45°断面でのΦ=0~60°、且つ、φ1=50~90°の範囲内における最大値Aは1.0以上としてもよい。 If the maximum value A in the range of Φ=0 to 60° and Φ= 50 to 90° at the φ2 =45° cross section is less than 1.0, the pole density in other orientations increases, and the tensile bending properties in the rolling direction may deteriorate. Therefore, the maximum value A in the range of Φ=0 to 60° and Φ1 =50 to 90° at the φ2 =45° cross section may be 1.0 or more.
φ2=45°断面でのΦ=0~60°、且つ、φ1=50~90°の範囲内における最大値Aが位置するΦのピーク位置をΦAとしたとき、|ΦA-35°|が10°超であると、圧延方向において優れた張力曲げ特性を得ることができない。そのため、|ΦA-35°|は10°以下とする。|ΦA-35°|は、好ましくは5°以下である。 When the peak position of Φ at which the maximum value A is located in the range of Φ=0 to 60° and Φ1 =50 to 90° at the cross section of Φ2 =45° is defined as ΦA , if | ΦA -35°| exceeds 10°, excellent tensile bending properties cannot be obtained in the rolling direction. Therefore, | ΦA -35°| is set to 10° or less. | ΦA -35°| is preferably 5° or less.
最大値B
表層領域における集合組織の結晶方位分布関数において、φ2=45°断面でのΦ=120~180°、且つ、φ1=50~90°の範囲内における最大値Bが6.0超であると、圧延方向において優れた張力曲げ特性を得ることができない。そのため、φ2=45°断面でのΦ=120~180°、且つ、φ1=50~90°の範囲内における最大値Bは6.0以下とする。φ2=45°断面でのΦ=120~180°、且つ、φ1=50~90°の範囲内における最大値Bは、好ましくは5.0以下であり、より好ましくは4.0以下である。
Maximum value B
In the crystal orientation distribution function of the texture in the surface region, if the maximum value B in the range of Φ=120-180° and Φ1 =50-90° at the Φ2 =45° cross section exceeds 6.0, excellent tensile bending properties cannot be obtained in the rolling direction. Therefore, the maximum value B in the range of Φ=120-180° and Φ1 =50-90° at the Φ2 =45° cross section is set to 6.0 or less. The maximum value B in the range of Φ=120-180° and Φ1 =50-90° at the Φ2 =45° cross section is preferably 5.0 or less, more preferably 4.0 or less.
φ2=45°断面でのΦ=120~180°、且つ、φ1=50~90°の範囲内における最大値Bが1.0未満であると、他の方位の極密度が高まり、圧延方向における張力曲げ特性が劣化する場合がある。そのため、φ2=45°断面でのΦ=120~180°、且つ、φ1=50~90°の範囲内における最大値Bは、1.0以上としてもよい。 If the maximum value B in the ranges of Φ=120 to 180° and Φ= 50 to 90° at the φ2 =45° cross section is less than 1.0, the pole density in other orientations increases, and the tensile bending properties in the rolling direction may deteriorate. Therefore, the maximum value B in the ranges of Φ=120 to 180° and Φ1 =50 to 90° at the φ2 =45° cross section may be 1.0 or more.
φ2=45°断面でのΦ=120~180°、且つ、φ1=50~90°の範囲内における最大値Bが位置するΦのピーク位置をΦBとしたとき、|ΦB-145°|が10°超であると、圧延方向において優れた張力曲げ特性を得ることができない。そのため、|ΦB-145°|は10°以下とする。|ΦB-145°|は、好ましくは5°以下である。 When the peak position of Φ at which the maximum value B is located in the range of Φ=120 to 180° and Φ1 =50 to 90° at the cross section of Φ2 =45° is defined as ΦB , if | ΦB -145°| exceeds 10°, excellent tensile bending properties cannot be obtained in the rolling direction. Therefore, | ΦB -145°| is set to 10° or less. | ΦB -145°| is preferably 5° or less.
最大値Aおよび最大値B、且つこれら最大値が位置するΦのピーク位置は以下の方法により測定する。
まず、熱延鋼板の端面から幅方向に1/4位置において、幅方向を法線方向とする断面(板厚方向×圧延方向断面)の金属組織が観察できるように、試料を採取する。試料のサイズは、測定装置にもよるが、例えば、板厚方向全厚,圧延方向に15mm、幅方向に10mmの直方体とすればよい。次に、試料の観察面を鏡面研磨した後、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、試料の表面に導入されたひずみを除去する。上記研磨後の試料の表面から板厚方向に500μm深さまでの領域および圧延方向の任意の位置で2000μm以上の領域を、5.0μm の測定間隔で測定する。
The maximum values A and B, and the peak positions of Φ at which these maximum values are located, are measured by the following method.
First, a sample is taken at a quarter position in the width direction from the end face of the hot-rolled steel sheet so that the metal structure of the cross section (thickness direction x rolling direction cross section) normal to the width direction can be observed. The size of the sample depends on the measuring device, but it may be, for example, a rectangular parallelepiped with the full thickness in the thickness direction, 15 mm in the rolling direction, and 10 mm in the width direction. Next, the observation surface of the sample is mirror-polished, and then polished for 8 minutes at room temperature using colloidal silica that does not contain an alkaline solution to remove the strain introduced into the surface of the sample. The region from the surface of the polished sample to a depth of 500 μm in the thickness direction and the region of 2000 μm or more at any position in the rolling direction are measured at measurement intervals of 5.0 μm.
測定には、走査電子顕微鏡とEBSD解析装置とを組み合わせた装置およびTSL社製のOIM Analysis(登録商標)を用いる。上記試料についてEBSD(Electron Back Scattering Diffraction)法による解析を行う。得られた方位データから、結晶方位分布関数(ODF:Orientation Distribution Function)を算出する。 For the measurements, a device combining a scanning electron microscope and an EBSD analyzer and an OIM Analysis (registered trademark) manufactured by TSL are used. The above sample is analyzed using the EBSD (Electron Back Scattering Diffraction) method. The crystal orientation distribution function (ODF: Orientation Distribution Function) is calculated from the obtained orientation data.
得られた結晶方位分布関数から、φ2=45°断面でのΦ=0~60°、且つ、φ1=50~90°の範囲内における最大値A、φ2=45°断面でのΦ=120~180°、且つ、φ1=50~90°の範囲内における最大値B、およびこれらの最大値が位置するΦのピーク位置を得る。 From the obtained crystal orientation distribution function, a maximum value A in the range of Φ=0 to 60° and Φ= 50 to 90° on the Φ2 =45° cross section, a maximum value B in the range of Φ= 120 to 180° and Φ=50 to 90° on the Φ2 =45° cross section, and the peak positions of Φ where these maximum values are located are obtained.
なお、熱延鋼板の圧延方向は以下の方法により判別する。
熱延鋼板の板面に平行な断面が観察できるように試験片を採取する。採取した試験片において、表面からの距離が板厚の1/4位置となる断面を鏡面研磨で仕上げた後、光学顕微鏡を用いて観察する。観察範囲は500μm×500μm以上とし、結晶粒の延伸方向と平行な方向を圧延方向と判別する。なお、観察した断面において、判別された圧延方向に直交する方向を熱延鋼板の幅方向と判別する。
The rolling direction of the hot-rolled steel sheet is determined by the following method.
A test piece is taken so that a cross section parallel to the plate surface of the hot-rolled steel sheet can be observed. In the taken test piece, a cross section at a position where the distance from the surface is 1/4 of the plate thickness is mirror-polished and then observed using an optical microscope. The observation range is 500 μm × 500 μm or more, and the direction parallel to the extension direction of the crystal grains is determined to be the rolling direction. In the observed cross section, the direction perpendicular to the determined rolling direction is determined to be the width direction of the hot-rolled steel sheet.
最大値Aと最大値Bとの差
表層領域における集合組織の結晶方位分布関数において、端面から幅方向に1/4位置、端面から幅方向に1/4-15mm位置および端面から前記幅方向に1/4+15mm位置のそれぞれにおいて、最大値Aと最大値Bとの差の絶対値を3.0以下とすることで、圧延方向のみならず、幅方向においても優れた張力曲げ特性を得ることができる。そのため、端面から幅方向に1/4位置における最大値Aと最大値Bとの差の絶対値、端面から幅方向に1/4-15mm位置における最大値Aと最大値Bとの差の絶対値、および端面から前記幅方向に1/4+15mm位置における最大値Aと最大値Bとの差の絶対値の全てを3.0以下とすることが好ましい。
Difference between maximum value A and maximum value B In the crystal orientation distribution function of the texture in the surface region, by setting the absolute value of the difference between maximum value A and maximum value B at each of the positions 1/4 from the end face in the width direction, 1/4-15 mm from the end face in the width direction, and 1/4+15 mm from the end face in the width direction to 3.0 or less, it is possible to obtain excellent tensile bending properties not only in the rolling direction but also in the width direction. Therefore, it is preferable that the absolute value of the difference between maximum value A and maximum value B at the position 1/4 from the end face in the width direction, the absolute value of the difference between maximum value A and maximum value B at the position 1/4-15 mm from the end face in the width direction, and the absolute value of the difference between maximum value A and maximum value B at the position 1/4+15 mm from the end face in the width direction are all set to 3.0 or less.
なお、ここでいう端面から幅方向に1/4+15mm位置とは、幅方向の長さをwとしたとき、「幅方向の端面からw/4位置」から前記端面とは逆の方向に15mm進んだ位置のことである。また、ここでいう端面から幅方向に1/4-15mm位置とは、幅方向の長さをwとしたとき、「幅方向の端面からw/4位置」から前記端面の方向に15mm進んだ位置のことである。 Note that the position 1/4+15 mm in the width direction from the end face here refers to a position 15 mm away from the "w/4 position from the end face in the width direction" in the opposite direction to the end face, where w is the length in the width direction. Additionally, the position 1/4-15 mm in the width direction from the end face here refers to a position 15 mm away from the "w/4 position from the end face in the width direction" in the direction of the end face, where w is the length in the width direction.
各位置における最大値Aと最大値Bとの差の絶対値は、端面から幅方向に1/4位置、端面から幅方向に1/4-15mm位置および端面から前記幅方向に1/4+15mm位置のそれぞれにおいて、上述の方法によりEBSD解析を行い、結晶方位分布関数を算出することで得る。 The absolute value of the difference between maximum value A and maximum value B at each position is obtained by performing EBSD analysis using the method described above at a position 1/4 of the way from the end face in the width direction, a position 1/4-15 mm in the width direction from the end face, and a position 1/4+15 mm in the width direction from the end face, and calculating the crystal orientation distribution function.
次に、本実施形態に係る熱延鋼板の金属組織について説明する。
本実施形態に係る熱延鋼板は、表面から板厚方向に1/4深さの位置の金属組織おいて、GAM値が0.6°超である領域の面積率が50%以上であり、前記GAM値が3.0°超である領域の面積率と、残留オーステナイトの面積率との合計が15%未満である。
なお、本実施形態では、端面から幅方向に1/4位置、且つ、表面から板厚方向に1/4深さの位置における金属組織を規定する。
Next, the metal structure of the hot-rolled steel sheet according to this embodiment will be described.
In the hot-rolled steel sheet according to this embodiment, in the metal structure at a position of 1/4 depth from the surface in the sheet thickness direction, the area ratio of the region where the GAM value exceeds 0.6° is 50% or more, and the sum of the area ratio of the region where the GAM value exceeds 3.0° and the area ratio of retained austenite is less than 15%.
In this embodiment, the metal structure is defined at a position that is 1/4 the width from the end face and 1/4 the depth from the surface in the plate thickness direction.
GAM値が0.6°超である領域の面積率:50%以上
GAM値が0.6°超である領域の面積率が50%未満であると、熱延鋼板において所望の強度を得ることができない。そのため、GAM値が0.6°超である領域の面積率は50%以上とする。GAM値が0.6°超である領域の面積率は、好ましくは80%以上であり、より好ましくは90%以上であり、より一層好ましくは95%以上である。
GAM値が0.6°超である領域の面積率は100%としてもよい。
Area ratio of the region where the GAM value is more than 0.6°: 50% or more If the area ratio of the region where the GAM value is more than 0.6° is less than 50%, the desired strength cannot be obtained in the hot-rolled steel sheet. Therefore, the area ratio of the region where the GAM value is more than 0.6° is set to 50% or more. The area ratio of the region where the GAM value is more than 0.6° is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more.
The area ratio of the region where the GAM value exceeds 0.6° may be set to 100%.
GAM値が3.0°超である領域の面積率と、残留オーステナイトの面積率との合計:15%未満
GAM値が3.0°超である領域の面積率と、残留オーステナイトの面積率との合計が15%以上であると、熱延鋼板において所望の穴広げ性が得られない場合がある。そのため、GAM値が3.0°超である領域の面積率と、残留オーステナイトの面積率との合計は15%未満とする。GAM値が3.0°超である領域の面積率と、残留オーステナイトの面積率との合計は、好ましくは10%以下であり、より好ましくは5%以下である。
GAM値が3.0°超である領域の面積率と、残留オーステナイトの面積率との合計は0%としてもよく、1%以上としてもよい。
Sum of the area ratio of the region where the GAM value is more than 3.0° and the area ratio of the retained austenite: less than 15% If the sum of the area ratio of the region where the GAM value is more than 3.0° and the area ratio of the retained austenite is 15% or more, the desired hole expandability may not be obtained in the hot-rolled steel sheet. Therefore, the sum of the area ratio of the region where the GAM value is more than 3.0° and the area ratio of the retained austenite is less than 15%. The sum of the area ratio of the region where the GAM value is more than 3.0° and the area ratio of the retained austenite is preferably 10% or less, more preferably 5% or less.
The sum of the area ratio of the region where the GAM value exceeds 3.0° and the area ratio of the retained austenite may be 0% or may be 1% or more.
ここで、適用される自動車部品によって、所望される強度、延性、張力曲げ特性の度合いは異なる。本実施形態に係る熱延鋼板では、上述の化学組成、集合組織および金属組織を有した上で、所望される強度、延性、張力曲げ特性の度合いによって、以下に説明する第1の態様または第2の態様のいずれの金属組織を有しても構わない。 Here, the desired strength, ductility, and tensile bending properties vary depending on the automobile part to which it is applied. The hot-rolled steel sheet according to this embodiment has the above-mentioned chemical composition, texture, and metal structure, and may have either the first or second metal structure described below, depending on the desired strength, ductility, and tensile bending properties.
(第1の態様)GAM値が0.6°超、2.0°未満である領域の面積率:50%以上
第1の態様は、比較的、強度および延性をより高いレベルで両立することが求められる場合に好適な金属組織である。本実施形態では、GAM値が0.6°超、2.0°未満である領域の面積率を50%以上とすることで、熱延鋼板において強度および延性をより高いレベルで両立することができる。第1の態様では、GAM値が0.6°超、2.0°未満である領域の面積率は、好ましくは60%以上であり、より好ましくは70%以上である。
GAM値が0.6°超、2.0°未満である領域の面積率は100%であってもよい。
(First aspect) Area ratio of the region where the GAM value is more than 0.6° and less than 2.0°: 50% or more The first aspect is a metal structure suitable for cases where a higher level of strength and ductility is required. In this embodiment, by setting the area ratio of the region where the GAM value is more than 0.6° and less than 2.0° to 50% or more, it is possible to achieve a higher level of strength and ductility in the hot-rolled steel sheet. In the first aspect, the area ratio of the region where the GAM value is more than 0.6° and less than 2.0° is preferably 60% or more, more preferably 70% or more.
The area ratio of the region where the GAM value is more than 0.6° and less than 2.0° may be 100%.
第1の態様においては、GAM値が0.6°超、2.0°未満である領域以外の残部組織として、面積率の合計が0~50%の、GAM値が2.0°以上である領域、GAM値が0.6°以下である領域が含まれていてもよい。 In the first embodiment, the remaining structure other than the areas where the GAM value is greater than 0.6° and less than 2.0° may include areas where the GAM value is 2.0° or more and areas where the GAM value is 0.6° or less, with a total area ratio of 0 to 50%.
(第2の態様)GAM値が2.0°以上である領域の面積率:50%以上
第2の態様は、比較的、より高い強度が求められる場合に好適な金属組織である。本実施形態では、GAM値が2.0°以上である領域の面積率を50%以上とすることで、熱延鋼板においてより高い強度を得ることができる。GAM値が2.0°以上である領域の面積率は、好ましくは60%以上であり、より好ましくは70%以上である。
GAM値が2.0°以上である領域の面積率は100%であってもよい。
(Second aspect) Area ratio of the region where the GAM value is 2.0° or more: 50% or more The second aspect is a metal structure suitable for cases where relatively higher strength is required. In this embodiment, by setting the area ratio of the region where the GAM value is 2.0° or more to 50% or more, higher strength can be obtained in the hot-rolled steel sheet. The area ratio of the region where the GAM value is 2.0° or more is preferably 60% or more, more preferably 70% or more.
The area ratio of the region having a GAM value of 2.0° or more may be 100%.
第2の態様においては、GAM値が2.0°以上である領域以外の残部組織として、面積率で0~50%の、GAM値が2.0°未満である領域が含まれていてもよい。 In the second embodiment, the remaining structure other than the area where the GAM value is 2.0° or more may include an area ratio of 0 to 50% where the GAM value is less than 2.0°.
GAM値が0.6°超である領域の面積率、GAM値が0.6°超、2.0°未満である領域の面積率、GAM値が2.0°以上である領域の面積率、GAM値が3.0°超である領域の面積率は以下の方法により測定する。
熱延鋼板の各々の組織の「GAM値」とは、EBSP(Electron Backscatter Pattern:電子後方散乱解析像)法によって測定されるものである。
The area ratio of the region where the GAM value exceeds 0.6°, the area ratio of the region where the GAM value is greater than 0.6° and less than 2.0°, the area ratio of the region where the GAM value is 2.0° or more, and the area ratio of the region where the GAM value is greater than 3.0° are measured by the following method.
The "GAM value" of each structure of the hot-rolled steel sheet is measured by the EBSP (Electron Backscatter Pattern) method.
まず、熱延鋼板の端面から幅方向に1/4位置において、幅方向を法線方向とする断面(板厚方向×圧延方向断面)の金属組織が観察できるように、試料を採取する。試料のサイズは、測定装置にもよるが、例えば、板厚方向全厚,圧延方向に15mm、幅方向に10mmの直方体とすればよい。次に、試料の観察面を鏡面研磨した後、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、試料の表面に導入されたひずみを除去する。上記研磨後の試料の表面から板厚方向に1/4深さ位置を中心に200μmおよび圧延方向の任意の位置で400μm以上の領域(板厚方向1/4深さ位置に中心を有する長方形領域であって、板厚方向に200μmの長さ(短辺)、圧延方向に400μm以上の長さ(長辺)を有する長方形領域)を、0.2μmの測定間隔で測定し、結晶方位情報を得る。なお、EBSP法による測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製HIKARI検出器)とで構成されたEBSD解析装置を用いる。この際,EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。 First, a sample is taken at a 1/4 position in the width direction from the end face of the hot-rolled steel sheet so that the metal structure of the cross section (thickness direction x rolling direction cross section) with the width direction as the normal direction can be observed. The size of the sample depends on the measuring device, but it may be, for example, a rectangular parallelepiped with a total thickness in the thickness direction, 15 mm in the rolling direction, and 10 mm in the width direction. Next, the observation surface of the sample is mirror-polished, and then polished for 8 minutes at room temperature using colloidal silica that does not contain an alkaline solution to remove the strain introduced into the surface of the sample. A region of 200 μm from the surface of the sample after the above polishing at a 1/4 depth position in the thickness direction and 400 μm or more at any position in the rolling direction (a rectangular region having a center at a 1/4 depth position in the thickness direction, a length (short side) of 200 μm in the thickness direction, and a length (long side) of 400 μm or more in the rolling direction) is measured at a measurement interval of 0.2 μm to obtain crystal orientation information. For the measurement by the EBSP method, an EBSD analysis device consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (HIKARI detector manufactured by TSL) is used. At this time, the degree of vacuum in the EBSD analysis device is 9.6×10 −5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the electron beam irradiation level is 62.
得られた結晶方位情報から、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Phase Map」機能を用いて、結晶構造がfccである領域と、結晶構造がbccである領域とを特定する。結晶構造がbccである領域において、方位差15°以上の粒界で囲まれた領域を1つの結晶粒とみなし、その結晶粒内において隣接するピクセル間の方位差の平均値を算出することで、その結晶粒のGAM値を算出する。得られたGAM値が、0.6°超である結晶粒の面積率、0.6°超、2.0°未満である結晶粒の面積率、2.0°以上である結晶粒の面積率、3.0°超である結晶粒の面積率を算出することで、それぞれの領域の面積率を得る。 From the obtained crystal orientation information, the "Phase Map" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer is used to identify regions with fcc crystal structure and regions with bcc crystal structure. In the region with bcc crystal structure, a region surrounded by grain boundaries with an orientation difference of 15° or more is regarded as one crystal grain, and the GAM value of the crystal grain is calculated by calculating the average orientation difference between adjacent pixels within the crystal grain. The area ratio of each region is obtained by calculating the area ratio of crystal grains with the obtained GAM value exceeding 0.6°, the area ratio of crystal grains with an orientation difference of more than 0.6° and less than 2.0°, the area ratio of crystal grains with an orientation difference of 2.0° or more, and the area ratio of crystal grains with an orientation difference of more than 3.0°.
なお、定義された結晶粒の円相当径が0.6μm以下のものについては、測定誤差が大きい可能性があるため、測定から除外する。 Note that defined crystal grains with an equivalent circular diameter of 0.6 μm or less are excluded from the measurement because there is a possibility of large measurement error.
残留オーステナイトの面積率は以下の方法により測定する。
本実施形態におけるX線回折による残留オーステナイト面積率の測定では、まず、熱延鋼板の表面から板厚方向に1/4位置の断面において、圧延方向の任意の位置で1mm以上、端面から幅方向に1/4位置を中心に1mm以上の領域における金属組織が観察できるように試料を採取する。上記試料を、Co-Kα線を用いて、α(110)、α(200)、α(211)、γ(111)、γ(200)、γ(220)の計6ピークの積分強度を求める。次に、前記積分強度から強度平均法を用いて残留オーステナイトの体積率を算出する。得られた残留オーステナイトの体積率を、残留オーステナイトの面積率とみなす。
The area ratio of retained austenite is measured by the following method.
In the measurement of the area ratio of retained austenite by X-ray diffraction in this embodiment, first, a sample is taken so that the metal structure can be observed in a region of 1 mm or more at any position in the rolling direction and 1 mm or more from the end face in the cross section at 1/4 position in the sheet thickness direction from the surface of the hot-rolled steel sheet. The sample is subjected to Co-Kα radiation to obtain the integrated intensity of a total of six peaks, α(110), α(200), α(211), γ(111), γ(200), and γ(220). Next, the volume ratio of retained austenite is calculated from the integrated intensity using the intensity averaging method. The obtained volume ratio of retained austenite is regarded as the area ratio of retained austenite.
機械特性
引張強さ(TS):940MPa以上
引張強さは940MPa以上としてもよい。引張強さを940MPa以上とすることで、車体軽量化の寄与を大きくすることができ、自動車部品に好適に適用することができる。引張強さの上限は特に限定する必要は無いが、金型摩耗抑制の観点から、1400MPa以下としてもよい。
Mechanical properties Tensile strength (TS): 940 MPa or more The tensile strength may be 940 MPa or more. By making the tensile strength 940 MPa or more, the contribution to weight reduction of the vehicle body can be increased, and the material can be suitably applied to automobile parts. The upper limit of the tensile strength does not need to be particularly limited, but from the viewpoint of suppressing die wear, it may be 1400 MPa or less.
一様伸び(uEl):3.0%以上
一様伸びは3.0%以上としてもよい。一様伸びを3.0%以上とすることで、自動車部品に好適に適用することができる。一様伸びの上限は特に限定する必要は無いが、10.0%以下としてもよい。
Uniform elongation (uEl): 3.0% or more The uniform elongation may be 3.0% or more. By setting the uniform elongation to 3.0% or more, it can be suitably applied to automobile parts. There is no need to particularly limit the upper limit of the uniform elongation, but it may be 10.0% or less.
引張強さおよび一様伸びは、JIS Z 2241:2022の5号試験片を用いて、JIS Z 2241:2022に準拠して引張試験を行うことで、測定する。引張試験片の採取位置は、幅方向中央位置とし、圧延方向および板厚方向に垂直な方向(幅方向)を長手方向とする。
測定対象の熱延鋼板から上記5号試験片を採取できない場合は、引張強さを測定するための試験片として、幅方向を長手方向とする微小試験片を代用することができる。
The tensile strength and uniform elongation are measured by performing a tensile test in accordance with JIS Z 2241: 2022 using a No. 5 test piece of JIS Z 2241: 2022. The tensile test piece is taken from the center position in the width direction, and the direction perpendicular to the rolling direction and the plate thickness direction (width direction) is defined as the longitudinal direction.
When the above No. 5 test piece cannot be taken from the hot-rolled steel sheet to be measured, a minute test piece with the width direction as the longitudinal direction can be used instead as the test piece for measuring the tensile strength.
穴広げ率(λ):40%以上
穴広げ率は40%以上としてもよい。穴広げ率を40%以上とすることで、自動車部品に好適に適用することができる。穴広げ率の上限は特に限定する必要は無いが、80%以下としてもよい。
穴広げ率は、JIS Z 2256:2020に準拠して穴広げ試験を行うことで、測定する。
Hole expansion ratio (λ): 40% or more The hole expansion ratio may be 40% or more. By setting the hole expansion ratio to 40% or more, it can be suitably applied to automobile parts. There is no need to particularly limit the upper limit of the hole expansion ratio, but it may be 80% or less.
The hole expansion ratio is measured by performing a hole expansion test in accordance with JIS Z 2256:2020.
張力曲げ特性
張力曲げ特性は、図1に示す方法で張力曲げ試験を行うことにより評価することができる。本実施形態では、試験前の鋼板長さをL0とし、破断時の鋼板長さをLMAXとしたとき、圧延方向または幅方向において張力曲げ試験を行ったときのLMAX/L0を張力曲げ特性の指標とする。
圧延方向における張力曲げ試験では、図1において、圧延方向をL0の方向に配置して、パンチを押し下げ、鋼板が破断した際の押し下げ量hを測定する。ここで、押し下げ量hは、パンチが鋼板に接触してから破断するまでの、パンチのストローク量(mm)である。LMAXは、図1中の長さLの2倍(LMAX=2L)として求められる。長さLは、式「L=h/cosθ」で求められ、パンチの押し下げ方向と破断時の鋼板の板面とがなす角であるθは、式「θ=arctan(h/(Lo/2))」により求められる。なお、鋼板が破断したか否かは、パンチの押し下げ荷重が1秒以内に20%以上低下した場合に、鋼板が破断したと判定する。幅方向における張力曲げ試験は、幅方向をLoの方向に配置すること以外、圧延方向における張力曲げ試験と同様である。
Tensile bending properties can be evaluated by performing a tension bending test by the method shown in Fig. 1. In this embodiment, when the length of the steel sheet before the test is L0 and the length of the steel sheet at the time of fracture is LMAX , LMAX / L0 when the tension bending test is performed in the rolling direction or width direction is used as an index of the tension bending properties.
In the tension bending test in the rolling direction, the rolling direction is arranged in the direction of L 0 in FIG. 1, the punch is pressed down, and the amount of pressing h when the steel sheet breaks is measured. Here, the amount of pressing h is the stroke amount (mm) of the punch from when the punch contacts the steel sheet to when it breaks. L MAX is calculated as twice the length L in FIG. 1 (L MAX =2L). The length L is calculated by the formula "L=h/cos θ", and θ, which is the angle between the pressing direction of the punch and the sheet surface of the steel sheet at the time of breaking, is calculated by the formula "θ=arctan(h/(L o /2))". It should be noted that the steel sheet is judged to have broken if the pressing load of the punch is reduced by 20% or more within 1 second. The tension bending test in the width direction is the same as the tension bending test in the rolling direction, except that the width direction is arranged in the direction of L o .
引張強さが1040MPa未満である場合、圧延方向において張力曲げ試験を行ったときのLMAX/L0は1.028以上としてもよい。引張強さが1040MPa未満である場合において、圧延方向において張力曲げ試験を行ったときのLMAX/L0が1.028以上であれば、圧延方向において優れた張力曲げ特性を有すると判断することができる。
また、引張強さが1040MPa未満である場合には、幅方向において張力曲げ試験を行ったときのLMAX/L0が1.028以上であれば、幅方向においても優れた張力曲げ特性を有すると判断することができる。
When the tensile strength is less than 1040 MPa, LMAX / L0 may be 1.028 or more when a tension bending test is performed in the rolling direction. When the tensile strength is less than 1040 MPa, if LMAX / L0 is 1.028 or more when a tension bending test is performed in the rolling direction, it can be determined that the steel sheet has excellent tension bending properties in the rolling direction.
Furthermore, when the tensile strength is less than 1040 MPa, if L MAX /L 0 is 1.028 or more when a tension bending test is carried out in the width direction, it can be determined that the material has excellent tension bending properties also in the width direction.
引張強さが1040MPa以上である場合、圧延方向において張力曲げ試験を行ったときのLMAX/L0は1.018以上としてもよい。引張強さが1040MPa以上である場合において、圧延方向において張力曲げ試験を行ったときのLMAX/L0が1.018以上であれば、圧延方向において優れた張力曲げ特性を有すると判断することができる。
また、引張強さが1040MPa以上である場合には、幅方向において張力曲げ試験を行ったときのLMAX/L0が1.018以上であれば、幅方向においても優れた張力曲げ特性を有すると判断することができる。
When the tensile strength is 1040 MPa or more, LMAX / L0 may be 1.018 or more when a tension bending test is performed in the rolling direction. When the tensile strength is 1040 MPa or more, if LMAX / L0 is 1.018 or more when a tension bending test is performed in the rolling direction, it can be determined that the steel sheet has excellent tension bending properties in the rolling direction.
Furthermore, when the tensile strength is 1040 MPa or more, if L MAX /L 0 is 1.018 or more when a tension bending test is carried out in the width direction, it can be determined that the material has excellent tension bending properties also in the width direction.
図1に示す張力曲げ試験は、以下の条件で行う。なお、ブランクホルダーによる加圧力は、熱延鋼板が動かない程度の加圧力とすればよい。試験前の熱延鋼板の初期板厚t0は1.5mmとする。熱延鋼板の板厚が1.5mmよりも厚い場合には、熱延鋼板の一方の表面から機械研削を行うことにより、板厚を1.5mmとした後、機械研削した面をパンチ側にして試験を行う。
また、熱延鋼板の板厚が1.5mmよりも薄い場合には機械研削を行うことなく試験を行う。ただし、熱延鋼板の板厚が1.5mmよりも薄い場合には、LMAX/L0に代わり、LMAX/L0-(1.5-t0)×0.0242の指標で張力曲げ特性を評価する。
The tension bending test shown in Fig. 1 is performed under the following conditions. The pressing force applied by the blank holder may be such that the hot-rolled steel sheet does not move. The initial thickness t0 of the hot-rolled steel sheet before the test is 1.5 mm. When the thickness of the hot-rolled steel sheet is thicker than 1.5 mm, one surface of the hot-rolled steel sheet is mechanically ground to a thickness of 1.5 mm, and the mechanically ground surface is then placed on the punch side to perform the test.
Furthermore, when the thickness of the hot-rolled steel plate is thinner than 1.5 mm, the test is performed without mechanical grinding. However, when the thickness of the hot-rolled steel plate is thinner than 1.5 mm, the tensile bending properties are evaluated using the index L MAX /L 0 - (1.5 - t 0 ) x 0.0242 instead of L MAX /L 0 .
L0:試験前の鋼板長さ
パンチ速度P:3mm/min
ダイス間スパンDd:100mm
パンチ先端半径Rp:20mm
ダイス先端半径Rd:20mm
L 0 : Length of steel plate before test Punch speed P: 3 mm/min
Die span Dd: 100 mm
Punch tip radius Rp: 20 mm
Die tip radius Rd: 20 mm
また、上述した第1および第2の態様において、所望される強度、延性、張力曲げ特性は異なるため、それぞれの態様において以下の強度、延性、張力曲げ特性を有してもよい。なお、いずれの態様においても所望される穴広げ性は同等であるため説明を省略する。 In addition, since the desired strength, ductility, and tensile bending properties differ in the first and second embodiments described above, each embodiment may have the following strength, ductility, and tensile bending properties. Note that the desired hole expansion properties are the same in both embodiments, so explanations are omitted.
(第1の態様)引張強さ:940MPa以上、一様伸び:4.0%以上
第1の態様では、引張強さを940MPa以上、一様伸びを4.0%以上としてもよい。第1の態様では、引張強さは980MPa以下としてもよい。また、第1の態様では、一様伸びを5.0%以下としてもよい。
(First embodiment) Tensile strength: 940 MPa or more, uniform elongation: 4.0% or more In the first embodiment, the tensile strength may be 940 MPa or more, and the uniform elongation may be 4.0% or more. In the first embodiment, the tensile strength may be 980 MPa or less. In addition, in the first embodiment, the uniform elongation may be 5.0% or less.
(第1の態様)張力曲げ特性
第1の態様では、圧延方向において張力曲げ試験を行ったときのLMAX/L0を1.028以上としてもよい。
また、第1の態様では、幅方向において張力曲げ試験を行ったときのLMAX/L0を1.028以上としてもよい。
(First Aspect) Tension Bending Property In the first aspect, L MAX /L 0 may be set to 1.028 or more when a tension bending test is carried out in the rolling direction.
In the first aspect, L MAX /L 0 may be 1.028 or more when a tension bending test is performed in the width direction.
(第2の態様)引張強さ:1040MPa以上、一様伸び:3.0%以上
第2の態様では、引張強さを1040MPa以上、一様伸びを3.0%以上としてもよい。第2の態様では、引張強さは1080MPa以下としてもよい。第2の態様では、一様伸びを4.0%以下としてもよい。
(Second embodiment) Tensile strength: 1040 MPa or more, uniform elongation: 3.0% or more In the second embodiment, the tensile strength may be 1040 MPa or more, and the uniform elongation may be 3.0% or more. In the second embodiment, the tensile strength may be 1080 MPa or less. In the second embodiment, the uniform elongation may be 4.0% or less.
(第2の態様)張力曲げ特性
第2の態様では、圧延方向において張力曲げ試験を行ったときのLMAX/L0を1.018以上としてもよい。
また、第2の態様では、幅方向において張力曲げ試験を行ったときのLMAX/L0を1.018以上としてもよい。
(Second Aspect) Tension Bending Property In the second aspect, L MAX /L 0 may be set to 1.018 or more when a tension bending test is carried out in the rolling direction.
In the second aspect, L MAX /L 0 may be 1.018 or more when a tension bending test is performed in the width direction.
本実施形態に係る熱延鋼板は、表面に耐食性の向上等を目的としてめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。 The hot-rolled steel sheet according to this embodiment may be provided with a plating layer on the surface for the purpose of improving corrosion resistance, etc., to form a surface-treated steel sheet. The plating layer may be an electroplating layer or a hot-dip plating layer. Examples of electroplating layers include electrogalvanizing and electrogalvanizing Zn-Ni alloy plating. Examples of hot-dip plating layers include hot-dip galvanizing, alloyed hot-dip galvanizing, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, and hot-dip Zn-Al-Mg-Si alloy plating. There is no particular restriction on the amount of plating applied, and it may be the same as in the past. In addition, it is also possible to further improve corrosion resistance by applying an appropriate chemical conversion treatment (for example, applying a silicate-based chromium-free chemical conversion treatment solution and drying) after plating.
次に、本実施形態に係る熱延鋼板の好ましい製造方法について説明する。以下に説明する製造方法によれば、本実施形態に係る熱延鋼板を安定的に製造することができる。なお、本実施形態におけるスラブの温度および鋼板の温度は、スラブの表面温度および鋼板の表面温度のことをいう。 Next, a preferred manufacturing method for the hot-rolled steel sheet according to this embodiment will be described. According to the manufacturing method described below, the hot-rolled steel sheet according to this embodiment can be stably manufactured. Note that the temperature of the slab and the temperature of the steel sheet in this embodiment refer to the surface temperature of the slab and the surface temperature of the steel sheet.
以下に説明する工程(1)~(3)は第1および第2の態様において共通する工程である。その後の工程については、工程(4)、(5)が第1の態様に対応し、工程(6)が第2の態様に対応する。 Steps (1) to (3) described below are common to the first and second aspects. As for the subsequent steps, steps (4) and (5) correspond to the first aspect, and step (6) corresponds to the second aspect.
本実施形態に係る熱延鋼板の好ましい製造方法は、
(1)粗圧延前に、上述した化学組成を有するスラブに対して、幅方向ひずみが合計で3~15%となるように1回または複数回のひずみを付与する工程と、
(2)ひずみを付与したスラブに対して粗圧延を行う工程と、
(3)最終直前パスと最終パスとにおける入側温度の差が30℃以上、且つ、仕上げ圧延完了温度が920℃以上の温度域となるように仕上げ圧延を行う工程と、を備え、
更に、以下の(4)~(6)の1つ以上の工程を備える。
(4)仕上げ圧延完了後、30℃/s以上の平均冷却速度で580~680℃の温度域まで加速冷却し、この温度域で2.0秒間以上緩冷却(空冷)する工程。
(5)緩冷却完了後、30℃/s以上の平均冷却速度で、300℃に至るまで加速冷却する工程。
(6)仕上げ圧延完了後、30℃/s以上の平均冷却速度で300℃に至るまで加速冷却する工程。
以下、各工程について説明する。
A preferred method for producing a hot-rolled steel sheet according to this embodiment is as follows:
(1) before rough rolling, a step of applying strain to a slab having the above-mentioned chemical composition one or more times so that the width direction strain is 3 to 15% in total;
(2) performing rough rolling on the strained slab;
(3) performing finish rolling so that the difference in the entry temperature between the immediately preceding final pass and the final pass is 30° C. or more and the finish rolling completion temperature is in a temperature range of 920° C. or more;
Furthermore, the method includes one or more of the following steps (4) to (6).
(4) After the completion of finish rolling, accelerated cooling is performed to a temperature range of 580 to 680°C at an average cooling rate of 30°C/s or more, and slow cooling (air cooling) is performed in this temperature range for 2.0 seconds or more.
(5) After the slow cooling is completed, a step of accelerated cooling down to 300°C at an average cooling rate of 30°C/s or more.
(6) After the completion of the finish rolling, a step of accelerated cooling down to 300°C at an average cooling rate of 30°C/s or more.
Each step will be described below.
(1)粗圧延前のひずみ付与:第1および第2の態様で共通
粗圧延前に、上述した化学組成を有するスラブに対して、幅方向ひずみが合計で3~15%となるように1回または複数回のひずみを付与する。これにより、スラブの表層の凹凸を低減しつつ、集合組織の均一性を高めることができる。ひずみの付与は、粗圧延のためのスラブ加熱を行った後に行えばよい。
スラブの幅方向に付与するひずみが合計で3%未満または15%超であると、熱延鋼板の集合組織において最大値Aおよび最大値Bのピーク位置を好ましい範囲に制御できない場合がある。ここで、「スラブの幅方向」とは、スラブの搬送方向及び板厚方向に直交する方向であり、スラブの搬送方向は後の工程において圧延方向に相当する。
(1) Imparting strain before rough rolling: common to the first and second embodiments Before rough rolling, a slab having the above-mentioned chemical composition is subjected to one or more strains so that the total width direction strain is 3 to 15%. This can reduce the unevenness of the surface layer of the slab while increasing the uniformity of the texture. The imparting of strain may be performed after the slab is heated for rough rolling.
If the strain imparted in the width direction of the slab is less than 3% or more than 15% in total, the peak positions of the maximum values A and B in the texture of the hot-rolled steel sheet may not be controlled within a preferred range. Here, the "width direction of the slab" refers to a direction perpendicular to the transport direction and thickness direction of the slab, and the transport direction of the slab corresponds to the rolling direction in the subsequent process.
また、スラブの幅方向に、1回のみではなく、複数回のひずみを付与することで、熱延鋼板の幅方向の集合組織の変化が大きくなることを抑制できる。その結果、熱延鋼板の端面から幅方向に1/4位置、前記端面から前記幅方向に1/4-15mm位置および前記端面から前記幅方向に1/4+15mm位置のそれぞれにおいて、最大値Aと最大値Bとの差の絶対値を低減することができる。 Furthermore, by applying strain to the slab in the width direction not just once but multiple times, it is possible to suppress significant changes in the texture of the hot-rolled steel sheet in the width direction. As a result, it is possible to reduce the absolute value of the difference between maximum value A and maximum value B at a position 1/4 of the way from the end face of the hot-rolled steel sheet in the width direction, a position 1/4-15 mm from the end face in the width direction, and a position 1/4+15 mm from the end face in the width direction.
なお、スラブの幅方向に付与するひずみの合計は、1回目のひずみ付与前のスラブの幅方向長さをw0とし、最後のひずみ付与後のスラブの幅方向長さをw1としたとき、(1-w1/w0)×100(%)により表すことができる。
スラブの幅方向にひずみを付与する方法としては、例えば、スラブの板面および搬送方向に対して回転軸が垂直になるように設置されたロールの間にスラブを通すことにより、スラブに対して幅方向のひずみを付与する(幅方向に圧下する)方法が挙げられる。
The total strain imparted to the slab in the width direction can be expressed as (1-w1/w0) x 100 (%), where w0 is the width direction length of the slab before the first strain is imparted, and w1 is the width direction length of the slab after the final strain is imparted.
A method for imparting strain in the width direction of a slab includes, for example, passing the slab between rolls whose rotation axes are perpendicular to the plate surface and conveying direction of the slab to impart strain in the width direction to the slab (pressing down in the width direction).
なお、ひずみを付与するスラブについては、上述した化学組成を有する点以外については特に限定されない。例えば、転炉又は電気炉等を用いて上記化学組成の溶鋼を溶製し、連続鋳造法により製造したスラブを用いることができる。連続鋳造法に代えて、造塊法、薄スラブ鋳造法等を採用してもよい。粗圧延前のスラブ加熱では、加熱温度を1100~1300℃の温度域とすればよい。 The slab to which strain is applied is not particularly limited except for the chemical composition described above. For example, a slab produced by melting molten steel of the above chemical composition using a converter or electric furnace, etc. and then by continuous casting can be used. Instead of continuous casting, an ingot casting method, thin slab casting method, etc. may be used. When heating the slab before rough rolling, the heating temperature may be in the range of 1100 to 1300°C.
(2)粗圧延:第1および第2の態様で共通
粗圧延の条件は特に限定されず、粗圧延としては、例えば、1100℃以上の温度で複数回の圧延を行い、板厚を30~60mmとする工程とすることができる。
(2) Rough rolling: common to the first and second aspects The conditions of rough rolling are not particularly limited, and the rough rolling can be, for example, a process in which rolling is performed multiple times at a temperature of 1100 ° C. or higher to reduce the plate thickness to 30 to 60 mm.
(3)仕上げ圧延:第1および第2の態様で共通
仕上げ圧延工程では、最終直前パスと最終パスとにおける入側温度の差が30℃以上、且つ、仕上げ圧延完了温度が920℃以上の温度域となるように仕上げ圧延を行う。最終直前パスと最終パスとにおける入側温度の差が30℃未満であると、熱延鋼板の集合組織において最大値Aおよび最大値Bのピーク位置を好ましい範囲に制御できない場合がある。また、仕上げ圧延完了温度が920℃未満であると、最大値Aおよび最大値Bを好ましい値に制御することができない。
最終直前パスと最終パスとにおける入側温度の差を30℃以上とする方法としては、例えば、圧延直後に、冷却スプレー等の冷却装置からの水等の冷却材の噴射量を制御することや、圧延の間における鋼板の搬送速度を制御すること等により、制御することが挙げられる。
(3) Finish rolling: common to the first and second aspects In the finish rolling process, finish rolling is performed so that the difference in the entry temperature between the pass immediately before the final pass and the final pass is 30°C or more, and the finish rolling completion temperature is in a temperature range of 920°C or more. If the difference in the entry temperature between the pass immediately before the final pass and the final pass is less than 30°C, the peak positions of maximum value A and maximum value B in the texture of the hot-rolled steel sheet may not be controlled to a preferred range. Also, if the finish rolling completion temperature is less than 920°C, maximum value A and maximum value B cannot be controlled to a preferred value.
Examples of a method for making the difference in the inlet temperature between the immediately preceding final pass and the final pass 30°C or more include controlling the amount of coolant such as water sprayed from a cooling device such as a cooling spray immediately after rolling, or controlling the conveying speed of the steel sheet during rolling.
なお、最終直前パスとは、最終パスの1段前のパスのことである。例えば、仕上げ圧延をF1、F2…F6、F7のパスで行う場合には、F6のパスのことをいう。
また、仕上げ圧延完了温度とは、仕上げ圧延の最終パスの出側温度のことである。
The pass immediately before the final pass refers to the pass immediately before the final pass. For example, if the finish rolling is performed in passes F1, F2, ... F6, and F7, the pass immediately before the final pass refers to the pass F6.
The finish rolling completion temperature refers to the temperature at the outlet of the final pass of finish rolling.
(4)580~680℃の温度域での緩冷却(空冷):第1の態様に対応
仕上げ圧延完了後は、30℃/s以上の平均冷却速度で580~680℃の温度域まで加速冷却し、この温度域で2.0秒間以上緩冷却(空冷)する。580~680℃の温度域で2.0秒間以上緩冷却(空冷)することで、GAM値が0.6°超、2.0°未満である領域の面積率を高めることができる。
本実施形態でいう緩冷却(空冷)とは、平均冷却速度が20℃/s以下である冷却のことをいう。
(4) Slow cooling (air cooling) in a temperature range of 580 to 680°C: corresponds to the first embodiment. After the completion of finish rolling, accelerated cooling is performed to a temperature range of 580 to 680°C at an average cooling rate of 30°C/s or more, and slow cooling (air cooling) is performed in this temperature range for 2.0 seconds or more. By performing slow cooling (air cooling) in a temperature range of 580 to 680°C for 2.0 seconds or more, the area ratio of the region where the GAM value is more than 0.6° and less than 2.0° can be increased.
In this embodiment, slow cooling (air cooling) refers to cooling at an average cooling rate of 20° C./s or less.
(5)緩冷却(空冷)完了後の加速冷却:第1の態様に対応
580~680℃の温度域(第1の態様)での緩冷却(空冷)完了後は、30℃/s以上の平均冷却速度で、300℃に至るまで加速冷却する。緩冷却(空冷)完了後、30℃/s以上の平均冷却速度で、300℃に至るまで加速冷却することで、所望の金属組織を得ることができる。
300℃に至るまで加速冷却された後は、室温になるまで放冷されても、コイル状に巻取られた後に水冷されてもよい。
(5) Accelerated cooling after completion of slow cooling (air cooling): corresponds to the first embodiment After completion of slow cooling (air cooling) in the temperature range of 580 to 680° C. (first embodiment), accelerated cooling is performed at an average cooling rate of 30° C./s or more until the temperature reaches 300° C. After completion of slow cooling (air cooling), accelerated cooling is performed at an average cooling rate of 30° C./s or more until the temperature reaches 300° C., whereby a desired metal structure can be obtained.
After accelerated cooling to 300° C., the wire may be left to cool to room temperature or may be wound into a coil and then water-cooled.
(6)300℃に至るまで加速冷却:第2の態様に対応
仕上げ圧延完了後は、30℃/s以上の平均冷却速度で300℃に至るまで加速冷却する。加速冷却の途中で緩冷却(空冷)を行うことなく30℃/s以上の平均冷却速度で300℃に至るまで加速冷却することで、GAM値が2.0°以上である領域の面積率を高めることができる。
300℃に至るまで加速冷却された後は、室温になるまで放冷されても、コイル状に巻取られた後に水冷されてもよい。
(6) Accelerated cooling down to 300° C.: Corresponding to the second embodiment After the completion of finish rolling, accelerated cooling is performed at an average cooling rate of 30° C./s or more down to 300° C. By performing accelerated cooling down to 300° C. at an average cooling rate of 30° C./s or more without performing slow cooling (air cooling) during the accelerated cooling, the area ratio of the region having a GAM value of 2.0° or more can be increased.
After accelerated cooling to 300° C., the wire may be left to cool to room temperature or may be wound into a coil and then water-cooled.
なお、本実施形態でいう平均冷却速度とは、設定する範囲の始点と終点との温度差を、始点から終点までの経過時間で除した値である。 In this embodiment, the average cooling rate is the temperature difference between the start and end points of the set range divided by the elapsed time from the start point to the end point.
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an embodiment of the present invention will be described. However, the conditions in the embodiment are merely an example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this example of conditions. Various conditions may be adopted in the present invention as long as they do not deviate from the gist of the present invention and achieve the object of the present invention.
表1A~表2Bに示す化学組成を有するスラブを連続鋳造により製造した。得られたスラブを用いて、表3A~表3Cに示す条件により、板厚3.0mmの熱延鋼板を製造した。
なお、表1A~表2B中の空欄は、当該元素を意図的に添加していないことを示す。
Slabs having the chemical compositions shown in Tables 1A to 2B were produced by continuous casting. Using the obtained slabs, hot-rolled steel sheets having a thickness of 3.0 mm were produced under the conditions shown in Tables 3A to 3C.
In addition, blank cells in Tables 1A to 2B indicate that the element was not intentionally added.
表3A~表3Cにおいて、「最終直前パスと最終パスとにおける入側温度の差が30℃以上」であった場合には、当該条件の欄に「OK」と記載し、当該条件を満たさなかった場合には「NG」と記載した。 In Tables 3A to 3C, if the difference in inlet temperature between the pass immediately before the final pass and the final pass was 30°C or more, the column for that condition was marked "OK," and if that condition was not met, it was marked "NG."
製造No.1~20、29~49については、仕上げ圧延完了後、表中の「緩冷却の開始温度」まで30℃/s以上の平均冷却速度で加速冷却した。緩冷却は空冷により行い、緩冷却における平均冷却速度は20℃/s以下とした。また、緩冷却後は、表中の「緩冷却完了後、300℃に至るまでの平均冷却速度」で加速冷却した。加速冷却の停止後は直ちに巻取りを行った。 For production numbers 1 to 20 and 29 to 49, after the completion of finish rolling, accelerated cooling was performed at an average cooling rate of 30°C/s or more to the "start temperature of slow cooling" in the table. Slow cooling was performed by air cooling, and the average cooling rate during slow cooling was 20°C/s or less. After slow cooling, accelerated cooling was performed at the "average cooling rate after completion of slow cooling until the temperature reaches 300°C" in the table. After accelerated cooling was stopped, coiling was performed immediately.
製造No.21~28、50~67については、仕上げ圧延完了後、緩冷却を行うことなく、表中の「仕上げ圧延完了後、300℃に至るまでの平均冷却速度」で加速冷却した。加速冷却の停止後は直ちに巻取りを行った。 For production numbers 21 to 28 and 50 to 67, after the completion of finish rolling, accelerated cooling was not performed without slow cooling, but rather at the "average cooling rate after the completion of finish rolling until the temperature reaches 300°C" in the table. After the accelerated cooling was stopped, coiling was performed immediately.
得られた熱延鋼板について、上述の方法により集合組織、金属組織、引張強さ(TS)、一様伸び(uEl)、穴広げ率(λ)および張力曲げ特性(圧延方向(L方向)におけるLMAX/L0および幅方向(C方向)におけるLMAX/L0)を評価した。
得られた結果を表4A~表5Cに示す。ただし、熱延鋼板の板厚が1.5mmよりも薄かった例については、LMAX/L0に代わり、LMAX/L0-(1.5-t0)×0.0242の値を記載した。
The obtained hot-rolled steel sheets were evaluated for texture, metal structure, tensile strength (TS), uniform elongation (uEl), hole expansion ratio (λ) and tensile bending properties (L MAX /L 0 in the rolling direction (L direction) and L MAX /L 0 in the width direction (C direction)) by the above-mentioned methods.
The results obtained are shown in Tables 4A to 5C. However, for examples in which the thickness of the hot-rolled steel sheet was thinner than 1.5 mm, the value L MAX /L 0 - (1.5 - t 0 ) x 0.0242 was recorded instead of L MAX /L 0 .
また、「表面から板厚方向に500μm深さまでの領域における集合組織の結晶方位分布関数において、端面から幅方向に1/4位置、端面から幅方向に1/4-15mm位置および端面から幅方向に1/4+15mm位置における最大値Aと最大値Bとの差の絶対値が3.0以下」であった場合、表中の「幅方向の3位置のそれぞれにおける最大値Aと最大値Bとの差の絶対値が3.0以下」の欄に「OK」と記載した。一方、上記絶対値が3.0超であった場合、当該欄に「NG」と記載した。 In addition, if "in the crystal orientation distribution function of the texture in the region from the surface to a depth of 500 μm in the sheet thickness direction, the absolute value of the difference between maximum value A and maximum value B at the position 1/4 in the width direction from the end face, the position 1/4-15 mm in the width direction from the end face, and the position 1/4+15 mm in the width direction from the end face was 3.0 or less," then "OK" was entered in the column in the table that reads "The absolute value of the difference between maximum value A and maximum value B at each of the three positions in the width direction is 3.0 or less." On the other hand, if the above absolute value exceeded 3.0, then "NG" was entered in that column.
引張強さ(TS)が940MPa以上であった場合、高い強度を有するとして合格と判定した。一方、引張強さ(TS)が940MPa未満であった場合、高い強度を有さないとして不合格と判定した。 If the tensile strength (TS) was 940 MPa or more, it was judged to have high strength and to have passed. On the other hand, if the tensile strength (TS) was less than 940 MPa, it was judged to have low strength and to have failed.
一様伸び(uEl)が3.0%以上であった場合、優れた延性を有するとして合格と判定した。一方、一様伸び(uEl)が3.0%未満であった場合、優れた延性を有さないとして不合格と判定した。 If the uniform elongation (uEl) was 3.0% or more, it was judged to have excellent ductility and to have passed. On the other hand, if the uniform elongation (uEl) was less than 3.0%, it was judged to have no excellent ductility and to have failed.
穴広げ率(λ)が40%以上であった場合、優れた穴広げ性を有するとして合格と判定した。一方、穴広げ率(λ)が40%未満であった場合、優れた穴広げ性を有さないとして不合格と判定した。 If the hole expansion ratio (λ) was 40% or more, it was judged to have excellent hole expansion properties and to pass. On the other hand, if the hole expansion ratio (λ) was less than 40%, it was judged to have no excellent hole expansion properties and to fail.
張力曲げ特性については、引張強さに応じて以下の基準により評価した。
・引張強さが1040MPa未満である場合
張力曲げ特性(圧延方向(L方向)におけるLMAX/L0):1.028以上が合格、1.028未満が不合格。
また、幅方向(C方向)におけるLMAX/L0が1.028以上であった場合、幅方向においても優れた張力曲げ特性と有すると判断した。
・引張強さが1040MPa以上である場合
張力曲げ特性(圧延方向(L方向)におけるLMAX/L0):1.018以上が合格、1.018未満が不合格。
なお、幅方向(C方向)におけるLMAX/L0が1.018以上であった場合、幅方向においても優れた張力曲げ特性と有すると判断した。
The tensile bending properties were evaluated according to the following criteria depending on the tensile strength.
When the tensile strength is less than 1,040 MPa, the tensile bending property (L MAX /L 0 in the rolling direction (L direction)): 1.028 or more is pass, and less than 1.028 is fail.
Furthermore, when L MAX /L 0 in the width direction (C direction) was 1.028 or more, it was determined that the sheet had excellent tensile bending properties in the width direction as well.
When the tensile strength is 1040 MPa or more, the tensile bending property (L MAX /L 0 in the rolling direction (L direction)): 1.018 or more is pass, and less than 1.018 is fail.
When L MAX /L 0 in the width direction (C direction) was 1.018 or more, it was determined that the sheet had excellent tensile bending properties also in the width direction.
表4A~表5Cを見ると、本発明例に係る熱延鋼板は、高い強度、並びに、優れた延性および穴広げ性を有し、且つ圧延方向において優れた張力曲げ特性を有することが分かる。
一方、比較例に係る鋼板は、特性のいずれか一つ以上が劣ることが分かる。
From Tables 4A to 5C, it can be seen that the hot-rolled steel sheets according to the examples of the present invention have high strength, as well as excellent ductility and hole expandability, and also have excellent tensile bending properties in the rolling direction.
On the other hand, it is seen that the steel sheets according to the comparative examples are inferior in at least one of the characteristics.
本発明に係る上記態様によれば、高い強度、並びに、優れた延性および穴広げ性を有し、且つ圧延方向において優れた張力曲げ特性を有する熱延鋼板を提供することができる。
また、本発明に係る好ましい態様によれば、上記諸特性を有した上で更に、幅方向においても優れた張力曲げ特性を有する熱延鋼板を提供することができる。
According to the above-described aspects of the present invention, it is possible to provide a hot-rolled steel sheet having high strength, excellent ductility and hole expandability, and excellent tensile bending properties in the rolling direction.
Furthermore, according to a preferred embodiment of the present invention, it is possible to provide a hot-rolled steel sheet having not only the above-mentioned properties but also excellent tensile bending properties in the width direction.
Claims (6)
C :0.045~0.120%、
Si:0~3.00%、
Mn:1.20~2.60%、
Ti:0.020~0.180%、
Al:0.010~0.400%、
P :0.080%以下、
S :0.0100%以下、
N :0.0050%以下、
O :0.010%以下、
Nb:0~0.100%、
V :0~1.000%、
Cu:0~1.000%、
Cr:0~2.000%、
Mo:0~3.000%、
Ni:0~0.500%、
B :0~0.0100%、
Ca:0~0.0500%、
Mg:0~0.0500%、
REM:0~0.100%、
Bi:0~0.100%、
Ta:0~0.100%、
Zr:0~0.500%、
Co:0~3.000%、
Zn:0~0.200%、
W :0~0.200%、
Sb:0~0.500%、
As:0~0.050%、および
Sn:0~0.050%を含有し、
残部がFeおよび不純物からなり、
端面から幅方向に1/4位置、且つ、表面から板厚方向に500μm深さまでの領域における集合組織の結晶方位分布関数において、
φ2=45°断面でのΦ=0~60°、且つ、φ1=50~90°の範囲内における最大値Aが6.0以下であり、
前記φ2=45°断面でのΦ=120~180°、且つ、φ1=50~90°の範囲内における最大値Bが6.0以下であり、
前記最大値Aが位置するΦのピーク位置をΦAとし、前記最大値Bが位置するΦのピーク位置をΦBとしたとき、|ΦA-35°|が10°以下であり、且つ、|ΦB-145°|が10°以下であり、
前記表面から前記板厚方向に1/4深さの位置の金属組織において、
GAM値が0.6°超である領域の面積率が50%以上であり、
前記GAM値が3.0°超である領域の面積率と、残留オーステナイトの面積率との合計が15%未満であることを特徴とする熱延鋼板。 The chemical composition, in mass%, is
C: 0.045-0.120%,
Si: 0-3.00%,
Mn: 1.20-2.60%,
Ti: 0.020 to 0.180%,
Al: 0.010-0.400%,
P: 0.080% or less,
S: 0.0100% or less,
N: 0.0050% or less,
O: 0.010% or less,
Nb: 0 to 0.100%,
V: 0 to 1.000%,
Cu: 0 to 1.000%,
Cr: 0-2.000%,
Mo: 0-3.000%,
Ni: 0 to 0.500%,
B: 0 to 0.0100%,
Ca: 0-0.0500%,
Mg: 0 to 0.0500%,
REM: 0-0.100%,
Bi: 0-0.100%,
Ta: 0-0.100%,
Zr: 0 to 0.500%,
Co: 0-3.000%,
Zn: 0-0.200%,
W: 0-0.200%,
Sb: 0 to 0.500%,
Contains As: 0 to 0.050% and Sn: 0 to 0.050%;
The balance is Fe and impurities,
In the crystal orientation distribution function of the texture in the region from the end face to a 1/4 position in the width direction and from the surface to a depth of 500 μm in the sheet thickness direction,
The maximum value A in the range of Φ=0 to 60° and Φ= 50 to 90° at the cross section of φ 2 =45° is 6.0 or less,
the maximum value B in the range of Φ=120 to 180° and Φ= 50 to 90° at the φ 2 =45° cross section is 6.0 or less;
When the peak position of Φ where the maximum value A is located is defined as Φ A , and the peak position of Φ where the maximum value B is located is defined as Φ B , |Φ A -35°| is 10° or less, and |Φ B -145°| is 10° or less;
In the metal structure at a position of 1/4 depth from the surface in the plate thickness direction,
The area ratio of the region having a GAM value exceeding 0.6° is 50% or more,
A hot-rolled steel sheet, characterized in that the sum of an area ratio of the region in which the GAM value exceeds 3.0° and an area ratio of retained austenite is less than 15%.
Nb:0.001~0.100%、
V :0.001~1.000%、
Cu:0.001~1.000%、
Cr:0.001~2.000%、
Mo:0.001~3.000%、
Ni:0.001~0.500%、
B :0.0001~0.0100%、
Ca:0.0001~0.0500%、
Mg:0.0001~0.0500%、
REM:0.001~0.100%、
Bi:0.001~0.100%、
Ta:0.001~0.100%、
Zr:0.001~0.500%、
Co:0.001~3.000%、
Zn:0.001~0.200%、
W :0.001~0.200%、
Sb:0.001~0.500%、
As:0.001~0.050%、および
Sn:0.001~0.050%
からなる群から選択される1種以上を含有することを特徴とする請求項1に記載の熱延鋼板。 The chemical composition, in mass%,
Nb: 0.001-0.100%,
V: 0.001 to 1.000%,
Cu: 0.001 to 1.000%,
Cr: 0.001-2.000%,
Mo: 0.001-3.000%,
Ni: 0.001 to 0.500%,
B: 0.0001 to 0.0100%,
Ca: 0.0001-0.0500%,
Mg: 0.0001-0.0500%,
REM: 0.001-0.100%,
Bi: 0.001-0.100%,
Ta: 0.001-0.100%,
Zr: 0.001 to 0.500%,
Co: 0.001 to 3.000%,
Zn: 0.001-0.200%,
W: 0.001-0.200%,
Sb: 0.001 to 0.500%,
As: 0.001 to 0.050%, and Sn: 0.001 to 0.050%
The hot-rolled steel sheet according to claim 1, further comprising at least one selected from the group consisting of:
前記端面から前記幅方向に1/4位置、前記端面から前記幅方向に1/4-15mm位置および前記端面から前記幅方向に1/4+15mm位置のそれぞれにおいて、前記最大値Aと前記最大値Bとの差の絶対値が3.0以下であることを特徴とする請求項1に記載の熱延鋼板。 In the crystal orientation distribution function of the texture in the region from the surface to a depth of 500 μm in the sheet thickness direction,
The hot-rolled steel sheet according to claim 1, characterized in that an absolute value of a difference between the maximum value A and the maximum value B is 3.0 or less at a 1/4 position from the end face in the width direction, a 1/4-15 mm position from the end face in the width direction, and a 1/4+15 mm position from the end face in the width direction.
前記端面から前記幅方向に1/4位置、前記端面から前記幅方向に1/4-15mm位置および前記端面から前記幅方向に1/4+15mm位置のそれぞれにおいて、前記最大値Aと前記最大値Bとの差の絶対値が3.0以下であることを特徴とする請求項2に記載の熱延鋼板。 In the crystal orientation distribution function of the texture in the region from the surface to a depth of 500 μm in the sheet thickness direction,
The hot-rolled steel sheet according to claim 2, characterized in that an absolute value of a difference between the maximum value A and the maximum value B is 3.0 or less at a 1/4 position from the end face in the width direction, a 1/4-15 mm position from the end face in the width direction, and a 1/4+15 mm position from the end face in the width direction.
前記GAM値が0.6°超、2.0°未満である領域の面積率が50%以上であることを特徴とする請求項1~4のいずれか1項に記載の熱延鋼板。 In the metal structure at a position of ¼ depth from the surface in the plate thickness direction,
The hot-rolled steel sheet according to any one of claims 1 to 4, characterized in that an area ratio of the region in which the GAM value is more than 0.6° and less than 2.0° is 50% or more.
前記GAM値が2.0°以上である領域の面積率が50%以上であることを特徴とする請求項1~4のいずれか1項に記載の熱延鋼板。 In the metal structure at a position of ¼ depth from the surface in the plate thickness direction,
The hot-rolled steel sheet according to any one of claims 1 to 4, characterized in that an area ratio of the region having the GAM value of 2.0° or more is 50% or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-013128 | 2023-01-31 | ||
JP2023013128 | 2023-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024162382A1 true WO2024162382A1 (en) | 2024-08-08 |
Family
ID=92146957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/003023 WO2024162382A1 (en) | 2023-01-31 | 2024-01-31 | Hot-rolled steel sheet |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024162382A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018138898A1 (en) * | 2017-01-30 | 2018-08-02 | 新日鐵住金株式会社 | Steel sheet |
WO2021124864A1 (en) * | 2019-12-19 | 2021-06-24 | 日本製鉄株式会社 | Steel sheet and plated steel sheet |
WO2022070608A1 (en) * | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | Steel sheet and steel sheet manufacturing method |
WO2023171492A1 (en) * | 2022-03-11 | 2023-09-14 | 日本製鉄株式会社 | Hot-stamp-formed article |
-
2024
- 2024-01-31 WO PCT/JP2024/003023 patent/WO2024162382A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018138898A1 (en) * | 2017-01-30 | 2018-08-02 | 新日鐵住金株式会社 | Steel sheet |
WO2021124864A1 (en) * | 2019-12-19 | 2021-06-24 | 日本製鉄株式会社 | Steel sheet and plated steel sheet |
WO2022070608A1 (en) * | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | Steel sheet and steel sheet manufacturing method |
WO2023171492A1 (en) * | 2022-03-11 | 2023-09-14 | 日本製鉄株式会社 | Hot-stamp-formed article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102643398B1 (en) | hot stamp molding body | |
CN103827343B (en) | Alloyed hot-dip galvanized steel plate | |
JPWO2019130713A1 (en) | High strength steel sheet and method for manufacturing the same | |
WO2022149502A1 (en) | Steel sheet and method for producing same | |
JP6052473B1 (en) | High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof | |
KR20140048331A (en) | High-strength hot-dip galvanized steel sheet and process for producing same | |
KR102217100B1 (en) | High-strength steel sheet and its manufacturing method | |
JP6409916B2 (en) | Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet | |
WO2020166231A1 (en) | Steel sheet and method for producing same | |
JP7350057B2 (en) | hot stamp molded body | |
WO2021141006A1 (en) | Steel sheet and method for manufacturing same | |
KR20230137436A (en) | Steel sheets for hot stamping and hot stamping molded bodies | |
JP7311068B1 (en) | Galvanized steel sheet and member, and manufacturing method thereof | |
EP4123045A1 (en) | Steel plate | |
WO2020145259A1 (en) | Steel plate and manufacturing method thereof | |
CN115244204A (en) | hot rolled steel plate | |
WO2023188643A1 (en) | Galvanized steel sheet, member, and methods for producing these | |
KR20230170031A (en) | High-strength hot-rolled steel sheet and manufacturing method of high-strength hot-rolled steel sheet | |
WO2024162382A1 (en) | Hot-rolled steel sheet | |
WO2024162381A1 (en) | Hot-rolled steel sheet | |
JP7513937B2 (en) | Steel plate and its manufacturing method | |
JP7549277B2 (en) | Steel sheets for hot stamping and hot stamped products | |
JP7541653B1 (en) | Steel plates and members, and their manufacturing methods | |
JP7673874B1 (en) | High-strength steel sheet, high-strength plated steel sheet, their manufacturing method, and component | |
WO2025074822A1 (en) | Steel sheet and component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24750331 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024574967 Country of ref document: JP |