[go: up one dir, main page]

WO2024162227A1 - Frame-fitted mask, and manufacturing method for organic device - Google Patents

Frame-fitted mask, and manufacturing method for organic device Download PDF

Info

Publication number
WO2024162227A1
WO2024162227A1 PCT/JP2024/002532 JP2024002532W WO2024162227A1 WO 2024162227 A1 WO2024162227 A1 WO 2024162227A1 JP 2024002532 W JP2024002532 W JP 2024002532W WO 2024162227 A1 WO2024162227 A1 WO 2024162227A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
less
mask
frame
opening
Prior art date
Application number
PCT/JP2024/002532
Other languages
French (fr)
Japanese (ja)
Inventor
勝也 小幡
実 駒田
久実子 穂刈
康子 曽根
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2024162227A1 publication Critical patent/WO2024162227A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Definitions

  • Embodiments of the present disclosure relate to a framed mask and a method for manufacturing an organic device.
  • the vapor deposition method is known as a method for forming precise patterns.
  • a mask with openings is first combined with a substrate.
  • the vapor deposition material is applied to the substrate through the openings in the mask. This allows a vapor deposition layer containing the vapor deposition material to be formed on the substrate in a pattern corresponding to the pattern of the mask openings.
  • the vapor deposition method is used, for example, as a method for forming pixels for organic electroluminescence (EL) display devices.
  • JP2013-49889A discloses a configuration using a mask device that includes a frame and a mask that is joined to the frame under tension.
  • the frame and mask are made of an iron alloy that contains nickel.
  • JP2009-062565A proposes constructing a mask from a silicon substrate to prevent the mask from deforming due to heat.
  • the embodiment of the present disclosure aims to provide a mask that can effectively solve these problems.
  • a mask according to an embodiment of the present disclosure may include a framed mask, comprising a first layer including a first surface, a second surface located opposite to the first surface, at least one first opening penetrating from the first surface to the second surface, an outer edge, and an outer region located between the outer edge and the first opening in a plan view, a third surface facing the second surface, a fourth surface located opposite to the third surface, and a plurality of second openings penetrating from the third surface to the fourth surface and overlapping the first opening in a plan view, a fifth surface facing the same side as the fourth surface, and a sixth surface located opposite to the fifth surface, and a frame connected to the outer edge of the first layer and/or the first surface of the outer region of the first layer.
  • the first layer may include silicon.
  • at least a portion of the frame may extend to the outside of the outer edge of the first layer.
  • the frame may include glass or metal.
  • damage to a mask containing silicon can be suppressed when the mask is handled.
  • FIG. 1 is a plan view illustrating an example of an organic device.
  • FIG. 1 is a diagram showing an example of a deposition apparatus equipped with a framed mask.
  • FIG. 2 is a plan view showing an example of a framed mask as viewed from the entrance surface side.
  • FIG. 13 is a plan view showing a modified example of a framed mask as viewed from the entrance surface side.
  • FIG. 13 is a plan view showing a modified example of a framed mask as viewed from the entrance surface side.
  • FIG. 2 is a plan view showing an example of a framed mask as viewed from the exit surface side.
  • 3B is a cross-sectional view of the framed mask of FIG. 3A taken along line VV.
  • 5B is an enlarged view of a portion surrounded by a two-dot chain line in the cross section shown in FIG. 5A.
  • FIG. FIG. 4 is a cross-sectional view showing an example of an effective area.
  • 5C is an enlarged view of a portion surrounded by a two-dot chain line in the cross section shown in FIG. 5B.
  • 5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment.
  • 5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment.
  • 5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment.
  • 5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment.
  • 5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment.
  • 5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment.
  • 5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment.
  • 11A and 11B are cross-sectional views illustrating a modified example of the method for forming the second opening.
  • 11A and 11B are cross-sectional views illustrating a modified example of the method for forming the second opening.
  • FIG. 11A and 11B are cross-sectional views illustrating a modified example of the method for forming the second opening.
  • FIG. 7 is a cross-sectional view corresponding to FIG. 6 and showing a modified example of a framed mask.
  • FIG. 7 is a cross-sectional view corresponding to FIG. 6 and showing a modified example of a framed mask.
  • FIG. 1 is a diagram showing an example of an apparatus including an organic device.
  • the state in which the face of element A is "facing" the face of element B includes not only the case in which the face of element A is in contact with the face of element B, but also the case in which element C is located between the faces of element A and element B.
  • the term "facing” is a term that describes the orientation of the two faces.
  • the use of the mask is not particularly limited, and this embodiment can be applied to masks used for various purposes.
  • the mask of this embodiment may be used to form electrodes of a device for displaying or projecting images or videos to express virtual reality, or so-called VR, or augmented reality, or so-called AR.
  • the mask of this embodiment may also be used to form electrodes of a display device other than an organic EL display device, such as an electrode of a liquid crystal display device.
  • the mask of this embodiment may also be used to form electrodes of an organic device other than a display device, such as an electrode of a pressure sensor.
  • a first aspect of the present disclosure is a framed mask, comprising: a first layer including a first surface, a second surface located on the opposite side of the first surface, at least one first opening penetrating from the first surface to the second surface, an outer edge, and an outer region located between the outer edge and the first opening in a plan view; a second layer including a third surface facing the second surface, a fourth surface located on the opposite side of the third surface, and a plurality of second openings penetrating from the third surface to the fourth surface and overlapping with the first openings in a plan view; a frame connecting to an outer edge of the first layer and/or to the first surface of the outer region of the first layer; Including, the first layer comprises silicon; In a plan view, at least a portion of the frame extends to an outside of the outer edge of the first layer,
  • the frame is a framed mask comprising glass or metal.
  • the frame may include a fifth surface facing the same side as the fourth surface, a sixth surface located on the opposite side of the fifth surface, and a third opening that penetrates from the fifth surface to the sixth surface and overlaps with the first opening in a plan view.
  • the frame may be formed with a step portion that accommodates the outer edge of the first layer.
  • the framed mask may have a connection layer between the frame and the first layer.
  • connection layer may include a glass material, an inorganic material, a metal material, or a resin material.
  • connection layer may include a spacer.
  • a spacer may be disposed between the frame and the first layer.
  • connection layer may be disposed only between the outer edge of the first layer and the frame.
  • an intermediate layer may be included between the first layer and the second layer.
  • a tenth aspect of the present disclosure is a method for manufacturing an organic device, comprising: A method for manufacturing an organic device, comprising the step of forming an organic layer on a substrate by a deposition method using the framed mask according to any one of the first to ninth aspects described above.
  • Figure 1 is a cross-sectional view showing an example of an organic device 100.
  • the organic device 100 includes a substrate 110 and a plurality of elements 115 arranged along the in-plane direction of the substrate 110.
  • the substrate 110 includes a first surface 111 and a second surface 112 located on the opposite side of the first surface 111.
  • the elements 115 are located on the first surface 111.
  • the elements 115 are, for example, pixels.
  • the substrate 110 may include two or more types of elements 115.
  • the substrate 110 may include a first element 115A and a second element 115B.
  • the substrate 110 may include a third element.
  • the first element 115A, the second element 115B, and the third element are, for example, a red pixel, a blue pixel, and a green pixel.
  • the element 115 may have a first electrode 120, an organic layer 130 located on the first electrode 120, and a second electrode 140 located on the organic layer 130.
  • the organic device 100 may have an insulating layer 160 located between two adjacent first electrodes 120 in a planar view.
  • the insulating layer 160 contains, for example, polyimide.
  • the insulating layer 160 may overlap an end of the first electrode 120.
  • Planar view means viewing an object along the normal direction of the surface of a plate-like member such as the substrate 110.
  • the substrate 110 may be an insulating member.
  • the material of the substrate 110 may be, for example, a rigid material with no flexibility, such as silicon, quartz glass, Pyrex (registered trademark) glass, or a synthetic quartz plate, or a flexible material with flexibility, such as a resin film, an optical resin plate, or thin glass.
  • the substrate 110 may have a planar shape similar to that of a silicon wafer used in semiconductor manufacturing.
  • the substrate 110 can be processed using an apparatus that performs a semiconductor manufacturing process.
  • the first electrode 120, the insulating layer 160, and the like can be formed on the substrate 110 using an apparatus that performs a semiconductor manufacturing process.
  • Element 115 is configured to realize some function by applying a voltage between first electrode 120 and second electrode 140, or by causing a current to flow between first electrode 120 and second electrode 140.
  • element 115 when element 115 is a pixel of an organic EL display device, element 115 can emit light that constitutes an image.
  • the first electrode 120 includes a material having electrical conductivity.
  • the first electrode 120 includes a metal, a metal oxide having electrical conductivity, or other inorganic material having electrical conductivity.
  • the first electrode 120 may include a metal oxide having transparency and electrical conductivity, such as indium tin oxide.
  • the organic layer 130 includes an organic material. When a current is passed through the organic layer 130, the organic layer 130 can perform some function. Passing a current means that a voltage is applied to the organic layer 130 or that a current flows through the organic layer 130.
  • the organic layer 130 may be a light-emitting layer that emits light when a current is passed through it, or a layer whose light transmittance or refractive index changes when a current is passed through it.
  • the organic layer 130 may include an organic semiconductor material.
  • the organic layer 130 may include a first organic layer 130A and a second organic layer 130B.
  • the first organic layer 130A is included in the first element 115A.
  • the second organic layer 130B is included in the second element 115B.
  • the organic layer 130 may include a third organic layer included in a third element.
  • the first organic layer 130A, the second organic layer 130B, and the third organic layer are, for example, a red light-emitting layer, a blue light-emitting layer, and a green light-emitting layer.
  • the organic layer 130 located between them is driven. If the organic layer 130 is an emitting layer, light is emitted from the organic layer 130 and extracted to the outside from the second electrode 140 side or the first electrode 120 side.
  • the organic layer 130 may further include a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, etc.
  • the second electrode 140 may include a conductive material such as a metal.
  • materials that can be used for the second electrode 140 include platinum, gold, silver, copper, iron, tin, chromium, aluminum, indium, lithium, sodium, potassium, calcium, magnesium, chromium, carbon, and alloys thereof. As shown in FIG. 1, the second electrode 140 may extend across two adjacent organic layers 130 in a plan view.
  • FIG. 2 is a diagram showing a vapor deposition device 10.
  • the vapor deposition device 10 performs a vapor deposition process in which a vapor deposition material is vapor-deposited on a target object.
  • the deposition apparatus 10 may include therein a deposition source 6, a heater 8, and a framed mask 15.
  • the deposition apparatus 10 may further include an exhaust means for creating a vacuum atmosphere inside the deposition apparatus 10.
  • the deposition source 6 is, for example, a crucible.
  • the deposition source 6 contains a deposition material 7 such as an organic material or a metal material.
  • the heater 8 heats the deposition source 6 to evaporate the deposition material 7 under a vacuum atmosphere.
  • the framed mask 15 includes a mask 20 and a frame 60 attached to the mask 20.
  • the mask 20 includes an incident surface 201, an exit surface 202, and a second opening 41.
  • the exit surface 202 is located on the opposite side of the incident surface 201.
  • the framed mask 15 is supported by a mask holder 9.
  • the framed mask 15 is arranged so that the incident surface 201 faces the deposition source 6 and the exit surface 202 faces the first surface 111 of the substrate 110.
  • a part of the deposition material 7 that enters the mask 20 from the exit surface 202 passes through the second opening 41 and exits from the exit surface 202.
  • the deposition material 7 that exits from the exit surface 202 adheres to the first surface 111 of the substrate 110.
  • the exit surface 202 of the mask 20 may be in contact with the first surface 111 of the substrate 110.
  • the deposition device 10 may include a magnet 5 disposed on the second surface 112 side of the substrate 110.
  • the magnet 5 can attract the mask 20 toward the substrate 110 by magnetic force. This can reduce or eliminate the gap between the mask 20 and the substrate 110. This can suppress the occurrence of a shadow in the deposition process.
  • a shadow is a phenomenon in which the thickness of the organic layer 130 formed near the wall surface of the second opening 41 is smaller than the thickness of the organic layer 130 formed at the center of the second opening 41. The shadow occurs due to the deposition material 7 adhering to the wall surface of the mask 20, the deposition material 7 entering the gap between the mask 20 and the substrate 110, etc.
  • Figure 3A is a plan view showing an example of the framed mask 15 when viewed from the side of the incident surface 201.
  • Figure 4 is a plan view showing an example of the framed mask 15 when viewed from the side of the exit surface 202.
  • Figure 5A is a cross-sectional view taken along line V-V of the framed mask 15 in Figure 3A.
  • Figure 5B is an enlarged view of the portion surrounded by the two-dot chain line in the cross-section of Figure 5A.
  • the mask 20 includes a first layer 30 and a second layer 40 arranged in order from the entrance surface 201 toward the exit surface 202.
  • the first layer 30 includes silicon or a silicon compound.
  • the silicon compound is, for example, silicon carbide (SiC).
  • the second layer 40 includes, for example, a metal material.
  • the mask 20 may further include an intermediate layer 50.
  • the intermediate layer 50 is disposed between the first layer 30 and the second layer 40.
  • the first layer 30 includes a first surface 301, a second surface 302, a first opening 31, and a first wall surface 32.
  • the first surface 301 may constitute the incident surface 201.
  • the second surface 302 is located on the opposite side of the first surface 301.
  • the first opening 31 penetrates the first layer 30 from the first surface 301 to the second surface 302.
  • the first layer 30 may include a plurality of first openings 31.
  • the plurality of first openings 31 may be aligned in a first direction D1 and a second direction D2.
  • the second direction D2 may be perpendicular to the first direction D1.
  • the first opening 31 may correspond to one screen of the organic EL display device.
  • the mask 20 shown in FIG. 3A can simultaneously form organic layer patterns corresponding to multiple screens on the substrate 110.
  • the first opening 31 may have a rectangular outline in a plan view.
  • FIGS. 3B and 3C are plan views showing other examples of the mask 20.
  • the corners of the contour of the first opening 31 may include curves.
  • the contour of the first opening 31 may be octagonal. According to the examples shown in FIG. 3B and FIG. 3C, when stress is applied to the contour of the first opening 31, the stress can be prevented from concentrating on the corners. This makes it possible to prevent the first layer 30 from being damaged.
  • the first wall surface 32 is the surface of the first layer 30 facing the first opening 31. In the example shown in FIG. 3A, the first wall surface 32 extends along the normal direction of the first surface 301.
  • the area of the first layer 30 where the first openings 31 are not formed may be partitioned into an outer area 35 and an inner area 36.
  • the inner area 36 is an area located between two adjacent first openings 31 in a planar view.
  • the outer area 35 is an area located between the outer edge 303 of the first layer 30 and the first openings 31 in a planar view.
  • the inner area 36 may extend in a first direction D1 and a second direction D2.
  • the first layer 30 may include an alignment mark 39.
  • the alignment mark 39 is formed, for example, on the second surface 302.
  • the alignment mark 39 may also be formed on the first surface 301.
  • the alignment mark 39 is used, for example, to adjust the relative position of the substrate 110 with respect to the mask 20. If the substrate 110 has the property of transmitting visible light, the alignment mark 39 can be seen through the substrate 110.
  • the alignment mark 39 may have a circular outline in a plan view. Although not shown, the alignment mark 39 may have an outline other than a circle, such as a rectangle or a cross. The alignment mark 39 may be located in the outer region 35 or the inner region 36. The alignment mark 39 may be formed in a layer other than the first layer 30.
  • the first layer 30 includes silicon or a silicon compound as described above.
  • the first layer 30 is produced, for example, by processing a silicon wafer.
  • the outer edge 303 of the first layer 30 may include a straight portion.
  • the straight portion is also called an orientation flat.
  • a notch may be formed in the outer edge 303.
  • the notch is also called a notch.
  • the orientation flat and the notch represent the crystal orientation of the silicon wafer.
  • the maximum dimension S1 of the first layer 30 in plan view may be, for example, 100 mm or more, 150 mm or more, or 200 mm or more.
  • the dimension S1 may be, for example, 300 mm or less, 400 mm or less, or 500 mm or less.
  • the range of the dimension S1 may be determined by a first group consisting of 100 mm, 150 mm, and 200 mm, and/or a second group consisting of 300 mm, 400 mm, and 500 mm.
  • the range of the dimension S1 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the dimension S1 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the dimension S1 may be determined by a combination of any two of the values included in the second group described above.
  • the dimension S1 may be, for example, 100 mm or more and 500 mm or less, 100 mm or more and 400 mm or less, 100 mm or more and 300 mm or less, 100 mm or more and 200 mm or less, 100 mm or more and 150 mm or less, 150 mm or more and 500 mm or less, 150 mm or more and 400 mm or less, 150 mm or more and 300 mm or less, 150 mm or more and 200 mm or less, 200 mm or more and 500 mm or less, 200 mm or more and 400 mm or less, 200 mm or more and 300 mm or less, 300 mm or more and 500 mm or less, 300 mm or more and 400 mm or less, or 400 mm or more and 500 mm or less.
  • the dimension S2 of the first openings 31 in the direction in which the first openings 31 are arranged may be, for example, 3 mm or more, 10 mm or more, or 20 mm or more.
  • the dimension S2 may be, for example, 30 mm or less, 50 mm or less, or 100 mm or less.
  • the range of the dimension S2 may be determined by a first group consisting of 3 mm, 10 mm, and 20 mm, and/or a second group consisting of 30 mm, 50 mm, and 100 mm.
  • the range of the dimension S2 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the dimension S2 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the dimension S2 may be determined by a combination of any two of the values included in the second group described above.
  • the dimension S2 may be, for example, 3 mm or more and 100 mm or less, 3 mm or more and 50 mm or less, 3 mm or more and 30 mm or less, 3 mm or more and 20 mm or less, 3 mm or more and 10 mm or less, 10 mm or more and 100 mm or less, 10 mm or more and 50 mm or less, 10 mm or more and 30 mm or less, 10 mm or more and 20 mm or less, 20 mm or more and 100 mm or less, 20 mm or more and 50 mm or less, 20 mm or more and 30 mm or less, 30 mm or more and 100 mm or less, 30 mm or more and 50 mm or less, or 50 mm or more and 100 mm or less.
  • the interval S3 between two first openings 31 in the direction in which the first openings 31 are arranged may be, for example, 0.1 mm or more, 0.5 mm or more, or 1.0 mm or more.
  • the interval S3 may be, for example, 10 mm or less, 15 mm or less, or 20 mm or less.
  • the range of the interval S3 may be determined by a first group consisting of 0.1 mm, 0.5 mm, and 1.0 mm, and/or a second group consisting of 10 mm, 15 mm, and 20 mm.
  • the range of the interval S3 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the interval S3 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the interval S3 may be determined by a combination of any two of the values included in the second group described above.
  • the interval S3 may be, for example, 0.1 mm or more and 20 mm or less, 0.1 mm or more and 15 mm or less, 0.1 mm or more and 10 mm or less, 0.1 mm or more and 1.0 mm or less, 0.1 mm or more and 0.5 mm or less, 0.5 mm or more and 20 mm or less, 0.5 mm or more and 15 mm or less, 0.5 mm or more and 10 mm or less, 0.5 mm or more and 1.0 mm or less, 1.0 mm or more and 20 mm or less, 1.0 mm or more and 15 mm or less, 1.0 mm or more and 10 mm or less, 10 mm or more and 20 mm or less, 10 mm or more and 15 mm or less, or
  • the thickness of the first layer 30 is defined as the maximum thickness T1 of the outer region 35.
  • the thickness T1 may be, for example, 50 ⁇ m or more, 100 ⁇ m or more, or 200 ⁇ m or more.
  • the thickness T1 may be, for example, 600 ⁇ m or less, 800 ⁇ m or less, or 1000 ⁇ m or less.
  • the range of the thickness T1 may be determined by a first group consisting of 50 ⁇ m, 100 ⁇ m, and 200 ⁇ m, and/or a second group consisting of 600 ⁇ m, 800 ⁇ m, and 1000 ⁇ m.
  • the range of the thickness T1 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the thickness T1 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the thickness T1 may be determined by a combination of any two of the values included in the second group described above.
  • the thickness T1 may be, for example, 50 ⁇ m or more and 1000 ⁇ m or less, 50 ⁇ m or more and 800 ⁇ m or less, 50 ⁇ m or more and 600 ⁇ m or less, 50 ⁇ m or more and 200 ⁇ m or less, 50 ⁇ m or more and 100 ⁇ m or less, 100 ⁇ m or more and 1000 ⁇ m or less, 100 ⁇ m or more and 800 ⁇ m or less, 100 ⁇ m or more and 600 ⁇ m or less, 100 ⁇ m or more and 200 ⁇ m or less, 200 ⁇ m or more and 1000 ⁇ m or less, 200 ⁇ m or more and 800 ⁇ m or less, 200 ⁇ m or more and 600 ⁇ m or less, 600 ⁇ m or more and 1000 ⁇ m or less, 200
  • the second layer 40 includes a third surface 401, a fourth surface 402, and a plurality of second openings 41.
  • the third surface 401 faces the second surface 302 of the first layer 30.
  • the fourth surface 402 is located on the opposite side of the third surface 401.
  • the second openings 41 penetrate the second layer 40 from the third surface 401 to the fourth surface 402.
  • One second opening 41 corresponds to one organic layer 130.
  • a group of the regularly-arranged second openings 41 corresponds to one screen of the organic EL display device. As shown in Figures 3A and 4, a group of the regularly-arranged second openings 41 may overlap one first opening 31 in a plan view.
  • the groups of the second openings 41 are supported by the first layer 30 formed by processing a single member such as a silicon wafer.
  • the second layer 40 may be divided into a peripheral region 43 and an effective region 44.
  • the peripheral region 43 is an area that overlaps with the first layer 30 in a plan view.
  • the effective region 44 is an area in which a group of a plurality of regularly-arranged second openings 41 is distributed.
  • FIG. 5C is a cross-sectional view showing an example of the effective area 44.
  • the second layer 40 includes a second wall surface 42 facing the second opening 41.
  • the second wall surface 42 may include a tapered surface 42a that widens away from the center of the second opening 41 as it approaches the third surface 401. By including the tapered surface 42a in the second wall surface 42, it is possible to suppress the occurrence of a shadow near the second wall surface 42.
  • the symbol S8 represents the width of the tapered surface 42a in the direction in which the second openings 41 are arranged.
  • the width S8 may be, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more.
  • the width S8 may be, for example, 10 ⁇ m or less, 20 ⁇ m or less, or 25 ⁇ m or less.
  • the range of the width S8 may be determined by a first group consisting of 0.1 ⁇ m, 0.5 ⁇ m, and 1.0 ⁇ m, and/or a second group consisting of 10 ⁇ m, 20 ⁇ m, and 25 ⁇ m.
  • the range of the width S8 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the width S8 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the width S8 may be determined by a combination of any two of the values included in the second group described above.
  • the width S8 may be, for example, 0.1 ⁇ m or more and 25 ⁇ m or less, 0.1 ⁇ m or more and 20 ⁇ m or less, 0.1 ⁇ m or more and 10 ⁇ m or less, 0.1 ⁇ m or more and 1.0 ⁇ m or less, 0.1 ⁇ m or more and 0.5 ⁇ m or less, 0.5 ⁇ m or more and 25 ⁇ m or less, 0.5 ⁇ m or more and 20 ⁇ m or less, 0.5 ⁇ m or more and 10 ⁇ m or less, 0.5 ⁇ m or more and 1.0 ⁇ m or less, 1.0 ⁇ m or more and 25 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, or 20 ⁇ m or more and 25 ⁇ m or less.
  • the symbol ⁇ 1 represents the angle between the second wall surface 42 and the fourth surface 402.
  • the angle ⁇ 1 may be, for example, 50° or more, 55° or more, or 60° or more.
  • the angle ⁇ 1 may be, for example, 80° or less, 85° or less, or less than 90°.
  • the range of the angle ⁇ 1 may be determined by a first group consisting of 50°, 55°, and 60°, and/or a second group consisting of 80°, 85°, and 90°.
  • the range of the angle ⁇ 1 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the angle ⁇ 1 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the angle ⁇ 1 may be determined by a combination of any two of the values included in the second group described above.
  • the angle ⁇ 1 may be, for example, 50° or more and less than 90°, 50° or more and less than 85°, 50° or more and less than 80°, 50° or more and less than 60°, 50° or more and less than 55°, 55° or more and less than 90°, 55° or more and less than 85°, 55° or more and less than 80°, 55° or more and less than 60°, 60° or more and less than 90°, 60° or more and less than 85°, 60° or more and less than 80°, 80° or more and less than 90°, 80° or more and less than 85°, or 85° or more and less than 90°.
  • the second layer 40 may contain a metal material.
  • the mask 20 can be attached to the substrate 110 by using a magnet 5.
  • the mask 20 can be attracted to the magnet 5 by magnetic force, improving the adhesion between the mask 20 and the substrate 110. This improves the definition of the organic layers 130A, 130B, and 130C of the organic device 100.
  • the metal material contained in the second layer 40 may be a magnetic metal material.
  • an iron alloy containing nickel may be used as the material constituting the second layer 40.
  • the iron alloy may further contain cobalt in addition to nickel.
  • an iron alloy containing nickel and cobalt in total of 30% by mass or more and 54% by mass or less and a cobalt content of 0% by mass or more and 6% by mass or less may be used as the material of the second layer 40.
  • an Invar material containing 34% by mass or more and 38% by mass or less of nickel, or a low thermal expansion Fe-Ni-based plating alloy containing 38% by mass or more and 54% by mass or less of nickel may be used.
  • the thermal expansion coefficient of the second layer 40 can be reduced.
  • the thermal expansion coefficient of the second layer 40 can be adjusted to a value equal to or close to that of the glass substrate. This makes it possible to suppress deterioration of accuracy.
  • the material constituting the second layer 40 may be, for example, nickel, or a nickel alloy containing cobalt.
  • a nickel alloy containing cobalt When a nickel alloy containing cobalt is used, a nickel alloy containing 8% by mass or more and 10% by mass or less of cobalt may be used as the material for the second layer 40.
  • nickel or nickel alloy it is possible to suppress the decomposition of the plating solution used in the second layer formation process described below, and the stability of the plating solution can be improved.
  • the second layer 40 may be composed of a single metal layer or may include multiple metal layers. If the mask 20 includes an intermediate layer 50, the second metal layer 40 is composed of a material that is resistant to an etchant that etches the intermediate layer 50.
  • the thickness of the second layer 40 is smaller than the thickness T1 of the first layer 30.
  • the thickness of the second layer 40 may be, for example, 0.5 ⁇ m or more, 1.0 ⁇ m or more, or 2.0 ⁇ m or more.
  • the thickness of the second layer 40 may be, for example, 5 ⁇ m or less, 10 ⁇ m or less, or 25 ⁇ m or less.
  • the thickness range of the second layer 40 may be determined by a first group consisting of 0.5 ⁇ m, 1.0 ⁇ m, and 2.0 ⁇ m, and/or a second group consisting of 5 ⁇ m, 10 ⁇ m, and 25 ⁇ m.
  • the thickness range of the second layer 40 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the thickness range of the second layer 40 may be determined by a combination of any two of the values included in the first group described above.
  • the thickness range of the second layer 40 may be determined by a combination of any two of the values included in the second group described above.
  • the thickness of the second layer 40 may be, for example, 0.5 ⁇ m to 25 ⁇ m, 0.5 ⁇ m to 10 ⁇ m, 0.5 ⁇ m to 5 ⁇ m, 0.5 ⁇ m to 2.0 ⁇ m, 0.5 ⁇ m to 1.0 ⁇ m, 1.0 ⁇ m to 25 ⁇ m, 1.0 ⁇ m to 10 ⁇ m, 1.0 ⁇ m to 5 ⁇ m, 1.0 ⁇ m to 2.0 ⁇ m, 2.0 ⁇ m to 25 ⁇ m, 2.0 ⁇ m to 10 ⁇ m, 2.0 ⁇ m to 5 ⁇ m, 5 ⁇ m to 25 ⁇ m, 5 ⁇ m to 10 ⁇ m, or 10 ⁇ m to 25 ⁇ m.
  • the thickness of the second layer 40 being 25 ⁇ m or less can suppress the occurrence of shadows.
  • the dimension S4 of the second opening 41 in plan view may be, for example, 1 ⁇ m or more, 2 ⁇ m or more, or 3 ⁇ m or more.
  • the dimension S4 may be, for example, 5 ⁇ m or less, 10 ⁇ m or less, or 25 ⁇ m or less.
  • the range of the dimension S4 may be determined by a first group consisting of 1 ⁇ m, 2 ⁇ m, and 3 ⁇ m, and/or a second group consisting of 5 ⁇ m, 10 ⁇ m, and 25 ⁇ m.
  • the range of the dimension S4 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the dimension S4 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the dimension S4 may be determined by a combination of any two of the values included in the second group described above.
  • the dimension S4 may be, for example, 1 ⁇ m or more and 25 ⁇ m or less, 1 ⁇ m or more and 10 ⁇ m or less, 1 ⁇ m or more and 5 ⁇ m or less, 1 ⁇ m or more and 3 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 25 ⁇ m or less, 2 ⁇ m or more and 10 ⁇ m or less, 2 ⁇ m or more and 5 ⁇ m or less, 2 ⁇ m or more and 3 ⁇ m or less, 3 ⁇ m or more and 25 ⁇ m or less, 3 ⁇ m or more and 10 ⁇ m or less, 3 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 3
  • the interval S5 between two second openings 41 in the direction in which the second openings 41 are arranged may be, for example, 1 ⁇ m or more, 2 ⁇ m or more, or 3 ⁇ m or more.
  • the interval S5 may be, for example, 5 ⁇ m or less, 10 ⁇ m or less, or 25 ⁇ m or less.
  • the range of the interval S5 may be determined by a first group consisting of 1 ⁇ m, 2 ⁇ m, and 3 ⁇ m, and/or a second group consisting of 5 ⁇ m, 10 ⁇ m, and 25 ⁇ m.
  • the range of the interval S5 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the interval S5 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the interval S5 may be determined by a combination of any two of the values included in the second group described above.
  • the interval S5 may be, for example, 1 ⁇ m or more and 25 ⁇ m or less, 1 ⁇ m or more and 10 ⁇ m or less, 1 ⁇ m or more and 5 ⁇ m or less, 1 ⁇ m or more and 3 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, 2 ⁇ m or more and 25 ⁇ m or less, 2 ⁇ m or more and 10 ⁇ m or less, 2 ⁇ m or more and 5 ⁇ m or less, 2 ⁇ m or more and 3 ⁇ m or less, 3 ⁇ m or more and 25 ⁇ m or less, 3 ⁇ m or more and 10 ⁇ m or less, 3 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 3
  • the distance S6 between the first wall surface 32 and the second opening 41 in a plan view may be greater than the distance S5. This can prevent a shadow from being generated in the second opening 41 close to the first wall surface 32.
  • the second layer 40 may include an alignment mark.
  • the alignment mark of the second layer 40 may be formed separately from the alignment mark 39 of the first layer 30, or may be formed in place of the alignment mark 39 of the first layer 30.
  • the intermediate layer 50 includes a layer that performs some function for the first layer 30 or the second layer 40.
  • the intermediate layer 50 includes a first intermediate layer 51.
  • the first intermediate layer 51 is located between the first layer 30 and the second layer 40.
  • the first intermediate layer 51 may function as a stopper layer that stops etching in the process of processing the first layer 30 by etching. Specifically, the first intermediate layer 51 has resistance to an etchant that etches the first layer 30.
  • the first intermediate layer 51 may contain aluminum, an aluminum alloy, titanium, or a titanium alloy.
  • the first intermediate layer 51 may contain an inorganic compound such as silicon oxide.
  • the thickness of the first intermediate layer 51 is not particularly limited as long as it can suppress etching of the second layer 40 in the process of processing the first layer 30.
  • the thickness of the first intermediate layer 51 may be smaller than the thickness of the second layer 40, or may be greater than or equal to the thickness of the second layer 40.
  • the thickness of the first intermediate layer 51 may be, for example, 5 nm or more, 50 nm or more, or 75 nm or more.
  • the thickness of the first intermediate layer 51 may be, for example, 1 ⁇ m or less, 10 ⁇ m or less, or 100 ⁇ m or less.
  • the range of thicknesses of the first intermediate layer 51 may be determined by a first group consisting of 5 nm, 50 nm, and 75 nm, and/or a second group consisting of 1 ⁇ m, 10 ⁇ m, and 100 ⁇ m.
  • the range of thicknesses of the first intermediate layer 51 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the thickness range of the first intermediate layer 51 may be determined by a combination of any two of the values included in the first group described above.
  • the thickness range of the first intermediate layer 51 may be determined by a combination of any two of the values included in the second group described above.
  • the thickness of the first intermediate layer 51 may be, for example, 5 nm or more and 100 ⁇ m or less, 5 nm or more and 10 ⁇ m or less, 5 nm or more and 1 ⁇ m or less, 5 nm or more and 75 nm or less, 5 nm or more and 50 nm or less, 50 nm or more and 100 ⁇ m or less, 50 nm or more and 10 ⁇ m or less, 50 nm or more and 1 ⁇ m or less, 50 nm or more and 75 nm or less, 75 nm or more and 100 ⁇ m or less, 75 nm or more and 10 ⁇ m or less, 75 nm or more and 1 ⁇ m or less, 1 ⁇ m or more and 100 ⁇ m or less, 1 ⁇ m or more and 10 ⁇ m or less, or 10 ⁇ m or more and 100 ⁇ m or less.
  • the intermediate layer 50 may include a layer that functions to bond the first layer 30 and the second layer 40.
  • the first intermediate layer 51 may be a bonding layer containing an adhesive.
  • the thickness of the bonding layer may be, for example, 0.1 ⁇ m or more, 0.2 ⁇ m or more, or 0.5 ⁇ m or more.
  • the thickness of the bonding layer may be, for example, 1 ⁇ m or less, 2 ⁇ m or less, or 3 ⁇ m or less.
  • the range of thicknesses of the bonding layer may be determined by a first group consisting of 0.1 ⁇ m, 0.2 ⁇ m, and 0.5 ⁇ m, and/or a second group consisting of 1 ⁇ m, 2 ⁇ m, and 3 ⁇ m.
  • the range of thicknesses of the bonding layer may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of thicknesses of the bonding layer may be determined by a combination of any two of the values included in the first group described above.
  • the range of thicknesses of the bonding layer may be determined by a combination of any two of the values included in the second group described above.
  • the thickness of the bonding layer may be, for example, 0.1 ⁇ m or more and 3 ⁇ m or less, 0.1 ⁇ m or more and 2 ⁇ m or less, 0.1 ⁇ m or more and 1 ⁇ m or less, 0.1 ⁇ m or more and 0.5 ⁇ m or less, 0.1 ⁇ m or more and 0.2 ⁇ m or less, 0.2 ⁇ m or more and 3 ⁇ m or less, 0.2 ⁇ m or more and 2 ⁇ m or less, 0.2 ⁇ m or more and 1 ⁇ m or less, 0.2 ⁇ m or more and 0.5 ⁇ m or less, 0.5 ⁇ m or more and 3 ⁇ m or less, 0.5 ⁇ m or more and 2 ⁇ m or less, 0.5 ⁇ m or more and 1 ⁇ m or less, 1 ⁇ m or more and 3 ⁇ m or less, 1 ⁇ m or more and 2 ⁇ m or less, or 2 ⁇ m or more and 3 ⁇ m or less.
  • the intermediate layer 50 is positioned so as not to overlap the second opening 41 in a plan view. This makes it possible to prevent a shadow caused by the intermediate layer 50 from being generated.
  • the first intermediate layer 51 may include an alignment mark.
  • the alignment mark of the first intermediate layer 51 may be formed separately from the alignment mark of the first layer 30 or the second layer 40, or may be formed in place of the alignment mark of the first layer 30 or the second layer 40.
  • the frame 60 is attached to the mask 20 for the purpose of being held when handling the mask 20, for example, when moving the mask 20.
  • the mask 20 has the second opening 41, and therefore the first opening 31, formed up to the vicinity of its outer edge.
  • the outer area 35 is narrow.
  • the narrow outer area 35 is particularly prone to damage when the first layer 30 contains silicon.
  • the frame 60 includes a fifth surface 601 and a sixth surface 602.
  • the fifth surface 601 faces the same side as the fourth surface 402.
  • the sixth surface 602 is located on the opposite side of the fifth surface 601.
  • the fifth surface 601 and the first surface 301 face each other. Note that the frame 60 is parallel to the second layer 40 so that the second layer 40 is horizontal when the framed mask 15 is supported by the mask holder 9 of the deposition device 10.
  • the frame 60 is connected to the first surface 301 of the outer region 35.
  • a connection layer 70 is disposed between the first surface 301 of the outer region 35 and the fifth surface 601 of the frame 60.
  • the frame 60 is connected to the first layer 30 via the connection layer 70.
  • the frame 60 does not overlap with the first opening 31.
  • at least a portion of the frame 60 extends to the outside of the outer edge 303 of the first layer 30. This allows the frame 60 to expand the area for gripping when handling the mask 20.
  • the frame 60 includes a glass material or a metal material.
  • the glass material is quartz glass, borosilicate glass, alkali-free glass, soda glass, etc.
  • the metal material is invar material or stainless steel such as SUS430 or SUS304.
  • the linear thermal expansion coefficient of the frame 60 is approximately the same as the linear thermal expansion coefficient of the first layer 30. This allows the elongation rates of the frame 60 and the first layer 30 to be approximately the same when the framed mask 15 is heated. As a result, the risk of damage to the first layer 30 is suppressed.
  • the absolute value of the difference between the linear thermal expansion coefficient of the frame 60 and the linear thermal expansion coefficient of the first layer 30 is 15 ppm/°C or less, may be 10 ppm/°C or less, or may be 5.0 ppm/°C or less.
  • the frame 60 is formed in an annular shape.
  • the frame 60 has a region that extends circumferentially outside the outer edge 303 of the first layer 30 in a plan view. This effectively prevents the outer region 35 of the first layer 30 from being damaged when the mask 20 is handled.
  • a third opening 61 that penetrates from the fifth surface 601 to the sixth surface 602 is formed in the center of the frame 60.
  • the third opening 61 is similar in shape to the outer edge 303 of the first layer 30.
  • the maximum dimension S9 of the third opening 61 is smaller than the maximum dimension S1 of the outer edge 303 of the first layer 30.
  • the third opening 61 overlaps the first opening 31.
  • the third opening 61 also overlaps the inner region 36 of the first layer 30. In other words, in a plan view, the third opening 61 overlaps all of the first openings 31.
  • the shape and dimensions of the outer edge 603 of the frame 60 are not particularly limited.
  • the shape and dimensions S10 of the outer edge 603 of the frame 60 may be determined based on the dimensions and shapes of the hands of the worker or robot hand handling the framed mask 15, and the dimensions and shapes of the mask holder 9 of the deposition apparatus 10.
  • the outer edge 603 of the frame 60 may be rectangular or other polygonal.
  • the dimensions S10 of the outer edge 603 of the frame 60 may be, for example, 100 mm or more, 150 mm or more, or 200 mm or more.
  • the dimensions S10 may be, for example, 300 mm or less, 400 mm or less, or 500 mm or less.
  • the range of the dimensions S10 may be determined by a first group consisting of 100 mm, 150 mm, and 200 mm, and/or a second group consisting of 300 mm, 400 mm, and 500 mm.
  • the range of dimension S10 may be defined by a combination of any one of the values included in the above-mentioned first group and any one of the values included in the above-mentioned second group.
  • the range of dimension S10 may be defined by a combination of any two of the values included in the above-mentioned first group.
  • the range of dimension S10 may be defined by a combination of any two of the values included in the above-mentioned second group.
  • the dimension S10 may be, for example, 100 mm or more and 500 mm or less, 100 mm or more and 400 mm or less, 100 mm or more and 300 mm or less, 100 mm or more and 200 mm or less, 100 mm or more and 150 mm or less, 150 mm or more and 500 mm or less, 150 mm or more and 400 mm or less, 150 mm or more and 300 mm or less, 150 mm or more and 200 mm or less, 200 mm or more and 500 mm or less, 200 mm or more and 400 mm or less, 200 mm or more and 300 mm or less, 300 mm or more and 500 mm or less, 300 mm or more and 400 mm or less, or 400 mm or more and 500 mm or less.
  • the distance S11 between the outer edge 603 of the frame 60 and the outer edge 303 of the first layer 30 may also be determined based on the dimensions and shape of the hand of the worker or the robot hand handling the framed mask 15, and the dimensions and shape of the mask holder 9 of the deposition apparatus 10.
  • the distance S11 may be, for example, 5 mm or more, 10 mm or more, or 15 mm or more.
  • the distance S11 may be, for example, 30 mm or less, 60 mm or less, or 100 mm or less.
  • the range of the distance S11 may be determined by a first group consisting of 5 mm, 10 mm, and 15 mm, and/or a second group consisting of 30 mm, 60 mm, and 100 mm.
  • the range of the distance S11 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the distance S11 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the distance S11 may be determined by a combination of any two of the values included in the second group described above.
  • the distance S11 may be 5 mm or more and 100 mm or less, 5 mm or more and 60 mm or less, 5 mm or more and 30 mm or less, 5 mm or more and 15 mm or less, 5 mm or more and 10 mm or less, 10 mm or more and 100 mm or less, 10 mm or more and 60 mm or less, 10 mm or more and 30 mm or less, 10 mm or more and 15 mm or less, 15 mm or more and 100 mm or less, 15 mm or more and 60 mm or less, 15 mm or more and 30 mm or less, 30 mm or more and 100 mm or less, 30 mm or more and 60 mm or less, or 60 mm or more and 100 mm or less.
  • the thickness T2 of the frame 60 is not particularly limited.
  • the thickness T2 may also be determined based on the dimensions and shape of the hand of the worker or the robot hand handling the framed mask 15, and the dimensions and shape of the mask holder 9 of the deposition apparatus 10.
  • the thickness T2 may be, for example, 500 ⁇ m or more, 2 mm or more, or 5 mm or more.
  • the thickness T2 may be, for example, 10 mm or less, 20 mm or less, or 30 mm or less.
  • the range of the thickness T2 may be determined by a first group consisting of 500 ⁇ m, 2 mm, and 5 mm, and/or a second group consisting of 10 mm, 20 mm, and 30 mm.
  • the range of the thickness T2 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the range of the thickness T2 may be determined by a combination of any two of the values included in the first group described above.
  • the range of the thickness T2 may be determined by a combination of any two of the values included in the second group described above.
  • the thickness T2 may be, for example, 500 ⁇ m or more and 30 mm or less, 500 ⁇ m or more and 20 mm or less, 500 ⁇ m or more and 10 mm or less, 500 ⁇ m or more and 5 mm or less, 500 ⁇ m or more and 2 mm or less, 2 mm or more and 30 mm or less, 2 mm or more and 20 mm or less, 2 mm or more and 10 mm or less, 2 mm or more and 5 mm or less, 5 mm or more and 30 mm or less, 5 mm or more and 20 mm or less, 5 mm or more and 10 mm or less, 10 mm or more and 30 mm or less, 10 mm or more and 20 mm or less, or 20 mm or more and 30 mm or less.
  • the shape and dimensions of the framed mask 15 can be made suitable for existing robot hands and existing deposition apparatus 10. In other words, there is no need to make the shape and dimensions of the mask 20 suitable for existing robot hands and existing deposition apparatus 10, and the freedom in designing the mask 20 is improved.
  • the fifth surface 601 of the frame 60 is located closer to the first surface 301 of the first layer 30 than the fourth surface 402 of the second layer 40.
  • the second layer 40 protrudes from the fifth surface 601 of the frame 60. This allows the second layer 40 to come into contact with the substrate 110 or a component on the substrate 110 when a deposition layer is formed on the substrate 110 or a component on the substrate 110 through the mask 20.
  • the frame 60 may include an alignment mark. This makes it easy to position the mask 20 with respect to the frame 60 when attaching the frame 60 to the mask 20.
  • the alignment mark formed on the frame 60 can also be used to adjust the relative position of the substrate 110 with respect to the mask 20. For example, even if the alignment mark 39 is formed on the first layer 30, if the second layer 40 is formed up to the outer edge 303 of the first layer 30, the alignment mark 39 is covered by the second layer 40, making it difficult to adjust the position of the substrate 110 with respect to the mask 20 while observing the alignment mark 39. In this case, by forming an alignment mark mask on the frame 60, the position of the substrate 110 with respect to the framed mask 15, and therefore with respect to the mask 20, can be adjusted.
  • the frame 60 is connected to the first layer 30 via a connection layer 70.
  • a spacer 75 is disposed between the frame 60 and the first layer 30.
  • Figure 6 is an enlarged view of the area surrounded by the two-dot chain line in the cross-sectional view of Figure 5B.
  • the connection layer 70 and the spacer 75 are disposed between the fifth surface 601 of the frame 60 and the first surface 301 of the first layer 30.
  • connection layer 70 fixes the frame 60 to the first layer 30 by adhesion, adhesion or welding.
  • the connection layer 70 may include a glass material, an inorganic material, a metal material or a resin material.
  • the connection layer 70 may be formed of glass frit, glass paste, solder paste, conductive paste, epoxy resin, polyimide, acrylic resin, etc.
  • the high heat resistant epoxy adhesive "AREMCOBOND 526N” manufactured by Aremco Products, Inc., or the UV curing adhesive "WORLDROCK (registered trademark) 5910 (product number)” or “WORLDROCK (registered trademark) 8723K9B (product number)” manufactured by Kyoritsu Chemical Industry Co., Ltd. can be used as a material for forming the connection layer 70.
  • connection layer 70 Furthermore, by using a material with high solvent resistance as the material for forming the connection layer 70, it is possible to suppress the risk that the connection layer 70 in contact with the cleaning liquid will deform and the frame 60 will separate from the mask 20 when the framed mask 15 used in the deposition process is washed to remove the deposition material.
  • an ultraviolet-curing adhesive "ThreeBond (registered trademark) 3026E (product name)" manufactured by ThreeBond Co., Ltd. can be used as the material for forming the connection layer 70.
  • a material that can be peeled off from the frame 60 and the mask 20 as the connection layer 70 it is possible to reuse the frame 60 and the mask 20.
  • the double-sided peel-off adhesive "BBX100 (product name)” manufactured by Cemedine Co., Ltd., the visible light curing adhesive "Clearpresto (registered trademark) CP4374 (product name)” or “Clearpresto (registered trademark) K40 (product name)” manufactured by Sekisui Fuller Co., Ltd., and the cyanoacrylate instant adhesive "Skylock (registered trademark) R-4" manufactured by Nikka Seiko Co., Ltd. can be used as the material for forming the connection layer 70.
  • the thickness of the connection layer 70 may be, for example, 0.05 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more.
  • the thickness of the connection layer 70 may be, for example, 20 ⁇ m or less, 50 ⁇ m or less, or 100 ⁇ m or less.
  • the thickness range of the connection layer 70 may be determined by a first group consisting of 0.05 ⁇ m, 5 ⁇ m, and 10 ⁇ m, and/or a second group consisting of 20 ⁇ m, 50 ⁇ m, and 100 ⁇ m.
  • the thickness range of the connection layer 70 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the thickness range of the connection layer 70 may be determined by a combination of any two of the values included in the first group described above.
  • the thickness range of the connection layer 70 may be determined by a combination of any two of the values included in the second group described above.
  • the thickness of the connection layer 70 may be, for example, 0.05 ⁇ m or more and 100 ⁇ m or less, 0.05 ⁇ m or more and 50 ⁇ m or less, 0.05 ⁇ m or more and 20 ⁇ m or less, 0.05 ⁇ m or more and 10 ⁇ m or less, 0.05 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 100 ⁇ m or less, 5 ⁇ m or more and 50 ⁇ m or less, 5 ⁇ m or more and 20 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 100 ⁇ m or less, 10 ⁇ m or more and 50 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more
  • the spacer 75 is disposed between the frame 60 and the first layer 30 in order to make the distance between the frame 60 and the first layer 30 uniform.
  • the connection layer 70 and the spacer 75 are disposed between the fifth surface 601 of the frame 60 and the first surface 301 of the first layer 30, the thickness of the connection layer 70 can be made uniform according to the dimensions of the spacer 75 simply by pressing the frame 60 against the first layer 30.
  • the frame 60 and the second layer 40 can be easily made parallel.
  • the spacer 75 is, for example, a spherical bead.
  • the diameter of the spacer 75 may be, for example, 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more.
  • the diameter of the spacer 75 may be, for example, 20 ⁇ m or less, 50 ⁇ m or less, or 100 ⁇ m or less.
  • the diameter range of the spacer 75 may be determined by a first group consisting of 1 ⁇ m, 5 ⁇ m, and 10 ⁇ m, and/or a second group consisting of 20 ⁇ m, 50 ⁇ m, and 100 ⁇ m.
  • the diameter range of the spacer 75 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above.
  • the diameter range of the spacer 75 may be determined by a combination of any two of the values included in the first group described above.
  • the diameter range of the spacer 75 may be determined by a combination of any two of the values included in the second group described above.
  • the diameter of the spacer 75 may be, for example, 1 ⁇ m or more and 100 ⁇ m or less, 1 ⁇ m or more and 50 ⁇ m or less, 1 ⁇ m or more and 20 ⁇ m or less, 1 ⁇ m or more and 10 ⁇ m or less, 1 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 100 ⁇ m or less, 5 ⁇ m or more and 50 ⁇ m or less, 5 ⁇ m or more and 20 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 100 ⁇ m or less, 10 ⁇ m or more and 50 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 100 ⁇ m or less, 20 ⁇ m or more and 50 ⁇ m or less, or 50 ⁇ m or more and 100 ⁇ m or less.
  • the material from which the spacer 75 is formed is not particularly limited.
  • the spacer 75 may contain, for example, glass, acrylic, urethane, polystyrene, polytetrafluoroethylene (PTFE), or other resin.
  • connection layer 70 may be included in the connection layer 70.
  • connection layer 70 may be formed of a material that includes the spacers 75. This allows the spacers 75 to be disposed at the same time as the connection layer 70 is formed.
  • each layer the dimensions of each component, the spacing, etc. can be measured by observing an image of the cross section of the mask 20 using a scanning electron microscope.
  • a method for manufacturing a framed mask according to the present embodiment will be described with reference to FIGS. 7 to 13.
  • First, a method for manufacturing a mask 20 will be described.
  • a first layer 30 is prepared.
  • a silicon wafer may be used as the first layer 30.
  • the first surface 301 and the second surface 302 of the first layer 30 may be polished to a mirror finish.
  • the arithmetic mean roughness Ra of the first surface 301 and the second surface 302 may be 1.5 nm or less, or 1.0 nm or less.
  • the surface orientation of the first surface 301 and the second surface 302 may be (100), (110), or the like.
  • an intermediate layer formation process is carried out to form an intermediate layer 50 on the second surface 302 of the first layer 30.
  • the intermediate layer 50 includes, for example, a first intermediate layer 51.
  • the intermediate layer 50 may be formed on the entire second surface 302.
  • the intermediate layer 50 may be formed by a vacuum film formation method such as a sputtering method.
  • a second layer formation step is carried out in which the second layer 40 is formed on the intermediate layer 50.
  • the second layer 40 may be formed over the entire intermediate layer 50.
  • the second layer 40 may be formed, for example, by a plating process.
  • the second layer 40 is formed by an electrolytic plating process using the intermediate layer 50 as a power supply electrode. More specifically, a plating solution is supplied to the surface of the intermediate layer 50 opposite the first layer 30.
  • the intermediate layer 50 together with the first layer 30 is immersed in a plating tank filled with a plating solution. Components of the plating solution are precipitated on the surface of the intermediate layer 50 opposite the first layer 30, forming the second layer 40. In this way, the second layer 40 is attached to the intermediate layer 50.
  • the components of the plating solution used are appropriately determined according to the characteristics required for the second layer 40.
  • a mixed solution of a solution containing a nickel compound and a solution containing an iron compound may be used as the plating solution.
  • a mixed solution of a solution containing nickel sulfamate or nickel bromide and a solution containing ferrous sulfamate may be used.
  • a solution containing a nickel compound may be used as the plating solution.
  • a nickel sulfamate solution may be used.
  • the second layer 40 is made of a nickel alloy containing cobalt
  • a mixed solution of a solution containing a nickel compound and a solution containing a cobalt compound may be used as the plating solution.
  • a cobalt sulfamate solution may be used.
  • each of the above-mentioned plating solutions may contain various additives. Examples of additives include pH buffers such as boric acid, and additives such as malonic acid and saccharin.
  • the second layer 40 may be annealed (fired). This allows the second layer 40 formed by the plating process to be recrystallized, and the thermal expansion coefficient of the second layer 40 to be reduced. That is, in general, even if a rolled material produced by a rolling process and a plated material produced by a plating process have the same material components, the thermal expansion coefficient of the plated material tends to be higher than the thermal expansion coefficient of the rolled material. For this reason, the second layer 40 may be recrystallized to reduce the thermal expansion coefficient of the second layer 40. During such an annealing process, the second layer 40 may be heated, for example, at a temperature of 600°C for 5 minutes.
  • the specific plating method is not particularly limited as long as the second layer 40 can be formed.
  • electroless plating may be performed instead of electrolytic plating.
  • the thickness of the second layer 40 formed by electroless plating can be made uniform.
  • a catalyst layer (not shown) may be provided on the surface of the intermediate layer 50 opposite the first layer 30. Even when electrolytic plating is performed, a similar catalyst layer may be provided on the intermediate layer 50.
  • a pressing step may be performed to press the second layer 40.
  • the surface of a substrate such as a silicon wafer or a glass wafer, other than the first layer 30 may be pressed against the second layer 40. If the surface of the substrate is flatter than the fourth surface 402 of the second layer 40, the pressing step can increase the flatness of the fourth surface 402.
  • the surface of the substrate may include an uneven pattern. In this case, the pressing step can impart an uneven pattern to the fourth surface 402.
  • the pressing step may be performed before the step of annealing the second layer 40.
  • the laminate 22 may have a protective layer located on the fourth surface 402 of the second layer 40.
  • the protective layer includes, for example, the same material as the material of the first intermediate layer 51. By forming the protective layer on the fourth surface 402, etching of the fourth surface 402 can be suppressed in the first processing step described below. The protective layer may be removed at the same time as the first intermediate layer 51.
  • a resist formation process is carried out to partially form a resist layer 38 on the first surface 301 of the first layer 30.
  • a resist opening 381 facing the first opening 31 is formed in the resist layer 38.
  • the resist layer 38 may be a photoresist.
  • the resist layer 38 is formed on the first surface 301 by first coating the first surface 301 with a liquid resist material. After coating, a step of heating the resist layer 38 may be performed. Then, a photolithography process is performed in which the resist layer 38 is exposed and developed. This allows resist openings 381 to be formed in the resist layer 38.
  • the resist layer 38 may be a silicon oxide film partially formed on the first surface 301.
  • the silicon oxide film is formed, for example, by partially performing a thermal oxidation process on the first surface 301.
  • the silicon oxide film may be formed on the first layer 30 before the intermediate layer 50 and the second layer 40 are laminated on the first layer 30.
  • a first processing step is performed in which the first layer 30 is etched from the first surface 301 side to form a first opening 31 in the first layer 30.
  • the etching in the first processing step may be dry etching using an etching gas.
  • the etching gas is an example of the etchant mentioned above. Since the intermediate layer 50 is resistant to the etchant, as shown in FIG. 10, the etching can be prevented from progressing to the second layer 40.
  • the etching process is carried out, for example, as follows. That is, an etching gas is introduced into a chamber. A voltage is applied to the space in the chamber to convert the etching gas into plasma. Radicals, ions, etc. in the plasma pass through the resist opening 381 and collide with the first surface 301, thereby forming a first opening 31 in the first layer 30, as shown in FIG. 10.
  • the etching gas is, for example, SF6 gas.
  • a resist removal step may be performed to remove the resist layer 38.
  • a resist processing liquid is supplied to the first surface 301.
  • the resist processing solution contains, for example, N-methyl-2-pyrrolidone.
  • the resist layer 38 may be removed by irradiating the resist layer 38 with oxygen plasma.
  • the resist processing solution contains, for example, hydrofluoric acid.
  • the resist layer 38 may be removed by dry etching using CF4 gas or the like.
  • an intermediate layer removal step may be performed to remove the intermediate layer 50.
  • an etchant for the intermediate layer 50 is supplied to the first opening 31. This allows the intermediate layer 50 that overlaps the first opening 31 in a plan view to be removed, as shown in FIG. 11.
  • the etching of the intermediate layer 50 may be dry etching using a fluorine-based gas or the like, or wet etching using an acidic etching solution.
  • the order of the resist removal process and the intermediate layer removal process is not particularly limited.
  • the resist removal process and the intermediate layer removal process may be performed simultaneously.
  • a second processing step is performed to form a plurality of second openings 41 in the second layer 40.
  • a laser L is irradiated onto the third surface 401 of the second layer 40. This allows the second openings 41 to be formed in the second layer 40.
  • the laser L a KrF excimer laser with a wavelength of 248 nm, a YAG laser with a wavelength of 355 nm, or the like can be used.
  • the second processing step may be performed in a state where a protective film or protective layer is formed on the fourth surface 402 of the second layer 40 .
  • the protective film is a member that is attached to the fourth surface 402.
  • the protective film includes, for example, a resin film and an adhesive layer.
  • the protective film is attached to the fourth surface 402 such that the adhesive layer is in contact with the fourth surface 402.
  • the adhesive layer may be a pressure-sensitive adhesive layer or an adsorption layer.
  • the protective film is formed by applying a liquid containing a resin onto the fourth surface 402. Examples of the application method include a bar coating method, a spin coating method, and a spray coating method.
  • the protective film or coating may be removed after the second processing step is completed.
  • the reactivity of the protective film or protective coating to the laser is lower than that of the second layer 40.
  • the reactivity is the speed at which the protective film or protective coating or the second layer 40 is processed by the laser.
  • the laminate 22 is placed on a stage so that the fourth surface 402 faces the stage surface.
  • the position of the irradiation head relative to the laminate 22 is adjusted.
  • the irradiation head may be moved, or the stage may be moved.
  • a plurality of second openings 41 can be formed in the second layer 40. In this manner, the mask 20 can be obtained.
  • a laser mask corresponding to the pattern of the multiple second openings 41 may be used.
  • a focusing lens may be placed between the laser mask and the second layer 40.
  • the multiple second openings 41 can be formed by a laser processing method using a reduced projection optical system.
  • One second opening 41 may be formed by one laser shot.
  • One second opening 41 may be formed by two or more laser shots. In this case, the depth of a recess formed in the second layer 40 by one laser shot is smaller than the thickness of the second layer 40.
  • the laser may be adjusted so that the second wall surface 42 of the second opening 41 includes a tapered surface 42a.
  • the irradiation area of the laser corresponding to the second opening 41 may be changed for each shot.
  • the second processing step may include a first shot step of irradiating the third surface 401 with a laser having a first irradiation area, and a second shot step of irradiating the third surface 401 with a laser having a second irradiation area larger than the first irradiation area.
  • the first irradiation area may correspond to the area of the second opening 41 on the fourth surface 402.
  • the second irradiation area may correspond to the area of the second opening 41 on the third surface 401.
  • the second processing step may include three or more shot steps.
  • the irradiation area and intensity of the laser in each shot step are set so that the second wall surface 42 includes the tapered surface 42a.
  • one transmitting portion of the laser mask may include a first transmitting region having a first transmittance and a second transmitting region having a second transmittance lower than the first transmittance.
  • the outline of the first transmitting region may correspond to the outline of the second opening 41 on the fourth surface 402.
  • the second transmitting region may surround the first transmitting region in a plan view.
  • the outline of the second transmitting region may correspond to the outline of the second opening 41 on the third surface 401.
  • One transmitting portion may include three or more transmitting regions. The shape and transmittance of each transmitting region are set so that the second wall surface 42 includes a tapered surface 42a.
  • the second layer 40 in this embodiment is formed by plating.
  • stress remains in the second layer 40, acting in a direction that causes it to shrink in plan view.
  • the positional accuracy of the second opening 41 can be maintained as long as the above-mentioned stress remains.
  • a method for manufacturing the frame 60 will be described. First, a plate-shaped member containing the above-mentioned glass material or metal material is prepared, and then cut to produce the frame 60 having the third opening 61. A drill, a cutting tool, a milling cutter, an end mill, etc. can be used as a cutting tool for cutting the plate-shaped member.
  • connection layer 70 is formed circumferentially on the sixth surface 601 of the frame 60 along the edge of the third opening 61.
  • the connection layer 70 may include a spacer 75.
  • the connection layer 70 is softened by heating or the like before connecting the mask 20 to the frame 60.
  • the mask 20 is supported from the side of the first layer 30 using the support means 80.
  • the support means 80 supports the inner region 36 of the first layer 30 from the side of the first surface 301.
  • the fifth surface 601 of the frame 60 and the first surface 301 of the first layer 30 are made to face each other, and the support means 80 is moved to bring the mask 20 close to the connection layer 70 on the frame 60.
  • the alignment mark of the frame 60 and the alignment mark of the mask 20 are used to position the mask 20 relative to the frame 60. If the mask 20 is warped, a pressing means opposed to the support means 80 is used to correct the warp while bringing the mask 20 close to the connection layer 70.
  • connection layer 70 is crushed, and the thickness of the connection layer 70 becomes uniform. Specifically, the thickness of the connection layer 70 becomes uniform according to the dimensions of the spacer 75. This causes the second layer 40 and the frame 60 to become parallel.
  • connection layer 70 is hardened by cooling or the like, and the mask 20 and the frame 60 are fixed to each other. In this manner, the framed mask 15 can be obtained.
  • a substrate 110 on which a first electrode 120 is formed is prepared.
  • the substrate 110 may be a silicon wafer.
  • the first electrode 120 may be formed, for example, by forming a conductive layer constituting the first electrode 120 on the substrate 110 by a vacuum film-forming method or the like, and then patterning the conductive layer by a photolithography method or the like. The patterning of the conductive layer may be performed using an apparatus that performs a semiconductor manufacturing process.
  • An insulating layer 160 located between two adjacent first electrodes 120 may be formed on the substrate 110.
  • the organic layer 130 including the first organic layer 130A, the second organic layer 130B, etc. is formed on the first electrode 120.
  • the framed mask 15 including the first mask 20 is placed in the deposition apparatus 10, and the first organic layer 130A is formed by a deposition method using the first mask 20.
  • the first mask 20 has a second opening 41 corresponding to the first organic layer 130A.
  • the framed mask 15 including the second mask 20 is placed in the deposition apparatus 10, and the second organic layer 130B is formed by a deposition method using the second mask 20.
  • the second mask 20 has a second opening 41 corresponding to the second organic layer 130B.
  • the framed mask 15 including the third mask 20 is placed in the deposition apparatus 10, and the third organic layer is formed by a deposition method using the third mask 20.
  • the third mask 20 has a second opening 41 corresponding to the third organic layer.
  • the frame 60 is grasped. This reduces the risk of the first layer 30 being damaged or the second layer 40 being deformed.
  • the frame 60 is supported by the mask holder 9 in the deposition apparatus 10. This reduces the risk of the mask holder 9 interfering with the first opening 31 of the first layer 30 or the second opening 41 of the second layer 40. In other words, the risk of the mask holder 9 interfering with the deposition material being attached to the substrate 110 is reduced.
  • the second electrode 140 is formed on the organic layer 130.
  • the second electrode 140 may be formed on the entire first surface 111 by a vacuum film-forming method or the like.
  • the second electrode 140 may be formed by a deposition method using a mask 20, similar to the organic layer 130.
  • a sealing layer or the like (not shown) may be formed on the second electrode 140. In this manner, the organic device 100 can be obtained.
  • Multiple organic devices 100 may be formed on one substrate 110.
  • One organic device 100 may correspond to one first opening 31 of the mask 20.
  • a process of cutting the substrate 110 may be carried out.
  • the substrate 110 is cut along a region of the substrate 110 that corresponds to the inner region 36 of the mask 20. In this way, multiple organic devices 100 can be obtained.
  • the effect of the mask 20 will be explained when forming the organic layer 130, the second electrode 140, etc. by a vapor deposition method using the mask 20.
  • the mask 20 includes a first layer 30 that contains silicon or a silicon compound. Therefore, when the substrate 110 contains silicon, it is possible to suppress the occurrence of a difference between the thermal expansion occurring in the substrate 110 and the thermal expansion occurring in the mask 20. This makes it possible to suppress the deterioration of the accuracy of the position, shape, etc. of the deposition layers such as the organic layer 130 and the second electrode 140 caused by the thermal expansion of the mask 20. Therefore, it is possible to provide an organic device 100 with a high element density.
  • the mask 20 includes a second layer 40 that includes a plurality of second openings 41.
  • the thickness of the second layer 40 can be reduced, thereby suppressing the occurrence of shadows during the deposition process.
  • the spacing S6 between the first wall surface 32 and the second openings 41 in a plan view the thickness of the first layer 30 can be appropriately ensured while suppressing shadows.
  • the mask 20 may not include an intermediate layer 50 between the first layer 30 and the second layer 40.
  • the second surface 302 of the first layer 30 and the third surface 401 of the second layer 40 may be directly connected.
  • the second opening 41 may be formed in the second layer forming step.
  • an insulating layer 55 is formed on the intermediate layer 50.
  • the insulating layer 55 may be formed by a chemical vapor deposition method using tetraethyl silicate Si(OC 2 H 5 ) 4 as a raw material.
  • the insulating layer 55 is partially removed by dry etching or the like, and a plurality of insulating convex portions 56 are formed on the intermediate layer 50 in a pattern corresponding to the second opening 41.
  • the insulating convex portions 56 are formed at positions overlapping with the second openings 41 on the intermediate layer 50 in a plan view.
  • a plating process is performed on the intermediate layer 50 on which the insulating convex portions 56 are formed.
  • the second openings 41 can be formed in the second layer 40 at the same time as the second layer 40 is formed.
  • a step 65 may be provided on the inner periphery of the frame 60.
  • the step 65 is recessed in a direction from the fifth surface 601 to the sixth surface 602.
  • the step 65 is formed by a surface 651 that spreads from the inner edge 604 of the frame 60 toward the outer edge 603, and a surface 652 that connects the surface 651 to the fifth surface 601.
  • the distance between the surface 651 and the sixth surface 602 is smaller than the distance between the fifth surface 601 and the sixth surface 602.
  • the outer edge 303 of the first layer 30 on the first surface 301 side may be accommodated in the step 65, more specifically, in the space defined by the surfaces 651 and 652.
  • the outer edge 303 of the first layer 30 is surrounded by the frame 60. As a result, the risk of damage to the outer region 35 of the first layer 30 is more effectively suppressed.
  • connection layer 70 may be disposed not only between the frame 60 and the first surface 301, but also between the frame 60 and the outer edge 303. This allows the frame 60 and the first layer 30 to be more firmly connected.
  • connection layer 70 may not be disposed between the frame 60 and the first surface 301, but may be disposed only between the frame 60 and the outer edge 303. In this case, since the connection layer 70 is not disposed between the frame 60 and the first surface 301, there is no need to adjust the thickness of the connection layer 70 to make the frame 60 and the second layer 40 parallel.
  • the fifth surface 601 of the frame 60 may be flush with the fourth surface 402.
  • the second layer 40 can be brought into contact with the substrate 110 or a component on the substrate 110.
  • FIG. 17 is a diagram showing an example of an apparatus 200 including an organic device 100.
  • the apparatus 200 includes a substrate 110 and an organic layer 130.
  • the organic layer 130 is a layer formed by a deposition method using a mask 20.
  • the apparatus 200 is, for example, a smartphone.
  • the apparatus 200 may also be a tablet terminal, a wearable terminal, or the like.
  • the wearable terminal is, for example, a smart glass, a head-mounted display, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

This frame-fitted mask includes: a first layer; a second layer; and a frame. The first layer includes: at least one first opening that opens from a first surface through a second surface; and an outer region that is, in plan view, located between an outer edge and the first opening. The second layer includes: a plurality of second openings that open from a third surface through a fourth surface. The frame is connected to the outer edge and/or the outer region of the first layer. In plan view, at least a part of the frame extends to the outside of the outer edge of the first layer.

Description

フレーム付きマスク、及び、有機デバイスの製造方法Mask with frame and method for manufacturing organic device
 本開示の実施形態は、フレーム付きマスク、及び、有機デバイスの製造方法に関する。 Embodiments of the present disclosure relate to a framed mask and a method for manufacturing an organic device.
 精密なパターンを形成するための方法として、蒸着法が知られている。蒸着法においては、まず、開口が形成されたマスクを基板に組み合わせる。続いて、マスクの開口を介して蒸着材料を基板に付着される。これにより、マスクの開口のパターンに対応したパターンで、蒸着材料を含む蒸着層を基板上に形成できる。蒸着法は、例えば、有機EL表示装置の画素を形成する方法として用いられている。 The vapor deposition method is known as a method for forming precise patterns. In the vapor deposition method, a mask with openings is first combined with a substrate. Next, the vapor deposition material is applied to the substrate through the openings in the mask. This allows a vapor deposition layer containing the vapor deposition material to be formed on the substrate in a pattern corresponding to the pattern of the mask openings. The vapor deposition method is used, for example, as a method for forming pixels for organic electroluminescence (EL) display devices.
 例えばJP2013-49889Aは、フレームと、張力が加えられた状態でフレームに接合されているマスクと、を備えるマスク装置を用いる形態を開示している。フレーム及びマスクは、ニッケルを含む鉄合金によって構成されている。 For example, JP2013-49889A discloses a configuration using a mask device that includes a frame and a mask that is joined to the frame under tension. The frame and mask are made of an iron alloy that contains nickel.
 一方、例えばJP2009-062565Aは、マスクが熱によって変形することを抑制するため、シリコン基板によってマスクを構成することを提案している。 On the other hand, for example, JP2009-062565A proposes constructing a mask from a silicon substrate to prevent the mask from deforming due to heat.
 シリコン基板を用いたマスクは、その外縁近傍まで開口を形成すると、外縁部が破損しやすくなり、マスクの取り扱いが困難になる。その一方で、マスクの外縁近傍まで開口を形成することで、一枚のマスクで基板のより広い範囲に蒸着層を形成可能とすることが求められている。 When openings are formed close to the outer edge of a mask using a silicon substrate, the outer edge becomes easily damaged, making the mask difficult to handle. On the other hand, there is a demand for forming openings close to the outer edge of the mask, making it possible to form a deposition layer over a wider area of the substrate with a single mask.
 本開示の実施形態は、このような課題を効果的に解決し得るマスクを提供することを目的とする。 The embodiment of the present disclosure aims to provide a mask that can effectively solve these problems.
 本開示の一実施形態によるマスクは、フレーム付きマスクであって、第1面と、前記第1面の反対側に位置する第2面と、前記第1面から前記第2面へ貫通する少なくとも1つの第1開口と、外縁と、平面視において前記外縁と前記第1開口との間に位置する外側領域と、を含む第1層と、前記第2面に対向する第3面と、前記第3面の反対側に位置する第4面と、前記第3面から前記第4面へ貫通し、平面視において前記第1開口に重なる複数の第2開口と、を含む第2層と、前記第4面と同じ側を向く第5面と、前記第5面の反対側に位置する第6面と、を含み、前記第1層の外縁に、及び/または前記第1層の前記外側領域の前記第1面に接続するフレームと、を含んでいてもよい。前記第1層は、シリコンを含んでいてもよい。平面視において、前記フレームの少なくとも一部は、前記第1層の前記外縁の外側まで広がっていてもよい。前記フレームは、ガラスまたは金属を含んでいてもよい。 A mask according to an embodiment of the present disclosure may include a framed mask, comprising a first layer including a first surface, a second surface located opposite to the first surface, at least one first opening penetrating from the first surface to the second surface, an outer edge, and an outer region located between the outer edge and the first opening in a plan view, a third surface facing the second surface, a fourth surface located opposite to the third surface, and a plurality of second openings penetrating from the third surface to the fourth surface and overlapping the first opening in a plan view, a fifth surface facing the same side as the fourth surface, and a sixth surface located opposite to the fifth surface, and a frame connected to the outer edge of the first layer and/or the first surface of the outer region of the first layer. The first layer may include silicon. In a plan view, at least a portion of the frame may extend to the outside of the outer edge of the first layer. The frame may include glass or metal.
 本開示の実施形態によれば、シリコンを含むマスクを取り扱うときにマスクが破損することを抑制できる。 According to an embodiment of the present disclosure, damage to a mask containing silicon can be suppressed when the mask is handled.
有機デバイスの一例を示す平面図である。FIG. 1 is a plan view illustrating an example of an organic device. フレーム付きマスクを備えた蒸着装置の一例を示す図である。FIG. 1 is a diagram showing an example of a deposition apparatus equipped with a framed mask. 入射面の側から見た場合のフレーム付きマスクの一例を示す平面図である。FIG. 2 is a plan view showing an example of a framed mask as viewed from the entrance surface side. 入射面の側から見た場合のフレーム付きマスクの一変形例を示す平面図である。FIG. 13 is a plan view showing a modified example of a framed mask as viewed from the entrance surface side. 入射面の側から見た場合のフレーム付きマスクの一変形例を示す平面図である。FIG. 13 is a plan view showing a modified example of a framed mask as viewed from the entrance surface side. 出射面の側から見た場合のフレーム付きマスクの一例を示す平面図である。FIG. 2 is a plan view showing an example of a framed mask as viewed from the exit surface side. 図3Aのフレーム付きマスクのV-V線に沿った断面図である。3B is a cross-sectional view of the framed mask of FIG. 3A taken along line VV. 図5Aに示す断面の二点鎖線で囲まれた部分を拡大して示す図である。5B is an enlarged view of a portion surrounded by a two-dot chain line in the cross section shown in FIG. 5A. FIG. 有効領域の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of an effective area. 図5Bに示す断面の二点鎖線で囲まれた部分を拡大して示す図である。5C is an enlarged view of a portion surrounded by a two-dot chain line in the cross section shown in FIG. 5B. 一実施の形態によるフレーム付きマスクの製造方法の一例を示す断面図である。5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment. 一実施の形態によるフレーム付きマスクの製造方法の一例を示す断面図である。5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment. 一実施の形態によるフレーム付きマスクの製造方法の一例を示す断面図である。5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment. 一実施の形態によるフレーム付きマスクの製造方法の一例を示す断面図である。5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment. 一実施の形態によるフレーム付きマスクの製造方法の一例を示す断面図である。5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment. 一実施の形態によるフレーム付きマスクの製造方法の一例を示す断面図である。5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment. 一実施の形態によるフレーム付きマスクの製造方法の一例を示す断面図である。5A to 5C are cross-sectional views showing an example of a method for manufacturing a framed mask according to an embodiment. 第2開口の形成方法の一変形例を説明するための断面図である。11A and 11B are cross-sectional views illustrating a modified example of the method for forming the second opening. 第2開口の形成方法の一変形例を説明するための断面図である。11A and 11B are cross-sectional views illustrating a modified example of the method for forming the second opening. 第2開口の形成方法の一変形例を説明するための断面図である。11A and 11B are cross-sectional views illustrating a modified example of the method for forming the second opening. 図6に対応する図であって、フレーム付きマスクの一変形例を示す断面図である。FIG. 7 is a cross-sectional view corresponding to FIG. 6 and showing a modified example of a framed mask. 図6に対応する図であって、フレーム付きマスクの一変形例を示す断面図である。FIG. 7 is a cross-sectional view corresponding to FIG. 6 and showing a modified example of a framed mask. 有機デバイスを備える装置の一例を示す図である。FIG. 1 is a diagram showing an example of an apparatus including an organic device.
 本明細書および本図面において、特別な説明が無い限りは、「基板」、「シート」、「フィルム」などの、ある構成の基礎となる物質を意味する用語は、呼称の違いのみに基づいて、互いから区別されるものではない。 In this specification and drawings, unless otherwise specified, terms that refer to the materials that form the basis of a certain configuration, such as "substrate," "sheet," and "film," are not to be distinguished from one another solely on the basis of differences in name.
 本明細書および本図面において、特別な説明が無い限りは、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」や「直交」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待してもよい程度の範囲を含めて解釈する。 Unless otherwise specified, in this specification and drawings, terms that specify shapes and geometric conditions and their degrees, such as "parallel" and "orthogonal," and values of lengths and angles, are not bound by strict meanings and are interpreted to include the extent to which similar functions may be expected.
 本明細書および本図面において、特別な説明が無い限りは、ある部材又はある領域等のある構成が、他の部材又は他の領域等の他の構成の「上に」や「下に」、「上側に」や「下側に」、又は「上方に」や「下方に」とする場合、ある構成が他の構成に直接的に接している場合を含む。さらに、ある構成と他の構成との間に別の構成が含まれている場合、つまり間接的に接している場合も含む。また、特別な説明が無い限りは、「上」や「上側」や「上方」、又は、「下」や「下側」や「下方」という語句は、上下方向が逆転してもよい。 In this specification and drawings, unless otherwise specified, when a certain component or region or other component is described as being "on" or "under", "upper" or "lower" or "above" or "below" another component or region, this includes cases where the component is in direct contact with the other component. It also includes cases where another component is included between a certain component and the other component, that is, cases where the components are indirectly in contact. Furthermore, unless otherwise specified, the terms "on", "upper side", "upper", or "lower", or "lower", "lower" and "lower" may be used in the up-down direction.
 本明細書および本図面において、特別な説明が無い限りは、要素Aの面が要素Bの面に「対向する」という状態は、要素Aの面が要素Bの面に接している場合だけでなく、要素Aの面と要素Bの面の間に要素Cが位置している場合も含む。すなわち、「対向する」という用語は、2つの面の向きを表す用語である。 In this specification and drawings, unless otherwise specified, the state in which the face of element A is "facing" the face of element B includes not only the case in which the face of element A is in contact with the face of element B, but also the case in which element C is located between the faces of element A and element B. In other words, the term "facing" is a term that describes the orientation of the two faces.
 本明細書および本図面において、特別な説明が無い限りは、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。 In this specification and drawings, unless otherwise specified, identical parts or parts having similar functions are given the same or similar symbols, and repeated explanations may be omitted. In addition, the dimensional ratios of the drawings may differ from the actual ratios for the convenience of explanation, and some components may be omitted from the drawings.
 本明細書および本図面において、特別な説明が無い限りは、本明細書の一実施形態は、矛盾の生じない範囲で、その他の例と組み合わせられ得る。また、その他の例同士も、矛盾の生じない範囲で組み合わせられ得る。 Unless otherwise specified in this specification and drawings, one embodiment of this specification may be combined with other examples to the extent that no contradictions arise. In addition, other examples may be combined with each other to the extent that no contradictions arise.
 本明細書および本図面において、特別な説明が無い限りは、製造方法などの方法に関して2つ以上のステップ又はプロセスを開示する場合に、開示されているステップ又はプロセスの間に、開示されていないその他のステップ又はプロセスが実施されてもよい。また、開示されているステップ又はプロセスの順序は、矛盾の生じない範囲で任意である。 Unless otherwise specified in this specification and drawings, when two or more steps or processes are disclosed in a method such as a manufacturing method, other steps or processes that are not disclosed may be performed between the disclosed steps or processes. In addition, the order of the disclosed steps or processes is arbitrary to the extent that no contradiction occurs.
 本明細書の一実施形態においては、マスクが、有機EL表示装置を製造する際に有機層又は電極を基板上に形成するために用いられる例について説明する。ただし、マスクの用途が特に限定されることはなく、種々の用途に用いられるマスクに対し、本実施形態を適用することができる。例えば、仮想現実いわゆるVRや拡張現実いわゆるARを表現するための画像や映像を表示又は投影するための装置の電極を形成するために、本実施形態のマスクを用いてもよい。また、液晶表示装置の電極などの、有機EL表示装置以外の表示装置の電極を形成するために、本実施形態のマスクを用いてもよい。また、圧力センサの電極などの、表示装置以外の有機デバイスの電極を形成するために、本実施形態のマスクを用いてもよい。 In one embodiment of this specification, an example will be described in which a mask is used to form an organic layer or electrodes on a substrate when manufacturing an organic EL display device. However, the use of the mask is not particularly limited, and this embodiment can be applied to masks used for various purposes. For example, the mask of this embodiment may be used to form electrodes of a device for displaying or projecting images or videos to express virtual reality, or so-called VR, or augmented reality, or so-called AR. The mask of this embodiment may also be used to form electrodes of a display device other than an organic EL display device, such as an electrode of a liquid crystal display device. The mask of this embodiment may also be used to form electrodes of an organic device other than a display device, such as an electrode of a pressure sensor.
 本開示の第1の態様は、フレーム付きマスクであって、
 第1面と、前記第1面の反対側に位置する第2面と、前記第1面から前記第2面へ貫通する少なくとも1つの第1開口と、外縁と、平面視において前記外縁と前記第1開口との間に位置する外側領域と、を含む第1層と、
 前記第2面に対向する第3面と、前記第3面の反対側に位置する第4面と、前記第3面から前記第4面へ貫通し、平面視において前記第1開口に重なる複数の第2開口と、を含む第2層と、
 前記第1層の外縁に、及び/または前記第1層の前記外側領域の前記第1面に接続するフレームと、
を含み、
 前記第1層は、シリコンを含み、
 平面視において、前記フレームの少なくとも一部は、前記第1層の前記外縁の外側まで広がっており、
 前記フレームは、ガラスまたは金属を含む、フレーム付きマスクである。
A first aspect of the present disclosure is a framed mask, comprising:
a first layer including a first surface, a second surface located on the opposite side of the first surface, at least one first opening penetrating from the first surface to the second surface, an outer edge, and an outer region located between the outer edge and the first opening in a plan view;
a second layer including a third surface facing the second surface, a fourth surface located on the opposite side of the third surface, and a plurality of second openings penetrating from the third surface to the fourth surface and overlapping with the first openings in a plan view;
a frame connecting to an outer edge of the first layer and/or to the first surface of the outer region of the first layer;
Including,
the first layer comprises silicon;
In a plan view, at least a portion of the frame extends to an outside of the outer edge of the first layer,
The frame is a framed mask comprising glass or metal.
 上述した第1の態様に従う第2の態様によるフレーム付きマスクにおいて、前記フレームは、前記第4面と同じ側を向く第5面と、前記第5面の反対側に位置する第6面と、前記第5面から前記第6面へ貫通し、平面視において前記第1開口に重なる第3開口と、を含んでいてもよい。 In a framed mask according to a second aspect in accordance with the first aspect described above, the frame may include a fifth surface facing the same side as the fourth surface, a sixth surface located on the opposite side of the fifth surface, and a third opening that penetrates from the fifth surface to the sixth surface and overlaps with the first opening in a plan view.
 上述した第1の態様又は第2の態様に従う第3の態様によるフレーム付きマスクにおいて、前記フレームに、前記第1層の前記外縁を収容する段差部が形成されていてもよい。 In a framed mask according to a third aspect following the first or second aspect described above, the frame may be formed with a step portion that accommodates the outer edge of the first layer.
 上述した第1の態様から上述した第3の態様のいずれかに従う第4の態様によるフレーム付きマスクにおいて、フレーム付きマスクは、前記フレームと前記第1層との間に接続層を有していてもよい。 In a framed mask according to a fourth aspect that follows any one of the first aspect to the third aspect described above, the framed mask may have a connection layer between the frame and the first layer.
 上述した第1の態様から上述した第4の態様のいずれかに従う第5の態様によるフレーム付きマスクにおいて、前記接続層は、ガラス材料、無機材料、金属材料又は樹脂材料を含んでいてもよい。 In the framed mask according to the fifth aspect, which is in accordance with any one of the first aspect to the fourth aspect described above, the connection layer may include a glass material, an inorganic material, a metal material, or a resin material.
 上述した第5の態様に従う第6の態様によるフレーム付きマスクにおいて、前記接続層はスペーサを含んでいてもよい。 In the framed mask according to the sixth aspect in accordance with the fifth aspect described above, the connection layer may include a spacer.
 上述した第1の態様から上述した第6の態様のいずれかに従う第7の態様によるフレーム付きマスクにおいて、前記フレームと前記第1層との間にスペーサが配置されていてもよい。 In a framed mask according to a seventh aspect that follows any one of the first aspect to the sixth aspect described above, a spacer may be disposed between the frame and the first layer.
 上述した第4の態様から上述した第6の態様のいずれかに従う第8の態様によるフレーム付きマスクにおいて、前記接続層は、前記第1層の前記外縁と前記フレームとの間にのみ配置されていてもよい。 In a framed mask according to an eighth aspect that follows any one of the fourth aspect to the sixth aspect described above, the connection layer may be disposed only between the outer edge of the first layer and the frame.
 上述した第1の態様から上述した第8の態様のいずれかに従う第9の態様によるフレーム付きマスクにおいて、前記第1層と前記第2層の間に中間層を含んでいてもよい。 In a framed mask according to a ninth aspect that follows any one of the first aspect to the eighth aspect described above, an intermediate layer may be included between the first layer and the second layer.
 本開示の第10の態様は、有機デバイスの製造方法であって、
 上述した第1の態様から上述した第9の態様のいずれかのフレーム付きマスクを用いる蒸着法によって基板上に有機層を形成する工程を備える、有機デバイスの製造方法である。
A tenth aspect of the present disclosure is a method for manufacturing an organic device, comprising:
A method for manufacturing an organic device, comprising the step of forming an organic layer on a substrate by a deposition method using the framed mask according to any one of the first to ninth aspects described above.
 図1乃至図13を参照して、一実施の形態について説明する。まず、マスクを用いることにより形成される有機層を備える有機デバイス100について説明する。図1は、有機デバイス100の一例を示す断面図である。 One embodiment will be described with reference to Figures 1 to 13. First, an organic device 100 having an organic layer formed by using a mask will be described. Figure 1 is a cross-sectional view showing an example of an organic device 100.
 有機デバイス100は、基板110と、基板110の面内方向に沿って並ぶ複数の素子115と、を含む。基板110は、第1面111及び第1面111の反対側に位置する第2面112を含む。素子115は、第1面111に位置している。素子115は、例えば画素である。基板110は、2以上の種類の素子115を含んでいてもよい。例えば、基板110は、第1素子115A及び第2素子115Bを含んでいてもよい。図示はしないが、基板110は、第3素子を含んでいてもよい。第1素子115A、第2素子115B及び第3素子は、例えば、赤色画素、青色画素及び緑色画素である。 The organic device 100 includes a substrate 110 and a plurality of elements 115 arranged along the in-plane direction of the substrate 110. The substrate 110 includes a first surface 111 and a second surface 112 located on the opposite side of the first surface 111. The elements 115 are located on the first surface 111. The elements 115 are, for example, pixels. The substrate 110 may include two or more types of elements 115. For example, the substrate 110 may include a first element 115A and a second element 115B. Although not shown, the substrate 110 may include a third element. The first element 115A, the second element 115B, and the third element are, for example, a red pixel, a blue pixel, and a green pixel.
 素子115は、第1電極120と、第1電極120上に位置する有機層130と、有機層130上に位置する第2電極140と、を有していてもよい。 The element 115 may have a first electrode 120, an organic layer 130 located on the first electrode 120, and a second electrode 140 located on the organic layer 130.
 有機デバイス100は、平面視において隣り合う2つの第1電極120の間に位置する絶縁層160を備えていてもよい。絶縁層160は、例えばポリイミドを含んでいる。絶縁層160は、第1電極120の端部に重なっていてもよい。「平面視」とは、基板110などの板状の部材の面の法線方向に沿って対象を見ることを意味する。 The organic device 100 may have an insulating layer 160 located between two adjacent first electrodes 120 in a planar view. The insulating layer 160 contains, for example, polyimide. The insulating layer 160 may overlap an end of the first electrode 120. "Planar view" means viewing an object along the normal direction of the surface of a plate-like member such as the substrate 110.
 基板110は、絶縁性を有する部材であってもよい。基板110の材料としては、例えば、シリコン、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の可撓性のないリジッド材、あるいは、樹脂フィルム、光学用樹脂板、薄ガラス等の可撓性を有するフレキシブル材等を用いることができる。基板110は、半導体製造で用いられるシリコンウエハと同様の平面形状を有していてもよい。この場合、半導体製造工程を実施する装置を用いて基板110を処理できる。例えば、半導体製造工程を実施する装置を用いて基板110に第1電極120、絶縁層160などを形成できる。 The substrate 110 may be an insulating member. The material of the substrate 110 may be, for example, a rigid material with no flexibility, such as silicon, quartz glass, Pyrex (registered trademark) glass, or a synthetic quartz plate, or a flexible material with flexibility, such as a resin film, an optical resin plate, or thin glass. The substrate 110 may have a planar shape similar to that of a silicon wafer used in semiconductor manufacturing. In this case, the substrate 110 can be processed using an apparatus that performs a semiconductor manufacturing process. For example, the first electrode 120, the insulating layer 160, and the like can be formed on the substrate 110 using an apparatus that performs a semiconductor manufacturing process.
 素子115は、第1電極120と第2電極140との間に電圧が印加されることにより、又は、第1電極120と第2電極140との間に電流が流れることにより、何らかの機能を実現するよう構成されている。例えば、素子115が、有機EL表示装置の画素である場合、素子115は、映像を構成する光を放出できる。 Element 115 is configured to realize some function by applying a voltage between first electrode 120 and second electrode 140, or by causing a current to flow between first electrode 120 and second electrode 140. For example, when element 115 is a pixel of an organic EL display device, element 115 can emit light that constitutes an image.
 第1電極120は、導電性を有する材料を含む。例えば、第1電極120は、金属、導電性を有する金属酸化物や、その他の導電性を有する無機材料などを含む。第1電極120は、インジウム・スズ酸化物などの、透明性及び導電性を有する金属酸化物を含んでいてもよい。 The first electrode 120 includes a material having electrical conductivity. For example, the first electrode 120 includes a metal, a metal oxide having electrical conductivity, or other inorganic material having electrical conductivity. The first electrode 120 may include a metal oxide having transparency and electrical conductivity, such as indium tin oxide.
 有機層130は、有機材料を含む。有機層130が通電されると、有機層130は、何らかの機能を発揮できる。通電とは、有機層130に電圧が印加されること、又は有機層130に電流が流れることを意味する。有機層130としては、通電により光を放出する発光層、通電により光の透過率や屈折率が変化する層などを用いることができる。有機層130は、有機半導体材料を含んでいてもよい。 The organic layer 130 includes an organic material. When a current is passed through the organic layer 130, the organic layer 130 can perform some function. Passing a current means that a voltage is applied to the organic layer 130 or that a current flows through the organic layer 130. The organic layer 130 may be a light-emitting layer that emits light when a current is passed through it, or a layer whose light transmittance or refractive index changes when a current is passed through it. The organic layer 130 may include an organic semiconductor material.
 図1に示すように、有機層130は、第1有機層130A及び第2有機層130Bを含んでいてもよい。第1有機層130Aは、第1素子115Aに含まれる。第2有機層130Bは、第2素子115Bに含まれる。図示はしないが、有機層130は、第3素子に含まれる第3有機層を含んでいてもよい。第1有機層130A、第2有機層130B及び第3有機層は、例えば、赤色発光層、青色発光層及び緑色発光層である。 As shown in FIG. 1, the organic layer 130 may include a first organic layer 130A and a second organic layer 130B. The first organic layer 130A is included in the first element 115A. The second organic layer 130B is included in the second element 115B. Although not shown, the organic layer 130 may include a third organic layer included in a third element. The first organic layer 130A, the second organic layer 130B, and the third organic layer are, for example, a red light-emitting layer, a blue light-emitting layer, and a green light-emitting layer.
 第1電極120と第2電極140との間に電圧を印加すると、両者の間に位置する有機層130が駆動される。有機層130が発光層である場合、有機層130から光が放出され、光が第2電極140側又は第1電極120側から外部へ取り出される。 When a voltage is applied between the first electrode 120 and the second electrode 140, the organic layer 130 located between them is driven. If the organic layer 130 is an emitting layer, light is emitted from the organic layer 130 and extracted to the outside from the second electrode 140 side or the first electrode 120 side.
 有機層130は、正孔注入層、正孔輸送層、電子輸送層、電子注入層などを更に含んでいてもよい。 The organic layer 130 may further include a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, etc.
 第2電極140は、金属などの、導電性を有する材料を含んでいてもよい。第2電極140の材料としては、例えば、白金、金、銀、銅、鉄、錫、クロム、アルミニウム、インジウム、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、クロム、炭素等及びこれらの合金を用いることができる。図1に示すように、第2電極140は、平面視において隣り合う2つの有機層130に跨るように広がっていてもよい。 The second electrode 140 may include a conductive material such as a metal. Examples of materials that can be used for the second electrode 140 include platinum, gold, silver, copper, iron, tin, chromium, aluminum, indium, lithium, sodium, potassium, calcium, magnesium, chromium, carbon, and alloys thereof. As shown in FIG. 1, the second electrode 140 may extend across two adjacent organic layers 130 in a plan view.
 次に、有機層130を蒸着法によって基板110に形成する方法について説明する。図2は、蒸着装置10を示す図である。蒸着装置10は、対象物に蒸着材料を蒸着させる蒸着処理を実施する。 Next, a method for forming the organic layer 130 on the substrate 110 by a vapor deposition method will be described. FIG. 2 is a diagram showing a vapor deposition device 10. The vapor deposition device 10 performs a vapor deposition process in which a vapor deposition material is vapor-deposited on a target object.
 図2に示すように、蒸着装置10は、その内部に、蒸着源6、ヒータ8、及びフレーム付きマスク15を備えていてもよい。蒸着装置10は、蒸着装置10の内部を真空雰囲気にするための排気手段を更に備えていてもよい。蒸着源6は、例えばるつぼである。蒸着源6は、有機材料、金属材料などの蒸着材料7を収容する。ヒータ8は、蒸着源6を加熱して、真空雰囲気の下で蒸着材料7を蒸発させる。 As shown in FIG. 2, the deposition apparatus 10 may include therein a deposition source 6, a heater 8, and a framed mask 15. The deposition apparatus 10 may further include an exhaust means for creating a vacuum atmosphere inside the deposition apparatus 10. The deposition source 6 is, for example, a crucible. The deposition source 6 contains a deposition material 7 such as an organic material or a metal material. The heater 8 heats the deposition source 6 to evaporate the deposition material 7 under a vacuum atmosphere.
 フレーム付きマスク15は、マスク20と、マスク20に取り付けられたフレーム60と、を含む。マスク20は、入射面201、出射面202及び第2開口41を含む。出射面202は、入射面201の反対側に位置する。フレーム付きマスク15は、マスクホルダ9に支持されている。フレーム付きマスク15は、入射面201が蒸着源6と対向し、出射面202が基板110の第1面111と対向するように、配置されている。出射面202からマスク20に入った蒸着材料7の一部は、第2開口41を通過して出射面202から出る。出射面202から出た蒸着材料7は、基板110の第1面111に付着する。マスク20の出射面202は、基板110の第1面111に接していてもよい。 The framed mask 15 includes a mask 20 and a frame 60 attached to the mask 20. The mask 20 includes an incident surface 201, an exit surface 202, and a second opening 41. The exit surface 202 is located on the opposite side of the incident surface 201. The framed mask 15 is supported by a mask holder 9. The framed mask 15 is arranged so that the incident surface 201 faces the deposition source 6 and the exit surface 202 faces the first surface 111 of the substrate 110. A part of the deposition material 7 that enters the mask 20 from the exit surface 202 passes through the second opening 41 and exits from the exit surface 202. The deposition material 7 that exits from the exit surface 202 adheres to the first surface 111 of the substrate 110. The exit surface 202 of the mask 20 may be in contact with the first surface 111 of the substrate 110.
 図2に示すように、蒸着装置10は、基板110の第2面112側に配置されている磁石5を備えていてもよい。マスク20が金属材料を含む場合、磁石5は、磁力によってマスク20を基板110に向けて引き寄せることができる。これにより、マスク20と基板110との間の隙間を低減したり、隙間をなくしたりすることができる。このことにより、蒸着工程においてシャドウが発生することを抑制できる。本願において、シャドウとは、第2開口41の壁面の近傍に形成される有機層130の厚みが、第2開口41の中心に形成される有機層130の厚みよりも小さくなる現象である。シャドウは、蒸着材料7がマスク20の壁面に付着すること、蒸着材料7がマスク20と基板110との間の隙間に入り込むこと、などに起因して生じる。 As shown in FIG. 2, the deposition device 10 may include a magnet 5 disposed on the second surface 112 side of the substrate 110. When the mask 20 contains a metal material, the magnet 5 can attract the mask 20 toward the substrate 110 by magnetic force. This can reduce or eliminate the gap between the mask 20 and the substrate 110. This can suppress the occurrence of a shadow in the deposition process. In this application, a shadow is a phenomenon in which the thickness of the organic layer 130 formed near the wall surface of the second opening 41 is smaller than the thickness of the organic layer 130 formed at the center of the second opening 41. The shadow occurs due to the deposition material 7 adhering to the wall surface of the mask 20, the deposition material 7 entering the gap between the mask 20 and the substrate 110, etc.
 次に、フレーム付きマスク15について、詳述する。図3Aは、入射面201の側から見た場合のフレーム付きマスク15の一例を示す平面図である。図4は、出射面202の側から見た場合のフレーム付きマスク15の一例を示す平面図である。図5Aは、図3Aのフレーム付きマスク15のV-V線に沿った断面図である。図5Bは、図5Aの断面の二点鎖線で囲まれた部分を拡大して示す図である。 Next, the framed mask 15 will be described in detail. Figure 3A is a plan view showing an example of the framed mask 15 when viewed from the side of the incident surface 201. Figure 4 is a plan view showing an example of the framed mask 15 when viewed from the side of the exit surface 202. Figure 5A is a cross-sectional view taken along line V-V of the framed mask 15 in Figure 3A. Figure 5B is an enlarged view of the portion surrounded by the two-dot chain line in the cross-section of Figure 5A.
 まず、マスク20について詳細に説明する。図5Aに示すように、マスク20は、入射面201から出射面202に向かって順に並ぶ第1層30及び第2層40を備える。第1層30は、シリコン又はシリコン化合物を含む。シリコン化合物は、例えばシリコンカーバイド(SiC)である。第2層40は、例えば、金属材料を含む。図5Aに示すように、マスク20は、さらに中間層50を備えていてもよい。中間層50は、第1層30と第2層40との間に配置されている。以下、各層について説明する。 First, the mask 20 will be described in detail. As shown in FIG. 5A, the mask 20 includes a first layer 30 and a second layer 40 arranged in order from the entrance surface 201 toward the exit surface 202. The first layer 30 includes silicon or a silicon compound. The silicon compound is, for example, silicon carbide (SiC). The second layer 40 includes, for example, a metal material. As shown in FIG. 5A, the mask 20 may further include an intermediate layer 50. The intermediate layer 50 is disposed between the first layer 30 and the second layer 40. Each layer will be described below.
 第1層30は、第1面301、第2面302、第1開口31及び第1壁面32を含む。第1面301は、入射面201を構成していてもよい。第2面302は、第1面301の反対側に位置している。 The first layer 30 includes a first surface 301, a second surface 302, a first opening 31, and a first wall surface 32. The first surface 301 may constitute the incident surface 201. The second surface 302 is located on the opposite side of the first surface 301.
 第1開口31は、第1層30を、第1面301から第2面302へ貫通している。図3Aに示すように、第1層30は、複数の第1開口31を含んでいてもよい。複数の第1開口31は、第1方向D1及び第2方向D2に並んでいてもよい。第2方向D2は、第1方向D1に直交していてもよい。 The first opening 31 penetrates the first layer 30 from the first surface 301 to the second surface 302. As shown in FIG. 3A, the first layer 30 may include a plurality of first openings 31. The plurality of first openings 31 may be aligned in a first direction D1 and a second direction D2. The second direction D2 may be perpendicular to the first direction D1.
 第1開口31は、有機EL表示装置の1つの画面に対応していてもよい。図3Aに示すマスク20は、複数の画面に対応する有機層のパターンを同時に基板110に形成できる。図3Aに示すように、第1開口31は、平面視において矩形の輪郭を有していてもよい。 The first opening 31 may correspond to one screen of the organic EL display device. The mask 20 shown in FIG. 3A can simultaneously form organic layer patterns corresponding to multiple screens on the substrate 110. As shown in FIG. 3A, the first opening 31 may have a rectangular outline in a plan view.
 図3B及び図3Cはそれぞれ、マスク20のその他の例を示す平面図である。図3Bに示すように、第1開口31の輪郭の角部は曲線を含んでいてもよい。図3Cに示すように、第1開口31の輪郭は八角形であってもよい。図3B及び図3Cに示す例によれば、第1開口31の輪郭に応力が加わる場合に、応力が角部に集中することを抑制できる。このため、第1層30が破損することを抑制できる。 FIGS. 3B and 3C are plan views showing other examples of the mask 20. As shown in FIG. 3B, the corners of the contour of the first opening 31 may include curves. As shown in FIG. 3C, the contour of the first opening 31 may be octagonal. According to the examples shown in FIG. 3B and FIG. 3C, when stress is applied to the contour of the first opening 31, the stress can be prevented from concentrating on the corners. This makes it possible to prevent the first layer 30 from being damaged.
 第1壁面32は、第1開口31に面する第1層30の面である。図3Aに示す例において、第1壁面32は、第1面301の法線方向に沿って広がっている。 The first wall surface 32 is the surface of the first layer 30 facing the first opening 31. In the example shown in FIG. 3A, the first wall surface 32 extends along the normal direction of the first surface 301.
 図3Aに示すように、第1開口31が形成されていない第1層30の領域は、外側領域35及び内側領域36に区画されてもよい。内側領域36は、平面視において隣り合う2つの第1開口31の間に位置する領域である。外側領域35は、平面視において、第1層30の外縁303と第1開口31との間に位置する領域である。図3Aに示すように、内側領域36は、第1方向D1及び第2方向D2に延びていてもよい。 As shown in FIG. 3A, the area of the first layer 30 where the first openings 31 are not formed may be partitioned into an outer area 35 and an inner area 36. The inner area 36 is an area located between two adjacent first openings 31 in a planar view. The outer area 35 is an area located between the outer edge 303 of the first layer 30 and the first openings 31 in a planar view. As shown in FIG. 3A, the inner area 36 may extend in a first direction D1 and a second direction D2.
 図3A及び図4に示すように、第1層30は、アライメントマーク39を含んでいてもよい。アライメントマーク39は、例えば第2面302に形成されている。アライメントマーク39は、第1面301に形成されていてもよい。アライメントマーク39は、例えば、マスク20に対する基板110の相対的な位置を調整するために利用される。基板110が可視光を透過させる性質を有する場合、基板110を介しアライメントマーク39を視認できる。 As shown in Figures 3A and 4, the first layer 30 may include an alignment mark 39. The alignment mark 39 is formed, for example, on the second surface 302. The alignment mark 39 may also be formed on the first surface 301. The alignment mark 39 is used, for example, to adjust the relative position of the substrate 110 with respect to the mask 20. If the substrate 110 has the property of transmitting visible light, the alignment mark 39 can be seen through the substrate 110.
 図3A及び図4に示すように、アライメントマーク39は、平面視において円形の輪郭を有していてもよい。図示はしないが、アライメントマーク39は、矩形や十字形など、円形以外の輪郭を有していてもよい。アライメントマーク39は、外側領域35に位置していてもよく、内側領域36に位置していてもよい。アライメントマーク39は、第1層30以外の層に形成されていてもよい。 As shown in Figures 3A and 4, the alignment mark 39 may have a circular outline in a plan view. Although not shown, the alignment mark 39 may have an outline other than a circle, such as a rectangle or a cross. The alignment mark 39 may be located in the outer region 35 or the inner region 36. The alignment mark 39 may be formed in a layer other than the first layer 30.
 第1層30は、上述のようにシリコン又はシリコン化合物を含む。第1層30は、例えば、シリコンウエハを加工することによって作製される。図3Aに示すように、第1層30の外縁303は、直線状の部分を含んでいてもよい。直線状の部分は、オリエンテーションフラットとも称される。図示はしないが、外縁303には切り欠きが形成されていてもよい。切り欠きは、ノッチとも称される。オリエンテーションフラット及びノッチは、シリコンウエハの結晶方位を表す。 The first layer 30 includes silicon or a silicon compound as described above. The first layer 30 is produced, for example, by processing a silicon wafer. As shown in FIG. 3A, the outer edge 303 of the first layer 30 may include a straight portion. The straight portion is also called an orientation flat. Although not shown, a notch may be formed in the outer edge 303. The notch is also called a notch. The orientation flat and the notch represent the crystal orientation of the silicon wafer.
 平面視における第1層30の最大の寸法S1は、例えば、100mm以上でもよく、150mm以上でもよく、200mm以上でもよい。寸法S1は、例えば、300mm以下でもよく、400mm以下でもよく、500mm以下でもよい。寸法S1の範囲は、100mm、150mm及び200mmからなる第1グループ、及び/又は、300mm、400mm及び500mmからなる第2グループによって定められてもよい。寸法S1の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。寸法S1の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。寸法S1の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。寸法S1は、例えば、100mm以上500mm以下でもよく、100mm以上400mm以下でもよく、100mm以上300mm以下でもよく、100mm以上200mm以下でもよく、100mm以上150mm以下でもよく、150mm以上500mm以下でもよく、150mm以上400mm以下でもよく、150mm以上300mm以下でもよく、150mm以上200mm以下でもよく、200mm以上500mm以下でもよく、200mm以上400mm以下でもよく、200mm以上300mm以下でもよく、300mm以上500mm以下でもよく、300mm以上400mm以下でもよく、400mm以上500mm以下でもよい。 The maximum dimension S1 of the first layer 30 in plan view may be, for example, 100 mm or more, 150 mm or more, or 200 mm or more. The dimension S1 may be, for example, 300 mm or less, 400 mm or less, or 500 mm or less. The range of the dimension S1 may be determined by a first group consisting of 100 mm, 150 mm, and 200 mm, and/or a second group consisting of 300 mm, 400 mm, and 500 mm. The range of the dimension S1 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the dimension S1 may be determined by a combination of any two of the values included in the first group described above. The range of the dimension S1 may be determined by a combination of any two of the values included in the second group described above. The dimension S1 may be, for example, 100 mm or more and 500 mm or less, 100 mm or more and 400 mm or less, 100 mm or more and 300 mm or less, 100 mm or more and 200 mm or less, 100 mm or more and 150 mm or less, 150 mm or more and 500 mm or less, 150 mm or more and 400 mm or less, 150 mm or more and 300 mm or less, 150 mm or more and 200 mm or less, 200 mm or more and 500 mm or less, 200 mm or more and 400 mm or less, 200 mm or more and 300 mm or less, 300 mm or more and 500 mm or less, 300 mm or more and 400 mm or less, or 400 mm or more and 500 mm or less.
 第1開口31が並ぶ方向における第1開口31の寸法S2は、例えば、3mm以上でもよく、10mm以上でもよく、20mm以上でもよい。寸法S2は、例えば、30mm以下でもよく、50mm以下でもよく、100mm以下でもよい。寸法S2の範囲は、3mm、10mm及び20mmからなる第1グループ、及び/又は、30mm、50mm及び100mmからなる第2グループによって定められてもよい。寸法S2の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。寸法S2の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。寸法S2の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。寸法S2は、例えば、3mm以上100mm以下でもよく、3mm以上50mm以下でもよく、3mm以上30mm以下でもよく、3mm以上20mm以下でもよく、3mm以上10mm以下でもよく、10mm以上100mm以下でもよく、10mm以上50mm以下でもよく、10mm以上30mm以下でもよく、10mm以上20mm以下でもよく、20mm以上100mm以下でもよく、20mm以上50mm以下でもよく、20mm以上30mm以下でもよく、30mm以上100mm以下でもよく、30mm以上50mm以下でもよく、50mm以上100mm以下でもよい。 The dimension S2 of the first openings 31 in the direction in which the first openings 31 are arranged may be, for example, 3 mm or more, 10 mm or more, or 20 mm or more. The dimension S2 may be, for example, 30 mm or less, 50 mm or less, or 100 mm or less. The range of the dimension S2 may be determined by a first group consisting of 3 mm, 10 mm, and 20 mm, and/or a second group consisting of 30 mm, 50 mm, and 100 mm. The range of the dimension S2 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the dimension S2 may be determined by a combination of any two of the values included in the first group described above. The range of the dimension S2 may be determined by a combination of any two of the values included in the second group described above. The dimension S2 may be, for example, 3 mm or more and 100 mm or less, 3 mm or more and 50 mm or less, 3 mm or more and 30 mm or less, 3 mm or more and 20 mm or less, 3 mm or more and 10 mm or less, 10 mm or more and 100 mm or less, 10 mm or more and 50 mm or less, 10 mm or more and 30 mm or less, 10 mm or more and 20 mm or less, 20 mm or more and 100 mm or less, 20 mm or more and 50 mm or less, 20 mm or more and 30 mm or less, 30 mm or more and 100 mm or less, 30 mm or more and 50 mm or less, or 50 mm or more and 100 mm or less.
 第1開口31が並ぶ方向における2つの第1開口31の間の間隔S3は、例えば、0.1mm以上でもよく、0.5mm以上でもよく、1.0mm以上でもよい。間隔S3は、例えば、10mm以下でもよく、15mm以下でもよく、20mm以下でもよい。間隔S3の範囲は、0.1mm、0.5mm及び1.0mmからなる第1グループ、及び/又は、10mm、15mm及び20mmからなる第2グループによって定められてもよい。間隔S3の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。間隔S3の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。間隔S3の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。間隔S3は、例えば、0.1mm以上20mm以下でもよく、0.1mm以上15mm以下でもよく、0.1mm以上10mm以下でもよく、0.1mm以上1.0mm以下でもよく、0.1mm以上0.5mm以下でもよく、0.5mm以上20mm以下でもよく、0.5mm以上15mm以下でもよく、0.5mm以上10mm以下でもよく、0.5mm以上1.0mm以下でもよく、1.0mm以上20mm以下でもよく、1.0mm以上15mm以下でもよく、1.0mm以上10mm以下でもよく、10mm以上20mm以下でもよく、10mm以上15mm以下でもよく、15mm以上20mm以下でもよい。 The interval S3 between two first openings 31 in the direction in which the first openings 31 are arranged may be, for example, 0.1 mm or more, 0.5 mm or more, or 1.0 mm or more. The interval S3 may be, for example, 10 mm or less, 15 mm or less, or 20 mm or less. The range of the interval S3 may be determined by a first group consisting of 0.1 mm, 0.5 mm, and 1.0 mm, and/or a second group consisting of 10 mm, 15 mm, and 20 mm. The range of the interval S3 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the interval S3 may be determined by a combination of any two of the values included in the first group described above. The range of the interval S3 may be determined by a combination of any two of the values included in the second group described above. The interval S3 may be, for example, 0.1 mm or more and 20 mm or less, 0.1 mm or more and 15 mm or less, 0.1 mm or more and 10 mm or less, 0.1 mm or more and 1.0 mm or less, 0.1 mm or more and 0.5 mm or less, 0.5 mm or more and 20 mm or less, 0.5 mm or more and 15 mm or less, 0.5 mm or more and 10 mm or less, 0.5 mm or more and 1.0 mm or less, 1.0 mm or more and 20 mm or less, 1.0 mm or more and 15 mm or less, 1.0 mm or more and 10 mm or less, 10 mm or more and 20 mm or less, 10 mm or more and 15 mm or less, or 15 mm or more and 20 mm or less.
 第1層30の厚みは、外側領域35の最大の厚みT1として定義される。厚みT1は、例えば、50μm以上でもよく、100μm以上でもよく、200μm以上でもよい。厚みT1は、例えば、600μm以下でもよく、800μm以下でもよく、1000μm以下でもよい。厚みT1の範囲は、50μm、100μm及び200μmからなる第1グループ、及び/又は、600μm、800μm及び1000μmからなる第2グループによって定められてもよい。厚みT1の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。厚みT1の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT1の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT1は、例えば、50μm以上1000μm以下でもよく、50μm以上800μm以下でもよく、50μm以上600μm以下でもよく、50μm以上200μm以下でもよく、50μm以上100μm以下でもよく、100μm以上1000μm以下でもよく、100μm以上800μm以下でもよく、100μm以上600μm以下でもよく、100μm以上200μm以下でもよく、200μm以上1000μm以下でもよく、200μm以上800μm以下でもよく、200μm以上600μm以下でもよく、600μm以上1000μm以下でもよく、600μm以上800μm以下でもよく、800μm以上1000μm以下でもよい。 The thickness of the first layer 30 is defined as the maximum thickness T1 of the outer region 35. The thickness T1 may be, for example, 50 μm or more, 100 μm or more, or 200 μm or more. The thickness T1 may be, for example, 600 μm or less, 800 μm or less, or 1000 μm or less. The range of the thickness T1 may be determined by a first group consisting of 50 μm, 100 μm, and 200 μm, and/or a second group consisting of 600 μm, 800 μm, and 1000 μm. The range of the thickness T1 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the thickness T1 may be determined by a combination of any two of the values included in the first group described above. The range of the thickness T1 may be determined by a combination of any two of the values included in the second group described above. The thickness T1 may be, for example, 50 μm or more and 1000 μm or less, 50 μm or more and 800 μm or less, 50 μm or more and 600 μm or less, 50 μm or more and 200 μm or less, 50 μm or more and 100 μm or less, 100 μm or more and 1000 μm or less, 100 μm or more and 800 μm or less, 100 μm or more and 600 μm or less, 100 μm or more and 200 μm or less, 200 μm or more and 1000 μm or less, 200 μm or more and 800 μm or less, 200 μm or more and 600 μm or less, 600 μm or more and 1000 μm or less, 600 μm or more and 800 μm or less, or 800 μm or more and 1000 μm or less.
 次に、第2層40について説明する。第2層40は、第3面401、第4面402、及び複数の第2開口41を含む。第3面401は、第1層30の第2面302に対向している。第4面402は、第3面401の反対側に位置している。 Next, the second layer 40 will be described. The second layer 40 includes a third surface 401, a fourth surface 402, and a plurality of second openings 41. The third surface 401 faces the second surface 302 of the first layer 30. The fourth surface 402 is located on the opposite side of the third surface 401.
 第2開口41は、第2層40を、第3面401から第4面402へ貫通している。1つの第2開口41が、1つの有機層130に対応している。規則的に並ぶ複数の第2開口41の一群が、有機EL表示装置の1つの画面に対応している。図3A及び図4に示すように、規則的に並ぶ複数の第2開口41の一群が、平面視において1つの第1開口31に重なっていてもよい。第2開口41の複数の群が、シリコンウエハなどの1枚の部材を加工することによって形成された第1層30によって支持されている。 The second openings 41 penetrate the second layer 40 from the third surface 401 to the fourth surface 402. One second opening 41 corresponds to one organic layer 130. A group of the regularly-arranged second openings 41 corresponds to one screen of the organic EL display device. As shown in Figures 3A and 4, a group of the regularly-arranged second openings 41 may overlap one first opening 31 in a plan view. The groups of the second openings 41 are supported by the first layer 30 formed by processing a single member such as a silicon wafer.
 第2層40は、周縁領域43及び有効領域44に区画されてもよい。周縁領域43は、平面視において第1層30に重なる領域である。有効領域44は、規則的に並ぶ複数の第2開口41の一群が分布している領域である。 The second layer 40 may be divided into a peripheral region 43 and an effective region 44. The peripheral region 43 is an area that overlaps with the first layer 30 in a plan view. The effective region 44 is an area in which a group of a plurality of regularly-arranged second openings 41 is distributed.
 図5Cは、有効領域44の一例を示す断面図である。第2層40は、第2開口41に面する第2壁面42を含む。図5Cに示すように、第2壁面42は、第3面401に向かうにつれて第2開口41の中心から離れるように広がるテーパ面42aを含んでいてもよい。第2壁面42がテーパ面42aを含むことにより、第2壁面42の近傍においてシャドウが生じることを抑制できる。 FIG. 5C is a cross-sectional view showing an example of the effective area 44. The second layer 40 includes a second wall surface 42 facing the second opening 41. As shown in FIG. 5C, the second wall surface 42 may include a tapered surface 42a that widens away from the center of the second opening 41 as it approaches the third surface 401. By including the tapered surface 42a in the second wall surface 42, it is possible to suppress the occurrence of a shadow near the second wall surface 42.
 図5Cにおいて、符号S8は、第2開口41が並ぶ方向におけるテーパ面42aの幅を表す。幅S8は、例えば、0.1μm以上でもよく、0.5μm以上でもよく、1.0μm以上でもよい。幅S8は、例えば、10μm以下でもよく、20μm以下でもよく、25μm以下でもよい。幅S8の範囲は、0.1μm、0.5μm及び1.0μmからなる第1グループ、及び/又は、10μm、20μm及び25μmからなる第2グループによって定められてもよい。幅S8の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。幅S8の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。幅S8の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。幅S8は、例えば、0.1μm以上25μm以下でもよく、0.1μm以上20μm以下でもよく、0.1μm以上10μm以下でもよく、0.1μm以上1.0μm以下でもよく、0.1μm以上0.5μm以下でもよく、0.5μm以上25μm以下でもよく、0.5μm以上20μm以下でもよく、0.5μm以上10μm以下でもよく、0.5μm以上1.0μm以下でもよく、1.0μm以上25μm以下でもよく、1.0μm以上20μm以下でもよく、1.0μm以上10μm以下でもよく、10μm以上25μm以下でもよく、10μm以上20μm以下でもよく、20μm以上25μm以下でもよい。 5C, the symbol S8 represents the width of the tapered surface 42a in the direction in which the second openings 41 are arranged. The width S8 may be, for example, 0.1 μm or more, 0.5 μm or more, or 1.0 μm or more. The width S8 may be, for example, 10 μm or less, 20 μm or less, or 25 μm or less. The range of the width S8 may be determined by a first group consisting of 0.1 μm, 0.5 μm, and 1.0 μm, and/or a second group consisting of 10 μm, 20 μm, and 25 μm. The range of the width S8 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the width S8 may be determined by a combination of any two of the values included in the first group described above. The range of the width S8 may be determined by a combination of any two of the values included in the second group described above. The width S8 may be, for example, 0.1 μm or more and 25 μm or less, 0.1 μm or more and 20 μm or less, 0.1 μm or more and 10 μm or less, 0.1 μm or more and 1.0 μm or less, 0.1 μm or more and 0.5 μm or less, 0.5 μm or more and 25 μm or less, 0.5 μm or more and 20 μm or less, 0.5 μm or more and 10 μm or less, 0.5 μm or more and 1.0 μm or less, 1.0 μm or more and 25 μm or less, 10 μm or more and 20 μm or less, or 20 μm or more and 25 μm or less.
 図5Cにおいて、符号θ1は、第2壁面42と第4面402とが成す角度を表す。角度θ1は、例えば、50°以上でもよく、55°以上でもよく、60°以上でもよい。角度θ1は、例えば、80°以下でもよく、85°以下でもよく、90°未満でもよい。角度θ1の範囲は、50°、55°及び60°からなる第1グループ、及び/又は、80°、85°及び90°からなる第2グループによって定められてもよい。角度θ1の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。角度θ1の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。角度θ1の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。角度θ1は、例えば、50°以上90°未満でもよく、50°以上85°以下でもよく、50°以上80°以下でもよく、50°以上60°以下でもよく、50°以上55°以下でもよく、55°以上90°未満でもよく、55°以上85°以下でもよく、55°以上80°以下でもよく、55°以上60°以下でもよく、60°以上90°未満でもよく、60°以上85°以下でもよく、60°以上80°以下でもよく、80°以上90°未満でもよく、80°以上85°以下でもよく、85°以上90°未満でもよい。 In FIG. 5C, the symbol θ1 represents the angle between the second wall surface 42 and the fourth surface 402. The angle θ1 may be, for example, 50° or more, 55° or more, or 60° or more. The angle θ1 may be, for example, 80° or less, 85° or less, or less than 90°. The range of the angle θ1 may be determined by a first group consisting of 50°, 55°, and 60°, and/or a second group consisting of 80°, 85°, and 90°. The range of the angle θ1 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the angle θ1 may be determined by a combination of any two of the values included in the first group described above. The range of the angle θ1 may be determined by a combination of any two of the values included in the second group described above. The angle θ1 may be, for example, 50° or more and less than 90°, 50° or more and less than 85°, 50° or more and less than 80°, 50° or more and less than 60°, 50° or more and less than 55°, 55° or more and less than 90°, 55° or more and less than 85°, 55° or more and less than 80°, 55° or more and less than 60°, 60° or more and less than 90°, 60° or more and less than 85°, 60° or more and less than 80°, 80° or more and less than 90°, 80° or more and less than 85°, or 85° or more and less than 90°.
 第2層40は、金属材料を含んでいてよい。第2層40が金属材料を含んでいる場合、磁石5を用いることにより、マスク20を基板110に密着させることができる。この場合、磁力によってマスク20を磁石5の側に引き寄せることができ、マスク20と基板110との密着性を向上できる。このため、有機デバイス100の有機層130A、130B、130Cの精細度を向上できる。 The second layer 40 may contain a metal material. When the second layer 40 contains a metal material, the mask 20 can be attached to the substrate 110 by using a magnet 5. In this case, the mask 20 can be attracted to the magnet 5 by magnetic force, improving the adhesion between the mask 20 and the substrate 110. This improves the definition of the organic layers 130A, 130B, and 130C of the organic device 100.
 第2層40に含まれる金属材料は、磁性金属材料であってもよい。第2層40を構成する材料としては、例えば、ニッケルを含む鉄合金を用いてもよい。鉄合金は、ニッケルに加えてコバルトを更に含んでいてもよい。例えば、第2層40の材料として、ニッケル及びコバルトの含有量が合計で30質量%以上且つ54質量%以下であり、且つコバルトの含有量が0質量%以上且つ6質量%以下である鉄合金を用いてもよい。ニッケルを含む鉄合金には、34質量%以上且つ38質量%以下のニッケルを含むインバー材、38質量%以上且つ54質量%以下のニッケルを含む低熱膨張Fe-Ni系めっき合金などを用いてもよい。ニッケル及びコバルトを含む鉄合金には、30質量%以上且つ34質量%以下のニッケルに加えてさらにコバルトを含むスーパーインバー材などを用いてもよい。このような鉄合金を用いることによって、第2層40の熱膨張係数を低くできる。例えば、基板110としてガラス基板が用いられる場合に、第2層40の熱膨張係数を、ガラス基板と等しい値か近い値に調整できる。これにより、精度低下を抑制できる。 The metal material contained in the second layer 40 may be a magnetic metal material. For example, an iron alloy containing nickel may be used as the material constituting the second layer 40. The iron alloy may further contain cobalt in addition to nickel. For example, an iron alloy containing nickel and cobalt in total of 30% by mass or more and 54% by mass or less and a cobalt content of 0% by mass or more and 6% by mass or less may be used as the material of the second layer 40. For the iron alloy containing nickel, an Invar material containing 34% by mass or more and 38% by mass or less of nickel, or a low thermal expansion Fe-Ni-based plating alloy containing 38% by mass or more and 54% by mass or less of nickel may be used. For the iron alloy containing nickel and cobalt, a Super Invar material containing 30% by mass or more and 34% by mass or less of nickel and further containing cobalt may be used. By using such an iron alloy, the thermal expansion coefficient of the second layer 40 can be reduced. For example, when a glass substrate is used as the substrate 110, the thermal expansion coefficient of the second layer 40 can be adjusted to a value equal to or close to that of the glass substrate. This makes it possible to suppress deterioration of accuracy.
 第2層40を構成する材料としては、上述したニッケルを含む鉄合金の代わりに、例えば、ニッケルを用いてもよく、又はコバルトを含むニッケル合金を用いてもよい。コバルトを含むニッケル合金を用いる場合には、第2層40の材料として、コバルトの含有量が、8質量%以上且つ10質量%以下であるニッケル合金を用いてもよい。このようなニッケル又はニッケル合金を用いた場合には、後述する第2層形成工程において用いられるめっき液が、成分分解することを抑制でき、めっき液の安定性を向上できる。 Instead of the above-mentioned iron alloy containing nickel, the material constituting the second layer 40 may be, for example, nickel, or a nickel alloy containing cobalt. When a nickel alloy containing cobalt is used, a nickel alloy containing 8% by mass or more and 10% by mass or less of cobalt may be used as the material for the second layer 40. When such nickel or nickel alloy is used, it is possible to suppress the decomposition of the plating solution used in the second layer formation process described below, and the stability of the plating solution can be improved.
 第2層40は、単一の金属層によって構成されていてもよく、複数の金属層を含んでいてもよい。マスク20が中間層50を含む場合、第2金属層40は、中間層50をエッチングするエッチャントに対する耐性を有する材料で構成される。 The second layer 40 may be composed of a single metal layer or may include multiple metal layers. If the mask 20 includes an intermediate layer 50, the second metal layer 40 is composed of a material that is resistant to an etchant that etches the intermediate layer 50.
 第2層40の厚みは、第1層30の厚みT1よりも小さい。第2層40の厚みは、例えば、0.5μm以上でもよく、1.0μm以上でもよく、2.0μm以上でもよい。第2層40の厚みは、例えば、5μm以下でもよく、10μm以下でもよく、25μm以下でもよい。第2層40の厚みの範囲は、0.5μm、1.0μm及び2.0μmからなる第1グループ、及び/又は、5μm、10μm及び25μmからなる第2グループによって定められてもよい。第2層40の厚みの範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。第2層40の厚みの範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。第2層40の厚みの範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。第2層40の厚みは、例えば、0.5μm以上25μm以下でもよく、0.5μm以上10μm以下でもよく、0.5μm以上5μm以下でもよく、0.5μm以上2.0μm以下でもよく、0.5μm以上1.0μm以下でもよく、1.0μm以上25μm以下でもよく、1.0μm以上10μm以下でもよく、1.0μm以上5μm以下でもよく、1.0μm以上2.0μm以下でもよく、2.0μm以上25μm以下でもよく、2.0μm以上10μm以下でもよく、2.0μm以上5μm以下でもよく、5μm以上25μm以下でもよく、5μm以上10μm以下でもよく、10μm以上25μm以下でもよい。第2層40の厚みが25μm以下であることにより、シャドウの発生を抑制できる。第2層40の厚みが0.5μm以上であることにより、ピンホール等の欠陥や変形等が第2層40に生じることを抑制できる。 The thickness of the second layer 40 is smaller than the thickness T1 of the first layer 30. The thickness of the second layer 40 may be, for example, 0.5 μm or more, 1.0 μm or more, or 2.0 μm or more. The thickness of the second layer 40 may be, for example, 5 μm or less, 10 μm or less, or 25 μm or less. The thickness range of the second layer 40 may be determined by a first group consisting of 0.5 μm, 1.0 μm, and 2.0 μm, and/or a second group consisting of 5 μm, 10 μm, and 25 μm. The thickness range of the second layer 40 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The thickness range of the second layer 40 may be determined by a combination of any two of the values included in the first group described above. The thickness range of the second layer 40 may be determined by a combination of any two of the values included in the second group described above. The thickness of the second layer 40 may be, for example, 0.5 μm to 25 μm, 0.5 μm to 10 μm, 0.5 μm to 5 μm, 0.5 μm to 2.0 μm, 0.5 μm to 1.0 μm, 1.0 μm to 25 μm, 1.0 μm to 10 μm, 1.0 μm to 5 μm, 1.0 μm to 2.0 μm, 2.0 μm to 25 μm, 2.0 μm to 10 μm, 2.0 μm to 5 μm, 5 μm to 25 μm, 5 μm to 10 μm, or 10 μm to 25 μm. The thickness of the second layer 40 being 25 μm or less can suppress the occurrence of shadows. By making the thickness of the second layer 40 0.5 μm or more, it is possible to prevent defects such as pinholes and deformations from occurring in the second layer 40.
 平面視における第2開口41の寸法S4は、例えば、1μm以上でもよく、2μm以上でもよく、3μm以上でもよい。寸法S4は、例えば、5μm以下でもよく、10μm以下でもよく、25μm以下でもよい。寸法S4の範囲は、1μm、2μm及び3μmからなる第1グループ、及び/又は、5μm、10μm及び25μmからなる第2グループによって定められてもよい。寸法S4の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。寸法S4の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。寸法S4の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。寸法S4は、例えば、1μm以上25μm以下でもよく、1μm以上10μm以下でもよく、1μm以上5μm以下でもよく、1μm以上3μm以下でもよく、1μm以上2μm以下でもよく、2μm以上25μm以下でもよく、2μm以上10μm以下でもよく、2μm以上5μm以下でもよく、2μm以上3μm以下でもよく、3μm以上25μm以下でもよく、3μm以上10μm以下でもよく、3μm以上5μm以下でもよく、5μm以上25μm以下でもよく、5μm以上10μm以下でもよく、10μm以上25μm以下でもよい。 The dimension S4 of the second opening 41 in plan view may be, for example, 1 μm or more, 2 μm or more, or 3 μm or more. The dimension S4 may be, for example, 5 μm or less, 10 μm or less, or 25 μm or less. The range of the dimension S4 may be determined by a first group consisting of 1 μm, 2 μm, and 3 μm, and/or a second group consisting of 5 μm, 10 μm, and 25 μm. The range of the dimension S4 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the dimension S4 may be determined by a combination of any two of the values included in the first group described above. The range of the dimension S4 may be determined by a combination of any two of the values included in the second group described above. The dimension S4 may be, for example, 1 μm or more and 25 μm or less, 1 μm or more and 10 μm or less, 1 μm or more and 5 μm or less, 1 μm or more and 3 μm or less, 1 μm or more and 2 μm or less, 2 μm or more and 25 μm or less, 2 μm or more and 10 μm or less, 2 μm or more and 5 μm or less, 2 μm or more and 3 μm or less, 3 μm or more and 25 μm or less, 3 μm or more and 10 μm or less, 3 μm or more and 5 μm or less, 5 μm or more and 25 μm or less, 5 μm or more and 10 μm or less, or 10 μm or more and 25 μm or less.
 第2開口41が並ぶ方向における2つの第2開口41の間の間隔S5は、例えば、1μm以上でもよく、2μm以上でもよく、3μm以上でもよい。間隔S5は、例えば、5μm以下でもよく、10μm以下でもよく、25μm以下でもよい。間隔S5の範囲は、1μm、2μm及び3μmからなる第1グループ、及び/又は、5μm、10μm及び25μmからなる第2グループによって定められてもよい。間隔S5の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。間隔S5の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。間隔S5の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。間隔S5は、例えば、1μm以上25μm以下でもよく、1μm以上10μm以下でもよく、1μm以上5μm以下でもよく、1μm以上3μm以下でもよく、1μm以上2μm以下でもよく、2μm以上25μm以下でもよく、2μm以上10μm以下でもよく、2μm以上5μm以下でもよく、2μm以上3μm以下でもよく、3μm以上25μm以下でもよく、3μm以上10μm以下でもよく、3μm以上5μm以下でもよく、5μm以上25μm以下でもよく、5μm以上10μm以下でもよく、10μm以上25μm以下でもよい。 The interval S5 between two second openings 41 in the direction in which the second openings 41 are arranged may be, for example, 1 μm or more, 2 μm or more, or 3 μm or more. The interval S5 may be, for example, 5 μm or less, 10 μm or less, or 25 μm or less. The range of the interval S5 may be determined by a first group consisting of 1 μm, 2 μm, and 3 μm, and/or a second group consisting of 5 μm, 10 μm, and 25 μm. The range of the interval S5 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the interval S5 may be determined by a combination of any two of the values included in the first group described above. The range of the interval S5 may be determined by a combination of any two of the values included in the second group described above. The interval S5 may be, for example, 1 μm or more and 25 μm or less, 1 μm or more and 10 μm or less, 1 μm or more and 5 μm or less, 1 μm or more and 3 μm or less, 1 μm or more and 2 μm or less, 2 μm or more and 25 μm or less, 2 μm or more and 10 μm or less, 2 μm or more and 5 μm or less, 2 μm or more and 3 μm or less, 3 μm or more and 25 μm or less, 3 μm or more and 10 μm or less, 3 μm or more and 5 μm or less, 5 μm or more and 25 μm or less, 5 μm or more and 10 μm or less, or 10 μm or more and 25 μm or less.
 平面視における第1壁面32と第2開口41との間の間隔S6は、間隔S5よりも大きくてもよい。これにより、第1壁面32に近接する第2開口41においてシャドウが生じることを抑制できる。 The distance S6 between the first wall surface 32 and the second opening 41 in a plan view may be greater than the distance S5. This can prevent a shadow from being generated in the second opening 41 close to the first wall surface 32.
 第2層40は、アライメントマークを含んでいてもよい。第2層40のアライメントマークは、第1層30のアライメントマーク39とは別に形成されていてもよく、第1層30のアライメントマーク39の替わりに形成されていてもよい。 The second layer 40 may include an alignment mark. The alignment mark of the second layer 40 may be formed separately from the alignment mark 39 of the first layer 30, or may be formed in place of the alignment mark 39 of the first layer 30.
 次に、中間層50について説明する。中間層50は、第1層30又は第2層40に対する何らかの機能を果たす層を含む。例えば中間層50は、第1中間層51を含む。図5Bに示す例において、第1中間層51は、第1層30と第2層40との間に位置している。 Next, the intermediate layer 50 will be described. The intermediate layer 50 includes a layer that performs some function for the first layer 30 or the second layer 40. For example, the intermediate layer 50 includes a first intermediate layer 51. In the example shown in FIG. 5B, the first intermediate layer 51 is located between the first layer 30 and the second layer 40.
 第1中間層51は、エッチングによって第1層30を加工する工程において、エッチングをストップさせるストッパ層として機能してもよい。具体的には、第1中間層51は、第1層30をエッチングするエッチャントに対する耐性を有する。第1中間層51は、アルミニウム、アルミニウム合金、チタン又はチタン合金を含んでいてもよい。第1中間層51は、酸化シリコンなどの無機化合物を含んでいてもよい。 The first intermediate layer 51 may function as a stopper layer that stops etching in the process of processing the first layer 30 by etching. Specifically, the first intermediate layer 51 has resistance to an etchant that etches the first layer 30. The first intermediate layer 51 may contain aluminum, an aluminum alloy, titanium, or a titanium alloy. The first intermediate layer 51 may contain an inorganic compound such as silicon oxide.
 第1中間層51がストッパ層である場合、第1中間層51の厚みは、第1層30を加工する工程において第2層40がエッチングされることを抑制できる限り特には限定されない。例えば、第1中間層51の厚みは、第2層40の厚みよりも小さくてもよく、第2層40の厚み以上でもよい。第1中間層51の厚みは、例えば、5nm以上でもよく、50nm以上でもよく、75nm以上でもよい。第1中間層51の厚みは、例えば、1μm以下でもよく、10μm以下でもよく、100μm以下でもよい。第1中間層51の厚みの範囲は、5nm、50nm及び75nmからなる第1グループ、及び/又は、1μm、10μm及び100μmからなる第2グループによって定められてもよい。第1中間層51の厚みの範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。第1中間層51の厚みの範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。第1中間層51の厚みの範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。第1中間層51の厚みは、例えば、5nm以上100μm以下でもよく、5nm以上10μm以下でもよく、5nm以上1μm以下でもよく、5nm以上75nm以下でもよく、5nm以上50nm以下でもよく、50nm以上100μm以下でもよく、50nm以上10μm以下でもよく、50nm以上1μm以下でもよく、50nm以上75nm以下でもよく、75nm以上100μm以下でもよく、75nm以上10μm以下でもよく、75nm以上1μm以下でもよく、1μm以上100μm以下でもよく、1μm以上10μm以下でもよく、10μm以上100μm以下でもよい。第1層30用のエッチャントに対する第1中間層51の耐性が高いほど、第1中間層51の厚みを小さくできる。第1中間層51の厚みが1μm以下であることが特に好ましい。 When the first intermediate layer 51 is a stopper layer, the thickness of the first intermediate layer 51 is not particularly limited as long as it can suppress etching of the second layer 40 in the process of processing the first layer 30. For example, the thickness of the first intermediate layer 51 may be smaller than the thickness of the second layer 40, or may be greater than or equal to the thickness of the second layer 40. The thickness of the first intermediate layer 51 may be, for example, 5 nm or more, 50 nm or more, or 75 nm or more. The thickness of the first intermediate layer 51 may be, for example, 1 μm or less, 10 μm or less, or 100 μm or less. The range of thicknesses of the first intermediate layer 51 may be determined by a first group consisting of 5 nm, 50 nm, and 75 nm, and/or a second group consisting of 1 μm, 10 μm, and 100 μm. The range of thicknesses of the first intermediate layer 51 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The thickness range of the first intermediate layer 51 may be determined by a combination of any two of the values included in the first group described above. The thickness range of the first intermediate layer 51 may be determined by a combination of any two of the values included in the second group described above. The thickness of the first intermediate layer 51 may be, for example, 5 nm or more and 100 μm or less, 5 nm or more and 10 μm or less, 5 nm or more and 1 μm or less, 5 nm or more and 75 nm or less, 5 nm or more and 50 nm or less, 50 nm or more and 100 μm or less, 50 nm or more and 10 μm or less, 50 nm or more and 1 μm or less, 50 nm or more and 75 nm or less, 75 nm or more and 100 μm or less, 75 nm or more and 10 μm or less, 75 nm or more and 1 μm or less, 1 μm or more and 100 μm or less, 1 μm or more and 10 μm or less, or 10 μm or more and 100 μm or less. The higher the resistance of the first intermediate layer 51 to the etchant for the first layer 30, the smaller the thickness of the first intermediate layer 51 can be. It is particularly preferable that the thickness of the first intermediate layer 51 is 1 μm or less.
 中間層50は、第1層30と第2層40とを接合する機能を果たす層を含んでいてもよい。例えば第1中間層51は、接着剤を含む接合層であってもよい。接合層の厚みは、例えば、0.1μm以上でもよく、0.2μm以上でもよく、0.5μm以上でもよい。接合層の厚みは、例えば、1μm以下でもよく、2μm以下でもよく、3μm以下でもよい。接合層の厚みの範囲は、0.1μm、0.2μm及び0.5μmからなる第1グループ、及び/又は、1μm、2μm及び3μmからなる第2グループによって定められてもよい。接合層の厚みの範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。接合層の厚みの範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。接合層の厚みの範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。接合層の厚みは、例えば、0.1μm以上3μm以下でもよく、0.1μm以上2μm以下でもよく、0.1μm以上1μm以下でもよく、0.1μm以上0.5μm以下でもよく、0.1μm以上0.2μm以下でもよく、0.2μm以上3μm以下でもよく、0.2μm以上2μm以下でもよく、0.2μm以上1μm以下でもよく、0.2μm以上0.5μm以下でもよく、0.5μm以上3μm以下でもよく、0.5μm以上2μm以下でもよく、0.5μm以上1μm以下でもよく、1μm以上3μm以下でもよく、1μm以上2μm以下でもよく、2μm以上3μm以下でもよい。 The intermediate layer 50 may include a layer that functions to bond the first layer 30 and the second layer 40. For example, the first intermediate layer 51 may be a bonding layer containing an adhesive. The thickness of the bonding layer may be, for example, 0.1 μm or more, 0.2 μm or more, or 0.5 μm or more. The thickness of the bonding layer may be, for example, 1 μm or less, 2 μm or less, or 3 μm or less. The range of thicknesses of the bonding layer may be determined by a first group consisting of 0.1 μm, 0.2 μm, and 0.5 μm, and/or a second group consisting of 1 μm, 2 μm, and 3 μm. The range of thicknesses of the bonding layer may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of thicknesses of the bonding layer may be determined by a combination of any two of the values included in the first group described above. The range of thicknesses of the bonding layer may be determined by a combination of any two of the values included in the second group described above. The thickness of the bonding layer may be, for example, 0.1 μm or more and 3 μm or less, 0.1 μm or more and 2 μm or less, 0.1 μm or more and 1 μm or less, 0.1 μm or more and 0.5 μm or less, 0.1 μm or more and 0.2 μm or less, 0.2 μm or more and 3 μm or less, 0.2 μm or more and 2 μm or less, 0.2 μm or more and 1 μm or less, 0.2 μm or more and 0.5 μm or less, 0.5 μm or more and 3 μm or less, 0.5 μm or more and 2 μm or less, 0.5 μm or more and 1 μm or less, 1 μm or more and 3 μm or less, 1 μm or more and 2 μm or less, or 2 μm or more and 3 μm or less.
 好ましくは、中間層50は、平面視において第2開口41に重ならないよう位置している。これにより、中間層50に起因するシャドウが生じることを抑制できる。 Preferably, the intermediate layer 50 is positioned so as not to overlap the second opening 41 in a plan view. This makes it possible to prevent a shadow caused by the intermediate layer 50 from being generated.
 第1中間層51は、アライメントマークを含んでいてもよい。第1中間層51のアライメントマークは、第1層30又は第2層40のアライメントマークとは別に形成されていてもよく、第1層30又は第2層40のアライメントマークの替わりに形成されていてもよい。 The first intermediate layer 51 may include an alignment mark. The alignment mark of the first intermediate layer 51 may be formed separately from the alignment mark of the first layer 30 or the second layer 40, or may be formed in place of the alignment mark of the first layer 30 or the second layer 40.
 次に、フレーム60について詳細に説明する。フレーム60は、マスク20を取り扱う際、例えばマスク20を移動させる際、把持されることを目的として、マスク20に取り付けられる。図3A等に示すように、マスク20には、その外縁近傍まで第2開口41が、したがって第1開口31が形成されている。マスク20を取り扱う際、例えばマスク20を移動させる際、第2層40の第2開口41の変形等を防止するため、第2開口41が形成されている領域よりも外側の領域を把持することが望まれるが、第1層30の外縁303の近傍まで第1開口31が形成されているため、外側領域35の広さは、マスク20を把持するには不十分である。また、第1層30の外縁303の近傍まで第1開口31が形成されているため、外側領域35は狭い。幅の狭い外側領域35は、第1層30がシリコンを含む場合、特に破損しやすい。このようなマスク20にフレーム60が取り付けられていることで、マスク20を取り扱う際、フレーム60を把持でき、第1層30が破損する虞も低減される。この結果、マスク20の取り扱いが容易になる。 Next, the frame 60 will be described in detail. The frame 60 is attached to the mask 20 for the purpose of being held when handling the mask 20, for example, when moving the mask 20. As shown in FIG. 3A and other figures, the mask 20 has the second opening 41, and therefore the first opening 31, formed up to the vicinity of its outer edge. When handling the mask 20, for example, when moving the mask 20, it is desirable to hold the area outside the area where the second opening 41 is formed in order to prevent deformation of the second opening 41 of the second layer 40, but since the first opening 31 is formed up to the vicinity of the outer edge 303 of the first layer 30, the width of the outer area 35 is insufficient to hold the mask 20. In addition, since the first opening 31 is formed up to the vicinity of the outer edge 303 of the first layer 30, the outer area 35 is narrow. The narrow outer area 35 is particularly prone to damage when the first layer 30 contains silicon. By attaching the frame 60 to such a mask 20, the frame 60 can be grasped when handling the mask 20, and the risk of damage to the first layer 30 is reduced. As a result, the mask 20 is easier to handle.
 図3A乃至図5Bから理解されるように、フレーム60は、第5面601および第6面602を含む。第5面601は、第4面402と同じ側を向く。第6面602は、第5面601の反対側に位置している。図示された例では、第5面601と第1面301とが対向している。なお、フレーム付きマスク15を蒸着装置10のマスクホルダ9で支持した状態で、第2層40が水平になるよう、フレーム60は第2層40と平行である。 As can be seen from Figures 3A to 5B, the frame 60 includes a fifth surface 601 and a sixth surface 602. The fifth surface 601 faces the same side as the fourth surface 402. The sixth surface 602 is located on the opposite side of the fifth surface 601. In the illustrated example, the fifth surface 601 and the first surface 301 face each other. Note that the frame 60 is parallel to the second layer 40 so that the second layer 40 is horizontal when the framed mask 15 is supported by the mask holder 9 of the deposition device 10.
 図5Aおよび図5Bに示されているように、フレーム60は、外側領域35の第1面301に接続している。図示された例では、外側領域35の第1面301とフレーム60の第5面601との間に接続層70が配置されている。フレーム60は、接続層70を介して第1層30に接続している。平面視において、フレーム60は第1開口31と重なっていない。また、平面視において、フレーム60の少なくとも一部は、第1層30の外縁303の外側まで広がっている。これにより、フレーム60によって、マスク20を取り扱う際に把持するための領域が拡張される。 5A and 5B, the frame 60 is connected to the first surface 301 of the outer region 35. In the illustrated example, a connection layer 70 is disposed between the first surface 301 of the outer region 35 and the fifth surface 601 of the frame 60. The frame 60 is connected to the first layer 30 via the connection layer 70. In a plan view, the frame 60 does not overlap with the first opening 31. Also, in a plan view, at least a portion of the frame 60 extends to the outside of the outer edge 303 of the first layer 30. This allows the frame 60 to expand the area for gripping when handling the mask 20.
 フレーム60は、ガラス材料または金属材料を含む。ガラス材料は、石英ガラス、ホウケイ酸ガラス、無アルカリガラス、ソーダガラス等である。また、金属材料は、インバー材やSUS430、SUS304等のステンレスである。フレーム60がこれらの材料を含むことにより、フレーム60の剛性を第1層30よりも高くできる。フレーム60の材料は、フレーム付きマスク15を取り扱う作業者やロボットハンドの把持力を考慮して、フレーム60が必要な剛性を有するように決定されてよい。 The frame 60 includes a glass material or a metal material. The glass material is quartz glass, borosilicate glass, alkali-free glass, soda glass, etc. The metal material is invar material or stainless steel such as SUS430 or SUS304. By including these materials in the frame 60, the rigidity of the frame 60 can be made higher than that of the first layer 30. The material of the frame 60 may be determined so that the frame 60 has the required rigidity, taking into consideration the gripping strength of the worker or robot hand handling the framed mask 15.
 また、フレーム60の線熱膨張係数は、第1層30の線熱膨張係数と同程度であることが好ましい。これにより、フレーム付きマスク15が加熱された際の、フレーム60及び第1層30の伸び率を同程度にすることができる。この結果、第1層30が破損する虞が抑制される。具体的には、フレーム60の線熱膨張係数と第1層30の線熱膨張係数の差の絶対値が、15ppm/℃以下であり、10ppm/℃以下であってもよく、5.0ppm/℃以下であってもよい。 Furthermore, it is preferable that the linear thermal expansion coefficient of the frame 60 is approximately the same as the linear thermal expansion coefficient of the first layer 30. This allows the elongation rates of the frame 60 and the first layer 30 to be approximately the same when the framed mask 15 is heated. As a result, the risk of damage to the first layer 30 is suppressed. Specifically, the absolute value of the difference between the linear thermal expansion coefficient of the frame 60 and the linear thermal expansion coefficient of the first layer 30 is 15 ppm/°C or less, may be 10 ppm/°C or less, or may be 5.0 ppm/°C or less.
 図示された例では、フレーム60は、環状に形成されている。フレーム60は、平面視において第1層30の外縁303の外側を周状に延びる領域を有する。これにより、マスク20を取り扱う際に第1層30の外側領域35が破損する虞が、効果的に抑制される。より具体的には、フレーム60の中央には、第5面601から第6面602へ貫通する第3開口61が形成されている。図示された例では、第3開口61は、第1層30の外縁303と相似形である。第3開口61の最大寸法S9は、第1層30の外縁303の最大寸法S1よりも小さい。平面視において、第3開口61は、第1開口31に重なる。図示された例では、平面視において、第3開口61は、第1層30の内側領域36とも重なる。言い換えると、平面視において、第3開口61と全ての第1開口31とが重なる。 In the illustrated example, the frame 60 is formed in an annular shape. The frame 60 has a region that extends circumferentially outside the outer edge 303 of the first layer 30 in a plan view. This effectively prevents the outer region 35 of the first layer 30 from being damaged when the mask 20 is handled. More specifically, a third opening 61 that penetrates from the fifth surface 601 to the sixth surface 602 is formed in the center of the frame 60. In the illustrated example, the third opening 61 is similar in shape to the outer edge 303 of the first layer 30. The maximum dimension S9 of the third opening 61 is smaller than the maximum dimension S1 of the outer edge 303 of the first layer 30. In a plan view, the third opening 61 overlaps the first opening 31. In the illustrated example, in a plan view, the third opening 61 also overlaps the inner region 36 of the first layer 30. In other words, in a plan view, the third opening 61 overlaps all of the first openings 31.
 フレーム60の外縁603の形状及び寸法は特に限定されない。フレーム60の外縁603の形状及び寸法S10は、フレーム付きマスク15を取り扱う作業者の手やロボットハンドの寸法や形状、蒸着装置10のマスクホルダ9の寸法や形状に基づいて決定されてよい。フレーム60の外縁603は、四角形状であってもよいし、他の多角形状であってもよい。フレーム60の外縁603の寸法S10は、例えば、100mm以上でもよく、150mm以上でもよく、200mm以上でもよい。寸法S10は、例えば、300mm以下でもよく、400mm以下でもよく、500mm以下でもよい。寸法S10の範囲は、100mm、150mm及び200mmからなる第1グループ、及び/又は、300mm、400mm及び500mmからなる第2グループによって定められてもよい。寸法S10の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。寸法S10の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。寸法S10の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。寸法S10は、例えば、100mm以上500mm以下でもよく、100mm以上400mm以下でもよく、100mm以上300mm以下でもよく、100mm以上200mm以下でもよく、100mm以上150mm以下でもよく、150mm以上500mm以下でもよく、150mm以上400mm以下でもよく、150mm以上300mm以下でもよく、150mm以上200mm以下でもよく、200mm以上500mm以下でもよく、200mm以上400mm以下でもよく、200mm以上300mm以下でもよく、300mm以上500mm以下でもよく、300mm以上400mm以下でもよく、400mm以上500mm以下でもよい。 The shape and dimensions of the outer edge 603 of the frame 60 are not particularly limited. The shape and dimensions S10 of the outer edge 603 of the frame 60 may be determined based on the dimensions and shapes of the hands of the worker or robot hand handling the framed mask 15, and the dimensions and shapes of the mask holder 9 of the deposition apparatus 10. The outer edge 603 of the frame 60 may be rectangular or other polygonal. The dimensions S10 of the outer edge 603 of the frame 60 may be, for example, 100 mm or more, 150 mm or more, or 200 mm or more. The dimensions S10 may be, for example, 300 mm or less, 400 mm or less, or 500 mm or less. The range of the dimensions S10 may be determined by a first group consisting of 100 mm, 150 mm, and 200 mm, and/or a second group consisting of 300 mm, 400 mm, and 500 mm. The range of dimension S10 may be defined by a combination of any one of the values included in the above-mentioned first group and any one of the values included in the above-mentioned second group. The range of dimension S10 may be defined by a combination of any two of the values included in the above-mentioned first group. The range of dimension S10 may be defined by a combination of any two of the values included in the above-mentioned second group. The dimension S10 may be, for example, 100 mm or more and 500 mm or less, 100 mm or more and 400 mm or less, 100 mm or more and 300 mm or less, 100 mm or more and 200 mm or less, 100 mm or more and 150 mm or less, 150 mm or more and 500 mm or less, 150 mm or more and 400 mm or less, 150 mm or more and 300 mm or less, 150 mm or more and 200 mm or less, 200 mm or more and 500 mm or less, 200 mm or more and 400 mm or less, 200 mm or more and 300 mm or less, 300 mm or more and 500 mm or less, 300 mm or more and 400 mm or less, or 400 mm or more and 500 mm or less.
 フレーム60の外縁603と第1層30の外縁303との距離S11も、フレーム付きマスク15を取り扱う作業者の手やロボットハンドの寸法や形状、蒸着装置10のマスクホルダ9の寸法や形状に基づいて決定されてよい。距離S11は、例えば、5mm以上でもよく、10mm以上でもよく、15mm以上でもよい。距離S11は、例えば、30mm以下でもよく、60mm以下でもよく、100mm以下でもよい。距離S11の範囲は、5mm、10mm及び15mmからなる第1グループ、及び/又は、30mm、60mm及び100mmからなる第2グループによって定められてもよい。距離S11の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。距離S11の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。距離S11の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。距離S11は、例えば、5mm以上100mm以下でもよく、5mm以上60mm以下でもよく、5mm以上30mm以下でもよく、5mm以上15mm以下でもよく、5mm以上10mm以下でもよく、10mm以上100mm以下でもよく、10mm以上60mm以下でもよく、10mm以上30mm以下でもよく、10mm以上15mm以下でもよく、15mm以上100mm以下でもよく、15mm以上60mm以下でもよく、15mm以上30mm以下でもよく、30mm以上100mm以下でもよく、30mm以上60mm以下でもよく、60mm以上100mm以下でもよい。 The distance S11 between the outer edge 603 of the frame 60 and the outer edge 303 of the first layer 30 may also be determined based on the dimensions and shape of the hand of the worker or the robot hand handling the framed mask 15, and the dimensions and shape of the mask holder 9 of the deposition apparatus 10. The distance S11 may be, for example, 5 mm or more, 10 mm or more, or 15 mm or more. The distance S11 may be, for example, 30 mm or less, 60 mm or less, or 100 mm or less. The range of the distance S11 may be determined by a first group consisting of 5 mm, 10 mm, and 15 mm, and/or a second group consisting of 30 mm, 60 mm, and 100 mm. The range of the distance S11 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the distance S11 may be determined by a combination of any two of the values included in the first group described above. The range of the distance S11 may be determined by a combination of any two of the values included in the second group described above. For example, the distance S11 may be 5 mm or more and 100 mm or less, 5 mm or more and 60 mm or less, 5 mm or more and 30 mm or less, 5 mm or more and 15 mm or less, 5 mm or more and 10 mm or less, 10 mm or more and 100 mm or less, 10 mm or more and 60 mm or less, 10 mm or more and 30 mm or less, 10 mm or more and 15 mm or less, 15 mm or more and 100 mm or less, 15 mm or more and 60 mm or less, 15 mm or more and 30 mm or less, 30 mm or more and 100 mm or less, 30 mm or more and 60 mm or less, or 60 mm or more and 100 mm or less.
 フレーム60の厚みT2も特に限定されない。厚みT2も、フレーム付きマスク15を取り扱う作業者の手やロボットハンドの寸法や形状、蒸着装置10のマスクホルダ9の寸法や形状に基づいて決定されてよい。厚みT2は、例えば、500μm以上でもよく、2mm以上でもよく、5mm以上でもよい。厚みT2は、例えば、10mm以下でもよく、20mm以下でもよく、30mm以下でもよい。厚みT2の範囲は、500μm、2mm及び5mmからなる第1グループ、及び/又は、10mm、20mm及び30mmからなる第2グループによって定められてもよい。厚みT2の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。厚みT2の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT2の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。厚みT2は、例えば、500μm以上30mm以下でもよく、500μm以上20mm以下でもよく、500μm以上10mm以下でもよく、500μm以上5mm以下でもよく、500μm以上2mm以下でもよく、2mm以上30mm以下でもよく、2mm以上20mm以下でもよく、2mm以上10mm以下でもよく、2mm以上5mm以下でもよく、5mm以上30mm以下でもよく、5mm以上20mm以下でもよく、5mm以上10mm以下でもよく、10mm以上30mm以下でもよく、10mm以上20mm以下でもよく、20mm以上30mm以下でもよい。 The thickness T2 of the frame 60 is not particularly limited. The thickness T2 may also be determined based on the dimensions and shape of the hand of the worker or the robot hand handling the framed mask 15, and the dimensions and shape of the mask holder 9 of the deposition apparatus 10. The thickness T2 may be, for example, 500 μm or more, 2 mm or more, or 5 mm or more. The thickness T2 may be, for example, 10 mm or less, 20 mm or less, or 30 mm or less. The range of the thickness T2 may be determined by a first group consisting of 500 μm, 2 mm, and 5 mm, and/or a second group consisting of 10 mm, 20 mm, and 30 mm. The range of the thickness T2 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The range of the thickness T2 may be determined by a combination of any two of the values included in the first group described above. The range of the thickness T2 may be determined by a combination of any two of the values included in the second group described above. The thickness T2 may be, for example, 500 μm or more and 30 mm or less, 500 μm or more and 20 mm or less, 500 μm or more and 10 mm or less, 500 μm or more and 5 mm or less, 500 μm or more and 2 mm or less, 2 mm or more and 30 mm or less, 2 mm or more and 20 mm or less, 2 mm or more and 10 mm or less, 2 mm or more and 5 mm or less, 5 mm or more and 30 mm or less, 5 mm or more and 20 mm or less, 5 mm or more and 10 mm or less, 10 mm or more and 30 mm or less, 10 mm or more and 20 mm or less, or 20 mm or more and 30 mm or less.
 フレーム60の外縁603の形状及び寸法並びにフレーム60の厚みT2を、フレーム付きマスク15を取り扱うロボットハンドの寸法や形状、蒸着装置10のマスクホルダ9の寸法や形状に基づいて決定することにより、フレーム付きマスク15の形状及び寸法を、既存のロボットハンドや既存の蒸着装置10に適した形状及び寸法にできる。言い換えると、マスク20の形状及び寸法を既存のロボットハンドや既存の蒸着装置10に適した形状及び寸法にする必要がなく、マスク20の設計の自由度が向上する。 By determining the shape and dimensions of the outer edge 603 of the frame 60 and the thickness T2 of the frame 60 based on the dimensions and shape of the robot hand that handles the framed mask 15 and the dimensions and shape of the mask holder 9 of the deposition apparatus 10, the shape and dimensions of the framed mask 15 can be made suitable for existing robot hands and existing deposition apparatus 10. In other words, there is no need to make the shape and dimensions of the mask 20 suitable for existing robot hands and existing deposition apparatus 10, and the freedom in designing the mask 20 is improved.
 図示された例では、フレーム60の第5面601は、第2層40の第4面402よりも、第1層30の第1面301側に位置している。言い換えると、第2層40は、フレーム60の第5面601から突出している。これにより、基板110又は基板110上の構成要素にマスク20を通じて蒸着層を形成する際に、第2層40を基板110又は基板110上の構成要素に接触させることができる。 In the illustrated example, the fifth surface 601 of the frame 60 is located closer to the first surface 301 of the first layer 30 than the fourth surface 402 of the second layer 40. In other words, the second layer 40 protrudes from the fifth surface 601 of the frame 60. This allows the second layer 40 to come into contact with the substrate 110 or a component on the substrate 110 when a deposition layer is formed on the substrate 110 or a component on the substrate 110 through the mask 20.
 フレーム60は、アライメントマークを含んでいてもよい。これにより、フレーム60をマスク20に取り付ける際に、マスク20をフレーム60に対して位置決めすることが容易である。また、フレーム60に形成されたアライメントマークは、マスク20に対する基板110の相対的な位置を調整するためにも利用可能である。例えば、第1層30にアライメントマーク39を形成しても、第2層40を第1層30の外縁303まで形成した場合、アライメントマーク39は第2層40に覆われるため、アライメントマーク39を観察しながらマスク20に対する基板110の位置を調整することは困難である。この場合、フレーム60にアライメントマークマスクを形成することで、フレーム付きマスク15に対する、したがってマスク20に対する基板110の位置を調整することができる。 The frame 60 may include an alignment mark. This makes it easy to position the mask 20 with respect to the frame 60 when attaching the frame 60 to the mask 20. The alignment mark formed on the frame 60 can also be used to adjust the relative position of the substrate 110 with respect to the mask 20. For example, even if the alignment mark 39 is formed on the first layer 30, if the second layer 40 is formed up to the outer edge 303 of the first layer 30, the alignment mark 39 is covered by the second layer 40, making it difficult to adjust the position of the substrate 110 with respect to the mask 20 while observing the alignment mark 39. In this case, by forming an alignment mark mask on the frame 60, the position of the substrate 110 with respect to the framed mask 15, and therefore with respect to the mask 20, can be adjusted.
 図5A及び図5Bに示す例では、フレーム60は、接続層70を介して第1層30に接続されている。また、図6に示す例では、フレーム60と第1層30との間に、スペーサ75が配置されている。図6は、図5Bの断面図の二点鎖線で囲まれた部分を拡大して示す図である。図6に示す例では、接続層70及びスペーサ75は、フレーム60の第5面601と第1層30の第1面301との間に配置されている。 In the example shown in Figures 5A and 5B, the frame 60 is connected to the first layer 30 via a connection layer 70. In the example shown in Figure 6, a spacer 75 is disposed between the frame 60 and the first layer 30. Figure 6 is an enlarged view of the area surrounded by the two-dot chain line in the cross-sectional view of Figure 5B. In the example shown in Figure 6, the connection layer 70 and the spacer 75 are disposed between the fifth surface 601 of the frame 60 and the first surface 301 of the first layer 30.
 接続層70は、接着、粘着あるいは溶着により、フレーム60を第1層30に対して固定する。接続層70は、ガラス材料、無機材料、金属材料又は樹脂材料を含んでよい。接続層70は、ガラスフリット、ガラスペースト、半田ペースト、導電性ペースト、エポキシ樹脂、ポリイミド、アクリル樹脂等により形成されてよい。蒸着装置10内で蒸着処理中に接続層70からのアウトガスの発生を抑制する目的で、例えば、アレムコプロダクツ社製の高耐熱性エポキシ接着剤「アレムコボンド526N」や、協立化学産業株式会社製のUV硬化型接着剤「WORLDROCK(登録商標)5910(品番)」又は「WORLDROCK(登録商標)8723K9B(品番)」を、接続層70を形成する材料として採用可能である。また、接続層70を形成する材料として耐溶剤性の高い材料を使用することにより、蒸着処理に使用したフレーム付きマスク15を洗浄して蒸着材料を除去する際に、洗浄液に接触した接続層70が変形してフレーム60がマスク20から分離する、という虞を抑制することができる。この場合、例えば、スリーボンド社製の紫外線硬化型接着剤「ThreeBond(登録商標)3026E(製品名)」を、接続層70を形成する材料として採用可能である。また、接続層70としてフレーム60やマスク20から剥離可能な材料を用いることにより、フレーム60やマスク20を再利用することができる。この場合、例えば、セメダイン株式会社製の両面剥離型接着剤「BBX100(製品名)」や、積水フーラー株式会社製の可視光硬化型接着剤「クリアプレスト(登録商標)CP4374(製品名)」又は「クリアプレスト(登録商標)K40(製品名)」、日化精工株式会社製のシアノアクリレート系瞬間接着剤「スカイロック(登録商標)R-4」を、接続層70を形成する材料として採用可能である。 The connection layer 70 fixes the frame 60 to the first layer 30 by adhesion, adhesion or welding. The connection layer 70 may include a glass material, an inorganic material, a metal material or a resin material. The connection layer 70 may be formed of glass frit, glass paste, solder paste, conductive paste, epoxy resin, polyimide, acrylic resin, etc. In order to suppress the generation of outgassing from the connection layer 70 during the deposition process in the deposition device 10, for example, the high heat resistant epoxy adhesive "AREMCOBOND 526N" manufactured by Aremco Products, Inc., or the UV curing adhesive "WORLDROCK (registered trademark) 5910 (product number)" or "WORLDROCK (registered trademark) 8723K9B (product number)" manufactured by Kyoritsu Chemical Industry Co., Ltd. can be used as a material for forming the connection layer 70. Furthermore, by using a material with high solvent resistance as the material for forming the connection layer 70, it is possible to suppress the risk that the connection layer 70 in contact with the cleaning liquid will deform and the frame 60 will separate from the mask 20 when the framed mask 15 used in the deposition process is washed to remove the deposition material. In this case, for example, an ultraviolet-curing adhesive "ThreeBond (registered trademark) 3026E (product name)" manufactured by ThreeBond Co., Ltd. can be used as the material for forming the connection layer 70. Furthermore, by using a material that can be peeled off from the frame 60 and the mask 20 as the connection layer 70, it is possible to reuse the frame 60 and the mask 20. In this case, for example, the double-sided peel-off adhesive "BBX100 (product name)" manufactured by Cemedine Co., Ltd., the visible light curing adhesive "Clearpresto (registered trademark) CP4374 (product name)" or "Clearpresto (registered trademark) K40 (product name)" manufactured by Sekisui Fuller Co., Ltd., and the cyanoacrylate instant adhesive "Skylock (registered trademark) R-4" manufactured by Nikka Seiko Co., Ltd. can be used as the material for forming the connection layer 70.
 接続層70の厚みは、例えば、0.05μm以上でもよく、5μm以上でもよく、10μm以上でもよい。接続層70の厚みは、例えば、20μm以下でもよく、50μm以下でもよく、100μm以下でもよい。接続層70の厚みの範囲は、0.05μm、5μm及び10μmからなる第1グループ、及び/又は、20μm、50μm及び100μmからなる第2グループによって定められてもよい。接続層70の厚みの範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。接続層70の厚みの範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。接続層70の厚みの範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。接続層70の厚みは、例えば、0.05μm以上100μm以下でもよく、0.05μm以上50μm以下でもよく、0.05μm以上20μm以下でもよく、0.05μm以上10μm以下でもよく、0.05μm以上5μm以下でもよく、5μm以上100μm以下でもよく、5μm以上50μm以下でもよく、5μm以上20μm以下でもよく、5μm以上10μm以下でもよく、10μm以上100μm以下でもよく、10μm以上50μm以下でもよく、10μm以上20μm以下でもよく、20μm以上100μm以下でもよく、20μm以上50μm以下でもよく、50μm以上100μm以下でもよい。 The thickness of the connection layer 70 may be, for example, 0.05 μm or more, 5 μm or more, or 10 μm or more. The thickness of the connection layer 70 may be, for example, 20 μm or less, 50 μm or less, or 100 μm or less. The thickness range of the connection layer 70 may be determined by a first group consisting of 0.05 μm, 5 μm, and 10 μm, and/or a second group consisting of 20 μm, 50 μm, and 100 μm. The thickness range of the connection layer 70 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The thickness range of the connection layer 70 may be determined by a combination of any two of the values included in the first group described above. The thickness range of the connection layer 70 may be determined by a combination of any two of the values included in the second group described above. The thickness of the connection layer 70 may be, for example, 0.05 μm or more and 100 μm or less, 0.05 μm or more and 50 μm or less, 0.05 μm or more and 20 μm or less, 0.05 μm or more and 10 μm or less, 0.05 μm or more and 5 μm or less, 5 μm or more and 100 μm or less, 5 μm or more and 50 μm or less, 5 μm or more and 20 μm or less, 5 μm or more and 10 μm or less, 10 μm or more and 100 μm or less, 10 μm or more and 50 μm or less, 10 μm or more and 20 μm or less, 20 μm or more and 100 μm or less, 20 μm or more and 50 μm or less, or 50 μm or more and 100 μm or less.
 スペーサ75は、フレーム60と第1層30との間隔を均一にする目的で、フレーム60と第1層30との間に配置される。とりわけ、フレーム60の第5面601と第1層30の第1面301との間に接続層70及びスペーサ75が配置される場合、フレーム60を第1層30に対して押し付けるだけで、接続層70の厚みをスペーサ75の寸法に応じた均一な厚みにできる。フレーム60と第1層30との間隔を均一にすることにより、フレーム60と第2層40とを、容易に平行にできる。 The spacer 75 is disposed between the frame 60 and the first layer 30 in order to make the distance between the frame 60 and the first layer 30 uniform. In particular, when the connection layer 70 and the spacer 75 are disposed between the fifth surface 601 of the frame 60 and the first surface 301 of the first layer 30, the thickness of the connection layer 70 can be made uniform according to the dimensions of the spacer 75 simply by pressing the frame 60 against the first layer 30. By making the distance between the frame 60 and the first layer 30 uniform, the frame 60 and the second layer 40 can be easily made parallel.
 スペーサ75は、例えば球形のビーズである。スペーサ75の直径は、例えば、1μm以上でもよく、5μm以上でもよく、10μm以上でもよい。スペーサ75の直径は、例えば、20μm以下でもよく、50μm以下でもよく、100μm以下でもよい。スペーサ75の直径の範囲は、1μm、5μm及び10μmからなる第1グループ、及び/又は、20μm、50μm及び100μmからなる第2グループによって定められてもよい。スペーサ75の直径の範囲は、上述の第1グループに含まれる値のうちの任意の1つと、上述の第2グループに含まれる値のうちの任意の1つとの組み合わせによって定められてもよい。スペーサ75の直径の範囲は、上述の第1グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。スペーサ75の直径の範囲は、上述の第2グループに含まれる値のうちの任意の2つの組み合わせによって定められてもよい。スペーサ75の直径は、例えば、1μm以上100μm以下でもよく、1μm以上50μm以下でもよく、1μm以上20μm以下でもよく、1μm以上10μm以下でもよく、1μm以上5μm以下でもよく、5μm以上100μm以下でもよく、5μm以上50μm以下でもよく、5μm以上20μm以下でもよく、5μm以上10μm以下でもよく、10μm以上100μm以下でもよく、10μm以上50μm以下でもよく、10μm以上20μm以下でもよく、20μm以上100μm以下でもよく、20μm以上50μm以下でもよく、50μm以上100μm以下でもよい。 The spacer 75 is, for example, a spherical bead. The diameter of the spacer 75 may be, for example, 1 μm or more, 5 μm or more, or 10 μm or more. The diameter of the spacer 75 may be, for example, 20 μm or less, 50 μm or less, or 100 μm or less. The diameter range of the spacer 75 may be determined by a first group consisting of 1 μm, 5 μm, and 10 μm, and/or a second group consisting of 20 μm, 50 μm, and 100 μm. The diameter range of the spacer 75 may be determined by a combination of any one of the values included in the first group described above and any one of the values included in the second group described above. The diameter range of the spacer 75 may be determined by a combination of any two of the values included in the first group described above. The diameter range of the spacer 75 may be determined by a combination of any two of the values included in the second group described above. The diameter of the spacer 75 may be, for example, 1 μm or more and 100 μm or less, 1 μm or more and 50 μm or less, 1 μm or more and 20 μm or less, 1 μm or more and 10 μm or less, 1 μm or more and 5 μm or less, 5 μm or more and 100 μm or less, 5 μm or more and 50 μm or less, 5 μm or more and 20 μm or less, 5 μm or more and 10 μm or less, 10 μm or more and 100 μm or less, 10 μm or more and 50 μm or less, 10 μm or more and 20 μm or less, 20 μm or more and 100 μm or less, 20 μm or more and 50 μm or less, or 50 μm or more and 100 μm or less.
 スペーサ75を形成する材料は特に限定されない。スペーサ75は、例えばガラスやアクリル、ウレタン、ポリスチレン、ポリテトラフルオロチレン(PTFE)等の樹脂を含んでいてよい。 The material from which the spacer 75 is formed is not particularly limited. The spacer 75 may contain, for example, glass, acrylic, urethane, polystyrene, polytetrafluoroethylene (PTFE), or other resin.
 スペーサ75は、接続層70に含まれていてよい。言い換えると、接続層70は、スペーサ75を含む材料で形成されてよい。これにより、接続層70の形成と同時にスペーサ75を配置できる。 The spacers 75 may be included in the connection layer 70. In other words, the connection layer 70 may be formed of a material that includes the spacers 75. This allows the spacers 75 to be disposed at the same time as the connection layer 70 is formed.
 各層の厚み、各構成要素の寸法、間隔などは、走査型電子顕微鏡を用いてマスク20の断面の画像を観察することによって測定できる。 The thickness of each layer, the dimensions of each component, the spacing, etc. can be measured by observing an image of the cross section of the mask 20 using a scanning electron microscope.
 (フレーム付きマスクの製造方法)
 次に、本実施の形態によるフレーム付きマスクの製造方法について、図7乃至図13を参照して説明する。最初に、マスク20の製造方法について説明する。まず、第1層30を準備する。第1層30として、シリコンウエハを用いてもよい。第1層30の第1面301及び第2面302は、鏡面状に研磨されていてもよい。第1面301及び第2面302の算術平均粗さRaは、1.5nm以下であってもよく、1.0nm以下であってもよい。第1面301及び第2面302の面方位は、(100)、(110)などであってもよい。
(Method of manufacturing a framed mask)
Next, a method for manufacturing a framed mask according to the present embodiment will be described with reference to FIGS. 7 to 13. First, a method for manufacturing a mask 20 will be described. First, a first layer 30 is prepared. A silicon wafer may be used as the first layer 30. The first surface 301 and the second surface 302 of the first layer 30 may be polished to a mirror finish. The arithmetic mean roughness Ra of the first surface 301 and the second surface 302 may be 1.5 nm or less, or 1.0 nm or less. The surface orientation of the first surface 301 and the second surface 302 may be (100), (110), or the like.
 続いて、図7に示すように、第1層30の第2面302上に中間層50を形成する中間層形成工程を実施する。中間層50は、例えば第1中間層51を含む。中間層50は、第2面302の全体に形成されてもよい。中間層50は、例えば、スパッタリング法などの真空成膜法によって形成されてもよい。 Next, as shown in FIG. 7, an intermediate layer formation process is carried out to form an intermediate layer 50 on the second surface 302 of the first layer 30. The intermediate layer 50 includes, for example, a first intermediate layer 51. The intermediate layer 50 may be formed on the entire second surface 302. The intermediate layer 50 may be formed by a vacuum film formation method such as a sputtering method.
 続いて、図8に示すように、中間層50上に第2層40を形成する第2層形成工程を実施する。これによって、第1層30、中間層50及び第2層40を備える積層体22を得ることができる。第2層40は、中間層50の全体に形成されてもよい。 Next, as shown in FIG. 8, a second layer formation step is carried out in which the second layer 40 is formed on the intermediate layer 50. This makes it possible to obtain a laminate 22 including the first layer 30, the intermediate layer 50, and the second layer 40. The second layer 40 may be formed over the entire intermediate layer 50.
 第2層40は、例えば、めっき処理によって形成されてもよい。ここでは、中間層50を給電電極として電解めっき処理によって第2層40が形成される。より具体的には、中間層50の第1層30の側とは反対側の面にめっき液が供給される。例えば、中間層50が第1層30と共に、めっき液が充填されためっき槽に浸される。中間層50の第1層30の側とは反対側の面に、めっき液の成分が析出されて第2層40が形成される。このようにして、第2層40は、中間層50に付着される。 The second layer 40 may be formed, for example, by a plating process. Here, the second layer 40 is formed by an electrolytic plating process using the intermediate layer 50 as a power supply electrode. More specifically, a plating solution is supplied to the surface of the intermediate layer 50 opposite the first layer 30. For example, the intermediate layer 50 together with the first layer 30 is immersed in a plating tank filled with a plating solution. Components of the plating solution are precipitated on the surface of the intermediate layer 50 opposite the first layer 30, forming the second layer 40. In this way, the second layer 40 is attached to the intermediate layer 50.
 用いられるめっき液の成分は、第2層40に求められる特性に応じて適宜定められる。例えば第2層40が、ニッケルを含む鉄合金によって構成される場合、めっき液として、ニッケル化合物を含む溶液と、鉄化合物を含む溶液との混合溶液を用いてもよい。例えば、スルファミン酸ニッケルや臭化ニッケルを含む溶液と、スルファミン酸第一鉄を含む溶液との混合溶液を用いてもよい。また、例えば第2層40が、ニッケルによって構成される場合、めっき液として、ニッケル化合物を含む溶液を用いてもよい。例えば、スルファミン酸ニッケル溶液を用いてもよい。また、第2層40がコバルトを含むニッケル合金によって構成される場合、めっき液として、ニッケル化合物を含む溶液と、コバルト化合物を含む溶液との混合溶液を用いてもよい。例えば、スルファミン酸コバルト溶液を用いてもよい。なお、上述した各めっき液には、様々な添加剤が含まれていてもよい。添加剤としては、例えば、ホウ酸などのpH緩衝材や、マロン酸やサッカリンなどの添加剤が含まれていてもよい。 The components of the plating solution used are appropriately determined according to the characteristics required for the second layer 40. For example, when the second layer 40 is made of an iron alloy containing nickel, a mixed solution of a solution containing a nickel compound and a solution containing an iron compound may be used as the plating solution. For example, a mixed solution of a solution containing nickel sulfamate or nickel bromide and a solution containing ferrous sulfamate may be used. Also, when the second layer 40 is made of nickel, a solution containing a nickel compound may be used as the plating solution. For example, a nickel sulfamate solution may be used. Also, when the second layer 40 is made of a nickel alloy containing cobalt, a mixed solution of a solution containing a nickel compound and a solution containing a cobalt compound may be used as the plating solution. For example, a cobalt sulfamate solution may be used. Note that each of the above-mentioned plating solutions may contain various additives. Examples of additives include pH buffers such as boric acid, and additives such as malonic acid and saccharin.
 第2層40が形成された後、第2層40をアニール処理(焼成処理)してもよい。このことにより、めっき処理で形成された第2層40を再結晶でき、第2層40の熱膨張係数を低下できる。すなわち、一般的に、圧延処理で作製された圧延材と、めっき処理で作成されためっき材が、互いに同じ材料成分を有していたとしても、めっき材の熱膨張係数は圧延材の熱膨張係数よりも高くなる傾向にある。このため、第2層40を再結晶させて、第2層40の熱膨張係数を小さくさせてもよい。このようなアニール処理時には、例えば、600℃の温度で、5分間、第2層40を加熱してもよい。 After the second layer 40 is formed, the second layer 40 may be annealed (fired). This allows the second layer 40 formed by the plating process to be recrystallized, and the thermal expansion coefficient of the second layer 40 to be reduced. That is, in general, even if a rolled material produced by a rolling process and a plated material produced by a plating process have the same material components, the thermal expansion coefficient of the plated material tends to be higher than the thermal expansion coefficient of the rolled material. For this reason, the second layer 40 may be recrystallized to reduce the thermal expansion coefficient of the second layer 40. During such an annealing process, the second layer 40 may be heated, for example, at a temperature of 600°C for 5 minutes.
 なお、第2層形成工程では、第2層40を形成できれば、めっき処理の具体的な方法は特に限られることはない。例えば、電解めっき処理の代わりに、無電解めっき処理が行われるようにしてもよい。無電解めっき処理を行う場合には、電解めっき処理時のような電極は存在しないため、無電解めっき処理によって形成される第2層40の厚みを均等にできる。なお、無電解めっき処理を行う場合、中間層50の第1層30の側とは反対側の面に、触媒層(図示せず)が設けられてもよい。電解めっき処理が行われる場合であっても、中間層50上に同様の触媒層が設けられていてもよい。 In the second layer forming process, the specific plating method is not particularly limited as long as the second layer 40 can be formed. For example, electroless plating may be performed instead of electrolytic plating. When electroless plating is performed, since there are no electrodes as in electrolytic plating, the thickness of the second layer 40 formed by electroless plating can be made uniform. When electroless plating is performed, a catalyst layer (not shown) may be provided on the surface of the intermediate layer 50 opposite the first layer 30. Even when electrolytic plating is performed, a similar catalyst layer may be provided on the intermediate layer 50.
 図示はしないが、第2層40を押圧する押圧工程を実施してもよい。例えば、第1層30とは別のシリコンウエハ、ガラスウエハなどの基板の面を第2層40に押し付けてもよい。基板の面が第2層40の第4面402よりも平坦である場合、押圧工程によって第4面402の平坦性を高めることができる。基板の面は、凹凸パターンを含んでいてもよいこの場合、押圧工程によって第4面402に凹凸パターンを付与できる。押圧工程は、第2層40をアニール処理する工程の前に実施されてもよい。 Although not shown, a pressing step may be performed to press the second layer 40. For example, the surface of a substrate, such as a silicon wafer or a glass wafer, other than the first layer 30 may be pressed against the second layer 40. If the surface of the substrate is flatter than the fourth surface 402 of the second layer 40, the pressing step can increase the flatness of the fourth surface 402. The surface of the substrate may include an uneven pattern. In this case, the pressing step can impart an uneven pattern to the fourth surface 402. The pressing step may be performed before the step of annealing the second layer 40.
 図示はしないが、積層体22は、第2層40の第4面402上に位置する保護層を備えていてもよい。保護層は、例えば、第1中間層51の材料と同一の材料を含む。第4面402に保護層を形成することにより、後述する第1加工工程において第4面402がエッチングされることを抑制できる。保護層は、第1中間層51と同時に除去されてもよい。 Although not shown, the laminate 22 may have a protective layer located on the fourth surface 402 of the second layer 40. The protective layer includes, for example, the same material as the material of the first intermediate layer 51. By forming the protective layer on the fourth surface 402, etching of the fourth surface 402 can be suppressed in the first processing step described below. The protective layer may be removed at the same time as the first intermediate layer 51.
 続いて、図9に示すように、第1層30の第1面301上に部分的にレジスト層38を形成するレジスト形成工程を実施する。レジスト層38には、第1開口31に対向するレジスト開口381が形成されている。 Next, as shown in FIG. 9, a resist formation process is carried out to partially form a resist layer 38 on the first surface 301 of the first layer 30. A resist opening 381 facing the first opening 31 is formed in the resist layer 38.
 レジスト層38は、フォトレジストであってもよい。この場合、まず、第1面301上に液状のレジスト材をコーティングすることによって、第1面301上にレジスト層38を形成する。コーティングの後、レジスト層38を加熱する工程を実施してもよい。続いて、レジスト層38を露光及び現像するフォトリソグラフィ処理を実施する。これによって、レジスト層38にレジスト開口381を形成できる。 The resist layer 38 may be a photoresist. In this case, the resist layer 38 is formed on the first surface 301 by first coating the first surface 301 with a liquid resist material. After coating, a step of heating the resist layer 38 may be performed. Then, a photolithography process is performed in which the resist layer 38 is exposed and developed. This allows resist openings 381 to be formed in the resist layer 38.
 図示はしないが、レジスト層38は、第1面301に部分的に形成されたシリコン酸化膜であってもよい。シリコン酸化膜は、例えば、第1面301に部分的に熱酸化処理などを実施することによって形成される。シリコン酸化膜は、中間層50及び第2層40を第1層30に積層する前に第1層30に形成されていてもよい。 Although not shown, the resist layer 38 may be a silicon oxide film partially formed on the first surface 301. The silicon oxide film is formed, for example, by partially performing a thermal oxidation process on the first surface 301. The silicon oxide film may be formed on the first layer 30 before the intermediate layer 50 and the second layer 40 are laminated on the first layer 30.
 続いて、図10に示すように、第1面301側から第1層30をエッチングすることによって、第1層30に第1開口31を形成する第1加工工程を実施する。第1加工工程におけるエッチングは、エッチングガスを用いたドライエッチングであってもよい。エッチングガスは、上述のエッチャントの一例である。中間層50がエッチャントに対する耐性を有するので、図10に示すように、エッチングが第2層40まで進行することを抑制できる。 Subsequently, as shown in FIG. 10, a first processing step is performed in which the first layer 30 is etched from the first surface 301 side to form a first opening 31 in the first layer 30. The etching in the first processing step may be dry etching using an etching gas. The etching gas is an example of the etchant mentioned above. Since the intermediate layer 50 is resistant to the etchant, as shown in FIG. 10, the etching can be prevented from progressing to the second layer 40.
 エッチング工程が、深掘り反応性イオンエッチングである場合、例えば次のようにしてエッチング工程を実施する。すなわち、チャンバ内にエッチングガスを導入する。また、チャンバ内の空間に電圧を加えることにより、エッチングガスをプラズマ化する。プラズマ中のラジカル、イオンなどが、レジスト開口381を通って第1面301に衝突することによって、図10に示すように、第1層30に第1開口31を形成できる。エッチングガスは、例えばSFガスである。 When the etching process is deep reactive ion etching, the etching process is carried out, for example, as follows. That is, an etching gas is introduced into a chamber. A voltage is applied to the space in the chamber to convert the etching gas into plasma. Radicals, ions, etc. in the plasma pass through the resist opening 381 and collide with the first surface 301, thereby forming a first opening 31 in the first layer 30, as shown in FIG. 10. The etching gas is, for example, SF6 gas.
 穴が中間層50に到達した後、レジスト層38を除去するレジスト除去工程を実施してもよい。例えば、レジスト処理液を第1面301に供給する。
 レジスト層38がフォトレジストである場合、レジスト処理液は、例えばN-メチル-2-ピロリドンを含む。酸素プラズマをレジスト層38に照射することによってレジスト層38を除去してもよい。
 レジスト層38がシリコン酸化膜である場合、レジスト処理液は、例えばフッ酸を含む。CFガスなどを用いるドライエッチングによってレジスト層38を除去してもよい。
After the hole reaches the intermediate layer 50, a resist removal step may be performed to remove the resist layer 38. For example, a resist processing liquid is supplied to the first surface 301.
When the resist layer 38 is a photoresist, the resist processing solution contains, for example, N-methyl-2-pyrrolidone. The resist layer 38 may be removed by irradiating the resist layer 38 with oxygen plasma.
When the resist layer 38 is a silicon oxide film, the resist processing solution contains, for example, hydrofluoric acid. The resist layer 38 may be removed by dry etching using CF4 gas or the like.
 第1加工工程の後、中間層50を除去する中間層除去工程を実施してもよい。例えば、中間層50用のエッチャントを第1開口31に供給する。これにより、図11に示すように、平面視において第1開口31に重なる中間層50を除去できる。中間層50のエッチングは、フッ素系ガスなどを用いるドライエッチングであってもよく、酸性のエッチング液を用いるウェットエッチングであってもよい。 After the first processing step, an intermediate layer removal step may be performed to remove the intermediate layer 50. For example, an etchant for the intermediate layer 50 is supplied to the first opening 31. This allows the intermediate layer 50 that overlaps the first opening 31 in a plan view to be removed, as shown in FIG. 11. The etching of the intermediate layer 50 may be dry etching using a fluorine-based gas or the like, or wet etching using an acidic etching solution.
 レジスト除去工程及び中間層除去工程の順序は特には限定されない。レジスト除去工程及び中間層除去工程は同時に実施されてもよい。 The order of the resist removal process and the intermediate layer removal process is not particularly limited. The resist removal process and the intermediate layer removal process may be performed simultaneously.
 続いて、第2層40に複数の第2開口41を形成する第2加工工程を実施する。例えば図12に示すように、第2層40の第3面401にレーザLを照射する。これによって、第2層40に第2開口41を形成できる。レーザLとしては、波長248nmのKrFのエキシマレーザ、波長355nmのYAGレーザなどを使用できる。 Then, a second processing step is performed to form a plurality of second openings 41 in the second layer 40. For example, as shown in FIG. 12, a laser L is irradiated onto the third surface 401 of the second layer 40. This allows the second openings 41 to be formed in the second layer 40. As the laser L, a KrF excimer laser with a wavelength of 248 nm, a YAG laser with a wavelength of 355 nm, or the like can be used.
 第2加工工程は、第2層40の第4面402に保護フィルム又は保護膜が形成されている状態で実施されてもよい。
 保護フィルムは、第4面402に貼り付けられる部材である。保護フィルムは、例えば、樹脂フィルム及び接着層を含む。接着層が第4面402に接するよう、保護フィルムが第4面402に貼り付けられる。接着層は、粘着層であってもよく、吸着層であってもよい。
 保護膜は、樹脂を含む液を第4面402上に塗布することにより形成される。塗布方法は、例えばバーコート法、スピンコート法、スプレーコート法などである。
 保護フィルム又は保護膜は、第2加工工程が終了した後に除去されてもよい。
 好ましくは、レーザに対する保護フィルム又は保護膜の反応性が、レーザに対する第2層40よりも低い。反応性とは、レーザによって保護フィルム又は保護膜若しくは第2層40が加工される速度である。
The second processing step may be performed in a state where a protective film or protective layer is formed on the fourth surface 402 of the second layer 40 .
The protective film is a member that is attached to the fourth surface 402. The protective film includes, for example, a resin film and an adhesive layer. The protective film is attached to the fourth surface 402 such that the adhesive layer is in contact with the fourth surface 402. The adhesive layer may be a pressure-sensitive adhesive layer or an adsorption layer.
The protective film is formed by applying a liquid containing a resin onto the fourth surface 402. Examples of the application method include a bar coating method, a spin coating method, and a spray coating method.
The protective film or coating may be removed after the second processing step is completed.
Preferably, the reactivity of the protective film or protective coating to the laser is lower than that of the second layer 40. The reactivity is the speed at which the protective film or protective coating or the second layer 40 is processed by the laser.
 第2加工工程においては、まず、第4面402がステージ面に対向するように積層体22をステージに載せる。続いて、積層体22に対する照射ヘッドの位置を調整する。位置を調整する工程においては、照射ヘッドを移動させてもよく、ステージを移動させてもよい。レーザの照射及び位置の調整を繰り返し実施することにより、第2層40に複数の第2開口41を形成できる。このようにして、マスク20を得ることができる。 In the second processing step, first, the laminate 22 is placed on a stage so that the fourth surface 402 faces the stage surface. Next, the position of the irradiation head relative to the laminate 22 is adjusted. In the step of adjusting the position, the irradiation head may be moved, or the stage may be moved. By repeatedly performing the laser irradiation and position adjustment, a plurality of second openings 41 can be formed in the second layer 40. In this manner, the mask 20 can be obtained.
 若しくは、複数の第2開口41のパターンに対応したレーザ用マスクを用いてもよい。この場合、レーザ用マスクと第2層40との間に集光レンズを設置してもよい。縮小投影光学系を用いたレーザ加工法によって、複数の第2開口41を形成できる。 Alternatively, a laser mask corresponding to the pattern of the multiple second openings 41 may be used. In this case, a focusing lens may be placed between the laser mask and the second layer 40. The multiple second openings 41 can be formed by a laser processing method using a reduced projection optical system.
 1つの第2開口41は、1回のレーザのショットによって形成されてもよい。
 1つの第2開口41は、2回以上のレーザのショットによって形成されてもよい。この場合、1回のレーザのショットによって第2層40に形成される凹部の深さは、第2層40の厚みよりも小さい。
One second opening 41 may be formed by one laser shot.
One second opening 41 may be formed by two or more laser shots. In this case, the depth of a recess formed in the second layer 40 by one laser shot is smaller than the thickness of the second layer 40.
 レーザは、第2開口41の第2壁面42がテーパ面42aを含むように調整されてもよい。
 例えば、第2開口41に対応するレーザの照射面積を、ショット毎に変更してもよい。例えば、第2加工工程は、第1照射面積を有するレーザを第3面401に照射する第1ショット工程と、第1照射面積よりも大きい第2照射面積を有するレーザを第3面401に照射する第2ショット工程と、を含んでいてもよい。第1照射面積は、第4面402における第2開口41の面積に対応していてもよい。第2照射面積は、第3面401における第2開口41の面積に対応していてもよい。第2加工工程は、3以上のショット工程を含んでいてもよい。各ショット工程におけるレーザの照射面積及び強度は、第2壁面42がテーパ面42aを含むように設定される。
 例えば、レーザ用マスクの1つの透過部が、第1透過率を有する第1透過領域と、第1透過率よりも低い第2透過率を有する第2透過領域を含んでいてもよい。第1透過領域の輪郭は、第4面402における第2開口41の輪郭に対応していてもよい。第2透過領域は、平面視において第1透過領域を囲んでいてもよい。第2透過領域の輪郭は、第3面401における第2開口41の輪郭に対応していてもよい。1つの透過部は、3以上の透過領域を含んでいてもよい。各透過領域の形状及び透過率は、第2壁面42がテーパ面42aを含むように設定される。
The laser may be adjusted so that the second wall surface 42 of the second opening 41 includes a tapered surface 42a.
For example, the irradiation area of the laser corresponding to the second opening 41 may be changed for each shot. For example, the second processing step may include a first shot step of irradiating the third surface 401 with a laser having a first irradiation area, and a second shot step of irradiating the third surface 401 with a laser having a second irradiation area larger than the first irradiation area. The first irradiation area may correspond to the area of the second opening 41 on the fourth surface 402. The second irradiation area may correspond to the area of the second opening 41 on the third surface 401. The second processing step may include three or more shot steps. The irradiation area and intensity of the laser in each shot step are set so that the second wall surface 42 includes the tapered surface 42a.
For example, one transmitting portion of the laser mask may include a first transmitting region having a first transmittance and a second transmitting region having a second transmittance lower than the first transmittance. The outline of the first transmitting region may correspond to the outline of the second opening 41 on the fourth surface 402. The second transmitting region may surround the first transmitting region in a plan view. The outline of the second transmitting region may correspond to the outline of the second opening 41 on the third surface 401. One transmitting portion may include three or more transmitting regions. The shape and transmittance of each transmitting region are set so that the second wall surface 42 includes a tapered surface 42a.
 なお、上述したように、本実施形態による第2層40はめっき処理によって形成されている。この場合、第2層40には、平面視で縮む方向に働く応力が残留している。このことにより、例えば蒸着時のように、第2層40の温度が上昇して、第2層40が熱膨張した場合であっても、上記応力が残留していれば、第2開口41の位置精度を維持できる。 As described above, the second layer 40 in this embodiment is formed by plating. In this case, stress remains in the second layer 40, acting in a direction that causes it to shrink in plan view. As a result, even if the temperature of the second layer 40 rises and the second layer 40 thermally expands, for example, during deposition, the positional accuracy of the second opening 41 can be maintained as long as the above-mentioned stress remains.
 次に、フレーム60の製造方法について説明する。まず、上述したガラス材料または金属材料を含む板状部材を準備し、これを切削加工して第3開口61を有するフレーム60を作製する。板状部材を切削加工するための切削工具としては、ドリル、バイト、フライス、エンドミルなどを利用できる。 Next, a method for manufacturing the frame 60 will be described. First, a plate-shaped member containing the above-mentioned glass material or metal material is prepared, and then cut to produce the frame 60 having the third opening 61. A drill, a cutting tool, a milling cutter, an end mill, etc. can be used as a cutting tool for cutting the plate-shaped member.
 マスク20及びフレーム60を作製した後、フレーム60をマスク20に取り付ける取付工程を実施する。具体的には、図13に示すように、フレーム60の第6面601上に、第3開口61の縁に沿って接続層70を周状に形成する。接続層70は、スペーサ75を含んでいてよい。接続層70は、マスク20をフレーム60に接続する前に、加熱などにより軟化される。 After the mask 20 and the frame 60 are produced, an attachment process is carried out to attach the frame 60 to the mask 20. Specifically, as shown in FIG. 13, a connection layer 70 is formed circumferentially on the sixth surface 601 of the frame 60 along the edge of the third opening 61. The connection layer 70 may include a spacer 75. The connection layer 70 is softened by heating or the like before connecting the mask 20 to the frame 60.
 次に、支持手段80を用いて、マスク20を第1層30の側から支持する。支持手段80は、第1層30の内側領域36を、第1面301の側から支持する。そして、フレーム60の第5面601と第1層30の第1面301とを対面させ、支持手段80を動かして、マスク20をフレーム60上の接続層70に接近させる。このとき、フレーム60のアライメントマークとマスク20のアライメントマークとを用いて、フレーム60に対するマスク20の位置決めを行う。マスク20に反りがある場合には、支持手段80に対向する押圧手段を用いて、反りを矯正しながらマスク20を接続層70に接近させる。 Next, the mask 20 is supported from the side of the first layer 30 using the support means 80. The support means 80 supports the inner region 36 of the first layer 30 from the side of the first surface 301. Then, the fifth surface 601 of the frame 60 and the first surface 301 of the first layer 30 are made to face each other, and the support means 80 is moved to bring the mask 20 close to the connection layer 70 on the frame 60. At this time, the alignment mark of the frame 60 and the alignment mark of the mask 20 are used to position the mask 20 relative to the frame 60. If the mask 20 is warped, a pressing means opposed to the support means 80 is used to correct the warp while bringing the mask 20 close to the connection layer 70.
 次に、マスク20とフレーム60とを互いに対して押圧する押圧工程を実施する。これにより、接続層70が潰れ、接続層70の厚さが均一になる。具体的には、接続層70の厚さが、スペーサ75の寸法に応じた均一な厚さになる。これにより、第2層40とフレーム60とが平行になる。 Next, a pressing process is carried out in which the mask 20 and the frame 60 are pressed against each other. This causes the connection layer 70 to be crushed, and the thickness of the connection layer 70 becomes uniform. Specifically, the thickness of the connection layer 70 becomes uniform according to the dimensions of the spacer 75. This causes the second layer 40 and the frame 60 to become parallel.
 次に、接続層70を冷却などによって硬化させ、マスク20とフレーム60を互いに対して固定する。このようにして、フレーム付きマスク15を得ることができる。 Then, the connection layer 70 is hardened by cooling or the like, and the mask 20 and the frame 60 are fixed to each other. In this manner, the framed mask 15 can be obtained.
 次に、フレーム付きマスク15を用いて有機デバイス100を製造する方法の一例について説明する。 Next, an example of a method for manufacturing an organic device 100 using a framed mask 15 will be described.
 まず、第1電極120が形成されている基板110を準備する。基板110は、シリコンウエハであってもよい。第1電極120は、例えば、第1電極120を構成する導電層を真空成膜法などによって基板110に形成した後、フォトリソグラフィ法などによって導電層をパターニングすることによって形成されてもよい。導電層のパターニングは、半導体製造工程を実施する装置を用いて実施されてもよい。隣り合う2つの第1電極120の間に位置する絶縁層160が基板110に形成されていてもよい。 First, a substrate 110 on which a first electrode 120 is formed is prepared. The substrate 110 may be a silicon wafer. The first electrode 120 may be formed, for example, by forming a conductive layer constituting the first electrode 120 on the substrate 110 by a vacuum film-forming method or the like, and then patterning the conductive layer by a photolithography method or the like. The patterning of the conductive layer may be performed using an apparatus that performs a semiconductor manufacturing process. An insulating layer 160 located between two adjacent first electrodes 120 may be formed on the substrate 110.
 続いて、第1有機層130A、第2有機層130Bなどを含む有機層130を第1電極120上に形成する。例えば、まず、第1のマスク20を含むフレーム付きマスク15を蒸着装置10内に設置し、第1のマスク20を用いる蒸着法によって第1有機層130Aを形成する。第1のマスク20は、第1有機層130Aに対応する第2開口41を備える。続いて、第2のマスク20を含むフレーム付きマスク15を蒸着装置10内に設置し、第2のマスク20を用いる蒸着法によって第2有機層130Bを形成する。第2のマスク20は、第2有機層130Bに対応する第2開口41を備える。続いて、第3のマスク20を含むフレーム付きマスク15を蒸着装置10内に設置し、第3のマスク20を用いる蒸着法によって第3有機層を形成する。第3のマスク20は、第3有機層に対応する第2開口41を備える。フレーム付きマスク15を蒸着装置10内に設置する際及び蒸着装置10から取り出す際、フレーム60を把持する。これにより、第1層30が破損したり第2層40が変形する虞が抑制される。また、蒸着装置10内では、フレーム60がマスクホルダ9によって支持される。これにより、マスクホルダ9が第1層30の第1開口31や第2層40の第2開口41と干渉する虞が抑制される。言い換えると、マスクホルダ9によって基板110への蒸着材料の付着が妨げられる虞が、抑制される。 Then, the organic layer 130 including the first organic layer 130A, the second organic layer 130B, etc. is formed on the first electrode 120. For example, first, the framed mask 15 including the first mask 20 is placed in the deposition apparatus 10, and the first organic layer 130A is formed by a deposition method using the first mask 20. The first mask 20 has a second opening 41 corresponding to the first organic layer 130A. Next, the framed mask 15 including the second mask 20 is placed in the deposition apparatus 10, and the second organic layer 130B is formed by a deposition method using the second mask 20. The second mask 20 has a second opening 41 corresponding to the second organic layer 130B. Next, the framed mask 15 including the third mask 20 is placed in the deposition apparatus 10, and the third organic layer is formed by a deposition method using the third mask 20. The third mask 20 has a second opening 41 corresponding to the third organic layer. When the framed mask 15 is placed in the deposition apparatus 10 and removed from the deposition apparatus 10, the frame 60 is grasped. This reduces the risk of the first layer 30 being damaged or the second layer 40 being deformed. In addition, the frame 60 is supported by the mask holder 9 in the deposition apparatus 10. This reduces the risk of the mask holder 9 interfering with the first opening 31 of the first layer 30 or the second opening 41 of the second layer 40. In other words, the risk of the mask holder 9 interfering with the deposition material being attached to the substrate 110 is reduced.
 続いて、有機層130上に第2電極140を形成する。例えば図1に示すように、真空成膜法などによって第1面111の全体に第2電極140を形成してもよい。若しくは、図示はしないが、有機層130と同様に、マスク20を用いる蒸着法によって第2電極140を形成してもよい。その後、図示しない封止層などを第2電極140上に形成してもよい。このようにして、有機デバイス100を得ることができる。 Then, the second electrode 140 is formed on the organic layer 130. For example, as shown in FIG. 1, the second electrode 140 may be formed on the entire first surface 111 by a vacuum film-forming method or the like. Alternatively, although not shown, the second electrode 140 may be formed by a deposition method using a mask 20, similar to the organic layer 130. Thereafter, a sealing layer or the like (not shown) may be formed on the second electrode 140. In this manner, the organic device 100 can be obtained.
 1つの基板110に複数の有機デバイス100が形成されてもよい。1つの有機デバイス100は、マスク20の1つの第1開口31に対応していてもよい。この場合、基板110を裁断する工程を実施してもよい。例えば、マスク20の内側領域36に対応する基板110の領域に沿って基板110を裁断する。これによって、複数の有機デバイス100を得ることができる。 Multiple organic devices 100 may be formed on one substrate 110. One organic device 100 may correspond to one first opening 31 of the mask 20. In this case, a process of cutting the substrate 110 may be carried out. For example, the substrate 110 is cut along a region of the substrate 110 that corresponds to the inner region 36 of the mask 20. In this way, multiple organic devices 100 can be obtained.
 マスク20を用いる蒸着法によって有機層130、第2電極140などを形成する場合の、マスク20の効果について説明する。 The effect of the mask 20 will be explained when forming the organic layer 130, the second electrode 140, etc. by a vapor deposition method using the mask 20.
 マスク20は、シリコン又はシリコン化合物を含む第1層30を備える。このため、基板110がシリコンを含む場合、基板110に生じる熱膨張とマスク20に生じる熱膨張との間に差が生じることを抑制できる。これにより、マスク20の熱膨張に起因して有機層130、第2電極140などの蒸着層の位置、形状などの精度が低下することを抑制できる。従って、高い素子密度を有する有機デバイス100を提供できる。 The mask 20 includes a first layer 30 that contains silicon or a silicon compound. Therefore, when the substrate 110 contains silicon, it is possible to suppress the occurrence of a difference between the thermal expansion occurring in the substrate 110 and the thermal expansion occurring in the mask 20. This makes it possible to suppress the deterioration of the accuracy of the position, shape, etc. of the deposition layers such as the organic layer 130 and the second electrode 140 caused by the thermal expansion of the mask 20. Therefore, it is possible to provide an organic device 100 with a high element density.
 マスク20は、複数の第2開口41を含む第2層40を備える。第1層30とは別に第2層40を設けることによって、第2層40の厚みを小さくできるので、蒸着工程においてシャドウが発生することを抑制できる。また、平面視における第1壁面32と第2開口41との間の間隔S6を適切に確保することにより、シャドウを抑制しながら第1層30の厚みを適切に確保できる。 The mask 20 includes a second layer 40 that includes a plurality of second openings 41. By providing the second layer 40 separately from the first layer 30, the thickness of the second layer 40 can be reduced, thereby suppressing the occurrence of shadows during the deposition process. In addition, by appropriately ensuring the spacing S6 between the first wall surface 32 and the second openings 41 in a plan view, the thickness of the first layer 30 can be appropriately ensured while suppressing shadows.
 上述した一実施形態を様々に変更できる。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述した一実施形態と同様に構成され得る部分について、上述の一実施形態における対応する部分に対して用いた符号と同一の符号を用いる。重複する説明は省略する。また、上述した一実施形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略する場合もある。 The embodiment described above can be modified in various ways. Below, modified examples will be described with reference to the drawings as necessary. In the following description and the drawings used in the following description, parts that can be configured similarly to the embodiment described above will use the same reference numerals as those used for the corresponding parts in the embodiment described above. Duplicate descriptions will be omitted. Furthermore, if it is clear that the effects obtained in the embodiment described above can also be obtained in the modified examples, the description may be omitted.
 例えば、マスク20は、第1層30と第2層40との間に、中間層50を含んでいなくてもよい。この場合、第1層30の第2面302と第2層40の第3面401とが、直接接続されていてもよい。 For example, the mask 20 may not include an intermediate layer 50 between the first layer 30 and the second layer 40. In this case, the second surface 302 of the first layer 30 and the third surface 401 of the second layer 40 may be directly connected.
 また、第2開口41は、第2層形成工程で形成されてもよい。例えば、図14Aに示すように、中間層形成工程の後、第2層形成工程の前に、中間層50上に絶縁層55を形成する。絶縁層55は、ケイ酸テトラエチルSi(OCを原料として用いる化学気相蒸着法によって形成されてよい。次に、ドライエッチングなどによって絶縁層55を部分的に除去し、中間層50上に複数の絶縁凸部56を、第2開口41に対応したパターンで形成する。絶縁凸部56は、平面視において、中間層50上の第2開口41と重なる位置に形成される。次に、図14Cに示すように、絶縁凸部56が形成された中間層50上にめっき処理を施す。これにより、第2層40の形成と同時に、第2層40に第2開口41を形成することができる。 Also, the second opening 41 may be formed in the second layer forming step. For example, as shown in FIG. 14A, after the intermediate layer forming step and before the second layer forming step, an insulating layer 55 is formed on the intermediate layer 50. The insulating layer 55 may be formed by a chemical vapor deposition method using tetraethyl silicate Si(OC 2 H 5 ) 4 as a raw material. Next, the insulating layer 55 is partially removed by dry etching or the like, and a plurality of insulating convex portions 56 are formed on the intermediate layer 50 in a pattern corresponding to the second opening 41. The insulating convex portions 56 are formed at positions overlapping with the second openings 41 on the intermediate layer 50 in a plan view. Next, as shown in FIG. 14C, a plating process is performed on the intermediate layer 50 on which the insulating convex portions 56 are formed. Thereby, the second openings 41 can be formed in the second layer 40 at the same time as the second layer 40 is formed.
 また、図15に示すように、フレーム60の内周部には、段差部65が設けられていてよい。段差部65は、第5面601から第6面602に向かう方向に窪む。段差部65は、フレーム60の内縁604から、外縁603に向かって広がる面651と、面651と第5面601とを接続する面652と、により形成されている。面651と第6面602との距離は、第5面601と第6面602との距離よりも小さい。この場合、段差部65に、より具体的には面651及び面652によって画成される空間に、第1層30の第1面301側の外縁303が収容されてよい。この場合、第1層30の外縁303は、フレーム60によって囲まれる。この結果、第1層30の外側領域35が破損する虞が、更に効果的に抑制される。 Also, as shown in FIG. 15, a step 65 may be provided on the inner periphery of the frame 60. The step 65 is recessed in a direction from the fifth surface 601 to the sixth surface 602. The step 65 is formed by a surface 651 that spreads from the inner edge 604 of the frame 60 toward the outer edge 603, and a surface 652 that connects the surface 651 to the fifth surface 601. The distance between the surface 651 and the sixth surface 602 is smaller than the distance between the fifth surface 601 and the sixth surface 602. In this case, the outer edge 303 of the first layer 30 on the first surface 301 side may be accommodated in the step 65, more specifically, in the space defined by the surfaces 651 and 652. In this case, the outer edge 303 of the first layer 30 is surrounded by the frame 60. As a result, the risk of damage to the outer region 35 of the first layer 30 is more effectively suppressed.
 フレーム60に段差部65が設けられている場合、図15に示すように、接続層70は、フレーム60と第1面301との間だけでなく、フレーム60と外縁303との間にも配置されてよい。これにより、フレーム60と第1層30とを、より強固に接続することができる。 When the frame 60 has a step portion 65, as shown in FIG. 15, the connection layer 70 may be disposed not only between the frame 60 and the first surface 301, but also between the frame 60 and the outer edge 303. This allows the frame 60 and the first layer 30 to be more firmly connected.
 あるいは、フレーム60に段差部65が設けられている場合、図16に示すように、接続層70は、フレーム60と第1面301との間には配置されず、フレーム60と外縁303との間にのみ配置されてもよい。この場合、フレーム60と第1面301との間に接続層70が配置されないので、フレーム60と第2層40とを平行にするために接続層70の厚みを調整する必要がない。 Alternatively, if the frame 60 has a step portion 65, as shown in FIG. 16, the connection layer 70 may not be disposed between the frame 60 and the first surface 301, but may be disposed only between the frame 60 and the outer edge 303. In this case, since the connection layer 70 is not disposed between the frame 60 and the first surface 301, there is no need to adjust the thickness of the connection layer 70 to make the frame 60 and the second layer 40 parallel.
 また、フレーム60に段差部65が設けられる場合、フレーム60の第5面601は、第4面402と面一であってもよい。この場合も、基板110又は基板110上の構成要素にマスク20を通じて蒸着層を形成する際に、第2層40を基板110又は基板110上の構成要素に接触させることができる。 Also, if the frame 60 has a step portion 65, the fifth surface 601 of the frame 60 may be flush with the fourth surface 402. In this case, too, when forming a deposition layer on the substrate 110 or a component on the substrate 110 through the mask 20, the second layer 40 can be brought into contact with the substrate 110 or a component on the substrate 110.
 図17は、有機デバイス100を備える装置200の一例を示す図である。装置200は、基板110と、有機層130とを含む。有機層130は、マスク20を用いる蒸着法によって形成された層である。装置200は、例えばスマートフォンである。装置200は、タブレット端末、ウエアラブル端末などであってもよい。ウエアラブル端末は、スマートグラス、ヘッドマウントディスプレイなどである。 FIG. 17 is a diagram showing an example of an apparatus 200 including an organic device 100. The apparatus 200 includes a substrate 110 and an organic layer 130. The organic layer 130 is a layer formed by a deposition method using a mask 20. The apparatus 200 is, for example, a smartphone. The apparatus 200 may also be a tablet terminal, a wearable terminal, or the like. The wearable terminal is, for example, a smart glass, a head-mounted display, or the like.
 上記実施の形態および変形例に開示されている複数の構成要素を必要に応じて適宜組合せることも可能である。あるいは、上記実施の形態および変形例に示される全構成要素から幾つかの構成要素を削除してもよい。 The multiple components disclosed in the above embodiments and modifications may be combined as needed. Alternatively, some components may be deleted from all the components shown in the above embodiments and modifications.
10:蒸着装置、15:フレーム付きマスク、20:マスク、201:入射面、202:出射面、30:第1層、301:第1面、302:第2面、31:第1開口、32:第1壁面、40:第2層、401:第3面、402:第4面、41:第2開口、43:周縁領域、44:有効領域、50:中間層、51:第1中間層、60:フレーム、601:第5面、602:第6面、61:第3開口、65:段差部、70:接続層、75:スペーサ、100:有機デバイス 10: deposition device, 15: framed mask, 20: mask, 201: incident surface, 202: exit surface, 30: first layer, 301: first surface, 302: second surface, 31: first opening, 32: first wall surface, 40: second layer, 401: third surface, 402: fourth surface, 41: second opening, 43: peripheral region, 44: effective region, 50: intermediate layer, 51: first intermediate layer, 60: frame, 601: fifth surface, 602: sixth surface, 61: third opening, 65: step portion, 70: connection layer, 75: spacer, 100: organic device

Claims (10)

  1.  第1面と、前記第1面の反対側に位置する第2面と、前記第1面から前記第2面へ貫通する少なくとも1つの第1開口と、外縁と、平面視において前記外縁と前記第1開口との間に位置する外側領域と、を含む第1層と、
     前記第2面に対向する第3面と、前記第3面の反対側に位置する第4面と、前記第3面から前記第4面へ貫通し、平面視において前記第1開口に重なる複数の第2開口と、を含む第2層と、
     前記第1層の外縁に、及び/または前記第1層の前記外側領域の前記第1面に接続するフレームと、
    を含み、
     前記第1層は、シリコンを含み、
     平面視において、前記フレームの少なくとも一部は、前記第1層の前記外縁の外側まで広がっており、
     前記フレームは、ガラスまたは金属を含む、フレーム付きマスク。
    a first layer including a first surface, a second surface located on the opposite side of the first surface, at least one first opening penetrating from the first surface to the second surface, an outer edge, and an outer region located between the outer edge and the first opening in a plan view;
    a second layer including a third surface facing the second surface, a fourth surface located on the opposite side of the third surface, and a plurality of second openings penetrating from the third surface to the fourth surface and overlapping with the first openings in a plan view;
    a frame connecting to an outer edge of the first layer and/or to the first surface of the outer region of the first layer;
    Including,
    the first layer comprises silicon;
    In a plan view, at least a portion of the frame extends to an outside of the outer edge of the first layer,
    A framed mask, wherein the frame comprises glass or metal.
  2.  前記フレームは、前記第4面と同じ側を向く第5面と、前記第5面の反対側に位置する第6面と、前記第5面から前記第6面へ貫通し、平面視において前記第1開口に重なる第3開口と、を含む、請求項1に記載のフレーム付きマスク。 The framed mask of claim 1, wherein the frame includes a fifth surface facing the same side as the fourth surface, a sixth surface located on the opposite side of the fifth surface, and a third opening that penetrates from the fifth surface to the sixth surface and overlaps with the first opening in a plan view.
  3.  前記フレームに、前記第1層の前記外縁を収容する段差部が形成されている、請求項1に記載のフレーム付きマスク。 The framed mask of claim 1, wherein the frame is formed with a stepped portion that accommodates the outer edge of the first layer.
  4.  前記フレームと前記第1層との間に接続層を有する、請求項1に記載のフレーム付きマスク。 The framed mask of claim 1, having a connection layer between the frame and the first layer.
  5.  前記接続層は、ガラス材料、無機材料、金属材料又は樹脂材料を含む、請求項4に記載のフレーム付きマスク。 The framed mask of claim 4, wherein the connection layer includes a glass material, an inorganic material, a metal material, or a resin material.
  6.  前記接続層はスペーサを含む、請求項4に記載のフレーム付きマスク。 The framed mask of claim 4, wherein the connection layer includes a spacer.
  7.  前記フレームと前記第1層との間にスペーサが配置されている、請求項1に記載のフレーム付きマスク。 The framed mask of claim 1, wherein a spacer is disposed between the frame and the first layer.
  8.  前記接続層は、前記第1層の前記外縁と前記フレームとの間にのみ配置されている、請求項4に記載のフレーム付きマスク。 The framed mask of claim 4, wherein the connection layer is disposed only between the outer edge of the first layer and the frame.
  9.  前記第1層と前記第2層の間に中間層を含む、請求項1に記載のフレーム付きマスク。 The framed mask of claim 1, comprising an intermediate layer between the first layer and the second layer.
  10.  請求項1乃至9のいずれか一項に記載のフレーム付きマスクを用いる蒸着法によって基板上に有機層を形成する工程を備える、有機デバイスの製造方法。 A method for manufacturing an organic device, comprising a step of forming an organic layer on a substrate by a deposition method using a framed mask according to any one of claims 1 to 9.
PCT/JP2024/002532 2023-01-30 2024-01-26 Frame-fitted mask, and manufacturing method for organic device WO2024162227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023011857A JP2024107763A (en) 2023-01-30 2023-01-30 Mask with frame and method for manufacturing organic device
JP2023-011857 2023-01-30

Publications (1)

Publication Number Publication Date
WO2024162227A1 true WO2024162227A1 (en) 2024-08-08

Family

ID=92146760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/002532 WO2024162227A1 (en) 2023-01-30 2024-01-26 Frame-fitted mask, and manufacturing method for organic device

Country Status (3)

Country Link
JP (1) JP2024107763A (en)
TW (1) TW202503086A (en)
WO (1) WO2024162227A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062565A (en) * 2007-09-05 2009-03-26 Seiko Epson Corp Mask, mask manufacturing method, and electro-optical device manufacturing method
JP2010251320A (en) * 2009-04-16 2010-11-04 Samsung Mobile Display Co Ltd MASK FRAME ASSEMBLY FOR THIN FILM DEPOSITION, METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING ORGANIC LIGHT EMITTING DISPLAY
WO2018142464A1 (en) * 2017-01-31 2018-08-09 堺ディスプレイプロダクト株式会社 Production method for vapor deposition mask, vapor deposition mask, and production method for organic semiconductor element
WO2018181969A1 (en) * 2017-03-31 2018-10-04 大日本印刷株式会社 Vapor deposition mask, vapor deposition mask with frame, vapor deposition mask preparatory body, vapor deposition pattern formation method, and method for manufacturing organic semiconductor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062565A (en) * 2007-09-05 2009-03-26 Seiko Epson Corp Mask, mask manufacturing method, and electro-optical device manufacturing method
JP2010251320A (en) * 2009-04-16 2010-11-04 Samsung Mobile Display Co Ltd MASK FRAME ASSEMBLY FOR THIN FILM DEPOSITION, METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING ORGANIC LIGHT EMITTING DISPLAY
WO2018142464A1 (en) * 2017-01-31 2018-08-09 堺ディスプレイプロダクト株式会社 Production method for vapor deposition mask, vapor deposition mask, and production method for organic semiconductor element
WO2018181969A1 (en) * 2017-03-31 2018-10-04 大日本印刷株式会社 Vapor deposition mask, vapor deposition mask with frame, vapor deposition mask preparatory body, vapor deposition pattern formation method, and method for manufacturing organic semiconductor element

Also Published As

Publication number Publication date
TW202503086A (en) 2025-01-16
JP2024107763A (en) 2024-08-09

Similar Documents

Publication Publication Date Title
JP7222376B2 (en) Evaporation mask manufacturing method
EP4148161B1 (en) Method of manufacturing vapor deposition mask device
KR20190089074A (en) Deposition mask apparatus and method of manufacturing deposition mask apparatus
JP7656271B2 (en) Evaporation mask, framed deposition mask, method for manufacturing an evaporation mask, method for manufacturing an organic device, and method for manufacturing an evaporation mask with a frame
CN110382731B (en) Vapor deposition mask, vapor deposition mask with frame, vapor deposition mask preparation body, vapor deposition pattern forming method, and organic semiconductor element manufacturing method
JP2005042133A (en) Vapor deposition mask and manufacturing method thereof, display device and manufacturing method thereof, and electronic apparatus including display device
KR100707553B1 (en) Mask, method for manufacturing a mask, method for manufacturing an electro-optical device, and electronic equipment
US20210407800A1 (en) Method for manufacturing deposition mask, method for manufacturing display device, and deposition mask intermediate
WO2024162227A1 (en) Frame-fitted mask, and manufacturing method for organic device
US20250146121A1 (en) Mask and method of manufacturing mask
WO2024162225A1 (en) Mask with frame, and organic device manufacturing method
JP2024143262A (en) A framed mask, a package, and a method for manufacturing an organic device
JP2023149070A (en) Vapor deposition system and vapor deposition method
JP7656270B1 (en) Mask, mask device, and method for manufacturing the mask device
JP2023111849A (en) Mask and method of manufacturing mask
WO2024128182A1 (en) Mask manufacturing method, and mask
WO2025047808A1 (en) Mask and method for producing mask
WO2025150503A1 (en) Mask device and method for manufacturing organic device
WO2024128180A1 (en) Mask, laminate, and method for manufacturing mask
WO2024128176A1 (en) Mask, laminate, and method for producing mask
JP2006077276A (en) Mask, mask manufacturing method, thin film pattern forming method, and electro-optical device manufacturing method
KR101413673B1 (en) manufacturing method high integrated capacitive touch sensor
CN118647752A (en) Mask and method for manufacturing mask
WO2024128133A1 (en) Mask and method for producing mask
WO2025110105A1 (en) Mask and method for producing mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24750176

Country of ref document: EP

Kind code of ref document: A1