WO2024162036A1 - Method for manufacturing electronic component with bump - Google Patents
Method for manufacturing electronic component with bump Download PDFInfo
- Publication number
- WO2024162036A1 WO2024162036A1 PCT/JP2024/001417 JP2024001417W WO2024162036A1 WO 2024162036 A1 WO2024162036 A1 WO 2024162036A1 JP 2024001417 W JP2024001417 W JP 2024001417W WO 2024162036 A1 WO2024162036 A1 WO 2024162036A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bumps
- electronic component
- conductive resin
- electrode
- electrodes
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000011347 resin Substances 0.000 claims abstract description 112
- 229920005989 resin Polymers 0.000 claims abstract description 112
- 239000000758 substrate Substances 0.000 claims abstract description 93
- 239000000463 material Substances 0.000 claims description 11
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 238000002788 crimping Methods 0.000 claims 1
- 238000011109 contamination Methods 0.000 abstract description 14
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000012546 transfer Methods 0.000 description 28
- 239000002245 particle Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 14
- 230000006378 damage Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 239000011342 resin composition Substances 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229920006243 acrylic copolymer Polymers 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- -1 methacryloyl groups Chemical group 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 2
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical compound C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 1
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- FVCSARBUZVPSQF-UHFFFAOYSA-N 5-(2,4-dioxooxolan-3-yl)-7-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C(OC2=O)=O)C2C(C)=CC1C1C(=O)COC1=O FVCSARBUZVPSQF-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- XRMBQHTWUBGQDN-UHFFFAOYSA-N [2-[2,2-bis(prop-2-enoyloxymethyl)butoxymethyl]-2-(prop-2-enoyloxymethyl)butyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CC)COCC(CC)(COC(=O)C=C)COC(=O)C=C XRMBQHTWUBGQDN-UHFFFAOYSA-N 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical class C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- HTZCNXWZYVXIMZ-UHFFFAOYSA-M benzyl(triethyl)azanium;chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC1=CC=CC=C1 HTZCNXWZYVXIMZ-UHFFFAOYSA-M 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000010680 novolac-type phenolic resin Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- FAIDIRVMPHBRLT-UHFFFAOYSA-N propane-1,2,3-triol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OCC(O)CO FAIDIRVMPHBRLT-UHFFFAOYSA-N 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical class C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/60—Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
Definitions
- the present invention relates to a method for manufacturing electronic components with bumps.
- the flip-chip mounting method is preferably used, which can minimize the area of the wiring between the chip and the substrate by forming electrodes on the surface of the chip and directly connecting the chip to the electrodes on the substrate.
- the bonding material for electrically connecting the electrodes on the chip surface and the electrodes on the substrate is called a bump.
- Bumps have generally been formed mainly from solder, but because they are melted by heating during formation and connection, if the electrode pitch is less than 20 ⁇ m, there is a high risk of electrodes shorting out due to the connection between adjacent bumps by molten solder. For this reason, connection materials that replace solder as bump materials are being considered for fine structures.
- a method for manufacturing a substrate with a conductive pattern includes the steps of forming a pattern of a composition having an organic component and conductive particles on a transfer substrate, and irradiating the back side of the transfer substrate with a laser to transfer the pattern to a transfer substrate (see, for example, Patent Document 1).
- Patent Document 1 can obtain a substrate with a conductive pattern that has high positional accuracy during transfer, the conductive pattern that forms the bumps collides with the substrate at high speed by laser irradiation, so the transferred conductive pattern tends to be easily destroyed, and there is a problem that the conductive pattern pieces generated by the destruction contaminate the electronic components. There is a concern that such contamination may induce short circuits due to unintended connections of peripheral circuits in some cases.
- a method for forming bumps with fine structures such as ⁇ LEDs, it is possible to form patterns of bumps by photolithography using a photosensitive resin composition.
- the present invention aims to provide a method for manufacturing electronic components with bumps that can suppress contamination of the electronic components during bump formation.
- the present invention mainly has the following configuration.
- a method for manufacturing an electronic component with bumps comprising a step of transferring conductive resin bumps to electrodes of the electronic component by facing the electrodes of the electronic component to conductive resin bumps formed on a supply substrate and pressing the electrodes against the conductive resin bumps.
- the electronic component manufacturing method of the present invention makes it possible to form bumps while suppressing contamination of the electronic components.
- FIGS. 1A to 1C are schematic diagrams showing an example of a method for producing an electronic component with bumps according to the present invention.
- FIG. 2 is a schematic diagram showing the electrode height and the height difference per electrode in the present invention.
- FIG. 2 is a schematic diagram showing a method for evaluating a bump damage rate in the examples.
- 5A to 5C are schematic diagrams showing a process for forming a conductive resin bump in Comparative Example 1.
- 11A to 11C are schematic diagrams showing a transfer process of conductive resin bumps in Comparative Examples 2 and 3.
- the method for manufacturing electronic components with bumps of the present invention includes a step of transferring conductive resin bumps to the electrodes of the electronic component by facing the electrodes of the electronic component to the conductive resin bumps formed on a supply substrate and pressing the electrodes together.
- conductive resin bumps formed in advance on a transfer substrate are transferred to a transfer substrate using a laser, or when bumps are formed on electronic components by photolithography using a photosensitive resin composition, contamination by conductive resin bump pieces or photosensitive resin composition can be an issue.
- the conductive resin bumps are transferred by pressing, so contamination due to residues or damage to the bumps can be suppressed.
- conductive resin bumps with higher resolution can be formed.
- FIG. 1 is a schematic diagram showing an example of an embodiment of the method for manufacturing electronic components with bumps according to the present invention.
- conductive resin bumps 2 formed on a supply substrate 1 and multiple electronic components 4 held on a holding substrate 5 are arranged so that the conductive resin bumps 2 and the electrodes 3 of the electronic components 4 face each other.
- the electrodes 3 of the electronic components 4 are pressed against the conductive resin bumps 2, and then, as shown in (c), the supply substrate 1 and the holding substrate 5 are pulled apart, transferring the conductive resin bumps 2 onto the electrodes 3.
- bonding devices include flip chip bonders and diaphragm laminators. Thermocompression is a preferred bonding method, and the bonding temperature is preferably 40°C or higher and 180°C or lower. By setting the bonding temperature at 40°C or higher, the storage modulus of the conductive bumps can be reduced, improving adhesion to the electrodes of the electronic components. On the other hand, by setting the bonding temperature at 180°C or lower, thermal expansion and thermal contraction of the supply substrate and electronic components can be suppressed, and the positional accuracy of the transfer can be further improved.
- the bonding temperature may be different for the conductive resin bumps and the electronic components.
- the temperature of the member (lower side plate) on which the supply substrate is placed is preferably 20°C or higher and 150°C or lower.
- the temperature of the lower side plate is more preferably 30°C or higher.
- the temperature of the lower side plate is more preferably 100°C or lower.
- the temperature of the member (upper side plate) that holds the holding substrate or electronic components is preferably 20°C or higher and 180°C or lower.
- the temperature of the upper side plate is more preferably 100°C or lower. It is more preferable that the temperature of at least one of the upper and lower side panels is in the range of 40°C to 180°C.
- the pressure during bonding is preferably 0.1 MPa or more and 10 MPa or less, which can further prevent damage to the conductive resin bumps due to bonding and further prevent contamination of the electronic components.
- the pressure is the value obtained by dividing the load applied by the device by the total contact area.
- the total contact area is the product of the area per smaller one of the conductive resin bumps transferred during bonding and the electrodes of the electronic components in contact with it, and the number of electrodes.
- the bonding time is preferably 0.1 seconds or more and 20 seconds or less, which can improve productivity.
- the supply substrate in the present invention is a substrate that holds conductive resin bumps in order to supply conductive resin bumps to be transferred to electrodes of electronic components.
- materials constituting the supply substrate include organic materials and inorganic materials such as glass and silicon. Among these, inorganic materials with high in-plane flatness are preferred in order to increase the parallelism of the supply substrate during pressure bonding.
- a supply substrate made of an inorganic material for example, a glass substrate is preferred.
- the surface of the supply substrate may be subjected to a release treatment, which makes it easier to transfer the conductive resin bumps.
- the surface of the supply substrate may also have a flexible layer, which absorbs the inclination of the supply substrate when transferring the conductive resin bumps, making it easier to transfer the conductive resin bumps.
- the number of conductive resin bumps formed on the supply substrate (hereinafter referred to as the number of formed bumps) is preferably greater than the number of conductive resin bumps transferred to an electronic component by one cycle of pressure bonding (hereinafter referred to as the number of used bumps).
- the number of formed bumps is preferably greater than the number of used bumps, multiple transfers can be performed using one supply substrate, improving productivity. It is more preferable that the number of formed bumps is at least twice the number of used bumps.
- the number of used bumps when multiple transfers are performed using one supply substrate refers to the smallest number of bumps used per transfer among the multiple transfers, and the number of formed bumps refers to the total number of bumps formed on the supply substrate before transfer.
- the conductive resin bump has conductivity and has a function of electrically connecting the conductive resin bump and the electrode in contact therewith.
- “having conductivity” means that the conductive resin bump has conductivity when the electronic component finally functions, and may have conductivity by a specific process.
- the conductive resin bump may have conductivity by heating or pressure when transferred to the electronic component.
- the conductive resin bump preferably has an electrical resistivity of 1 ⁇ m or less.
- the conductive resin bump may contain a conductive resin or may contain conductive particles.
- the conductive particles may be dispersed in the resin and the conductive particles may be continuously contacted to obtain an electrical connection, or the conductive particles may be connected by sintering to obtain an electrical connection.
- the conductive particles include particles of silver, gold, copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, magnesium, zinc, iron, and alloys thereof, carbon black particles, particles of conductive oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO), etc. Two or more of these may be contained.
- the above-mentioned materials may have a structure in which the surface of the particles formed by the resin or inorganic material is covered.
- the conductive particles contain a photosensitive organic component and conductive particles.
- organic components include binder resins, compounds having photopolymerizable groups, and photopolymerization initiators. It may also contain a curing catalyst or other additives.
- binder resins examples include acrylic resins, phenoxy resins, polyester resins, polyurethane resins, polyimide resins, siloxane-modified polyimide resins, polybenzoxazole resins, polyamide resins, polycarbonate resins, and polybutadiene. Two or more of these may be contained.
- the binder resin preferably has a carboxyl group, which can improve developability.
- a compound having a photopolymerizable group refers to a monomer or oligomer having a photopolymerizable group.
- photopolymerizable groups include acryloyl groups and methacryloyl groups.
- compounds having a photopolymerizable group include bifunctional monomers such as ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, 1,4-butanediol diacrylate, glycerin diacrylate, tripropylene glycol diacrylate, ethoxylated (4) bisphenol A diacrylate, ethoxylated (10) bisphenol A diacrylate, and acrylic acid adduct of ethylene glycol diglycidyl ether; trifunctional monomers such as pentaerythritol triacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, trimethylolpropane ethoxy triacrylate, and glycerin propoxy tri
- photopolymerization initiators examples include benzophenone derivatives, acetophenone derivatives, thioxanthone derivatives, benzyl derivatives, benzoin derivatives, oxime compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoalkylphenone compounds, phosphine oxide compounds, anthrone compounds, anthraquinone compounds, etc. Two or more of these may be contained.
- the area per conductive resin bump is preferably 5 ⁇ m2 or more, which allows sufficient adhesion during compression bonding and therefore facilitates transfer.
- the area per conductive resin bump is more preferably 40 ⁇ m2 or more.
- the area per conductive resin bump is preferably 600 ⁇ m2 or less, which reduces the load required for peeling from the supply substrate and facilitates transfer.
- the area is more preferably 400 ⁇ m2 or less.
- each conductive resin bump is preferably at least 0.3 times the area of each electrode of the electronic component to be transferred, which allows for sufficient electrical connection with the electronic component.
- the area of each conductive resin bump is preferably no more than 1.8 times the area of each electrode of the electronic component to be transferred, and more preferably no more than 1.5 times, which allows for better prevention of damage to the bumps when transferring the conductive resin bumps from the supply substrate, and better prevention of contamination of the electronic component.
- the area of each conductive resin bump refers to the area of one conductive resin bump projected onto a plane parallel to the supply substrate on which the conductive resin bump is formed, and can be found by measuring the area of each of 100 randomly selected conductive resin bumps using an optical microscope or scanning electron microscope (SEM) and calculating the median.
- the thickness of the conductive resin bump is preferably 0.5 ⁇ m or more, which can suppress the variation in electrical resistance value. It can also improve the adhesive strength between the conductive resin bump and the electrode to which it is connected. It can also make transfer easier. On the other hand, the thickness of the conductive resin bump is preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
- the conductive resin bumps preferably have adhesive properties and a glass transition point of 100°C or less when formed on the supply substrate.
- the conductive resin bumps can be formed, for example, by applying a paste made by kneading the components constituting the conductive resin bumps described above and, if necessary, a solvent onto a supply substrate. If the paste is photosensitive, the conductive resin bumps can be formed by photolithography. More specifically, the method preferably includes the steps of applying the paste onto the supply substrate to form a dry film, and exposing and developing the dry film.
- paste application methods include rotary application using a spinner, spray application, roll coating, screen printing, and application using a blade coater, die coater, calendar coater, meniscus coater, or bar coater.
- Drying methods include, for example, heat drying using an oven, a hot plate, infrared rays, etc., and vacuum drying.
- the drying temperature is preferably 50 to 180°C, and the drying time is preferably 1 minute to several hours.
- the thickness of the dry film can be appropriately selected according to the desired thickness of the conductive resin bump.
- the thickness of the dry film is preferably 0.5 ⁇ m or more.
- the thickness of the dry film is preferably 5 ⁇ m or less, which allows light to easily reach deep into the dry film during exposure and suppresses peeling during development.
- the thickness of the dry film is more preferably 3 ⁇ m or less.
- the thickness of the dry film of the paste can be measured using a stylus step gauge. More specifically, the thickness is measured at three randomly selected locations using a stylus step gauge (measurement length: 1 mm, scanning speed: 0.3 mm/sec) and the average value is calculated.
- the dried film is exposed to light.
- the exposure light source include light sources that emit i-lines (wavelength 365 nm), h-lines (wavelength 405 nm), and g-lines (wavelength 436 nm), such as high-pressure mercury lamps, ultra-high-pressure mercury lamps, and LEDs.
- the exposure method include various exposure methods such as vacuum adsorption exposure, proxy exposure, projection exposure, and direct writing exposure.
- the exposed dry film is then developed.
- development methods include spraying a developer onto the surface of the dry film while the supply substrate with the exposed dry film is stationary or rotated, immersing the supply substrate with the exposed dry film in a developer, and applying ultrasonic waves to the supply substrate with the exposed dry film while immersing it in a developer.
- the developer is preferably an alkaline aqueous solution.
- a rinse treatment may be performed using a rinse solution.
- rinse solutions include water, or an aqueous solution of water to which alcohols such as ethanol or isopropyl alcohol have been added, or esters such as ethyl lactate or propylene glycol monomethyl ether acetate have been added.
- the electronic component in the present invention refers to a general element that is mounted on a substrate with electrical connection and functions based on the input or output of an electrical signal, or both.
- the electronic component has at least one electrode.
- Examples of electronic components include semiconductor chips, interposers, and optical elements.
- the present invention can be preferably applied to optical elements.
- Examples of optical elements include LEDs, photoresistors, phototransistors, photodiodes, micromirrors, solar cells, and the like.
- ⁇ LEDs with each side of 100 ⁇ m or less are preferable because the productivity can be increased by using the manufacturing method of the present invention.
- the electrodes are generally made of a metal material or a semiconductor.
- the ratio of the electrode area to the total area of the surface of the electronic component having the electrodes is preferably 0.1 to 0.8.
- the electrode area ratio is 0.1 or more, it is possible to obtain a sufficient current to operate the electronic component. It is more preferable that the electrode area ratio is 0.2 or more.
- the electrode area ratio is 0.8 or less, it is possible to suppress short circuits between electrodes. It is more preferable that the electrode area ratio of the electronic component is 0.7 or less.
- the area of the surface of an electronic component having electrodes and the area of the electrodes are the areas of projections onto a plane parallel to the board on which the electronic component is mounted.
- the area of the surface of an electronic component having electrodes and the area of the electrodes can be measured by physically separating the electronic component from the board on which it is mounted, and then observing each of them using an optical microscope or a scanning electron microscope (SEM).
- the electrode height is preferably 0.5 ⁇ m or more, and even if the conductive resin bump is deformed during compression, adhesion of the conductive resin bump to the surface of the electronic component is further suppressed, and contamination of the electronic component is further suppressed.
- the electrode height is preferably 10.0 ⁇ m or less, and variation in electrode height can be suppressed and processing precision can be improved.
- the electrodes may have a structure with different heights within the electrode surface (hereinafter, sometimes referred to as "height difference").
- the height difference per electrode is preferably 0.5 ⁇ m or more.
- the height difference per electrode is preferably 5.0 ⁇ m or less, which can suppress voids between the conductive resin bump and the electrode.
- the height difference per electrode is preferably smaller than the electrode height.
- Methods for forming height differences within the electrode surface include, for example, a method in which a concave-convex shape is formed in advance by etching or the like on the electronic component at the position where the electrode is to be formed, and then the electrode is formed on top of that by plating or the like, thereby reflecting the concave-convex shape on the electronic component on the electrode surface, and a method in which the formed electrode is processed by etching or the like.
- Electrode height B is the height of the point (hereinafter referred to as the apex) of the electrode that is farthest from the surface of the electronic component when observed from a plane (hereinafter referred to as the vertical plane) perpendicular to the electronic component on which the electrode is formed, and is the length of a perpendicular line drawn from a horizontal plane passing through the electrode apex to reference plane A.
- reference plane A of the electronic component is a horizontal plane passing through the reference point, which is the position on the electronic component surface that is the longest when a perpendicular line is drawn from the horizontal plane passing through the electrode apex to the electronic component in the part of the electronic component surface excluding the electrodes.
- the part where the angle between the tangent to the electronic component surface and the horizontal plane is 70 to 110 degrees is not used as the reference point.
- the largest value of the electrode heights is taken as electrode height B.
- the height difference C per electrode is the largest difference between the height of each evaluation point and the height of the apex, based on the reference plane A.
- the evaluation points are points on the electrode surface excluding the parts where the angle D between the tangent to the electrode surface and the reference plane is 70 to 110°, and are measured in the same way as the electrode height.
- the gripping substrate in the present invention is a substrate for gripping an electronic component.
- the gripping substrate preferably has a plurality of electronic components gripped thereon.
- Methods for gripping electronic components include, for example, a method using an adhesive.
- Materials constituting the gripping substrate include those exemplified for the supply substrate. In order to increase the parallelism with the supply substrate, inorganic materials with high in-plane flatness are preferred, for example, silicon substrates are preferred.
- the surface of the gripping substrate may further have a flexible layer, which can absorb the inclination of the conductive resin bumps when transferring the conductive resin bumps, making it easier to transfer the conductive resin bumps.
- the gripping substrate may have a flexible layer for absorbing the inclination of the member when transferring the conductive resin bumps.
- EA ethyl acrylate
- 2-EHMA 2-ethylhexyl methacrylate
- BA n-butyl acrylate
- MAA N-methylol acrylamide
- DGME 0.8 g of 2,2'-azobisisobutyronitrile
- a 5 ⁇ m-thick adhesive layer (KR-3704, manufactured by Shin-Etsu Chemical Co., Ltd.) was formed on a silicon wafer cut to 30 mm ⁇ 30 mm to prepare a substrate for gripping.
- ⁇ Transfer rate to electrode> The electronic components with bumps obtained in each Example and Comparative Example were magnified and observed using a SEM to observe whether the conductive resin bumps were transferred onto the electrodes of the electronic components.
- the total area of the conductive resin bumps transferred onto the target electrode was 0.3 times or more the area of the electrode, it was determined that the conductive resin bumps were transferred, and the ratio of the number of electrodes onto which the conductive resin bumps were transferred to the total number of electrodes was determined as the transfer rate to the electrodes.
- the area referred to here is the projected area onto a plane parallel to the electronic component. The higher the transfer rate, the better the transfer was.
- the transfer rate to the electrodes is preferably 0.8 or more, and more preferably 0.9 or more.
- FIG. 3 shows an example of the state of each member after completion of thermocompression bonding, and is a schematic diagram showing a method for measuring the bump damage rate.
- the electrodes 3 of 100 bumped electronic components obtained in each example the electrodes to which the conductive resin bumps were transferred were observed under magnification using a SEM.
- a case in which the area of the transferred conductive resin bumps was 0.9 times or less of the initial area was deemed to be a bump damage, and the ratio of the number of electrodes with damaged bumps to the number of electrodes to which the electrode bumps were transferred was deemed to be the bump damage rate.
- the initial area of the bumps is the average area of 100 conductive resin bumps on the supply substrate before transfer.
- the electrodes to which the conductive resin bumps are transferred to be observed are electrodes in which the total area of the conductive resin bumps transferred to the target electrode is 0.3 times or more the area of the electrode.
- the area refers to the projected area on a plane parallel to the electronic component.
- ⁇ Peeling Force> when the holding substrate and the supply substrate were separated after thermocompression bonding, the tensile force in the direction perpendicular to the holding substrate was measured using a force gauge (AD-4932A-50N, manufactured by A&D Co., Ltd.). Comparative Examples 1 to 3 were excluded from evaluation because they did not involve thermocompression bonding.
- the peel force is preferably 0.4 N or less, and more preferably 0.1 N or less.
- Example 1 Preparation of paste> The acrylic copolymer (A) obtained in Synthesis Example: 30 parts by weight, BP-4EA: 20 parts by weight, OXE04: 3 parts by weight, N-865: 10 parts by weight, YL-980: 10 parts by weight, MEH-7600: 5 parts by weight, C11Z-A: 0.2 parts by weight, silver particles: 170 parts by weight, and PGMEA: 30 parts by weight were mixed to obtain a paste.
- the paste was applied by spin coating onto a glass substrate, which was a supply substrate, to form a coating film.
- the coating film was dried in a drying oven at 100°C for 10 minutes to form a dried film having a thickness of 1.5 ⁇ m. Thereafter, the dried film was pattern-exposed with an exposure amount of 2000 mJ/ cm2 of i-line (wavelength 365 nm) using an exposure device (PEM-6M; manufactured by Union Optical Co., Ltd.) having an ultra-high pressure mercury lamp, and then shower-developed for 40 seconds using a 0.1 wt% Na2CO3 aqueous solution, and rinsed with ultrapure water to form a conductive resin bump.
- the size of the conductive resin bump was 40 ⁇ m x 30 ⁇ m, and it was formed at a position corresponding to the electrode of the electronic component arranged on the gripping substrate described later.
- thermocompression bonding was performed under the following conditions: stage temperature 40°C, head temperature 80°C, load 5N, 10 seconds.
- stage temperature 40°C head temperature 80°C
- load 5N load 5N
- 10 seconds the head of the flip chip bonder was withdrawn while the holding substrate was adsorbed and destroyed, and a laminate of the holding substrate and the supply substrate was obtained.
- the holding substrate and the supply substrate of the laminate were then separated. Through this process, the conductive resin bumps were transferred onto the electrodes of the electronic components arranged on the holding substrate, and electronic components with bumps were obtained.
- Examples 2 to 11 Electronic components with bumps were obtained in the same manner as in Example 1, except that the size of the electronic components, the electrode height, the height difference per electrode, the electrode size, and the bump size were changed as shown in Tables 1 and 2.
- the electronic components used in Examples 1 to 10 were ⁇ LEDs having two electrodes of the size shown in Tables 1 and 2 per electronic component on the bonding surface with the bump.
- the electronic components used in Example 11 were vertical ⁇ LEDs having one electrode of the size shown in Table 2 per electronic component on the underside of the chip.
- Comparative Example 1 4 shows a method for forming conductive resin bumps in Comparative Example 1.
- the same paste as that used in Example 1 was applied by spin coating onto the release-treated surface of a release film 6 (trade name PET25AL-5, thickness 25 ⁇ m, manufactured by Lintec Corporation) fixed on a glass substrate to form a coating film.
- the coating film was dried for 10 minutes in a drying oven at 100° C. to form a dry film 7 having a thickness of 1.5 ⁇ m.
- the obtained dry film was thermocompressed onto the surface of the gripping substrate 5 on which the electronic components 4 were arranged, using a laminating device (Nikko Materials Corporation, CVP-300T), under conditions of a temperature of 80° C., a pressure of 0.1 MPa, and a thermocompression time of 20 seconds, and then the release film 6 was peeled off as shown in (b).
- a laminating device Nikko Materials Corporation, CVP-300T
- the dried film pressed onto the surface of the holding substrate on which the electronic components were arranged was exposed to a pattern of i-line (wavelength 365 nm) at an exposure dose of 2000 mJ/ cm2 using an exposure device (PEM-6M; manufactured by Union Optical Co., Ltd.) having an ultra-high pressure mercury lamp, and then the pattern was developed by shower development for 40 seconds using a 0.1 wt% Na2CO3 aqueous solution and rinsed with ultrapure water to form the conductive resin bump 2 shown in (c).
- the size of the conductive resin bump was 16 ⁇ m ⁇ 8 ⁇ m, and it was formed at a position corresponding to the electrode 3 of the electronic component of the same type as in Example 7 arranged on the holding substrate.
- (Comparative Examples 2 to 3) 5 shows the transfer process of the conductive resin bumps in Comparative Examples 2 and 3.
- the supply substrate 1 and the holding substrate 5 on which the electronic components 4 are arranged are opposed to each other with a distance of 50 ⁇ m, and the conductive resin bumps 2 on the supply substrate are aligned to overlap with the electrodes 3 of the electronic components.
- the conductive resin bumps are transferred onto the electrodes of the electronic components arranged on the holding substrate by irradiating the respective conductive resin bumps from the rear surface of the supply substrate with a laser 8, thereby obtaining electronic components with bumps.
- the laser has a wavelength of 355 nm, a pulse width of 8 ns, and a beam size that is 1.5 times the short and long sides of the conductive resin bumps.
- the sizes of the conductive resin bumps, the electronic components, and the electrodes are as shown in Table 2.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
Abstract
Description
本発明は、バンプ付き電子部品の製造方法に関する。 The present invention relates to a method for manufacturing electronic components with bumps.
近年、ディスプレイ分野においては、μLEDと呼ばれる各辺が100μm以下のLEDチップを用いた構造が盛んに検討されている。μLEDの実装には、チップの表面に電極を形成し、基板上の電極とチップとを直接接続することにより、チップと基板の間の配線の面積を最小とすることができるフリップチップ実装工法が好適に用いられている。フリップチップ実装工法において、チップ表面の電極と基板上の電極を電気的に接続するための接合材料は、バンプと呼ばれる。バンプは、主にはんだによって形成されることが一般的であったが、形成時および接続時に加熱による溶融を伴うため、電極ピッチが20μm未満である場合、隣接するバンプ間が溶融したはんだで接続することにより、電極がショートするリスクが高い。そのため、微細な構造においては、バンプの材料としてはんだに代わる接続材料が検討されている。 In recent years, in the display field, structures using LED chips with sides of 100 μm or less, called μLEDs, have been actively considered. For mounting μLEDs, the flip-chip mounting method is preferably used, which can minimize the area of the wiring between the chip and the substrate by forming electrodes on the surface of the chip and directly connecting the chip to the electrodes on the substrate. In the flip-chip mounting method, the bonding material for electrically connecting the electrodes on the chip surface and the electrodes on the substrate is called a bump. Bumps have generally been formed mainly from solder, but because they are melted by heating during formation and connection, if the electrode pitch is less than 20 μm, there is a high risk of electrodes shorting out due to the connection between adjacent bumps by molten solder. For this reason, connection materials that replace solder as bump materials are being considered for fine structures.
μLEDの実装に好適に用いられる方法として、転写基板上に有機成分と導電性粒子とを有する組成物のパターンを形成する工程と、前記転写基板の裏面側からレーザーを照射して前記パターンを被転写基板へ転写する工程とを含む導電パターン付き基板の製造方法が提案されている(例えば、特許文献1参照)。 As a method suitable for implementing μLEDs, a method for manufacturing a substrate with a conductive pattern has been proposed that includes the steps of forming a pattern of a composition having an organic component and conductive particles on a transfer substrate, and irradiating the back side of the transfer substrate with a laser to transfer the pattern to a transfer substrate (see, for example, Patent Document 1).
特許文献1の方法により、転写時の位置精度が高い導電パターン付き基板を得ることができるものの、バンプを形成する導電パターンがレーザー照射によって高速で被転写基板に衝突するため、転写された導電パターンが破壊されやすい傾向にあり、破壊により生じた導電パターン片により電子部品が汚染する課題があった。かかる汚染は、場合によっては周辺回路の意図しない接続によるショートを誘発することが懸念される。また、μLEDなどの微細な構造のバンプを形成する方法として、感光性樹脂組成物を用いてフォトリソグラフィ法によりバンプをパターン形成することが考えられる。しかしながら、フォトリソグラフィ法によるパターン形成においては、バンプを形成する箇所以外にも感光性樹脂組成物の皮膜を形成するため、電子部品表面に感光性樹脂組成物の残渣が生じやすい。かかる残渣による汚染もまた、場合によっては周辺回路の意図しない接続によるショートを誘発することが懸念される。
Although the method of
そこで、本発明は、バンプの形成における電子部品の汚染を抑制することができる、バンプ付き電子部品の製造方法を提供することを目的とする。 The present invention aims to provide a method for manufacturing electronic components with bumps that can suppress contamination of the electronic components during bump formation.
本発明は、前記課題を解決するため、主として以下の構成を有する。
(1)供給用基板上に形成された導電性樹脂バンプに電子部品の電極を対向させて圧着することによって、電子部品の電極に導電性樹脂バンプを転写する工程を含むバンプ付き電子部品の製造方法。
(2)前記電子部品の電極高さが0.5~10.0μmである(1)に記載のバンプ付き電子部品の製造方法。
(3)前記供給用基板上に形成された導電性樹脂バンプ1つあたりの面積が5~600μm2である(1)または(2)に記載のバンプ付き電子部品の製造方法。
(4)前記供給用基板上に形成された導電性樹脂バンプ1つあたりの面積が前記電子部品の電極1つあたりの面積の0.3~1.8倍である(1)~(3)のいずれかに記載のバンプ付き電子部品の製造方法。
(5)前記電子部品の電極1つあたりの高さの差が0.5~5.0μmである(1)~(4)のいずれかに記載のバンプ付き電子部品の製造方法。
(6)導電性樹脂バンプに電子部品の電極を対向させて圧着する時の圧着温度が40℃以上180℃以下である(1)~(5)のいずれかに記載のバンプ付き電子部品の製造方法。
(7)前記電子部品が把持用基板上に複数個把持されている(1)~(6)のいずれかに記載のバンプ付き電子部品の製造方法。
(8)前記供給用基材上に形成された導電性樹脂バンプの数が、1サイクルの圧着によって電子部品に転写される導電性樹脂バンプの数よりも多い(1)~(7)のいずれかに記載のバンプ付き電子部品の製造方法。
In order to solve the above problems, the present invention mainly has the following configuration.
(1) A method for manufacturing an electronic component with bumps, comprising a step of transferring conductive resin bumps to electrodes of the electronic component by facing the electrodes of the electronic component to conductive resin bumps formed on a supply substrate and pressing the electrodes against the conductive resin bumps.
(2) The method for producing an electronic component with bumps according to (1), wherein the height of the electrodes of the electronic component is 0.5 to 10.0 μm.
(3) The method for producing an electronic component having bumps according to (1) or (2), wherein the area of each of the conductive resin bumps formed on the supply substrate is 5 to 600 μm2.
(4) The method for producing an electronic component with bumps according to any one of (1) to (3), wherein the area of each of the conductive resin bumps formed on the supply substrate is 0.3 to 1.8 times the area of each of the electrodes of the electronic component.
(5) The method for producing an electronic component with bumps according to any one of (1) to (4), wherein the difference in height per electrode of the electronic component is 0.5 to 5.0 μm.
(6) The method for producing an electronic component with bumps according to any one of (1) to (5), wherein the pressure-bonding temperature when the electrodes of the electronic component are placed opposite the conductive resin bumps and pressure-bonded is 40° C. or higher and 180° C. or lower.
(7) The method for producing an electronic component having bumps according to any one of (1) to (6), wherein a plurality of the electronic components are held on a holding substrate.
(8) The method for manufacturing an electronic component with bumps according to any one of (1) to (7), wherein the number of conductive resin bumps formed on the supply base material is greater than the number of conductive resin bumps transferred to an electronic component by one cycle of compression bonding.
本発明の電子部品の製造方法によれば、電子部品の汚染を抑制しながらバンプを形成することができる。 The electronic component manufacturing method of the present invention makes it possible to form bumps while suppressing contamination of the electronic components.
本発明のバンプ付き電子部品の製造方法は、供給用基板上に形成された導電性樹脂バンプに電子部品の電極を対向させて圧着することによって、電子部品の電極に導電性樹脂バンプを転写する工程を有する。前述のとおり、予め転写基板上に形成した導電性樹脂バンプを、レーザーを用いて被転写基板へ転写する場合や、電子部品上に感光性樹脂組成物を用いたフォトリソグラフィ法によりバンプを形成する場合には、導電性樹脂バンプ片や感光性樹脂組成物による汚染が課題となることに対し、本発明においては、圧着により導電性樹脂バンプを転写することから、残渣やバンプの破壊に伴う汚染を抑制することができる。また、ディスペンサーやインクジェットにより導電性樹脂バンプを形成する技術に対して、より高分解能の導電性樹脂バンプを形成することができる。 The method for manufacturing electronic components with bumps of the present invention includes a step of transferring conductive resin bumps to the electrodes of the electronic component by facing the electrodes of the electronic component to the conductive resin bumps formed on a supply substrate and pressing the electrodes together. As described above, when conductive resin bumps formed in advance on a transfer substrate are transferred to a transfer substrate using a laser, or when bumps are formed on electronic components by photolithography using a photosensitive resin composition, contamination by conductive resin bump pieces or photosensitive resin composition can be an issue. However, in the present invention, the conductive resin bumps are transferred by pressing, so contamination due to residues or damage to the bumps can be suppressed. Furthermore, compared to techniques for forming conductive resin bumps using a dispenser or inkjet, conductive resin bumps with higher resolution can be formed.
以下、図面を用いて本発明に係るバンプ付き電子部品の製造方法の実施の形態を詳細に説明する。なお、図面は模式的なものである。また、本発明は、以下に説明する実施の形態によって限定されるものではない。 Below, an embodiment of the method for manufacturing electronic components with bumps according to the present invention will be described in detail with reference to the drawings. Note that the drawings are schematic. Furthermore, the present invention is not limited to the embodiment described below.
図1は、本発明のバンプ付き電子部品の製造方法の実施の形態の一例を示す模式図である。まず、(a)に示すように、供給用基板1上に形成された導電性樹脂バンプ2と、把持用基板5上に把持された複数の電子部品4とを、導電性樹脂バンプ2と電子部品4の電極3とが対向するように配置する。次に、(b)に示すように電子部品4の電極3を導電性樹脂バンプ2に圧着した後、(c)に示すように供給用基板1と把持用基板5を引き離すことにより、電極3上に導電性樹脂バンプ2が転写される。
FIG. 1 is a schematic diagram showing an example of an embodiment of the method for manufacturing electronic components with bumps according to the present invention. First, as shown in (a),
圧着装置としては、例えば、フリップチップボンダーやダイアフラム式ラミネータなどが挙げられる。圧着方法としては、熱圧着が好ましく、圧着温度は、40℃以上180℃以下が好ましい。圧着温度を40℃以上にすることにより、導電性バンプの貯蔵弾性率を低減して電子部品の電極への密着性を向上させることができる。一方、圧着温度を180℃以下にすることにより、供給用基板および電子部品の熱膨張や熱収縮を抑制し、転写の位置精度をより高めることができる。 Examples of bonding devices include flip chip bonders and diaphragm laminators. Thermocompression is a preferred bonding method, and the bonding temperature is preferably 40°C or higher and 180°C or lower. By setting the bonding temperature at 40°C or higher, the storage modulus of the conductive bumps can be reduced, improving adhesion to the electrodes of the electronic components. On the other hand, by setting the bonding temperature at 180°C or lower, thermal expansion and thermal contraction of the supply substrate and electronic components can be suppressed, and the positional accuracy of the transfer can be further improved.
圧着温度は、導電性樹脂バンプと電子部品で異なってもよい。例えば、供給用基板を設置する部材(下側面板)の温度は、20℃以上150℃以下が好ましい。下側面板の温度を20℃以上とすることにより、後述する上側面板の温度が低い場合であっても、導電性バンプをより転写しやすくすることができる。下側面板の温度は、30℃以上がより好ましい。一方、下側面板の温度を150℃以下とすることにより、導電性樹脂バンプの熱反応による劣化を抑制することができる。下側面板の温度は、100℃以下がより好ましい。把持用基板または電子部品を把持する部材(上側面板)の温度は、20℃以上180℃以下が好ましい。上側面板の温度を20℃以上とすることにより、導電性バンプをより転写しやすくすることができる。一方、上側面板の温度を180℃以下とすることにより、上側面板の昇降温に伴う待機時間を短縮し、生産性を向上させることができる。上側面板の温度は、100℃以下がより好ましい。上側面板および下側面板の少なくともいずれかの温度が40℃以上180℃以下の温度範囲にあることがより好ましい。 The bonding temperature may be different for the conductive resin bumps and the electronic components. For example, the temperature of the member (lower side plate) on which the supply substrate is placed is preferably 20°C or higher and 150°C or lower. By setting the temperature of the lower side plate to 20°C or higher, the conductive bumps can be transferred more easily even when the temperature of the upper side plate described later is low. The temperature of the lower side plate is more preferably 30°C or higher. On the other hand, by setting the temperature of the lower side plate to 150°C or lower, deterioration of the conductive resin bumps due to thermal reaction can be suppressed. The temperature of the lower side plate is more preferably 100°C or lower. The temperature of the member (upper side plate) that holds the holding substrate or electronic components is preferably 20°C or higher and 180°C or lower. By setting the temperature of the upper side plate to 20°C or higher, the conductive bumps can be transferred more easily. On the other hand, by setting the temperature of the upper side plate to 180°C or lower, the waiting time associated with the rise and fall of the temperature of the upper side plate can be shortened, and productivity can be improved. The temperature of the upper side plate is more preferably 100°C or lower. It is more preferable that the temperature of at least one of the upper and lower side panels is in the range of 40°C to 180°C.
圧着における圧力は0.1MPa以上10MPa以下が好ましく、圧着による導電性樹脂バンプの破損をより抑制し、電子部品の汚染をより抑制することができる。圧力とは、装置が印加する荷重を接触総面積で除した値である。接触総面積とは、圧着時に転写される導電性樹脂バンプと、それに接する電子部品の電極のうち、いずれか小さい方の1個当たりの面積と電極数との積を言う。 The pressure during bonding is preferably 0.1 MPa or more and 10 MPa or less, which can further prevent damage to the conductive resin bumps due to bonding and further prevent contamination of the electronic components. The pressure is the value obtained by dividing the load applied by the device by the total contact area. The total contact area is the product of the area per smaller one of the conductive resin bumps transferred during bonding and the electrodes of the electronic components in contact with it, and the number of electrodes.
圧着時間は、0.1秒以上20秒以下が好ましく、生産性を向上させることができる。 The bonding time is preferably 0.1 seconds or more and 20 seconds or less, which can improve productivity.
以下、本発明のバンプ付き電子部品の製造方法に用いられる材料について説明する。 The following describes the materials used in the manufacturing method for electronic components with bumps of the present invention.
<供給用基板>
本発明における供給用基板は、電子部品の電極に転写する導電性樹脂バンプを供給するための、導電性樹脂バンプを把持する基板である。供給用基板を構成する材質としては、例えば、有機材料や、ガラスやシリコン等の無機材料等が挙げられる。これらの中でも、圧着時における供給用基板面内の平行度を高めるため、面内平坦性の高い無機材料が好ましい。無機材料から構成される供給用基板としては、例えば、ガラス基板などが好ましい。
<Supply Board>
The supply substrate in the present invention is a substrate that holds conductive resin bumps in order to supply conductive resin bumps to be transferred to electrodes of electronic components. Examples of materials constituting the supply substrate include organic materials and inorganic materials such as glass and silicon. Among these, inorganic materials with high in-plane flatness are preferred in order to increase the parallelism of the supply substrate during pressure bonding. As a supply substrate made of an inorganic material, for example, a glass substrate is preferred.
供給用基板の表面には、離型処理が施されていてもよく、導電性樹脂バンプをより転写しやすくすることができる。また、供給用基板の表面に、さらに柔軟層を有してもよく、導電性樹脂バンプを転写する際の供給用基板の傾きを吸収し、導電性樹脂バンプをより転写しやすくすることができる。 The surface of the supply substrate may be subjected to a release treatment, which makes it easier to transfer the conductive resin bumps. The surface of the supply substrate may also have a flexible layer, which absorbs the inclination of the supply substrate when transferring the conductive resin bumps, making it easier to transfer the conductive resin bumps.
供給用基板上に形成された導電性樹脂バンプの数(以降、形成バンプ数と呼ぶ)は、1サイクルの圧着によって電子部品に転写される導電性樹脂バンプの数(以降、使用バンプ数と呼ぶ)よりも多いことが好ましい。形成バンプ数を使用バンプ数より多くすることにより、一枚の供給用基板を用いて複数回の転写を行うことができ、生産性を向上させることができる。形成バンプ数は、使用バンプ数の2倍以上がより好ましい。ここで、一枚の供給用基板を用いて複数回の転写を行う場合における使用バンプ数とは、複数回の転写のうち、1回あたりの使用バンプ数の中で最も少ない数を言い、形成バンプ数とは、転写前に供給用基板上に形成された全バンプ数を言う。 The number of conductive resin bumps formed on the supply substrate (hereinafter referred to as the number of formed bumps) is preferably greater than the number of conductive resin bumps transferred to an electronic component by one cycle of pressure bonding (hereinafter referred to as the number of used bumps). By making the number of formed bumps greater than the number of used bumps, multiple transfers can be performed using one supply substrate, improving productivity. It is more preferable that the number of formed bumps is at least twice the number of used bumps. Here, the number of used bumps when multiple transfers are performed using one supply substrate refers to the smallest number of bumps used per transfer among the multiple transfers, and the number of formed bumps refers to the total number of bumps formed on the supply substrate before transfer.
<導電性樹脂バンプ>
導電性樹脂バンプは、導電性を有し、導電性樹脂バンプと、それと接する電極とを、電気的に接続する機能を有する。ここで言う「導電性を有する」とは、最終的に電子部品が機能する際に導電性を有していればよく、導電性を、特定の処理によって発現するものであってもよい。例えば、電子部品へ転写する際の加熱や圧力によって導電性を発現するものであってもよい。導電性樹脂バンプの電気抵抗率が1Ω・m以下であることが好ましい。導電性樹脂バンプの電気抵抗率ρは、導電性樹脂バンプに接触し電気的に接続されて回路を成す2つの電極のうち面積の小さい電極の面積を断面積Sとし、前記電極表面からもう一方の電極表面への直線距離をLとし、導電性樹脂バンプの電気抵抗値をRとしたとき、ρ=R×S/Lによって求められる。電極表面に凹凸を有する等によりLが面内で一定ではない場合は、Lが異なる領域毎に前記領域に対応する断面積Sを設定し、それらの並列回路が電気抵抗Rを成すものとしてρ=R(S1/L1+S2/L2+・・・)のように算出することができる。
<Conductive resin bump>
The conductive resin bump has conductivity and has a function of electrically connecting the conductive resin bump and the electrode in contact therewith. Here, "having conductivity" means that the conductive resin bump has conductivity when the electronic component finally functions, and may have conductivity by a specific process. For example, the conductive resin bump may have conductivity by heating or pressure when transferred to the electronic component. The conductive resin bump preferably has an electrical resistivity of 1 Ω·m or less. The electrical resistivity ρ of the conductive resin bump is calculated by ρ=R×S/L, where S is the cross-sectional area of the electrode having a smaller area among two electrodes that are in contact with the conductive resin bump and electrically connected to form a circuit, L is the linear distance from the surface of the electrode to the surface of the other electrode, and R is the electrical resistance value of the conductive resin bump. If L is not constant within the plane due to unevenness on the electrode surface, etc., a cross-sectional area S corresponding to the region with different L is set for each region, and the parallel circuit of these electrodes forms an electrical resistance R, and ρ can be calculated as follows: ρ=R(S 1 /L 1 +S 2 /L 2 +...).
導電性樹脂バンプは、導電性樹脂を含有してもよいし、導電性粒子を含有してもよい。後者の場合、導電性粒子を樹脂中に分散させ、導電性粒子を連続的に接触させることにより電気的な接続を得るものであってもよいし、導電性粒子が焼結により連結することにより、電気的な接続を得るものであってもよい。導電性粒子としては、例えば、銀、金、銅、白金、鉛、スズ、ニッケル、アルミニウム、タングステン、モリブデン、クロム、チタン、インジウム、マグネシウム、亜鉛、鉄、やこれらの合金などの粒子、カーボンブラック粒子、IndiumTinOxide(ITO)、IndiumZincOxide(IZO)等の導電性を有する酸化物の粒子、等が挙げられる。これらを2種以上含有してもよい。また、前記に挙げた材料が樹脂や無機材料によって形成された粒子の表面を覆う構造であっても良い。本発明においては、感光性を有する有機成分および導電性粒子を含有することが好ましい。かかる有機成分としては、例えば、バインダー樹脂、光重合性基を有する化合物、光重合開始剤などが挙げられる。さらに、硬化触媒やその他の添加剤を含有してもよい。 The conductive resin bump may contain a conductive resin or may contain conductive particles. In the latter case, the conductive particles may be dispersed in the resin and the conductive particles may be continuously contacted to obtain an electrical connection, or the conductive particles may be connected by sintering to obtain an electrical connection. Examples of the conductive particles include particles of silver, gold, copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, magnesium, zinc, iron, and alloys thereof, carbon black particles, particles of conductive oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO), etc. Two or more of these may be contained. In addition, the above-mentioned materials may have a structure in which the surface of the particles formed by the resin or inorganic material is covered. In the present invention, it is preferable that the conductive particles contain a photosensitive organic component and conductive particles. Examples of such organic components include binder resins, compounds having photopolymerizable groups, and photopolymerization initiators. It may also contain a curing catalyst or other additives.
バインダー樹脂としては、例えば、アクリル樹脂、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリイミド樹脂、シロキサン変性ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリブタジエン等が挙げられる。これらを2種以上含有してもよい。バインダー樹脂は、カルボキシル基を有することが好ましく、現像性を向上させることができる。 Examples of binder resins include acrylic resins, phenoxy resins, polyester resins, polyurethane resins, polyimide resins, siloxane-modified polyimide resins, polybenzoxazole resins, polyamide resins, polycarbonate resins, and polybutadiene. Two or more of these may be contained. The binder resin preferably has a carboxyl group, which can improve developability.
光重合性基を有する化合物とは、光重合性基を有するモノマーやオリゴマーを意味する。光重合性基としては、例えば、アクリロイル基、メタクリロイル基などが挙げられる。光重合性基を有する化合物としては、例えば、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、グリセリンジアクリレート、トリプロピレングリコールジアクリレート、エトキシ化(4)ビスフェノールAジアクリレート、エトキシ化(10)ビスフェノールAジアクリレート、エチレングリコールジグリシジルエーテルのアクリル酸付加物などの2官能モノマー;ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンエトキシトリアクリレート、グリセリンプロポキシトリアクリレートなどの3官能モノマー;ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールエトキシテトラアクリレート、ジトリメチロールプロパンテトラアクリレートなどの4官能モノマーや、それらのアクリル基をメタクリル基に置換した化合物などが挙げられる。これらを2種以上含有してもよい。 A compound having a photopolymerizable group refers to a monomer or oligomer having a photopolymerizable group. Examples of photopolymerizable groups include acryloyl groups and methacryloyl groups. Examples of compounds having a photopolymerizable group include bifunctional monomers such as ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, 1,4-butanediol diacrylate, glycerin diacrylate, tripropylene glycol diacrylate, ethoxylated (4) bisphenol A diacrylate, ethoxylated (10) bisphenol A diacrylate, and acrylic acid adduct of ethylene glycol diglycidyl ether; trifunctional monomers such as pentaerythritol triacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, trimethylolpropane ethoxy triacrylate, and glycerin propoxy triacrylate; tetrafunctional monomers such as dipentaerythritol hexaacrylate, pentaerythritol tetraacrylate, pentaerythritol ethoxy tetraacrylate, and ditrimethylolpropane tetraacrylate, and compounds in which the acrylic group of these monomers is replaced with a methacrylic group. Two or more of these may be included.
光重合開始剤としては、例えば、ベンゾフェノン誘導体、アセトフェノン誘導体、チオキサントン誘導体、ベンジル誘導体、ベンゾイン誘導体、オキシム系化合物、α-ヒドロキシケトン系化合物、α-アミノアルキルフェノン系化合物、ホスフィンオキサイド系化合物、アントロン化合物、アントラキノン化合物等が挙げられる。これらを2種以上含有してもよい。 Examples of photopolymerization initiators include benzophenone derivatives, acetophenone derivatives, thioxanthone derivatives, benzyl derivatives, benzoin derivatives, oxime compounds, α-hydroxyketone compounds, α-aminoalkylphenone compounds, phosphine oxide compounds, anthrone compounds, anthraquinone compounds, etc. Two or more of these may be contained.
導電性樹脂バンプ1つあたりの面積は、5μm2以上が好ましく、圧着時に十分に密着することから、より転写しやすくすることができる。導電性樹脂バンプ1つあたりの面積は、40μm2以上がより好ましい。一方、導電性樹脂バンプ1つあたりの面積は、600μm2以下が好ましく、供給用基板から剥離するための荷重を抑え、より転写しやすくすることができる。面積は、400μm2以下がより好ましい。 The area per conductive resin bump is preferably 5 μm2 or more, which allows sufficient adhesion during compression bonding and therefore facilitates transfer. The area per conductive resin bump is more preferably 40 μm2 or more. On the other hand, the area per conductive resin bump is preferably 600 μm2 or less, which reduces the load required for peeling from the supply substrate and facilitates transfer. The area is more preferably 400 μm2 or less.
また、導電性樹脂バンプ1つあたりの面積は、転写される電子部品の電極1つあたりの面積の0.3倍以上が好ましく、電子部品との電気的接続を十分に得ることができる。一方、導電性樹脂バンプ1つあたりの面積は、転写される電子部品の電極1つあたりの面積の1.8倍以下が好ましく、1.5倍以下がより好ましく、供給用基板から導電性樹脂バンプを転写する際のバンプの破損をより抑制し、電子部品の汚染をより抑制することができる。 In addition, the area of each conductive resin bump is preferably at least 0.3 times the area of each electrode of the electronic component to be transferred, which allows for sufficient electrical connection with the electronic component. On the other hand, the area of each conductive resin bump is preferably no more than 1.8 times the area of each electrode of the electronic component to be transferred, and more preferably no more than 1.5 times, which allows for better prevention of damage to the bumps when transferring the conductive resin bumps from the supply substrate, and better prevention of contamination of the electronic component.
ここで、導電性樹脂バンプ1つあたりの面積とは、導電性樹脂バンプが形成された供給用基板に平行な面への導電性樹脂バンプ1つの投影図の面積であって、無作為に抽出した導電性樹脂バンプ100個について、光学顕微鏡または走査型電子顕微鏡(SEM)を用いてそれぞれ面積を測定し、その中央値を算出することにより求めることができる。 Here, the area of each conductive resin bump refers to the area of one conductive resin bump projected onto a plane parallel to the supply substrate on which the conductive resin bump is formed, and can be found by measuring the area of each of 100 randomly selected conductive resin bumps using an optical microscope or scanning electron microscope (SEM) and calculating the median.
導電性樹脂バンプの厚みは、0.5μm以上が好ましく、電気抵抗値のばらつきを抑制することができる。また、導電性樹脂バンプと接続する電極との間の接着力を向上することができる。また、より転写しやすくすることができる。一方、導電性樹脂バンプの厚みは、5μm以下が好ましく、3μm以下がより好ましい。 The thickness of the conductive resin bump is preferably 0.5 μm or more, which can suppress the variation in electrical resistance value. It can also improve the adhesive strength between the conductive resin bump and the electrode to which it is connected. It can also make transfer easier. On the other hand, the thickness of the conductive resin bump is preferably 5 μm or less, and more preferably 3 μm or less.
導電性樹脂バンプは粘着性を有することが好ましく、供給用基板に形成された状態でガラス転移点が100℃以下であることが好ましい。 The conductive resin bumps preferably have adhesive properties and a glass transition point of 100°C or less when formed on the supply substrate.
導電性樹脂バンプの形成方法としては、例えば、前述の導電性樹脂バンプを構成する成分および必要に応じて溶剤を混練したペーストを、供給用基板上に塗布する方法などが挙げられる。ペーストが感光性を有する場合、フォトリソグラフィ法により導電性樹脂バンプを形成することができる。より具体的には、供給用基板上にペーストを塗布し、乾燥膜を形成する工程と、前記乾燥膜を露光および現像する工程を有することが好ましい。 The conductive resin bumps can be formed, for example, by applying a paste made by kneading the components constituting the conductive resin bumps described above and, if necessary, a solvent onto a supply substrate. If the paste is photosensitive, the conductive resin bumps can be formed by photolithography. More specifically, the method preferably includes the steps of applying the paste onto the supply substrate to form a dry film, and exposing and developing the dry film.
ペーストの塗布方法としては、例えば、スピナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーターを用いた塗布などが挙げられる。 Examples of paste application methods include rotary application using a spinner, spray application, roll coating, screen printing, and application using a blade coater, die coater, calendar coater, meniscus coater, or bar coater.
乾燥方法としては、例えば、オーブン、ホットプレート、赤外線等による加熱乾燥や、真空乾燥などが挙げられる。乾燥温度は50~180℃が好ましく、乾燥時間は1分間~数時間が好ましい。 Drying methods include, for example, heat drying using an oven, a hot plate, infrared rays, etc., and vacuum drying. The drying temperature is preferably 50 to 180°C, and the drying time is preferably 1 minute to several hours.
乾燥膜の厚みは、導電性樹脂バンプの所望の厚みにあわせて適宜選択することができる。乾燥膜の厚みは、0.5μm以上が好ましい。一方、乾燥膜の厚みは、5μm以下が好ましく、露光時に光が乾燥膜の膜深部まで到達しやすくなり、現像時の剥離を抑制することができる。乾燥膜の膜みは、3μm以下がより好ましい。なお、ペーストの乾燥膜の厚みは、触針式段差計を用いて測定することができる。より具体的には、無作為に選択した3箇所について、触針式段差計(測長:1mm、走査速度:0.3mm/sec)を用いてそれぞれ厚みを測定し、その平均値を算出する。 The thickness of the dry film can be appropriately selected according to the desired thickness of the conductive resin bump. The thickness of the dry film is preferably 0.5 μm or more. On the other hand, the thickness of the dry film is preferably 5 μm or less, which allows light to easily reach deep into the dry film during exposure and suppresses peeling during development. The thickness of the dry film is more preferably 3 μm or less. The thickness of the dry film of the paste can be measured using a stylus step gauge. More specifically, the thickness is measured at three randomly selected locations using a stylus step gauge (measurement length: 1 mm, scanning speed: 0.3 mm/sec) and the average value is calculated.
次に、乾燥膜を露光する。露光光源としては、例えば、高圧水銀ランプ、超高圧水銀ランプ、LEDなどのi線(波長365nm)、h線(波長405nm)、g線(波長436nm)を発する光源などが挙げられる。露光方法としては、例えば、真空吸着露光、プロキシ露光、プロジェクション露光、直描露光などの各種露光方法が挙げられる。 Then, the dried film is exposed to light. Examples of the exposure light source include light sources that emit i-lines (wavelength 365 nm), h-lines (wavelength 405 nm), and g-lines (wavelength 436 nm), such as high-pressure mercury lamps, ultra-high-pressure mercury lamps, and LEDs. Examples of the exposure method include various exposure methods such as vacuum adsorption exposure, proxy exposure, projection exposure, and direct writing exposure.
次に、露光した乾燥膜を現像する。現像方法としては、例えば、露光した乾燥膜を有する供給用基板を静置または回転させながら現像液を乾燥膜面にスプレーする方法、露光した乾燥膜を有する供給用基板を現像液中に浸漬する方法、露光した乾燥膜を有する供給用基板を現像液中に浸漬しながら超音波をかける方法などが挙げられる。 The exposed dry film is then developed. Examples of development methods include spraying a developer onto the surface of the dry film while the supply substrate with the exposed dry film is stationary or rotated, immersing the supply substrate with the exposed dry film in a developer, and applying ultrasonic waves to the supply substrate with the exposed dry film while immersing it in a developer.
現像液としては、アルカリ性の水溶液が好ましい。現像後、リンス液によるリンス処理を施してもよい。リンス液としては、例えば、水、あるいは、水にエタノール、イソプロピルアルコール等のアルコール類または乳酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類を添加した水溶液などが挙げられる。 The developer is preferably an alkaline aqueous solution. After development, a rinse treatment may be performed using a rinse solution. Examples of rinse solutions include water, or an aqueous solution of water to which alcohols such as ethanol or isopropyl alcohol have been added, or esters such as ethyl lactate or propylene glycol monomethyl ether acetate have been added.
<電子部品>
本発明における電子部品とは、基板上に電気的接続を伴って実装され、電気信号の入力もしくは出力、またはその両方に基づいて機能する素子全般を呼ぶ。電子部品は少なくとも一つの電極を有する。電子部品としては、例えば、半導体チップやインターポーザー、光学素子等が挙げられる。これらの中でも、本発明は、光学素子に好ましく適用することができる。光学素子としては、例えば、LED、フォトレジスタ、フォトトランジスタ、フォトダイオード、マイクロミラー、太陽電池等が挙げられる。特に、各辺が100μm以下のμLEDは、本発明の製造方法を用いることにより生産性を高められるため、好ましい。
<Electronic Components>
The electronic component in the present invention refers to a general element that is mounted on a substrate with electrical connection and functions based on the input or output of an electrical signal, or both. The electronic component has at least one electrode. Examples of electronic components include semiconductor chips, interposers, and optical elements. Among these, the present invention can be preferably applied to optical elements. Examples of optical elements include LEDs, photoresistors, phototransistors, photodiodes, micromirrors, solar cells, and the like. In particular, μLEDs with each side of 100 μm or less are preferable because the productivity can be increased by using the manufacturing method of the present invention.
<電極>
電極は、一般的に、金属材料や半導体などから構成される。
<Electrodes>
The electrodes are generally made of a metal material or a semiconductor.
電子部品の電極を有する面の面積全体に占める電極の面積の比率(以下、「電極面積の比率」と記載する場合がある)は、0.1~0.8が好ましい。電極面積の比率を0.1以上とすることにより、電子部品を動作させるために十分な電流を得ることができる。電極面積の比率は、0.2以上がより好ましい。一方、電極面積の比率を0.8以下とすることにより、電極間のショートを抑制することができる。電子部品の電極面積の比率は、0.7以下がより好ましい。 The ratio of the electrode area to the total area of the surface of the electronic component having the electrodes (hereinafter sometimes referred to as the "electrode area ratio") is preferably 0.1 to 0.8. By making the electrode area ratio 0.1 or more, it is possible to obtain a sufficient current to operate the electronic component. It is more preferable that the electrode area ratio is 0.2 or more. On the other hand, by making the electrode area ratio 0.8 or less, it is possible to suppress short circuits between electrodes. It is more preferable that the electrode area ratio of the electronic component is 0.7 or less.
ここで、電子部品の電極を有する面の面積および電極の面積は、その電子部品を実装する基板と平行な面に対する投影図の面積である。電子部品の電極を有する面の面積とその電極の面積は、電子部品実装基板から電子部品を物理的に基板から分離した後、光学顕微鏡または走査型電子顕微鏡(SEM)を用いてそれぞれを観察することにより測定することができる。 Here, the area of the surface of an electronic component having electrodes and the area of the electrodes are the areas of projections onto a plane parallel to the board on which the electronic component is mounted. The area of the surface of an electronic component having electrodes and the area of the electrodes can be measured by physically separating the electronic component from the board on which it is mounted, and then observing each of them using an optical microscope or a scanning electron microscope (SEM).
電極高さは、0.5μm以上が好ましく、圧着時に導電性樹脂バンプが変形した場合であっても、電子部品表面への導電性樹脂バンプの付着をより抑制し、電子部品の汚染をより抑制することができる。一方、電極高さは10.0μm以下が好ましく、電極高さバラつきを抑制し、加工精度を向上させることができる。 The electrode height is preferably 0.5 μm or more, and even if the conductive resin bump is deformed during compression, adhesion of the conductive resin bump to the surface of the electronic component is further suppressed, and contamination of the electronic component is further suppressed. On the other hand, the electrode height is preferably 10.0 μm or less, and variation in electrode height can be suppressed and processing precision can be improved.
電極は、電極面内に高さの異なる構造(以下、「高低差」と記載する場合がある。)を有してもよく、圧着時において、導電性樹脂バンプと電極との接触面積が大きくなり、密着性を向上させてより転写しやすくすることができる。電極1つあたりの高さの差は、0.5μm以上が好ましい。一方、電極1つあたりの高さの差は、5.0μm以下が好ましく、導電性樹脂バンプとの間のボイドを抑制することができる。電極1つあたりの高さの差は、電極高さよりも小さいことが好ましい。なお、電極面内に高低差を形成する方法としては、例えば、電極を形成する位置の電子部品上に予めエッチング等によって凹凸形状を形成し、その上に電極を鍍金等によって形成することにより、電子部品上の凹凸形状を電極表面に反映させる方法や、形成した電極にエッチング等の加工を施す方法などが挙げられる。 The electrodes may have a structure with different heights within the electrode surface (hereinafter, sometimes referred to as "height difference"). During compression, the contact area between the conductive resin bump and the electrode becomes larger, improving adhesion and making it easier to transfer. The height difference per electrode is preferably 0.5 μm or more. On the other hand, the height difference per electrode is preferably 5.0 μm or less, which can suppress voids between the conductive resin bump and the electrode. The height difference per electrode is preferably smaller than the electrode height. Methods for forming height differences within the electrode surface include, for example, a method in which a concave-convex shape is formed in advance by etching or the like on the electronic component at the position where the electrode is to be formed, and then the electrode is formed on top of that by plating or the like, thereby reflecting the concave-convex shape on the electronic component on the electrode surface, and a method in which the formed electrode is processed by etching or the like.
ここで、各部の電極高さおよび電極1つあたりの高さの差の測定方法について、図2を参照して説明する。電極高さBとは、電極が形成された電子部品と垂直な面(以降、垂直面と呼ぶ)から観察した際の、電極において電子部品の電子部品表面から最も離れた点(以降、頂点と呼ぶ)の高さであり、電極頂点を通る水平面から基準面Aに向けて引いた垂線の長さである。ここで、電子部品の基準面Aとは、電子部品表面の電極を除く部分において、電極頂点を通る水平面から電子部品に向けて垂線を引いた時に最も長くなる電子部品表面の位置を基準点として、前記基準点を通る水平面である。ただし、電子部品表面の接線と水平面との成す角が70~110°となる部分は基準点としない。電子部品内に複数の電極を有する場合は、それらの電極高さのうち最も大きい値を電極高さBとする。 Here, the method of measuring the electrode height of each part and the height difference per electrode will be described with reference to Figure 2. Electrode height B is the height of the point (hereinafter referred to as the apex) of the electrode that is farthest from the surface of the electronic component when observed from a plane (hereinafter referred to as the vertical plane) perpendicular to the electronic component on which the electrode is formed, and is the length of a perpendicular line drawn from a horizontal plane passing through the electrode apex to reference plane A. Here, reference plane A of the electronic component is a horizontal plane passing through the reference point, which is the position on the electronic component surface that is the longest when a perpendicular line is drawn from the horizontal plane passing through the electrode apex to the electronic component in the part of the electronic component surface excluding the electrodes. However, the part where the angle between the tangent to the electronic component surface and the horizontal plane is 70 to 110 degrees is not used as the reference point. When an electronic component has multiple electrodes, the largest value of the electrode heights is taken as electrode height B.
電極面内に高低差がある場合、電極1つあたりの高低差Cとは、基準面Aを基準とした各評価点の高さと頂点の高さの差のうち最も大きい値である。評価点とは、電極表面の接線と基準面との成す角Dが70~110°となる部分を除く電極表面の点であって、電極高さと同様に測定される。 If there is a height difference within the electrode surface, the height difference C per electrode is the largest difference between the height of each evaluation point and the height of the apex, based on the reference plane A. The evaluation points are points on the electrode surface excluding the parts where the angle D between the tangent to the electrode surface and the reference plane is 70 to 110°, and are measured in the same way as the electrode height.
<把持用基板>
本発明における把持用基板とは、電子部品を把持する基板である。把持用基板は、その上に複数個の電子部品が把持されていることが好ましい。電子部品を把持する方法としては、例えば、粘着剤等を用いる方法などが挙げられる。把持用基板を構成する材質としては、供給用基板について例示したものが挙げられる。供給用基板との平行度を高めるため、面内平坦性の高い無機材料が好ましく、例えば、シリコン基板などが好ましい。また、把持用基板の表面に、さらに柔軟層を有してもよく、導電性樹脂バンプを転写する際の導電性樹脂バンプの傾きを吸収し、導電性樹脂バンプをより転写しやすくすることができる。導電性樹脂バンプを転写する際の部材の傾きを吸収するための柔軟層を有していてもよい。
<Grip substrate>
The gripping substrate in the present invention is a substrate for gripping an electronic component. The gripping substrate preferably has a plurality of electronic components gripped thereon. Methods for gripping electronic components include, for example, a method using an adhesive. Materials constituting the gripping substrate include those exemplified for the supply substrate. In order to increase the parallelism with the supply substrate, inorganic materials with high in-plane flatness are preferred, for example, silicon substrates are preferred. The surface of the gripping substrate may further have a flexible layer, which can absorb the inclination of the conductive resin bumps when transferring the conductive resin bumps, making it easier to transfer the conductive resin bumps. The gripping substrate may have a flexible layer for absorbing the inclination of the member when transferring the conductive resin bumps.
以下に本発明を実施例および比較例を挙げて詳細に説明するが、本発明の態様はこれらに限定されるものではない。 The present invention will be described in detail below with examples and comparative examples, but the aspects of the present invention are not limited to these.
実施例、比較例において用いた材料は以下の通りである。 The materials used in the examples and comparative examples are as follows:
[感光性成分]
(合成例)アクリル共重合体(A)
窒素雰囲気の反応容器中に、150gのジエチレングリコールモノブチルエーテル(以下、「DGME」)を仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのエチルアクリレート(以下、「EA」)、40gのメタクリル酸2-エチルヘキシル(以下、「2-EHMA」)、20gのn-ブチルアクリレート(以下、「BA」)、15gのN-メチロールアクリルアミド(以下、「MAA」)、0.8gの2,2’-アゾビスイソブチロニトリルおよび10gのDGMEからなる混合物を、1時間かけて滴下した。滴下終了後、さらに80℃で6時間加熱して重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのグリシジルメタクリレート(以下、「GMA」)、1gのトリエチルベンジルアンモニウムクロライドおよび10gのDGMEからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間加熱して付加反応を行った。得られた反応溶液をメタノールで精製することにより未反応不純物を除去し、さらに24時間真空乾燥することにより、共重合比率(質量基準):EA/2-EHMA/BA/GMA/AA=20/40/20/5/15の、不飽和二重結合とカルボキシル基とを有するアクリル共重合体(A)を得た。
[Photosensitive component]
(Synthesis Example) Acrylic Copolymer (A)
In a reaction vessel in a nitrogen atmosphere, 150 g of diethylene glycol monobutyl ether (hereinafter, "DGME") was charged, and the temperature was raised to 80 ° C. using an oil bath. A mixture consisting of 20 g of ethyl acrylate (hereinafter, "EA"), 40 g of 2-ethylhexyl methacrylate (hereinafter, "2-EHMA"), 20 g of n-butyl acrylate (hereinafter, "BA"), 15 g of N-methylol acrylamide (hereinafter, "MAA"), 0.8 g of 2,2'-azobisisobutyronitrile, and 10 g of DGME was dropped into the reaction vessel over 1 hour. After the dropwise addition, the mixture was heated at 80 ° C. for 6 hours to carry out a polymerization reaction. Then, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. Subsequently, a mixture consisting of 5 g of glycidyl methacrylate (hereinafter, "GMA"), 1 g of triethylbenzylammonium chloride, and 10 g of DGME was dropped into the reaction vessel over 0.5 hours. After the dropwise addition was completed, the mixture was heated for an additional 2 hours to carry out the addition reaction. The resulting reaction solution was purified with methanol to remove unreacted impurities, and then vacuum dried for 24 hours to obtain an acrylic copolymer (A) having an unsaturated double bond and a carboxyl group with a copolymerization ratio (by mass): EA/2-EHMA/BA/GMA/AA=20/40/20/5/15.
[光重合開始剤]
・OXE04:“IRGACURE(登録商標)”OXE04
[不飽和二重結合を有する化合物]
・BP-4EA:“ライトアクリレート(登録商標)”BP-4EA(共栄社化学(株)製)
[導電性粒子]
・銀粒子:粒子径(D50)0.3μmの銀粒子
[エポキシ樹脂]
・N-865:“EPICLON(登録商標)”N-865(DIC(株)製)
・YL-980:“jER(登録商標)”YL-980(三菱ケミカル(株)製)
[ノボラック型フェノール樹脂]
・MEH-7600:MEH-7600-4H(明和化成(株)製)
[硬化促進剤]
・C11Z-CN:“キュアゾール(登録商標)”C11Z-CN(四国化成(株)製)
[溶媒]
・PGMEA:プロピレングリコールモノメチルエーテルアセテート
[電子部品]
厚さ5μmの窒化ガリウムからなり、金で形成した2つの電極を有するμLEDチップを用いた。各部の寸法はそれぞれ表1、2に記載の通りである。
[Photopolymerization initiator]
OXE04: "IRGACURE (registered trademark)" OXE04
[Compounds having unsaturated double bonds]
BP-4EA: "Light Acrylate (registered trademark)" BP-4EA (manufactured by Kyoeisha Chemical Co., Ltd.)
[Conductive particles]
Silver particles: silver particles with a particle diameter (D50) of 0.3 μm [epoxy resin]
N-865: "EPICLON (registered trademark)" N-865 (manufactured by DIC Corporation)
YL-980: "jER (registered trademark)" YL-980 (manufactured by Mitsubishi Chemical Corporation)
[Novolac-type phenolic resin]
・MEH-7600: MEH-7600-4H (manufactured by Meiwa Kasei Co., Ltd.)
[Curing accelerator]
C11Z-CN: "Curesol (registered trademark)" C11Z-CN (manufactured by Shikoku Kasei Co., Ltd.)
[solvent]
・PGMEA: Propylene glycol monomethyl ether acetate [electronic parts]
A μLED chip made of gallium nitride with a thickness of 5 μm and having two electrodes made of gold was used. The dimensions of each part are as shown in Tables 1 and 2.
[把持用基板]
30mm×30mmに断裁したシリコンウェハ上に、厚さ5μmの粘着剤層(KR-3704、信越化学工業(株)製)を形成して把持用基板とした。
[Grip substrate]
A 5 μm-thick adhesive layer (KR-3704, manufactured by Shin-Etsu Chemical Co., Ltd.) was formed on a silicon wafer cut to 30 mm×30 mm to prepare a substrate for gripping.
各実施例および比較例における評価方法は以下の通りである。 The evaluation methods for each example and comparative example are as follows:
<電極高さ、電極1つあたりの高さの差>
各実施例および比較例において得られたバンプ付き電子部品から、イオンミリング加工によって電子部品の電極を通る断面を形成した後、走査型電子顕微鏡(SEM)を用いて、該断面を拡大観察し、垂直面から観察した際の、頂点と基準面とを結ぶ垂線の長さを測定し、電極高さとした。また、電極面内に高低差がある場合、基準面を基準とした各評価点の高さと頂点の高さの差のうち最も大きい値を測定し、電極1つあたりの高さの差とした。
<Electrode height, height difference per electrode>
From the electronic components with bumps obtained in each Example and Comparative Example, a cross section passing through the electrodes of the electronic components was formed by ion milling, and the cross section was then enlarged and observed using a scanning electron microscope (SEM), and the length of the perpendicular line connecting the apex and the reference plane when observed from a vertical plane was measured and taken as the electrode height. In addition, when there was a height difference within the electrode plane, the largest value among the differences between the height of each evaluation point based on the reference plane and the height of the apex was measured and taken as the height difference per electrode.
<電子部品の汚染>
各実施例および比較例において得られたバンプ付き電子部品を、SEMを用いて拡大観察し、導電性樹脂の付着の有無を観察した。電子部品の2つの電極の中心を結ぶ線分のうち、電極端部から隣の電極端部までの間の長さをLAとする。また、上記線分のうち、導電性樹脂が付着している部分の長さの合計をLBとする。電子部品100個におけるLB/LAの平均値を電子部品の汚染の値とし、電子部品の汚染の程度を評価した。電子部品の汚染の値は0.3以下であると好ましく、0.1以下であればより好ましい。
<Contamination of electronic components>
The electronic components with bumps obtained in each of the examples and comparative examples were magnified and observed using a SEM to observe whether or not the conductive resin was attached. Of the line segments connecting the centers of the two electrodes of the electronic components, the length from the end of one electrode to the end of the adjacent electrode was defined as LA. In addition, the total length of the above line segments to which the conductive resin was attached was defined as LB. The average value of LB/LA for 100 electronic components was defined as the value of contamination of the electronic components, and the degree of contamination of the electronic components was evaluated. The value of contamination of the electronic components is preferably 0.3 or less, and more preferably 0.1 or less.
<電極への転写率>
各実施例および比較例において得られたバンプ付き電子部品を、SEMを用いて拡大観察し、電子部品の電極上に導電性樹脂バンプが転写されているか否かを観察した。対象となる電極上に、電極の面積に対して転写された導電性樹脂バンプの総面積が電極の面積の0.3倍以上である場合を「導電性樹脂バンプが転写されている」と判断し、全電極数に対する導電性樹脂バンプが転写されている電極数の割合を電極への転写率とした。ここでいう面積とは電子部品に平行な面への投影面積を言う。転写率が高いほど、転写が良好に行われていることを意味する。電極への転写率は0.8以上が好ましく、0.9以上であればより好ましい。
<Transfer rate to electrode>
The electronic components with bumps obtained in each Example and Comparative Example were magnified and observed using a SEM to observe whether the conductive resin bumps were transferred onto the electrodes of the electronic components. When the total area of the conductive resin bumps transferred onto the target electrode was 0.3 times or more the area of the electrode, it was determined that the conductive resin bumps were transferred, and the ratio of the number of electrodes onto which the conductive resin bumps were transferred to the total number of electrodes was determined as the transfer rate to the electrodes. The area referred to here is the projected area onto a plane parallel to the electronic component. The higher the transfer rate, the better the transfer was. The transfer rate to the electrodes is preferably 0.8 or more, and more preferably 0.9 or more.
<バンプ破損率>
図3は、熱圧着完了後の各部材の状態の一例を表しており、バンプ破損率の測定方法を示す模式図である。各実施例において得られた各100個のバンプ付き電子部品の電極3のうち、導電性樹脂バンプが転写されている電極を、SEMを用いて拡大観察し、転写された導電性樹脂バンプの面積が初期面積の0.9倍以下となった場合をバンプ破損とし、電極バンプが転写されている電極数に対するバンプ破損した電極数の割合をバンプ破損率とした。ここで、バンプの初期面積とは、転写前の供給基板上における導電性樹脂バンプ100個の面積の平均値である。観察の対象となる導電性樹脂バンプが転写されている電極とは、対象となる電極上に電極の面積に対して転写された導電性樹脂バンプの総面積が電極の面積の0.3倍以上である電極である。面積とは電子部品に平行な面への投影面積を言う。導電性樹脂バンプが分断している場合は、図3に示すように電極に接触する導電性樹脂バンプによって成す最大の面積Eを用いて判定する。バンプ破損率は0.4以下であると好ましく、0.1以下であればより好ましい。
<Bump damage rate>
FIG. 3 shows an example of the state of each member after completion of thermocompression bonding, and is a schematic diagram showing a method for measuring the bump damage rate. Among the
<剥離力>
各実施例において、熱圧着後に把持用基板と供給用基板を分離する際に、把持用基板に垂直な方向の引張力を、フォースゲージ((株)エー・アンド・デイ製、AD-4932A-50N)を用いて測定した。比較例1~3については熱圧着を行わないため評価対象外とした。剥離力は0.4N以下であると好ましく、0.1N以下であればより好ましい。
<Peeling Force>
In each example, when the holding substrate and the supply substrate were separated after thermocompression bonding, the tensile force in the direction perpendicular to the holding substrate was measured using a force gauge (AD-4932A-50N, manufactured by A&D Co., Ltd.). Comparative Examples 1 to 3 were excluded from evaluation because they did not involve thermocompression bonding. The peel force is preferably 0.4 N or less, and more preferably 0.1 N or less.
(実施例1)
<ペーストの作製>
合成例により得られたアクリル共重合体(A):30重量部、BP-4EA:20重量部、OXE04:3重量部、N-865:10重量部、YL-980:10重量部、MEH-7600:5重量部、C11Z-A:0.2重量部、銀粒子:170重量部、およびPGMEA:30重量部を混合し、ペーストを得た。
Example 1
<Preparation of paste>
The acrylic copolymer (A) obtained in Synthesis Example: 30 parts by weight, BP-4EA: 20 parts by weight, OXE04: 3 parts by weight, N-865: 10 parts by weight, YL-980: 10 parts by weight, MEH-7600: 5 parts by weight, C11Z-A: 0.2 parts by weight, silver particles: 170 parts by weight, and PGMEA: 30 parts by weight were mixed to obtain a paste.
<導電性樹脂バンプの形成>
供給用基板であるガラス基板上に、前記ペーストをスピンコートにより塗布し、塗布膜を形成した。塗布膜を100℃の乾燥オーブン内で10分間乾燥し、厚み1.5μmの乾燥膜を形成した。その後、超高圧水銀ランプを有する露光装置(PEM-6M;ユニオン光学(株)製)を用いて、i線(波長365nm)の露光量2000mJ/cm2で乾燥膜をパターン露光した後、0.1重量%のNa2CO3水溶液を用いて、40秒間シャワー現像し、超純水によりリンス処理を行い、導電性樹脂バンプを形成した。導電性樹脂バンプのサイズは40μm×30μmであり、後述する把持用基板に配置された電子部品の電極に対応する位置に形成した。
<Formation of conductive resin bumps>
The paste was applied by spin coating onto a glass substrate, which was a supply substrate, to form a coating film. The coating film was dried in a drying oven at 100°C for 10 minutes to form a dried film having a thickness of 1.5 μm. Thereafter, the dried film was pattern-exposed with an exposure amount of 2000 mJ/ cm2 of i-line (wavelength 365 nm) using an exposure device (PEM-6M; manufactured by Union Optical Co., Ltd.) having an ultra-high pressure mercury lamp, and then shower-developed for 40 seconds using a 0.1 wt% Na2CO3 aqueous solution, and rinsed with ultrapure water to form a conductive resin bump. The size of the conductive resin bump was 40 μm x 30 μm, and it was formed at a position corresponding to the electrode of the electronic component arranged on the gripping substrate described later.
<熱圧着工程>
把持用基板上に、表1に示す電子部品を200μmのピッチで縦50個×横50個配列した。
<Thermocompression bonding process>
On the holding substrate, 50 electronic components shown in Table 1 were arranged vertically and 50 electronic components horizontally at a pitch of 200 μm.
フリップチップボンダー(東レエンジニアリング(株)製、FC-3000WS)を用いて、以下の操作を行った。供給用基板をステージに固定した。電子部品を配列した把持用基板をピックアップし、把持用基板上の電子部品の電極と、供給用基板の導電性樹脂バンプを対向させ、ステージ温度40℃、ヘッド温度80℃、荷重5N、10秒の条件で熱圧着した。熱圧着完了時、把持用基板を吸着破壊しながらフリップチップボンダーのヘッドを退避させ、把持用基板と供給用基板との積層体を得た。この後、前記積層体の把持用基板と供給用基板を分離した。この工程によって、把持用基板上に配列した電子部品の電極上に導電性樹脂バンプを転写し、バンプ付き電子部品を得た。 The following operations were performed using a flip chip bonder (FC-3000WS, manufactured by Toray Engineering Co., Ltd.). The supply substrate was fixed to the stage. The holding substrate on which electronic components were arranged was picked up, and the electrodes of the electronic components on the holding substrate were placed opposite the conductive resin bumps of the supply substrate, and thermocompression bonding was performed under the following conditions: stage temperature 40°C, head temperature 80°C, load 5N, 10 seconds. When thermocompression bonding was completed, the head of the flip chip bonder was withdrawn while the holding substrate was adsorbed and destroyed, and a laminate of the holding substrate and the supply substrate was obtained. The holding substrate and the supply substrate of the laminate were then separated. Through this process, the conductive resin bumps were transferred onto the electrodes of the electronic components arranged on the holding substrate, and electronic components with bumps were obtained.
(実施例2~11)
電子部品のサイズ、電極高さ、電極1つあたりの高さの差、電極サイズ、バンプサイズを表1、2に示す通りに変更した以外は実施例1と同様にしてバンプ付き電子部品を得た。
(Examples 2 to 11)
Electronic components with bumps were obtained in the same manner as in Example 1, except that the size of the electronic components, the electrode height, the height difference per electrode, the electrode size, and the bump size were changed as shown in Tables 1 and 2.
実施例1~10で用いた電子部品は、バンプとの接合面に電子部品1個当たり、表1,2に記載のサイズの電極を2個有するμLEDである。実施例11で用いた電子部品は、チップ下面に電子部品1個当たり表2に記載のサイズの電極を1個有する縦型μLEDである。 The electronic components used in Examples 1 to 10 were μLEDs having two electrodes of the size shown in Tables 1 and 2 per electronic component on the bonding surface with the bump. The electronic components used in Example 11 were vertical μLEDs having one electrode of the size shown in Table 2 per electronic component on the underside of the chip.
(比較例1)
図4に、比較例1における導電性樹脂バンプの形成方法を示す。(a)に示すように、ガラス基板上に固定した離型フィルム6(商品名PET25AL-5、厚さ25μm、(株)リンテック製)の離型処理面上に、実施例1で用いたものと同じペーストをスピンコートにより塗布し、塗布膜を形成した。塗布膜を100℃の乾燥オーブン内で10分間乾燥し、厚み1.5μmの乾燥膜7を形成した。得られた乾燥膜を、ラミネート装置((株)ニッコーマテリアルズ、CVP-300T)を用いて、把持用基板5の電子部品4が配置された面に、温度80℃、圧力0.1MPa、熱圧着時間20秒間の条件で熱圧着した後、(b)に示すように、離型フィルム6を剥離した。把持用基板の電子部品が配置された面に圧着された乾燥膜上に、超高圧水銀ランプを有する露光装置(PEM-6M;ユニオン光学(株)製)を用いて、i線(波長365nm)の露光量2000mJ/cm2でパターン露光した後、0.1重量%のNa2CO3水溶液を用いて、40秒間シャワー現像し、超純水によりリンス処理を行い、(c)に示す導電性樹脂バンプ2を形成した。導電性樹脂バンプのサイズは16μm×8μmであり、把持用基板に配置された実施例7と同型の電子部品の電極3に対応する位置に形成した。
(Comparative Example 1)
4 shows a method for forming conductive resin bumps in Comparative Example 1. As shown in (a), the same paste as that used in Example 1 was applied by spin coating onto the release-treated surface of a release film 6 (trade name PET25AL-5, thickness 25 μm, manufactured by Lintec Corporation) fixed on a glass substrate to form a coating film. The coating film was dried for 10 minutes in a drying oven at 100° C. to form a
(比較例2~3)
図5に、比較例2~3における導電性樹脂バンプの転写工程を示す。実施例1と同様の手順によって供給用基板を作製した後、(a)に示すように、供給用基板1と電子部品4を配置した把持用基板5を、距離が50μmとなるように対向させ、供給用基板上の導電性樹脂バンプ2と電子部品の電極3が重なるように位置合わせを行い、(b)に示すように、供給用基板の裏面からそれぞれの導電性樹脂バンプにレーザー8の照射を行うことによって、把持用基板上に配列した電子部品の電極上に導電性樹脂バンプを転写し、バンプ付き電子部品を得た。レーザーは波長355nm、パルス幅8n秒、導電性樹脂バンプの短辺と長辺に対してそれぞれ1.5倍となるビームサイズとした。導電性樹脂バンプと電子部品、電極のサイズは表2の通りである。
(Comparative Examples 2 to 3)
5 shows the transfer process of the conductive resin bumps in Comparative Examples 2 and 3. After preparing the supply substrate in the same manner as in Example 1, as shown in (a), the
各実施例および比較例の主な構成と評価結果を表1、2に示す。 The main configurations and evaluation results of each example and comparative example are shown in Tables 1 and 2.
1:供給用基板
2:導電性樹脂バンプ
3:電極
4:電子部品
5:把持用基板
6:離型フィルム
7:乾燥膜
8:レーザー
A:電子部品の基準面
B:電極高さ
C:電極1つあたりの高低差
D:電極表面の接線と基準面の成す角
1: Supply substrate 2: Conductive resin bump 3: Electrode 4: Electronic component 5: Holding substrate 6: Release film 7: Dry film 8: Laser A: Reference surface of electronic component B: Electrode height C: Height difference per electrode D: Angle between tangent of electrode surface and reference surface
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202480005206.5A CN120303775A (en) | 2023-01-31 | 2024-01-19 | Method for manufacturing electronic component with bump |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-012537 | 2023-01-31 | ||
JP2023012537 | 2023-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024162036A1 true WO2024162036A1 (en) | 2024-08-08 |
Family
ID=92146300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/001417 WO2024162036A1 (en) | 2023-01-31 | 2024-01-19 | Method for manufacturing electronic component with bump |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN120303775A (en) |
TW (1) | TW202439875A (en) |
WO (1) | WO2024162036A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08102464A (en) * | 1994-09-30 | 1996-04-16 | Ricoh Co Ltd | Bump electrode structure and its forming method, and connection structure using bump electrode and its connection method |
JP2006302929A (en) * | 2005-04-15 | 2006-11-02 | Matsushita Electric Ind Co Ltd | PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM |
JP2022055760A (en) * | 2020-09-29 | 2022-04-08 | 東レ株式会社 | Method for manufacturing substrate with conductive pattern and method for manufacturing led mounting circuit board |
-
2024
- 2024-01-19 CN CN202480005206.5A patent/CN120303775A/en active Pending
- 2024-01-19 WO PCT/JP2024/001417 patent/WO2024162036A1/en active Application Filing
- 2024-01-24 TW TW113102659A patent/TW202439875A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08102464A (en) * | 1994-09-30 | 1996-04-16 | Ricoh Co Ltd | Bump electrode structure and its forming method, and connection structure using bump electrode and its connection method |
JP2006302929A (en) * | 2005-04-15 | 2006-11-02 | Matsushita Electric Ind Co Ltd | PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM |
JP2022055760A (en) * | 2020-09-29 | 2022-04-08 | 東レ株式会社 | Method for manufacturing substrate with conductive pattern and method for manufacturing led mounting circuit board |
Also Published As
Publication number | Publication date |
---|---|
TW202439875A (en) | 2024-10-01 |
CN120303775A (en) | 2025-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3094948B2 (en) | Method of connecting circuit board for mounting semiconductor element and semiconductor element | |
US5783465A (en) | Compliant bump technology | |
KR101079979B1 (en) | Electronic part mounting structure and its manufacturing method | |
JP6150021B2 (en) | Method for manufacturing conductive pattern forming member | |
CN111149056B (en) | Photosensitive conductive paste and conductive pattern forming film | |
WO2019107508A1 (en) | Semiconductor device manufacturing method, curable resin composition for temporary fixation material, film for temporary fixation material, and laminated film for temporary fixation material | |
WO2024162036A1 (en) | Method for manufacturing electronic component with bump | |
JP2022055760A (en) | Method for manufacturing substrate with conductive pattern and method for manufacturing led mounting circuit board | |
JP2008141114A (en) | Method for manufacturing semiconductor chip for stacked chip and method for manufacturing stacked chip | |
JP6596957B2 (en) | Structure having conductor circuit, method for producing the same, and photosensitive resin composition | |
JP2023097511A (en) | Electronic component mounting substrate and display | |
WO2023157709A1 (en) | Method for manufacturing connection structure, and transfer method for singulated adhesive film | |
KR102722567B1 (en) | Challenge paste, printed wiring board, manufacturing method of printed wiring board, manufacturing method of printed circuit board | |
JPWO2017208842A1 (en) | Laminate pattern forming substrate and touch panel manufacturing method | |
KR20250028244A (en) | Method for manufacturing a bump-equipped structure and a substrate having a bump pattern | |
TW202324805A (en) | Manufacturing method of LED mounting substrate | |
CN100367464C (en) | Method for manufacturing metal bump | |
WO2022102245A1 (en) | Production method for substrate having conductive pattern, and transfer device | |
JP6717439B1 (en) | Laminated material | |
JP3968051B2 (en) | Semiconductor device and manufacturing method thereof, and semiconductor device precursor and manufacturing method thereof | |
JP2000044922A (en) | Photocurable composition containing flux activator containing active hydrogen and use thereof | |
CN118103965A (en) | Manufacturing method of LED mounting substrate | |
WO2024024192A1 (en) | Manufacturing method for light emitting device, and black transfer film | |
JP2004265913A (en) | Circuit board member and method of manufacturing circuit board | |
WO2018029749A1 (en) | Production method for conductive pattern-forming member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2024504478 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24749989 Country of ref document: EP Kind code of ref document: A1 |