WO2024161628A1 - Control device and switching control method - Google Patents
Control device and switching control method Download PDFInfo
- Publication number
- WO2024161628A1 WO2024161628A1 PCT/JP2023/003571 JP2023003571W WO2024161628A1 WO 2024161628 A1 WO2024161628 A1 WO 2024161628A1 JP 2023003571 W JP2023003571 W JP 2023003571W WO 2024161628 A1 WO2024161628 A1 WO 2024161628A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- server
- virtual
- instruction
- virtual router
- controller
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 101
- 238000005516 engineering process Methods 0.000 claims abstract description 21
- 238000012546 transfer Methods 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 claims abstract 2
- 230000008569 process Effects 0.000 claims description 96
- 238000013508 migration Methods 0.000 claims description 13
- 230000005012 migration Effects 0.000 claims description 13
- 238000004891 communication Methods 0.000 description 142
- 230000006870 function Effects 0.000 description 68
- 238000012545 processing Methods 0.000 description 56
- 238000010586 diagram Methods 0.000 description 48
- 230000004044 response Effects 0.000 description 33
- 230000008859 change Effects 0.000 description 30
- 230000000903 blocking effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 238000012790 confirmation Methods 0.000 description 4
- 230000015654 memory Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0895—Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0896—Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
- H04L41/0897—Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities by horizontal or vertical scaling of resources, or by migrating entities, e.g. virtual resources or entities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/58—Association of routers
- H04L45/586—Association of routers of virtual routers
Definitions
- the present invention relates to a control device and a switching control method.
- vRAN virtualized RAN
- base station functions equivalent to parent stations in 5G (5th Generation) for example, CU (Central Unit) and DU (Distributed Unit)
- 5G 5th Generation
- CU Central Unit
- DU Distributed Unit
- the present invention aims to provide technology that can easily switch base station functions in a wireless access network.
- One aspect of the present invention is a control device that uses a protocol that uses virtualization technology to make default gateways redundant in a source server and a destination server that realize a forwarding function and a base station function in a wireless access network, and that groups the forwarding function realized in the source server and the forwarding function realized in the destination server, and switches the route by stopping the forwarding function realized in the source server or by changing the priority value and transitioning it to a standby state.
- One aspect of the present invention is a switching control method that uses a protocol that uses virtualization technology to make default gateways redundant in a source server and a destination server that realize a forwarding function and a base station function in a wireless access network, groups the forwarding function realized in the source server and the forwarding function realized in the destination server, and switches the route by stopping the forwarding function realized in the source server or changing the priority value and transitioning it to a standby state.
- the present invention makes it possible to easily switch base station functions in a wireless access network.
- FIG. 1 is a diagram illustrating an example of a configuration of a wireless access network system according to a first embodiment. 1 is a diagram for explaining an overview of a radio access network system in a first embodiment.
- FIG. FIG. 2 is a diagram illustrating a configuration example of a NW controller according to the first embodiment.
- FIG. 2 is a sequence diagram showing a processing flow of the wireless access network system in the first embodiment.
- 10 is a flowchart showing a flow of a communication confirmation process in the wireless access network system according to the first embodiment.
- FIG. 11 is a diagram illustrating an example of a configuration of a wireless access network system according to a second embodiment.
- FIG. 11 is a sequence diagram showing a processing flow of the radio access network system according to the second embodiment.
- FIG. 13 is a diagram illustrating an example of a configuration of a wireless access network system according to a third embodiment.
- FIG. 13 is a sequence diagram showing the flow of processing (part 1) of the wireless access network system in the third embodiment.
- FIG. 13 is a sequence diagram showing the flow of processing (part 2) of the wireless access network system in the third embodiment.
- FIG. 13 is a sequence diagram showing the flow of processing (part 2) of the wireless access network system in the third embodiment.
- FIG. 13 is a diagram illustrating an example of a configuration of a wireless access network system in a fourth embodiment.
- FIG. 13 is a diagram for explaining an overview of a radio access network system in a fourth embodiment.
- FIG. 13 is a sequence diagram showing a processing flow of the radio access network system in the fourth embodiment.
- FIG. 13 is a diagram illustrating an example of the configuration of a wireless access network system in a fifth embodiment.
- FIG. 13 is a sequence diagram showing the flow of processing (part 1) of the wireless access network system in the fifth embodiment.
- FIG. 13 is a sequence diagram showing the flow of processing (part 2) of the wireless access network system in the fifth embodiment.
- FIG. 13 is a sequence diagram showing the flow of processing (part 2) of the wireless access network system in the fifth embodiment.
- FIG. 23 is a sequence diagram showing a processing flow of the radio access network system in the sixth embodiment.
- FIG. 23 is a sequence diagram showing a processing flow of the wireless access network system in the seventh embodiment.
- FIG. 23 is a sequence diagram showing the processing flow of the radio access network system in the ninth embodiment.
- FIG. 1 is a diagram showing a configuration example of a radio access network system 100 in the first embodiment.
- the radio access network system 100 in the first embodiment is, for example, a fifth generation mobile communication system (hereinafter referred to as "5G").
- the radio access network system 100 includes a radio station 10, a server 20, a plurality of servers 30-1 and 30-2, a 5GC 40, a NW controller 50, and a network 60.
- the number of radio stations 10, servers 20, and servers 30 included in the radio access network system 100 is not particularly limited. In the following description, when the servers 30-1 and 30-2 are not particularly distinguished from each other, they are simply referred to as server 30.
- the wireless station 10 is, for example, a Radio Unit (RU) in the 5G communication standard.
- the wireless station 10 has one or more antennas and performs wireless communication with a terminal.
- the wireless station 10 receives a wireless signal transmitted from the terminal, converts the received wireless signal into an electrical signal, and transmits it to the server 20.
- Server 20 is a server that realizes base station functions using virtualization technology. Specifically, server 20 realizes the functions of a DU (Distributed Unit) in the 5G communication standard and the functions of a layer 2 router as a base station function using virtualization technology. As a result, server 20 virtually comprises a virtual DU 21 and a virtual router 22. Note that the virtualization of server 20 may use any of the following technologies: host OS (Operation System) type, hypervisor type, or container type.
- host OS Operating System
- hypervisor type Hypervisor type
- container type container type
- the virtual DU 21 performs the same processing as the DU in the 5G communication standard.
- the virtual DU 21 is a virtualized wireless signal processing unit that processes wireless signals received by the wireless station 10.
- the virtual router 22 is a virtualized forwarding device with a route control function.
- the virtual router 22 is a forwarding device that supports the Virtual Router Redundancy Protocol (VRRP).
- VRRP Virtual Router Redundancy Protocol
- Server 30 is a server that realizes base station functions using virtualization technology. Specifically, server 30 realizes the functions of a CU (Centralized Unit) in the 5G communication standard and the functions of a layer 2 router as a base station function using virtualization technology. As a result, server 30 virtually comprises a virtual CU 31 and a virtual router 32. Note that the virtualization of server 30 may use any of the following technologies: host OS type, hypervisor type, or container type.
- CU Centralized Unit
- Server 30-1 and server 30-2 are installed in different physical locations.
- server 30-1 is the source server
- server 30-2 is the destination server installed in a new location.
- the virtual CU 31 performs the same processing as a CU in the 5G communication standard.
- the virtual CU 31 is a virtualized data processing unit that performs data processing.
- the virtual router 32 is a virtualized transfer device with a route control function.
- the virtual router 32 is a VRRP-compatible transfer device.
- the 5GC40 is a core network device for 5G.
- the NW controller 50 controls routers (e.g., virtual router 22 and virtual router 32) that perform route control in the wireless access network system 100.
- the NW controller 50 is described as controlling the virtual router 32 that is realized on the server 30.
- the NW controller 50 is one aspect of a control device.
- Network 60 is an external network.
- Network 60 is, for example, the Internet.
- the wireless station 10, server 20, servers 30-1, 30-2, and 5GC 40 are devices located within the same network.
- the optical transmission path connecting the wireless station 10, server 20, servers 30-1, 30-2, and 5GC 40 is configured by an APN (All Photonics Network).
- FIG. 2 is a diagram for explaining an overview of the wireless access network system 100 in the first embodiment.
- the old edge site represents the location where the source server 30-1 is located
- the new edge site represents the location where the destination server 30-2 is located.
- the servers 20 and 30-1 are communicating.
- a signal received by the virtual DU 21 of the server 20 is transferred by the virtual router 22 to the virtual router 32-1 of the server 30-1.
- the virtual CU 31-1 of the server 30 acquires the signal transferred from the virtual router 22 via the virtual CU 31-1.
- server 30 with CU function is moved to a location different from where server 30-1 is located due to a change in the network.
- a protocol e.g., VRRP
- the NW controller 50 performs control so that there are no multiple nodes (e.g., server 30) that hold the same IP address on the APN.
- server 30-2 is newly installed in a location within the same network as server 30-1, but at a physical distance from the location where server 30-1 is located, and virtual CU 31-2 and virtual router 32-2 are started on server 30-2.
- server 30-2 creates virtual CU 31-2 with the same contents as virtual CU 31-1, which is the source of switching.
- NW controller 50 sets VRRP for virtual router 32-1 and virtual router 32-2.
- NW controller 50 sets the same VIP for virtual router 32-1 and virtual router 32-2 and groups them.
- the virtual router 32 with the highest priority is set as the master router by VRRP.
- the priority of the original virtual router 32-1 is the highest. Therefore, the virtual router 32-1 is set as the master router, and the virtual router 32-2 is set as the backup router.
- the NW controller 50 stops the original virtual router 32-1.
- the virtual router 32-2 detects that the virtual router 32-1 has gone down and sets itself as the master router.
- the NW controller 50 may change the priority value of the original virtual router 32-1 (for example, the priority of virtual router 32-1 ⁇ the priority of virtual router 32-2) and move the virtual router 32-1 to a standby state. In this case, the virtual router 32-2 sets itself as the master router by comparing the priority with that of the virtual router 32-1.
- the virtual router 32-2 notifies the virtual MAC address corresponding to the VIP using GARP (Gratuitous Address Resolution Protocol).
- GARP Gramuitous Address Resolution Protocol
- the virtual router 22 updates the ARP table according to the notified virtual MAC address. As a result, communication becomes possible between the switching destination server 30-2 and server 20. This makes it possible to migrate to any location without changing the settings of the base station function (for example, virtual CU 31).
- FIG. 3 is a diagram showing an example of the configuration of the NW controller 50 in the first embodiment.
- the NW controller 50 includes a communication unit 51 and a control unit 52.
- the communication unit 51 communicates with other devices.
- the communication unit 51 communicates with the server 30.
- the control unit 52 controls the entire NW controller 50.
- the control unit 52 is configured using one or more processors such as a CPU (Central Processing Unit) and one or more memories.
- the control unit 52 realizes the functions of an instruction unit 521 and a communication control unit 522 by the one or more processors executing programs.
- the instruction unit 521 issues various instructions to the servers 20 and 30.
- the instructions issued by the instruction unit 521 include, for example, an instruction to start the virtual routers 22 and 32, an instruction to check communication, an instruction to create a VPPR group, and an instruction to shut down the virtual routers 22 and 32.
- the instruction to start the virtual routers 22 and 32 is an instruction to the servers 20 and 30 to start the virtual routers 22 and 32.
- the instruction to check communication is an instruction to perform a communication check between the virtual routers.
- the instruction to create a VPPR group is an instruction to create a group by VPPR between the virtual routers.
- the instruction to create a VPPR group includes at least a VIP (Virtual IP) and a virtual MAC (Media Access Control) address.
- the VIP is an IP address used to group virtual routers installed on the same network (same segment).
- the shutdown instruction for the virtual routers 22, 32 is an instruction to change the state of the virtual routers 22, 32.
- changing the state of the virtual routers 22, 32 means transitioning the virtual routers 22, 32 from master routers to backup routers.
- the shutdown instruction may include an instruction to stop the functions of the virtual routers 22, 32, or an instruction to change the priority of the virtual routers 22, 32. If the shutdown instruction includes an instruction to change the priority of the virtual routers, it includes information indicating a priority such that the priority of the source virtual routers 22, 32 is lower than the priority of the destination virtual routers 22, 32. For example, the shutdown instruction may include information to change the priority to "1".
- the server 20, 30 that receives the shutdown instruction stops the function of the virtual router 22, 32. If the shutdown instruction includes an instruction to change the priority of the virtual router, the server 20, 30 that receives the shutdown instruction changes the priority of the virtual router 22, 32. For example, the server 20, 30 changes the priority of the virtual router 22, 32 to the specified priority.
- the communication control unit 522 performs various controls to enable communication between the source server 30-1 and the destination server 30-2. For example, the communication control unit 522 calculates the route between the virtual router 32-1 of the source server 30-1 and the virtual router 32-2 of the destination server 30-2, ensures communication in the physical layer (for example, ensures wavelengths in the APN), or ensures communication in the logical network (for example, changes the settings of a switch or router).
- the communication control unit 522 calculates the route between the virtual router 32-1 of the source server 30-1 and the virtual router 32-2 of the destination server 30-2, ensures communication in the physical layer (for example, ensures wavelengths in the APN), or ensures communication in the logical network (for example, changes the settings of a switch or router).
- FIG. 4 is a sequence diagram showing the flow of processing in the wireless access network system 100 in the first embodiment. Note that in the processing in FIG. 4, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 32.
- Server 20 and server 30-1 are in communication (step S101). Assume that server 30-2 is installed in a location physically separated from server 30-1. Server 30-2 creates a virtual CU 31-2 with the same contents as virtual CU 31-1 of server 30-1 (step S102). In response to a user operation, instruction unit 521 of NW controller 50 sends a virtual router startup instruction to server 30-2 via communication unit 51 to cause server 30-2 to start virtual router 32-2 (step S103).
- the server 30-2 receives the start-up instruction sent from the NW controller 50. In response to the received start-up instruction, the server 30-2 starts the virtual router 32-2 using virtualization technology. When the start-up of the virtual router 32-2 is completed, the server 30-2 sends a start-up completion report to the NW controller 50 (step S104).
- the communication unit 51 of the NW controller 50 receives the completion report sent from the server 30-2.
- the instruction unit 521 sends a communication check instruction for the server 30-2 to the server 30-1 via the communication unit 51 (step S105). As a result, the server 30-1 performs a communication check process for the server 30-2 (step S106). The communication check process will be described later.
- the server 30-1 transmits a communication check completion report to the NW controller 50 indicating that the communication check has been completed (step S107).
- the server 30-1 transmits a communication check completion report to the NW controller 50 including a communication check result indicating that communication check has been completed for server 30-2.
- the communication unit 51 of the NW controller 50 receives the communication check completion report transmitted from the server 30-1.
- the instruction unit 521 of the NW controller 50 refers to the communication check result contained in the communication check completion report.
- the instruction unit 521 of the NW controller 50 transmits an instruction to create a VRRP group to the servers 30-1 and 30-2 via the communication unit 51 (step S108).
- the servers 30-1 and 30-2 receive the VRRP group creation instruction sent from the NW controller 50.
- the servers 30-1 and 30-2 create a VRRP group in response to the received VRRP group creation instruction.
- the virtual router 32-1 of the server 30-1 and the virtual router 32-2 of the server 30-2 compare their priorities to set the master router and the backup router. Here, it is assumed that the virtual router 32-1 is set as the master router and the virtual router 32-2 is set as the backup router (steps S109 and S110).
- the servers 30-1 and 30-2 send a VRRP group completion report to the NW controller 50 indicating that the creation of the VRRP group has been completed (step S111).
- the communication unit 51 of the NW controller 50 receives the VRRP group completion reports sent from the servers 30-1 and 30-2, respectively.
- the instruction unit 521 of the NW controller 50 After receiving the VRRP group completion reports from each of servers 30-1 and 30-2, the instruction unit 521 of the NW controller 50 transmits an instruction to shut down the virtual router 32-1 to the switching source server 30-1 via the communication unit 51 (step S112). At this time, the instruction unit 521 transmits a shut-down instruction including either an instruction to stop the function of the virtual router 32-1 or an instruction to change the priority of the virtual router 32-1 to the switching source server 30-1 via the communication unit 51 according to a predetermined setting. Here, it is assumed that the instruction unit 521 transmits a shut-down instruction including an instruction to stop the function of the virtual router 32-1 to the switching source server 30-1 via the communication unit 51.
- the server 30-1 receives the shutdown instruction sent from the NW controller 50.
- the server 30-1 changes the state of the virtual router 32-1 according to the instruction contained in the shutdown instruction. For example, if the shutdown instruction contains an instruction to stop the function of the virtual router 32-1, the server 30-1 stops the function of the virtual router 32-1. As a result, the advertisement signal is no longer sent from the virtual router 32-1 to the virtual router 32-2.
- the advertisement signal is a signal that indicates that the master router is in a state where communication is possible.
- the virtual router 32-2 of the server 30-2 fails to receive an advertisement signal from the virtual router 32-1 for a certain period of time, it detects that the master router, virtual router 32-1, has gone down (step S113). After that, the virtual router 32-1 sets itself as the master router (step S114). After setting the master router, the virtual router 32-1 notifies the virtual MAC address corresponding to the VIP by GARP (step S115).
- the wireless station 10 receives the virtual MAC address notified from the virtual router 32-1.
- the wireless station 10 updates the ARP table in accordance with the received virtual MAC address (step S116). For example, the wireless station 10 updates the ARP table by changing the output port addressed to the virtual MAC address to the port through which the virtual MAC address was received. After updating the ARP table, the wireless station 10 notifies the server 30-2 that communication is now possible (step S117).
- step S112 if the instruction unit 521 sends a cut-off instruction including an instruction to change the priority of the virtual router 32-1 to the switching source server 30-1 via the communication unit 51, the server 30-1 changes the priority of the virtual router 32-1.
- the cut-off instruction includes information indicating a priority (for example, priority "1") such that the priority of the switching source virtual router 32 (here, virtual router 32-1) is lower than the priority of the switching destination virtual router 32 (here, virtual router 32-2). Therefore, the server 30-1 sets the priority of the virtual router 32-1 to "1".
- step S113 virtual router 32-1 and virtual router 32-2 compare their priorities.
- the priority of virtual router 32-2 is higher than the priority of virtual router 32-1, so virtual router 32-2 sets itself as the master router (step S114), and virtual router 32-1 sets itself as the backup router.
- step S114 virtual router 32-1 sets itself as the backup router.
- step S114 virtual router 32-1 sets itself as the backup router.
- step S114 virtual router 32-1 goes into a standby state.
- the NW controller 50 can change the priority of virtual router 32-1 of the switching source server 30-1 to make it the backup router, making it possible to switch routes without stopping the server.
- FIG. 5 is a flowchart showing a flow of a communication confirmation process of the radio access network system 100 in the first embodiment.
- the server 30-1 receives the communication check instruction sent from the NW controller 50 (step S201).
- the virtual router 32-1 of the server 30-1 performs a communication check with the virtual router 32-2 of the server 30-2 (step S202).
- the virtual router 32-1 determines whether or not the communication check with the virtual router 32-2 has been successful (step S203).
- step S203-OK If the virtual router 32-1 determines that the communication with the virtual router 32-2 has been confirmed (step S203-OK), the communication confirmation process ends. On the other hand, if the virtual router 32-1 determines that the communication with the virtual router 32-2 has not been confirmed (step S203-NG), it notifies the NW controller 50 that the communication with the virtual router 32-2 has not been confirmed. Communication with the virtual router 32-2 has not been confirmed when no response is obtained from the virtual router 32-2 in response to the signal sent from the virtual router 32-1.
- the communication unit 51 of the NW controller 50 receives the notification sent from the virtual router 32-1.
- the communication control unit 522 calculates the route between the virtual routers 32-1 and 32-2 (step S204).
- the communication control unit 522 ensures physical layer communication between the servers 30-1 and 30-2 (step S205).
- the communication control unit 522 ensures logical network communication between the servers 30-1 and 30-2 (step S206).
- step S207 the instruction unit 521 again sends an instruction to server 30-1 to check communication. This causes the process of step S202 to be executed again. In this way, the NW controller 50 is controlled so that communication between the switching source server 30 and the switching destination server 30 is cut off upon confirmation.
- the NW controller 50 uses VPPR in the source server 30-1 and the destination server 30-2 that realize the virtual CU 31 and the virtual router 32 by using virtualization technology, and groups the virtual router 32-1 realized in the source server 30-1 and the virtual router 32-2 realized in the destination server 30-2, and has a control unit 52 that switches the route by stopping the virtual router 32-1 realized in the source server 30-1 or changing the priority and putting it in a standby state.
- VRRP which is an existing technology.
- network control such as CU switching in a short time. Therefore, it becomes possible to easily switch base station functions in the radio access network.
- Second Embodiment In the second embodiment, a configuration for performing network control in accordance with the movement of an MEC will be described.
- FIG. 6 is a diagram showing an example of the configuration of a radio access network system 100a in the second embodiment.
- the radio access network system 100a includes a radio station 10, a server 20, a plurality of servers 30-1, 30-2, a 5GC 40, a NW controller 50, a network 60, an MEC 65, and an MEC controller 67.
- the radio access network system 100a differs in configuration from the radio access network system 100 in that it further includes an MEC 65 and an MEC controller 67. Other basic operations are the same as those of the radio access network system 100. The following description will focus on the differences from the radio access network system 100.
- MEC65 is a device that constitutes edge computing.
- MEC65 is composed of, for example, part of 5GC40 (e.g., UPF (User Plane Function)/SMF (Session Management Function)) and a general-purpose server.
- 5GC40 e.g., UPF (User Plane Function)/SMF (Session Management Function)
- UPF User Plane Function
- SMF Session Management Function
- the MEC controller 67 is a device that controls the operation of the MEC 65.
- FIG. 7 is a sequence diagram showing the flow of processing in the wireless access network system 100a in the second embodiment.
- the same processes as those in FIG. 4 are denoted by the same reference numerals as in FIG. 4, and the description thereof will be omitted. Note that in the processing in FIG. 7, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 32.
- MEC controller 67 starts up MEC 65 (step S301). Then, it executes the processes from step S101 onwards.
- the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51.
- a blocking instruction including an instruction to change the priority of the virtual router 32-1
- the server 30-1 which is the switching source
- the virtual CU 31-2 that communicates with the moved MEC 65 is started, and network control is performed using VRRP to prevent duplication of IP addresses within the same network.
- network control for flexible function deployment in a virtual radio access network can be easily achieved by using the existing technology VRRP.
- network control such as switching of base station functions (e.g., CU) can be performed in a short time.
- FIG. 8 is a diagram showing an example of the configuration of a radio access network system 100b in the third embodiment.
- the radio access network system 100b includes a radio station 10, a plurality of servers 20, a plurality of servers 30-1, 30-2, a 5GC 40, a NW controller 50, a network 60, and a base station controller 70.
- the radio access network system 100b differs in configuration from the radio access network system 100 in that it further includes a base station controller 70.
- the number of radio stations 10, servers 20, and servers 30 included in the radio access network system 100b is not particularly limited. Other basic operations are the same as those of the radio access network system 100. The following description will focus on the differences from the radio access network system 100.
- the communication unit 51 of the NW controller 50 communicates with the server 30 and with the base station controller 70.
- the base station controller 70 manages and controls the CU (e.g., virtual CU 31) or DU (e.g., virtual DU 21) functions, and issues instructions such as updating the OS of the CU or DU.
- the base station controller 70 manages and controls the virtual CU 31-1 and CU 31-2 functions.
- FIG. 9 is a sequence diagram showing the flow of processing (part 1) of the wireless access network system 100b in the third embodiment. Note that FIG. 9 describes a pattern in which the OS update destination is not switched back.
- FIG. 9 the same processes as in FIG. 4 are denoted with the same reference numerals as in FIG. 4 and the description is omitted.
- the shutdown instruction is described as including an instruction to stop the function of the virtual router 32.
- the base station controller 70 sends an OS update instruction to the server 30-2 to have the switching destination server 30-2 start up with the updated OS (step S401).
- the server 30-2 receives the OS update instruction sent from the base station controller 70.
- the server 30-2 starts up the virtual CU 31-2 with the new OS of the virtual CU 31-1 of the server 30-1 (step S402).
- the base station controller 70 instructs the NW controller 50 to start up the virtual router under the virtual CU 31-2 that is the target of the OS update (step S403).
- the NW controller 50 transmits a virtual router startup instruction to the server 30-2 via the communication unit 51 to cause the server 30-2 to start the virtual router 32-2 (step S404). Then, the processes from step S104 to step S111 are executed. After the process of step S111, the communication unit 51 of the NW controller 50 transmits an OS update preparation completion report to the base station controller 70 indicating that preparation for the OS update has been completed (step S405).
- the base station controller 70 receives the OS update preparation completion report sent from the NW controller 50. In response to the received OS update preparation completion report, the base station controller 70 sends a switching instruction from virtual CU 31-1 to virtual CU 31-2 to the NW controller 50 (step S406).
- the communication unit 51 of the NW controller 50 receives the switching instruction sent from the base station controller 70. After receiving the switching instruction, the instruction unit 521 sends an instruction to shut down the virtual router 32-1 to the server 30-1, which is the switching source, via the communication unit 51 (step S407). Then, the processing from step S113 onwards is executed.
- the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51.
- a blocking instruction including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51.
- FIGS. 10 and 11 are sequence diagrams showing the flow of processing (part 2) of the wireless access network system 100b in the third embodiment. Note that in FIG. 10 and FIG. 11, a pattern of switching back the OS update destination is explained. In FIG. 10 and FIG. 11, the same processes as in FIG. 4 are assigned the same reference numerals as in FIG. 4, and explanations are omitted. Note that in the processing in FIG. 10 and FIG. 11, the shutdown instruction is explained as including an instruction to stop the function of the virtual router 32.
- the base station controller 70 sends an OS update instruction to the server 30-2 (step S501).
- the server 30-2 receives the OS update instruction sent from the base station controller 70.
- the server 30-2 creates a virtual CU 31-2 with the same contents as the virtual CU 31-1 of the server 30-1 (step S502).
- the base station controller 70 instructs the NW controller 50 to start up the virtual router under the virtual CU 31-2 that is the target of the OS update (step S503).
- the instruction unit 521 of the NW controller 50 sends a virtual router startup instruction to the server 30-2 via the communication unit 51 to cause the server 30-2 to start the virtual router 32-2 (step S504). Then, the processes from step S104 to step S111 are executed. After the process of step S111, the communication unit 51 of the NW controller 50 sends a backup destination preparation completion report to the base station controller 70 indicating that the backup destination preparation has been completed (step S505).
- the base station controller 70 receives the backup destination preparation completion report sent from the NW controller 50. In response to the received backup destination preparation completion report, the base station controller 70 sends a switching instruction from virtual CU 31-1 to virtual CU 31-2 to the NW controller 50 (step S506).
- the communication unit 51 of the NW controller 50 receives the switching instruction sent from the base station controller 70.
- the instruction unit 521 After receiving the switching instruction sent from the base station controller 70, the instruction unit 521 sends an instruction to shut down the virtual router 32-1 to the server 30-1, which is the switching source, via the communication unit 51 (step S507). Then, the processes from step S113 to step S117 are executed.
- the server 30-2 transmits a switching completion report to the NW controller 50 indicating that switching has caused interference (step S508).
- the communication unit 51 of the NW controller 50 receives the switching completion report transmitted from the server 30-2.
- the communication unit 51 of the NW controller 50 transmits an OS update preparation completion report to the base station controller 70 indicating that preparation for the OS update has been completed (step S509).
- the base station controller 70 updates the OS of the server 30-1 (step S510). This updates the OS of the server 30-1.
- the server 30-1 transmits an OS update completion report to the base station controller 70 indicating that the update has been completed (step S511).
- the base station controller 70 receives the OS update completion report transmitted from the server 30-1.
- the base station controller 70 transmits a switchback instruction to the NW controller 50 (step S512).
- the communication unit 51 of the NW controller 50 receives the switchback instruction sent from the base station controller 70.
- the instruction unit 521 of the NW controller 50 sends a virtual router startup instruction to the server 30-1 via the communication unit 51 to cause the server 30-1 to start the virtual router 32-1 (step S513).
- the server 30-1 starts up the virtual router 32-1 (step S514).
- the virtual router 32-1 of the server 30-1 and the virtual router 32-2 of the server 30-2 compare their priorities (step S515).
- the priority of virtual router 32-1 is higher than that of virtual router 32-2, so virtual router 32-1 sets itself as the master router, and virtual router 32-2 sets itself as the backup router (steps S516, S517).
- Server 30-1 notifies NW controller 50 that startup of virtual router 32-1 is complete (step S518).
- Communication unit 51 of NW controller 50 receives the notification from server 30-1.
- communication unit 51 of NW controller 50 transmits a switchover completion report to base station controller 70 indicating that switchover has been completed (step S519).
- the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51.
- a blocking instruction including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51.
- step S507 if the instruction unit 521 transmits a cutoff instruction including an instruction to change the priority of the virtual router 32-1 to the server 30-1, which is the source of switching, via the communication unit 51, the priority of the virtual router 32-1 is lower than the priority of another virtual router 32 (for example, virtual router 32-2). Therefore, in the process of step S507, if the instruction unit 521 transmits a cutoff instruction including an instruction to change the priority of the virtual router 32-1 to the server 30-1, which is the source of switching, via the communication unit 51, and switching back is performed, the instruction unit 521 may include information on the new priority to be set in the start instruction for the virtual router in the process of step S513.
- the instruction unit 521 may include information indicating a priority (for example, priority "255") such that the priority of the destination virtual router 32 (here, virtual router 32-1) is higher than the priority of the source virtual router 32 (here, virtual router 32-2) in the start instruction.
- a priority for example, priority "255”
- the priority of the virtual router 32-1 becomes higher than the priority of the other virtual routers 32. This makes it possible to switch back.
- the wireless access network system 100b configured as described above can achieve the same effects as the first embodiment.
- the OS of the virtual CU 31 can also be updated. This makes it possible to process with the latest version even after switching.
- FIG. 12 is a diagram showing an example of the configuration of a wireless access network system 100c in the fourth embodiment.
- the wireless access network system 100c includes a wireless station 10, multiple servers 20-1 and 20-2, a server 30, a 5GC 40, a NW controller 50, and a network 60.
- the number of wireless stations 10, servers 20, and servers 30 included in the wireless access network system 100c is not particularly limited. In the following description, when there is no particular distinction between the servers 20-1 and 20-2, they will simply be referred to as server 20.
- the servers 20-1 and 20-2 are located in different physical locations.
- the server 20-1 is the source server and the server 20-2 is the destination server installed in a new location. In this way, the configuration of the wireless access network system 100c when moving a virtual DU will be explained.
- the communication unit 51 of the NW controller 50 communicates with the server 20.
- the NW controller 50 in the fourth embodiment controls a router (e.g., virtual router 22 or virtual router 32) that performs route control in the wireless access network system 100c.
- the NW controller 50 is described as controlling the virtual router 22 realized on the server 20.
- FIG. 13 is a diagram for explaining an overview of the wireless access network system 100c in the fourth embodiment.
- the old edge site represents the location where the switch-source server 20-1 is located
- the new edge site represents the location where the switch-destination server 20-2 is located.
- the wireless station 10 and the server 20-1 are communicating.
- a signal received by the wireless station 10 is forwarded to the server 20-1.
- the virtual DU 21-1 of the server 20 acquires the signal forwarded from the wireless station 10.
- server 20 with DU function is moved to a location different from where server 20-1 is located due to a change in the network.
- a protocol e.g., VRRP
- the NW controller 50 controls so that there are no multiple nodes (e.g., server 20) that hold the same IP address on the APN.
- server 20-2 is newly installed in a location within the same network as server 20-1, but at a physical distance from the location where server 20-1 is located, and virtual DU 21-2 and virtual router 22-2 are started on server 20-2.
- server 20-2 creates virtual DU 21-2 with the same contents as virtual DU 21-1, which is the source of switching.
- NW controller 50 sets VRRP for virtual router 22-1 and virtual router 22-2.
- NW controller 50 sets the same VIP for virtual router 22-1 and virtual router 22-2 and groups them.
- the virtual router 22 with the highest priority is set as the master router by VRRP.
- the priority of the original virtual router 22-1 is the highest. Therefore, the virtual router 22-1 is set as the master router, and the virtual router 22-2 is set as the backup router.
- the NW controller 50 stops the original virtual router 22-1.
- the virtual router 22-2 detects that the virtual router 22-1 has gone down and sets itself as the master router.
- the NW controller 50 may change the priority value of the original virtual router 22-1 (for example, the priority of virtual router 22-1 ⁇ the priority of virtual router 22-2) and move the virtual router 22-1 to a standby state. In this case, the virtual router 22-2 sets itself as the master router by comparing the priority with that of the virtual router 22-1.
- the virtual router 22-2 notifies the virtual MAC address corresponding to the VIP by GARP.
- the virtual router 22 updates the ARP table according to the notified virtual MAC address. As a result, communication becomes possible between the switching destination server 20-2 and the wireless station 10. This makes it possible to migrate to any location without changing the settings of the base station function (for example, the virtual DU 21).
- FIG. 14 is a sequence diagram showing the flow of processing in the wireless access network system 100c in the fourth embodiment. Note that in the processing in FIG. 14, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 22.
- Server 20 and server 20-1 are in communication (step S601). Assume that server 20-2 is installed in a location physically separated from server 20-1. Server 20-2 creates virtual DU 21-2 with the same contents as virtual DU 21-1 of server 20-1 (step S602). In response to a user operation, instruction unit 521 of NW controller 50 sends a virtual router startup instruction to server 20-2 via communication unit 51 to cause server 20-2 to start virtual router 22-2 (step S603).
- the server 20-2 receives the start instruction sent from the NW controller 50. In response to the received start instruction, the server 20-2 starts the virtual router 22-2 using virtualization technology. When the start of the virtual router 22-2 is completed, the server 20-2 sends a start completion report to the NW controller 50 (step S604).
- the communication unit 51 of the NW controller 50 receives the completion report sent from the server 20-2.
- the instruction unit 521 sends a communication check instruction for the server 20-2 to the server 20-1 via the communication unit 51 (step S605).
- the server 20-1 performs a communication check process for the server 20-2 (step S606).
- the communication check process in FIG. 14 can be performed by replacing the server 30 shown in FIG. 5 with the server 20 and the virtual router 32 with the virtual router 22.
- the server 20-1 transmits a communication check completion report to the NW controller 50 indicating that the communication check has been completed (step S607).
- the server 20-1 transmits a communication check completion report to the NW controller 50 including a communication check result indicating that communication check of the server 20-2 has been completed.
- the communication unit 51 of the NW controller 50 receives the communication check completion report transmitted from the server 20-1.
- the instruction unit 521 of the NW controller 50 refers to the communication check result contained in the communication check completion report. Since the communication check result indicates that communication check of the server 20-2 has been completed, the instruction unit 521 of the NW controller 50 transmits an instruction to create a VRRP group to the servers 20-1 and 20-2 via the communication unit 51 (step S608).
- the servers 20-1 and 20-2 receive the VRRP group creation instruction sent from the NW controller 50.
- the servers 20-1 and 20-2 create a VRRP group in response to the received VRRP group creation instruction.
- the virtual router 22-1 of the server 20-1 and the virtual router 22-2 of the server 20-2 compare their priorities to set the master router and the backup router. Here, it is assumed that the virtual router 22-1 is set as the master router and the virtual router 22-2 is set as the backup router (steps S609 and S610).
- the servers 20-1 and 20-2 send a VRRP group completion report to the NW controller 50 indicating that the creation of the VRRP group has been completed (step S611).
- the communication unit 51 of the NW controller 50 receives the VRRP group completion reports sent from the servers 20-1 and 20-2, respectively.
- the instruction unit 521 of the NW controller 50 After receiving the VRRP group completion reports from each of the servers 20-1 and 20-2, the instruction unit 521 of the NW controller 50 transmits an instruction to shut down the virtual router 22-1 to the server 20-1, which is the switching source, via the communication unit 51 (step S612).
- the server 30-1 stops the virtual router 22-1 in response to the shutdown instruction transmitted from the NW controller 50. As a result, the advertisement signal is no longer transmitted from the virtual router 22-1 to the virtual router 22-2.
- the virtual router 22-2 of the server 20-2 fails to receive an advertisement signal from the virtual router 22-1 for a certain period of time, it detects that the virtual router 22-1, which is the master router, has gone down (step S613). After that, the virtual router 22-1 sets itself as the master router (step S614). After setting the master router, the virtual router 22-1 notifies the virtual MAC address corresponding to the VIP by GARP (step S615).
- the wireless station 10 receives the virtual MAC address notified by the virtual router 22-1.
- the wireless station 10 updates the ARP table according to the received virtual MAC address (step S616).
- the wireless station 10 updates the ARP table by changing the output port addressed to the virtual MAC address to the port through which the virtual MAC address was received.
- the wireless station 10 notifies the server 20-2 that communication is now possible (step S617).
- step S612 when the instruction unit 521 transmits a cutoff instruction including an instruction to change the priority of the virtual router 22-1 to the switching source server 20-1 via the communication unit 51, the server 20-1 changes the priority of the virtual router 22-1.
- the cutoff instruction includes information indicating a priority (for example, priority "1") such that the priority of the switching source virtual router 22 (here, virtual router 22-1) is lower than the priority of the switching destination virtual router 22 (here, virtual router 22-2). Therefore, the server 20-1 sets the priority of the virtual router 22-1 to "1".
- step S613 virtual router 22-1 and virtual router 22-2 compare their priorities. As a result of the priority comparison, the priority of virtual router 22-2 is higher than the priority of virtual router 22-1, so virtual router 22-2 sets itself as the master router (step S614), and virtual router 22-1 sets itself as the backup router. As a result, virtual router 22-1 goes into a standby state. In this way, the NW controller 50 can change the priority of virtual router 22-1 of the switching source server 20-1 to make it the backup router, making it possible to switch routes without stopping the server.
- the NW controller 50 uses VPPR in the source server 20-1 and the destination server 20-2 that realize the virtual DU 21 and the virtual router 22 by using virtualization technology, and groups the virtual router 22-1 realized in the source server 20-1 and the virtual router 22-2 realized in the destination server 20-2, and has a control unit 52 that switches the route by stopping the virtual router 22-1 realized in the source server 20-1 or changing the priority and putting it in a standby state.
- VRRP which is an existing technology.
- FIG. 15 is a diagram showing an example of the configuration of a radio access network system 100d in the fifth embodiment.
- the radio access network system 100b includes a radio station 10, a plurality of servers 20, a plurality of servers 30-1, 30-2, a 5GC 40, a NW controller 50, a network 60, and a base station controller 70.
- the number of radio stations 10, servers 20, and servers 30 included in the radio access network system 100d is not particularly limited.
- the radio access network system 100d differs in configuration from the radio access network system 100c in that it further includes a base station controller 70. Other basic operations are similar to those of the radio access network system 100c. The following mainly describes the differences from the radio access network system 100c.
- the communication unit 51 of the NW controller 50 communicates with the server 20 and between the server 20 and itself.
- the NW controller 50 in the fifth embodiment controls a router (e.g., virtual router 22 or virtual router 32) that performs route control in the wireless access network system 100d.
- the NW controller 50 is described as controlling the virtual router 22 realized on the server 20.
- the base station controller 70 manages and controls the CU (e.g., virtual CU 31) or DU (e.g., virtual DU 21) functions, and issues instructions such as updating the OS of the CU or DU.
- the base station controller 70 manages and controls the virtual DU 21-1 and DU 21-2 functions.
- FIG. 16 is a sequence diagram showing the flow of processing (part 1) of the wireless access network system 100d in the fifth embodiment. Note that FIG. 16 describes a pattern in which the OS update destination is not switched back. In FIG. 16, the same processes as in FIG. 14 are denoted with the same reference numerals as in FIG. 14 and the description is omitted. Note that in the processing in FIG. 16, the shutdown instruction is described as including an instruction to stop the function of the virtual router 22.
- the base station controller 70 sends an OS update instruction to the server 20-2 to have the switching destination server 20-2 start up with the updated OS (step S701).
- the server 20-2 receives the OS update instruction sent from the base station controller 70.
- the server 20-2 starts up the virtual DU 21-2 with the new OS of the virtual DU 21-1 of the server 20-1 (step S702).
- the base station controller 70 instructs the NW controller 50 to start up the virtual router under the virtual DU 21-2 that is the target of the OS update (step S703).
- the NW controller 50 instructs the server 20-2 to start up a virtual router (step S704). Then, the processes from step S604 to step S611 are executed. After the process of step S111, the NW controller 50 transmits an OS update preparation completion report to the base station controller 70 indicating that preparation for the OS update has been completed (step S705).
- the base station controller 70 receives the OS update preparation completion report sent from the NW controller 50. In response to the received OS update preparation completion report, the base station controller 70 sends a switching instruction from virtual DU 21-1 to virtual DU 21-2 to the NW controller 50 (step S706).
- the communication unit 51 of the NW controller 50 receives the switching instruction sent from the base station controller 70. After receiving the switching instruction, the instruction unit 521 sends an instruction to shut down the virtual router 22-1 to the server 20-1, which is the switching source, via the communication unit 51 (step S707). Then, the processing from step S613 onwards is executed.
- the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 22-1, to the server 20-1, which is the switching source, via the communication unit 51.
- a blocking instruction including an instruction to change the priority of the virtual router 22-1
- FIGS. 17 and 18 are sequence diagrams showing the flow of processing (part 2) of the wireless access network system 100d in the fifth embodiment. Note that in FIG. 17 and FIG. 18, a pattern of switching back the OS update destination is explained. In FIG. 17 and FIG. 18, the same processes as in FIG. 14 are assigned the same reference numerals as in FIG. 14, and explanations are omitted. Note that in the processing in FIG. 17 and FIG. 18, the shutdown instruction is explained as including an instruction to stop the function of the virtual router 22.
- the base station controller 70 sends an OS update instruction to the server 20-2 (step S801).
- the server 20-2 receives the OS update instruction sent from the base station controller 70.
- the server 20-2 creates a virtual DU 21-2 with the same contents as the virtual DU 21-1 of the server 20-1 (step S802).
- the base station controller 70 instructs the NW controller 50 to start up the virtual router under the virtual DU 21-2 that is the target of the OS update (step S803).
- the instruction unit 521 of the NW controller 50 sends a virtual router startup instruction to the server 20-2 via the communication unit 51 to cause the server 20-2 to start the virtual router 22-2 (step S804). Then, the processes from step S604 to step S611 are executed. After the process of step S111, the communication unit 51 of the NW controller 50 sends a backup destination preparation completion report to the base station controller 70 indicating that the backup destination preparation has been completed (step S805).
- the base station controller 70 receives the backup destination preparation completion report sent from the NW controller 50. In response to the received backup destination preparation completion report, the base station controller 70 sends a switching instruction from virtual DU 21-1 to virtual DU 21-2 to the NW controller 50 (step S806).
- the communication unit 51 of the NW controller 50 receives the switching instruction sent from the base station controller 70.
- the instruction unit 521 After receiving the switching instruction sent from the base station controller 70, the instruction unit 521 sends an instruction to shut down the virtual router 22-1 to the server 20-1, which is the switching source, via the communication unit 51 (step S807). Then, the processes from step S613 to step S617 are executed.
- the server 20-2 transmits a switching completion report to the NW controller 50 indicating that switching has caused interference (step S808).
- the communication unit 51 of the NW controller 50 receives the switching completion report transmitted from the server 20-2.
- the communication unit 51 of the NW controller 50 transmits an OS update preparation completion report to the base station controller 70 indicating that preparation for the OS update has been completed (step S809).
- the base station controller 70 updates the OS of the server 20-1 (step S810). This updates the OS of the server 20-1.
- the server 20-1 transmits an OS update completion report indicating the completion of the update to the base station controller 70 (step S811).
- the base station controller 70 receives the OS update completion report transmitted from the server 20-1.
- the base station controller 70 transmits a switchback instruction to the NW controller 50 (step S812).
- the communication unit 51 of the NW controller 50 receives the switchback instruction sent from the base station controller 70.
- the instruction unit 521 of the NW controller 50 sends a virtual router startup instruction to the server 20-1 via the communication unit 51 to cause the server 20-1 to start the virtual router 22-1 (step S813).
- the server 20-1 starts the virtual router 22-1 (step S814).
- the virtual router 22-1 of the server 30-1 and the virtual router 22-2 of the server 20-2 compare their priorities with each other (step S815).
- the priority of virtual router 22-1 is higher than that of virtual router 22-2, so virtual router 22-1 sets itself as the master router, and virtual router 22-2 sets itself as the backup router (steps S816, S817).
- Server 20-1 notifies NW controller 50 that startup of virtual router 22-1 is complete (step S818).
- Communication unit 51 of NW controller 50 receives the notification from server 20-1.
- communication unit 51 of NW controller 50 transmits a switchover completion report to base station controller 70 indicating that switchover has been completed (step S819).
- the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 22-1, to the server 20-1, which is the switching source, via the communication unit 51.
- a blocking instruction including an instruction to change the priority of the virtual router 22-1
- step S807 if the instruction unit 521 transmits a cutoff instruction including an instruction to change the priority of the virtual router 22-1 to the server 20-1, which is the source of switching, via the communication unit 51, the priority of the virtual router 22-1 is lower than the priority of another virtual router 22 (for example, virtual router 22-2). Therefore, in the process of step S807, if the instruction unit 521 transmits a cutoff instruction including an instruction to change the priority of the virtual router 22-1 to the server 20-1, which is the source of switching, via the communication unit 51, and switching back is performed, the instruction unit 521 may include information on the new priority to be set in the start instruction for the virtual router in the process of step S813.
- the instruction unit 521 may include information indicating a priority (for example, priority "255") such that the priority of the destination virtual router 22 (here, virtual router 22-1) is higher than the priority of the source virtual router 22 (here, virtual router 22-2) in the start instruction.
- a priority for example, priority "255”
- the priority of the virtual router 22-1 becomes higher than the priority of the other virtual routers 22. This makes it possible to switch back.
- the wireless access network system 100d configured as described above can achieve the same effects as the first embodiment.
- the OS of the virtual DU21 can also be updated. This makes it possible to process with the latest version even after switching.
- live migration is performed to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU 31. This makes it possible to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU 31.
- FIG. 19 is a sequence diagram showing the flow of processing in the wireless access network system 100 in the sixth embodiment.
- the same processes as those in FIG. 4 are denoted by the same reference numerals as in FIG. 4, and the description thereof will be omitted. Note that in the processing in FIG. 19, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 32.
- the NW controller 50 migrates the virtual CU 31-1 of the server 30-1 to the server 30-2 by live migration (step S901). As a result, the parameters of the virtual CU 31-1 of the server 30-1 are migrated to the server 30-2 as they are. Then, the processes from step S112 onwards are executed.
- the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51.
- a blocking instruction including an instruction to change the priority of the virtual router 32-1
- the server 30-1 which is the switching source
- the radio access network system 100 in the sixth embodiment configured as described above can achieve the same effects as the first embodiment.
- parameters within the virtual CU can be carried over to the switching destination.
- a stateless configuration in which dynamic parameters in a virtual CU or virtual DU are not inherited is shown.
- a stateful configuration in which dynamic parameters in a virtual CU are inherited is described.
- the system configuration of the seventh embodiment is the same as that of the second embodiment. The following description focuses on the differences from the second embodiment.
- live migration is performed to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU 31. This makes it possible to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU 31.
- FIG. 20 is a sequence diagram showing the flow of processing in the wireless access network system 100a in the seventh embodiment.
- the same processes as those in FIG. 7 are denoted by the same reference numerals as in FIG. 7, and the description thereof will be omitted. Note that in the processing in FIG. 20, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 32.
- the NW controller 50 migrates the virtual CU 31-1 of the server 30-1 to the server 30-2 by live migration (step S1001). As a result, the parameters of the virtual CU 31-1 of the server 30-1 are migrated to the server 30-2 as is. After that, the processes in steps S112 and onwards are executed.
- the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51.
- a blocking instruction including an instruction to change the priority of the virtual router 32-1
- the server 30-1 which is the switching source
- the wireless access network system 100a in the seventh embodiment configured as described above can achieve the same effects as the second embodiment.
- parameters within the virtual CU can be carried over to the switching destination.
- live migration is performed to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU 31.
- This makes it possible to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU.
- an OS update of the virtual CU is performed in the same way as in the third embodiment.
- FIG. 21 is a sequence diagram showing the flow of processing (part 1) of the wireless access network system 100b in the eighth embodiment.
- the same processes as those in FIG. 9 are denoted by the same reference numerals as in FIG. 9, and the description thereof will be omitted. Note that in the processing in FIG. 21, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 32.
- step S101 After step S101, the processes from step S401 to step S404, the processes from step S104 to step S111, and the processes from step S405 to step S406 have been executed, the NW controller 50 moves the virtual CU 31-1 of the server 30-1 to the server 30-2 by live migration (step S1101). As a result, the parameters of the virtual CU 31-1 of the server 30-1 are moved to the server 30-2 as they are. Then, the processes from step S407 onwards are executed.
- the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51.
- a blocking instruction including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51.
- FIGS. 22 and 23 are sequence diagrams showing the flow of processing (part 2) of the wireless access network system 100b in the eighth embodiment. Note that in Figs. 22 and 23, a pattern of switching back the OS update destination is explained. In Figs. 22 and 23, the same processes as in Figs. 10 and 11 are denoted with the same reference numerals as in Figs. 10 and 11, and explanations are omitted. Note that in the processing in Figs. 22 and 23, the shutdown instruction is explained as including an instruction to stop the function of the virtual router 32.
- step S101 After step S101, the processes from step S501 to step S504, the processes from step S104 to step S111, and the processes from step S505 to step S506 have been executed, the NW controller 50 moves the virtual CU 31-1 of the server 30-1 to the server 30-2 by live migration (step S1201). As a result, the parameters of the virtual CU 31-1 of the server 30-1 are moved to the server 30-2 as they are. Then, the processes from step S507 onwards are executed.
- the instruction unit 521 may send a shutdown instruction including an instruction to change the priority of the virtual router 32-1 to the server 30-1, which is the switching source, via the communication unit 51.
- a shutdown instruction including an instruction to change the priority of the virtual router 32-1 to the server 30-1, which is the switching source, via the communication unit 51.
- the instruction unit 521 may include information on the newly set priority in the instruction to start the virtual router. The specific flow of the process in this case has already been described above and will not be described here.
- the radio access network system 100b in the eighth embodiment configured as described above can achieve the same effects as the third embodiment.
- parameters within the virtual CU can be carried over to the switching destination.
- Ninth embodiment In the first to fifth embodiments, a stateless configuration in which dynamic parameters within a virtual CU or virtual DU are not inherited is shown. In the ninth embodiment, a stateful configuration in which dynamic parameters within a virtual DU are inherited is described. The system configuration of the ninth embodiment is the same as that of the fourth embodiment. The following description focuses on the differences from the fourth embodiment.
- live migration is performed to transfer the dynamic parameters within the source virtual DU 21 to the destination virtual DU 21. This makes it possible to transfer the dynamic parameters within the source virtual DU 21 to the destination virtual DU 21.
- FIG. 24 is a sequence diagram showing the flow of processing in the wireless access network system 100c in the ninth embodiment.
- the same processes as those in FIG. 14 are denoted by the same reference numerals as in FIG. 14, and the description thereof will be omitted. Note that in the processing in FIG. 24, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 22.
- step S901 migrates the virtual DU 21-1 of the server 20-1 to the server 20-2 by live migration (step S901).
- step S901 migrates the parameters of the virtual DU 21-1 of the server 20-1 to the server 20-2 as is.
- step S612 onwards are executed.
- the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 22-1, to the server 20-1, which is the switching source, via the communication unit 51.
- a blocking instruction including an instruction to change the priority of the virtual router 22-1
- the wireless access network system 100c in the ninth embodiment configured as described above can achieve the same effects as the fourth embodiment.
- parameters within the virtual DU can be carried over to the switching destination.
- Tenth Embodiment In the first to fifth embodiments, a stateless configuration in which dynamic parameters within a virtual CU or virtual DU are not inherited is shown. In the tenth embodiment, a stateful configuration in which dynamic parameters within a virtual DU are inherited is described. The system configuration of the tenth embodiment is the same as that of the fifth embodiment. The following description focuses on the differences from the fifth embodiment.
- live migration is performed to transfer the dynamic parameters in the source virtual DU 21 to the destination virtual DU 21. This makes it possible to transfer the dynamic parameters in the source virtual DU 21 to the destination virtual DU 21.
- FIG. 25 is a sequence diagram showing the flow of processing (part 1) of the wireless access network system 100d in the tenth embodiment.
- the same processes as those in FIG. 16 are denoted by the same reference numerals as in FIG. 16, and the description thereof will be omitted. Note that in the processing of FIG. 25, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 22.
- step S601 After step S601, the processes from step S701 to step S704, the processes from step S604 to step S611, and the processes from step S705 to step S706 have been executed, the NW controller 50 moves the virtual DU 21-1 of the server 20-1 to the server 20-2 by live migration (step S1401). As a result, the parameters of the virtual DU 21-1 of the server 20-1 are moved to the server 20-2 as is. Then, the processes from step S707 onwards are executed.
- the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 22-1, to the server 20-1, which is the switching source, via the communication unit 51.
- a blocking instruction including an instruction to change the priority of the virtual router 22-1
- FIGS. 26 and 27 are sequence diagrams showing the flow of processing (part 2) of the wireless access network system 100d in the tenth embodiment.
- the same processes as those in Figs. 17 and 18 are denoted with the same reference numerals as those in Figs. 17 and 18, and the description thereof will be omitted.
- the cutoff instruction includes an instruction to stop the function of the virtual router 22.
- step S601 After step S601, the processes from step S801 to step S804, the processes from step S804 to step S811, and the processes from step S805 to step S806 have been executed, the NW controller 50 moves the virtual DU 21-1 of the server 20-1 to the server 20-2 by live migration (step S1501). As a result, the parameters of the virtual DU 21-1 of the server 20-1 are moved to the server 20-2 as is. Then, the processes from step S807 onwards are executed.
- the instruction unit 521 may send a shutdown instruction including an instruction to change the priority of the virtual router 22-1 to the server 20-1, which is the switching source, via the communication unit 51.
- a shutdown instruction including an instruction to change the priority of the virtual router 22-1 to the server 20-1, which is the switching source, via the communication unit 51.
- the instruction unit 521 may include information on the newly set priority in the instruction to start the virtual router. The specific flow of the process in this case has already been described above and will not be described here.
- the radio access network system 100d of the tenth embodiment configured as described above can achieve the same effects as the fifth embodiment.
- parameters within the virtual DU can be carried over to the switching destination.
- Some of the functions of the above-mentioned servers 20, 20-1, 20-2, servers 30-1, 30-2, NW controller 50, and base station controller 70 may be realized by a computer.
- a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed to realize the functions.
- computer system here includes hardware such as an OS and peripheral devices.
- computer-readable recording medium refers to portable media such as flexible disks, optical magnetic disks, ROMs (Read Only Memory), and CD-ROMs (Compact Disc-ROMs), as well as storage devices such as hard disks built into computer systems.
- “computer-readable recording medium” may include something that dynamically holds a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, or something that holds a program for a fixed period of time, such as volatile memory within a computer system that serves as a server or client in that case.
- the above program may be one that realizes part of the functions described above, or may be one that can realize the functions described above in combination with a program already recorded in the computer system, or may be one that is realized using a programmable logic device such as an FPGA (Field Programmable Gate Array).
- This invention can be applied to network control technology in wireless access networks.
- 10...Radio station 20, 20-1, 20-2, 30-1, 30-2...Server, 21-1, 21-2...Virtual DU, 31-1, 31-2...Virtual CU, 22-1, 22-2, 32-1, 32-2...Virtual router, 40...5GC, 50...NW controller, 51...Communication unit, 52...Control unit, 521...Instruction unit, 522...Communication control unit, 60...Network, 65...MEC, 67...MEC controller, 70...Base station controller, 100, 100a, 100b, 100c, 100d...Radio access network system
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Provided is a control device comprising a control unit that uses a protocol for making a default gateway redundant in a server to be switched and a server to switch to, which implement a transfer function and a base station function in a wireless access network, by virtualization technology, to group the transfer function implemented in the server to be switched and the transfer function implemented in the server to switch to, and switch routes by stopping the transfer function implemented in the server to be switched or changing the value of a priority thereof for transition to a standby state.
Description
本発明は、制御装置及び切替制御方法に関する。
The present invention relates to a control device and a switching control method.
従来、RAN(virtualized Radio Access Network)のネットワークを仮想化技術により仮想化したvRAN(virtualized RAN)が提案されている。vRANでは、5G(5 Generation)における親局に相当する基地局機能(例えば、CU(Central Unit)やDU(Distributed Unit))を汎用のサーバ内で仮想化することで、専用のハードウェアを使用しなくても通信処理が可能になる。
Conventionally, vRAN (virtualized RAN) has been proposed, which virtualizes the RAN (virtualized Radio Access Network) network using virtualization technology. In vRAN, base station functions equivalent to parent stations in 5G (5th Generation) (for example, CU (Central Unit) and DU (Distributed Unit)) are virtualized within a general-purpose server, making it possible to process communications without using dedicated hardware.
vRANにおける柔軟な機能配備のためのネットワーク制御は、例えばMEC(Mobile Edge Computing)の移動にあわせてCUを移動させる場合、対向となるDUが保持している情報を書き換える必要がある。一方で、ユーザの要求に応じたタイムリーなサービス提供を行うには対向先のノードの情報を書き換えずに切り替える手法が必要となる。例えば、IPアドレスのようなネットワーク上で1つのノードを指定するパラメータがCUに設定されていた場合、CUのコンテナをMECに合わせて移設し、DUと再接続しようとするとネットワーク上でIPアドレスの不整合が発生してしまう。そのため、ARP(Address Resolution Protocol)テーブルから対象のCUのIPアドレ又はMACアドレスが消えるまでは通信を行うことができない。その結果、基地局機能の切り替えを容易に行うことができないという問題があった。
In network control for flexible function deployment in vRAN, for example, when moving a CU in accordance with the movement of a MEC (Mobile Edge Computing), it is necessary to rewrite the information held by the opposing DU. On the other hand, in order to provide timely services in response to user requests, a method of switching without rewriting the information of the opposing node is required. For example, if a parameter that specifies a node on a network, such as an IP address, is set in the CU, moving the CU container to match the MEC and attempting to reconnect with the DU will cause an IP address inconsistency on the network. As a result, communication is not possible until the IP address or MAC address of the target CU disappears from the ARP (Address Resolution Protocol) table. As a result, there was a problem in that it was not easy to switch base station functions.
上記事情に鑑み、本発明は、無線アクセスネットワークにおいて基地局機能の切り替えを容易に行うことができる技術の提供を目的としている。
In light of the above circumstances, the present invention aims to provide technology that can easily switch base station functions in a wireless access network.
本発明の一態様は、仮想化技術により、転送機能と、無線アクセスネットワークにおける基地局機能とを実現する切替元のサーバ及び切替先のサーバにおいてデフォルトゲートウェイを冗長化させるプロトコルを用いることで、前記切替元のサーバで実現される転送機能と前記切替先のサーバで実現される転送機能とをグループ化し、前記切替元のサーバで実現される転送機能を停止もしくは、優先度の値を変更して待機状態に移行させることで経路の切替を行う制御部、を備える制御装置である。
One aspect of the present invention is a control device that uses a protocol that uses virtualization technology to make default gateways redundant in a source server and a destination server that realize a forwarding function and a base station function in a wireless access network, and that groups the forwarding function realized in the source server and the forwarding function realized in the destination server, and switches the route by stopping the forwarding function realized in the source server or by changing the priority value and transitioning it to a standby state.
本発明の一態様は、仮想化技術により、転送機能と、無線アクセスネットワークにおける基地局機能とを実現する切替元のサーバ及び切替先のサーバにおいてデフォルトゲートウェイを冗長化させるプロトコルを用いることで、前記切替元のサーバで実現される転送機能と前記切替先のサーバで実現される転送機能とをグループ化し、前記切替元のサーバで実現される転送機能を停止もしくは、優先度の値を変更して待機状態に移行させることで経路の切替を行う切替制御方法である。
One aspect of the present invention is a switching control method that uses a protocol that uses virtualization technology to make default gateways redundant in a source server and a destination server that realize a forwarding function and a base station function in a wireless access network, groups the forwarding function realized in the source server and the forwarding function realized in the destination server, and switches the route by stopping the forwarding function realized in the source server or changing the priority value and transitioning it to a standby state.
本発明により、無線アクセスネットワークにおいて基地局機能の切り替えを容易に行うことが可能となる。
The present invention makes it possible to easily switch base station functions in a wireless access network.
以下、本発明の一実施形態を、図面を参照しながら説明する。
(第1の実施形態)
図1は、第1の実施形態における無線アクセスネットワークシステム100の構成例を示す図である。第1の実施形態における無線アクセスネットワークシステム100は、例えば、第5世代移動通信システム(以下「5G」という。)である。無線アクセスネットワークシステム100は、無線局10と、サーバ20と、複数のサーバ30-1,30-2と、5GC40と、NWコントローラ50と、ネットワーク60とを備える。なお、無線アクセスネットワークシステム100が備える無線局10、サーバ20及びサーバ30の数は特に限定されない。以下の説明において、サーバ30-1,30-2を特に区別しない場合には単にサーバ30と記載する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First Embodiment
FIG. 1 is a diagram showing a configuration example of a radioaccess network system 100 in the first embodiment. The radio access network system 100 in the first embodiment is, for example, a fifth generation mobile communication system (hereinafter referred to as "5G"). The radio access network system 100 includes a radio station 10, a server 20, a plurality of servers 30-1 and 30-2, a 5GC 40, a NW controller 50, and a network 60. The number of radio stations 10, servers 20, and servers 30 included in the radio access network system 100 is not particularly limited. In the following description, when the servers 30-1 and 30-2 are not particularly distinguished from each other, they are simply referred to as server 30.
(第1の実施形態)
図1は、第1の実施形態における無線アクセスネットワークシステム100の構成例を示す図である。第1の実施形態における無線アクセスネットワークシステム100は、例えば、第5世代移動通信システム(以下「5G」という。)である。無線アクセスネットワークシステム100は、無線局10と、サーバ20と、複数のサーバ30-1,30-2と、5GC40と、NWコントローラ50と、ネットワーク60とを備える。なお、無線アクセスネットワークシステム100が備える無線局10、サーバ20及びサーバ30の数は特に限定されない。以下の説明において、サーバ30-1,30-2を特に区別しない場合には単にサーバ30と記載する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First Embodiment
FIG. 1 is a diagram showing a configuration example of a radio
無線局10は、例えば5Gの通信規格におけるRU(Radio Unit)である。無線局10は、1以上のアンテナを備え、端末との間で無線通信を行う。例えば、無線局10は、端末から送信された無線信号を受信し、受信した無線信号を電気信号に変換してサーバ20に送信する。
The wireless station 10 is, for example, a Radio Unit (RU) in the 5G communication standard. The wireless station 10 has one or more antennas and performs wireless communication with a terminal. For example, the wireless station 10 receives a wireless signal transmitted from the terminal, converts the received wireless signal into an electrical signal, and transmits it to the server 20.
サーバ20は、仮想化技術により、基地局機能を実現するサーバである。具体的には、サーバ20は、仮想化技術により、基地局機能として5Gの通信規格におけるDU(Distributed Unit)の機能と、レイヤ2のルータの機能とを実現する。これにより、サーバ20は、仮想的に仮想DU21と仮想ルータ22を備える。なお、サーバ20の仮想化は、ホストOS(Operation System)型、ハイパーバイザー型又はコンテナ型のいずれの技術が用いられてもよい。
Server 20 is a server that realizes base station functions using virtualization technology. Specifically, server 20 realizes the functions of a DU (Distributed Unit) in the 5G communication standard and the functions of a layer 2 router as a base station function using virtualization technology. As a result, server 20 virtually comprises a virtual DU 21 and a virtual router 22. Note that the virtualization of server 20 may use any of the following technologies: host OS (Operation System) type, hypervisor type, or container type.
仮想DU21は、5Gの通信規格におけるDUと同様の処理を行う。例えば、仮想DU21は、無線局10によって受信された無線信号を処理する仮想化された無線信号処理部である。仮想ルータ22は、経路制御機能を有する仮想化された転送装置である。仮想ルータ22は、VRRP(Virtual Router Redundancy Protocol)対応の転送装置である。
The virtual DU 21 performs the same processing as the DU in the 5G communication standard. For example, the virtual DU 21 is a virtualized wireless signal processing unit that processes wireless signals received by the wireless station 10. The virtual router 22 is a virtualized forwarding device with a route control function. The virtual router 22 is a forwarding device that supports the Virtual Router Redundancy Protocol (VRRP).
サーバ30は、仮想化技術により、基地局機能を実現するサーバである。具体的には、サーバ30は、仮想化技術により、基地局機能として5Gの通信規格におけるCU(Centralized Unit)の機能と、レイヤ2のルータの機能とを実現する。これにより、サーバ30は、仮想的に仮想CU31と仮想ルータ32を備える。なお、サーバ30の仮想化は、ホストOS型、ハイパーバイザー型又はコンテナ型のいずれの技術が用いられてもよい。
Server 30 is a server that realizes base station functions using virtualization technology. Specifically, server 30 realizes the functions of a CU (Centralized Unit) in the 5G communication standard and the functions of a layer 2 router as a base station function using virtualization technology. As a result, server 30 virtually comprises a virtual CU 31 and a virtual router 32. Note that the virtualization of server 30 may use any of the following technologies: host OS type, hypervisor type, or container type.
サーバ30-1とサーバ30-2とは、物理的な設置位置が異なる場所に配置される。以下の説明では、サーバ30-1が切替元のサーバであり、サーバ30-2が新たな場所に設置された切替先のサーバであるものとする。
Server 30-1 and server 30-2 are installed in different physical locations. In the following explanation, server 30-1 is the source server, and server 30-2 is the destination server installed in a new location.
仮想CU31は、5Gの通信規格におけるCUと同様の処理を行う。例えば、仮想CU31は、データ処理を行う仮想化されたデータ処理部である。仮想ルータ32は、経路制御機能を有する仮想化された転送装置である。仮想ルータ32は、VRRP対応の転送装置である。
The virtual CU 31 performs the same processing as a CU in the 5G communication standard. For example, the virtual CU 31 is a virtualized data processing unit that performs data processing. The virtual router 32 is a virtualized transfer device with a route control function. The virtual router 32 is a VRRP-compatible transfer device.
5GC40は、5Gにおけるコアネットワーク装置である。
The 5GC40 is a core network device for 5G.
NWコントローラ50は、無線アクセスネットワークシステム100における経路制御を行うルータ(例えば、仮想ルータ22や仮想ルータ32)を制御する。第1の実施形態では、NWコントローラ50が、サーバ30上で実現する仮想ルータ32を制御するものとして説明する。NWコントローラ50は、制御装置の一態様である。
The NW controller 50 controls routers (e.g., virtual router 22 and virtual router 32) that perform route control in the wireless access network system 100. In the first embodiment, the NW controller 50 is described as controlling the virtual router 32 that is realized on the server 30. The NW controller 50 is one aspect of a control device.
ネットワーク60は、外部のネットワークである。ネットワーク60は、例えばインターネットである。
Network 60 is an external network. Network 60 is, for example, the Internet.
無線局10、サーバ20、サーバ30-1,30-2及び5GC40は、同一ネットワーク内に位置する装置である。無線局10、サーバ20、サーバ30-1,30-2及び5GC40を接続する光伝送路は、APN(All Photonics Network)により構成される。
The wireless station 10, server 20, servers 30-1, 30-2, and 5GC 40 are devices located within the same network. The optical transmission path connecting the wireless station 10, server 20, servers 30-1, 30-2, and 5GC 40 is configured by an APN (All Photonics Network).
次に、図2を用いて第1の実施形態における無線アクセスネットワークシステム100の概要について説明する。図2は、第1の実施形態における無線アクセスネットワークシステム100の概要を説明するための図である。図2において旧エッジサイトは、切替元のサーバ30-1が配置されている場所を表し、新エッジサイトは、切替先のサーバ30-2が配置されている場所を表す。まず、サーバ20とサーバ30-1とが通信を行っているものとする。この場合、サーバ20の仮想DU21で受信された信号は、仮想ルータ22によりサーバ30-1の仮想ルータ32-1に転送される。サーバ30の仮想CU31-1は、仮想ルータ22から転送された信号を、仮想CU31-1を介して取得する。
Next, an overview of the wireless access network system 100 in the first embodiment will be described with reference to FIG. 2. FIG. 2 is a diagram for explaining an overview of the wireless access network system 100 in the first embodiment. In FIG. 2, the old edge site represents the location where the source server 30-1 is located, and the new edge site represents the location where the destination server 30-2 is located. First, assume that the servers 20 and 30-1 are communicating. In this case, a signal received by the virtual DU 21 of the server 20 is transferred by the virtual router 22 to the virtual router 32-1 of the server 30-1. The virtual CU 31-1 of the server 30 acquires the signal transferred from the virtual router 22 via the virtual CU 31-1.
このような状況下において、ネットワークの変更により、サーバ30-1が配置されている場所と異なる場所にCU機能を有するサーバ30を移動させることを考える。タイムリーなサービス展開を実現するためには、作業時間の短縮及び通信の接続断を最小限にする必要がある。そこで、本実施形態では、デフォルトゲートウェイを冗長化させるプロトコル(例えば、VRRP)を用いることで、APN上で同一のIPアドレスを保持するノード(例えば、サーバ30)が複数存在しないようにNWコントローラ50が制御する。
In such a situation, it is considered that server 30 with CU function is moved to a location different from where server 30-1 is located due to a change in the network. In order to realize timely service deployment, it is necessary to reduce the work time and minimize communication disconnections. Therefore, in this embodiment, by using a protocol (e.g., VRRP) that makes the default gateway redundant, the NW controller 50 performs control so that there are no multiple nodes (e.g., server 30) that hold the same IP address on the APN.
具体的には、サーバ30-1と同一ネットワーク内の場所であって、かつ、サーバ30-1が配置されている場所と物理的距離が離れた場所にサーバ30-2を新たに設置し、サーバ30-2上で仮想CU31-2及び仮想ルータ32-2を起動させる。ここで、サーバ30-2は、切替元である仮想CU31-1と同一内容の仮想CU31-2を作成する。仮想ルータ32-2の起動が完了すると、NWコントローラ50は仮想ルータ32-1と仮想ルータ32-2とに対してVRRPを設定する。例えば、NWコントローラ50は仮想ルータ32-1と仮想ルータ32-2とに対して、同一のVIPを設定してグループ化する。
Specifically, server 30-2 is newly installed in a location within the same network as server 30-1, but at a physical distance from the location where server 30-1 is located, and virtual CU 31-2 and virtual router 32-2 are started on server 30-2. Here, server 30-2 creates virtual CU 31-2 with the same contents as virtual CU 31-1, which is the source of switching. When the startup of virtual router 32-2 is complete, NW controller 50 sets VRRP for virtual router 32-1 and virtual router 32-2. For example, NW controller 50 sets the same VIP for virtual router 32-1 and virtual router 32-2 and groups them.
仮想ルータ32-1と仮想ルータ32-2との間では、VRRPにより優先度の高い仮想ルータ32がマスタルータに設定される。以下の説明では、切替元の仮想ルータ32-1の優先度が最も高いものとする。そのため、仮想ルータ32-1がマスタルータに設定され、仮想ルータ32-2がバックアップルータに設定される。その後、NWコントローラ50は、切替元の仮想ルータ32-1を停止させる。これにより、仮想ルータ32-2は、仮想ルータ32-1のダウンを検知して自装置をマスタルータに設定する。なお、NWコントローラ50は、切替元の仮想ルータ32-1の優先度の値を変更して(例えば、仮想ルータ32-1の優先度<仮想ルータ32-2の優先度)、仮想ルータ32-1を待機状態に移行させてもよい。この場合、仮想ルータ32-2は、仮想ルータ32-1との優先度の比較によって自装置をマスタルータに設定する。
Between virtual router 32-1 and virtual router 32-2, the virtual router 32 with the highest priority is set as the master router by VRRP. In the following explanation, it is assumed that the priority of the original virtual router 32-1 is the highest. Therefore, the virtual router 32-1 is set as the master router, and the virtual router 32-2 is set as the backup router. After that, the NW controller 50 stops the original virtual router 32-1. As a result, the virtual router 32-2 detects that the virtual router 32-1 has gone down and sets itself as the master router. Note that the NW controller 50 may change the priority value of the original virtual router 32-1 (for example, the priority of virtual router 32-1 < the priority of virtual router 32-2) and move the virtual router 32-1 to a standby state. In this case, the virtual router 32-2 sets itself as the master router by comparing the priority with that of the virtual router 32-1.
仮想ルータ32-2は、GARP(Gratuitous Address Resolution Protocol)によりVIPに対応する仮想MACアドレスを周知する。仮想ルータ22は、周知された仮想MACアドレスに従って、ARPテーブルを更新する。その結果、切替先のサーバ30-2とサーバ20との間で通信が可能になる。これにより、基地局機能(例えば、仮想CU31)の設定を変更することなく、任意の場所にマイグレーションさせることができるようにする。
The virtual router 32-2 notifies the virtual MAC address corresponding to the VIP using GARP (Gratuitous Address Resolution Protocol). The virtual router 22 updates the ARP table according to the notified virtual MAC address. As a result, communication becomes possible between the switching destination server 30-2 and server 20. This makes it possible to migrate to any location without changing the settings of the base station function (for example, virtual CU 31).
図3は、第1の実施形態におけるNWコントローラ50の構成例を示す図である。NWコントローラ50は、通信部51と、制御部52とを備える。通信部51は、他の装置との間で通信を行う。例えば、通信部51は、サーバ30との間で通信を行う。制御部52は、NWコントローラ50全体を制御する。制御部52は、CPU(Central Processing Unit)等の1以上のプロセッサと1以上のメモリとを用いて構成される。制御部52は、1以上のプロセッサがプログラムを実行することによって、指示部521及び疎通制御部522の機能を実現する。
FIG. 3 is a diagram showing an example of the configuration of the NW controller 50 in the first embodiment. The NW controller 50 includes a communication unit 51 and a control unit 52. The communication unit 51 communicates with other devices. For example, the communication unit 51 communicates with the server 30. The control unit 52 controls the entire NW controller 50. The control unit 52 is configured using one or more processors such as a CPU (Central Processing Unit) and one or more memories. The control unit 52 realizes the functions of an instruction unit 521 and a communication control unit 522 by the one or more processors executing programs.
指示部521は、サーバ20,30に対して各種指示を行う。指示部521が行う指示は、例えば、仮想ルータ22,32の起動指示、疎通確認指示、VPPRグループの作成指示、仮想ルータ22,32の遮断指示等である。仮想ルータ22,32の起動指示は、サーバ20,30に対して、仮想ルータ22,32を起動させるための指示である。疎通確認指示は、仮想ルータ間で疎通確認を実行させるための指示である。VPPRグループの作成指示は、仮想ルータ間でVPPRによるグループを作成させるための指示である。VPPRグループの作成指示には、少なくともVIP(Virtual IP)及び仮想MAC(Media Access Control)アドレスが含まれる。VIPは、同一ネットワーク(同一セグメント)に設置されている仮想ルータをグループ化するために用いられるIPアドレスである。
The instruction unit 521 issues various instructions to the servers 20 and 30. The instructions issued by the instruction unit 521 include, for example, an instruction to start the virtual routers 22 and 32, an instruction to check communication, an instruction to create a VPPR group, and an instruction to shut down the virtual routers 22 and 32. The instruction to start the virtual routers 22 and 32 is an instruction to the servers 20 and 30 to start the virtual routers 22 and 32. The instruction to check communication is an instruction to perform a communication check between the virtual routers. The instruction to create a VPPR group is an instruction to create a group by VPPR between the virtual routers. The instruction to create a VPPR group includes at least a VIP (Virtual IP) and a virtual MAC (Media Access Control) address. The VIP is an IP address used to group virtual routers installed on the same network (same segment).
仮想ルータ22,32の遮断指示は、仮想ルータ22,32の状態を変更させるための指示である。ここで、仮想ルータ22,32の状態を変更させるとは、仮想ルータ22,32を、マスタルータからバックアップルータに移行させることを意味する。例えば、遮断指示には、仮想ルータ22,32の機能を停止させるための指示が含まれていてもよいし、仮想ルータ22,32の優先度を変更させるための指示が含まれていてもよい。仮想ルータの優先度を変更させるための指示が遮断指示に含まれる場合には、切替元の仮想ルータ22,32の優先度が、切替先の仮想ルータ22,32の優先度よりも低くなるような優先度を示す情報が含まれる。例えば、遮断指示には、優先度“1”に変更する情報が含まれていてもよい。
The shutdown instruction for the virtual routers 22, 32 is an instruction to change the state of the virtual routers 22, 32. Here, changing the state of the virtual routers 22, 32 means transitioning the virtual routers 22, 32 from master routers to backup routers. For example, the shutdown instruction may include an instruction to stop the functions of the virtual routers 22, 32, or an instruction to change the priority of the virtual routers 22, 32. If the shutdown instruction includes an instruction to change the priority of the virtual routers, it includes information indicating a priority such that the priority of the source virtual routers 22, 32 is lower than the priority of the destination virtual routers 22, 32. For example, the shutdown instruction may include information to change the priority to "1".
仮想ルータ22,32の機能を停止させるための指示が遮断指示に含まれている場合、遮断指示を受信したサーバ20,30は仮想ルータ22,32の機能を停止する。仮想ルータの優先度を変更させるための指示が遮断指示に含まれている場合、遮断指示を受信したサーバ20,30は仮想ルータ22,32の優先度を変更する。例えば、サーバ20,30は、仮想ルータ22,32の優先度を、指定された優先度となるように変更する。
If the shutdown instruction includes an instruction to stop the function of the virtual router 22, 32, the server 20, 30 that receives the shutdown instruction stops the function of the virtual router 22, 32. If the shutdown instruction includes an instruction to change the priority of the virtual router, the server 20, 30 that receives the shutdown instruction changes the priority of the virtual router 22, 32. For example, the server 20, 30 changes the priority of the virtual router 22, 32 to the specified priority.
疎通制御部522は、切替元のサーバ30-1と切替先のサーバ30-2との間で疎通確認ができなかった場合に、切替元のサーバ30-1と切替先のサーバ30-2との間で疎通できるように各種制御を行う。例えば、疎通制御部522は、切替元のサーバ30-1の仮想ルータ32-1と、切替先のサーバ30-2の仮想ルータ32-2との間の経路の計算、物理層の疎通性確保(例えば、APNにおける波長確保)又は論理ネットワークの疎通性確保(例えば、スイッチ又はルータの設定変更)を行う。
If communication cannot be confirmed between the source server 30-1 and the destination server 30-2, the communication control unit 522 performs various controls to enable communication between the source server 30-1 and the destination server 30-2. For example, the communication control unit 522 calculates the route between the virtual router 32-1 of the source server 30-1 and the virtual router 32-2 of the destination server 30-2, ensures communication in the physical layer (for example, ensures wavelengths in the APN), or ensures communication in the logical network (for example, changes the settings of a switch or router).
図4は、第1の実施形態における無線アクセスネットワークシステム100の処理の流れを示すシーケンス図である。なお、図4の処理では、遮断指示には、仮想ルータ32の機能を停止させるための指示が含まれるものとして説明する。
FIG. 4 is a sequence diagram showing the flow of processing in the wireless access network system 100 in the first embodiment. Note that in the processing in FIG. 4, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 32.
サーバ20と、サーバ30-1とが通信状態である(ステップS101)。サーバ30-1と物理的に離れた場所にサーバ30-2が設置されたとする。サーバ30-2は、サーバ30-1の仮想CU31-1と同一内容の仮想CU31-2を作成する(ステップS102)。NWコントローラ50の指示部521は、ユーザの操作に応じて、サーバ30-2に対して仮想ルータ32-2を起動させるために仮想ルータの起動指示を、通信部51を介してサーバ30-2に送信する(ステップS103)。
Server 20 and server 30-1 are in communication (step S101). Assume that server 30-2 is installed in a location physically separated from server 30-1. Server 30-2 creates a virtual CU 31-2 with the same contents as virtual CU 31-1 of server 30-1 (step S102). In response to a user operation, instruction unit 521 of NW controller 50 sends a virtual router startup instruction to server 30-2 via communication unit 51 to cause server 30-2 to start virtual router 32-2 (step S103).
サーバ30-2は、NWコントローラ50から送信された起動指示を受信する。サーバ30-2は、受信した起動指示に応じて、仮想化技術により仮想ルータ32-2を起動する。サーバ30-2は、仮想ルータ32-2の起動が完了すると、起動の完了報告をNWコントローラ50に送信する(ステップS104)。NWコントローラ50の通信部51は、サーバ30-2から送信された完了報告を受信する。指示部521は、完了報告が受信されると、サーバ30-2の疎通確認指示を、通信部51を介してサーバ30-1に送信する(ステップS105)。これにより、サーバ30-1は、サーバ30-2に対する疎通確認処理を行う(ステップS106)。疎通確認処理については、後述する。
The server 30-2 receives the start-up instruction sent from the NW controller 50. In response to the received start-up instruction, the server 30-2 starts the virtual router 32-2 using virtualization technology. When the start-up of the virtual router 32-2 is completed, the server 30-2 sends a start-up completion report to the NW controller 50 (step S104). The communication unit 51 of the NW controller 50 receives the completion report sent from the server 30-2. When the completion report is received, the instruction unit 521 sends a communication check instruction for the server 30-2 to the server 30-1 via the communication unit 51 (step S105). As a result, the server 30-1 performs a communication check process for the server 30-2 (step S106). The communication check process will be described later.
サーバ30-1は、疎通確認が完了したことを示す疎通確認完了報告をNWコントローラ50に送信する(ステップS107)。ここでは、サーバ30-1は、サーバ30-2の疎通確認ができたことを示す疎通確認結果を含む疎通確認完了報告をNWコントローラ50に送信する。NWコントローラ50の通信部51は、サーバ30-1から送信された疎通確認完了報告を受信する。NWコントローラ50の指示部521は、疎通確認完了報告に含まれる疎通確認結果を参照する。疎通確認結果がサーバ30-2の疎通確認ができたことを示しているため、NWコントローラ50の指示部521はVRRPグループの作成指示を、通信部51を介してサーバ30-1及び30-2に送信する(ステップS108)。
The server 30-1 transmits a communication check completion report to the NW controller 50 indicating that the communication check has been completed (step S107). Here, the server 30-1 transmits a communication check completion report to the NW controller 50 including a communication check result indicating that communication check has been completed for server 30-2. The communication unit 51 of the NW controller 50 receives the communication check completion report transmitted from the server 30-1. The instruction unit 521 of the NW controller 50 refers to the communication check result contained in the communication check completion report. As the communication check result indicates that communication check has been completed for server 30-2, the instruction unit 521 of the NW controller 50 transmits an instruction to create a VRRP group to the servers 30-1 and 30-2 via the communication unit 51 (step S108).
サーバ30-1及び30-2は、NWコントローラ50から送信されたVRRPグループの作成指示を受信する。サーバ30-1及び30-2は、受信したVRRPグループの作成指示に応じてVRRPグループを作成する。サーバ30-1の仮想ルータ32-1と、サーバ30-2の仮想ルータ32-2は、互いの優先度を比較してマスタルータとバックアップルータを設定する。ここでは、仮想ルータ32-1がマスタルータに設定し、仮想ルータ32-2がバックアップルータに設定したとする(ステップS109、S110)。サーバ30-1及び30-2は、VRRPグループの作成が完了したことを示すVRRPグループ完了報告をNWコントローラ50に送信する(ステップS111)。NWコントローラ50の通信部51は、サーバ30-1及び30-2それぞれから送信されたVRRPグループ完了報告を受信する。
The servers 30-1 and 30-2 receive the VRRP group creation instruction sent from the NW controller 50. The servers 30-1 and 30-2 create a VRRP group in response to the received VRRP group creation instruction. The virtual router 32-1 of the server 30-1 and the virtual router 32-2 of the server 30-2 compare their priorities to set the master router and the backup router. Here, it is assumed that the virtual router 32-1 is set as the master router and the virtual router 32-2 is set as the backup router (steps S109 and S110). The servers 30-1 and 30-2 send a VRRP group completion report to the NW controller 50 indicating that the creation of the VRRP group has been completed (step S111). The communication unit 51 of the NW controller 50 receives the VRRP group completion reports sent from the servers 30-1 and 30-2, respectively.
NWコントローラ50の指示部521は、サーバ30-1及び30-2それぞれからVRRPグループ完了報告が受信された後、通信部51を介して切替元であるサーバ30-1に仮想ルータ32-1の遮断指示を送信する(ステップS112)。この際、指示部521は、予め定められた設定に応じて、仮想ルータ32-1の機能を停止させるための指示、又は、仮想ルータ32-1の優先度を変更させるための指示のいずれかを含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信する。ここでは、指示部521は、仮想ルータ32-1の機能を停止させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信したとする。
After receiving the VRRP group completion reports from each of servers 30-1 and 30-2, the instruction unit 521 of the NW controller 50 transmits an instruction to shut down the virtual router 32-1 to the switching source server 30-1 via the communication unit 51 (step S112). At this time, the instruction unit 521 transmits a shut-down instruction including either an instruction to stop the function of the virtual router 32-1 or an instruction to change the priority of the virtual router 32-1 to the switching source server 30-1 via the communication unit 51 according to a predetermined setting. Here, it is assumed that the instruction unit 521 transmits a shut-down instruction including an instruction to stop the function of the virtual router 32-1 to the switching source server 30-1 via the communication unit 51.
サーバ30-1は、NWコントローラ50から送信された遮断指示を受信する。サーバ30-1は、遮断指示に含まれる指示に応じて、仮想ルータ32-1の状態を変更する。例えば、仮想ルータ32-1の機能を停止させるための指示が遮断指示に含まれている場合、サーバ30-1は仮想ルータ32-1の機能を停止する。これにより、仮想ルータ32-1からAdvertisement信号が仮想ルータ32-2に送信されなくなる。Advertisement信号は、マスタルータが通信可能な状態であることを示すための信号である。
The server 30-1 receives the shutdown instruction sent from the NW controller 50. The server 30-1 changes the state of the virtual router 32-1 according to the instruction contained in the shutdown instruction. For example, if the shutdown instruction contains an instruction to stop the function of the virtual router 32-1, the server 30-1 stops the function of the virtual router 32-1. As a result, the advertisement signal is no longer sent from the virtual router 32-1 to the virtual router 32-2. The advertisement signal is a signal that indicates that the master router is in a state where communication is possible.
サーバ30-2の仮想ルータ32-2は、仮想ルータ32-1からAdvertisement信号を一定期間受信できなかったことを契機に、マスタルータである仮想ルータ32-1がダウンしたことを検知する(ステップS113)。その後、仮想ルータ32-1は、自装置をマスタルータに設定する(ステップS114)。仮想ルータ32-1は、マスタルータの設定後に、GARPによりVIPに対応する仮想MACアドレスを周知する(ステップS115)。
When the virtual router 32-2 of the server 30-2 fails to receive an advertisement signal from the virtual router 32-1 for a certain period of time, it detects that the master router, virtual router 32-1, has gone down (step S113). After that, the virtual router 32-1 sets itself as the master router (step S114). After setting the master router, the virtual router 32-1 notifies the virtual MAC address corresponding to the VIP by GARP (step S115).
無線局10は、仮想ルータ32-1から周知された仮想MACアドレスを受信する。無線局10は、受信した仮想MACアドレスに応じて、ARPテーブルを更新する(ステップS116)。例えば、無線局10は、仮想MACアドレス宛の出力ポートを、仮想MACアドレスを受信したポートに変更することでARPテーブルを更新する
。無線局10は、ARPテーブルの更新後に、通信が可能になったことをサーバ30-2に通知する(ステップS117)。 Thewireless station 10 receives the virtual MAC address notified from the virtual router 32-1. The wireless station 10 updates the ARP table in accordance with the received virtual MAC address (step S116). For example, the wireless station 10 updates the ARP table by changing the output port addressed to the virtual MAC address to the port through which the virtual MAC address was received. After updating the ARP table, the wireless station 10 notifies the server 30-2 that communication is now possible (step S117).
。無線局10は、ARPテーブルの更新後に、通信が可能になったことをサーバ30-2に通知する(ステップS117)。 The
なお、ステップS112の処理において、指示部521が、仮想ルータ32-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信した場合、サーバ30-1は仮想ルータ32-1の優先度を変更する。遮断指示には、切替元の仮想ルータ32(ここでは、仮想ルータ32-1)の優先度を、切替先の仮想ルータ32(ここでは、仮想ルータ32-2)の優先度よりも低くなるような優先度を示す情報(例えば、優先度“1”)の情報が含まれる。そのため、サーバ30-1は、仮想ルータ32-1の優先度を“1”に設定する。
Note that in the process of step S112, if the instruction unit 521 sends a cut-off instruction including an instruction to change the priority of the virtual router 32-1 to the switching source server 30-1 via the communication unit 51, the server 30-1 changes the priority of the virtual router 32-1. The cut-off instruction includes information indicating a priority (for example, priority "1") such that the priority of the switching source virtual router 32 (here, virtual router 32-1) is lower than the priority of the switching destination virtual router 32 (here, virtual router 32-2). Therefore, the server 30-1 sets the priority of the virtual router 32-1 to "1".
これにより、仮想ルータ32-1の優先度が、仮想ルータ32-2の優先度よりも低くなる。この場合、ステップS113において、仮想ルータ32-1と仮想ルータ32-2とは、互いの優先度を比較する。優先度の比較の結果、仮想ルータ32-2の優先度が、仮想ルータ32-1の優先度よりも高いため、仮想ルータ32-2は自装置をマスタルータに設定し(ステップS114)、仮想ルータ32-1は自装置をバックアップルータに設定する。これにより、仮想ルータ32-1は待機状態となる。このように、NWコントローラ50は、切替元のサーバ30-1の仮想ルータ32-1の優先度を変更してバックアップルータとすることで、停止させずに経路を切り替えることも可能である。
As a result, the priority of virtual router 32-1 becomes lower than the priority of virtual router 32-2. In this case, in step S113, virtual router 32-1 and virtual router 32-2 compare their priorities. As a result of the priority comparison, the priority of virtual router 32-2 is higher than the priority of virtual router 32-1, so virtual router 32-2 sets itself as the master router (step S114), and virtual router 32-1 sets itself as the backup router. As a result, virtual router 32-1 goes into a standby state. In this way, the NW controller 50 can change the priority of virtual router 32-1 of the switching source server 30-1 to make it the backup router, making it possible to switch routes without stopping the server.
図5は、第1の実施形態における無線アクセスネットワークシステム100の疎通確認処理の流れを示すフローチャートである。
サーバ30-1は、NWコントローラ50から送信された疎通確認の指示を受信する(ステップS201)。サーバ30-1の仮想ルータ32-1は、疎通確認の指示に応じてサーバ30-2の仮想ルータ32-2に対して疎通確認を行う(ステップS202)。仮想ルータ32-1は、仮想ルータ32-2の疎通確認ができたか否かを判定する(ステップS203)。 FIG. 5 is a flowchart showing a flow of a communication confirmation process of the radioaccess network system 100 in the first embodiment.
The server 30-1 receives the communication check instruction sent from the NW controller 50 (step S201). In response to the communication check instruction, the virtual router 32-1 of the server 30-1 performs a communication check with the virtual router 32-2 of the server 30-2 (step S202). The virtual router 32-1 determines whether or not the communication check with the virtual router 32-2 has been successful (step S203).
サーバ30-1は、NWコントローラ50から送信された疎通確認の指示を受信する(ステップS201)。サーバ30-1の仮想ルータ32-1は、疎通確認の指示に応じてサーバ30-2の仮想ルータ32-2に対して疎通確認を行う(ステップS202)。仮想ルータ32-1は、仮想ルータ32-2の疎通確認ができたか否かを判定する(ステップS203)。 FIG. 5 is a flowchart showing a flow of a communication confirmation process of the radio
The server 30-1 receives the communication check instruction sent from the NW controller 50 (step S201). In response to the communication check instruction, the virtual router 32-1 of the server 30-1 performs a communication check with the virtual router 32-2 of the server 30-2 (step S202). The virtual router 32-1 determines whether or not the communication check with the virtual router 32-2 has been successful (step S203).
仮想ルータ32-1は、仮想ルータ32-2の疎通確認ができたと判定した場合(ステップS203-OK)、疎通確認処理が終了する。一方で、仮想ルータ32-1は、仮想ルータ32-2の疎通確認ができなかったと判定した場合(ステップS203-NG)、NWコントローラ50に対して仮想ルータ32-2の疎通確認ができなかったことを通知する。仮想ルータ32-2の疎通確認ができなかったとは、仮想ルータ32-1から送信された信号に対する応答が仮想ルータ32-2から得られなかった場合である。
If the virtual router 32-1 determines that the communication with the virtual router 32-2 has been confirmed (step S203-OK), the communication confirmation process ends. On the other hand, if the virtual router 32-1 determines that the communication with the virtual router 32-2 has not been confirmed (step S203-NG), it notifies the NW controller 50 that the communication with the virtual router 32-2 has not been confirmed. Communication with the virtual router 32-2 has not been confirmed when no response is obtained from the virtual router 32-2 in response to the signal sent from the virtual router 32-1.
NWコントローラ50の通信部51は、仮想ルータ32-1から送信された通知を受信する。疎通制御部522は、仮想ルータ32-1と仮想ルータ32-2との間の経路を計算する(ステップS204)。次に、疎通制御部522は、サーバ30-1とサーバ30-2とに対する物理層の疎通性を確保する(ステップS205)。そして、疎通制御部522は、サーバ30-1とサーバ30-2とに対する論理ネットワークの疎通性を確保する(ステップS206)。
The communication unit 51 of the NW controller 50 receives the notification sent from the virtual router 32-1. The communication control unit 522 calculates the route between the virtual routers 32-1 and 32-2 (step S204). Next, the communication control unit 522 ensures physical layer communication between the servers 30-1 and 30-2 (step S205). Then, the communication control unit 522 ensures logical network communication between the servers 30-1 and 30-2 (step S206).
指示部521は、ステップS204からステップS206までの処理が実行された後に、再度サーバ30-1に対して疎通確認の指示を送信する(ステップS207)。これにより、再度ステップS202の処理が実行される。このように、NWコントローラ50において、切替元のサーバ30と切替先のサーバ30との疎通が確認で切るように制御される。
After the processes from step S204 to step S206 have been executed, the instruction unit 521 again sends an instruction to server 30-1 to check communication (step S207). This causes the process of step S202 to be executed again. In this way, the NW controller 50 is controlled so that communication between the switching source server 30 and the switching destination server 30 is cut off upon confirmation.
以上のように構成された無線アクセスネットワークシステム100によれば、NWコントローラ50が、仮想化技術により、仮想CU31と、仮想ルータ32とを実現する切替元のサーバ30-1と切替先のサーバ30-2においてVPPRを用いることで、切替元のサーバ30-1で実現される仮想ルータ32-1と切替先のサーバ30-2で実現される仮想ルータ32-2とをグループ化し、切替元のサーバ30-1で実現される仮想ルータ32-1を停止もしくは、優先度を変更して待機状態させることで経路の切替を行う制御部52を備える。これにより、vRANにおける柔軟な機能配備のためのネットワーク制御を既存技術であるVRRPを用いることで簡易に実現することができる。そして、CUの切替えといったネットワーク制御を短時間に行うことが可能となる。そのため、無線アクセスネットワークにおいて基地局機能の切り替えを容易に行うことが可能になる。
In the radio access network system 100 configured as described above, the NW controller 50 uses VPPR in the source server 30-1 and the destination server 30-2 that realize the virtual CU 31 and the virtual router 32 by using virtualization technology, and groups the virtual router 32-1 realized in the source server 30-1 and the virtual router 32-2 realized in the destination server 30-2, and has a control unit 52 that switches the route by stopping the virtual router 32-1 realized in the source server 30-1 or changing the priority and putting it in a standby state. This makes it possible to easily realize network control for flexible function deployment in vRAN by using VRRP, which is an existing technology. And it becomes possible to perform network control such as CU switching in a short time. Therefore, it becomes possible to easily switch base station functions in the radio access network.
(第2の実施形態)
第2の実施形態では、MECの移動に合わせてネットワーク制御を行う構成について説明する。 Second Embodiment
In the second embodiment, a configuration for performing network control in accordance with the movement of an MEC will be described.
第2の実施形態では、MECの移動に合わせてネットワーク制御を行う構成について説明する。 Second Embodiment
In the second embodiment, a configuration for performing network control in accordance with the movement of an MEC will be described.
図6は、第2の実施形態における無線アクセスネットワークシステム100aの構成例を示す図である。無線アクセスネットワークシステム100aは、無線局10と、サーバ20と、複数のサーバ30-1,30-2と、5GC40と、NWコントローラ50と、ネットワーク60と、MEC65と、MECコントローラ67とを備える。無線アクセスネットワークシステム100aは、MEC65及びMECコントローラ67をさらに備える点で無線アクセスネットワークシステム100と構成が異なる。その他の基本的な動作は無線アクセスネットワークシステム100と同様である。以下、無線アクセスネットワークシステム100との相違点を中心に説明する。
FIG. 6 is a diagram showing an example of the configuration of a radio access network system 100a in the second embodiment. The radio access network system 100a includes a radio station 10, a server 20, a plurality of servers 30-1, 30-2, a 5GC 40, a NW controller 50, a network 60, an MEC 65, and an MEC controller 67. The radio access network system 100a differs in configuration from the radio access network system 100 in that it further includes an MEC 65 and an MEC controller 67. Other basic operations are the same as those of the radio access network system 100. The following description will focus on the differences from the radio access network system 100.
MEC65は、エッジコンピューティングを構成する装置である。MEC65は、例えば、5GC40の一部(例えば、UPF(User Plane Function)/SMF(Session Management Function))と汎用サーバで構成される。
MEC65 is a device that constitutes edge computing. MEC65 is composed of, for example, part of 5GC40 (e.g., UPF (User Plane Function)/SMF (Session Management Function)) and a general-purpose server.
MECコントローラ67は、MEC65の動作を制御する装置である。
The MEC controller 67 is a device that controls the operation of the MEC 65.
図7は、第2の実施形態における無線アクセスネットワークシステム100aの処理の流れを示すシーケンス図である。図7において、図4と同様の処理においては図4と同様の符号を付して説明を省略する。なお、図7の処理では、遮断指示には、仮想ルータ32の機能を停止させるための指示が含まれるものとして説明する。
FIG. 7 is a sequence diagram showing the flow of processing in the wireless access network system 100a in the second embodiment. In FIG. 7, the same processes as those in FIG. 4 are denoted by the same reference numerals as in FIG. 4, and the description thereof will be omitted. Note that in the processing in FIG. 7, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 32.
MEC65が、伝送距離短縮による低遅延化を目的としてネットワーク60より手前のエッジサイトに移動されたとする。MECコントローラ67は、MEC65を立ち上げる(ステップS301)。その後、ステップS101以降の処理を実行する。
Assume that MEC 65 has been moved to an edge site before network 60 in order to reduce latency by shortening the transmission distance. MEC controller 67 starts up MEC 65 (step S301). Then, it executes the processes from step S101 onwards.
なお、ステップS112の処理において、指示部521は、仮想ルータ32-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In addition, in the process of step S112, the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51. The specific process flow in this case has already been explained above, so it will not be explained here.
以上のように構成された無線アクセスネットワークシステム100aによれば、MEC65の移動に応じて、移動後のMEC65と通信を行う仮想CU31-2を起動させ、同一ネットワーク内でIPアドレスが重複しないようにVRRPを用いてネットワーク制御を行う。このように、仮想無線アクセスネットワークにおける柔軟な機能配備のためのネットワーク制御を、既存技術であるVRRPを用いることで簡易に実現することができる。その結果、基地局機能(例えば、CU)の切替えといったネットワーク制御を短時間に行うことが可能になる。
In the radio access network system 100a configured as described above, when the MEC 65 moves, the virtual CU 31-2 that communicates with the moved MEC 65 is started, and network control is performed using VRRP to prevent duplication of IP addresses within the same network. In this way, network control for flexible function deployment in a virtual radio access network can be easily achieved by using the existing technology VRRP. As a result, network control such as switching of base station functions (e.g., CU) can be performed in a short time.
(第3の実施形態)
第3の実施形態では、経路の切り替えに加えて、仮想CUのOSの更新を行う構成について説明する。 Third Embodiment
In the third embodiment, a configuration will be described in which the OS of a virtual CU is updated in addition to switching the path.
第3の実施形態では、経路の切り替えに加えて、仮想CUのOSの更新を行う構成について説明する。 Third Embodiment
In the third embodiment, a configuration will be described in which the OS of a virtual CU is updated in addition to switching the path.
図8は、第3の実施形態における無線アクセスネットワークシステム100bの構成例を示す図である。無線アクセスネットワークシステム100bは、無線局10と、複数のサーバ20と、複数のサーバ30-1,30-2と、5GC40と、NWコントローラ50と、ネットワーク60と、基地局コントローラ70とを備える。無線アクセスネットワークシステム100bは、基地局コントローラ70をさらに備える点で無線アクセスネットワークシステム100と構成が異なる。なお、無線アクセスネットワークシステム100bが備える無線局10、サーバ20及びサーバ30の数は特に限定されない。その他の基本的な動作は無線アクセスネットワークシステム100と同様である。以下、無線アクセスネットワークシステム100との相違点を中心に説明する。
FIG. 8 is a diagram showing an example of the configuration of a radio access network system 100b in the third embodiment. The radio access network system 100b includes a radio station 10, a plurality of servers 20, a plurality of servers 30-1, 30-2, a 5GC 40, a NW controller 50, a network 60, and a base station controller 70. The radio access network system 100b differs in configuration from the radio access network system 100 in that it further includes a base station controller 70. Note that the number of radio stations 10, servers 20, and servers 30 included in the radio access network system 100b is not particularly limited. Other basic operations are the same as those of the radio access network system 100. The following description will focus on the differences from the radio access network system 100.
第3の実施形態におけるNWコントローラ50の通信部51は、サーバ30との間、及び基地局コントローラ70との間で通信を行う。
In the third embodiment, the communication unit 51 of the NW controller 50 communicates with the server 30 and with the base station controller 70.
基地局コントローラ70は、CU(例えば、仮想CU31)又はDU(例えば、仮想DU21)機能を管理制御し、CU又はDUのOS更新等の指示を行う。第3の実施形態では、基地局コントローラ70は、仮想CU31-1,CU31-2機能を管理制御する。
The base station controller 70 manages and controls the CU (e.g., virtual CU 31) or DU (e.g., virtual DU 21) functions, and issues instructions such as updating the OS of the CU or DU. In the third embodiment, the base station controller 70 manages and controls the virtual CU 31-1 and CU 31-2 functions.
図9は、第3の実施形態における無線アクセスネットワークシステム100bの処理(その1)の流れを示すシーケンス図である。なお、図9では、OS更新先を切り戻さないパターンについて説明する。図9において、図4と同様の処理においては図4と同様の符号を付して説明を省略する。なお、図9の処理では、遮断指示には、仮想ルータ32の機能を停止させるための指示が含まれるものとして説明する。
FIG. 9 is a sequence diagram showing the flow of processing (part 1) of the wireless access network system 100b in the third embodiment. Note that FIG. 9 describes a pattern in which the OS update destination is not switched back. In FIG. 9, the same processes as in FIG. 4 are denoted with the same reference numerals as in FIG. 4 and the description is omitted. Note that in the processing in FIG. 9, the shutdown instruction is described as including an instruction to stop the function of the virtual router 32.
基地局コントローラ70は、切替先のサーバ30-2に更新後のOSで起動させるために、OSの更新指示をサーバ30-2に送信する(ステップS401)。サーバ30-2は、基地局コントローラ70から送信されたOSの更新指示を受信する。サーバ30-2は、OSの更新指示の受信に応じて、サーバ30-1の仮想CU31-1の新OSで仮想CU31-2を起動させる(ステップS402)。基地局コントローラ70は、OSの更新対象となる仮想CU31-2の配下の仮想ルータの起動をNWコントローラ50に指示する(ステップS403)。
The base station controller 70 sends an OS update instruction to the server 30-2 to have the switching destination server 30-2 start up with the updated OS (step S401). The server 30-2 receives the OS update instruction sent from the base station controller 70. In response to receiving the OS update instruction, the server 30-2 starts up the virtual CU 31-2 with the new OS of the virtual CU 31-1 of the server 30-1 (step S402). The base station controller 70 instructs the NW controller 50 to start up the virtual router under the virtual CU 31-2 that is the target of the OS update (step S403).
NWコントローラ50は、基地局コントローラ70からの指示に応じて、サーバ30-2に対して仮想ルータ32-2を起動させるために仮想ルータの起動指示を、通信部51を介してサーバ30-2に送信する(ステップS404)。その後、ステップS104からステップS111までの処理が実行される。NWコントローラ50の通信部51は、ステップS111の処理後、OSの更新準備が完了したことを示すOS更新準備完了報告を基地局コントローラ70に送信する(ステップS405)。
In response to an instruction from the base station controller 70, the NW controller 50 transmits a virtual router startup instruction to the server 30-2 via the communication unit 51 to cause the server 30-2 to start the virtual router 32-2 (step S404). Then, the processes from step S104 to step S111 are executed. After the process of step S111, the communication unit 51 of the NW controller 50 transmits an OS update preparation completion report to the base station controller 70 indicating that preparation for the OS update has been completed (step S405).
基地局コントローラ70は、NWコントローラ50から送信されたOS更新準備完了報告を受信する。基地局コントローラ70は、受信したOS更新準備完了報告に応じて、仮想CU31-1から仮想CU31-2への切替指示をNWコントローラ50に送信する(ステップS406)。NWコントローラ50の通信部51は、基地局コントローラ70から送信された切替指示を受信する。指示部521は、切替指示を受信した後、通信部51を介して切替元であるサーバ30-1に仮想ルータ32-1の遮断指示を送信する(ステップS407)。その後、ステップS113以降の処理を実行する。
The base station controller 70 receives the OS update preparation completion report sent from the NW controller 50. In response to the received OS update preparation completion report, the base station controller 70 sends a switching instruction from virtual CU 31-1 to virtual CU 31-2 to the NW controller 50 (step S406). The communication unit 51 of the NW controller 50 receives the switching instruction sent from the base station controller 70. After receiving the switching instruction, the instruction unit 521 sends an instruction to shut down the virtual router 32-1 to the server 30-1, which is the switching source, via the communication unit 51 (step S407). Then, the processing from step S113 onwards is executed.
なお、ステップS407の処理において、指示部521は、仮想ルータ32-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In addition, in the process of step S407, the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51. The specific process flow in this case has already been explained above, so it will not be explained here.
図10及び図11は、第3の実施形態における無線アクセスネットワークシステム100bの処理(その2)の流れを示すシーケンス図である。なお、図10及び図11では、OS更新先を切り戻すパターンについて説明する。図10及び図11において、図4と同様の処理においては図4と同様の符号を付して説明を省略する。なお、図10及び図11の処理では、遮断指示には、仮想ルータ32の機能を停止させるための指示が含まれるものとして説明する。
FIGS. 10 and 11 are sequence diagrams showing the flow of processing (part 2) of the wireless access network system 100b in the third embodiment. Note that in FIG. 10 and FIG. 11, a pattern of switching back the OS update destination is explained. In FIG. 10 and FIG. 11, the same processes as in FIG. 4 are assigned the same reference numerals as in FIG. 4, and explanations are omitted. Note that in the processing in FIG. 10 and FIG. 11, the shutdown instruction is explained as including an instruction to stop the function of the virtual router 32.
基地局コントローラ70は、OSの更新指示をサーバ30-2に送信する(ステップS501)。サーバ30-2は、基地局コントローラ70から送信されたOSの更新指示を受信する。サーバ30-2は、OSの更新指示の受信に応じて、サーバ30-2は、サーバ30-1の仮想CU31-1と同一内容の仮想CU31-2を作成する(ステップS502)。基地局コントローラ70は、OSの更新対象となる仮想CU31-2の配下の仮想ルータの起動をNWコントローラ50に指示する(ステップS503)。
The base station controller 70 sends an OS update instruction to the server 30-2 (step S501). The server 30-2 receives the OS update instruction sent from the base station controller 70. In response to receiving the OS update instruction, the server 30-2 creates a virtual CU 31-2 with the same contents as the virtual CU 31-1 of the server 30-1 (step S502). The base station controller 70 instructs the NW controller 50 to start up the virtual router under the virtual CU 31-2 that is the target of the OS update (step S503).
NWコントローラ50の指示部521は、基地局コントローラ70からの指示に応じて、サーバ30-2に対して仮想ルータ32-2を起動させるために仮想ルータの起動指示を、通信部51を介してサーバ30-2に送信する(ステップS504)。その後、ステップS104からステップS111までの処理が実行される。NWコントローラ50の通信部51は、ステップS111の処理後、バックアップ先の準備が完了したことを示すバックアップ先準備完了報告を基地局コントローラ70に送信する(ステップS505)。
In response to the instruction from the base station controller 70, the instruction unit 521 of the NW controller 50 sends a virtual router startup instruction to the server 30-2 via the communication unit 51 to cause the server 30-2 to start the virtual router 32-2 (step S504). Then, the processes from step S104 to step S111 are executed. After the process of step S111, the communication unit 51 of the NW controller 50 sends a backup destination preparation completion report to the base station controller 70 indicating that the backup destination preparation has been completed (step S505).
基地局コントローラ70は、NWコントローラ50から送信されたバックアップ先準備完了報告を受信する。基地局コントローラ70は、受信したバックアップ先準備完了報告に応じて、仮想CU31-1から仮想CU31-2への切替指示をNWコントローラ50に送信する(ステップS506)。NWコントローラ50の通信部51は、基地局コントローラ70から送信された切替指示を受信する。指示部521は、基地局コントローラ70から送信された切替指示を受信した後、通信部51を介して切替元であるサーバ30-1に仮想ルータ32-1の遮断指示を送信する(ステップS507)。その後、ステップS113からステップS117までの処理が実行される。
The base station controller 70 receives the backup destination preparation completion report sent from the NW controller 50. In response to the received backup destination preparation completion report, the base station controller 70 sends a switching instruction from virtual CU 31-1 to virtual CU 31-2 to the NW controller 50 (step S506). The communication unit 51 of the NW controller 50 receives the switching instruction sent from the base station controller 70. After receiving the switching instruction sent from the base station controller 70, the instruction unit 521 sends an instruction to shut down the virtual router 32-1 to the server 30-1, which is the switching source, via the communication unit 51 (step S507). Then, the processes from step S113 to step S117 are executed.
サーバ30-2は、無線局10との間で処理が可能になると、切り替えが干渉したことを示す切替完了報告をNWコントローラ50に送信する(ステップS508)。NWコントローラ50の通信部51は、サーバ30-2から送信された切替完了報告を受信する。NWコントローラ50の通信部51は、切替完了報告の受信を契機に、OSの更新準備が完了したことを示すOS更新準備完了報告を基地局コントローラ70に送信する(ステップS509)。
When processing with the wireless station 10 becomes possible, the server 30-2 transmits a switching completion report to the NW controller 50 indicating that switching has caused interference (step S508). The communication unit 51 of the NW controller 50 receives the switching completion report transmitted from the server 30-2. Upon receiving the switching completion report, the communication unit 51 of the NW controller 50 transmits an OS update preparation completion report to the base station controller 70 indicating that preparation for the OS update has been completed (step S509).
基地局コントローラ70は、OS更新準備完了報告の受信に応じて、サーバ30-1のOSを更新する(ステップS510)。これにより、サーバ30-1は、OSが更新される。サーバ30-1は、OSの更新が完了すると、更新が完了したことを示すOS更新完了報告を基地局コントローラ70に送信する(ステップS511)。基地局コントローラ70は、サーバ30-1から送信されたOS更新完了報告を受信する。基地局コントローラ70は、OS更新完了報告の受信に応じて、NWコントローラ50に対して切り戻し指示を送信する(ステップS512)。
In response to receiving the OS update preparation completion report, the base station controller 70 updates the OS of the server 30-1 (step S510). This updates the OS of the server 30-1. When the OS update is complete, the server 30-1 transmits an OS update completion report to the base station controller 70 indicating that the update has been completed (step S511). The base station controller 70 receives the OS update completion report transmitted from the server 30-1. In response to receiving the OS update completion report, the base station controller 70 transmits a switchback instruction to the NW controller 50 (step S512).
NWコントローラ50の通信部51は、基地局コントローラ70から送信された切り戻し指示を受信する。NWコントローラ50の指示部521は、基地局コントローラ70からの指示に応じて、サーバ30-1に対して仮想ルータ32-1を起動させるために仮想ルータの起動指示を、通信部51を介してサーバ30-1に送信する(ステップS513)。
The communication unit 51 of the NW controller 50 receives the switchback instruction sent from the base station controller 70. In response to the instruction from the base station controller 70, the instruction unit 521 of the NW controller 50 sends a virtual router startup instruction to the server 30-1 via the communication unit 51 to cause the server 30-1 to start the virtual router 32-1 (step S513).
サーバ30-1は、NWコントローラ50から送信された起動指示に応じて、仮想ルータ32-1を起動する(ステップS514)。仮想ルータ32-1の起動が完了すると、サーバ30-1の仮想ルータ32-1と、サーバ30-2の仮想ルータ32-2は、互いの優先度を比較する(ステップS515)。
In response to the startup instruction sent from the NW controller 50, the server 30-1 starts up the virtual router 32-1 (step S514). When the startup of the virtual router 32-1 is complete, the virtual router 32-1 of the server 30-1 and the virtual router 32-2 of the server 30-2 compare their priorities (step S515).
優先度の比較の結果、仮想ルータ32-1の優先度が、仮想ルータ32-2の優先度よりも高いため、仮想ルータ32-1は自装置をマスタルータに設定し、仮想ルータ32-2は自装置をバックアップルータに設定する(ステップS516、S517)。サーバ30-1は、仮想ルータ32-1の起動が完了したことをNWコントローラ50に通知する(ステップS518)。NWコントローラ50の通信部51は、サーバ30-1からの通知を受信する。NWコントローラ50の通信部51は、受信した通知に応じて、切り戻しが完了したことを示す切り戻し完了報告を基地局コントローラ70に送信する(ステップS519)。
As a result of the priority comparison, the priority of virtual router 32-1 is higher than that of virtual router 32-2, so virtual router 32-1 sets itself as the master router, and virtual router 32-2 sets itself as the backup router (steps S516, S517). Server 30-1 notifies NW controller 50 that startup of virtual router 32-1 is complete (step S518). Communication unit 51 of NW controller 50 receives the notification from server 30-1. In response to the received notification, communication unit 51 of NW controller 50 transmits a switchover completion report to base station controller 70 indicating that switchover has been completed (step S519).
なお、ステップS507の処理において、指示部521は、仮想ルータ32-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In addition, in the process of step S507, the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51. The specific process flow in this case has already been explained above, so it will not be explained here.
なお、ステップS507の処理において、指示部521が、仮想ルータ32-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信している場合、仮想ルータ32-1の優先度は、他の仮想ルータ32(例えば、仮想ルータ32-2)の優先度よりも低くなっている。そこで、ステップS507の処理において、指示部521が、仮想ルータ32-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信している場合に切り戻しを行う場合には、指示部521は、ステップS513の処理において、仮想ルータの起動指示に、新たに設定する優先度の情報を含めてもよい。例えば、指示部521は、切替先の仮想ルータ32(ここでは、仮想ルータ32-1)の優先度を、切替元の仮想ルータ32(ここでは、仮想ルータ32-2)の優先度よりも高くなるような優先度を示す情報(例えば、優先度“255”)の情報を起動指示に含めてもよい。これにより、切替先の仮想ルータ32-1が起動した場合に、仮想ルータ32-1の優先度が、他の仮想ルータ32の優先度よりも高くなる。そのため、切り戻しが可能になる。
Note that in the process of step S507, if the instruction unit 521 transmits a cutoff instruction including an instruction to change the priority of the virtual router 32-1 to the server 30-1, which is the source of switching, via the communication unit 51, the priority of the virtual router 32-1 is lower than the priority of another virtual router 32 (for example, virtual router 32-2). Therefore, in the process of step S507, if the instruction unit 521 transmits a cutoff instruction including an instruction to change the priority of the virtual router 32-1 to the server 30-1, which is the source of switching, via the communication unit 51, and switching back is performed, the instruction unit 521 may include information on the new priority to be set in the start instruction for the virtual router in the process of step S513. For example, the instruction unit 521 may include information indicating a priority (for example, priority "255") such that the priority of the destination virtual router 32 (here, virtual router 32-1) is higher than the priority of the source virtual router 32 (here, virtual router 32-2) in the start instruction. As a result, when the switching destination virtual router 32-1 is started, the priority of the virtual router 32-1 becomes higher than the priority of the other virtual routers 32. This makes it possible to switch back.
以上のように構成された無線アクセスネットワークシステム100bによれば、第1の実施形態と同様の効果を得ることができる。
The wireless access network system 100b configured as described above can achieve the same effects as the first embodiment.
さらに無線アクセスネットワークシステム100bでは、仮想CU31のOSの更新も併せて実行することができる。これにより、切替え後においても最新のバージョンで処理が可能になる。
Furthermore, in the wireless access network system 100b, the OS of the virtual CU 31 can also be updated. This makes it possible to process with the latest version even after switching.
(第4の実施形態)
第1の実施形態から第3の実施形態では、DUからCUまでの区間においてCUの切替を行う構成について説明した。第4の実施形態では、RUからDUまでの区間において、DUの切替に関する構成について説明する。 Fourth Embodiment
In the first to third embodiments, a configuration for switching CUs in a section from DU to CU has been described. In the fourth embodiment, a configuration for switching DUs in a section from RU to DU will be described.
第1の実施形態から第3の実施形態では、DUからCUまでの区間においてCUの切替を行う構成について説明した。第4の実施形態では、RUからDUまでの区間において、DUの切替に関する構成について説明する。 Fourth Embodiment
In the first to third embodiments, a configuration for switching CUs in a section from DU to CU has been described. In the fourth embodiment, a configuration for switching DUs in a section from RU to DU will be described.
図12は、第4の実施形態における無線アクセスネットワークシステム100cの構成例を示す図である。無線アクセスネットワークシステム100cは、無線局10と、複数のサーバ20-1,20-2と、サーバ30と、5GC40と、NWコントローラ50と、ネットワーク60を備える。なお、無線アクセスネットワークシステム100cが備える無線局10、サーバ20及びサーバ30の数は特に限定されない。以下の説明において、サーバ20-1,20-2を特に区別しない場合には単にサーバ20と記載する。
FIG. 12 is a diagram showing an example of the configuration of a wireless access network system 100c in the fourth embodiment. The wireless access network system 100c includes a wireless station 10, multiple servers 20-1 and 20-2, a server 30, a 5GC 40, a NW controller 50, and a network 60. Note that the number of wireless stations 10, servers 20, and servers 30 included in the wireless access network system 100c is not particularly limited. In the following description, when there is no particular distinction between the servers 20-1 and 20-2, they will simply be referred to as server 20.
無線アクセスネットワークシステム100cでは、サーバ20-1とサーバ20-2とは、物理的な設置位置が異なる場所に配置される。以下の説明では、サーバ20-1が切替元のサーバであり、サーバ20-2が新たな場所に設置された切替先のサーバであるものとする。このように、無線アクセスネットワークシステム100cでは、仮想DUを移動させる場合の構成について説明する。
In the wireless access network system 100c, the servers 20-1 and 20-2 are located in different physical locations. In the following explanation, it is assumed that the server 20-1 is the source server and the server 20-2 is the destination server installed in a new location. In this way, the configuration of the wireless access network system 100c when moving a virtual DU will be explained.
第4の実施形態におけるNWコントローラ50の通信部51は、サーバ20との間で通信を行う。
In the fourth embodiment, the communication unit 51 of the NW controller 50 communicates with the server 20.
第4の実施形態におけるNWコントローラ50は、無線アクセスネットワークシステム100cにおける経路制御を行うルータ(例えば、仮想ルータ22や仮想ルータ32)を制御する。第4の実施形態では、NWコントローラ50が、サーバ20上で実現する仮想ルータ22を制御するものとして説明する。
The NW controller 50 in the fourth embodiment controls a router (e.g., virtual router 22 or virtual router 32) that performs route control in the wireless access network system 100c. In the fourth embodiment, the NW controller 50 is described as controlling the virtual router 22 realized on the server 20.
次に、図13を用いて第4の実施形態における無線アクセスネットワークシステム100cの概要について説明する。図13は、第4の実施形態における無線アクセスネットワークシステム100cの概要を説明するための図である。図13において旧エッジサイトは、切替元のサーバ20-1が配置されている場所を表し、新エッジサイトは、切替先のサーバ20-2が配置されている場所を表す。まず、無線局10とサーバ20-1とが通信を行っているものとする。この場合、無線局10で受信された信号は、サーバ20-1に転送される。サーバ20の仮想DU21-1は、無線局10から転送された信号を取得する。
Next, an overview of the wireless access network system 100c in the fourth embodiment will be described with reference to FIG. 13. FIG. 13 is a diagram for explaining an overview of the wireless access network system 100c in the fourth embodiment. In FIG. 13, the old edge site represents the location where the switch-source server 20-1 is located, and the new edge site represents the location where the switch-destination server 20-2 is located. First, it is assumed that the wireless station 10 and the server 20-1 are communicating. In this case, a signal received by the wireless station 10 is forwarded to the server 20-1. The virtual DU 21-1 of the server 20 acquires the signal forwarded from the wireless station 10.
このような状況下において、ネットワークの変更により、サーバ20-1が配置されている場所と異なる場所にDU機能を有するサーバ20を移動させることを考える。タイムリーなサービス展開を実現するためには、作業時間の短縮及び通信の接続断を最小限にする必要がある。そこで、本実施形態では、デフォルトゲートウェイを冗長化させるプロトコル(例えば、VRRP)を用いることで、APN上で同一のIPアドレスを保持するノード(例えば、サーバ20)が複数存在しないようにNWコントローラ50が制御する。
In such a situation, it is considered that server 20 with DU function is moved to a location different from where server 20-1 is located due to a change in the network. In order to realize timely service deployment, it is necessary to reduce the work time and minimize communication disconnections. Therefore, in this embodiment, by using a protocol (e.g., VRRP) that makes the default gateway redundant, the NW controller 50 controls so that there are no multiple nodes (e.g., server 20) that hold the same IP address on the APN.
具体的には、サーバ20-1と同一ネットワーク内の場所であって、かつ、サーバ20-1が配置されている場所と物理的距離が離れた場所にサーバ20-2を新たに設置し、サーバ20-2上で仮想DU21-2及び仮想ルータ22-2を起動させる。ここで、サーバ20-2は、切替元である仮想DU21-1と同一内容の仮想DU21-2を作成する。仮想ルータ22-2の起動が完了すると、NWコントローラ50は仮想ルータ22-1と仮想ルータ22-2とに対してVRRPを設定する。例えば、NWコントローラ50は仮想ルータ22-1と仮想ルータ22-2とに対して、同一のVIPを設定してグループ化する。
Specifically, server 20-2 is newly installed in a location within the same network as server 20-1, but at a physical distance from the location where server 20-1 is located, and virtual DU 21-2 and virtual router 22-2 are started on server 20-2. Here, server 20-2 creates virtual DU 21-2 with the same contents as virtual DU 21-1, which is the source of switching. When the startup of virtual router 22-2 is complete, NW controller 50 sets VRRP for virtual router 22-1 and virtual router 22-2. For example, NW controller 50 sets the same VIP for virtual router 22-1 and virtual router 22-2 and groups them.
仮想ルータ22-1と仮想ルータ22-2との間では、VRRPにより優先度の高い仮想ルータ22がマスタルータに設定される。以下の説明では、切替元の仮想ルータ22-1の優先度が最も高いものとする。そのため、仮想ルータ22-1がマスタルータに設定され、仮想ルータ22-2がバックアップルータに設定される。その後、NWコントローラ50は、切替元の仮想ルータ22-1を停止させる。これにより、仮想ルータ22-2は、仮想ルータ22-1のダウンを検知して自装置をマスタルータに設定する。なお、NWコントローラ50は、切替元の仮想ルータ22-1の優先度の値を変更して(例えば、仮想ルータ22-1の優先度<仮想ルータ22-2の優先度)、仮想ルータ22-1を待機状態に移行させてもよい。この場合、仮想ルータ22-2は、仮想ルータ22-1との優先度の比較によって自装置をマスタルータに設定する。
Between virtual router 22-1 and virtual router 22-2, the virtual router 22 with the highest priority is set as the master router by VRRP. In the following explanation, it is assumed that the priority of the original virtual router 22-1 is the highest. Therefore, the virtual router 22-1 is set as the master router, and the virtual router 22-2 is set as the backup router. After that, the NW controller 50 stops the original virtual router 22-1. As a result, the virtual router 22-2 detects that the virtual router 22-1 has gone down and sets itself as the master router. Note that the NW controller 50 may change the priority value of the original virtual router 22-1 (for example, the priority of virtual router 22-1 < the priority of virtual router 22-2) and move the virtual router 22-1 to a standby state. In this case, the virtual router 22-2 sets itself as the master router by comparing the priority with that of the virtual router 22-1.
仮想ルータ22-2は、GARPによりVIPに対応する仮想MACアドレスを周知する。仮想ルータ22は、周知された仮想MACアドレスに従って、ARPテーブルを更新する。その結果、切替先のサーバ20-2と無線局10との間で通信が可能になる。これにより、基地局機能(例えば、仮想DU21)の設定を変更することなく、任意の場所にマイグレーションさせることができるようにする。
The virtual router 22-2 notifies the virtual MAC address corresponding to the VIP by GARP. The virtual router 22 updates the ARP table according to the notified virtual MAC address. As a result, communication becomes possible between the switching destination server 20-2 and the wireless station 10. This makes it possible to migrate to any location without changing the settings of the base station function (for example, the virtual DU 21).
図14は、第4の実施形態における無線アクセスネットワークシステム100cの処理の流れを示すシーケンス図である。なお、図14の処理では、遮断指示には、仮想ルータ22の機能を停止させるための指示が含まれるものとして説明する。
FIG. 14 is a sequence diagram showing the flow of processing in the wireless access network system 100c in the fourth embodiment. Note that in the processing in FIG. 14, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 22.
サーバ20と、サーバ20-1とが通信状態である(ステップS601)。サーバ20-1と物理的に離れた場所にサーバ20-2が設置されたとする。サーバ20-2は、サーバ20-1の仮想DU21-1と同一内容の仮想DU21-2を作成する(ステップS602)。NWコントローラ50の指示部521は、ユーザの操作に応じて、サーバ20-2に対して仮想ルータ22-2を起動させるために仮想ルータの起動指示を、通信部51を介してサーバ20-2に送信する(ステップS603)。
Server 20 and server 20-1 are in communication (step S601). Assume that server 20-2 is installed in a location physically separated from server 20-1. Server 20-2 creates virtual DU 21-2 with the same contents as virtual DU 21-1 of server 20-1 (step S602). In response to a user operation, instruction unit 521 of NW controller 50 sends a virtual router startup instruction to server 20-2 via communication unit 51 to cause server 20-2 to start virtual router 22-2 (step S603).
サーバ20-2は、NWコントローラ50から送信された起動指示を受信する。サーバ20-2は、受信した起動指示に応じて、仮想化技術により仮想ルータ22-2を起動する。サーバ20-2は、仮想ルータ22-2の起動が完了すると、起動の完了報告をNWコントローラ50に送信する(ステップS604)。NWコントローラ50の通信部51は、サーバ20-2から送信された完了報告を受信する。指示部521は、完了報告が受信されると、サーバ20-2の疎通確認指示を、通信部51を介してサーバ20-1に送信する(ステップS605)。これにより、サーバ20-1は、サーバ20-2に対する疎通確認処理を行う(ステップS606)。図14における疎通確認処理は、図5に示すサーバ30をサーバ20に置き替え、仮想ルータ32を仮想ルータ22に置き換えればよい。
The server 20-2 receives the start instruction sent from the NW controller 50. In response to the received start instruction, the server 20-2 starts the virtual router 22-2 using virtualization technology. When the start of the virtual router 22-2 is completed, the server 20-2 sends a start completion report to the NW controller 50 (step S604). The communication unit 51 of the NW controller 50 receives the completion report sent from the server 20-2. When the completion report is received, the instruction unit 521 sends a communication check instruction for the server 20-2 to the server 20-1 via the communication unit 51 (step S605). As a result, the server 20-1 performs a communication check process for the server 20-2 (step S606). The communication check process in FIG. 14 can be performed by replacing the server 30 shown in FIG. 5 with the server 20 and the virtual router 32 with the virtual router 22.
サーバ20-1は、疎通確認が完了したことを示す疎通確認完了報告をNWコントローラ50に送信する(ステップS607)。ここでは、サーバ20-1は、サーバ20-2の疎通確認ができたことを示す疎通確認結果を含む疎通確認完了報告をNWコントローラ50に送信する。NWコントローラ50の通信部51は、サーバ20-1から送信された疎通確認完了報告を受信する。NWコントローラ50の指示部521は、疎通確認完了報告に含まれる疎通確認結果を参照する。疎通確認結果がサーバ20-2の疎通確認ができたことを示しているため、NWコントローラ50の指示部521はVRRPグループの作成指示を、通信部51を介してサーバ20-1及び20-2に送信する(ステップS608)。
The server 20-1 transmits a communication check completion report to the NW controller 50 indicating that the communication check has been completed (step S607). Here, the server 20-1 transmits a communication check completion report to the NW controller 50 including a communication check result indicating that communication check of the server 20-2 has been completed. The communication unit 51 of the NW controller 50 receives the communication check completion report transmitted from the server 20-1. The instruction unit 521 of the NW controller 50 refers to the communication check result contained in the communication check completion report. Since the communication check result indicates that communication check of the server 20-2 has been completed, the instruction unit 521 of the NW controller 50 transmits an instruction to create a VRRP group to the servers 20-1 and 20-2 via the communication unit 51 (step S608).
サーバ20-1及び20-2は、NWコントローラ50から送信されたVRRPグループの作成指示を受信する。サーバ20-1及び20-2は、受信したVRRPグループの作成指示に応じてVRRPグループを作成する。サーバ20-1の仮想ルータ22-1と、サーバ20-2の仮想ルータ22-2は、互いの優先度を比較してマスタルータとバックアップルータを設定する。ここでは、仮想ルータ22-1がマスタルータに設定し、仮想ルータ22-2がバックアップルータに設定したとする(ステップS609、S610)。サーバ20-1及び20-2は、VRRPグループの作成が完了したことを示すVRRPグループ完了報告をNWコントローラ50に送信する(ステップS611)。NWコントローラ50の通信部51は、サーバ20-1及び20-2それぞれから送信されたVRRPグループ完了報告を受信する。
The servers 20-1 and 20-2 receive the VRRP group creation instruction sent from the NW controller 50. The servers 20-1 and 20-2 create a VRRP group in response to the received VRRP group creation instruction. The virtual router 22-1 of the server 20-1 and the virtual router 22-2 of the server 20-2 compare their priorities to set the master router and the backup router. Here, it is assumed that the virtual router 22-1 is set as the master router and the virtual router 22-2 is set as the backup router (steps S609 and S610). The servers 20-1 and 20-2 send a VRRP group completion report to the NW controller 50 indicating that the creation of the VRRP group has been completed (step S611). The communication unit 51 of the NW controller 50 receives the VRRP group completion reports sent from the servers 20-1 and 20-2, respectively.
NWコントローラ50の指示部521は、サーバ20-1及び20-2それぞれからVRRPグループ完了報告が受信された後、通信部51を介して切替元であるサーバ20-1に仮想ルータ22-1の遮断指示を送信する(ステップS612)。サーバ30-1は、NWコントローラ50から送信された遮断指示に応じて仮想ルータ22-1を停止する。これにより、仮想ルータ22-1からAdvertisement信号が仮想ルータ22-2に送信されなくなる。
After receiving the VRRP group completion reports from each of the servers 20-1 and 20-2, the instruction unit 521 of the NW controller 50 transmits an instruction to shut down the virtual router 22-1 to the server 20-1, which is the switching source, via the communication unit 51 (step S612). The server 30-1 stops the virtual router 22-1 in response to the shutdown instruction transmitted from the NW controller 50. As a result, the advertisement signal is no longer transmitted from the virtual router 22-1 to the virtual router 22-2.
サーバ20-2の仮想ルータ22-2は、仮想ルータ22-1からAdvertisement信号を一定期間受信できなかったことを契機に、マスタルータである仮想ルータ22-1がダウンしたことを検知する(ステップS613)。その後、仮想ルータ22-1は、自装置をマスタルータに設定する(ステップS614)。仮想ルータ22-1は、マスタルータの設定後に、GARPによりVIPに対応する仮想MACアドレスを周知する(ステップS615)。
When the virtual router 22-2 of the server 20-2 fails to receive an advertisement signal from the virtual router 22-1 for a certain period of time, it detects that the virtual router 22-1, which is the master router, has gone down (step S613). After that, the virtual router 22-1 sets itself as the master router (step S614). After setting the master router, the virtual router 22-1 notifies the virtual MAC address corresponding to the VIP by GARP (step S615).
無線局10は、仮想ルータ22-1から周知された仮想MACアドレスを受信する。無線局10は、受信した仮想MACアドレスに応じて、ARPテーブルを更新する(ステップS616)。例えば、無線局10は、仮想MACアドレス宛の出力ポートを、仮想MACアドレスを受信したポートに変更することでARPテーブルを更新する。無線局10は、ARPテーブルの更新後に、通信が可能になったことをサーバ20-2に通知する(ステップS617)。
The wireless station 10 receives the virtual MAC address notified by the virtual router 22-1. The wireless station 10 updates the ARP table according to the received virtual MAC address (step S616). For example, the wireless station 10 updates the ARP table by changing the output port addressed to the virtual MAC address to the port through which the virtual MAC address was received. After updating the ARP table, the wireless station 10 notifies the server 20-2 that communication is now possible (step S617).
なお、ステップS612の処理において、指示部521が、仮想ルータ22-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ20-1に送信した場合、サーバ20-1は仮想ルータ22-1の優先度を変更する。遮断指示には、切替元の仮想ルータ22(ここでは、仮想ルータ22-1)の優先度を、切替先の仮想ルータ22(ここでは、仮想ルータ22-2)の優先度よりも低くなるような優先度を示す情報(例えば、優先度“1”)の情報が含まれる。そのため、サーバ20-1は、仮想ルータ22-1の優先度を“1”に設定する。
Note that in the process of step S612, when the instruction unit 521 transmits a cutoff instruction including an instruction to change the priority of the virtual router 22-1 to the switching source server 20-1 via the communication unit 51, the server 20-1 changes the priority of the virtual router 22-1. The cutoff instruction includes information indicating a priority (for example, priority "1") such that the priority of the switching source virtual router 22 (here, virtual router 22-1) is lower than the priority of the switching destination virtual router 22 (here, virtual router 22-2). Therefore, the server 20-1 sets the priority of the virtual router 22-1 to "1".
これにより、仮想ルータ22-1の優先度が、仮想ルータ22-2の優先度よりも低くなる。この場合、ステップS613において、仮想ルータ22-1と仮想ルータ22-2とは、互いの優先度を比較する。優先度の比較の結果、仮想ルータ22-2の優先度が、仮想ルータ22-1の優先度よりも高いため、仮想ルータ22-2は自装置をマスタルータに設定し(ステップS614)、仮想ルータ22-1は自装置をバックアップルータに設定する。これにより、仮想ルータ22-1は待機状態となる。このように、NWコントローラ50は、切替元のサーバ20-1の仮想ルータ22-1の優先度を変更してバックアップルータとすることで、停止させずに経路を切り替えることも可能である。
As a result, the priority of virtual router 22-1 becomes lower than the priority of virtual router 22-2. In this case, in step S613, virtual router 22-1 and virtual router 22-2 compare their priorities. As a result of the priority comparison, the priority of virtual router 22-2 is higher than the priority of virtual router 22-1, so virtual router 22-2 sets itself as the master router (step S614), and virtual router 22-1 sets itself as the backup router. As a result, virtual router 22-1 goes into a standby state. In this way, the NW controller 50 can change the priority of virtual router 22-1 of the switching source server 20-1 to make it the backup router, making it possible to switch routes without stopping the server.
以上のように構成された無線アクセスネットワークシステム100cによれば、NWコントローラ50が、仮想化技術により、仮想DU21と、仮想ルータ22とを実現する切替元のサーバ20-1と切替先のサーバ20-2においてVPPRを用いることで、切替元のサーバ20-1で実現される仮想ルータ22-1と切替先のサーバ20-2で実現される仮想ルータ22-2とをグループ化し、切替元のサーバ20-1で実現される仮想ルータ22-1を停止もしくは、優先度を変更して待機状態させることで経路の切替を行う制御部52を備える。これにより、vRANにおける柔軟な機能配備のためのネットワーク制御を既存技術であるVRRPを用いることで簡易に実現することができる。そして、DUの切替えといったネットワーク制御を短時間に行うことが可能となる。そのため、無線アクセスネットワークにおいて基地局機能の切り替えを容易に行うことが可能になる。
In the radio access network system 100c configured as described above, the NW controller 50 uses VPPR in the source server 20-1 and the destination server 20-2 that realize the virtual DU 21 and the virtual router 22 by using virtualization technology, and groups the virtual router 22-1 realized in the source server 20-1 and the virtual router 22-2 realized in the destination server 20-2, and has a control unit 52 that switches the route by stopping the virtual router 22-1 realized in the source server 20-1 or changing the priority and putting it in a standby state. This makes it possible to easily realize network control for flexible function deployment in vRAN by using VRRP, which is an existing technology. It is also possible to perform network control such as DU switching in a short time. This makes it possible to easily switch base station functions in the radio access network.
(第5の実施形態)
第5の実施形態では、経路の切り替えに加えて、仮想DUのOSの更新を行う構成について説明する。 Fifth Embodiment
In the fifth embodiment, a configuration will be described in which the OS of a virtual DU is updated in addition to switching the path.
第5の実施形態では、経路の切り替えに加えて、仮想DUのOSの更新を行う構成について説明する。 Fifth Embodiment
In the fifth embodiment, a configuration will be described in which the OS of a virtual DU is updated in addition to switching the path.
図15は、第5の実施形態における無線アクセスネットワークシステム100dの構成例を示す図である。無線アクセスネットワークシステム100bは、無線局10と、複数のサーバ20と、複数のサーバ30-1,30-2と、5GC40と、NWコントローラ50と、ネットワーク60と、基地局コントローラ70とを備える。なお、無線アクセスネットワークシステム100dが備える無線局10、サーバ20及びサーバ30の数は特に限定されない。無線アクセスネットワークシステム100dは、基地局コントローラ70をさらに備える点で無線アクセスネットワークシステム100cと構成が異なる。その他の基本的な動作は無線アクセスネットワークシステム100cと同様である。以下、無線アクセスネットワークシステム100cとの相違点を中心に説明する。
FIG. 15 is a diagram showing an example of the configuration of a radio access network system 100d in the fifth embodiment. The radio access network system 100b includes a radio station 10, a plurality of servers 20, a plurality of servers 30-1, 30-2, a 5GC 40, a NW controller 50, a network 60, and a base station controller 70. The number of radio stations 10, servers 20, and servers 30 included in the radio access network system 100d is not particularly limited. The radio access network system 100d differs in configuration from the radio access network system 100c in that it further includes a base station controller 70. Other basic operations are similar to those of the radio access network system 100c. The following mainly describes the differences from the radio access network system 100c.
第5の実施形態におけるNWコントローラ50の通信部51は、サーバ20との間、及び、サーバ20との間で通信を行う。
In the fifth embodiment, the communication unit 51 of the NW controller 50 communicates with the server 20 and between the server 20 and itself.
第5の実施形態におけるNWコントローラ50は、無線アクセスネットワークシステム100dにおける経路制御を行うルータ(例えば、仮想ルータ22や仮想ルータ32)を制御する。第5の実施形態では、NWコントローラ50が、サーバ20上で実現する仮想ルータ22を制御するものとして説明する。
The NW controller 50 in the fifth embodiment controls a router (e.g., virtual router 22 or virtual router 32) that performs route control in the wireless access network system 100d. In the fifth embodiment, the NW controller 50 is described as controlling the virtual router 22 realized on the server 20.
基地局コントローラ70は、CU(例えば、仮想CU31)又はDU(例えば、仮想DU21)機能を管理制御し、CU又はDUのOS更新等の指示を行う。第5の実施形態では、基地局コントローラ70は、仮想DU21-1,DU21-2機能を管理制御する。
The base station controller 70 manages and controls the CU (e.g., virtual CU 31) or DU (e.g., virtual DU 21) functions, and issues instructions such as updating the OS of the CU or DU. In the fifth embodiment, the base station controller 70 manages and controls the virtual DU 21-1 and DU 21-2 functions.
図16は、第5の実施形態における無線アクセスネットワークシステム100dの処理(その1)の流れを示すシーケンス図である。なお、図16では、OS更新先を切り戻さないパターンについて説明する。図16において、図14と同様の処理においては図14と同様の符号を付して説明を省略する。なお、図16の処理では、遮断指示には、仮想ルータ22の機能を停止させるための指示が含まれるものとして説明する。
FIG. 16 is a sequence diagram showing the flow of processing (part 1) of the wireless access network system 100d in the fifth embodiment. Note that FIG. 16 describes a pattern in which the OS update destination is not switched back. In FIG. 16, the same processes as in FIG. 14 are denoted with the same reference numerals as in FIG. 14 and the description is omitted. Note that in the processing in FIG. 16, the shutdown instruction is described as including an instruction to stop the function of the virtual router 22.
基地局コントローラ70は、切替先のサーバ20-2に更新後のOSで起動させるために、OSの更新指示をサーバ20-2に送信する(ステップS701)。サーバ20-2は、基地局コントローラ70から送信されたOSの更新指示を受信する。サーバ20-2は、OSの更新指示の受信に応じて、サーバ20-1の仮想DU21-1の新OSで仮想DU21-2を起動させる(ステップS702)。基地局コントローラ70は、OSの更新対象となる仮想DU21-2の配下の仮想ルータの起動をNWコントローラ50に指示する(ステップS703)。
The base station controller 70 sends an OS update instruction to the server 20-2 to have the switching destination server 20-2 start up with the updated OS (step S701). The server 20-2 receives the OS update instruction sent from the base station controller 70. In response to receiving the OS update instruction, the server 20-2 starts up the virtual DU 21-2 with the new OS of the virtual DU 21-1 of the server 20-1 (step S702). The base station controller 70 instructs the NW controller 50 to start up the virtual router under the virtual DU 21-2 that is the target of the OS update (step S703).
NWコントローラ50は、基地局コントローラ70からの指示に応じて、仮想ルータの起動をサーバ20-2に対して指示する(ステップS704)。その後、ステップS604からステップS611までの処理が実行される。NWコントローラ50は、ステップS111の処理後、OSの更新準備が完了したことを示すOS更新準備完了報告を基地局コントローラ70に送信する(ステップS705)。
In response to the instruction from the base station controller 70, the NW controller 50 instructs the server 20-2 to start up a virtual router (step S704). Then, the processes from step S604 to step S611 are executed. After the process of step S111, the NW controller 50 transmits an OS update preparation completion report to the base station controller 70 indicating that preparation for the OS update has been completed (step S705).
基地局コントローラ70は、NWコントローラ50から送信されたOS更新準備完了報告を受信する。基地局コントローラ70は、受信したOS更新準備完了報告に応じて、仮想DU21-1から仮想DU21-2への切替指示をNWコントローラ50に送信する(ステップS706)。NWコントローラ50の通信部51は、基地局コントローラ70から送信された切替指示を受信する。指示部521は、切替指示を受信した後、通信部51を介して切替元であるサーバ20-1に仮想ルータ22-1の遮断指示を送信する(ステップS707)。その後、ステップS613以降の処理を実行する。
The base station controller 70 receives the OS update preparation completion report sent from the NW controller 50. In response to the received OS update preparation completion report, the base station controller 70 sends a switching instruction from virtual DU 21-1 to virtual DU 21-2 to the NW controller 50 (step S706). The communication unit 51 of the NW controller 50 receives the switching instruction sent from the base station controller 70. After receiving the switching instruction, the instruction unit 521 sends an instruction to shut down the virtual router 22-1 to the server 20-1, which is the switching source, via the communication unit 51 (step S707). Then, the processing from step S613 onwards is executed.
なお、ステップS707の処理において、指示部521は、仮想ルータ22-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ20-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In addition, in the process of step S707, the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 22-1, to the server 20-1, which is the switching source, via the communication unit 51. The specific process flow in this case has already been described above, so it will not be described here.
図17及び図18は、第5の実施形態における無線アクセスネットワークシステム100dの処理(その2)の流れを示すシーケンス図である。なお、図17及び図18では、OS更新先を切り戻すパターンについて説明する。図17及び図18において、図14と同様の処理においては図14と同様の符号を付して説明を省略する。なお、図17及び図18の処理では、遮断指示には、仮想ルータ22の機能を停止させるための指示が含まれるものとして説明する。
FIGS. 17 and 18 are sequence diagrams showing the flow of processing (part 2) of the wireless access network system 100d in the fifth embodiment. Note that in FIG. 17 and FIG. 18, a pattern of switching back the OS update destination is explained. In FIG. 17 and FIG. 18, the same processes as in FIG. 14 are assigned the same reference numerals as in FIG. 14, and explanations are omitted. Note that in the processing in FIG. 17 and FIG. 18, the shutdown instruction is explained as including an instruction to stop the function of the virtual router 22.
基地局コントローラ70は、OSの更新指示をサーバ20-2に送信する(ステップS801)。サーバ20-2は、基地局コントローラ70から送信されたOSの更新指示を受信する。サーバ20-2は、OSの更新指示の受信に応じて、サーバ20-2は、サーバ20-1の仮想DU21-1と同一内容の仮想DU21-2を作成する(ステップS802)。基地局コントローラ70は、OSの更新対象となる仮想DU21-2の配下の仮想ルータの起動をNWコントローラ50に指示する(ステップS803)。
The base station controller 70 sends an OS update instruction to the server 20-2 (step S801). The server 20-2 receives the OS update instruction sent from the base station controller 70. In response to receiving the OS update instruction, the server 20-2 creates a virtual DU 21-2 with the same contents as the virtual DU 21-1 of the server 20-1 (step S802). The base station controller 70 instructs the NW controller 50 to start up the virtual router under the virtual DU 21-2 that is the target of the OS update (step S803).
NWコントローラ50の指示部521は、基地局コントローラ70からの指示に応じて、サーバ20-2に対して仮想ルータ22-2を起動させるために仮想ルータの起動指示を、通信部51を介してサーバ20-2に送信する(ステップS804)。その後、ステップS604からステップS611までの処理が実行される。NWコントローラ50の通信部51は、ステップS111の処理後、バックアップ先の準備が完了したことを示すバックアップ先準備完了報告を基地局コントローラ70に送信する(ステップS805)。
In response to the instruction from the base station controller 70, the instruction unit 521 of the NW controller 50 sends a virtual router startup instruction to the server 20-2 via the communication unit 51 to cause the server 20-2 to start the virtual router 22-2 (step S804). Then, the processes from step S604 to step S611 are executed. After the process of step S111, the communication unit 51 of the NW controller 50 sends a backup destination preparation completion report to the base station controller 70 indicating that the backup destination preparation has been completed (step S805).
基地局コントローラ70は、NWコントローラ50から送信されたバックアップ先準備完了報告を受信する。基地局コントローラ70は、受信したバックアップ先準備完了報告に応じて、仮想DU21-1から仮想DU21-2への切替指示をNWコントローラ50に送信する(ステップS806)。NWコントローラ50の通信部51は、基地局コントローラ70から送信された切替指示を受信する。指示部521は、基地局コントローラ70から送信された切替指示を受信した後、通信部51を介して切替元であるサーバ20-1に仮想ルータ22-1の遮断指示を送信する(ステップS807)。その後、ステップS613からステップS617までの処理が実行される。
The base station controller 70 receives the backup destination preparation completion report sent from the NW controller 50. In response to the received backup destination preparation completion report, the base station controller 70 sends a switching instruction from virtual DU 21-1 to virtual DU 21-2 to the NW controller 50 (step S806). The communication unit 51 of the NW controller 50 receives the switching instruction sent from the base station controller 70. After receiving the switching instruction sent from the base station controller 70, the instruction unit 521 sends an instruction to shut down the virtual router 22-1 to the server 20-1, which is the switching source, via the communication unit 51 (step S807). Then, the processes from step S613 to step S617 are executed.
サーバ20-2は、無線局10との間で処理が可能になると、切り替えが干渉したことを示す切替完了報告をNWコントローラ50に送信する(ステップS808)。NWコントローラ50の通信部51は、サーバ20-2から送信された切替完了報告を受信する。NWコントローラ50の通信部51は、切替完了報告の受信を契機に、OSの更新準備が完了したことを示すOS更新準備完了報告を基地局コントローラ70に送信する(ステップS809)。
When processing with the wireless station 10 becomes possible, the server 20-2 transmits a switching completion report to the NW controller 50 indicating that switching has caused interference (step S808). The communication unit 51 of the NW controller 50 receives the switching completion report transmitted from the server 20-2. Upon receiving the switching completion report, the communication unit 51 of the NW controller 50 transmits an OS update preparation completion report to the base station controller 70 indicating that preparation for the OS update has been completed (step S809).
基地局コントローラ70は、OS更新準備完了報告の受信に応じて、サーバ20-1のOSを更新する(ステップS810)。これにより、サーバ20-1は、OSが更新される。サーバ20-1は、OSの更新が完了すると、更新が完了したことを示すOS更新完了報告を基地局コントローラ70に送信する(ステップS811)。基地局コントローラ70は、サーバ20-1から送信されたOS更新完了報告を受信する。基地局コントローラ70は、OS更新完了報告の受信に応じて、NWコントローラ50に対して切り戻し指示を送信する(ステップS812)。
In response to receiving the OS update preparation completion report, the base station controller 70 updates the OS of the server 20-1 (step S810). This updates the OS of the server 20-1. When the OS update is complete, the server 20-1 transmits an OS update completion report indicating the completion of the update to the base station controller 70 (step S811). The base station controller 70 receives the OS update completion report transmitted from the server 20-1. In response to receiving the OS update completion report, the base station controller 70 transmits a switchback instruction to the NW controller 50 (step S812).
NWコントローラ50の通信部51は、基地局コントローラ70から送信された切り戻し指示を受信する。NWコントローラ50の指示部521は、基地局コントローラ70からの指示に応じて、サーバ20-1に対して仮想ルータ22-1を起動させるために仮想ルータの起動指示を、通信部51を介してサーバ20-1に送信する(ステップS813)。サーバ20-1は、NWコントローラ50から送信された起動指示に応じて、仮想ルータ22-1を起動する(ステップS814)。仮想ルータ22-1の起動が完了すると、サーバ30-1の仮想ルータ22-1と、サーバ20-2の仮想ルータ22-2は、互いの優先度を比較する(ステップS815)。
The communication unit 51 of the NW controller 50 receives the switchback instruction sent from the base station controller 70. In response to the instruction from the base station controller 70, the instruction unit 521 of the NW controller 50 sends a virtual router startup instruction to the server 20-1 via the communication unit 51 to cause the server 20-1 to start the virtual router 22-1 (step S813). In response to the startup instruction sent from the NW controller 50, the server 20-1 starts the virtual router 22-1 (step S814). When the startup of the virtual router 22-1 is completed, the virtual router 22-1 of the server 30-1 and the virtual router 22-2 of the server 20-2 compare their priorities with each other (step S815).
優先度の比較の結果、仮想ルータ22-1の優先度が、仮想ルータ22-2の優先度よりも高いため、仮想ルータ22-1は自装置をマスタルータに設定し、仮想ルータ22-2は自装置をバックアップルータに設定する(ステップS816、S817)。サーバ20-1は、仮想ルータ22-1の起動が完了したことをNWコントローラ50に通知する(ステップS818)。NWコントローラ50の通信部51は、サーバ20-1からの通知を受信する。NWコントローラ50の通信部51は、受信した通知に応じて、切り戻しが完了したことを示す切り戻し完了報告を基地局コントローラ70に送信する(ステップS819)。
As a result of the priority comparison, the priority of virtual router 22-1 is higher than that of virtual router 22-2, so virtual router 22-1 sets itself as the master router, and virtual router 22-2 sets itself as the backup router (steps S816, S817). Server 20-1 notifies NW controller 50 that startup of virtual router 22-1 is complete (step S818). Communication unit 51 of NW controller 50 receives the notification from server 20-1. In response to the received notification, communication unit 51 of NW controller 50 transmits a switchover completion report to base station controller 70 indicating that switchover has been completed (step S819).
なお、ステップS807の処理において、指示部521は、仮想ルータ22-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ20-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In addition, in the process of step S807, the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 22-1, to the server 20-1, which is the switching source, via the communication unit 51. The specific process flow in this case has already been described above, so it will not be described here.
なお、ステップS807の処理において、指示部521が、仮想ルータ22-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ20-1に送信している場合、仮想ルータ22-1の優先度は、他の仮想ルータ22(例えば、仮想ルータ22-2)の優先度よりも低くなっている。そこで、ステップS807の処理において、指示部521が、仮想ルータ22-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ20-1に送信している場合に切り戻しを行う場合には、指示部521は、ステップS813の処理において、仮想ルータの起動指示に、新たに設定する優先度の情報を含めてもよい。例えば、指示部521は、切替先の仮想ルータ22(ここでは、仮想ルータ22-1)の優先度を、切替元の仮想ルータ22(ここでは、仮想ルータ22-2)の優先度よりも高くなるような優先度を示す情報(例えば、優先度“255”)の情報を起動指示に含めてもよい。これにより、切替先の仮想ルータ22-1が起動した場合に、仮想ルータ22-1の優先度が、他の仮想ルータ22の優先度よりも高くなる。そのため、切り戻しが可能になる。
In the process of step S807, if the instruction unit 521 transmits a cutoff instruction including an instruction to change the priority of the virtual router 22-1 to the server 20-1, which is the source of switching, via the communication unit 51, the priority of the virtual router 22-1 is lower than the priority of another virtual router 22 (for example, virtual router 22-2). Therefore, in the process of step S807, if the instruction unit 521 transmits a cutoff instruction including an instruction to change the priority of the virtual router 22-1 to the server 20-1, which is the source of switching, via the communication unit 51, and switching back is performed, the instruction unit 521 may include information on the new priority to be set in the start instruction for the virtual router in the process of step S813. For example, the instruction unit 521 may include information indicating a priority (for example, priority "255") such that the priority of the destination virtual router 22 (here, virtual router 22-1) is higher than the priority of the source virtual router 22 (here, virtual router 22-2) in the start instruction. As a result, when the switching destination virtual router 22-1 is started, the priority of the virtual router 22-1 becomes higher than the priority of the other virtual routers 22. This makes it possible to switch back.
以上のように構成された無線アクセスネットワークシステム100dによれば、第1の実施形態と同様の効果を得ることができる。
The wireless access network system 100d configured as described above can achieve the same effects as the first embodiment.
さらに無線アクセスネットワークシステム100dでは、仮想DU21のOSの更新も併せて実行することができる。これにより、切替え後においても最新のバージョンで処理が可能になる。
Furthermore, in the wireless access network system 100d, the OS of the virtual DU21 can also be updated. This makes it possible to process with the latest version even after switching.
(第6の実施形態)
第1の実施形態から第5の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継がないステートレスな構成を示した。第6の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継ぐステートフルな構成について説明する。なお、第6の実施形態のシステム構成は、第1の実施形態と同様である。以下、第1の実施形態と異なる点を中心に説明する。 Sixth Embodiment
In the first to fifth embodiments, a stateless configuration in which dynamic parameters in a virtual CU or virtual DU are not inherited is shown. In the sixth embodiment, a stateful configuration in which dynamic parameters in a virtual CU or virtual DU are inherited is described. The system configuration of the sixth embodiment is the same as that of the first embodiment. The following description focuses on the differences from the first embodiment.
第1の実施形態から第5の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継がないステートレスな構成を示した。第6の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継ぐステートフルな構成について説明する。なお、第6の実施形態のシステム構成は、第1の実施形態と同様である。以下、第1の実施形態と異なる点を中心に説明する。 Sixth Embodiment
In the first to fifth embodiments, a stateless configuration in which dynamic parameters in a virtual CU or virtual DU are not inherited is shown. In the sixth embodiment, a stateful configuration in which dynamic parameters in a virtual CU or virtual DU are inherited is described. The system configuration of the sixth embodiment is the same as that of the first embodiment. The following description focuses on the differences from the first embodiment.
第6の実施形態では、切替元の仮想CU31内部の動的なパラメータを、切替先の仮想CU31に引き継ぐために、ライブマイグレーションを行う。これにより、切替元の仮想CU31内部の動的なパラメータを切替先に引き継ぐことが可能になる。
In the sixth embodiment, live migration is performed to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU 31. This makes it possible to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU 31.
図19は、第6の実施形態における無線アクセスネットワークシステム100の処理の流れを示すシーケンス図である。図19において、図4と同様の処理においては図4と同様の符号を付して説明を省略する。なお、図19の処理では、遮断指示には、仮想ルータ32の機能を停止させるための指示が含まれるものとして説明する。
FIG. 19 is a sequence diagram showing the flow of processing in the wireless access network system 100 in the sixth embodiment. In FIG. 19, the same processes as those in FIG. 4 are denoted by the same reference numerals as in FIG. 4, and the description thereof will be omitted. Note that in the processing in FIG. 19, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 32.
ステップS101からステップS111までの処理が実行されると、NWコントローラ50は、ライブマイグレーションによりサーバ30-1の仮想CU31-1を、サーバ30-2に移動させる(ステップS901)。これにより、サーバ30-1の仮想CU31-1のパラメータをそのままサーバ30-2に移動させる。その後、ステップS112以降の処理が実行される。
After the processes from step S101 to step S111 are executed, the NW controller 50 migrates the virtual CU 31-1 of the server 30-1 to the server 30-2 by live migration (step S901). As a result, the parameters of the virtual CU 31-1 of the server 30-1 are migrated to the server 30-2 as they are. Then, the processes from step S112 onwards are executed.
なお、ステップS112の処理において、指示部521は、仮想ルータ32-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In addition, in the process of step S112, the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51. The specific process flow in this case has already been explained above, so it will not be explained here.
以上のように構成された第6の実施形態における無線アクセスネットワークシステム100によれば、第1の実施形態と同様の効果を得ることができる。
The radio access network system 100 in the sixth embodiment configured as described above can achieve the same effects as the first embodiment.
さらに、第6の実施形態における無線アクセスネットワークシステム100では、仮想CU内部のパラメータを切替先に引き継ぐことができる。
Furthermore, in the radio access network system 100 of the sixth embodiment, parameters within the virtual CU can be carried over to the switching destination.
(第7の実施形態)
第1の実施形態から第5の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継がないステートレスな構成を示した。第7の実施形態では、仮想CU内部の動的なパラメータを引き継ぐステートフルな構成について説明する。なお、第7の実施形態のシステム構成は、第2の実施形態と同様である。以下、第2の実施形態と異なる点を中心に説明する。 Seventh Embodiment
In the first to fifth embodiments, a stateless configuration in which dynamic parameters in a virtual CU or virtual DU are not inherited is shown. In the seventh embodiment, a stateful configuration in which dynamic parameters in a virtual CU are inherited is described. The system configuration of the seventh embodiment is the same as that of the second embodiment. The following description focuses on the differences from the second embodiment.
第1の実施形態から第5の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継がないステートレスな構成を示した。第7の実施形態では、仮想CU内部の動的なパラメータを引き継ぐステートフルな構成について説明する。なお、第7の実施形態のシステム構成は、第2の実施形態と同様である。以下、第2の実施形態と異なる点を中心に説明する。 Seventh Embodiment
In the first to fifth embodiments, a stateless configuration in which dynamic parameters in a virtual CU or virtual DU are not inherited is shown. In the seventh embodiment, a stateful configuration in which dynamic parameters in a virtual CU are inherited is described. The system configuration of the seventh embodiment is the same as that of the second embodiment. The following description focuses on the differences from the second embodiment.
第7の実施形態では、切替元の仮想CU31内部の動的なパラメータを、切替先の仮想CU31に引き継ぐために、ライブマイグレーションを行う。これにより、切替元の仮想CU31内部の動的なパラメータを切替先に引き継ぐことが可能になる。
In the seventh embodiment, live migration is performed to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU 31. This makes it possible to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU 31.
図20は、第7の実施形態における無線アクセスネットワークシステム100aの処理の流れを示すシーケンス図である。図20において、図7と同様の処理においては図7と同様の符号を付して説明を省略する。なお、図20の処理では、遮断指示には、仮想ルータ32の機能を停止させるための指示が含まれるものとして説明する。
FIG. 20 is a sequence diagram showing the flow of processing in the wireless access network system 100a in the seventh embodiment. In FIG. 20, the same processes as those in FIG. 7 are denoted by the same reference numerals as in FIG. 7, and the description thereof will be omitted. Note that in the processing in FIG. 20, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 32.
ステップS301、ステップS101からステップS111までの処理が実行されると、NWコントローラ50は、ライブマイグレーションによりサーバ30-1の仮想CU31-1を、サーバ30-2に移動させる(ステップS1001)。これにより、サーバ30-1の仮想CU31-1のパラメータをそのままサーバ30-2に移動させる。その後、ステップS112以降の処理が実行される。
After the processes in steps S301, S101 to S111 have been executed, the NW controller 50 migrates the virtual CU 31-1 of the server 30-1 to the server 30-2 by live migration (step S1001). As a result, the parameters of the virtual CU 31-1 of the server 30-1 are migrated to the server 30-2 as is. After that, the processes in steps S112 and onwards are executed.
なお、ステップS112の処理において、指示部521は、仮想ルータ32-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In addition, in the process of step S112, the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51. The specific process flow in this case has already been explained above, so it will not be explained here.
以上のように構成された第7の実施形態における無線アクセスネットワークシステム100aによれば、第2の実施形態と同様の効果を得ることができる。
The wireless access network system 100a in the seventh embodiment configured as described above can achieve the same effects as the second embodiment.
さらに、第7の実施形態における無線アクセスネットワークシステム100aでは、仮想CU内部のパラメータを切替先に引き継ぐことができる。
Furthermore, in the wireless access network system 100a in the seventh embodiment, parameters within the virtual CU can be carried over to the switching destination.
(第8の実施形態)
第1の実施形態から第5の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継がないステートレスな構成を示した。第8の実施形態では、仮想CUのOS更新を行い、かつ、仮想CU内部の動的なパラメータを引き継ぐステートフルな構成について説明する。なお、第8の実施形態のシステム構成は、第3の実施形態と同様である。以下、第3の実施形態と異なる点を中心に説明する。 Eighth embodiment
In the first to fifth embodiments, a stateless configuration in which dynamic parameters in a virtual CU or virtual DU are not inherited is shown. In the eighth embodiment, a stateful configuration in which the OS of a virtual CU is updated and dynamic parameters in the virtual CU are inherited is described. The system configuration of the eighth embodiment is the same as that of the third embodiment. The following description focuses on the differences from the third embodiment.
第1の実施形態から第5の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継がないステートレスな構成を示した。第8の実施形態では、仮想CUのOS更新を行い、かつ、仮想CU内部の動的なパラメータを引き継ぐステートフルな構成について説明する。なお、第8の実施形態のシステム構成は、第3の実施形態と同様である。以下、第3の実施形態と異なる点を中心に説明する。 Eighth embodiment
In the first to fifth embodiments, a stateless configuration in which dynamic parameters in a virtual CU or virtual DU are not inherited is shown. In the eighth embodiment, a stateful configuration in which the OS of a virtual CU is updated and dynamic parameters in the virtual CU are inherited is described. The system configuration of the eighth embodiment is the same as that of the third embodiment. The following description focuses on the differences from the third embodiment.
第8の実施形態では、切替元の仮想CU31内部の動的なパラメータを、切替先の仮想CU31に引き継ぐために、ライブマイグレーションを行う。これにより、切替元の仮想CU31内部の動的なパラメータを切替先に引き継ぐことが可能になる。さらに、第8の実施形態では、第3の実施形態と同様に仮想CUのOS更新を行う。
In the eighth embodiment, live migration is performed to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU 31. This makes it possible to transfer the dynamic parameters in the source virtual CU 31 to the destination virtual CU. Furthermore, in the eighth embodiment, an OS update of the virtual CU is performed in the same way as in the third embodiment.
図21は、第8の実施形態における無線アクセスネットワークシステム100bの処理(その1)の流れを示すシーケンス図である。図21において、図9と同様の処理においては図9と同様の符号を付して説明を省略する。なお、図21の処理では、遮断指示には、仮想ルータ32の機能を停止させるための指示が含まれるものとして説明する。
FIG. 21 is a sequence diagram showing the flow of processing (part 1) of the wireless access network system 100b in the eighth embodiment. In FIG. 21, the same processes as those in FIG. 9 are denoted by the same reference numerals as in FIG. 9, and the description thereof will be omitted. Note that in the processing in FIG. 21, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 32.
ステップS101、ステップS401からステップS404までの処理、ステップS104からステップS111までの処理及びステップS405からステップS406までの処理が実行されると、NWコントローラ50は、ライブマイグレーションによりサーバ30-1の仮想CU31-1を、サーバ30-2に移動させる(ステップS1101)。これにより、サーバ30-1の仮想CU31-1のパラメータをそのままサーバ30-2に移動させる。その後、ステップS407以降の処理が実行される。
After step S101, the processes from step S401 to step S404, the processes from step S104 to step S111, and the processes from step S405 to step S406 have been executed, the NW controller 50 moves the virtual CU 31-1 of the server 30-1 to the server 30-2 by live migration (step S1101). As a result, the parameters of the virtual CU 31-1 of the server 30-1 are moved to the server 30-2 as they are. Then, the processes from step S407 onwards are executed.
なお、ステップS407の処理において、指示部521は、仮想ルータ32-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In addition, in the process of step S407, the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 32-1, to the server 30-1, which is the switching source, via the communication unit 51. The specific process flow in this case has already been explained above, so it will not be explained here.
図22及び図23は、第8の実施形態における無線アクセスネットワークシステム100bの処理(その2)の流れを示すシーケンス図である。なお、図22及び図23では、OS更新先を切り戻すパターンについて説明する。図22及び図23において、図10及び図11と同様の処理においては図10及び図11と同様の符号を付して説明を省略する。なお、図22及び図23の処理では、遮断指示には、仮想ルータ32の機能を停止させるための指示が含まれるものとして説明する。
22 and 23 are sequence diagrams showing the flow of processing (part 2) of the wireless access network system 100b in the eighth embodiment. Note that in Figs. 22 and 23, a pattern of switching back the OS update destination is explained. In Figs. 22 and 23, the same processes as in Figs. 10 and 11 are denoted with the same reference numerals as in Figs. 10 and 11, and explanations are omitted. Note that in the processing in Figs. 22 and 23, the shutdown instruction is explained as including an instruction to stop the function of the virtual router 32.
ステップS101、ステップS501からステップS504までの処理、ステップS104からステップS111までの処理及びステップS505からステップS506までの処理が実行されると、NWコントローラ50は、ライブマイグレーションによりサーバ30-1の仮想CU31-1を、サーバ30-2に移動させる(ステップS1201)。これにより、サーバ30-1の仮想CU31-1のパラメータをそのままサーバ30-2に移動させる。その後、ステップS507以降の処理が実行される。
After step S101, the processes from step S501 to step S504, the processes from step S104 to step S111, and the processes from step S505 to step S506 have been executed, the NW controller 50 moves the virtual CU 31-1 of the server 30-1 to the server 30-2 by live migration (step S1201). As a result, the parameters of the virtual CU 31-1 of the server 30-1 are moved to the server 30-2 as they are. Then, the processes from step S507 onwards are executed.
なお、ステップS507の処理において、指示部521は、仮想ルータ32-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ30-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。さらに、指示部521は、ステップS513の処理において、仮想ルータの起動指示に、新たに設定する優先度の情報を含めてもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In the process of step S507, the instruction unit 521 may send a shutdown instruction including an instruction to change the priority of the virtual router 32-1 to the server 30-1, which is the switching source, via the communication unit 51. The specific flow of the process in this case has already been described above and will not be described here. Furthermore, in the process of step S513, the instruction unit 521 may include information on the newly set priority in the instruction to start the virtual router. The specific flow of the process in this case has already been described above and will not be described here.
以上のように構成された第8の実施形態における無線アクセスネットワークシステム100bによれば、第3の実施形態と同様の効果を得ることができる。
The radio access network system 100b in the eighth embodiment configured as described above can achieve the same effects as the third embodiment.
さらに、第8の実施形態における無線アクセスネットワークシステム100bでは、仮想CU内部のパラメータを切替先に引き継ぐことができる。
Furthermore, in the wireless access network system 100b in the eighth embodiment, parameters within the virtual CU can be carried over to the switching destination.
(第9の実施形態)
第1の実施形態から第5の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継がないステートレスな構成を示した。第9の実施形態では、仮想DU内部の動的なパラメータを引き継ぐステートフルな構成について説明する。なお、第9の実施形態のシステム構成は、第4の実施形態と同様である。以下、第4の実施形態と異なる点を中心に説明する。 Ninth embodiment
In the first to fifth embodiments, a stateless configuration in which dynamic parameters within a virtual CU or virtual DU are not inherited is shown. In the ninth embodiment, a stateful configuration in which dynamic parameters within a virtual DU are inherited is described. The system configuration of the ninth embodiment is the same as that of the fourth embodiment. The following description focuses on the differences from the fourth embodiment.
第1の実施形態から第5の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継がないステートレスな構成を示した。第9の実施形態では、仮想DU内部の動的なパラメータを引き継ぐステートフルな構成について説明する。なお、第9の実施形態のシステム構成は、第4の実施形態と同様である。以下、第4の実施形態と異なる点を中心に説明する。 Ninth embodiment
In the first to fifth embodiments, a stateless configuration in which dynamic parameters within a virtual CU or virtual DU are not inherited is shown. In the ninth embodiment, a stateful configuration in which dynamic parameters within a virtual DU are inherited is described. The system configuration of the ninth embodiment is the same as that of the fourth embodiment. The following description focuses on the differences from the fourth embodiment.
第9の実施形態では、切替元の仮想DU21内部の動的なパラメータを、切替先の仮想DU21に引き継ぐために、ライブマイグレーションを行う。これにより、切替元の仮想DU21内部の動的なパラメータを切替先に引き継ぐことが可能になる。
In the ninth embodiment, live migration is performed to transfer the dynamic parameters within the source virtual DU 21 to the destination virtual DU 21. This makes it possible to transfer the dynamic parameters within the source virtual DU 21 to the destination virtual DU 21.
図24は、第9の実施形態における無線アクセスネットワークシステム100cの処理の流れを示すシーケンス図である。図24において、図14と同様の処理においては図14と同様の符号を付して説明を省略する。なお、図24の処理では、遮断指示には、仮想ルータ22の機能を停止させるための指示が含まれるものとして説明する。
FIG. 24 is a sequence diagram showing the flow of processing in the wireless access network system 100c in the ninth embodiment. In FIG. 24, the same processes as those in FIG. 14 are denoted by the same reference numerals as in FIG. 14, and the description thereof will be omitted. Note that in the processing in FIG. 24, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 22.
ステップS601からステップS611までの処理が実行されると、NWコントローラ50は、ライブマイグレーションによりサーバ20-1の仮想DU21-1を、サーバ20-2に移動させる(ステップS901)。これにより、サーバ20-1の仮想DU21-1のパラメータをそのままサーバ20-2に移動させる。その後、ステップS612以降の処理が実行される。
After the processes from step S601 to step S611 are executed, the NW controller 50 migrates the virtual DU 21-1 of the server 20-1 to the server 20-2 by live migration (step S901). As a result, the parameters of the virtual DU 21-1 of the server 20-1 are migrated to the server 20-2 as is. Then, the processes from step S612 onwards are executed.
なお、ステップS612の処理において、指示部521は、仮想ルータ22-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ20-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In addition, in the process of step S612, the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 22-1, to the server 20-1, which is the switching source, via the communication unit 51. The specific process flow in this case has already been described above, so it will not be described here.
以上のように構成された第9の実施形態における無線アクセスネットワークシステム100cによれば、第4の実施形態と同様の効果を得ることができる。
The wireless access network system 100c in the ninth embodiment configured as described above can achieve the same effects as the fourth embodiment.
さらに、第9の実施形態における無線アクセスネットワークシステム100cでは、仮想DU内部のパラメータを切替先に引き継ぐことができる。
Furthermore, in the radio access network system 100c in the ninth embodiment, parameters within the virtual DU can be carried over to the switching destination.
(第10の実施形態)
第1の実施形態から第5の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継がないステートレスな構成を示した。第10の実施形態では、仮想DU内部の動的なパラメータを引き継ぐステートフルな構成について説明する。なお、第10の実施形態のシステム構成は、第5の実施形態と同様である。以下、第5の実施形態と異なる点を中心に説明する。 Tenth Embodiment
In the first to fifth embodiments, a stateless configuration in which dynamic parameters within a virtual CU or virtual DU are not inherited is shown. In the tenth embodiment, a stateful configuration in which dynamic parameters within a virtual DU are inherited is described. The system configuration of the tenth embodiment is the same as that of the fifth embodiment. The following description focuses on the differences from the fifth embodiment.
第1の実施形態から第5の実施形態では、仮想CU又は仮想DU内部の動的なパラメータを引き継がないステートレスな構成を示した。第10の実施形態では、仮想DU内部の動的なパラメータを引き継ぐステートフルな構成について説明する。なお、第10の実施形態のシステム構成は、第5の実施形態と同様である。以下、第5の実施形態と異なる点を中心に説明する。 Tenth Embodiment
In the first to fifth embodiments, a stateless configuration in which dynamic parameters within a virtual CU or virtual DU are not inherited is shown. In the tenth embodiment, a stateful configuration in which dynamic parameters within a virtual DU are inherited is described. The system configuration of the tenth embodiment is the same as that of the fifth embodiment. The following description focuses on the differences from the fifth embodiment.
第10の実施形態では、切替元の仮想DU21内部の動的なパラメータを、切替先の仮想DU21に引き継ぐために、ライブマイグレーションを行う。これにより、切替元の仮想DU21内部の動的なパラメータを切替先に引き継ぐことが可能になる。
In the tenth embodiment, live migration is performed to transfer the dynamic parameters in the source virtual DU 21 to the destination virtual DU 21. This makes it possible to transfer the dynamic parameters in the source virtual DU 21 to the destination virtual DU 21.
図25は、第10の実施形態における無線アクセスネットワークシステム100dの処理(その1)の流れを示すシーケンス図である。図25において、図16と同様の処理においては図16と同様の符号を付して説明を省略する。なお、図25の処理では、遮断指示には、仮想ルータ22の機能を停止させるための指示が含まれるものとして説明する。
FIG. 25 is a sequence diagram showing the flow of processing (part 1) of the wireless access network system 100d in the tenth embodiment. In FIG. 25, the same processes as those in FIG. 16 are denoted by the same reference numerals as in FIG. 16, and the description thereof will be omitted. Note that in the processing of FIG. 25, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 22.
ステップS601、ステップS701からステップS704までの処理、ステップS604からステップS611までの処理及びステップS705からステップS706までの処理が実行されると、NWコントローラ50は、ライブマイグレーションによりサーバ20-1の仮想DU21-1を、サーバ20-2に移動させる(ステップS1401)。これにより、サーバ20-1の仮想DU21-1のパラメータをそのままサーバ20-2に移動させる。その後、ステップS707以降の処理が実行される。
After step S601, the processes from step S701 to step S704, the processes from step S604 to step S611, and the processes from step S705 to step S706 have been executed, the NW controller 50 moves the virtual DU 21-1 of the server 20-1 to the server 20-2 by live migration (step S1401). As a result, the parameters of the virtual DU 21-1 of the server 20-1 are moved to the server 20-2 as is. Then, the processes from step S707 onwards are executed.
なお、ステップS707の処理において、指示部521は、仮想ルータ22-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ20-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In addition, in the process of step S707, the instruction unit 521 may send a blocking instruction, including an instruction to change the priority of the virtual router 22-1, to the server 20-1, which is the switching source, via the communication unit 51. The specific process flow in this case has already been described above, so it will not be described here.
図26及び図27は、第10の実施形態における無線アクセスネットワークシステム100dの処理(その2)の流れを示すシーケンス図である。図26及び図27において、図17及び図18と同様の処理においては図17及び図18と同様の符号を付して説明を省略する。なお、図26及び図27の処理では、遮断指示には、仮想ルータ22の機能を停止させるための指示が含まれるものとして説明する。
26 and 27 are sequence diagrams showing the flow of processing (part 2) of the wireless access network system 100d in the tenth embodiment. In Figs. 26 and 27, the same processes as those in Figs. 17 and 18 are denoted with the same reference numerals as those in Figs. 17 and 18, and the description thereof will be omitted. Note that in the processing of Figs. 26 and 27, the explanation will be given assuming that the cutoff instruction includes an instruction to stop the function of the virtual router 22.
ステップS601、ステップS801からステップS804までの処理、ステップS804からステップS811までの処理及びステップS805からステップS806までの処理が実行されると、NWコントローラ50は、ライブマイグレーションによりサーバ20-1の仮想DU21-1を、サーバ20-2に移動させる(ステップS1501)。これにより、サーバ20-1の仮想DU21-1のパラメータをそのままサーバ20-2に移動させる。その後、ステップS807以降の処理が実行される。
After step S601, the processes from step S801 to step S804, the processes from step S804 to step S811, and the processes from step S805 to step S806 have been executed, the NW controller 50 moves the virtual DU 21-1 of the server 20-1 to the server 20-2 by live migration (step S1501). As a result, the parameters of the virtual DU 21-1 of the server 20-1 are moved to the server 20-2 as is. Then, the processes from step S807 onwards are executed.
なお、ステップS807の処理において、指示部521は、仮想ルータ22-1の優先度を変更させるための指示を含む遮断指示を、通信部51を介して切替元であるサーバ20-1に送信してもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。さらに、指示部521は、ステップS813の処理において、仮想ルータの起動指示に、新たに設定する優先度の情報を含めてもよい。この場合の具体的な処理の流れについては、上記で既に説明しているため省略する。
In the process of step S807, the instruction unit 521 may send a shutdown instruction including an instruction to change the priority of the virtual router 22-1 to the server 20-1, which is the switching source, via the communication unit 51. The specific flow of the process in this case has already been described above and will not be described here. Furthermore, in the process of step S813, the instruction unit 521 may include information on the newly set priority in the instruction to start the virtual router. The specific flow of the process in this case has already been described above and will not be described here.
以上のように構成された第10の実施形態における無線アクセスネットワークシステム100dによれば、第5の実施形態と同様の効果を得ることができる。
The radio access network system 100d of the tenth embodiment configured as described above can achieve the same effects as the fifth embodiment.
さらに、第10の実施形態における無線アクセスネットワークシステム100dでは、仮想DU内部のパラメータを切替先に引き継ぐことができる。
Furthermore, in the radio access network system 100d in the tenth embodiment, parameters within the virtual DU can be carried over to the switching destination.
上述したサーバ20,20-1,20-2、サーバ30-1,30-2、NWコントローラ50及び基地局コントローラ70の一部の機能をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc - ROM)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
Some of the functions of the above-mentioned servers 20, 20-1, 20-2, servers 30-1, 30-2, NW controller 50, and base station controller 70 may be realized by a computer. In this case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed to realize the functions. Note that the term "computer system" here includes hardware such as an OS and peripheral devices. Also, "computer-readable recording medium" refers to portable media such as flexible disks, optical magnetic disks, ROMs (Read Only Memory), and CD-ROMs (Compact Disc-ROMs), as well as storage devices such as hard disks built into computer systems.
さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組合せで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
Furthermore, "computer-readable recording medium" may include something that dynamically holds a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, or something that holds a program for a fixed period of time, such as volatile memory within a computer system that serves as a server or client in that case. Furthermore, the above program may be one that realizes part of the functions described above, or may be one that can realize the functions described above in combination with a program already recorded in the computer system, or may be one that is realized using a programmable logic device such as an FPGA (Field Programmable Gate Array).
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
Although an embodiment of the present invention has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes designs that do not deviate from the gist of the present invention.
本発明は、無線アクセスネットワークにおけるネットワーク制御技術に適用できる。
This invention can be applied to network control technology in wireless access networks.
10…無線局, 20、20-1、20-2、30-1、30-2…サーバ, 21-1、21-2…仮想DU, 31-1、31-2…仮想CU, 22-1、22-2、32-1、32-2…仮想ルータ, 40…5GC, 50…NWコントローラ, 51…通信部, 52…制御部, 521…指示部, 522…疎通制御部, 60…ネットワーク, 65…MEC, 67…MECコントローラ, 70…基地局コントローラ, 100、100a、100b、100c、100d…無線アクセスネットワークシステム
10...Radio station, 20, 20-1, 20-2, 30-1, 30-2...Server, 21-1, 21-2...Virtual DU, 31-1, 31-2...Virtual CU, 22-1, 22-2, 32-1, 32-2...Virtual router, 40...5GC, 50...NW controller, 51...Communication unit, 52...Control unit, 521...Instruction unit, 522...Communication control unit, 60...Network, 65...MEC, 67...MEC controller, 70...Base station controller, 100, 100a, 100b, 100c, 100d...Radio access network system
Claims (7)
- 仮想化技術により、転送機能と、無線アクセスネットワークにおける基地局機能とを実現する切替元のサーバ及び切替先のサーバにおいてデフォルトゲートウェイを冗長化させるプロトコルを用いることで、前記切替元のサーバで実現される転送機能と前記切替先のサーバで実現される転送機能とをグループ化し、前記切替元のサーバで実現される転送機能を停止もしくは、優先度の値を変更して待機状態に移行させることで経路の切替を行う制御部、
を備える制御装置。 a control unit that uses a protocol for making default gateways redundant in a source server and a destination server that realize a forwarding function and a base station function in a wireless access network by using a virtualization technology, thereby grouping the forwarding function realized in the source server and the forwarding function realized in the destination server, and switches the route by stopping the forwarding function realized in the source server or by changing a priority value and transitioning it to a standby state;
A control device comprising: - 前記制御部は、前記切替元のサーバで実現される転送機能と前記切替先のサーバで実現される転送機能との間でグループ化が完了した後、前記切替元のサーバで実現される転送機能を停止もしくは、優先度の値を変更して待機状態に移行させる、
請求項1に記載の制御装置。 After grouping between the forwarding function realized by the switching source server and the forwarding function realized by the switching destination server is completed, the control unit stops the forwarding function realized by the switching source server or changes a priority value to transition the forwarding function to a standby state.
The control device according to claim 1 . - 前記制御部は、経路切替後において前記基地局機能のオペレーティングシステムの更新が完了した後に元の経路への切り戻しを行う、
請求項1又は2に記載の制御装置。 The control unit performs switching back to the original route after completing an update of the operating system of the base station function after the route switching.
The control device according to claim 1 or 2. - 前記切替元のサーバは、ライブマイグレーションにより前記切替先のサーバに対して前記基地局機能内部のパラメータを移行する、
請求項1又は2に記載の制御装置。 the source server transfers parameters within the base station function to the destination server by live migration;
The control device according to claim 1 or 2. - 前記デフォルトゲートウェイを冗長化させるプロトコルは、VRRP(Virtual Router Redundancy Protocol)である、
請求項1又は2に記載の制御装置。 The protocol for making the default gateway redundant is VRRP (Virtual Router Redundancy Protocol).
The control device according to claim 1 or 2. - 前記基地局機能は、データ処理を行うCU(Central Unit)又は無線信号処理を行うDU(Distributed Unit)のいずれかである、
請求項1又は2に記載の制御装置。 The base station function is either a CU (Central Unit) that processes data or a DU (Distributed Unit) that processes radio signals.
The control device according to claim 1 or 2. - 仮想化技術により、転送機能と、無線アクセスネットワークにおける基地局機能とを実現する切替元のサーバ及び切替先のサーバにおいてデフォルトゲートウェイを冗長化させるプロトコルを用いることで、前記切替元のサーバで実現される転送機能と前記切替先のサーバで実現される転送機能とをグループ化し、前記切替元のサーバで実現される転送機能を停止もしくは、優先度の値を変更して待機状態に移行させることで経路の切替を行う切替制御方法。 A switching control method that uses virtualization technology to group the forwarding function realized by the source server and the forwarding function realized by the destination server by using a protocol that makes the default gateway redundant in the source server and the destination server that realizes the forwarding function and the base station function in the wireless access network, and switches the route by stopping the forwarding function realized by the source server or changing the priority value and transitioning to a standby state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/003571 WO2024161628A1 (en) | 2023-02-03 | 2023-02-03 | Control device and switching control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/003571 WO2024161628A1 (en) | 2023-02-03 | 2023-02-03 | Control device and switching control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024161628A1 true WO2024161628A1 (en) | 2024-08-08 |
Family
ID=92146241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/003571 WO2024161628A1 (en) | 2023-02-03 | 2023-02-03 | Control device and switching control method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024161628A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007034666A (en) * | 2005-07-27 | 2007-02-08 | Nec Corp | Redundancy configuration device, redundancy configuration system, upgrade enabling method, and upgrade enabling program |
JP2015088983A (en) * | 2013-10-31 | 2015-05-07 | 富士通株式会社 | Information processing device, information processing system and information processing method |
JP2019028869A (en) * | 2017-08-02 | 2019-02-21 | 日本電信電話株式会社 | Packet processing function migration system, server, packet processing function migration method, and program |
JP2019506662A (en) * | 2015-12-23 | 2019-03-07 | コンプテル オーユー | Network management |
-
2023
- 2023-02-03 WO PCT/JP2023/003571 patent/WO2024161628A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007034666A (en) * | 2005-07-27 | 2007-02-08 | Nec Corp | Redundancy configuration device, redundancy configuration system, upgrade enabling method, and upgrade enabling program |
JP2015088983A (en) * | 2013-10-31 | 2015-05-07 | 富士通株式会社 | Information processing device, information processing system and information processing method |
JP2019506662A (en) * | 2015-12-23 | 2019-03-07 | コンプテル オーユー | Network management |
JP2019028869A (en) * | 2017-08-02 | 2019-02-21 | 日本電信電話株式会社 | Packet processing function migration system, server, packet processing function migration method, and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5608794B2 (en) | Hierarchical system, method, and computer program for managing a plurality of virtual machines | |
CN108768895B (en) | A method and data center for virtual machine migration | |
US20190068544A1 (en) | Communications Method and Apparatus for Virtual Extensible Local Area Network | |
JP5729063B2 (en) | COMMUNICATION SETTING METHOD, COMMUNICATION SETTING SERVER, RELAY DEVICE, AND COMMUNICATION SETTING PROGRAM | |
CN106657330B (en) | User data migration method and user data backup method, device and system | |
JP2006505154A (en) | Method and apparatus for mobile IP dynamic home agent assignment | |
EP3695569B1 (en) | A system and method for providing a layer 2 fast re-switch for a wireless controller | |
WO2024113895A1 (en) | Load balancing method, apparatus and system, system creation method, and device and medium | |
US9451483B2 (en) | Mobile communication system, communication system, control node, call-processing node, and communication control method | |
US7710956B2 (en) | Mobile communication control system, network management server, mobile node, access node and anchor node | |
US7882169B1 (en) | Method and apparatus for configuring relay processes used for dynamically configuring hosts in network communications | |
WO2009101780A1 (en) | Position information management device, network edge device, and mobile terminal | |
WO2024161628A1 (en) | Control device and switching control method | |
JP5973237B2 (en) | Database management apparatus and database management method | |
KR101676570B1 (en) | Method and system for providing virtual data center | |
KR101680137B1 (en) | Sdn-based terminal mobility management framework and management methof thereof | |
JP2017038218A (en) | Communication system and setting method | |
CN109412943B (en) | SDN controller cluster flow processing method, device, equipment and storage medium | |
CN105656814A (en) | SDN (Software-Defined Network) forwarding system and method | |
JP4862648B2 (en) | Mobile IP system | |
CN101513006A (en) | Method and apparatus for routing and grouping in mobile IP system | |
KR20160114401A (en) | Method for switching between IPv4 service and IPv6 service in Locator ID Separation Protocol network environment and Locator ID Separation Protocol network system | |
KR102233480B1 (en) | Method for managing virtual machine migration and mobility protocol between edge clouds and system thereof | |
CN105324971A (en) | Binding registration and data forwarding method, related equipment, and network system | |
JP2008301138A (en) | COMMUNICATION SYSTEM, RADIO COMMUNICATION NODE, ADDRESS MANAGEMENT DEVICE, AND COMMUNICATION METHOD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23919765 Country of ref document: EP Kind code of ref document: A1 |