[go: up one dir, main page]

WO2024159606A1 - 像素排列结构、金属掩模板、显示面板及显示装置 - Google Patents

像素排列结构、金属掩模板、显示面板及显示装置 Download PDF

Info

Publication number
WO2024159606A1
WO2024159606A1 PCT/CN2023/084605 CN2023084605W WO2024159606A1 WO 2024159606 A1 WO2024159606 A1 WO 2024159606A1 CN 2023084605 W CN2023084605 W CN 2023084605W WO 2024159606 A1 WO2024159606 A1 WO 2024159606A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
pixels
arrangement structure
pixel unit
Prior art date
Application number
PCT/CN2023/084605
Other languages
English (en)
French (fr)
Inventor
刘瑛军
曾旭
桑伟
陈凯凯
胡君
邹忠哲
梁逸南
马绍栋
Original Assignee
上海和辉光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海和辉光电股份有限公司 filed Critical 上海和辉光电股份有限公司
Publication of WO2024159606A1 publication Critical patent/WO2024159606A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of display technology, and in particular to a pixel arrangement structure, a metal mask, a display panel and a display device.
  • OLED Organic Light Emitting Diode
  • a fine metal mask (FMM) is usually used to prepare the red, green, and blue light-emitting layers to form red, green, and blue sub-pixels.
  • FMM fine metal mask
  • the opening area of the sub-pixel is limited, which affects the opening rate of the pixel, and then has an adverse effect on the brightness and service life of the entire display panel, making it difficult to improve the brightness and service life of the display panel. Therefore, how to improve the opening rate of pixels in OLED panels, and then improve the brightness and service life of OLED panels, is a problem currently faced.
  • the present invention provides a pixel arrangement structure, a metal mask, a display panel and a display device, which are beneficial to improving the aperture ratio of pixels in an OLED panel, thereby facilitating improving the brightness and service life of the OLED panel.
  • a pixel arrangement structure comprising: a plurality of first pixel units and a plurality of second pixel units, wherein the first pixel units and the second pixel units are arranged in rows.
  • the first pixel units are arranged alternately in the direction, each of the first pixel units includes a first sub-pixel, a second sub-pixel and a third sub-pixel; each of the second pixel units includes a first sub-pixel, a second sub-pixel and two third sub-pixels;
  • the opening area of the third sub-pixel in the first pixel unit is larger than the opening area of each third sub-pixel in the second pixel unit, a first spacing is provided between two third sub-pixels in the second pixel unit, a second spacing is provided between the first sub-pixel and the second sub-pixel in the second pixel unit, and the first spacing is larger than the second spacing; the third sub-pixel in the first pixel unit and two third sub-pixels adjacent to and belonging to different second pixel units correspond to the same opening area of the metal mask.
  • an opening area of a single third sub-pixel in the first pixel unit is greater than or equal to a sum of opening areas of two third sub-pixels in the second pixel unit.
  • the opening areas of the two third sub-pixels in the second pixel unit are equal, and the opening area of a single third sub-pixel in the first pixel unit is equal to the sum of the opening areas of the two third sub-pixels in the second pixel unit.
  • the two third sub-pixels in the second pixel unit have equal opening widths in the row direction and equal opening widths in the column direction; the third sub-pixel in the first pixel unit and the third sub-pixel in the second pixel unit have equal opening widths in the column direction, and the opening width of the third sub-pixel in the first pixel unit along the row direction is twice the opening width of the third sub-pixel in the second pixel unit along the row direction.
  • the third sub-pixels corresponding to the same opening area of the metal mask form a group of third sub-pixels, and the spacing between two adjacent groups of third sub-pixels is equal to the spacing between two third sub-pixels in the same second pixel unit.
  • the third sub-pixels in two adjacent rows are arranged in the same manner or in a staggered arrangement.
  • third sub-pixels in the same group have a third pitch, and the third pitch is smaller than the second pitch.
  • a first symmetry line of the third sub-pixel in the first pixel unit coincides with a second symmetry line of the third sub-pixel in the second pixel unit located in another adjacent row and the same column.
  • the first sub-pixels in the first pixel units and the second pixel units adjacent to each other in the same row are arranged in mirror symmetry about a third symmetry line, and the first pixel units adjacent to each other in the same row are arranged in mirror symmetry about a third symmetry line.
  • the second sub-pixel in the second pixel unit is arranged in mirror symmetry about the fourth symmetry line, the third symmetry line and the fourth symmetry line coincide with each other; and the spacing between sub-pixels of the same color in the same row is smaller than the spacing between sub-pixels of different colors.
  • the two third sub-pixels in the second pixel unit share an anode layer, so that the two third sub-pixels are connected to the same data signal line via the anode layer.
  • the first spacing is less than 100 ⁇ m.
  • the third sub-pixel is a blue sub-pixel.
  • a metal mask for manufacturing any of the above-mentioned pixel arrangement structures, comprising:
  • a plurality of opening regions each opening region corresponding to a sub-pixel of the same color; a group of third sub-pixels located in the same opening region includes a third sub-pixel in the first pixel unit and two third sub-pixels belonging to different second pixel units.
  • a display panel comprising any one of the above-mentioned pixel arrangement structures.
  • a display device comprising the above-mentioned display panel.
  • the pixel arrangement structure provided by the present invention is formed by an interlaced arrangement of two pixel units, the number and structure of the third sub-pixels in the two pixel units are different, the opening area of the third sub-pixel in the first pixel unit is larger than the opening area of each third sub-pixel in the second pixel unit, and the adjacent third sub-pixels of the same group in the two corresponding pixel units can share the same opening area of the metal mask plate, which is beneficial to improving the aperture ratio of the pixels in the OLED panel, thereby helping to improve the brightness and service life of the OLED panel.
  • FIG1 is a schematic diagram of a pixel arrangement structure in the prior art
  • FIG. 2 is a schematic diagram of another pixel arrangement structure in the prior art
  • FIG3 is a schematic structural diagram of a display panel disclosed in an embodiment of the present invention.
  • FIG4 is a schematic diagram of a pixel arrangement structure disclosed in an embodiment of the present invention.
  • FIG5 is a schematic diagram of a first pixel unit in a pixel arrangement structure disclosed in an embodiment of the present invention.
  • FIG6 is a schematic diagram of a second pixel unit in a pixel arrangement structure disclosed in an embodiment of the present invention.
  • FIG7 is a schematic diagram of a pixel arrangement structure disclosed in another embodiment of the present invention.
  • FIG8 is a schematic diagram of a pixel arrangement structure disclosed in another embodiment of the present invention.
  • FIG9 is a schematic diagram of a local pixel arrangement structure disclosed in another embodiment of the present invention.
  • FIG10 is a schematic diagram of a pixel arrangement structure disclosed in another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a driving structure of a display panel disclosed in an embodiment of the present invention.
  • FIG1 discloses a pixel arrangement structure in the prior art, which is also a common Real arrangement structure.
  • the red sub-pixel 11, the green sub-pixel 12, and the blue sub-pixel 13 are arranged in an inverted triangle matrix.
  • This design has the problem that the pixel aperture ratio is low due to the non-dense arrangement of the three colors, which in turn leads to a low total aperture luminous area, and ultimately affects the product life.
  • FIG2 is another pixel arrangement structure in the prior art, which includes a red sub-pixel 21, a green sub-pixel 22, and a blue sub-pixel 23.
  • This type of arrangement structure is generally used in large-size display devices such as tablet computers.
  • This type of arrangement structure performs poorly in the monochrome display of the blue sub-pixel 23.
  • FIG2 when the arrangement structure displays a vertical line of a monochrome blue sub-pixel 23, a jagged line will appear (refer to the dotted line in FIG2) due to the difference in the relative position of the center of the blue sub-pixel 23 between different rows. Because the pixel pitch of a large-size display screen is large, the jagged display problem will be aggravated.
  • an embodiment of the present invention discloses a display panel 30.
  • the display panel 30 includes a display area 31 and a non-display area 32, and the display area 31 displays an image through a plurality of sub-pixels.
  • the display area 31 may be a rectangle, and the non-display area 32 is arranged around the display area 31.
  • the shape and arrangement of the display area 31 and the non-display area 32 include but are not limited to the above examples.
  • the display area 31 when the display panel 30 is used for a wearable device worn on a user, the display area 31 may have a circular shape like a watch; when the display substrate is used for display on a vehicle, the display area 31 and the non-display area 32 may adopt, for example, a circular, polygonal or other shape.
  • the display area 31 is provided with a plurality of sub-pixels that emit light of different colors, for example, white light can be formed by mixing red light, green light and blue light.
  • the sub-pixel is characterized as the smallest unit for emitting light (for example, the smallest addressable unit of the display panel 30).
  • the display panel 30 provided in the embodiment of the present invention may be an organic light-emitting display panel, and the sub-pixel includes at least an anode and a cathode, and a light-emitting layer located between the anode and the cathode.
  • the pixel driving circuit applies a voltage between the anode and the cathode to stimulate carrier migration and act on the light-emitting layer, thereby emitting light.
  • the light-emitting layer includes at least a hole transport layer, an organic material layer, and an electron transport layer.
  • the transport layer, the anode is an electrode used to provide holes for the hole transport layer or transport holes
  • the cathode is used to provide electrons for the organic material layer or transport electrons.
  • an embodiment of the present invention discloses a pixel arrangement structure.
  • the pixel arrangement structure includes a first sub-pixel, a second sub-pixel, and a third sub-pixel that emit light of different colors.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel can be one of a blue sub-pixel, a red sub-pixel, and a green sub-pixel, respectively, to form a pixel that presents white light.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel can also be other colors besides red, green, and blue, which are not limited here.
  • the pixel arrangement structure includes a plurality of first pixel units and a plurality of second pixel units.
  • the first pixel units and the second pixel units are arranged alternately in the row direction.
  • each first pixel unit includes a first sub-pixel 41, a second sub-pixel 42 and a third sub-pixel 43.
  • each second pixel unit includes a first sub-pixel 41, a second sub-pixel 42 and two third sub-pixels 44.
  • the first sub-pixels in the first pixel unit and the second pixel unit are sub-pixels of the same color
  • the second sub-pixels are also sub-pixels of the same color
  • the third sub-pixels are also sub-pixels of the same color.
  • the opening areas of the first sub-pixel 41 and the second sub-pixel 42 in the first pixel unit and the second pixel unit can be equal, and the opening shapes can be the same.
  • the opening areas of the third sub-pixels in the first pixel unit and the second pixel unit are not equal, and the opening shapes can be the same.
  • the opening areas of the two third sub-pixels in the second pixel unit are equal.
  • the first pixel unit and the second pixel unit array are filled to form a pixel array.
  • the row direction and the column direction in the present invention can be the row direction and the column direction of the pixel array.
  • the pixel arrangement structure includes a plurality of virtual quadrilaterals.
  • the plurality of virtual quadrilaterals are arranged in a manner of sharing edges.
  • the first sub-pixel 41, the second sub-pixel 42 and the third sub-pixel in the first pixel unit are all located inside the virtual quadrilateral.
  • the first sub-pixel 41 and the second sub-pixel 42 in the second pixel unit are located inside the virtual quadrilateral, and the two third sub-pixels in the second pixel unit are respectively located on two opposite virtual edges of the virtual quadrilateral. That is, the two third sub-pixels in the second pixel unit can be arranged at both ends along the row direction of the virtual quadrilateral.
  • the third sub-pixel in the first pixel unit can be arranged in the center of the virtual quadrilateral in the row direction.
  • the opening of the third sub-pixel 43 in the first pixel unit is The area is greater than the opening area of each third sub-pixel 44 in the second pixel unit.
  • the first spacing a is greater than the second spacing c1.
  • the second spacing c1 is equal to the fourth spacing c2.
  • the arrangement of the first sub-pixel 41 and the second sub-pixel 42 can be made more compact, which is conducive to improving the aperture ratio of the first sub-pixel 41 and the second sub-pixel 42.
  • the fifth spacing c3, the second spacing c1 and the fourth spacing c2 are equal.
  • the opening area of a single third sub-pixel in the above-mentioned first pixel unit can be greater than or equal to the sum of the opening areas of the two third sub-pixels in the above-mentioned second pixel unit. This is conducive to increasing the opening area of the third sub-pixel in the pixel array, thereby facilitating improving the aperture ratio of the pixel in the OLED panel.
  • the opening area of a single third sub-pixel in the above-mentioned first pixel unit is equal to the sum of the opening areas of the two third sub-pixels in the second pixel unit.
  • the opening width of the third sub-pixel 43 in the first pixel unit in the row direction is twice the opening width of the single third sub-pixel 44 in the second pixel unit in the row direction.
  • the opening widths of three adjacent third sub-pixels in the same row are equal in the column direction, that is, the widths in the vertical direction are equal. That is, the opening widths of the two third sub-pixels in the second pixel unit in the row direction are equal, and the opening widths in the column direction are equal.
  • the opening widths of the third sub-pixel 43 in the first pixel unit and the third sub-pixel 44 in the second pixel unit in the column direction are equal. That is, the area ratio of three adjacent blue sub-pixels is 1:2:1. This is conducive to achieving uniform display of sub-pixels in the OLED panel.
  • the third sub-pixels corresponding to the same opening area of the metal mask are a group of third sub-pixels, and the spacing between two adjacent groups of third sub-pixels is equal to the first spacing a between two third sub-pixels in the same second pixel unit.
  • the spacing between the third sub-pixel 43 in the first pixel unit and the adjacent third sub-pixel 44 in the second pixel unit on the left is b1.
  • the spacing between the third sub-pixel 43 in the first pixel unit and the adjacent third sub-pixel 44 in the second pixel unit on the right is b2. That is, the third sub-pixels in the same group have a third spacing, and the third spacing is b1 or b2.
  • the above third spacing is smaller than the above second spacing c1, and smaller than the fourth spacing c2. In this way, the arrangement of the third sub-pixels in the same group can be made more compact, which is beneficial to improving the aperture ratio of the third sub-pixels in the same group.
  • the third sub-pixel located in the first pixel unit and the two third sub-pixels adjacent to each other and belonging to different second pixel units correspond to the same opening area of the metal mask (refer to the corresponding dotted box in FIG. 4 ). That is, the third sub-pixels in the same group share an opening area of the mask, which is conducive to further improving the aperture ratio of the sub-pixels.
  • the center lines of all groups of third sub-pixels in the same column are parallel to the column direction of the pixel array, and the center lines of all third sub-pixels in the same row are parallel to the row direction of the pixel array.
  • the third sub-pixels in two adjacent rows are arranged in a repeated manner, that is, in the same manner. That is, the third sub-pixels in two adjacent rows of virtual quadrilaterals are arranged in a repeated manner.
  • the third sub-pixels of two adjacent rows may also be arranged in a staggered manner.
  • the first symmetry line of the third sub-pixel 43 in the above-mentioned first pixel unit coincides with the second symmetry line of the third sub-pixel 44 in the above-mentioned second pixel unit located in another adjacent row and the same column. That is, when the third sub-pixels of two adjacent rows are arranged in a staggered manner, the symmetry lines of the third sub-pixels in the two pixel units of the two adjacent rows coincide.
  • the center line of the single-point luminous center of the third sub-pixel 43 in the first pixel unit and the single-point luminous center of the third sub-pixel 44 in the second pixel unit coincide, that is, the single-point luminous center is located on the center line of the pixel point (refer to the dotted line in FIG7 ), which is conducive to improving the luminous display effect of the third sub-pixel, such as the blue sub-pixel, in the column direction.
  • the third sub-pixels of the same group may also share an opening area of the mask (refer to the corresponding dotted box in FIG7 ), which is conducive to further improving the aperture ratio of the sub-pixel.
  • the first sub-pixel 41 in the first pixel unit and the second pixel unit adjacent to each other in the same row is arranged mirror-symmetrically about the third symmetry line.
  • the second sub-pixel 42 in the first pixel unit and the second pixel unit adjacent to each other in the same row is arranged mirror-symmetrically about the fourth symmetry line.
  • the third symmetry line and the fourth symmetry line coincide with each other. That is, the first sub-pixel 41 and the second pixel unit in the two adjacent pixel units in the row direction are mirror-symmetrically arranged.
  • two adjacent first sub-pixels 41 can share an opening area of the mask (refer to the corresponding dotted box in FIG8 ), and two adjacent second sub-pixels 42 can share another opening area of the mask (refer to the corresponding dotted box in FIG8 ).
  • the distance between sub-pixels of the same color is not affected by the color mixing of the metal mask during the evaporation process, and it is also conducive to further improving the aperture ratio of the sub-pixels.
  • the third sub-pixels of the same group can also share another opening area of the mask (refer to the corresponding dotted box in FIG8 ).
  • the spacing between the two second sub-pixels 42 is D2
  • the spacing between the two first sub-pixels 41 is D4
  • the spacing between the first sub-pixel 41 and the second sub-pixel 42 in the second pixel unit is D1
  • the spacing between the first sub-pixel 41 and the second sub-pixel 42 in the first pixel unit is D3.
  • the spacing between the same-color sub-pixels in the same row is smaller than the spacing between the different-color sub-pixels (D1 or D3).
  • the number of contacts between different-color sub-pixels i.e., the occupation of the spacing between different-color sub-pixels
  • the number of contacts between different-color sub-pixels is reduced within the same number of virtual pixel units (refer to the three pixel units in FIG9 ), which can be used to design a pixel arrangement with a higher opening area, which can be beneficial to increase the opening area of the sub-pixels, and thus to increase the pixel opening rate.
  • D2 and D4 can be equal.
  • D1 and D3 can also be equal. This application is not limited to this.
  • the first pixel units of two adjacent rows are arranged in mirror symmetry about the fifth symmetry line.
  • the second pixel units of two adjacent rows are arranged in mirror symmetry about the sixth symmetry line.
  • the fifth symmetry line and the sixth symmetry line overlap.
  • the four first sub-pixels 41 of two adjacent rows can share an opening area of the mask (refer to the corresponding dotted box in FIG10 )
  • the four second sub-pixels 42 of two adjacent rows can share another opening area of the mask (refer to the corresponding dotted box in FIG10 )
  • the two groups of third sub-pixels (including 6 third sub-pixels) of two adjacent rows can share another opening area of the mask (refer to the corresponding dotted box in FIG10 ).
  • the first spacing a is less than 100 ⁇ m. Since the minimum distance that the human eye can distinguish is 100 ⁇ m, even if the second pixel unit is composed of two third sub-pixels, such as a blue sub-pixel, the blue light emitting brightness of the pixel at that point is assumed together, so that the light emitting effect of the second pixel unit is consistent with that of the first pixel unit, thereby ensuring the overall display quality of the OLED panel. display effect, and can present a uniform display.
  • the first sub-pixel 41 is a red sub-pixel
  • the second sub-pixel 42 is a green sub-pixel
  • the third sub-pixel is a blue sub-pixel.
  • the present invention is not limited thereto. It should be noted that, in the above embodiment of the present invention, part of the opening area of the mask is exemplarily shown in the form of a dotted box, and the drawings of the present invention do not show all the opening areas.
  • FIG11 shows a driving structure of the above-mentioned display panel.
  • the horizontal solid line is the scanning signal line SL
  • the vertical dotted line is the data signal line DL
  • the scanning signal line SL and the data signal line DL are arranged orthogonally.
  • the two third sub-pixels in the above-mentioned second pixel unit share an anode layer, so that the above-mentioned two third sub-pixels are connected to the same data signal line through the above-mentioned anode layer, thereby realizing a data signal line driving common light emission, so that the two third sub-pixels in the two-pixel unit are arranged symmetrically and separately but light up together.
  • the driving structure can also be set so that the two blue sub-pixels are driven separately by two data signal lines.
  • the two blue sub-pixels can be driven separately by one data signal line.
  • the support column can be placed in the space between the two third sub-pixels in the second pixel unit along the row direction.
  • the support column is placed in the space between every two sub-pixels of different colors in the row direction.
  • the available space of the support column is significantly increased compared to the corresponding technical solution in Figure 1, which facilitates the placement of the support column, thereby helping to improve the pressure resistance of the support column and reducing the risk of crushing the support column.
  • Some embodiments of the present invention further provide a metal mask.
  • the metal mask is used to manufacture the pixel arrangement structure disclosed in any of the above embodiments.
  • the detailed structural features and advantages of the pixel arrangement structure can be referred to the description of the above embodiments, and will not be repeated here.
  • the metal mask includes a plurality of opening areas, each of which corresponds to a sub-pixel of the same color.
  • a group of third sub-pixels located in the same opening area includes a third sub-pixel in the above-mentioned first pixel unit and two third sub-pixels belonging to different second pixel units.
  • Some embodiments of the present invention further provide a display panel, which includes the pixel arrangement structure disclosed in any of the above embodiments.
  • the detailed structural features and advantages of the pixel arrangement structure can be referred to the description of the above embodiments, which will not be repeated here.
  • this embodiment
  • Some embodiments of the present invention further provide a display device, which includes the display panel disclosed in the above embodiments.
  • the display device provided by the embodiments of the present invention can be any device that displays images, whether in motion (e.g., video) or fixed (e.g., still images), and whether text or images. More specifically, it is expected that the embodiments can be implemented in or associated with a variety of electronic devices.
  • the various electronic devices are, for example, (but not limited to) mobile phones, wireless devices, personal data assistants (PDAs), handheld or portable computers, GPS receivers/navigators, cameras, MP4 video players, video cameras, game consoles, watches, clocks, calculators, television monitors, flat panel displays, computer monitors, car displays (e.g., odometer displays, etc.), navigators, cockpit controllers and/or displays, displays of camera views (e.g., displays of rear-view cameras in vehicles), electronic photos, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures, etc.
  • the pixel arrangement structure, metal mask, display panel and display device disclosed in the present invention have at least the following advantages:
  • the pixel arrangement structure disclosed in the embodiment of the present invention is formed by an interlaced arrangement of two pixel units, the number and structure of the third sub-pixels in the two pixel units are different, the opening area of the third sub-pixel in the first pixel unit is larger than the opening area of each third sub-pixel in the second pixel unit, and the adjacent third sub-pixels of the same group in the corresponding two pixel units can share the same opening area of the metal mask plate, which is beneficial to improving the aperture ratio of the pixels in the OLED panel, thereby helping to improve the brightness and service life of the OLED panel.
  • the center line of the single-point luminous center of the third sub-pixel in the first pixel unit coincides with the center line of the single-point luminous center of the third sub-pixel in the second pixel unit, which can solve the jagged display problem of the blue sub-pixel in the column direction of the current OLED panel, thereby improving the display effect of the OLED panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本发明提供了一种像素排列结构、金属掩模板、显示面板及显示装置,像素排列结构包括多个第一像素单元和多个第二像素单元,第一像素单元包括一第一子像素、一第二子像素和一第三子像素;第二像素单元包括一第一子像素、一第二子像素和两个第三子像素;第一像素单元中第三子像素的开口面积大于第二像素单元中每一第三子像素的开口面积,第二像素单元中两个第三子像素之间具有第一间距,第二像素单元中第一子像素和第二子像素之间具有第二间距,第一间距大于第二间距;位于第一像素单元中的第三子像素和相邻且归属于不同第二像素单元的两个第三子像素对应于掩模板的同一个开口区域。本发明利于提高OLED面板的像素开口率,且利于提升其显示效果。

Description

像素排列结构、金属掩模板、显示面板及显示装置 技术领域
本发明涉及显示技术领域,具体地说,涉及一种像素排列结构、金属掩模板、显示面板及显示装置。
背景技术
随着显示技术的发展,OLED(Organic Light Emitting Diode,有机发光二极管)面板的显示效果的重要性及要求日益提高。目前常用的像素设计是使用红色(R)、绿色(G)、蓝色(B)三种子像素进行组合形成像素单元,显示发光区域由上述像素单元阵列填充组成。
OLED面板的制造过程中通常采用精密金属掩模板(Fine Metal Mask,简称FMM)制备红、绿、蓝发光层,构成红、绿、蓝子像素。然而,在FMM的制作过程中,由于每个开口区域之间都要保留一定的原材料作为桥接部分(Rib),使得子像素的开口区域受限,影响了像素的开口率,进而对整个显示面板的亮度和使用寿命造成不利影响,使得显示面板的亮度和使用寿命难以提升。因此,如何提升OLED面板中像素的开口率,进而提升OLED面板的亮度和使用寿命,是目前面临的一个问题。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本发明的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
有鉴于此,本发明提供一种像素排列结构、金属掩模板、显示面板及显示装置,利于提高OLED面板中像素的开口率,从而利于提高OLED面板的亮度和使用寿命。
根据本发明的一个方面,提供一种像素排列结构,包括:多个第一像素单元和多个第二像素单元,所述第一像素单元和所述第二像素单元在行 方向上交错排列,每一所述第一像素单元包括一第一子像素、一第二子像素和一第三子像素;每一所述第二像素单元包括一第一子像素、一第二子像素和两个第三子像素;
所述第一像素单元中第三子像素的开口面积大于所述第二像素单元中每一第三子像素的开口面积,所述第二像素单元中的两个第三子像素之间具有第一间距,所述第二像素单元中的第一子像素和第二子像素之间具有第二间距,所述第一间距大于所述第二间距;位于所述第一像素单元中的第三子像素和相邻且归属于不同的第二像素单元的两个第三子像素对应于金属掩模板的同一个开口区域。
可选地,所述第一像素单元中单个第三子像素的开口面积大于等于所述第二像素单元中两个第三子像素的开口面积的和。
可选地,所述第二像素单元中两个第三子像素的开口面积相等,且所述第一像素单元中单个第三子像素的开口面积等于所述第二像素单元中两个第三子像素的开口面积的和。
可选地,所述第二像素单元中的两个第三子像素沿行方向上的开口宽度相等,且沿列方向上的开口宽度相等;所述第一像素单元中第三子像素和所述第二像素单元中第三子像素沿列方向上的开口宽度相等,所述第一像素单元中第三子像素沿行方向上的开口宽度是所述第二像素单元中第三子像素沿行方向上的开口宽度的两倍。
可选地,对应于金属掩模板同一个开口区域的第三子像素为一组第三子像素,相邻两组第三子像素的间距等于同一第二像素单元中的两个第三子像素的间距。
可选地,相邻两行的第三子像素为相同的排列方式或者呈交错排列的形式。
可选地,同一组内的第三子像素具有第三间距,所述第三间距小于所述第二间距。
可选地,所述第一像素单元中第三子像素的第一对称线与位于相邻的另一行且同一列的所述第二像素单元中第三子像素的第二对称线重合。
可选地,同一行相邻的所述第一像素单元和所述第二像素单元中的第一子像素关于第三对称线镜像对称设置,同一行相邻的所述第一像素单元 和所述第二像素单元中的第二子像素关于第四对称线镜像对称设置,所述第三对称线和所述第四对称线重合;且同一行中相同颜色子像素之间的间距小于不同颜色子像素之间的间距。
可选地,所述第二像素单元中的两个第三子像素共用一阳极层,以使得所述两个第三子像素经所述阳极层连接于同一数据信号线。
可选地,所述第一间距小于100μm。
可选地,所述第三子像素为蓝色子像素。
根据本发明的另一个方面,提供一种金属掩模板,用于制作上述任一像素排列结构,包括:
多个开口区域,每一个开口区域对应相同颜色的子像素;位于同一开口区域内的一组第三子像素包括所述第一像素单元中的一个第三子像素和归属于不同的第二像素单元的两个第三子像素。
根据本发明的另一个方面,提供一种显示面板,包括上述任一像素排列结构。
根据本发明的另一个方面,提供一种显示装置,包括上述显示面板。
本发明与现有技术相比的有益效果在于:
本发明提供的像素排列结构由两种像素单元交错排列形成,两种像素单元中关于第三子像素的数量和结构均不相同,第一像素单元中第三子像素的开口面积大于第二像素单元中每一第三子像素的开口面积,对应两个像素单元中相邻的同组第三子像素可以共用金属掩膜板的同一开口区域,利于提高OLED面板中像素的开口率,从而利于提高OLED面板的亮度和使用寿命。
上述金属掩模板、显示面板及显示装置与上述像素排列结构相对于现有技术所具有的优势相同,在此不再赘述。
除了上面所描述的本发明实施例解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本发明实施例提供的像素排列结构、金属掩模板、显示面板及显示装置所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作出进一步详细的说明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的一种像素排列结构的示意图;
图2为现有技术中的另一种像素排列结构的示意图;
图3为本发明一实施例公开的一种显示面板的结构示意图;
图4为本发明一实施例公开的像素排列结构的示意图;
图5为本发明一实施例公开的像素排列结构中第一像素单元的示意图;
图6为本发明一实施例公开的像素排列结构中第二像素单元的示意图;
图7为本发明另一实施例公开的像素排列结构的示意图;
图8为本发明另一实施例公开的像素排列结构的示意图;
图9为本发明另一实施例公开的局部像素排列结构的示意图;
图10为本发明另一实施例公开的像素排列结构的示意图;
图11是本发明一实施例公开的显示面板的一种驱动结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本发明的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、材料、装置等。在其它情况下,不详细示出或描述公知技术方案以避免模糊本发明的各方面。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”、“具有”以及“设有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。
图1公开了现有技术中的一种像素排列结构,也即常见的Real排列结构。参考图1,在该排列结构中,红色子像素11、绿色子像素12和蓝色子像素13均呈倒三角形的矩阵排列形式,该种设计会存在因三色排列为非密排的形式导致像素开口率较低,进而导致总开口发光面积较低,最终影响产品寿命的问题。
图2为现有技术中的另一种像素排列结构,其包含有红色子像素21、绿色子像素22和蓝色子像素23。该类排列结构通常应用于平板电脑等大尺寸显示装置。这类排列结构在蓝色子像素23的单色显示上表现不佳。具体而言,参考图2,该排列结构在显示蓝色子像素23单色的竖线时,会因蓝色子像素23中心在不同行之间的相对位置存在差异而呈现锯齿线(参考图2中的虚线连线),又因为大尺寸显示屏的像素间距较大,会加剧锯齿显示问题。
如图3所示,本发明一实施例公开了显示面板30。该显示面板30包括显示区域31和非显示区域32,显示区域31通过多个子像素来显示图像。具体到一些实施例中,显示区域31可以为矩形,非显示区域32环绕显示区域31设置,当然,显示区域31和非显示区域32的形状和布置包括但不限于上述的示例。比如,当显示面板30用于佩戴在用户上的可穿戴设备时,显示区域31可以具有像手表一样的圆形形状;当显示基板用于车辆上进行显示时,显示区域31及非显示区域32可采用例如圆形、多边形或其他形状。显示区域31设有发射不同颜色光的多个子像素,比如可以通过红光、绿光和蓝光进行混色形成白光。其中,子像素表征为用于发射光的最小单元(例如为显示面板30的最小可寻址单元)。
其中,本发明实施例提供的显示面板30,可以为有机发光显示面板,子像素至少包括阳极和阴极,以及位于阳极和阴极之间的发光层。像素驱动电路向阳极和阴极之间施加电压,激发载流子迁移,作用于发光层,从而发射出光线。具体地,发光层至少包括空穴传输层、有机材料层及电子 传输层,阳极用于为空穴传输层提供空穴或传输空穴的电极,阴极用于给有机材料层提供电子或传输电子。
为了解决上述像素开口率较低和锯齿显示问题,本发明一实施例公开了一种像素排列结构。本发明的实施例中,像素排列结构包括发射不同颜色光的第一子像素、第二子像素和第三子像素。第一子像素、第二子像素和第三子像素可以分别为蓝色子像素、红色子像素和绿色子像素中的一种,构成一个呈现白光的像素。当然,在其他一些实施例中,第一子像素、第二子像素和第三子像素还可以为红色、绿色和蓝色之外的其他颜色,在此不作限定。
如图4所示,该实施例中,像素排布结构包括多个第一像素单元和多个第二像素单元。上述第一像素单元和上述第二像素单元在行方向上交错排列。参考图5,每一个第一像素单元包括一第一子像素41、一第二子像素42和一第三子像素43。参考图6,每一个第二像素单元包括一第一子像素41、一第二子像素42和两个第三子像素44。其中,第一像素单元和第二像素单元中的第一子像素是同一颜色的子像素,第二子像素也是同一颜色的子像素,第三子像素也是同一颜色的子像素。
其中,上述第一像素单元和第二像素单元中的第一子像素41和第二子像素42各自的开口面积可以相等,开口形状也可以相同。第一像素单元和上述第二像素单元中的第三子像素的开口面积不相等,开口形状可以相同。上述第二像素单元中两个第三子像素的开口面积相等。第一像素单元和第二像素单元阵列填充即形成像素阵列。其中,示例性地,本发明中的行方向和列方向可以是像素阵列的行方向和列方向。
本实施例中,上述像素排布结构包括多个虚拟四边形。多个虚拟四边形以共用边的方式排布。第一像素单元中的第一子像素41、第二子像素42和第三子像素均位于上述虚拟四边形的内部。第二像素单元中的第一子像素41和第二子像素42位于上述虚拟四边形的内部,第二像素单元中的两个第三子像素分别位于虚拟四边形的相对两条虚拟边上。也即,第二像素单元中的两个第三子像素可以沿虚拟四边形行方向上两端排列。第一像素单元中的第三子像素可以在虚拟四边形中行方向上居中排列。
参考图4,本实施例中,上述第一像素单元中第三子像素43的开口 面积大于上述第二像素单元中每一第三子像素44的开口面积。上述第二像素单元中的两个第三子像素之间具有第一间距a。上述第二像素单元中的第一子像素41和第二子像素42之间具有第二间距c1。第一像素单元中的第一子像素41和第二子像素42之间具有第四间距c2。上述第一间距a大于上述第二间距c1。上述第二间距c1等于第四间距c2。这样可以使得第一子像素41和第二子像素42的排布更为紧凑,利于提高第一子像素41和第二子像素42的开口率。其中,对于相邻的第一像素单元和第二像素单元,第一像素单元中的第二子像素42和第二像素单元中的第一子像素41之间具有第五间距c3。在一可选实施例中,第五间距c3、第二间距c1以及第四间距c2三者相等。
其中,上述第一像素单元中单个第三子像素的开口面积可以大于或者等于上述第二像素单元中两个第三子像素的开口面积的和。这样有利于增大像素阵列中第三子像素的开口面积,从而利于提高OLED面板中像素的开口率。在一优选实施例中,上述第一像素单元中单个第三子像素的开口面积等于第二像素单元中两个第三子像素的开口面积的和。
进一步地,作为一优选实施例,上述第一像素单元中第三子像素43沿行方向上的开口宽度是第二像素单元中单个第三子像素44沿行方向上的开口宽度的两倍。同一行中相邻三个第三子像素沿列方向上的开口宽度相等,也即在竖直方向上的宽度相等。也即,上述第二像素单元中的两个第三子像素沿行方向上的开口宽度相等,且沿列方向上的开口宽度相等。上述第一像素单元中第三子像素43和上述第二像素单元中第三子像素44沿列方向上的开口宽度相等。也即,相邻三个蓝色子像素的面积比为1:2:1。这样有利于实现OLED面板中子像素的均一化显示。
对应于金属掩模板同一个开口区域(参考图4中的相应虚线方框)的第三子像素为一组第三子像素,相邻两组第三子像素的间距等于同一第二像素单元中的两个第三子像素之间的第一间距a。第一像素单元中第三子像素43与左侧第二像素单元中相邻的第三子像素44之间的间距为b1。第一像素单元中第三子像素43与右侧第二像素单元中相邻的第三子像素44之间的间距为b2。也即,同一组内的第三子像素具有第三间距,第三间距为b1或b2。上述第三间距小于上述第二间距c1,且小于第四间距c2。 这样可以使得同一组内第三子像素的排布更为紧凑,利于提高同一组内第三子像素的开口率。
本实施例中,位于上述第一像素单元中的第三子像素和相邻且归属于不同的第二像素单元的两个第三子像素对应于金属掩模板的同一个开口区域(参考图4中的相应虚线方框)。也即,同一组的第三子像素共用掩模板的一个开口区域,这样利于进一步提高子像素的开口率。
本实施例中,位于同一列的所有组第三子像素的中心连线平行于像素阵列的列方向,位于同一行的所有第三子像素的中心连线平行于像素阵列的行方向,这样就可以避免当前OLED面板存在的蓝色子像素在列方向上的锯齿显示问题,在蓝色竖线显示效果有更佳的呈现,利于提升OLED显示装置的显示效果。
继续参考图4,本实施例中,相邻两行的第三子像素为重复的排列方式也即为相同的排列方式。也即,相邻两行虚拟四边形中的第三子像素为重复的排列方式。
需要说明的是,在其他实施例中,如图7所示,相邻两行的第三子像素也可以呈交错排列的形式。当相邻两行第三子像素交错排列时,上述第一像素单元中第三子像素43的第一对称线与位于相邻的另一行且同一列的上述第二像素单元中第三子像素44的第二对称线重合。也即,当相邻两行第三子像素交错排列时,相邻两行的两个像素单元中第三子像素的对称线重合。即为第一像素单元中第三子像素43的单点发光中心和第二像素单元中第三子像素44的单点发光中心的中心线重合,也即单点发光中心均位于像素点中心线(参考图7中的虚线连线)上,利于提高第三子像素比如蓝色子像素在列方向上的发光显示效果。相应地,在该实施例中,同一组的第三子像素也可以共用掩模板的一个开口区域(参考图7中的相应虚线方框),这样利于进一步提高子像素的开口率。
在本发明的另一个实施例中,如图8所示,同一行相邻的第一像素单元和第二像素单元中的第一子像素41关于第三对称线镜像对称设置。同一行相邻的第一像素单元和第二像素单元中的第二子像素42关于第四对称线镜像对称设置。上述第三对称线和上述第四对称线重合。也即,行方向上相邻两个像素单元中的第一子像素41和第二像素单元均为镜像对称 设置。这样可以实现相邻的两个第一子像素41共用掩模板的一个开口区域(参考图8中的相应虚线方框),相邻的两个第二子像素42共用掩模板的另一个开口区域(参考图8中的相应虚线方框),同色子像素距离不受金属掩模板在蒸镀过程中的混色等问题影响,也利于进一步提高子像素的开口率。并且,同一组的第三子像素也可以共用掩模板的另一个开口区域(参考图8中的相应虚线方框)。
在该实施例的像素排列结构中,参考图9,两个第二子像素42之间的间距为D2,两个第一子像素41之间的间距为D4,第二像素单元中第一子像素41和第二子像素42之间的间距为D1,第一像素单元中第一子像素41和第二子像素42之间的间距为D3。其中,对于第一子像素41和第二子像素42而言,同一行中同色子像素之间的间距(D2或者D4)小于异色子像素之间的间距(D1或者D3)。使得这样相比于图4和图7对应的实施例,实现了在相同数量的虚拟像素单元内(参考图9中的3个像素单元),减少了异色子像素间的接触个数即异色子像素间距的占用,可用于设计出开口面积更高的像素排列,可以利于提高子像素的开口面积,进而利于提高像素开口率。另一方面,利于降低金属掩模板的制作难度和蒸镀工艺的难度。其中,优选地,D2和D4可以相等。D1与D3也可以相等。本申请对此不作限定。
在本发明的另一个实施例中,如图10所示,相邻两行的第一像素单元关于第五对称线镜像对称设置。相邻两行的第二像素单元关于第六对称线镜像对称设置。上述第五对称线和上述第六对称线重合。这样可以实现相邻两行的四个第一子像素41可以共用掩模板的一个开口区域(参考图10中的相应虚线方框),相邻两行的四个第二子像素42可以共用掩模板的另一个开口区域(参考图10中的相应虚线方框),相邻两行的两组第三子像素(包含6个第三子像素)可以共用掩模板的另一个开口区域(参考图10中的相应虚线方框)。
在一可选实施例中,上述第一间距a小于100μm,由于人眼可分辨的最小距离在100μm,所以这样可以使得即使第二像素单元是两颗第三子像素比如蓝色子像素共同发光承担起该点像素的蓝色发光亮度,使得第二像素单元的发光效果与第一像素单元一致,保证了OLED面板的整体显 示效果,可以呈现均一化显示。
示例性地,在本发明的上述实施例中,上述第一子像素41为红色子像素,第二子像素42为绿色子像素,第三子像素为蓝色子像素。本发明不以此为限。需要说明的是,在本发明的上述实施例中,掩模板的部分开口区域是以虚线方框的形式示例性示出,本发明的附图并未示出全部开口区域。
图11示出了上述显示面板的一种驱动结构。水平的实线为扫描信号线SL,竖直的虚线为数据信号线DL,扫描信号线SL和数据信号线DL呈正交排列。参考图11,在一可选实施例中,上述第二像素单元中的两个第三子像素共用一阳极层,以使得上述两个第三子像素经上述阳极层连接于同一数据信号线,从而实现一条数据信号线驱动共同发光,这样使得二像素单元中的两个第三子像素对称分开排布但共同点亮。这样利于降低驱动电路的布设复杂度,电路结构简单。在其他实施例中,该驱动结构也可以设置为两个蓝色子像素用两条数据信号线分开驱动。或者,可以为两个蓝色子像素由一条数据信号线分开连接驱动。
在OLED面板的制造过程中,需要在两个基板对盒之前在两基板之间加入一定厚度的柱形隔垫物(Photo Spacer,简称PS,也叫做支撑柱)以保持盒厚(Cell Gap)。在本发明的实施例中,支撑柱可摆放于第二像素单元内两个第三子像素沿行方向之间的空间。针对图1对应的技术方案,支撑柱摆放于行方向上每两个异色子像素之间的空间。由于第二像素单元内两个第三子像素之间的间距大于图1中像素阵列的行方向上每两个异色子像素之间的间距,因此相比于图1对应技术方案,支撑柱的可利用空间明显增大,方便支撑柱摆放,从而利于提高支撑柱的抗压能力,降低了支撑柱的压伤风险。
本发明的一些实施例还提供了一种金属掩模板。该金属掩模板用于制作上述任一实施例公开的像素排列结构。其中,像素排列结构的详细结构特征和优势可参照上述实施例的描述,此处不再赘述。该金属掩模板包括多个开口区域,每一个开口区域对应相同颜色的子像素。位于同一开口区域内的一组第三子像素包括上述第一像素单元中的一个第三子像素和归属于不同的第二像素单元的两个第三子像素。
本发明的一些实施例还提供了一种显示面板,该显示面板包括上述任一实施例公开的像素排列结构。其中,像素排列结构的详细结构特征和优势可参照上述实施例的描述,此处不再赘述。本实施例中,
本发明的一些实施例还提供了一种显示装置,该显示装置包括上述实施例公开的显示面板。
本发明实施例所提供的显示装置可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联。所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构等。
综上,本发明公开的像素排列结构、金属掩模板、显示面板及显示装置至少具有如下优势:
本发明实施例公开的像素排列结构由两种像素单元交错排列形成,两种像素单元中关于第三子像素的数量和结构均不相同,第一像素单元中第三子像素的开口面积大于第二像素单元中每一第三子像素的开口面积,对应两个像素单元中相邻的同组第三子像素可以共用金属掩膜板的同一开口区域,利于提高OLED面板中像素的开口率,从而利于提高OLED面板的亮度和使用寿命。
另一方面,第一像素单元中第三子像素的单点发光中心和第二像素单元中第三子像素的单点发光中心的中心线重合,可以解决当前OLED面板存在的蓝色子像素在列方向上的锯齿显示问题,由此提升了OLED面板的显示效果。
上述金属掩模板、显示面板及显示装置与上述像素排列结构相对于现有技术所具有的优势相同,在此不再赘述。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说 明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (15)

  1. 一种像素排列结构,其特征在于,包括:多个第一像素单元和多个第二像素单元,所述第一像素单元和所述第二像素单元在行方向上交错排列,每一所述第一像素单元包括一第一子像素、一第二子像素和一第三子像素;每一所述第二像素单元包括一第一子像素、一第二子像素和两个第三子像素;
    所述第一像素单元中第三子像素的开口面积大于所述第二像素单元中每一第三子像素的开口面积,所述第二像素单元中的两个第三子像素之间具有第一间距,所述第二像素单元中的第一子像素和第二子像素之间具有第二间距,所述第一间距大于所述第二间距;位于所述第一像素单元中的第三子像素和相邻且归属于不同的第二像素单元的两个第三子像素对应于金属掩模板的同一个开口区域。
  2. 如权利要求1所述的像素排列结构,其特征在于,所述第一像素单元中单个第三子像素的开口面积大于等于所述第二像素单元中两个第三子像素的开口面积的和。
  3. 如权利要求2所述的像素排列结构,其特征在于,所述第二像素单元中两个第三子像素的开口面积相等,且所述第一像素单元中单个第三子像素的开口面积等于所述第二像素单元中两个第三子像素的开口面积的和。
  4. 如权利要求1所述的像素排列结构,其特征在于,所述第二像素单元中的两个第三子像素沿行方向上的开口宽度相等,且沿列方向上的开口宽度相等;所述第一像素单元中第三子像素和所述第二像素单元中第三子像素沿列方向上的开口宽度相等,所述第一像素单元中第三子像素沿行方向上的开口宽度是所述第二像素单元中第三子像素沿行方向上的开口宽度的两倍。
  5. 如权利要求1所述的像素排列结构,其特征在于,对应于金属掩模板同一个开口区域的第三子像素为一组第三子像素,相邻两组第三子像素的间距等于同一第二像素单元中的两个第三子像素的间距。
  6. 如权利要求1所述的像素排列结构,其特征在于,相邻两行的第三子像素为相同的排列方式或者呈交错排列的形式。
  7. 如权利要求5所述的像素排列结构,其特征在于,同一组内的第三子像素具有第三间距,所述第三间距小于所述第二间距。
  8. 如权利要求6所述的像素排列结构,其特征在于,所述第一像素单元中第三子像素的第一对称线与位于相邻的另一行且同一列的所述第二像素单元中第三子像素的第二对称线重合。
  9. 如权利要求1所述的像素排列结构,其特征在于,同一行相邻的所述第一像素单元和所述第二像素单元中的第一子像素关于第三对称线镜像对称设置,同一行相邻的所述第一像素单元和所述第二像素单元中的第二子像素关于第四对称线镜像对称设置,所述第三对称线和所述第四对称线重合;且同一行中相同颜色子像素之间的间距小于不同颜色子像素之间的间距。
  10. 如权利要求1所述的像素排列结构,其特征在于,所述第二像素单元中的两个第三子像素共用一阳极层,以使得所述两个第三子像素经所述阳极层连接于同一数据信号线。
  11. 如权利要求1所述的像素排列结构,其特征在于,所述第一间距小于100μm。
  12. 如权利要求1所述的像素排列结构,其特征在于,所述第三子像素为蓝色子像素。
  13. 一种金属掩模板,用于制作如权利要求1-12任一项所述的像素排列结构,其特征在于,包括:
    多个开口区域,每一个开口区域对应相同颜色的子像素;位于同一开口区域内的一组第三子像素包括所述第一像素单元中的一个第三子像素和归属于不同的第二像素单元的两个第三子像素。
  14. 一种显示面板,其特征在于,包括如权利要求1-13任一项所述的像素排列结构。
  15. 一种显示装置,其特征在于,包括如权利要求14所述的显示面板。
PCT/CN2023/084605 2023-01-30 2023-03-29 像素排列结构、金属掩模板、显示面板及显示装置 WO2024159606A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310091965.5 2023-01-30
CN202310091965.5A CN116193921B (zh) 2023-01-30 2023-01-30 像素排列结构、金属掩模板、显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2024159606A1 true WO2024159606A1 (zh) 2024-08-08

Family

ID=86432204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084605 WO2024159606A1 (zh) 2023-01-30 2023-03-29 像素排列结构、金属掩模板、显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN116193921B (zh)
WO (1) WO2024159606A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121983A1 (en) * 2007-11-13 2009-05-14 Samsung Electronics Co., Ltd. Organic light emitting diode display and method for manufacturing the same
US20140246654A1 (en) * 2013-03-04 2014-09-04 Innolux Corporation Oled display
CN113540203A (zh) * 2021-05-19 2021-10-22 上海和辉光电股份有限公司 像素排列结构、金属掩膜板以及有机发光显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616597B (zh) * 2015-02-13 2017-03-29 京东方科技集团股份有限公司 显示基板及其驱动方法和显示装置
CN205487172U (zh) * 2016-03-25 2016-08-17 昆山工研院新型平板显示技术中心有限公司 显示器
CN106298865B (zh) * 2016-11-16 2019-10-18 京东方科技集团股份有限公司 像素排列结构、有机电致发光器件、显示装置、掩模板
CN107146804B (zh) * 2017-04-01 2019-12-10 上海天马有机发光显示技术有限公司 有机发光二极管像素结构及有机发光二极管显示装置
CN108511481B (zh) * 2017-08-31 2019-07-26 昆山国显光电有限公司 像素结构及显示装置
CN110429102B (zh) * 2018-09-20 2021-11-12 广东聚华印刷显示技术有限公司 像素结构与显示器件
CN110444569A (zh) * 2019-08-02 2019-11-12 云谷(固安)科技有限公司 像素排列结构及显示面板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121983A1 (en) * 2007-11-13 2009-05-14 Samsung Electronics Co., Ltd. Organic light emitting diode display and method for manufacturing the same
US20140246654A1 (en) * 2013-03-04 2014-09-04 Innolux Corporation Oled display
CN113540203A (zh) * 2021-05-19 2021-10-22 上海和辉光电股份有限公司 像素排列结构、金属掩膜板以及有机发光显示装置

Also Published As

Publication number Publication date
CN116193921B (zh) 2023-09-12
CN116193921A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
CN109036257B (zh) 一种显示面板及其驱动方法和显示装置
CN109994503B (zh) 一种像素排布结构及相关装置
CN107621716B (zh) 一种像素结构、其驱动方法、显示面板及显示装置
CN104362170B (zh) 一种有机电致发光显示器件、其驱动方法及相关装置
US20170352710A1 (en) Oled pixel arrangement structure and display device
CN109037287A (zh) 子像素排列结构、掩膜装置、显示面板及显示装置
US20230247886A1 (en) Pixel arrangement structure and display panel
CN114335129B (zh) 显示面板、显示装置、掩膜组件和制作方法
CN114361232B (zh) 显示面板、掩膜组件和显示设备
CN107731101A (zh) 显示面板和显示装置
WO2017084396A1 (zh) 显示基板、显示面板以及显示装置
CN110364557B (zh) 像素排布结构及显示面板
WO2022206017A1 (zh) 像素排列结构、显示面板及显示装置
CN106530989A (zh) 一种像素排列结构、显示面板及显示装置
CN106340251A (zh) 一种像素排列结构、显示面板、显示装置及驱动方法
CN115411079B (zh) 显示面板及显示装置
CN205103519U (zh) 显示基板、显示面板以及显示装置
CN115101564A (zh) 显示面板及显示装置
WO2024159606A1 (zh) 像素排列结构、金属掩模板、显示面板及显示装置
CN109581723B (zh) 一种显示面板和显示装置
CN114759072B (zh) 显示面板及显示装置
CN114141834B (zh) 显示面板
CN116469879A (zh) 无机发光二极管显示器
CN115411078A (zh) 显示面板及显示装置
WO2024130849A1 (zh) 像素排列结构、金属掩模板、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23919179

Country of ref document: EP

Kind code of ref document: A1