[go: up one dir, main page]

WO2024157955A1 - Exhaust gas purification catalyst and exhaust gas purification device using same - Google Patents

Exhaust gas purification catalyst and exhaust gas purification device using same Download PDF

Info

Publication number
WO2024157955A1
WO2024157955A1 PCT/JP2024/001765 JP2024001765W WO2024157955A1 WO 2024157955 A1 WO2024157955 A1 WO 2024157955A1 JP 2024001765 W JP2024001765 W JP 2024001765W WO 2024157955 A1 WO2024157955 A1 WO 2024157955A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
catalyst
exhaust gas
particles
alumina
Prior art date
Application number
PCT/JP2024/001765
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 藤村
圭 杉浦
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Publication of WO2024157955A1 publication Critical patent/WO2024157955A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification catalyst that contains platinum group elements and Ni as catalytically active components, and an exhaust gas purification device that uses the same.
  • TWCs three-way catalysts
  • PGMs platinum group metals
  • Ru ruthenium
  • Rh rhodium
  • Pr palladium
  • Ir osmium
  • Ir iridium
  • platinum platinum
  • a three-way catalyst As a three-way catalyst, a three-way catalyst with a composite particle structure in which catalytically active components are highly dispersed on a base material particle in the form of fine particles is widely used in order to reduce the amount of relatively expensive PGM used while ensuring high catalytic activity.
  • Specific examples include three-way catalysts containing composite catalyst particles of base material particles made of metal oxides such as alumina, zirconia, and ceria, and platinum group elements such as Pt and Pd supported on the base material particles.
  • catalyst-coated gasoline particulate filters have also entered the practical stage, in which these three-way catalysts are coated as catalytic materials on a wall-flow type honeycomb carrier that functions as a filter to trap particulate matter (PM).
  • sulfur content sulfur and sulfur-containing compounds contained in fuel cause an increase in the emission of hydrogen sulfide ( H2S ) and sulfur oxides (SOx), so most of the sulfur content in fuel is removed in advance.
  • H2S hydrogen sulfide
  • SOx sulfur oxides
  • transition metals such as Cu, Ni, Fe, Mn, and Co as catalytically active components.
  • these transition metals alone do not have sufficient purification performance for hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), so three-way catalysts that combine PGM with transition metals are being considered.
  • Patent Document 1 also describes a catalyst article for purifying exhaust substances, comprising a first catalyst coating containing a platinum group metal, a second catalyst coating containing one or more non-platinum group metals selected from the group consisting of Cu, Ni, Fe, Mn, and Co, and one or more substrates, wherein the first catalyst coating is essentially free of Cu, Ni, Fe, Mn, V, Co, Ga, Mo, Mg, Cr, and Zn, the second catalyst coating is essentially free of platinum group metals, and the first catalyst coating is isolated from the second catalyst coating.
  • the catalyst article further includes a barrier layer between the first catalytic coating and the second catalytic coating, the barrier layer including a support selected from stabilized alumina, ceria, zirconia, ceria-zirconia composite, titania, and combinations thereof, the support being stabilized with an element selected from the group consisting of La, Ba, Y, Pr, Sr, and combinations thereof, and the first catalytic coating is on the second catalytic coating or the first catalytic coating is upstream of the second catalytic coating.
  • the barrier layer including a support selected from stabilized alumina, ceria, zirconia, ceria-zirconia composite, titania, and combinations thereof, the support being stabilized with an element selected from the group consisting of La, Ba, Y, Pr, Sr, and combinations thereof, and the first catalytic coating is on the second catalytic coating or the first catalytic coating is upstream of the second catalytic coating.
  • Patent Document 1 does not consider at all the reduction of NH3 emissions.
  • Patent Document 1 discloses that PGM and transition metals are arranged separately in different catalyst layers to remove hydrocarbons, CO, and NOx compounds, but the transition metal is mixed with ceria and alumina as shown in the non-platinum group metal coatings A and B in the examples of Patent Document 1. According to the findings of the present inventors, when the transition metal is mixed with ceria and alumina in this way, when exposed to high temperatures, they may unintentionally react to form an alloy with PGM, form a composite oxide with alumina, or cause sintering of ceria, which may result in a decrease in purification performance for CO, NOx, and NH3 , and it has been found that further improvement is necessary.
  • an object of the present invention is to provide an exhaust gas purification catalyst that reduces the generation of sulfur compound smell and has excellent NOx purification performance and NH3 purification performance, and an exhaust gas purification device using the same.
  • the inventors conducted extensive research to solve the above problems. As a result, they discovered that the above problems could be solved by providing a catalyst layer with a specific layer structure on a substrate, and thus completed the present invention.
  • a catalyst for exhaust gas purification comprising at least a substrate and a catalyst layer provided on the substrate, the catalyst layer having a stacking structure selected from the group consisting of a first stacking structure having a first catalyst layer provided on the substrate, a second catalyst layer provided on the first catalyst layer, and a third catalyst layer provided on the second catalyst layer, and a second stacking structure having a second catalyst layer provided on the substrate, the first catalyst layer provided on the second catalyst layer, and a third catalyst layer provided on the first catalyst layer, the first catalyst layer including at least first base particles and first composite catalyst particles containing a platinum group element supported on the first base particles, the second catalyst layer including at least Ni and alumina particles, and the third catalyst layer including at least third base particles and third composite catalyst particles containing a platinum group element supported on the third base particles.
  • An exhaust gas purification device comprising a three-way catalyst arranged downstream of an exhaust gas flow path of a gasoline engine, the three-way catalyst being an exhaust gas purification catalyst described in any one of (1) to (8) above.
  • the exhaust gas purification catalyst of the present invention is a three-way catalyst (TWC) that reduces NOx, CO, HC, and the like in exhaust gas, and is a three-way catalyst that is excellent in NH 3 purification rate and reduces generation of sulfur compound smell without causing excessive deterioration of NOx purification performance, and is compatible with next-generation environmental standards.
  • TWC three-way catalyst
  • FIG. 1 is a schematic diagram showing a schematic configuration of an exhaust gas purifying catalyst 100 according to one embodiment.
  • FIG. 2 is a schematic diagram showing a schematic configuration of an exhaust gas purification catalyst 200 according to one embodiment.
  • FIG. 3 is a graph showing the NH 3 purification rates of the exhaust gas purification catalysts of Examples 1 to 4 and Comparative Examples 1 to 6 in the LA4 (FTP75) mode.
  • FIG. 4 is a graph showing the NOx purification rates of the exhaust gas purification catalysts of Examples 1 to 4 and Comparative Examples 1 to 6 in the LA4 (FTP75) mode.
  • FIG. 5 is a graph showing the NH 3 purification rates of the exhaust gas purifying catalysts of Examples 1 to 4 and Comparative Examples 1 to 6 in the US06 mode.
  • D90 particle size refers to the particle size when the cumulative value from the smallest particle size reaches 90% of the total in the cumulative distribution of particle sizes based on volume, and refers to the value measured using a laser diffraction particle size distribution analyzer (for example, the laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation).
  • the BET specific surface area is the value determined by the BET single point method using a specific surface area/pore distribution analyzer (product name: BELSORP-mini II, manufactured by Microtrac-Bell Co., Ltd.) and analysis software (product name: BEL_Master, manufactured by Microtrac-Bell Co., Ltd.).
  • the exhaust gas purification catalyst 100 includes a substrate 11 and a catalyst layer 21 provided on at least one surface 11a of the substrate 11.
  • the catalyst layer 21 has a laminated structure including a first catalyst layer L1, a second catalyst layer L2, and a third catalyst layer L3 in this order.
  • the first catalyst layer L1 includes at least a first composite catalyst particle containing a platinum group element supported on the first substrate particle and the first composite catalyst particle containing a platinum group element.
  • the second catalyst layer L2 includes at least Ni and alumina particles.
  • the third catalyst layer L3 includes at least a third composite catalyst particle containing a third substrate particle and the third composite catalyst particle containing a platinum group element supported on the third substrate particle.
  • FIG. 2 is a schematic diagram showing the schematic configuration of an exhaust gas purification catalyst 200 according to another preferred embodiment of the present invention.
  • the exhaust gas purification catalyst 200 includes a substrate 11 and a catalyst layer 21 provided on at least one surface 11a of the substrate 11.
  • the catalyst layer 21 has a laminated structure including a second catalyst layer L2, a first catalyst layer L1, and a third catalyst layer L3 in this order.
  • the first catalyst layer L1 includes at least a first composite catalyst particle containing a platinum group element supported on a first base material particle and the first base material particle.
  • the second catalyst layer L2 includes at least Ni and alumina particles.
  • the third catalyst layer L3 includes at least a third composite catalyst particle containing a third base material particle and the platinum group element supported on the third base material particle.
  • the substrate 11 is a support member for supporting the catalyst layer 21.
  • the substrate 11 By using the substrate 11 as an integrally structured laminated catalyst member for exhaust gas purification in which the catalyst layer 21 is provided, the substrate 11 can be easily incorporated into an apparatus, and the applicability to various uses is increased.
  • a honeycomb structure carrier or the like is used as the substrate 11, and this integrally structured laminated catalyst member is placed in a flow path through which a gas flow passes, and the gas flow is passed through the cells of the honeycomb structure carrier, thereby enabling highly efficient exhaust gas purification.
  • the substrate 11 used here can be appropriately selected from those known in the industry.
  • Specific examples include monolithic honeycomb carriers known in the industry, such as ceramic monolith carriers made of cordierite, cordierite alumina, silicon carbide, silicon carbide, silicon nitride, etc., metal honeycomb carriers made of stainless steel, wire mesh carriers made of stainless steel, steel wool-like knitted wire carriers, etc., but are not particularly limited to these.
  • the shape is also not particularly limited, and any shape can be selected, such as a prismatic, cylindrical, spherical, honeycomb, or sheet shape. These can be used alone or in appropriate combination of two or more types.
  • a flow-through type honeycomb carrier having a structure with many through holes (gas flow paths) that open from one open end face to the other open end face
  • a wall-flow type honeycomb carrier in which one open end face and the other open end face are alternately sealed and gas can flow through the porous wall surface. Both of these are applicable.
  • Flow-through type honeycomb carriers are widely used in oxidation catalysts, reduction catalysts, three-way catalysts (TWC), etc.
  • Wall-flow type honeycomb carriers function as filters that filter out solid and particulate components such as soot and SOF in exhaust gas, and are widely used as diesel particulate filters (DPFs), gasoline particulate filters (GPFs), etc.
  • the size of the substrate 11 can be appropriately set depending on the application and required performance, and is not particularly limited, but for example, a substrate with a diameter (length) of several millimeters to several centimeters can be used.
  • the substrate 11 such as an integral structure type honeycomb carrier, the number of holes in the openings is also set appropriately taking into consideration the type of exhaust gas to be treated, the gas flow rate, pressure loss, removal efficiency, etc.
  • the cell density is not particularly limited, but from the viewpoint of maintaining a high contact area (surface area) of the catalyst with the gas flow while maintaining strength and suppressing an increase in pressure loss, the cell density is 100 to 1500 cell/inch 2 (155 k to 2325 k/m 2 ), particularly 200 to 1200 cell/inch 2 (310 k to 1400 k/m 2 ), and more preferably 300 to 900 cell/inch 2 (465 k to 933 k/m 2 ).
  • the cell density means the number of cells per unit area in a cross section of the substrate 11 such as an integrally-structured honeycomb carrier cut perpendicularly to the gas flow path.
  • the catalyst layer 21 has a first stacked structure including at least the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 in this order, or a second stacked structure including at least the second catalyst layer L2, the first catalyst layer L1, and the third catalyst layer L3 in this order.
  • a catalyst layer containing Ni separately from the catalyst layer containing PGM, it is possible to suppress the deterioration of purification performance due to the combined use of PGM and Ni, and to suppress the diffusion of Ni to the adjacent catalyst layer.
  • first catalyst layer L1 the second catalyst layer L2, and the third catalyst layer L3 are arranged in this order, and as long as they are arranged in this order, any other layer (e.g., a primer layer, an adhesive layer, etc.) may be interposed between these layers.
  • any other layer e.g., a primer layer, an adhesive layer, etc.
  • the stacked structure of the catalyst layer 21 may be any of an embodiment in which the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 are directly placed on top of each other (first catalyst layer L1/second catalyst layer L2/third catalyst layer L3), or an embodiment in which the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 are arranged spaced apart with any other layer interposed therebetween (e.g., first catalyst layer L1/other layer/second catalyst layer L2/other layer/third catalyst layer L3, first catalyst layer L1/other layer/second catalyst layer L2/third catalyst layer L3, or first catalyst layer L1/second catalyst layer L2/other layer/third catalyst layer L3).
  • "provided on at least one surface of the substrate 11” means that either the catalyst layer 21 is provided only on one surface 11a (or the other surface 11b) of the substrate 11 as shown in FIG. 1, or the catalyst layer 21 is provided on both surfaces 11a, 11b of the substrate 11.
  • any other layer e.g., a primer layer, an adhesive layer, etc.
  • “provided on one surface” means that either the substrate 11 and the catalyst layer 21 are directly placed on each other, or the substrate 11 and the catalyst layer 21 are spaced apart via any other layer.
  • the first catalyst layer L1 includes at least first matrix particles and first composite catalyst particles containing a platinum group element supported on the first matrix particles.
  • the first base particles are carrier particles that support a platinum group element, which is a catalytically active component, on the surface in a highly dispersed manner.
  • the first base particles can be appropriately selected from those known in the art and are not particularly limited in type.
  • aluminum oxides such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina (alumina: Al 2 O 3 ), silica-alumina, silica-alumina-zirconia, silica-alumina-boria, ceria-alumina, cerium oxide (ceria: CeO 2 ), zirconium oxide (zirconia: ZrO 2 ), ceria-zirconia composite oxide (CZ composite oxide: CeO 2 /ZrO 2 ), silicon oxide (silica: SiO 2 ), and titanium oxide (titania: TiO 2 ) and composite oxides mainly composed of these oxides can be mentioned, but the type is not particularly limited.
  • These may be composite oxides or solid solutions to which rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements have been added.
  • Zeolites and analogues such as A, X, Y, MOR, CHA, and SAPO, as well as ⁇ -type and MFI-type zeolites, can also be used.
  • These base particles can be used alone or in any combination and ratio of two or more types.
  • alumina particles which are heat-resistant inorganic oxides having a high surface area
  • ceria-based composite oxide particles which are heat-resistant inorganic oxides having oxygen storage capacity and a high dispersion function for platinum group metals, are preferably used.
  • ceria-based composite oxide particles those known in the art can be used, and the type is not particularly limited.
  • the term ceria-based composite oxide is used as a concept that includes composite oxides or solid solutions containing cerium (Ce) and doped with elements other than cerium as necessary.
  • Ceria-based composite oxides are known as oxygen absorbing and releasing materials with excellent heat resistance.
  • the ceria-based composite oxide particles can be used alone or in appropriate combination of two or more types.
  • ceria-based composite oxides include cerium composite oxide, cerium-zirconium composite oxide, cerium-zirconium-rare earth element composite oxide excluding cerium and zirconium, cerium-zirconium-transition metal element composite oxide, cerium-aluminum composite oxide, cerium-zirconium-rare earth element-transition metal element composite oxide excluding cerium and zirconium, etc., but are not particularly limited thereto.
  • the average particle size of the ceria-based composite oxide particles contained in the first catalyst layer L1 can be set appropriately according to the desired performance, and is not particularly limited, but the D90 particle size is preferably 1 ⁇ m to 30 ⁇ m, more preferably 3 ⁇ m to 25 ⁇ m, and even more preferably 5 ⁇ m to 20 ⁇ m.
  • the amount of the ceria-based composite oxide particles applied in the first catalyst layer L1 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoints of oxygen absorption/release performance, heat resistance, and pressure loss, the total amount of the ceria-based composite oxide particles, converted into solid content, is preferably 5 g/L to 200 g/L, and more preferably 10 g/L to 100 g/L, per unit volume of the substrate 11.
  • alumina particles ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, boehmite, etc., which have a large surface area, are preferably used.
  • ⁇ -alumina is inferior in durability at 1000°C or higher compared to other aluminas, but has sufficient heat resistance as an exhaust gas purification catalyst that is usually used at 1000°C or lower, and has the largest surface area of all these aluminas. Therefore, ⁇ -alumina is particularly preferable as alumina particles.
  • the alumina particles may be a composite oxide or solid solution to which rare earth elements such as zirconium, lanthanum, yttrium, transition metal elements, and alkaline earth metal elements have been added.
  • the alumina particles can be used alone or in any combination and ratio of two or more types.
  • the average particle size of the alumina particles can be set appropriately depending on the desired performance, and is not particularly limited, but the D90 particle size is preferably 1 ⁇ m to 30 ⁇ m, more preferably 3 ⁇ m to 25 ⁇ m, and even more preferably 5 ⁇ m to 20 ⁇ m.
  • the BET specific surface area of the alumina particles is not particularly limited, but from the viewpoint of maintaining a high surface area as the base particles and stably supporting the PGM in a highly dispersed state, it is preferably 30 m 2 /g to 300 m 2 /g, more preferably 40 m 2 /g to 250 m 2 /g, and even more preferably 50 m 2 /g to 200 m 2 /g.
  • the amount of alumina particles applied in the first catalyst layer L1 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of heat resistance and pressure loss, the total amount of alumina particles, converted into solid content, per unit volume of the substrate 11 is preferably 5 g/L to 200 g/L, and more preferably 10 g/L to 100 g/L.
  • the first base particles contained in the first catalyst layer L1 may contain base particles other than the above-mentioned ceria-based composite oxide particles and alumina particles (hereinafter, may be referred to as "other base particles").
  • other base particles those known in the art may be used, and the type is not particularly limited.
  • oxides such as silica-alumina, silica-alumina-zirconia, silica-alumina-boria, zirconium oxide (zirconia: ZrO 2 ), silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), etc., and composite oxides mainly composed of these oxides, etc., may be mentioned, but the type is not particularly limited.
  • These may be composite oxides or solid solutions to which rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements are added.
  • rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements are added.
  • zeolites such as ⁇ -type and MFI-type zeolites, as well as zeolites such as A, X, Y, MOR, CHA, and SAPO, and their analogues may also be used. These other base particles may be used alone or in any combination and ratio of two or more kinds.
  • a platinum group element is essential as a catalytically active component of the first catalyst layer L1.
  • the platinum group element is primarily used as a catalytically active component for oxidizing and purifying HC, CO, etc. in exhaust gas, or for oxidizing and converting NOx during fuel-lean operation, and for reducing and purifying NOx during fuel-rich operation.
  • the platinum group element may be supported on the first base material particles described above, but may also be supported on other base material particles.
  • the platinum group element and other catalytically active components in the first catalyst layer L1 are preferably present as metals (metallic state), but may be partially in the form of oxides depending on the external environment, etc.
  • the total content of platinum group elements in the first catalyst layer L1 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of the balance between the oxidation reaction and the reduction reaction, the total content is preferably 0.01 g/L to 15.00 g/L, more preferably 0.05 g/L to 12.00 g/L, and even more preferably 0.10 g/L to 10.00 g/L, in terms of metal (Pt, etc.) per unit volume of the substrate 11.
  • platinum group elements include platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os).
  • Platinum group elements can be used alone or in any combination and ratio of two or more.
  • the first catalyst layer L1 may contain only Pt as the platinum group element. It may also contain platinum group elements other than Pt, or it may contain only Pd as the platinum group element.
  • Other platinum group elements include palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os).
  • the first catalytic layer L1 may also contain catalytically active components other than platinum group elements (hereinafter, these may be referred to as "other catalytically active components").
  • catalytically active components include, but are not limited to, precious metal elements such as gold (Au) and silver (Ag), transition metal elements such as iron (Fe), copper (Cu), cobalt (Co), zirconium (Zr), and tungsten (W), and rare earth metal elements such as lanthanum (La), praseodymium (Pr), and neodymium (Nd).
  • the first catalytic layer L1 does not substantially contain Ni.
  • the first catalyst layer L1 being substantially free of Ni means that the content of Ni contained in the first catalyst layer L1 is less than 1.0 mass% in terms of oxide (NiO) relative to the total amount of the first catalyst layer L1, preferably less than 0.5 mass%, and more preferably less than 0.1 mass%. It is also possible to have an embodiment in which Ni is not intentionally added to the first catalyst layer L1, in which case there is no Ni at all in the first catalyst layer L1 (0.0 mass% in terms of oxide (NiO)).
  • the first catalyst layer L1 preferably contains Ba, which has a NOx storage function and a function of improving the heat resistance of the base material.
  • the Ba component which is a NOx storage material, stores NOx as barium nitrate in an oxygen-rich (lean) state, and releases the stored NOx when the barium nitrate changes to barium carbonate in an oxygen-poor (rich) state.
  • the NOx released in this way is purified by a catalytic reaction with a catalytically active component such as a platinum group element, using the reducing agent HC, CO, or hydrogen generated by a steam reforming reaction.
  • the sintering of the base material itself can be suppressed, and the heat resistance of the base material can be improved. Therefore, by including Ba in the first catalyst layer L1, it is expected that the heat resistance can be improved and the catalytic performance can be activated.
  • Ba is preferably supported on the above-mentioned ceria composite oxide particles or alumina particles.
  • Ba By supporting Ba on the above-mentioned base material particles, Ba itself is maintained in a highly dispersed state, and the heat resistance of the base material particles can be improved.
  • Ba on the surface of the first base material particle may be oxidized by exposure to high temperatures during firing or exhaust gas purification in the manufacturing process described below, so it may exist in the form of BaO, which is an oxide, or may exist in the form of various salts such as sulfates, nitrates, carbonates, and acetates depending on the external environment.
  • BaO, Ba(CH 3 COO) 2 , BaO 2 , BaSO 4 , BaCO 3 , BaZrO 3 , BaAl 2 O 4 , etc. may be mentioned.
  • Ba may also be supported on base material particles other than ceria composite oxide particles or alumina particles.
  • the Ba content in the first catalyst layer L1 is preferably 1 to 30 mass%, more preferably 3 to 20 mass%, calculated as an oxide (BaO) relative to the total amount of the first catalyst layer L1.
  • the platinum group element particles supported on the surface of the first base material particles in the first catalyst layer L1 can be surrounded by fine particles to reduce the chance of contact between the platinum group element particles.
  • fine particles examples include ceria composite oxide particles and fine particles of alumina other than alumina particles, zirconia, silica, silica-alumina, silica-alumina-zirconia, silica-alumina-boria, zeolite, titania, magnesia, tungsten oxide, lanthanum oxide, neodymium oxide, praseodymium oxide, etc., but are not limited to these.
  • the fine particles used here are preferably highly heat-resistant and pre-sintered so that they do not move on the base material particles at high temperatures, and from this perspective, rare earth (composite) oxides (rare earth oxides, rare earth composite oxides) and transition metal oxides are preferred.
  • the amount of fine particles used to suppress aggregation can be set appropriately according to the amount of platinum group elements used, and is not particularly limited, but is preferably 10 to 300% by mass, and more preferably 20 to 200% by mass, based on the total amount of platinum group elements.
  • the first catalyst layer L1 may contain a binder component known in the art, if necessary.
  • binder components include various sols such as boehmite, alumina sol, titania sol, silica sol, and zirconia sol, but are not limited to these.
  • soluble salts such as aluminum nitrate, aluminum acetate, titanium nitrate, titanium acetate, zirconium nitrate, and zirconium acetate can also be used as binders.
  • acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid can also be used as binders.
  • the amount of binder used is not particularly limited, and may be any amount that provides sufficient adhesive strength.
  • the first catalyst layer L1 may contain catalysts, co-catalysts, and various additives known in the art.
  • various additives include dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, and viscosity adjusters, but are not limited to these.
  • the second catalyst layer L2 contains at least Ni and alumina particles.
  • the Ni contained in the second catalyst layer L2 is a catalytically active component that oxidizes sulfur compounds.
  • the Ni contained in the second catalyst layer L2 may suppress the generation or decompose NH 3.
  • the second catalyst layer L2 must contain alumina particles, which are heat-resistant inorganic oxides having a large surface area.
  • the Ni in the second catalyst layer L2 may or may not be supported on alumina particles.
  • the second catalyst layer L2 may contain particles other than alumina particles. In this case, the Ni in the second catalyst layer L2 may or may not be supported on other particles.
  • the particles in the second catalyst layer L2 are preferably oxide particles that can maintain the catalytically active component Ni highly dispersed on the surface and have high heat resistance.
  • the particles in the second catalyst layer L2 can be appropriately selected from those known in the industry, and the type is not particularly limited.
  • the particles in the second catalyst layer L2 can be used alone or in combination of two or more types.
  • alumina particles those with large surface areas such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and boehmite are preferably used.
  • ⁇ -alumina is less durable at 1000°C or higher than other aluminas, but has sufficient heat resistance as an exhaust gas purification catalyst that is normally used at 1000°C or lower, and has the largest surface area of all these aluminas. Therefore, ⁇ -alumina is particularly preferred as alumina particles.
  • Alumina particles can be used alone or in any combination and ratio of two or more types.
  • the average particle size of the alumina particles can be set appropriately depending on the desired performance, and is not particularly limited, but the D90 particle size is preferably 1 ⁇ m to 30 ⁇ m, more preferably 3 ⁇ m to 25 ⁇ m, and even more preferably 5 ⁇ m to 20 ⁇ m.
  • the BET specific surface area of the alumina particles is not particularly limited, but from the viewpoint of maintaining a high surface area and stably supporting Ni in a highly dispersed state, it is preferably 30 m 2 /g to 300 m 2 /g, more preferably 40 m 2 /g to 250 m 2 /g, and even more preferably 50 m 2 /g to 200 m 2 /g.
  • the amount of alumina particles applied in the second catalyst layer L2 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of stably supporting Ni in a highly dispersed state, the total amount, calculated as the solid content of the alumina particles, per unit volume of the substrate 11 is preferably 5 g/L to 100 g/L, and more preferably 10 g/L to 80 g/L.
  • the ratio of alumina particles and Ni used in the second catalyst layer L2 can be appropriately set depending on the desired performance and is not particularly limited. However, from the viewpoints of suppressing sulfur compound smell, NOx purification performance, NH3 purification performance, etc., the mass ratio of Al2O3 /Ni is preferably 1.0 or more, more preferably 1.2 or more, and even more preferably 1.5 or more.
  • the particles contained in the second catalyst layer L2 may include particles other than the above-mentioned alumina particles (hereinafter, these may be referred to as "other particles").
  • other particles those known in the art may be used, and the type is not particularly limited.
  • oxides such as silica-alumina-zirconia, silica-alumina-boria, zirconium oxide (zirconia: ZrO 2 ), silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and the like, and composite oxides mainly composed of these oxides, and the like, may be mentioned, but the type is not particularly limited.
  • These may be composite oxides or solid solutions to which rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements are added.
  • rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements are added.
  • zeolites such as ⁇ -type and MFI-type zeolites, as well as zeolites and analogues such as A, X, Y, MOR, CHA, and SAPO, may also be used. These other particles may be used alone or in any combination and ratio of two or more kinds.
  • the second catalyst layer L2 may contain a binder component known in the art, if necessary.
  • binder components include various sols such as boehmite, alumina sol, titania sol, silica sol, and zirconia sol, but are not limited to these.
  • Soluble salts such as aluminum nitrate, aluminum acetate, titanium nitrate, titanium acetate, zirconium nitrate, and zirconium acetate can also be used as binders.
  • acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid can also be used as binders.
  • the amount of binder used is not particularly limited, and may be any amount that provides sufficient adhesive strength.
  • Ni is essential as a catalytically active component of the second catalyst layer L2.
  • Ni is mainly used as a catalytically active component that oxidizes sulfur compounds. It is preferable that Ni and other catalytically active components in the second catalyst layer L2 exist as metals (metallic state), but some of them may be in the form of oxides depending on the external environment, etc.
  • the total content of Ni in the second catalytic layer L2 can be appropriately set depending on the desired performance and is not particularly limited. From the viewpoint of the balance between the performance for oxidizing sulfur compounds and the performance for purifying NH3 , the total content of Ni in the second catalytic layer L2 is preferably 0.1 g/L to 30.0 g/L, more preferably 0.5 g/L to 25.0 g/L, even more preferably 1.0 g/L to 20.0 g/L, and particularly preferably 2.0 g/L to 20.0 g/L, in terms of oxide (NiO), per unit volume of the substrate 11.
  • the second catalyst layer L2 may contain catalytically active components other than Ni.
  • catalytically active components include, but are not limited to, precious metal elements such as gold (Au) and silver (Ag), transition metal elements such as iron (Fe), copper (Cu), cobalt (Co), zirconium (Zr), and tungsten (W), and rare earth metal elements such as lanthanum (La), praseodymium (Pr), and neodymium (Nd).
  • the second catalyst layer L2 does not substantially contain platinum group elements.
  • the second catalyst layer L2 being substantially free of platinum group elements means that the content of platinum group elements contained in the second catalyst layer L2 is less than 1.0 mass% in terms of metal relative to the total amount of the second catalyst layer L2, preferably less than 0.5 mass%, and more preferably less than 0.1 mass%. It is also possible to adopt an embodiment in which platinum group elements are not intentionally added to the second catalyst layer L2, in which case there is no platinum group element at all (0.0 mass%) in the second catalyst layer L2.
  • the second catalyst layer L2 may contain catalysts, co-catalysts, and various additives known in the art.
  • various additives include dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, and viscosity adjusters, but are not limited to these.
  • the third catalyst layer L3 includes at least third matrix particles and third composite catalyst particles containing at least a platinum group element supported on the third matrix particles.
  • the third base particles are carrier particles that support the platinum group element, which is a catalytically active component, on the surface in a highly dispersed manner.
  • the third base particles can be appropriately selected from those known in the art and are not particularly limited in type.
  • aluminum oxide alumina: Al 2 O 3
  • ceria-alumina cerium oxide (ceria: CeO 2 ), zirconium oxide (zirconia: ZrO 2 ), ceria-zirconia composite oxide (CZ composite oxide: CeO 2 /ZrO 2 ), silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and other oxides and composite oxides mainly composed of these oxides are listed, but the type is not particularly limited.
  • These may be composite oxides or solid solutions to which rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements have been added.
  • Zeolites and analogues such as ⁇ -type and MFI-type zeolites, as well as A, X, Y, MOR, CHA, and SAPO, can also be used.
  • These base particles can be used alone or in any combination and ratio of two or more types.
  • ceria-zirconia composite oxide particles which are heat-resistant inorganic oxides having oxygen storage capacity
  • alumina particles which are heat-resistant inorganic oxides having a high surface area
  • the ceria-zirconia-based composite oxide particles those known in the art can be used, and the type is not particularly limited.
  • the ceria-zirconia-based composite oxide is used as a concept that includes composite oxides or solid solutions containing cerium (Ce) and zirconium (Zr) and doped with elements other than cerium and zirconium as necessary.
  • Ceria-zirconia-based composite oxides are known as oxygen absorbing and releasing materials with excellent heat resistance.
  • the ceria-zirconia-based composite oxide particles can be used alone or in appropriate combination of two or more types.
  • ceria-zirconia-based composite oxides include cerium-zirconium composite oxides, cerium-zirconium-rare earth element composite oxides excluding cerium and zirconium, cerium-zirconium-transition metal element composite oxides, aluminum-cerium-zirconium composite oxides, cerium-zirconium-rare earth element-transition metal element composite oxides excluding cerium and zirconium, etc., but are not particularly limited thereto.
  • the average particle size of the ceria-zirconia composite oxide particles can be set appropriately depending on the desired performance, and is not particularly limited, but the D90 particle size is preferably 1 ⁇ m to 30 ⁇ m, more preferably 3 ⁇ m to 25 ⁇ m, and even more preferably 5 ⁇ m to 20 ⁇ m.
  • the amount of the ceria-zirconia-based composite oxide particles applied in the third catalyst layer L3 can be appropriately set according to the desired performance and is not particularly limited, but from the viewpoints of oxygen absorption/release performance, heat resistance, and pressure loss, the total amount of the ceria-zirconia-based composite oxide particles, converted into solid content, is preferably 5 g/L to 80 g/L, and more preferably 10 g/L to 60 g/L, per unit volume of the substrate 11.
  • alumina particles ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, boehmite, etc., which have a large surface area, are preferably used.
  • ⁇ -alumina is inferior in durability at 1000°C or higher compared to other aluminas, but has sufficient heat resistance as an exhaust gas purification catalyst that is usually used at 1000°C or lower, and has the largest surface area of all these aluminas. Therefore, ⁇ -alumina is particularly preferable as alumina particles.
  • the alumina particles may be a composite oxide or solid solution to which rare earth elements such as zirconium, lanthanum, yttrium, transition metal elements, and alkaline earth metal elements have been added.
  • the alumina particles can be used alone or in any combination and ratio of two or more types.
  • the average particle size of the alumina particles can be set appropriately depending on the desired performance, and is not particularly limited, but the D90 particle size is preferably 1 ⁇ m to 30 ⁇ m, more preferably 3 ⁇ m to 25 ⁇ m, and even more preferably 5 ⁇ m to 20 ⁇ m.
  • the BET specific surface area of the alumina particles is not particularly limited, but from the viewpoint of maintaining a high surface area as the base particles and stably supporting the PGM in a highly dispersed state, it is preferably 30 m 2 /g to 300 m 2 /g, more preferably 40 m 2 /g to 250 m 2 /g, and even more preferably 50 m 2 /g to 200 m 2 /g.
  • the amount of alumina particles applied in the third catalyst layer L3 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of heat resistance and pressure loss, the total amount of alumina particles, converted into solid content, per unit volume of the substrate 11 is preferably 5 g/L to 80 g/L, and more preferably 10 g/L to 60 g/L.
  • the third base particles contained in the third catalyst layer L3 may contain base particles other than the above-mentioned ceria-zirconia composite oxide particles and alumina particles (hereinafter, may be referred to as "other base particles").
  • other base particles those known in the art may be used, and the type is not particularly limited.
  • oxides such as silica-alumina, silica-alumina-zirconia, silica-alumina-boria, cerium oxide (ceria: CeO 2 ), zirconium oxide (zirconia: ZrO 2 ), silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), etc., and composite oxides mainly composed of these oxides, etc., are listed, but the type is not particularly limited. These may be composite oxides or solid solutions to which rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements are added.
  • rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements are added.
  • base particles may also be used, such as ⁇ -type or MFI-type zeolites, as well as zeolites and their analogues, such as A, X, Y, MOR, CHA, SAPO, etc. These other base particles may be used alone or in any combination and ratio of two or more types.
  • the platinum group elements are essential catalytically active components of the third catalyst layer L3.
  • platinum group elements include platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os).
  • the platinum group elements can be used alone or in any combination and ratio of two or more.
  • Pt and Rh are primarily used as catalytically active components for oxidizing and purifying HC and CO in exhaust gas, or for oxidizing and converting NOx during lean fuel operation, and for reducing and purifying NOx during excess fuel operation.
  • the third catalyst layer L3 may contain only Rh as a platinum group element, or may contain platinum group elements other than Rh.
  • the third catalyst layer L3 may contain Rh and Pt.
  • Pt and Rh may be supported on the above-mentioned third base material particles, but from the viewpoint of purification performance, Pt is preferably supported on ceria-zirconia composite oxide particles, and Rh is preferably supported on alumina particles.
  • the platinum group element may also be supported on other base material particles.
  • the platinum group element and other catalytically active components in the third catalyst layer L3 are preferably present as metals (metallic state), but a part of them may be in the form of oxides depending on the external environment, etc.
  • the total content of Pt in the third catalyst layer L3 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of the balance between the oxidation reaction and the reduction reaction, the total content of Pt, calculated as metal (Pt), is preferably 0.01 g/L to 15.00 g/L per unit volume of the substrate 11, more preferably 0.05 g/L to 12.00 g/L, and even more preferably 0.10 g/L to 10.00 g/L.
  • the total content of Rh in the third catalyst layer L3 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of the balance between the oxidation reaction and the reduction reaction, the total content of Rh in metal (Rh) equivalent is preferably 0.01 g/L to 5.00 g/L per unit volume of the substrate 11, more preferably 0.03 g/L to 4.00 g/L, and even more preferably 0.05 g/L to 3.00 g/L.
  • the third catalyst layer L3 may contain only Pt and Rh as platinum group elements, or may contain platinum group elements other than Pt and Rh. Examples of other platinum group elements include palladium (Pd), iridium (Ir), ruthenium (Ru), and osmium (Os).
  • the third catalyst layer L3 may also contain catalytically active components other than platinum group elements (hereinafter, these may be referred to as "other catalytically active components").
  • catalytically active components examples include precious metal elements such as gold (Au) and silver (Ag), transition metal elements such as iron (Fe), copper (Cu), cobalt (Co), zirconium (Zr), and tungsten (W), and rare earth metal elements such as lanthanum (La), praseodymium (Pr), and neodymium (Nd), but are not limited to these.
  • precious metal elements such as gold (Au) and silver (Ag)
  • transition metal elements such as iron (Fe), copper (Cu), cobalt (Co), zirconium (Zr), and tungsten (W)
  • rare earth metal elements such as lanthanum (La), praseodymium (Pr), and neodymium (Nd), but are not limited to these.
  • the third catalyst layer L3 does not substantially contain Ni.
  • the third catalyst layer L3 does not substantially contain Ni means that the content of Ni contained in the third catalyst layer L3 is less than 1.0 mass% in oxide equivalent (NiO) with respect to the total amount of the third catalyst layer L3, preferably less than 0.5 mass%, and more preferably less than 0.1 mass%. It is also possible to adopt an embodiment in which Ni is not intentionally added to the third catalyst layer L3, in which case there is no Ni at all in the third catalyst layer L3 (0.0 mass% in oxide equivalent (NiO)).
  • the third catalyst layer L3 may contain a binder component known in the art, if necessary.
  • binder components include various sols such as boehmite, alumina sol, titania sol, silica sol, and zirconia sol, but are not limited to these.
  • Soluble salts such as aluminum nitrate, aluminum acetate, titanium nitrate, titanium acetate, zirconium nitrate, and zirconium acetate can also be used as binders.
  • acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid can also be used as binders.
  • the amount of binder used is not particularly limited, and may be any amount that provides sufficient adhesive strength.
  • the third catalyst layer L3 may contain catalysts, co-catalysts, and various additives known in the art.
  • various additives include dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, and viscosity adjusters, but are not limited to these.
  • the catalyst layer of the exhaust gas purification catalyst 100, 200 of this embodiment has a first stacked structure in which the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 are stacked in this order, or a 21st stacked structure in which the second catalyst layer L2, the first catalyst layer L1, and the third catalyst layer L3 are stacked in this order.
  • it was considered to use a transition metal together with PGM in order to reduce the emission of NH 3 but since the transition metal is a catalyst poison for the catalyst material containing PGM, simply using the transition metal together with PGM causes deterioration of NOx purification performance, etc.
  • the catalyst layer containing Ni and alumina particles is provided, which can suppress the generation of sulfur compound smell caused by the very small amount of sulfur that may be contained in the fuel. This not only provides excellent catalytic performance as a three-way catalyst, but also provides an excellent NH3 purification rate and reduces the generation of sulfur compound smell.
  • the exhaust gas purification catalysts 100, 200 of this embodiment have a laminated structure of the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 as the smallest catalyst composition unit, and such a layer structure is desirable not only in terms of work efficiency but also in terms of cost.
  • the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 may be coated (zone coated) only on a portion of the substrate 11.
  • the exhaust gas purification catalyst 100, 200 having the above-mentioned layer structure can be manufactured by a method known in the art, and the manufacturing method is not particularly limited. For example, it can be manufactured by sequentially providing each catalyst layer L1, L2, L3 in a predetermined arrangement on a substrate 11 such as the above-mentioned ceramic monolith carrier according to a conventional method. For example, the surface of the substrate 11 is sequentially coated with a slurry mixture of water or an aqueous medium for each catalyst layer L1, L2, L3, to obtain the exhaust gas purification catalyst 100, 200 of this embodiment.
  • the method of applying the slurry mixture to the substrate 11 may be performed according to a conventional method, and is not particularly limited. Various known coating methods, wash coat methods, and zone coat methods can be applied.
  • Coating by wash coat or the like can be repeated two or more times.
  • coating before the drying process may be repeated two or more times, and the drying process may be repeated two or more times.
  • drying and firing can be performed according to conventional methods.
  • the drying temperature is not particularly limited, but is preferably 50 to 250°C, and more preferably 80 to 230°C.
  • the baking temperature is not particularly limited, but is preferably 300 to 700°C, and more preferably 400 to 600°C.
  • the heating means used in this step is not particularly limited, but can be any known heating means such as an electric furnace or gas furnace.
  • the amount of water or aqueous medium used when preparing the slurry mixture should be sufficient to uniformly disperse each component in the slurry. If necessary, an acid or base can be added to adjust the pH, or a dispersant, surfactant, or dispersion resin can be added to adjust the viscosity or improve dispersibility.
  • the slurry can be mixed using any known grinding or mixing method, such as grinding and mixing using a ball mill.
  • a dry or wet grinding process, mixing process, or dispersion process can be performed using a ball mill, bead mill, or the like, for the purpose of uniformly dispersing or obtaining the desired particle size.
  • the conditions for these processes can be appropriately set according to the desired performance and are not particularly limited, but for example, the D90 particle size of the alumina particles carrying the necessary components can be preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 25 ⁇ m, and even more preferably 3 ⁇ m to 20 ⁇ m.
  • the total coating amount of the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 (excluding the platinum group elements contained in each catalyst layer L1, L2, and L3) can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of catalyst performance, cost, etc., it is preferably 100 g/L or more and 500 g/L or less in total, 150 g/L or more and 400 g/L or less in total, and more preferably 180 g/L or more and 300 g/L or less in total per volume of the substrate 11.
  • the exhaust gas purification catalyst 100, 200 of this embodiment can be used in an integrated exhaust gas purification device and exhaust gas purification system that includes one or more additional components for treating exhaust gas emissions.
  • it is useful as an exhaust gas purification catalyst for internal combustion engines such as gasoline engines, particularly as a three-way catalyst for purifying exhaust gas in automobiles.
  • the exhaust gas purification catalyst 100, 200 of this embodiment can be arranged in the exhaust system of various engines.
  • the number and locations of the catalysts can be appropriately designed according to exhaust gas regulations. For example, when exhaust gas regulations are strict, the number of catalysts to be installed can be two or more, and the installation locations can be located under the floor behind the catalyst directly below the exhaust system. In either case, the catalysts may be arranged adjacent to each other or spaced apart.
  • BET specific surface area 150 m 2 /g, average particle diameter D 90 50 ⁇ m
  • the obtained slurry mixture for the first catalyst layer L1 was applied to a honeycomb flow-through type cordierite carrier, which was the substrate 11, by a washcoat method, and then dried at 200°C for 30 minutes. Thereafter, the mixture was fired at 500°C for 1 hour in an air atmosphere, thereby forming a first catalyst layer L1 (coating amount: per unit volume of substrate 11, Pt: 0.6 g/L, components of the first catalyst layer excluding Pt: 130 g/L) on the substrate 11.
  • the obtained slurry mixture for the second catalyst layer L2 was applied by a washcoat method onto the first catalyst layer L1 of the substrate 11 on which the first catalyst layer L1 had been formed, and then dried at 200° C. for 30 minutes. Thereafter, the mixture was baked at 500° C. for 1 hour in an atmospheric air to form a second catalyst layer L2 (coating amount: per unit volume of substrate 11, Ni: 3.0 g/L, components of the second catalyst layer containing Ni: 40 g/L) on the first catalyst layer L1.
  • 50 parts by mass of the obtained Pt-supported ceria-zirconia-based composite oxide particles and 50 parts by mass of Rh-supported alumina particles were mixed, diluted with pure water, and kneaded by a wet milling method to obtain a slurry mixture for the third catalyst layer L3.
  • the obtained slurry mixture for the third catalyst layer L3 was applied by a wash coat method onto the second catalyst layer L2 of the substrate 11 on which the first catalyst layer L1 and the second catalyst layer L2 were formed, and then dried at 200° C. for 30 minutes. Thereafter, the mixture was baked at 500° C. for 1 hour in an atmospheric air to form a third catalyst layer L3 (coating amount: per unit volume of substrate 11, Pt: 0.3 g/L, Rh: 0.1 g/L, components of the third catalyst layer excluding Pt and Rh: 80 g/L) on the second catalyst layer L2.
  • the exhaust gas purification catalyst of Example 1 was obtained, in which the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 were provided in this order on the substrate 11, and the catalyst layer had a three-layer structure.
  • Examples 2 to 4 and Comparative Example 1 The same procedure as in Example 1 was carried out except that the Ni content was changed as shown in Table 2, to obtain exhaust gas purifying catalysts of Examples 2 to 4 and Comparative Example 1.
  • Comparative Example 2 The same procedure as in Example 1 was carried out except that the formation of the second catalyst layer L2 was omitted. In this way, an exhaust gas purifying catalyst of Comparative Example 2 was obtained, in which the first catalyst layer L1 and the third catalyst layer L3 were provided in this order on the substrate 11, and the catalyst layer had a two-layer structure.
  • Example 3 A control slurry mixture for the first catalyst layer L1 was obtained in the same manner as in Example 1, except that the first base particles and the nickel oxide powder were mixed when the first catalyst layer L1 was formed. The same procedure as in Example 1 was repeated, except that the above control slurry mixture was used instead of the slurry mixture for the first catalyst layer L1, and further the formation of the second catalyst layer L2 was omitted. In this way, an exhaust gas purifying catalyst of Comparative Example 3 was obtained, in which the first catalyst layer L1 and the third catalyst layer L3 were provided in this order on the substrate 11, and the catalyst layer had a two-layer structure.
  • Example 5 The same procedure as in Example 3 was performed except that the order of forming the catalyst layers was changed to the second catalyst layer L2, the first catalyst layer L1, and the third catalyst layer L3, and an exhaust gas purifying catalyst of Example 5 was obtained in which the catalyst layers had a three-layer structure in which the second catalyst layer L2, the first catalyst layer L1, and the third catalyst layer L3 were provided in this order on the substrate 11.
  • each of the obtained exhaust gas purification catalysts TWC2 was individually stored in a converter. Then, an integrally structured laminated catalyst having a three-layered catalyst layer described in the examples of Japanese Patent No. 7026530 was arranged as TWC1 downstream of the exhaust port of the gasoline engine, and TWC2 was arranged further downstream of the exhaust port of the gasoline engine, downstream of TWC1. Then, a cycle of steady state, deceleration, and acceleration was repeated for 100 hours. The temperature was set so that the front-stage TWC1 was 950°C at steady state, and a thermal durability treatment was performed. After the above heat treatment, a poisoning treatment was performed.
  • the NH 3 purification rate was measured using the exhaust gas purification catalysts after durability treatment and poisoning treatment.
  • a 1.5L direct injection turbo engine was used, and TWC1 was arranged downstream of the exhaust port of the gasoline engine as described above, and TWC2 was arranged downstream of TWC1, and measurements were performed in accordance with LA4 (FTP75) mode (cold start) and US06 mode (hot start).
  • LA4 FTP75
  • US06 mode hot start
  • gas analysis was performed by sampling the inlet gas (exhaust gas of TWC1) of the exhaust gas purification catalyst TWC2 and the exhaust gas of TWC2, and the NH 3 purification rate of TWC2 in the entire LA4 mode and the NH 3 purification rate of TWC2 in the 200 to 350 sec section of US06 mode were calculated from the difference.
  • the analyzer used was an FT-IR made by Iwata Denko Co., Ltd., and the temperature was measured at a position 1 inch from the front side of the exhaust gas purification catalyst within the catalyst layer.
  • the NOx purification rate was measured using the exhaust gas purification catalysts after durability treatment and poisoning treatment.
  • a 1.5L direct injection turbo engine was used, and TWC1 was arranged downstream of the exhaust port of the gasoline engine as described above, and TWC2 was arranged downstream of TWC1, and measurements were performed in accordance with the LA4 (FTP75) mode (cold start).
  • LA4 FTP75
  • an evaluation was performed using an engine dynamometer using a 1.5L gasoline engine in which an exhaust gas purification catalyst was arranged directly under the engine.
  • the inlet gas of the exhaust gas purification catalyst TWC2 (the exhaust gas of TWC1) and the exhaust gas of TWC2 were sampled and gas analysis was performed, and the LA4 mode full-range NOx purification rate of TWC2 was calculated from the difference.
  • a MEXA-ONE manufactured by HORIBA was used as an analyzer, and the temperature measurement position was set to within the catalyst layer 1 inch from the front side of the exhaust gas purification catalyst.
  • the sulfur compound smell was measured using Fresh exhaust gas purification catalyst TWC2 that had not been subjected to durability treatment or poisoning treatment.
  • a test of adsorption and desorption of S components was carried out using a tubular furnace and a temperature-programmed desorption apparatus.
  • a predetermined amount of S components was circulated through the catalyst using a tubular furnace, and the S components were adsorbed onto the catalyst.
  • the catalyst with the S components adsorbed thereon was crushed in a mortar or the like, set in a temperature-programmed desorption apparatus (TPD Type-R), and heated under a reducing gas atmosphere, and the desorbed sulfur-containing gas component H 2 S was detected by a mass spectrometer.
  • TPD Type-R temperature-programmed desorption apparatus
  • the test conditions at this time are shown in Table 1.
  • the exhaust gas purification catalyst of the present invention can be widely and effectively used as a three-way catalyst that reduces NOx, CO, HC, etc. in exhaust gas, and can be particularly effectively used in catalytic applications for purifying exhaust gas from internal combustion engines such as gasoline engines.
  • the exhaust gas purification catalyst of the present invention can be effectively used as a TWC such as an engine direct-downstream catalytic converter or a tandem-arranged direct-downstream catalytic converter.
  • Exhaust gas purification catalyst 200 Exhaust gas purification catalyst 11: Substrate 11a: Surface 11b: Surface 21: Catalyst layer L1: First catalyst layer L2: Second catalyst layer L3: Third catalyst layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

The present invention provides an exhaust gas purification catalyst which reduces the production of sulfur compound smells and has excellent NOx purification performance and NH3 purification performance, and an exhaust gas purification device using the same. embodiment of the present invention comprises at least a substrate and a catalyst layer. The catalyst layer has a layered structure selected from the group consisting of: a first layered structure having a first catalyst layer, a second catalyst layer and a third catalyst layer in that order; and a second layered structure having a second catalyst layer, a first catalyst layer and a third catalyst layer in that order. The first catalyst layer at least includes first matrix particles and first composite catalyst particles containing a platinum group element supported on the first matrix particles. The second catalyst layer at least includes Ni and alumina particles. The third catalyst layer at least includes third matrix particles and third composite catalyst particles containing a platinum group element supported on the third matrix particles.

Description

排ガス浄化用触媒、及びこれを用いた排ガス浄化装置Exhaust gas purification catalyst and exhaust gas purification device using the same

 本発明は、触媒活性成分として白金族元素及びNiを含有する排ガス浄化用触媒並びにこれを用いた排ガス浄化装置等に関する。 The present invention relates to an exhaust gas purification catalyst that contains platinum group elements and Ni as catalytically active components, and an exhaust gas purification device that uses the same.

 自動車等の内燃機関、例えばエンジンから排出される炭化水素(HC)、一酸化炭素(CO)、及び窒素酸化物(NOx)等は、大気汚染防止法等の放出規制基準を満たすために減少されなければならない。従来、これらの排ガスの浄化において、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、プラチナ(Pt)等の白金族元素(PGM:Platinum Group Metal)を触媒活性成分として用いた三元触媒(TWC:Three-Way Catalyst)が広く用いられている。 Hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), etc., emitted from internal combustion engines such as automobiles, must be reduced to meet emission control standards such as those stipulated in the Air Pollution Control Act. Traditionally, three-way catalysts (TWCs) that use platinum group metals (PGMs) such as ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt) as catalytically active components have been widely used to purify these exhaust gases.

 三元触媒としては、比較的に高価なPGMの使用量を削減するとともに高い触媒活性を確保するため、微細な粒子の状態で触媒活性成分を母材粒子上に高分散に担持させた複合粒子構造の三元触媒が広く用いられている。具体的には、アルミナ、ジルコニア、セリア等の金属酸化物からなる母材粒子と、この母材粒子上に担持されたPtやPd等の白金族元素と、の複合触媒粒子を含有する三元触媒等が例示される。また、粒子状物質(PM:Particulate Matter)をトラップするフィルターとして機能するウォールフロー型ハニカム担体に、触媒材料としてこれらの三元触媒を塗工した、触媒塗工ガソリンパティキュレートフィルター(触媒塗工GPF:Gasoline Particulate Filter)等も実用段階に入っている。 As a three-way catalyst, a three-way catalyst with a composite particle structure in which catalytically active components are highly dispersed on a base material particle in the form of fine particles is widely used in order to reduce the amount of relatively expensive PGM used while ensuring high catalytic activity. Specific examples include three-way catalysts containing composite catalyst particles of base material particles made of metal oxides such as alumina, zirconia, and ceria, and platinum group elements such as Pt and Pd supported on the base material particles. In addition, catalyst-coated gasoline particulate filters (catalyst-coated GPFs) have also entered the practical stage, in which these three-way catalysts are coated as catalytic materials on a wall-flow type honeycomb carrier that functions as a filter to trap particulate matter (PM).

 一方、大気汚染物質の削減の観点から、燃料中に含まれる有害物質を予め低減する試みも従来から行われている。例えば、燃料中に含まれる硫黄及び硫黄含有化合物(以降において、「硫黄分」と称する場合がある。)は硫化水素(H2S)や硫黄酸化物(SOx)の排出量の増大等を引き起こすため、燃料中の硫黄分は予めほとんど取り除かれている。そして現在においては、硫黄分の含有割合が10ppm以下とされた燃料、すなわちサルファーフリー燃料が幅広く使用されている。 On the other hand, from the viewpoint of reducing air pollutants, attempts have been made to reduce harmful substances contained in fuel in advance. For example, sulfur and sulfur-containing compounds (hereinafter sometimes referred to as "sulfur content") contained in fuel cause an increase in the emission of hydrogen sulfide ( H2S ) and sulfur oxides (SOx), so most of the sulfur content in fuel is removed in advance. Nowadays, fuels with a sulfur content of 10 ppm or less, i.e., sulfur-free fuels, are widely used.

 他方、依然として燃料中に含まれ得る極少量の硫黄分の浄化のために、Cu、Ni、Fe、Mn、Co等の遷移金属を触媒活性成分として使用することが検討されている。しかしながら、これらの遷移金属のみでは、炭化水素(HC)、一酸化炭素(CO)、及び窒素酸化物(NOx)等に対して十分な浄化性能を有していないため、PGMと遷移金属とを併用した三元触媒が検討されている。 On the other hand, in order to purify the very small amount of sulfur that may still be contained in the fuel, the use of transition metals such as Cu, Ni, Fe, Mn, and Co as catalytically active components is being considered. However, these transition metals alone do not have sufficient purification performance for hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), so three-way catalysts that combine PGM with transition metals are being considered.

 また、特許文献1には、白金族金属を含む第一の触媒コーティングと、Cu、Ni、Fe、MnおよびCoからなる群から選択される1種以上の非白金族金属を含む第二の触媒コーティングと、1種以上の基材とを含む排出物質浄化のための触媒物品であって、前記第一の触媒コーティングは、Cu、Ni、Fe、Mn、V、Co、Ga、Mo、Mg、CrおよびZnを本質的に含まず、前記第二の触媒コーティングは、白金族金属を本質的に含まず、前記第一の触媒コーティングは、前記第二の触媒コーティングから隔離されている、触媒物品であって、前記第一の触媒コーティングと第二の触媒コーティングの間にバリヤ層を更に含み、前記バリヤ層は、安定化アルミナ、セリア、ジルコニア、セリア-ジルコニア複合物、チタニアおよびそれらの組み合わせから選択される担体を含み、前記担体は、La、Ba、Y、Pr、Srおよびそれらの組み合わせからなる群から選択される元素によって安定化されており、前記第一の触媒コーティングが第二の触媒コーティングの上にあるか、または前記第一の触媒コーティングが第二の触媒コーティングの上流にある、前記触媒物品が記載されている。 Patent Document 1 also describes a catalyst article for purifying exhaust substances, comprising a first catalyst coating containing a platinum group metal, a second catalyst coating containing one or more non-platinum group metals selected from the group consisting of Cu, Ni, Fe, Mn, and Co, and one or more substrates, wherein the first catalyst coating is essentially free of Cu, Ni, Fe, Mn, V, Co, Ga, Mo, Mg, Cr, and Zn, the second catalyst coating is essentially free of platinum group metals, and the first catalyst coating is isolated from the second catalyst coating. The catalyst article further includes a barrier layer between the first catalytic coating and the second catalytic coating, the barrier layer including a support selected from stabilized alumina, ceria, zirconia, ceria-zirconia composite, titania, and combinations thereof, the support being stabilized with an element selected from the group consisting of La, Ba, Y, Pr, Sr, and combinations thereof, and the first catalytic coating is on the second catalytic coating or the first catalytic coating is upstream of the second catalytic coating.

特表2017-522176号公報Special table 2017-522176 publication

 近年の環境問題への配慮の高まりから、より高い浄化性能が求められている。例えば、ガソリンエンジンにおいて従来においては規制対象外であったNH3についても、可能な限り浄化されるべきである。しかしながら、特許文献1において、NH3の排出量の削減について何ら検討されていない。 In recent years, there has been a growing concern about environmental issues, and thus there is a demand for higher purification performance. For example, NH3, which has not been subject to regulation in gasoline engines in the past, should be purified as much as possible. However, Patent Document 1 does not consider at all the reduction of NH3 emissions.

 また、硫黄分の含有割合が10ppm以下のサルファーフリー燃料を使用したとしても、依然として燃料中に微量に含まれる硫黄分は、可能な限り浄化されるべきである。本発明者らの知見によれば、硫黄分が例えばH2S等として排出された場合、臭気(硫黄化合物スメル)が発生する等の問題が生じることが判明した。 Even if sulfur-free fuel with a sulfur content of 10 ppm or less is used, the trace amounts of sulfur still contained in the fuel should be purified as much as possible. According to the findings of the present inventors, it has become clear that if sulfur is discharged as, for example, H2S , problems such as the generation of an odor (smell of sulfur compounds) occur.

 そして特許文献1においては、炭化水素、CO、NOx化合物を除去するためにPGMと遷移金属とを別の触媒層に分けて配置することが開示されているが、特許文献1の実施例の非白金族金属コーティングA及びBに示されているように、遷移金属は、セリア及びアルミナとともに配合されている。本発明者らの知見によれば、このように遷移金属をセリア及びアルミナとともに配合すると、高温に曝された際に意図せぬことに、これらが反応してPGMと合金化する、アルミナと複合酸化物を形成する、セリアのシンタリングを生じさせる等によりCO、NOx、NH3の浄化性能が低下することがあり、さらなる改良が必要であることが判明した。 Patent Document 1 discloses that PGM and transition metals are arranged separately in different catalyst layers to remove hydrocarbons, CO, and NOx compounds, but the transition metal is mixed with ceria and alumina as shown in the non-platinum group metal coatings A and B in the examples of Patent Document 1. According to the findings of the present inventors, when the transition metal is mixed with ceria and alumina in this way, when exposed to high temperatures, they may unintentionally react to form an alloy with PGM, form a composite oxide with alumina, or cause sintering of ceria, which may result in a decrease in purification performance for CO, NOx, and NH3 , and it has been found that further improvement is necessary.

 本発明は、上記課題に鑑みてなされたものである。すなわち本発明の目的は、硫黄化合物スメルの発生が低減され、NOx浄化性能とNH3浄化性能に優れる、排ガス浄化用触媒及びこれを用いた排ガス浄化装置等を提供することにある。 The present invention has been made in view of the above problems. That is, an object of the present invention is to provide an exhaust gas purification catalyst that reduces the generation of sulfur compound smell and has excellent NOx purification performance and NH3 purification performance, and an exhaust gas purification device using the same.

 本発明者らは、上記課題を解決すべく鋭意検討した。その結果、基材上に所定の層構成の触媒層を設けることで、上記課題を解決できることを見出し、本発明を完成するに至った。 The inventors conducted extensive research to solve the above problems. As a result, they discovered that the above problems could be solved by providing a catalyst layer with a specific layer structure on a substrate, and thus completed the present invention.

 すなわち、本発明は、以下に示す種々の具体的態様を提供する。
(1)基材と、前記基材に設けられた触媒層とを少なくとも備え、前記触媒層は、前記基材上に設けられた第1触媒層、前記第1触媒層上に設けられた第2触媒層、及び前記第2触媒層上に設けられた第3触媒層を有する第1積層構造、並びに、前記基材上に設けられた第2触媒層、前記第2触媒層上に設けられた第1触媒層、及び前記第1触媒層上に設けられた第3触媒層を有する第2積層構造よりなる群から選択される積層構造を有し、前記第1触媒層は、第1母材粒子、及び前記第1母材粒子上に担持された白金族元素を含有する第1複合触媒粒子を少なくとも含み、前記第2触媒層は、Niとアルミナ粒子とを少なくとも含み、前記第3触媒層は、第3母材粒子、及び前記第3母材粒子上に担持された白金族元素を含有する第3複合触媒粒子を少なくとも含む、排ガス浄化用触媒。
That is, the present invention provides various specific embodiments as shown below.
(1) A catalyst for exhaust gas purification comprising at least a substrate and a catalyst layer provided on the substrate, the catalyst layer having a stacking structure selected from the group consisting of a first stacking structure having a first catalyst layer provided on the substrate, a second catalyst layer provided on the first catalyst layer, and a third catalyst layer provided on the second catalyst layer, and a second stacking structure having a second catalyst layer provided on the substrate, the first catalyst layer provided on the second catalyst layer, and a third catalyst layer provided on the first catalyst layer, the first catalyst layer including at least first base particles and first composite catalyst particles containing a platinum group element supported on the first base particles, the second catalyst layer including at least Ni and alumina particles, and the third catalyst layer including at least third base particles and third composite catalyst particles containing a platinum group element supported on the third base particles.

(2)前記第2触媒層中のNiの含有量が、前記基材の容積あたり、3.0g/L以上である上記(1)に記載の排ガス浄化用触媒。 (2) The exhaust gas purification catalyst described in (1) above, in which the Ni content in the second catalyst layer is 3.0 g/L or more per volume of the substrate.

(3)前記第2触媒層が、白金族元素を実質的に含まない上記(1)又は(2)に記載の排ガス浄化用触媒。 (3) The exhaust gas purification catalyst according to (1) or (2) above, in which the second catalyst layer is substantially free of platinum group elements.

(4)前記第1触媒層が、Niを実質的に含まない上記(1)~(3)のいずれか一項に記載の排ガス浄化用触媒。 (4) An exhaust gas purification catalyst according to any one of (1) to (3) above, in which the first catalyst layer is substantially free of Ni.

(5)前記第1触媒層は、セリア系複合酸化物粒子及びアルミナ粒子を含み、Baをさらに含有する(1)~(4)のいずれか一項に記載の排ガス浄化用触媒。 (5) The exhaust gas purification catalyst according to any one of (1) to (4), wherein the first catalyst layer contains ceria-based composite oxide particles and alumina particles, and further contains Ba.

(6)前記第3触媒層が、Niを実質的に含まない上記(1)~(5)のいずれか一項に記載の排ガス浄化用触媒。 (6) An exhaust gas purification catalyst according to any one of (1) to (5) above, in which the third catalyst layer is substantially free of Ni.

(7)前記3母材粒子が、セリアジルコニア系複合酸化物粒子及びアルミナ粒子を含む上記(1)~(6)のいずれか一項に記載の排ガス浄化用触媒。 (7) An exhaust gas purification catalyst according to any one of (1) to (6) above, in which the three base particles include ceria-zirconia composite oxide particles and alumina particles.

(8)前記基材が、フロースルー型ハニカム担体、及び/又はウォールフロー型ハニカム担体である上記(1)~(7)のいずれか一項に記載の排ガス浄化用触媒。 (8) A catalyst for purifying exhaust gas according to any one of (1) to (7) above, in which the substrate is a flow-through type honeycomb carrier and/or a wall-flow type honeycomb carrier.

(9)ガソリンエンジンの排ガス流路の下流側に配置された三元触媒を備え、前記三元触媒が、上記(1)~(8)のいずれか一項に記載の排ガス浄化用触媒である、排ガス浄化装置。 (9) An exhaust gas purification device comprising a three-way catalyst arranged downstream of an exhaust gas flow path of a gasoline engine, the three-way catalyst being an exhaust gas purification catalyst described in any one of (1) to (8) above.

 本発明によれば、硫黄化合物スメルの発生が低減され、NOx浄化性能とNH3浄化性能に優れる、排ガス浄化用触媒及びこれを用いた排ガス浄化装置等を実現することができる。そして、本発明の排ガス浄化用触媒等は、排ガス中のNOx、CO、HC等を削減する三元触媒(TWC:Three Way Catalyst)であって、NOx浄化性能の過度な劣化等を引き起こすことなく、NH3浄化率にも優れ且つ硫黄化合物スメルの発生が低減された三元触媒として、次世代の環境基準にも適合可能なものである。また、本発明によれば、空燃比(A/F)が大きく変動するような過酷な使用環境下においても、NOx浄化性能の過度な劣化等を抑制でき、安定したNH3浄化率及び硫黄化合物スメルの低減を実現することもできる。 According to the present invention, it is possible to realize an exhaust gas purification catalyst and an exhaust gas purification device using the same, which are excellent in NOx purification performance and NH 3 purification performance, with reduced generation of sulfur compound smell. The exhaust gas purification catalyst of the present invention is a three-way catalyst (TWC) that reduces NOx, CO, HC, and the like in exhaust gas, and is a three-way catalyst that is excellent in NH 3 purification rate and reduces generation of sulfur compound smell without causing excessive deterioration of NOx purification performance, and is compatible with next-generation environmental standards. Furthermore, according to the present invention, even under a severe usage environment in which the air-fuel ratio (A/F) fluctuates greatly, excessive deterioration of NOx purification performance can be suppressed, and a stable NH 3 purification rate and reduced sulfur compound smell can be realized.

図1は、一実施形態の排ガス浄化用触媒100の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of an exhaust gas purifying catalyst 100 according to one embodiment. 図2は、一実施形態の排ガス浄化用触媒200の概略構成を示す模式図である。FIG. 2 is a schematic diagram showing a schematic configuration of an exhaust gas purification catalyst 200 according to one embodiment. 図3は、実施例1~4及び比較例1~6の排ガス浄化用触媒のLA4(FTP75)モードでのNH3浄化率を示すグラフである。FIG. 3 is a graph showing the NH 3 purification rates of the exhaust gas purification catalysts of Examples 1 to 4 and Comparative Examples 1 to 6 in the LA4 (FTP75) mode. 図4は、実施例1~4及び比較例1~6の排ガス浄化用触媒のLA4(FTP75)モードでのNOx浄化率を示すグラフである。FIG. 4 is a graph showing the NOx purification rates of the exhaust gas purification catalysts of Examples 1 to 4 and Comparative Examples 1 to 6 in the LA4 (FTP75) mode. 図5は、実施例1~4及び比較例1~6の排ガス浄化用触媒のUS06モードでのNH3浄化率を示すグラフである。FIG. 5 is a graph showing the NH 3 purification rates of the exhaust gas purifying catalysts of Examples 1 to 4 and Comparative Examples 1 to 6 in the US06 mode.

 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。但し、以下の実施の形態は、本発明を説明するための例示であり、本発明はこれらに限定されるものではない。すなわち本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。 Below, the embodiments of the present invention will be described in detail with reference to the drawings. Unless otherwise specified, the positional relationships, such as up, down, left, and right, are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratios of the drawings are not limited to those shown. However, the following embodiments are examples for explaining the present invention, and the present invention is not limited to these. In other words, the present invention can be implemented with any modifications within the scope of the gist of the invention. In this specification, for example, the expression of a numerical range such as "1 to 100" includes both the lower limit "1" and the upper limit "100". The same applies to the expressions of other numerical ranges.

 ここで、本明細書において、「D90粒子径」とは、体積基準の粒子径の累積分布において小粒径からの積算値が全体の90%に達したときの粒子径をいい、レーザー回折式粒子径分布測定装置(例えば、島津製作所社製、レーザー回折式粒子径分布測定装置SALD-3100等)で測定した値を意味する。また、BET比表面積は、比表面積/細孔分布測定装置(商品名:BELSORP-mini II、マイクロトラック・ベル株式会社製)及び解析用ソフトウェア(商品名:BEL_Master、マイクロトラック・ベル株式会社製)を用い、BET一点法により求めた値とする。 In this specification, "D90 particle size" refers to the particle size when the cumulative value from the smallest particle size reaches 90% of the total in the cumulative distribution of particle sizes based on volume, and refers to the value measured using a laser diffraction particle size distribution analyzer (for example, the laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation). In addition, the BET specific surface area is the value determined by the BET single point method using a specific surface area/pore distribution analyzer (product name: BELSORP-mini II, manufactured by Microtrac-Bell Co., Ltd.) and analysis software (product name: BEL_Master, manufactured by Microtrac-Bell Co., Ltd.).

 図1は、本発明の好適な一実施形態の排ガス浄化用触媒100の概略構成を示す模式図である。この排ガス浄化用触媒100は、基材11と、この基材11の少なくとも一方の面11a側に設けられた触媒層21とを備える。本実施形態において、触媒層21は、第1触媒層L1、第2触媒層L2、及び第3触媒層L3をこの順に備える積層構造を有する。第1触媒層L1は、第1母材粒子及びこの第1母材粒子上に担持された白金族元素を含有する第1複合触媒粒子を少なくとも含む。第2触媒層L2は、Niとアルミナ粒子とを少なくとも含む。第3触媒層L3は、第3母材粒子及びこの第3母材粒子上に担持された白金族元素を含有する第3複合触媒粒子を少なくとも含む。以下、各構成要素について詳述する。 1 is a schematic diagram showing the outline of an exhaust gas purification catalyst 100 according to a preferred embodiment of the present invention. The exhaust gas purification catalyst 100 includes a substrate 11 and a catalyst layer 21 provided on at least one surface 11a of the substrate 11. In this embodiment, the catalyst layer 21 has a laminated structure including a first catalyst layer L1, a second catalyst layer L2, and a third catalyst layer L3 in this order. The first catalyst layer L1 includes at least a first composite catalyst particle containing a platinum group element supported on the first substrate particle and the first composite catalyst particle containing a platinum group element. The second catalyst layer L2 includes at least Ni and alumina particles. The third catalyst layer L3 includes at least a third composite catalyst particle containing a third substrate particle and the third composite catalyst particle containing a platinum group element supported on the third substrate particle. Each component will be described in detail below.

 図2は、本発明の他の好適な一実施形態の排ガス浄化用触媒200の概略構成を示す模式図である。この排ガス浄化用触媒200は、基材11と、この基材11の少なくとも一方の面11a側に設けられた触媒層21とを備える。本実施形態において、触媒層21は、第2触媒層L2、第1触媒層L1、及び第3触媒層L3をこの順に備える積層構造を有する。第1触媒層L1は、第1母材粒子及びこの第1母材粒子上に担持された白金族元素を含有する第1複合触媒粒子を少なくとも含む。第2触媒層L2は、Niとアルミナ粒子とを少なくとも含む。第3触媒層L3は、第3母材粒子及びこの第3母材粒子上に担持された白金族元素を含有する第3複合触媒粒子を少なくとも含む。以下、各構成要素について詳述する。 FIG. 2 is a schematic diagram showing the schematic configuration of an exhaust gas purification catalyst 200 according to another preferred embodiment of the present invention. The exhaust gas purification catalyst 200 includes a substrate 11 and a catalyst layer 21 provided on at least one surface 11a of the substrate 11. In this embodiment, the catalyst layer 21 has a laminated structure including a second catalyst layer L2, a first catalyst layer L1, and a third catalyst layer L3 in this order. The first catalyst layer L1 includes at least a first composite catalyst particle containing a platinum group element supported on a first base material particle and the first base material particle. The second catalyst layer L2 includes at least Ni and alumina particles. The third catalyst layer L3 includes at least a third composite catalyst particle containing a third base material particle and the platinum group element supported on the third base material particle. Each component will be described in detail below.

(基材)
 基材11は、触媒層21を支持するための支持部材である。基材11上に触媒層21を設けた一体構造型排ガス浄化用積層触媒部材として用いることで、装置への組み込みが容易となる等、種々の用途への適用可能性が増大する。例えば排ガス浄化用途においては、基材11としてハニカム構造担体等を用い、ガス流が通過する流路内にこの一体構造型積層触媒部材を設置し、ハニカム構造担体のセル内にガス流を通過させることで、高効率に排ガス浄化を行うことができる。
(Base material)
The substrate 11 is a support member for supporting the catalyst layer 21. By using the substrate 11 as an integrally structured laminated catalyst member for exhaust gas purification in which the catalyst layer 21 is provided, the substrate 11 can be easily incorporated into an apparatus, and the applicability to various uses is increased. For example, in exhaust gas purification applications, a honeycomb structure carrier or the like is used as the substrate 11, and this integrally structured laminated catalyst member is placed in a flow path through which a gas flow passes, and the gas flow is passed through the cells of the honeycomb structure carrier, thereby enabling highly efficient exhaust gas purification.

 ここで用いる基材11としては、当業界で公知のものを適宜選択することができる。具体的には、当業界で公知の一体構造型ハニカム担体、例えばコージェライト、コージェライトアルミナ、シリコンカーバイド、炭化ケイ素、窒化珪素等のセラミックモノリス担体、ステンレス製等のメタルハニカム担体、ステンレス製等のワイヤメッシュ担体、スチールウール状のニットワイヤ担体等が挙げられるが、これらに特に限定されない。また、その形状も、特に限定されず、例えば角柱状、円筒状、球状、ハニカム状、シート状等の任意の形状を選択可能である。これらは、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。 The substrate 11 used here can be appropriately selected from those known in the industry. Specific examples include monolithic honeycomb carriers known in the industry, such as ceramic monolith carriers made of cordierite, cordierite alumina, silicon carbide, silicon carbide, silicon nitride, etc., metal honeycomb carriers made of stainless steel, wire mesh carriers made of stainless steel, steel wool-like knitted wire carriers, etc., but are not particularly limited to these. The shape is also not particularly limited, and any shape can be selected, such as a prismatic, cylindrical, spherical, honeycomb, or sheet shape. These can be used alone or in appropriate combination of two or more types.

 なお、一体構造型ハニカム担体等の基材11としては、一方の開放端面から他方の開口端面に向けて開口する多数の通孔(気体流路)を有する構造を有するフロースルー型ハニカム担体と、一方の開放端面と他方の開口端面が互い違いに目封じされ且つ多孔質の壁面を通して気体が流通可能になっているウォールフロー型ハニカム担体とが広く知られており、これらはいずれも適用可能である。フロースルー型ハニカム担体は、酸化触媒、還元触媒、三元触媒(TWC)等に広く用いられている。ウォールフロー型ハニカム担体は、排ガス中の煤やSOF等の固形成分や粒子状成分を濾し取るフィルターとしての働きを有し、Diesel Particulate Filter(DPF)やGasoline Particulate Filter(GPF)等として広く用いられている。 As the substrate 11 of the integral honeycomb carrier, etc., there are two types of carriers: a flow-through type honeycomb carrier having a structure with many through holes (gas flow paths) that open from one open end face to the other open end face, and a wall-flow type honeycomb carrier in which one open end face and the other open end face are alternately sealed and gas can flow through the porous wall surface. Both of these are applicable. Flow-through type honeycomb carriers are widely used in oxidation catalysts, reduction catalysts, three-way catalysts (TWC), etc. Wall-flow type honeycomb carriers function as filters that filter out solid and particulate components such as soot and SOF in exhaust gas, and are widely used as diesel particulate filters (DPFs), gasoline particulate filters (GPFs), etc.

 基材11のサイズは、用途や要求性能に応じて適宜設定でき、特に限定されないが、例えば数ミリから数センチの直径(長さ)のものが使用できる。一体構造型ハニカム担体等の基材11としては、さらに開口部の孔数についても、処理すべき排ガスの種類、ガス流量、圧力損失或いは除去効率等を考慮して適当な孔数が設定される。そのセル密度は、特に限定されないが、強度を維持しつつガス流に対する触媒の接触面積(表面積)を高く維持し圧力損失の増大を抑制する等の観点から、セル密度100~1500cell/inch2(155k~2325k/m2)であり、特に200~1200cell/inch2(310k~1400k/m2)が好ましく、300~900cell/inch2(465k~933k/m2)がより好ましい。なお、セル密度とは、一体構造型ハニカム担体等の基材11を気体流路に対して直角に切断した際の断面における単位面積あたりのセル数のことを意味する。 The size of the substrate 11 can be appropriately set depending on the application and required performance, and is not particularly limited, but for example, a substrate with a diameter (length) of several millimeters to several centimeters can be used. For the substrate 11 such as an integral structure type honeycomb carrier, the number of holes in the openings is also set appropriately taking into consideration the type of exhaust gas to be treated, the gas flow rate, pressure loss, removal efficiency, etc. The cell density is not particularly limited, but from the viewpoint of maintaining a high contact area (surface area) of the catalyst with the gas flow while maintaining strength and suppressing an increase in pressure loss, the cell density is 100 to 1500 cell/inch 2 (155 k to 2325 k/m 2 ), particularly 200 to 1200 cell/inch 2 (310 k to 1400 k/m 2 ), and more preferably 300 to 900 cell/inch 2 (465 k to 933 k/m 2 ). The cell density means the number of cells per unit area in a cross section of the substrate 11 such as an integrally-structured honeycomb carrier cut perpendicularly to the gas flow path.

(触媒層)
 触媒層21は、第1触媒層L1と、第2触媒層L2と、第3触媒層L3とをこの順に少なくとも備える第1積層構造を有するか、又は、第2触媒層L2と、第1触媒層L1と、第3触媒層L3とをこの順に少なくとも備える第2積層構造を有する。このように、PGMを含有する触媒層とは別個にNiを含む触媒層を設けることにより、PGMとNiの併用による浄化性能の劣化を抑制することができ、隣接する触媒層へのNiの拡散を抑制することができる。ここで、本明細書において、「この順に少なくとも備える」とは、第1触媒層L1、第2触媒層L2、及び第3触媒層L3がこの順に配置されていることを意味し、この順に配列されている限り、これらの層間に任意の他の層(例えばプライマー層、接着層等)が介在していてもよい。すなわち、触媒層21の積層構造は、第1触媒層L1、第2触媒層L2、及び第3触媒層L3が直接載置された態様(第1触媒層L1/第2触媒層L2/第3触媒層L3)、第1触媒層L1、第2触媒層L2、及び第3触媒層L3が任意の他の層を介して離間して配置された態様(例えば、第1触媒層L1/他の層/第2触媒層L2/他の層/第3触媒層L3、第1触媒層L1/他の層/第2触媒層L2/第3触媒層L3、第1触媒層L1/第2触媒層L2/他の層/第3触媒層L3)のいずれであってもよい。
(Catalyst layer)
The catalyst layer 21 has a first stacked structure including at least the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 in this order, or a second stacked structure including at least the second catalyst layer L2, the first catalyst layer L1, and the third catalyst layer L3 in this order. In this way, by providing a catalyst layer containing Ni separately from the catalyst layer containing PGM, it is possible to suppress the deterioration of purification performance due to the combined use of PGM and Ni, and to suppress the diffusion of Ni to the adjacent catalyst layer. Here, in this specification, "including at least in this order" means that the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 are arranged in this order, and as long as they are arranged in this order, any other layer (e.g., a primer layer, an adhesive layer, etc.) may be interposed between these layers. That is, the stacked structure of the catalyst layer 21 may be any of an embodiment in which the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 are directly placed on top of each other (first catalyst layer L1/second catalyst layer L2/third catalyst layer L3), or an embodiment in which the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 are arranged spaced apart with any other layer interposed therebetween (e.g., first catalyst layer L1/other layer/second catalyst layer L2/other layer/third catalyst layer L3, first catalyst layer L1/other layer/second catalyst layer L2/third catalyst layer L3, or first catalyst layer L1/second catalyst layer L2/other layer/third catalyst layer L3).

 また、本明細書において、「基材11の少なくとも一方の面側に設けられた」とは、図1に示すように基材11の一方の面11a(又は他方の面11b)のみに触媒層21が設けられた態様、基材11の双方の面11a,11bに触媒層21が設けられた態様、のいずれをも包含する意味である。このとき、基材11と触媒層21との間に、任意の他の層(例えばプライマー層、接着層等)が介在していてもよく、「一方の面側に設ける」とは、基材11と触媒層21とが直接載置された態様、基材11と触媒層21とが任意の他の層を介して離間して配置された態様、の双方を含む意味で用いている。 In addition, in this specification, "provided on at least one surface of the substrate 11" means that either the catalyst layer 21 is provided only on one surface 11a (or the other surface 11b) of the substrate 11 as shown in FIG. 1, or the catalyst layer 21 is provided on both surfaces 11a, 11b of the substrate 11. In this case, any other layer (e.g., a primer layer, an adhesive layer, etc.) may be interposed between the substrate 11 and the catalyst layer 21, and "provided on one surface" means that either the substrate 11 and the catalyst layer 21 are directly placed on each other, or the substrate 11 and the catalyst layer 21 are spaced apart via any other layer.

(第1触媒層L1)
 第1触媒層L1は、第1母材粒子と、この第1母材粒子上に担持された白金族元素を含有する第1複合触媒粒子を少なくとも含む。
(First catalyst layer L1)
The first catalyst layer L1 includes at least first matrix particles and first composite catalyst particles containing a platinum group element supported on the first matrix particles.

 第1母材粒子は、触媒活性成分である白金族元素を、表面に高分散に担持する担体粒子である。第1母材粒子としては、当業界で公知のものから適宜選択して用いることができ、その種類は特に限定されない。例えばγ-アルミナ、β-アルミナ、δ-アルミナ、η-アルミナ、θ-アルミナ等の酸化アルミニウム(アルミナ:Al23)、シリカ-アルミナ、シリカ-アルミナ-ジルコニア、シリカ-アルミナ-ボリア、セリアアルミナ、酸化セリウム(セリア:CeO2)、酸化ジルコニウム(ジルコニア:ZrO2)、セリアジルコニア系複合酸化物(CZ複合酸化物:CeO2/ZrO2)、酸化ケイ素(シリカ:SiO2)、酸化チタン(チタニア:TiO2)等の酸化物やこれらの酸化物を主成分とした複合酸化物等が挙げられるが、その種類は特に限定されない。これらは、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。また、β型やMFI型のゼオライトをはじめ、A、X、Y、MOR、CHA、SAPO等のゼオライト及び類縁体を用いることもできる。なお、これらの母材粒子は、1種を単独であるいは2種以上を任意の組み合わせ及び比率で用いることができる。第1母材粒子としては、高表面積を有する耐熱性無機酸化物であるアルミナ粒子や、酸素吸放出能(Oxygen Storage Capacity)及び白金族の高分散化機能を有する耐熱性無機酸化物であるセリア系複合酸化物粒子が好ましく用いられる。 The first base particles are carrier particles that support a platinum group element, which is a catalytically active component, on the surface in a highly dispersed manner. The first base particles can be appropriately selected from those known in the art and are not particularly limited in type. For example, aluminum oxides such as γ-alumina, β-alumina, δ-alumina, η-alumina, and θ-alumina (alumina: Al 2 O 3 ), silica-alumina, silica-alumina-zirconia, silica-alumina-boria, ceria-alumina, cerium oxide (ceria: CeO 2 ), zirconium oxide (zirconia: ZrO 2 ), ceria-zirconia composite oxide (CZ composite oxide: CeO 2 /ZrO 2 ), silicon oxide (silica: SiO 2 ), and titanium oxide (titania: TiO 2 ) and composite oxides mainly composed of these oxides can be mentioned, but the type is not particularly limited. These may be composite oxides or solid solutions to which rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements have been added. Zeolites and analogues such as A, X, Y, MOR, CHA, and SAPO, as well as β-type and MFI-type zeolites, can also be used. These base particles can be used alone or in any combination and ratio of two or more types. As the first base particles, alumina particles, which are heat-resistant inorganic oxides having a high surface area, and ceria-based composite oxide particles, which are heat-resistant inorganic oxides having oxygen storage capacity and a high dispersion function for platinum group metals, are preferably used.

 セリア系複合酸化物粒子としては、当業界で公知のものを用いることができ、その種類は特に限定されない。ここで、セリア系複合酸化物とは、セリウム(Ce)を含み、必要に応じてセリウム以外の他元素がドープされた、複合酸化物或いは固溶体を包含する概念として用いている。セリア系複合酸化物は、耐熱性に優れる酸素吸放出材料として知られている。セリア系複合酸化物粒子は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。セリア系複合酸化物の具体例としては、セリウム複合酸化物、セリウム-ジルコニウム複合酸化物、セリウム-ジルコニウム-セリウム及びジルコニウムを除く希土類元素複合酸化物、セリウム-ジルコニウム-遷移金属元素複合酸化物、セリウム―アルミニウム複合酸化物、セリウム-ジルコニウム-セリウム及びジルコニウムを除く希土類元素-遷移金属元素複合酸化物等が挙げられるが、これらに特に限定されない。 As the ceria-based composite oxide particles, those known in the art can be used, and the type is not particularly limited. Here, the term ceria-based composite oxide is used as a concept that includes composite oxides or solid solutions containing cerium (Ce) and doped with elements other than cerium as necessary. Ceria-based composite oxides are known as oxygen absorbing and releasing materials with excellent heat resistance. The ceria-based composite oxide particles can be used alone or in appropriate combination of two or more types. Specific examples of ceria-based composite oxides include cerium composite oxide, cerium-zirconium composite oxide, cerium-zirconium-rare earth element composite oxide excluding cerium and zirconium, cerium-zirconium-transition metal element composite oxide, cerium-aluminum composite oxide, cerium-zirconium-rare earth element-transition metal element composite oxide excluding cerium and zirconium, etc., but are not particularly limited thereto.

 第1の触媒層L1中に含まれるセリア系複合酸化物粒子の平均粒子径は、所望性能に応じて適宜設定でき、特に限定されないが、D90粒子径が、1μm~30μmが好ましく、より好ましくは3μm~25μm、さらに好ましくは5μm~20μmである。 The average particle size of the ceria-based composite oxide particles contained in the first catalyst layer L1 can be set appropriately according to the desired performance, and is not particularly limited, but the D90 particle size is preferably 1 μm to 30 μm, more preferably 3 μm to 25 μm, and even more preferably 5 μm to 20 μm.

 第1触媒層L1中のセリア系複合酸化物粒子の塗工量は、所望性能に応じて適宜設定でき、特に限定されないが、酸素吸放出性能と耐熱性、圧力損失の観点から、セリア系複合酸化物粒子の固形分換算で、基材11の単位体積あたり、合計で5g/L~200g/Lが好ましく、10g/L~100g/Lがより好ましい。 The amount of the ceria-based composite oxide particles applied in the first catalyst layer L1 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoints of oxygen absorption/release performance, heat resistance, and pressure loss, the total amount of the ceria-based composite oxide particles, converted into solid content, is preferably 5 g/L to 200 g/L, and more preferably 10 g/L to 100 g/L, per unit volume of the substrate 11.

 アルミナ粒子としては、表面積の大きな、γ-アルミナ、δ-アルミナ、θ-アルミナ、ベーマイト等が好ましく用いられる。とりわけ、γ-アルミナはその他のアルミナに比べ1000℃以上での耐久性は劣るものの、通常1000℃以下で使用される排ガス浄化用触媒としては十分な耐熱性を有する上に、表面積がこれらすべてのアルミナの中で最も高い。したがって、アルミナ粒子としてはγ-アルミナが特に好ましい。アルミナ粒子は、ジルコニウム、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。アルミナ粒子は、1種を単独で、又は2種以上を任意の組み合わせ及び比率で用いることができる。 As alumina particles, γ-alumina, δ-alumina, θ-alumina, boehmite, etc., which have a large surface area, are preferably used. In particular, γ-alumina is inferior in durability at 1000°C or higher compared to other aluminas, but has sufficient heat resistance as an exhaust gas purification catalyst that is usually used at 1000°C or lower, and has the largest surface area of all these aluminas. Therefore, γ-alumina is particularly preferable as alumina particles. The alumina particles may be a composite oxide or solid solution to which rare earth elements such as zirconium, lanthanum, yttrium, transition metal elements, and alkaline earth metal elements have been added. The alumina particles can be used alone or in any combination and ratio of two or more types.

 アルミナ粒子の平均粒子径は、所望性能に応じて適宜設定でき、特に限定されないが、D90粒子径が、1μm~30μmが好ましく、より好ましくは3μm~25μm、さらに好ましくは5μm~20μmである。 The average particle size of the alumina particles can be set appropriately depending on the desired performance, and is not particularly limited, but the D90 particle size is preferably 1 μm to 30 μm, more preferably 3 μm to 25 μm, and even more preferably 5 μm to 20 μm.

 また、アルミナ粒子のBET比表面積は、特に限定されないが、母材粒子としての高い表面積を維持し、PGMを高分散状態で安定担持する観点から、30m2/g~300m2/gが好ましく、40m2/g~250m2/gがより好ましく、50m2/g~200m2/gがさらに好ましい。 In addition, the BET specific surface area of the alumina particles is not particularly limited, but from the viewpoint of maintaining a high surface area as the base particles and stably supporting the PGM in a highly dispersed state, it is preferably 30 m 2 /g to 300 m 2 /g, more preferably 40 m 2 /g to 250 m 2 /g, and even more preferably 50 m 2 /g to 200 m 2 /g.

 第1触媒層L1中のアルミナ粒子の塗工量は、所望性能に応じて適宜設定でき、特に限定されないが、耐熱性と圧力損失の観点から、アルミナ粒子の固形分換算で、基材11の単位体積あたり、合計で5g/L~200g/Lが好ましく、10g/L~100g/Lがより好ましい。 The amount of alumina particles applied in the first catalyst layer L1 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of heat resistance and pressure loss, the total amount of alumina particles, converted into solid content, per unit volume of the substrate 11 is preferably 5 g/L to 200 g/L, and more preferably 10 g/L to 100 g/L.

 なお、第1触媒層L1に含まれる第1母材粒子としては、上述したセリア系複合酸化物粒子とアルミナ粒子以外の母材粒子(以降において、「他の母材粒子」と称する場合がある。)を含んでいてもよい。他の母材粒子としては、当業界で公知のものを用いることができ、その種類は特に限定されない。例えばシリカ-アルミナ、シリカ-アルミナ-ジルコニア、シリカ-アルミナ-ボリア、酸化ジルコニウム(ジルコニア:ZrO2)、酸化ケイ素(シリカ:SiO2)、酸化チタン(チタニア:TiO2)等の酸化物やこれらの酸化物を主成分とした複合酸化物等が挙げられるが、その種類は特に限定されない。これらは、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。また、他の母材粒子として、β型やMFI型のゼオライトをはじめ、A、X、Y、MOR、CHA、SAPO等のゼオライト及び類縁体を用いることもできる。なお、これら他の母材粒子は、1種を単独であるいは2種以上を任意の組み合わせ及び比率で用いることができる。 The first base particles contained in the first catalyst layer L1 may contain base particles other than the above-mentioned ceria-based composite oxide particles and alumina particles (hereinafter, may be referred to as "other base particles"). As the other base particles, those known in the art may be used, and the type is not particularly limited. For example, oxides such as silica-alumina, silica-alumina-zirconia, silica-alumina-boria, zirconium oxide (zirconia: ZrO 2 ), silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), etc., and composite oxides mainly composed of these oxides, etc., may be mentioned, but the type is not particularly limited. These may be composite oxides or solid solutions to which rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements are added. In addition, as the other base particles, zeolites such as β-type and MFI-type zeolites, as well as zeolites such as A, X, Y, MOR, CHA, and SAPO, and their analogues may also be used. These other base particles may be used alone or in any combination and ratio of two or more kinds.

 第1触媒層L1の触媒活性成分としては、白金族元素が必須とされる。白金族元素は、主として、排ガス中のHCやCO等を酸化浄化する、あるいは燃料希薄動作期間中にNOxを酸化変換する、また燃料過剰動作期間中にNOxを還元浄化するための触媒活性成分として使用される。なお、白金族元素は、上述した第1母材粒子上に担持されていればよいが、他の母材粒子上にも担持されていてもよい。また、第1触媒層L1中の白金族元素、さらには他の触媒活性成分は、金属(金属状態)で存在していることが好ましいが、外部環境等に応じてその一部が酸化物となっていてもよい。 A platinum group element is essential as a catalytically active component of the first catalyst layer L1. The platinum group element is primarily used as a catalytically active component for oxidizing and purifying HC, CO, etc. in exhaust gas, or for oxidizing and converting NOx during fuel-lean operation, and for reducing and purifying NOx during fuel-rich operation. The platinum group element may be supported on the first base material particles described above, but may also be supported on other base material particles. The platinum group element and other catalytically active components in the first catalyst layer L1 are preferably present as metals (metallic state), but may be partially in the form of oxides depending on the external environment, etc.

 第1触媒層L1中の白金族元素の総含有量は、所望性能に応じて適宜設定でき、特に限定されないが、酸化反応と還元反応のバランスの観点から、金属(Pt等)換算で、基材11の単位体積あたり、0.01g/L~15.00g/Lが好ましく、0.05g/L~12.00g/Lがより好ましく、0.10g/L~10.00g/Lがさらに好ましい。 The total content of platinum group elements in the first catalyst layer L1 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of the balance between the oxidation reaction and the reduction reaction, the total content is preferably 0.01 g/L to 15.00 g/L, more preferably 0.05 g/L to 12.00 g/L, and even more preferably 0.10 g/L to 10.00 g/L, in terms of metal (Pt, etc.) per unit volume of the substrate 11.

 なお、白金族元素としては、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)等が挙げられる。白金族元素は、1種を単独であるいは2種以上を任意の組み合わせ及び比率で用いることができる。例えば第1触媒層L1は、白金族元素としてPtのみを含んでいてもよい。また、Pt以外の白金族元素を含んでいてもよく、白金族元素としてPdのみ含んでいてもよい。他の白金族元素としては、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)等が挙げられる。 Note that examples of platinum group elements include platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os). Platinum group elements can be used alone or in any combination and ratio of two or more. For example, the first catalyst layer L1 may contain only Pt as the platinum group element. It may also contain platinum group elements other than Pt, or it may contain only Pd as the platinum group element. Other platinum group elements include palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os).

 また、第1触媒層L1は、白金族元素以外の触媒活性成分(以降において、「他の触媒活性成分」と称する場合がある。)を含んでいてもよい。他の触媒活性成分としては、金(Au)、銀(Ag)等の貴金属元素、鉄(Fe)、銅(Cu)、コバルト(Co)、ジルコニウム(Zr)、タングステン(W)等の遷移金属元素、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)等の希土類金属元素等が挙げられるが、これらに特に限定されない。但し、ニッケル(Ni)は、白金族元素との併用で触媒毒として作用して、NOx浄化性能の劣化等を引き起こすため、第1触媒層L1は実質的にNiを含まないことが好ましい。ここで、本明細書において、第1触媒層L1がNiを実質的に含まないとは、第1触媒層L1中に含まれるNiの含有量が、第1触媒層L1の総量に対して酸化物換算(NiO)で1.0質量%未満であることを意味し、好ましくは0.5質量%未満、さらに好ましくは0.1質量%未満である。第1触媒層L1にNiを意図的に添加しない実施態様とすることもでき、このとき、第1触媒層L1中にはNiがまったく存在しない(酸化物換算(NiO)で0.0質量%)。 The first catalytic layer L1 may also contain catalytically active components other than platinum group elements (hereinafter, these may be referred to as "other catalytically active components"). Examples of other catalytically active components include, but are not limited to, precious metal elements such as gold (Au) and silver (Ag), transition metal elements such as iron (Fe), copper (Cu), cobalt (Co), zirconium (Zr), and tungsten (W), and rare earth metal elements such as lanthanum (La), praseodymium (Pr), and neodymium (Nd). However, nickel (Ni) acts as a catalytic poison when used in combination with platinum group elements, causing deterioration of NOx purification performance, and therefore it is preferable that the first catalytic layer L1 does not substantially contain Ni. Here, in this specification, the first catalyst layer L1 being substantially free of Ni means that the content of Ni contained in the first catalyst layer L1 is less than 1.0 mass% in terms of oxide (NiO) relative to the total amount of the first catalyst layer L1, preferably less than 0.5 mass%, and more preferably less than 0.1 mass%. It is also possible to have an embodiment in which Ni is not intentionally added to the first catalyst layer L1, in which case there is no Ni at all in the first catalyst layer L1 (0.0 mass% in terms of oxide (NiO)).

 また、第1触媒層L1は、NOx吸蔵機能および母材の耐熱性向上機能を有するBaを含むことが好ましい。NOx吸蔵材であるBa成分は、酸素が多い(Lean)状態では、硝酸バリウムとしてNOxを吸蔵し、酸素が少ない(Rich)状態では、硝酸バリウムが炭酸バリウムに変化する際に、吸蔵したNOxを放出する。このように放出されたNOxは、還元剤のHC、CO、或いはスチームリフォーミング反応によって発生した水素等を利用して、白金族元素等の触媒活性成分による触媒反応により浄化される。また、母材成分の結晶中にBaが添加されることで、母材自身のシンタリングが抑制され、母材の耐熱性を向上させることができる。そのため、第1触媒層L1にBaを含ませることで、耐熱性の向上、及び触媒性能の活性化を期待できる。 The first catalyst layer L1 preferably contains Ba, which has a NOx storage function and a function of improving the heat resistance of the base material. The Ba component, which is a NOx storage material, stores NOx as barium nitrate in an oxygen-rich (lean) state, and releases the stored NOx when the barium nitrate changes to barium carbonate in an oxygen-poor (rich) state. The NOx released in this way is purified by a catalytic reaction with a catalytically active component such as a platinum group element, using the reducing agent HC, CO, or hydrogen generated by a steam reforming reaction. In addition, by adding Ba to the crystals of the base material component, the sintering of the base material itself can be suppressed, and the heat resistance of the base material can be improved. Therefore, by including Ba in the first catalyst layer L1, it is expected that the heat resistance can be improved and the catalytic performance can be activated.

 本実施形態において、Baは、上述したセリア複合酸化物粒子やアルミナ粒子上に担持されていることが好ましい。Baを上述した母材粒子に担持することで、Ba自身が高い分散状態に維持される、また母材粒子の耐熱性を向上させることができる。なお、第1母材粒子の表面上のBaは、後述する製造工程中の焼成や排ガスの浄化過程において高温に曝されて酸化され得るため、その酸化物であるBaOの状態で存在していてもよく、また、外部環境に応じて、硫酸塩、硝酸塩、炭酸塩、酢酸塩等の各種塩の状態で存在していてもよい。より具体的には、BaO、Ba(CH3COO)2、BaO2、BaSO4、BaCO3、BaZrO3、BaAl24等が挙げられる。なお、Baは、セリア複合酸化物粒子やアルミナ粒子以外の他の母材粒子上にも担持されていてもよい。 In this embodiment, Ba is preferably supported on the above-mentioned ceria composite oxide particles or alumina particles. By supporting Ba on the above-mentioned base material particles, Ba itself is maintained in a highly dispersed state, and the heat resistance of the base material particles can be improved. Note that Ba on the surface of the first base material particle may be oxidized by exposure to high temperatures during firing or exhaust gas purification in the manufacturing process described below, so it may exist in the form of BaO, which is an oxide, or may exist in the form of various salts such as sulfates, nitrates, carbonates, and acetates depending on the external environment. More specifically, BaO, Ba(CH 3 COO) 2 , BaO 2 , BaSO 4 , BaCO 3 , BaZrO 3 , BaAl 2 O 4 , etc. may be mentioned. Note that Ba may also be supported on base material particles other than ceria composite oxide particles or alumina particles.

 第1触媒層L1中のBaの含有割合は、第1触媒層L1の総量に対して酸化物換算(BaO)で、好ましくは1~30質量%、より好ましくは3~20質量%である。 The Ba content in the first catalyst layer L1 is preferably 1 to 30 mass%, more preferably 3 to 20 mass%, calculated as an oxide (BaO) relative to the total amount of the first catalyst layer L1.

 なお、第1触媒層L1中の第1母材粒子の表面に担持された白金族元素の粒子が、高温時、凝集して粒子成長することで表面積が下がり、活性を悪化させることを防止するために、白金族元素の粒子の周囲を微粒子で囲って白金族元素の粒子同士の接触機会を減らすことができる。このような微粒子としては、例えば、セリア複合酸化物粒子やアルミナ粒子以外の他のアルミナ、ジルコニア、シリカ、シリカ-アルミナ、シリカ-アルミナ-ジルコニア、シリカ-アルミナ-ボリア、ゼオライト、チタニア、マグネシア、酸化タングステン、酸化ランタン、酸化ネオジム、酸化プラセオジウム等の微粒子が挙げられるが、これらに特に限定されない。ここで用いる微粒子はそれ自体が高温時に母材粒子上を移動しないよう、耐熱性が高く予め焼結されたものが好ましく、かかる観点から、希土類(複合)酸化物(希土類酸化物、希土類複合酸化物)や遷移金属酸化物が好ましい。これらは1種を単独で用いることができ、また2種以上を任意の組み合わせで用いることができる。このような凝集抑制のための微粒子の使用量は、白金族元素の使用量に応じて適宜設定すればよく、特に限定されないが、白金族元素の総量に対して、10~300質量%が好ましく、20~200質量%がより好ましい。 In order to prevent the platinum group element particles supported on the surface of the first base material particles in the first catalyst layer L1 from agglomerating and growing at high temperatures, thereby reducing the surface area and deteriorating the activity, the platinum group element particles can be surrounded by fine particles to reduce the chance of contact between the platinum group element particles. Examples of such fine particles include ceria composite oxide particles and fine particles of alumina other than alumina particles, zirconia, silica, silica-alumina, silica-alumina-zirconia, silica-alumina-boria, zeolite, titania, magnesia, tungsten oxide, lanthanum oxide, neodymium oxide, praseodymium oxide, etc., but are not limited to these. The fine particles used here are preferably highly heat-resistant and pre-sintered so that they do not move on the base material particles at high temperatures, and from this perspective, rare earth (composite) oxides (rare earth oxides, rare earth composite oxides) and transition metal oxides are preferred. These can be used alone or in any combination of two or more. The amount of fine particles used to suppress aggregation can be set appropriately according to the amount of platinum group elements used, and is not particularly limited, but is preferably 10 to 300% by mass, and more preferably 20 to 200% by mass, based on the total amount of platinum group elements.

 また、第1触媒層L1と基材11或いは第2触媒層L2とのより高い密着強度を得るため、必要に応じて、第1触媒層L1に当業界で公知のバインダー成分を含有させてもよい。バインダー成分としては、ベーマイト、アルミナゾル、チタニアゾル、シリカゾル、ジルコニアゾル等の種々のゾルが挙げられるが、これらに特に限定されない。また、硝酸アルミニウム、酢酸アルミニウム、硝酸チタン、酢酸チタン、硝酸ジルコニウム、酢酸ジルコニウム等の可溶性の塩もバインダーとして使用することができる。その他、酢酸、硝酸、塩酸、硫酸等の酸も、バインダーとして使用することができる。なお、バインダーの使用量は、特に限定されず、十分な密着強度が得られる程度の量であれば構わない。 Furthermore, in order to obtain a higher adhesive strength between the first catalyst layer L1 and the substrate 11 or the second catalyst layer L2, the first catalyst layer L1 may contain a binder component known in the art, if necessary. Examples of binder components include various sols such as boehmite, alumina sol, titania sol, silica sol, and zirconia sol, but are not limited to these. In addition, soluble salts such as aluminum nitrate, aluminum acetate, titanium nitrate, titanium acetate, zirconium nitrate, and zirconium acetate can also be used as binders. In addition, acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid can also be used as binders. The amount of binder used is not particularly limited, and may be any amount that provides sufficient adhesive strength.

 なお、第1触媒層L1は、上述した成分以外に、当業界で公知の触媒や助触媒、各種添加剤を含有していてもよい。各種添加剤としては、非イオン系界面活性剤やアニオン系界面活性剤等の分散安定化剤、pH調整剤、粘度調整剤等が挙げられるが、これらに特に限定されない。 In addition to the above-mentioned components, the first catalyst layer L1 may contain catalysts, co-catalysts, and various additives known in the art. Examples of the various additives include dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, and viscosity adjusters, but are not limited to these.

(第2触媒層L2)
 第2触媒層L2は、Niとアルミナ粒子とを少なくとも含む。第2触媒層L2中に含有されるNiは、硫黄化合物を酸化する触媒活性成分である。また、第2触媒層L2中に含有されるNiは、NH3を生成抑制ないしは分解するものであってもよい。第2触媒層L2は、高表面積を有する耐熱性無機酸化物であるアルミナ粒子を含むことが必須とされる。第2触媒層L2中のNiは、アルミナ粒子上に担持されていてもよく、アルミナ粒子上に担持されていなくてもよい。また、第2触媒層L2はアルミナ粒子以外の他の粒子を含んでいてもよい。この場合、第2触媒層L2中のNiは、他の粒子上に担持されていてもよく、他の粒子上に担持されていなくてもよい。
(Second catalyst layer L2)
The second catalyst layer L2 contains at least Ni and alumina particles. The Ni contained in the second catalyst layer L2 is a catalytically active component that oxidizes sulfur compounds. The Ni contained in the second catalyst layer L2 may suppress the generation or decompose NH 3. The second catalyst layer L2 must contain alumina particles, which are heat-resistant inorganic oxides having a large surface area. The Ni in the second catalyst layer L2 may or may not be supported on alumina particles. The second catalyst layer L2 may contain particles other than alumina particles. In this case, the Ni in the second catalyst layer L2 may or may not be supported on other particles.

 第2触媒層L2中の粒子は、触媒活性成分であるNiを、表面に高分散に維持でき、高い耐熱性を有する酸化物粒子であることが好ましい。第2触媒層L2中の粒子としては、当業界で公知のものから適宜選択して用いることができ、その種類は特に限定されない。なお、第2触媒層L2中の粒子は、1種を単独で用いることができ、又は2種以上を組み合わせて用いることができる。 The particles in the second catalyst layer L2 are preferably oxide particles that can maintain the catalytically active component Ni highly dispersed on the surface and have high heat resistance. The particles in the second catalyst layer L2 can be appropriately selected from those known in the industry, and the type is not particularly limited. The particles in the second catalyst layer L2 can be used alone or in combination of two or more types.

 アルミナ粒子としては、表面積の大きな、γ-アルミナ、δ-アルミナ、θ-アルミナ、ベーマイト等が好ましく用いられる。とりわけ、γ-アルミナはその他のアルミナに比べ1000℃以上での耐久性は劣るものの、通常1000℃以下で使用される排ガス浄化用触媒としては十分な耐熱性を有する上に、表面積がこれらすべてのアルミナの中で最も高い。したがって、アルミナ粒子としてはγ-アルミナが特に好ましい。アルミナ粒子は、1種を単独で、又は2種以上を任意の組み合わせ及び比率で用いることができる。 As alumina particles, those with large surface areas such as γ-alumina, δ-alumina, θ-alumina, and boehmite are preferably used. In particular, γ-alumina is less durable at 1000°C or higher than other aluminas, but has sufficient heat resistance as an exhaust gas purification catalyst that is normally used at 1000°C or lower, and has the largest surface area of all these aluminas. Therefore, γ-alumina is particularly preferred as alumina particles. Alumina particles can be used alone or in any combination and ratio of two or more types.

 アルミナ粒子の平均粒子径は、所望性能に応じて適宜設定でき、特に限定されないが、D90粒子径が、1μm~30μmが好ましく、より好ましくは3μm~25μm、さらに好ましくは5μm~20μmである。 The average particle size of the alumina particles can be set appropriately depending on the desired performance, and is not particularly limited, but the D90 particle size is preferably 1 μm to 30 μm, more preferably 3 μm to 25 μm, and even more preferably 5 μm to 20 μm.

 また、アルミナ粒子のBET比表面積は、特に限定されないが、高い表面積を維持し、Niを高分散状態で安定担持する観点から、30m2/g~300m2/gが好ましく、40m2/g~250m2/gがより好ましく、50m2/g~200m2/gがさらに好ましい。 In addition, the BET specific surface area of the alumina particles is not particularly limited, but from the viewpoint of maintaining a high surface area and stably supporting Ni in a highly dispersed state, it is preferably 30 m 2 /g to 300 m 2 /g, more preferably 40 m 2 /g to 250 m 2 /g, and even more preferably 50 m 2 /g to 200 m 2 /g.

 第2触媒層L2中のアルミナ粒子の塗工量は、所望性能に応じて適宜設定でき、特に限定されないが、Niを高分散状態で安定担持する観点から、アルミナ粒子の固形分換算で、基材11の単位体積あたり、合計で5g/L~100g/Lが好ましく、10g/L~80g/Lがより好ましい。 The amount of alumina particles applied in the second catalyst layer L2 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of stably supporting Ni in a highly dispersed state, the total amount, calculated as the solid content of the alumina particles, per unit volume of the substrate 11 is preferably 5 g/L to 100 g/L, and more preferably 10 g/L to 80 g/L.

 なお、第2触媒層L2のアルミナ粒子とNiの使用割合は、所望性能に応じて適宜設定でき、特に限定されないが、硫黄化合物スメルの抑制、NOx浄化性能、NH3浄化性能等の観点から、Al23/Niの質量比で1.0以上であることが好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上である。 The ratio of alumina particles and Ni used in the second catalyst layer L2 can be appropriately set depending on the desired performance and is not particularly limited. However, from the viewpoints of suppressing sulfur compound smell, NOx purification performance, NH3 purification performance, etc., the mass ratio of Al2O3 /Ni is preferably 1.0 or more, more preferably 1.2 or more, and even more preferably 1.5 or more.

 なお、第2触媒層L2に含まれる粒子としては、上述したアルミナ粒子以外の粒子(以降において、「他の粒子」と称する場合がある。)を含んでいてもよい。他の粒子としては、当業界で公知のものを用いることができ、その種類は特に限定されない。例えば、シリカ-アルミナ-ジルコニア、シリカ-アルミナ-ボリア、酸化ジルコニウム(ジルコニア:ZrO2)、酸化ケイ素(シリカ:SiO2)、酸化チタン(チタニア:TiO2)等の酸化物やこれらの酸化物を主成分とした複合酸化物等が挙げられるが、その種類は特に限定されない。これらは、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。また、他の粒子として、β型やMFI型のゼオライトをはじめ、A、X、Y、MOR、CHA、SAPO等のゼオライト及び類縁体を用いることもできる。なお、これら他の粒子は、1種を単独であるいは2種以上を任意の組み合わせ及び比率で用いることができる。 The particles contained in the second catalyst layer L2 may include particles other than the above-mentioned alumina particles (hereinafter, these may be referred to as "other particles"). As the other particles, those known in the art may be used, and the type is not particularly limited. For example, oxides such as silica-alumina-zirconia, silica-alumina-boria, zirconium oxide (zirconia: ZrO 2 ), silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and the like, and composite oxides mainly composed of these oxides, and the like, may be mentioned, but the type is not particularly limited. These may be composite oxides or solid solutions to which rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements are added. In addition, as the other particles, zeolites such as β-type and MFI-type zeolites, as well as zeolites and analogues such as A, X, Y, MOR, CHA, and SAPO, may also be used. These other particles may be used alone or in any combination and ratio of two or more kinds.

 また、第2触媒層L2と第1触媒層L1或いは第3触媒層L3とのより高い密着強度を得るため、必要に応じて、第2触媒層L2に当業界で公知のバインダー成分を含有させてもよい。バインダー成分としては、ベーマイト、アルミナゾル、チタニアゾル、シリカゾル、ジルコニアゾル等の種々のゾルが挙げられるが、これらに特に限定されない。また、硝酸アルミニウム、酢酸アルミニウム、硝酸チタン、酢酸チタン、硝酸ジルコニウム、酢酸ジルコニウム等の可溶性の塩もバインダーとして使用することができる。その他、酢酸、硝酸、塩酸、硫酸等の酸も、バインダーとして使用することができる。なお、バインダーの使用量は、特に限定されず、十分な密着強度が得られる程度の量であれば構わない。 In order to obtain a higher adhesive strength between the second catalyst layer L2 and the first catalyst layer L1 or the third catalyst layer L3, the second catalyst layer L2 may contain a binder component known in the art, if necessary. Examples of binder components include various sols such as boehmite, alumina sol, titania sol, silica sol, and zirconia sol, but are not limited to these. Soluble salts such as aluminum nitrate, aluminum acetate, titanium nitrate, titanium acetate, zirconium nitrate, and zirconium acetate can also be used as binders. In addition, acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid can also be used as binders. The amount of binder used is not particularly limited, and may be any amount that provides sufficient adhesive strength.

 第2触媒層L2の触媒活性成分としては、Niが必須とされる。Niは、主として、硫黄化合物を酸化する触媒活性成分として使用される。なお、第2触媒層L2中のNi、さらには他の触媒活性成分は、金属(金属状態)で存在していることが好ましいが、外部環境等に応じてその一部が酸化物となっていてもよい。 Ni is essential as a catalytically active component of the second catalyst layer L2. Ni is mainly used as a catalytically active component that oxidizes sulfur compounds. It is preferable that Ni and other catalytically active components in the second catalyst layer L2 exist as metals (metallic state), but some of them may be in the form of oxides depending on the external environment, etc.

 第2触媒層L2中のNiの総含有量は、所望性能に応じて適宜設定でき、特に限定されないが、硫黄化合物の酸化性能とNH3の浄化性能のバランスの観点から、酸化物換算(NiO)で、基材11の単位体積あたり、0.1g/L~30.0g/Lが好ましく、0.5g/L~25.0g/Lがより好ましく、1.0g/L~20.0g/Lがさらに好ましく、2.0g/L~20.0g/Lが特に好ましい。 The total content of Ni in the second catalytic layer L2 can be appropriately set depending on the desired performance and is not particularly limited. From the viewpoint of the balance between the performance for oxidizing sulfur compounds and the performance for purifying NH3 , the total content of Ni in the second catalytic layer L2 is preferably 0.1 g/L to 30.0 g/L, more preferably 0.5 g/L to 25.0 g/L, even more preferably 1.0 g/L to 20.0 g/L, and particularly preferably 2.0 g/L to 20.0 g/L, in terms of oxide (NiO), per unit volume of the substrate 11.

 なお、第2触媒層L2は、Ni以外の触媒活性成分を含んでいてもよい。他の触媒活性成分としては、金(Au)、銀(Ag)等の貴金属元素、鉄(Fe)、銅(Cu)、コバルト(Co)、ジルコニウム(Zr)、タングステン(W)等の遷移金属元素、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)等の希土類金属元素等が挙げられるが、これらに特に限定されない。但し、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)等の白金族元素は、Niとの併用で触媒毒として作用して、NOx浄化性能の劣化等を引き起こすため、第2触媒層L2は実質的に白金族元素を含まないことが好ましい。ここで、本明細書において、第2触媒層L2が白金族元素を実質的に含まないとは、第2触媒層L2中に含まれる白金族元素の含有量が、第2触媒層L2の総量に対して金属換算で1.0質量%未満であることを意味し、好ましくは0.5質量%未満、さらに好ましくは0.1質量%未満である。第2触媒層L2に白金族元素を意図的に添加しない実施態様とすることもでき、このとき、第2触媒層L2中には白金族元素がまったく存在しない(0.0質量%)。 The second catalyst layer L2 may contain catalytically active components other than Ni. Examples of other catalytically active components include, but are not limited to, precious metal elements such as gold (Au) and silver (Ag), transition metal elements such as iron (Fe), copper (Cu), cobalt (Co), zirconium (Zr), and tungsten (W), and rare earth metal elements such as lanthanum (La), praseodymium (Pr), and neodymium (Nd). However, platinum group elements such as platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os) act as catalytic poisons when used in combination with Ni, causing deterioration of NOx purification performance, etc., so it is preferable that the second catalyst layer L2 does not substantially contain platinum group elements. Here, in this specification, the second catalyst layer L2 being substantially free of platinum group elements means that the content of platinum group elements contained in the second catalyst layer L2 is less than 1.0 mass% in terms of metal relative to the total amount of the second catalyst layer L2, preferably less than 0.5 mass%, and more preferably less than 0.1 mass%. It is also possible to adopt an embodiment in which platinum group elements are not intentionally added to the second catalyst layer L2, in which case there is no platinum group element at all (0.0 mass%) in the second catalyst layer L2.

 なお、第2触媒層L2は、上述した成分以外に、当業界で公知の触媒や助触媒、各種添加剤を含有していてもよい。各種添加剤としては、非イオン系界面活性剤やアニオン系界面活性剤等の分散安定化剤、pH調整剤、粘度調整剤等が挙げられるが、これらに特に限定されない。 In addition to the above-mentioned components, the second catalyst layer L2 may contain catalysts, co-catalysts, and various additives known in the art. Examples of the various additives include dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, and viscosity adjusters, but are not limited to these.

(第3触媒層L3)
 第3触媒層L3は、第3母材粒子と、この第3母材粒子上に少なくとも担持された白金族元素を含有する第3複合触媒粒子を少なくとも含む。
(Third catalyst layer L3)
The third catalyst layer L3 includes at least third matrix particles and third composite catalyst particles containing at least a platinum group element supported on the third matrix particles.

 第3母材粒子は、触媒活性成分である白金族元素を、表面に高分散に担持する担体粒子である。第3母材粒子としては、当業界で公知のものから適宜選択して用いることができ、その種類は特に限定されない。例えばγ-アルミナ、β-アルミナ、δ-アルミナ、η-アルミナ、θ-アルミナ等の酸化アルミニウム(アルミナ:Al23)、シリカ-アルミナ、シリカ-アルミナ-ジルコニア、シリカ-アルミナ-ボリア、セリアアルミナ、酸化セリウム(セリア:CeO2)、酸化ジルコニウム(ジルコニア:ZrO2)、セリアジルコニア系複合酸化物(CZ複合酸化物:CeO2/ZrO2)、酸化ケイ素(シリカ:SiO2)、酸化チタン(チタニア:TiO2)等の酸化物やこれらの酸化物を主成分とした複合酸化物等が挙げられるが、その種類は特に限定されない。これらは、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。また、β型やMFI型のゼオライトをはじめ、A、X、Y、MOR、CHA、SAPO等のゼオライト及び類縁体を用いることもできる。なお、これらの母材粒子は、1種を単独であるいは2種以上を任意の組み合わせ及び比率で用いることができる。第3母材粒子としては、酸素吸放出能(Oxygen Storage Capacity)を有する耐熱性無機酸化物であるセリアジルコニア系複合酸化物粒子と、高表面積を有する耐熱性無機酸化物であるアルミナ粒子が好ましく用いられる。 The third base particles are carrier particles that support the platinum group element, which is a catalytically active component, on the surface in a highly dispersed manner. The third base particles can be appropriately selected from those known in the art and are not particularly limited in type. For example, aluminum oxide (alumina: Al 2 O 3 ) such as γ-alumina, β-alumina, δ-alumina, η-alumina, and θ-alumina, silica-alumina, silica-alumina-zirconia, silica-alumina-boria, ceria-alumina, cerium oxide (ceria: CeO 2 ), zirconium oxide (zirconia: ZrO 2 ), ceria-zirconia composite oxide (CZ composite oxide: CeO 2 /ZrO 2 ), silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and other oxides and composite oxides mainly composed of these oxides are listed, but the type is not particularly limited. These may be composite oxides or solid solutions to which rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements have been added. Zeolites and analogues such as β-type and MFI-type zeolites, as well as A, X, Y, MOR, CHA, and SAPO, can also be used. These base particles can be used alone or in any combination and ratio of two or more types. As the third base particles, ceria-zirconia composite oxide particles, which are heat-resistant inorganic oxides having oxygen storage capacity, and alumina particles, which are heat-resistant inorganic oxides having a high surface area, are preferably used.

 セリアジルコニア系複合酸化物粒子としては、当業界で公知のものを用いることができ、その種類は特に限定されない。ここで、セリアジルコニア系複合酸化物とは、セリウム(Ce)及びジルコニウム(Zr)を含み、必要に応じてセリウム及びジルコニウム以外の他元素がドープされた、複合酸化物或いは固溶体を包含する概念として用いている。セリアジルコニア系複合酸化物は、耐熱性に優れる酸素吸放出材料として知られている。セリアジルコニア系複合酸化物粒子は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。セリアジルコニア系複合酸化物の具体例としては、セリウム-ジルコニウム複合酸化物、セリウム-ジルコニウム-セリウム及びジルコニウムを除く希土類元素複合酸化物、セリウム-ジルコニウム-遷移金属元素複合酸化物、アルミニウム-セリウム-ジルコニウム複合酸化物、セリウム-ジルコニウム-セリウム及びジルコニウムを除く希土類元素-遷移金属元素複合酸化物等が挙げられるが、これらに特に限定されない。 As the ceria-zirconia-based composite oxide particles, those known in the art can be used, and the type is not particularly limited. Here, the ceria-zirconia-based composite oxide is used as a concept that includes composite oxides or solid solutions containing cerium (Ce) and zirconium (Zr) and doped with elements other than cerium and zirconium as necessary. Ceria-zirconia-based composite oxides are known as oxygen absorbing and releasing materials with excellent heat resistance. The ceria-zirconia-based composite oxide particles can be used alone or in appropriate combination of two or more types. Specific examples of ceria-zirconia-based composite oxides include cerium-zirconium composite oxides, cerium-zirconium-rare earth element composite oxides excluding cerium and zirconium, cerium-zirconium-transition metal element composite oxides, aluminum-cerium-zirconium composite oxides, cerium-zirconium-rare earth element-transition metal element composite oxides excluding cerium and zirconium, etc., but are not particularly limited thereto.

 セリアジルコニア系複合酸化物粒子の平均粒子径は、所望性能に応じて適宜設定でき、特に限定されないが、D90粒子径が、1μm~30μmが好ましく、より好ましくは3μm~25μm、さらに好ましくは5μm~20μmである。 The average particle size of the ceria-zirconia composite oxide particles can be set appropriately depending on the desired performance, and is not particularly limited, but the D90 particle size is preferably 1 μm to 30 μm, more preferably 3 μm to 25 μm, and even more preferably 5 μm to 20 μm.

 第3触媒層L3中のセリアジルコニア系複合酸化物粒子の塗工量は、所望性能に応じて適宜設定でき、特に限定されないが、酸素吸放出性能と耐熱性、圧力損失の観点から、セリアジルコニア系複合酸化物粒子の固形分換算で、基材11の単位体積あたり、合計で5g/L~80g/Lが好ましく、10g/L~60g/Lがより好ましい。 The amount of the ceria-zirconia-based composite oxide particles applied in the third catalyst layer L3 can be appropriately set according to the desired performance and is not particularly limited, but from the viewpoints of oxygen absorption/release performance, heat resistance, and pressure loss, the total amount of the ceria-zirconia-based composite oxide particles, converted into solid content, is preferably 5 g/L to 80 g/L, and more preferably 10 g/L to 60 g/L, per unit volume of the substrate 11.

 アルミナ粒子としては、表面積の大きな、γ-アルミナ、δ-アルミナ、θ-アルミナ、ベーマイト等が好ましく用いられる。とりわけ、γ-アルミナはその他のアルミナに比べ1000℃以上での耐久性は劣るものの、通常1000℃以下で使用される排ガス浄化用触媒としては十分な耐熱性を有する上に、表面積がこれらすべてのアルミナの中で最も高い。したがって、アルミナ粒子としてはγ-アルミナが特に好ましい。アルミナ粒子は、ジルコニウム、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。アルミナ粒子は、1種を単独で、又は2種以上を任意の組み合わせ及び比率で用いることができる。 As alumina particles, γ-alumina, δ-alumina, θ-alumina, boehmite, etc., which have a large surface area, are preferably used. In particular, γ-alumina is inferior in durability at 1000°C or higher compared to other aluminas, but has sufficient heat resistance as an exhaust gas purification catalyst that is usually used at 1000°C or lower, and has the largest surface area of all these aluminas. Therefore, γ-alumina is particularly preferable as alumina particles. The alumina particles may be a composite oxide or solid solution to which rare earth elements such as zirconium, lanthanum, yttrium, transition metal elements, and alkaline earth metal elements have been added. The alumina particles can be used alone or in any combination and ratio of two or more types.

 アルミナ粒子の平均粒子径は、所望性能に応じて適宜設定でき、特に限定されないが、D90粒子径が、1μm~30μmが好ましく、より好ましくは3μm~25μm、さらに好ましくは5μm~20μmである。 The average particle size of the alumina particles can be set appropriately depending on the desired performance, and is not particularly limited, but the D90 particle size is preferably 1 μm to 30 μm, more preferably 3 μm to 25 μm, and even more preferably 5 μm to 20 μm.

 また、アルミナ粒子のBET比表面積は、特に限定されないが、母材粒子としての高い表面積を維持し、PGMを高分散状態で安定担持する観点から、30m2/g~300m2/gが好ましく、40m2/g~250m2/gがより好ましく、50m2/g~200m2/gがさらに好ましい。 In addition, the BET specific surface area of the alumina particles is not particularly limited, but from the viewpoint of maintaining a high surface area as the base particles and stably supporting the PGM in a highly dispersed state, it is preferably 30 m 2 /g to 300 m 2 /g, more preferably 40 m 2 /g to 250 m 2 /g, and even more preferably 50 m 2 /g to 200 m 2 /g.

 第3触媒層L3中のアルミナ粒子の塗工量は、所望性能に応じて適宜設定でき、特に限定されないが、耐熱性と圧力損失の観点から、アルミナ粒子の固形分換算で、基材11の単位体積あたり、合計で5g/L~80g/Lが好ましく、10g/L~60g/Lがより好ましい。 The amount of alumina particles applied in the third catalyst layer L3 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of heat resistance and pressure loss, the total amount of alumina particles, converted into solid content, per unit volume of the substrate 11 is preferably 5 g/L to 80 g/L, and more preferably 10 g/L to 60 g/L.

 なお、第3触媒層L3に含まれる第3母材粒子としては、上述したセリアジルコニア系複合酸化物粒子とアルミナ粒子以外の母材粒子(以降において、「他の母材粒子」と称する場合がある。)を含んでいてもよい。他の母材粒子としては、当業界で公知のものを用いることができ、その種類は特に限定されない。例えばシリカ-アルミナ、シリカ-アルミナ-ジルコニア、シリカ-アルミナ-ボリア、酸化セリウム(セリア:CeO2)、酸化ジルコニウム(ジルコニア:ZrO2)、酸化ケイ素(シリカ:SiO2)、酸化チタン(チタニア:TiO2)等の酸化物やこれらの酸化物を主成分とした複合酸化物等が挙げられるが、その種類は特に限定されない。これらは、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。また、他の母材粒子として、β型やMFI型のゼオライトをはじめ、A、X、Y、MOR、CHA、SAPO等のゼオライト及び類縁体を用いることもできる。なお、これら他の母材粒子は、1種を単独であるいは2種以上を任意の組み合わせ及び比率で用いることができる。 The third base particles contained in the third catalyst layer L3 may contain base particles other than the above-mentioned ceria-zirconia composite oxide particles and alumina particles (hereinafter, may be referred to as "other base particles"). As the other base particles, those known in the art may be used, and the type is not particularly limited. For example, oxides such as silica-alumina, silica-alumina-zirconia, silica-alumina-boria, cerium oxide (ceria: CeO 2 ), zirconium oxide (zirconia: ZrO 2 ), silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), etc., and composite oxides mainly composed of these oxides, etc., are listed, but the type is not particularly limited. These may be composite oxides or solid solutions to which rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements are added. Other base particles may also be used, such as β-type or MFI-type zeolites, as well as zeolites and their analogues, such as A, X, Y, MOR, CHA, SAPO, etc. These other base particles may be used alone or in any combination and ratio of two or more types.

 第3触媒層L3の触媒活性成分としては、白金族元素が必須とされる。白金族元素としては、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)等が挙げられる。白金族元素は、1種を単独であるいは2種以上を任意の組み合わせ及び比率で用いることができる。例えばPt及びRhは、主として、排ガス中のHCやCO等を酸化浄化する、あるいは燃料希薄動作期間中にNOxを酸化変換する、また燃料過剰動作期間中にNOxを還元浄化するための触媒活性成分として使用される。 The platinum group elements are essential catalytically active components of the third catalyst layer L3. Examples of platinum group elements include platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os). The platinum group elements can be used alone or in any combination and ratio of two or more. For example, Pt and Rh are primarily used as catalytically active components for oxidizing and purifying HC and CO in exhaust gas, or for oxidizing and converting NOx during lean fuel operation, and for reducing and purifying NOx during excess fuel operation.

 例えば第3触媒層L3は、白金族元素としてRhのみ含んでいてもよく、Rh以外の白金族元素を含んでいてもよい。例えば第3触媒層L3は、Rh及びPtを含んでいてもよい。なお、この場合、Pt及びRhは、上述した第3母材粒子上に担持されていればよいが、浄化性能の観点から、Ptはセリアジルコニア系複合酸化物粒子上に担持されていることが好ましく、Rhはアルミナ粒子上に担持されていることが好ましい。また、白金族元素は、他の母材粒子上にも担持されていてもよい。なお、第3触媒層L3中の白金族元素、さらには他の触媒活性成分は、金属(金属状態)で存在していることが好ましいが、外部環境等に応じてその一部が酸化物となっていてもよい。 For example, the third catalyst layer L3 may contain only Rh as a platinum group element, or may contain platinum group elements other than Rh. For example, the third catalyst layer L3 may contain Rh and Pt. In this case, Pt and Rh may be supported on the above-mentioned third base material particles, but from the viewpoint of purification performance, Pt is preferably supported on ceria-zirconia composite oxide particles, and Rh is preferably supported on alumina particles. The platinum group element may also be supported on other base material particles. The platinum group element and other catalytically active components in the third catalyst layer L3 are preferably present as metals (metallic state), but a part of them may be in the form of oxides depending on the external environment, etc.

 第3触媒層L3中のPtの総含有量は、所望性能に応じて適宜設定でき、特に限定されないが、酸化反応と還元反応のバランスの観点から、金属(Pt)換算で、基材11の単位体積あたり、0.01g/L~15.00g/Lが好ましく、0.05g/L~12.00g/Lがより好ましく、0.10g/L~10.00g/Lがさらに好ましい。 The total content of Pt in the third catalyst layer L3 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of the balance between the oxidation reaction and the reduction reaction, the total content of Pt, calculated as metal (Pt), is preferably 0.01 g/L to 15.00 g/L per unit volume of the substrate 11, more preferably 0.05 g/L to 12.00 g/L, and even more preferably 0.10 g/L to 10.00 g/L.

 第3触媒層L3中のRhの総含有量は、所望性能に応じて適宜設定でき、特に限定されないが、酸化反応と還元反応のバランスの観点から、金属(Rh)換算で、基材11の単位体積あたり、0.01g/L~5.00g/Lが好ましく、0.03g/L~4.00g/Lがより好ましく、0.05g/L~3.00g/Lがさらに好ましい。 The total content of Rh in the third catalyst layer L3 can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of the balance between the oxidation reaction and the reduction reaction, the total content of Rh in metal (Rh) equivalent is preferably 0.01 g/L to 5.00 g/L per unit volume of the substrate 11, more preferably 0.03 g/L to 4.00 g/L, and even more preferably 0.05 g/L to 3.00 g/L.

 なお、第3触媒層L3は、白金族元素としてPt及びRhのみ含んでいてもよく、Pt及びRh以外の白金族元素を含んでいてもよい。他の白金族元素としては、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)等が挙げられる。また、第3触媒層L3は、白金族元素以外の触媒活性成分(以降において、「他の触媒活性成分と称する場合がある。)を含んでいてもよい。他の触媒活性成分としては、金(Au)、銀(Ag)等の貴金属元素、鉄(Fe)、銅(Cu)、コバルト(Co)、ジルコニウム(Zr)、タングステン(W)等の遷移金属元素、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)等の希土類金属元素等が挙げられるが、これらに特に限定されない。 The third catalyst layer L3 may contain only Pt and Rh as platinum group elements, or may contain platinum group elements other than Pt and Rh. Examples of other platinum group elements include palladium (Pd), iridium (Ir), ruthenium (Ru), and osmium (Os). The third catalyst layer L3 may also contain catalytically active components other than platinum group elements (hereinafter, these may be referred to as "other catalytically active components"). Examples of other catalytically active components include precious metal elements such as gold (Au) and silver (Ag), transition metal elements such as iron (Fe), copper (Cu), cobalt (Co), zirconium (Zr), and tungsten (W), and rare earth metal elements such as lanthanum (La), praseodymium (Pr), and neodymium (Nd), but are not limited to these.

 但し、ニッケル(Ni)は、白金族元素との併用で触媒毒として作用して、NOx浄化性能の劣化等を引き起こすため、第3触媒層L3は実質的にNiを含まないことが好ましい。ここで、本明細書において、第3触媒層L3がNiを実質的に含まないとは、第3触媒層L3中に含まれるNiの含有量が、第3触媒層L3の総量に対して酸化物換算(NiO)で1.0質量%未満であることを意味し、好ましくは0.5質量%未満、さらに好ましくは0.1質量%未満である。第3触媒層L3にNiを意図的に添加しない実施態様とすることもでき、このとき、第3触媒層L3中にはNiがまったく存在しない(酸化物換算(NiO)で0.0質量%)。 However, nickel (Ni) acts as a catalyst poison when used in combination with platinum group elements, causing deterioration of NOx purification performance, and so it is preferable that the third catalyst layer L3 does not substantially contain Ni. Here, in this specification, the third catalyst layer L3 does not substantially contain Ni means that the content of Ni contained in the third catalyst layer L3 is less than 1.0 mass% in oxide equivalent (NiO) with respect to the total amount of the third catalyst layer L3, preferably less than 0.5 mass%, and more preferably less than 0.1 mass%. It is also possible to adopt an embodiment in which Ni is not intentionally added to the third catalyst layer L3, in which case there is no Ni at all in the third catalyst layer L3 (0.0 mass% in oxide equivalent (NiO)).

 また、第3触媒層L3と第2触媒層L2とのより高い密着強度を得るため、必要に応じて、第3触媒層L3に当業界で公知のバインダー成分を含有させてもよい。バインダー成分としては、ベーマイト、アルミナゾル、チタニアゾル、シリカゾル、ジルコニアゾル等の種々のゾルが挙げられるが、これらに特に限定されない。また、硝酸アルミニウム、酢酸アルミニウム、硝酸チタン、酢酸チタン、硝酸ジルコニウム、酢酸ジルコニウム等の可溶性の塩もバインダーとして使用することができる。その他、酢酸、硝酸、塩酸、硫酸等の酸も、バインダーとして使用することができる。なお、バインダーの使用量は、特に限定されず、十分な密着強度が得られる程度の量であれば構わない。 Furthermore, in order to obtain a higher adhesive strength between the third catalyst layer L3 and the second catalyst layer L2, the third catalyst layer L3 may contain a binder component known in the art, if necessary. Examples of binder components include various sols such as boehmite, alumina sol, titania sol, silica sol, and zirconia sol, but are not limited to these. Soluble salts such as aluminum nitrate, aluminum acetate, titanium nitrate, titanium acetate, zirconium nitrate, and zirconium acetate can also be used as binders. In addition, acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid can also be used as binders. The amount of binder used is not particularly limited, and may be any amount that provides sufficient adhesive strength.

 なお、第3触媒層L3は、上述した成分以外に、当業界で公知の触媒や助触媒、各種添加剤を含有していてもよい。各種添加剤としては、非イオン系界面活性剤やアニオン系界面活性剤等の分散安定化剤、pH調整剤、粘度調整剤等が挙げられるが、これらに特に限定されない。 In addition to the above-mentioned components, the third catalyst layer L3 may contain catalysts, co-catalysts, and various additives known in the art. Examples of various additives include dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, and viscosity adjusters, but are not limited to these.

 ここで、本実施形態の排ガス浄化用触媒100,200は、その触媒層が、第1触媒層L1と第2触媒層L2と第3触媒層L3とがこの順に積層された第1積層構造、又は、第2触媒層L2と第1触媒層L1と第3触媒層L3とがこの順に積層された第21積層構造、を有している。本発明者らの知見によれば、NH3の排出削減のために、PGMと共に遷移金属を使用することが考えられたが、遷移金属はPGMを含む触媒材料にとって触媒毒となるため、単にPGMと共に遷移金属を用いると、NOx浄化性能の劣化等を引き起こす。本実施形態においては、このような多層構造を採用し、PGMを含有する触媒層とは別個にNiを含む触媒層を設けることにより、PGMとNiの併用による浄化性能の劣化を抑制することができる。また、PGMを含有する触媒層とは別個にNiを含む触媒層を設けることにより、例えば900℃以上の高温に曝された場合でも、隣接する触媒層へのNiの拡散を抑制することができる。しかも、本実施形態の好適態様では、Niとアルミナ粒子を含有する触媒層を設けることにより、燃料中に含まれ得る極少量の硫黄分による硫黄化合物スメルの発生も抑制できる。これにより、三元触媒としての触媒性能に優れるのみならず、NH3浄化率にも優れ且つ硫黄化合物スメルの発生を低減することができる。 Here, the catalyst layer of the exhaust gas purification catalyst 100, 200 of this embodiment has a first stacked structure in which the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 are stacked in this order, or a 21st stacked structure in which the second catalyst layer L2, the first catalyst layer L1, and the third catalyst layer L3 are stacked in this order. According to the knowledge of the inventors, it was considered to use a transition metal together with PGM in order to reduce the emission of NH 3 , but since the transition metal is a catalyst poison for the catalyst material containing PGM, simply using the transition metal together with PGM causes deterioration of NOx purification performance, etc. In this embodiment, by adopting such a multilayer structure and providing a catalyst layer containing Ni separately from the catalyst layer containing PGM, it is possible to suppress the deterioration of purification performance due to the combined use of PGM and Ni. In addition, by providing a catalyst layer containing Ni separately from the catalyst layer containing PGM, it is possible to suppress the diffusion of Ni to the adjacent catalyst layer even when exposed to high temperatures of, for example, 900°C or higher. Moreover, in a preferred embodiment of the present invention, the catalyst layer containing Ni and alumina particles is provided, which can suppress the generation of sulfur compound smell caused by the very small amount of sulfur that may be contained in the fuel. This not only provides excellent catalytic performance as a three-way catalyst, but also provides an excellent NH3 purification rate and reduces the generation of sulfur compound smell.

 また、本実施形態の排ガス浄化用触媒100,200は、第1触媒層L1と第2触媒層L2と第3触媒層L3の積層構造を最小の触媒組成物構成単位とするもので、このような層構成とすることが、作業効率上だけでなくコスト上も望ましい。必要に応じて、第1触媒層L1、第2触媒層L2、第3触媒層L3は、基材11上の一部のみにコート(ゾーンコート)されていてもよい。 In addition, the exhaust gas purification catalysts 100, 200 of this embodiment have a laminated structure of the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 as the smallest catalyst composition unit, and such a layer structure is desirable not only in terms of work efficiency but also in terms of cost. If necessary, the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 may be coated (zone coated) only on a portion of the substrate 11.

 上述した層構成を有する排ガス浄化用触媒100,200は、当業界で公知の方法により製造することができ、その製造方法は特に限定されない。例えば、上述したセラミックモノリス担体等の基材11上に、常法にしたがって各触媒層L1,L2,L3を所定の配列で順次設けることで製造可能である。例えば、基材11の表面に、各触媒層L1,L2,L3の水又は水系媒体のスラリー状混合物を順次被覆(コート)させることで、本実施形態の排ガス浄化用触媒100,200を得ることができる。基材11へのスラリー状混合物の付与方法は、常法にしたがって行えばよく、特に限定されない。各種公知のコーティング法、ウォッシュコート法、ゾーンコート法を適用することができる。ウォッシュコート等による塗工は、2回以上繰り返すことができる。また、乾燥工程前の塗工を2回以上繰り返してもよく、乾燥工程までを2回以上繰り返してもよい。そして、スラリー状混合物の付与後においては、常法にしたがい乾燥や焼成を行うことができる。なお、乾燥温度は、特に限定されないが、例えば50~250℃が好ましく、80~230℃がより好ましい。また、焼成温度は、特に限定されないが、例えば300~700℃が好ましく、400~600℃がより好ましい。このとき用いる加熱手段については、特に限定されないが、例えば電気炉やガス炉等の公知の加熱手段によって行うことができる。 The exhaust gas purification catalyst 100, 200 having the above-mentioned layer structure can be manufactured by a method known in the art, and the manufacturing method is not particularly limited. For example, it can be manufactured by sequentially providing each catalyst layer L1, L2, L3 in a predetermined arrangement on a substrate 11 such as the above-mentioned ceramic monolith carrier according to a conventional method. For example, the surface of the substrate 11 is sequentially coated with a slurry mixture of water or an aqueous medium for each catalyst layer L1, L2, L3, to obtain the exhaust gas purification catalyst 100, 200 of this embodiment. The method of applying the slurry mixture to the substrate 11 may be performed according to a conventional method, and is not particularly limited. Various known coating methods, wash coat methods, and zone coat methods can be applied. Coating by wash coat or the like can be repeated two or more times. In addition, coating before the drying process may be repeated two or more times, and the drying process may be repeated two or more times. After the application of the slurry mixture, drying and firing can be performed according to conventional methods. The drying temperature is not particularly limited, but is preferably 50 to 250°C, and more preferably 80 to 230°C. The baking temperature is not particularly limited, but is preferably 300 to 700°C, and more preferably 400 to 600°C. The heating means used in this step is not particularly limited, but can be any known heating means such as an electric furnace or gas furnace.

 スラリー状混合物の調製時に用いる水又は水系媒体は、スラリー中で各成分が均一に分散できる量を用いればよい。このとき、必要に応じてpH調整のための酸や塩基を配合したり、粘性の調整や分散性向上のための分散材や界面活性剤や分散用樹脂等を配合したりすることができる。スラリーの混合方法としては、ボールミル等による粉砕混合等、公知の粉砕方法又は混合方法を適用することができる。 The amount of water or aqueous medium used when preparing the slurry mixture should be sufficient to uniformly disperse each component in the slurry. If necessary, an acid or base can be added to adjust the pH, or a dispersant, surfactant, or dispersion resin can be added to adjust the viscosity or improve dispersibility. The slurry can be mixed using any known grinding or mixing method, such as grinding and mixing using a ball mill.

 ここで、スラリー状混合物の調製前或いは調製前時には、均一分散させる又は所望の粒度を得る等を目的として、ボールミルやビーズミル等による、乾式或いは湿式の粉砕処理、混合処理、又は分散処理を行うことができる。これらの処理条件は、所望性能に応じて適宜設定すればよく、特に限定されないが、例えば、必要成分を担持したアルミナ粒子のD90粒子径が好ましくは1μm~30μm、より好ましくは2μm~25μm、さらに好ましくは3μm~20μmとなるようにすることができる。 Here, before or at the time of preparation of the slurry mixture, a dry or wet grinding process, mixing process, or dispersion process can be performed using a ball mill, bead mill, or the like, for the purpose of uniformly dispersing or obtaining the desired particle size. The conditions for these processes can be appropriately set according to the desired performance and are not particularly limited, but for example, the D90 particle size of the alumina particles carrying the necessary components can be preferably 1 μm to 30 μm, more preferably 2 μm to 25 μm, and even more preferably 3 μm to 20 μm.

 第1触媒層L1、第2触媒層L2、第3触媒層L3の総塗工量(但し、各触媒層L1,L2,L3中に含まれる白金族元素を除く。)は、所望性能に応じて適宜設定でき、特に限定されないが、触媒性能やコスト等の観点から、基材11の容積あたり、合計で100g/L以上500g/L以下、合計で150g/L以上400g/L以下が好ましく、より好ましくは合計で180g/L以上300g/L以下である。 The total coating amount of the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 (excluding the platinum group elements contained in each catalyst layer L1, L2, and L3) can be set appropriately according to the desired performance and is not particularly limited, but from the viewpoint of catalyst performance, cost, etc., it is preferably 100 g/L or more and 500 g/L or less in total, 150 g/L or more and 400 g/L or less in total, and more preferably 180 g/L or more and 300 g/L or less in total per volume of the substrate 11.

 本実施形態の排ガス浄化用触媒100,200は、排ガス排出物の処理のための1つ以上の追加の成分を含む統合された排ガス浄化装置及び排ガス浄化システムにおいて用いることができる。例えば、ガソリンエンジン等の内燃機関の排ガス浄化用触媒、とりわけ自動車の排ガス浄化用三元触媒として有用である。本実施形態の排ガス浄化用触媒100,200は、各種エンジンの排気系に配置することができる。設置個数及び設置箇所は、排ガスの規制に応じて適宜設計できる。例えば、排ガスの規制が厳しい場合には、設置箇所を2以上とし、設置箇所は排気系の直下触媒の後方の床下位置に配置することができる。いずれの場合であっても、各々の触媒は、隣接して配置されていてもよく、また、離間して配置されていてもよい。 The exhaust gas purification catalyst 100, 200 of this embodiment can be used in an integrated exhaust gas purification device and exhaust gas purification system that includes one or more additional components for treating exhaust gas emissions. For example, it is useful as an exhaust gas purification catalyst for internal combustion engines such as gasoline engines, particularly as a three-way catalyst for purifying exhaust gas in automobiles. The exhaust gas purification catalyst 100, 200 of this embodiment can be arranged in the exhaust system of various engines. The number and locations of the catalysts can be appropriately designed according to exhaust gas regulations. For example, when exhaust gas regulations are strict, the number of catalysts to be installed can be two or more, and the installation locations can be located under the floor behind the catalyst directly below the exhaust system. In either case, the catalysts may be arranged adjacent to each other or spaced apart.

 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明するが、本発明は、これらによりなんら限定されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。また、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における好ましい上限値又は好ましい下限値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 The features of the present invention are explained in more detail below with reference to examples and comparative examples, but the present invention is not limited by these in any way. In other words, the materials, amounts used, ratios, processing contents, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. In addition, the various manufacturing conditions and evaluation result values in the following examples are meant as preferred upper or lower limit values in the implementation of the present invention, and the preferred range may be a range defined by a combination of the above-mentioned upper or lower limit values and the values of the following examples or the values of the examples themselves.

(実施例1)
第1触媒層L1
 γ-アルミナ(BET比表面積150m2/g、平均粒子径D90=50μm)、並びに、セリア系複合酸化物(BET比表面積150m2/g、平均粒子径D90=25μm)に酢酸バリウム水溶液を含侵し、表面にBaを担持させ、110℃で乾燥し、720℃で焼成することで、Ba担持第1母材粒子を得た。得られた複合粒子にヘキサヒドロキシ白金酸水溶液を含浸し、白金を粒子の表面に担持し、第1複合触媒粒子であるPt/Ba担持第1母材粒子を得た。得られたPt/Ba担持第1母材粒子85質量部と、バインダー15質量部とを混合し、純水で希釈し、湿式ミリング法により混練し、第1触媒層L1用のスラリー状混合物を得た。
 得られた第1触媒層L1用のスラリー状混合物を、基材11であるハニカムフロースルー型コージェライト担体にウォッシュコート法で塗工し、200℃で30分乾燥させた後、大気雰囲気下、500℃で1時間焼成することで、基材11上に第1触媒層L1(塗工量:基材11の単位体積あたり、Pt:0.6g/L、Ptを除く第1触媒層の成分:130g/L)を形成した。
Example 1
First catalyst layer L1
γ-alumina (BET specific surface area 150 m 2 /g, average particle diameter D 90 =50 μm) and ceria-based composite oxide (BET specific surface area 150 m 2 /g, average particle diameter D 90 =25 μm) were impregnated with a barium acetate aqueous solution to support Ba on the surface, and the resultant was dried at 110° C. and fired at 720° C. to obtain Ba-supported first base material particles. The obtained composite particles were impregnated with a hexahydroxyplatinic acid aqueous solution to support platinum on the particle surface, thereby obtaining Pt/Ba-supported first base material particles, which are first composite catalyst particles. 85 parts by mass of the obtained Pt/Ba-supported first base material particles and 15 parts by mass of binder were mixed, diluted with pure water, and kneaded by wet milling to obtain a slurry mixture for the first catalyst layer L1.
The obtained slurry mixture for the first catalyst layer L1 was applied to a honeycomb flow-through type cordierite carrier, which was the substrate 11, by a washcoat method, and then dried at 200°C for 30 minutes. Thereafter, the mixture was fired at 500°C for 1 hour in an air atmosphere, thereby forming a first catalyst layer L1 (coating amount: per unit volume of substrate 11, Pt: 0.6 g/L, components of the first catalyst layer excluding Pt: 130 g/L) on the substrate 11.

第2触媒層L2
 γ-アルミナ粉末(BET比表面積150m2/g、平均粒子径D90=50μm)82質量部と、酸化ニッケル粉末(平均粒子径D90=20μm)10質量部と、ベーマイト8質量部を混合し、純水で希釈し、湿式ミリング法により混錬し、第2触媒層L2用のスラリー状混合物を得た。
 得られた第2触媒層L2用のスラリー状混合物を、第1触媒層L1が形成された基材11の第1触媒層L1上にウォッシュコート法で塗工し、200℃で30分乾燥させた後、大気雰囲気下、500℃で1時間焼成することで、第1触媒層L1上に第2触媒層L2(塗工量:基材11の単位体積あたり、Ni:3.0g/L、Niを含む第2触媒層の成分:40g/L)を形成した。
Second catalyst layer L2
82 parts by mass of γ-alumina powder (BET specific surface area 150 m2 /g, average particle diameter D90 = 50 μm), 10 parts by mass of nickel oxide powder (average particle diameter D90 = 20 μm), and 8 parts by mass of boehmite were mixed, diluted with pure water, and kneaded by a wet milling method to obtain a slurry mixture for the second catalyst layer L2.
The obtained slurry mixture for the second catalyst layer L2 was applied by a washcoat method onto the first catalyst layer L1 of the substrate 11 on which the first catalyst layer L1 had been formed, and then dried at 200° C. for 30 minutes. Thereafter, the mixture was baked at 500° C. for 1 hour in an atmospheric air to form a second catalyst layer L2 (coating amount: per unit volume of substrate 11, Ni: 3.0 g/L, components of the second catalyst layer containing Ni: 40 g/L) on the first catalyst layer L1.

第3触媒層L3
 第3母材粒子としてのセリアジルコニア系複合酸化物粒子(CeO2:30質量%、ZrO2他:70質量%、BET比表面積:80m2/g、平均粒子径D90=30μm)にヘキサヒドロキシ白金酸水溶液を含浸し、白金をセリアジルコニア系複合酸化物粒子の表面に担持し、第3複合触媒粒子であるPt担持セリアジルコニア系複合酸化物粒子を得た。
 また、第3母材粒子としてのアルミナ粒子(BET比表面積150m2/g、平均粒子径D90=50μm)に硝酸ロジウム水溶液を含浸し、ロジウムをアルミナ粒子の表面に担持し、第3複合触媒粒子であるRh担持アルミナ粒子を得た。
 得られたPt担持セリアジルコニア系複合酸化物粒子50質量部と、Rh担持アルミナ粒子50質量部とを混合し、純水で希釈し、湿式ミリング法により混錬し、第3触媒層L3用のスラリー状混合物を得た。
 得られた第3触媒層L3用のスラリー状混合物を、第1触媒層L1及び第2触媒層L2が形成された基材11の第2触媒層L2上にウォッシュコート法で塗工し、200℃で30分乾燥させた後、大気雰囲気下、500℃で1時間焼成することで、第2触媒層L2上に第3触媒層L3(塗工量:基材11の単位体積あたり、Pt:0.3g/L、Rh:0.1g/L、PtとRhを除く第3触媒層の成分:80g/L)を形成した。
Third catalyst layer L3
Ceria-zirconia-based composite oxide particles ( CeO2 : 30 mass%, ZrO2 and others: 70 mass%, BET specific surface area: 80 m2 /g, average particle diameter D90 = 30 μm) serving as the third base particles were impregnated with an aqueous solution of hexahydroxyplatinic acid to support platinum on the surface of the ceria-zirconia-based composite oxide particles, thereby obtaining Pt-supported ceria-zirconia-based composite oxide particles, which are the third composite catalyst particles.
Alumina particles (BET specific surface area 150 m 2 /g, average particle diameter D 90 =50 μm) serving as third base particles were impregnated with an aqueous rhodium nitrate solution to support rhodium on the surface of the alumina particles, thereby obtaining Rh-supported alumina particles serving as third composite catalyst particles.
50 parts by mass of the obtained Pt-supported ceria-zirconia-based composite oxide particles and 50 parts by mass of Rh-supported alumina particles were mixed, diluted with pure water, and kneaded by a wet milling method to obtain a slurry mixture for the third catalyst layer L3.
The obtained slurry mixture for the third catalyst layer L3 was applied by a wash coat method onto the second catalyst layer L2 of the substrate 11 on which the first catalyst layer L1 and the second catalyst layer L2 were formed, and then dried at 200° C. for 30 minutes. Thereafter, the mixture was baked at 500° C. for 1 hour in an atmospheric air to form a third catalyst layer L3 (coating amount: per unit volume of substrate 11, Pt: 0.3 g/L, Rh: 0.1 g/L, components of the third catalyst layer excluding Pt and Rh: 80 g/L) on the second catalyst layer L2.

 これにより、基材11上に、第1触媒層L1、第2触媒層L2、及び第3触媒層L3がこの順に設けられた、触媒層が3層構成を有する、実施例1の排ガス浄化用触媒を得た。 As a result, the exhaust gas purification catalyst of Example 1 was obtained, in which the first catalyst layer L1, the second catalyst layer L2, and the third catalyst layer L3 were provided in this order on the substrate 11, and the catalyst layer had a three-layer structure.

(実施例2~4及び比較例1)
 Niの含有量を表2に示すとおりに変更する以外は、実施例1と同様に行い、実施例2~4及び比較例1の排ガス浄化用触媒を得た。
(Examples 2 to 4 and Comparative Example 1)
The same procedure as in Example 1 was carried out except that the Ni content was changed as shown in Table 2, to obtain exhaust gas purifying catalysts of Examples 2 to 4 and Comparative Example 1.

(比較例2)
 第2触媒層L2の形成を省略する以外は、実施例1と同様に行った。
 これにより、基材11上に、第1触媒層L1及び第3触媒層L3がこの順に設けられた、触媒層が2層構成を有する、比較例2の排ガス浄化用触媒を得た。
(Comparative Example 2)
The same procedure as in Example 1 was carried out except that the formation of the second catalyst layer L2 was omitted.
In this way, an exhaust gas purifying catalyst of Comparative Example 2 was obtained, in which the first catalyst layer L1 and the third catalyst layer L3 were provided in this order on the substrate 11, and the catalyst layer had a two-layer structure.

(比較例3)
 第1触媒層L1の形成時に、第1母材粒子と酸化ニッケル粉末を混合させる以外は、実施例1と同様にして第1触媒層L1用の対照用スラリー状混合物を得た。
 第1触媒層L1用のスラリー状混合物に代えて上記の対照用スラリー状混合物を用い、さらに第2触媒層L2の形成を省略する以外は、実施例1と同様に行った。
 これにより、基材11上に、第1触媒層L1及び第3触媒層L3がこの順に設けられた、触媒層が2層構成を有する、比較例3の排ガス浄化用触媒を得た。
(Comparative Example 3)
A control slurry mixture for the first catalyst layer L1 was obtained in the same manner as in Example 1, except that the first base particles and the nickel oxide powder were mixed when the first catalyst layer L1 was formed.
The same procedure as in Example 1 was repeated, except that the above control slurry mixture was used instead of the slurry mixture for the first catalyst layer L1, and further the formation of the second catalyst layer L2 was omitted.
In this way, an exhaust gas purifying catalyst of Comparative Example 3 was obtained, in which the first catalyst layer L1 and the third catalyst layer L3 were provided in this order on the substrate 11, and the catalyst layer had a two-layer structure.

(比較例4~6)
 Niの含有量を表2に示すとおりに変更する以外は、比較例3と同様に行い、比較例4~6の排ガス浄化用触媒を得た。
(Comparative Examples 4 to 6)
Except for changing the Ni content as shown in Table 2, the same procedure as in Comparative Example 3 was carried out to obtain exhaust gas purifying catalysts of Comparative Examples 4 to 6.

(実施例5)
 触媒層の形成順序を、第2触媒層L2、第1触媒層L1、及び第3触媒層L3の順に変更する以外は、実施例3と同様に行い、基材11上に、第2触媒層L2、第1触媒層L1、及び第3触媒層L3がこの順に設けられた、触媒層が3層構成を有する、実施例5の排ガス浄化用触媒を得た。
Example 5
The same procedure as in Example 3 was performed except that the order of forming the catalyst layers was changed to the second catalyst layer L2, the first catalyst layer L1, and the third catalyst layer L3, and an exhaust gas purifying catalyst of Example 5 was obtained in which the catalyst layers had a three-layer structure in which the second catalyst layer L2, the first catalyst layer L1, and the third catalyst layer L3 were provided in this order on the substrate 11.

耐久処理及び被毒処理
 次いで、得られた各排ガス浄化用触媒TWC2を個別にコンバーターに格納した。そして、ガソリンエンジンの排気口の後流に特許第7026530号の実施例に記載の触媒層が3層構造の一体構造型積層触媒をTWC1として配置し、ガソリンエンジンの排気口のさらに後流側、TWC1の後段に、TWC2をそれぞれ配置した。その後、定常、減速、加速のサイクルを100時間繰り返した。温度は定常時に前段TWC1が950℃となるよう設定し、熱耐久処理を行った。上記熱処理ののち、被毒処理を行った。被毒処理はPが微量含まれたオイルをガソリンと混合し、定常、減速、加速のサイクルを50時間繰り返した。温度は定常時700℃となるよう設定し、耐久処理後及び被毒処理後の実施例1~5及び比較例1~6の排ガス浄化用触媒をそれぞれ得た。なお、耐久処理及び被毒処理におけるPの総通過量はP25換算で約10gであった。
Durability treatment and poisoning treatment Next, each of the obtained exhaust gas purification catalysts TWC2 was individually stored in a converter. Then, an integrally structured laminated catalyst having a three-layered catalyst layer described in the examples of Japanese Patent No. 7026530 was arranged as TWC1 downstream of the exhaust port of the gasoline engine, and TWC2 was arranged further downstream of the exhaust port of the gasoline engine, downstream of TWC1. Then, a cycle of steady state, deceleration, and acceleration was repeated for 100 hours. The temperature was set so that the front-stage TWC1 was 950°C at steady state, and a thermal durability treatment was performed. After the above heat treatment, a poisoning treatment was performed. In the poisoning treatment, oil containing a trace amount of P was mixed with gasoline, and a cycle of steady state, deceleration, and acceleration was repeated for 50 hours. The temperature was set to 700°C at steady state, and the exhaust gas purification catalysts of Examples 1 to 5 and Comparative Examples 1 to 6 after the durability treatment and the poisoning treatment were obtained, respectively. The total amount of P passing through the durability treatment and the poisoning treatment was about 10 g calculated as P 2 O 5 .

〔NH3浄化率の測定〕
 耐久処理及び被毒処理後の排ガス浄化用触媒をそれぞれ用いて、NH3浄化率を測定した。ここでは、1.5L直噴ターボエンジンを用い、上記と同様にガソリンエンジンの排気口の後流にTWC1を配置し、TWC1の後段にTWC2をそれぞれ配置し、LA4(FTP75)モード(コールドスタート)及びUS06モード(ホットスタート)に準拠して測定を行った。ここでは、エンジン直下に排ガス浄化用触媒が配置された1.5Lガソリンエンジンを用いて、エンジンダイナモメータを使って評価を実施した。そして、排ガス浄化用触媒TWC2の流入側ガス(TWC1の排出側ガス)とTWC2排出側ガスとをサンプリングしてガス分析をそれぞれ行い、その差からTWC2のLA4モード全域のNH3浄化率、並びに、TWC2のUS06モード200~350sec区間のNH3浄化率をそれぞれ算出した。なお、分析計として岩田電業社製のFT-IRを用い、測温位置は、排ガス浄化用触媒のフロント側から1インチの触媒層内とした。
[Measurement of NH3 purification rate]
The NH 3 purification rate was measured using the exhaust gas purification catalysts after durability treatment and poisoning treatment. Here, a 1.5L direct injection turbo engine was used, and TWC1 was arranged downstream of the exhaust port of the gasoline engine as described above, and TWC2 was arranged downstream of TWC1, and measurements were performed in accordance with LA4 (FTP75) mode (cold start) and US06 mode (hot start). Here, an evaluation was performed using an engine dynamometer using a 1.5L gasoline engine in which an exhaust gas purification catalyst was arranged directly under the engine. Then, gas analysis was performed by sampling the inlet gas (exhaust gas of TWC1) of the exhaust gas purification catalyst TWC2 and the exhaust gas of TWC2, and the NH 3 purification rate of TWC2 in the entire LA4 mode and the NH 3 purification rate of TWC2 in the 200 to 350 sec section of US06 mode were calculated from the difference. The analyzer used was an FT-IR made by Iwata Denko Co., Ltd., and the temperature was measured at a position 1 inch from the front side of the exhaust gas purification catalyst within the catalyst layer.

〔NOx浄化率の測定〕
 耐久処理及び被毒処理後の排ガス浄化用触媒をそれぞれ用いて、NOx浄化率を測定した。ここでは、1.5L直噴ターボエンジンを用い、上記と同様にガソリンエンジンの排気口の後流にTWC1を配置し、TWC1の後段にTWC2をそれぞれ配置し、LA4(FTP75)モード(コールドスタート)に準拠して測定を行った。ここでは、エンジン直下に排ガス浄化用触媒が配置された1.5Lガソリンエンジンを用いて、エンジンダイナモメータを使って評価を実施した。そして、排ガス浄化用触媒TWC2の流入側ガス(TWC1の排出側ガス)とTWC2の排出側ガスとをサンプリングしてガス分析をそれぞれ行い、その差からTWC2のLA4モード全域NOx浄化率をそれぞれ算出した。なお、分析計としてHORIBA社製のMEXA-ONEを用い、測温位置は、排ガス浄化用触媒のフロント側から1インチの触媒層内とした。
[Measurement of NOx purification rate]
The NOx purification rate was measured using the exhaust gas purification catalysts after durability treatment and poisoning treatment. Here, a 1.5L direct injection turbo engine was used, and TWC1 was arranged downstream of the exhaust port of the gasoline engine as described above, and TWC2 was arranged downstream of TWC1, and measurements were performed in accordance with the LA4 (FTP75) mode (cold start). Here, an evaluation was performed using an engine dynamometer using a 1.5L gasoline engine in which an exhaust gas purification catalyst was arranged directly under the engine. Then, the inlet gas of the exhaust gas purification catalyst TWC2 (the exhaust gas of TWC1) and the exhaust gas of TWC2 were sampled and gas analysis was performed, and the LA4 mode full-range NOx purification rate of TWC2 was calculated from the difference. Note that a MEXA-ONE manufactured by HORIBA was used as an analyzer, and the temperature measurement position was set to within the catalyst layer 1 inch from the front side of the exhaust gas purification catalyst.

〔硫黄化合物スメルのラボ測定〕
 耐久処理及び被毒処理を行っていないFreshの排ガス浄化用触媒TWC2をそれぞれ用いて、硫黄化合物スメルを測定した。ここでは、管状炉と昇温脱離装置を用いて、S成分の吸着と脱離の試験を実施した。まず管状炉を用いて、所定の量のS成分を触媒に流通させ、S成分を触媒に吸着させた。その後、S成分を吸着させた触媒を乳鉢等で粉砕し、昇温脱離装置(TPD Type-R)にセットして、還元ガス雰囲気下で昇温させ、脱離してくる含硫黄ガス成分であるH2Sを質量分析計で検出した。このときの試験条件を表1に示す。

Figure JPOXMLDOC01-appb-T000001
 なお、硫黄化合物スメルの評価基準は、以下のとおりである。
 ×(Bad)   :基準(硫黄化合物スメルあり)
 〇(Good) :Ni=0のH2S発生量を基準として、50%以下
 ◎(Excellent):Ni=0のH2S発生量を基準として、5%以下又は未検出 [Laboratory measurement of sulfur compound smell]
The sulfur compound smell was measured using Fresh exhaust gas purification catalyst TWC2 that had not been subjected to durability treatment or poisoning treatment. Here, a test of adsorption and desorption of S components was carried out using a tubular furnace and a temperature-programmed desorption apparatus. First, a predetermined amount of S components was circulated through the catalyst using a tubular furnace, and the S components were adsorbed onto the catalyst. Thereafter, the catalyst with the S components adsorbed thereon was crushed in a mortar or the like, set in a temperature-programmed desorption apparatus (TPD Type-R), and heated under a reducing gas atmosphere, and the desorbed sulfur-containing gas component H 2 S was detected by a mass spectrometer. The test conditions at this time are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
The evaluation criteria for sulfur compound smell are as follows:
× (Bad): Standard (smell of sulfur compounds)
◯ (Good): 50% or less of the amount of H2S generated when Ni=0 is used as the standard. ⊚ (Excellent): 5% or less or not detected when Ni=0 is used as the standard .

 測定結果を、表2、及び図3~図5に示す。

Figure JPOXMLDOC01-appb-T000002
The measurement results are shown in Table 2 and FIGS.
Figure JPOXMLDOC01-appb-T000002

 表2から明らかなとおり、Ni量の増加に伴い、H2Sの発生が抑制されていることが確認された。一方、PGM層とNi層が同一層に含まれている2層構成の比較例2~6では、NiがPGMと合金化したり、母材粒子と化合物を形成したりする等して、NOx浄化性能やNH3浄化性能が低下した。このことから、PGMを含有する触媒層とは別個にNiを含む触媒層を設けた層構成とし、Ni層にアルミナ粒子を用いることにより、H2S生成を抑制しながら、優れたNOx浄化性能、NH3浄化性能を維持できることが確認された。 As is clear from Table 2, it was confirmed that the generation of H2S was suppressed with an increase in the amount of Ni. On the other hand, in Comparative Examples 2 to 6, which had a two-layer structure in which a PGM layer and a Ni layer were included in the same layer, the NOx purification performance and NH3 purification performance were reduced because Ni was alloyed with PGM or formed a compound with the base material particles. From this, it was confirmed that by providing a Ni-containing catalyst layer separately from the PGM-containing catalyst layer and using alumina particles in the Ni layer, it is possible to maintain excellent NOx purification performance and NH3 purification performance while suppressing the generation of H2S .

 本発明の排ガス浄化用触媒は、排ガス中のNOx、CO、HC等を削減する三元触媒として、広く且つ有効に利用することができ、例えばガソリンエンジン等の内燃機関の排ガスを浄化するための触媒用途において殊に有効に利用可能である。また、本発明の排ガス浄化用触媒は、エンジン直下型触媒コンバーターやタンデム配置の直下型触媒コンバーター等のTWCとして有効に利用することができる。 The exhaust gas purification catalyst of the present invention can be widely and effectively used as a three-way catalyst that reduces NOx, CO, HC, etc. in exhaust gas, and can be particularly effectively used in catalytic applications for purifying exhaust gas from internal combustion engines such as gasoline engines. In addition, the exhaust gas purification catalyst of the present invention can be effectively used as a TWC such as an engine direct-downstream catalytic converter or a tandem-arranged direct-downstream catalytic converter.

 100 ・・・排ガス浄化用触媒
 200 ・・・排ガス浄化用触媒
  11 ・・・基材
  11a・・・面
  11b・・・面
  21 ・・・触媒層
   L1・・・第1触媒層
   L2・・・第2触媒層
   L3・・・第3触媒層
 
REFERENCE SIGNS LIST 100: Exhaust gas purification catalyst 200: Exhaust gas purification catalyst 11: Substrate 11a: Surface 11b: Surface 21: Catalyst layer L1: First catalyst layer L2: Second catalyst layer L3: Third catalyst layer

Claims (9)

 基材と、前記基材に設けられた触媒層とを少なくとも備え、
 前記触媒層は、前記基材上に設けられた第1触媒層、前記第1触媒層上に設けられた第2触媒層、及び前記第2触媒層上に設けられた第3触媒層を有する第1積層構造、並びに、前記基材上に設けられた第2触媒層、前記第2触媒層上に設けられた第1触媒層、及び前記第1触媒層上に設けられた第3触媒層を有する第2積層構造よりなる群から選択される積層構造を有し、
 前記第1触媒層は、第1母材粒子、及び前記第1母材粒子上に担持された白金族元素を含有する第1複合触媒粒子を少なくとも含み、
 前記第2触媒層は、Niとアルミナ粒子とを少なくとも含み、
 前記第3触媒層は、第3母材粒子、及び前記第3母材粒子上に担持された白金族元素を含有する第3複合触媒粒子を少なくとも含む、
排ガス浄化用触媒。
The present invention comprises at least a substrate and a catalyst layer provided on the substrate,
the catalyst layer has a laminate structure selected from the group consisting of a first laminate structure having a first catalyst layer provided on the substrate, a second catalyst layer provided on the first catalyst layer, and a third catalyst layer provided on the second catalyst layer, and a second laminate structure having a second catalyst layer provided on the substrate, a first catalyst layer provided on the second catalyst layer, and a third catalyst layer provided on the first catalyst layer;
The first catalyst layer includes at least first base particles and first composite catalyst particles that contain a platinum group element supported on the first base particles,
The second catalyst layer contains at least Ni and alumina particles,
The third catalyst layer includes at least third base particles and third composite catalyst particles that contain a platinum group element supported on the third base particles.
Catalyst for purifying exhaust gas.
 前記第2触媒層中のNiの含有量が、前記基材の容積あたり、3.0g/L以上である
請求項1に記載の排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the second catalyst layer has a Ni content of 3.0 g/L or more per volume of the substrate.
 前記第2触媒層が、白金族元素を実質的に含まない
請求項1に記載の排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the second catalyst layer is substantially free of platinum group elements.
 前記第1触媒層が、Niを実質的に含まない
請求項1に記載の排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the first catalyst layer is substantially free of Ni.
 前記第1触媒層は、セリア系複合酸化物粒子及びアルミナ粒子を含み、Baをさらに含有する
請求項1に記載の排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the first catalyst layer contains ceria-based composite oxide particles and alumina particles, and further contains Ba.
 前記第3触媒層が、Niを実質的に含まない
請求項1に記載の排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the third catalyst layer is substantially free of Ni.
 前記3母材粒子が、セリアジルコニア系複合酸化物粒子及びアルミナ粒子を含む
請求項1に記載の排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the three base particles include ceria-zirconia based composite oxide particles and alumina particles.
 前記基材が、フロースルー型ハニカム担体、及び/又はウォールフロー型ハニカム担体である
請求項1に記載の排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the substrate is a flow-through type honeycomb carrier and/or a wall-flow type honeycomb carrier.
 ガソリンエンジンの排ガス流路の下流側に配置された三元触媒を備え、
 前記三元触媒が、請求項1~8のいずれか一項に記載の排ガス浄化用触媒である、
排ガス浄化装置。
 
A three-way catalyst is disposed downstream of an exhaust gas flow path of a gasoline engine,
The three-way catalyst is the exhaust gas purification catalyst according to any one of claims 1 to 8.
Exhaust gas purification device.
PCT/JP2024/001765 2023-01-23 2024-01-23 Exhaust gas purification catalyst and exhaust gas purification device using same WO2024157955A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023008312 2023-01-23
JP2023-008312 2023-01-23

Publications (1)

Publication Number Publication Date
WO2024157955A1 true WO2024157955A1 (en) 2024-08-02

Family

ID=91970633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001765 WO2024157955A1 (en) 2023-01-23 2024-01-23 Exhaust gas purification catalyst and exhaust gas purification device using same

Country Status (1)

Country Link
WO (1) WO2024157955A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290063A (en) * 1995-02-24 1996-11-05 Mazda Motor Corp Catalyst for waste gas purification and manufacture thereof
WO2010001765A1 (en) * 2008-07-04 2010-01-07 日産自動車株式会社 Exhaust gas purifying catalyst
JP2022514770A (en) * 2018-12-19 2022-02-15 ビーエーエスエフ コーポレーション Layered catalyst compositions and catalyst articles and methods for producing and using them.
JP2022514767A (en) * 2018-12-19 2022-02-15 ビーエーエスエフ コーポレーション Catalyst articles and how to manufacture and use them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290063A (en) * 1995-02-24 1996-11-05 Mazda Motor Corp Catalyst for waste gas purification and manufacture thereof
WO2010001765A1 (en) * 2008-07-04 2010-01-07 日産自動車株式会社 Exhaust gas purifying catalyst
JP2022514770A (en) * 2018-12-19 2022-02-15 ビーエーエスエフ コーポレーション Layered catalyst compositions and catalyst articles and methods for producing and using them.
JP2022514767A (en) * 2018-12-19 2022-02-15 ビーエーエスエフ コーポレーション Catalyst articles and how to manufacture and use them

Similar Documents

Publication Publication Date Title
US10512898B2 (en) Layered automotive catalyst composites
JP7497358B2 (en) Layered three-way conversion (TWC) catalyst and method for making the catalyst
CN113574255B (en) Layered trimetallic catalytic article and method of making the same
CN113874108B (en) Layered catalytic articles and methods of making catalytic articles
JP7446991B2 (en) Phosphorous resistant three-way catalyst
US20220193639A1 (en) Layered tri-metallic catalytic article and method of manufacturing the catalytic article
US12179186B2 (en) Layered catalysts composition and catalytic article and methods of manufacturing and using the same
JP2023539757A (en) Oxidation catalysts containing platinum group metals and base metal oxides
JP6748590B2 (en) Exhaust gas purification catalyst
CN113905816A (en) Catalytic articles and methods of making catalytic articles
CN113677433A (en) Metal oxide nanoparticle-based catalysts and methods of making and using the same
CN113318736B (en) LNT layered catalyst for gasoline lean-burn engine and exhaust gas purification device using same
US20220212169A1 (en) Automotive 3-way catalyst system containing a tail pipe catalyst
JPWO2018147408A1 (en) Exhaust gas purification catalyst composition, method for producing the same, and automobile exhaust gas purification catalyst
JP7711046B2 (en) Diesel Oxidation Catalyst
US20230321635A1 (en) Three-way conversion catalyst composition comprising platinum-rhodium bimetallic components
WO2024157955A1 (en) Exhaust gas purification catalyst and exhaust gas purification device using same
JP2024104200A (en) Exhaust gas purification catalyst and exhaust gas purification device using the same
WO2023047185A1 (en) Exhaust gas purification catalyst, and exhaust gas purification catalyst device for vehicles
WO2022209154A1 (en) Exhaust gas purifying catalyst and exhaust gas purification system
JP2022186014A (en) Exhaust gas purifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24747282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024573059

Country of ref document: JP