[go: up one dir, main page]

WO2024157939A1 - Multilayer body for display device, and display device - Google Patents

Multilayer body for display device, and display device Download PDF

Info

Publication number
WO2024157939A1
WO2024157939A1 PCT/JP2024/001691 JP2024001691W WO2024157939A1 WO 2024157939 A1 WO2024157939 A1 WO 2024157939A1 JP 2024001691 W JP2024001691 W JP 2024001691W WO 2024157939 A1 WO2024157939 A1 WO 2024157939A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display device
laminate
less
mass
Prior art date
Application number
PCT/JP2024/001691
Other languages
French (fr)
Japanese (ja)
Inventor
佳奈 堀井
純 佐藤
和也 本田
研一 小野寺
紗緒里 川口
朝香 岡野
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2024157939A1 publication Critical patent/WO2024157939A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • This disclosure relates to a laminate for a display device and a display device.
  • display devices such as smartphones, tablet terminals, and laptop computers require low surface reflectance to prevent external light such as sunlight and fluorescent lights from being reflected on the display screen, to give the display a high-end appearance, and to improve the visibility of characters and images. For this reason, laminates for display devices that have an anti-reflective layer on the surface have been developed.
  • Patent Document 1 discloses an anti-reflection film formed on the surface of a substrate such as a liquid crystal display panel, which contains hollow particles having an average particle size within a specified range and a specified near-infrared absorption spectrum.
  • Patent Document 2 discloses a transparent substrate having a laminate of thin layers on its main surface, the laminate of thin layers including a metallic functional layer and an anti-reflection coating that contains a layer containing zirconium silicon nitride.
  • Laminates for display devices that are placed on the surface of a display device are required to have good scratch resistance so that they are less susceptible to scratches.
  • laminates for display devices that have conventional anti-reflection layers have room for improvement in terms of scratch resistance.
  • This disclosure was made in consideration of the above problems, and its main objective is to provide a laminate for a display device that has excellent scratch resistance.
  • One embodiment of the present disclosure provides a laminate for a display device having a base layer, a functional layer, and an anti-reflection layer in this order in the thickness direction, in which the ratio of nitrogen elements is 0.5 atomic % or more and 2.5 atomic % or less when the surface on the anti-reflection layer side is measured by X-ray photoelectron spectroscopy.
  • Another embodiment of the present disclosure provides a display device comprising a display panel and the above-described display device laminate disposed on the viewer side of the display panel.
  • the present disclosure can provide a laminate for a display device that has anti-reflection properties and excellent scratch resistance.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminate for a display device according to the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing another example of a laminate for a display device according to the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing another example of a laminate for a display device according to the present disclosure.
  • 1 is a schematic cross-sectional view showing an example of a display device according to the present disclosure.
  • the term “above” or “below” is intended to include both cases in which another component is placed directly above or below a certain component so as to be in contact with the component, and cases in which another component is placed above or below a certain component with another component in between, unless otherwise specified.
  • the term “on the surface side” or “on the surface” is intended to include both cases in which another component is placed directly above or below a certain component so as to be in contact with the component, and cases in which another component is placed above or below a certain component with another component in between, unless otherwise specified.
  • Fig. 1 is a schematic cross-sectional view showing an example of a laminate for a display device of the present disclosure.
  • the laminate for a display device 1 of the present disclosure has a base layer 2, a functional layer 3, and an antireflection layer 4 in this order in the thickness direction DT .
  • the laminate for a display device 1 of the present disclosure is characterized in that, when the surface S1 on the antireflection layer 4 side is measured by X-ray photoelectron spectroscopy, the ratio of nitrogen elements is 0.5 atomic % or more and 2.5 atomic % or less.
  • the laminate for a display device has a ratio of nitrogen elements in the surface on the anti-reflection layer side within a specified range, and therefore has superior scratch resistance compared to a laminate for a display device having a conventional anti-reflection layer. This is presumably because the nitrogen-containing compound (e.g., a melamine-based compound) blended into the anti-reflection layer as a cross-linking agent forms a cross-linked structure with the resin contained in the anti-reflection layer and the functional layer, improving the surface hardness.
  • a nitrogen-containing compound e.g., a melamine-based compound
  • the ratio of nitrogen element is 0.5 atomic % or more, preferably 0.6 atomic % or more, and more preferably 0.7 atomic % or more.
  • the ratio of nitrogen element corresponds to the amount of nitrogen-containing compound blended as a crosslinking agent, such as a melamine-based compound, in the antireflection layer. If the amount of nitrogen-containing compound blended as a crosslinking agent is too small, the crosslink density in the antireflection layer becomes insufficient, and excellent scratch resistance cannot be obtained.
  • the ratio of the nitrogen element is 2.5 atomic % or less, more preferably 2.0 atomic % or less, and even more preferably 1.5 atomic % or less. If the amount of the nitrogen-containing compound blended as a crosslinking agent is too large, the resin content is relatively reduced, resulting in a low crosslink density and making it impossible to obtain excellent scratch resistance. In addition, the scratch resistance of the nitrogen-containing compound itself is low, resulting in poor scratch resistance.
  • the ratio of the nitrogen element is 0.5 atomic % or more and 2.5 atomic % or less, preferably 0.6 atomic % or more and 2.0 atomic % or less, and more preferably 0.7 atomic % or more and 1.5 atomic % or less.
  • the ratio of the nitrogen element is the ratio of the nitrogen element when the total amount of all elements obtained by measuring the surface S1 of the laminate for a display device on the anti-reflection layer side by X-ray photoelectron spectroscopy is taken as 100 atomic %.
  • One method for keeping the nitrogen element ratio within the above range is to adjust the type and content of the nitrogen-containing compound (e.g., melamine-based compound, etc.) in the anti-reflection layer.
  • the nitrogen-containing compound e.g., melamine-based compound, etc.
  • the ratio of the nitrogen element is a value measured by the following method. That is, a measurement sample is cut out from the laminate for a display device, and the X-ray photoelectron spectrum of the N1s orbital of the surface of the measurement sample on the anti-reflection layer side is measured under the following conditions using the X-ray photoelectron spectroscopy analyzer described below, and the ratio (atomic %) of the amount of N element to the amount of all elements is calculated.
  • the nitrogen element includes nitrogen element derived from a nitrogen-containing compound described later, for example, a melamine-based compound.
  • elements derived from, for example, a resin or low refractive index particles described later, for example, silicon, carbon, oxygen, aluminum, and other elements, may also be detected.
  • the surface S1 on the anti-reflection layer side of the laminate for a display device of the present disclosure is measured by time-of-flight secondary ion mass spectrometry (TOF-SIMS), it is preferable that a structure derived from a nitrogen-containing compound, which will be described later, for example, a structure derived from a melamine-based compound, is detected.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • Time-of-flight secondary ion mass spectrometry is a technique for analyzing the surface of a sample by measuring the time it takes for the secondary ions emitted from the sample to reach a detector after irradiating the sample with a beam of primary ions (e.g. bismuth ions) from a primary ion gun, and then separating the masses from the slight time difference (different masses result in different flight radii (times of flight)) to analyze the surface of the sample.
  • primary ions e.g. bismuth ions
  • time-of-flight secondary ion mass spectrometer product name "TOF-SIMS5", manufactured by ION-TOF
  • TOF-SIMS5 time-of-flight secondary ion mass spectrometer
  • the antireflection layer in the present disclosure is disposed on the surface side opposite to the surface on the substrate layer side of the functional layer.
  • the antireflection layer is a cured product formed from a composition for an antireflection layer containing a predetermined amount of a nitrogen-containing compound as a crosslinking agent.
  • the antireflection layer contains a nitrogen-containing compound as a crosslinking agent.
  • the antireflection layer preferably further contains a resin and low refractive index particles, or contains a low refractive index resin.
  • the material for the antireflection layer in the present disclosure is not particularly limited as long as it is a material that can provide an antireflection layer that satisfies the above-mentioned analysis results by X-ray photoelectron spectroscopy.
  • the anti-reflection layer in the present disclosure contains a nitrogen-containing compound as a crosslinking agent.
  • the crosslinking agent is usually present in a state of reacting with a resin or the crosslinking agent itself. Therefore, the nitrogen-containing compound is present in the anti-reflection layer in the present disclosure as an unreacted compound, a reacted compound, or a mixture thereof.
  • the nitrogen-containing compound is not particularly limited as long as it functions as a crosslinking agent, and examples thereof include melamine-based compounds.
  • a melamine-based compound refers to a compound having a melamine skeleton in the compound.
  • examples of melamine-based compounds include alkoxymethylated melamine, and specific examples include methoxymethylated melamine, propoxymethylated melamine, and butoxymethylated melamine. Of these, hexamethoxymethylated melamine is preferred.
  • One type of nitrogen-containing compound may be used, or two or more types may be used in combination.
  • the content of the nitrogen-containing compound in the antireflective layer is not particularly limited as long as it is an amount that can obtain an antireflective layer surface that satisfies the analysis results by the X-ray photoelectron spectroscopy.
  • the content of the nitrogen-containing compound in the antireflective layer is preferably 1 mass% or more, more preferably 2 mass% or more, and particularly preferably 5 mass% or more. On the other hand, it is preferably 30 mass% or less, more preferably 25 mass% or less, and particularly preferably 20 mass% or less.
  • the content of the nitrogen-containing compound in the antireflective layer means the content ratio relative to the total mass of solids in the antireflective layer composition before curing.
  • the content of the nitrogen-containing compound in the antireflective layer is preferably 1 mass% or more and 30 mass% or less, more preferably 2 mass% or more and 25 mass% or less, and particularly preferably 5 mass% or more and 20 mass% or less.
  • the antireflection layer according to the present disclosure may contain a resin and low refractive index particles having a refractive index lower than that of the resin.
  • the resins may be bonded to each other via the nitrogen-containing compound.
  • the anti-reflection layer preferably contains, as a resin, a cured resin that has been cured by exposure to heat or ionizing radiation such as ultraviolet light or an electron beam. That is, the anti-reflection layer preferably contains, as a resin, a cured product of a curable resin composition such as a heat-curable resin composition or an ionizing radiation-curable resin composition. From the viewpoint of scratch resistance, it is more preferable that the anti-reflection layer contains a cured product of an ionizing radiation-curable resin composition. Examples of ionizing radiation-curable resin compositions include electron beam-curable resin compositions and ultraviolet light-curable resin compositions.
  • Ionizing radiation refers to electromagnetic waves or charged particle beams that have an energy quantum capable of polymerizing or crosslinking molecules, and includes, for example, ultraviolet rays, electron beams, electromagnetic waves such as X-rays and gamma rays, and charged particle beams such as alpha rays and ion beams.
  • the ionizing radiation curable resin composition is a composition containing a compound having an ionizing radiation curable functional group (hereinafter also referred to as "ionizing radiation curable compound").
  • the ionizing radiation curable functional group include functional groups having an ethylenic double bond, such as a (meth)acryloyl group, a vinyl group, and an allyl group.
  • a (meth)acrylate compound having a (meth)acryloyl group is more preferred.
  • a (meth)acryloyl group refers to an acryloyl group or a methcroyl group.
  • a (meth)acrylate refers to an acrylate or a methacrylate. It is preferable that the ionizing radiation curable compound has two or more ionizing radiation curable functional groups.
  • Examples of ionizing radiation curable compounds include compounds with one or more unsaturated bonds, such as compounds with acrylate functional groups.
  • Examples of compounds with one unsaturated bond include ethyl (meth)acrylate, ethylhexyl (meth)acrylate, styrene, methylstyrene, and N-vinylpyrrolidone.
  • Examples of compounds having two or more unsaturated bonds include polyfunctional compounds such as polymethylolpropane tri(meth)acrylate, hexanediol (meth)acrylate, tripropylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,6-hexanediol di(meth)acrylate, and neopentyl glycol di(meth)acrylate, as well as reaction products of the above-mentioned polyfunctional compounds with (meth)acrylates, etc. (for example, poly(meth)acrylate esters of polyhydric alcohols).
  • polyfunctional compounds such as polymethylolpropane tri(meth)acrylate, hexanediol (meth)acrylate, tripropylene glycol di(meth)acrylate, diethylene glycol di(meth
  • polyester resins polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiolpolyene resins, etc. having relatively low molecular weights and unsaturated double bonds can also be used.
  • low refractive index resins which will be described later, may also be used as the resin.
  • the ionizing radiation curable compound preferably has a reactive group capable of crosslinking with the nitrogen-containing compound.
  • reactive groups include a hydroxyl group, a carboxyl group, an amino group, etc.
  • Specific examples include pentaerythritol tri(meth)acrylate and dimethylaminoethyl (meth)acrylate.
  • the resin content in the anti-reflection layer is, for example, 3% by mass or more, and preferably 5% by mass or more. On the other hand, for example, it is 50% by mass or less, and preferably 40% by mass or less.
  • the resin content in the anti-reflection layer is, for example, 3% by mass or more and 50% by mass or less, and preferably 5% by mass or more and 40% by mass or less.
  • the resin content in the anti-reflection layer means the ratio of the content of the above-mentioned curable compound to the total mass of solids in the anti-reflection layer composition before curing.
  • the anti-reflective layer may contain a polymerization initiator as necessary.
  • the polymerization initiator may be appropriately selected from radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc. These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations, and cause radical polymerization and cationic polymerization to proceed. Note that there are cases where the polymerization initiator is completely decomposed and does not remain in the anti-reflective layer.
  • the anti-reflective layer may contain a photopolymerization initiator.
  • the anti-reflection layer in the present disclosure preferably contains low refractive index particles.
  • the low refractive index particles preferably have a refractive index lower than the refractive index of the resin.
  • the low refractive index particles may be either inorganic or organic particles.
  • inorganic particles include inorganic particles such as silicon dioxide (silica), magnesium fluoride, lithium fluoride, calcium fluoride, and barium fluoride. Among these, silica particles are preferred.
  • the low refractive index particles may be, for example, hollow particles, solid particles, or porous particles, but among these, hollow particles and porous particles are preferred because of their low refractive index.
  • hollow particles and porous particles include hollow silica particles, porous silica particles, porous polymer particles, and hollow polymer particles. Among these, hollow silica particles are preferred.
  • the low refractive index particles may also be surface-treated.
  • the affinity with the resin and the solvent is improved, the dispersion of the low refractive index particles becomes uniform, and the low refractive index particles are less likely to aggregate with each other, so that a decrease in the transparency of the antireflection layer, and a decrease in the coatability and film strength of the resin composition for the antireflection layer can be suppressed.
  • Examples of surface treatment methods include surface treatment using a silane coupling agent.
  • Specific silane coupling agents can be the same as those disclosed in, for example, JP 2013-142817 A.
  • the low refractive index particles may also be reactive particles having polymerizable functional groups on their surfaces.
  • Examples of reactive low refractive index particles include those used in low refractive index layers described in JP 2013-142817 A and the like.
  • the average particle size of the low refractive index particles may be less than the thickness of the antireflection layer, for example, 300 nm or less, 200 nm or less, 150 nm or less, or 100 nm or less.
  • the average particle size of the low refractive index particles may be, for example, 5 nm or more, 10 nm or more, 30 nm or more, or 50 nm or more. If the average particle size of the low refractive index particles is within the above range, the transparency of the antireflection layer is not impaired and a good dispersion state of the low refractive index particles is obtained.
  • the average particle size of the low refractive index particles may be either a primary particle size or a secondary particle size, and the low refractive index particles may be linked in a chain shape.
  • the average particle size of the low refractive index particles is, for example, preferably 5 nm or more and 300 nm or less, more preferably 10 nm or more and 200 nm or less, even more preferably 30 nm or more and 150 nm or less, and most preferably 50 nm or more and 100 nm or less.
  • the average particle size of the low refractive index particles refers to the average value of 20 particles observed in a transmission electron microscope (TEM) photograph of the cross section of the anti-reflection layer.
  • the average particle size of the inorganic particles described below is also a value observed in a similar manner.
  • the shape of the low refractive index particles is not particularly limited, and examples include spherical, chain-like, and needle-like shapes.
  • the content of low refractive index particles in the anti-reflection layer is appropriately set so that the refractive index of the entire anti-reflection layer satisfies the desired refractive index.
  • the content of low refractive index particles in the anti-reflection layer is preferably 20% by mass or more, more preferably 25% by mass or more, and even more preferably 30% by mass or more. On the other hand, it is preferably 85% by mass or less, more preferably 65% by mass or less, and even more preferably 50% by mass or less.
  • the content of low refractive index particles is, for example, preferably 20% by mass or more and 85% by mass or less, more preferably 25% by mass or more and 65% by mass or less, and even more preferably 30% by mass or more and 50% by mass or less. If the content of low refractive index particles is too low, the desired refractive index may not be obtained. Also, if the content of low refractive index particles is too high, the haze of the anti-reflection layer may become high.
  • the low refractive index resin may be any resin that allows the anti-reflection layer made of the low refractive index resin to have the desired refractive index, and examples of the low refractive index resin include fluororesin, silicone resin, acrylic resin, and olefin resin.
  • the anti-reflection layer may contain various additives.
  • the additives include silsesquioxane compounds. By blending a silsesquioxane compound, scratch resistance is further improved.
  • Examples of the silsesquioxane compound include compounds having a basic skeleton represented by the general formula RSiO1.5 (R: organic group), and examples of the organic group include those having an acryloyl group, an amino group, an epoxy group, a carboxyl group, a methyl group, a phenyl group, a thiol group, etc.
  • the content of the silsesquioxane compound in the anti-reflective layer is preferably 1% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more. On the other hand, it is preferably 70% by mass or less, more preferably 50% by mass or less, and even more preferably 25% by mass or less.
  • the content of the silsesquioxane compound in the anti-reflective layer is, for example, preferably 1% by mass or more and 70% by mass or less, more preferably 10% by mass or more and 50% by mass or less, and even more preferably 15% by mass or more and 25% by mass or less. If the content of the silsesquioxane compound is within the above range, the effect of improving scratch resistance can be obtained.
  • the antireflection layer preferably contains inorganic or organic particles, particularly inorganic particles, in addition to the low refractive index particles described above.
  • the antireflection layer contains inorganic or organic particles, the scratch resistance is improved.
  • the inorganic or organic particles are the same as the inorganic or organic particles used in the hard coat layer described later.
  • the antireflection layer preferably contains alumina (Al 2 O 3 ) particles. When the alumina particles are contained, the scratch resistance is further improved.
  • the average particle size of the inorganic particles contained in the anti-reflection layer is preferably 3 nm or more, and more preferably 10 nm or more. If the average particle size of the inorganic particles is too small, it is difficult to obtain scratch resistance. In addition, the average particle size of the inorganic particles is preferably 50 nm or less, and more preferably 35 nm or less. If the average particle size of the inorganic particles is too large, scratch resistance deteriorates and haze also increases.
  • the content of inorganic particles in the anti-reflective layer is preferably 1% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more. On the other hand, it is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the content of inorganic particles in the anti-reflective layer is, for example, preferably 1% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 40% by mass or less, and even more preferably 10% by mass or more and 30% by mass or less. If the content of inorganic particles is within the above range, the effect of improving scratch resistance can be obtained.
  • the anti-reflection layer may contain other additives.
  • additives include leveling agents, ultraviolet absorbers, antioxidants, light stabilizers, infrared absorbers, dispersion aids, weather resistance improvers, scratch resistance improvers, antistatic agents, polymerization inhibitors, crosslinking agents, adhesion improvers, thixotropy imparting agents, coupling agents, plasticizers, defoamers, and fillers.
  • the thickness of the antireflection layer is, for example, preferably 50 nm or more, more preferably 70 nm or more, and even more preferably 90 nm or more. If the thickness of the antireflection layer is in the above range or more, it can obtain scratch resistance and necessary antireflection effect. On the other hand, the thickness of the antireflection layer is, for example, preferably 200 nm or less, more preferably 150 nm or less, and even more preferably 120 nm or less. If the thickness of the antireflection layer is in the above range or less, it can obtain excellent bending resistance and necessary antireflection effect.
  • the thickness of the antireflection layer in the present disclosure is preferably 50 nm or more and 200 nm or less, more preferably 70 nm or more and 150 nm or less, and even more preferably 90 nm or more and 120 nm or less.
  • the thickness of the anti-reflection layer is a value measured from a cross section in the thickness direction of the laminate for a display device observed with a transmission electron microscope (TEM), a scanning electron microscope (SEM) or a scanning transmission electron microscope (STEM), and can be the average value of the thicknesses at 10 randomly selected locations. The same method can be used to measure the thicknesses of other layers in the laminate for a display device.
  • the refractive index of the anti-reflection layer is preferably 1.40 or less, more preferably 1.35 or less. If the refractive index of the anti-reflection layer is within the above range, the reflectance of the surface of the anti-reflection layer is prevented from increasing, and visibility can be easily improved. On the other hand, the refractive index of the anti-reflection layer is 1.10 or more.
  • the refractive index refers to the refractive index for light with a wavelength of 550 nm.
  • the refractive index is measured using an ellipsometer.
  • ellipsometers include the UVSEL manufactured by Jobin Yvon and the DF1030R manufactured by Techno Synergy.
  • the refractive index of the functional layer is measured in the same manner.
  • a method for forming an antireflection layer for example, a method of applying a resin composition for an antireflection layer onto a functional layer and curing the composition can be mentioned.
  • the resin composition for the anti-reflection layer contains, for example, the nitrogen-containing compound, the curable resin composition, the low refractive index particles, an additive, and, if necessary, a solvent.
  • the functional layer in the present disclosure is disposed between the substrate layer and the anti-reflection layer.
  • the functional layer include a hard coat layer.
  • the hard coat layer is a layer for increasing the surface hardness. By disposing the hard coat layer, it is possible to improve the scratch resistance. In particular, when the substrate layer is a resin substrate, by disposing the hard coat layer, it is possible to effectively improve the scratch resistance.
  • materials that can be used for the hard coat layer include organic materials, inorganic materials, and organic-inorganic composite materials.
  • the material of the hard coat layer is preferably an organic material.
  • organic materials include a cured product of a curable resin composition such as a thermosetting resin composition or an ionizing radiation curable resin composition.
  • curable resin compositions include the same curable resin composition as the antireflection layer described above.
  • the hard coat layer may contain a polymerization initiator as necessary.
  • the polymerization initiator may be appropriately selected from radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc. These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations, and cause radical polymerization and cationic polymerization to proceed. Note that in the hard coat layer, the polymerization initiator may be completely decomposed and may not remain. When an ultraviolet-curable resin is used as the resin, the hard coat layer may contain a photopolymerization initiator.
  • the hard coat layer preferably contains inorganic or organic particles, and more preferably contains inorganic particles. By containing particles in the hard coat layer, the hardness can be improved.
  • inorganic particles examples include metal oxide particles such as silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide, metal fluoride particles such as magnesium fluoride and sodium fluoride, metal particles, metal sulfide particles, and metal nitride particles.
  • metal oxide particles are preferred, and at least one selected from silica particles and alumina particles is more preferred, with silica particles being even more preferred, because excellent hardness can be obtained.
  • the inorganic particles are preferably reactive inorganic particles having photoreactive reactive functional groups on at least a portion of the particle surface that undergo a crosslinking reaction between the inorganic particles themselves or between the inorganic particles and at least one type of polymerizable compound to form a covalent bond.
  • the hardness of the hard coat layer can be further improved by crosslinking between the reactive inorganic particles themselves or between the reactive inorganic particles and at least one type of radically polymerizable compound and cationic polymerizable compound.
  • Reactive inorganic particles have at least a portion of their surface coated with an organic component, and have reactive functional groups on the surface introduced by the organic component.
  • a reactive functional group for example, a polymerizable unsaturated group is preferably used, and a photocurable unsaturated group is more preferably used.
  • the reactive functional group for example, ethylenically unsaturated bonds such as (meth)acryloyl groups, vinyl groups, and allyl groups, and epoxy groups can be mentioned.
  • the average particle size of the inorganic particles contained in the hard coat layer is preferably 3 nm or more, more preferably 10 nm or more, from the viewpoint of improving hardness. If the average particle size of the inorganic particles is too small, no improvement in hardness can be obtained. Furthermore, the average particle size of the inorganic particles is preferably 100 nm or less, more preferably 70 nm or less. If the average particle size of the inorganic particles is too large, the haze increases and surface smoothness cannot be obtained.
  • the hardness of the hard coat layer can be controlled by adjusting the size and content of the inorganic particles.
  • the content of inorganic particles in the hard coat layer may be, for example, 10% by mass or more, and may be 20% by mass or more. On the other hand, it may be 80% by mass or less, and may be 60% by mass or less.
  • the content of inorganic particles in the hard coat layer may be, for example, 10% by mass or more, and 80% by mass or less, and may be 20% by mass or more, and 60% by mass or less.
  • the hard coat layer may contain a leveling agent.
  • the leveling agent contained in the hard coat layer is not particularly limited, and examples thereof include silicone-based leveling agents, fluorine-based leveling agents, acrylic-based leveling agents, vinyl-based leveling agents, and the like. These leveling agents may be used alone or in combination of two or more. Among these, silicone-based leveling agents and fluorine-based leveling agents are preferred because of their high ability to reduce surface tension.
  • the content of the leveling agent in the hard coat layer is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and even more preferably 0.1% by mass or more. On the other hand, it is preferably 3% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less.
  • the content of the leveling agent in the hard coat layer is preferably 0.01% by mass or more and 3% by mass or less, more preferably 0.05% by mass or more and 2% by mass or less, and even more preferably 0.1% by mass or more and 1% by mass or less. If the content of the leveling agent is too low, the effect of the leveling agent may not be fully obtained. Also, if the content of the leveling agent is too high, the hardness of the hard coat layer may decrease.
  • the thickness of the functional layer may be appropriately selected depending on the application of the display laminate.
  • the thickness of the functional layer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and even more preferably 3 ⁇ m or more.
  • it is preferably 30 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 8 ⁇ m or less.
  • the thickness of the functional layer is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 2 ⁇ m or more and 15 ⁇ m or less, and even more preferably 3 ⁇ m or more and 8 ⁇ m or less. If the thickness of the functional layer is within the above range, sufficient hardness as a functional layer can be obtained.
  • the refractive index of the functional layer is, for example, preferably 1.45 or more, more preferably 1.47 or more, and even more preferably 1.50 or more. On the other hand, it is preferably 1.80 or less, more preferably 1.75 or less, and even more preferably 1.70 or less.
  • the refractive index of the functional layer is preferably 1.45 or more and 1.80 or less, more preferably 1.47 or more and 1.75 or less, and even more preferably 1.50 or more and 1.70 or less.
  • the difference with the refractive index of the substrate layer and the difference with the refractive index of the antireflection layer can be reduced, and the reflection of light at the interface between the functional layer and the antireflection layer and the reflection of light at the interface between the functional layer and the substrate layer can be suppressed.
  • the refractive index of the functional layer is lower than that of the high refractive index layer.
  • the refractive index of the functional layer is, for example, preferably 1.50 or more, more preferably 1.55 or more.
  • it is preferably 2.20 or less, more preferably 1.80 or less.
  • the refractive index of the functional layer is preferably 1.50 or more and 2.20 or less, more preferably 1.55 or more and 1.80 or less.
  • the functional layer serves as a medium refractive index layer, and interference action is possible between the three layers of the functional layer (medium refractive index layer), the high refractive index layer, and the anti-reflection layer (low refractive index layer), so that the reflectance can be further reduced.
  • a method for forming the functional layer for example, a method of applying a resin composition for the functional layer onto the above-mentioned base layer and curing the composition can be mentioned.
  • the substrate layer in the present disclosure is a member that supports the anti-reflection layer and the functional layer and has transparency.
  • the substrate layer is not particularly limited as long as it has transparency, and examples thereof include a resin substrate and a glass substrate.
  • Resin substrate The resin constituting the resin substrate is not particularly limited as long as it can provide a resin substrate having transparency, and examples thereof include polyimide resins, polyamide resins, polyester resins, etc.
  • polyimide resins include polyimide, polyamideimide, polyetherimide, polyesterimide, etc.
  • polyester resins include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.
  • polyimide resins, polyamide resins, or mixtures thereof are preferred because they have bending resistance and excellent hardness and transparency, and polyimide resins are more preferred.
  • polyimide resin there are no particular limitations on the polyimide resin as long as it can produce a resin substrate with transparency, but among the above, polyimide and polyamideimide are preferably used. They can increase flexibility and resistance to bending, and because they have a relatively high refractive index, they make it easier to adjust the reflectance.
  • the glass constituting the glass substrate is not particularly limited as long as it has transparency, and examples thereof include silicate glass, silica glass, etc. Among them, borosilicate glass, aluminosilicate glass, and aluminoborosilicate glass are preferred, and alkali-free glass is more preferred.
  • Examples of commercially available glass substrates include ultra-thin glass G-Leaf from Nippon Electric Glass Co., Ltd. and ultra-thin glass from Matsunami Glass Industry Co., Ltd.
  • the glass constituting the glass substrate is chemically strengthened glass.
  • Chemically strengthened glass has excellent mechanical strength and is therefore preferable in that it can be made thinner.
  • Chemically strengthened glass is typically glass whose mechanical properties have been strengthened by chemical methods, such as by partially exchanging ion species near the surface of the glass, for example by replacing sodium with potassium, and has a compressive stress layer on the surface.
  • Chemically strengthened glass substrates include, for example, Corning's Gorilla Glass, AGC's Dragontrail, and Schott's chemically strengthened glass.
  • the thickness of the base material layer is not particularly limited and may be appropriately selected depending on the type of base material layer, etc.
  • the thickness of the resin substrate is, for example, preferably 10 ⁇ m or more, and more preferably 25 ⁇ m or more. On the other hand, it is preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less. Specifically, the thickness of the resin substrate is preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 25 ⁇ m or more and 80 ⁇ m or less. By having the thickness of the resin substrate within the above range, it is possible to obtain good flexibility and sufficient hardness. It is also possible to suppress curling of the laminate for a display device. Furthermore, it is preferable in terms of reducing the weight of the laminate for a display device.
  • the thickness of the glass substrate is, for example, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, even more preferably 90 ⁇ m or less, and particularly preferably 80 ⁇ m or less. On the other hand, it is more preferably 15 ⁇ m or more, even more preferably 20 ⁇ m or more, and particularly preferably 25 ⁇ m or more. Specifically, the thickness of the glass substrate is preferably 15 ⁇ m or more and 100 ⁇ m or less, more preferably 20 ⁇ m or more and 90 ⁇ m or less, and particularly preferably 25 ⁇ m or more and 80 ⁇ m or less. By having the thickness of the glass substrate within the above range, it is possible to obtain good flexibility and sufficient hardness. In addition, curling of the display laminate can also be suppressed. Furthermore, it is preferable in terms of reducing the weight of the display laminate.
  • the display laminate in the present disclosure may have an impact absorption layer 5 between the substrate layer 2 and the functional layer 3, as shown in FIG. 2, or on the surface of the substrate layer 2 opposite to the functional layer 3, as shown in FIG. 3.
  • the impact absorption layer By disposing the impact absorption layer, when an impact is applied to the display laminate, the impact can be absorbed and impact resistance can be improved.
  • the substrate layer is a glass substrate, cracking of the glass substrate can be suppressed.
  • the material for the impact absorbing layer is not particularly limited as long as it is capable of producing an impact absorbing layer having impact absorption and transparency, and examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), urethane resin, epoxy resin, polyimide, polyamide-imide, acrylic resin, triacetyl cellulose (TAC), silicone resin, etc. These materials may be used alone or in combination of two or more.
  • the impact absorbing layer may further contain additives as necessary.
  • additives include inorganic particles, organic particles, ultraviolet absorbers, antioxidants, light stabilizers, surfactants, and adhesion improvers.
  • the thickness of the impact absorbing layer may be any thickness that is capable of absorbing impact, and may be, for example, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 15 ⁇ m or more. On the other hand, it may be preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, and even more preferably 100 ⁇ m or less. Specifically, the thickness of the impact absorbing layer may be preferably 5 ⁇ m or more and 150 ⁇ m or less, more preferably 10 ⁇ m or more and 120 ⁇ m or less, and even more preferably 15 ⁇ m or more and 100 ⁇ m or less.
  • the impact absorbing layer may be, for example, a resin film. Also, for example, the impact absorbing layer may be formed by applying a composition for the impact absorbing layer onto the substrate layer.
  • the laminate for a display device in the present disclosure may have an adhesive layer for pasting 6 on the surface of the base layer 2 opposite to the functional layer 3, as shown in, for example, Figures 2 and 3.
  • the laminate for a display device may be pasted to, for example, a display panel or the like via the adhesive layer for pasting.
  • the adhesive used in the attachment adhesive layer is not particularly limited as long as it is transparent and capable of adhering the display device laminate to a display panel or the like, and examples of such adhesives include heat-curing adhesives, ultraviolet-curing adhesives, two-component curing adhesives, hot-melt adhesives, and pressure-sensitive adhesives (so-called pressure-sensitive adhesives).
  • the attachment adhesive layer 6 the shock absorbing layer 5, and the interlayer adhesive layer 7 described below are arranged in this order as shown in FIG. 3, it is preferable that the attachment adhesive layer and the interlayer adhesive layer contain a pressure-sensitive adhesive, that is, they are pressure-sensitive adhesive layers.
  • the pressure-sensitive adhesive layer is a relatively soft layer among the adhesive layers containing the above-mentioned adhesives.
  • the shock absorbing layer is arranged between the relatively soft pressure-sensitive adhesive layers, thereby improving the shock resistance.
  • the pressure-sensitive adhesive layer is relatively soft and easily deformed, and therefore when an impact is applied to the display device laminate, the deformation of the shock absorbing layer is not suppressed by the pressure-sensitive adhesive layer, and the shock absorbing layer becomes more easily deformed, which is thought to result in a greater shock absorbing effect.
  • the thickness of the attachment adhesive layer is, for example, preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more, and even more preferably 40 ⁇ m or more. On the other hand, it is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less. Specifically, the thickness of the attachment adhesive layer is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 25 ⁇ m or more and 80 ⁇ m or less, and even more preferably 40 ⁇ m or more and 60 ⁇ m or less. If the attachment adhesive layer is too thin, it may not be possible to sufficiently bond the display device laminate and the display panel, etc. Furthermore, if the attachment adhesive layer is too thick, flexibility may be impaired.
  • an adhesive film may be used.
  • an adhesive composition may be applied onto a support or a base layer to form an adhesive layer for application.
  • the laminate for display device in the present disclosure may have a high refractive index layer between the antireflection layer and the functional layer.
  • the high refractive index layer is a layer having a refractive index higher than that of the functional layer, and contains high refractive index particles and a binder resin.
  • the high refractive index layer contains a cured product of a curable resin composition such as a thermosetting resin composition or an ionizing radiation curable resin composition as a binder resin.
  • the curable resin composition the same one as exemplified in the antireflection layer can be used, and an ionizing radiation curable resin composition is preferable.
  • the ionizing radiation curable compound is an ultraviolet ray curable compound
  • the ionizing radiation curable composition contains additives such as a photopolymerization initiator and a photopolymerization accelerator.
  • a photopolymerization initiator and the photopolymerization accelerator the same one as the material for the antireflection layer can be used.
  • High refractive index particles include antimony pentoxide, zinc oxide, titanium oxide, cerium oxide, tin-doped indium oxide, antimony-doped tin oxide, yttrium oxide, and zirconium oxide.
  • the refractive index of the high refractive index layer is preferably 1.50 or more, and more preferably 1.55 or more. On the other hand, it is preferably 2.20 or less, and more preferably 1.80 or less. Specifically, the refractive index of the high refractive index layer is preferably 1.50 or more and 2.20 or less, and more preferably 1.55 or more and 1.80 or less. Furthermore, the thickness of the high refractive index layer is preferably 200 nm or less, and more preferably 180 nm or less. On the other hand, it is preferably 50 nm or more. Specifically, the thickness of the high refractive index layer is preferably 50 nm or more and 180 nm or less.
  • an interlayer adhesive layer may be disposed between each of the layers.
  • the adhesive used in the interlayer adhesive layer can be the same as the adhesive used in the attachment adhesive layer described above.
  • the thickness and formation method of the interlayer adhesive layer can be the same as those of the attachment adhesive layer.
  • the laminate for a display device according to the present disclosure can be used as a front panel arranged on the viewer side of the display panel in a display device.
  • the laminate for a display device according to the present disclosure can be suitably used as a front panel in a flexible display device such as a foldable display, a rollable display, or a bendable display.
  • the display device laminate of the present disclosure can be used for the front panel of display devices such as smartphones, tablet terminals, wearable terminals, personal computers, televisions, digital signage, public information displays (PIDs), and in-vehicle displays.
  • display devices such as smartphones, tablet terminals, wearable terminals, personal computers, televisions, digital signage, public information displays (PIDs), and in-vehicle displays.
  • a display device includes a display panel and the laminate for a display device described above, which is disposed on the viewer's side of the display panel.
  • FIG. 4 is a schematic cross-sectional view showing an example of a display device according to the present disclosure.
  • the display device 50 includes a display panel 51 and a laminate for a display device 1 arranged on the viewer's side of the display panel 51.
  • the laminate for a display device 1 and the display panel 31 can be bonded together, for example, via an attachment adhesive layer 6 of the laminate for a display device 1.
  • the display device of the present disclosure has excellent surface scratch resistance because it includes the laminate for a display device described above.
  • the anti-reflection layer is disposed on the outside and the base layer is disposed on the inside.
  • the method for disposing the display device laminate of the present disclosure on the surface of the display device is not particularly limited, but may include, for example, a method using an adhesive layer.
  • Display panels in this disclosure include, for example, display panels used in display devices such as organic EL display devices and liquid crystal display devices.
  • the display device of this disclosure can have a touch panel member between the display panel and the display device laminate.
  • the display device in this disclosure is preferably a flexible display device such as a foldable display, a rollable display, or a bendable display.
  • a polyimide film having a thickness of 50 ⁇ m (“Neoprim” manufactured by Mitsubishi Gas Chemical Company, Inc.) was used as the substrate layer, and the above-mentioned resin composition 1 for hard coat layer was applied onto the substrate layer to form a coating film.
  • the coating film was then heated at 70° C. for 1 minute to evaporate the solvent in the coating film, and the coating film was cured by irradiating it with ultraviolet light using an ultraviolet irradiation device (manufactured by Fusion UV Systems Japan, light source H bulb) at an oxygen concentration of 200 ppm or less and an accumulated light amount of 40 mJ/ cm2 to form a hard coat layer having a thickness of 5 ⁇ m.
  • Pentaerythritol triacrylate PETA: "Light Acrylate PE-3A” manufactured by Kyoeisha 3.0 parts by mass
  • Silsesquioxane "Acryloyl polysilsesquioxane cage mixture” manufactured by Construe Chemical 7.0 parts by mass
  • Polymerization initiator IGM Resins B.V. "Omnirad 184" manufactured by Shin-Etsu Chemical Co., Ltd.
  • a base composition 1 was applied onto the hard coat layer as a resin composition for an anti-reflection layer to form a coating film.
  • the coating film was heated at 70°C for 1 minute to evaporate the solvent in the coating film, and then irradiated with ultraviolet light using an ultraviolet irradiator (manufactured by Fusion UV Systems Japan, light source H bulb) so that the oxygen concentration was 200 ppm or less and the cumulative light amount was 400 mJ/ cm2 to harden the coating film, forming an anti-reflection layer with a thickness of 100 nm. This resulted in a laminate for a display device.
  • an ultraviolet irradiator manufactured by Fusion UV Systems Japan, light source H bulb
  • Example 1 In the same manner as in Comparative Example 1, a composition 1 for a hard coat layer was prepared, and a hard coat layer was formed on a substrate layer. A methylated melamine compound (hexamethoxymethylmelamine) was added to the base composition 1. At this time, the methylated melamine compound was added so that it was 2 mass% relative to the total mass of the solid content. Next, the mixture was adjusted with MIBK (methyl isobutyl ketone) so that the final solid content was 4%, to obtain a composition for an antireflection layer. Except for using this composition for an antireflection layer, an antireflection layer was formed on the hard coat layer in the same manner as in Comparative Example 1, to obtain a laminate for a display device.
  • MIBK methyl isobutyl ketone
  • Examples 2 to 5, Comparative Examples 2 and 3 In the same manner as in Comparative Example 1, a composition 1 for a hard coat layer was prepared, and a hard coat layer was formed on a substrate layer. A methylated melamine compound (hexamethoxymethylmelamine) was added to the base composition 1. At this time, the methylated melamine compound was added in an amount (mass%) shown in Table 1 relative to the total mass of the solid content of the composition for antireflection layer. Next, the final solid content was adjusted to 4% with MIBK (methyl isobutyl ketone) to prepare a composition for antireflection layer. Except for using this composition for antireflection layer, an antireflection layer was formed on the hard coat layer in the same manner as in Comparative Example 1, and a laminate for a display device was obtained.
  • MIBK methyl isobutyl ketone
  • Example 6 Formation of Hard Coat Layer First, the components were mixed so as to obtain the composition shown below, thereby preparing a composition 2 for hard coat layer.
  • a 50 ⁇ m thick polyimide film (“Neoprim” manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used as a substrate layer, and the above-mentioned hard coat layer resin composition 2 was applied onto the substrate layer to form a coating film.
  • the coating film was then heated at 70° C. for 1 minute to evaporate the solvent in the coating film, and then irradiated with ultraviolet light using an ultraviolet irradiator (manufactured by Fusion UV Systems Japan, light source H bulb) so that the oxygen concentration was 200 ppm or less and the cumulative light amount was 40 mJ/cm 2 to harden the coating film, forming a 5 ⁇ m thick hard coat layer.
  • an ultraviolet irradiator manufactured by Fusion UV Systems Japan, light source H bulb
  • Example 7 (1) Formation of Hard Coat Layer
  • a composition 2 for a hard coat layer was prepared, and a hard coat layer was formed on a substrate layer.
  • Base composition 2 was prepared by blending the components shown below.
  • a methylated melamine compound (hexamethoxymethylmelamine) was added to the above-mentioned base composition 2 to prepare a composition for an anti-reflection layer.
  • the methylated melamine compound was added so that it was 10 mass% based on the total mass of the solid content of the composition for an anti-reflection layer.
  • an anti-reflection layer was formed on the hard coat layer in the same manner as in Comparative Example 1, and a laminate for a display device was obtained.
  • Example 8 (1) Formation of Hard Coat Layer
  • a composition 1 for a hard coat layer was prepared, and a hard coat layer was formed on a substrate layer.
  • Base composition 3 was prepared by blending the components shown below.
  • a methylated melamine compound (hexamethoxymethylmelamine) was added to the above-mentioned base composition 3 to prepare a composition for an anti-reflection layer.
  • the methylated melamine compound was added so that it was 10 mass% based on the total mass of the solid content of the composition for an anti-reflection layer.
  • an anti-reflection layer was formed on the hard coat layer in the same manner as in Comparative Example 1, and a laminate for a display device was obtained.
  • Test method Using a Gakushin-type friction fastness tester AB-301 manufactured by Tester Sangyo Co., Ltd., a PET protective film (SAT TM30125 manufactured by San-A Chemical Co., Ltd.) was attached with a roller to the non-measurement surface of a laminate measuring 5 cm x 10 cm, and the laminate was fixed on a glass plate on all four sides with Cellophane Tape (registered trademark) so as not to cause any folds or wrinkles.
  • SAT TM30125 manufactured by San-A Chemical Co., Ltd.
  • Evaluation Method For the laminate that had been subjected to the above test, the surface within a central 30 mm range excluding the ranges of 10 mm at both ends where the moving speed was unstable was observed through a fluorescent lamp and evaluated according to the following evaluation criteria.
  • Example 1 to 8 in which the ratio of nitrogen elements is within the specified range, have better steel wool resistance test results and are superior in abrasion resistance than Comparative Examples 1 to 3. Furthermore, when Example 3 and Example 8 are compared, it was confirmed that Example 3, in which the anti-reflection layer contains a silsesquioxane compound, has superior abrasion resistance compared to Example 8, in which the anti-reflection layer does not contain a silsesquioxane compound. Note that in Comparative Example 1, nitrogen elements were detected even though the amount of methylated melamine compound added was 0 mass%. This is presumably due to the elution of the urethane acrylate contained in the hard coat layer, and the detection of nitrogen elements derived from the urethane acrylate.
  • a laminate for a display device having a base layer, a functional layer, and an antireflection layer in this order in a thickness direction A laminate for a display device, wherein a ratio of nitrogen elements is 0.5 atomic % or more and 2.5 atomic % or less when the surface on the antireflection layer side is measured by X-ray photoelectron spectroscopy.
  • the nitrogen element includes a nitrogen element derived from a melamine-based compound.
  • the antireflection layer contains a silsesquioxane compound.
  • a display device comprising: a display panel; and the laminate for a display device according to any one of [1] to [9], which is disposed on a viewer's side of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present disclosure provides a multilayer body for a display device, comprising a base material layer, a functional layer, and an antireflective layer in the stated order in the thickness direction, wherein the ratio of elemental nitrogen in the antireflective layer-side surface thereof as measured by X-ray photoelectron spectroscopy is 0.5-2.5 at%.

Description

表示装置用積層体および表示装置Laminate for display device and display device
 本開示は、表示装置用積層体および表示装置に関する。 This disclosure relates to a laminate for a display device and a display device.
 一般に、スマートフォン、タブレット端末、ノートパソコン等の表示装置は、太陽光及び蛍光灯等の外光の表示画面への写り込みを防止したり、外観の高級志向および文字や画像の視認性改善のため、表面の低反射率化が求められている。そのため、表面に反射防止層を有する表示装置用積層体が開発されている。 In general, display devices such as smartphones, tablet terminals, and laptop computers require low surface reflectance to prevent external light such as sunlight and fluorescent lights from being reflected on the display screen, to give the display a high-end appearance, and to improve the visibility of characters and images. For this reason, laminates for display devices that have an anti-reflective layer on the surface have been developed.
 例えば、特許文献1には、液晶表示板等の基材の表面に形成される反射防止膜として、平均粒子径が所定の範囲であり、所定の近赤外線吸収スペクトルを有する中空粒子を含有する反射防止膜が開示されている。また、特許文献2には、薄層の積層体を主面に備えている透明基材であり、前記薄層の積層体が、金属性機能層と、窒化ケイ素ジルコニウムを含む層を含有する反射防止コーティングとを含む、透明基材が開示されている。 For example, Patent Document 1 discloses an anti-reflection film formed on the surface of a substrate such as a liquid crystal display panel, which contains hollow particles having an average particle size within a specified range and a specified near-infrared absorption spectrum. Patent Document 2 discloses a transparent substrate having a laminate of thin layers on its main surface, the laminate of thin layers including a metallic functional layer and an anti-reflection coating that contains a layer containing zirconium silicon nitride.
特開2021-54941号公報JP 2021-54941 A 特表2019-531497号公報Special table 2019-531497 publication
 表示装置の表面に配置される表示装置用積層体には、傷が付きにくいように良好な耐擦傷性が求められる。一方、従来の反射防止層を有する表示装置用積層体は、耐擦傷性に改善の余地がある。 Laminates for display devices that are placed on the surface of a display device are required to have good scratch resistance so that they are less susceptible to scratches. On the other hand, laminates for display devices that have conventional anti-reflection layers have room for improvement in terms of scratch resistance.
 本開示は、上記問題に鑑みてなされたものであり、優れた耐擦傷性を有する表示装置用積層体を提供することを主目的とする。 This disclosure was made in consideration of the above problems, and its main objective is to provide a laminate for a display device that has excellent scratch resistance.
 本開示の一実施形態は、基材層、機能層および反射防止層を、厚さ方向において、この順に有する表示装置用積層体であって、前記反射防止層側の表面をX線光電子分光法で測定した場合に、窒素元素の比率が、0.5原子%以上、2.5原子%以下である、表示装置用積層体を提供する。 One embodiment of the present disclosure provides a laminate for a display device having a base layer, a functional layer, and an anti-reflection layer in this order in the thickness direction, in which the ratio of nitrogen elements is 0.5 atomic % or more and 2.5 atomic % or less when the surface on the anti-reflection layer side is measured by X-ray photoelectron spectroscopy.
 本開示の他の実施形態は、表示パネルと、前記表示パネルの観察者側に配置された、上述の表示装置用積層体と、を備える、表示装置を提供する。 Another embodiment of the present disclosure provides a display device comprising a display panel and the above-described display device laminate disposed on the viewer side of the display panel.
 本開示は、反射防止性能を有し、かつ、優れた耐擦傷性を有する表示装置用積層体を提供することができる。 The present disclosure can provide a laminate for a display device that has anti-reflection properties and excellent scratch resistance.
本開示の表示装置用積層体の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a laminate for a display device according to the present disclosure. 本開示の表示装置用積層体の他の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing another example of a laminate for a display device according to the present disclosure. 本開示の表示装置用積層体の他の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing another example of a laminate for a display device according to the present disclosure. 本開示の表示装置の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a display device according to the present disclosure.
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Below, an embodiment of the present disclosure will be described with reference to the drawings. However, the present disclosure can be implemented in many different forms, and should not be interpreted as being limited to the description of the embodiment exemplified below. Furthermore, in order to make the explanation clearer, the drawings may show the width, thickness, shape, etc. of each part in a schematic manner compared to the actual form, but these are merely examples and do not limit the interpretation of the present disclosure. Furthermore, in this specification and each figure, elements similar to those described above with reference to the previous figures are given the same reference numerals, and detailed explanations may be omitted as appropriate.
 本明細書において、ある部材の上に他の部材を配置する態様を表現するにあたり、単に「上に」、あるいは「下に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。また、本明細書において、ある部材の面に他の部材を配置する態様を表現するにあたり、単に「面側に」または「面に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。 In this specification, when describing a mode in which another component is placed on a certain component, the term "above" or "below" is intended to include both cases in which another component is placed directly above or below a certain component so as to be in contact with the component, and cases in which another component is placed above or below a certain component with another component in between, unless otherwise specified. Also, in this specification, when describing a mode in which another component is placed on the surface of a certain component, the term "on the surface side" or "on the surface" is intended to include both cases in which another component is placed directly above or below a certain component so as to be in contact with the component, and cases in which another component is placed above or below a certain component with another component in between, unless otherwise specified.
 図1は、本開示の表示装置用積層体の一例を示す概略断面図である。図1に示すように、本開示の表示装置用積層体1は、基材層2、機能層3および反射防止層4を、厚さ方向Dにおいて、この順に有する。本開示における表示装置用積層体1は、反射防止層4側の表面S1をX線光電子分光法で測定した場合に、窒素元素の比率が、0.5原子%以上、2.5原子%以下であることを特徴とする。 Fig. 1 is a schematic cross-sectional view showing an example of a laminate for a display device of the present disclosure. As shown in Fig. 1, the laminate for a display device 1 of the present disclosure has a base layer 2, a functional layer 3, and an antireflection layer 4 in this order in the thickness direction DT . The laminate for a display device 1 of the present disclosure is characterized in that, when the surface S1 on the antireflection layer 4 side is measured by X-ray photoelectron spectroscopy, the ratio of nitrogen elements is 0.5 atomic % or more and 2.5 atomic % or less.
 本開示における表示装置用積層体は、反射防止層側の表面における窒素元素の比率が所定の範囲内であることにより、従来の反射防止層を備える表示装置用積層体に比べ、耐擦傷性に優れる。これは、反射防止層に架橋剤として配合された窒素含有化合物(例えば、メラミン系化合物)が、反射防止層および機能層に含まれる樹脂と架橋構造を形成し、表面硬度が向上するためと推察される。以下、本開示の表示装置用積層体における各構成について、詳細に説明する。 The laminate for a display device according to the present disclosure has a ratio of nitrogen elements in the surface on the anti-reflection layer side within a specified range, and therefore has superior scratch resistance compared to a laminate for a display device having a conventional anti-reflection layer. This is presumably because the nitrogen-containing compound (e.g., a melamine-based compound) blended into the anti-reflection layer as a cross-linking agent forms a cross-linked structure with the resin contained in the anti-reflection layer and the functional layer, improving the surface hardness. Each component of the laminate for a display device according to the present disclosure will be described in detail below.
1. 表示装置用積層体のパラメータ
 本開示の表示装置用積層体は、反射防止層側の表面S1をX線光電子分光法で測定した場合に、窒素元素の比率が、0.5原子%以上であり、中でも0.6原子%以上が好ましく、特に0.7原子%以上がより好ましい。上記窒素元素の比率は、反射防止層に、例えばメラミン系化合物等の架橋剤として配合された窒素含有化合物の量に対応する。架橋剤として配合された窒素含有化合物の量が少な過ぎると、反射防止層中の架橋密度が不十分となり、優れた耐擦傷性を得ることができない。
1. Parameters of the display laminate When the surface S1 on the antireflection layer side of the display laminate of the present disclosure is measured by X-ray photoelectron spectroscopy, the ratio of nitrogen element is 0.5 atomic % or more, preferably 0.6 atomic % or more, and more preferably 0.7 atomic % or more. The ratio of nitrogen element corresponds to the amount of nitrogen-containing compound blended as a crosslinking agent, such as a melamine-based compound, in the antireflection layer. If the amount of nitrogen-containing compound blended as a crosslinking agent is too small, the crosslink density in the antireflection layer becomes insufficient, and excellent scratch resistance cannot be obtained.
 一方、上記窒素元素の比率は、2.5原子%以下であり、中でも2.0原子%以下が好ましく、1.5原子%以下がより好ましい。
 架橋剤として配合された窒素含有化合物量が多過ぎた場合、相対的に樹脂の含有量が減るために架橋密度が疎になり、優れた耐擦傷性を得ることができない。また、窒素含有化合物自体の耐擦傷性が低いため、耐擦傷性が悪化する。
On the other hand, the ratio of the nitrogen element is 2.5 atomic % or less, more preferably 2.0 atomic % or less, and even more preferably 1.5 atomic % or less.
If the amount of the nitrogen-containing compound blended as a crosslinking agent is too large, the resin content is relatively reduced, resulting in a low crosslink density and making it impossible to obtain excellent scratch resistance. In addition, the scratch resistance of the nitrogen-containing compound itself is low, resulting in poor scratch resistance.
 上記窒素元素の比率は、0.5原子%以上、2.5原子%以下であり、0.6原子%以上、2.0原子%以下が好ましく、0.7原子%以上、1.5原子%以下がより好ましい。 The ratio of the nitrogen element is 0.5 atomic % or more and 2.5 atomic % or less, preferably 0.6 atomic % or more and 2.0 atomic % or less, and more preferably 0.7 atomic % or more and 1.5 atomic % or less.
 本開示において、上記窒素元素の比率は、表示装置用積層体の反射防止層側の表面S1をX線光電子分光法で測定して得られる全元素の合計量を100原子%とした際の窒素元素の比率である。 In this disclosure, the ratio of the nitrogen element is the ratio of the nitrogen element when the total amount of all elements obtained by measuring the surface S1 of the laminate for a display device on the anti-reflection layer side by X-ray photoelectron spectroscopy is taken as 100 atomic %.
 上記窒素元素の比率を上記範囲内とする方法としては、反射防止層における窒素含有化合物(例えば、メラミン系化合物等)の種類および含有量を調整する方法が挙げられる。 One method for keeping the nitrogen element ratio within the above range is to adjust the type and content of the nitrogen-containing compound (e.g., melamine-based compound, etc.) in the anti-reflection layer.
 本開示において、上記窒素元素の比率は、以下の方法で測定された値である。すなわち、表示装置用積層体から測定用試料を切り出し、下記X線光電子分光分析装置を用いて下記条件で、測定用試料の反射防止層側の表面のN1s軌道のX線光電子スペクトルを測定し、全元素量に対するN元素量の比率(原子%)を求める。 In this disclosure, the ratio of the nitrogen element is a value measured by the following method. That is, a measurement sample is cut out from the laminate for a display device, and the X-ray photoelectron spectrum of the N1s orbital of the surface of the measurement sample on the anti-reflection layer side is measured under the following conditions using the X-ray photoelectron spectroscopy analyzer described below, and the ratio (atomic %) of the amount of N element to the amount of all elements is calculated.
(測定装置)
Kratos製 AXIS-NOVA
(測定条件)
測定手法:WideおよびNarrow
X線源:モノクロAlKα
X線出力:150W、エミッション電流:10mA、加速電圧:15kV
帯電中和機構:ON
測定領域:300μm×700μm
Pass Energy:Wide-160eV、Narrow-40eV
(measuring device)
Kratos AXIS-NOVA
(Measurement condition)
Measurement method: Wide and Narrow
X-ray source: Monochrome AlKα
X-ray output: 150 W, emission current: 10 mA, acceleration voltage: 15 kV
Charge neutralization mechanism: ON
Measurement area: 300μm x 700μm
Pass Energy: Wide-160eV, Narrow-40eV
 なお、本開示の表示装置用積層体の反射防止層側の表面S1をX線光電子分光法で測定すると、少なくとも、窒素元素が検出される。窒素元素は、後述する窒素含有化合物、例えば、メラミン系化合物に由来する窒素元素が含まれる。また、窒素元素以外に、例えば、後述する樹脂、低屈折率粒子等に由来する元素、例えば、珪素、炭素、酸素、アルミニウム、その他の元素等が検出されてもよい。 When the surface S1 on the anti-reflection layer side of the laminate for a display device of the present disclosure is measured by X-ray photoelectron spectroscopy, at least nitrogen element is detected. The nitrogen element includes nitrogen element derived from a nitrogen-containing compound described later, for example, a melamine-based compound. In addition to the nitrogen element, elements derived from, for example, a resin or low refractive index particles described later, for example, silicon, carbon, oxygen, aluminum, and other elements, may also be detected.
 また、本開示の表示装置用積層体の反射防止層側の表面S1を、飛行時間型二次イオン質量分析法(TOF-SIMS法)により測定した場合に、後述する窒素含有化合物由来の構造、例えば、メラミン系化合物由来の構造が検出されることが好ましい。 Furthermore, when the surface S1 on the anti-reflection layer side of the laminate for a display device of the present disclosure is measured by time-of-flight secondary ion mass spectrometry (TOF-SIMS), it is preferable that a structure derived from a nitrogen-containing compound, which will be described later, for example, a structure derived from a melamine-based compound, is detected.
 飛行時間型二次イオン質量分析法(TOF-SIMS法)は、一次イオン銃から一次イオン(例えば、ビスマスイオン)ビームを照射して試料から放出される二次イオンが検出器に到達するまでの飛行時間を計測し、その僅かな時間差から質量分離を行い(質量が異なると飛行半径(飛行時間)が異なる)、試料表面の分析を行う手法である。 Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a technique for analyzing the surface of a sample by measuring the time it takes for the secondary ions emitted from the sample to reach a detector after irradiating the sample with a beam of primary ions (e.g. bismuth ions) from a primary ion gun, and then separating the masses from the slight time difference (different masses result in different flight radii (times of flight)) to analyze the surface of the sample.
 具体的には、飛行時間型二次イオン質量分析装置(商品名「TOF-SIMS5」,ION-TOF社製)を使用し、下記測定条件で測定を行なった際に、C、CおよびCOのいずれか1以上のフラグメントが検出されることが好ましい。 Specifically, when a time-of-flight secondary ion mass spectrometer (product name "TOF-SIMS5", manufactured by ION-TOF) is used and measurements are performed under the following measurement conditions, it is preferable that one or more fragments of C 6 H 7 N 6 , C 7 H 9 N 6 and C 7 H 9 N 6 O are detected.
(測定条件)
・一次イオン種:Bi3++
・一次イオン加速電圧:25kV
・一次イオン電流値:0.2pA
・周波数:10kHz
・測定面積:200μm×200μm
・Scan:128pixel×128pixel×32scan
・帯電補正:電子照射
(Measurement condition)
Primary ion species: Bi3 ++
Primary ion acceleration voltage: 25 kV
Primary ion current value: 0.2 pA
Frequency: 10kHz
・Measurement area: 200μm x 200μm
・Scan: 128pixel x 128pixel x 32scan
・Charging correction: Electron irradiation
2. 反射防止層
 本開示における反射防止層は、機能層の基材層側の面とは反対の面側に配置されている。反射防止層は、架橋剤である窒素含有化合物を所定の量含有する反射防止層用組成物から形成された硬化物である。反射防止層は、架橋剤である窒素含有化合物を含有する。反射防止層は、さらに、樹脂と低屈折率粒子とを有する、または、低屈折率樹脂を有することが好ましい。
2. Antireflection layer The antireflection layer in the present disclosure is disposed on the surface side opposite to the surface on the substrate layer side of the functional layer. The antireflection layer is a cured product formed from a composition for an antireflection layer containing a predetermined amount of a nitrogen-containing compound as a crosslinking agent. The antireflection layer contains a nitrogen-containing compound as a crosslinking agent. The antireflection layer preferably further contains a resin and low refractive index particles, or contains a low refractive index resin.
(1)材料
 本開示における反射防止層の材料としては、上記X線光電子分光法による分析結果を満たす反射防止層を得ることが可能な材料であれば特に限定されるものではない。
(1) Material The material for the antireflection layer in the present disclosure is not particularly limited as long as it is a material that can provide an antireflection layer that satisfies the above-mentioned analysis results by X-ray photoelectron spectroscopy.
(i)窒素含有化合物
 本開示における反射防止層は、架橋剤として窒素含有化合物を含有する。架橋剤は通常、樹脂や架橋剤自身と反応した状態で存在している。従って、本開示における反射防止層には、窒素含有化合物の未反応物、反応後の化合物、あるいはそれらの混合物として存在することとなる。
(i) Nitrogen-containing compound The anti-reflection layer in the present disclosure contains a nitrogen-containing compound as a crosslinking agent. The crosslinking agent is usually present in a state of reacting with a resin or the crosslinking agent itself. Therefore, the nitrogen-containing compound is present in the anti-reflection layer in the present disclosure as an unreacted compound, a reacted compound, or a mixture thereof.
 上記窒素含有化合物としては、架橋剤としての機能を有するものであれば特に限定されないが、例えば、メラミン系化合物が挙げられる。本開示において、メラミン系化合物とは、化合物中にメラミン骨格を有する化合物をいう。メラミン系化合物としては、アルコキシメチル化メラミンが挙げられ、具体例としては、メトキシメチル化メラミン、プロポキシメチル化メラミン、ブトキシメチル化メラミン等が挙げられる。中でもヘキサメトキシメチル化メラミンが好ましい。窒素含有化合物は1種類でもよいし、2種類以上を併用しても良い。 The nitrogen-containing compound is not particularly limited as long as it functions as a crosslinking agent, and examples thereof include melamine-based compounds. In this disclosure, a melamine-based compound refers to a compound having a melamine skeleton in the compound. Examples of melamine-based compounds include alkoxymethylated melamine, and specific examples include methoxymethylated melamine, propoxymethylated melamine, and butoxymethylated melamine. Of these, hexamethoxymethylated melamine is preferred. One type of nitrogen-containing compound may be used, or two or more types may be used in combination.
 反射防止層中の窒素含有化合物の含有量は、上記X線光電子分光法による分析結果を満たす反射防止層の表面を得ることが可能な量であれば特に限定されない。反射防止層中の窒素含有化合物の含有量は、1質量%以上が好ましく、2質量%以上がより好ましく、5質量%以上が特に好ましい。一方、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が特に好ましい。ここで、反射防止層中の窒素含有化合物の含有量とは、硬化前の反射防止層用組成物における固形分全質量に対する含有割合を意味する。反射防止層中の窒素含有化合物の含有量は、1質量%以上、30質量%以下が好ましく、2質量%以上、25質量%以下がより好ましく、5質量%以上、20質量%以下が特に好ましい。 The content of the nitrogen-containing compound in the antireflective layer is not particularly limited as long as it is an amount that can obtain an antireflective layer surface that satisfies the analysis results by the X-ray photoelectron spectroscopy. The content of the nitrogen-containing compound in the antireflective layer is preferably 1 mass% or more, more preferably 2 mass% or more, and particularly preferably 5 mass% or more. On the other hand, it is preferably 30 mass% or less, more preferably 25 mass% or less, and particularly preferably 20 mass% or less. Here, the content of the nitrogen-containing compound in the antireflective layer means the content ratio relative to the total mass of solids in the antireflective layer composition before curing. The content of the nitrogen-containing compound in the antireflective layer is preferably 1 mass% or more and 30 mass% or less, more preferably 2 mass% or more and 25 mass% or less, and particularly preferably 5 mass% or more and 20 mass% or less.
(ii)樹脂および低屈折率粒子
 本開示における反射防止層は、樹脂と、樹脂よりも屈折率が低い低屈折率粒子とを含有してもよい。また、上記樹脂同士は、上記窒素含有化合物を介して連結していてもよい。
(ii) Resin and Low Refractive Index Particles The antireflection layer according to the present disclosure may contain a resin and low refractive index particles having a refractive index lower than that of the resin. The resins may be bonded to each other via the nitrogen-containing compound.
 反射防止層は、樹脂として、熱または紫外線や電子線等の電離放射線の照射により硬化した硬化樹脂を含むことが好ましい。すなわち、反射防止層は、樹脂として、熱硬化性樹脂組成物または電離放射線硬化性樹脂組成物等の硬化性樹脂組成物の硬化物を含むことが好ましい。耐擦傷性の観点から、電離放射線硬化性樹脂組成物の硬化物を含むことがより好ましい。なお、電離放射線硬化性樹脂組成物としては、例えば、電子線硬化性樹脂組成物、紫外線硬化性樹脂組成物が挙げられる。 The anti-reflection layer preferably contains, as a resin, a cured resin that has been cured by exposure to heat or ionizing radiation such as ultraviolet light or an electron beam. That is, the anti-reflection layer preferably contains, as a resin, a cured product of a curable resin composition such as a heat-curable resin composition or an ionizing radiation-curable resin composition. From the viewpoint of scratch resistance, it is more preferable that the anti-reflection layer contains a cured product of an ionizing radiation-curable resin composition. Examples of ionizing radiation-curable resin compositions include electron beam-curable resin compositions and ultraviolet light-curable resin compositions.
 また、「電離放射線」とは、電磁波または荷電粒子線のうち、分子を重合あるいは架橋し得るエネルギー量子を有するものをいい、例えば、紫外線や電子線の他、X線、γ線等の電磁波、α線、イオン線等の荷電粒子線が挙げられる。 "Ionizing radiation" refers to electromagnetic waves or charged particle beams that have an energy quantum capable of polymerizing or crosslinking molecules, and includes, for example, ultraviolet rays, electron beams, electromagnetic waves such as X-rays and gamma rays, and charged particle beams such as alpha rays and ion beams.
 電離放射線硬化性樹脂組成物は、電離放射線硬化性官能基を有する化合物(以下、「電離放射線硬化性化合物」ともいう)を含む組成物である。電離放射線硬化性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性二重結合を有する官能基が挙げられる。電離放射線硬化性化合物としては、(メタ)アクリロイル基を有する(メタ)アクリレート系化合物がより好ましい。なお、本開示において、(メタ)アクリロイル基とは、アクリロイル基またはメタクロイル基をいう。また、本開示において、(メタ)アクリレートとは、アクリレートまたはメタクリレートをいう。電離放射線硬化性化合物は、電離放射線硬化性官能基を2つ以上有することが好ましい。 The ionizing radiation curable resin composition is a composition containing a compound having an ionizing radiation curable functional group (hereinafter also referred to as "ionizing radiation curable compound"). Examples of the ionizing radiation curable functional group include functional groups having an ethylenic double bond, such as a (meth)acryloyl group, a vinyl group, and an allyl group. As the ionizing radiation curable compound, a (meth)acrylate compound having a (meth)acryloyl group is more preferred. In this disclosure, a (meth)acryloyl group refers to an acryloyl group or a methcroyl group. In this disclosure, a (meth)acrylate refers to an acrylate or a methacrylate. It is preferable that the ionizing radiation curable compound has two or more ionizing radiation curable functional groups.
 電離放射線硬化性化合物としては、例えば、アクリレート系の官能基を有する化合物等の1つ又は2つ以上の不飽和結合を有する化合物を挙げることができる。1つの不飽和結合を有する化合物としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等を挙げることができる。 Examples of ionizing radiation curable compounds include compounds with one or more unsaturated bonds, such as compounds with acrylate functional groups. Examples of compounds with one unsaturated bond include ethyl (meth)acrylate, ethylhexyl (meth)acrylate, styrene, methylstyrene, and N-vinylpyrrolidone.
 2つ以上の不飽和結合を有する化合物としては、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の多官能化合物、及び、上記多官能化合物と(メタ)アクリレート等との反応生成物(例えば、多価アルコールのポリ(メタ)アクリレートエステル)等を挙げることができる。 Examples of compounds having two or more unsaturated bonds include polyfunctional compounds such as polymethylolpropane tri(meth)acrylate, hexanediol (meth)acrylate, tripropylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,6-hexanediol di(meth)acrylate, and neopentyl glycol di(meth)acrylate, as well as reaction products of the above-mentioned polyfunctional compounds with (meth)acrylates, etc. (for example, poly(meth)acrylate esters of polyhydric alcohols).
 また、上記電離放射線硬化性化合物として、不飽和二重結合を有する比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も使用することができる。さらに、樹脂として、後述の低屈折率樹脂を用いてもよい。 Furthermore, as the ionizing radiation curable compound, polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiolpolyene resins, etc. having relatively low molecular weights and unsaturated double bonds can also be used. Furthermore, low refractive index resins, which will be described later, may also be used as the resin.
 本開示においては、電離放射線硬化性化合物は、上記窒素含有化合物と架橋可能な反応基を有することが好ましい。このような反応基としては、水酸基、カルボキシ基、アミノ基等が挙げられる。 In the present disclosure, the ionizing radiation curable compound preferably has a reactive group capable of crosslinking with the nitrogen-containing compound. Examples of such reactive groups include a hydroxyl group, a carboxyl group, an amino group, etc.
 具体的には、ペンタエリスリトールトリ(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート等が好ましい。 Specific examples include pentaerythritol tri(meth)acrylate and dimethylaminoethyl (meth)acrylate.
 反射防止層における樹脂の含有量は、例えば、3質量%以上であり、5質量%以上が好ましい。一方、例えば、50質量%以下であり、40質量%以下が好ましい。反射防止層における樹脂の含有量は、例えば、3質量%以上、50質量%以下であり、5質量%以上、40質量%以下が好ましい。ここで、反射防止層中の樹脂の含有量とは、硬化前の反射防止層用組成物における固形分全質量に対する上述した硬化性化合物の含有量の割合を意味する。 The resin content in the anti-reflection layer is, for example, 3% by mass or more, and preferably 5% by mass or more. On the other hand, for example, it is 50% by mass or less, and preferably 40% by mass or less. The resin content in the anti-reflection layer is, for example, 3% by mass or more and 50% by mass or less, and preferably 5% by mass or more and 40% by mass or less. Here, the resin content in the anti-reflection layer means the ratio of the content of the above-mentioned curable compound to the total mass of solids in the anti-reflection layer composition before curing.
 反射防止層は、必要に応じて重合開始剤を含有していてもよい。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等を適宜選択して用いることができる。これらの重合開始剤は、光照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。なお、反射防止層中には、重合開始剤が全て分解されて残留していない場合もある。電離放射線硬化性化合物が紫外線硬化性化合物である場合、反射防止層は、光重合開始剤を含んでいてもよい。 The anti-reflective layer may contain a polymerization initiator as necessary. The polymerization initiator may be appropriately selected from radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc. These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations, and cause radical polymerization and cationic polymerization to proceed. Note that there are cases where the polymerization initiator is completely decomposed and does not remain in the anti-reflective layer. When the ionizing radiation curable compound is an ultraviolet ray curable compound, the anti-reflective layer may contain a photopolymerization initiator.
 また、本開示における反射防止層は、低屈折率粒子を含有することが好ましい。低屈折率粒子としては、樹脂の屈折率よりも低い屈折率を有することが好ましい。 In addition, the anti-reflection layer in the present disclosure preferably contains low refractive index particles. The low refractive index particles preferably have a refractive index lower than the refractive index of the resin.
 低屈折率粒子は、無機粒子および有機粒子のいずれであってもよい。無機粒子としては、例えば、二酸化ケイ素(シリカ)、フッ化マグネシウム、フッ化リチウム、フッ化カルシウム、フッ化バリウム等の無機粒子が挙げられる。中でも、シリカ粒子が好ましい。 The low refractive index particles may be either inorganic or organic particles. Examples of inorganic particles include inorganic particles such as silicon dioxide (silica), magnesium fluoride, lithium fluoride, calcium fluoride, and barium fluoride. Among these, silica particles are preferred.
 また、低屈折率粒子は、例えば、中空粒子、中実粒子、多孔質粒子のいずれであってもよいが、中でも、屈折率が低いことから、中空粒子や多孔質粒子が好ましい。中空粒子および多孔質粒子としては、例えば、中空シリカ粒子、多孔質シリカ粒子、多孔質ポリマー粒子、中空ポリマー粒子等が挙げられる。中でも、中空シリカ粒子が好ましい。 The low refractive index particles may be, for example, hollow particles, solid particles, or porous particles, but among these, hollow particles and porous particles are preferred because of their low refractive index. Examples of hollow particles and porous particles include hollow silica particles, porous silica particles, porous polymer particles, and hollow polymer particles. Among these, hollow silica particles are preferred.
 また、低屈折率粒子は、表面処理がされていてもよい。低屈折率粒子に表面処理を施すことにより、樹脂や溶媒との親和性が向上し、低屈折率粒子の分散が均一となり、低屈折率粒子同士の凝集が生じにくくなるので、反射防止層の透明性の低下や、反射防止層用樹脂組成物の塗布性、膜強度の低下を抑制することができる。 The low refractive index particles may also be surface-treated. By subjecting the low refractive index particles to a surface treatment, the affinity with the resin and the solvent is improved, the dispersion of the low refractive index particles becomes uniform, and the low refractive index particles are less likely to aggregate with each other, so that a decrease in the transparency of the antireflection layer, and a decrease in the coatability and film strength of the resin composition for the antireflection layer can be suppressed.
 表面処理方法としては、例えば、シランカップリング剤を用いた表面処理等が挙げられる。具体的なシランカップリング剤については、例えば特開2013-142817号公報で開示されるシランカップリング剤と同様とすることができる。 Examples of surface treatment methods include surface treatment using a silane coupling agent. Specific silane coupling agents can be the same as those disclosed in, for example, JP 2013-142817 A.
 また、低屈折率粒子は、その表面に重合性官能基を有する反応性粒子であってもよい。反応性粒子である低屈折率粒子としては、例えば、特開2013-142817号公報等に記載されている低屈折率層に用いられるものを挙げることができる。 The low refractive index particles may also be reactive particles having polymerizable functional groups on their surfaces. Examples of reactive low refractive index particles include those used in low refractive index layers described in JP 2013-142817 A and the like.
 低屈折率粒子の平均粒径としては、反射防止層の厚さ以下であればよく、例えば、300nm以下であり、200nm以下であってもよく、150nm以下であってもよく、100nm以下であってもよい。また、低屈折率粒子の平均粒径は、例えば、5nm以上であり、10nm以上であってもよく、30nm以上であってもよく、50nm以上であってもよい。低屈折率粒子の平均粒径が上記範囲内にあれば、反射防止層の透明性を損なうことがなく、良好な低屈折率粒子の分散状態が得られる。なお、低屈折率粒子の平均粒径が上記範囲内にあれば、平均粒径は一次粒径および二次粒径のいずれであってもよく、また低屈折率粒子が鎖状に連なっていてもよい。低屈折率粒子の平均粒径は、例えば、5nm以上300nm以下であることが好ましく、10nm以上200nm以下であることがより好ましく、30nm以上150nm以下であることがさらに好ましく、50nm以上100nm以下であることが最も好ましい。 The average particle size of the low refractive index particles may be less than the thickness of the antireflection layer, for example, 300 nm or less, 200 nm or less, 150 nm or less, or 100 nm or less. The average particle size of the low refractive index particles may be, for example, 5 nm or more, 10 nm or more, 30 nm or more, or 50 nm or more. If the average particle size of the low refractive index particles is within the above range, the transparency of the antireflection layer is not impaired and a good dispersion state of the low refractive index particles is obtained. If the average particle size of the low refractive index particles is within the above range, the average particle size may be either a primary particle size or a secondary particle size, and the low refractive index particles may be linked in a chain shape. The average particle size of the low refractive index particles is, for example, preferably 5 nm or more and 300 nm or less, more preferably 10 nm or more and 200 nm or less, even more preferably 30 nm or more and 150 nm or less, and most preferably 50 nm or more and 100 nm or less.
 ここで、低屈折率粒子の平均粒径は、反射防止層の断面の透過型電子顕微鏡(TEM)写真により観察される粒子20個の平均値をいう。なお、後述する無機粒子の平均粒径についても、同様の方法で観察された値である。 Here, the average particle size of the low refractive index particles refers to the average value of 20 particles observed in a transmission electron microscope (TEM) photograph of the cross section of the anti-reflection layer. The average particle size of the inorganic particles described below is also a value observed in a similar manner.
 低屈折率粒子の形状は特に限定されるものではなく、例えば、球状、鎖状、針状等を挙げることができる。 The shape of the low refractive index particles is not particularly limited, and examples include spherical, chain-like, and needle-like shapes.
 反射防止層中の低屈折率粒子の含有量は、反射防止層全体としての屈折率が所望の屈折率を満たすように適宜設定される。反射防止層における低屈折率粒子の含有量は、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上がさらに好ましい。一方、85質量%以下が好ましく、65質量%以下がより好ましく、50質量%以下がさらに好ましい。低屈折率粒子の含有量は、例えば、20質量%以上、85質量%以下が好ましく、25質量%以上、65質量%以下がより好ましく、30質量%以上、50質量%以下がさらに好ましい。低屈折率粒子の含有量が少なすぎると、所望の屈折率が得られない場合がある。また、低屈折率粒子の含有量が多すぎると、反射防止層のヘイズが高くなるおそれがある。 The content of low refractive index particles in the anti-reflection layer is appropriately set so that the refractive index of the entire anti-reflection layer satisfies the desired refractive index. The content of low refractive index particles in the anti-reflection layer is preferably 20% by mass or more, more preferably 25% by mass or more, and even more preferably 30% by mass or more. On the other hand, it is preferably 85% by mass or less, more preferably 65% by mass or less, and even more preferably 50% by mass or less. The content of low refractive index particles is, for example, preferably 20% by mass or more and 85% by mass or less, more preferably 25% by mass or more and 65% by mass or less, and even more preferably 30% by mass or more and 50% by mass or less. If the content of low refractive index particles is too low, the desired refractive index may not be obtained. Also, if the content of low refractive index particles is too high, the haze of the anti-reflection layer may become high.
 一方、反射防止層が低屈折率樹脂を含有する場合、低屈折率樹脂としては、低屈折率樹脂から構成される反射防止層が所望の屈折率を満たすことが可能な樹脂であればよく、例えば、フッ素樹脂、シリコーン樹脂、アクリル樹脂、オレフィン樹脂等が挙げられる。 On the other hand, when the anti-reflection layer contains a low refractive index resin, the low refractive index resin may be any resin that allows the anti-reflection layer made of the low refractive index resin to have the desired refractive index, and examples of the low refractive index resin include fluororesin, silicone resin, acrylic resin, and olefin resin.
(iii)添加剤
 反射防止層は、各種添加剤を含有していてもよい。添加剤としては、シルセスキオキサン化合物が挙げられる。シルセスキオキサン化合物を配合することにより、耐擦傷性がより向上する。
(iii) Additives The anti-reflection layer may contain various additives. Examples of the additives include silsesquioxane compounds. By blending a silsesquioxane compound, scratch resistance is further improved.
 シルセスキオキサン化合物としては、例えば、一般式RSiO1.5(R:有機基)で表わされる基本骨格を有する化合物が挙げられ、例えば、有機基として、アクリロイル基、アミノ基、エポキシ基、カルボキシル基、メチル、フェニル、チオール基等を有するものが挙げられる。 Examples of the silsesquioxane compound include compounds having a basic skeleton represented by the general formula RSiO1.5 (R: organic group), and examples of the organic group include those having an acryloyl group, an amino group, an epoxy group, a carboxyl group, a methyl group, a phenyl group, a thiol group, etc.
 反射防止層におけるシルセスキオキサン化合物の含有量は、1質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましい。一方、70質量%以下が好ましく、50質量%以下がより好ましく、25質量%以下がさらに好ましい。反射防止層におけるシルセスキオキサン化合物の含有量は、例えば、1質量%以上、70質量%以下が好ましく、10質量%以上、50質量%以下がより好ましく、15質量%以上、25質量%以下がさらに好ましい。シルセスキオキサン化合物の含有量が上記範囲内であれば、耐擦傷性向上の効果が得られる。 The content of the silsesquioxane compound in the anti-reflective layer is preferably 1% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more. On the other hand, it is preferably 70% by mass or less, more preferably 50% by mass or less, and even more preferably 25% by mass or less. The content of the silsesquioxane compound in the anti-reflective layer is, for example, preferably 1% by mass or more and 70% by mass or less, more preferably 10% by mass or more and 50% by mass or less, and even more preferably 15% by mass or more and 25% by mass or less. If the content of the silsesquioxane compound is within the above range, the effect of improving scratch resistance can be obtained.
 また、反射防止層は、上述した低屈折率粒子以外に、無機又は有機粒子を含有することが好ましく、特に無機粒子を含有することがより好ましい。反射防止層が無機又は有機粒子を含有することにより、耐擦傷性が向上する。無機又は有機粒子としては、後述するハードコート層に用いられる無機又は有機粒子と同様である。中でも、反射防止層は、アルミナ(Al)粒子を含有することが好ましい。アルミナ粒子を含有することにより、耐擦傷性がより向上する。 In addition, the antireflection layer preferably contains inorganic or organic particles, particularly inorganic particles, in addition to the low refractive index particles described above. When the antireflection layer contains inorganic or organic particles, the scratch resistance is improved. The inorganic or organic particles are the same as the inorganic or organic particles used in the hard coat layer described later. Among them, the antireflection layer preferably contains alumina (Al 2 O 3 ) particles. When the alumina particles are contained, the scratch resistance is further improved.
 反射防止層に含まれる無機粒子の平均粒径は、3nm以上が好ましく、10nm以上がより好ましい。無機粒子の平均粒径が小さすぎると、耐擦傷性の効果が得にくい。また、無機粒子の平均粒径は、50nm以下が好ましく、35nm以下がより好ましい。無機粒子の平均粒径が大きすぎても、耐擦傷性は悪化し、ヘイズも上昇する。 The average particle size of the inorganic particles contained in the anti-reflection layer is preferably 3 nm or more, and more preferably 10 nm or more. If the average particle size of the inorganic particles is too small, it is difficult to obtain scratch resistance. In addition, the average particle size of the inorganic particles is preferably 50 nm or less, and more preferably 35 nm or less. If the average particle size of the inorganic particles is too large, scratch resistance deteriorates and haze also increases.
 反射防止層における無機粒子の含有量は、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましい。一方、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。反射防止層における無機粒子の含有量は、例えば、1質量%以上、50質量%以下が好ましく、5質量%以上、40質量%以下がより好ましく、10質量%以上、30質量%以下がさらに好ましい。無機粒子の含有量が上記範囲内であれば、耐擦傷性向上の効果が得られる。 The content of inorganic particles in the anti-reflective layer is preferably 1% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more. On the other hand, it is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less. The content of inorganic particles in the anti-reflective layer is, for example, preferably 1% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 40% by mass or less, and even more preferably 10% by mass or more and 30% by mass or less. If the content of inorganic particles is within the above range, the effect of improving scratch resistance can be obtained.
 反射防止層は他の添加剤を有していても良い。他の添加剤としては、例えば、レベリング剤、紫外線吸収剤、酸化防止剤、光安定剤、赤外線吸収剤、分散助剤、耐候性改善剤、耐擦傷性向上剤、帯電防止剤、重合禁止剤、架橋剤、接着性向上剤、チクソ性付与剤、カップリング剤、可塑剤、消泡剤、充填剤等が挙げられる。 The anti-reflection layer may contain other additives. Examples of other additives include leveling agents, ultraviolet absorbers, antioxidants, light stabilizers, infrared absorbers, dispersion aids, weather resistance improvers, scratch resistance improvers, antistatic agents, polymerization inhibitors, crosslinking agents, adhesion improvers, thixotropy imparting agents, coupling agents, plasticizers, defoamers, and fillers.
(2)厚さ
 反射防止層の厚さは、例えば、50nm以上が好ましく、70nm以上がより好ましく、90nm以上がさらに好ましい。反射防止層の厚さが上記範囲以上であれば、耐擦傷性と必要な反射防止効果を得ることができる。一方、反射防止層の厚さは、例えば、200nm以下が好ましく、150nm以下がより好ましく、120nm以下がさらに好ましい。反射防止層の厚さが上記範囲以下であれば、耐屈曲性に優れ、必要な反射防止効果を得ることができる。
 具体的には、本開示における反射防止層の厚さは、50nm以上200nm以下が好ましく、70nm以上150nm以下がより好ましく、90nm以上120nm以下がさらに好ましい。
(2) Thickness The thickness of the antireflection layer is, for example, preferably 50 nm or more, more preferably 70 nm or more, and even more preferably 90 nm or more. If the thickness of the antireflection layer is in the above range or more, it can obtain scratch resistance and necessary antireflection effect. On the other hand, the thickness of the antireflection layer is, for example, preferably 200 nm or less, more preferably 150 nm or less, and even more preferably 120 nm or less. If the thickness of the antireflection layer is in the above range or less, it can obtain excellent bending resistance and necessary antireflection effect.
Specifically, the thickness of the antireflection layer in the present disclosure is preferably 50 nm or more and 200 nm or less, more preferably 70 nm or more and 150 nm or less, and even more preferably 90 nm or more and 120 nm or less.
 反射防止層の厚さは、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)又は走査透過型電子顕微鏡(STEM)により観察される表示装置用積層体の厚さ方向の断面から測定される値であり、無作為に選んだ10箇所の厚さの平均値とすることができる。なお、表示装置用積層体が有する他の層の厚さの測定方法についても同様とすることができる。 The thickness of the anti-reflection layer is a value measured from a cross section in the thickness direction of the laminate for a display device observed with a transmission electron microscope (TEM), a scanning electron microscope (SEM) or a scanning transmission electron microscope (STEM), and can be the average value of the thicknesses at 10 randomly selected locations. The same method can be used to measure the thicknesses of other layers in the laminate for a display device.
(3)屈折率
 反射防止層の屈折率は1.40以下が好ましく、1.35以下がより好ましい。反射防止層の屈折率が上記範囲であれば、反射防止層表面の反射率が高くなることを抑制し、視認性を良好にしやすくできる。一方、反射防止層の屈折率は1.10以上である。
(3) Refractive index The refractive index of the anti-reflection layer is preferably 1.40 or less, more preferably 1.35 or less. If the refractive index of the anti-reflection layer is within the above range, the reflectance of the surface of the anti-reflection layer is prevented from increasing, and visibility can be easily improved. On the other hand, the refractive index of the anti-reflection layer is 1.10 or more.
 本明細書において、屈折率は、波長550nmの光に対する屈折率をいう。屈折率の測定方法は、エリプソメーターを用いて測定する方法を用いて測定するものとする。エリプソメーターとしては、例えばジョバンーイーボン社製「UVSEL」やテクノ・シナジー社製「DF1030R」等が挙げられる。機能層の屈折率の測定方法も同様である。 In this specification, the refractive index refers to the refractive index for light with a wavelength of 550 nm. The refractive index is measured using an ellipsometer. Examples of ellipsometers include the UVSEL manufactured by Jobin Yvon and the DF1030R manufactured by Techno Synergy. The refractive index of the functional layer is measured in the same manner.
(4)反射防止層の形成方法
 反射防止層の形成方法としては、例えば、機能層上に反射防止層用樹脂組成物を塗布し、硬化させる方法が挙げられる。
(4) Method for Forming Antireflection Layer As a method for forming an antireflection layer, for example, a method of applying a resin composition for an antireflection layer onto a functional layer and curing the composition can be mentioned.
 反射防止層用樹脂組成物は、例えば、上記窒素含有化合物と、上記硬化性樹脂組成物と、上記低屈折率粒子と、添加剤と、必要に応じて溶媒と、を含む。 The resin composition for the anti-reflection layer contains, for example, the nitrogen-containing compound, the curable resin composition, the low refractive index particles, an additive, and, if necessary, a solvent.
3.機能層
 本開示における機能層は、基材層と反射防止層との間に配置されている。機能層としては、例えばハードコート層が挙げられる。ハードコート層は、表面硬度を高めるための層である。ハードコート層が配置されていることにより、耐擦傷性を向上させることができる。特に、基材層が樹脂基材である場合には、ハードコート層が配置されていることにより、耐擦傷性を効果的に向上させることができる。
3. Functional layer The functional layer in the present disclosure is disposed between the substrate layer and the anti-reflection layer. Examples of the functional layer include a hard coat layer. The hard coat layer is a layer for increasing the surface hardness. By disposing the hard coat layer, it is possible to improve the scratch resistance. In particular, when the substrate layer is a resin substrate, by disposing the hard coat layer, it is possible to effectively improve the scratch resistance.
(1)材料
 ハードコート層の材料としては、例えば、有機材料、無機材料、有機無機複合材料等を用いることができる。
(1) Materials Examples of materials that can be used for the hard coat layer include organic materials, inorganic materials, and organic-inorganic composite materials.
 中でも、ハードコート層の材料は有機材料であることが好ましい。有機材料としては、熱硬化性樹脂組成物または電離放射線硬化性樹脂組成物等の硬化性樹脂組成物の硬化物が挙げられる。硬化性樹脂組成物としては、上述した反射防止層の硬化性樹脂組成物と同様のものが挙げられる。 Among them, the material of the hard coat layer is preferably an organic material. Examples of organic materials include a cured product of a curable resin composition such as a thermosetting resin composition or an ionizing radiation curable resin composition. Examples of curable resin compositions include the same curable resin composition as the antireflection layer described above.
 ハードコート層は、必要に応じて重合開始剤を含有していてもよい。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等を適宜選択して用いることができる。これらの重合開始剤は、光照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。なお、ハードコート層中には、重合開始剤が全て分解されて残留していない場合もある。ハードコート層は、樹脂として紫外線硬化樹脂を用いる場合には、光重合開始剤を含有していてもよい。 The hard coat layer may contain a polymerization initiator as necessary. The polymerization initiator may be appropriately selected from radical polymerization initiators, cationic polymerization initiators, radical and cationic polymerization initiators, etc. These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations, and cause radical polymerization and cationic polymerization to proceed. Note that in the hard coat layer, the polymerization initiator may be completely decomposed and may not remain. When an ultraviolet-curable resin is used as the resin, the hard coat layer may contain a photopolymerization initiator.
 ハードコート層は、無機又は有機粒子を含有することが好ましく、無機粒子を含有することがより好ましい。ハードコート層が粒子を含有することにより、硬度を向上させることができる。 The hard coat layer preferably contains inorganic or organic particles, and more preferably contains inorganic particles. By containing particles in the hard coat layer, the hardness can be improved.
 無機粒子としては、例えば、シリカ(SiO)、アルミナ(Al)、ジルコニア、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物(ITO)、酸化アンチモン、酸化セリウム等の金属酸化物粒子、フッ化マグネシウム、フッ化ナトリウム等の金属フッ化物粒子、金属粒子、金属硫化物粒子、金属窒化物粒子等が挙げられる。中でも、金属酸化物粒子が好ましく、シリカ粒子及びアルミナ粒子から選ばれる少なくとも一種がより好ましく、シリカ粒子がさらに好ましい。優れた硬度が得られるからである。 Examples of inorganic particles include metal oxide particles such as silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide, metal fluoride particles such as magnesium fluoride and sodium fluoride, metal particles, metal sulfide particles, and metal nitride particles. Among these, metal oxide particles are preferred, and at least one selected from silica particles and alumina particles is more preferred, with silica particles being even more preferred, because excellent hardness can be obtained.
 また、無機粒子は、当該無機粒子表面に当該無機粒子同士又は重合性化合物の少なくとも1種との間で架橋反応し、共有結合が形成可能な光反応性を有する反応性官能基を少なくとも粒子表面の一部に有する反応性無機粒子であることが好ましい。反応性無機粒子同士又は反応性無機粒子とラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種との間で架橋反応することにより、ハードコート層の硬度をさらに向上させることができる。 The inorganic particles are preferably reactive inorganic particles having photoreactive reactive functional groups on at least a portion of the particle surface that undergo a crosslinking reaction between the inorganic particles themselves or between the inorganic particles and at least one type of polymerizable compound to form a covalent bond. The hardness of the hard coat layer can be further improved by crosslinking between the reactive inorganic particles themselves or between the reactive inorganic particles and at least one type of radically polymerizable compound and cationic polymerizable compound.
 反応性無機粒子は、少なくとも表面の一部に有機成分が被覆され、当該有機成分により導入された反応性官能基を表面に有する。反応性官能基としては、例えば、重合性不飽和基が好適に用いられ、より好ましくは光硬化性不飽和基である。反応性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合、及びエポキシ基等が挙げられる。 Reactive inorganic particles have at least a portion of their surface coated with an organic component, and have reactive functional groups on the surface introduced by the organic component. As the reactive functional group, for example, a polymerizable unsaturated group is preferably used, and a photocurable unsaturated group is more preferably used. As the reactive functional group, for example, ethylenically unsaturated bonds such as (meth)acryloyl groups, vinyl groups, and allyl groups, and epoxy groups can be mentioned.
 ハードコート層に含まれる無機粒子の平均粒径は、硬度向上の点から、3nm以上が好ましく、10nm以上がより好ましい。無機粒子の平均粒径が小さすぎると、硬度向上が得られない。また、無機粒子の平均粒径は、100nm以下が好ましく、70nm以下がより好ましい。無機粒子の平均粒径が大きすぎると、ヘイズが上昇し、表面平滑性が得られない。 The average particle size of the inorganic particles contained in the hard coat layer is preferably 3 nm or more, more preferably 10 nm or more, from the viewpoint of improving hardness. If the average particle size of the inorganic particles is too small, no improvement in hardness can be obtained. Furthermore, the average particle size of the inorganic particles is preferably 100 nm or less, more preferably 70 nm or less. If the average particle size of the inorganic particles is too large, the haze increases and surface smoothness cannot be obtained.
 無機粒子の大きさ及び含有量を調整することで、ハードコート層の硬度を制御できる。例えば、ハードコート層中の無機粒子の含有量は、例えば、10質量%以上であり、20質量%以上であってもよい。一方、80質量%以下であり、60質量%以下であってもよい。ハードコート層中の無機粒子の含有量は、例えば、10質量%以上、80質量%以下であり、20質量%以上、60質量%以下であってもよい。 The hardness of the hard coat layer can be controlled by adjusting the size and content of the inorganic particles. For example, the content of inorganic particles in the hard coat layer may be, for example, 10% by mass or more, and may be 20% by mass or more. On the other hand, it may be 80% by mass or less, and may be 60% by mass or less. The content of inorganic particles in the hard coat layer may be, for example, 10% by mass or more, and 80% by mass or less, and may be 20% by mass or more, and 60% by mass or less.
 ハードコート層は、レベリング剤を含有していてもよい。ハードコート層に含まれるレベリング剤としては、特に限定されるものではなく、例えば、シリコーン系レベリング剤、フッ素系レベリング剤、アクリル系レベリング剤、ビニル系レベリング剤等が挙げられる。これらのレベリング剤は、1種単独で用いてもよく、2種以上を混合して用いてもよい。中でも、表面張力の低下能力が高いことから、シリコーン系レベリング剤、フッ素系レベリング剤が好ましい。 The hard coat layer may contain a leveling agent. The leveling agent contained in the hard coat layer is not particularly limited, and examples thereof include silicone-based leveling agents, fluorine-based leveling agents, acrylic-based leveling agents, vinyl-based leveling agents, and the like. These leveling agents may be used alone or in combination of two or more. Among these, silicone-based leveling agents and fluorine-based leveling agents are preferred because of their high ability to reduce surface tension.
 ハードコート層中のレベリング剤の含有量としては、特に限定されないが、例えば、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。一方、3質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。ハードコート層中のレベリング剤の含有量は、0.01質量%以上、3質量%以下であることが好ましく、0.05質量%以上、2質量%以下であることがより好ましく、0.1質量%以上、1質量%以下であることがさらに好ましい。レベリング剤の含有量が少なすぎると、レベリング剤による効果を十分に得られない場合がある。また、レベリング剤の含有量が多すぎると、ハードコート層の硬度が低下するおそれがある。 The content of the leveling agent in the hard coat layer is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and even more preferably 0.1% by mass or more. On the other hand, it is preferably 3% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less. The content of the leveling agent in the hard coat layer is preferably 0.01% by mass or more and 3% by mass or less, more preferably 0.05% by mass or more and 2% by mass or less, and even more preferably 0.1% by mass or more and 1% by mass or less. If the content of the leveling agent is too low, the effect of the leveling agent may not be fully obtained. Also, if the content of the leveling agent is too high, the hardness of the hard coat layer may decrease.
(2)厚さ
 機能層の厚さは、表示装置用積層体の用途により適宜選択されればよい。機能層の厚さは、例えば、1μm以上が好ましく、2μm以上がより好ましく、3μm以上がさらに好ましい。一方、30μm以下が好ましく、15μm以下がより好ましく、8μm以下がさらに好ましい。具体的には、機能層の厚さは、1μm以上30μm以下が好ましく、2μm以上15μm以下がより好ましく、3μm以上8μm以下がさらに好ましい。機能層の厚さが上記範囲内であれば、機能層として十分な硬度を得ることができる。
(2) Thickness The thickness of the functional layer may be appropriately selected depending on the application of the display laminate. For example, the thickness of the functional layer is preferably 1 μm or more, more preferably 2 μm or more, and even more preferably 3 μm or more. On the other hand, it is preferably 30 μm or less, more preferably 15 μm or less, and even more preferably 8 μm or less. Specifically, the thickness of the functional layer is preferably 1 μm or more and 30 μm or less, more preferably 2 μm or more and 15 μm or less, and even more preferably 3 μm or more and 8 μm or less. If the thickness of the functional layer is within the above range, sufficient hardness as a functional layer can be obtained.
(3)屈折率
 機能層の屈折率は、例えば、1.45以上が好ましく、1.47以上がより好ましく、1.50以上がさらに好ましい。一方、1.80以下が好ましく、1.75以下がより好ましく、1.70以下がさらに好ましい。機能層の屈折率は、1.45以上、1.80以下が好ましく、1.47以上、1.75以下がより好ましく、1.50以上、1.70以下がさらに好ましい。機能層の屈折率が上記範囲内であることにより、基材層の屈折率との差および反射防止層の屈折率との差を小さくすることができ、機能層および反射防止層の界面での光の反射および機能層および基材層の界面での光の反射を抑制することができる。
(3) Refractive index The refractive index of the functional layer is, for example, preferably 1.45 or more, more preferably 1.47 or more, and even more preferably 1.50 or more. On the other hand, it is preferably 1.80 or less, more preferably 1.75 or less, and even more preferably 1.70 or less. The refractive index of the functional layer is preferably 1.45 or more and 1.80 or less, more preferably 1.47 or more and 1.75 or less, and even more preferably 1.50 or more and 1.70 or less. By having the refractive index of the functional layer within the above range, the difference with the refractive index of the substrate layer and the difference with the refractive index of the antireflection layer can be reduced, and the reflection of light at the interface between the functional layer and the antireflection layer and the reflection of light at the interface between the functional layer and the substrate layer can be suppressed.
 また、本開示における表示装置用積層体が後述する高屈折率層を有する場合、機能層の屈折率は高屈折率層の屈折率より低くすることが好ましい。この場合における機能層の屈折率としては、例えば、1.50以上が好ましく、1.55以上がより好ましい。一方、2.20以下が好ましく、1.80以下がより好ましい。具体的には、機能層の屈折率としては、1.50以上、2.20以下が好ましく、1.55以上、1.80以下がより好ましい。機能層の屈折率がこのような範囲にあれば、機能層が中屈折率層としての役割を有し、機能層(中屈折率層)、高屈折率層及び反射防止層(低屈折率層)の3層による干渉作用が可能となることから、反射率をより低くすることができる。 In addition, when the laminate for a display device in the present disclosure has a high refractive index layer described later, it is preferable that the refractive index of the functional layer is lower than that of the high refractive index layer. In this case, the refractive index of the functional layer is, for example, preferably 1.50 or more, more preferably 1.55 or more. On the other hand, it is preferably 2.20 or less, more preferably 1.80 or less. Specifically, the refractive index of the functional layer is preferably 1.50 or more and 2.20 or less, more preferably 1.55 or more and 1.80 or less. If the refractive index of the functional layer is in such a range, the functional layer serves as a medium refractive index layer, and interference action is possible between the three layers of the functional layer (medium refractive index layer), the high refractive index layer, and the anti-reflection layer (low refractive index layer), so that the reflectance can be further reduced.
(4)形成方法
 機能層の形成方法としては、例えば、上記基材層上に機能層用樹脂組成物を塗布し、硬化させる方法が挙げられる。
(4) Formation Method As a method for forming the functional layer, for example, a method of applying a resin composition for the functional layer onto the above-mentioned base layer and curing the composition can be mentioned.
4.基材層
 本開示における基材層は、上記の反射防止層および機能層を支持し、透明性を有する部材である。基材層としては、透明性を有するものであれば特に限定されるものではなく、例えば、樹脂基材、ガラス基材等が挙げられる。
The substrate layer in the present disclosure is a member that supports the anti-reflection layer and the functional layer and has transparency. The substrate layer is not particularly limited as long as it has transparency, and examples thereof include a resin substrate and a glass substrate.
(1) 樹脂基材
 樹脂基材を構成する樹脂としては、透明性を有する樹脂基材を得ることができるものであれば特に限定されるものではなく、例えば、ポリイミド系樹脂、ポリアミド系樹脂、ポリエステル系樹脂等が挙げられる。ポリイミド系樹脂としては、例えば、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエステルイミド等が挙げられる。ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。中でも、耐屈曲性を有し、優れた硬度および透明性を有することから、ポリイミド系樹脂、ポリアミド系樹脂、あるいはこれらの混合物が好ましく、ポリイミド系樹脂がより好ましい。
(1) Resin substrate The resin constituting the resin substrate is not particularly limited as long as it can provide a resin substrate having transparency, and examples thereof include polyimide resins, polyamide resins, polyester resins, etc. Examples of polyimide resins include polyimide, polyamideimide, polyetherimide, polyesterimide, etc. Examples of polyester resins include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc. Among them, polyimide resins, polyamide resins, or mixtures thereof are preferred because they have bending resistance and excellent hardness and transparency, and polyimide resins are more preferred.
 ポリイミド系樹脂としては、透明性を有する樹脂基材を得ることができるものであれば特に限定されないが、上記の中でも、ポリイミド、ポリアミドイミドが好ましく用いられる。フレキシブル性や耐屈曲性を高めることができ、屈折率が比較的高いため反射率の調整をしやすくすることができる。 There are no particular limitations on the polyimide resin as long as it can produce a resin substrate with transparency, but among the above, polyimide and polyamideimide are preferably used. They can increase flexibility and resistance to bending, and because they have a relatively high refractive index, they make it easier to adjust the reflectance.
(2)ガラス基材
 ガラス基材を構成するガラスとしては、透明性を有するものであれば特に限定されるものではなく、例えば、ケイ酸塩ガラス、シリカガラス等が挙げられる。中でも、ホウケイ酸ガラス、アルミノケイ酸塩ガラス、アルミノホウケイ酸ガラスが好ましく、無アルカリガラスがより好ましい。ガラス基材の市販品としては、例えば、日本電気硝子社の超薄板ガラスG-Leafや、松浪硝子工業社の極薄膜ガラス等が挙げられる。
(2) Glass Substrate The glass constituting the glass substrate is not particularly limited as long as it has transparency, and examples thereof include silicate glass, silica glass, etc. Among them, borosilicate glass, aluminosilicate glass, and aluminoborosilicate glass are preferred, and alkali-free glass is more preferred. Examples of commercially available glass substrates include ultra-thin glass G-Leaf from Nippon Electric Glass Co., Ltd. and ultra-thin glass from Matsunami Glass Industry Co., Ltd.
 また、ガラス基材を構成するガラスは、化学強化ガラスであることも好ましい。化学強化ガラスは機械的強度に優れており、その分薄くできる点で好ましい。化学強化ガラスは、典型的には、ガラスの表面近傍について、ナトリウムをカリウムに代える等、イオン種を一部交換することで、化学的な方法によって機械的物性を強化したガラスであり、表面に圧縮応力層を有する。 It is also preferable that the glass constituting the glass substrate is chemically strengthened glass. Chemically strengthened glass has excellent mechanical strength and is therefore preferable in that it can be made thinner. Chemically strengthened glass is typically glass whose mechanical properties have been strengthened by chemical methods, such as by partially exchanging ion species near the surface of the glass, for example by replacing sodium with potassium, and has a compressive stress layer on the surface.
 化学強化ガラス基材を構成するガラスとしては、例えば、アルミノケイ酸塩ガラス、ソーダライムガラス、ホウケイ酸ガラス、鉛ガラス、アルカリバリウムガラス、アルミノホウケイ酸ガラス等が挙げられる。 Examples of glass that can be used to make chemically strengthened glass substrates include aluminosilicate glass, soda-lime glass, borosilicate glass, lead glass, alkali barium glass, and aluminoborosilicate glass.
 化学強化ガラス基材の市販品としては、例えば、コーニング社のGorilla Glass(ゴリラガラス)、AGC社のDragontrail(ドラゴントレイル)、ショット社の化学強化ガラス等が挙げられる。 Commercially available chemically strengthened glass substrates include, for example, Corning's Gorilla Glass, AGC's Dragontrail, and Schott's chemically strengthened glass.
(3)基材層の構成
 基材層の厚さとしては、特に限定されるものではなく、基材層の種類等に応じて適宜選択される。
(3) Configuration of the Base Material Layer The thickness of the base material layer is not particularly limited and may be appropriately selected depending on the type of base material layer, etc.
 樹脂基材の厚さは、例えば、10μm以上であることが好ましく、25μm以上であることがより好ましい。一方、100μm以下であることが好ましく、80μm以下であることがより好ましい。樹脂基材の厚さは、具体的には、10μm以上、100μm以下であることが好ましく、25μm以上、80μm以下であることがより好ましい。樹脂基材の厚さが上記範囲内であることにより、良好な柔軟性を得ることができるともに、十分な硬度を得ることができる。また、表示装置用積層体のカールを抑制することもできる。さらに、表示装置用積層体の軽量化の面で好ましい。 The thickness of the resin substrate is, for example, preferably 10 μm or more, and more preferably 25 μm or more. On the other hand, it is preferably 100 μm or less, and more preferably 80 μm or less. Specifically, the thickness of the resin substrate is preferably 10 μm or more and 100 μm or less, and more preferably 25 μm or more and 80 μm or less. By having the thickness of the resin substrate within the above range, it is possible to obtain good flexibility and sufficient hardness. It is also possible to suppress curling of the laminate for a display device. Furthermore, it is preferable in terms of reducing the weight of the laminate for a display device.
 ガラス基材の厚さは、例えば、200μm以下であることが好ましく、100μm以下であることがより好ましく、90μm以下であることがさらに好ましく、80μm以下であることが特に好ましい。一方、15μm以上であることがより好ましく、20μm以上であることがさらに好ましく、25μm以上であることが特に好ましい。ガラス基材の厚さは、具体的には、15μm以上、100μm以下であることが好ましく、20μm以上、90μm以下であることがより好ましく、25μm以上、80μm以下であることが特に好ましい。ガラス基材の厚さが上記範囲内であることにより、良好な柔軟性を得ることができるともに、十分な硬度を得ることができる。また、表示装置用積層体のカールを抑制することもできる。さらに、表示装置用積層体の軽量化の面で好ましい。 The thickness of the glass substrate is, for example, preferably 200 μm or less, more preferably 100 μm or less, even more preferably 90 μm or less, and particularly preferably 80 μm or less. On the other hand, it is more preferably 15 μm or more, even more preferably 20 μm or more, and particularly preferably 25 μm or more. Specifically, the thickness of the glass substrate is preferably 15 μm or more and 100 μm or less, more preferably 20 μm or more and 90 μm or less, and particularly preferably 25 μm or more and 80 μm or less. By having the thickness of the glass substrate within the above range, it is possible to obtain good flexibility and sufficient hardness. In addition, curling of the display laminate can also be suppressed. Furthermore, it is preferable in terms of reducing the weight of the display laminate.
5.その他の層
(1)衝撃吸収層
 本開示における表示装置用積層体は、例えば図2に示すように基材層2と機能層3との間に、あるいは、例えば図3に示すように基材層2の機能層3とは反対側の面に、衝撃吸収層5を有することができる。衝撃吸収層が配置されていることにより、表示装置用積層体に衝撃が加わった際に衝撃を吸収し、耐衝撃性を向上させることができる。また、上記基材層がガラス基材である場合には、ガラス基材の割れを抑制することができる。
5. Other Layers (1) Impact Absorption Layer The display laminate in the present disclosure may have an impact absorption layer 5 between the substrate layer 2 and the functional layer 3, as shown in FIG. 2, or on the surface of the substrate layer 2 opposite to the functional layer 3, as shown in FIG. 3. By disposing the impact absorption layer, when an impact is applied to the display laminate, the impact can be absorbed and impact resistance can be improved. In addition, when the substrate layer is a glass substrate, cracking of the glass substrate can be suppressed.
 衝撃吸収層の材料としては、衝撃吸収性を有し、透明性を有する衝撃吸収層を得ることができるものであれば特に限定されるものではなく、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ウレタン樹脂、エポキシ樹脂、ポリイミド、ポリアミドイミド、アクリル樹脂、トリアセチルセルロース(TAC)、シリコーン樹脂等が挙げられる。これらの材料は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The material for the impact absorbing layer is not particularly limited as long as it is capable of producing an impact absorbing layer having impact absorption and transparency, and examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), urethane resin, epoxy resin, polyimide, polyamide-imide, acrylic resin, triacetyl cellulose (TAC), silicone resin, etc. These materials may be used alone or in combination of two or more.
 衝撃吸収層は、必要に応じて、添加剤をさらに含有することができる。添加剤としては、例えば、無機粒子、有機粒子、紫外線吸収剤、酸化防止剤、光安定剤、界面活性剤、密着性向上剤等が挙げられる。 The impact absorbing layer may further contain additives as necessary. Examples of additives include inorganic particles, organic particles, ultraviolet absorbers, antioxidants, light stabilizers, surfactants, and adhesion improvers.
 衝撃吸収層の厚さとしては、衝撃を吸収することが可能な厚さであればよく、例えば、5μm以上であることが好ましく、より好ましくは10μm以上、さらに好ましくは15μm以上とすることができる。一方、150μm以下であることが好ましく、より好ましくは120μm以下、さらに好ましくは100μm以下とすることができる。衝撃吸収層の厚さとしては、具体的には、5μm以上150μm以下であることが好ましく、より好ましくは10μm以上120μm以下、さらに好ましくは15μm以上100μm以下とすることができる。 The thickness of the impact absorbing layer may be any thickness that is capable of absorbing impact, and may be, for example, preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 15 μm or more. On the other hand, it may be preferably 150 μm or less, more preferably 120 μm or less, and even more preferably 100 μm or less. Specifically, the thickness of the impact absorbing layer may be preferably 5 μm or more and 150 μm or less, more preferably 10 μm or more and 120 μm or less, and even more preferably 15 μm or more and 100 μm or less.
 衝撃吸収層としては、例えば樹脂フィルムを用いてもよい。また、例えば、上記基材層上に、衝撃吸収層用組成物を塗布することで、衝撃吸収層を形成してもよい。 The impact absorbing layer may be, for example, a resin film. Also, for example, the impact absorbing layer may be formed by applying a composition for the impact absorbing layer onto the substrate layer.
(2)貼付用接着層
 本開示における表示装置用積層体は、例えば図2および図3に示すように、基材層2の機能層3とは反対側の面に貼付用接着層6を有することができる。貼付用接着層を介して、表示装置用積層体を例えば表示パネル等に貼り合わせることができる。
(2) Adhesive Layer for Pasting The laminate for a display device in the present disclosure may have an adhesive layer for pasting 6 on the surface of the base layer 2 opposite to the functional layer 3, as shown in, for example, Figures 2 and 3. The laminate for a display device may be pasted to, for example, a display panel or the like via the adhesive layer for pasting.
 貼付用接着層に用いられる接着剤としては、透明性を有し、表示装置用積層体を表示パネル等に接着することが可能な接着剤であれば特に限定されるものではなく、例えば、熱硬化型接着剤、紫外線硬化型接着剤、2液硬化型接着剤、熱溶融型接着剤、感圧接着剤(いわゆる粘着剤)等を挙げることができる。 The adhesive used in the attachment adhesive layer is not particularly limited as long as it is transparent and capable of adhering the display device laminate to a display panel or the like, and examples of such adhesives include heat-curing adhesives, ultraviolet-curing adhesives, two-component curing adhesives, hot-melt adhesives, and pressure-sensitive adhesives (so-called pressure-sensitive adhesives).
 中でも、例えば図3に示すように、貼付用接着層6と、衝撃吸収層5と、後述の層間接着層7とが順に配置されている場合には、貼付用接着層および層間接着層は感圧接着剤を含有することが好ましく、すなわち感圧接着層であることが好ましい。一般に、感圧接着層は、上記の接着剤を含有する接着層の中でも、比較的柔らかい層である。衝撃吸収層が比較的柔らかい感圧接着層の間に配置されていることにより、耐衝撃性を向上させることができる。これは、感圧接着層が比較的柔らかく、変形しやすいことにより、表示装置用積層体に衝撃が加わった際に、感圧接着層によって衝撃吸収層の変形が抑制されず、衝撃吸収層が変形しやすくなるため、より大きな衝撃吸収効果が発揮されるものと考えられる。 In particular, when the attachment adhesive layer 6, the shock absorbing layer 5, and the interlayer adhesive layer 7 described below are arranged in this order as shown in FIG. 3, it is preferable that the attachment adhesive layer and the interlayer adhesive layer contain a pressure-sensitive adhesive, that is, they are pressure-sensitive adhesive layers. In general, the pressure-sensitive adhesive layer is a relatively soft layer among the adhesive layers containing the above-mentioned adhesives. The shock absorbing layer is arranged between the relatively soft pressure-sensitive adhesive layers, thereby improving the shock resistance. This is because the pressure-sensitive adhesive layer is relatively soft and easily deformed, and therefore when an impact is applied to the display device laminate, the deformation of the shock absorbing layer is not suppressed by the pressure-sensitive adhesive layer, and the shock absorbing layer becomes more easily deformed, which is thought to result in a greater shock absorbing effect.
 貼付用接着層の厚さは、例えば、10μm以上であることが好ましく、より好ましくは25μm以上であり、さらに好ましくは40μm以上とすることができる。一方、100μm以下であることが好ましく、より好ましくは80μm以下であり、さらに好ましくは60μm以下とすることができる。貼付用接着層の厚さは、具体的には、10μm以上100μm以下であることが好ましく、より好ましくは25μm以上80μm以下、さらに好ましくは40μm以上60μm以下とすることができる。貼付用接着層の厚さが薄すぎると、表示装置用積層体と表示パネル等とを十分に接着することができないおそれがある。また、貼付用接着層の厚さが厚すぎると、フレキシブル性が損なわれる場合がある。 The thickness of the attachment adhesive layer is, for example, preferably 10 μm or more, more preferably 25 μm or more, and even more preferably 40 μm or more. On the other hand, it is preferably 100 μm or less, more preferably 80 μm or less, and even more preferably 60 μm or less. Specifically, the thickness of the attachment adhesive layer is preferably 10 μm or more and 100 μm or less, more preferably 25 μm or more and 80 μm or less, and even more preferably 40 μm or more and 60 μm or less. If the attachment adhesive layer is too thin, it may not be possible to sufficiently bond the display device laminate and the display panel, etc. Furthermore, if the attachment adhesive layer is too thick, flexibility may be impaired.
 貼付用接着層としては、例えば接着フィルムを用いてもよい。また、例えば支持体または基材層等の上に接着剤組成物を塗布して、貼付用接着層を形成してもよい。 As the adhesive layer for application, for example, an adhesive film may be used. Also, for example, an adhesive composition may be applied onto a support or a base layer to form an adhesive layer for application.
(3)高屈折率層
 本開示における表示装置用積層体は、反射防止層と機能層との間に、高屈折率層を有していてもよい。高屈折率層は、機能層よりも高い屈折率層を有する層であり、高屈折率粒子及びバインダー樹脂を含む。高屈折率層は、バインダー樹脂として、熱硬化性樹脂組成物又は電離放射線硬化性樹脂組成物等の硬化性樹脂組成物の硬化物を含む。硬化性樹脂組成物としては、反射防止層で例示したものと同様のものを用いることができ、電離放射線硬化性樹脂組成物が好適である。電離放射線硬化性化合物が紫外線硬化性化合物である場合には、電離放射線硬化性組成物は、光重合開始剤や光重合促進剤等の添加剤を含むことが好ましい。光重合開始剤及び光重合促進剤としては、反射防止層用の材料と同様のものが使用できる。
(3) High Refractive Index Layer The laminate for display device in the present disclosure may have a high refractive index layer between the antireflection layer and the functional layer. The high refractive index layer is a layer having a refractive index higher than that of the functional layer, and contains high refractive index particles and a binder resin. The high refractive index layer contains a cured product of a curable resin composition such as a thermosetting resin composition or an ionizing radiation curable resin composition as a binder resin. As the curable resin composition, the same one as exemplified in the antireflection layer can be used, and an ionizing radiation curable resin composition is preferable. When the ionizing radiation curable compound is an ultraviolet ray curable compound, it is preferable that the ionizing radiation curable composition contains additives such as a photopolymerization initiator and a photopolymerization accelerator. As the photopolymerization initiator and the photopolymerization accelerator, the same one as the material for the antireflection layer can be used.
 高屈折率粒子としては、五酸化アンチモン、酸化亜鉛、酸化チタン、酸化セリウム、スズドープ酸化インジウム、アンチモンドープ酸化スズ、酸化イットリウム及び酸化ジルコニウム等が挙げられる。 High refractive index particles include antimony pentoxide, zinc oxide, titanium oxide, cerium oxide, tin-doped indium oxide, antimony-doped tin oxide, yttrium oxide, and zirconium oxide.
 高屈折率層の屈折率は、1.50以上であることが好ましく、1.55以上であることがより好ましい。一方、2.20以下であることが好ましく、1.80以下であることがより好ましい。高屈折率層の屈折率は、具体的には、1.50以上2.20以下であることが好ましく、1.55以上1.80以下であることがより好ましい。また、高屈折率層の厚みは、200nm以下であることが好ましく、180nm以下であることがより好ましい。一方、50nm以上であることが好ましい。高屈折率層の厚みは、具体的には、50nm以上、180nm以下が好ましい。 The refractive index of the high refractive index layer is preferably 1.50 or more, and more preferably 1.55 or more. On the other hand, it is preferably 2.20 or less, and more preferably 1.80 or less. Specifically, the refractive index of the high refractive index layer is preferably 1.50 or more and 2.20 or less, and more preferably 1.55 or more and 1.80 or less. Furthermore, the thickness of the high refractive index layer is preferably 200 nm or less, and more preferably 180 nm or less. On the other hand, it is preferably 50 nm or more. Specifically, the thickness of the high refractive index layer is preferably 50 nm or more and 180 nm or less.
(4)層間接着層
 本開示における表示装置用積層体においては、各層の間に層間接着層が配置されていてもよい。
(4) Interlayer Adhesive Layer In the laminate for a display device according to the present disclosure, an interlayer adhesive layer may be disposed between each of the layers.
 層間接着層に用いられる接着剤としては、上記貼付用接着層に用いられる接着剤と同様とすることができる。 The adhesive used in the interlayer adhesive layer can be the same as the adhesive used in the attachment adhesive layer described above.
 層間接着層の厚さ、形成方法等については、上記貼付用接着層の厚さ、形成方法等と同様とすることができる。 The thickness and formation method of the interlayer adhesive layer can be the same as those of the attachment adhesive layer.
6.表示装置用積層体の用途
 本開示における表示装置用積層体は、表示装置において、表示パネルよりも観察者側に配置される前面板として用いることができる。中でも、本開示における表示装置用積層体は、フォルダブルディスプレイ、ローラブルディスプレイ、ベンダブルディスプレイ等のフレキシブル表示装置における前面板に好適に用いることができる。
6. Use of the laminate for a display device The laminate for a display device according to the present disclosure can be used as a front panel arranged on the viewer side of the display panel in a display device. In particular, the laminate for a display device according to the present disclosure can be suitably used as a front panel in a flexible display device such as a foldable display, a rollable display, or a bendable display.
 また、本開示における表示装置用積層体は、例えば、スマートフォン、タブレット端末、ウェアラブル端末、パーソナルコンピュータ、テレビジョン、デジタルサイネージ、パブリックインフォメーションディスプレイ(PID)、車載ディスプレイ等の表示装置における前面板に用いることができる。 Furthermore, the display device laminate of the present disclosure can be used for the front panel of display devices such as smartphones, tablet terminals, wearable terminals, personal computers, televisions, digital signage, public information displays (PIDs), and in-vehicle displays.
 B.表示装置
 本開示における表示装置は、表示パネルと、上記表示パネルの観察者側に配置された、上述の表示装置用積層体と、を備える。
B. Display Device A display device according to the present disclosure includes a display panel and the laminate for a display device described above, which is disposed on the viewer's side of the display panel.
 図4は、本開示における表示装置の一例を示す概略断面図である。図4に示すように、表示装置50は、表示パネル51と、表示パネル51の観察者側に配置された表示装置用積層体1と、を備える。表示装置50においては、表示装置用積層体1と表示パネル31とは、例えば表示装置用積層体1の貼付用接着層6を介して貼り合わせることができる。 FIG. 4 is a schematic cross-sectional view showing an example of a display device according to the present disclosure. As shown in FIG. 4, the display device 50 includes a display panel 51 and a laminate for a display device 1 arranged on the viewer's side of the display panel 51. In the display device 50, the laminate for a display device 1 and the display panel 31 can be bonded together, for example, via an attachment adhesive layer 6 of the laminate for a display device 1.
 本開示における表示装置は、上述した表示装置用積層体を備えるため、表面の耐擦傷性に優れる。 The display device of the present disclosure has excellent surface scratch resistance because it includes the laminate for a display device described above.
 本開示における表示装置用積層体を表示装置の表面に配置する場合には、反射防止層が外側、基材層が内側になるように配置される。 When the laminate for a display device according to the present disclosure is disposed on the surface of a display device, the anti-reflection layer is disposed on the outside and the base layer is disposed on the inside.
 本開示における表示装置用積層体を表示装置の表面に配置する方法としては、特に限定されないが、例えば接着層を介する方法等が挙げられる。 The method for disposing the display device laminate of the present disclosure on the surface of the display device is not particularly limited, but may include, for example, a method using an adhesive layer.
 本開示における表示パネルとしては、例えば、有機EL表示装置、液晶表示装置等の表示装置に用いられる表示パネルを挙げることができる。 Display panels in this disclosure include, for example, display panels used in display devices such as organic EL display devices and liquid crystal display devices.
 本開示における表示装置は、表示パネルと表示装置用積層体との間にタッチパネル部材を有することができる。 The display device of this disclosure can have a touch panel member between the display panel and the display device laminate.
 本開示における表示装置は、中でも、フォルダブルディスプレイ、ローラブルディスプレイ、ベンダブルディスプレイ等のフレキシブル表示装置であることが好ましい。 The display device in this disclosure is preferably a flexible display device such as a foldable display, a rollable display, or a bendable display.
 なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。 Note that this disclosure is not limited to the above-described embodiments. The above-described embodiments are merely examples, and anything that has substantially the same configuration as the technical ideas described in the claims of this disclosure and provides similar effects is included within the technical scope of this disclosure.
 以下に実施例および比較例を示し、本開示をさらに詳細に説明する。 The following examples and comparative examples will explain this disclosure in more detail.
[比較例1]
(1)ハードコート層の形成
 まず、下記に示す組成となるように各成分を配合して、ハードコート層(HC層)用組成物1を調製した。
[Comparative Example 1]
(1) Formation of Hard Coat Layer First, the components were mixed so as to obtain the composition shown below, to prepare a composition 1 for hard coat layer (HC layer).
<ハードコート層用組成物1>
・ウレタンアクリレート(ダイセル・オルネクス製「EBECRYL8254」) 10質量部
・重合開始剤(IGM Resins B.V.製「Omnirad184」) 0.6質量部
・シリカ粒子(固形分20質量%、溶剤MIBK(メチルイソブチルケトン)、平均一次粒子径45nm) 25質量部
・レベリング剤 BYK製「BYK-300」 0.02質量部
・溶剤 MIBK(メチルイソブチルケトン) 17質量部
<Hardcoat layer composition 1>
Urethane acrylate (Daicel Allnex "EBECRYL8254") 10 parts by weight Polymerization initiator (IGM Resins B.V. "Omnirad184") 0.6 parts by weight Silica particles (solid content 20% by weight, solvent MIBK (methyl isobutyl ketone), average primary particle size 45 nm) 25 parts by weight Leveling agent BYK "BYK-300" 0.02 parts by weight Solvent MIBK (methyl isobutyl ketone) 17 parts by weight
 基材層として、厚さ50μmのポリイミドフィルム(三菱ガス化学社製「ネオプリム」)を用い、基材層上に上記ハードコート層用樹脂組成物1を塗布して、塗膜を形成した。
 そして、この塗膜に対して、70℃、1分間加熱することにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムズジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下にて積算光量が40mJ/cmになるように照射して塗膜を硬化させ、厚さ5μmのハードコート層を形成した。
A polyimide film having a thickness of 50 μm ("Neoprim" manufactured by Mitsubishi Gas Chemical Company, Inc.) was used as the substrate layer, and the above-mentioned resin composition 1 for hard coat layer was applied onto the substrate layer to form a coating film.
The coating film was then heated at 70° C. for 1 minute to evaporate the solvent in the coating film, and the coating film was cured by irradiating it with ultraviolet light using an ultraviolet irradiation device (manufactured by Fusion UV Systems Japan, light source H bulb) at an oxygen concentration of 200 ppm or less and an accumulated light amount of 40 mJ/ cm2 to form a hard coat layer having a thickness of 5 μm.
(2)反射防止層の形成
 下記に示す組成となるように各成分を配合して、ベース組成物1を調製した。
(2) Formation of Antireflection Layer The components were mixed so as to obtain the composition shown below, thereby preparing a base composition 1.
<ベース組成物1の組成>
・ペンタエリスリトールトリアクリレート(PETA) 共栄社製「ライトアクリレートPE-3A」 3.0質量部
・シルセスキオキサン コンストゥルーケミカル製「Acryloyl polysilsesquioxane cage mixture」 7.0質量部
・重合開始剤 IGM Resins B.V.製「Omnirad184」 4.0質量部
・中空シリカ粒子(固形分20質量%、溶剤MIBK(メチルイソブチルケトン)、平均一次粒子径50nm) 75.0質量部
・シリカ粒子(固形分46質量%、溶剤MIBK(メチルイソブチルケトン)、平均一次粒子径12nm) 5.5質量部
・アルミナ粒子(固形分30質量%、溶剤MIBK(メチルイソブチルケトン)、平均一次粒子径15nm) 5.5質量部
・レベリング剤(信越化学製「KY-1203」:固形分20%、MEK(メチルエチルケトン)およびMIBK(メチルイソブチルケトン)の混合溶媒) 13.5質量部
・溶剤 (MIBK(メチルイソブチルケトン)) 710質量部
<Composition of Base Composition 1>
Pentaerythritol triacrylate (PETA): "Light Acrylate PE-3A" manufactured by Kyoeisha 3.0 parts by mass Silsesquioxane: "Acryloyl polysilsesquioxane cage mixture" manufactured by Construe Chemical 7.0 parts by mass Polymerization initiator: IGM Resins B.V. "Omnirad 184" manufactured by Shin-Etsu Chemical Co., Ltd. 4.0 parts by mass Hollow silica particles (solid content 20% by mass, solvent MIBK (methyl isobutyl ketone), average primary particle diameter 50 nm) 75.0 parts by mass Silica particles (solid content 46% by mass, solvent MIBK (methyl isobutyl ketone), average primary particle diameter 12 nm) 5.5 parts by mass Alumina particles (solid content 30% by mass, solvent MIBK (methyl isobutyl ketone), average primary particle diameter 15 nm) 5.5 parts by mass Leveling agent ("KY-1203" manufactured by Shin-Etsu Chemical Co., Ltd.: solid content 20%, mixed solvent of MEK (methyl ethyl ketone) and MIBK (methyl isobutyl ketone)) 13.5 parts by mass Solvent (MIBK (methyl isobutyl ketone)) 710 parts by mass
 上記ハードコート層上に反射防止層用樹脂組成物としてのベース組成物1を塗布して、塗膜を形成した。そして、この塗膜に対して、70℃、1分間加熱することにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムズジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下にて積算光量が400mJ/cmになるように照射して塗膜を硬化させ、厚さ100nmの反射防止層を形成した。これにより、表示装置用積層体を得た。 A base composition 1 was applied onto the hard coat layer as a resin composition for an anti-reflection layer to form a coating film. The coating film was heated at 70°C for 1 minute to evaporate the solvent in the coating film, and then irradiated with ultraviolet light using an ultraviolet irradiator (manufactured by Fusion UV Systems Japan, light source H bulb) so that the oxygen concentration was 200 ppm or less and the cumulative light amount was 400 mJ/ cm2 to harden the coating film, forming an anti-reflection layer with a thickness of 100 nm. This resulted in a laminate for a display device.
[実施例1]
 比較例1と同様の方法で、ハードコート層用組成物1を調製し、基材層上にハードコート層を形成した。
 上記ベース組成物1に、メチル化メラミン化合物(ヘキサメトキシメチルメラミン)を添加した。この際、固形分全質量に対してメチル化メラミン化合物が2質量%となるよう添加した。次いで、最終固形分が4%になるようにMIBK(メチルイソブチルケトン)て調整し、反射防止層用組成物を得た。この反射防止層用組成物を用いた以外は、比較例1と同様の方法で、ハードコート層上に反射防止層を形成し、表示装置用積層体を得た。
[Example 1]
In the same manner as in Comparative Example 1, a composition 1 for a hard coat layer was prepared, and a hard coat layer was formed on a substrate layer.
A methylated melamine compound (hexamethoxymethylmelamine) was added to the base composition 1. At this time, the methylated melamine compound was added so that it was 2 mass% relative to the total mass of the solid content. Next, the mixture was adjusted with MIBK (methyl isobutyl ketone) so that the final solid content was 4%, to obtain a composition for an antireflection layer. Except for using this composition for an antireflection layer, an antireflection layer was formed on the hard coat layer in the same manner as in Comparative Example 1, to obtain a laminate for a display device.
[実施例2~5、比較例2および比較例3]
 比較例1と同様の方法で、ハードコート層用組成物1を調製し、基材層上にハードコート層を形成した。
 上記ベース組成物1に、メチル化メラミン化合物(ヘキサメトキシメチルメラミン)を添加した。この際、反射防止層用組成物の固形分全質量に対してメチル化メラミン化合物が表1中の添加量(質量%)となるよう添加した。次いで、最終固形分が4%になるようにMIBK(メチルイソブチルケトン)にて調整し、反射防止層用組成物を調製した。この反射防止層用組成物を用いた以外は、比較例1と同様の方法で、ハードコート層上に反射防止層を形成し、表示装置用積層体を得た。
[Examples 2 to 5, Comparative Examples 2 and 3]
In the same manner as in Comparative Example 1, a composition 1 for a hard coat layer was prepared, and a hard coat layer was formed on a substrate layer.
A methylated melamine compound (hexamethoxymethylmelamine) was added to the base composition 1. At this time, the methylated melamine compound was added in an amount (mass%) shown in Table 1 relative to the total mass of the solid content of the composition for antireflection layer. Next, the final solid content was adjusted to 4% with MIBK (methyl isobutyl ketone) to prepare a composition for antireflection layer. Except for using this composition for antireflection layer, an antireflection layer was formed on the hard coat layer in the same manner as in Comparative Example 1, and a laminate for a display device was obtained.
[実施例6]
(1)ハードコート層の形成
 まず、下記に示す組成となるように各成分を配合して、ハードコート層用組成物2を調製した。
[Example 6]
(1) Formation of Hard Coat Layer First, the components were mixed so as to obtain the composition shown below, thereby preparing a composition 2 for hard coat layer.
<ハードコート層用組成物2>
・ウレタンアクリレート ダイセル・オルネクス製「EBECRYL8254」 15質量部
・重合開始剤 IGM Resins B.V.製「Omnirad184」 0.6質量部
・レベリング剤 BYK製「BYK-300」 0.02質量部
・溶剤 MIBK(メチルイソブチルケトン) 36質量部
<Hardcoat layer composition 2>
Urethane acrylate: Daicel Allnex "EBECRYL8254" 15 parts by weight Polymerization initiator: IGM Resins B.V. "Omnirad184" 0.6 parts by weight Leveling agent: BYK "BYK-300" 0.02 parts by weight Solvent: MIBK (methyl isobutyl ketone) 36 parts by weight
 次に、基材層として、厚さ50μmのポリイミドフィルム(三菱ガス化学社製「ネオプリム」)を用い、基材層上に上記ハードコート層用樹脂組成物2を塗布して、塗膜を形成した。そして、この塗膜に対して、70℃、1分間加熱することにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムズジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下にて積算光量が40mJ/cmになるように照射して塗膜を硬化させ、厚さ5μmのハードコート層を形成した。 Next, a 50 μm thick polyimide film ("Neoprim" manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used as a substrate layer, and the above-mentioned hard coat layer resin composition 2 was applied onto the substrate layer to form a coating film. The coating film was then heated at 70° C. for 1 minute to evaporate the solvent in the coating film, and then irradiated with ultraviolet light using an ultraviolet irradiator (manufactured by Fusion UV Systems Japan, light source H bulb) so that the oxygen concentration was 200 ppm or less and the cumulative light amount was 40 mJ/cm 2 to harden the coating film, forming a 5 μm thick hard coat layer.
(2)反射防止層の形成
 上記ベース組成物1に、メチル化メラミン化合物(ヘキサメトキシメチルメラミン)を添加した。この際、反射防止層用組成物の固形分全質量に対してメチル化メラミン化合物が表1中の添加量(質量%)となるよう添加した。次いで、最終固形分が4%になるようにMIBK(メチルイソブチルケトン)にて調整し、反射防止層用組成物を調製した。この反射防止層用組成物を用いた以外は、比較例1と同様の方法で、ハードコート層上に反射防止層を形成し、表示装置用積層体を得た。
(2) Formation of Antireflection Layer A methylated melamine compound (hexamethoxymethylmelamine) was added to the above-mentioned base composition 1. At this time, the methylated melamine compound was added in an amount (mass%) shown in Table 1 relative to the total mass of the solid content of the composition for antireflection layer. Next, the final solid content was adjusted to 4% with MIBK (methyl isobutyl ketone) to prepare a composition for antireflection layer. Except for using this composition for antireflection layer, an antireflection layer was formed on the hard coat layer in the same manner as in Comparative Example 1 to obtain a laminate for a display device.
[実施例7]
(1)ハードコート層の形成
 実施例6と同様の方法で、ハードコート層用組成物2を調整し、基材層上にハードコート層を形成した。
[Example 7]
(1) Formation of Hard Coat Layer In the same manner as in Example 6, a composition 2 for a hard coat layer was prepared, and a hard coat layer was formed on a substrate layer.
(2)反射防止層の形成
 下記に示す組成となるように各成分を配合して、ベース組成物2を調製した。
(2) Formation of Antireflection Layer Base composition 2 was prepared by blending the components shown below.
<ベース組成物2の組成>
・ペンタエリスリトールトリアクリレート(PETA)(共栄社製「ライトアクリレートPE-3A」) 3.0質量部
・シルセスキオキサン(コンストゥルーケミカル製「Acryloyl polysilsesquioxane cage mixture」) 7.0質量部
・重合開始剤(IGM Resins B.V.製「Omnirad184」) 4.0質量部
・中空シリカ粒子(固形分20質量%、溶剤MIBK(メチルイソブチルケトン)、平均一次粒子径50nm) 75.0質量部
・レベリング剤((信越化学製「KY-1203」:固形分20%、MEK(メチルエチルケトン)およびMIBK(メチルイソブチルケトン)の混合溶媒) 13.5質量部
・溶剤 MIBK(メチルイソブチルケトン) 610質量部
<Composition of Base Composition 2>
Pentaerythritol triacrylate (PETA) (Kyoeisha's "Light Acrylate PE-3A") 3.0 parts by mass; Silsesquioxane (Constru Chemical's "Acryloyl polysilsesquioxane cage mixture") 7.0 parts by mass; Polymerization initiator (IGM Resins B.V.'s "Omnirad 184") 4.0 parts by mass; Hollow silica particles (solid content 20% by mass, solvent MIBK (methyl isobutyl ketone), average primary particle size 50 nm) 75.0 parts by mass; Leveling agent ((Shin-Etsu Chemical's "KY-1203": solid content 20%, mixed solvent of MEK (methyl ethyl ketone) and MIBK (methyl isobutyl ketone)) 13.5 parts by mass; Solvent MIBK (methyl isobutyl ketone) 610 parts by mass
 上記ベース組成物2に、メチル化メラミン化合物(ヘキサメトキシメチルメラミン)を添加し、反射防止層用組成物を調製した。この際、反射防止層用組成物の固形分全質量に対してメチル化メラミン化合物が10質量%となるよう添加した。この反射防止層用組成物を用いた以外は、比較例1と同様の方法で、ハードコート層上に反射防止層を形成し、表示装置用積層体を得た。 A methylated melamine compound (hexamethoxymethylmelamine) was added to the above-mentioned base composition 2 to prepare a composition for an anti-reflection layer. At this time, the methylated melamine compound was added so that it was 10 mass% based on the total mass of the solid content of the composition for an anti-reflection layer. Except for using this composition for an anti-reflection layer, an anti-reflection layer was formed on the hard coat layer in the same manner as in Comparative Example 1, and a laminate for a display device was obtained.
[実施例8]
(1)ハードコート層の形成
 比較例1と同様の方法で、ハードコート層用組成物1を調製し、基材層上にハードコート層を形成した。
[Example 8]
(1) Formation of Hard Coat Layer In the same manner as in Comparative Example 1, a composition 1 for a hard coat layer was prepared, and a hard coat layer was formed on a substrate layer.
(2)反射防止層の形成
 下記に示す組成となるように各成分を配合して、ベース組成物3を調製した。
(2) Formation of Antireflection Layer Base composition 3 was prepared by blending the components shown below.
<ベース組成物3の組成>
・ペンタエリスリトールトリアクリレート(PETA) 共栄社製「ライトアクリレートPE-3A」 3.0質量部
・重合開始剤 IGM Resins B.V.製「Omnirad184」 4.0質量部
・中空シリカ粒子(固形分20質量%、溶剤MIBK(メチルイソブチルケトン)、平均一次粒子径50nm) 75.0質量部
・シリカ粒子(固形分46質量%、溶剤MIBK(メチルイソブチルケトン)、平均一次粒子径12nm) 5.5質量部
・アルミナ粒子(固形分30質量%、溶剤MIBK(メチルイソブチルケトン)、平均一次粒子径15nm) 5.5質量部
・レベリング剤(信越化学製「KY-1203」:固形分20%、MEK(メチルエチルケトン)およびMIBK(メチルイソブチルケトン)の混合溶媒) 13.5質量部
・溶剤 MIBK(メチルイソブチルケトン) 710質量部
<Composition of Base Composition 3>
Pentaerythritol triacrylate (PETA): 3.0 parts by mass of "Light Acrylate PE-3A" manufactured by Kyoeisha Polymerization initiator: IGM Resins B.V. "Omnirad 184" manufactured by Shin-Etsu Chemical Co., Ltd. 4.0 parts by mass Hollow silica particles (solid content 20% by mass, solvent MIBK (methyl isobutyl ketone), average primary particle diameter 50 nm) 75.0 parts by mass Silica particles (solid content 46% by mass, solvent MIBK (methyl isobutyl ketone), average primary particle diameter 12 nm) 5.5 parts by mass Alumina particles (solid content 30% by mass, solvent MIBK (methyl isobutyl ketone), average primary particle diameter 15 nm) 5.5 parts by mass Leveling agent ("KY-1203" manufactured by Shin-Etsu Chemical Co., Ltd.: solid content 20%, mixed solvent of MEK (methyl ethyl ketone) and MIBK (methyl isobutyl ketone)) 13.5 parts by mass Solvent MIBK (methyl isobutyl ketone) 710 parts by mass
 上記ベース組成物3に、メチル化メラミン化合物(ヘキサメトキシメチルメラミン)を添加し、反射防止層用組成物を調製した。この際、反射防止層用組成物の固形分全質量に対してメチル化メラミン化合物が10質量%となるよう添加した。この反射防止層用組成物を用いた以外は、比較例1と同様の方法で、ハードコート層上に反射防止層を形成し、表示装置用積層体を得た。 A methylated melamine compound (hexamethoxymethylmelamine) was added to the above-mentioned base composition 3 to prepare a composition for an anti-reflection layer. At this time, the methylated melamine compound was added so that it was 10 mass% based on the total mass of the solid content of the composition for an anti-reflection layer. Except for using this composition for an anti-reflection layer, an anti-reflection layer was formed on the hard coat layer in the same manner as in Comparative Example 1, and a laminate for a display device was obtained.
[X線光電子分光法による窒素元素比率測定]
 得られた表示装置用積層体から測定用試料を切り出し、下記X線光電子分光分析装置を用いて下記条件で、測定用試料の反射防止層表面のN1s軌道のX線光電子スペクトルを測定し、全元素量に対するN元素量の比率(原子%)を求めた。結果を表1に示す。
[Nitrogen element ratio measurement by X-ray photoelectron spectroscopy]
A measurement sample was cut out from the obtained laminate for a display device, and the X-ray photoelectron spectrum of the N1s orbital of the antireflection layer surface of the measurement sample was measured under the following conditions using the X-ray photoelectron spectrometer described below, and the ratio (atomic %) of the amount of N element to the amount of all elements was calculated. The results are shown in Table 1.
(測定装置)
Kratos製 AXIS-NOVA
(測定条件)
測定手法:WideおよびNarrow 
X線源:モノクロAlKα
X線出力: 150W、エミッション電流:10mA、加速電圧:15kV
帯電中和機構:ON
測定領域: 300×700μm
Pass Energy:Wide-160eV、Narrow-40eV
(measuring device)
Kratos AXIS-NOVA
(Measurement condition)
Measurement method: Wide and Narrow
X-ray source: Monochrome AlKα
X-ray output: 150 W, emission current: 10 mA, acceleration voltage: 15 kV
Charge neutralization mechanism: ON
Measurement area: 300 x 700μm
Pass Energy: Wide-160eV, Narrow-40eV
[耐スチールウール試験]
 実施例1~8および比較例1~3で得られた表示装置用積層体の耐擦傷性を、以下の試験方法方法および評価基準により評価した。
[Steel wool resistance test]
The scratch resistance of the laminates for displays obtained in Examples 1 to 8 and Comparative Examples 1 to 3 was evaluated according to the following test method and evaluation criteria.
・試験方法
 テスター産業社製の学振型摩擦堅牢度試験機AB-301を用い、5cm×10cmの大きさの積層体の非測定面に、ローラーでPET保護フィルム(株式会社サンエー化研製、SAT TM30125)を貼り合わせたものを、ガラス板上に折れやシワがないようセロハンテープ(登録商標)で4辺固定した。次いで、#0000のスチールウール(日本スチールウール社製のボンスター#0000)を用い、スチールウールを2cm×2cmの治具に固定して、荷重1kg/4cm、移動速度100mm/秒、移動距離50mmの条件で、表示装置用積層体の反射防止層側の面を300往復擦った。
Test method: Using a Gakushin-type friction fastness tester AB-301 manufactured by Tester Sangyo Co., Ltd., a PET protective film (SAT TM30125 manufactured by San-A Chemical Co., Ltd.) was attached with a roller to the non-measurement surface of a laminate measuring 5 cm x 10 cm, and the laminate was fixed on a glass plate on all four sides with Cellophane Tape (registered trademark) so as not to cause any folds or wrinkles. Next, using #0000 steel wool (Bonstar #0000 manufactured by Nippon Steel Wool Co., Ltd.), the steel wool was fixed to a jig measuring 2 cm x 2 cm, and the anti-reflection layer side surface of the laminate for display device was rubbed back and forth 300 times under the conditions of a load of 1 kg/4 cm 2 , a moving speed of 100 mm/sec, and a moving distance of 50 mm.
・評価方法
 上記試験を行った積層体において、移動速度が不安定な両端10mmの範囲を除く中心30mmの範囲における表面を、蛍光灯下で透過観察し、下記の評価基準により評価した。
Evaluation Method: For the laminate that had been subjected to the above test, the surface within a central 30 mm range excluding the ranges of 10 mm at both ends where the moving speed was unstable was observed through a fluorescent lamp and evaluated according to the following evaluation criteria.
・評価基準
A:合格(傷が5本未満)
B:合格(傷が5本以上15本未満)
C:不合格(傷が15本以上)
Evaluation Criteria A: Pass (less than 5 scratches)
B: Pass (5 to 15 scratches)
C: Failed (15 or more scratches)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、窒素元素の比率が所定の範囲内である実施例1~8は、比較例1~比較例3に対して、耐スチールウール試験結果が良好であり、耐擦傷性に優れることが確認された。また、実施例3と実施例8とを比較すると、反射防止層がシルセスキオキサン化合物を含む実施例3は、シルセスキオキサン化合物を含まない実施例8に対して、耐擦傷性がより優れることが確認された。なお、比較例1では、メチル化メラミン化合物の添加量が0質量%にも関わらず、窒素元素が検出された。これは、ハードコート層に含まれるウレタンアクリレートが溶出し、ウレタンアクリレート由来の窒素元素が検出されたものと推定される。 From Table 1, it was confirmed that Examples 1 to 8, in which the ratio of nitrogen elements is within the specified range, have better steel wool resistance test results and are superior in abrasion resistance than Comparative Examples 1 to 3. Furthermore, when Example 3 and Example 8 are compared, it was confirmed that Example 3, in which the anti-reflection layer contains a silsesquioxane compound, has superior abrasion resistance compared to Example 8, in which the anti-reflection layer does not contain a silsesquioxane compound. Note that in Comparative Example 1, nitrogen elements were detected even though the amount of methylated melamine compound added was 0 mass%. This is presumably due to the elution of the urethane acrylate contained in the hard coat layer, and the detection of nitrogen elements derived from the urethane acrylate.
 すなわち、本開示においては、以下の発明を提供できる。
[1] 基材層、機能層および反射防止層を、厚さ方向において、この順に有する表示装置用積層体であって、
 前記反射防止層側の表面をX線光電子分光法で測定した場合に、窒素元素の比率が、0.5原子%以上、2.5原子%以下である、表示装置用積層体。
[2] 前記窒素元素が、メラミン系化合物由来の窒素元素を含む、[1]に記載の表示装置用積層体。
[3] 前記反射防止層が、シルセスキオキサン化合物を含む、[1]または[2]に記載の表示装置用積層体。
[4] 前記反射防止層が、低屈折率粒子を含む、[1]から[3]までのいずれかに記載の表示装置用積層体。
[5] 前記低屈折率粒子が、中空シリカ粒子である、[4]に記載の表示装置用積層体。
[6] 前記反射防止層の厚さが、50nm以上、200nm以下である、[1]から[5]までのいずれかに記載の表示装置用積層体。
[7] 前記機能層の厚さが、1μm以上、30μm以下である、[1]から[6]までのいずれかに記載の表示装置用積層体。
[8] 前記基材層の前記機能層とは反対の面側、あるいは前記基材層および前記機能層の間に、衝撃吸収層を有する、[1]から[7]までのいずれかに記載の表示装置用積層体。
[9] 前記基材層の前記機能層とは反対の面側に、貼付用接着層を有する、[1]から[8]までのいずれかに記載の表示装置用積層体。
[10] 表示パネルと、前記表示パネルの観察者側に配置された、[1]から[9]までのいずれかに記載の表示装置用積層体と、を備える、表示装置。
That is, the present disclosure provides the following inventions.
[1] A laminate for a display device having a base layer, a functional layer, and an antireflection layer in this order in a thickness direction,
A laminate for a display device, wherein a ratio of nitrogen elements is 0.5 atomic % or more and 2.5 atomic % or less when the surface on the antireflection layer side is measured by X-ray photoelectron spectroscopy.
[2] The laminate for a display device according to [1], wherein the nitrogen element includes a nitrogen element derived from a melamine-based compound.
[3] The laminate for a display device according to [1] or [2], wherein the antireflection layer contains a silsesquioxane compound.
[4] The laminate for a display device according to any one of [1] to [3], wherein the antireflection layer contains low refractive index particles.
[5] The laminate for a display device according to [4], wherein the low refractive index particles are hollow silica particles.
[6] The laminate for a display device according to any one of [1] to [5], wherein the antireflection layer has a thickness of 50 nm or more and 200 nm or less.
[7] The laminate for a display device according to any one of [1] to [6], wherein the functional layer has a thickness of 1 μm or more and 30 μm or less.
[8] The laminate for a display device according to any one of [1] to [7], further comprising an impact absorbing layer on the side of the base layer opposite to the functional layer, or between the base layer and the functional layer.
[9] The laminate for a display device according to any one of [1] to [8], further comprising an adhesive layer for attachment on the side of the base layer opposite to the functional layer.
[10] A display device comprising: a display panel; and the laminate for a display device according to any one of [1] to [9], which is disposed on a viewer's side of the display panel.
 1 … 表示装置用積層体
 2 … 基材層
 3 … 機能層
 4 … 反射防止層
 5 … 衝撃吸収層
 6 … 貼付用接着層
 7 … 層間接着層
50 … 表示装置
51 … 表示パネル
REFERENCE SIGNS LIST 1 laminate for display device 2 substrate layer 3 functional layer 4 anti-reflection layer 5 impact absorbing layer 6 attachment adhesive layer 7 interlayer adhesive layer 50 display device 51 display panel

Claims (10)

  1.  基材層、機能層および反射防止層を、厚さ方向において、この順に有する表示装置用積層体であって、
     前記反射防止層側の表面をX線光電子分光法で測定した場合に、窒素元素の比率が、0.5原子%以上、2.5原子%以下である、表示装置用積層体。
    A laminate for a display device having a base layer, a functional layer, and an anti-reflection layer in this order in a thickness direction,
    A laminate for a display device, wherein a ratio of nitrogen elements is 0.5 atomic % or more and 2.5 atomic % or less when the surface on the antireflection layer side is measured by X-ray photoelectron spectroscopy.
  2.  前記窒素元素が、メラミン系化合物由来の窒素元素を含む、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the nitrogen element includes a nitrogen element derived from a melamine-based compound.
  3.  前記反射防止層が、シルセスキオキサン化合物を含む、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the anti-reflection layer contains a silsesquioxane compound.
  4.  前記反射防止層が、低屈折率粒子を含む、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the anti-reflection layer contains low refractive index particles.
  5.  前記低屈折率粒子が、中空シリカ粒子である、請求項4に記載の表示装置用積層体。 The laminate for a display device according to claim 4, wherein the low refractive index particles are hollow silica particles.
  6.  前記反射防止層の厚さが、50nm以上、200nm以下である、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the thickness of the anti-reflection layer is 50 nm or more and 200 nm or less.
  7.  前記機能層の厚さが、1μm以上、30μm以下である、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the thickness of the functional layer is 1 μm or more and 30 μm or less.
  8.  前記基材層の前記機能層とは反対の面側、あるいは前記基材層および前記機能層の間に、衝撃吸収層を有する、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, which has an impact absorbing layer on the side of the base layer opposite the functional layer, or between the base layer and the functional layer.
  9.  前記基材層の前記機能層とは反対の面側に、貼付用接着層を有する、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, which has an adhesive layer for attachment on the side of the base layer opposite the functional layer.
  10.  表示パネルと、
     前記表示パネルの観察者側に配置された、請求項1から請求項9までのいずれかの請求項に記載の表示装置用積層体と、を備える、表示装置。
    A display panel;
    A display device comprising: the laminate for a display device according to claim 1 , which is disposed on a viewer's side of the display panel.
PCT/JP2024/001691 2023-01-23 2024-01-22 Multilayer body for display device, and display device WO2024157939A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-007976 2023-01-23
JP2023007976A JP2024103994A (en) 2023-01-23 2023-01-23 Laminate for display device and display device

Publications (1)

Publication Number Publication Date
WO2024157939A1 true WO2024157939A1 (en) 2024-08-02

Family

ID=91970702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001691 WO2024157939A1 (en) 2023-01-23 2024-01-22 Multilayer body for display device, and display device

Country Status (3)

Country Link
JP (1) JP2024103994A (en)
TW (1) TW202438931A (en)
WO (1) WO2024157939A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215713A1 (en) * 2004-03-26 2005-09-29 Hessell Edward T Method of producing a crosslinked coating in the manufacture of integrated circuits
JP2007183402A (en) * 2006-01-06 2007-07-19 Teijin Dupont Films Japan Ltd Antireflection film
JP2007206316A (en) * 2006-02-01 2007-08-16 Teijin Dupont Films Japan Ltd Antireflection film
JP2007238675A (en) * 2006-03-06 2007-09-20 Fujifilm Corp Curable composition, method for producing curable composition, optical film, antireflection film, polarizing plate, and image display device
JP3985165B2 (en) * 2001-08-20 2007-10-03 日産化学工業株式会社 Antireflection film forming composition for lithography
JP2009199061A (en) * 2007-11-12 2009-09-03 Rohm & Haas Electronic Materials Llc Coating compositions for use with overcoated photoresist
JP2010254950A (en) * 2008-10-10 2010-11-11 Sony Corp Resin composition, antireflection film, display, and method for manufacturing antireflection film
JP2022159116A (en) * 2021-03-31 2022-10-17 大日本印刷株式会社 Laminate for display apparatus and display apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985165B2 (en) * 2001-08-20 2007-10-03 日産化学工業株式会社 Antireflection film forming composition for lithography
US20050215713A1 (en) * 2004-03-26 2005-09-29 Hessell Edward T Method of producing a crosslinked coating in the manufacture of integrated circuits
JP2007183402A (en) * 2006-01-06 2007-07-19 Teijin Dupont Films Japan Ltd Antireflection film
JP2007206316A (en) * 2006-02-01 2007-08-16 Teijin Dupont Films Japan Ltd Antireflection film
JP2007238675A (en) * 2006-03-06 2007-09-20 Fujifilm Corp Curable composition, method for producing curable composition, optical film, antireflection film, polarizing plate, and image display device
JP2009199061A (en) * 2007-11-12 2009-09-03 Rohm & Haas Electronic Materials Llc Coating compositions for use with overcoated photoresist
JP2010254950A (en) * 2008-10-10 2010-11-11 Sony Corp Resin composition, antireflection film, display, and method for manufacturing antireflection film
JP2022159116A (en) * 2021-03-31 2022-10-17 大日本印刷株式会社 Laminate for display apparatus and display apparatus

Also Published As

Publication number Publication date
JP2024103994A (en) 2024-08-02
TW202438931A (en) 2024-10-01

Similar Documents

Publication Publication Date Title
WO2003100794A1 (en) Transparent conductive laminate film, touch panel having this transparent conductive laminate film, and production method for this transparent conductive laminate film
JP7428468B2 (en) Antireflection film, antireflection film manufacturing method, optical member, and image display device
KR101509266B1 (en) Antidazzle, light-transmitting hard coat film
CN102034565A (en) Transparent conductive film
JPWO2004031813A1 (en) Antireflection film
JP7130893B2 (en) Optical film with antifouling layer
JP2010106061A (en) Weather-resistant hard-coat film, and ultraviolet-curable resin composition
KR102826036B1 (en) Anti-glare film, method for producing anti-glare film, optical member and image display device
JP7185101B2 (en) Optical film with antifouling layer
JP2008122603A (en) Antireflection film, and filter for display
JP2004086196A (en) Low refractive index layer for anti-reflective material, anti-reflective material having the same, and use thereof
JP7270867B2 (en) hard coat film
CN111164139B (en) Hard coating film
WO2024157939A1 (en) Multilayer body for display device, and display device
KR101271284B1 (en) Functional film for display screen and method for producing same
JP2007127823A (en) Optical film and its manufacturing method
JP5750848B2 (en) Optical member for image display device
JP4720030B2 (en) Anti-reflection film and anti-reflection treated object
WO2018181220A1 (en) Light-transmissive substrate for reflecting heat rays, and heat-ray-reflecting window
EP3605164A1 (en) Light-transmissive substrate for reflecting heat rays, and heat-ray-reflecting window
JP2021133680A (en) Transfer sheet and laminate, method for manufacturing laminate, and image display device
JP6337454B2 (en) Front plate for display device and manufacturing method thereof
JP4074095B2 (en) Anti-reflection film and anti-reflection treated object
JP2018171831A (en) Heat-ray reflecting light transmissive substrate, heat-ray reflecting window
TW200815783A (en) Antireflection film and fabrication method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24747266

Country of ref document: EP

Kind code of ref document: A1