[go: up one dir, main page]

WO2024157643A1 - Terminal, base station, and communication method - Google Patents

Terminal, base station, and communication method Download PDF

Info

Publication number
WO2024157643A1
WO2024157643A1 PCT/JP2023/044891 JP2023044891W WO2024157643A1 WO 2024157643 A1 WO2024157643 A1 WO 2024157643A1 JP 2023044891 W JP2023044891 W JP 2023044891W WO 2024157643 A1 WO2024157643 A1 WO 2024157643A1
Authority
WO
WIPO (PCT)
Prior art keywords
cli
measurement
report
blocks
terminal
Prior art date
Application number
PCT/JP2023/044891
Other languages
French (fr)
Japanese (ja)
Inventor
智寛 井上
知也 布目
秀俊 鈴木
哲矢 山本
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2024157643A1 publication Critical patent/WO2024157643A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This disclosure relates to a terminal, a base station, and a communication method.
  • the 3rd Generation Partnership Project (3GPP) has completed the formulation of the physical layer specifications for Release 17 NR (New Radio access technology) as a functional extension of 5th generation mobile communication systems (5G).
  • 5G 5th generation mobile communication systems
  • NR will support enhanced mobile broadband (eMBB) to meet the requirements of high speed and large capacity, as well as functions that realize ultra-reliable and low latency communication (URLLC) (see, for example, non-patent literature 1-6).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communication
  • 3GPP TS 38.211 V17.4.0 "NR; Physical channels and modulation (Release 17),” Jan. 2023 3GPP TS 38.212 V17.4.0, “NR; Multiplexing and channel coding (Release 17),” Jan. 2023 3GPP TS 38.213 V17.4.0, “NR; Physical layer procedure for control (Release 17),” Jan. 2023 3GPP TS 38.214 V17.4.0, “NR; Physical layer procedures for data (Release 17),” Jan. 2023 3GPP TS 38.215 V17.2.0, “NR; Physical layer measurements (Release 17),” Sep. 2022 3GPP TS 38.331 V17.2.0, “NR; Radio Resource Control (RRC) protocol specification (Release 17)", Oct. 2022
  • Non-limiting examples of the present disclosure contribute to providing a terminal, a base station, and a communication method that can appropriately report interference between terminals.
  • a terminal includes a control circuit that determines report information based on measurement values of reception quality for each of a number of blocks into which a measurement resource in the frequency domain is divided, and a transmission circuit that transmits the report information.
  • interference between terminals can be appropriately reported.
  • Block diagram showing a partial configuration example of a terminal Block diagram showing a configuration example of a base station Block diagram showing an example of a terminal configuration
  • Diagram showing an example of a CLI-RSSI report based on a Channel State Information (CSI) report A diagram showing an example of how to configure a report field
  • a diagram showing an example of how to configure a report field A diagram showing an example of how to configure a report field
  • a diagram showing an example of how to configure a report field A diagram showing an example of how to configure a report field
  • Diagram of an example architecture for a 3GPP NR system Schematic diagram showing functional separation between NG-RAN (Next Generation - Radio Access Network) and 5GC (5th Generation Core) Sequence diagram of Radio Resource Control (RRC) connection setup/reconfiguration procedure
  • RRC Radio Resource Control
  • SBFD subband non-overlapping full duplex
  • TDD dynamic/flexible time division duplex
  • Figure 1(a) shows an example of the operation of a base station (also called gNB) and terminals (UE: User Equipment) (e.g., UE#1 and UE#2) in the same cell in an SBFD scenario.
  • UE User Equipment
  • the base station performs SBFD operation and the terminals perform half-duplex operation.
  • Figure 1(b) shows an example of subband allocation in SBFD.
  • the vertical axis represents frequency
  • the horizontal axis represents time.
  • "UL” represents uplink transmission
  • "DL” represents downlink transmission.
  • resources that are not used in each device e.g., gNB, UE#1, and UE#2 are shown with dotted lines.
  • a frequency resource (frequency band) is divided into multiple subbands (also called bands, RB sets, subbands, or sub-BWPs (Bandwidth parts)), and transmission in different directions is supported on a subband-by-subband basis.
  • a base station can transmit and receive simultaneously on the uplink and downlink (e.g., SBFD operation), and a terminal can transmit and receive on either the uplink or downlink in a given time resource (e.g., half-duplex operation).
  • UE#1 communicates with the base station on the uplink
  • UE#2 communicates with the base station on the downlink.
  • Figure 2(a) shows an example of the operation of different base stations (e.g., gNB1 and gNB2) and terminals (e.g., UE#1 and UE#2) in a dynamic/flexible TDD scenario.
  • the base stations and terminals perform half-duplex operation, and the transmission directions may be different for different base stations.
  • Figure 2(b) shows an example of resource allocation in dynamic/flexible TDD.
  • UE#1 performs DL reception from gNB1
  • UE#2 performs UL transmission to gNB2.
  • various interferences may occur. For example, self-interference at the base station or cross-link interference (CLI) between terminals (UE-to-UE) may occur. Self-interference at the base station and CLI between terminals greatly deteriorate reception characteristics, so countermeasures are required.
  • One of the countermeasures is, for example, a method of avoiding allocation of terminals with strong interference by scheduling at the base station.
  • the base station cannot directly measure the CLI between terminals, a method is expected in which the terminal measures the CLI between terminals and reports it to the base station.
  • SRS-RSRP Sounding Reference Signal
  • RSRP Reference Signal Received Power
  • CLI-RSSI Received Signal Strength Indicator
  • SRS-RSRP/CLI-RSSI is a Layer 3 (L3) based measurement and reporting of CLI between terminals, and will be supported in Release 16.
  • SRS-RSRP is a measurement of the received power of SRS transmitted by a terminal from other terminals.
  • CLI-RSSI is a measurement of the linear average of the total received power on the resources (e.g., also called “measurement resources") that the terminal is configured to measure.
  • the measurement resource may also be called, for example, the measurement time resource or the measurement bandwidth (or measurement frequency bandwidth).
  • FIG 3 shows an example of Layer 3-based CLI-RSSI.
  • the terminal measuring Layer 3-based CLI-RSSI (UE#1 in Figure 3) measures the total received power of the CLI-RSSI resource (or measurement resource) specified by the base station, and reports the CLI-RSSI based on the measured total received power. For example, one terminal (UE#2 in Figure 3) transmits a UL signal, and the other terminal (UE#1 in Figure 3) measures the CLI-RSSI and reports it to the base station (gNB1 in Figure 3).
  • Victim UE refers to the UE that receives interference
  • Aggressor UE refers to the terminal that causes interference.
  • FIG. 4 shows an example of CLI between terminals in an SBFD scenario.
  • CLI between terminals can occur when different terminals (e.g., UE#1 and UE#2) communicate with a base station in different directions.
  • UE#1 communicates with a gNB in downlink (DL) communication
  • UE#2 communicates with a gNB in the same time resource (e.g., symbol or slot).
  • CLI from UE#2 to UE#1 can occur between UE#1 and UE#2.
  • FIG. 4(a) when DL and UL are assigned to adjacent subbands (e.g., subband#0 and subband#1, or subband#2 and subband#1), the reception characteristics of DL may be degraded due to non-uniform interference leakage from UL (e.g., non-uniform CLI leakage).
  • FIG. 4(b) shows an example of non-uniform CLI leakage in subbands where DL and UL are adjacent (e.g., subband#0 and subband#1).
  • Non-uniform CLI leakage may be classified into three parts of in-band emission, for example, "general”, “carrier leakage", and "IQ image”. In this way, CLI (CLI leakage) between terminals may be non-uniformly distributed in the frequency domain (hereinafter also referred to as "CLI distribution").
  • FIG. 5 shows an example of CLI between terminals in a dynamic/flexible TDD scenario.
  • CLI between terminals can occur when different base stations (e.g., gNB1 and gNB2) communicate with terminals (e.g., UE#1 and UE#2) connected to each base station in different directions.
  • UE#1 performs downlink (DL) communication with gNB1
  • UE#2 performs uplink (UL) communication with gNB2 in the same time resource (e.g., symbol or slot).
  • DL downlink
  • UL uplink
  • CLI from UE#2 to UE#1 can occur between UE#1 and UE#2.
  • Figure 5(a) when different directions (DL and UL) are assigned to UE#1 and UE#2 in the same time resource, the reception characteristics of DL can be degraded due to uneven interference leakage from UL.
  • Figure 5(b) shows an example of non-uniform CLI leakage in a dynamic/flexible TDD scenario.
  • the CLI between terminals depends on the transmission power of the interfering terminal, or the positional relationship between the interfered terminal and the interfering terminal.
  • SRS-RSRP or CLI-RSSI are measurement values of interference between terminals measured by the terminal, and are therefore effective for SBFD scenarios and Dynamic/flexible TDD scenarios.
  • the reported CLI measurement value is useful for scheduling in the base station.
  • the base station can perform scheduling that does not assign terminals with large reported CLI measurement values (e.g., terminals with large interference) to the same time.
  • the base station can perform scheduling that does not assign terminals with small reported CLI measurement values (e.g., terminals with small interference) to the same time.
  • Release 16 supports Layer 3-based terminal-to-terminal CLI measurement and reporting, but Layer 1 (L1) or Layer 2 (L2)-based terminal-to-terminal CLI measurement and reporting is also under consideration.
  • Layer 1 (L1)-based reporting method is the Channel State Information (CSI) report.
  • CSI Channel State Information
  • a terminal measures values such as channel quality information (e.g., CQI: Channel Quality Information), transmission rank, and L1-RSRP using at least one of the CSI-Reference Signal (CSI-RS) and Synchronization Signal Block (SSB) transmitted from the base station to the terminal, and reports a report including the measured values to the base station.
  • CQI Channel Quality Information
  • SSB Synchronization Signal Block
  • the base station configures the time domain behavior of the report (e.g., reporting periodically, quasi-periodically, or aperiodically), the report configuration that sets the values to be reported, and the resource configuration that includes information on the resources to be measured (e.g., measurement resources) for the terminal that is making the measurements.
  • the time domain behavior of the report e.g., reporting periodically, quasi-periodically, or aperiodically
  • the report configuration that sets the values to be reported
  • the resource configuration that includes information on the resources to be measured (e.g., measurement resources) for the terminal that is making the measurements.
  • the terminal quantizes the measurement value and configures (or stores or places) it in the Report field.
  • Each report number that identifies multiple reports to be reported is linked to a Report field.
  • an Uplink Control Information (UCI) bit string corresponds to multiple report numbers reported by the terminal.
  • UCI Uplink Control Information
  • Figure 6 shows an example of the configuration of the Report field of L1-RSRP.
  • the Report field may include a "resource ID (e.g., Resource (CSI-RS or SSB) ID)” that identifies the resource to be measured, a “quantized measurement value (e.g., quantized RSRP or quantized differential RSRP)” that corresponds to the resource to be measured, and a “Capability Index” that identifies the capability corresponding to the resource to be measured.
  • the number of measurements (or resources) reported in each Report field is up to four, and they may be arranged in descending order in the Report field.
  • the quantized differential RSRP indicates a quantized value of the difference between the RSRP of each resource and the maximum RSRP. For example, 7 bits may be assigned to the quantized RSRP and 4 bits to the quantized differential RSRP as the quantization bit number of the L1-RSRP measurement value.
  • FIG. 7 illustrates an example of measuring and reporting CLI-RSSI according to one non-limiting embodiment of the present disclosure.
  • the terminal performs CLI-RSSI measurement and reporting using multiple measurement blocks obtained by dividing a measurement resource in the frequency domain (e.g., a CLI measurement band, also referred to as measurement bandwidth).
  • a measurement resource in the frequency domain e.g., a CLI measurement band, also referred to as measurement bandwidth.
  • FIG. 7(a) shows an example of existing CLI-RSSI measurement and reporting without using measurement blocks (e.g., CLI reporting and measurement supported in Release 16)
  • FIG. 7(b) shows an example of CLI-RSSI measurement and reporting when using measurement blocks according to one non-limiting embodiment of the present disclosure
  • FIG. 7(c) shows an example of non-uniform CLI spillover (or CLI distribution) and its relationship to measurement blocks.
  • one CLI-RSSI is measured in the CLI measurement band in the frequency direction (e.g., a subband area) and reported to the base station. Therefore, in the CLI-RSSI measurement and reporting as shown in Figure 7(a), it is difficult to report to the base station, for example, the detailed distribution of non-uniform CLI leakage in the CLI measurement band as shown in Figure 7(c).
  • the base station in CLI-RSSI measurement and reporting using multiple measurement blocks, sets multiple measurement blocks in the terminal, which are obtained by dividing the CLI measurement band into multiple blocks in the frequency direction.
  • the terminal measures the CLI-RSSI for each measurement block.
  • the terminal for example, determines a CLI-RSSI report based on the CLI-RSSI for each measurement block, and reports it to the base station.
  • a CLI-RSSI relating to general in-band emission can be reported in one measurement block, and a CLI-RSSI relating to carrier leakage or IQ image can be reported in another measurement block.
  • the terminal can report a detailed distribution of non-uniform CLI leakage to the base station.
  • the base station can perform scheduling, such as modulation and coding scheme (MCS) or resource allocation (e.g., DL allocation), depending on the distribution of non-uniform CLI leakage.
  • MCS modulation and coding scheme
  • resource allocation e.g., DL allocation
  • a communication system may include, for example, a base station 100 (e.g., gNB) shown in Fig. 8 and Fig. 10, and a terminal 200 (e.g., UE) shown in Fig. 9 and Fig. 11.
  • a base station 100 e.g., gNB
  • a terminal 200 e.g., UE
  • a plurality of base stations 100 and a plurality of terminals 200 may exist in the communication system.
  • FIG. 8 is a block diagram showing an example configuration of a portion of a base station 100 according to one embodiment of the present disclosure.
  • a receiving unit e.g., corresponding to a receiving circuit
  • receives report information e.g., corresponding to report information
  • a CLI-RSSI value e.g., corresponding to a measurement value of reception quality
  • a control unit e.g., corresponding to a control circuit
  • FIG. 9 is a block diagram showing an example configuration of a portion of a terminal 200 according to one aspect of the present disclosure.
  • a control unit e.g., corresponding to a control circuit determines report information (e.g., corresponding to report information) based on CLI-RSSI values (e.g., corresponding to measured values of reception quality) for each of a plurality of measurement blocks obtained by dividing a measurement resource in the frequency domain.
  • a transmission unit (e.g., corresponding to a transmission circuit) transmits the report information.
  • Fig. 10 is a block diagram showing a configuration example of a base station 100 according to an embodiment of the present disclosure.
  • the base station 100 includes a receiving unit 101, a demodulating/decoding unit 102, a CLI distribution estimating unit 103, a scheduling unit 104, a control information holding unit 105, a data/control information generating unit 106, an encoding/modulating unit 107, and a transmitting unit 108.
  • the demodulation/decoding unit 102 may be included in the control unit shown in FIG. 8
  • the scheduling unit 104 may be included in the control unit shown in FIG. 8
  • the control information storage unit 105 may be included in the control unit shown in FIG. 8.
  • the receiving unit 101 may be included in the receiving unit shown in FIG. 8.
  • the receiving unit 101 performs reception processing, such as down-conversion or A/D conversion, on a received signal received via an antenna, and outputs the received signal after reception processing to the demodulation and decoding unit 102.
  • reception processing such as down-conversion or A/D conversion
  • the demodulation and decoding unit 102 demodulates and decodes the received signal input from the receiving unit 101, and outputs the decoded result to the scheduling unit 104.
  • the demodulation and decoding unit 102 outputs the report information to the CLI distribution estimation unit 103.
  • the CLI distribution estimation unit 103 estimates the CLI distribution in the frequency domain (e.g., the CLI measurement band) based on, for example, the CLI-RSSI report information input from the demodulation and decoding unit 102 and the control information input from the control information storage unit 105.
  • the CLI distribution estimation unit 103 outputs information on the estimated CLI distribution to the scheduling unit 104.
  • the scheduling unit 104 may, for example, perform scheduling for the terminals 200.
  • the scheduling unit 104 schedules transmission and reception for each terminal 200 based on at least one of the decoding results input from the demodulation and decoding unit 102, the information on the CLI distribution input from the CLI distribution estimation unit 103, and the control information input from the control information storage unit 105, and instructs the data and control information generation unit 106 to generate at least one of data and control information.
  • the control information holding unit 105 holds, for example, control information set in each terminal 200.
  • the control information may include, for example, information such as the configuration of CLI-RSSI resources (for example, measurement resources) (for example, information on CLI-RSSI resources allocated to the terminal 200), the configuration of a CLI-RSSI report, or past measurement values of CLI-RSSI.
  • the control information holding unit 105 may output the held information to each component of the base station 100 (for example, the CLI distribution estimation unit 103 and the scheduling unit 104) as necessary.
  • the data and control information generating unit 106 generates at least one of data and control information, for example, according to instructions from the scheduling unit 104, and outputs a signal including the generated data or control information to the coding and modulation unit 107.
  • the generated data and control information may include at least one of upper layer signaling information and downlink control information, for example.
  • the encoding and modulation unit 107 for example, encodes and modulates the signal input from the data and control information generation unit 106, and outputs the modulated signal to the transmission unit 108.
  • the transmitting unit 108 performs transmission processing such as D/A conversion, up-conversion, or amplification on the signal input from the encoding/modulation unit 107, and transmits the radio signal obtained by the transmission processing from the antenna to the terminal 200.
  • Fig. 11 is a block diagram showing a configuration example of a terminal 200 according to an embodiment of the present disclosure.
  • the terminal 200 includes a receiving unit 201, a demodulating and decoding unit 202, a CLI measuring unit 203, a transmission control unit 204, a control information holding unit 205, a data and control information generating unit 206, an encoding and modulating unit 207, and a transmitting unit 208.
  • At least one of the demodulation/decoding unit 202, CLI measurement unit 203, transmission control unit 204, control information storage unit 205, data/control information generation unit 206, and encoding/modulation unit 207 may be included in the control unit shown in FIG. 9, and the transmission unit 208 may be included in the transmission unit shown in FIG. 9.
  • the receiving unit 201 performs reception processing, such as down-conversion or A/D conversion, on a received signal received via an antenna, and outputs the received signal after reception processing to the demodulation and decoding unit 202.
  • reception processing such as down-conversion or A/D conversion
  • the demodulation/decoding unit 202 demodulates and decodes the received signal input from the receiving unit 201, and outputs the decoded result to the transmission control unit 204.
  • the decoded result may include, for example, upper layer signaling information and downlink control information.
  • the demodulation/decoding unit 202 outputs the decoded result to the CLI measurement unit 203.
  • the CLI measurement unit 203 measures the CLI-RSSI based on control information (e.g., information on the resource configuration or report configuration of the CLI-RSSI report) input from the control information storage unit 205 and information on the CLI-RSSI resource (measurement resource) input from the demodulation and decoding unit 202.
  • control information e.g., information on the resource configuration or report configuration of the CLI-RSSI report
  • information on the CLI-RSSI resource input from the demodulation and decoding unit 202.
  • the CLI measurement unit 203 may measure the CLI-RSSI for each measurement block.
  • the CLI measurement unit 203 outputs, for example, a quantized measurement value to the transmission control unit 204.
  • the transmission control unit 204 outputs signaling information (e.g., information on the resource configuration or report configuration of the CLI-RSSI report) included in the decoding result input from the demodulation and decoding unit 202 to the control information holding unit 205. Furthermore, the transmission control unit 204 may instruct the data and control information generating unit 206 to generate at least one of data and control information, for example, based on the control information (e.g., information on the resource configuration or report configuration of the CLI-RSSI report) input from the control information holding unit 205 or the decoding result input from the demodulation and decoding unit 202 (e.g., downlink control information). Furthermore, the transmission control unit 204 outputs the measured value of CLI-RSSI to the data and control information generating unit 206 based on the information input from the CLI measurement unit 203.
  • signaling information e.g., information on the resource configuration or report configuration of the CLI-RSSI report
  • the transmission control unit 204 may instruct the data and control information generating
  • the control information holding unit 205 holds, for example, control information (for example, information related to the resource configuration or report configuration of the CLI-RSSI report) input from the transmission control unit 204, and outputs the held information to each component (for example, the CLI measurement unit 203 and the transmission control unit 204) as necessary.
  • control information for example, information related to the resource configuration or report configuration of the CLI-RSSI report
  • the data and control information generating unit 206 generates data or control information, for example, according to instructions from the transmission control unit 204. For example, the data and control information generating unit 206 may generate a CLI-RSSI report based on the measured value of CLI-RSSI (an example will be described later). The data and control information generating unit 206 outputs a signal including the generated data or control information to the encoding and modulation unit 207.
  • the encoding and modulation unit 207 for example, encodes and modulates the signal input from the data and control information generation unit 206, and outputs the modulated transmission signal to the transmission unit 208.
  • the transmitting unit 208 performs transmission processing such as D/A conversion, up-conversion, or amplification on the signal input from the encoding/modulation unit 207, and transmits the radio signal obtained by the transmission processing from the antenna to the base station 100.
  • FIG. 12 is a sequence diagram showing an example of the operation of the base station 100 and the terminal 200.
  • the base station 100 determines the settings (configuration) related to the CLI-RSSI measurement (S101).
  • the base station 100 transmits upper layer signaling information including the determined setting information related to the CLI-RSSI measurement to the terminal 200 (S102).
  • the terminal 200 configures the CLI-RSSI report (e.g., configures the resource configuration and the report configuration) based on the configuration information from the base station 100 (S103).
  • the CLI-RSSI report e.g., configures the resource configuration and the report configuration
  • the terminal 200 measures the CLI-RSSI based on the configured CLI-RSSI resource configuration (e.g., including information about the measurement block) (S104). For example, the terminal 200 may measure the CLI-RSSI for each measurement block within the CLI-RSSI measurement resource.
  • the configured CLI-RSSI resource configuration e.g., including information about the measurement block
  • the terminal 200 may measure the CLI-RSSI for each measurement block within the CLI-RSSI measurement resource.
  • the terminal 200 generates a CLI-RSSI report field (e.g., a UCI bit string) based on the configured CLI-RSSI report configuration (S105) and transmits the CLI-RSSI report to the base station 100 (S106).
  • a CLI-RSSI report field e.g., a UCI bit string
  • the base station 100 may perform scheduling for the terminal 200 based on, for example, a CLI-RSSI report transmitted from the terminal 200 (not shown).
  • the above describes an example of operation of the base station 100 and the terminal 200.
  • CLI-RSSI report e.g., a reporting method or configuration method
  • CLI-RSSI report based on CSI report As an example, a CLI-RSSI report based on a CSI report in an SBFD scenario will be described. Note that the following description is also applicable to a dynamic/flexible TDD scenario.
  • Figure 13 shows an example of a CLI-RSSI report based on a CSI report.
  • FIG. 13(a) shows the status of terminal 200 (e.g., UE#1 and UE#2) and base station 100 (e.g., gNB), and FIG. 13(b) shows an example of resource allocation in SBFD.
  • subband#0 and subband#2 are downlink (DL) subbands
  • subband#1 is an uplink (UL) subband.
  • UE#2 transmits a UL signal in subband#1.
  • UE#1 also measures the CLI (e.g., CLI-RSSI) between the terminals.
  • CLI e.g., CLI-RSSI
  • UE#1 may measure the CLI leakage in the DL subband (subband#0) due to UL transmission of UE#2 in the UL subband (subband#1) by CLI-RSSI.
  • UE#1 reports a CLI-RSSI report based on the CLI-RSSI measurement results to the base station.
  • UE#1 may report a CLI-RSSI report based on the CLI-RSSI measurement results measured in subband#0 (DL subband) to base station 100 in subband#1 (UL subband).
  • the report configuration and resource configuration in the CLI-RSSI report can be reused as is.
  • the report configuration is a setting related to the report of the terminal 200 that measures the CLI-RSSI
  • the resource configuration is a setting related to the CLI-RSSI resource to be measured (e.g., the symbol or resource block to be measured).
  • the report field of the uplink control information (UCI) bit string generation function in the CLI-RSSI report needs to be modified.
  • a report field that takes into account uneven CLI leakage distribution can be a useful report for scheduling to the base station 100.
  • the Report field may be configured by the CLI-RSSI (measured values) of a prescribed number (e.g., m) of measurement blocks among a plurality (e.g., k) of measurement blocks obtained by dividing the CLI measurement band.
  • the Report field may be configured by the CLI-RSSI of the upper (or lower) m measurement blocks.
  • Figure 14 shows an example of the Report field configuration for configuration method 1.
  • the terminal 200 measures the CLI-RSSI for each of multiple (e.g., k) measurement blocks, quantizes the m CLI-RSSIs arranged in descending (or ascending) order, and configures them in the Report field.
  • the Report field may store the CLI-RSSIs (e.g., quantized values) of a specified number m of measurement blocks in descending or ascending order.
  • the CLI-RSSI does not have to be sorted in ascending or descending order, and the top (or bottom) m CLI-RSSIs may be sorted in the order of the measurement blocks in the frequency direction and stored in the Report field.
  • the top m CLI-RSSI values with the strongest interference and the measurement blocks corresponding to each CLI-RSSI value may be configured in descending order in the Report field.
  • the bottom m CLI-RSSI values with weak interference and the measurement blocks corresponding to each CLI-RSSI value may be arranged in ascending order in the Report field.
  • the Report field may also include at least the CLI values of the measurement blocks corresponding to the DL/UL subbands or the edges of the DL/UL.
  • Quantization may also define, for example, an n1-bit quantization table (n1: the number of bits in the table obtained from the range and step size) and an n2-bit quantization difference table (n2: the number of bits in the table obtained from the range and step size).
  • the terminal 200 may convert from the measurement value to the quantization value, for example, using the quantization table and the quantization difference table.
  • m which indicates the number of CLI-RSSIs reported in the Report field, may be defined in a specification (e.g., a standard), may be set in the terminal 200 by higher layer signaling (e.g., Radio Resource Control (RRC) signaling), or may be set (or notified) to the terminal 200 by downlink control information (e.g., downlink control information (DCI)).
  • RRC Radio Resource Control
  • DCI downlink control information
  • m may be defined, for example, as a function of the payload size "n" of the uplink control information (UCI) bits reported to the base station 100.
  • m and n may differ depending on, for example, whether the uplink shared channel (PUSCH: Physical Uplink Shared Channel) or the uplink control channel (PUCCH: Physical Uplink Control Channel) is used for transmission.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the Report field of configuration method 1 may store an average value of the CLI-RSSI values for each of multiple measurement blocks (e.g., an average CLI-RSSI value).
  • the average CLI-RSSI value may be, for example, the average value of the CLI-RSSI values of the remaining measurement blocks that are different from the m CLI-RSSIs stored in the Report field, or the average value of the CLI-RSSI values of all measurement blocks, or may be calculated from the average value of the top or bottom X CLI-RSSI values (X is greater than m).
  • the first to fourth columns (e.g., #1 to #4) of the Report field shown in FIG. 14 may store information (e.g., Measurement block ID) that identifies the measurement blocks corresponding to the top m CLI-RSSI values.
  • the fifth to eighth columns (e.g., #5 to #8) of the Report field shown in FIG. 14 may store quantized values of the CLI-RSSI values corresponding to each of Measurement block IDs #1 to #4.
  • a quantized CLI-RSSI value (quantized RSSI) obtained by quantizing the measurement value using a quantization table may be stored as a report value corresponding to the CLI-RSSI value corresponding to Measurement block IDs #1 (e.g., the largest CLI-RSSI value).
  • FIG. 14 may store quantized values of the CLI-RSSI values corresponding to each of Measurement block IDs #1 to #4.
  • a quantized CLI-RSSI value quantized RSSI obtained by quantizing the measurement value using a quantization table
  • a quantized differential CLI-RSSI value obtained by quantizing the difference between the measurement value and the CLI-RSSI value of Measurement block ID #1 using a quantization differential table may be stored as a report value corresponding to the CLI-RSSI value corresponding to Measurement block IDs #2 to #4.
  • the ninth column (e.g., #9) of the Report field shown in FIG. 14 may store, for example, a quantized value of the average CLI-RSSI (in the example of FIG. 14, the average CLI-RSSI value of the remaining measurement blocks that is different from the top four CLI-RSSIs). Note that in configuration method 1, the average CLI-RSSI value does not need to be included in the Report field.
  • the terminal 200 reports the CLI-RSSI of m measurement blocks out of multiple measurement blocks to the base station 100 using the Report field. This allows the terminal 200 to report to the base station 100 a detailed distribution of non-uniform CLI leakage within the CLI measurement band on a measurement block basis.
  • the base station 100 can appropriately perform scheduling for the terminal 200 (e.g., determining MCS and DL allocation) by taking into account the detailed distribution of uneven CLI leakage within the CLI measurement band.
  • the base station 100 can identify frequency regions in the CLI measurement band where interference is strong, and can schedule to not allocate signals to those frequency regions. Also, for example, by reporting the bottom m CLI-RSSIs in ascending order, the base station 100 can identify frequency regions in the CLI measurement band where interference is weak, and can schedule to allocate signals to those frequency regions.
  • Scheduling that reduces interference between terminals in this way can reduce degradation of the reception characteristics at terminal 200.
  • the terminal 200 reports the average CLI-RSSI in the Report field. This allows the base station 100 to identify the approximate interference level in the remaining frequency ranges of the CLI measurement band that are not reported in the Report field. For example, if the top m CLI-RSSI values reported in descending order are large and the average CLI-RSSI value is also large (e.g., greater than a threshold), scheduling is possible that does not allocate signals to frequency ranges that are not reported in the Report field.
  • configuration method 1 by setting (e.g., limiting) the number of CLI-RSSIs constituting the Report field to m, it is possible to reduce the number of UCI bits and the number of reports to the base station 100.
  • the reason that the number of reports can be reduced is that the number of UCI bits is limited, and when reporting all CLI-RSSIs, the terminal 200 may transmit UCI (e.g., including reports) to the base station 100 multiple times, but by limiting the number of CLI-RSSIs to be reported to m, the number of reports to the base station 100 can be reduced.
  • the Report field may be configured with information in a bitmap format corresponding to each of a plurality of (eg, k) measurement blocks into which the CLI measurement band is divided.
  • the base station 100 divides the CLI measurement band into multiple threshold sections in the frequency direction. At least one threshold for the measured value of the CLI-RSSI may be set in each of the multiple threshold sections. Furthermore, each threshold section may include at least one measurement block.
  • the terminal 200 determines a CLI-RSSI report that includes, for example, information in a bitmap format indicating the comparison result between the measured CLI-RSSI value for each of a plurality of measurement blocks and a threshold. For example, the terminal 200 compares the threshold set for each threshold interval with the CLI-RSSI value in the measurement block within each threshold interval, and determines a one-bit value indicating the comparison result for each measurement block. For example, if the CLI-RSSI value is equal to or less than the threshold, '0' may be set, and if the CLI-RSSI value is greater than the threshold, '1' may be set.
  • multiple thresholds may be set in one threshold interval. This allows the terminal 200 to obtain a comparison result of multiple bits for each measurement block. For example, if two thresholds are set in one threshold interval, the measurement value of CLI-RSSI is expressed in two bits.
  • the threshold set for each threshold interval may be defined in the specifications (or standards), may be set in the terminal 200 by notification by the base station 100 (e.g., higher layer signaling or dynamic notification), or may be determined by the terminal 200.
  • the average CLI-RSSI value of all measurement blocks within the threshold interval, or an offset from the average CLI-RSSI value may be set as the threshold.
  • the offset value may be defined in the specifications, or may be set in the terminal 200 by the base station 100.
  • the terminal 200 may report the threshold to the base station 100.
  • the number of threshold intervals in the CLI measurement band and the size of the threshold interval may be determined by the terminal 200.
  • the terminal 200 may report information about the threshold interval (including, for example, the number of threshold intervals and the size of the threshold interval (or the number of measurement blocks included in the threshold interval)) to the base station 100.
  • the terminal 200 reports information regarding the CLI-RSSI of all measurement blocks (e.g., information indicating whether it is greater than a threshold value) to the base station 100 via the Report field. This allows the terminal 200 to report to the base station 100 a detailed distribution of non-uniform CLI leakage within the CLI measurement band on a measurement block basis.
  • the base station 100 can appropriately schedule the terminal 200 (e.g., determine the MCS and DL allocation) while taking into account the detailed distribution of the non-uniform CLI leakage within the CLI measurement band. Scheduling that reduces such interference between terminals can reduce the deterioration of the reception characteristics at the terminal 200.
  • configuration method 2 by reporting the CLI-RSSI value in bitmap format, it is possible to reduce the number of UCI bits and the number of reports to the base station 100.
  • the reason that the number of reports can be reduced is that the number of UCI bits is limited, and when reporting all CLI-RSSI, the terminal 200 may transmit UCI (including reports, for example) to the base station 100 multiple times, but by reporting the CLI-RSSI value in bitmap format, it is possible to reduce the number of UCI bits and the number of reports to the base station 100.
  • configuration method 2 by setting multiple threshold intervals in the frequency direction, it is possible to set thresholds according to the characteristics of the non-uniform CLI distribution (e.g., general, carrier leakage, and IQ image), and the terminal 200 can report a Report field suitable for the non-uniform CLI distribution.
  • characteristics of the non-uniform CLI distribution e.g., general, carrier leakage, and IQ image
  • ⁇ Configuration method 2-1> the Report field reports bitmap-format information (eg, '0' or '1') for all measurement blocks.
  • Figure 15 shows an example of a Report field for configuration method 2-1.
  • terminal 200 compares the CLI-RSSI values (measured values) of all (e.g., k) measurement blocks within the CLI measurement band with the thresholds of each threshold interval.
  • terminal 200 compares the CLI-RSSI values of measurement blocks 1 to 3 with the threshold of threshold interval 1 (threshold 1), and compares the CLI-RSSI values of the remaining measurement blocks 4 to k with the threshold of threshold interval 2 (threshold 2).
  • the terminal 200 stores '0' in the Report field if the CLI-RSSI value is less than or equal to the threshold, and stores '1' in the Report field if the CLI-RSSI value is greater than the threshold.
  • the CLI-RSSI value is reported in bitmap format (0 or 1) in the Report field, so that only one bit is required per measurement block, and the number of UCI bits can be reduced compared to when the CLI-RSSI value (e.g., quantized value) is reported.
  • the number of measurement blocks (the value of k in FIG. 15) increases, so the number of bits used for reporting per measurement block is reduced, so the number of UCI bits and the number of reports to the base station 100 can be reduced.
  • ⁇ Configuration method 2-2> the CLI-RSSI value is reported using "part 1" and "part 2" of the CLI report.
  • the terminal 200 may determine, for example, CLI report part 1 including information in a bitmap format indicating a comparison result between the CLI-RSSI measurement value of each of a plurality of measurement blocks and a threshold, and CLI report part 2 including the CLI-RSSI measurement value of a prescribed number of measurement blocks among the plurality of measurement blocks.
  • Figure 16 shows an example of a Report field for configuration method 2-2.
  • the terminal 200 may report part 1 and part 2 of the CLI report on the same PUSCH. Reporting of the CLI report using the PUSCH may be applied, for example, when the CLI report setting is an aperiodic CLI report or a semi-persistent CLI report.
  • terminal 200 may report CLI report part 1 on PUCCH. Reporting of a CLI report using PUCCH may be applied, for example, when the CLI report setting is periodic CLI report or semi-persistent CLI report.
  • CLI Report Part 1 and CLI Report Part 2 are not limited to the above-mentioned examples and may be other channels.
  • CLI report settings e.g., periodic CLI report, aperiodic CLI report, and semi-persistent CLI report
  • the channels used are not limited to the above-mentioned examples.
  • the terminal 200 may encode parts 1 and 2 of the CLI report separately and transmit CLI report part 2 after transmitting CLI report part 1. This allows the base station 100 to determine the data size of CLI report part 2, for example, based on CLI report part 1, and therefore to variably set the data size of CLI report part 2.
  • terminal 200 compares the CLI-RSSI value of the measurement block in each threshold interval with the threshold set for each threshold interval. Then, as shown in FIG. 16(b), CLI report part 1 may be configured with bitmap information (e.g., 0 or 1) corresponding to the comparison result between the CLI-RSSI value of the measurement block and the threshold, similar to configuration method 2-1.
  • bitmap information e.g., 0 or 1
  • CLI report part 2 may be composed of quantized values (e.g., quantized CLI-RSSI values and quantized differential CLI-RSSI values) of all measurement blocks whose CLI-RSSI values exceed a threshold among the measurement blocks reported by CLI report part 1, or, as in configuration method 1, quantized values of the top m CLI-RSSI values (e.g., quantized CLI-RSSI values and quantized differential CLI-RSSI values).
  • quantized values e.g., quantized CLI-RSSI values and quantized differential CLI-RSSI values
  • the terminal 200 can reduce the number of reports by reporting CLI report part 1 and not reporting CLI report part 2.
  • the terminal 200 can report to the base station 100 a CLI value with a large quantization granularity that cannot be reported in the CLI report part 1 by reporting both the CLI report part 1 and the report part 2.
  • This allows the base station 100 to perform scheduling (e.g., determining DL allocation resources and MCS) based on, for example, the detailed CLI-RSSI value reported by the CLI report part 2.
  • threshold intervals are set within the CLI measurement band, but the number of threshold intervals is not limited to two, and three or more may be set. Alternatively, there may be only one threshold interval within the CLI measurement band.
  • one threshold may be set in one threshold interval, and multiple thresholds may be set in other threshold intervals.
  • bitmap-formatted information about all measurement blocks within the CLI measurement band was reported, but this is not limited thereto, and bitmap-formatted information about some of the measurement blocks within the CLI measurement band may also be reported.
  • the Report field information about measurement blocks corresponding to some of the frequency bands in the CLI measurement band may be reported, or information about measurement blocks at intervals of a specified number may be reported.
  • the Report field may be configured by the interference model number and the average value of the CLI-RSSI.
  • the interference model number is, for example, a number that identifies an interference model that models the expected distribution of CLI (or CLI leakage distribution) in the CLI measurement band.
  • Figure 17 shows an example of the Report field configuration for configuration method 3.
  • the base station 100 sets information related to multiple interference models in the terminal 200.
  • the setting of multiple interference models may be defined by a specification (e.g., a standard), may be set in the terminal 200 by higher layer signaling, or may be set (or notified) to the terminal 200 by downlink control information.
  • the terminal 200 compares the CLI distribution (e.g., interference distribution) obtained from the measured CLI-RSSI values of each of multiple measurement blocks within the CLI measurement band with the set interference model, and identifies the interference model number of the interference model that corresponds to the CLI distribution (e.g., the closest interference model).
  • the CLI distribution e.g., interference distribution
  • the terminal 200 calculates, for example, the average value of the CLI-RSSI values (average CLI-RSSI value) for each measurement block in the CLI measurement band.
  • the terminal 200 reports a CLI-RSSI report including the identified interference model number and the average CLI-RSSI value to the base station 100.
  • N interference models e.g., interference models 0 to N-1
  • Terminal 200 calculates the CLI distribution (CLI leakage) in the CLI measurement band, for example, based on the CLI-RSSI values of all measurement blocks in the CLI measurement band.
  • Terminal 200 compares the calculated CLI distribution with the N interference models, and selects the interference model that is closest to the CLI distribution (interference model 1 in FIG. 17(a)).
  • the terminal 200 quantizes the average value of the CLI-RSSI values of all measurement blocks to obtain a quantized average CLI-RSSI value.
  • the terminal 200 constructs (or stores) the selected interference model number (e.g., the first column (#1)) and the quantized average CLI-RSSI value (e.g., the second column (#2)) in the Report field and reports it to the base station 100.
  • the selected interference model number e.g., the first column (#1)
  • the quantized average CLI-RSSI value e.g., the second column (#2)
  • Base station 100 identifies (or estimates) the CLI distribution in terminal 200 based on the interference model number and the quantized average CLI-RSSI value included in the report reported by terminal 200.
  • the terminal 200 reports information about the interference model corresponding to the CLI distribution in the CLI measurement band to the base station 100 through the Report field. This allows the terminal 200 to report to the base station 100 a detailed distribution of non-uniform CLI leakage within the CLI measurement band.
  • Base station 100 can appropriately schedule terminal 200 (e.g., determine MCS and DL allocation) based on, for example, an interference model corresponding to the CLI distribution in the reported CLI measurement band and the average CLI-RSSI value, taking into account the detailed distribution of non-uniform CLI leakage in the CLI measurement band. Scheduling that reduces such interference between terminals can reduce degradation of reception characteristics in terminal 200.
  • the terminal 200 reports an interference model number instead of the measured value of CLI-RSSI, which makes it possible to reduce the number of UCI bits and the number of reports to the base station 100.
  • the base station 100 identifies the overall power of the CLI distribution. This allows the base station 100 to adjust the CLI distribution according to the interference model in accordance with the average CLI-RSSI value, thereby improving the estimation accuracy of the CLI distribution.
  • the terminal 200 determines a CLI-RSSI report based on the measured CLI-RSSI value for each of a plurality of measurement blocks obtained by dividing the CLI measurement band (measurement resource) in the frequency domain, and transmits the CLI-RSSI report to the base station 100.
  • the terminal 200 can appropriately report the CLI between terminals (uneven CLI distribution) to the base station 100.
  • the base station 100 can appropriately perform scheduling (for example, setting MCS or allocating DL resources) for the terminal 200 according to the reported CLI value and the frequency position (for example, the position of the measurement block) corresponding to the reported CLI.
  • an embodiment of the present disclosure is not limited to Layer 1-based reporting, but can also be applied to Layer 2-based reporting using Medium Access Control (MAC) signaling, or Layer 3-based reporting using Radio Resource Control (RRC) messages.
  • MAC Medium Access Control
  • RRC Radio Resource Control
  • the frequency of reporting is lower than that of Layer 1-based reporting, but the number of bits that can be transmitted is increased.
  • the functionality of the reporting method in the existing L3-based SRS-RSRP e.g., configuration or notification method, etc.
  • the measurement and reporting of short-term interference between terminals is not limited to within the same cell, but can also be applied to multiple cells.
  • a terminal at the cell boundary receives CLI from a terminal in a different cell.
  • the measurement and reporting of short-term interference between terminals is effective in reducing CLI between terminals in multiple cells.
  • the size (or resource size, bandwidth) of the multiple measurement blocks in the CLI measurement band may be uniform or non-uniform.
  • the narrower the bandwidth e.g., smaller granularity
  • the narrower the bandwidth e.g., smaller granularity
  • the size of the measurement blocks within the section may be the same or different.
  • the size of the measurement block may be defined in the specification, may be set in the terminal 200 by upper layer signaling, or may be set (or notified) to the terminal 200 by downlink control information.
  • the measurement block in the above embodiment may be referred to by other names such as subband or frequency block.
  • the reported measurement value of reception quality is not limited to CLI-RSSI, and may be other measurement values.
  • the reported measurement value may be other measurement values such as SRS-RSRP/SRS-RSRQ (Reference Signal Received Quality).
  • SRS-RSRP/SRS-RSRQ Reference Signal Received Quality
  • the same report field configuration method and operation as for CLI-RSSI can be applied to other measurement values.
  • values such as the number of measurement blocks in the CLI measurement band, the number of bits allocated to the CLI-RSSI value, and the prescribed numbers m, k, and N are merely examples and are not limited.
  • the configuration of the Report field in the above-mentioned embodiment is merely an example and is not limited.
  • the storage order of the configuration of the Report field described above may be different, some of the information stored in the Report field described above may not be included, and other information may be included in addition to the information stored in the Report field described above.
  • (supplement) Information indicating whether terminal 200 supports the functions, operations or processes described in the above-mentioned embodiments may be transmitted (or notified) from terminal 200 to base station 100, for example, as capability information or capability parameters of terminal 200.
  • the capability information may include information elements (IEs) that individually indicate whether the terminal 200 supports at least one of the functions, operations, or processes shown in the above-described embodiments.
  • the capability information may include information elements that indicate whether the terminal 200 supports a combination of any two or more of the functions, operations, or processes shown in the above-described embodiments.
  • the base station 100 may, for example, determine (or decide or assume) the functions, operations, or processing that the terminal 200 that transmitted the capability information supports (or does not support).
  • the base station 100 may perform operations, processing, or control according to the determination result based on the capability information.
  • the base station 100 may control reporting of CLI distribution to the terminal 200 based on the capability information received from the terminal 200.
  • the terminal 200 does not support some of the functions, operations, or processes described in the above-described embodiment may be interpreted as meaning that such some of the functions, operations, or processes are restricted in the terminal 200. For example, information or requests regarding such restrictions may be notified to the base station 100.
  • the information regarding the capabilities or limitations of the terminal 200 may be defined in a standard, for example, or may be implicitly notified to the base station 100 in association with information already known at the base station 100 or information transmitted to the base station 100.
  • a downlink control signal (or downlink control information) related to an embodiment of the present disclosure may be, for example, a signal (or information) transmitted in a Physical Downlink Control Channel (PDCCH) in a physical layer, or a signal (or information) transmitted in a Medium Access Control Control Element (MAC CE) or Radio Resource Control (RRC) in a higher layer.
  • the signal (or information) is not limited to being notified by a downlink control signal, and may be predefined in a specification (or standard), or may be preconfigured in a base station and a terminal.
  • the uplink control signal (or uplink control information) related to one embodiment of the present disclosure may be, for example, a signal (or information) transmitted in a PUCCH in the physical layer, or a signal (or information) transmitted in a MAC CE or RRC in a higher layer.
  • the signal (or information) is not limited to being notified by an uplink control signal, but may be predefined in a specification (or standard), or may be preconfigured in a base station and a terminal.
  • the uplink control signal may be replaced with, for example, uplink control information (UCI), 1st stage sidelink control information (SCI), or 2nd stage SCI.
  • UCI uplink control information
  • SCI 1st stage sidelink control information
  • 2nd stage SCI 2nd stage SCI.
  • the base station may be a Transmission Reception Point (TRP), a cluster head, an access point, a Remote Radio Head (RRH), an eNodeB (eNB), a gNodeB (gNB), a Base Station (BS), a Base Transceiver Station (BTS), a parent device, a gateway, or the like.
  • TRP Transmission Reception Point
  • RRH Remote Radio Head
  • eNB eNodeB
  • gNB gNodeB
  • BS Base Station
  • BTS Base Transceiver Station
  • a terminal may play the role of a base station.
  • a relay device that relays communication between an upper node and a terminal may be used.
  • a roadside unit may be used.
  • An embodiment of the present disclosure may be applied to, for example, any of an uplink, a downlink, and a sidelink.
  • an embodiment of the present disclosure may be applied to a Physical Uplink Shared Channel (PUSCH), a Physical Uplink Control Channel (PUCCH), a Physical Random Access Channel (PRACH) in the uplink, a Physical Downlink Shared Channel (PDSCH), a PDCCH, a Physical Broadcast Channel (PBCH) in the downlink, or a Physical Sidelink Shared Channel (PSSCH), a Physical Sidelink Control Channel (PSCCH), or a Physical Sidelink Broadcast Channel (PSBCH) in the sidelink.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Broadcast Channel
  • PBCH Physical Broadcast Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • PDCCH, PDSCH, PUSCH, and PUCCH are examples of a downlink control channel, a downlink data channel, an uplink data channel, and an uplink control channel, respectively.
  • PSCCH and PSSCH are examples of a sidelink control channel and a sidelink data channel.
  • PBCH and PSBCH are examples of a broadcast channel, and PRACH is an example of a random access channel.
  • An embodiment of the present disclosure may be applied to, for example, any of a data channel and a control channel.
  • the channel in an embodiment of the present disclosure may be replaced with any of the data channels PDSCH, PUSCH, and PSSCH, or the control channels PDCCH, PUCCH, PBCH, PSCCH, and PSBCH.
  • the reference signal is, for example, a signal known by both the base station and the mobile station, and may be called a Reference Signal (RS) or a pilot signal.
  • the reference signal may be any of a Demodulation Reference Signal (DMRS), a Channel State Information - Reference Signal (CSI-RS), a Tracking Reference Signal (TRS), a Phase Tracking Reference Signal (PTRS), a Cell-specific Reference Signal (CRS), or a Sounding Reference Signal (SRS).
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information - Reference Signal
  • TRS Tracking Reference Signal
  • PTRS Phase Tracking Reference Signal
  • CRS Cell-specific Reference Signal
  • SRS Sounding Reference Signal
  • the unit of time resource is not limited to one or a combination of slots and symbols, but may be, for example, a time resource unit such as a frame, a superframe, a subframe, a slot, a time slot subslot, a minislot, or a symbol, an Orthogonal Frequency Division Multiplexing (OFDM) symbol, a Single Carrier - Frequency Division Multiplexing (SC-FDMA) symbol, or another time resource unit.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier - Frequency Division Multiplexing
  • the number of symbols included in one slot is not limited to the number of symbols exemplified in the above embodiment, and may be another number of symbols.
  • An embodiment of the present disclosure may be applied to either a licensed band or an unlicensed band.
  • An embodiment of the present disclosure may be applied to any of communication between a base station and a terminal (Uu link communication), communication between terminals (Sidelink communication), and Vehicle to Everything (V2X) communication.
  • the channel in an embodiment of the present disclosure may be replaced with any of PSCCH, PSSCH, Physical Sidelink Feedback Channel (PSFCH), PSBCH, PDCCH, PUCCH, PDSCH, PUSCH, and PBCH.
  • an embodiment of the present disclosure may be applied to either a terrestrial network or a non-terrestrial network (NTN: Non-Terrestrial Network) using a satellite or a High Altitude Pseudo Satellite (HAPS: High Altitude Pseudo Satellite).
  • NTN Non-Terrestrial Network
  • HAPS High Altitude Pseudo Satellite
  • an embodiment of the present disclosure may be applied to a terrestrial network in which the transmission delay is large compared to the symbol length or slot length, such as a network with a large cell size or an ultra-wideband transmission network.
  • an antenna port refers to a logical antenna (antenna group) consisting of one or more physical antennas.
  • an antenna port does not necessarily refer to one physical antenna, but may refer to an array antenna consisting of multiple antennas.
  • an antenna port may be defined as the minimum unit by which a terminal station can transmit a reference signal, without specifying how many physical antennas the antenna port is composed of.
  • an antenna port may be defined as the minimum unit by which a weighting of a precoding vector is multiplied.
  • 5G fifth generation of mobile phone technology
  • NR radio access technology
  • the system architecture as a whole assumes an NG-RAN (Next Generation - Radio Access Network) comprising gNBs.
  • the gNBs provide the UE-side termination of the NG radio access user plane (SDAP/PDCP/RLC/MAC/PHY) and control plane (RRC) protocols.
  • the gNBs are connected to each other via an Xn interface.
  • the gNBs are also connected to the Next Generation Core (NGC) via a Next Generation (NG) interface, more specifically to the Access and Mobility Management Function (AMF) (e.g., a specific core entity performing AMF) via an NG-C interface, and to the User Plane Function (UPF) (e.g., a specific core entity performing UPF) via an NG-U interface.
  • the NG-RAN architecture is shown in Figure 18 (see, for example, 3GPP TS 38.300 v15.6.0, section 4).
  • the NR user plane protocol stack includes the PDCP (Packet Data Convergence Protocol (see, for example, TS 38.300, section 6.4)) sublayer, the RLC (Radio Link Control (see, for example, TS 38.300, section 6.3)) sublayer, and the MAC (Medium Access Control (see, for example, TS 38.300, section 6.2)) sublayer, which are terminated on the network side at the gNB.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • SDAP Service Data Adaptation Protocol
  • a control plane protocol stack is also defined for NR (see, for example, TS 38.300, section 4.4.2).
  • An overview of Layer 2 functions is given in clause 6 of TS 38.300.
  • the functions of the PDCP sublayer, RLC sublayer, and MAC sublayer are listed in clauses 6.4, 6.3, and 6.2 of TS 38.300, respectively.
  • the functions of the RRC layer are listed in clause 7 of TS 38.300.
  • the Medium-Access-Control layer handles multiplexing of logical channels and scheduling and scheduling-related functions, including handling various numerologies.
  • the physical layer is responsible for coding, PHY HARQ processing, modulation, multi-antenna processing, and mapping of signals to appropriate physical time-frequency resources.
  • the physical layer also handles the mapping of transport channels to physical channels.
  • the physical layer provides services to the MAC layer in the form of transport channels.
  • a physical channel corresponds to a set of time-frequency resources used for the transmission of a particular transport channel, and each transport channel is mapped to a corresponding physical channel.
  • the physical channels include the PRACH (Physical Random Access Channel), PUSCH (Physical Uplink Shared Channel), and PUCCH (Physical Uplink Control Channel) as uplink physical channels, and the PDSCH (Physical Downlink Shared Channel), PDCCH (Physical Downlink Control Channel), and PBCH (Physical Broadcast Channel) as downlink physical channels.
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • NR use cases/deployment scenarios may include enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type communication (mMTC), which have diverse requirements in terms of data rate, latency, and coverage.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communications
  • mMTC massive machine type communication
  • eMBB is expected to support peak data rates (20 Gbps in the downlink and 10 Gbps in the uplink) and effective (user-experienced) data rates that are about three times higher than the data rates offered by IMT-Advanced.
  • URLLC stricter requirements are imposed on ultra-low latency (0.5 ms for user plane latency in UL and DL, respectively) and high reliability (1-10-5 within 1 ms).
  • mMTC may require preferably high connection density (1,000,000 devices/km 2 in urban environments), wide coverage in adverse environments, and extremely long battery life (15 years) for low-cost devices.
  • OFDM numerology e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling interval
  • OFDM numerology e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling interval
  • low latency services may preferably require a shorter symbol length (and therefore a larger subcarrier spacing) and/or fewer symbols per scheduling interval (also called TTI) than mMTC services.
  • deployment scenarios with large channel delay spreads may preferably require a longer CP length than scenarios with short delay spreads.
  • Subcarrier spacing may be optimized accordingly to maintain similar CP overhead.
  • NR may support one or more subcarrier spacing values. Correspondingly, subcarrier spacings of 15 kHz, 30 kHz, 60 kHz... are currently considered.
  • a resource grid of subcarriers and OFDM symbols is defined for the uplink and downlink, respectively.
  • Each element of the resource grid is called a resource element and is identified based on a frequency index in the frequency domain and a symbol position in the time domain (see 3GPP TS 38.211 v15.6.0).
  • Figure 19 shows the functional separation between NG-RAN and 5GC.
  • the logical nodes of NG-RAN are gNB or ng-eNB.
  • 5GC has logical nodes AMF, UPF, and SMF.
  • gNBs and ng-eNBs host the following main functions: - Radio Resource Management functions such as Radio Bearer Control, Radio Admission Control, Connection Mobility Control, dynamic allocation (scheduling) of resources to UEs in both uplink and downlink; - IP header compression, encryption and integrity protection of the data; - Selection of an AMF at UE attach time when routing to an AMF cannot be determined from information provided by the UE; - Routing of user plane data towards the UPF; - Routing of control plane information towards the AMF; - Setting up and tearing down connections; - scheduling and transmission of paging messages; Scheduling and transmission of system broadcast information (AMF or Operation, Admission, Maintenance (OAM) origin); - configuration of measurements and measurement reporting for mobility and scheduling; - Transport level packet marking in the uplink; - Session management; - Support for network slicing; - Management of QoS flows and mapping to data radio bearers; - Support for UEs in RRC_INACTIVE state; - NAS
  • the Access and Mobility Management Function hosts the following main functions: – the ability to terminate Non-Access Stratum (NAS) signalling; - NAS signalling security; - Access Stratum (AS) security control; - Core Network (CN) inter-node signaling for mobility between 3GPP access networks; - Reachability to idle mode UEs (including control and execution of paging retransmissions); - Managing the registration area; - Support for intra-system and inter-system mobility; - Access authentication; - Access authorization, including checking roaming privileges; - Mobility management control (subscription and policy); - Support for network slicing; – Selection of Session Management Function (SMF).
  • NAS Non-Access Stratum
  • AS Access Stratum
  • CN Core Network
  • the User Plane Function hosts the following main functions: - anchor point for intra/inter-RAT mobility (if applicable); - external PDU (Protocol Data Unit) Session Points for interconnection with data networks; - Packet routing and forwarding; - Packet inspection and policy rule enforcement for the user plane part; - Traffic usage reporting; - an uplink classifier to support routing of traffic flows to the data network; - Branching Point to support multi-homed PDU sessions; QoS processing for the user plane (e.g. packet filtering, gating, UL/DL rate enforcement); - Uplink traffic validation (mapping of SDF to QoS flows); - Downlink packet buffering and downlink data notification triggering.
  • PDU Protocol Data Unit Session Points for interconnection with data networks
  • Packet routing and forwarding Packet inspection and policy rule enforcement for the user plane part
  • Traffic usage reporting - an uplink classifier to support routing of traffic flows to the data network
  • - Branching Point to support multi-homed PDU
  • Session Management Function hosts the following main functions: - Session management; - Allocation and management of IP addresses for UEs; - Selection and control of UPF; - configuration of traffic steering in the User Plane Function (UPF) to route traffic to the appropriate destination; - Control policy enforcement and QoS; - Notification of downlink data.
  • Figure 20 shows some of the interactions between the UE, gNB, and AMF (5GC entities) when the UE transitions from RRC_IDLE to RRC_CONNECTED, NAS part (see TS 38.300 v15.6.0).
  • RRC is a higher layer signaling (protocol) used for UE and gNB configuration.
  • the AMF prepares UE context data (which includes, for example, PDU session context, security keys, UE Radio Capability, UE Security Capabilities, etc.) and sends it to the gNB with an INITIAL CONTEXT SETUP REQUEST.
  • the gNB then activates AS security together with the UE. This is done by the gNB sending a SecurityModeCommand message to the UE and the UE responding with a SecurityModeComplete message to the gNB.
  • the gNB then sends an RRCReconfiguration message to the UE, and upon receiving an RRCReconfigurationComplete from the UE, the gNB performs reconfiguration to set up Signaling Radio Bearer 2 (SRB2) and Data Radio Bearer (DRB). For signaling-only connections, the RRCReconfiguration steps are omitted, since SRB2 and DRB are not set up. Finally, the gNB notifies the AMF that the setup procedure is complete with an INITIAL CONTEXT SETUP RESPONSE.
  • SRB2 Signaling Radio Bearer 2
  • DRB Data Radio Bearer
  • a 5th Generation Core (5GC) entity e.g., AMF, SMF, etc.
  • a control circuit that, during operation, establishes a Next Generation (NG) connection with a gNodeB
  • a transmitter that, during operation, transmits an initial context setup message to the gNodeB via the NG connection such that a signaling radio bearer between the gNodeB and a user equipment (UE) is set up.
  • the gNodeB transmits Radio Resource Control (RRC) signaling including a resource allocation configuration information element (IE) to the UE via the signaling radio bearer.
  • RRC Radio Resource Control
  • IE resource allocation configuration information element
  • Figure 21 shows some of the use cases for 5G NR.
  • the 3rd generation partnership project new radio (3GPP NR) considers three use cases that were envisioned by IMT-2020 to support a wide variety of services and applications.
  • the first phase of specifications for enhanced mobile-broadband (eMBB) has been completed.
  • Current and future work includes standardization for ultra-reliable and low-latency communications (URLLC) and massive machine-type communications (mMTC), in addition to expanding support for eMBB.
  • Figure 21 shows some examples of envisioned usage scenarios for IMT beyond 2020 (see, for example, ITU-R M.2083 Figure 2).
  • the URLLC use cases have stringent requirements for performance such as throughput, latency, and availability. It is envisioned as one of the enabling technologies for future applications such as wireless control of industrial or manufacturing processes, remote medical surgery, automation of power transmission and distribution in smart grids, and road safety.
  • URLLC's ultra-high reliability is supported by identifying technologies that meet the requirements set by TR 38.913.
  • key requirements include a target user plane latency of 0.5 ms for UL (uplink) and 0.5 ms for DL (downlink).
  • the overall URLLC requirement for a single packet transmission is a block error rate (BLER) of 1E-5 for a packet size of 32 bytes with a user plane latency of 1 ms.
  • BLER block error rate
  • NR URLLC can be improved in many possible ways.
  • Current room for reliability improvement includes defining a separate CQI table for URLLC, more compact DCI formats, PDCCH repetition, etc.
  • this room can be expanded to achieve ultra-high reliability as NR becomes more stable and more developed (with respect to the key requirements of NR URLLC).
  • Specific use cases for NR URLLC in Release 15 include Augmented Reality/Virtual Reality (AR/VR), e-health, e-safety, and mission-critical applications.
  • AR/VR Augmented Reality/Virtual Reality
  • e-health e-safety
  • mission-critical applications mission-critical applications.
  • the technology enhancements targeted by NR URLLC aim to improve latency and reliability.
  • Technology enhancements for improving latency include configurable numerology, non-slot-based scheduling with flexible mapping, grant-free (configured grant) uplink, slot-level repetition in data channel, and pre-emption in downlink.
  • Pre-emption means that a transmission for which resources have already been allocated is stopped and the already allocated resources are used for other transmissions with lower latency/higher priority requirements that are requested later. Thus, a transmission that was already allowed is preempted by a later transmission. Pre-emption is applicable regardless of the specific service type. For example, a transmission of service type A (URLLC) may be preempted by a transmission of service type B (eMBB, etc.).
  • Technology enhancements for improving reliability include a dedicated CQI/MCS table for a target BLER of 1E-5.
  • the mMTC (massive machine type communication) use case is characterized by a very large number of connected devices transmitting relatively small amounts of data that are typically not sensitive to latency.
  • the devices are required to be low cost and have very long battery life. From an NR perspective, utilizing very narrow bandwidth portions is one solution that saves power from the UE's perspective and allows for long battery life.
  • the scope of reliability improvement in NR is expected to be broader.
  • One of the key requirements for all cases, e.g. for URLLC and mMTC, is high or ultra-high reliability.
  • Several mechanisms can improve reliability from a radio perspective and a network perspective.
  • these areas include compact control channel information, data channel/control channel repetition, and diversity in frequency, time, and/or spatial domains. These areas are generally applicable to reliability improvement regardless of the specific communication scenario.
  • NR URLLC For NR URLLC, further use cases with more demanding requirements are envisaged, such as factory automation, transportation and power distribution.
  • the demanding requirements are high reliability (up to 10-6 level of reliability), high availability, packet size up to 256 bytes, time synchronization up to a few ⁇ s (depending on the use case, the value can be 1 ⁇ s or a few ⁇ s depending on the frequency range and low latency of around 0.5 ms to 1 ms (e.g. 0.5 ms latency at the targeted user plane).
  • minislot refers to a Transmission Time Interval (TTI) that contains fewer symbols than a slot (a slot comprises 14 symbols).
  • TTI Transmission Time Interval
  • QoS Quality of Service
  • the 5G Quality of Service (QoS) model is based on QoS flows and supports both QoS flows that require a guaranteed flow bit rate (GBR QoS flows) and QoS flows that do not require a guaranteed flow bit rate (non-GBR QoS flows).
  • GRR QoS flows Guarantee flow bit rate
  • non-GBR QoS flows QoS flows that do not require a guaranteed flow bit rate
  • QoS flows are the finest granularity of QoS partitioning in a PDU session.
  • QoS flows are identified within a PDU session by a QoS Flow ID (QFI) carried in the encapsulation header over the NG-U interface.
  • QFI QoS Flow ID
  • 5GC For each UE, 5GC establishes one or more PDU sessions. For each UE, the NG-RAN establishes at least one Data Radio Bearer (DRB) for the PDU session, e.g. as shown above with reference to Figure 20. Additional DRBs for the QoS flows of the PDU session can be configured later (when it is up to the NG-RAN).
  • the NG-RAN maps packets belonging to different PDU sessions to different DRBs.
  • the NAS level packet filters in the UE and 5GC associate UL and DL packets with QoS flows, whereas the AS level mapping rules in the UE and NG-RAN associate UL and DL QoS flows with DRBs.
  • FIG 22 shows the non-roaming reference architecture for 5G NR (see TS 23.501 v16.1.0, section 4.23).
  • An Application Function e.g. an external application server hosting 5G services as illustrated in Figure 21
  • NEF Network Exposure Function
  • PCF Policy Control Function
  • Figure 22 further shows further functional units of the 5G architecture, namely Network Slice Selection Function (NSSF), Network Repository Function (NRF), Unified Data Management (UDM), Authentication Server Function (AUSF), Access and Mobility Management Function (AMF), Session Management Function (SMF), and Data Network (DN, e.g. operator provided services, Internet access, or third party provided services). All or part of the core network functions and application services may be deployed and run in a cloud computing environment.
  • NSF Network Slice Selection Function
  • NRF Network Repository Function
  • UDM Unified Data Management
  • AUSF Authentication Server Function
  • AMF Access and Mobility Management Function
  • SMSF Session Management Function
  • DN Data Network
  • All or part of the core network functions and application services may be deployed and run in a cloud computing environment.
  • an application server e.g., an AF in a 5G architecture
  • a transmitter that, in operation, transmits a request including QoS requirements for at least one of a URLLC service, an eMMB service, and an mMTC service to at least one of 5GC functions (e.g., a NEF, an AMF, an SMF, a PCF, an UPF, etc.) to establish a PDU session including a radio bearer between a gNodeB and a UE according to the QoS requirements; and a control circuit that, in operation, performs a service using the established PDU session.
  • 5GC functions e.g., a NEF, an AMF, an SMF, a PCF, an UPF, etc.
  • Each functional block used in the description of the above embodiments may be realized, in part or in whole, as an LSI, which is an integrated circuit, and each process described in the above embodiments may be controlled, in part or in whole, by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip that contains some or all of the functional blocks.
  • the LSI may have data input and output. Depending on the degree of integration, the LSI may be called an IC, system LSI, super LSI, or ultra LSI.
  • the integrated circuit method is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Also, a field programmable gate array (FPGA) that can be programmed after LSI manufacturing, or a reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI, may be used.
  • FPGA field programmable gate array
  • the present disclosure may be realized as digital processing or analog processing.
  • the present disclosure may be implemented in any type of apparatus, device, or system (collectively referred to as a communications apparatus) having communications capabilities.
  • the communications apparatus may include a radio transceiver and processing/control circuitry.
  • the radio transceiver may include a receiver and a transmitter, or both as functions.
  • the radio transceiver (transmitter and receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • the RF module may include an amplifier, an RF modulator/demodulator, or the like.
  • Non-limiting examples of communication devices include telephones (e.g., cell phones, smartphones, etc.), tablets, personal computers (PCs) (e.g., laptops, desktops, notebooks, etc.), cameras (e.g., digital still/video cameras), digital players (e.g., digital audio/video players, etc.), wearable devices (e.g., wearable cameras, smartwatches, tracking devices, etc.), game consoles, digital book readers, telehealth/telemedicine devices, communication-enabled vehicles or mobile transport (e.g., cars, planes, ships, etc.), and combinations of the above-mentioned devices.
  • telephones e.g., cell phones, smartphones, etc.
  • tablets personal computers (PCs) (e.g., laptops, desktops, notebooks, etc.)
  • cameras e.g., digital still/video cameras
  • digital players e.g., digital audio/video players, etc.
  • wearable devices e.g., wearable cameras, smartwatches, tracking
  • Communication devices are not limited to portable or mobile devices, but also include any type of equipment, device, or system that is non-portable or fixed, such as smart home devices (home appliances, lighting equipment, smart meters or measuring devices, control panels, etc.), vending machines, and any other "things” that may exist on an IoT (Internet of Things) network.
  • smart home devices home appliances, lighting equipment, smart meters or measuring devices, control panels, etc.
  • vending machines and any other “things” that may exist on an IoT (Internet of Things) network.
  • IoT Internet of Things
  • Communications include data communication via cellular systems, wireless LAN systems, communication satellite systems, etc., as well as data communication via combinations of these.
  • the communication apparatus also includes devices such as controllers and sensors that are connected or coupled to a communication device that performs the communication functions described in this disclosure.
  • a communication device that performs the communication functions described in this disclosure.
  • controllers and sensors that generate control signals and data signals used by the communication device to perform the communication functions of the communication apparatus.
  • communication equipment includes infrastructure facilities, such as base stations, access points, and any other equipment, devices, or systems that communicate with or control the various non-limiting devices listed above.
  • a terminal includes a control circuit that determines report information based on measurement values of reception quality for each of a number of blocks into which a measurement resource in the frequency domain is divided, and a transmission circuit that transmits the report information.
  • control circuit determines the reporting information including the measurement values of a predetermined number of blocks among the plurality of blocks.
  • the measurement values of the specified number of blocks are stored in descending or ascending order in the report information field.
  • the report information field stores the average value of the measurement values for each of the multiple blocks.
  • control circuit determines the report information including information in a bitmap format indicating a comparison result between the measurement value of each of the plurality of blocks and a threshold value.
  • control circuit determines first report information including information in a bitmap format indicating a comparison result between the measurement value of each of the plurality of blocks and a threshold value, and second report information including the measurement value of a predetermined number of blocks among the plurality of blocks.
  • control circuit determines the report information including information about an interference model corresponding to an interference distribution obtained by the measurements of each of the plurality of blocks.
  • the report information includes information regarding the average value of the measurement value for each of the multiple blocks.
  • a base station includes a receiving circuit that receives report information based on measurement values of reception quality for each of a plurality of blocks into which a measurement resource in the frequency domain is divided, and a control circuit that estimates the measurement values for each of the plurality of blocks based on the report information.
  • a terminal determines report information based on a measurement value of reception quality for each of a number of blocks into which a measurement resource in the frequency domain is divided, and transmits the report information.
  • a base station receives report information based on measurement values of reception quality for each of a plurality of blocks into which a measurement resource in the frequency domain is divided, and estimates the measurement values for each of the plurality of blocks based on the report information.
  • An embodiment of the present disclosure is useful in wireless communication systems.
  • Base station 101 201 Receiving unit 102, 202 Demodulation and decoding unit 103 CLI distribution estimation unit 104 Scheduling unit 105, 205 Control information storage unit 106, 206 Data and control information generation unit 107, 207 Encoding and modulation unit 108, 208 Transmitting unit 200 Terminal 203 CLI measurement unit 204 Transmission control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal is equipped with: a control circuit that determines report information on the basis of measured values of the reception quality of each of a plurality of blocks for which measurement resources in a frequency region were divided; and a transmission circuit that transmits the report information.

Description

端末、基地局、及び、通信方法Terminal, base station, and communication method
 本開示は、端末、基地局、及び、通信方法に関する。 This disclosure relates to a terminal, a base station, and a communication method.
 3rd Generation Partnership Project(3GPP)では、第5世代移動通信システム(5G:5th Generation mobile communication systems)の機能拡張として、Release 17 NR(New Radio access technology)の物理レイヤの仕様策定が完了した。NRでは、高速及び大容量といった要求条件に合致すべくモバイルブロードバンドの高度化(eMBB: enhanced Mobile Broadband)に加え、超高信頼低遅延通信(URLLC: Ultra Reliable and Low Latency Communication)を実現する機能をサポートする(例えば、非特許文献1-6を参照)。 The 3rd Generation Partnership Project (3GPP) has completed the formulation of the physical layer specifications for Release 17 NR (New Radio access technology) as a functional extension of 5th generation mobile communication systems (5G). NR will support enhanced mobile broadband (eMBB) to meet the requirements of high speed and large capacity, as well as functions that realize ultra-reliable and low latency communication (URLLC) (see, for example, non-patent literature 1-6).
 しかしながら、端末間の干渉を報告する方法については検討の余地がある。 However, there is room for improvement in how to report interference between devices.
 本開示の非限定的な実施例は、端末間の干渉を適切に報告できる端末、基地局、及び、通信方法の提供に資する。 Non-limiting examples of the present disclosure contribute to providing a terminal, a base station, and a communication method that can appropriately report interference between terminals.
 本開示の一実施例に係る端末は、周波数領域における測定リソースを分割した複数のブロック毎の受信品質の測定値に基づいて、報告情報を決定する制御回路と、前記報告情報を送信する送信回路と、を具備する。 A terminal according to one embodiment of the present disclosure includes a control circuit that determines report information based on measurement values of reception quality for each of a number of blocks into which a measurement resource in the frequency domain is divided, and a transmission circuit that transmits the report information.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 These comprehensive or specific aspects may be realized as a system, device, method, integrated circuit, computer program, or recording medium, or as any combination of a system, device, method, integrated circuit, computer program, and recording medium.
 本開示の一実施例によれば、端末間の干渉を適切に報告できる。 According to one embodiment of the present disclosure, interference between terminals can be appropriately reported.
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。 Further advantages and benefits of an embodiment of the present disclosure will become apparent from the specification and drawings. Such advantages and/or benefits may be provided by some of the embodiments and features described in the specification and drawings, respectively, but not necessarily all of them need be provided to obtain one or more identical features.
subband non-overlapping full duplex(SBFD)の例を示す図Diagram showing an example of subband non-overlapping full duplex (SBFD) Dynamic/flexible time division duplex (TDD)の例を示す図Diagram showing an example of Dynamic/flexible time division duplex (TDD) レイヤ3(L3:layer 3)ベースのcross-link interference - Received Signal Strength Indicator (CLI-RSSI)の測定及び報告の例を示す図Diagram showing an example of layer 3 (L3) based cross-link interference - Received Signal Strength Indicator (CLI-RSSI) measurement and reporting SBFDシナリオにおける端末間のCLIの例を示す図Diagram showing an example of an end-to-end CLI in an SBFD scenario Dynamic/flexible TDDシナリオにおける端末間のCLIの例を示す図Diagram showing an example of end-to-end CLI in a dynamic/flexible TDD scenario レイヤ1(L1:layer 1)-Reference Signal Received Power(RSRP)のReport fieldの一例を示す図A diagram showing an example of the Report field for Layer 1 (L1)-Reference Signal Received Power (RSRP) CLI-RSSI測定の例を示す図Diagram showing an example of CLI-RSSI measurement 基地局の一部の構成例を示すブロック図A block diagram showing an example of the configuration of a portion of a base station. 端末の一部の構成例を示すブロック図Block diagram showing a partial configuration example of a terminal 基地局の構成例を示すブロック図Block diagram showing a configuration example of a base station 端末の構成例を示すブロック図Block diagram showing an example of a terminal configuration 基地局及び端末の動作例を示すシーケンス図A sequence diagram showing an example of the operation of a base station and a terminal. Channel State Information(CSI)レポートベースのCLI-RSSIレポートの例を示す図Diagram showing an example of a CLI-RSSI report based on a Channel State Information (CSI) report Report fieldの構成方法の例を示す図A diagram showing an example of how to configure a report field Report fieldの構成方法の例を示す図A diagram showing an example of how to configure a report field Report fieldの構成方法の例を示す図A diagram showing an example of how to configure a report field Report fieldの構成方法の例を示す図A diagram showing an example of how to configure a report field 3GPP NRシステムの例示的なアーキテクチャの図Diagram of an example architecture for a 3GPP NR system NG-RAN(Next Generation - Radio Access Network)と5GC(5th Generation Core)との間の機能分離を示す概略図Schematic diagram showing functional separation between NG-RAN (Next Generation - Radio Access Network) and 5GC (5th Generation Core) Radio Resource Control(RRC)接続のセットアップ/再設定の手順のシーケンス図Sequence diagram of Radio Resource Control (RRC) connection setup/reconfiguration procedure 大容量・高速通信(eMBB:enhanced Mobile BroadBand)、多数同時接続マシンタイプ通信(mMTC:massive Machine Type Communications)、および高信頼・超低遅延通信(URLLC:Ultra Reliable and Low Latency Communications)の利用シナリオを示す概略図Schematic diagram showing usage scenarios for enhanced Mobile BroadBand (eMBB), massive Machine Type Communications (mMTC), and Ultra Reliable and Low Latency Communications (URLLC). 非ローミングシナリオのための例示的な5Gシステムアーキテクチャを示すブロック図Block diagram illustrating an example 5G system architecture for a non-roaming scenario
 以下、本開示の実施の形態について図面を参照して詳細に説明する。 The following describes in detail the embodiments of this disclosure with reference to the drawings.
 [subband non-overlapping full duplex(SBFD)、及び、Dynamic/flexible time division duplex(TDD)について]
 Release 18において、subband non-overlapping full duplex(SBFD)及びDynamic/flexible TDDが議論されている。図1はSBFDの例を示し、図2はDynamic/flexible TDDの例を示す。
[Subband non-overlapping full duplex (SBFD) and dynamic/flexible time division duplex (TDD)]
Subband non-overlapping full duplex (SBFD) and Dynamic/flexible TDD are discussed in Release 18. Figure 1 shows an example of SBFD, and Figure 2 shows an example of Dynamic/flexible TDD.
 図1(a)は、SBFDシナリオにおける同一セル内の基地局(gNBとも呼ぶ)及び端末(UE:User Equipmentとも呼ぶ)(例えば、UE#1及びUE#2)の動作例を示す。SBFDシナリオでは、基地局は、SBFD動作を行い、端末は、Half duplex動作を行う。 Figure 1(a) shows an example of the operation of a base station (also called gNB) and terminals (UE: User Equipment) (e.g., UE#1 and UE#2) in the same cell in an SBFD scenario. In the SBFD scenario, the base station performs SBFD operation and the terminals perform half-duplex operation.
 図1(b)は、SBFDにおけるサブバンドの割り当て例を示す。図1(b)において、縦軸は周波数を表し、横軸は時間を表す。また、図1(b)において、「UL」は上りリンク(Uplink)の送信を表し、「DL」は下りリンク(Downlink)の送信を表す。また、各装置(例えば、gNB、UE#1及びUE#2)において使用されないリソースを点線で示す。 Figure 1(b) shows an example of subband allocation in SBFD. In Figure 1(b), the vertical axis represents frequency, and the horizontal axis represents time. Also, in Figure 1(b), "UL" represents uplink transmission, and "DL" represents downlink transmission. Also, resources that are not used in each device (e.g., gNB, UE#1, and UE#2) are shown with dotted lines.
 図1(b)に示すように、SBFDでは、周波数リソース(周波数帯域)が複数のサブバンド(又は、帯域、RB set、サブ帯域、サブBWP(Bandwidth part)とも呼ぶ)に分割され、サブバンド単位で異なる方向の送信がサポートされる。図1(b)に示すように、基地局は、上りリンクと下りリンクとにおいて同時に送受信(例えば、SBFD動作)を行うことができ、端末は、或る時間リソースでは上りリンク及び下りリンクの何れか一方の送受信(例えば、Half duplex動作)を行うことができる。例えば、図1(b)の例では、同一時間リソース(例えば、スロット又はシンボル)において、UE#1は上りリンクで基地局と通信し、UE#2は下りリンクで基地局と通信する。 As shown in Figure 1(b), in SBFD, a frequency resource (frequency band) is divided into multiple subbands (also called bands, RB sets, subbands, or sub-BWPs (Bandwidth parts)), and transmission in different directions is supported on a subband-by-subband basis. As shown in Figure 1(b), a base station can transmit and receive simultaneously on the uplink and downlink (e.g., SBFD operation), and a terminal can transmit and receive on either the uplink or downlink in a given time resource (e.g., half-duplex operation). For example, in the example of Figure 1(b), in the same time resource (e.g., slot or symbol), UE#1 communicates with the base station on the uplink, and UE#2 communicates with the base station on the downlink.
 図2(a)は、Dynamic/flexible TDDシナリオにおける異なる基地局(例えば、gNB1及びgNB2)及び端末(例えば、UE#1及びUE#2)の動作例を示す。Dynamic/flexible TDDシナリオでは、基地局及び端末はHalf duplex動作を行い、異なる基地局において送信方向が異なる可能性がある。 Figure 2(a) shows an example of the operation of different base stations (e.g., gNB1 and gNB2) and terminals (e.g., UE#1 and UE#2) in a dynamic/flexible TDD scenario. In the dynamic/flexible TDD scenario, the base stations and terminals perform half-duplex operation, and the transmission directions may be different for different base stations.
 図2(b)は、Dynamic/flexible TDDにおけるリソース割り当て例を示す。図2(b)の例では、同一時間リソース(例えば、同一時刻のスロット又はシンボル)において、UE#1は、gNB1からのDL受信を行い、UE#2はgNB2へUL送信を行う。 Figure 2(b) shows an example of resource allocation in dynamic/flexible TDD. In the example of Figure 2(b), in the same time resource (e.g., slot or symbol at the same time), UE#1 performs DL reception from gNB1, and UE#2 performs UL transmission to gNB2.
 [干渉について]
 SBFDシナリオ又はDynamic/flexible TDDシナリオの場合、様々な干渉が発生し得る。例えば、基地局における自己干渉、又は、端末間(UE-to-UE)におけるクロスリンク干渉(CLI:Cross-Link Interference)が発生し得る。基地局における自己干渉及び端末間のCLIは、受信特性を大きく劣化させるため、対応策が求められている。対応策の一つとして、例えば、基地局のスケジューリングによって干渉の強い端末同士の割り当てを回避する方法が挙げられる。ここで、基地局は端末間のCLIを直接測定できないため、端末が、端末間のCLIを測定し、基地局へ報告する方法が期待される。
[Regarding interference]
In the case of the SBFD scenario or the Dynamic/flexible TDD scenario, various interferences may occur. For example, self-interference at the base station or cross-link interference (CLI) between terminals (UE-to-UE) may occur. Self-interference at the base station and CLI between terminals greatly deteriorate reception characteristics, so countermeasures are required. One of the countermeasures is, for example, a method of avoiding allocation of terminals with strong interference by scheduling at the base station. Here, since the base station cannot directly measure the CLI between terminals, a method is expected in which the terminal measures the CLI between terminals and reports it to the base station.
 既存の規格における端末間のCLIを測定する方法の1つとして、SRS-RSRP(SRS:Sounding Reference Signal、RSRP:Reference Signal Received Power)/CLI-RSSI(RSSI:Received Signal Strength Indicator)がある。SRS-RSRP/CLI-RSSIは、レイヤ3(L3)ベースの端末間のCLI測定及び報告であり、Release 16においてサポートされる。 One of the methods for measuring CLI between terminals in existing standards is SRS-RSRP (SRS: Sounding Reference Signal, RSRP: Reference Signal Received Power)/CLI-RSSI (RSSI: Received Signal Strength Indicator). SRS-RSRP/CLI-RSSI is a Layer 3 (L3) based measurement and reporting of CLI between terminals, and will be supported in Release 16.
 SRS-RSRPは、端末が他の端末から送信されるSRSの受信電力の測定値である。 SRS-RSRP is a measurement of the received power of SRS transmitted by a terminal from other terminals.
 CLI-RSSIは、端末が測定するために設定されたリソース(例えば、「測定リソース」とも呼ぶ)の総受信電力の線形平均の測定値である。測定リソースは、例えば、measurement time resource又はmeasurement bandwidth(又は、measurement frequency bandwidth)と呼ばれてもよい。 CLI-RSSI is a measurement of the linear average of the total received power on the resources (e.g., also called "measurement resources") that the terminal is configured to measure. The measurement resource may also be called, for example, the measurement time resource or the measurement bandwidth (or measurement frequency bandwidth).
 図3は、レイヤ3ベースのCLI-RSSIの例を示す図である。レイヤ3ベースのCLI-RSSIの測定側の端末(図3では、UE#1)は、基地局から指定されたCLI-RSSI用リソース(又は、測定リソース)の総受信電力を測定し、測定した総受信電力に基づくCLI-RSSIを報告する。例えば、一方の端末(図3では、UE#2)がUL信号を送信し、他方の端末(図3では、UE#1)がCLI-RSSIを測定し、基地局(図3では、gNB1)へ報告してよい。ここで、「Victim UE」は干渉を受けるUEを示し、「Aggressor UE」は干渉を与える端末を示す。 Figure 3 shows an example of Layer 3-based CLI-RSSI. The terminal measuring Layer 3-based CLI-RSSI (UE#1 in Figure 3) measures the total received power of the CLI-RSSI resource (or measurement resource) specified by the base station, and reports the CLI-RSSI based on the measured total received power. For example, one terminal (UE#2 in Figure 3) transmits a UL signal, and the other terminal (UE#1 in Figure 3) measures the CLI-RSSI and reports it to the base station (gNB1 in Figure 3). Here, "Victim UE" refers to the UE that receives interference, and "Aggressor UE" refers to the terminal that causes interference.
 SBFDシナリオにおいて、基地局は、上りリンクと下りリンクとで同時に送受信可能であるため、端末間のCLIが発生し得る。図4は、SBFDシナリオにおける端末間のCLIの例を示す。図4(a)に示すように、端末間のCLIは、異なる端末(例えば、UE#1及びUE#2)が異なる方向で基地局と通信する場合に発生し得る。図4(a)の例では、同一時間リソース(例えば、シンボル又はスロット)においてUE#1はgNBと下りリンク(DL)通信を行い、UE#2はgNBと上りリンク(UL)通信を行う。この場合、UE#1とUE#2との間において、UE#2からUE#1へのCLIが発生し得る。 In an SBFD scenario, a base station can transmit and receive simultaneously on the uplink and downlink, so CLI between terminals can occur. Figure 4 shows an example of CLI between terminals in an SBFD scenario. As shown in Figure 4(a), CLI between terminals can occur when different terminals (e.g., UE#1 and UE#2) communicate with a base station in different directions. In the example of Figure 4(a), UE#1 communicates with a gNB in downlink (DL) communication, and UE#2 communicates with a gNB in the same time resource (e.g., symbol or slot). In this case, CLI from UE#2 to UE#1 can occur between UE#1 and UE#2.
 例えば、図4(a)に示すように、DLとULとが隣接するサブバンド(例えば、subband#0とsubband#1、又は、subband#2とsubband#1)に割り当てられる場合、ULからの不均一な干渉漏れ込み(例えば、non-uniform CLI leakage)によって、DLの受信特性が劣化し得る。図4(b)は、DLとULとが隣接するサブバンド(例えば、subband#0とsubband#1)における不均一なCLI漏れ込みの例を示す。不均一なCLI漏れ込みは、例えば、「general」、「carrier leakage」及び「IQ image」の3つのパートのin-band emissionに分類されてよい。このように、端末間のCLI(CLI漏れ込み)は、周波数領域において不均一な分布(以下、「CLI分布」とも呼ぶ)になり得る。 For example, as shown in FIG. 4(a), when DL and UL are assigned to adjacent subbands (e.g., subband#0 and subband#1, or subband#2 and subband#1), the reception characteristics of DL may be degraded due to non-uniform interference leakage from UL (e.g., non-uniform CLI leakage). FIG. 4(b) shows an example of non-uniform CLI leakage in subbands where DL and UL are adjacent (e.g., subband#0 and subband#1). Non-uniform CLI leakage may be classified into three parts of in-band emission, for example, "general", "carrier leakage", and "IQ image". In this way, CLI (CLI leakage) between terminals may be non-uniformly distributed in the frequency domain (hereinafter also referred to as "CLI distribution").
 同様に、SRS-RSRP又はCLI-RSSIは、Dynamic/flexible TDDシナリオにも有効である。図5は、Dynamic/flexible TDDシナリオにおける端末間のCLIの例を示す。図5(a)に示すように、端末間のCLIは、異なる基地局(例えば、gNB1及びgNB2)が異なる方向で各基地局に接続する端末(例えば、UE#1及びUE#2)と通信する場合に発生し得る。図5(a)の例では、同一時間リソース(例えば、シンボル又はスロット)においてUE#1はgNB1と下りリンク(DL)通信を行い、UE#2はgNB2と上りリンク(UL)通信を行う。この場合、UE#1とUE#2との間において、UE#2からUE#1へのCLIが発生し得る。例えば、図5(a)に示すように、UE#1及びUE#2に対して、同一時間リソースにおいて異なる方向(DLとUL)が割り当てられる場合、ULからの不均一な干渉漏れ込みによって、DLの受信特性が劣化し得る。図5(b)は、Dynamic/flexible TDDシナリオにおける不均一なCLI漏れ込みの例を示す。 Similarly, SRS-RSRP or CLI-RSSI is also effective in a dynamic/flexible TDD scenario. Figure 5 shows an example of CLI between terminals in a dynamic/flexible TDD scenario. As shown in Figure 5(a), CLI between terminals can occur when different base stations (e.g., gNB1 and gNB2) communicate with terminals (e.g., UE#1 and UE#2) connected to each base station in different directions. In the example of Figure 5(a), UE#1 performs downlink (DL) communication with gNB1 and UE#2 performs uplink (UL) communication with gNB2 in the same time resource (e.g., symbol or slot). In this case, CLI from UE#2 to UE#1 can occur between UE#1 and UE#2. For example, as shown in Figure 5(a), when different directions (DL and UL) are assigned to UE#1 and UE#2 in the same time resource, the reception characteristics of DL can be degraded due to uneven interference leakage from UL. Figure 5(b) shows an example of non-uniform CLI leakage in a dynamic/flexible TDD scenario.
 例えば、端末間のCLIは、干渉となる端末の送信電力、又は、干渉を受ける端末と干渉を与える端末との位置関係に依存する。ここで、基地局は、端末の位置を詳細に把握することが困難であるため、基地局のみで端末間のCLIを推定することは困難である。そのため、SRS-RSRP又はCLI-RSSIは、端末によって測定される端末間の干渉の測定値であるので、SBFDシナリオ及びDynamic/flexible TDDシナリオに対して有効である。 For example, the CLI between terminals depends on the transmission power of the interfering terminal, or the positional relationship between the interfered terminal and the interfering terminal. Here, it is difficult for the base station to grasp the detailed location of the terminal, and therefore it is difficult for the base station alone to estimate the CLI between terminals. Therefore, SRS-RSRP or CLI-RSSI are measurement values of interference between terminals measured by the terminal, and are therefore effective for SBFD scenarios and Dynamic/flexible TDD scenarios.
 端末が端末間のCLIを測定し、基地局に報告する場合、報告されるCLIの測定値(又は、観測値)は基地局におけるスケジューリングに有益である。例えば、基地局は、報告されるCLIの測定値が大きい端末同士(例えば、干渉の大きい端末同士)を同じ時間に割り当てないスケジューリングを行うことが可能である。また、例えば、基地局は、報告されるCLIの測定値が小さい端末同士(例えば、干渉の小さい端末同士)を同じ時間に割り当てるスケジューリングを行うことが可能である。 When terminals measure the CLI between terminals and report it to a base station, the reported CLI measurement value (or observed value) is useful for scheduling in the base station. For example, the base station can perform scheduling that does not assign terminals with large reported CLI measurement values (e.g., terminals with large interference) to the same time. Also, for example, the base station can perform scheduling that does not assign terminals with small reported CLI measurement values (e.g., terminals with small interference) to the same time.
 ここで、端末間の不均一なCLI分布を報告する方法については十分に検討されていない。本開示の非限定的な一実施例では、端末の不均一なCLI分布を報告する方法について説明する。 Here, methods for reporting uneven CLI distribution among terminals have not been fully considered. In one non-limiting example of the present disclosure, a method for reporting uneven CLI distribution among terminals is described.
 [CSIレポート及びReport fieldについて]
 端末が報告する測定値を構成する「Report field」の例について説明する。
[About CSI reports and report fields]
An example of the "Report field" constituting the measurement value reported by the terminal will be described below.
 例えば、Release 16ではレイヤ3ベースの端末間のCLI測定及び報告がサポートされるが、レイヤ1(L1)又はレイヤ2(L2:layer 2)ベースの端末間のCLI測定及び報告も検討されている。ここで、既存のレイヤ1(L1)ベースのレポート方法として、Channel State Information(CSI) reportがある。 For example, Release 16 supports Layer 3-based terminal-to-terminal CLI measurement and reporting, but Layer 1 (L1) or Layer 2 (L2)-based terminal-to-terminal CLI measurement and reporting is also under consideration. Here, an existing Layer 1 (L1)-based reporting method is the Channel State Information (CSI) report.
 CSI reportでは、例えば、端末は、基地局から端末に送信されるCSI-Reference Signal(CSI-RS)、及び、SSB(Synchronization Signal Block)の少なくとも一つを用いて、チャネル品質情報(例えば、CQI:Channel Quality Information)、送信ランク、及び、L1-RSRPといった値を測定し、測定値を含むレポートを基地局に報告する。 In a CSI report, for example, a terminal measures values such as channel quality information (e.g., CQI: Channel Quality Information), transmission rank, and L1-RSRP using at least one of the CSI-Reference Signal (CSI-RS) and Synchronization Signal Block (SSB) transmitted from the base station to the terminal, and reports a report including the measured values to the base station.
 CSI reportでは、測定する端末に対して、レポートの時間領域における動作(例えば、周期的、準周期的又は非周期的に報告する動作)、報告する値を設定するレポート構成、及び、測定するリソース(例えば、測定リソース)の情報が含まれるリソース構成が、基地局によって設定される。 In a CSI report, the base station configures the time domain behavior of the report (e.g., reporting periodically, quasi-periodically, or aperiodically), the report configuration that sets the values to be reported, and the resource configuration that includes information on the resources to be measured (e.g., measurement resources) for the terminal that is making the measurements.
 端末は、例えば、測定値を量子化し、Report fieldに構成(または、格納、配置)する。報告する複数のレポートを識別するレポート番号(report number)には、それぞれReport fieldが紐づけられている。例えば、上りリンク制御情報(UCI:Uplink Control Information)ビット列は、端末が報告する複数のレポート番号に対応する。 The terminal, for example, quantizes the measurement value and configures (or stores or places) it in the Report field. Each report number that identifies multiple reports to be reported is linked to a Report field. For example, an Uplink Control Information (UCI) bit string corresponds to multiple report numbers reported by the terminal.
 図6は、L1-RSRPのReport fieldの構成例を示す。Report fieldは、測定するリソースを識別する「リソースID(例えば、Resource (CSI-RS or SSB) ID)」、測定するリソースに対応する「量子化された測定値(例えば、quantized RSRP又はquantized differential RSRP)」、及び、測定するリソースに対応するCapabilityを識別する「Capability Index」を含んでよい。図6に示す例では、各Report fieldにおいて報告される測定値(又は、リソース)の数は最大4つであり、Report fieldにおいて降順に配置されてよい。また、量子化された測定値において、量子化差分RSRP(quantized differential RSRP)は、各リソースのRSRPと、最大のRSRPとの差分を量子化した値を示す。例えば、L1-RSRPの測定値の量子化ビット数として、量子化RSRPに対して7ビット、量子化差分RSRPに対して4ビットが割り当てられてよい。 Figure 6 shows an example of the configuration of the Report field of L1-RSRP. The Report field may include a "resource ID (e.g., Resource (CSI-RS or SSB) ID)" that identifies the resource to be measured, a "quantized measurement value (e.g., quantized RSRP or quantized differential RSRP)" that corresponds to the resource to be measured, and a "Capability Index" that identifies the capability corresponding to the resource to be measured. In the example shown in Figure 6, the number of measurements (or resources) reported in each Report field is up to four, and they may be arranged in descending order in the Report field. In addition, in the quantized measurement value, the quantized differential RSRP indicates a quantized value of the difference between the RSRP of each resource and the maximum RSRP. For example, 7 bits may be assigned to the quantized RSRP and 4 bits to the quantized differential RSRP as the quantization bit number of the L1-RSRP measurement value.
 [不均一なCLI漏れ込み分布を考慮したCLI-RSSI測定及び報告方法]
 以下では、SBFDシナリオを例として、不均一なCLI漏れ込み分布を考慮したCLI-RSSI測定及び報告について説明する。なお、以下に説明する内容は、Dynamic/flexible TDDシナリオに対しても同様に適用することが可能である。
[CLI-RSSI measurement and reporting method considering non-uniform CLI leakage distribution]
In the following, we will explain CLI-RSSI measurement and reporting considering non-uniform CLI leakage distribution using the SBFD scenario as an example. Note that the contents explained below can be similarly applied to dynamic/flexible TDD scenarios.
 図7は、本開示の非限定的な一実施例に係るCLI-RSSIの測定及び報告の例を示す図である。 FIG. 7 illustrates an example of measuring and reporting CLI-RSSI according to one non-limiting embodiment of the present disclosure.
 本開示の非限定的な一実施例では、端末は、周波数領域における測定リソース(例えば、CLI測定帯域、measurement bandwidthとも呼ぶ)を分割して得られる複数の測定ブロック(measurement block)を用いてCLI-RSSI測定及び報告を行う。 In one non-limiting embodiment of the present disclosure, the terminal performs CLI-RSSI measurement and reporting using multiple measurement blocks obtained by dividing a measurement resource in the frequency domain (e.g., a CLI measurement band, also referred to as measurement bandwidth).
 例えば、図7(a)は、測定ブロックを用いない既存のCLI-RSSI測定及び報告(例えば、Release 16においてサポートされるCLI報告及び測定)の例を示し、図7(b)は、本開示の非限定的な一実施例に係る測定ブロックを用いる場合のCLI-RSSI測定及び報告の例を示し、図7(c)は、不均一なCLI漏れ込み(又は、CLI分布)と測定ブロックとの関係の例を示す。 For example, FIG. 7(a) shows an example of existing CLI-RSSI measurement and reporting without using measurement blocks (e.g., CLI reporting and measurement supported in Release 16), FIG. 7(b) shows an example of CLI-RSSI measurement and reporting when using measurement blocks according to one non-limiting embodiment of the present disclosure, and FIG. 7(c) shows an example of non-uniform CLI spillover (or CLI distribution) and its relationship to measurement blocks.
 図7(a)に示すような既存のCLI-RSSI測定及び報告では、周波数方向のCLI測定帯域(例えば、サブバンド単位の領域)に一つのCLI-RSSIが測定され、基地局へ報告される。そのため、図7(a)に示すCLI-RSSI測定及び報告では、例えば、図7(c)に示すようなCLI測定帯域において不均一なCLI漏れ込みの詳細な分布を基地局に報告することが困難である。 In the existing CLI-RSSI measurement and reporting as shown in Figure 7(a), one CLI-RSSI is measured in the CLI measurement band in the frequency direction (e.g., a subband area) and reported to the base station. Therefore, in the CLI-RSSI measurement and reporting as shown in Figure 7(a), it is difficult to report to the base station, for example, the detailed distribution of non-uniform CLI leakage in the CLI measurement band as shown in Figure 7(c).
 これに対して、図7(b)及び図7(c)に示すように、複数の測定ブロックを用いたCLI-RSSI測定及び報告では、基地局は、例えば、CLI測定帯域を周波数方向に複数に分割した複数の測定ブロックを、端末に設定する。端末は、例えば、測定ブロック毎のCLI-RSSIを測定する。そして、端末は、例えば、測定ブロック毎のCLI-RSSIに基づいて、CLI-RSSIレポートを決定し、基地局へ報告する。 In contrast, as shown in Figures 7(b) and 7(c), in CLI-RSSI measurement and reporting using multiple measurement blocks, the base station, for example, sets multiple measurement blocks in the terminal, which are obtained by dividing the CLI measurement band into multiple blocks in the frequency direction. The terminal, for example, measures the CLI-RSSI for each measurement block. Then, the terminal, for example, determines a CLI-RSSI report based on the CLI-RSSI for each measurement block, and reports it to the base station.
 これにより、CLI測定帯域内の各測定ブロックに対応する帯域のCLI測定及び報告が可能となる。例えば、図7(c)において、或る測定ブロックにおいて、general in-band emissionに関するCLI-RSSIが報告され、他の測定ブロックにおいて、carrier leakage又はIQ imageに関するCLI-RSSIが報告されることが可能となる。よって、端末は、基地局に対して、不均一なCLI漏れ込みの詳細な分布を報告できる。基地局は、例えば、不均一なCLI漏れ込みの分布に応じて、modulation and coding scheme(MCS)又はリソース割当(例えば、DL割り当て)といったスケジューリングを行うことができる。 This enables CLI measurement and reporting of bands corresponding to each measurement block within the CLI measurement band. For example, in FIG. 7(c), a CLI-RSSI relating to general in-band emission can be reported in one measurement block, and a CLI-RSSI relating to carrier leakage or IQ image can be reported in another measurement block. Thus, the terminal can report a detailed distribution of non-uniform CLI leakage to the base station. The base station can perform scheduling, such as modulation and coding scheme (MCS) or resource allocation (e.g., DL allocation), depending on the distribution of non-uniform CLI leakage.
 なお、測定ブロックを用いたCLI-RSSIレポートにおける、UCIビット列の生成機能におけるReport fieldの設定例については後述する。 An example of the Report field settings for the UCI bit string generation function in a CLI-RSSI report using a measurement block will be described later.
 [通信システムの概要]
 本開示の一態様に係る通信システムは、例えば、図8及び図10に示す基地局100(例えば、gNB)、及び、図9及び図11に示す端末200(例えば、UE)を備えてよい。基地局100及び端末200は、それぞれ、通信システムにおいて複数台存在してもよい。
[Communication System Overview]
A communication system according to an embodiment of the present disclosure may include, for example, a base station 100 (e.g., gNB) shown in Fig. 8 and Fig. 10, and a terminal 200 (e.g., UE) shown in Fig. 9 and Fig. 11. A plurality of base stations 100 and a plurality of terminals 200 may exist in the communication system.
 図8は本開示の一態様に係る基地局100の一部の構成例を示すブロック図である。図8に示す基地局100において、受信部(例えば、受信回路に対応)は、周波数領域における測定リソースを分割した複数の測定ブロック(例えば、ブロックに対応)毎のCLI-RSSI値(例えば、受信品質の測定値に対応)に基づくレポート情報(例えば、報告情報に対応)を受信する。制御部(例えば、制御回路に対応)は、受信したレポート情報に基づいて、複数の測定ブロック毎のCLI-RSSI値を推定する。 FIG. 8 is a block diagram showing an example configuration of a portion of a base station 100 according to one embodiment of the present disclosure. In the base station 100 shown in FIG. 8, a receiving unit (e.g., corresponding to a receiving circuit) receives report information (e.g., corresponding to report information) based on a CLI-RSSI value (e.g., corresponding to a measurement value of reception quality) for each of a plurality of measurement blocks (e.g., corresponding to blocks) into which a measurement resource in the frequency domain is divided. A control unit (e.g., corresponding to a control circuit) estimates a CLI-RSSI value for each of the plurality of measurement blocks based on the received report information.
 図9は本開示の一態様に係る端末200の一部の構成例を示すブロック図である。図9に示す端末200において、制御部(例えば、制御回路に対応)は、周波数領域における測定リソースを分割した複数の測定ブロック毎のCLI-RSSI値(例えば、受信品質の測定値に対応)に基づいて、レポート情報(例えば、報告情報に対応)を決定する。送信部(例えば、送信回路に対応)は、レポート情報を送信する。 FIG. 9 is a block diagram showing an example configuration of a portion of a terminal 200 according to one aspect of the present disclosure. In the terminal 200 shown in FIG. 9, a control unit (e.g., corresponding to a control circuit) determines report information (e.g., corresponding to report information) based on CLI-RSSI values (e.g., corresponding to measured values of reception quality) for each of a plurality of measurement blocks obtained by dividing a measurement resource in the frequency domain. A transmission unit (e.g., corresponding to a transmission circuit) transmits the report information.
 [基地局の構成]
 図10は、本開示の一態様に係る基地局100の構成例を示すブロック図である。図10において、基地局100は、受信部101と、復調・復号部102と、CLI分布推定部103と、スケジューリング部104と、制御情報保持部105と、データ・制御情報生成部106と、符号化・変調部107と、送信部108と、を有する。
[Base station configuration]
Fig. 10 is a block diagram showing a configuration example of a base station 100 according to an embodiment of the present disclosure. In Fig. 10, the base station 100 includes a receiving unit 101, a demodulating/decoding unit 102, a CLI distribution estimating unit 103, a scheduling unit 104, a control information holding unit 105, a data/control information generating unit 106, an encoding/modulating unit 107, and a transmitting unit 108.
 なお、例えば、復調・復号部102、CLI分布推定部103、スケジューリング部104、制御情報保持部105、データ・制御情報生成部106、及び、符号化・変調部107の少なくとも一つは、図8に示す制御部に含まれてよく、受信部101は、図8に示す受信部に含まれてよい。 Note that, for example, at least one of the demodulation/decoding unit 102, the CLI distribution estimation unit 103, the scheduling unit 104, the control information storage unit 105, the data/control information generation unit 106, and the encoding/modulation unit 107 may be included in the control unit shown in FIG. 8, and the receiving unit 101 may be included in the receiving unit shown in FIG. 8.
 受信部101は、例えば、アンテナを介して受信した受信信号に対してダウンコンバート又はA/D変換といった受信処理を行い、受信処理後の受信信号を復調・復号部102へ出力する。 The receiving unit 101 performs reception processing, such as down-conversion or A/D conversion, on a received signal received via an antenna, and outputs the received signal after reception processing to the demodulation and decoding unit 102.
 復調・復号部102は、例えば、受信部101から入力される受信信号を復調及び復号し、復号結果をスケジューリング部104へ出力する。また、復調・復号部102は、例えば、復号結果に、CLI-RSSIのレポート情報(又は、CLI-RSSIレポートとも呼ぶ)が含まれる場合、レポート情報をCLI分布推定部103へ出力する。 The demodulation and decoding unit 102, for example, demodulates and decodes the received signal input from the receiving unit 101, and outputs the decoded result to the scheduling unit 104. In addition, for example, when the decoded result includes CLI-RSSI report information (also called a CLI-RSSI report), the demodulation and decoding unit 102 outputs the report information to the CLI distribution estimation unit 103.
 CLI分布推定部103は、例えば、復調・復号部102から入力されるCLI-RSSIのレポート情報、及び、制御情報保持部105から入力される制御情報に基づいて、周波数領域(例えば、CLI測定帯域)におけるCLI分布を推定する。CLI分布推定部103は、推定したCLI分布に関する情報を、スケジューリング部104へ出力する。 The CLI distribution estimation unit 103 estimates the CLI distribution in the frequency domain (e.g., the CLI measurement band) based on, for example, the CLI-RSSI report information input from the demodulation and decoding unit 102 and the control information input from the control information storage unit 105. The CLI distribution estimation unit 103 outputs information on the estimated CLI distribution to the scheduling unit 104.
 スケジューリング部104は、例えば、端末200に対するスケジューリングを行ってよい。スケジューリング部104は、例えば、復調・復号部102から入力される復号結果、CLI分布推定部103から入力されるCLI分布に関する情報、及び、制御情報保持部105から入力される制御情報の少なくとも一つに基づいて、各端末200の送受信のスケジューリングを行い、データ・制御情報生成部106に対して、データ及び制御情報の少なくとも一つの生成指示を行う。 The scheduling unit 104 may, for example, perform scheduling for the terminals 200. The scheduling unit 104 schedules transmission and reception for each terminal 200 based on at least one of the decoding results input from the demodulation and decoding unit 102, the information on the CLI distribution input from the CLI distribution estimation unit 103, and the control information input from the control information storage unit 105, and instructs the data and control information generation unit 106 to generate at least one of data and control information.
 制御情報保持部105は、例えば、各端末200に設定した制御情報を保持する。制御情報には、例えば、CLI-RSSIリソース(例えば、測定リソース)の構成(例えば、端末200に割り当てられるCLI-RSSIリソースの情報)、CLI-RSSIレポートの構成、又は、CLI-RSSIの過去の測定値といった情報が含まれてよい。制御情報保持部105は、例えば、保持した情報を必要に応じて、基地局100の各構成部(例えば、CLI分布推定部103及びスケジューリング部104)に出力してよい。 The control information holding unit 105 holds, for example, control information set in each terminal 200. The control information may include, for example, information such as the configuration of CLI-RSSI resources (for example, measurement resources) (for example, information on CLI-RSSI resources allocated to the terminal 200), the configuration of a CLI-RSSI report, or past measurement values of CLI-RSSI. The control information holding unit 105 may output the held information to each component of the base station 100 (for example, the CLI distribution estimation unit 103 and the scheduling unit 104) as necessary.
 データ・制御情報生成部106は、例えば、スケジューリング部104からの指示に従って、データ及び制御情報の少なくとも一つを生成し、生成したデータ又は制御情報を含む信号を符号化・変調部107に出力する。なお、生成されるデータ及び制御情報には、例えば、上位レイヤのシグナリング情報、及び、下りリンク制御情報の少なくとも一つが含まれてよい。 The data and control information generating unit 106 generates at least one of data and control information, for example, according to instructions from the scheduling unit 104, and outputs a signal including the generated data or control information to the coding and modulation unit 107. Note that the generated data and control information may include at least one of upper layer signaling information and downlink control information, for example.
 符号化・変調部107は、例えば、データ・制御情報生成部106から入力される信号を符号化及び変調し、変調後の信号を送信部108に出力する。 The encoding and modulation unit 107, for example, encodes and modulates the signal input from the data and control information generation unit 106, and outputs the modulated signal to the transmission unit 108.
 送信部108は、例えば、符号化・変調部107から入力される信号に対してD/A変換、アップコンバート又は増幅等の送信処理を行い、送信処理により得られた無線信号をアンテナから端末200へ送信する。 The transmitting unit 108 performs transmission processing such as D/A conversion, up-conversion, or amplification on the signal input from the encoding/modulation unit 107, and transmits the radio signal obtained by the transmission processing from the antenna to the terminal 200.
 [端末の構成]
 図11は、本開示の一態様に係る端末200の構成例を示すブロック図である。図11において、端末200は、受信部201と、復調・復号部202と、CLI測定部203と、送信制御部204と、制御情報保持部205と、データ・制御情報生成部206と、符号化・変調部207と、送信部208と、を有する。
[Device configuration]
Fig. 11 is a block diagram showing a configuration example of a terminal 200 according to an embodiment of the present disclosure. In Fig. 11, the terminal 200 includes a receiving unit 201, a demodulating and decoding unit 202, a CLI measuring unit 203, a transmission control unit 204, a control information holding unit 205, a data and control information generating unit 206, an encoding and modulating unit 207, and a transmitting unit 208.
 なお、例えば、復調・復号部202、CLI測定部203、送信制御部204、制御情報保持部205、データ・制御情報生成部206、及び、符号化・変調部207の少なくとも一つは、図9に示す制御部に含まれてよく、送信部208は、図9に示す送信部に含まれてよい。 Note that, for example, at least one of the demodulation/decoding unit 202, CLI measurement unit 203, transmission control unit 204, control information storage unit 205, data/control information generation unit 206, and encoding/modulation unit 207 may be included in the control unit shown in FIG. 9, and the transmission unit 208 may be included in the transmission unit shown in FIG. 9.
 受信部201は、例えば、アンテナを介して受信した受信信号に対してダウンコンバート又はA/D変換といった受信処理を行い、受信処理後の受信信号を復調・復号部202へ出力する。 The receiving unit 201 performs reception processing, such as down-conversion or A/D conversion, on a received signal received via an antenna, and outputs the received signal after reception processing to the demodulation and decoding unit 202.
 復調・復号部202は、例えば、受信部201から入力される受信信号を復調及び復号し、復号結果を送信制御部204へ出力する。復号結果には、例えば、上位レイヤのシグナリング情報、及び、下り制御情報が含まれてよい。また、復調・復号部202は、例えば、復号結果に、CLI-RSSIレポートに関する情報(例えば、測定するCLI-RSSIのリソース構成又はレポート構成に関する情報)が含まれる場合、CLI測定部203へ出力する。 The demodulation/decoding unit 202, for example, demodulates and decodes the received signal input from the receiving unit 201, and outputs the decoded result to the transmission control unit 204. The decoded result may include, for example, upper layer signaling information and downlink control information. In addition, when the decoded result includes information on the CLI-RSSI report (for example, information on the resource configuration or report configuration of the CLI-RSSI to be measured), the demodulation/decoding unit 202 outputs the decoded result to the CLI measurement unit 203.
 CLI測定部203は、制御情報保持部205から入力される制御情報(例えば、CLI-RSSIレポートのリソース構成又はレポート構成に関する情報)、及び、復調・復号部202から入力されるCLI-RSSIリソース(測定リソース)に関する情報に基づいて、CLI-RSSIを測定する。例えば、CLI測定部203は、測定ブロック毎にCLI-RSSIを測定してもよい。CLI測定部203は、例えば、量子化した測定値を送信制御部204へ出力する。 The CLI measurement unit 203 measures the CLI-RSSI based on control information (e.g., information on the resource configuration or report configuration of the CLI-RSSI report) input from the control information storage unit 205 and information on the CLI-RSSI resource (measurement resource) input from the demodulation and decoding unit 202. For example, the CLI measurement unit 203 may measure the CLI-RSSI for each measurement block. The CLI measurement unit 203 outputs, for example, a quantized measurement value to the transmission control unit 204.
 送信制御部204は、復調・復号部202から入力される復号結果に含まれるシグナリング情報(例えば、CLI-RSSIレポートのリソース構成又はレポート構成に関する情報)を制御情報保持部205へ出力する。また、送信制御部204は、例えば、制御情報保持部205から入力される制御情報(例えば、CLI-RSSIレポートのリソース構成又はレポート構成に関する情報)、又は、復調・復号部202から入力される復号結果(例えば、下りリンク制御情報)に基づいて、データ・制御情報生成部206に対して、データ及び制御情報の少なくとも一つの生成指示を行ってよい。また、送信制御部204は、CLI測定部203から入力される情報に基づいて、データ・制御情報生成部206に対して、CLI-RSSIの測定値を出力する。 The transmission control unit 204 outputs signaling information (e.g., information on the resource configuration or report configuration of the CLI-RSSI report) included in the decoding result input from the demodulation and decoding unit 202 to the control information holding unit 205. Furthermore, the transmission control unit 204 may instruct the data and control information generating unit 206 to generate at least one of data and control information, for example, based on the control information (e.g., information on the resource configuration or report configuration of the CLI-RSSI report) input from the control information holding unit 205 or the decoding result input from the demodulation and decoding unit 202 (e.g., downlink control information). Furthermore, the transmission control unit 204 outputs the measured value of CLI-RSSI to the data and control information generating unit 206 based on the information input from the CLI measurement unit 203.
 制御情報保持部205は、例えば、送信制御部204から入力される制御情報(例えば、CLI-RSSIレポートのリソース構成又はレポート構成に関する情報)を保持し、保持した情報を、必要に応じて、各構成部(例えば、CLI測定部203及び送信制御部204)に出力する。 The control information holding unit 205 holds, for example, control information (for example, information related to the resource configuration or report configuration of the CLI-RSSI report) input from the transmission control unit 204, and outputs the held information to each component (for example, the CLI measurement unit 203 and the transmission control unit 204) as necessary.
 データ・制御情報生成部206は、例えば、送信制御部204からの指示に従って、データ又は制御情報を生成する。例えば、データ・制御情報生成部206は、CLI-RSSIの測定値に基づいて、CLI-RSSIレポートを生成してもよい(例については後述する)。データ・制御情報生成部206は、生成したデータ又は制御情報を含む信号を符号化・変調部207に出力する。 The data and control information generating unit 206 generates data or control information, for example, according to instructions from the transmission control unit 204. For example, the data and control information generating unit 206 may generate a CLI-RSSI report based on the measured value of CLI-RSSI (an example will be described later). The data and control information generating unit 206 outputs a signal including the generated data or control information to the encoding and modulation unit 207.
 符号化・変調部207は、例えば、データ・制御情報生成部206から入力される信号を符号化及び変調し、変調後の送信信号を送信部208に出力する。 The encoding and modulation unit 207, for example, encodes and modulates the signal input from the data and control information generation unit 206, and outputs the modulated transmission signal to the transmission unit 208.
 送信部208は、例えば、符号化・変調部207から入力される信号に対してD/A変換、アップコンバート又は増幅等の送信処理を行い、送信処理により得られた無線信号をアンテナから基地局100へ送信する。 The transmitting unit 208 performs transmission processing such as D/A conversion, up-conversion, or amplification on the signal input from the encoding/modulation unit 207, and transmits the radio signal obtained by the transmission processing from the antenna to the base station 100.
 [基地局100及び端末200の動作]
 以上の構成を有する基地局100及び端末200における動作例について説明する。
[Operations of base station 100 and terminal 200]
An example of the operation of base station 100 and terminal 200 having the above configuration will be described.
 図12は、基地局100及び端末200の動作例を示すシーケンス図である。 FIG. 12 is a sequence diagram showing an example of the operation of the base station 100 and the terminal 200.
 図12において、基地局100は、CLI-RSSI測定に関する設定(コンフィグレーション)を決定する(S101)。基地局100は、決定したCLI-RSSI測定に関する設定情報を含む上位レイヤのシグナリング情報を、端末200へ送信する(S102)。 In FIG. 12, the base station 100 determines the settings (configuration) related to the CLI-RSSI measurement (S101). The base station 100 transmits upper layer signaling information including the determined setting information related to the CLI-RSSI measurement to the terminal 200 (S102).
 端末200は、基地局100からの設定情報に基づいて、CLI-RSSIレポートの設定(例えば、リソース構成及びレポート構成の設定)を行う(S103)。 The terminal 200 configures the CLI-RSSI report (e.g., configures the resource configuration and the report configuration) based on the configuration information from the base station 100 (S103).
 端末200は、設定されたCLI-RSSIのリソース構成(例えば、測定ブロックに関する情報を含む)に基づいて、CLI-RSSIを測定する(S104)。例えば、端末200は、CLI-RSSIの測定リソース内において、CLI-RSSIを測定ブロック毎に測定してもよい。 The terminal 200 measures the CLI-RSSI based on the configured CLI-RSSI resource configuration (e.g., including information about the measurement block) (S104). For example, the terminal 200 may measure the CLI-RSSI for each measurement block within the CLI-RSSI measurement resource.
 端末200は、設定されたCLI-RSSIのレポート構成に基づいて、CLI-RSSIのレポートフィールド(例えば、UCIビット列)を生成し(S105)、CLI-RSSIのレポートを基地局100へ送信する(S106)。 The terminal 200 generates a CLI-RSSI report field (e.g., a UCI bit string) based on the configured CLI-RSSI report configuration (S105) and transmits the CLI-RSSI report to the base station 100 (S106).
 基地局100は、例えば、端末200から送信されるCLI-RSSIのレポートに基づいて、端末200に対するスケジューリングを行ってよい(図示せず)。 The base station 100 may perform scheduling for the terminal 200 based on, for example, a CLI-RSSI report transmitted from the terminal 200 (not shown).
 以上、基地局100及び端末200における動作例について説明した。 The above describes an example of operation of the base station 100 and the terminal 200.
 次に、本開示の非限定的な一実施例に係るCLI-RSSIレポート(例えば、報告方法又は構成方法)の例について説明する。 Next, an example of a CLI-RSSI report (e.g., a reporting method or configuration method) according to one non-limiting embodiment of the present disclosure is described.
 [CSIレポートベースのCLI-RSSIレポート]
 一例として、SBFDシナリオにおけるCSIレポートベースのCLI-RSSIレポートについて説明する。なお、以下に説明する内容は、Dynamic/flexible TDDシナリオに対しても同様に適用可能である。
[CLI-RSSI report based on CSI report]
As an example, a CLI-RSSI report based on a CSI report in an SBFD scenario will be described. Note that the following description is also applicable to a dynamic/flexible TDD scenario.
 図13は、CSIレポートベースのCLI-RSSIレポートの一例を示す。 Figure 13 shows an example of a CLI-RSSI report based on a CSI report.
 図13(a)は、端末200(例えば、UE#1及びUE#2)と基地局100(例えば、gNB)との状況を表し、図13(b)は、SBFDにおけるリソース割り当ての例を示す。図13(b)において、subband#0及びsubband#2は下りリンク(DL)サブバンドであり、subband#1は上りリンク(UL)サブバンドである。 FIG. 13(a) shows the status of terminal 200 (e.g., UE#1 and UE#2) and base station 100 (e.g., gNB), and FIG. 13(b) shows an example of resource allocation in SBFD. In FIG. 13(b), subband#0 and subband#2 are downlink (DL) subbands, and subband#1 is an uplink (UL) subband.
 図13の例では、UE#2がsubband#1においてUL信号を送信する。また、UE#1は、端末間のCLI(例えば、CLI-RSSI)を測定する。例えば、UE#1は、ULサブバンド(subband#1)内のUE#2のUL送信による、DLサブバンド(subband#0)内のCLI漏れ込みをCLI-RSSIにより測定してよい。 In the example of FIG. 13, UE#2 transmits a UL signal in subband#1. UE#1 also measures the CLI (e.g., CLI-RSSI) between the terminals. For example, UE#1 may measure the CLI leakage in the DL subband (subband#0) due to UL transmission of UE#2 in the UL subband (subband#1) by CLI-RSSI.
 図13(a)に示すように、UE#1は、CLI-RSSIの測定結果に基づくCLI-RSSIレポートを基地局に報告する。例えば、図13(b)に示すように、UE#1は、subband#0(DLサブバンド)において測定したCLI-RSSIの測定結果に基づくCLI-RSSIレポートを、subband#1(ULサブバンド)において基地局100へ報告してよい。 As shown in FIG. 13(a), UE#1 reports a CLI-RSSI report based on the CLI-RSSI measurement results to the base station. For example, as shown in FIG. 13(b), UE#1 may report a CLI-RSSI report based on the CLI-RSSI measurement results measured in subband#0 (DL subband) to base station 100 in subband#1 (UL subband).
 CSIレポートベースのCLI-RSSIレポートでは、CLI-RSSIレポートにおけるレポート構成及びリソース構成をそのまま再利用可能である。例えば、レポート構成は、CLI-RSSIを測定する端末200のレポートに関する設定であり、リソース構成は、測定するCLI-RSSIリソース(例えば、測定するsymbol又はリソースブロック)に関する設定である。 In a CLI-RSSI report based on a CSI report, the report configuration and resource configuration in the CLI-RSSI report can be reused as is. For example, the report configuration is a setting related to the report of the terminal 200 that measures the CLI-RSSI, and the resource configuration is a setting related to the CLI-RSSI resource to be measured (e.g., the symbol or resource block to be measured).
 その一方で、CLI-RSSIレポートにおける上りリンク制御情報(UCI)ビット列の生成機能のReport fieldに関しては、変更が必要である。例えば、不均一なCLI漏れ込み分布を考慮したReport fieldは、基地局100にスケジューリングにとって有益なレポートとなり得る。 On the other hand, the report field of the uplink control information (UCI) bit string generation function in the CLI-RSSI report needs to be modified. For example, a report field that takes into account uneven CLI leakage distribution can be a useful report for scheduling to the base station 100.
 [Report fieldの構成方法]
 次に、端末200(例えば、CLI測定部203及び送信制御部204)におけるReport fieldの構成方法の例について説明する。また、基地局100(例えば、スケジューリング部104)の動作例について説明する。
[How to configure the report field]
Next, an example of a method for configuring a report field in terminal 200 (for example, CLI measurement section 203 and transmission control section 204) will be described. Also, an example of the operation of base station 100 (for example, scheduling section 104) will be described.
 以下、Report fieldの構成方法1~3について説明する。  Below, report field configuration methods 1 to 3 are explained.
 <構成方法1>
 構成方法1では、Report fieldは、CLI測定帯域を分割した複数(例えば、k個)の測定ブロックのうち規定数(例えば、m個)の測定ブロックのCLI-RSSI(測定値)によって構成されてよい。例えば、Report fieldは、上位(又は、下位)のm個の測定ブロックのCLI-RSSIで構成されてよい。
<Configuration method 1>
In configuration method 1, the Report field may be configured by the CLI-RSSI (measured values) of a prescribed number (e.g., m) of measurement blocks among a plurality (e.g., k) of measurement blocks obtained by dividing the CLI measurement band. For example, the Report field may be configured by the CLI-RSSI of the upper (or lower) m measurement blocks.
 図14は、構成方法1のReport fieldの構成例を示す。 Figure 14 shows an example of the Report field configuration for configuration method 1.
 端末200は、例えば、複数(例えば、k個)の測定ブロック毎のCLI-RSSIを測定し、降順(または昇順)に並べたm個のCLI-RSSIを量子化し、Report fieldに構成する。Report fieldには、規定数m個の測定ブロックのCLI-RSSI(例えば、量子化値)が降順又は昇順に格納されてよい。 The terminal 200, for example, measures the CLI-RSSI for each of multiple (e.g., k) measurement blocks, quantizes the m CLI-RSSIs arranged in descending (or ascending) order, and configures them in the Report field. The Report field may store the CLI-RSSIs (e.g., quantized values) of a specified number m of measurement blocks in descending or ascending order.
 なお、CLI-RSSIは、降順又は昇順に並べなくてもよく、上位(又は、下位)m個のCLI-RSSIを、周波数方向における測定ブロックの順に並べてReport fieldに格納されてもよい。 In addition, the CLI-RSSI does not have to be sorted in ascending or descending order, and the top (or bottom) m CLI-RSSIs may be sorted in the order of the measurement blocks in the frequency direction and stored in the Report field.
 例えば、CLI-RSSIレポートによって上位m個の測定ブロックのCLI-RSSI値を報告する場合、干渉が強い上位m個のCLI-RSSI値、及び、各CLI-RSSI値に対応する測定ブロックを降順でReport fieldに構成してよい。 For example, if the CLI-RSSI report reports the CLI-RSSI values of the top m measurement blocks, the top m CLI-RSSI values with the strongest interference and the measurement blocks corresponding to each CLI-RSSI value may be configured in descending order in the Report field.
 また、例えば、CLI-RSSIレポートによって下位m個の測定ブロックのCLI-RSSI値を報告する場合、干渉が弱い下位m個のCLI-RSSI値、及び、各CLI-RSSI値に対応する測定ブロックを昇順でReport fieldに構成してよい。下位m個のCLI-RSSI値を報告する場合は、少なくともDL/ULサブバンド又はDL/ULのエッジに対応する測定ブロックのCLI値をReport fieldに含むこともできる。 Also, for example, when reporting the CLI-RSSI values of the bottom m measurement blocks using a CLI-RSSI report, the bottom m CLI-RSSI values with weak interference and the measurement blocks corresponding to each CLI-RSSI value may be arranged in ascending order in the Report field. When reporting the bottom m CLI-RSSI values, the Report field may also include at least the CLI values of the measurement blocks corresponding to the DL/UL subbands or the edges of the DL/UL.
 また、量子化は、例えば、n1ビットの量子化テーブル(n1:レンジと刻み幅とから得られるテーブルのビット数)、及び、n2ビットの量子化差分テーブル(n2:レンジと刻み幅とから得られるテーブルのビット数)を定義してよい。端末200は、例えば、量子化テーブル及び量子化差分テーブルを用いて、測定値から量子化値に変換してよい。 Quantization may also define, for example, an n1-bit quantization table (n1: the number of bits in the table obtained from the range and step size) and an n2-bit quantization difference table (n2: the number of bits in the table obtained from the range and step size). The terminal 200 may convert from the measurement value to the quantization value, for example, using the quantization table and the quantization difference table.
 また、Report fieldにおいて報告されるCLI-RSSIの数を示す「m」は、仕様書(例えば、規格)において定義されてもよく、上位レイヤのシグナリング(例えば、Radio Resource Control(RRC)シグナリング)によって端末200に設定されてもよく、下りリンク制御情報(例えば、downlink control information(DCI))によって端末200に設定(又は、通知)されてもよい。 Furthermore, "m", which indicates the number of CLI-RSSIs reported in the Report field, may be defined in a specification (e.g., a standard), may be set in the terminal 200 by higher layer signaling (e.g., Radio Resource Control (RRC) signaling), or may be set (or notified) to the terminal 200 by downlink control information (e.g., downlink control information (DCI)).
 また、mは、例えば、基地局100に報告する上りリンク制御情報(UCI)ビットのペイロードサイズ「n」による関数によって定義されてもよい。また、mとnとは、例えば、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)及び上り制御チャネル(PUCCH:Physical Uplink Control Channel)の何れを送信に用いるかによって異なる場合もある。 In addition, m may be defined, for example, as a function of the payload size "n" of the uplink control information (UCI) bits reported to the base station 100. In addition, m and n may differ depending on, for example, whether the uplink shared channel (PUSCH: Physical Uplink Shared Channel) or the uplink control channel (PUCCH: Physical Uplink Control Channel) is used for transmission.
 また、構成方法1のReport fieldには、複数の測定ブロック毎のCLI-RSSI値の平均値(例えば、平均CLI-RSSI値)が格納されてもよい。平均CLI-RSSI値は、例えば、Report fieldに格納されるm個のCLI-RSSIと異なる残りの測定ブロックのCLI-RSSI値の平均値でもよく、全ての測定ブロックのCLI-RSSI値の平均値でもよく、上位又は下位のX個のCLI-RSSI値の平均値から計算されてもよい(Xはmよりも大きい)。 Furthermore, the Report field of configuration method 1 may store an average value of the CLI-RSSI values for each of multiple measurement blocks (e.g., an average CLI-RSSI value). The average CLI-RSSI value may be, for example, the average value of the CLI-RSSI values of the remaining measurement blocks that are different from the m CLI-RSSIs stored in the Report field, or the average value of the CLI-RSSI values of all measurement blocks, or may be calculated from the average value of the top or bottom X CLI-RSSI values (X is greater than m).
 例えば、図14に示す例では、Report番号nのReport field(CLI report field)によって、m=4のCLI-RSSI値が報告される。例えば、図14に示すReport fieldの1列目~4列目(例えば、#1~#4)には、上位m個のCLI-RSSI値に対応する測定ブロックを識別する情報(例えば、Measurement block ID)が格納されてよい。 For example, in the example shown in FIG. 14, a CLI-RSSI value of m=4 is reported by the Report field (CLI report field) of Report number n. For example, the first to fourth columns (e.g., #1 to #4) of the Report field shown in FIG. 14 may store information (e.g., Measurement block ID) that identifies the measurement blocks corresponding to the top m CLI-RSSI values.
 また、図14に示すReport fieldの5列目~8列目(例えば、#5~#8)には、Measurement block ID#1~#4のそれぞれに対応するCLI-RSSI値の量子化値が格納されてよい。例えば、図14に示すように、Measurement block ID#1に対応するCLI-RSSI値(例えば、最も大きいCLI-RSSI値)に対応する報告値としては、測定値を量子化テーブルによって量子化した量子化CLI-RSSI値(quantized RSSI)が格納されてよい。また、図14に示すように、Measurement block ID#2~#4に対応するCLI-RSSI値に対応する報告値としては、測定値と、Measurement block ID#1のCLI-RSSI値との差分値を量子化差分テーブルによって量子化した量子化差分CLI-RSSI値(quantized differential RSSI)が格納されてよい。 Furthermore, the fifth to eighth columns (e.g., #5 to #8) of the Report field shown in FIG. 14 may store quantized values of the CLI-RSSI values corresponding to each of Measurement block IDs #1 to #4. For example, as shown in FIG. 14, a quantized CLI-RSSI value (quantized RSSI) obtained by quantizing the measurement value using a quantization table may be stored as a report value corresponding to the CLI-RSSI value corresponding to Measurement block IDs #1 (e.g., the largest CLI-RSSI value). Also, as shown in FIG. 14, a quantized differential CLI-RSSI value (quantized differential RSSI) obtained by quantizing the difference between the measurement value and the CLI-RSSI value of Measurement block ID #1 using a quantization differential table may be stored as a report value corresponding to the CLI-RSSI value corresponding to Measurement block IDs #2 to #4.
 また、図14に示すReport fieldの9列目(例えば、#9)には、例えば、平均CLI-RSSIの量子化値(図14の例では、上位4個のCLI-RSSIと異なる残りの測定ブロックの平均CLI-RSSI値)が格納されてよい。なお、構成方法1において、平均CLI-RSSI値は、Report fieldに含まれなくてもよい。 Furthermore, the ninth column (e.g., #9) of the Report field shown in FIG. 14 may store, for example, a quantized value of the average CLI-RSSI (in the example of FIG. 14, the average CLI-RSSI value of the remaining measurement blocks that is different from the top four CLI-RSSIs). Note that in configuration method 1, the average CLI-RSSI value does not need to be included in the Report field.
 このように、構成方法1では、端末200は、Report fieldによって、複数の測定ブロックのうち、m個の測定ブロックのCLI-RSSIを基地局100へ報告する。これにより、端末200は、基地局100に対して、CLI測定帯域内の不均一なCLI漏れ込みの詳細な分布を測定ブロックの単位で報告できる。 In this way, in configuration method 1, the terminal 200 reports the CLI-RSSI of m measurement blocks out of multiple measurement blocks to the base station 100 using the Report field. This allows the terminal 200 to report to the base station 100 a detailed distribution of non-uniform CLI leakage within the CLI measurement band on a measurement block basis.
 基地局100は、例えば、報告される測定ブロック単位のCLI-RSSI、及び、当該CLI-RSSIの周波数位置に基づいて、CLI測定帯域内の不均一なCLI漏れ込みの詳細な分布を考慮して、端末200に対するスケジューリング(例えば、MCS及びDL割り当ての決定)を適切に行うことができる。 Based on, for example, the reported CLI-RSSI for each measurement block and the frequency position of the CLI-RSSI, the base station 100 can appropriately perform scheduling for the terminal 200 (e.g., determining MCS and DL allocation) by taking into account the detailed distribution of uneven CLI leakage within the CLI measurement band.
 例えば、上位m個の降順でCLI-RSSIを報告することにより、基地局100は、CLI測定帯域における干渉が強い周波数領域を特定でき、その周波数領域に信号を割り当てないスケジューリングが可能となる。また、例えば、下位m個の昇順でCLI-RSSIを報告することにより、基地局100は、CLI測定帯域内における干渉が弱い周波数領域を特定でき、その周波数領域に信号を割り当てるスケジューリングが可能となる。 For example, by reporting the top m CLI-RSSIs in descending order, the base station 100 can identify frequency regions in the CLI measurement band where interference is strong, and can schedule to not allocate signals to those frequency regions. Also, for example, by reporting the bottom m CLI-RSSIs in ascending order, the base station 100 can identify frequency regions in the CLI measurement band where interference is weak, and can schedule to allocate signals to those frequency regions.
 このような端末間の干渉を低減するスケジューリングによって、端末200における受信特性の劣化を低減できる。 Scheduling that reduces interference between terminals in this way can reduce degradation of the reception characteristics at terminal 200.
 また、構成方法1において、端末200は、Report fieldによって平均CLI-RSSIを報告する。これにより、基地局100は、CLI測定帯域のうち、Report fieldによって報告されない残りの周波数領域のおおよその干渉レベルを特定できる。例えば、上位m個の降順で報告されたCLI-RSSI値が大きく、かつ、平均CLI-RSSI値も大きい場合(例えば、閾値より大きい場合)、Report fieldによって報告されない周波数領域に信号を割り当てないスケジューリングが可能である。その一方で、例えば、上位m個の降順で報告されたCLI-RSSI値が大きく、かつ、平均CLI-RSSI値が小さい場合(例えば、閾値以下の場合)、Report fieldによって報告されない周波数領域に信号を割り当てるスケジューリングが可能である。 Furthermore, in configuration method 1, the terminal 200 reports the average CLI-RSSI in the Report field. This allows the base station 100 to identify the approximate interference level in the remaining frequency ranges of the CLI measurement band that are not reported in the Report field. For example, if the top m CLI-RSSI values reported in descending order are large and the average CLI-RSSI value is also large (e.g., greater than a threshold), scheduling is possible that does not allocate signals to frequency ranges that are not reported in the Report field. On the other hand, for example, if the top m CLI-RSSI values reported in descending order are large and the average CLI-RSSI value is small (e.g., below a threshold), scheduling is possible that allocates signals to frequency ranges that are not reported in the Report field.
 また、構成方法1では、Report fieldを構成するCLI-RSSIの数をm個に設定(例えば、制限)することにより、UCIビット数の削減、及び、基地局100へのレポート回数の削減が可能となる。ここで、レポート回数を削減できる理由は、UCIビット数には制限があり、全てのCLI-RSSIを報告する場合、端末200は基地局100へUCI(例えば、レポートを含む)を複数回送信する可能性があるが、報告するCLI-RSSIの数をm個に制限することにより、基地局100へのレポート回数を低減できるためである。 In addition, in configuration method 1, by setting (e.g., limiting) the number of CLI-RSSIs constituting the Report field to m, it is possible to reduce the number of UCI bits and the number of reports to the base station 100. Here, the reason that the number of reports can be reduced is that the number of UCI bits is limited, and when reporting all CLI-RSSIs, the terminal 200 may transmit UCI (e.g., including reports) to the base station 100 multiple times, but by limiting the number of CLI-RSSIs to be reported to m, the number of reports to the base station 100 can be reduced.
 なお、構成方法1では、CLI測定帯域内の複数の測定ブロックのうち、規定数m個の測定ブロックのCLI-RSSIが報告される場合について説明したが、これに限定されず、CLI測定帯域内の全ての測定ブロックのCLI-RSSIが報告されてもよい(例えば、m=kでもよい)。 In configuration method 1, the CLI-RSSI of a specified number m of measurement blocks among multiple measurement blocks in the CLI measurement band is reported, but this is not limited to this, and the CLI-RSSI of all measurement blocks in the CLI measurement band may be reported (for example, m=k).
 <構成方法2>
 構成方法2では、Report fieldは、CLI測定帯域を分割した複数(例えば、k個)の測定ブロックのそれぞれに対応したビットマップ形式の情報によって構成されてよい。
<Configuration method 2>
In configuration method 2, the Report field may be configured with information in a bitmap format corresponding to each of a plurality of (eg, k) measurement blocks into which the CLI measurement band is divided.
 基地局100は、例えば、CLI測定帯域を周波数方向に複数の閾値区間(threshold section)に分割する。複数の閾値区間のそれぞれには、CLI-RSSIの測定値に対する少なくとも一つの閾値が設定されてよい。また、各閾値区間には、少なくとも一つの測定ブロックが含まれてよい。 The base station 100, for example, divides the CLI measurement band into multiple threshold sections in the frequency direction. At least one threshold for the measured value of the CLI-RSSI may be set in each of the multiple threshold sections. Furthermore, each threshold section may include at least one measurement block.
 端末200は、例えば、複数の測定ブロックそれぞれのCLI-RSSIの測定値と閾値との比較結果を示すビットマップ形式の情報を含むCLI-RSSIレポートを決定する。例えば、端末200は、各閾値区間に設定された閾値と、各閾値区間内の測定ブロックにおけるCLI-RSSI値とを比較し、比較結果を示す1ビットの値を測定ブロック毎に決定する。例えば、CLI-RSSI値が閾値以下の場合は‘0’が設定され、CLI-RSSI値が閾値より大きい場合は‘1’が設定されてよい。 The terminal 200 determines a CLI-RSSI report that includes, for example, information in a bitmap format indicating the comparison result between the measured CLI-RSSI value for each of a plurality of measurement blocks and a threshold. For example, the terminal 200 compares the threshold set for each threshold interval with the CLI-RSSI value in the measurement block within each threshold interval, and determines a one-bit value indicating the comparison result for each measurement block. For example, if the CLI-RSSI value is equal to or less than the threshold, '0' may be set, and if the CLI-RSSI value is greater than the threshold, '1' may be set.
 また、1つの閾値区間に複数の閾値が設定されてもよい。これにより、端末200は、測定ブロック毎に複数ビットの比較結果を得ることができる。例えば、1つの閾値区間に2つの閾値が設定される場合、CLI-RSSIの測定値は、2ビットで表現される。 Furthermore, multiple thresholds may be set in one threshold interval. This allows the terminal 200 to obtain a comparison result of multiple bits for each measurement block. For example, if two thresholds are set in one threshold interval, the measurement value of CLI-RSSI is expressed in two bits.
 なお、各閾値区間に設定される閾値は、仕様(又は、規格)において定義されてもよく、基地局100による通知(例えば、上位レイヤシグナリング又は動的な通知)によって端末200に設定されてもよく、端末200によって決定されてもよい。端末200による閾値の決定方法としては、例えば、閾値区間内の全ての測定ブロックの平均CLI-RSSI値、又は、平均CLI-RSSI値からのオフセットを閾値に設定してもよい。なお、オフセット値は、仕様において定義されてもよく、基地局100によって端末200に設定されてもよい。また、端末200によって閾値が決定される場合、端末200は、基地局100に対して、閾値を報告してよい。 The threshold set for each threshold interval may be defined in the specifications (or standards), may be set in the terminal 200 by notification by the base station 100 (e.g., higher layer signaling or dynamic notification), or may be determined by the terminal 200. As a method for determining the threshold by the terminal 200, for example, the average CLI-RSSI value of all measurement blocks within the threshold interval, or an offset from the average CLI-RSSI value may be set as the threshold. The offset value may be defined in the specifications, or may be set in the terminal 200 by the base station 100. Furthermore, when the threshold is determined by the terminal 200, the terminal 200 may report the threshold to the base station 100.
 また、CLI測定帯域内の閾値区間の数、及び、閾値区間のサイズ(例えば、bandwidth、又は、閾値区間に含まれる測定ブロック数)は、端末200によって決定されてもよい。この場合、端末200は、基地局100に対して、閾値区間に関する情報(例えば、閾値区間の数、閾値区間のサイズ(又は、閾値区間に含まれる測定ブロック数)を含む)を報告してよい。 Furthermore, the number of threshold intervals in the CLI measurement band and the size of the threshold interval (e.g., the bandwidth or the number of measurement blocks included in the threshold interval) may be determined by the terminal 200. In this case, the terminal 200 may report information about the threshold interval (including, for example, the number of threshold intervals and the size of the threshold interval (or the number of measurement blocks included in the threshold interval)) to the base station 100.
 このように、構成方法2では、端末200は、Report fieldによって全ての測定ブロックのCLI-RSSIに関する情報(例えば、閾値より大きいか否かを示す情報)を基地局100へ報告する。これにより、端末200は、基地局100に対して、CLI測定帯域内の不均一なCLI漏れ込みの詳細な分布を測定ブロックの単位で報告できる。 In this way, in configuration method 2, the terminal 200 reports information regarding the CLI-RSSI of all measurement blocks (e.g., information indicating whether it is greater than a threshold value) to the base station 100 via the Report field. This allows the terminal 200 to report to the base station 100 a detailed distribution of non-uniform CLI leakage within the CLI measurement band on a measurement block basis.
 基地局100は、例えば、報告される測定ブロック単位のCLI-RSSI、及び、当該CLI-RSSIの周波数位置に基づいて、CLI測定帯域内の不均一なCLI漏れ込みの詳細な分布を考慮して、端末200に対するスケジューリング(例えば、MCS及びDL割り当ての決定)を適切に行うことができる。このような端末間の干渉を低減するスケジューリングによって、端末200における受信特性の劣化を低減できる。 Based on, for example, the reported CLI-RSSI for each measurement block and the frequency position of the CLI-RSSI, the base station 100 can appropriately schedule the terminal 200 (e.g., determine the MCS and DL allocation) while taking into account the detailed distribution of the non-uniform CLI leakage within the CLI measurement band. Scheduling that reduces such interference between terminals can reduce the deterioration of the reception characteristics at the terminal 200.
 また、構成方法2では、CLI-RSSI値をビットマップ形式で報告することにより、UCIビット数の削減、及び、基地局100へのレポート回数の削減が可能となる。ここで、レポート回数を削減できる理由は、UCIビット数には制限があり、全てのCLI-RSSIを報告する場合、端末200は基地局100へUCI(例えば、レポートを含む)を複数回送信する可能性があるが、CLI-RSSI値をビットマップ形式で報告することにより、UCIビット数を削減でき、基地局100へのレポート回数を低減できるためである。 In addition, in configuration method 2, by reporting the CLI-RSSI value in bitmap format, it is possible to reduce the number of UCI bits and the number of reports to the base station 100. Here, the reason that the number of reports can be reduced is that the number of UCI bits is limited, and when reporting all CLI-RSSI, the terminal 200 may transmit UCI (including reports, for example) to the base station 100 multiple times, but by reporting the CLI-RSSI value in bitmap format, it is possible to reduce the number of UCI bits and the number of reports to the base station 100.
 また、構成方法2では、複数の閾値区間を周波数方向に設定することにより、不均一なCLI分布の特性(例えば、general, Carrier leakage及びIQ image)に応じた閾値を設定でき、端末200は、不均一なCLI分布に適したReport fieldを報告することができる。 In addition, in configuration method 2, by setting multiple threshold intervals in the frequency direction, it is possible to set thresholds according to the characteristics of the non-uniform CLI distribution (e.g., general, carrier leakage, and IQ image), and the terminal 200 can report a Report field suitable for the non-uniform CLI distribution.
 次に、構成方法2におけるReport fieldの構成方法の例について説明する。 Next, we will explain an example of how to configure the Report field in configuration method 2.
 <構成方法2-1>
 構成方法2-1では、Report fieldは、全ての測定ブロックに対するビットマップ形式の情報(例えば、‘0’又は‘1’)を報告する。
<Configuration method 2-1>
In configuration method 2-1, the Report field reports bitmap-format information (eg, '0' or '1') for all measurement blocks.
 図15は、構成方法2―1のReport fieldの例を示す。 Figure 15 shows an example of a Report field for configuration method 2-1.
 図15に示すように、端末200は、CLI測定帯域内の全て(例えば、k個)の測定ブロックのCLI-RSSI値(測定値)と各閾値区間の閾値とを比較する。図15(a)の例では、端末200は、測定ブロック1~3のCLI-RSSI値と閾値区間1の閾値(threshold 1)とを比較し、残りの測定ブロック4~kのCLI-RSSI値と閾値区間2の閾値(threshold 2)とを比較する。 As shown in FIG. 15, terminal 200 compares the CLI-RSSI values (measured values) of all (e.g., k) measurement blocks within the CLI measurement band with the thresholds of each threshold interval. In the example of FIG. 15(a), terminal 200 compares the CLI-RSSI values of measurement blocks 1 to 3 with the threshold of threshold interval 1 (threshold 1), and compares the CLI-RSSI values of the remaining measurement blocks 4 to k with the threshold of threshold interval 2 (threshold 2).
 例えば、図15(b)に示すように、端末200は、各測定ブロックについて、CLI-RSSI値が閾値以下の場合は‘0’をReport fieldに格納し、CLI-RSSI値が閾値より大きい場合は‘1’をReport fieldに格納する。 For example, as shown in FIG. 15(b), for each measurement block, the terminal 200 stores '0' in the Report field if the CLI-RSSI value is less than or equal to the threshold, and stores '1' in the Report field if the CLI-RSSI value is greater than the threshold.
 このように、図15(b)の例では、Report fieldにおいて、CLI-RSSI値がビットマップ形式(0又は1)で報告されることにより、1つの測定ブロックあたり1ビットのビット数を使用すればよいので、CLI-RSSI値(例えば、量子化値)を報告する場合と比較して、UCIビット数を削減できる。 In this way, in the example of Figure 15(b), the CLI-RSSI value is reported in bitmap format (0 or 1) in the Report field, so that only one bit is required per measurement block, and the number of UCI bits can be reduced compared to when the CLI-RSSI value (e.g., quantized value) is reported.
 また、測定ブロック数(図15のkの値)が増加した場合でも、測定ブロックあたりの報告に使用されるビット数が削減されるので、UCIビット数及び基地局100へのレポート回数を削減できる。 In addition, even if the number of measurement blocks (the value of k in FIG. 15) increases, the number of bits used for reporting per measurement block is reduced, so the number of UCI bits and the number of reports to the base station 100 can be reduced.
 <構成方法2-2>
 構成方法2―2では、CLI-RSSI値は、CLIレポートの「パート1」及び「パート2」を用いて報告される。端末200は、例えば、複数の測定ブロックそれぞれのCLI-RSSI測定値と閾値との比較結果を示すビットマップ形式の情報を含むCLIレポートパート1、及び、複数の測定ブロックのうち規定数の測定ブロックのCLI-RSSI測定値を含むCLIレポートパート2を決定してよい。
<Configuration method 2-2>
In configuration method 2-2, the CLI-RSSI value is reported using "part 1" and "part 2" of the CLI report. The terminal 200 may determine, for example, CLI report part 1 including information in a bitmap format indicating a comparison result between the CLI-RSSI measurement value of each of a plurality of measurement blocks and a threshold, and CLI report part 2 including the CLI-RSSI measurement value of a prescribed number of measurement blocks among the plurality of measurement blocks.
 図16は、構成方法2-2のReport fieldの例を示す。 Figure 16 shows an example of a Report field for configuration method 2-2.
 例えば、端末200は、CLIレポートのパート1及びパート2を、同じPUSCHで報告してよい。PUSCHを用いるCLIレポートの報告は、例えば、CLIレポートの設定がaperiodic CLI report又はsemi-persistent CLI reportの場合に適用されてもよい。 For example, the terminal 200 may report part 1 and part 2 of the CLI report on the same PUSCH. Reporting of the CLI report using the PUSCH may be applied, for example, when the CLI report setting is an aperiodic CLI report or a semi-persistent CLI report.
 また、例えば、端末200は、CLIレポートパート1を報告し、CLIレポートパート2を報告しない場合、CLIレポートパート1をPUCCHで報告してよい。PUCCHを用いるCLIレポートの報告は、例えば、CLIレポートの設定がperiodic CLI report又はsemi-persistent CLI reportの場合に適用されてもよい。 Furthermore, for example, when terminal 200 reports CLI report part 1 but does not report CLI report part 2, terminal 200 may report CLI report part 1 on PUCCH. Reporting of a CLI report using PUCCH may be applied, for example, when the CLI report setting is periodic CLI report or semi-persistent CLI report.
 なお、CLIレポートパート1及びCLIレポートパート2の報告に用いるチャネルは、上述した例に限定されず、他のチャネルでもよい。また、CLIレポートの設定(例えば、periodic CLI report、aperiodic CLI report及びsemi-persistent CLI report)と使用するチャネルとの組み合わせは、上述した例に限定されない。 Note that the channels used to report CLI Report Part 1 and CLI Report Part 2 are not limited to the above-mentioned examples and may be other channels. Furthermore, the combination of CLI report settings (e.g., periodic CLI report, aperiodic CLI report, and semi-persistent CLI report) and the channels used are not limited to the above-mentioned examples.
 また、例えば、端末200は、CLIレポートのパート1及びパート2を個別にエンコードし、CLIレポートパート1を送信した後に、CLIレポートパート2を送信してよい。これにより、基地局100は、例えば、CLIレポートパート1に基づいて、CLIレポートパート2のデータサイズを特定できるため、CLIレポートパート2のデータサイズを可変に設定できる。 Furthermore, for example, the terminal 200 may encode parts 1 and 2 of the CLI report separately and transmit CLI report part 2 after transmitting CLI report part 1. This allows the base station 100 to determine the data size of CLI report part 2, for example, based on CLI report part 1, and therefore to variably set the data size of CLI report part 2.
 また、CLIレポートパート1を生成する際、図16(a)に示すように、端末200は、各閾値区間内の測定ブロックのCLI-RSSI値と各閾値区間に設定される閾値とを比較する。そして、図16(b)に示すように、CLIレポートパート1は、構成方法2-1と同様に、測定ブロックのCLI-RSSI値と閾値との比較結果に対応するビットマップ形式の情報(例えば、0又は1)で構成されてよい。 Furthermore, when generating CLI report part 1, as shown in FIG. 16(a), terminal 200 compares the CLI-RSSI value of the measurement block in each threshold interval with the threshold set for each threshold interval. Then, as shown in FIG. 16(b), CLI report part 1 may be configured with bitmap information (e.g., 0 or 1) corresponding to the comparison result between the CLI-RSSI value of the measurement block and the threshold, similar to configuration method 2-1.
 また、図16(c)に示すように、CLIレポートパート2は、CLIレポートパート1によって報告された測定ブロックのうち、CLI-RSSI値が閾値を超える全ての測定ブロックの量子化値(例えば、量子化CLI-RSSI値及び量子化差分CLI-RSSI値)、又は、構成方法1と同様に、上位m個のCLI-RSSI値の量子化値(例えば、量子化CLI-RSSI値及び量子化差分CLI-RSSI値)で構成されてよい。 Also, as shown in FIG. 16(c), CLI report part 2 may be composed of quantized values (e.g., quantized CLI-RSSI values and quantized differential CLI-RSSI values) of all measurement blocks whose CLI-RSSI values exceed a threshold among the measurement blocks reported by CLI report part 1, or, as in configuration method 1, quantized values of the top m CLI-RSSI values (e.g., quantized CLI-RSSI values and quantized differential CLI-RSSI values).
 例えば、レポート回数の多い周期的なCLIレポート(例えば、periodic CLI report)の場合、端末200は、CLIレポートパート1を報告し、CLIレポートパート2を報告しないことにより、レポート回数を削減できる。 For example, in the case of a periodic CLI report that is reported many times (e.g., a periodic CLI report), the terminal 200 can reduce the number of reports by reporting CLI report part 1 and not reporting CLI report part 2.
 また、例えば、レポート回数の少ない非周期的なCLIレポート(例えば、aperiodic CLI report)の場合、端末200は、CLIレポートパート1及びレポートパート2の両方を報告することにより、CLIレポートパート1では報告できない量子化粒度が大きいCLI値を基地局100に報告できる。これより、基地局100は、例えば、CLIレポートパート2によって報告される詳細なCLI-RSSI値に基づいて、スケジューリング(例えば、DLの割り当てリソース及びMCSの決定)を行うことができる。 Furthermore, for example, in the case of a non-periodic CLI report with a small number of reports (e.g., an aperiodic CLI report), the terminal 200 can report to the base station 100 a CLI value with a large quantization granularity that cannot be reported in the CLI report part 1 by reporting both the CLI report part 1 and the report part 2. This allows the base station 100 to perform scheduling (e.g., determining DL allocation resources and MCS) based on, for example, the detailed CLI-RSSI value reported by the CLI report part 2.
 以上、構成方法2におけるReport fieldの構成方法の例について説明した。 The above explains an example of how to configure the Report field in configuration method 2.
 なお、上述した例では、CLI測定帯域内に2つの閾値区間を設定する場合について説明したが、閾値区間は2つに限定されず、3つ以上設定されてもよい。または、CLI測定帯域内の閾値区間は1つでもよい。 In the above example, a case where two threshold intervals are set within the CLI measurement band is described, but the number of threshold intervals is not limited to two, and three or more may be set. Alternatively, there may be only one threshold interval within the CLI measurement band.
 また、構成方法2において、或る閾値区間では1つの閾値が設定され、他の閾値区間では複数の閾値が設定されてもよい。 In addition, in configuration method 2, one threshold may be set in one threshold interval, and multiple thresholds may be set in other threshold intervals.
 また、上述した例では、CLI測定帯域内の全ての測定ブロックに関するビットマップ形式の情報を報告する場合について説明したが、これに限定されず、CLI測定帯域内の一部の測定ブロックに関するビットマップ形式の情報が報告されてもよい。例えば、Report fieldにおいて、CLI測定帯域の一部の周波数帯域に対応する測定ブロックに関する情報が報告されてもよく、規定数おきの測定ブロックに関する情報が報告されてもよい。 In the above example, a case was described where bitmap-formatted information about all measurement blocks within the CLI measurement band was reported, but this is not limited thereto, and bitmap-formatted information about some of the measurement blocks within the CLI measurement band may also be reported. For example, in the Report field, information about measurement blocks corresponding to some of the frequency bands in the CLI measurement band may be reported, or information about measurement blocks at intervals of a specified number may be reported.
 <構成方法3>
 構成方法3では、Report fieldは、干渉モデル番号とCLI-RSSIの平均値とによって構成されてよい。
<Configuration method 3>
In configuration method 3, the Report field may be configured by the interference model number and the average value of the CLI-RSSI.
 干渉モデル番号は、例えば、CLI測定帯域において想定されるCLIの分布(又は、CLI漏れ込み分布)をモデル化した干渉モデルを識別する番号である。 The interference model number is, for example, a number that identifies an interference model that models the expected distribution of CLI (or CLI leakage distribution) in the CLI measurement band.
 図17は、構成方法3のReport fieldの構成例を示す。 Figure 17 shows an example of the Report field configuration for configuration method 3.
 基地局100は、例えば、複数の干渉モデルに関する情報を端末200に設定する。複数の干渉モデルの設定は、仕様書(例えば、規格)によって定義されてもよく、上位レイヤのシグナリングによって端末200に設定されてもよく、下りリンク制御情報によって端末200に設定(又は、通知)されてもよい。 The base station 100, for example, sets information related to multiple interference models in the terminal 200. The setting of multiple interference models may be defined by a specification (e.g., a standard), may be set in the terminal 200 by higher layer signaling, or may be set (or notified) to the terminal 200 by downlink control information.
 端末200は、例えば、CLI測定帯域内の複数の測定ブロックそれぞれのCLI-RSSIの測定値によって得られるCLI分布(例えば、干渉分布)と、設定された干渉モデルとを比較し、CLI分布に対応する干渉モデル(例えば、最も近い干渉モデル)の干渉モデル番号を特定する。 The terminal 200, for example, compares the CLI distribution (e.g., interference distribution) obtained from the measured CLI-RSSI values of each of multiple measurement blocks within the CLI measurement band with the set interference model, and identifies the interference model number of the interference model that corresponds to the CLI distribution (e.g., the closest interference model).
 また、端末200は、例えば、CLI測定帯域における測定ブロック毎のCLI-RSSI値の平均値(平均CLI-RSSI値)を算出する。 In addition, the terminal 200 calculates, for example, the average value of the CLI-RSSI values (average CLI-RSSI value) for each measurement block in the CLI measurement band.
 そして、端末200は、特定した干渉モデル番号と、平均CLI-RSSI値とを含むCLI-RSSIレポートを基地局100へ報告する。 Then, the terminal 200 reports a CLI-RSSI report including the identified interference model number and the average CLI-RSSI value to the base station 100.
 図17(a)に示す例では、N個の干渉モデル(例えば、干渉モデル0~N-1)に関する情報が基地局100から端末200へ設定される。端末200は、例えば、CLI測定帯域内の全ての測定ブロックのCLI-RSSI値に基づいて、CLI測定帯域におけるCLI分布(CLI leakage)を算出する。端末200は、算出したCLI分布と、N個の干渉モデルとを比較し、CLI分布に最も近い干渉モデル(図17(a)では、干渉モデル1)を選択する。 In the example shown in FIG. 17(a), information on N interference models (e.g., interference models 0 to N-1) is set from base station 100 to terminal 200. Terminal 200 calculates the CLI distribution (CLI leakage) in the CLI measurement band, for example, based on the CLI-RSSI values of all measurement blocks in the CLI measurement band. Terminal 200 compares the calculated CLI distribution with the N interference models, and selects the interference model that is closest to the CLI distribution (interference model 1 in FIG. 17(a)).
 また、端末200は、全ての測定ブロックのCLI-RSSI値の平均値を量子化し、量子化平均CLI-RSSI値を得る。 In addition, the terminal 200 quantizes the average value of the CLI-RSSI values of all measurement blocks to obtain a quantized average CLI-RSSI value.
 図17(b)に示すように、端末200は、例えば、選択した干渉モデル番号(例えば、1列目(#1))、及び、量子化平均CLI-RSSI値(例えば、2列目(#2))をReport fieldに構成(又は、格納)し、基地局100へ報告する。 As shown in FIG. 17(b), the terminal 200 constructs (or stores) the selected interference model number (e.g., the first column (#1)) and the quantized average CLI-RSSI value (e.g., the second column (#2)) in the Report field and reports it to the base station 100.
 基地局100は、端末200から報告されるレポートに含まれる干渉モデル番号、及び、量子化平均CLI-RSSI値に基づいて、端末200におけるCLI分布を特定(又は、推定)する。 Base station 100 identifies (or estimates) the CLI distribution in terminal 200 based on the interference model number and the quantized average CLI-RSSI value included in the report reported by terminal 200.
 このように、構成方法3では、端末200は、Report fieldによってCLI測定帯域におけるCLI分布に対応する干渉モデルに関する情報を基地局100へ報告する。これにより、端末200は、基地局100に対して、CLI測定帯域内の不均一なCLI漏れ込みの詳細な分布を報告できる。 In this way, in configuration method 3, the terminal 200 reports information about the interference model corresponding to the CLI distribution in the CLI measurement band to the base station 100 through the Report field. This allows the terminal 200 to report to the base station 100 a detailed distribution of non-uniform CLI leakage within the CLI measurement band.
 基地局100は、例えば、報告されるCLI測定帯域内のCLI分布に対応する干渉モデル、及び、平均CLI-RSSI値に基づいて、CLI測定帯域内の不均一なCLI漏れ込みの詳細な分布を考慮して、端末200に対するスケジューリング(例えば、MCS及びDL割り当ての決定)を適切に行うことができる。このような端末間の干渉を低減するスケジューリングによって、端末200における受信特性の劣化を低減できる。 Base station 100 can appropriately schedule terminal 200 (e.g., determine MCS and DL allocation) based on, for example, an interference model corresponding to the CLI distribution in the reported CLI measurement band and the average CLI-RSSI value, taking into account the detailed distribution of non-uniform CLI leakage in the CLI measurement band. Scheduling that reduces such interference between terminals can reduce degradation of reception characteristics in terminal 200.
 また、構成方法3では、端末200は、CLI-RSSIの測定値の代わりに、干渉モデル番号を報告するため、UCIビット数の削減、及び、基地局100へのレポート回数の削減が可能となる。 In addition, in configuration method 3, the terminal 200 reports an interference model number instead of the measured value of CLI-RSSI, which makes it possible to reduce the number of UCI bits and the number of reports to the base station 100.
 また、端末200は、CLI測定帯域における全ての測定ブロックの平均CLI-RSSI値を報告するので、基地局100は、CLI分布の全体の電力を特定する。これにより、基地局100は、干渉モデルによるCLI分布を、平均CLI-RSSI値に応じて調整できるので、CLI分布の推定精度を向上できる。 In addition, since the terminal 200 reports the average CLI-RSSI value of all measurement blocks in the CLI measurement band, the base station 100 identifies the overall power of the CLI distribution. This allows the base station 100 to adjust the CLI distribution according to the interference model in accordance with the average CLI-RSSI value, thereby improving the estimation accuracy of the CLI distribution.
 以上、Report fieldの構成方法1~3について説明した。  Above, we have explained report field configuration methods 1 to 3.
 このように、本実施の形態では、端末200は、周波数領域におけるCLI測定帯域(測定リソース)を分割した複数の測定ブロック毎のCLI-RSSIの測定値に基づいて、CLI-RSSIレポートを決定し、基地局100へ送信する。このように、測定ブロック単位でのCLI-RSSI値に基づいてCLI-RSSIレポートが基地局100へ報告されることにより、例えば、測定ブロック毎のCLI-RSSI値を、不均一なCLI漏れ込みの分布に対する報告内容に反映できる。よって、本実施の形態によれば、端末200は、基地局100に対して、端末間のCLI(不均一なCLI分布)を適切に報告できる。例えば、基地局100は、報告されるCLIの値、及び、報告されるCLIに対応する周波数位置(例えば、測定ブロックの位置)に応じて、端末200に対するスケジューリング(例えば、MCSの設定、又は、DLリソースの割り当て)を適切に行うことができる。 In this manner, in this embodiment, the terminal 200 determines a CLI-RSSI report based on the measured CLI-RSSI value for each of a plurality of measurement blocks obtained by dividing the CLI measurement band (measurement resource) in the frequency domain, and transmits the CLI-RSSI report to the base station 100. In this manner, by reporting the CLI-RSSI report to the base station 100 based on the CLI-RSSI value for each measurement block, for example, the CLI-RSSI value for each measurement block can be reflected in the report content for the uneven distribution of CLI leakage. Therefore, according to this embodiment, the terminal 200 can appropriately report the CLI between terminals (uneven CLI distribution) to the base station 100. For example, the base station 100 can appropriately perform scheduling (for example, setting MCS or allocating DL resources) for the terminal 200 according to the reported CLI value and the frequency position (for example, the position of the measurement block) corresponding to the reported CLI.
 (他の実施の形態)
 なお、本開示の一実施例は、レイヤ1ベースのレポートに限定されず、MAC(Medium access control)シグナリングを使用するレイヤ2ベースのレポート、又は、RRC(Radio Resource Control)メッセージを使用するレイヤ3ベースのレポートにも適用できる。レイヤ2ベースのレポートでは、レイヤ1ベースのレポートと比較して、レポートの頻度が低くなるが、送信可能なビット数が増加する。また、レイヤ3ベースのレポートでは、既存のL3ベースSRS-RSRPにおけるレポート方法の機能(例えば、コンフィグレーションまたは通知方法など)を再利用できる。
Other Embodiments
In addition, an embodiment of the present disclosure is not limited to Layer 1-based reporting, but can also be applied to Layer 2-based reporting using Medium Access Control (MAC) signaling, or Layer 3-based reporting using Radio Resource Control (RRC) messages. In Layer 2-based reporting, the frequency of reporting is lower than that of Layer 1-based reporting, but the number of bits that can be transmitted is increased. In addition, in Layer 3-based reporting, the functionality of the reporting method in the existing L3-based SRS-RSRP (e.g., configuration or notification method, etc.) can be reused.
 また、上記実施の形態において、端末間の短期的な干渉の測定及び報告は、同じセル内に限定されず、複数セルにおいても適用できる。例えば、異なるセルで異なる方向の通信が行われる場合、セル境界の端末は、異なるセルの端末からのCLIを受ける。このため、端末間の短期的な干渉の測定及び報告は、複数セルにおける端末間のCLIを低減するために有効的である。 In addition, in the above embodiment, the measurement and reporting of short-term interference between terminals is not limited to within the same cell, but can also be applied to multiple cells. For example, when communication is performed in different directions in different cells, a terminal at the cell boundary receives CLI from a terminal in a different cell. For this reason, the measurement and reporting of short-term interference between terminals is effective in reducing CLI between terminals in multiple cells.
 また、上記実施の形態において、CLI測定帯域における複数の測定ブロックのサイズ(又は、リソースサイズ、帯域幅)は、均一でもよく、不均一でもよい。例えば、不均一なサイズが設定される場合、ULサブバンドとDLサブバンドとの境界に近い測定ブロックほど、狭い帯域幅(例えば、小さい粒度)が設定されてもよい。または、例えば、不均一なサイズが設定される場合、ULサブバンドとDLサブバンドとの境界に近い区間(例えば、Threshold sectionでもよい)ほど、狭い帯域幅(例えば、小さい粒度)が設定されてもよい。この際、区間内の測定ブロックのサイズは同一でもよく、異なってもよい。これらにより、ULサブバンドとDLサブバンドとの境界に近いほど、CLI分布(例えば、general in-band emission)の周波数変動が大きいので、基地局100は、より詳細なCLI分布を特定できる。例えば、測定ブロックのサイズは、仕様において定義されてもよく、上位レイヤシグナリングによって端末200に設定されてもよく、下りリンク制御情報によって端末200に設定(又は、通知)されてもよい。 In the above embodiment, the size (or resource size, bandwidth) of the multiple measurement blocks in the CLI measurement band may be uniform or non-uniform. For example, when non-uniform sizes are set, the closer the measurement block is to the boundary between the UL subband and the DL subband, the narrower the bandwidth (e.g., smaller granularity) may be set. Alternatively, when non-uniform sizes are set, the closer the section (e.g., threshold section) is to the boundary between the UL subband and the DL subband, the narrower the bandwidth (e.g., smaller granularity) may be set. In this case, the size of the measurement blocks within the section may be the same or different. As a result, the closer to the boundary between the UL subband and the DL subband, the greater the frequency fluctuation of the CLI distribution (e.g., general in-band emission), so that the base station 100 can identify a more detailed CLI distribution. For example, the size of the measurement block may be defined in the specification, may be set in the terminal 200 by upper layer signaling, or may be set (or notified) to the terminal 200 by downlink control information.
 また、上記実施の形態における測定ブロック(measurement block)は、サブバンド(subband)、周波数ブロック(frequency block)といった他の名称に言い換えてもよい。 In addition, the measurement block in the above embodiment may be referred to by other names such as subband or frequency block.
 また、上記実施の形態では、報告される受信品質の測定値は、CLI-RSSIに限定されず、他の測定値でもよい。例えば、報告される測定値は、SRS-RSRP/SRS-RSRQ(Reference Signal Received Quality)といった他の測定値でもよい。他の測定値に対しても、CLI-RSSIと同様のReport fieldの構成方法及び動作の適用が可能である。 Furthermore, in the above embodiment, the reported measurement value of reception quality is not limited to CLI-RSSI, and may be other measurement values. For example, the reported measurement value may be other measurement values such as SRS-RSRP/SRS-RSRQ (Reference Signal Received Quality). The same report field configuration method and operation as for CLI-RSSI can be applied to other measurement values.
 また、上述した実施の形態において、CLI測定帯域における測定ブロック数、CLI-RSSI値に割り当てられるビット数、規定数m、k、Nといった値は一例であって、限定されない。また、上述した実施の形態におけるReport fieldの構成は一例であって限定されない。例えば、上述したReport fieldの構成の格納順序が異なってもよく、上述したReport fieldに格納される情報の一部が含まれなくてもよく、上述したReport fieldに格納される情報に加え、他の情報が含まれてもよい。 Furthermore, in the above-mentioned embodiment, values such as the number of measurement blocks in the CLI measurement band, the number of bits allocated to the CLI-RSSI value, and the prescribed numbers m, k, and N are merely examples and are not limited. Furthermore, the configuration of the Report field in the above-mentioned embodiment is merely an example and is not limited. For example, the storage order of the configuration of the Report field described above may be different, some of the information stored in the Report field described above may not be included, and other information may be included in addition to the information stored in the Report field described above.
 (補足)
 上述した実施の形態に示した機能、動作又は処理を端末200がサポートするか否かを示す情報が、例えば、端末200の能力(capability)情報あるいは能力パラメータとして、端末200から基地局100へ送信(あるいは通知)されてもよい。
(supplement)
Information indicating whether terminal 200 supports the functions, operations or processes described in the above-mentioned embodiments may be transmitted (or notified) from terminal 200 to base station 100, for example, as capability information or capability parameters of terminal 200.
 能力情報は、上述した実施の形態に示した機能、動作又は処理の少なくとも1つを端末200がサポートするか否かを個別に示す情報要素(IE)を含んでもよい。あるいは、能力情報は、上述した実施の形態に示した機能、動作又は処理の何れか2以上の組み合わせを端末200がサポートするか否かを示す情報要素を含んでもよい。 The capability information may include information elements (IEs) that individually indicate whether the terminal 200 supports at least one of the functions, operations, or processes shown in the above-described embodiments. Alternatively, the capability information may include information elements that indicate whether the terminal 200 supports a combination of any two or more of the functions, operations, or processes shown in the above-described embodiments.
 基地局100は、例えば、端末200から受信した能力情報に基づいて、能力情報の送信元端末200がサポートする(あるいはサポートしない)機能、動作又は処理を判断(あるいは決定または想定)してよい。基地局100は、能力情報に基づく判断結果に応じた動作、処理又は制御を実施してよい。例えば、基地局100は、端末200から受信した能力情報に基づいて、端末200に対するCLI分布の報告を制御してよい。 Based on the capability information received from the terminal 200, the base station 100 may, for example, determine (or decide or assume) the functions, operations, or processing that the terminal 200 that transmitted the capability information supports (or does not support). The base station 100 may perform operations, processing, or control according to the determination result based on the capability information. For example, the base station 100 may control reporting of CLI distribution to the terminal 200 based on the capability information received from the terminal 200.
 なお、上述した実施の形態に示した機能、動作又は処理の一部を端末200がサポートしないことは、端末200において、そのような一部の機能、動作又は処理が制限されることに読み替えられてもよい。例えば、そのような制限に関する情報あるいは要求が、基地局100に通知されてもよい。 Note that the fact that the terminal 200 does not support some of the functions, operations, or processes described in the above-described embodiment may be interpreted as meaning that such some of the functions, operations, or processes are restricted in the terminal 200. For example, information or requests regarding such restrictions may be notified to the base station 100.
 端末200の能力あるいは制限に関する情報は、例えば、規格において定義されてもよいし、基地局100において既知の情報あるいは基地局100へ送信される情報に関連付けられて暗黙的(implicit)に基地局100に通知されてもよい。 The information regarding the capabilities or limitations of the terminal 200 may be defined in a standard, for example, or may be implicitly notified to the base station 100 in association with information already known at the base station 100 or information transmitted to the base station 100.
 (制御信号)
 本開示において、本開示の一実施例に関連する下り制御信号(又は、下り制御情報)は、例えば、物理層のPhysical Downlink Control Channel(PDCCH)において送信される信号(又は、情報)でもよく、上位レイヤのMedium Access Control Control Element(MAC CE)又はRadio Resource Control(RRC)において送信される信号(又は、情報)でもよい。また、信号(又は、情報)は、下り制御信号によって通知される場合に限定されず、仕様(又は、規格)において予め規定されてもよく、基地局及び端末に予め設定されてもよい。
(Control signal)
In the present disclosure, a downlink control signal (or downlink control information) related to an embodiment of the present disclosure may be, for example, a signal (or information) transmitted in a Physical Downlink Control Channel (PDCCH) in a physical layer, or a signal (or information) transmitted in a Medium Access Control Control Element (MAC CE) or Radio Resource Control (RRC) in a higher layer. In addition, the signal (or information) is not limited to being notified by a downlink control signal, and may be predefined in a specification (or standard), or may be preconfigured in a base station and a terminal.
 本開示において、本開示の一実施例に関連する上り制御信号(又は、上り制御情報)は、例えば、物理層のPUCCHにおいて送信される信号(又は、情報)でもよく、上位レイヤのMAC CE又はRRCにおいて送信される信号(又は、情報)でもよい。また、信号(又は、情報)は、上り制御信号によって通知される場合に限定されず、仕様(又は、規格)において予め規定されてもよく、基地局及び端末に予め設定されてもよい。また、上り制御信号は、例えば、uplink control information(UCI)、1st stage sidelink control information(SCI)、又は、2nd stage SCIに置き換えてもよい。 In the present disclosure, the uplink control signal (or uplink control information) related to one embodiment of the present disclosure may be, for example, a signal (or information) transmitted in a PUCCH in the physical layer, or a signal (or information) transmitted in a MAC CE or RRC in a higher layer. Furthermore, the signal (or information) is not limited to being notified by an uplink control signal, but may be predefined in a specification (or standard), or may be preconfigured in a base station and a terminal. Furthermore, the uplink control signal may be replaced with, for example, uplink control information (UCI), 1st stage sidelink control information (SCI), or 2nd stage SCI.
 (基地局)
 本開示の一実施例において、基地局は、Transmission Reception Point(TRP)、クラスタヘッド、アクセスポイント、Remote Radio Head(RRH)、eNodeB (eNB)、gNodeB(gNB)、Base Station(BS)、Base Transceiver Station(BTS)、親機、ゲートウェイなどでもよい。また、サイドリンク通信では、基地局の役割を端末が担ってもよい。また、基地局の代わりに、上位ノードと端末の通信を中継する中継装置であってもよい。また、路側器であってもよい。
(base station)
In an embodiment of the present disclosure, the base station may be a Transmission Reception Point (TRP), a cluster head, an access point, a Remote Radio Head (RRH), an eNodeB (eNB), a gNodeB (gNB), a Base Station (BS), a Base Transceiver Station (BTS), a parent device, a gateway, or the like. In addition, in sidelink communication, a terminal may play the role of a base station. In addition, instead of a base station, a relay device that relays communication between an upper node and a terminal may be used. Also, a roadside unit may be used.
 (上りリンク/下りリンク/サイドリンク)
 本開示の一実施例は、例えば、上りリンク、下りリンク、及び、サイドリンクの何れに適用してもよい。例えば、本開示の一実施例を上りリンクのPhysical Uplink Shared Channel(PUSCH)、Physical Uplink Control Channel(PUCCH)、Physical Random Access Channel(PRACH)、下りリンクのPhysical Downlink Shared Channel(PDSCH)、PDCCH、Physical Broadcast Channel(PBCH)、又は、サイドリンクのPhysical Sidelink Shared Channel(PSSCH)、Physical Sidelink Control Channel(PSCCH)、Physical Sidelink Broadcast Channel(PSBCH)に適用してもよい。
(Uplink/Downlink/Sidelink)
An embodiment of the present disclosure may be applied to, for example, any of an uplink, a downlink, and a sidelink. For example, an embodiment of the present disclosure may be applied to a Physical Uplink Shared Channel (PUSCH), a Physical Uplink Control Channel (PUCCH), a Physical Random Access Channel (PRACH) in the uplink, a Physical Downlink Shared Channel (PDSCH), a PDCCH, a Physical Broadcast Channel (PBCH) in the downlink, or a Physical Sidelink Shared Channel (PSSCH), a Physical Sidelink Control Channel (PSCCH), or a Physical Sidelink Broadcast Channel (PSBCH) in the sidelink.
 なお、PDCCH、PDSCH、PUSCH、及び、PUCCHそれぞれは、下りリンク制御チャネル、下りリンクデータチャネル、上りリンクデータチャネル、及び、上りリンク制御チャネルの一例である。また、PSCCH、及び、PSSCHは、サイドリンク制御チャネル、及び、サイドリンクデータチャネルの一例である。また、PBCH及びPSBCHは報知(ブロードキャスト)チャネル、PRACHはランダムアクセスチャネルの一例である。 Note that PDCCH, PDSCH, PUSCH, and PUCCH are examples of a downlink control channel, a downlink data channel, an uplink data channel, and an uplink control channel, respectively. Also, PSCCH and PSSCH are examples of a sidelink control channel and a sidelink data channel. Also, PBCH and PSBCH are examples of a broadcast channel, and PRACH is an example of a random access channel.
 (データチャネル/制御チャネル)
 本開示の一実施例は、例えば、データチャネル及び制御チャネルの何れに適用してもよい。例えば、本開示の一実施例におけるチャネルをデータチャネルのPDSCH、PUSCH、PSSCH、又は、制御チャネルのPDCCH、PUCCH、PBCH、PSCCH、PSBCHの何れかに置き換えてもよい。
(Data Channel/Control Channel)
An embodiment of the present disclosure may be applied to, for example, any of a data channel and a control channel. For example, the channel in an embodiment of the present disclosure may be replaced with any of the data channels PDSCH, PUSCH, and PSSCH, or the control channels PDCCH, PUCCH, PBCH, PSCCH, and PSBCH.
 (参照信号)
 本開示の一実施例において、参照信号は、例えば、基地局及び移動局の双方で既知の信号であり、Reference Signal(RS)又はパイロット信号と呼ばれることもある。参照信号は、Demodulation Reference Signal(DMRS)、Channel State Information - Reference Signal(CSI-RS)、Tracking Reference Signal(TRS)、Phase Tracking Reference Signal(PTRS)、Cell-specific Reference Signal(CRS)、又は、Sounding Reference Signal(SRS)の何れでもよい。
(Reference signal)
In one embodiment of the present disclosure, the reference signal is, for example, a signal known by both the base station and the mobile station, and may be called a Reference Signal (RS) or a pilot signal. The reference signal may be any of a Demodulation Reference Signal (DMRS), a Channel State Information - Reference Signal (CSI-RS), a Tracking Reference Signal (TRS), a Phase Tracking Reference Signal (PTRS), a Cell-specific Reference Signal (CRS), or a Sounding Reference Signal (SRS).
 (時間間隔)
 本開示の一実施例において、時間リソースの単位は、スロット及びシンボルの1つ又は組み合わせに限らず、例えば、フレーム、スーパーフレーム、サブフレーム、スロット、タイムスロットサブスロット、ミニスロット又は、シンボル、Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier - Frequency Division Multiplexing(SC-FDMA)シンボルといった時間リソース単位でもよく、他の時間リソース単位でもよい。また、1スロットに含まれるシンボル数は、上述した実施の形態において例示したシンボル数に限定されず、他のシンボル数でもよい。
(Time interval)
In an embodiment of the present disclosure, the unit of time resource is not limited to one or a combination of slots and symbols, but may be, for example, a time resource unit such as a frame, a superframe, a subframe, a slot, a time slot subslot, a minislot, or a symbol, an Orthogonal Frequency Division Multiplexing (OFDM) symbol, a Single Carrier - Frequency Division Multiplexing (SC-FDMA) symbol, or another time resource unit. In addition, the number of symbols included in one slot is not limited to the number of symbols exemplified in the above embodiment, and may be another number of symbols.
 (周波数帯域)
 本開示の一実施例は、ライセンスバンド、アンライセンスバンドのいずれに適用してもよい。
(frequency band)
An embodiment of the present disclosure may be applied to either a licensed band or an unlicensed band.
 (通信)
 本開示の一実施例は、基地局と端末との間の通信(Uuリンク通信)、端末と端末との間の通信(Sidelink通信)、Vehicle to Everything(V2X)の通信のいずれに適用してもよい。例えば、本開示の一実施例におけるチャネルをPSCCH、PSSCH、Physical Sidelink Feedback Channel(PSFCH)、PSBCH、PDCCH、PUCCH、PDSCH、PUSCH、又は、PBCHの何れかに置き換えてもよい。
(communication)
An embodiment of the present disclosure may be applied to any of communication between a base station and a terminal (Uu link communication), communication between terminals (Sidelink communication), and Vehicle to Everything (V2X) communication. For example, the channel in an embodiment of the present disclosure may be replaced with any of PSCCH, PSSCH, Physical Sidelink Feedback Channel (PSFCH), PSBCH, PDCCH, PUCCH, PDSCH, PUSCH, and PBCH.
 また、本開示の一実施例は、地上のネットワーク、衛星又は高度疑似衛星(HAPS:High Altitude Pseudo Satellite)を用いた地上以外のネットワーク(NTN:Non-Terrestrial Network)のいずれに適用してもよい。また、本開示の一実施例は、セルサイズの大きなネットワーク、超広帯域伝送ネットワークなどシンボル長やスロット長に比べて伝送遅延が大きい地上ネットワークに適用してもよい。 Furthermore, an embodiment of the present disclosure may be applied to either a terrestrial network or a non-terrestrial network (NTN: Non-Terrestrial Network) using a satellite or a High Altitude Pseudo Satellite (HAPS: High Altitude Pseudo Satellite). Furthermore, an embodiment of the present disclosure may be applied to a terrestrial network in which the transmission delay is large compared to the symbol length or slot length, such as a network with a large cell size or an ultra-wideband transmission network.
 (アンテナポート)
 本開示の一実施例において、アンテナポートは、1本又は複数の物理アンテナから構成される論理的なアンテナ(アンテナグループ)を指す。例えば、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えば、アンテナポートが何本の物理アンテナから構成されるかは規定されず、端末局が基準信号(Reference signal)を送信できる最小単位として規定されてよい。また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
(Antenna port)
In one embodiment of the present disclosure, an antenna port refers to a logical antenna (antenna group) consisting of one or more physical antennas. For example, an antenna port does not necessarily refer to one physical antenna, but may refer to an array antenna consisting of multiple antennas. For example, an antenna port may be defined as the minimum unit by which a terminal station can transmit a reference signal, without specifying how many physical antennas the antenna port is composed of. In addition, an antenna port may be defined as the minimum unit by which a weighting of a precoding vector is multiplied.
 <5G NRのシステムアーキテクチャおよびプロトコルスタック>
 3GPPは、100GHzまでの周波数範囲で動作する新無線アクセス技術(NR)の開発を含む第5世代携帯電話技術(単に「5G」ともいう)の次のリリースに向けて作業を続けている。5G規格の初版は2017年の終わりに完成しており、これにより、5G NRの規格に準拠した端末(例えば、スマートフォン)の試作および商用展開に移ることが可能である。
<5G NR system architecture and protocol stack>
3GPP continues to work on the next release of the fifth generation of mobile phone technology (also simply referred to as "5G"), which includes the development of a new radio access technology (NR) that will operate in the frequency range up to 100 GHz. The first version of the 5G standard was completed in late 2017, allowing the prototyping and commercial deployment of 5G NR compliant terminals (e.g., smartphones).
 例えば、システムアーキテクチャは、全体としては、gNBを備えるNG-RAN(Next Generation - Radio Access Network)を想定する。gNBは、NG無線アクセスのユーザプレーン(SDAP/PDCP/RLC/MAC/PHY)および制御プレーン(RRC)のプロトコルのUE側の終端を提供する。gNBは、Xnインタフェースによって互いに接続されている。また、gNBは、Next Generation(NG)インタフェースによってNGC(Next Generation Core)に、より具体的には、NG-CインタフェースによってAMF(Access and Mobility Management Function)(例えば、AMFを行う特定のコアエンティティ)に、また、NG-UインタフェースによってUPF(User Plane Function)(例えば、UPFを行う特定のコアエンティティ)に接続されている。NG-RANアーキテクチャを図18に示す(例えば、3GPP TS 38.300 v15.6.0, section 4参照)。 For example, the system architecture as a whole assumes an NG-RAN (Next Generation - Radio Access Network) comprising gNBs. The gNBs provide the UE-side termination of the NG radio access user plane (SDAP/PDCP/RLC/MAC/PHY) and control plane (RRC) protocols. The gNBs are connected to each other via an Xn interface. The gNBs are also connected to the Next Generation Core (NGC) via a Next Generation (NG) interface, more specifically to the Access and Mobility Management Function (AMF) (e.g., a specific core entity performing AMF) via an NG-C interface, and to the User Plane Function (UPF) (e.g., a specific core entity performing UPF) via an NG-U interface. The NG-RAN architecture is shown in Figure 18 (see, for example, 3GPP TS 38.300 v15.6.0, section 4).
 NRのユーザプレーンのプロトコルスタック(例えば、3GPP TS 38.300, section 4.4.1参照)は、gNBにおいてネットワーク側で終端されるPDCP(Packet Data Convergence Protocol(TS 38.300の第6.4節参照))サブレイヤ、RLC(Radio Link Control(TS 38.300の第6.3節参照))サブレイヤ、およびMAC(Medium Access Control(TS 38.300の第6.2節参照))サブレイヤを含む。また、新たなアクセス層(AS:Access Stratum)のサブレイヤ(SDAP:Service Data Adaptation Protocol)がPDCPの上に導入されている(例えば、3GPP TS 38.300の第6.5節参照)。また、制御プレーンのプロトコルスタックがNRのために定義されている(例えば、TS 38.300, section 4.4.2参照)。レイヤ2の機能の概要がTS 38.300の第6節に記載されている。PDCPサブレイヤ、RLCサブレイヤ、およびMACサブレイヤの機能は、それぞれ、TS 38.300の第6.4節、第6.3節、および第6.2節に列挙されている。RRCレイヤの機能は、TS 38.300の第7節に列挙されている。 The NR user plane protocol stack (see, for example, 3GPP TS 38.300, section 4.4.1) includes the PDCP (Packet Data Convergence Protocol (see, for example, TS 38.300, section 6.4)) sublayer, the RLC (Radio Link Control (see, for example, TS 38.300, section 6.3)) sublayer, and the MAC (Medium Access Control (see, for example, TS 38.300, section 6.2)) sublayer, which are terminated on the network side at the gNB. A new Access Stratum (AS) sublayer (SDAP: Service Data Adaptation Protocol) is also introduced on top of PDCP (see, for example, 3GPP TS 38.300, section 6.5). A control plane protocol stack is also defined for NR (see, for example, TS 38.300, section 4.4.2). An overview of Layer 2 functions is given in clause 6 of TS 38.300. The functions of the PDCP sublayer, RLC sublayer, and MAC sublayer are listed in clauses 6.4, 6.3, and 6.2 of TS 38.300, respectively. The functions of the RRC layer are listed in clause 7 of TS 38.300.
 例えば、Medium-Access-Controlレイヤは、論理チャネル(logical channel)の多重化と、様々なニューメロロジーを扱うことを含むスケジューリングおよびスケジューリング関連の諸機能と、を扱う。 For example, the Medium-Access-Control layer handles multiplexing of logical channels and scheduling and scheduling-related functions, including handling various numerologies.
 例えば、物理レイヤ(PHY)は、符号化、PHY HARQ処理、変調、マルチアンテナ処理、および適切な物理的時間-周波数リソースへの信号のマッピングの役割を担う。また、物理レイヤは、物理チャネルへのトランスポートチャネルのマッピングを扱う。物理レイヤは、MACレイヤにトランスポートチャネルの形でサービスを提供する。物理チャネルは、特定のトランスポートチャネルの送信に使用される時間周波数リソースのセットに対応し、各トランスポートチャネルは、対応する物理チャネルにマッピングされる。例えば、物理チャネルには、上り物理チャネルとして、PRACH(Physical Random Access Channel)、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)があり、下り物理チャネルとして、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)、PBCH(Physical Broadcast Channel) がある。 For example, the physical layer (PHY) is responsible for coding, PHY HARQ processing, modulation, multi-antenna processing, and mapping of signals to appropriate physical time-frequency resources. The physical layer also handles the mapping of transport channels to physical channels. The physical layer provides services to the MAC layer in the form of transport channels. A physical channel corresponds to a set of time-frequency resources used for the transmission of a particular transport channel, and each transport channel is mapped to a corresponding physical channel. For example, the physical channels include the PRACH (Physical Random Access Channel), PUSCH (Physical Uplink Shared Channel), and PUCCH (Physical Uplink Control Channel) as uplink physical channels, and the PDSCH (Physical Downlink Shared Channel), PDCCH (Physical Downlink Control Channel), and PBCH (Physical Broadcast Channel) as downlink physical channels.
 NRのユースケース/展開シナリオには、データレート、レイテンシ、およびカバレッジの点で多様な要件を有するenhanced mobile broadband(eMBB)、ultra-reliable low-latency communications(URLLC)、massive machine type communication(mMTC)が含まれ得る。例えば、eMBBは、IMT-Advancedが提供するデータレートの3倍程度のピークデータレート(下りリンクにおいて20Gbpsおよび上りリンクにおいて10Gbps)および実効(user-experienced)データレートをサポートすることが期待されている。一方、URLLCの場合、より厳しい要件が超低レイテンシ(ユーザプレーンのレイテンシについてULおよびDLのそれぞれで0.5ms)および高信頼性(1ms内において1-10-5)について課されている。最後に、mMTCでは、好ましくは高い接続密度(都市環境において装置1,000,000台/km)、悪環境における広いカバレッジ、および低価格の装置のための極めて寿命の長い電池(15年)が求められうる。 NR use cases/deployment scenarios may include enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine type communication (mMTC), which have diverse requirements in terms of data rate, latency, and coverage. For example, eMBB is expected to support peak data rates (20 Gbps in the downlink and 10 Gbps in the uplink) and effective (user-experienced) data rates that are about three times higher than the data rates offered by IMT-Advanced. On the other hand, for URLLC, stricter requirements are imposed on ultra-low latency (0.5 ms for user plane latency in UL and DL, respectively) and high reliability (1-10-5 within 1 ms). Finally, mMTC may require preferably high connection density (1,000,000 devices/km 2 in urban environments), wide coverage in adverse environments, and extremely long battery life (15 years) for low-cost devices.
 そのため、1つのユースケースに適したOFDMのニューメロロジー(例えば、サブキャリア間隔、OFDMシンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長、スケジューリング区間毎のシンボル数)が他のユースケースには有効でない場合がある。例えば、低レイテンシのサービスでは、好ましくは、mMTCのサービスよりもシンボル長が短いこと(したがって、サブキャリア間隔が大きいこと)および/またはスケジューリング区間(TTIともいう)毎のシンボル数が少ないことが求められうる。さらに、チャネルの遅延スプレッドが大きい展開シナリオでは、好ましくは、遅延スプレッドが短いシナリオよりもCP長が長いことが求められうる。サブキャリア間隔は、同様のCPオーバーヘッドが維持されるように状況に応じて最適化されてもよい。NRがサポートするサブキャリア間隔の値は、1つ以上であってよい。これに対応して、現在、15kHz、30kHz、60kHz…のサブキャリア間隔が考えられている。シンボル長Tuおよびサブキャリア間隔Δfは、式Δf=1/Tuによって直接関係づけられている。LTEシステムと同様に、用語「リソースエレメント」を、1つのOFDM/SC-FDMAシンボルの長さに対する1つのサブキャリアから構成される最小のリソース単位を意味するように使用することができる。 Therefore, OFDM numerology (e.g., subcarrier spacing, OFDM symbol length, cyclic prefix (CP) length, number of symbols per scheduling interval) suitable for one use case may not be valid for other use cases. For example, low latency services may preferably require a shorter symbol length (and therefore a larger subcarrier spacing) and/or fewer symbols per scheduling interval (also called TTI) than mMTC services. Furthermore, deployment scenarios with large channel delay spreads may preferably require a longer CP length than scenarios with short delay spreads. Subcarrier spacing may be optimized accordingly to maintain similar CP overhead. NR may support one or more subcarrier spacing values. Correspondingly, subcarrier spacings of 15 kHz, 30 kHz, 60 kHz... are currently considered. The symbol length Tu and subcarrier spacing Δf are directly related by the formula Δf = 1/Tu. Similar to LTE systems, the term "resource element" can be used to mean the smallest resource unit consisting of one subcarrier for the length of one OFDM/SC-FDMA symbol.
 新無線システム5G-NRでは、各ニューメロロジーおよび各キャリアについて、サブキャリアおよびOFDMシンボルのリソースグリッドが上りリンクおよび下りリンクのそれぞれに定義される。リソースグリッドの各エレメントは、リソースエレメントと呼ばれ、周波数領域の周波数インデックスおよび時間領域のシンボル位置に基づいて特定される(3GPP TS 38.211 v15.6.0参照)。 In the new wireless system 5G-NR, for each numerology and each carrier, a resource grid of subcarriers and OFDM symbols is defined for the uplink and downlink, respectively. Each element of the resource grid is called a resource element and is identified based on a frequency index in the frequency domain and a symbol position in the time domain (see 3GPP TS 38.211 v15.6.0).
 <5G NRにおけるNG-RANと5GCとの間の機能分離>
 図19は、NG-RANと5GCとの間の機能分離を示す。NG-RANの論理ノードは、gNBまたはng-eNBである。5GCは、論理ノードAMF、UPF、およびSMFを有する。
<Functional separation between NG-RAN and 5GC in 5G NR>
Figure 19 shows the functional separation between NG-RAN and 5GC. The logical nodes of NG-RAN are gNB or ng-eNB. 5GC has logical nodes AMF, UPF, and SMF.
 例えば、gNBおよびng-eNBは、以下の主な機能をホストする:
 - 無線ベアラ制御(Radio Bearer Control)、無線アドミッション制御(Radio Admission Control)、接続モビリティ制御(Connection Mobility Control)、上りリンクおよび下りリンクの両方におけるリソースのUEへの動的割当(スケジューリング)等の無線リソース管理(Radio Resource Management)の機能;
 - データのIPヘッダ圧縮、暗号化、および完全性保護;
 - UEが提供する情報からAMFへのルーティングを決定することができない場合のUEのアタッチ時のAMFの選択;
 - UPFに向けたユーザプレーンデータのルーティング;
 - AMFに向けた制御プレーン情報のルーティング;
 - 接続のセットアップおよび解除;
 - ページングメッセージのスケジューリングおよび送信;
 - システム報知情報(AMFまたは運用管理保守機能(OAM:Operation, Admission, Maintenance)が発信源)のスケジューリングおよび送信;
 - モビリティおよびスケジューリングのための測定および測定報告の設定;
 - 上りリンクにおけるトランスポートレベルのパケットマーキング;
 - セッション管理;
 - ネットワークスライシングのサポート;
 - QoSフローの管理およびデータ無線ベアラに対するマッピング;
 - RRC_INACTIVE状態のUEのサポート;
 - NASメッセージの配信機能;
 - 無線アクセスネットワークの共有;
 - デュアルコネクティビティ;
 - NRとE-UTRAとの緊密な連携。
For example, gNBs and ng-eNBs host the following main functions:
- Radio Resource Management functions such as Radio Bearer Control, Radio Admission Control, Connection Mobility Control, dynamic allocation (scheduling) of resources to UEs in both uplink and downlink;
- IP header compression, encryption and integrity protection of the data;
- Selection of an AMF at UE attach time when routing to an AMF cannot be determined from information provided by the UE;
- Routing of user plane data towards the UPF;
- Routing of control plane information towards the AMF;
- Setting up and tearing down connections;
- scheduling and transmission of paging messages;
Scheduling and transmission of system broadcast information (AMF or Operation, Admission, Maintenance (OAM) origin);
- configuration of measurements and measurement reporting for mobility and scheduling;
- Transport level packet marking in the uplink;
- Session management;
- Support for network slicing;
- Management of QoS flows and mapping to data radio bearers;
- Support for UEs in RRC_INACTIVE state;
- NAS message delivery function;
- sharing of radio access networks;
- Dual connectivity;
- Close cooperation between NR and E-UTRA.
 Access and Mobility Management Function(AMF)は、以下の主な機能をホストする:
 - Non-Access Stratum(NAS)シグナリングを終端させる機能;
 - NASシグナリングのセキュリティ;
 - Access Stratum(AS)のセキュリティ制御;
 - 3GPPのアクセスネットワーク間でのモビリティのためのコアネットワーク(CN:Core Network)ノード間シグナリング;
 - アイドルモードのUEへの到達可能性(ページングの再送信の制御および実行を含む);
 - 登録エリアの管理;
 - システム内モビリティおよびシステム間モビリティのサポート;
 - アクセス認証;
 - ローミング権限のチェックを含むアクセス承認;
 - モビリティ管理制御(加入およびポリシー);
 - ネットワークスライシングのサポート;
 - Session Management Function(SMF)の選択。
The Access and Mobility Management Function (AMF) hosts the following main functions:
– the ability to terminate Non-Access Stratum (NAS) signalling;
- NAS signalling security;
- Access Stratum (AS) security control;
- Core Network (CN) inter-node signaling for mobility between 3GPP access networks;
- Reachability to idle mode UEs (including control and execution of paging retransmissions);
- Managing the registration area;
- Support for intra-system and inter-system mobility;
- Access authentication;
- Access authorization, including checking roaming privileges;
- Mobility management control (subscription and policy);
- Support for network slicing;
– Selection of Session Management Function (SMF).
 さらに、User Plane Function(UPF)は、以下の主な機能をホストする:
 - intra-RATモビリティ/inter-RATモビリティ(適用可能な場合)のためのアンカーポイント;
 - データネットワークとの相互接続のための外部PDU(Protocol Data Unit)セッションポイント;
 - パケットのルーティングおよび転送;
 - パケット検査およびユーザプレーン部分のポリシールールの強制(Policy rule enforcement);
 - トラフィック使用量の報告;
 - データネットワークへのトラフィックフローのルーティングをサポートするための上りリンククラス分類(uplink classifier);
 - マルチホームPDUセッション(multi-homed PDU session)をサポートするための分岐点(Branching Point);
 - ユーザプレーンに対するQoS処理(例えば、パケットフィルタリング、ゲーティング(gating)、UL/DLレート制御(UL/DL rate enforcement);
 - 上りリンクトラフィックの検証(SDFのQoSフローに対するマッピング);
 - 下りリンクパケットのバッファリングおよび下りリンクデータ通知のトリガ機能。
Additionally, the User Plane Function (UPF) hosts the following main functions:
- anchor point for intra/inter-RAT mobility (if applicable);
- external PDU (Protocol Data Unit) Session Points for interconnection with data networks;
- Packet routing and forwarding;
- Packet inspection and policy rule enforcement for the user plane part;
- Traffic usage reporting;
- an uplink classifier to support routing of traffic flows to the data network;
- Branching Point to support multi-homed PDU sessions;
QoS processing for the user plane (e.g. packet filtering, gating, UL/DL rate enforcement);
- Uplink traffic validation (mapping of SDF to QoS flows);
- Downlink packet buffering and downlink data notification triggering.
 最後に、Session Management Function(SMF)は、以下の主な機能をホストする:
 - セッション管理;
 - UEに対するIPアドレスの割当および管理;
 - UPFの選択および制御;
 - 適切な宛先にトラフィックをルーティングするためのUser Plane Function(UPF)におけるトラフィックステアリング(traffic steering)の設定機能;
 - 制御部分のポリシーの強制およびQoS;
 - 下りリンクデータの通知。
Finally, the Session Management Function (SMF) hosts the following main functions:
- Session management;
- Allocation and management of IP addresses for UEs;
- Selection and control of UPF;
- configuration of traffic steering in the User Plane Function (UPF) to route traffic to the appropriate destination;
- Control policy enforcement and QoS;
- Notification of downlink data.
 <RRC接続のセットアップおよび再設定の手順>
 図20は、NAS部分の、UEがRRC_IDLEからRRC_CONNECTEDに移行する際のUE、gNB、およびAMF(5GCエンティティ)の間のやり取りのいくつかを示す(TS 38.300 v15.6.0参照)。
<RRC connection setup and reconfiguration procedure>
Figure 20 shows some of the interactions between the UE, gNB, and AMF (5GC entities) when the UE transitions from RRC_IDLE to RRC_CONNECTED, NAS part (see TS 38.300 v15.6.0).
 RRCは、UEおよびgNBの設定に使用される上位レイヤのシグナリング(プロトコル)である。この移行により、AMFは、UEコンテキストデータ(これは、例えば、PDUセッションコンテキスト、セキュリティキー、UE無線性能(UE Radio Capability)、UEセキュリティ性能(UE Security Capabilities)等を含む)を用意し、初期コンテキストセットアップ要求(INITIAL CONTEXT SETUP REQUEST)とともにgNBに送る。そして、gNBは、UEと一緒に、ASセキュリティをアクティブにする。これは、gNBがUEにSecurityModeCommandメッセージを送信し、UEがSecurityModeCompleteメッセージでgNBに応答することによって行われる。その後、gNBは、UEにRRCReconfigurationメッセージを送信し、これに対するUEからのRRCReconfigurationCompleteをgNBが受信することによって、Signaling Radio Bearer 2(SRB2)およびData Radio Bearer(DRB)をセットアップするための再設定を行う。シグナリングのみの接続については、SRB2およびDRBがセットアップされないため、RRCReconfigurationに関するステップは省かれる。最後に、gNBは、初期コンテキストセットアップ応答(INITIAL CONTEXT SETUP RESPONSE)でセットアップ手順が完了したことをAMFに通知する。 RRC is a higher layer signaling (protocol) used for UE and gNB configuration. With this transition, the AMF prepares UE context data (which includes, for example, PDU session context, security keys, UE Radio Capability, UE Security Capabilities, etc.) and sends it to the gNB with an INITIAL CONTEXT SETUP REQUEST. The gNB then activates AS security together with the UE. This is done by the gNB sending a SecurityModeCommand message to the UE and the UE responding with a SecurityModeComplete message to the gNB. The gNB then sends an RRCReconfiguration message to the UE, and upon receiving an RRCReconfigurationComplete from the UE, the gNB performs reconfiguration to set up Signaling Radio Bearer 2 (SRB2) and Data Radio Bearer (DRB). For signaling-only connections, the RRCReconfiguration steps are omitted, since SRB2 and DRB are not set up. Finally, the gNB notifies the AMF that the setup procedure is complete with an INITIAL CONTEXT SETUP RESPONSE.
 したがって、本開示では、gNodeBとのNext Generation(NG)接続を動作時に確立する制御回路と、gNodeBとユーザ機器(UE:User Equipment)との間のシグナリング無線ベアラがセットアップされるように動作時にNG接続を介してgNodeBに初期コンテキストセットアップメッセージを送信する送信部と、を備える、5th Generation Core(5GC)のエンティティ(例えば、AMF、SMF等)が提供される。具体的には、gNodeBは、リソース割当設定情報要素(IE: Information Element)を含むRadio Resource Control(RRC)シグナリングを、シグナリング無線ベアラを介してUEに送信する。そして、UEは、リソース割当設定に基づき上りリンクにおける送信または下りリンクにおける受信を行う。 Therefore, the present disclosure provides a 5th Generation Core (5GC) entity (e.g., AMF, SMF, etc.) comprising: a control circuit that, during operation, establishes a Next Generation (NG) connection with a gNodeB; and a transmitter that, during operation, transmits an initial context setup message to the gNodeB via the NG connection such that a signaling radio bearer between the gNodeB and a user equipment (UE) is set up. Specifically, the gNodeB transmits Radio Resource Control (RRC) signaling including a resource allocation configuration information element (IE) to the UE via the signaling radio bearer. The UE then transmits in the uplink or receives in the downlink based on the resource allocation configuration.
 <2020年以降のIMTの利用シナリオ>
 図21は、5G NRのためのユースケースのいくつかを示す。3rd generation partnership project new radio(3GPP NR)では、多種多様なサービスおよびアプリケーションをサポートすることがIMT-2020によって構想されていた3つのユースケースが検討されている。大容量・高速通信(eMBB:enhanced mobile-broadband)のための第一段階の仕様の策定が終了している。現在および将来の作業には、eMBBのサポートを拡充していくことに加えて、高信頼・超低遅延通信(URLLC:ultra-reliable and low-latency communications)および多数同時接続マシンタイプ通信(mMTC:massive machine-type communicationsのための標準化が含まれる。図21は、2020年以降のIMTの構想上の利用シナリオのいくつかの例を示す(例えばITU-R M.2083 図2参照)。
<IMT usage scenarios after 2020>
Figure 21 shows some of the use cases for 5G NR. The 3rd generation partnership project new radio (3GPP NR) considers three use cases that were envisioned by IMT-2020 to support a wide variety of services and applications. The first phase of specifications for enhanced mobile-broadband (eMBB) has been completed. Current and future work includes standardization for ultra-reliable and low-latency communications (URLLC) and massive machine-type communications (mMTC), in addition to expanding support for eMBB. Figure 21 shows some examples of envisioned usage scenarios for IMT beyond 2020 (see, for example, ITU-R M.2083 Figure 2).
 URLLCのユースケースには、スループット、レイテンシ(遅延)、および可用性のような性能についての厳格な要件がある。URLLCのユースケースは、工業生産プロセスまたは製造プロセスのワイヤレス制御、遠隔医療手術、スマートグリッドにおける送配電の自動化、交通安全等の今後のこれらのアプリケーションを実現するための要素技術の1つとして構想されている。URLLCの超高信頼性は、TR 38.913によって設定された要件を満たす技術を特定することによってサポートされる。リリース15におけるNR URLLCでは、重要な要件として、目標とするユーザプレーンのレイテンシがUL(上りリンク)で0.5ms、DL(下りリンク)で0.5msであることが含まれている。一度のパケット送信に対する全般的なURLLCの要件は、ユーザプレーンのレイテンシが1msの場合、32バイトのパケットサイズに対してブロック誤り率(BLER:block error rate)が1E-5であることである。 The URLLC use cases have stringent requirements for performance such as throughput, latency, and availability. It is envisioned as one of the enabling technologies for future applications such as wireless control of industrial or manufacturing processes, remote medical surgery, automation of power transmission and distribution in smart grids, and road safety. URLLC's ultra-high reliability is supported by identifying technologies that meet the requirements set by TR 38.913. For NR URLLC in Release 15, key requirements include a target user plane latency of 0.5 ms for UL (uplink) and 0.5 ms for DL (downlink). The overall URLLC requirement for a single packet transmission is a block error rate (BLER) of 1E-5 for a packet size of 32 bytes with a user plane latency of 1 ms.
 物理レイヤの観点では、信頼性は、多くの採り得る方法で向上可能である。現在の信頼性向上の余地としては、URLLC用の別個のCQI表、よりコンパクトなDCIフォーマット、PDCCHの繰り返し等を定義することが含まれる。しかしながら、この余地は、NRが(NR URLLCの重要要件に関し)より安定しかつより開発されるにつれて、超高信頼性の実現のために広がりうる。リリース15におけるNR URLLCの具体的なユースケースには、拡張現実/仮想現実(AR/VR)、e-ヘルス、e-セイフティ、およびミッションクリティカルなアプリケーションが含まれる。 From a physical layer perspective, reliability can be improved in many possible ways. Current room for reliability improvement includes defining a separate CQI table for URLLC, more compact DCI formats, PDCCH repetition, etc. However, this room can be expanded to achieve ultra-high reliability as NR becomes more stable and more developed (with respect to the key requirements of NR URLLC). Specific use cases for NR URLLC in Release 15 include Augmented Reality/Virtual Reality (AR/VR), e-health, e-safety, and mission-critical applications.
 また、NR URLLCが目標とする技術強化は、レイテンシの改善および信頼性の向上を目指している。レイテンシの改善のための技術強化には、設定可能なニューメロロジー、フレキシブルなマッピングによる非スロットベースのスケジューリング、グラントフリーの(設定されたグラントの)上りリンク、データチャネルにおけるスロットレベルでの繰り返し、および下りリンクでのプリエンプション(Pre-emption)が含まれる。プリエンプションとは、リソースが既に割り当てられた送信が停止され、当該既に割り当てられたリソースが、後から要求されたより低いレイテンシ/より高い優先度の要件の他の送信に使用されることを意味する。したがって、既に許可されていた送信は、後の送信によって差し替えられる。プリエンプションは、具体的なサービスタイプと無関係に適用可能である。例えば、サービスタイプA(URLLC)の送信が、サービスタイプB(eMBB等)の送信によって差し替えられてもよい。信頼性向上についての技術強化には、1E-5の目標BLERのための専用のCQI/MCS表が含まれる。 In addition, the technology enhancements targeted by NR URLLC aim to improve latency and reliability. Technology enhancements for improving latency include configurable numerology, non-slot-based scheduling with flexible mapping, grant-free (configured grant) uplink, slot-level repetition in data channel, and pre-emption in downlink. Pre-emption means that a transmission for which resources have already been allocated is stopped and the already allocated resources are used for other transmissions with lower latency/higher priority requirements that are requested later. Thus, a transmission that was already allowed is preempted by a later transmission. Pre-emption is applicable regardless of the specific service type. For example, a transmission of service type A (URLLC) may be preempted by a transmission of service type B (eMBB, etc.). Technology enhancements for improving reliability include a dedicated CQI/MCS table for a target BLER of 1E-5.
 mMTC(massive machine type communication)のユースケースの特徴は、典型的には遅延の影響を受けにくい比較的少量のデータを送信する接続装置の数が極めて多いことである。装置には、低価格であること、および電池寿命が非常に長いことが要求される。NRの観点からは、非常に狭い帯域幅部分を利用することが、UEから見て電力が節約されかつ電池の長寿命化を可能にする1つの解決法である。 The mMTC (massive machine type communication) use case is characterized by a very large number of connected devices transmitting relatively small amounts of data that are typically not sensitive to latency. The devices are required to be low cost and have very long battery life. From an NR perspective, utilizing very narrow bandwidth portions is one solution that saves power from the UE's perspective and allows for long battery life.
 上述のように、NRにおける信頼性向上のスコープはより広くなることが予測される。あらゆるケースにとっての重要要件の1つであって、例えばURLLCおよびmMTCについての重要要件が高信頼性または超高信頼性である。いくつかのメカニズムが信頼性を無線の観点およびネットワークの観点から向上させることができる。概して、信頼性の向上に役立つ可能性がある2つ~3つの重要な領域が存在する。これらの領域には、コンパクトな制御チャネル情報、データチャネル/制御チャネルの繰り返し、および周波数領域、時間領域、および/または空間領域に関するダイバーシティがある。これらの領域は、特定の通信シナリオにかかわらず一般に信頼性向上に適用可能である。 As mentioned above, the scope of reliability improvement in NR is expected to be broader. One of the key requirements for all cases, e.g. for URLLC and mMTC, is high or ultra-high reliability. Several mechanisms can improve reliability from a radio perspective and a network perspective. In general, there are two to three key areas that can help improve reliability. These areas include compact control channel information, data channel/control channel repetition, and diversity in frequency, time, and/or spatial domains. These areas are generally applicable to reliability improvement regardless of the specific communication scenario.
 NR URLLCに関し、ファクトリーオートメーション、運送業、および電力の分配のような、要件がより厳しいさらなるユースケースが想定されている。厳しい要件とは、高い信頼性(10-6レベルまでの信頼性)、高い可用性、256バイトまでのパケットサイズ、数μs程度までの時刻同期(time synchronization)(ユースケースに応じて、値を、周波数範囲および0.5ms~1ms程度の短いレイテンシ(例えば、目標とするユーザプレーンでの0.5msのレイテンシ)に応じて1μsまたは数μsとすることができる)である。 For NR URLLC, further use cases with more demanding requirements are envisaged, such as factory automation, transportation and power distribution. The demanding requirements are high reliability (up to 10-6 level of reliability), high availability, packet size up to 256 bytes, time synchronization up to a few μs (depending on the use case, the value can be 1 μs or a few μs depending on the frequency range and low latency of around 0.5 ms to 1 ms (e.g. 0.5 ms latency at the targeted user plane).
 さらに、NR URLLCについては、物理レイヤの観点からいくつかの技術強化が有り得る。これらの技術強化には、コンパクトなDCIに関するPDCCH(Physical Downlink Control Channel)の強化、PDCCHの繰り返し、PDCCHのモニタリングの増加がある。また、UCI(Uplink Control Information)の強化は、enhanced HARQ(Hybrid Automatic Repeat Request)およびCSIフィードバックの強化に関係する。また、ミニスロットレベルのホッピングに関係するPUSCHの強化、および再送信/繰り返しの強化が有り得る。用語「ミニスロット」は、スロットより少数のシンボルを含むTransmission Time Interval(TTI)を指す(スロットは、14個のシンボルを備える)。 Furthermore, for NR URLLC, there may be several technology enhancements from a physical layer perspective. These include PDCCH (Physical Downlink Control Channel) enhancements for compact DCI, PDCCH repetition, and increased monitoring of PDCCH. Also, UCI (Uplink Control Information) enhancements related to enhanced HARQ (Hybrid Automatic Repeat Request) and CSI feedback enhancements. There may also be PUSCH enhancements related to minislot level hopping, and retransmission/repetition enhancements. The term "minislot" refers to a Transmission Time Interval (TTI) that contains fewer symbols than a slot (a slot comprises 14 symbols).
 <QoS制御>
 5GのQoS(Quality of Service)モデルは、QoSフローに基づいており、保証されたフロービットレートが求められるQoSフロー(GBR:Guaranteed Bit Rate QoSフロー)、および、保証されたフロービットレートが求められないQoSフロー(非GBR QoSフロー)をいずれもサポートする。したがって、NASレベルでは、QoSフローは、PDUセッションにおける最も微細な粒度のQoSの区分である。QoSフローは、NG-Uインタフェースを介してカプセル化ヘッダ(encapsulation header)において搬送されるQoSフローID(QFI:QoS Flow ID)によってPDUセッション内で特定される。
<QoS Control>
The 5G Quality of Service (QoS) model is based on QoS flows and supports both QoS flows that require a guaranteed flow bit rate (GBR QoS flows) and QoS flows that do not require a guaranteed flow bit rate (non-GBR QoS flows). Thus, at the NAS level, QoS flows are the finest granularity of QoS partitioning in a PDU session. QoS flows are identified within a PDU session by a QoS Flow ID (QFI) carried in the encapsulation header over the NG-U interface.
 各UEについて、5GCは、1つ以上のPDUセッションを確立する。各UEについて、PDUセッションに合わせて、NG-RANは、例えば図20を参照して上に示したように少なくとも1つのData Radio Bearers(DRB)を確立する。また、そのPDUセッションのQoSフローに対する追加のDRBが後から設定可能である(いつ設定するかはNG-RAN次第である)。NG-RANは、様々なPDUセッションに属するパケットを様々なDRBにマッピングする。UEおよび5GCにおけるNASレベルパケットフィルタが、ULパケットおよびDLパケットとQoSフローとを関連付けるのに対し、UEおよびNG-RANにおけるASレベルマッピングルールは、UL QoSフローおよびDL QoSフローとDRBとを関連付ける。 For each UE, 5GC establishes one or more PDU sessions. For each UE, the NG-RAN establishes at least one Data Radio Bearer (DRB) for the PDU session, e.g. as shown above with reference to Figure 20. Additional DRBs for the QoS flows of the PDU session can be configured later (when it is up to the NG-RAN). The NG-RAN maps packets belonging to different PDU sessions to different DRBs. The NAS level packet filters in the UE and 5GC associate UL and DL packets with QoS flows, whereas the AS level mapping rules in the UE and NG-RAN associate UL and DL QoS flows with DRBs.
 図22は、5G NRの非ローミング参照アーキテクチャ(non-roaming reference architecture)を示す(TS 23.501 v16.1.0, section 4.23参照)。Application Function(AF)(例えば、図21に例示した、5Gのサービスをホストする外部アプリケーションサーバ)は、サービスを提供するために3GPPコアネットワークとやり取りを行う。例えば、トラフィックのルーティングに影響を与えるアプリケーションをサポートするために、Network Exposure Function(NEF)にアクセスすること、またはポリシー制御(例えば、QoS制御)のためにポリシーフレームワークとやり取りすること(Policy Control Function(PCF)参照)である。オペレーターによる配備に基づいて、オペレーターによって信頼されていると考えられるApplication Functionは、関連するNetwork Functionと直接やり取りすることができる。Network Functionに直接アクセスすることがオペレーターから許可されていないApplication Functionは、NEFを介することにより外部に対する解放フレームワークを使用して関連するNetwork Functionとやり取りする。 Figure 22 shows the non-roaming reference architecture for 5G NR (see TS 23.501 v16.1.0, section 4.23). An Application Function (AF) (e.g. an external application server hosting 5G services as illustrated in Figure 21) interacts with the 3GPP core network to provide services, e.g. accessing a Network Exposure Function (NEF) to support applications that affect traffic routing, or interacting with a policy framework for policy control (e.g. QoS control) (see Policy Control Function (PCF)). Based on the operator's deployment, Application Functions that are considered trusted by the operator can interact directly with the relevant Network Functions. Application Functions that are not allowed by the operator to access the Network Functions directly interact with the relevant Network Functions using an external exposure framework via the NEF.
 図22は、5Gアーキテクチャのさらなる機能単位、すなわち、Network Slice Selection Function(NSSF)、Network Repository Function(NRF)、Unified Data Management(UDM)、Authentication Server Function(AUSF)、Access and Mobility Management Function(AMF)、Session Management Function(SMF)、およびData Network(DN、例えば、オペレーターによるサービス、インターネットアクセス、またはサードパーティーによるサービス)をさらに示す。コアネットワークの機能およびアプリケーションサービスの全部または一部がクラウドコンピューティング環境において展開されかつ動作してもよい。 Figure 22 further shows further functional units of the 5G architecture, namely Network Slice Selection Function (NSSF), Network Repository Function (NRF), Unified Data Management (UDM), Authentication Server Function (AUSF), Access and Mobility Management Function (AMF), Session Management Function (SMF), and Data Network (DN, e.g. operator provided services, Internet access, or third party provided services). All or part of the core network functions and application services may be deployed and run in a cloud computing environment.
 したがって、本開示では、QoS要件に応じたgNodeBとUEとの間の無線ベアラを含むPDUセッションを確立するために、動作時に、URLLCサービス、eMMBサービス、およびmMTCサービスの少なくとも1つに対するQoS要件を含む要求を5GCの機能(例えば、NEF、AMF、SMF、PCF、UPF等)の少なくとも1つに送信する送信部と、動作時に、確立されたPDUセッションを使用してサービスを行う制御回路と、を備える、アプリケーションサーバ(例えば、5GアーキテクチャのAF)が提供される。 Therefore, the present disclosure provides an application server (e.g., an AF in a 5G architecture) comprising: a transmitter that, in operation, transmits a request including QoS requirements for at least one of a URLLC service, an eMMB service, and an mMTC service to at least one of 5GC functions (e.g., a NEF, an AMF, an SMF, a PCF, an UPF, etc.) to establish a PDU session including a radio bearer between a gNodeB and a UE according to the QoS requirements; and a control circuit that, in operation, performs a service using the established PDU session.
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 The present disclosure can be realized by software, hardware, or software in conjunction with hardware. Each functional block used in the description of the above embodiments may be realized, in part or in whole, as an LSI, which is an integrated circuit, and each process described in the above embodiments may be controlled, in part or in whole, by one LSI or a combination of LSIs. The LSI may be composed of individual chips, or may be composed of one chip that contains some or all of the functional blocks. The LSI may have data input and output. Depending on the degree of integration, the LSI may be called an IC, system LSI, super LSI, or ultra LSI.
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。 The integrated circuit method is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Also, a field programmable gate array (FPGA) that can be programmed after LSI manufacturing, or a reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI, may be used. The present disclosure may be realized as digital processing or analog processing.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if an integrated circuit technology that can replace LSI appears due to advances in semiconductor technology or other derived technologies, it would be natural to use that technology to integrate functional blocks. The application of biotechnology, etc. is also a possibility.
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。 The present disclosure may be implemented in any type of apparatus, device, or system (collectively referred to as a communications apparatus) having communications capabilities. The communications apparatus may include a radio transceiver and processing/control circuitry. The radio transceiver may include a receiver and a transmitter, or both as functions. The radio transceiver (transmitter and receiver) may include an RF (Radio Frequency) module and one or more antennas. The RF module may include an amplifier, an RF modulator/demodulator, or the like. Non-limiting examples of communication devices include telephones (e.g., cell phones, smartphones, etc.), tablets, personal computers (PCs) (e.g., laptops, desktops, notebooks, etc.), cameras (e.g., digital still/video cameras), digital players (e.g., digital audio/video players, etc.), wearable devices (e.g., wearable cameras, smartwatches, tracking devices, etc.), game consoles, digital book readers, telehealth/telemedicine devices, communication-enabled vehicles or mobile transport (e.g., cars, planes, ships, etc.), and combinations of the above-mentioned devices.
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。 Communication devices are not limited to portable or mobile devices, but also include any type of equipment, device, or system that is non-portable or fixed, such as smart home devices (home appliances, lighting equipment, smart meters or measuring devices, control panels, etc.), vending machines, and any other "things" that may exist on an IoT (Internet of Things) network.
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。 Communications include data communication via cellular systems, wireless LAN systems, communication satellite systems, etc., as well as data communication via combinations of these.
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。 The communication apparatus also includes devices such as controllers and sensors that are connected or coupled to a communication device that performs the communication functions described in this disclosure. For example, it includes controllers and sensors that generate control signals and data signals used by the communication device to perform the communication functions of the communication apparatus.
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。 In addition, communication equipment includes infrastructure facilities, such as base stations, access points, and any other equipment, devices, or systems that communicate with or control the various non-limiting devices listed above.
 本開示の一実施例に係る端末は、周波数領域における測定リソースを分割した複数のブロック毎の受信品質の測定値に基づいて、報告情報を決定する制御回路と、前記報告情報を送信する送信回路と、を具備する。 A terminal according to one embodiment of the present disclosure includes a control circuit that determines report information based on measurement values of reception quality for each of a number of blocks into which a measurement resource in the frequency domain is divided, and a transmission circuit that transmits the report information.
 本開示の一実施例において、前記制御回路は、前記複数のブロックのうち規定数のブロックの前記測定値を含む前記報告情報を決定する。 In one embodiment of the present disclosure, the control circuit determines the reporting information including the measurement values of a predetermined number of blocks among the plurality of blocks.
 本開示の一実施例において、前記報告情報のフィールドには、前記規定数のブロックの前記測定値が降順又は昇順に格納される。 In one embodiment of the present disclosure, the measurement values of the specified number of blocks are stored in descending or ascending order in the report information field.
 本開示の一実施例において、前記報告情報のフィールドには、前記複数のブロック毎の前記測定値の平均値が格納される。 In one embodiment of the present disclosure, the report information field stores the average value of the measurement values for each of the multiple blocks.
 本開示の一実施例において、前記制御回路は、前記複数のブロックそれぞれの前記測定値と閾値との比較結果を示すビットマップ形式の情報を含む前記報告情報を決定する。 In one embodiment of the present disclosure, the control circuit determines the report information including information in a bitmap format indicating a comparison result between the measurement value of each of the plurality of blocks and a threshold value.
 本開示の一実施例において、前記制御回路は、前記複数のブロックそれぞれの前記測定値と閾値との比較結果を示すビットマップ形式の情報を含む第1の報告情報、及び、前記複数のブロックのうち規定数のブロックの前記測定値を含む第2の報告情報を決定する。 In one embodiment of the present disclosure, the control circuit determines first report information including information in a bitmap format indicating a comparison result between the measurement value of each of the plurality of blocks and a threshold value, and second report information including the measurement value of a predetermined number of blocks among the plurality of blocks.
 本開示の一実施例において、前記制御回路は、前記複数のブロックそれぞれの前記測定値によって得られる干渉分布に対応する干渉モデルに関する情報を含む前記報告情報を決定する。 In one embodiment of the present disclosure, the control circuit determines the report information including information about an interference model corresponding to an interference distribution obtained by the measurements of each of the plurality of blocks.
 本開示の一実施例において、前記報告情報は、前記複数のブロック毎の前記測定値の平均値に関する情報を含む。 In one embodiment of the present disclosure, the report information includes information regarding the average value of the measurement value for each of the multiple blocks.
 本開示の一実施例に係る基地局は、周波数領域における測定リソースを分割した複数のブロック毎の受信品質の測定値に基づく報告情報を受信する受信回路と、前記報告情報に基づいて、前記複数のブロック毎の前記測定値を推定する制御回路と、を具備する。 A base station according to one embodiment of the present disclosure includes a receiving circuit that receives report information based on measurement values of reception quality for each of a plurality of blocks into which a measurement resource in the frequency domain is divided, and a control circuit that estimates the measurement values for each of the plurality of blocks based on the report information.
 本開示の一実施例に係る通信方法において、端末は、周波数領域における測定リソースを分割した複数のブロック毎の受信品質の測定値に基づいて、報告情報を決定し、前記報告情報を送信する。 In a communication method according to one embodiment of the present disclosure, a terminal determines report information based on a measurement value of reception quality for each of a number of blocks into which a measurement resource in the frequency domain is divided, and transmits the report information.
 本開示の一実施例に係る通信方法において、基地局は、周波数領域における測定リソースを分割した複数のブロック毎の受信品質の測定値に基づく報告情報を受信し、前記報告情報に基づいて、前記複数のブロック毎の前記測定値を推定する。 In a communication method according to one embodiment of the present disclosure, a base station receives report information based on measurement values of reception quality for each of a plurality of blocks into which a measurement resource in the frequency domain is divided, and estimates the measurement values for each of the plurality of blocks based on the report information.
 2023年1月23日出願の特願2023-008095の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The entire disclosures of the specification, drawings and abstract contained in the Japanese application No. 2023-008095, filed on January 23, 2023, are incorporated herein by reference.
 本開示の一実施例は、無線通信システムに有用である。 An embodiment of the present disclosure is useful in wireless communication systems.
 100 基地局
 101,201 受信部
 102,202 復調・復号部
 103 CLI分布推定部
 104 スケジューリング部
 105,205 制御情報保持部
 106,206 データ・制御情報生成部
 107,207 符号化・変調部
 108,208 送信部
 200 端末
 203 CLI測定部
 204 送信制御部
 

 
100 Base station 101, 201 Receiving unit 102, 202 Demodulation and decoding unit 103 CLI distribution estimation unit 104 Scheduling unit 105, 205 Control information storage unit 106, 206 Data and control information generation unit 107, 207 Encoding and modulation unit 108, 208 Transmitting unit 200 Terminal 203 CLI measurement unit 204 Transmission control unit

Claims (13)

  1.  周波数領域における測定リソースを分割した複数のブロック毎の受信品質の測定値に基づいて、報告情報を決定する制御回路と、
     前記報告情報を送信する送信回路と、
     を具備する端末。
    a control circuit that determines report information based on a measurement value of reception quality for each of a plurality of blocks obtained by dividing a measurement resource in the frequency domain;
    A transmission circuit for transmitting the report information;
    A terminal comprising:
  2.  前記制御回路は、前記複数のブロックのうち規定数のブロックの前記測定値を含む前記報告情報を決定する、
     請求項1に記載の端末。
    the control circuitry determines the reporting information including the measurements for a predefined number of blocks of the plurality of blocks.
    The terminal according to claim 1.
  3.  前記報告情報のフィールドには、前記規定数のブロックの前記測定値が降順又は昇順に格納される、
     請求項2に記載の端末。
    The measurement values of the specified number of blocks are stored in a field of the report information in descending or ascending order.
    The terminal according to claim 2.
  4.  前記報告情報のフィールドには、前記複数のブロック毎の前記測定値の平均値が格納される、
     請求項3に記載の端末。
    The field of the report information stores an average value of the measurement values for each of the plurality of blocks.
    The terminal according to claim 3.
  5.  前記制御回路は、前記複数のブロックそれぞれの前記測定値と閾値との比較結果を示すビットマップ形式の情報を含む前記報告情報を決定する、
     請求項1に記載の端末。
    the control circuit determines the report information including information in a bitmap format indicative of a comparison result between the measurement value of each of the plurality of blocks and a threshold value.
    The terminal according to claim 1.
  6.  前記制御回路は、前記複数のブロックそれぞれの前記測定値と閾値との比較結果を示すビットマップ形式の情報を含む第1の報告情報、及び、前記複数のブロックのうち規定数のブロックの前記測定値を含む第2の報告情報を決定する、
     請求項1に記載の端末。
    The control circuit determines first report information including information in a bitmap format indicating a comparison result between the measurement value of each of the plurality of blocks and a threshold value, and second report information including the measurement value of a prescribed number of blocks among the plurality of blocks.
    The terminal according to claim 1.
  7.  前記制御回路は、前記複数のブロックそれぞれの前記測定値によって得られる干渉分布に対応する干渉モデルに関する情報を含む前記報告情報を決定する、
     請求項1に記載の端末。
    the control circuit determines the report information including information regarding an interference model corresponding to an interference distribution obtained by the measurements of each of the plurality of blocks.
    The terminal according to claim 1.
  8.  前記報告情報は、前記複数のブロック毎の前記測定値の平均値に関する情報を含む、
     請求項7に記載の端末。
    The report information includes information regarding an average value of the measurement value for each of the plurality of blocks.
    The terminal according to claim 7.
  9.  周波数領域における測定リソースを分割した複数のブロック毎の受信品質の測定値に基づく報告情報を受信する受信回路と、
     前記報告情報に基づいて、前記複数のブロック毎の前記測定値を推定する制御回路と、
     を具備する基地局。
    a receiving circuit for receiving report information based on a measurement value of reception quality for each of a plurality of blocks obtained by dividing a measurement resource in a frequency domain;
    a control circuit for estimating the measurement value for each of the plurality of blocks based on the report information;
    A base station comprising:
  10.  端末は、
     周波数領域における測定リソースを分割した複数のブロック毎の受信品質の測定値に基づいて、報告情報を決定し、
     前記報告情報を送信する、
     通信方法。
    The terminal is
    determining report information based on measurement values of reception quality for each of a plurality of blocks obtained by dividing a measurement resource in the frequency domain;
    Transmitting the report information;
    Communication method.
  11.  基地局は、
     周波数領域における測定リソースを分割した複数のブロック毎の受信品質の測定値に基づく報告情報を受信し、
     前記報告情報に基づいて、前記複数のブロック毎の前記測定値を推定する、
     通信方法。
    The base station is
    receiving report information based on measurement values of reception quality for each of a plurality of blocks obtained by dividing a measurement resource in the frequency domain;
    estimating the measurement value for each of the plurality of blocks based on the report information;
    Communication method.
  12.  端末の処理を制御する集積回路であって、前記処理は、
     周波数領域における測定リソースを分割した複数のブロック毎の受信品質の測定値に基づいて、報告情報を決定する処理と、
     前記報告情報を送信する処理と、
     を含む、集積回路。
    An integrated circuit for controlling processing of a terminal, the processing comprising:
    A process of determining report information based on a measurement value of reception quality for each of a plurality of blocks obtained by dividing a measurement resource in the frequency domain;
    A process of transmitting the report information;
    4. An integrated circuit comprising:
  13.  基地局の処理を制御する集積回路であって、前記処理は、
     周波数領域における測定リソースを分割した複数のブロック毎の受信品質の測定値に基づく報告情報を受信する処理と、
     前記報告情報に基づいて、前記複数のブロック毎の前記測定値を推定する処理と、
     を含む、集積回路。
    An integrated circuit for controlling processing of a base station, the processing comprising:
    A process of receiving report information based on measurement values of reception quality for each of a plurality of blocks obtained by dividing a measurement resource in the frequency domain;
    estimating the measurement value for each of the plurality of blocks based on the report information;
    4. An integrated circuit comprising:
PCT/JP2023/044891 2023-01-23 2023-12-14 Terminal, base station, and communication method WO2024157643A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-008095 2023-01-23
JP2023008095 2023-01-23

Publications (1)

Publication Number Publication Date
WO2024157643A1 true WO2024157643A1 (en) 2024-08-02

Family

ID=91970364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044891 WO2024157643A1 (en) 2023-01-23 2023-12-14 Terminal, base station, and communication method

Country Status (1)

Country Link
WO (1) WO2024157643A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534442A (en) * 2007-08-10 2010-11-04 エルジー エレクトロニクス インコーポレイティド Feedback data transmission method in multi-antenna system
WO2020144624A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Cli measurement configuration and reporting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534442A (en) * 2007-08-10 2010-11-04 エルジー エレクトロニクス インコーポレイティド Feedback data transmission method in multi-antenna system
WO2020144624A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Cli measurement configuration and reporting

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on UE-UE cross link interference measurements and reporting", 3GPP TSG RAN WG1 AD-HOC MEETING 1901 R1-1900408, 12 January 2019 (2019-01-12), XP051576017 *
MODERATOR (CATT): "Summary #4 of subband non-overlapping full duplex", 3GPP TSG RAN WG1 #110B-E R1-2210317, 20 October 2022 (2022-10-20), XP052259785 *
SONY: "Considerations on Subband Full Duplex TDD operations", 3GPP TSG RAN WG1 #110B-E R1-2209099, 30 September 2022 (2022-09-30), XP052277018 *

Similar Documents

Publication Publication Date Title
EP4108022A1 (en) Communication apparatuses and communication methods for mode 2 resource (re-)selection for packet delay budget limited scenario
WO2023013192A1 (en) Terminal, base station, and communication method
WO2022014279A1 (en) Terminal, base station, and communication method
KR20240042599A (en) Communication device and communication method
US20230057436A1 (en) Communication apparatuses and communication methods for utilization of reserved resource
WO2024157643A1 (en) Terminal, base station, and communication method
WO2024171521A1 (en) Base station, terminal, and communication method
WO2024100924A1 (en) Terminal, base station, and communication method
WO2024171520A1 (en) Base station, terminal, and communication method
US20250056511A1 (en) Base station, terminal and communication method
WO2024100918A1 (en) Terminal, base station and communication method
WO2022239289A1 (en) Communication device and communication method
WO2023013217A1 (en) Base station, terminal, and communication method
EP4271097A1 (en) User equipment and base station involved in spatial/frequency domain measurement
US20250008535A1 (en) Communication apparatus and communication method for allocating one or more additional operating windows for a sidelink signal
WO2022201651A1 (en) Base station, terminal, and communication method
WO2022079955A1 (en) Terminal, base station, and communication method
WO2025032915A1 (en) Terminal, base station, and communication method
WO2024219190A1 (en) Terminal, base station, and communication method
WO2025032927A1 (en) Terminal, base station, and communication method
WO2025033052A1 (en) Base station, terminal, and communication method
WO2024029157A1 (en) Terminal, base station, and communication method
WO2023100471A1 (en) Base station, terminal, and communication method
WO2024024259A1 (en) Terminal, base station, and communication method
WO2024166440A1 (en) Terminal, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918598

Country of ref document: EP

Kind code of ref document: A1