[go: up one dir, main page]

WO2024154563A1 - Composition for forming gas separation membrane and method for producing gas separation membrane - Google Patents

Composition for forming gas separation membrane and method for producing gas separation membrane Download PDF

Info

Publication number
WO2024154563A1
WO2024154563A1 PCT/JP2023/046821 JP2023046821W WO2024154563A1 WO 2024154563 A1 WO2024154563 A1 WO 2024154563A1 JP 2023046821 W JP2023046821 W JP 2023046821W WO 2024154563 A1 WO2024154563 A1 WO 2024154563A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas separation
separation membrane
composition
forming
organic group
Prior art date
Application number
PCT/JP2023/046821
Other languages
French (fr)
Japanese (ja)
Inventor
一利 小▲高▼
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2024154563A1 publication Critical patent/WO2024154563A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only

Definitions

  • the present invention relates to a composition for forming a gas separation membrane, which can form a gas separation membrane with improved gas permeability by adjusting the dispersion state of fine particles in a resin, and a method for producing a gas separation membrane.
  • Nanoparticles with an average particle size of about 1 nm to several hundred nm.
  • nanoparticles made by nanosizing materials are known to be able to express and impart various mechanical properties and characteristics, and are expected to be applied in a wide range of industrial fields.
  • Nanoparticles can be manufactured as primary particles, but due to their fineness, they have strong coagulation properties, and if left alone, they will become aggregates with micro-order particle sizes.
  • inorganic nanoparticles such as those described above are added to organic components, it is expected that the heat resistance and mechanical strength will be improved, but due to their strong coagulation properties, inorganic nanoparticles will form micro-order aggregates in organic solvents or polymer matrices as they are, and as a result, the expected characteristics and performance of organic-inorganic composite materials may not be obtained. For this reason, in order to maintain the dispersibility of primary particles, it has been proposed to perform uniform chemical modification on the particle surface (see, for example, Patent Document 1), but this alone has not produced results that can be considered sufficient in terms of dispersibility.
  • organic-inorganic composite materials which can synergistically enhance the benefits of both inorganic and organic components by mixing them at the nano- or molecular level, are attracting attention.
  • This concept has also been applied to polymer gas separation membranes, which are attracting attention for their usefulness in solving energy and environmental problems, and it is hoped that by creating organic-inorganic composite materials in which inorganic nanoparticles are added to a polymer matrix, it will be possible to achieve high mechanical strength, thermal stability, and gas permeability properties that could not be achieved with existing methods.
  • the surface of silica nanoparticles is treated with an amino group-containing silane coupling agent to silylate the surface, and these silylated particles are further treated with a polymer to produce polymer-grafted silica particles, and the polymer-grafted silica particles thus obtained are dispersed in a polymer to form a resin membrane, and the performance of this membrane as a gas separation membrane has been investigated (see Non-Patent Document 1), but the results obtained have not been sufficient in terms of gas permeation rate, etc.
  • a gas separation membrane has been proposed that is free from aggregation in organic solvents or polymer matrices, has excellent uniform dispersibility, and greatly improves gas permeability by bonding bulky hyperbranched polymers or dendrimer polymers to the surface of silica nanoparticles (see, for example, Patent Document 2).
  • Patent Document 2 a gas separation membrane has been proposed that is free from aggregation in organic solvents or polymer matrices, has excellent uniform dispersibility, and greatly improves gas permeability by bonding bulky hyperbranched polymers or dendrimer polymers to the surface of silica nanoparticles.
  • sufficient results have not been obtained in terms of dispersibility in resins or improvement of gas permeability.
  • inorganic nanoparticles which are fine powders with small particle sizes, are usually difficult to disperse in resin.
  • resin and the nanoparticles have different good solvents, it is difficult to highly disperse them in the resin.
  • the dispersion of the fine particles in the resin is insufficient, the properties of the resulting gas separation membrane are significantly impaired. For example, nanocracks, membrane warping, and membrane pulling can occur in the manufactured gas separation membrane, causing the composite membrane to become weakened.
  • one method for improving the dispersibility of fine particles is to optimize the surface modification group, but depending on the combination with the resin used, the effect of adding the modified group may not be sufficient, and the resins that can be used are limited.
  • the addition of surfactants may improve dispersibility, this is not desirable as it can lead to bleeding out of the dispersant and a decrease in the gas permeability of the gas-permeable membrane.
  • the present invention aims to provide a composition for forming a gas separation membrane and a method for producing a gas separation membrane that can produce a gas separation membrane with improved gas separation membrane properties by incorporating inorganic nanoparticles in a moderately dispersed state in a polymer membrane.
  • the inventors conducted extensive research to solve these problems, and as a result, they considered preventing aggregation of microparticles as much as possible in order to improve gas permeability, and improving the dispersibility of the microparticles in the resin as much as possible.
  • gas permeability can be improved by appropriately adjusting the aggregation to achieve appropriate dispersibility, rather than improving dispersibility as much as possible.
  • HSP HSP
  • the present invention provides: (1) A composition for forming a gas separation membrane, comprising a matrix resin, inorganic fine particles having a primary particle size of 1 to 1000 nm, and a solvent, an organic group is bonded to the surface of the inorganic fine particles, A composition for forming a gas separation membrane, wherein the difference between the HSP of the organic group of the inorganic fine particles and the HSP of the matrix resin is 5.0 to 15.0 MPa 0.5 . (2) The composition for forming a gas separation membrane according to (1), wherein the inorganic fine particles are silica.
  • composition for forming a gas separation membrane according to (2) characterized in that the organic groups of the inorganic fine particles are bonded via -O-Si- to form the following structure, and the HSP of the organic groups is calculated from the structure of the (organic group) beyond -Si-.
  • R represents -H or -COCH3 , and at least one of R is -COCH3 .
  • composition for forming a gas separation membrane according to (1) wherein the matrix resin is a polyimide having a repeating structure represented by the following formula (II) obtained by condensation polymerization of a tetracarboxylic dianhydride represented by the following formula (10) and an aromatic diamine R2 ( NH2 ) 2 .
  • the matrix resin is a polyimide having a repeating structure represented by the following formula (II) obtained by condensation polymerization of a tetracarboxylic dianhydride represented by the following formula (10) and an aromatic diamine R2 ( NH2 ) 2 .
  • R1 represents a tetravalent organic group.
  • R2 represents a residue obtained by removing an amine from an aromatic diamine, and represents an aromatic group having 6 to 14 carbon atoms.
  • n represents an integer of 50 to 500.
  • the polymer having intrinsic microporosity is PIM-1 represented by the following formula (III):
  • composition for forming a gas separation membrane according to (4), wherein the organic group has the following structure:
  • a method for producing a gas separation membrane using a composition for forming a gas separation membrane, the composition comprising a matrix resin, inorganic fine particles having a primary particle size of 1 to 1000 nm, and a solvent comprising:
  • a composition for forming a gas separation membrane is used in which an organic group is bonded to the surface of the inorganic fine particles, and the difference between the HSP of the organic group of the inorganic fine particles and the HSP of the matrix resin is 5.0 to 15.0 MPa 0.5 ;
  • a method for producing a gas separation membrane comprising the steps of applying a coating liquid for forming a gas separation membrane, formed from the composition for forming a gas separation membrane, onto a substrate, and evaporating the solvent to form a gas separation membrane.
  • the present invention makes it possible to incorporate inorganic nanoparticles in a moderately dispersed state into a polymer membrane, thereby realizing a composition for forming a gas separation membrane and a method for producing a gas separation membrane that can produce a gas separation membrane with improved gas separation membrane properties.
  • FIG. 1 is a diagram for explaining the calculation range of HSP of surface modifying groups of microparticles.
  • FIG. 2 is a diagram showing the structure of the matrix resin HSP calculation target.
  • FIG. 1 is a graph showing the relationship between ⁇ HSP and the gas permeation properties of each composite membrane in Table 3.
  • 1 is a graph showing the relationship between ⁇ HSP and the gas permeation properties of each composite membrane in Table 4.
  • FIG. 1 is a graph showing the relationship between ⁇ HSP and the gas permeation properties of each composite membrane in Table 5.
  • the inorganic fine particles used in the present invention are nanoparticles with an average particle size of the nano-order, and can be made of any material.
  • Nanoparticles refer to particles with an average primary particle size of 1 nm to 1000 nm, and in particular, particles with an average primary particle size of 2 nm to 500 nm.
  • the average primary particle size is determined by the nitrogen adsorption method (BET method).
  • examples of inorganic fine particles include silica, zirconia, ceria, metal oxides, etc., but silica fine particles are preferred.
  • silica fine particles in addition to spherical nanoparticles, irregularly shaped silica nanoparticles, for example, elongated, bead-like or confetti-like silica nanoparticles, can be used to produce a gas separation membrane with significantly improved gas permeation.
  • irregularly shaped silica nanoparticles those described in International Publication WO2018/038027 can be used, including (1) elongated silica nanoparticles having a ratio D1/D2 of the particle diameter D1 measured by dynamic light scattering to the particle diameter D2 measured by nitrogen gas adsorption method of 4 or more, D1 being 40 to 500 nm, and having a uniform thickness within the range of 5 to 40 nm as observed by a transmission electron microscope, (2) spherical colloidal silica particles having a particle diameter D2 measured by nitrogen gas adsorption method of 10 to 80 nm and silica bonding the spherical colloidal silica particles, and having a particle diameter D1 measured by dynamic light scattering method of 10 to 80 nm, and having a particle diameter D2 measured by dynamic light scattering method of 10 to 500 nm, and having a diameter D1 measured by nitrogen gas adsorption method of 10 to 500 nm, and having a diameter D2 measured by nitrogen gas
  • colloidal silica particles having a surface roughness S2/S3 in the range of 1.2-10 and an average particle diameter D3 in the range of 10-60 nm, where S2 is the specific surface area measured by the nitrogen gas adsorption method and S3 is the specific surface area converted from the average particle diameter D3 measured by image analysis.
  • organic group-modified inorganic fine particles in which an organic group is bonded to the surface of an inorganic fine particle are used.
  • the organic group-modified inorganic fine particles can be obtained, for example, by reacting inorganic fine particles with a surface treatment agent (one-step reaction).
  • the surface modification group added in the one-step reaction has a reactive functional group
  • silica as the inorganic fine particles.
  • a silane compound silane coupling agent or silylating agent
  • silica are dispersed in an appropriate solvent and then heat-treated to obtain surface-modified silica.
  • organic group-modified silica by a two-step reaction, first, a silane compound (silane coupling agent) having a reactive functional group such as an amino group, a carboxyl group, a mercapto group, a glycidyl group, an acid anhydride group, an acryloyl group, or an isocyanate group is treated with silica under heating conditions to obtain reactive functional group-modified silica, and then an organic compound that reacts with the reactive functional group of this reactive functional group-modified silica is reacted to obtain organic group-modified silica.
  • a silane compound silane coupling agent having a reactive functional group such as an amino group, a carboxyl group, a mercapto group, a glycidyl group, an acid anhydride group, an acryloyl group, or an isocyanate group is treated with silica under heating conditions to obtain reactive functional group-modified silica, and then an organic compound that reacts with the reactive functional
  • a preferred reactive functional group-containing compound is a silane coupling agent, for example a compound containing an amino group at the end, represented by the general formula (1).
  • R1 represents a methyl group or an ethyl group
  • R2 represents an alkylene group having 1 to 5 carbon atoms, an amide group, or an aminoalkylene group.
  • the amino group is preferably at the terminal, but does not have to be at the terminal.
  • Examples of the compound represented by the general formula (1) include 3-aminopropyltriethoxysilane (APTES) and 3-aminopropyltrimethoxysilane.
  • APTES 3-aminopropyltriethoxysilane
  • Other representative examples of silane coupling agents having an amino group include 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-(2-aminoethylamino)propyltriethoxysilane, and 3-(2-aminoethylamino)propyltrimethoxysilane.
  • the reactive functional group-containing compound may contain other groups, such as an isocyanate group, a mercapto group, a glycidyl group, a ureido group, or a halogen group, in addition to an amino group.
  • Silane coupling agents having functional groups other than amino groups include 3-isocyanatepropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-ureidopropyltriethoxysilane, and 3-chloropropyltrimethoxysilane.
  • the reactive functional group-containing compound used does not have to be a trialkoxysilane compound such as that represented by the general formula (1) above, and may be, for example, a dialkoxysilane compound or a monoalkoxysilane compound.
  • the functional group of the reactive functional group-containing compound that reacts with the silanol group of the silica nanoparticles may be a group other than an alkoxy group, such as an isocyanate group, a mercapto group, a glycidyl group, a ureido group, a halogen atom, etc.
  • the compound containing reactive functional groups is added to a liquid in which the silica nanoparticles are dispersed in water or an alcohol having 1 to 4 carbon atoms, and the mixture is stirred.
  • silica nanoparticles may be carried out by a one-step reaction as described above, or may be carried out by two or more steps as necessary.
  • a specific example of a two-step reaction is the preparation of carboxyl group-modified silica nanoparticles.
  • silica nanoparticles are treated with aminoalkyltrialkoxysilane to prepare amino group-modified silica nanoparticles, and then treated with a dicarboxylic acid compound represented by general formula (2) or its acid anhydride, thereby preparing silica nanoparticles in which the terminal of the reactive functional group added to the silica nanoparticles is a carboxyl group.
  • R3 represents an alkylene group or an aromatic group having 1 to 20 carbon atoms.
  • Examples of compounds represented by the above general formula (2) include malonic acid, adipic acid, and terephthalic acid.
  • Dicarboxylic acid compounds are not limited to those listed in the above formula.
  • a monomer having two amino groups at its terminal as represented by the following general formula (3), can be added to silica nanoparticles that have been treated with the compound represented by formula (1) and then formula (2) to prepare silica nanoparticles in which the terminals of the surface modifying groups are amino groups, and the above reaction can be repeated.
  • R 4 represents an alkylene group having 1 to 20 carbon atoms, an aromatic ring, a heteroaromatic ring, or (C 2 H 5 -O-) p and/or (C 3 H 7 -O-) q , and p and q each independently represent an integer of 1 or more.
  • Examples of the monomer represented by the general formula (3) include ethylenediamine, polyoxyethylenebisamine (molecular weight 2,000), o,o'-bis(2-aminopropyl)polypropylene glycol-block-polyethylene glycol (molecular weight 500), etc.
  • the first solvent dispersion of reactive functional group-modified silica nanoparticles prepared in this manner can be replaced with a second solvent to carry out the next reaction.
  • the second solvent is a solvent that is more hydrophobic than the first solvent, and is preferably at least one selected from one or more of tetrahydrofuran (THF), N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) and gamma-butyrolactone (GBL), or may be a mixed solvent.
  • THF tetrahydrofuran
  • NMP N-methylpyrrolidone
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • GBL gamma-butyrolactone
  • the method of substitution with the second solvent is not particularly limited, and the first solvent dispersion of the reactive functional group-modified silica nanoparticles may be dispersed in the second solvent after drying, or the first solvent dispersion of the reactive functional group-modified silica nanoparticles may be solvent-substituted without drying to form a dispersion in the second solvent.
  • a second solvent dispersion of the reactive functional group-modified silica nanoparticles is used, and in the presence of the second solvent, an organic compound is reacted with the reactive functional groups of the reactive functional group-modified silica nanoparticles to produce organic group-modified silica.
  • organic compounds that react with reactive functional groups include organic compounds having a carboxyl group, an amino group, an isocyanate group, a glycidyl group, an acid anhydride group, an acryloyl group, etc.
  • organic compounds that react with reactive functional groups include aromatic carboxylic acids such as 3,5-diaminobenzoic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4-(aminomethyl)benzoic acid, 3,5-dimethylbenzoic acid, 3-methylbenzoic acid, 4-methylbenzoic acid, 4-t-butylbenzoic acid, benzoic acid, isonicotinic acid, and 3,5-dimethoxybenzoic acid; organic carboxylic acids such as 1-adamantanecarboxylic acid, pentanoic acid, and octanoic acid; aromatic amines such as aniline, cyclohexylamine, and ethyl 4-aminobenzenecarboxylate; amino acids such as tryptophan, phenylalanine, tyrosine, and histidine; and isocyanate compounds such as cyclohexyl isocyanate and benzyl isocyanate
  • organic group-modified silica is not limited to the above, and conventionally known methods can be used.
  • silica particles having desired organic groups on the surface can be synthesized by using a coupling agent having an organic group in the synthesis stage of silica particles utilizing the sol-gel reaction of a coupling agent such as tetraethoxysilane.
  • surface-modified silica can be obtained by reacting the silica surface with a modifying agent having a reactive functional group such as a carboxyl group or an amino group in a supercritical state using water or CO2 as a medium.
  • organic group modification of the organic group-modified silica thus produced is shown in formulas (a) to (d).
  • the organic group modification of formula (a) is an example in which silica that has been reacted with aminopropyltriethoxysilane is reacted with an organic compound having a carboxyl group as a reactive functional group, and preferable R 11 is as exemplified above.
  • the organic group modification of formula (b) can be obtained by reacting an organic compound having a halogen atom as a reactive functional group with silica that has been reacted with aminopropyltriethoxysilane, or by reacting an organic amine with 3-chloropropyltriethoxysilane, and then subjecting the reaction solution to distillation, crystallization/filtration of amine hydrochloride, or liquid separation to generate a purified aminoalkylsilane, which is then heat-treated with silica in a suitable solvent.
  • a commercially available coupling agent already having a desired surface-modifying group is available, it may be used for surface modification.
  • Preferred R 12 is as exemplified above.
  • the organic group modification of formula (c) is an example in which a silane coupling agent having an aromatic group or an alkyl group is reacted with silica, and preferable R 13 is as exemplified above.
  • the silane coupling agent may be a commercially available one, or a newly synthesized silane compound may be used.
  • the organic group modification of formula (d) is an example in which a silylating agent having a saturated alkyl group or a methyl group is reacted with silica, and preferable R 14 is as exemplified above. Commercially available silylating agents can be used.
  • the composition for forming a gas separation membrane of the present invention is a mixture of the inorganic fine particles having organic groups bonded to the surface thereof, a matrix resin, and a solvent.
  • the composition for forming a gas membrane is selected so that the difference between the HSP (Hansen Solubility Parameter) of the organic groups of the inorganic fine particles and the HSP of the matrix resin is 5.0 to 15.0 MPa 0.5 .
  • the HSP of the organic group was calculated using the calculation software Winmostar, as described in detail below.
  • the organic group when the organic group is bonded via -O-Si- to form the above structure, the organic group is defined as the structure beyond -Si-, and the HSP is calculated from the organic group beyond -Si-. In addition, when the organic group is directly bonded to the silica, the HSP of the organic group is calculated.
  • the structure within the rectangular frame is treated as the organic group, and the HSP is calculated as shown below.
  • the matrix resin may be, for example, a known resin that has been conventionally used to form gas separation membranes.
  • a known resin that has been conventionally used to form gas separation membranes.
  • Specific examples include, but are not limited to, polyimide, cellulose diacetate, polysulfone, polyethersulfone, polyethylene glycol crosslinked body, dimethyl silicone, polyvinyl alcohol, modified polyvinyl alcohol, polysubstituted acetylene, poly-4-methylpentene, natural rubber, and microporous polymer.
  • microporous polymer, dimethyl silicone, polyvinyl alcohol, polyimide, and cellulose acetate are preferred, and polyimide, cellulose acetate, and microporous polymer are particularly preferred.
  • Cellulose acetate has the structure represented by the following formula (I):
  • R represents -H or -COCH3 , and at least one of R is -COCH3 .
  • a polyimide having a repeating structure represented by the following formula (II) obtained by condensation polymerization of a tetracarboxylic dianhydride represented by the following formula (10) and an aromatic diamine R2 ( NH2 ) 2 is preferred.
  • R1 represents a tetravalent organic group.
  • R2 represents a residue obtained by removing an amine from an aromatic diamine, and represents an aromatic group having 6 to 14 carbon atoms.
  • n represents an integer of 50 to 500.
  • R 1 is a tetravalent residue obtained by removing a carboxy group from the tetracarboxylic acid of formula (1), and is represented by the following general formulae (3) to (5) (in general formula (4), X is -C(CF 3 ) 2 -, -C(CF 3 )(C 6 H 5 )-, -C(CH 3 )(C 6 H 5 )-, -CH 2 -, -C(CH 3 ) 2 -, -CO-, -SO 2 -, -O-, -S-, -NH-, -COO-, -CONH-, -Si(CH 3 ) 2 -, -O-C 6 H 4 -C(CH 3 ) 2 -C 6 H 4 -O-, -O-C 6 H 4 -O-, -O-CH 2 -CH 2 -O-, -CF 2 CF 2 It is preferable that the alkyl group is at least one organic
  • the matrix resin is preferably a microporous polymer.
  • the microporous polymer is an inherently microporous polymer, which is one of the microporous organic materials, and is one class of microporous organic materials.
  • Reference can be made to the following literature. (Reference 1) Budd, P. M. et al., Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity. Adv. Mater. 16, 456-459 (2004).
  • microporous organic macromolecules that include a first generally planar species connected by a rigid linker at points of distortion, where two adjacent first planar species connected by the linker are in a non-coplanar orientation, with the proviso that the first planar species is other than a porphyrin macrocycle.
  • PIM-1 represented by the structure shown in the following formula (III) is particularly preferred.
  • the solvent used in producing the gas separation membrane composition can be of any type as long as it dissolves the polymer and is compatible with the solvent used to disperse the inorganic fine particles.
  • solvents include tetrahydrofuran (THF), chloroform, dimethylacetamide (DMAc), toluene, linear alcohols with 1 to 6 carbon atoms, branched alcohols with 1 to 6 carbon atoms, hexane, heptane, octane, decane, N-methyl-2-pyrrolidone (NMP), and N,N-dimethylformamide (DMF), either alone or in combination of two or more of these.
  • THF tetrahydrofuran
  • DMAc dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • DMF N,N-dimethylformamide
  • the mass ratio of resin to surface-modified silica in the film-forming composition is 100/0.1 to 100/50, preferably 100/1 to 100/30, and more preferably 100/1 to 100/15.
  • the mass ratio of resin to solvent in the film-forming composition is 100/10,000 to 100/500, preferably 100/3,000 to 100/1,000, and more preferably 100/2,000 to 100/1,333.
  • the HSP of such a matrix resin is, for example, the HSP calculated from the repeating units represented by formulas (I), (II), and (III).
  • the cellulose acetate of formula (I) has an HSP of 23.3.
  • the polyimide of formula (II) has an HSP of 23.0.
  • PIM-1 of formula (III) has an HSP of 21.9.
  • the organic group-modified inorganic fine particles to be mixed with these matrix resins must be selected such that the difference between the HSP value of the organic group and the HSP value of the matrix resin is 5.0 to 15.0 MPa 0.5 .
  • the difference between the HSP value of the organic group of the organic group-modified inorganic fine particles and the HSP of the matrix resin in the present invention is set to 5.0 to 15.0 MPa 0.5 in order to obtain a composition for forming a gas separation membrane capable of producing a gas separation membrane with improved gas separation membrane properties by appropriately adjusting the dispersion of the organic group-modified inorganic fine particles in the matrix resin when producing a gas separation membrane.
  • the HSP difference is larger than the upper limit, there is a risk that the dispersion of the organic group-modified inorganic fine particles in the matrix resin is insufficient and a gas separation membrane having sufficient strength cannot be produced, and if it is smaller than the lower limit, the organic group-modified inorganic fine particles are too dispersed in the matrix resin and do not aggregate appropriately, and the effect of improving the permeability of the gas separation membrane cannot be sufficiently obtained.
  • HSP specifications are based on the knowledge that if the organic-group-modified inorganic fine particles are completely and well dispersed in the matrix resin, the effect of improving the permeability of the gas separation membrane by adding the organic-group-modified inorganic fine particles is not fully achieved, and that the effect of improving the permeability by adding the organic-group-modified inorganic fine particles is more fully achieved if the particles are aggregated to a certain extent.
  • examples of the organic groups of the organic group-modified inorganic fine particles include the following organic groups, and the HSP is calculated from the following structure:
  • examples of the organic groups of the organic group-modified inorganic fine particles include the following organic groups, and the HSP is calculated from the following structure:
  • examples of the organic groups of the organic group-modified inorganic fine particles include the following organic groups, and the HSP is calculated from the following structure:
  • the solvent used to manufacture the gas separation membrane composition is a solvent suitable for dissolving the matrix resin and dispersing the organic group-modified inorganic fine particles, such as 4-methyltetrahydropyran, THF, chloroform, toluene, xylene, linear alcohols having 1 to 10 carbon atoms, branched alcohols having 1 to 6 carbon atoms, hydrocarbon solvents such as hexane, heptane, octane, nonane, and decane, aprotic polar solvents such as DMAc, NMP, 1,3-dimethyl-2-imidazolidinone (DMI), and DMF, either alone or in a mixture of two or more of them.
  • the organic group-modified inorganic fine particles such as 4-methyltetrahydropyran, THF, chloroform, toluene, xylene, linear alcohols having 1 to 10 carbon atoms, branched alcohols having 1 to 6 carbon atoms, hydrocarbon solvents
  • the inorganic fine particles are organic group-modified inorganic fine particles having an organic group bonded to the surface, and the difference between the HSP of the organic group of the organic group-modified inorganic fine particles and the HSP of the matrix resin is 5.0 MPa 0.5 or more and 15.0 MPa 0.5 or less, and the composition for forming a gas molecule membrane is prepared using the inorganic fine particles, uniformly dispersed, and applied onto a substrate, and the solvent is then evaporated.
  • the substrate to be applied there is no restriction on the material or surface condition as long as it is not deteriorated by the solvent, and examples thereof include Si wafers and porous substrates with no unevenness on the surface.
  • the method includes a step of applying a coating liquid for forming a gas separation membrane, which is formed from the composition for forming a gas separation membrane, to a substrate and evaporating the solvent to form a gas separation membrane.
  • the coating method is preferably one that can apply the coating evenly and without unevenness onto the substrate, and examples of the method include dip coating (immersion method), spin coating, blade coating, spray coating, gravure coating, die coating, and slit coating.
  • dip coating immersion method
  • spin coating blade coating
  • spray coating gravure coating
  • die coating die coating
  • slit coating a doctor blade
  • the precipitate was filtered with a PTFE membrane filter (Omnipore (registered trademark) membrane filter, JAWP09025, pore size 1 ⁇ m) manufactured by Millipore, and the filtered matter was transferred to an appropriate beaker, and then methanol in an amount four times the weight of the wet filtered matter was poured in and stirred.
  • the mixture was filtered with a membrane filter in the same manner as above, and washed with methanol in an amount three times the weight of the filtered matter in the same manner as above.
  • the filtered matter was collected and then dried under reduced pressure (130° C., 5 hours), and 9.15 g of fluorine-containing polyimide was collected.
  • the physical properties of the obtained fluorine-containing polyimide were as follows.
  • the obtained dispersion was charged with 1-methyl-2-pyrrolidone (NMP) while distilling off IPA and water with an evaporator, and the water content in the solution was confirmed to reach 0.1 mass% or less using a Karl Fischer moisture meter, and then the process was terminated.
  • NMP 1-methyl-2-pyrrolidone
  • the APTES-modified silica concentration was adjusted to about 5.4 mass% with NMP. This solution was designated as ST-G0-NMP dispersion.
  • the total amount of the ST-G0-NMP dispersion obtained was weighed into a 3000 mL four-neck round-bottom flask equipped with a cooling tube, a thermometer, and a stirrer, and 22.8 g of 1,3-diaminobenzoic acid (DABA) (manufactured by Aldrich), 15.1 g of triethylamine (TEA) (manufactured by Kanto Chemical Co., Ltd.), and 66.1 g of Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were reacted for 1 hour at 80 ° C.
  • DABA 1,3-diaminobenzoic acid
  • TEA triethylamine
  • BOP Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluor
  • the reaction solution was subjected to ultrafiltration washing (discharge pressure 0.2 MPa) with 1700 g of methanol using a Mitsubishi Kakoki Dynafilter (ceramic filter pore size 7 nm).
  • the physical properties of the recovered methanol dispersion of surface-modified silica 1 were as follows.
  • the surface modification amount here means the total amount of organic groups resulting from the reaction of aminopropyl groups derived from the coupling agent with organic carboxylic acid, and the same applies to the subsequent surface modification groups.
  • the obtained dispersion was charged with 1-methyl-2-pyrrolidone (NMP) while distilling off IPA and water with an evaporator, and the water content in the solution was confirmed to reach 0.1 mass% or less using a Karl Fischer moisture meter, and then the process was terminated.
  • NMP 1-methyl-2-pyrrolidone
  • This reaction liquid was poured into 0.9 kg of methanol and diluted.
  • the diluted liquid was concentrated using a Mitsubishi Kakoki Dynafilter (ceramic filter pore size 7 nm) (filtrate discharge: 720 g).
  • ultrafiltration washing discharge pressure 0.2 MPa was performed with 1700 g of methanol.
  • the physical properties of the recovered methanol dispersion of surface-modified silica 2 were as follows. pH: 4.51 Electrical conductivity: 15.5 ⁇ m/s Solid content in dispersion: 2.34% by mass ⁇ Surface modification amount: 9.14% by mass
  • the surface-modified silica was washed using an ultrafiltration device under the same conditions as above, and a methanol dispersion was obtained.
  • Various physical properties were as follows. pH: 6.11 Electrical conductivity: 3.80 ⁇ m/s Solid content in dispersion: 6.58% by mass ⁇ Surface modification amount: 7.78% by mass
  • a 5% by mass surface-modified silica-NMP mixed solution was gradually added to a 5% by mass fluorine-containing polyimide (6FDA-3MPA)-THF solution while stirring so that the surface-modified silica and the resin were the same mass, and a mixed solution was adjusted.
  • This mixed solution was dropped into three times the amount of methanol to precipitate a composite of surface-modified silica/resin.
  • HSP Hydrophilility Parameter
  • the calculation range of the HSP of the surface modification group of the microparticles is shown in Figure 1.
  • the calculation range of the surface modification group of the microparticles targets the organic groups outside the Si atom derived from the coupling agent, and the calculation target is the structure in which H is added to the organic group R detached from Si, which is adopted as the HSP of the surface modification group.
  • the calculation target is the structure in which all organic groups are detached and H is added.
  • the calculation target for the HSP of the matrix resin was a structure in which the bonds between the repeating monomer units were cut and H was added to the cut sites.
  • FIG. 2 shows the structure of the matrix resin used in the examples that is the subject of calculation.
  • Formula (A) is the structure of the fluorine-containing polyimide (6FDA-3MPA) to be calculated
  • formula (B) is the structure of the cellulose acetate (CDA)
  • formula (C) is the structure of the PIM-1 to be calculated.
  • the repeating unit was changed to that represented by formula (C) in Figure 2 and calculations were performed.
  • the added H is shown in bold.
  • HSP of surface modifying group of silica The HSP of the organic group outside the Si of the synthesized surface-modified silica is shown in Table 1.
  • HSP of matrix resin The HSP of the matrix resin used in the examples of the present invention is shown in Table 2.
  • HSP HSP of surface modifying group and matrix resin
  • ⁇ HSP HSP is calculated from three parameters (dispersion term: ⁇ D, polarity term: ⁇ P, hydrogen bond term: ⁇ H).
  • ⁇ HSP means the difference in three-dimensional space between the HSP of the surface modifying group and the HSP of the matrix resin, and is calculated by the following formula:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention provides: a composition for forming a gas separation membrane, the composition enabling the production of a gas separation membrane which has improved gas separation membrane characteristics by containing inorganic nanoparticles in a polymer membrane in an appropriately dispersed state; and a method for producing a gas separation membrane. (1) A composition for forming a gas separation membrane, the composition containing a matrix resin, inorganic fine particles having a primary particle diameter of 1 nm to 1,000 nm, and a solvent, wherein: an organic group is bonded to the surfaces of the inorganic particles; and the difference between the HSP of the organic group of the inorganic particles and the HSP of the matrix resin is 5.0 to 15.0 MPa0.5.

Description

気体分離膜形成用組成物及び気体分離膜の製造方法Composition for forming gas separation membrane and method for producing gas separation membrane
 本発明は、微粒子の樹脂中への分散状態を調整することで、気体分離膜のガス透過性を向上させた気体分離膜を形成することができる気体分離膜形成用組成物及び気体分離膜の製造方法に関する。 The present invention relates to a composition for forming a gas separation membrane, which can form a gas separation membrane with improved gas permeability by adjusting the dispersion state of fine particles in a resin, and a method for producing a gas separation membrane.
 近年、ナノテクノロジー研究の一還として、平均粒子径が1nm位から数百nm位までのナノメートルオーダーの微粒子(ナノ粒子)に関する研究が盛んに行われている。素材をナノサイズ化したナノ粒子では、従来のバルク材料とは異なり、様々な機態・特性を発現・付与できることが知られており、幅広い産業分野での応用が期待されている。ナノ粒子は一次粒子としての製造は可能であるが、その微細さに由来して凝集性が強く、放置しておくとマイクロオーダーの粒子径を有する凝集体となってしまう。例えば、上述したような無機物ナノ粒子を有機成分中に添加した場合、耐熱性の向上や機械的強度の向上が期待できる一方で、無機物ナノ粒子はその凝集性の強さから、そのままでは有機溶媒中や高分子マトリクス中でマイクロオーダーの凝集体を形成し、結果として期待したような有機-無機複合材料の特性・性能を得られない可能性がある。このため、一次粒子としての分散性を維持するために、粒子表面に対して均一な化学修飾を行うことが提案されている(例えば、特許文献1参照)が、これだけでは分散性において十分といえる結果は得られていない。 In recent years, as part of nanotechnology research, there has been active research on nanometer-order particles (nanoparticles) with an average particle size of about 1 nm to several hundred nm. Unlike conventional bulk materials, nanoparticles made by nanosizing materials are known to be able to express and impart various mechanical properties and characteristics, and are expected to be applied in a wide range of industrial fields. Nanoparticles can be manufactured as primary particles, but due to their fineness, they have strong coagulation properties, and if left alone, they will become aggregates with micro-order particle sizes. For example, when inorganic nanoparticles such as those described above are added to organic components, it is expected that the heat resistance and mechanical strength will be improved, but due to their strong coagulation properties, inorganic nanoparticles will form micro-order aggregates in organic solvents or polymer matrices as they are, and as a result, the expected characteristics and performance of organic-inorganic composite materials may not be obtained. For this reason, in order to maintain the dispersibility of primary particles, it has been proposed to perform uniform chemical modification on the particle surface (see, for example, Patent Document 1), but this alone has not produced results that can be considered sufficient in terms of dispersibility.
 一方、無機成分と有機成分をナノレベル又は分子レベルで混ぜ合わせることによって、両者のメリットを相乗的に高めることのできる有機-無機複合材料が注目を集めている。この概念は、エネルギー・環境問題を解決する上でその有用性が注目されている高分子気体分離膜にも適応がなされており、高分子マトリクス中に無機物ナノ粒子を添加した有機-無機複合材料の作製によって、既存の方法では達成できなかった高い機械的強度や熱的安定性、気体透過特性の達成が望まれている。 Meanwhile, organic-inorganic composite materials, which can synergistically enhance the benefits of both inorganic and organic components by mixing them at the nano- or molecular level, are attracting attention. This concept has also been applied to polymer gas separation membranes, which are attracting attention for their usefulness in solving energy and environmental problems, and it is hoped that by creating organic-inorganic composite materials in which inorganic nanoparticles are added to a polymer matrix, it will be possible to achieve high mechanical strength, thermal stability, and gas permeability properties that could not be achieved with existing methods.
 高分子膜の気体透過特性を利用して気体を分離する方法は、気体の相変化を伴わずに気体の分離・回収ができ、他の気体分離法に比べて操作が簡便で装置の小型化が可能であり、また連続的に気体分離を行うことができるため、環境負荷が少ないという特性を有している。このような省エネルギー型の高分子気体分離膜法は、近年、特に温室効果ガスの分離・回収や酸素富化空気の作製、天然ガスの精製技術として注目を集め、実用化が期待されているが、さらに気体分離性能および気体透過量の点での改善が必要とされる。  Methods of separating gases using the gas permeability properties of polymer membranes can separate and recover gases without causing a phase change, and compared to other gas separation methods, they are simpler to operate and allow for the miniaturization of equipment. They also have the advantage of being able to perform gas separation continuously, which places less of a burden on the environment. In recent years, such energy-saving polymer gas separation membrane methods have attracted attention, particularly as a technology for separating and recovering greenhouse gases, producing oxygen-enriched air, and refining natural gas, and there are hopes that they will be put to practical use, but further improvements are needed in terms of gas separation performance and gas permeability.
 前述したように、高分子膜に無機物ナノ粒子を含有させることにより気体透過特性を改善する試みもなされているが、前記ナノ粒子の凝集の問題は、有機-無機複合気体分離膜の作製においても同様に問題となっており、既存の有機-無機複合気体分離膜では、高分子マトリクス中で無機物ナノ粒子が凝集することにより、膜強度の低下や、高粒子含有率を達成できないことから、気体透過性を数倍程度までしか向上できないことが課題となっている。 As mentioned above, attempts have been made to improve gas permeability by incorporating inorganic nanoparticles into polymer membranes, but the problem of nanoparticle aggregation is also a problem in the production of organic-inorganic composite gas separation membranes. With existing organic-inorganic composite gas separation membranes, the aggregation of inorganic nanoparticles in the polymer matrix reduces membrane strength and makes it impossible to achieve a high particle content, resulting in an issue that gas permeability can only be improved by a few times.
 そこで、例えば、高分子膜に無機物ナノ粒子を含有させて気体分離膜特性を改善する方法として、シリカナノ粒子表面をアミノ基含有シランカップリング剤で処理して表面をシリル化し、さらにこのシリル化粒子をポリマーで処理することによりポリマーグラフトシリカ粒子を作製し、こうして得られたれポリマーグラフトシリカ粒子をポリマー中に分散させて樹脂膜とし、この膜の気体分離膜としての性能を調べた報告もなされている(非特許文献1参照)が、気体の透過量などにおいて十分といえる結果は得られていない。 Therefore, for example, as a method for improving the properties of a gas separation membrane by incorporating inorganic nanoparticles into a polymer membrane, the surface of silica nanoparticles is treated with an amino group-containing silane coupling agent to silylate the surface, and these silylated particles are further treated with a polymer to produce polymer-grafted silica particles, and the polymer-grafted silica particles thus obtained are dispersed in a polymer to form a resin membrane, and the performance of this membrane as a gas separation membrane has been investigated (see Non-Patent Document 1), but the results obtained have not been sufficient in terms of gas permeation rate, etc.
 また、シリカナノ粒子表面に対して嵩高いハイパーブランチ高分子又はデンドリマー高分子を結合させることにより、有機溶媒中や高分子マトリクス中での凝集がなく、均一分散性に優れ、気体の透過量が大きく改善された気体分離膜が提唱されている(例えば、特許文献2参照)が、樹脂への分散性や気体の透過量の改善の面などで十分な結果は得られていない。 Also, a gas separation membrane has been proposed that is free from aggregation in organic solvents or polymer matrices, has excellent uniform dispersibility, and greatly improves gas permeability by bonding bulky hyperbranched polymers or dendrimer polymers to the surface of silica nanoparticles (see, for example, Patent Document 2). However, sufficient results have not been obtained in terms of dispersibility in resins or improvement of gas permeability.
 上述したように、粒径の小さい微粉末である無機ナノ粒子は、通常、樹脂への分散が困難である。特に、樹脂とナノ粒子の良溶媒が異なる場合には、樹脂中へ高分散させることが困難となる。そして、樹脂中において、微粒子の分散性が不十分であると、得られる気体分離膜の特性が大きく損なわれる。例えば、製造した気体分離膜において、ナノクラック、膜反り、膜引きの発生がみられ、複合膜の脆弱化が発生する。 As mentioned above, inorganic nanoparticles, which are fine powders with small particle sizes, are usually difficult to disperse in resin. In particular, when the resin and the nanoparticles have different good solvents, it is difficult to highly disperse them in the resin. Furthermore, if the dispersion of the fine particles in the resin is insufficient, the properties of the resulting gas separation membrane are significantly impaired. For example, nanocracks, membrane warping, and membrane pulling can occur in the manufactured gas separation membrane, causing the composite membrane to become weakened.
 また、微粒子の分散性を改善する方法として、表面修飾基を最適化する手法が挙げられるが、使用する樹脂との組み合わせによっては、十分な添加効果が発現しない可能性があり、適応できる樹脂も限定される。他方、界面活性剤などの添加によって分散性が改善される可能性もあるが、分散剤のブリードアウトや気体透過膜の気体透過性の低下などに繋がるため好ましくない。 In addition, one method for improving the dispersibility of fine particles is to optimize the surface modification group, but depending on the combination with the resin used, the effect of adding the modified group may not be sufficient, and the resins that can be used are limited. On the other hand, while the addition of surfactants may improve dispersibility, this is not desirable as it can lead to bleeding out of the dispersant and a decrease in the gas permeability of the gas-permeable membrane.
特開2007-99607号公報JP 2007-99607 A 特開2010-222228号公報JP 2010-222228 A
 上述したように、気体分離膜を製造する際に、気体透過性を向上させるために微粒子の凝集をできるだけ防止して、微粒子の樹脂に対する分散性をできるだけ向上させることを検討したが、分散性を向上させるだけでは、気体分離膜のガス透過性を向上させることができないことを知見した。 As mentioned above, when manufacturing gas separation membranes, we tried to prevent aggregation of fine particles as much as possible and improve the dispersibility of the fine particles in the resin as much as possible in order to improve gas permeability, but we found that simply improving dispersibility was not enough to improve the gas permeability of the gas separation membrane.
 本発明は、このような事情に鑑み、高分子膜中に無機物ナノ粒子を適度に分散した状態で含有させることで気体分離膜特性を向上させる気体分離膜を製造できる気体分離膜形成用組成物及び気体分離膜の製造方法を提供することを課題とする。 In view of the above circumstances, the present invention aims to provide a composition for forming a gas separation membrane and a method for producing a gas separation membrane that can produce a gas separation membrane with improved gas separation membrane properties by incorporating inorganic nanoparticles in a moderately dispersed state in a polymer membrane.
 本発明者らは、このような課題を解決するために鋭意検討を行った結果、気体透過性を向上させるために微粒子の凝集をできるだけ防止して、微粒子の樹脂に対する分散性をできるだけ向上させることを検討したが、分散性をできるだけ向上させるのではなく、凝集性を適度に調整して適度な分散性とする方がガス透過性を向上させることができることを知見した。また、微粒子と樹脂との適度な分散性を把握する指標として、特定のHSPを用いることで比較的容易に適正な分散性を把握できることができることを知見した。 The inventors conducted extensive research to solve these problems, and as a result, they considered preventing aggregation of microparticles as much as possible in order to improve gas permeability, and improving the dispersibility of the microparticles in the resin as much as possible. However, they discovered that gas permeability can be improved by appropriately adjusting the aggregation to achieve appropriate dispersibility, rather than improving dispersibility as much as possible. They also discovered that by using a specific HSP as an indicator for understanding the appropriate dispersibility between the microparticles and the resin, it is possible to relatively easily understand the appropriate dispersibility.
 すなわち本発明は、
(1)マトリクス樹脂と、一次粒子径が1~1000nmの無機微粒子と、溶媒とを含む気体分離膜形成用組成物であって、
 前記無機微粒子の表面に有機基が結合しており、
 前記無機微粒子の有機基のHSPと、前記マトリクス樹脂のHSPとの差が5.0~15.0MPa0.5である、気体分離膜形成用組成物。
(2)前記無機微粒子がシリカである、(1)に記載の気体分離膜形成用組成物。
(3)前記無機微粒子の有機基が、-O-Si-を介して結合して下記構造となっており、前記有機基のHSPは、-Si―より先の(有機基)の構造から計算されたものであることを特徴とする、(2)に記載の気体分離膜形成用組成物。
That is, the present invention provides:
(1) A composition for forming a gas separation membrane, comprising a matrix resin, inorganic fine particles having a primary particle size of 1 to 1000 nm, and a solvent,
an organic group is bonded to the surface of the inorganic fine particles,
A composition for forming a gas separation membrane, wherein the difference between the HSP of the organic group of the inorganic fine particles and the HSP of the matrix resin is 5.0 to 15.0 MPa 0.5 .
(2) The composition for forming a gas separation membrane according to (1), wherein the inorganic fine particles are silica.
(3) The composition for forming a gas separation membrane according to (2), characterized in that the organic groups of the inorganic fine particles are bonded via -O-Si- to form the following structure, and the HSP of the organic groups is calculated from the structure of the (organic group) beyond -Si-.
(4)前記マトリクス樹脂が下記式(I)で表されるセルロースアセテートである、(1)に記載の気体分離膜形成用組成物。 (4) The composition for forming a gas separation membrane described in (1), wherein the matrix resin is cellulose acetate represented by the following formula (I):
 (nは、50~500の整数、Rは、-H又は-COCHを表し、少なくとも一か所が-COCHである。) (n is an integer of 50 to 500, R represents -H or -COCH3 , and at least one of R is -COCH3 .)
(5)前記マトリクス樹脂が、下記式(10)で示されるテトラカルボン酸二無水物と、芳香族ジアミンR(NHとを縮重合させることにより得られる下記式(II)で示される繰り返し構造を有するポリイミドである、(1)に記載の気体分離膜形成用組成物。 (5) The composition for forming a gas separation membrane according to (1), wherein the matrix resin is a polyimide having a repeating structure represented by the following formula (II) obtained by condensation polymerization of a tetracarboxylic dianhydride represented by the following formula (10) and an aromatic diamine R2 ( NH2 ) 2 .
 (Rは4価の有機基を表す。) ( R1 represents a tetravalent organic group.)
 (Rは4価の有機基を表す。Rは芳香族ジアミンからアミンを除いた残基であり、炭素原子数6~14の芳香族基を表す。nは50~500の整数を表す。) ( R1 represents a tetravalent organic group. R2 represents a residue obtained by removing an amine from an aromatic diamine, and represents an aromatic group having 6 to 14 carbon atoms. n represents an integer of 50 to 500.)
(6)前記マトリクス樹脂が固有微多孔ポリマーである、(1)に記載の気体分離膜形成用組成物。
(7)前記固有微多孔ポリマーが下記式(III)で表されるPIM-1である、(6)に記載の気体分離膜形成用組成物。
(6) The composition for forming a gas separation membrane according to (1), wherein the matrix resin is a polymer having intrinsic microporosity.
(7) The composition for forming a gas separation membrane according to (6), wherein the polymer having intrinsic microporosity is PIM-1 represented by the following formula (III):
(nは50~1000の整数を表す。)  (n represents an integer of 50 to 1000.)
(8)前記有機基が以下の構造を示す、(4)に記載の気体分離膜形成用組成物。
(8) The composition for forming a gas separation membrane according to (4), wherein the organic group has the following structure:
(9)前記有機基が以下の構造を示す、(5)に記載の気体分離膜形成用組成物。
(9) The composition for forming a gas separation membrane according to (5), wherein the organic group has the following structure:
(10)前記有機基が以下の構造を示す、(6)又は(7)に記載の気体分離膜形成用組成物。
(10) The composition for forming a gas separation membrane according to (6) or (7), wherein the organic group has the following structure:
(11)マトリクス樹脂と、一次粒子径が1~1000nmの無機微粒子と、溶媒とを含む気体分離膜形成用組成物を用いて気体分離膜を製造する方法であって、
 前記気体分離膜形成用組成物として、前記無機微粒子の表面に有機基が結合しており、前記無機微粒子の有機基のHSPと、前記マトリクス樹脂のHSPとの差が5.0~15.0MPa0.5である気体分離膜形成用組成物を用い、
 前記気体分離膜形成用組成物から形成した気体分離膜形成用塗布液を基板に塗布し、溶剤を蒸発させることにより気体分離膜とする工程を具備する、気体分離膜の製造方法。
(11) A method for producing a gas separation membrane using a composition for forming a gas separation membrane, the composition comprising a matrix resin, inorganic fine particles having a primary particle size of 1 to 1000 nm, and a solvent, comprising:
As the composition for forming a gas separation membrane, a composition for forming a gas separation membrane is used in which an organic group is bonded to the surface of the inorganic fine particles, and the difference between the HSP of the organic group of the inorganic fine particles and the HSP of the matrix resin is 5.0 to 15.0 MPa 0.5 ;
A method for producing a gas separation membrane, comprising the steps of applying a coating liquid for forming a gas separation membrane, formed from the composition for forming a gas separation membrane, onto a substrate, and evaporating the solvent to form a gas separation membrane.
 本発明により、高分子膜中に無機物ナノ粒子を適度に分散した状態で含有させることができ、これにより気体分離膜特性を向上させた気体分離膜を製造できる気体分離膜形成用組成物及び気体分離膜の製造方法を実現することができる The present invention makes it possible to incorporate inorganic nanoparticles in a moderately dispersed state into a polymer membrane, thereby realizing a composition for forming a gas separation membrane and a method for producing a gas separation membrane that can produce a gas separation membrane with improved gas separation membrane properties.
微粒子の表面修飾基のHSPの計算範囲を説明する図。FIG. 1 is a diagram for explaining the calculation range of HSP of surface modifying groups of microparticles. マトリクス樹脂のHSPの計算対象の構造を示す図。FIG. 2 is a diagram showing the structure of the matrix resin HSP calculation target. 表3における、ΔHSPと各複合膜のガス透過特性との関係を示す図。FIG. 1 is a graph showing the relationship between ΔHSP and the gas permeation properties of each composite membrane in Table 3. 表4における、ΔHSPと各複合膜のガス透過特性との関係を示す図。1 is a graph showing the relationship between ΔHSP and the gas permeation properties of each composite membrane in Table 4. 表5における、ΔHSPと各複合膜のガス透過特性との関係を示す図。FIG. 1 is a graph showing the relationship between ΔHSP and the gas permeation properties of each composite membrane in Table 5.
 以下、本発明を詳細に説明する。本発明において用いられる無機微粒子は、平均粒子径がナノオーダーのナノ粒子であり、特に材質は問わない。なお、ナノ粒子は、平均一次粒子径が1nm~1000nmのものをいい、特に、2nm~500nmのものをいう。なお、平均一次粒子径は、窒素吸着法(BET法)によるものとする。 The present invention will be described in detail below. The inorganic fine particles used in the present invention are nanoparticles with an average particle size of the nano-order, and can be made of any material. Nanoparticles refer to particles with an average primary particle size of 1 nm to 1000 nm, and in particular, particles with an average primary particle size of 2 nm to 500 nm. The average primary particle size is determined by the nitrogen adsorption method (BET method).
 ここで、無機微粒子としては、シリカ、ジルコニア、セリア、金属酸化物等が挙げられるが、好ましくは、シリカ微粒子である。 Here, examples of inorganic fine particles include silica, zirconia, ceria, metal oxides, etc., but silica fine particles are preferred.
 また、シリカ微粒子としては、球状ナノ粒子の他、異形シリカナノ粒子、例えば、細長い形状、数珠状又は金平糖状のシリカナノ粒子を用いることにより、気体の透過量が大きく改善された気体分離膜とすることができる。異形シリカナノ粒子としては、国際公開公報WO2018/038027号に記載のものを用いることができるが、(1)動的光散乱法による測定粒子径D1と窒素ガス吸着法による測定粒子径D2の比D1/D2が4以上であって、D1は40~500nmであり、そして透過型電子顕微鏡観察による5~40nmの範囲内の一様な太さを有する細長い形状のシリカナノ粒子、(2)窒素ガス吸着法による測定粒子径D2が10~80nmの球状コロイダルシリカ粒子とこの球状コロイダルシリカ粒子を接合するシリカからなり、動的光散乱法による測定粒子径D1と球状コロイダルシリカ粒子の窒素ガス吸着法による測定粒子径D2の比D1/D2が3以上であって、D1は40~500nmであり、前記球状コロイダルシリカ粒子が連結した数珠状のシリカナノ粒子、及び(3)窒素ガス吸着法により測定される比表面積をS2、画像解析法により測定される平均粒子径D3から換算した比表面積をS3として、表面粗度S2/S3の値が1.2~10の範囲にあり、平均粒子径D3が10~60nmの範囲である、コロイダルシリカ粒子の表面に複数の疣状突起を有する金平糖状のシリカナノ粒子、を挙げることができる。 Furthermore, as the silica fine particles, in addition to spherical nanoparticles, irregularly shaped silica nanoparticles, for example, elongated, bead-like or confetti-like silica nanoparticles, can be used to produce a gas separation membrane with significantly improved gas permeation. As the irregularly shaped silica nanoparticles, those described in International Publication WO2018/038027 can be used, including (1) elongated silica nanoparticles having a ratio D1/D2 of the particle diameter D1 measured by dynamic light scattering to the particle diameter D2 measured by nitrogen gas adsorption method of 4 or more, D1 being 40 to 500 nm, and having a uniform thickness within the range of 5 to 40 nm as observed by a transmission electron microscope, (2) spherical colloidal silica particles having a particle diameter D2 measured by nitrogen gas adsorption method of 10 to 80 nm and silica bonding the spherical colloidal silica particles, and having a particle diameter D1 measured by dynamic light scattering method of 10 to 80 nm, and having a particle diameter D2 measured by dynamic light scattering method of 10 to 500 nm, and having a diameter D1 measured by nitrogen gas adsorption method of 10 to 500 nm, and having a diameter D2 measured by nitrogen gas adsorption ... and spherical colloidal silica particles, the ratio D1/D2 being 3 or more, D1 being 40-500 nm, and the spherical colloidal silica particles being linked together in a beaded shape; and (3) colloidal silica particles having a surface roughness S2/S3 in the range of 1.2-10 and an average particle diameter D3 in the range of 10-60 nm, where S2 is the specific surface area measured by the nitrogen gas adsorption method and S3 is the specific surface area converted from the average particle diameter D3 measured by image analysis.
 本発明では、無機微粒子の表面に有機基が結合した有機基修飾無機微粒子を用いる。
 有機基修飾無機微粒子は、例えば、無機微粒子を表面処理剤と反応させることで得ることができる(1段階反応)。また、1段階反応で付加した表面修飾基に反応性官能基を有する場合には、これに前記反応性官能基と反応する有機化合物を更に反応させることで、様々な有機基を付加させた無機微粒子を得ることができる(2段階反応)。
In the present invention, organic group-modified inorganic fine particles in which an organic group is bonded to the surface of an inorganic fine particle are used.
The organic group-modified inorganic fine particles can be obtained, for example, by reacting inorganic fine particles with a surface treatment agent (one-step reaction). When the surface modification group added in the one-step reaction has a reactive functional group, it is possible to obtain inorganic fine particles having various organic groups added thereto by further reacting the surface modification group with an organic compound that reacts with the reactive functional group (two-step reaction).
 以下、無機微粒子をシリカとして、さらに詳細に説明する。
 1段階反応による有機基修飾シリカを得る場合には、シラン化合物(シランカップリング剤、またはシリル化剤)とシリカが適切な溶媒に分散した状態で加熱処理することで、表面修飾シリカを得ることができる。
Hereinafter, the inorganic fine particles will be described in more detail with silica as the inorganic fine particles.
When obtaining organic group-modified silica by a one-step reaction, a silane compound (silane coupling agent or silylating agent) and silica are dispersed in an appropriate solvent and then heat-treated to obtain surface-modified silica.
 2段階反応による有機基修飾シリカを得るためには、まず、アミノ基、カルボキシル基、メルカプト基、グリシジル基、酸無水物基、アクリロイル基、イソシアネート基などの反応性官能基を有するシラン化合物(シランカップリング剤)とシリカとを加熱条件下で処理することにより、反応性官能基修飾シリカを得、この反応性官能基修飾シリカの反応性官能基と反応する有機化合物を反応させて有機基修飾シリカとすることができる。 To obtain organic group-modified silica by a two-step reaction, first, a silane compound (silane coupling agent) having a reactive functional group such as an amino group, a carboxyl group, a mercapto group, a glycidyl group, an acid anhydride group, an acryloyl group, or an isocyanate group is treated with silica under heating conditions to obtain reactive functional group-modified silica, and then an organic compound that reacts with the reactive functional group of this reactive functional group-modified silica is reacted to obtain organic group-modified silica.
 このような反応性官能基を有するシラン化合物との反応は、第1溶媒に分散された状態のまま行い、シリカの表面に反応性官能基が付加された反応性官能基修飾ナノシリカ粒子とする。好ましい反応性官能基含有化合物としては、シランカップリング剤であり、例えば、一般式(1)で表される、末端にアミノ基を含有する化合物である。 The reaction with the silane compound having such a reactive functional group is carried out while the silica is still dispersed in the first solvent, to produce reactive functional group-modified nanosilica particles in which reactive functional groups are added to the surface of the silica. A preferred reactive functional group-containing compound is a silane coupling agent, for example a compound containing an amino group at the end, represented by the general formula (1).
(式中、Rはメチル基又はエチル基を表し、R2は炭素数1~5のアルキレン基、アミド基、アミノアルキレン基を表す。) (In the formula, R1 represents a methyl group or an ethyl group, and R2 represents an alkylene group having 1 to 5 carbon atoms, an amide group, or an aminoalkylene group.)
 一般式(1)で表されるシランカップリング剤において、アミノ基は末端にあることが好ましいが、末端になくてもよい。 In the silane coupling agent represented by general formula (1), the amino group is preferably at the terminal, but does not have to be at the terminal.
 前記一般式(1)で表される化合物としては、例えば、3-アミノプロピルトリエトキシシラン(APTES)、3-アミノプロピルトリメトキシシランなどが挙げられる。その他の、アミノ基を有するシランカップリング剤としては、例えば、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-(2-アミノエチルアミノ)プロピルトリエトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシランなどが代表的なものとして挙げられる。 Examples of the compound represented by the general formula (1) include 3-aminopropyltriethoxysilane (APTES) and 3-aminopropyltrimethoxysilane. Other representative examples of silane coupling agents having an amino group include 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-(2-aminoethylamino)propyltriethoxysilane, and 3-(2-aminoethylamino)propyltrimethoxysilane.
 また、反応性官能基含有化合物としては、アミノ基以外にも、例えばイソシアネート基、メルカプト基、グリシジル基、ウレイド基、ハロゲン基などの他の基を有するものであってもよい。 In addition, the reactive functional group-containing compound may contain other groups, such as an isocyanate group, a mercapto group, a glycidyl group, a ureido group, or a halogen group, in addition to an amino group.
 アミノ基以外の官能基を有するシランカップリング剤としては、3-イソシアネートプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシランなどが挙げられる。 Silane coupling agents having functional groups other than amino groups include 3-isocyanatepropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-ureidopropyltriethoxysilane, and 3-chloropropyltrimethoxysilane.
 また、用いられる反応性官能基含有化合物は、前記一般式(1)のようなトリアルコキシシラン化合物でなくてもよく、例えば、ジアルコキシシラン化合物、モノアルコキシシラン化合物であってもよい。 In addition, the reactive functional group-containing compound used does not have to be a trialkoxysilane compound such as that represented by the general formula (1) above, and may be, for example, a dialkoxysilane compound or a monoalkoxysilane compound.
 シリカナノ粒子のシラノール基と反応する反応性官能基含有化合物の官能基は、アルコキシ基以外の基、例えば、イソシアネート基、メルカプト基、グリシジル基、ウレイド基、ハロゲン原子などであってもよい。 The functional group of the reactive functional group-containing compound that reacts with the silanol group of the silica nanoparticles may be a group other than an alkoxy group, such as an isocyanate group, a mercapto group, a glycidyl group, a ureido group, a halogen atom, etc.
 シリカナノ粒子の反応性官能基含有化合物による処理においては、シリカナノ粒子は水又は炭素原子数1~4のアルコールに分散した液中に反応性官能基含有化合物を投入し、攪拌することにより行われる。 In treating silica nanoparticles with a compound containing reactive functional groups, the compound containing reactive functional groups is added to a liquid in which the silica nanoparticles are dispersed in water or an alcohol having 1 to 4 carbon atoms, and the mixture is stirred.
 シリカナノ粒子表面への反応性官能基の付加は、上記のように1段階反応によってもよいし、必要に応じ2段階以上の反応で行われてもよい。2段階反応の具体例をカルボキシル基修飾シリカナノ粒子の調製で説明すると、例えば、上記のように、先ず、シリカナノ粒子をアミノアルキルトリアルコキシシランで処理して、アミノ基修飾シリカナノ粒子を調製し、次いで一般式(2)で表されるジカルボン酸化合物又はその酸無水物で処理することにより、シリカナノ粒子に付加された反応性官能基の末端がカルボキシル基であるシリカナノ粒子を調製することができる。 The addition of reactive functional groups to the surface of silica nanoparticles may be carried out by a one-step reaction as described above, or may be carried out by two or more steps as necessary. A specific example of a two-step reaction is the preparation of carboxyl group-modified silica nanoparticles. For example, as described above, first, silica nanoparticles are treated with aminoalkyltrialkoxysilane to prepare amino group-modified silica nanoparticles, and then treated with a dicarboxylic acid compound represented by general formula (2) or its acid anhydride, thereby preparing silica nanoparticles in which the terminal of the reactive functional group added to the silica nanoparticles is a carboxyl group.
(式中、R3は炭素原子数1~20のアルキレン基又は芳香族基を表す。) (In the formula, R3 represents an alkylene group or an aromatic group having 1 to 20 carbon atoms.)
 上記一般式(2)で表される化合物としては、例えば、マロン酸、アジピン酸、テレフタル酸などが挙げられる。ジカルボン酸化合物は、上記式で挙げられたものに限定されるものではない。 Examples of compounds represented by the above general formula (2) include malonic acid, adipic acid, and terephthalic acid. Dicarboxylic acid compounds are not limited to those listed in the above formula.
 2段を超える反応でシリカナノ粒子表面への反応性官能基を付加する場合は、下記一般式(3)で表される末端にアミノ基を2つ有するモノマーを、前記式(1)、次いで前記式(2)で表される化合物で処理されたシリカナノ粒子に付加することにより、表面修飾基の末端がアミノ基であるシリカナノ粒子を調製し、前記の反応を繰り返すことにより行うことができる。 When reactive functional groups are added to the surface of silica nanoparticles in a reaction that exceeds two stages, a monomer having two amino groups at its terminal, as represented by the following general formula (3), can be added to silica nanoparticles that have been treated with the compound represented by formula (1) and then formula (2) to prepare silica nanoparticles in which the terminals of the surface modifying groups are amino groups, and the above reaction can be repeated.
(式中、R4は炭素原子数1~20のアルキレン基、芳香環、複素芳香環又は(C25-O-)pおよび/又は(C37-O-)qを表し、p、qは各々独立に1以上の整数である。) (In the formula, R 4 represents an alkylene group having 1 to 20 carbon atoms, an aromatic ring, a heteroaromatic ring, or (C 2 H 5 -O-) p and/or (C 3 H 7 -O-) q , and p and q each independently represent an integer of 1 or more.)
 前記一般式(3)で表されるモノマーの例としては、エチレンジアミン、ポリオキシエチレンビスアミン(分子量2,000)、o,o’-ビス(2-アミノプロピル)ポリプロピレングリコール-ブロック-ポリエチレングリコール(分子量500)などが挙げられる。 Examples of the monomer represented by the general formula (3) include ethylenediamine, polyoxyethylenebisamine (molecular weight 2,000), o,o'-bis(2-aminopropyl)polypropylene glycol-block-polyethylene glycol (molecular weight 500), etc.
 このようにして調製した反応性官能基修飾シリカナノ粒子の第1溶媒分散液は、第2溶媒に置換して次の反応を行うことができる。 The first solvent dispersion of reactive functional group-modified silica nanoparticles prepared in this manner can be replaced with a second solvent to carry out the next reaction.
 第2溶媒は、第1溶媒より疎水性の溶媒であり、テトラヒドロフラン(THF)、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)及びγ-ブチロラクトン(GBL)のうち1種以上から選択される少なくとも一種であることが好ましく、混合溶媒でもよい。 The second solvent is a solvent that is more hydrophobic than the first solvent, and is preferably at least one selected from one or more of tetrahydrofuran (THF), N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) and gamma-butyrolactone (GBL), or may be a mixed solvent.
 第2溶媒への置換方法は特に限定されず、反応性官能基修飾シリカナノ粒子の第1溶媒分散液を乾燥後に第2溶媒に分散させても良いし、反応性官能基修飾シリカナノ粒子の第1溶媒分散液を乾燥させずに溶媒置換して第2溶媒の分散液としても良い。 The method of substitution with the second solvent is not particularly limited, and the first solvent dispersion of the reactive functional group-modified silica nanoparticles may be dispersed in the second solvent after drying, or the first solvent dispersion of the reactive functional group-modified silica nanoparticles may be solvent-substituted without drying to form a dispersion in the second solvent.
 このように溶媒置換した後、反応性官能基修飾シリカナノ粒子の第2溶媒分散液を用い、第2溶媒存在下で、反応性官能基修飾シリカナノ粒子の反応性官能基に、有機化合物を反応させて有機基修飾シリカとする。 After the solvent has been replaced in this manner, a second solvent dispersion of the reactive functional group-modified silica nanoparticles is used, and in the presence of the second solvent, an organic compound is reacted with the reactive functional groups of the reactive functional group-modified silica nanoparticles to produce organic group-modified silica.
 ここで、また、反応性官能基と反応する有機化合物としては、カルボキシル基、アミノ基、イソシアネート基、グリシジル基、酸無水物基、アクリロイル基などを有する有機化合物を挙げることができる。 Here, examples of organic compounds that react with reactive functional groups include organic compounds having a carboxyl group, an amino group, an isocyanate group, a glycidyl group, an acid anhydride group, an acryloyl group, etc.
 反応性官能基と反応する有機化合物としては、3,5-ジアミノ安息香酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-(アミノメチル)安息香酸、3,5-ジメチル安息香酸、3-メチル安息香酸、4-メチル安息香酸、4-t-ブチル安息香酸、安息香酸、イソニコチン酸、3,5-ジメトキシ安息香酸などの芳香族カルボン酸、1-アダマンタンカルボン酸、ペンタン酸、オクタン酸のような有機カルボン酸、アニリン、シクロへキシルアミン、4-アミノベンゼンカルボン酸エチルなどの芳香族アミン、トリプトファン、フェニルアラニン、チロシン、ヒスチジンなどのアミノ酸、シクロへキシルイソシアナート、ベンジルイソシアナートなどのイソシアネート化合物などを例示できる。 Examples of organic compounds that react with reactive functional groups include aromatic carboxylic acids such as 3,5-diaminobenzoic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4-(aminomethyl)benzoic acid, 3,5-dimethylbenzoic acid, 3-methylbenzoic acid, 4-methylbenzoic acid, 4-t-butylbenzoic acid, benzoic acid, isonicotinic acid, and 3,5-dimethoxybenzoic acid; organic carboxylic acids such as 1-adamantanecarboxylic acid, pentanoic acid, and octanoic acid; aromatic amines such as aniline, cyclohexylamine, and ethyl 4-aminobenzenecarboxylate; amino acids such as tryptophan, phenylalanine, tyrosine, and histidine; and isocyanate compounds such as cyclohexyl isocyanate and benzyl isocyanate.
 なお、有機基修飾シリカを得る方法は、これに限定されず、従来から公知の手法を採用することができる。例えば、テトラエトキシシランのようなカップリング剤のゾル-ゲル反応を利用したシリカ粒子の合成段階から有機基を有するカップリング剤を併用することで表面に所望の有機基を有するシリカ粒子を合成することができる。また、水やCO2を媒体とした超臨界状態においてシリカ表面とカルボキシル基やアミノ基のような反応性官能基を有する修飾剤とを反応させることで表面修飾シリカを得ることができる。 The method for obtaining organic group-modified silica is not limited to the above, and conventionally known methods can be used. For example, silica particles having desired organic groups on the surface can be synthesized by using a coupling agent having an organic group in the synthesis stage of silica particles utilizing the sol-gel reaction of a coupling agent such as tetraethoxysilane. In addition, surface-modified silica can be obtained by reacting the silica surface with a modifying agent having a reactive functional group such as a carboxyl group or an amino group in a supercritical state using water or CO2 as a medium.
 このようにして製造される有機基修飾シリカの有機基修飾の一例を式(a)~(d)に示す。
 式(a)の有機基修飾は、アミノプロピルトリエトキシシランを反応させたシリカに、反応性官能基としてカルボキシル基を有する有機化合物を反応させた例であり、好ましいR11は例示したとおりである。
 式(b)の有機基修飾は、アミノプロピルトリエトキシシランを反応させたシリカに、反応性官能基として、ハロゲン原子を有する有機化合物を反応させること、又は、3-クロロプロピルトリエトキシシランに有機アミンを反応させた後、反応液を蒸留やアミン塩酸塩の晶析・ろ過または分液操作などを行い、精製されたアミノアルキルシランを生成し、これをシリカと適切な溶媒中で加熱処理することで得ることが出来る例である。また、既に所望の表面修飾基を有する市販のカップリング剤があればそれを使用して表面修飾しても良い。好ましいR12は例示したとおりである。
 式(c)の有機基修飾は、シリカに芳香族基やアルキル基を有するシランカップリング剤を反応させた例であり、好ましいR13は例示したとおりである。シランカップリング剤は市販のものを用いても良いし、新たに合成したシラン化合物を用いても良い。
 式(d)の有機基修飾は、シリカに、飽和アルキル基又はメチル基を有するシリル化剤を反応させた例であり、好ましいR14は例示したとおりである。シリル化剤は、市販のものを使用することが出来る。
An example of the organic group modification of the organic group-modified silica thus produced is shown in formulas (a) to (d).
The organic group modification of formula (a) is an example in which silica that has been reacted with aminopropyltriethoxysilane is reacted with an organic compound having a carboxyl group as a reactive functional group, and preferable R 11 is as exemplified above.
The organic group modification of formula (b) can be obtained by reacting an organic compound having a halogen atom as a reactive functional group with silica that has been reacted with aminopropyltriethoxysilane, or by reacting an organic amine with 3-chloropropyltriethoxysilane, and then subjecting the reaction solution to distillation, crystallization/filtration of amine hydrochloride, or liquid separation to generate a purified aminoalkylsilane, which is then heat-treated with silica in a suitable solvent. In addition, if a commercially available coupling agent already having a desired surface-modifying group is available, it may be used for surface modification. Preferred R 12 is as exemplified above.
The organic group modification of formula (c) is an example in which a silane coupling agent having an aromatic group or an alkyl group is reacted with silica, and preferable R 13 is as exemplified above. The silane coupling agent may be a commercially available one, or a newly synthesized silane compound may be used.
The organic group modification of formula (d) is an example in which a silylating agent having a saturated alkyl group or a methyl group is reacted with silica, and preferable R 14 is as exemplified above. Commercially available silylating agents can be used.
 本発明の気体分離膜形成用組成物は、上述した表面に有機基が結合した無機微粒子と、マトリクス樹脂と、溶媒とを混合したものであるが、無機微粒子の有機基のHSP(Hansen Solubility Parameter)と、マトリクス樹脂のHSPとの差が5.0~15.0MPa0.5となるものを選定して気体膜形成用組成物とする。 The composition for forming a gas separation membrane of the present invention is a mixture of the inorganic fine particles having organic groups bonded to the surface thereof, a matrix resin, and a solvent. The composition for forming a gas membrane is selected so that the difference between the HSP (Hansen Solubility Parameter) of the organic groups of the inorganic fine particles and the HSP of the matrix resin is 5.0 to 15.0 MPa 0.5 .
 ここで、有機基のHSPとは詳細は後述するように、計算ソフトWinmostarを用いて計算したものである。 Here, the HSP of the organic group was calculated using the calculation software Winmostar, as described in detail below.
 式(a)~(d)に示すように、有機基が、-O-Si-を介して結合して上記構造となっている場合には、有機基は、-Si-より先の構造であると定義し、-Si-より先の有機基からHSPを計算する。また、シリカに有機基が直接結合している場合には、有機基のHSPを計算する。 As shown in formulas (a) to (d), when the organic group is bonded via -O-Si- to form the above structure, the organic group is defined as the structure beyond -Si-, and the HSP is calculated from the organic group beyond -Si-. In addition, when the organic group is directly bonded to the silica, the HSP of the organic group is calculated.
 例えば、式(a)の場合には、下記のように、長方形の枠内の構造を有機基とし、HSPを計算する。 For example, in the case of formula (a), the structure within the rectangular frame is treated as the organic group, and the HSP is calculated as shown below.
 本発明において、マトリクス樹脂としては、例えば、従来、気体分離膜を形成するために用いられている公知の樹脂を適宜用いればよい。具体的には、例えば、ポリイミド、セルロースジアセテート、ポリスルホン、ポリエーテルスルホン、ポリエチレングリコール架橋体、ジメチルシリコーン、ポリビニルアルコール、変性ポリビニルアルコール、ポリ置換アセチレン、ポリ-4-メチルペンテン、天然ゴム、マイクロポーラスポリマーなど種々のものが挙げられるが、これらに限定されるものではない。本発明においては、マイクロポーラスポリマー、ジメチルシリコーン、ポリビニルアルコール、ポリイミド、セルロースアセテートが好ましく、特に、ポリイミド、セルロースアセテート、マイクロポーラスポリマーが好ましい。 In the present invention, the matrix resin may be, for example, a known resin that has been conventionally used to form gas separation membranes. Specific examples include, but are not limited to, polyimide, cellulose diacetate, polysulfone, polyethersulfone, polyethylene glycol crosslinked body, dimethyl silicone, polyvinyl alcohol, modified polyvinyl alcohol, polysubstituted acetylene, poly-4-methylpentene, natural rubber, and microporous polymer. In the present invention, microporous polymer, dimethyl silicone, polyvinyl alcohol, polyimide, and cellulose acetate are preferred, and polyimide, cellulose acetate, and microporous polymer are particularly preferred.
 セルロースアセテートは、下記式(I)で表される構造を有する。 Cellulose acetate has the structure represented by the following formula (I):
 (nは、50~500の整数、Rは、-H又は-COCHを表し、少なくとも一か所が-COCHである。) (n is an integer of 50 to 500, R represents -H or -COCH3 , and at least one of R is -COCH3 .)
 また、マトリクス樹脂としては、下記式(10)で示されるテトラカルボン酸二無水物と、芳香族ジアミンR(NHとを縮重合させることにより得られる下記式(II)で示される繰り返し構造を有するポリイミドが好ましい。 As the matrix resin, a polyimide having a repeating structure represented by the following formula (II) obtained by condensation polymerization of a tetracarboxylic dianhydride represented by the following formula (10) and an aromatic diamine R2 ( NH2 ) 2 is preferred.
 (Rは4価の有機基を表す。) ( R1 represents a tetravalent organic group.)
 (Rは4価の有機基を表す。Rは芳香族ジアミンからアミンを除いた残基であり、炭素原子数6~14の芳香族基を表す。nは50~500の整数を表す。) ( R1 represents a tetravalent organic group. R2 represents a residue obtained by removing an amine from an aromatic diamine, and represents an aromatic group having 6 to 14 carbon atoms. n represents an integer of 50 to 500.)
 ここで、Rは、式(1)のテトラカルボン酸からカルボキシ基を除いた4価の残基であり、下記一般式(3)~(5)(ただし一般式(4)中、Xは-C(CF3)2-,-C(CF3)(C65)-,-C(CH3)(C65)-,-CH2-,-C(CH3)2-,-CO-,-SO2-,-O-,-S-,-NH-,-COO-,-CONH-,-Si(CH3)2-,-O-C64-C(CH3)2-C64-O-,-O-C64-O-,-O-CH2-CH2-O-,-CF2CF2CF2-,-CO-C64-CO-,-O-C64-S-C64-O-から選ばれる少なくとも一つの基を示す)から選ばれる少なくとも一つの有機基であることが好ましい。 Here, R 1 is a tetravalent residue obtained by removing a carboxy group from the tetracarboxylic acid of formula (1), and is represented by the following general formulae (3) to (5) (in general formula (4), X is -C(CF 3 ) 2 -, -C(CF 3 )(C 6 H 5 )-, -C(CH 3 )(C 6 H 5 )-, -CH 2 -, -C(CH 3 ) 2 -, -CO-, -SO 2 -, -O-, -S-, -NH-, -COO-, -CONH-, -Si(CH 3 ) 2 -, -O-C 6 H 4 -C(CH 3 ) 2 -C 6 H 4 -O-, -O-C 6 H 4 -O-, -O-CH 2 -CH 2 -O-, -CF 2 CF 2 It is preferable that the alkyl group is at least one organic group selected from the group consisting of --CF 2 --, --CO--C 6 H 4 --CO--, and --O--C 6 H 4 --S--C 6 H 4 --O--.
 さらに、マトリクス樹脂としては、マイクロポーラスポリマーであるのが好ましい。
 ここで、マイクロポーラスポリマーは、マイクロポーラス有機材料の1つである固有微多孔性ポリマーであり、マイクロポーラス有機材料の1つのクラスであり、下記文献を参照できる。
 (文献1)Budd, P. M. et al., Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity. Adv. Mater. 16, 456-459 (2004).
 (文献2)McKeown, N. B. et al., Polymers of intrinsic microporosity (PIMs): Bridging the void between microporous and polymeric materials. Chemistry - A European Journal 11, 2610-2620 (2005).
 (文献3)Budd, P. M. et al., Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263-269 (2005).
 (文献4)McKeown, N. B. & Budd, P. M., Polymers of intrinsic microporosity (PIMs): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev.35, 675-683 (2006).
 (文献5)Du, N. et al., Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10, 372-375 (2011).
 (文献6)Carta, M. et al., An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science 339, 303-307 (2013).
 (文献7)特表2017-509744号公報
Furthermore, the matrix resin is preferably a microporous polymer.
Here, the microporous polymer is an inherently microporous polymer, which is one of the microporous organic materials, and is one class of microporous organic materials. Reference can be made to the following literature.
(Reference 1) Budd, P. M. et al., Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity. Adv. Mater. 16, 456-459 (2004).
(Reference 2) McKeown, N. B. et al., Polymers of intrinsic microporosity (PIMs): Bridging the void between microporous and polymeric materials. Chemistry - A European Journal 11, 2610-2620 (2005).
(Reference 3) Budd, P. M. et al., Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263-269 (2005).
(Reference 4) McKeown, N. B. & Budd, P. M., Polymers of intrinsic microporosity (PIMs): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev.35, 675-683 (2006).
(Reference 5) Du, N. et al., Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10, 372-375 (2011).
(Reference 6) Carta, M. et al., An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science 339, 303-307 (2013).
(Reference 7) Special table publication No. 2017-509744
 固有微多孔性ポリマーの概念は、2002年にBudd及びMcKeownにより最初に考案された。
  国際公開WO2003/000774 A1は、平坦なポルフィリンマクロサイクルの硬い3-次元ネットワークを含む有機マイクロポーラスネットワーク材料を記載し、その中で隣接するマクロサイクルのピロール残基がこれらの隣接するマクロサイクルを動かないようにする硬いリンカーで接続され、その結果ポルフィリン平面は非共平面配向になる。該発明の好ましい材料はフタロシアニンネットワークである。これらの有機マイクロポーラス材料は、ネットワークPIMsとして知られている。
The concept of polymers with intrinsic microporosity was first proposed by Budd and McKeown in 2002.
International Publication WO 2003/000774 A1 describes organic microporous network materials that contain rigid 3-dimensional networks of planar porphyrin macrocycles, in which the pyrrole residues of adjacent macrocycles are connected by rigid linkers that immobilize these adjacent macrocycles, resulting in a non-coplanar orientation of the porphyrin planes. A preferred material of the invention is a phthalocyanine network. These organic microporous materials are known as network PIMs.
 Budd及びMcKeownによる別の発明は、国際公開WO2005/012397A2及びUS Patent No.7,690,514 B2であり、歪みポイントで硬いリンカーにより連結された第1の一般的な平面種を含み、リンカーにより連結される2つの隣接する第1平面は非共平面配向であり、但し、第1平面種はポルフィリンマクロサイクル以外ものであるマイクロポーラス有機マクロ分子を記載する。
 このようなマイクロポーラスポリマーの中でも、下記式(III)で示される構造で表されるPIM-1が特に好ましい。
Another invention by Budd and McKeown, International Publication No. WO 2005/012397 A2 and US Patent No. 7,690,514 B2, describes microporous organic macromolecules that include a first generally planar species connected by a rigid linker at points of distortion, where two adjacent first planar species connected by the linker are in a non-coplanar orientation, with the proviso that the first planar species is other than a porphyrin macrocycle.
Among these microporous polymers, PIM-1 represented by the structure shown in the following formula (III) is particularly preferred.
(nは50~1000の整数を表す。) (n represents an integer of 50 to 1000.)
 気体分離膜形成用組成物を製造する際の溶剤としては、高分子を溶解させるとともに、無機微粒子を分散させる際の溶剤との相溶性があれば、種類は問わないが、例えば、テトラヒドロフラン(THF)、クロロホルム、ジメチルアセトアミド(DMAc)、トルエン、炭素数が1~6の直鎖状アルコール、炭素数が1~6の分岐しているアルコール、ヘキサン、ヘプタン、オクタン、デカン、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、からなる単独又は2種類以上の混合溶媒が挙げられる。 The solvent used in producing the gas separation membrane composition can be of any type as long as it dissolves the polymer and is compatible with the solvent used to disperse the inorganic fine particles. Examples of such solvents include tetrahydrofuran (THF), chloroform, dimethylacetamide (DMAc), toluene, linear alcohols with 1 to 6 carbon atoms, branched alcohols with 1 to 6 carbon atoms, hexane, heptane, octane, decane, N-methyl-2-pyrrolidone (NMP), and N,N-dimethylformamide (DMF), either alone or in combination of two or more of these.
 膜形用組成物中の樹脂/表面修飾シリカの質量比は、100/0.1~100/50であり、好ましくは100/1~100/30、より好ましくは100/1~100/15である。 The mass ratio of resin to surface-modified silica in the film-forming composition is 100/0.1 to 100/50, preferably 100/1 to 100/30, and more preferably 100/1 to 100/15.
 また、膜形用組成物中の樹脂/溶媒の質量比は、100/10000~100/500であり、好ましくは、100/3000~100/1000であり、より好ましくは100/2000~100/1333である。 The mass ratio of resin to solvent in the film-forming composition is 100/10,000 to 100/500, preferably 100/3,000 to 100/1,000, and more preferably 100/2,000 to 100/1,333.
 このようなマトリクス樹脂のHSPは、例えば、式(I)、(II)、(III)で表される繰り返し単位で計算されるHSPとする。
 ここで、式(I)のセルロースアセテートは、HSPが23.3である。
 また、式(II)のポリイミドは、HSPが23.0である。
 さらに、式(III)のPIM-1は、HSPが21.9である。
The HSP of such a matrix resin is, for example, the HSP calculated from the repeating units represented by formulas (I), (II), and (III).
Here, the cellulose acetate of formula (I) has an HSP of 23.3.
Moreover, the polyimide of formula (II) has an HSP of 23.0.
Furthermore, PIM-1 of formula (III) has an HSP of 21.9.
 よって、これらのマトリクス樹脂と混合する有機基修飾無機微粒子は、その有機基のHSPが、マトリクス樹脂のHSP値との差が5.0~15.0MPa0.5となるものを選定して用いる必要がある。 Therefore, the organic group-modified inorganic fine particles to be mixed with these matrix resins must be selected such that the difference between the HSP value of the organic group and the HSP value of the matrix resin is 5.0 to 15.0 MPa 0.5 .
 このように、本発明で有機基修飾無機微粒子の有機基のHSP値と、マトリクス樹脂のHSPとの差が5.0~15.0MPa0.5とするのは、気体分離膜を製造する際に、有機基修飾無機微粒子のマトリクス樹脂への分散を適度に調整することで、気体分離膜特性を向上させる気体分離膜を製造できる気体分離膜形成用組成物とするためである。HSPの差が上限値より大きくなると、マトリクス樹脂中への有機基修飾無機微粒子のマトリクス樹脂の分散が不十分で十分な強度を有する気体分離膜が製造できない虞があるからであり、また、下限値より小さいと、有機基修飾無機微粒子がマトリクス樹脂中に分散し過ぎて適度な凝集も生じなく、気体分離膜の透過性の向上効果が十分に得られないからである。 Thus, the difference between the HSP value of the organic group of the organic group-modified inorganic fine particles and the HSP of the matrix resin in the present invention is set to 5.0 to 15.0 MPa 0.5 in order to obtain a composition for forming a gas separation membrane capable of producing a gas separation membrane with improved gas separation membrane properties by appropriately adjusting the dispersion of the organic group-modified inorganic fine particles in the matrix resin when producing a gas separation membrane. If the HSP difference is larger than the upper limit, there is a risk that the dispersion of the organic group-modified inorganic fine particles in the matrix resin is insufficient and a gas separation membrane having sufficient strength cannot be produced, and if it is smaller than the lower limit, the organic group-modified inorganic fine particles are too dispersed in the matrix resin and do not aggregate appropriately, and the effect of improving the permeability of the gas separation membrane cannot be sufficiently obtained.
 このようなHSPの規定は、有機基修飾無機微粒子がマトリクス樹脂中に完全に良好に分散してしまうと、有機基修飾無機微粒子の添加による気体分離膜の透過性の向上効果が十分に得られず、ある程度凝集した方が添加による透過性の向上効果が十分に得られるという知見に基づいたものである。 These HSP specifications are based on the knowledge that if the organic-group-modified inorganic fine particles are completely and well dispersed in the matrix resin, the effect of improving the permeability of the gas separation membrane by adding the organic-group-modified inorganic fine particles is not fully achieved, and that the effect of improving the permeability by adding the organic-group-modified inorganic fine particles is more fully achieved if the particles are aggregated to a certain extent.
 マトリクス樹脂として式(I)のセルロースアセテートを用いる場合、有機基修飾無機微粒子の有機基としては、以下の有機基を例示でき、HSPは、下記構造から計算される。 When cellulose acetate of formula (I) is used as the matrix resin, examples of the organic groups of the organic group-modified inorganic fine particles include the following organic groups, and the HSP is calculated from the following structure:
 マトリクス樹脂として式(II)のポリイミドを用いる場合、有機基修飾無機微粒子の有機基としては、以下の有機基を例示でき、HSPは、下記構造から計算される。 When the polyimide of formula (II) is used as the matrix resin, examples of the organic groups of the organic group-modified inorganic fine particles include the following organic groups, and the HSP is calculated from the following structure:
 マトリクス樹脂として式(III)のPIM-1を用いる場合、有機基修飾無機微粒子の有機基としては、以下の有機基を例示でき、HSPは、下記構造から計算される。 When PIM-1 of formula (III) is used as the matrix resin, examples of the organic groups of the organic group-modified inorganic fine particles include the following organic groups, and the HSP is calculated from the following structure:
 気体分離膜形成用組成物を製造するために用いる溶剤は、マトリクス樹脂を溶解し、有機基修飾無機微粒子を分散するために適当な溶剤、例えば、4-メチルテトラヒドロピラン、THF、クロロホルム、トルエン、キシレン、炭素数が1~10の直鎖状アルコール、炭素数が1~6の分岐しているアルコール、炭化水素系溶媒であるヘキサン、ヘプタン、オクタン、ノナン、デカン、非プロトン性極性溶媒であるDMAc、NMP、1,3-ジメチル-2-イミダゾリジノン(DMI)、DMFからなる単独又は2種類以上の混合溶媒などを用いる。 The solvent used to manufacture the gas separation membrane composition is a solvent suitable for dissolving the matrix resin and dispersing the organic group-modified inorganic fine particles, such as 4-methyltetrahydropyran, THF, chloroform, toluene, xylene, linear alcohols having 1 to 10 carbon atoms, branched alcohols having 1 to 6 carbon atoms, hydrocarbon solvents such as hexane, heptane, octane, nonane, and decane, aprotic polar solvents such as DMAc, NMP, 1,3-dimethyl-2-imidazolidinone (DMI), and DMF, either alone or in a mixture of two or more of them.
 本発明の気体分離膜の製造方法は、マトリクス樹脂と、一次粒子径が1~1000nmの無機微粒子と、溶媒とを含む気体分離膜形成用組成物を調製するに当たり、無機微粒子として、表面に有機基が結合している有機基修飾無機微粒子であって、この有機基修飾無機微粒子の有機基のHSPと、マトリクス樹脂のHSPとの差が5.0MPa0.5以上15.0MPa0.5以下であるものを用いて気体分子膜形成用組成物を調製し、均一に分散させ、基板上に塗布した後に、溶剤を蒸発させる。塗布する基板としては、溶剤によって劣化が生じなければ、材質や表面の状態は問わないが、例えば表面に凹凸のないSiウエハーや多孔質基材などが挙げられる。 In the method for producing a gas separation membrane of the present invention, when preparing a composition for forming a gas separation membrane containing a matrix resin, inorganic fine particles having a primary particle diameter of 1 to 1000 nm, and a solvent, the inorganic fine particles are organic group-modified inorganic fine particles having an organic group bonded to the surface, and the difference between the HSP of the organic group of the organic group-modified inorganic fine particles and the HSP of the matrix resin is 5.0 MPa 0.5 or more and 15.0 MPa 0.5 or less, and the composition for forming a gas molecule membrane is prepared using the inorganic fine particles, uniformly dispersed, and applied onto a substrate, and the solvent is then evaporated. As the substrate to be applied, there is no restriction on the material or surface condition as long as it is not deteriorated by the solvent, and examples thereof include Si wafers and porous substrates with no unevenness on the surface.
 前記気体分離膜形成用組成物から形成した気体分離膜形成用塗布液を基板に塗布し、溶剤を蒸発させることにより気体分離膜とする工程を具備するものである。 The method includes a step of applying a coating liquid for forming a gas separation membrane, which is formed from the composition for forming a gas separation membrane, to a substrate and evaporating the solvent to form a gas separation membrane.
 塗布方法としては、基板上に均一にむらなく塗布できることが好ましく、例えば、ディップ塗布(浸漬法)、スピン塗布法、ブレード塗布法、噴霧塗布法、グラビアコート、ダイコート、スリットコート等を挙げることができるが、ブレード塗布法が好ましく、特に、ドクターブレードを用いるのが好ましい。 The coating method is preferably one that can apply the coating evenly and without unevenness onto the substrate, and examples of the method include dip coating (immersion method), spin coating, blade coating, spray coating, gravure coating, die coating, and slit coating. However, the blade coating method is preferred, and it is particularly preferred to use a doctor blade.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれによって何ら限定されるものではない。 The present invention will be explained in detail below with reference to examples, but the present invention is not limited to these in any way.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれによって何ら限定されるものではない。 The present invention will be explained in detail below with reference to examples, but the present invention is not limited to these in any way.
[PIM-1の合成]
 温度計、撹拌羽及び冷却管を取り付けた5Lの四つ口丸底セパラブルフラスコに3,3,3',3'-テトラメチル-1,1'-スピロビインダン-5,5',6,6'-テトラオール85.0g(富士フィルム和光純薬、250mmol)とN,N-ジメチルアセトアミド2537g(DMAc、東京化成工業製)を計量後、室温で撹拌し基質を溶解させた。次いで、テトラフルオロテレフタロニトリル48.5g(東京化成工業製、242mmol)、炭酸カリウム(微粉末、関東化学製)69.0gの順に添加後、80℃、2時間撹拌させた。反応液を濾過後、DMAc800mLを2回、メタノール800mLを2回の順で濾過洗浄した。ろ物を純水2700mLに投入し、撹拌しながら煮沸した。放冷後、濾過・純水による洗浄を行った。この煮沸・ろ過洗浄工程を再度繰り返した。回収した濾物を減圧乾燥(110℃・3時間)後、濾物(75.3g)をTHF(1430g)に溶解させた。この溶液を濾紙(目開き4μm)にてフィルターカット後、メタノール2000gにゆっくり投入し、再沈殿を行った。このスラリーをろ過後、メタノール洗浄後、減圧乾燥(110℃・3時間)を経て黄色顆粒状のポリマー70.6gを回収した。得られポリマーの物性は以下の通りになった。
・重量平均分子量(Mw):10.5万(GPC測定)
・多分散度(Mw/Mn):2.70(GPC測定)
[Synthesis of PIM-1]
85.0 g of 3,3,3',3'-tetramethyl-1,1'-spirobiindan-5,5',6,6'-tetraol (Fujifilm Wako Pure Chemical Industries, 250 mmol) and 2537 g of N,N-dimethylacetamide (DMAc, Tokyo Chemical Industry Co., Ltd.) were weighed into a 5 L four-neck round-bottom separable flask equipped with a thermometer, stirring blades, and a cooling tube, and then stirred at room temperature to dissolve the substrate. Next, 48.5 g of tetrafluoroterephthalonitrile (Tokyo Chemical Industry Co., Ltd., 242 mmol) and 69.0 g of potassium carbonate (fine powder, Kanto Chemical Industry Co., Ltd.) were added in this order, and then stirred at 80°C for 2 hours. After filtering the reaction solution, it was filtered and washed with 800 mL of DMAc twice and 800 mL of methanol twice in that order. The filtered residue was poured into 2700 mL of pure water and boiled while stirring. After cooling, it was filtered and washed with pure water. This boiling, filtering, and washing process was repeated again. The collected residue was dried under reduced pressure (110°C, 3 hours), and then the residue (75.3 g) was dissolved in THF (1430 g). This solution was cut through a filter paper (mesh size 4 μm), and then slowly poured into 2000 g of methanol to perform reprecipitation. After filtering this slurry, it was washed with methanol, and then dried under reduced pressure (110°C, 3 hours) to collect 70.6 g of a yellow granular polymer. The physical properties of the obtained polymer were as follows.
・Weight average molecular weight (Mw): 105,000 (GPC measurement)
・Polydispersity (Mw/Mn): 2.70 (GPC measurement)
[含フッ素ポリイミド(6FDA-3MPA)の合成]
 温度計、撹拌羽及び活栓を取り付けた200mLの四つ口フラスコに2,4,6-トリメチル-1,3-フェニレンジアミン3.01g(3MPA、東京化成工業製、20.0mmol)とN-メチルピロリドン108g(東京化成工業製)を計量後、室温で撹拌し基質を溶解させた。次いで、4,4-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物8.97g(6FDA、東京化成工業製、20.2mmol)添加後、窒素雰囲気下で室温、27時間撹拌させた。調製した反応液の粘度は109.3mPa・sであった。追加で3MPAを15.2mg(東京化成工業製、0.101mmol)添加し室温下・3時間撹拌後、続いて6FDAを45.2mg(東京化成工業製、0.102mmol)添加し25時間撹拌することで溶液粘度が119mPa・sのポリアミック酸-NMP溶液を調製した。
[Synthesis of fluorine-containing polyimide (6FDA-3MPA)]
3.01 g of 2,4,6-trimethyl-1,3-phenylenediamine (3 MPA, Tokyo Chemical Industry Co., Ltd., 20.0 mmol) and 108 g of N-methylpyrrolidone (Tokyo Chemical Industry Co., Ltd.) were weighed into a 200 mL four-neck flask equipped with a thermometer, stirring blade, and stopcock, and the mixture was stirred at room temperature to dissolve the substrate. Next, 8.97 g of 4,4-(hexafluoroisopropylidene)diphthalic anhydride (6FDA, Tokyo Chemical Industry Co., Ltd., 20.2 mmol) was added, and the mixture was stirred at room temperature for 27 hours under a nitrogen atmosphere. The viscosity of the reaction solution prepared was 109.3 mPa s. An additional 15.2 mg of 3 MPA (manufactured by Tokyo Chemical Industry Co., Ltd., 0.101 mmol) was added and stirred at room temperature for 3 hours, after which 45.2 mg of 6FDA (manufactured by Tokyo Chemical Industry Co., Ltd., 0.102 mmol) was added and stirred for 25 hours to prepare a polyamic acid-NMP solution with a solution viscosity of 119 mPa·s.
 得られたポリアミック酸-NMP溶液全量に無水酢酸6.17g(東京化成工業製、60mmol)及びピリジン4.17g(東京化成工業製、60mmol)を添加し、窒素雰囲気下で70℃・5時間撹拌し、イミド化を行った。放冷後、反応液を反応液の3倍量のメタノールにゆっくり投入し、ポリマー成分を析出させた。析出物をミリポア製のPTFEメンブレンフィルター(オムニポア(登録商標)メンブレンフィルター、JAWP09025、細孔1μm)にて濾過後、濾物を適当なビーカーに移した後、湿潤状態の濾物重量の4倍量のメタノールを投入し、撹拌した。上記同様にメンブレンフィルターにて濾過し、上記同様の濾物重量の3倍量のメタノールで洗浄した。濾物を回収後、減圧乾燥(130℃、5時間)し、含フッ素ポリイミド9.15gを回収した。得られた含フッ素ポリイミドの物性は以下の通りであった。
・重量平均分子量(Mw):11.0万(GPC測定)
・多分散度(Mw/Mn):3.98(GPC測定)
・イミド化率:100%(H-NMR測定、アミド結合部位のプロトンが検出限界以下)
To the entire amount of the obtained polyamic acid-NMP solution, 6.17 g of acetic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd., 60 mmol) and 4.17 g of pyridine (manufactured by Tokyo Chemical Industry Co., Ltd., 60 mmol) were added, and the mixture was stirred at 70° C. for 5 hours under a nitrogen atmosphere to perform imidization. After cooling, the reaction solution was slowly poured into methanol in an amount three times the amount of the reaction solution to precipitate a polymer component. The precipitate was filtered with a PTFE membrane filter (Omnipore (registered trademark) membrane filter, JAWP09025, pore size 1 μm) manufactured by Millipore, and the filtered matter was transferred to an appropriate beaker, and then methanol in an amount four times the weight of the wet filtered matter was poured in and stirred. The mixture was filtered with a membrane filter in the same manner as above, and washed with methanol in an amount three times the weight of the filtered matter in the same manner as above. The filtered matter was collected and then dried under reduced pressure (130° C., 5 hours), and 9.15 g of fluorine-containing polyimide was collected. The physical properties of the obtained fluorine-containing polyimide were as follows.
・Weight average molecular weight (Mw): 110,000 (GPC measurement)
・Polydispersity (Mw/Mn): 3.98 (GPC measurement)
Imidization rate: 100% (measured by 1 H-NMR, protons at amide bond sites below detection limit)
[表面修飾シリカ1の合成]
 冷却管、温度計及び撹拌機を取り付けた3000mLの四つ口丸底フラスコに、シリカナノ粒子のイソプロパノール(IPA)分散液(IPA-ST、日産化学(株)製、シリカ濃度:30.5質量%、平均一次粒子径12nm)492g、IPA 2495g、純水2.69g、APTES(東京化成工業(株)製)11.0gを計量後、撹拌しながら還流下で1時間撹拌した。得られた分散液をエバポレーターでIPA、水を留去しながら1-メチル-2-ピロリドン(NMP)をチャージし、溶液中の水分量がカールフィッシャー水分計にて0.1質量%以下に達したのを確認し、終了した。次いで、NMPにてAPTES修飾シリカ濃度を約5.4質量%になるように調整した。この溶液をST-G0-NMP分散液とする。
[Synthesis of surface-modified silica 1]
In a 3000 mL four-neck round-bottom flask equipped with a cooling tube, a thermometer and a stirrer, 492 g of isopropanol (IPA) dispersion of silica nanoparticles (IPA-ST, manufactured by Nissan Chemical Industries, Ltd., silica concentration: 30.5 mass%, average primary particle diameter 12 nm), 2495 g of IPA, 2.69 g of pure water, and 11.0 g of APTES (manufactured by Tokyo Chemical Industry Co., Ltd.) were weighed and stirred under reflux for 1 hour. The obtained dispersion was charged with 1-methyl-2-pyrrolidone (NMP) while distilling off IPA and water with an evaporator, and the water content in the solution was confirmed to reach 0.1 mass% or less using a Karl Fischer moisture meter, and then the process was terminated. Next, the APTES-modified silica concentration was adjusted to about 5.4 mass% with NMP. This solution was designated as ST-G0-NMP dispersion.
 冷却管、温度計及び撹拌機を取り付けた3000mLの四つ口丸底フラスコに得られたST-G0-NMP分散液全量と1,3-ジアミノ安息香酸(DABA)(Aldrich製)22.8g、トリエチルアミン(TEA)(関東化学(株)製)15.1g、Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate(BOP)(富士フィルム和光純薬製)66.1gを計量後、80℃下、1時間反応させた。この反応液を三菱化工機製ダイナフィルター(セラミックフィルターの細孔7nm)を用いて、1700gのメタノールで限外濾過洗浄(吐出圧0.2MPa)を行った。回収した表面修飾シリカ1のメタノール分散液の物性は以下の通りであった。ここでの表面修飾量とはカップリング剤由来のアミノプロピル基と有機カルボン酸とを反応させた有機基全量を意味し、以降の表面修飾基も同様に意味する。
・pH:5.4
・電気伝導度:14.0μm/s
・分散液中の固形分濃度:5.40質量%
・表面修飾量:9.10質量%
The total amount of the ST-G0-NMP dispersion obtained was weighed into a 3000 mL four-neck round-bottom flask equipped with a cooling tube, a thermometer, and a stirrer, and 22.8 g of 1,3-diaminobenzoic acid (DABA) (manufactured by Aldrich), 15.1 g of triethylamine (TEA) (manufactured by Kanto Chemical Co., Ltd.), and 66.1 g of Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were reacted for 1 hour at 80 ° C. This reaction solution was subjected to ultrafiltration washing (discharge pressure 0.2 MPa) with 1700 g of methanol using a Mitsubishi Kakoki Dynafilter (ceramic filter pore size 7 nm). The physical properties of the recovered methanol dispersion of surface-modified silica 1 were as follows. The surface modification amount here means the total amount of organic groups resulting from the reaction of aminopropyl groups derived from the coupling agent with organic carboxylic acid, and the same applies to the subsequent surface modification groups.
pH: 5.4
Electrical conductivity: 14.0 μm/s
Solid content in dispersion: 5.40% by mass
・Surface modification amount: 9.10% by mass
[表面修飾シリカ2(STO-MAB)の合成]
 冷却管、温度計及び撹拌機を取り付けた3000mLの四つ口丸底フラスコに、シリカナノ粒子のイソプロパノール(IPA)分散液(IPA-ST、日産化学(株)製、シリカ濃度:30.5質量%、平均一次粒子径12nm)164g、IPA 832g、純水0.897g、APTES(東京化成工業(株)製)3.68gを計量後、還流下で1時間撹拌した。得られた分散液をエバポレーターでIPA、水を留去しながら1-メチル-2-ピロリドン(NMP)をチャージし、溶液中の水分量がカールフィッシャー水分計にて0.1質量%以下に達したのを確認し、終了した。この溶液をST-G0-NMP分散液とする。
[Synthesis of surface-modified silica 2 (STO-MAB)]
In a 3000 mL four-neck round-bottom flask equipped with a cooling tube, a thermometer, and a stirrer, 164 g of an isopropanol (IPA) dispersion of silica nanoparticles (IPA-ST, manufactured by Nissan Chemical Industries, Ltd., silica concentration: 30.5 mass%, average primary particle diameter 12 nm), 832 g of IPA, 0.897 g of pure water, and 3.68 g of APTES (manufactured by Tokyo Chemical Industry Co., Ltd.) were weighed and stirred under reflux for 1 hour. The obtained dispersion was charged with 1-methyl-2-pyrrolidone (NMP) while distilling off IPA and water with an evaporator, and the water content in the solution was confirmed to reach 0.1 mass% or less using a Karl Fischer moisture meter, and then the process was terminated. This solution was designated as ST-G0-NMP dispersion.
 冷却管、温度計及び撹拌機を取り付けた300mLの四つ口丸底フラスコに得られたST-G0-NMP分散液100g、m-アミノ安息香酸(MBA、東京化成工業製)0.683g、トリエチルアミン(TEA、東京化成工業製)0.504g、Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate(BOP、富士フィルム和光純薬製)2.20gを計量後、80℃下で1時間反応させた。この反応液を0.9kgのメタノールへ投入し希釈した。希釈液を三菱化工機製ダイナフィルター(セラミックフィルターの細孔7nm)を用いて濃縮した(濾液排出量:720g)。次いで、1700gのメタノールで限外濾過洗浄(吐出圧0.2MPa)を行った。回収した表面修飾シリカ2のメタノール分散液の物性は以下の通りであった。
・pH:4.51
・電気伝導度:15.5μm/s
・分散液中の固形分濃度:2.34質量%
・表面修飾量:9.14質量%
100 g of the obtained ST-G0-NMP dispersion, 0.683 g of m-aminobenzoic acid (MBA, manufactured by Tokyo Chemical Industry Co., Ltd.), 0.504 g of triethylamine (TEA, manufactured by Tokyo Chemical Industry Co., Ltd.), and 2.20 g of Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were weighed into a 300 mL four-neck round-bottom flask equipped with a cooling tube, a thermometer, and a stirrer, and then reacted at 80 ° C. for 1 hour. This reaction liquid was poured into 0.9 kg of methanol and diluted. The diluted liquid was concentrated using a Mitsubishi Kakoki Dynafilter (ceramic filter pore size 7 nm) (filtrate discharge: 720 g). Next, ultrafiltration washing (discharge pressure 0.2 MPa) was performed with 1700 g of methanol. The physical properties of the recovered methanol dispersion of surface-modified silica 2 were as follows.
pH: 4.51
Electrical conductivity: 15.5 μm/s
Solid content in dispersion: 2.34% by mass
・Surface modification amount: 9.14% by mass
[表面修飾シリカ3の合成]
 温度計、撹拌機及び活栓を取り付けた500mLの四つ口丸底フラスコにシリカナノ粒子-イソプロパノール(IPA)分散液(IPA-ST、日産化学(株)製、シリカ濃度:30.5質量%、平均一次粒子径12nm)49.2g、メタノール241g(東京化成工業製)、3-アミノプロピルトリエトキシシラン1.10g(ナカライテック製)、純水0.269gの順に添加し、窒素雰囲気下、回転数150rpmで撹拌しながら60℃へ昇温後、4時間反応させた。
[Synthesis of surface-modified silica 3]
To a 500 mL four-neck round-bottom flask equipped with a thermometer, a stirrer, and a stopcock, 49.2 g of a silica nanoparticle-isopropanol (IPA) dispersion (IPA-ST, manufactured by Nissan Chemical Industries, Ltd., silica concentration: 30.5 mass%, average primary particle size: 12 nm), 241 g of methanol (manufactured by Tokyo Chemical Industry Co., Ltd.), 1.10 g of 3-aminopropyltriethoxysilane (manufactured by Nacalai Tech), and 0.269 g of pure water were added in this order, and the mixture was heated to 60° C. under a nitrogen atmosphere while stirring at a rotation speed of 150 rpm, and then reacted for 4 hours.
 35℃以下に放冷後、イソニコチン酸(0.736g、東京化成工業製)-メタノール(6.63g、東京化成工業製)溶液、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM、1.66g、Chem-Impex International製)-メタノール(14.9g、東京化成工業製)溶液の順に投入し、室温下、回転数150rpmにて2時間反応させた。反応液を上述同様の条件にて限外濾過装置にて、表面修飾シリカを洗浄し、メタノール分散液が得られた。各種物性は以下の通りであった。
・pH:6.11
・電気伝導度:3.80μm/s
・分散液中の固形分濃度:6.58質量%
・表面修飾量:7.78質量%
After cooling to 35°C or less, a solution of isonicotinic acid (0.736 g, manufactured by Tokyo Chemical Industry Co., Ltd.)-methanol (6.63 g, manufactured by Tokyo Chemical Industry Co., Ltd.) and a solution of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM, 1.66 g, manufactured by Chem-Impex International)-methanol (14.9 g, manufactured by Tokyo Chemical Industry Co., Ltd.) were added in this order, and the reaction was carried out at room temperature and at a rotation speed of 150 rpm for 2 hours. The surface-modified silica was washed using an ultrafiltration device under the same conditions as above, and a methanol dispersion was obtained. Various physical properties were as follows.
pH: 6.11
Electrical conductivity: 3.80 μm/s
Solid content in dispersion: 6.58% by mass
・Surface modification amount: 7.78% by mass
[表面修飾シリカ4の合成]
 表面修飾シリカ3で用いたイソニコチン酸-メタノール溶液を3,5-ジメトキシ安息香酸(1.09g、東京化成工業製)-メタノール(9.80g)溶液に変更した以外は同様の実験操作を行った。各種物性は以下の通りになった。
・pH:7.23
・電気伝導度:2.22μm/s
・分散液中の固形分濃度:6.62質量%
・表面修飾量:9.23質量%
[Synthesis of surface-modified silica 4]
The same experimental procedure was carried out, except that the isonicotinic acid-methanol solution used in Surface-modified Silica 3 was changed to a 3,5-dimethoxybenzoic acid (1.09 g, manufactured by Tokyo Chemical Industry Co., Ltd.)-methanol (9.80 g) solution. The various physical properties were as follows.
pH: 7.23
Electrical conductivity: 2.22 μm/s
Solid content in dispersion: 6.62% by mass
・Surface modification amount: 9.23% by mass
[表面修飾シリカ5の合成]
 表面修飾シリカ3で用いたイソニコチン酸-メタノール溶液を3,5-ジメチル安息香酸(0.898g、東京化成工業製)-メタノール(8.11g)溶液に変更した以外は同様の実験操作を行った。各種物性は以下の通りになった。
・pH:6.71
・電気伝導度:5.01μm/s
・分散液中の固形分濃度:6.33質量%
・表面修飾量:7.95質量%
[Synthesis of surface-modified silica 5]
The same experimental procedure was carried out, except that the isonicotinic acid-methanol solution used in Surface-modified Silica 3 was changed to a 3,5-dimethylbenzoic acid (0.898 g, manufactured by Tokyo Chemical Industry Co., Ltd.)-methanol (8.11 g) solution. The various physical properties were as follows.
pH: 6.71
Electrical conductivity: 5.01 μm/s
Solid content in dispersion: 6.33% by mass
・Surface modification amount: 7.95% by mass
[表面修飾シリカ6の合成]
表面修飾シリカ3で用いたイソニコチン酸-メタノール溶液を4-t-ブチル安息香酸(1.07g、東京化成工業製)-メタノール(9.60g)溶液に変更した以外は同様の実験操作を行った。各種物性は以下の通りになった。
・pH:6.89
・電気伝導度:5.62μm/s
・分散液中の固形分濃度:4.81質量%
・表面修飾量:9.26質量%
[Synthesis of surface-modified silica 6]
The same experimental procedure was carried out, except that the isonicotinic acid-methanol solution used in Surface-modified Silica 3 was changed to a 4-t-butylbenzoic acid (1.07 g, manufactured by Tokyo Chemical Industry Co., Ltd.)-methanol (9.60 g) solution. The various physical properties were as follows.
pH: 6.89
Electrical conductivity: 5.62 μm/s
Solid content in dispersion: 4.81% by mass
・Surface modification amount: 9.26% by mass
[表面修飾シリカ7の合成]
 温度計、撹拌機及び活栓を取り付けた500mLの四つ口丸底フラスコにシリカナノ粒子-イソプロパノール(IPA)分散液(IPA-ST、日産化学(株)製、シリカ濃度:30.5質量%、平均一次粒子径12nm)32.8g、IPA162g(東京化成工業製)、N-フェニル-3-アミノプロピルトリメトキシシラン0.849g(信越化学工業製、(KBM-573)、純水0.179gの順に添加し、窒素雰囲気下、回転数150rpmで撹拌しながら1時間還流した。放冷後の反応液中の固形分濃度(不揮発成分)は5.32質量%であった。
[Synthesis of surface-modified silica 7]
To a 500 mL four-neck round-bottom flask equipped with a thermometer, a stirrer, and a stopcock, 32.8 g of a silica nanoparticle-isopropanol (IPA) dispersion (IPA-ST, manufactured by Nissan Chemical Industries, Ltd., silica concentration: 30.5 mass%, average primary particle size: 12 nm), 162 g of IPA (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.849 g of N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., (KBM-573), and 0.179 g of pure water were added in this order, and the mixture was refluxed for 1 hour under a nitrogen atmosphere while stirring at a rotation speed of 150 rpm. After cooling, the solid content concentration (non-volatile components) in the reaction liquid was 5.32 mass%.
[表面修飾シリカ8の合成]
 温度計、撹拌機及び活栓を取り付けた200mLの四つ口丸底フラスコにシリカナノ粒子-イソプロパノール(IPA)分散液(IPA-ST、日産化学(株)製、シリカ濃度:30.5質量%、平均一次粒子径12nm)16.4g、IPA83.6g(東京化成工業製)、n-へキシルトリメトキシシラン0.413g(信越化学工業製、KBM3063)、純水0.0897gの順に添加し、窒素雰囲気下、回転数150rpmで撹拌しながら1時間還流した。放冷後の反応液中の固形分濃度(不揮発成分)は5.59質量%であった。
[Synthesis of surface-modified silica 8]
A 200 mL four-neck round-bottom flask equipped with a thermometer, stirrer, and stopcock was charged with 16.4 g of silica nanoparticle-isopropanol (IPA) dispersion (IPA-ST, Nissan Chemical Industries, Ltd., silica concentration: 30.5 mass%, average primary particle size 12 nm), 83.6 g of IPA (Tokyo Chemical Industry Co., Ltd.), 0.413 g of n-hexyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM3063), and 0.0897 g of pure water in that order, and refluxed for 1 hour under a nitrogen atmosphere while stirring at a rotation speed of 150 rpm. The solid content concentration (non-volatile components) in the reaction solution after cooling was 5.59 mass%.
[表面修飾シリカ9の合成]
 温度計、撹拌機及び活栓を取り付けた200mLの四つ口丸底フラスコにシリカナノ粒子-イソプロパノール(IPA)分散液(IPA-ST、日産化学(株)製、シリカ濃度:30.5質量%、平均一次粒子径12nm)16.4g、IPA83.6g(東京化成工業製)、トリメチルメトキシシラン0.196g(東京化成工業製)、純水0.0299gの順に添加し、窒素雰囲気下、回転数150rpmで撹拌しながら1時間還流した。放冷後の反応液中の固形分濃度(不揮発成分)は5.55質量%であった。
[Synthesis of surface-modified silica 9]
A 200 mL four-neck round-bottom flask equipped with a thermometer, stirrer, and stopcock was charged with 16.4 g of silica nanoparticle-isopropanol (IPA) dispersion (IPA-ST, Nissan Chemical Industries, Ltd., silica concentration: 30.5 mass%, average primary particle size: 12 nm), 83.6 g of IPA (Tokyo Chemical Industry Co., Ltd.), 0.196 g of trimethylmethoxysilane (Tokyo Chemical Industry Co., Ltd.), and 0.0299 g of pure water in that order, and refluxed for 1 hour under a nitrogen atmosphere while stirring at 150 rpm. The solids concentration (non-volatile components) in the reaction solution after cooling was 5.55 mass%.
[表面修飾シリカ10の合成]
 温度計、撹拌機及び活栓を取り付けた100mLの四つ口丸底フラスコにシリカナノ粒子-イソプロパノール(IPA)分散液(IPA-ST、日産化学(株)製、シリカ濃度:30.5質量%、平均一次粒子径12nm)32.8g、X-12-967C 0.871g(信越化学工業製)、純水0.299gの順に添加し、窒素雰囲気下、撹拌しながら5時間還流した。放冷後の反応液中の固形分濃度(不揮発成分)は31.5質量%であった。
[Synthesis of surface-modified silica 10]
32.8 g of silica nanoparticle-isopropanol (IPA) dispersion (IPA-ST, Nissan Chemical Industries, Ltd., silica concentration: 30.5% by mass, average primary particle size: 12 nm), 0.871 g of X-12-967C (Shin-Etsu Chemical Co., Ltd.), and 0.299 g of pure water were added in this order to a 100 mL four-neck round-bottom flask equipped with a thermometer, a stirrer, and a stopcock, and the mixture was refluxed for 5 hours with stirring under a nitrogen atmosphere. After cooling, the solids concentration (non-volatile components) in the reaction liquid was 31.5% by mass.
[含フッ素ポリイミド/表面修飾シリカ複合膜作成とガス透過性評価]
 固形分250mg相当の各種表面修飾シリカ(1,2,4,6,7)の分散液と、NMP4.75gをナスフラスコに秤量後、エバポレーターで冷却管での凝結したアルコールが目視レベルで確認できなくなるまで混合溶液内のアルコールを留去した。放冷後、溶液中の表面修飾シリカの濃度が5質量%になるようNMPを追加した。表面修飾シリカと樹脂が同質量になるように5質量%の表面修飾シリカ-NMP混合溶液を5質量%の含フッ素ポリイミド(6FDA-3MPA)-THF溶液に撹拌しながら徐々に投入し混合溶液を調整した。この混合溶液を3倍量のメタノールに滴下し、表面修飾シリカ/樹脂の複合化物を沈殿させた。得られた懸濁液を濾過後、沈殿操作と同量のメタノールで洗浄し、濾物を減圧乾燥(130℃、5時間)することで表面修飾シリカと樹脂との複合化物(組成比=100質量部/100質量部)を得た。
[Preparation of fluorinated polyimide/surface-modified silica composite membrane and evaluation of gas permeability]
A dispersion of various surface-modified silicas (1, 2, 4, 6, 7) equivalent to 250 mg of solid content and 4.75 g of NMP were weighed into a recovery flask, and the alcohol in the mixed solution was distilled off with an evaporator until the alcohol coagulated in the cooling tube could not be visually confirmed. After cooling, NMP was added so that the concentration of surface-modified silica in the solution was 5% by mass. A 5% by mass surface-modified silica-NMP mixed solution was gradually added to a 5% by mass fluorine-containing polyimide (6FDA-3MPA)-THF solution while stirring so that the surface-modified silica and the resin were the same mass, and a mixed solution was adjusted. This mixed solution was dropped into three times the amount of methanol to precipitate a composite of surface-modified silica/resin. The obtained suspension was filtered, washed with the same amount of methanol as in the precipitation operation, and the filtered residue was dried under reduced pressure (130°C, 5 hours) to obtain a composite of surface-modified silica and resin (composition ratio = 100 parts by mass/100 parts by mass).
 作製した複合化物42.0mg、マトリクス樹脂として含フッ素ポリイミド(6FDA-3MPA)168mg、溶剤としてTHF2.79gを混合し、マグネティックスターラーによる撹拌後、超音波照射3分間に行うことで膜形成組成物を作製した(表面修飾シリカ:10質量%、樹脂:90質量%、総固形分濃度:7質量%)。なお、ここでの総固形分濃度は、表面修飾シリカと樹脂の総重量濃度を意味する。膜形成組成物をシャーレに投入し、静置乾燥(室温1晩)、次いで減圧乾燥(35℃、3時間)することで自立膜を得た。自立膜を適当なサイズにカットし、アルミシールテープで適当な面積になるようにマスキングした後、ガス透過性試験(35℃、1atm、差圧法)を行った。 42.0 mg of the composite was mixed with 168 mg of fluorine-containing polyimide (6FDA-3MPA) as a matrix resin and 2.79 g of THF as a solvent. After stirring with a magnetic stirrer, ultrasonic irradiation was performed for 3 minutes to prepare a film-forming composition (surface-modified silica: 10% by mass, resin: 90% by mass, total solids concentration: 7% by mass). The total solids concentration here refers to the total weight concentration of the surface-modified silica and resin. The film-forming composition was placed in a petri dish and left to dry (overnight at room temperature), then dried under reduced pressure (35°C, 3 hours) to obtain a free-standing film. The free-standing film was cut to an appropriate size and masked with aluminum sealing tape to an appropriate area, and then a gas permeability test (35°C, 1 atm, differential pressure method) was performed.
[PIM-1/表面修飾シリカ複合膜の作成とガス透過性評価]
 表面修飾シリカ1~5、7を用い、上述で記載した含フッ素ポリイミドをPIM-1に変更したこと以外は同様の操作にて自立膜作成とガス透過特性を実施した。
[Preparation of PIM-1/surface-modified silica composite membrane and evaluation of gas permeability]
Surface-modified silicas 1 to 5 and 7 were used, and self-supporting membranes were prepared and their gas permeability characteristics were evaluated in the same manner as above, except that the fluorine-containing polyimide described above was changed to PIM-1.
[CDA/表面修飾シリカ複合膜の作成とガス透過性評価]
 表面修飾シリカ1~4とCDAの複合化に関しては、マトリクス樹脂を市販の酢酸セルロース(CDA、富士フィルム和光純薬製、型番:039-01695)に変更した以外は上述同様の操作を実施した。
[Preparation of CDA/surface-modified silica composite membrane and evaluation of gas permeability]
For the composite of surface-modified silica 1 to 4 and CDA, the same procedure as above was carried out, except that the matrix resin was changed to commercially available cellulose acetate (CDA, Fujifilm Wako Pure Chemical Industries, Ltd., model number: 039-01695).
 表面修飾シリカ5~8とCDAの複合化に関しては、各種表面修飾シリカとCDAが同質量部になるように、各種合成した表面修飾シリカ-アルコール分散液と2.5質量%のCDA-THF混合溶液をナスフラスコに計量し、エバポレーターで内容物が乾固するまで溶媒を留去した。その後、減圧乾燥器(130℃、3時間)にて溶媒を完全に留去し、表面修飾シリカと樹脂の複合化物を得た。この時の複合化物の組成比は各々同質量部ずつ混合されたことになる。複合化以降の自立膜の作製とガス透過性試は上述同様の操作で実施した。 To composite surface-modified silica 5-8 with CDA, various synthesized surface-modified silica-alcohol dispersions and 2.5% by mass of CDA-THF mixed solution were weighed into an eggplant flask so that the various surface-modified silicas and CDA were equal in mass, and the solvent was removed using an evaporator until the contents were solid and dry. The solvent was then completely removed using a reduced-pressure dryer (130°C, 3 hours) to obtain a composite of surface-modified silica and resin. The composition ratio of the composite at this point was equal parts by mass. The preparation of free-standing membranes and gas permeability tests following composite formation were carried out using the same procedures as described above.
 本発明にて実施した各種分析及び物性評価は以下の通りになる。 The various analyses and physical property evaluations carried out in this invention are as follows:
[ポリアミック酸-NMP溶液の粘度測定]
 東機産業社製TV-22または25形の粘度計を使用して測定した。膜形成組成物を約1mL分取して試料カップに投入し、コーンプレートタイプのローターで測定温度25℃、所定のせん断速度76.6s-1で2分間保持した後の数値を用いた。
[Viscosity Measurement of Polyamic Acid-NMP Solution]
Measurements were made using a TV-22 or 25 model viscometer manufactured by Toki Sangyo Co., Ltd. Approximately 1 mL of the film-forming composition was dispensed into a sample cup, and the value was measured after holding the sample cup for 2 minutes at a measurement temperature of 25° C. and a predetermined shear rate of 76.6 s −1 using a cone-plate type rotor.
[ポリマーのGPC測定]
 ポリマー濃度1質量%になるよう溶媒THFで希釈溶解後、0.1μmのPTFE製シリンジフィルターを通し、東ソー社製HLC-8320GPCを用いて測定した。
測定条件:
 展開溶媒:THF
 流量:0.3mL/min
 カラム温度:40℃
 カラム種類:東ソー社製TSKgel SperHZM-N 2本連結
[GPC Measurement of Polymer]
The polymer was diluted and dissolved in a solvent such as THF to a polymer concentration of 1% by mass, and then passed through a 0.1 μm PTFE syringe filter and measured using a Tosoh HLC-8320GPC.
Measurement condition:
Developing solvent: THF
Flow rate: 0.3mL/min
Column temperature: 40°C
Column type: Tosoh TSKgel SperHZM-N, 2 columns connected
[イミド化率の算出]
 DMSO-d6に含フッ素PI(6FDA-3MPA)濃度が1質量%になるよう調製し、H-NMRにてベンゼン環の総プロトン数とアミド結合のプロトン数を求め、それらの比率からイミド化率を算出した。積算回数は100とした。
 イミド化率(%)=((ベンゼン環の総プロトン数/6)-(アミド結合のプロトン数/2))/(ベンゼン環の総プロトン数/6)×100
[Calculation of imidization rate]
The concentration of fluorine-containing PI (6FDA-3MPA) in DMSO-d6 was adjusted to 1% by mass, and the total number of protons in the benzene ring and the number of protons in the amide bond were determined by 1 H-NMR, and the imidization rate was calculated from the ratio of these.
Imidization rate (%)=((total number of protons on benzene ring/6)−(number of protons on amide bond/2))/(total number of protons on benzene ring/6)×100
[表面修飾シリカーメタノール分散液の液物性評価]
 各分散液を純水で2倍希釈した液のpHと電気伝導度を測定した。
[Evaluation of liquid properties of surface-modified silica-methanol dispersion]
Each dispersion was diluted two-fold with pure water, and the pH and electrical conductivity of the diluted solution were measured.
[メタノール分散液中の表面修飾シリカの固形分測定]
 風袋を計量したスクリュー管(W1)にメタノール分散液を秤量し(S1)、110℃・2時間、次いで130℃・3時間乾燥させた後、重量を計量した(W2)。以下の式にて固形分濃度を算出した。
 固形濃度(質量%)=(W2-W1)/ S1×100 
[Measurement of solid content of surface-modified silica in methanol dispersion]
The methanol dispersion was weighed (S1) into a tared screw tube (W1), dried at 110° C. for 2 hours and then at 130° C. for 3 hours, and then weighed (W2). The solid content was calculated using the following formula.
Solid concentration (mass%) = (W2-W1)/S1 x 100
[表面修飾量の算出]
 上述のように乾燥した各表面修飾シリカ5~10mgを白金パンに秤量後、BRUKER製TG-DTA2000SAを用い空気雰囲気下で室温から1000℃まで昇温(5℃/分)させた。また、未修飾シリカに関しても同様の測定を行った。表面修飾基シリカの210~1000℃までの重量減少から同じ温度帯での未修飾シリカの重量減少の差分を表面修飾基量として算出した。
[Calculation of the amount of surface modification]
5 to 10 mg of each surface-modified silica dried as described above was weighed onto a platinum pan, and then heated (5°C/min) from room temperature to 1000°C in an air atmosphere using a BRUKER TG-DTA2000SA. The same measurements were also carried out for unmodified silica. The difference between the weight loss of the surface-modified silica from 210 to 1000°C and the weight loss of the unmodified silica in the same temperature range was calculated as the amount of surface-modifying groups.
[ガス透過性測定]
 GTRテック製GTR-6ADFを用いて、各複合膜のCO2及びN2のガス透過性を差圧法(1atm、35℃)にて測定した。測定サンプルは、複合膜をアルミシールでマスキングし、測定面積を適宜調整したものを作成した。1回の測定条件は、測定セル内部の真空引き時間を7分、測定時間をガス透過流量が定常状態になるよう約1~10分の範囲で適宜調整した。この条件での測定を5回繰り返し、5回目のガス透過量の数値を塗工膜のガス透過量とした。測定試行回数は2回行い、平均値を採用した。測定単位はBarrer(バーラー)を使用しているが、これは1×10-10 cm(STP)・cm/(s・cm・cmHg)であり、cm(STP)は1気圧、0℃でのガス体積を意味する。
[Gas permeability measurement]
The gas permeability of each composite membrane to CO2 and N2 was measured by a differential pressure method (1 atm, 35°C) using GTR-6ADF manufactured by GTR Tech. The measurement sample was prepared by masking the composite membrane with an aluminum seal and adjusting the measurement area appropriately. The measurement conditions were 7 minutes for evacuation inside the measurement cell, and the measurement time was adjusted appropriately within the range of about 1 to 10 minutes so that the gas permeation flow rate was in a steady state. Measurements were repeated five times under these conditions, and the value of the fifth gas permeation amount was taken as the gas permeation amount of the coating membrane. The measurement was performed twice, and the average value was adopted. The measurement unit used is Barrer, which is 1 x 10-10 cm3 (STP) cm/(s cm2 cmHg), and cm3 (STP) means the gas volume at 1 atmosphere and 0°C.
[ガス選択性計算]
 各複合膜のガス選択性に関しては、各複合膜のN透過性に対するCO透過性の比率として計算した。
[Gas selectivity calculation]
The gas selectivity of each composite membrane was calculated as the ratio of CO2 permeability to N2 permeability of each composite membrane.
[表面修飾基及び樹脂のハンセン溶解度パラメータ(HSP)計算]
 計算ソフトWinmostarを用いて、無機微粒子の表面修飾基のHSPとマトリクス樹脂のHSPを計算した。
[Hansen Solubility Parameter (HSP) Calculation of Surface Modification Groups and Resins]
Using the calculation software Winmostar, the HSP of the surface modification group of the inorganic fine particles and the HSP of the matrix resin were calculated.
 微粒子の表面修飾基のHSPの計算範囲を図1に示す。図1に示すように、微粒子の表面修飾基の計算範囲は、カップリング剤由来のSi原子より外側の有機基を対象とし、Siから切り離した有機基RにHを付加させた構造を計算対象とし、これを表面修飾基のHSPとして採用した。すなわち、Siを介して有機基Rが結合している場合、構造式R-HのHSPを採用している。なお、Siを介していない場合には、全体の有機基を切り離してHを付加させた構造を計算対象とした。 The calculation range of the HSP of the surface modification group of the microparticles is shown in Figure 1. As shown in Figure 1, the calculation range of the surface modification group of the microparticles targets the organic groups outside the Si atom derived from the coupling agent, and the calculation target is the structure in which H is added to the organic group R detached from Si, which is adopted as the HSP of the surface modification group. In other words, when the organic group R is bonded via Si, the HSP of the structural formula R-H is adopted. Note that when Si is not involved, the calculation target is the structure in which all organic groups are detached and H is added.
 また、マトリクス樹脂のHSPの計算対象は、繰り返し単位であるモノマー間の結合箇所を切断し、切断箇所にHを付加させた構造とした。 The calculation target for the HSP of the matrix resin was a structure in which the bonds between the repeating monomer units were cut and H was added to the cut sites.
 図2には、実施例で用いたマトリクス樹脂の計算対象の構造を示す。
 式(A)は、含フッ素ポリイミド(6FDA-3MPA)の計算対象の構造、式(B)は、セルロースアセテート(CDA)の計算対象の構造、式(C)はPIM-1の計算対象の構造である。ただし、計算ソフトの制約上、結合箇所は2点しか選択できないため、PIM-1については、図2の式(C)で表される繰り返し単位に変更して計算を行った。わかりやすくするため、付加したHは太文字で示してある。
FIG. 2 shows the structure of the matrix resin used in the examples that is the subject of calculation.
Formula (A) is the structure of the fluorine-containing polyimide (6FDA-3MPA) to be calculated, formula (B) is the structure of the cellulose acetate (CDA), and formula (C) is the structure of the PIM-1 to be calculated. However, due to restrictions of the calculation software, only two bond points can be selected, so for PIM-1, the repeating unit was changed to that represented by formula (C) in Figure 2 and calculations were performed. For ease of understanding, the added H is shown in bold.
[シリカの表面修飾基のHSP]
合成した表面修飾シリカのSiより外側の有機基のHSPを表1に示す。
[HSP of surface modifying group of silica]
The HSP of the organic group outside the Si of the synthesized surface-modified silica is shown in Table 1.
[マトリクス樹脂のHSP]
 本発明の実施例で使用したマトリクス樹脂のHSPを表2に示す。
[HSP of matrix resin]
The HSP of the matrix resin used in the examples of the present invention is shown in Table 2.
[表面修飾基とマトリクス樹脂のΔHSP]
 HSPは、3つのパラメータ(分散項:δD、極性項:δP、水素結合項:δH)から算出されるが、これらの値を三次元空間の座標と考えたとき、ΔHSPは表面修飾基とマトリクス樹脂のHSPの3次元空間の差を意味し、以下の式で算出される。
[ΔHSP of surface modifying group and matrix resin]
HSP is calculated from three parameters (dispersion term: δD, polarity term: δP, hydrogen bond term: δH). When these values are considered as coordinates in three-dimensional space, ΔHSP means the difference in three-dimensional space between the HSP of the surface modifying group and the HSP of the matrix resin, and is calculated by the following formula:
[複合膜の気体透過性とΔHSPの相関]
 上述の評価方法で求めた各複合膜のガス透過特性とΔHSPの結果を表3~表5に纏めた。また、各表における、ΔHSPと各複合膜のガス透過特性との関係を図3~図5に示す。
[Correlation between gas permeability and ΔHSP of composite membrane]
The gas permeability characteristics and ΔHSP results of each composite membrane obtained by the above-mentioned evaluation method are summarized in Tables 3 to 5. In addition, the relationship between ΔHSP and the gas permeability characteristics of each composite membrane in each table is shown in Figs. 3 to 5.
 各表において、実施例のようにΔHSPが5MPa0.5以上になる場合には、表面修飾シリカを含んでいない比較例(ブランク)よりも複合膜のガス透過性が増加することが確認された。一方で、比較例のようにΔHSPが5MPa0.5未満になるような膜形成用組成物を用いた複合膜は、ブランクとガス透過性が同等、または低下する傾向があり、ΔHSPとガス透過性との間に相関性が確認された。 In each table, it was confirmed that when ΔHSP is 5 MPa 0.5 or more as in the examples, the gas permeability of the composite membrane is higher than that of the comparative example (blank) that does not contain surface-modified silica. On the other hand, the composite membrane using the membrane-forming composition that has ΔHSP of less than 5 MPa 0.5 as in the comparative example tends to have the same or lower gas permeability than the blank, and a correlation between ΔHSP and gas permeability was confirmed.
 なお、ΔHSPが大きくなるほど、樹脂に対する表面修飾シリカの分散性が低下する傾向があるため、15.0MPa0.5より大きくなると樹脂に対する表面修飾シリカの分散性が著しく低下し、膜形成用組成物の調製が困難であるため、試験を実施しなかった。
今回の検討ではΔHSPが5.0MPa0.5以上、15.0MPa0.5以下の場合、膜欠陥が生じずにガス分離膜として機能する膜を得ることができた。
In addition, since the dispersibility of the surface-modified silica in the resin tends to decrease as the ΔHSP increases, when the ΔHSP exceeds 15.0 MPa, the dispersibility of the surface-modified silica in the resin decreases significantly, making it difficult to prepare a film-forming composition, and therefore no test was performed.
In the present study, when ΔHSP was 5.0 MPa 0.5 or more and 15.0 MPa 0.5 or less, a membrane that functioned as a gas separation membrane without membrane defects could be obtained.
 以上の結果から、表面修飾基のHSPとマトリクス樹脂のHSPの差であるΔHSPを求めることによって、気体分離膜形成用組成物からなる気体分離膜のガス透過性が優れるのかについて判定する方法として有用であることが示された。また、本発明で実施したHSP計算における構造範囲の設定にも特徴がある。そして、構造や極性の異なるポリマーや表面修飾基において同様の傾向が確認されたことから、特定の樹脂や表面修飾基に限定されことなく、幅広い樹脂と表面修飾基に本指標を適用できると類推される。 The above results demonstrate that determining ΔHSP, which is the difference between the HSP of the surface modification group and the HSP of the matrix resin, is a useful method for determining whether a gas separation membrane made of a composition for forming a gas separation membrane has excellent gas permeability. In addition, the setting of the structural range in the HSP calculation performed in this invention is also unique. Furthermore, since similar trends were confirmed in polymers and surface modification groups with different structures and polarities, it is inferred that this index can be applied to a wide range of resins and surface modification groups, without being limited to specific resins or surface modification groups.
              
 
              
 

Claims (11)

  1.  マトリクス樹脂と、一次粒子径が1~1000nmの無機微粒子と、溶媒とを含む気体分離膜形成用組成物であって、
     前記無機微粒子の表面に有機基が結合しており、
     前記無機微粒子の有機基のHSPと、前記マトリクス樹脂のHSPとの差が5.0~15.0MPa0.5である、気体分離膜形成用組成物。
    A composition for forming a gas separation membrane comprising a matrix resin, inorganic fine particles having a primary particle size of 1 to 1000 nm, and a solvent,
    an organic group is bonded to the surface of the inorganic fine particles,
    A composition for forming a gas separation membrane, wherein the difference between the HSP of the organic group of the inorganic fine particles and the HSP of the matrix resin is 5.0 to 15.0 MPa 0.5 .
  2.  前記無機微粒子がシリカである、請求項1に記載の気体分離膜形成用組成物。 The composition for forming a gas separation membrane according to claim 1, wherein the inorganic fine particles are silica.
  3.  前記無機微粒子の有機基が、-O-Si-を介して結合して下記構造となっており、前記有機基のHSPは、-Si-より先の(有機基)の構造から計算されたものであることを特徴とする、請求項2に記載の気体分離膜形成用組成物。
    The composition for forming a gas separation membrane according to claim 2, characterized in that the organic groups of the inorganic fine particles are bonded via -O-Si- to form the following structure, and the HSP of the organic groups is calculated from the structure of the (organic group) beyond -Si-.
  4.  前記マトリクス樹脂が下記式(I)で表されるセルロースアセテートである、請求項1に記載の気体分離膜形成用組成物。
     (nは、50~500の整数、Rは、-H又は-COCHを表し、少なくとも一か所が-COCHである。)
    2. The composition for forming a gas separation membrane according to claim 1, wherein the matrix resin is a cellulose acetate represented by the following formula (I):
    (n is an integer of 50 to 500, R represents -H or -COCH3 , and at least one of R is -COCH3 .)
  5.  前記マトリクス樹脂が、下記式(10)で示されるテトラカルボン酸二無水物と、芳香族ジアミンR(NHとを縮重合させることにより得られる下記式(II)で示される繰り返し構造を有するポリイミドである、請求項1に記載の気体分離膜形成用組成物。
    (Rは4価の有機基を表す。)
     (Rは4価の有機基を表す。Rは芳香族ジアミンからアミンを除いた残基であり、炭素原子数6~14の芳香族基を表す。nは50~500の整数を表す。)
    The composition for forming a gas separation membrane according to claim 1 , wherein the matrix resin is a polyimide having a repeating structure represented by the following formula (II) obtained by condensation polymerization of a tetracarboxylic dianhydride represented by the following formula (10) and an aromatic diamine R2 ( NH2 )2.
    ( R1 represents a tetravalent organic group.)
    ( R1 represents a tetravalent organic group. R2 represents a residue obtained by removing an amine from an aromatic diamine, and represents an aromatic group having 6 to 14 carbon atoms. n represents an integer of 50 to 500.)
  6.  前記マトリクス樹脂が固有微多孔ポリマーである、請求項1に記載の気体分離膜形成用組成物。 The composition for forming a gas separation membrane according to claim 1, wherein the matrix resin is an inherently microporous polymer.
  7.  前記固有微多孔ポリマーが下記式(III)で表されるPIM-1である、請求項6に記載の気体分離膜形成用組成物。
    (nは50~1000の整数を表す。)
    The composition for forming a gas separation membrane according to claim 6, wherein the polymer having intrinsic microporosity is PIM-1 represented by the following formula (III):
    (n represents an integer of 50 to 1000.)
  8.  前記有機基が以下の構造を示す、請求項4に記載の気体分離膜形成用組成物。
    The composition for forming a gas separation membrane according to claim 4 , wherein the organic group has the following structure:
  9.  前記有機基が以下の構造を示す、請求項5に記載の気体分離膜形成用組成物。
    The composition for forming a gas separation membrane according to claim 5 , wherein the organic group has the following structure:
  10.  前記有機基が以下の構造を示す、請求項6又は7に記載の気体分離膜形成用組成物。
    The composition for forming a gas separation membrane according to claim 6 or 7, wherein the organic group has the following structure:
  11.  マトリクス樹脂と、一次粒子径が1~1000nmの無機微粒子と、溶媒とを含む気体分離膜形成用組成物を用いて気体分離膜を製造する方法であって、
     前記気体分離膜形成用組成物として、前記無機微粒子の表面に有機基が結合しており、前記無機微粒子の有機基のHSPと、前記マトリクス樹脂のHSPとの差が5.0~15.0MPa0.5である気体分離膜形成用組成物を用い、
     前記気体分離膜形成用組成物から形成した気体分離膜形成用塗布液を基板に塗布し、溶剤を蒸発させることにより気体分離膜とする工程を具備する、気体分離膜の製造方法。
     
    A method for producing a gas separation membrane using a composition for forming a gas separation membrane, the composition comprising a matrix resin, inorganic fine particles having a primary particle size of 1 to 1000 nm, and a solvent, the method comprising the steps of:
    As the composition for forming a gas separation membrane, a composition for forming a gas separation membrane is used in which an organic group is bonded to the surface of the inorganic fine particles, and the difference between the HSP of the organic group of the inorganic fine particles and the HSP of the matrix resin is 5.0 to 15.0 MPa 0.5 ;
    A method for producing a gas separation membrane, comprising the steps of applying a coating liquid for forming a gas separation membrane, formed from the composition for forming a gas separation membrane, onto a substrate, and evaporating the solvent to form a gas separation membrane.
PCT/JP2023/046821 2023-01-17 2023-12-26 Composition for forming gas separation membrane and method for producing gas separation membrane WO2024154563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023005503 2023-01-17
JP2023-005503 2023-01-17

Publications (1)

Publication Number Publication Date
WO2024154563A1 true WO2024154563A1 (en) 2024-07-25

Family

ID=91955868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/046821 WO2024154563A1 (en) 2023-01-17 2023-12-26 Composition for forming gas separation membrane and method for producing gas separation membrane

Country Status (1)

Country Link
WO (1) WO2024154563A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245812A (en) * 1990-02-22 1991-11-01 Toyobo Co Ltd Separation of gas
WO2017038285A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Production method for gas separation composite membrane, liquid composition, gas separation composite membrane, gas separation module, gas separation device, and gas separation method
WO2017179738A1 (en) * 2016-04-15 2017-10-19 日産化学工業株式会社 Method for manufacturing gas separation membrane
WO2018038027A1 (en) * 2016-08-23 2018-03-01 日産化学工業株式会社 Gas separation membrane containing irregularly shaped silica nanoparticles
WO2019221200A1 (en) * 2018-05-16 2019-11-21 日産化学株式会社 Gas separation membrane manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245812A (en) * 1990-02-22 1991-11-01 Toyobo Co Ltd Separation of gas
WO2017038285A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Production method for gas separation composite membrane, liquid composition, gas separation composite membrane, gas separation module, gas separation device, and gas separation method
WO2017179738A1 (en) * 2016-04-15 2017-10-19 日産化学工業株式会社 Method for manufacturing gas separation membrane
WO2018038027A1 (en) * 2016-08-23 2018-03-01 日産化学工業株式会社 Gas separation membrane containing irregularly shaped silica nanoparticles
WO2019221200A1 (en) * 2018-05-16 2019-11-21 日産化学株式会社 Gas separation membrane manufacturing method

Similar Documents

Publication Publication Date Title
JP7164133B2 (en) Composite containing deformed silica nanoparticles with hyperbranched polymer or dendrimer polymer addition
EP3444020B1 (en) Method for manufacturing gas separation membrane
JP7311843B2 (en) Method for producing gas separation membrane
JP5626950B2 (en) Surface hyperbranched or dendrimer modified inorganic nanoparticles and gas separation membranes
KR101394396B1 (en) Porous polymer membrane with covalent bonding network structure and fabrication method thereof
Kwon et al. Effect of PMMA-graft-silica nanoparticles on the gas permeation properties of hexafluoroisopropylidene-based polyimide membranes
WO2024154563A1 (en) Composition for forming gas separation membrane and method for producing gas separation membrane
JP7602209B2 (en) Membrane-forming composition and gas separation membrane
WO2023068244A1 (en) Membrane formation composition, and gas permeation membrane
Wang et al. Structures and properties of supported polyimide/SnO2 hybrid membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917773

Country of ref document: EP

Kind code of ref document: A1