[go: up one dir, main page]

WO2024154441A1 - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element Download PDF

Info

Publication number
WO2024154441A1
WO2024154441A1 PCT/JP2023/042484 JP2023042484W WO2024154441A1 WO 2024154441 A1 WO2024154441 A1 WO 2024154441A1 JP 2023042484 W JP2023042484 W JP 2023042484W WO 2024154441 A1 WO2024154441 A1 WO 2024154441A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetoresistance effect
effect element
nonmagnetic
ferromagnetic
Prior art date
Application number
PCT/JP2023/042484
Other languages
French (fr)
Japanese (ja)
Inventor
成美 水上
智浩 一ノ瀬
雅人 辻川
トゥファン ロイ
正文 白井
健矢 鈴木
夏央輝 鎌田
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2024154441A1 publication Critical patent/WO2024154441A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/30Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the intermediate layers, e.g. seed, buffer, template, diffusion preventing, cap layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Materials of the active region

Definitions

  • the present invention relates to a magnetoresistance effect element. This application has priority to the contents described in Japanese Patent Application No. 2023-005203, filed in Japan on January 17, 2023.
  • a magnetoresistance effect element has two ferromagnetic layers and a nonmagnetic layer sandwiched between the two ferromagnetic layers.
  • the resistance value of the magnetoresistance effect element changes as the relative angle of magnetization of the two ferromagnetic layers sandwiching the nonmagnetic layer changes.
  • Magnetoresistance effect elements exhibit what is known as the magnetoresistance effect. Taking advantage of this resistance change characteristic, magnetoresistance effect elements are used in a variety of applications such as magnetic sensors, high-frequency components, magnetic heads, and magnetic memories.
  • Miniaturized magnetoresistance effect elements have a small volume of ferromagnetic layer and low thermal stability of magnetization.
  • perpendicular magnetization magnetoresistance effect elements are known that use a CoFe-based ferromagnetic material for the ferromagnetic layer and MgO or Mg-Al-O nonmagnetic material for the nonmagnetic layer.
  • Magnetoresistance effect elements that use a CoFe-based ferromagnetic material may not have sufficient thermal stability when miniaturized. For this reason, research is underway into the materials of the ferromagnetic layer to be used in magnetoresistance effect elements.
  • Patent Documents 1 and 2 disclose magnetoresistance effect elements that use Mn-based magnetic layers.
  • the Mn-based magnetic layer is not a ferromagnetic material such as an Fe-based material, and when the magnetoresistance effect element is miniaturized, the magnetization has less of an effect on the surrounding area.
  • Mn-based magnetic materials are attracting attention as a material that may be applied to magnetoresistance effect elements in the future, with the aim of increasing the capacity of magnetic memories.
  • Patent Documents 1 and 2 propose a magnetoresistance element that has perpendicular magnetic anisotropy and is capable of exhibiting a larger magnetoresistance effect.
  • Patent Documents 1 and 2 do not disclose specific data on the magnetoresistance effect of this magnetoresistance element.
  • the performance of a magnetoresistance effect element is not determined only by the ferromagnetic layer.
  • the performance of a magnetoresistance effect element is also affected by the nonmagnetic layer.
  • a magnetoresistance effect element is often connected to a semiconductor element that controls the operation of the magnetoresistance effect element. It is preferable that the operating resistance of this semiconductor element and the resistance in the stacking direction of the magnetoresistance effect element do not deviate significantly.
  • MgO and Mg-Al-O have high resistance.
  • the nonmagnetic layer may be thinned to bring the resistance of the magnetoresistance effect element closer to the operating resistance of the semiconductor element.
  • a thin nonmagnetic layer may undergo dielectric breakdown when a voltage is applied. Therefore, a nonmagnetic layer containing a material with lower resistance is required.
  • AlN, GaN, and InN are candidates for low-resistance nonmagnetic materials.
  • the crystal structures of AlN, GaN, and InN are generally wurtzite structures.
  • Magnetoresistance effect elements are fabricated by stacking thin films, so it is difficult to stack a ferromagnetic layer with a different crystal structure on a nonmagnetic layer with a wurtzite structure.
  • the inventors of the present application believed that the material and crystal structure of the nonmagnetic layer would be important factors in improving the performance of the magnetoresistance effect element by using a low-resistance nonmagnetic material and in realizing a magnetoresistance effect element with perpendicular magnetic anisotropy made of an Mn-based magnetic layer, and so they investigated the nonmagnetic layer. As mentioned above, there have been no reports of magnetoresistance effect elements that include an Mn-based magnetic layer.
  • This disclosure has been made in consideration of the above problems, and aims to provide a magnetoresistance effect element with a low-resistance tunnel barrier layer.
  • this disclosure provides the following means.
  • the magnetoresistance effect element according to the above embodiment has a low-resistance tunnel barrier layer and has low resistance in the stacking direction.
  • FIG. 1 is a cross-sectional view of a magnetoresistive effect element according to a first embodiment.
  • FIG. 11 is a cross-sectional view of a magnetoresistive effect element according to a second embodiment.
  • 4 shows the simulation results of Experimental Example 1.
  • 1 is a cross-sectional TEM image of a magnetoresistive effect element produced in Experimental Example 2.
  • 13 is a cross-sectional TEM image of the magnetoresistive effect element produced in Experimental Example 3.
  • 13 shows the results of X-ray diffraction of the magnetoresistive effect element produced in Experimental Example 3.
  • 13 shows the results of X-ray diffraction of the magnetoresistance effect element of the modified example of Experimental Example 3.
  • 13 shows the results of X-ray diffraction of the magnetoresistance effect element of the modified example of Experimental Example 3.
  • 13 shows the results of Experimental Example 4, illustrating the MR ratio of the magnetoresistive element when the thickness ratio between the first intermediate layer and the nonmagnetic layer is changed.
  • 13 shows the MR ratio of the magnetoresistive element of Experimental Example 5.
  • RA of the magnetoresistive effect element of Experimental Example 5 is shown.
  • 4 shows the magnetic properties of the sample of Experimental Example 6.
  • 1 shows the results of X-ray diffraction of the sample of Experimental Example 6.
  • 13 shows magnetic properties of the sample of Experimental Example 7.
  • 13 shows the magnetic properties of the sample of Experimental Example 8.
  • 13 shows the results of X-ray diffraction of the magnetoresistive effect element of Experimental Example 9.
  • 13 shows the magnetic characteristics of the magnetoresistance effect element of Experimental Example 9.
  • 13 shows the results of X-ray diffraction of the magnetoresistive effect element of Experimental Example 10.
  • This shows the results of calculating the band structure of a GaN nonmagnetic layer.
  • This shows the relationship between the thickness of the nonmagnetic layer and the element resistance of the magnetoresistive effect element of Experimental Example 10 (the nonmagnetic layer is GaN), and the relationship between the thickness of the nonmagnetic layer and the element resistance of a magnetoresistive effect element having the same configuration as Experimental Example 10 except that the nonmagnetic layer is MgO.
  • 13 shows the MR ratio of the magnetoresistive element of Experimental Example 10.
  • First embodiment 1 is a cross-sectional view of a magnetoresistance effect element 10 according to the first embodiment.
  • the magnetoresistance effect element 10 has a first ferromagnetic layer 1, a second ferromagnetic layer 2, a nonmagnetic layer 3, a first intermediate layer 4, and an underlayer 9.
  • the magnetoresistance effect element 10 is a columnar body.
  • the shape of the magnetoresistance effect element 10 when viewed from the z direction in a plane is, for example, circular, elliptical, or rectangular.
  • the resistance value of the magnetoresistance effect element 10 changes when the relative angle between the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2, which sandwich the nonmagnetic layer 3, changes.
  • the resistance value of the magnetoresistance effect element 10 increases, and when the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2 are parallel, the resistance value of the magnetoresistance effect element 10 decreases.
  • the magnetoresistance ratio (MR ratio) of the magnetoresistance effect element is expressed as (R A -R P )/R P ⁇ 100.
  • R A is the resistance value in the stacking direction of the magnetoresistive effect element 10 when the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2 are antiparallel
  • R P is the resistance value in the stacking direction of the magnetoresistive effect element 10 when the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2 are parallel.
  • the underlayer 9 is, for example, on a substrate.
  • the substrate is, for example, silicon with a thermal oxide film, glass, ceramic (for example, alumina, magnesium oxide), quartz, etc.
  • the substrate may be amorphous or crystalline. If the substrate is crystalline, it is preferable that the layered surface of the substrate is (001) oriented.
  • the underlayer 9 has, for example, a cubic or tetragonal crystal structure.
  • the underlayer 9 is, for example, Cr, V, TiN, MnN, NiAl, CoAl, CoGa, or NiGa.
  • the underlayer 9 has a cubic or tetragonal crystal structure with an appropriate lattice constant and is oriented in the (001) crystal plane, so that the layer deposited on the underlayer 9 can be cubic or tetragonal.
  • the first ferromagnetic layer 1 is, for example, on the underlayer 9.
  • the first ferromagnetic layer 1 is closer to the underlayer 9 than the second ferromagnetic layer 2.
  • the crystal structure of the first ferromagnetic layer 1 is, for example, cubic or tetragonal.
  • the first ferromagnetic layer 1 includes a ferromagnetic material.
  • the ferromagnetic material may include ferrimagnetic material, and the first ferromagnetic layer 1 may be a ferrimagnetic material.
  • the first ferromagnetic layer 1 may be a ferromagnetic material including magnetic elements such as Co, Fe, and Ni.
  • Fe, Co, CoFe, CoFeB, CoMnFe, Co2MnSi , Co2FeAl , CoPt, NiFe, and FePt are examples of ferromagnetic materials including magnetic elements such as Co, Fe, and Ni.
  • the first ferromagnetic layer 1 may also be a Mn-based ferrimagnetic material.
  • the Mn-based ferrimagnetic material has high magnetic anisotropy and small saturation magnetization.
  • an MnGa alloy is an example of a Mn-based ferrimagnetic material.
  • the MnGa alloy may contain Mn and Ga elements, and examples of the MnGa alloy include Mn 3 Ga, Mn 2 FeGa, and Fe 2 MnGa.
  • the first ferromagnetic layer 1 may be, for example, a magnetization fixed layer or a magnetization free layer.
  • the magnetization of the magnetization fixed layer is less likely to move than that of the magnetization free layer when a predetermined magnetic field is applied.
  • the magnetization stability of the first ferromagnetic layer 1 is higher when the first ferromagnetic layer 1 is closer to the substrate than the second ferromagnetic layer 2.
  • the magnetoresistance effect element 10 in which the first ferromagnetic layer 1 is a magnetization fixed layer has high reliability (stability against thermal oscillations).
  • the first intermediate layer 4 is, for example, on the first ferromagnetic layer 1.
  • the first intermediate layer 4 is, for example, between the first ferromagnetic layer 1 and the nonmagnetic layer 3.
  • the first intermediate layer 4 is a nonmagnetic layer made of a nonmagnetic material, and may partially fulfill the role of the nonmagnetic layer 3 described below.
  • the first intermediate layer 4 includes a cubic or tetragonal nonmagnetic material.
  • the first intermediate layer 4 may be made of a cubic or tetragonal nonmagnetic material.
  • the crystal structure of the nonmagnetic material included in the first intermediate layer 4 is, for example, a rock-salt or distorted rock-salt tetragonal crystal.
  • the non-magnetic material constituting the first intermediate layer 4 is, for example, any one selected from the group consisting of Cr, Ti, Mn, CrN, TiN, MgO, and MnN.
  • the first intermediate layer 4 is formed using Cr or Mn, and then the nitride non-magnetic layer 3 is deposited.
  • the first intermediate layer 4 consisting of CrN or MnN is obtained by reacting some of the nitrogen in the non-magnetic layer 3 with Cr or Mn, or by reacting Cr or Mn with nitrogen generated in the process of depositing the nitride non-magnetic layer 3.
  • the first intermediate layer 4 may contain, for example, CrN or MnN produced by such a process.
  • the first intermediate layer 4 may function as a seed layer (a layer that acts as a seed to promote crystal growth).
  • the thickness of the first intermediate layer 4 may be extremely thin (one or two layers at the atomic level, specifically, about 0.1 nm to 0.2 nm).
  • the extremely thin CrN or MnN combines with the non-magnetic layer 3 to increase the MR ratio of the magnetoresistance effect element 10 and produce an undisclosed effect of lowering the resistance value of the magnetoresistance effect element 10.
  • the thickness may be a certain degree.
  • the certain degree of thickness is, for example, about 0.8 nm.
  • the second ferromagnetic layer 2 is made of a ferrimagnetic material, it is preferable that the thickness of the first intermediate layer 4 is thin.
  • the thickness of the first intermediate layer 4 is, for example, less than 1.1 nm, and preferably 0.8 nm or less.
  • the thickness of the first intermediate layer 4 can be determined, for example, by measuring the cross section of the magnetoresistance effect element 10 with a transmission electron microscope (TEM), measuring the film thickness at five different points within the plane in which the first intermediate layer 4 extends, and averaging the measured values.
  • TEM transmission electron microscope
  • the first intermediate layer 4 functions as a seed layer between the first ferromagnetic layer 1 and the nonmagnetic layer 3. If a material with a high resistance value such as MgO is used for the first intermediate layer 4, the first intermediate layer 4 may also function as a tunnel barrier layer like the nonmagnetic layer 3. The presence of the first intermediate layer 4 between the first ferromagnetic layer 1 and the nonmagnetic layer 3 makes the nonmagnetic layer 3 a cubic or tetragonal crystal.
  • the nonmagnetic layer 3 is, for example, on the first intermediate layer 4.
  • the nonmagnetic layer 3 is between the first ferromagnetic layer 1 and the second ferromagnetic layer 2.
  • the nonmagnetic layer 3 is, for example, between the first intermediate layer 4 and the second ferromagnetic layer 2.
  • the nonmagnetic layer 3 is a tunnel barrier layer.
  • the nonmagnetic layer 3 of the present disclosure includes a cubic or tetragonal nitride.
  • the nonmagnetic layer 3 may be made of a cubic or tetragonal nitride.
  • the nonmagnetic layer 3 includes, for example, a nitride of at least one element selected from the group consisting of Al, Ga, and In.
  • the nonmagnetic layer 3 is, for example, AlN, GaN, or InN. These nitrides do not usually become cubic or tetragonal because the wurtzite structure is stable.
  • the nonmagnetic layer 3 becomes cubic or tetragonal.
  • the nonmagnetic layer 3 When the first intermediate layer 4 is an insulator such as MgO, the nonmagnetic layer 3 preferably has a lower resistance than the first intermediate layer 4.
  • a nonmagnetic layer 3 containing a nitride has a lower resistance than a nonmagnetic layer made of MgO.
  • the resistance of the nonmagnetic layer 3 is low, the resistance value of the magnetoresistance effect element 10 and the resistance value of the other semiconductor element connected to the magnetoresistance effect element 10 are closer in order of magnitude. Therefore, even when the magnetoresistance effect element 10 is miniaturized, the thickness of the nonmagnetic layer 3 can be set thicker than when the nonmagnetic layer 3 is made of MgO alone, and insulation breakdown of the nonmagnetic layer 3 is less likely to occur.
  • the nonmagnetic layer 3 mainly plays the role of a tunnel barrier layer.
  • the nonmagnetic layer 3 functions as a significant tunnel barrier layer, allowing the magnetoresistance effect element to function properly.
  • the nonmagnetic layer 3 and the first intermediate layer 4 will act as a tunnel barrier layer.
  • the resistance of the nonmagnetic layer 3 of the present disclosure is lower than the resistance value of the first intermediate layer 4 when the first intermediate layer 4 is MgO.
  • the thickness of the nonmagnetic layer 3 is thicker than the thickness of the first intermediate layer 4.
  • the first intermediate layer 4 is MgO, if the thickness of the first intermediate layer 4 is too thin compared to the thickness of the nonmagnetic layer 3, the MR ratio of the magnetoresistance effect element 10 tends to decrease, so the thickness of the first intermediate layer 4 is preferably 0.2 nm or more.
  • the nonmagnetic layer 3 is a cubic or tetragonal crystal because the second ferromagnetic layer 2 formed on the nonmagnetic layer 3 is a cubic or tetragonal crystal. Taking all of this into consideration, the materials and thicknesses of the first intermediate layer 4 and the nonmagnetic layer 3, and the ratio of their respective thicknesses are examined.
  • the second ferromagnetic layer 2 is, for example, on the nonmagnetic layer 3.
  • the second ferromagnetic layer 2 is located farther from the underlayer 9 than the first ferromagnetic layer 1.
  • the crystal structure of the second ferromagnetic layer 2 is, for example, cubic or tetragonal.
  • the second ferromagnetic layer 2 includes a ferromagnetic material.
  • the second ferromagnetic layer 2 may be a ferromagnetic material including a magnetic element such as Co, Fe, Ni, etc.
  • a magnetic element such as Co, Fe, Ni, etc.
  • Fe, Co, CoFe, CoFeB , CoMnFe, Co2MnSi, Co2FeAl , CoPt, FePt, etc. are examples of ferromagnetic materials including a magnetic element such as Co, Fe, Ni, etc.
  • the second ferromagnetic layer 2 may also be a Mn-based ferrimagnetic material.
  • the Mn-based ferrimagnetic material has high magnetic anisotropy and low saturation magnetization.
  • a MnGa alloy is an example of a Mn-based ferrimagnetic material.
  • the MnGa alloy may contain Mn and Ga elements, and may be, for example, Mn 3 Ga, Mn 2 FeGa, or Fe 2 MnGa.
  • a cubic or tetragonal Mn-based ferrimagnetic material cannot be formed on the non-magnetic layer 3.
  • a Mn-based ferrimagnetic material can be formed on a non-magnetic layer 3 that contains a cubic or tetragonal nitride.
  • the second ferromagnetic layer 2 may be, for example, a magnetization fixed layer or a magnetization free layer. It is preferable that the second ferromagnetic layer 2 is a magnetization free layer.
  • Each layer of the magnetoresistance effect element 10 can be fabricated by, for example, sputtering, vapor deposition, laser ablation, molecular beam epitaxial, etc. Furthermore, photolithography or electron beam lithography can be used to process the magnetoresistance effect element 10 into a desired shape.
  • the magnetoresistance effect element 10 according to the first embodiment has a nonmagnetic layer 3 containing a cubic or tetragonal nitride, and has a lower resistance than a magnetoresistance effect element having a nonmagnetic layer made only of MgO.
  • the nonmagnetic layer 3 of the magnetoresistance effect element 10 according to the first embodiment contains a cubic or tetragonal nitride
  • the second ferromagnetic layer 2 can be made of an Mn-based ferrimagnetic material.
  • Mn-based ferrimagnetic material it is not possible to apply an Mn-based ferrimagnetic material to the upper ferromagnetic layer away from the substrate when the nonmagnetic layer is MgO, but this can be achieved only by making the nonmagnetic layer 3 a cubic or tetragonal nitride.
  • Mn-based ferrimagnetic materials have high magnetic anisotropy and small saturation magnetization, and are therefore less susceptible to thermal fluctuations and the like. Therefore, the magnetoresistance effect element 10 in which an Mn-based ferrimagnetic material is applied to the second ferromagnetic layer 2 has excellent reliability.
  • Second Embodiment 2 is a cross-sectional view of the magnetoresistance effect element 11 according to the second embodiment.
  • the magnetoresistance effect element 11 differs from the magnetoresistance effect element 10 according to the first embodiment in that it has a second intermediate layer 5.
  • the same components as those of the magnetoresistance effect element 10 according to the first embodiment are denoted by the same reference numerals and description thereof will be omitted.
  • the magnetoresistance effect element 11 has a first ferromagnetic layer 1, a second ferromagnetic layer 2, a nonmagnetic layer 3, a first intermediate layer 4, a second intermediate layer 5, and an underlayer 9.
  • the magnetoresistance effect element 11 is a columnar body similar to the magnetoresistance effect element 10.
  • the resistance value of the magnetoresistance effect element 11 changes when the relative angle between the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2, which sandwich the nonmagnetic layer 3, changes.
  • the underlayer 9, the first ferromagnetic layer 1, the first intermediate layer 4, and the nonmagnetic layer 3 are similar to those in the magnetoresistance effect element 10 according to the first embodiment.
  • the second ferromagnetic layer 2 is similar to the magnetoresistance effect element 10 according to the first embodiment, except that it is located on the second intermediate layer 5.
  • the second intermediate layer 5 is, for example, on the nonmagnetic layer 3.
  • the second intermediate layer 5 is, for example, between the nonmagnetic layer 3 and the second ferromagnetic layer 2.
  • the second intermediate layer 5 includes a cubic or tetragonal nonmagnetic material.
  • the second intermediate layer 5 may be made of a cubic or tetragonal nonmagnetic material.
  • the crystal structure of the nonmagnetic material included in the second intermediate layer 5 is, for example, a rock-salt or distorted rock-salt tetragonal crystal.
  • the non-magnetic material constituting the second intermediate layer 5 is, for example, one selected from the group consisting of Cr, Ti, Mn, CrN, TiN, and MnN.
  • the thickness of the second intermediate layer 5 is, for example, less than 1.1 nm, and preferably 0.8 nm or less.
  • the thickness of the second intermediate layer 5 is determined, for example, by measuring the cross section of the magnetoresistance effect element 11 with a transmission electron microscope (TEM), measuring the film thickness at five different points in the plane in which the second intermediate layer 5 extends, and averaging the measured values.
  • TEM transmission electron microscope
  • the second intermediate layer 5 functions as a buffer layer between the second ferromagnetic layer 2 and the nonmagnetic layer 3.
  • the presence of the second intermediate layer 5 between the second ferromagnetic layer 2 and the nonmagnetic layer 3 makes it easier for the nonmagnetic layer 3 to stabilize in a cubic or tetragonal crystal structure.
  • the second intermediate layer 5 is made of CrN or MnN, the effect of reducing the resistance of the magnetoresistance effect element and increasing the MR ratio is obtained.
  • the magnetoresistance effect element 11 can be fabricated in a similar manner to the magnetoresistance effect element 10 according to the first embodiment.
  • the magnetoresistance effect element 11 according to the second embodiment has the same effect as the magnetoresistance effect element 10 according to the first embodiment.
  • the magnetoresistance effect element may have layers other than the first ferromagnetic layer, the second ferromagnetic layer, the nonmagnetic layer, the first intermediate layer, the second intermediate layer, and the underlayer.
  • Sample s1 Fe/MnN/AlN/MnN/Fe
  • Sample s2 Co/CrN/AlN/CrN/Co
  • Sample s3 Co/MnN/AlN/MnN/Co
  • Sample s4 Fe/CrN/AlN/CrN/Fe
  • Sample s5 Fe/AlN/Fe
  • Sample s6 Fe/MgO/Fe Sample s7: Co/MgO/Co Sample s8: Co/AlN/Co
  • Samples s1 to s4 have compositions in the order of first ferromagnetic layer/first intermediate layer/non-magnetic layer/second intermediate layer/second ferromagnetic layer.
  • Samples s5 to s8 have compositions in the order of first ferromagnetic layer/non-magnetic layer/second ferromagnetic layer.
  • Each of samples s1 to s8 has the same number of atomic layers in the first ferromagnetic layer and the second ferromagnetic layer.
  • Each of samples s1 to s4 has the same number of atomic layers in the first intermediate layer, non-magnetic layer, and second intermediate layer, and each of samples s5 to s8 has the same number of atomic layers in the non-magnetic layer.
  • the number of atomic layers in the non-magnetic layer of each of samples s1 to s4 is also equal to the number of atomic layers in the non-magnetic layer of each of samples s5 to s8.
  • the number of atomic layers in each of the first intermediate layer and the second intermediate layer of samples s1 to s4 is one layer.
  • the number of atomic layers is the number of layers in the stacking direction of the magnetoresistance effect element.
  • Figure 3 shows the simulation results of Experimental Example 1.
  • the vertical axis of Figure 3 is the MR ratio of the magnetoresistance effect element, and the horizontal axis is the resistance value of each sample normalized by the resistance value of sample s6.
  • Cubic AlN has a low resistance of the nonmagnetic layer, and by applying this nonmagnetic layer to the magnetoresistance effect element, it is expected that the performance of the magnetoresistance effect element will be improved.
  • sample s8 has a high resistance of the magnetoresistance effect element, it is difficult to fabricate it as an actual element because it does not have a first intermediate layer.
  • Example 2 Actual magnetoresistance effect element in which the ferromagnetic layer is a CoFe-based ferromagnetic material and the non-magnetic layer is a cubic or tetragonal crystal
  • Experimental Example 2 an actual magnetoresistance effect element was fabricated. On an underlayer made of Cr, CoFe with a thickness of 10 nm, CrN with a thickness of 0.1 nm, cubic AlN with a thickness of 2 nm, CoFe with a thickness of 8 nm, IrMn with a thickness of 10 nm, and Ru with a thickness of 10 nm were successively formed.
  • the specific configuration of the manufactured magnetoresistance effect element is as follows. Underlayer: Cr First ferromagnetic layer: 10 nm thick CoFe (oriented in the (001) crystal plane) First intermediate layer: 0.1 nm thick CrN Non-magnetic layer: cubic AlN with a thickness of 2 nm Second ferromagnetic layer: 8 nm thick CoFe (oriented in the (001) crystal plane) Antiferromagnetic layer: 10 nm thick IrMn Cap layer: Ru with a thickness of 10 nm
  • Figure 4 is a cross-sectional TEM (Transmission Electron Microscope) (JEM-ARM200F manufactured by JEOL) image of the magnetoresistance effect element produced in Experimental Example 2.
  • the atoms are arranged without disorder near the nonmagnetic layer.
  • spots caused by cubic crystals were confirmed even when nanobeam electron diffraction method was used.
  • the nonmagnetic layer is cubic AlN.
  • Cubic AlN is a metastable phase, and is not usually formed unless a specific underlayer is used.
  • atoms are arranged without disorder in the layers above the nonmagnetic layer, confirming that the layers above the nonmagnetic layer also have a cubic crystal structure.
  • Example 3 Actual magnetoresistance effect element in which the ferromagnetic layer is a CoFe-based ferromagnetic material and the non-magnetic layer is a cubic or tetragonal crystal
  • an actual magnetoresistance effect element was fabricated by changing the film configuration from Experimental Example 2.
  • an underlayer made of Cr a 10 nm thick Co2FeAl layer, a 0.14 nm thick TiN layer, a 2.5 nm thick cubic AlN layer, an 8 nm thick Co2FeAl layer, a 10 nm thick IrMn layer, and a 10 nm thick Ru layer were successively formed.
  • the specific configuration of the manufactured magnetoresistance effect element is as follows. Underlayer: Cr First ferromagnetic layer: 10 nm thick Co2FeAl (oriented in the (001) crystal plane) First intermediate layer: TiN with a thickness of 0.14 nm Non-magnetic layer: cubic AlN with a thickness of 2.5 nm Second ferromagnetic layer: 8 nm thick Co2FeAl (oriented in the (001) crystal plane) Antiferromagnetic layer: 10 nm thick IrMn Cap layer: Ru with a thickness of 10 nm
  • Figure 5 is a cross-sectional TEM image of the magnetoresistance effect element produced in Experimental Example 3. As shown in Figure 5, it can be confirmed that in Experimental Example 3 as well, the atoms are arranged without disorder near the nonmagnetic layer, and cubic AlN is formed. It can also be confirmed that the atoms are arranged without disorder in the layers above the nonmagnetic layer, and the layers above the nonmagnetic layer also have a cubic crystal structure.
  • Figure 6 shows the results of X-ray diffraction (Rigaku, SmartLab) of the magnetoresistance effect element produced in Experimental Example 3.
  • a peak derived from the IrMn (002) crystal plane was confirmed in the X-ray diffraction spectrum of Experimental Example 3.
  • IrMn is located in a layer above the nonmagnetic layer, and the fact that this peak can be confirmed confirms that the nonmagnetic layer and the layer above the nonmagnetic layer also have a cubic crystal structure.
  • a cubic or tetragonal nonmagnetic layer AlN
  • the first modified example differs from the element configuration of Experimental Example 3 in that the first and second ferromagnetic layers are CoMnFe, the first intermediate layer is 1.5 nm of MgO, and the nonmagnetic layer is 1.0 nm of cubic AlN.
  • the second modified example differs from the element configuration of Experimental Example 3 in that the first and second ferromagnetic layers are CoFe, the first intermediate layer is 1.0 nm of MgO, and the nonmagnetic layer is 1.5 nm of cubic AlN.
  • the third modified example differs from the element configuration of experimental example 3 in that the first and second ferromagnetic layers are CoMnFe, there is no first intermediate layer, and the nonmagnetic layer is 2.0 nm of MgO.
  • the fourth modified example differs from the element configuration of Experimental Example 3 in that the first ferromagnetic layer and the second ferromagnetic layer are CoMnFe, the first intermediate layer is MnN having a thickness of 0.2 nm to 0.8 nm, and the nonmagnetic layer is cubic AlN having a thickness of 2.0 nm. Note that Mn was deposited when the first intermediate layer was formed. It is believed that nitrogen diffused from the AlN adjacent to the first intermediate layer into the first intermediate layer, causing the first intermediate layer to become MnN.
  • Figure 8 shows the X-ray diffraction results for the magnetoresistance effect element of Variation 4 of Experimental Example 3.
  • the results for four samples with different film thicknesses for the first intermediate layer are shown in Figure 8.
  • a peak derived from the IrMn (002) crystal plane was also confirmed in the fourth variation. In other words, it can be confirmed that the nonmagnetic layer and the layer stacked on top of the nonmagnetic layer have a cubic crystal structure.
  • a cubic or tetragonal nonmagnetic layer AlN
  • Example 4 MR ratio when MgO non-magnetic layer in CoFe-based ferromagnetic material is replaced with cubic AlN
  • the possibility of replacing a part of the non-magnetic layer, which is conventionally made only of MgO, with cubic AlN was examined. From Modifications 1 and 2, the MR ratio was examined when MgO was used as the first intermediate layer and cubic AlN was used as the non-magnetic layer to replace the non-magnetic layer, and a part of MgO was replaced with cubic AlN.
  • the film structure of Experimental Example 4 was the same as that of the above-mentioned first modification. That is, the layer structure of each layer was as follows.
  • the total thickness of the first intermediate layer and the non-magnetic layer was fixed at 2.5 nm.
  • Nonmagnetic layer cubic AlN ((1) 2.0 nm, (2) 1.8 nm, (3) 1.5 nm, (4) 1.0 nm, (5) 0.5 nm)
  • Figure 9 shows the results of Experimental Example 4, and shows the MR ratio of the magnetoresistance effect element when the ratio of the first intermediate layer and the non-magnetic layer is changed.
  • the thicknesses at the five points from left to right in Figure 9 indicate (1) to (5) above.
  • the non-magnetic layer 3 which is usually composed of only MgO
  • cubic AlN as the non-magnetic layer
  • Example 5 MR ratio and resistance value
  • the film configuration of the first intermediate layer, the non-magnetic layer, and the second intermediate layer was changed to obtain the MR ratio and RA (area resistance product) of the magnetoresistance effect element.
  • the RA can be obtained by the product of the resistance R P when the magnetization directions of the first ferromagnetic layer 1 and the second ferromagnetic layer 2 are parallel and the area in the in-plane direction of the magnetoresistance effect element 10.
  • FIG. 10 shows the MR ratio of the magnetoresistance effect element of the fifth experimental example
  • FIG. 11 shows the RA of the magnetoresistance effect element of the fifth experimental example.
  • FIG. 11 is the film thickness of the first intermediate layer and the second intermediate layer.
  • FIG. 10 and FIG. 11 show the film configuration of the first intermediate layer, the non-magnetic layer, and the second intermediate layer, and in the case of a three-layer structure, the order is the first intermediate layer/non-magnetic layer/second intermediate layer, and in the case of a two-layer structure, the order is the first intermediate layer/non-magnetic layer.
  • the numerical value written after the material of the non-magnetic layer is the thickness of the non-magnetic layer in nm. Note that, for MgO/AlN, an example of Experimental Example 4 is shown in Figures 10 and 11.
  • Example 6 Characteristics of MnGa-based (ferrimagnetic) magnetic film formed on a nonmagnetic layer
  • a sample was produced in which the second ferromagnetic layer 2 on the nonmagnetic layer 3 was a MnGa-based magnetic film, and the magnetic properties were measured.
  • the nonmagnetic layer 3 is made to have a cubic or tetragonal crystal structure, thereby making the second ferromagnetic layer 2 on the nonmagnetic layer 3 a MnGa-based magnetic film.
  • Figure 12 shows the magnetic properties of the samples of Experimental Example 6.
  • the magnetic properties shown in Figure 12 were determined using the surface magnetic Kerr effect, with the vertical axis of Figure 12 representing the rotation of the polarization plane (Kerr rotation angle) and the horizontal axis representing the magnetic field strength applied to the sample. The external magnetic field was applied perpendicular to the surface.
  • Figure 12 (a) shows the results for sample MnGa1, (b) shows the results for sample MnGa2, and (c) shows the results for sample MnGa3.
  • Figure 13 shows the X-ray diffraction results for the samples of Experimental Example 6.
  • Figure 13 (a) shows the results for sample MnGa1, (b) shows the results for sample MnGa2, and (c) shows the results for sample MnGa3. Peaks derived from the (002) plane of MnGa were confirmed in samples MnGa2 and MnGa3. In contrast, no peaks derived from the (002) plane of MnGa were confirmed in sample MnGa1. This is thought to be because tetragonal MnGa could not be formed on MgO. This result was consistent with the results shown in Figure 12.
  • Example 8 Dependence of the Magnetic Properties of MnGa-Based (Ferrimagnetic) Magnetic Film on the Thickness of the Nonmagnetic Layer
  • samples were prepared with a layer structure in which Cr/MgO/cubic AlN with a thickness of 2.5 nm/MnGa with a thickness of 40 nm were stacked from the bottom, and the thickness of the MgO layer was changed to measure the magnetic properties.
  • Samples with MgO layers having thicknesses of 0 nm, 0.5 nm, 0.8 nm, 1.1 nm, and 2.0 nm were prepared.
  • Figure 15 shows the magnetic properties of Experimental Example 8. The magnetic properties shown in Figure 15 were obtained by utilizing the surface magnetic Kerr effect, and the vertical axis of Figure 15 is the rotation of the polarization plane (Kerr rotation angle), and the horizontal axis is the magnetic field strength applied to the sample.
  • Example 9 Magnetoresistance effect element using MnGa-based (ferrimagnetic) magnetic film as the second ferromagnetic layer
  • a magnetoresistance effect element having a second ferromagnetic layer of MnGa was actually fabricated and its characteristics were evaluated.
  • the specific configuration of the manufactured magnetoresistance effect element is as follows. Underlayer: Cr First ferromagnetic layer: 10 nm thick FeCo (oriented in the (001) crystal plane) First intermediate layer: 0.9 nm thick Mg and 0.6 nm thick MgO Nonmagnetic layer: cubic AlN Second ferromagnetic layer: 3 nm thick MnGa (oriented in the (001) crystal plane) Protective layer: Ta/Ru
  • Fig. 16 shows the results of X-ray diffraction of the magnetoresistance effect element of Experimental Example 9. As shown in Fig. 16, a peak derived from the MnGa ferrimagnetic material having the L10 structure (tetragonal crystal) was confirmed. That is, Fig. 16 shows that a magnetoresistance effect element having a MnGa ferrimagnetic material on a nonmagnetic layer was successfully fabricated.
  • Figure 17 shows the magnetic characteristics of the magnetoresistance effect element of Experimental Example 9.
  • the magnetic characteristics shown in Figure 17 were obtained using the surface magnetic Kerr effect, with the vertical axis of Figure 17 representing the rotation of the polarization plane (Kerr rotation angle) and the horizontal axis representing the magnetic field strength applied to the sample.
  • magnetic characteristics with a hysteresis loop were confirmed. This indicates that the MnGa ferrimagnetic material functions as a second ferromagnetic layer.
  • Example 10 Magnetoresistance effect element with GaN nonmagnetic layer
  • a magnetoresistance effect element was fabricated in which the nonmagnetic layer was made of GaN.
  • a 10 nm thick CoMnFe film, a 0.6 nm thick MgO film, cubic GaN, a 0.6 nm thick MgO film, a 8 nm thick CoMnFe film, a 10 nm thick IrMn film, and a 10 nm thick Ru film were successively formed.
  • the specific configuration of the manufactured magnetoresistance effect element is as follows. Underlayer: Cr First ferromagnetic layer: 10 nm thick CoMnFe (oriented in the (001) crystal plane) First intermediate layer: MgO having a thickness of 0.6 nm Nonmagnetic layer: cubic GaN Second intermediate layer: MgO with a thickness of 0.6 nm Second ferromagnetic layer: 8 nm thick CoMnFe (oriented in the (001) crystal plane) Antiferromagnetic layer: 10 nm thick IrMn Cap layer: Ru with a thickness of 10 nm
  • Figure 18 shows the X-ray diffraction results for the magnetoresistance effect element of Experimental Example 10. As shown in Figure 18, a peak derived from the IrMn (002) crystal plane was also confirmed in the magnetoresistance effect element of Experimental Example 10. In other words, it can be confirmed that the nonmagnetic layer and the layer stacked on top of the nonmagnetic layer have a cubic crystal structure.
  • FIG. 19 shows the result of calculating the band structure of the GaN nonmagnetic layer.
  • the band structure was obtained by simulation using the first-principles calculation package quantum espresso.
  • the zinc-blende structure was assumed as the crystal structure of the cubic GaN.
  • the calculation conditions for simulating the band structure were the generalized gradient approximation for the correlation exchange potential, 600 eV for the cutoff energy of the plane wave basis, and 0.458 nm obtained from the first-principles calculation for the lattice constant.
  • ⁇ ⁇ 5 indicates the attenuation constant when ⁇ 5 band electrons tunnel
  • ⁇ ⁇ 1 indicates the attenuation constant when ⁇ 1 band electrons tunnel
  • ⁇ 5 indicates an energy band having ⁇ 5 symmetry
  • ⁇ 1 indicates an energy band having ⁇ 1 symmetry.
  • the band gap of the MgO nonmagnetic layer is about 8 eV
  • the band gap of the AlN nonmagnetic layer is about 5 eV
  • the band gap of the GaN nonmagnetic layer is about 3 eV.
  • a magnetoresistance effect element using GaN for the nonmagnetic layer has a lower resistance than a magnetoresistance effect element using MgO or AlN for the nonmagnetic layer.
  • Figure 20 shows the relationship between the thickness of the nonmagnetic layer and element resistance of the magnetoresistance effect element of Experimental Example 10 (with a GaN nonmagnetic layer), and the relationship between the thickness of the nonmagnetic layer and element resistance of a magnetoresistance effect element having the same configuration as Experimental Example 10 except that the nonmagnetic layer is MgO.
  • the magnetoresistance effect element of Experimental Example 10 with a GaN nonmagnetic layer has a lower element resistance than a magnetoresistance effect element with an MgO nonmagnetic layer.
  • Figure 21 shows the MR ratio of the magnetoresistance effect element of Experimental Example 10.
  • the magnetoresistance effect element shown in Figure 21 is a sample with a GaN thickness of 0.9 nm.
  • the horizontal axis of Figure 21 shows the heat treatment temperature of the magnetoresistance effect element. This heat treatment is annealing performed after the magnetoresistance effect element is laminated. Annealing the magnetoresistance effect element causes atomic rearrangement, improving performance.
  • the vertical axis of Figure 21 is the MR ratio of the magnetoresistance effect element. As shown in Figure 21, the magnetoresistance effect element of Experimental Example 10 shows a magnetoresistance change rate of more than 100%.
  • the non-magnetic layer containing cubic or tetragonal nitrogen disclosed herein has low resistance and functions as a tunnel barrier layer. It has been shown that a magnetoresistance effect occurs in an FeCo-based magnetic film, and that a magnetoresistance effect can occur in a ferrimagnetic magnetic film.
  • This magnetoresistance effect element has the potential to realize high performance and high density magnetoresistance effect elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)

Abstract

This magnetoresistance effect element comprises a first ferromagnetic layer, a second ferromagnetic layer, a nonmagnetic layer, and a first intermediate layer. The nonmagnetic layer is sandwiched between the first ferromagnetic layer and the second ferromagnetic layer and contains a cubic or tetragonal nitride. The first intermediate layer is sandwiched between the first ferromagnetic layer and the nonmagnetic layer and contains a cubic or tetragonal nonmagnetic material.

Description

磁気抵抗効果素子Magnetoresistance effect element

 本発明は、磁気抵抗効果素子に関する。本出願は、2023年1月17日に日本で出願された特願2023-005203に記載の内容に対して優先権を有する。 The present invention relates to a magnetoresistance effect element. This application has priority to the contents described in Japanese Patent Application No. 2023-005203, filed in Japan on January 17, 2023.

 磁気抵抗効果素子は、2つの強磁性層と、2つの強磁性層に挟まれた非磁性層とを有する。磁気抵抗効果素子の抵抗値は、非磁性層を挟む2つの強磁性層の磁化の相対角が変化することで変化する。磁気抵抗効果素子は、所謂、磁気抵抗効果を示す。この抵抗変化の特性を利用して、磁気抵抗効果素子は、磁気センサ、高周波部品、磁気ヘッド、磁気メモリ等の様々な用途に用いられている。 A magnetoresistance effect element has two ferromagnetic layers and a nonmagnetic layer sandwiched between the two ferromagnetic layers. The resistance value of the magnetoresistance effect element changes as the relative angle of magnetization of the two ferromagnetic layers sandwiching the nonmagnetic layer changes. Magnetoresistance effect elements exhibit what is known as the magnetoresistance effect. Taking advantage of this resistance change characteristic, magnetoresistance effect elements are used in a variety of applications such as magnetic sensors, high-frequency components, magnetic heads, and magnetic memories.

 磁気メモリの大容量化等に伴い、磁気抵抗効果素子の微細化の要望がある。微細な磁気抵抗効果素子は、強磁性層の体積が小さく、磁化の熱安定性が低い。例えば、強磁性層にCoFe系の強磁性体を用い、非磁性層にMgO又はMg-Al-Oの非磁性体を用いた垂直磁化磁気抵抗効果素子が知られている。CoFe系の強磁性体を用いた磁気抵抗効果素子は、微細化した際に、熱安定性が十分ではない可能性がある。そのため、磁気抵抗効果素子に適用される強磁性層の材料の検討が進んでいる。 As magnetic memories become larger in capacity, there is a demand for miniaturizing magnetoresistance effect elements. Miniaturized magnetoresistance effect elements have a small volume of ferromagnetic layer and low thermal stability of magnetization. For example, perpendicular magnetization magnetoresistance effect elements are known that use a CoFe-based ferromagnetic material for the ferromagnetic layer and MgO or Mg-Al-O nonmagnetic material for the nonmagnetic layer. Magnetoresistance effect elements that use a CoFe-based ferromagnetic material may not have sufficient thermal stability when miniaturized. For this reason, research is underway into the materials of the ferromagnetic layer to be used in magnetoresistance effect elements.

 例えば、特許文献1及び特許文献2は、Mn系の磁性層を用いた磁気抵抗効果素子を開示している。Fe系等の強磁性体ではない、Mn系の磁性層は、磁気抵抗効果素子を微細化した際に、磁化の周辺への影響が少ない。Mn系の磁性体は、将来的な磁気メモリの大容量化に向けて、磁気抵抗効果素子に適用される可能性のある材料として注目されている。 For example, Patent Documents 1 and 2 disclose magnetoresistance effect elements that use Mn-based magnetic layers. The Mn-based magnetic layer is not a ferromagnetic material such as an Fe-based material, and when the magnetoresistance effect element is miniaturized, the magnetization has less of an effect on the surrounding area. Mn-based magnetic materials are attracting attention as a material that may be applied to magnetoresistance effect elements in the future, with the aim of increasing the capacity of magnetic memories.

 特許文献1,2は、垂直磁気異方性を有するとともにより大きな磁気抵抗効果を発現することが可能な磁気抵抗素子を提案している。しかしながら特許文献1、2は、この磁気抵抗素子についての磁気抵抗効果の具体的なデータを開示していない。Mn系の磁性層を用いた磁気抵抗効果素子(特にバリア層(非磁性層)上にMn系の磁性層を有する素子)が、大きな磁気抵抗効果を発現することについての報告は、現在に至るまでされていない。 Patent Documents 1 and 2 propose a magnetoresistance element that has perpendicular magnetic anisotropy and is capable of exhibiting a larger magnetoresistance effect. However, Patent Documents 1 and 2 do not disclose specific data on the magnetoresistance effect of this magnetoresistance element. To date, there have been no reports of a magnetoresistance effect element using a Mn-based magnetic layer (particularly an element having a Mn-based magnetic layer on a barrier layer (non-magnetic layer)) exhibiting a large magnetoresistance effect.

特開2010-232499号公報JP 2010-232499 A 特開2015-176930号公報JP 2015-176930 A

 磁気抵抗効果素子の性能は、強磁性層によってのみ決まるものではない。磁気抵抗効果素子の性能は、非磁性層によっても作用する。磁気抵抗効果素子は、磁気抵抗効果素子の動作を制御する半導体素子と接続される場合が多い。この半導体素子の動作抵抗と磁気抵抗効果素子の積層方向の抵抗は大きく乖離していないことが好ましい。例えば、MgO、Mg-Al-Oは抵抗が高い。非磁性層にこれらの材料を用いる場合は、磁気抵抗効果素子の抵抗と半導体素子の動作抵抗を近づけるために、非磁性層を薄膜化する場合がある。しかしながら、薄膜化された非磁性層は、電圧が印加された際に、絶縁破壊する場合がある。そこで、より低抵抗な材料を含む非磁性層が求められている。 The performance of a magnetoresistance effect element is not determined only by the ferromagnetic layer. The performance of a magnetoresistance effect element is also affected by the nonmagnetic layer. A magnetoresistance effect element is often connected to a semiconductor element that controls the operation of the magnetoresistance effect element. It is preferable that the operating resistance of this semiconductor element and the resistance in the stacking direction of the magnetoresistance effect element do not deviate significantly. For example, MgO and Mg-Al-O have high resistance. When using these materials for the nonmagnetic layer, the nonmagnetic layer may be thinned to bring the resistance of the magnetoresistance effect element closer to the operating resistance of the semiconductor element. However, a thin nonmagnetic layer may undergo dielectric breakdown when a voltage is applied. Therefore, a nonmagnetic layer containing a material with lower resistance is required.

 例えばAlN、GaN、InNは、低抵抗な非磁性材料の候補の一つである。しかしながら、AlN、GaN、InNの結晶構造は、一般にウルツ鉱型構造である。磁気抵抗効果素子は、薄膜を積層することで作製されるため、ウルツ鉱型構造の非磁性層上に異なる結晶構造の強磁性層を積層することは難しい。 For example, AlN, GaN, and InN are candidates for low-resistance nonmagnetic materials. However, the crystal structures of AlN, GaN, and InN are generally wurtzite structures. Magnetoresistance effect elements are fabricated by stacking thin films, so it is difficult to stack a ferromagnetic layer with a different crystal structure on a nonmagnetic layer with a wurtzite structure.

 本願発明者らは、低抵抗な非磁性材料を用いることで磁気抵抗効果素子を高性能化し、Mn系の磁性層からなる垂直磁気異方性を有する磁気抵抗効果素子を実現するためには、非磁性層の材質や結晶構造が重要な要素ではないかと考え、非磁性層の検討を行った。なお、上述のように、Mn系の磁性層を含む磁気抵抗効果素子が大きな磁気抵抗効果を発現する報告は、されていない。 The inventors of the present application believed that the material and crystal structure of the nonmagnetic layer would be important factors in improving the performance of the magnetoresistance effect element by using a low-resistance nonmagnetic material and in realizing a magnetoresistance effect element with perpendicular magnetic anisotropy made of an Mn-based magnetic layer, and so they investigated the nonmagnetic layer. As mentioned above, there have been no reports of magnetoresistance effect elements that include an Mn-based magnetic layer.

 本開示は上記問題に鑑みてなされたものであり、低抵抗なトンネルバリア層を有する磁気抵抗効果素子を提供することを目的とする。 This disclosure has been made in consideration of the above problems, and aims to provide a magnetoresistance effect element with a low-resistance tunnel barrier layer.

 本開示は、上記課題を解決するため、以下の手段を提供する。 To solve the above problems, this disclosure provides the following means.

 第1の態様にかかる磁気抵抗効果素子は、第1強磁性層と、第2強磁性層と、非磁性層と、第1中間層と、を備える。非磁性層は、前記第1強磁性層と前記第2強磁性層とに挟まれ、立方晶又は正方晶の窒化物を含む。第1中間層は、前記第1強磁性層と前記非磁性層とに挟まれ、立方晶又は正方晶の非磁性体を含む。 The magnetoresistance effect element according to the first aspect includes a first ferromagnetic layer, a second ferromagnetic layer, a nonmagnetic layer, and a first intermediate layer. The nonmagnetic layer is sandwiched between the first ferromagnetic layer and the second ferromagnetic layer, and includes a cubic or tetragonal nitride. The first intermediate layer is sandwiched between the first ferromagnetic layer and the nonmagnetic layer, and includes a cubic or tetragonal nonmagnetic material.

 上記態様にかかる磁気抵抗効果素子は、低抵抗なトンネルバリア層を有し、積層方向の抵抗が低い。 The magnetoresistance effect element according to the above embodiment has a low-resistance tunnel barrier layer and has low resistance in the stacking direction.

第1実施形態に係る磁気抵抗効果素子の断面図である。1 is a cross-sectional view of a magnetoresistive effect element according to a first embodiment. 第2実施形態に係る磁気抵抗効果素子の断面図である。FIG. 11 is a cross-sectional view of a magnetoresistive effect element according to a second embodiment. 実験例1のシミュレーション結果を示す。4 shows the simulation results of Experimental Example 1. 実験例2で作製した磁気抵抗効果素子の断面TEM画像である。1 is a cross-sectional TEM image of a magnetoresistive effect element produced in Experimental Example 2. 実験例3で作製した磁気抵抗効果素子の断面TEM画像である。13 is a cross-sectional TEM image of the magnetoresistive effect element produced in Experimental Example 3. 実験例3で作製した磁気抵抗効果素子のX線回折結果である。13 shows the results of X-ray diffraction of the magnetoresistive effect element produced in Experimental Example 3. 実験例3の変形例の磁気抵抗効果素子のX線回折結果である。13 shows the results of X-ray diffraction of the magnetoresistance effect element of the modified example of Experimental Example 3. 実験例3の変形例の磁気抵抗効果素子のX線回折結果である。13 shows the results of X-ray diffraction of the magnetoresistance effect element of the modified example of Experimental Example 3. 実験例4の結果を示し、第1中間層と非磁性層との厚みの比率を変更した際の磁気抵抗効果素子のMR比を示す。13 shows the results of Experimental Example 4, illustrating the MR ratio of the magnetoresistive element when the thickness ratio between the first intermediate layer and the nonmagnetic layer is changed. 実験例5の磁気抵抗効果素子のMR比を示す。13 shows the MR ratio of the magnetoresistive element of Experimental Example 5. 実験例5の磁気抵抗効果素子のRAを示す。RA of the magnetoresistive effect element of Experimental Example 5 is shown. 実験例6のサンプルの磁気特性を示す。4 shows the magnetic properties of the sample of Experimental Example 6. 実験例6のサンプルのX線回折結果を示す。1 shows the results of X-ray diffraction of the sample of Experimental Example 6. 実験例7のサンプルの磁気特性を示す。13 shows magnetic properties of the sample of Experimental Example 7. 実験例8のサンプルの磁気特性を示す。13 shows the magnetic properties of the sample of Experimental Example 8. 実験例9の磁気抵抗効果素子のX線回折結果である。13 shows the results of X-ray diffraction of the magnetoresistive effect element of Experimental Example 9. 実験例9の磁気抵抗効果素子の磁気特性を示す。13 shows the magnetic characteristics of the magnetoresistance effect element of Experimental Example 9. 実験例10の磁気抵抗効果素子のX線回折結果である。13 shows the results of X-ray diffraction of the magnetoresistive effect element of Experimental Example 10. GaNの非磁性層のバンド構造を計算した結果である。This shows the results of calculating the band structure of a GaN nonmagnetic layer. 実験例10の磁気抵抗効果素子(非磁性層がGaN)の非磁性層の厚みと素子抵抗の関係と、非磁性層がMgOであることを除き実験例10と同じ構成の磁気抵抗効果素子の非磁性層の厚みと素子抵抗の関係と、を示す。This shows the relationship between the thickness of the nonmagnetic layer and the element resistance of the magnetoresistive effect element of Experimental Example 10 (the nonmagnetic layer is GaN), and the relationship between the thickness of the nonmagnetic layer and the element resistance of a magnetoresistive effect element having the same configuration as Experimental Example 10 except that the nonmagnetic layer is MgO. 実験例10の磁気抵抗効果素子のMR比を示す。13 shows the MR ratio of the magnetoresistive element of Experimental Example 10.

 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 The present embodiment will now be described in detail with reference to the drawings as appropriate. The drawings used in the following description may show enlarged characteristic parts for the sake of convenience in order to make the features of the present invention easier to understand, and the dimensional ratios of each component may differ from the actual ones. The materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited to them, and may be modified as appropriate within the scope of the present invention.

「第1実施形態」
 図1は、第1実施形態に係る磁気抵抗効果素子10の断面図である。磁気抵抗効果素子10は、第1強磁性層1と第2強磁性層2と非磁性層3と第1中間層4と下地層9とを有する。
"First embodiment"
1 is a cross-sectional view of a magnetoresistance effect element 10 according to the first embodiment. The magnetoresistance effect element 10 has a first ferromagnetic layer 1, a second ferromagnetic layer 2, a nonmagnetic layer 3, a first intermediate layer 4, and an underlayer 9.

 磁気抵抗効果素子10は、柱状体である。磁気抵抗効果素子10のz方向からの平面視形状は、例えば、円形、楕円形、四角形である。 The magnetoresistance effect element 10 is a columnar body. The shape of the magnetoresistance effect element 10 when viewed from the z direction in a plane is, for example, circular, elliptical, or rectangular.

 磁気抵抗効果素子10の抵抗値は、非磁性層3を挟む第1強磁性層1の磁化と第2強磁性層2の磁化との相対角が変化すると、変化する。第1強磁性層1の磁化と第2強磁性層2の磁化とが反平行の場合に、磁気抵抗効果素子10の抵抗値は大きくなり、第1強磁性層1の磁化と第2強磁性層2の磁化とが平行の場合に、磁気抵抗効果素子10の抵抗値は小さくなる。磁気抵抗効果素子の磁気抵抗比(MR比)は、(R-R)/R×100で表される。MR比が大きい程、磁気抵抗効果素子は、大きな磁気抵抗効果を示す。Rは、第1強磁性層1の磁化と第2強磁性層2の磁化とが反平行の場合の磁気抵抗効果素子10の積層方向の抵抗値であり、Rは、第1強磁性層1の磁化と第2強磁性層2の磁化とが平行の場合の磁気抵抗効果素子10の積層方向の抵抗値である。 The resistance value of the magnetoresistance effect element 10 changes when the relative angle between the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2, which sandwich the nonmagnetic layer 3, changes. When the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2 are antiparallel, the resistance value of the magnetoresistance effect element 10 increases, and when the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2 are parallel, the resistance value of the magnetoresistance effect element 10 decreases. The magnetoresistance ratio (MR ratio) of the magnetoresistance effect element is expressed as (R A -R P )/R P ×100. The larger the MR ratio, the greater the magnetoresistance effect of the magnetoresistance effect element. R A is the resistance value in the stacking direction of the magnetoresistive effect element 10 when the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2 are antiparallel, and R P is the resistance value in the stacking direction of the magnetoresistive effect element 10 when the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2 are parallel.

 下地層9は、例えば、基板上にある。基板は、例えば、熱酸化膜付きシリコン、ガラス、セラミック(例えば、アルミナ、酸化マグネシウム)、石英等である。基板は、アモルファスでも結晶でもよい。基板が結晶の場合、基板の積層面は、(001)配向していることが好ましい。 The underlayer 9 is, for example, on a substrate. The substrate is, for example, silicon with a thermal oxide film, glass, ceramic (for example, alumina, magnesium oxide), quartz, etc. The substrate may be amorphous or crystalline. If the substrate is crystalline, it is preferable that the layered surface of the substrate is (001) oriented.

 下地層9は、例えば、立方晶又は正方晶の結晶構造を有する。下地層9は、例えば、Cr、V、TiN、MnN、NiAl、CoAl、CoGa、NiGaである。適切な格子定数の立方晶又は正方晶の結晶構造を有し(001)結晶面に配向する下地層9は、下地層9上に成膜される層を立方晶又は正方晶にすることができる。 The underlayer 9 has, for example, a cubic or tetragonal crystal structure. The underlayer 9 is, for example, Cr, V, TiN, MnN, NiAl, CoAl, CoGa, or NiGa. The underlayer 9 has a cubic or tetragonal crystal structure with an appropriate lattice constant and is oriented in the (001) crystal plane, so that the layer deposited on the underlayer 9 can be cubic or tetragonal.

 第1強磁性層1は、例えば、下地層9上にある。第1強磁性層1は、第2強磁性層2より下地層9の近くにある。第1強磁性層1の結晶構造は、例えば、立方晶又は正方晶である。 The first ferromagnetic layer 1 is, for example, on the underlayer 9. The first ferromagnetic layer 1 is closer to the underlayer 9 than the second ferromagnetic layer 2. The crystal structure of the first ferromagnetic layer 1 is, for example, cubic or tetragonal.

 第1強磁性層1は、強磁性体を含む。強磁性はフェリ磁性を含んでもよく、第1強磁性層1はフェリ磁性体でもよい。第1強磁性層1は、例えば、Co、Fe、Ni等の磁性元素を含む強磁性体でもよい。例えば、Fe、Co、CoFe、CoFeB、CoMnFe、CoMnSi、CoFeAl、CoPt、NiFe、FePt等は、Co、Fe、Ni等の磁性元素を含む強磁性体の一例である。また第1強磁性層1は、Mn系のフェリ磁性体でもよい。Mn系のフェリ磁性体は、磁気異方性が高く、飽和磁化が小さい。例えば、MnGa合金は、Mn系のフェリ磁性体の一例である。MnGa合金は、Mn元素とGa元素とを有すればよく、例えばMnGa、MnFeGa、FeMnGa等である。 The first ferromagnetic layer 1 includes a ferromagnetic material. The ferromagnetic material may include ferrimagnetic material, and the first ferromagnetic layer 1 may be a ferrimagnetic material. The first ferromagnetic layer 1 may be a ferromagnetic material including magnetic elements such as Co, Fe, and Ni. For example, Fe, Co, CoFe, CoFeB, CoMnFe, Co2MnSi , Co2FeAl , CoPt, NiFe, and FePt are examples of ferromagnetic materials including magnetic elements such as Co, Fe, and Ni. The first ferromagnetic layer 1 may also be a Mn-based ferrimagnetic material. The Mn-based ferrimagnetic material has high magnetic anisotropy and small saturation magnetization. For example, an MnGa alloy is an example of a Mn-based ferrimagnetic material. The MnGa alloy may contain Mn and Ga elements, and examples of the MnGa alloy include Mn 3 Ga, Mn 2 FeGa, and Fe 2 MnGa.

 第1強磁性層1は、例えば、磁化固定層でもよいし、磁化自由層でもよい。磁化固定層の磁化は、所定の磁界が印加された際に、磁化自由層の磁化より動きにくい。第1強磁性層1の磁化安定性は、第1強磁性層1が第2強磁性層2より基板の近くにある場合の方が高い。第1強磁性層1が磁化固定層である磁気抵抗効果素子10は、信頼性(熱揺籃に対する安定性)が高い。 The first ferromagnetic layer 1 may be, for example, a magnetization fixed layer or a magnetization free layer. The magnetization of the magnetization fixed layer is less likely to move than that of the magnetization free layer when a predetermined magnetic field is applied. The magnetization stability of the first ferromagnetic layer 1 is higher when the first ferromagnetic layer 1 is closer to the substrate than the second ferromagnetic layer 2. The magnetoresistance effect element 10 in which the first ferromagnetic layer 1 is a magnetization fixed layer has high reliability (stability against thermal oscillations).

 第1中間層4は、例えば、第1強磁性層1上にある。第1中間層4は、例えば、第1強磁性層1と非磁性層3との間にある。第1中間層4は非磁性体からなる非磁性層であり、後述の非磁性層3の役割を一部担うものであってもよい。 The first intermediate layer 4 is, for example, on the first ferromagnetic layer 1. The first intermediate layer 4 is, for example, between the first ferromagnetic layer 1 and the nonmagnetic layer 3. The first intermediate layer 4 is a nonmagnetic layer made of a nonmagnetic material, and may partially fulfill the role of the nonmagnetic layer 3 described below.

 第1中間層4は、立方晶又は正方晶の非磁性体を含む。第1中間層4は、立方晶又は正方晶の非磁性体からなってもよい。第1中間層4に含まれる非磁性体の結晶構造は、例えば、岩塩型又はひずんだ岩塩型の正方晶である。 The first intermediate layer 4 includes a cubic or tetragonal nonmagnetic material. The first intermediate layer 4 may be made of a cubic or tetragonal nonmagnetic material. The crystal structure of the nonmagnetic material included in the first intermediate layer 4 is, for example, a rock-salt or distorted rock-salt tetragonal crystal.

 第1中間層4を構成する非磁性体は、例えば、Cr、Ti、Mn、CrN、TiN、MgO、MnNからなる群から選択されるいずれかである。なお、CrN又はMnNからなる第1中間層4を作製する際には、Cr又はMnを用いて第1中間層4を形成したのち、窒化物の非磁性層3を堆積する。非磁性層3の一部の窒素がCr又はMnと反応する、又は、窒化物の非磁性層3を堆積する過程で発生する窒素とCr又はMnが反応することで、CrN又はMnNからなる第1中間層4が得られる。第1中間層4は、例えば、このようなプロセスで生成されるCrN又はMnNを含んでもよい。 The non-magnetic material constituting the first intermediate layer 4 is, for example, any one selected from the group consisting of Cr, Ti, Mn, CrN, TiN, MgO, and MnN. When producing the first intermediate layer 4 consisting of CrN or MnN, the first intermediate layer 4 is formed using Cr or Mn, and then the nitride non-magnetic layer 3 is deposited. The first intermediate layer 4 consisting of CrN or MnN is obtained by reacting some of the nitrogen in the non-magnetic layer 3 with Cr or Mn, or by reacting Cr or Mn with nitrogen generated in the process of depositing the nitride non-magnetic layer 3. The first intermediate layer 4 may contain, for example, CrN or MnN produced by such a process.

 第1中間層4はシード層(結晶成長を促進する種としての層)として機能すればよい。第1中間層4の厚みは、極限的に薄い厚み(原子レベルでの1層又は2層程度、具体的には0.1nm~0.2nm程度)でもよい。その際、極限的に薄くなったCrNやMnNは、非磁性層3と組み合わさることで、磁気抵抗効果素子10のMR比を増大させる働きと、磁気抵抗効果素子10抵抗値を低下させる非公知の効果と、を発生する。 The first intermediate layer 4 may function as a seed layer (a layer that acts as a seed to promote crystal growth). The thickness of the first intermediate layer 4 may be extremely thin (one or two layers at the atomic level, specifically, about 0.1 nm to 0.2 nm). In this case, the extremely thin CrN or MnN combines with the non-magnetic layer 3 to increase the MR ratio of the magnetoresistance effect element 10 and produce an undisclosed effect of lowering the resistance value of the magnetoresistance effect element 10.

 第1中間層4が抵抗値の高いMgOの場合は、その厚みは、ある程度の厚みを有してもよい。ある程度の厚みは、例えば、0.8nm程度である。一方で、第2強磁性層2が、フェリ磁性体で構成される場合は、第1中間層4の厚みは、薄い方が好ましい。第1中間層4の厚みは、例えば、1.1nm未満であり、好ましくは0.8nm以下である。 When the first intermediate layer 4 is made of MgO, which has a high resistance value, the thickness may be a certain degree. The certain degree of thickness is, for example, about 0.8 nm. On the other hand, when the second ferromagnetic layer 2 is made of a ferrimagnetic material, it is preferable that the thickness of the first intermediate layer 4 is thin. The thickness of the first intermediate layer 4 is, for example, less than 1.1 nm, and preferably 0.8 nm or less.

 第1中間層4の厚みは、例えば、磁気抵抗効果素子10の断面を透過型電子顕微鏡(TEM)で測定し、第1中間層4が広がる面内の異なる5カ所の膜厚を測定し、平均化することで求められる。 The thickness of the first intermediate layer 4 can be determined, for example, by measuring the cross section of the magnetoresistance effect element 10 with a transmission electron microscope (TEM), measuring the film thickness at five different points within the plane in which the first intermediate layer 4 extends, and averaging the measured values.

 第1中間層4は、第1強磁性層1と非磁性層3との間のシード層として機能する。また第1中間層4にMgOのような高い抵抗値を有するものを用いた場合には、第1中間層4は、非磁性層3同様にトンネルバリア層の役割を担ってもよい。第1強磁性層1と非磁性層3との間に第1中間層4があることで、非磁性層3が立方晶又は正方晶となる。 The first intermediate layer 4 functions as a seed layer between the first ferromagnetic layer 1 and the nonmagnetic layer 3. If a material with a high resistance value such as MgO is used for the first intermediate layer 4, the first intermediate layer 4 may also function as a tunnel barrier layer like the nonmagnetic layer 3. The presence of the first intermediate layer 4 between the first ferromagnetic layer 1 and the nonmagnetic layer 3 makes the nonmagnetic layer 3 a cubic or tetragonal crystal.

 非磁性層3は、例えば、第1中間層4上にある。非磁性層3は、第1強磁性層1と第2強磁性層2との間にある。非磁性層3は、例えば、第1中間層4と第2強磁性層2との間にある。非磁性層3は、トンネルバリア層である。 The nonmagnetic layer 3 is, for example, on the first intermediate layer 4. The nonmagnetic layer 3 is between the first ferromagnetic layer 1 and the second ferromagnetic layer 2. The nonmagnetic layer 3 is, for example, between the first intermediate layer 4 and the second ferromagnetic layer 2. The nonmagnetic layer 3 is a tunnel barrier layer.

 本開示の非磁性層3は、立方晶又は正方晶の窒化物を含む。非磁性層3は、立方晶又は正方晶の窒化物からなってもよい。非磁性層3は、例えば、Al、Ga、Inからなる群から選択される少なくとも1種の元素の窒化物を含む。非磁性層3は、例えば、AlN、GaN、InNである。これらの窒化物は、ウルツ型構造が安定であるため、通常は立方晶又は正方晶にはならない。立方晶又は正方晶の第1中間層4上に非磁性層3を形成することで、非磁性層3が立方晶又は正方晶となる。 The nonmagnetic layer 3 of the present disclosure includes a cubic or tetragonal nitride. The nonmagnetic layer 3 may be made of a cubic or tetragonal nitride. The nonmagnetic layer 3 includes, for example, a nitride of at least one element selected from the group consisting of Al, Ga, and In. The nonmagnetic layer 3 is, for example, AlN, GaN, or InN. These nitrides do not usually become cubic or tetragonal because the wurtzite structure is stable. By forming the nonmagnetic layer 3 on the cubic or tetragonal first intermediate layer 4, the nonmagnetic layer 3 becomes cubic or tetragonal.

 非磁性層3は、第1中間層4がMgO等の絶縁体の場合には、第1中間層4よりも低抵抗であることが好ましい。窒化物を含む非磁性層3は、MgOからなる非磁性層と比較して、抵抗が低い。非磁性層3の抵抗が低いと、磁気抵抗効果素子10に接続される他の半導体素子の抵抗値と、磁気抵抗効果素子10の抵抗値と、の抵抗値の桁数が近くなる。そのため、磁気抵抗効果素子10を微細化した場合でも、非磁性層3がMgO単独で構成される場合より、非磁性層3の厚みを厚く設定することが可能であり、非磁性層3の絶縁破壊等が生じにくい。 When the first intermediate layer 4 is an insulator such as MgO, the nonmagnetic layer 3 preferably has a lower resistance than the first intermediate layer 4. A nonmagnetic layer 3 containing a nitride has a lower resistance than a nonmagnetic layer made of MgO. When the resistance of the nonmagnetic layer 3 is low, the resistance value of the magnetoresistance effect element 10 and the resistance value of the other semiconductor element connected to the magnetoresistance effect element 10 are closer in order of magnitude. Therefore, even when the magnetoresistance effect element 10 is miniaturized, the thickness of the nonmagnetic layer 3 can be set thicker than when the nonmagnetic layer 3 is made of MgO alone, and insulation breakdown of the nonmagnetic layer 3 is less likely to occur.

 非磁性層3は、第1中間層4の抵抗値が小さい場合(例えば、第1中間層4がCrN又はMnN等の場合)、主として、トンネルバリア層の役割を担う。非磁性層3が、有意なトンネルバリア層として機能することで、磁気抵抗効果素子が適切に機能する。 When the resistance value of the first intermediate layer 4 is small (for example, when the first intermediate layer 4 is made of CrN or MnN, etc.), the nonmagnetic layer 3 mainly plays the role of a tunnel barrier layer. The nonmagnetic layer 3 functions as a significant tunnel barrier layer, allowing the magnetoresistance effect element to function properly.

 一方で、第1中間層4がMgO等の抵抗値の高いものを用いた場合は、非磁性層3と第1中間層4とが、トンネルバリア層の役割を担う。 On the other hand, if the first intermediate layer 4 is made of a material with high resistance, such as MgO, the nonmagnetic layer 3 and the first intermediate layer 4 will act as a tunnel barrier layer.

 本開示の非磁性層3の抵抗は、第1中間層4がMgOの場合には、第1中間層4の抵抗値より低い。磁気抵抗効果素子10の第1中間層4の抵抗値を小さく抑えつつ、非磁性層3及び第1中間層4を介した短絡を防ぐためには、非磁性層3の厚みは、第1中間層4の厚みより厚い方が、好ましい。一方で、第1中間層4がMgOの場合、第1中間層4の厚みが非磁性層3の厚みに対して薄すぎると、磁気抵抗効果素子10のMR比が低下する傾向にあるため、第1中間層4の厚みは0.2nm以上であることが好ましい。 The resistance of the nonmagnetic layer 3 of the present disclosure is lower than the resistance value of the first intermediate layer 4 when the first intermediate layer 4 is MgO. In order to prevent a short circuit through the nonmagnetic layer 3 and the first intermediate layer 4 while keeping the resistance value of the first intermediate layer 4 of the magnetoresistance effect element 10 small, it is preferable that the thickness of the nonmagnetic layer 3 is thicker than the thickness of the first intermediate layer 4. On the other hand, when the first intermediate layer 4 is MgO, if the thickness of the first intermediate layer 4 is too thin compared to the thickness of the nonmagnetic layer 3, the MR ratio of the magnetoresistance effect element 10 tends to decrease, so the thickness of the first intermediate layer 4 is preferably 0.2 nm or more.

 また、本開示では、非磁性層3は、非磁性層3の上に形成される第2強磁性層2を立方晶又は正方晶とするため、立方晶又は正方晶である。それらを全て考慮した上で、第1中間層4及び非磁性層3の材質及び厚み、それぞれの厚みの比率は検討される。 In addition, in this disclosure, the nonmagnetic layer 3 is a cubic or tetragonal crystal because the second ferromagnetic layer 2 formed on the nonmagnetic layer 3 is a cubic or tetragonal crystal. Taking all of this into consideration, the materials and thicknesses of the first intermediate layer 4 and the nonmagnetic layer 3, and the ratio of their respective thicknesses are examined.

 第2強磁性層2は、例えば、非磁性層3上にある。第2強磁性層2は、第1強磁性層1より下地層9から離れた位置にある。第2強磁性層2の結晶構造は、例えば、立方晶又は正方晶である。 The second ferromagnetic layer 2 is, for example, on the nonmagnetic layer 3. The second ferromagnetic layer 2 is located farther from the underlayer 9 than the first ferromagnetic layer 1. The crystal structure of the second ferromagnetic layer 2 is, for example, cubic or tetragonal.

 第2強磁性層2は、強磁性体を含む。第2強磁性層2は、例えば、Co、Fe、Ni等の磁性元素を含む強磁性体でもよい。例えば、Fe、Co、CoFe、CoFeB、CoMnFe,CoMnSi、CoFeAl、CoPt、FePt等は、Co、Fe、Ni等の磁性元素を含む強磁性体の一例である。 The second ferromagnetic layer 2 includes a ferromagnetic material. The second ferromagnetic layer 2 may be a ferromagnetic material including a magnetic element such as Co, Fe, Ni, etc. For example, Fe, Co, CoFe, CoFeB , CoMnFe, Co2MnSi, Co2FeAl , CoPt, FePt, etc. are examples of ferromagnetic materials including a magnetic element such as Co, Fe, Ni, etc.

 また第2強磁性層2は、Mn系のフェリ磁性体でもよい。Mn系のフェリ磁性体は、磁気異方性が高く、飽和磁化が小さい。例えば、MnGa合金は、Mn系のフェリ磁性体の一例である。MnGa合金は、Mn元素とGa元素とを有すればよく、例えばMnGa、MnFeGa、FeMnGa等である。 The second ferromagnetic layer 2 may also be a Mn-based ferrimagnetic material. The Mn-based ferrimagnetic material has high magnetic anisotropy and low saturation magnetization. For example, a MnGa alloy is an example of a Mn-based ferrimagnetic material. The MnGa alloy may contain Mn and Ga elements, and may be, for example, Mn 3 Ga, Mn 2 FeGa, or Fe 2 MnGa.

 例えば、非磁性層3がMgOの場合、非磁性層3上に立方晶又は正方晶のMn系のフェリ磁性体を形成することはできない。これに対し、立方晶又は正方晶の窒化物を含む非磁性層3上には、Mn系のフェリ磁性体を形成することができる。 For example, if the non-magnetic layer 3 is MgO, a cubic or tetragonal Mn-based ferrimagnetic material cannot be formed on the non-magnetic layer 3. In contrast, a Mn-based ferrimagnetic material can be formed on a non-magnetic layer 3 that contains a cubic or tetragonal nitride.

 第2強磁性層2は、例えば、磁化固定層でもよいし、磁化自由層でもよい。第2強磁性層2は、磁化自由層であることが好ましい。 The second ferromagnetic layer 2 may be, for example, a magnetization fixed layer or a magnetization free layer. It is preferable that the second ferromagnetic layer 2 is a magnetization free layer.

 磁気抵抗効果素子10は、各層を、例えばスパッタリング法、蒸着法、レーザーアブレーション法、分子線エピタキシャル法等で作製できる。また磁気抵抗効果素子10を所定の形状に加工する際は、フォトリソグラフィー法や電子線リソグラフィー法を用いることができる。 Each layer of the magnetoresistance effect element 10 can be fabricated by, for example, sputtering, vapor deposition, laser ablation, molecular beam epitaxial, etc. Furthermore, photolithography or electron beam lithography can be used to process the magnetoresistance effect element 10 into a desired shape.

 第1実施形態に係る磁気抵抗効果素子10は、非磁性層3が立方晶又は正方晶の窒化物を含み、MgOのみからなる非磁性層を有する磁気抵抗効果素子と比較して、抵抗が低い。また第1実施形態に係る磁気抵抗効果素子10は、非磁性層3が立方晶又は正方晶の窒化物を含むため、第2強磁性層2をMn系フェリ磁性体とすることができる。基板から離れた上層の強磁性層に、Mn系フェリ磁性体を適用することは、非磁性層がMgOの場合はできないが、非磁性層3を立方晶又は正方晶の窒化物とすることで、初めて実現できる。Mn系のフェリ磁性体は、磁気異方性が高く、飽和磁化が小さいため、熱揺らぎ等の影響を受けにくい。したがって、第2強磁性層2にMn系フェリ磁性体を適用した磁気抵抗効果素子10は、信頼性に優れる。 The magnetoresistance effect element 10 according to the first embodiment has a nonmagnetic layer 3 containing a cubic or tetragonal nitride, and has a lower resistance than a magnetoresistance effect element having a nonmagnetic layer made only of MgO. In addition, since the nonmagnetic layer 3 of the magnetoresistance effect element 10 according to the first embodiment contains a cubic or tetragonal nitride, the second ferromagnetic layer 2 can be made of an Mn-based ferrimagnetic material. It is not possible to apply an Mn-based ferrimagnetic material to the upper ferromagnetic layer away from the substrate when the nonmagnetic layer is MgO, but this can be achieved only by making the nonmagnetic layer 3 a cubic or tetragonal nitride. Mn-based ferrimagnetic materials have high magnetic anisotropy and small saturation magnetization, and are therefore less susceptible to thermal fluctuations and the like. Therefore, the magnetoresistance effect element 10 in which an Mn-based ferrimagnetic material is applied to the second ferromagnetic layer 2 has excellent reliability.

「第2実施形態」
 図2は、第2実施形態に係る磁気抵抗効果素子11の断面図である。磁気抵抗効果素子11は、第2中間層5を有する点が、第1実施形態に係る磁気抵抗効果素子10と異なる。第2実施形態の磁気抵抗効果素子11の説明において、第1実施形態に係る磁気抵抗効果素子10と同様の構成には、同様の符号を付し、説明を省く。
Second Embodiment
2 is a cross-sectional view of the magnetoresistance effect element 11 according to the second embodiment. The magnetoresistance effect element 11 differs from the magnetoresistance effect element 10 according to the first embodiment in that it has a second intermediate layer 5. In the description of the magnetoresistance effect element 11 of the second embodiment, the same components as those of the magnetoresistance effect element 10 according to the first embodiment are denoted by the same reference numerals and description thereof will be omitted.

 磁気抵抗効果素子11は、第1強磁性層1と第2強磁性層2と非磁性層3と第1中間層4と第2中間層5と下地層9とを有する。磁気抵抗効果素子11は、磁気抵抗効果素子10と同様の柱状体である。磁気抵抗効果素子11の抵抗値は、非磁性層3を挟む第1強磁性層1の磁化と第2強磁性層2の磁化との相対角が変化すると、変化する。 The magnetoresistance effect element 11 has a first ferromagnetic layer 1, a second ferromagnetic layer 2, a nonmagnetic layer 3, a first intermediate layer 4, a second intermediate layer 5, and an underlayer 9. The magnetoresistance effect element 11 is a columnar body similar to the magnetoresistance effect element 10. The resistance value of the magnetoresistance effect element 11 changes when the relative angle between the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2, which sandwich the nonmagnetic layer 3, changes.

 下地層9、第1強磁性層1、第1中間層4、非磁性層3のそれぞれは、第1実施形態に係る磁気抵抗効果素子10と同様である。第2強磁性層2は、第2中間層5上にある点を除き、第1実施形態に係る磁気抵抗効果素子10と同様である。 The underlayer 9, the first ferromagnetic layer 1, the first intermediate layer 4, and the nonmagnetic layer 3 are similar to those in the magnetoresistance effect element 10 according to the first embodiment. The second ferromagnetic layer 2 is similar to the magnetoresistance effect element 10 according to the first embodiment, except that it is located on the second intermediate layer 5.

 第2中間層5は、例えば、非磁性層3上にある。第2中間層5は、例えば、非磁性層3と第2強磁性層2との間にある。 The second intermediate layer 5 is, for example, on the nonmagnetic layer 3. The second intermediate layer 5 is, for example, between the nonmagnetic layer 3 and the second ferromagnetic layer 2.

 第2中間層5は、立方晶又は正方晶の非磁性体を含む。第2中間層5は、立方晶又は正方晶の非磁性体からなってもよい。第2中間層5に含まれる非磁性体の結晶構造は、例えば、岩塩型又はひずんだ岩塩型の正方晶である。 The second intermediate layer 5 includes a cubic or tetragonal nonmagnetic material. The second intermediate layer 5 may be made of a cubic or tetragonal nonmagnetic material. The crystal structure of the nonmagnetic material included in the second intermediate layer 5 is, for example, a rock-salt or distorted rock-salt tetragonal crystal.

 第2中間層5を構成する非磁性体は、例えば、Cr、Ti、Mn、CrN、TiN、MnNからなる群から選択されるいずれかである。 The non-magnetic material constituting the second intermediate layer 5 is, for example, one selected from the group consisting of Cr, Ti, Mn, CrN, TiN, and MnN.

 第2中間層5の厚みは、例えば、1.1nm未満であり、好ましくは0.8nm以下である。第2中間層5の厚みは、例えば、磁気抵抗効果素子11の断面を透過型電子顕微鏡(TEM)で測定し、第2中間層5が広がる面内の異なる5カ所の膜厚を測定し、平均化することで求められる。 The thickness of the second intermediate layer 5 is, for example, less than 1.1 nm, and preferably 0.8 nm or less. The thickness of the second intermediate layer 5 is determined, for example, by measuring the cross section of the magnetoresistance effect element 11 with a transmission electron microscope (TEM), measuring the film thickness at five different points in the plane in which the second intermediate layer 5 extends, and averaging the measured values.

 第2中間層5は、第2強磁性層2と非磁性層3との間のバッファ層として機能する。第2強磁性層2と非磁性層3との間に第2中間層5があることで、非磁性層3が、立方晶又は正方晶で安定しやすくなる。また第2中間層5がCrNやMnNの場合には、磁気抵抗効果素子の抵抗を低減し、かつ、MR比を増大する効果が得られる。 The second intermediate layer 5 functions as a buffer layer between the second ferromagnetic layer 2 and the nonmagnetic layer 3. The presence of the second intermediate layer 5 between the second ferromagnetic layer 2 and the nonmagnetic layer 3 makes it easier for the nonmagnetic layer 3 to stabilize in a cubic or tetragonal crystal structure. Furthermore, when the second intermediate layer 5 is made of CrN or MnN, the effect of reducing the resistance of the magnetoresistance effect element and increasing the MR ratio is obtained.

 磁気抵抗効果素子11は、第1実施形態に係る磁気抵抗効果素子10と同様の方法で作製できる。 The magnetoresistance effect element 11 can be fabricated in a similar manner to the magnetoresistance effect element 10 according to the first embodiment.

 第2実施形態に係る磁気抵抗効果素子11は、第1実施形態に係る磁気抵抗効果素子10と同様の効果を奏する。 The magnetoresistance effect element 11 according to the second embodiment has the same effect as the magnetoresistance effect element 10 according to the first embodiment.

 以上、いくつかの実施形態を例に本発明について詳細に説明したが、本発明は上記の実施形態及び変形例に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。例えば、磁気抵抗効果素子は、第1強磁性層、第2強磁性層、非磁性層、第1中間層、第2中間層、下地層以外の層を有してもよい。 The present invention has been described in detail above using several embodiments as examples, but the present invention is not limited to the above embodiments and modifications, and various modifications and variations are possible within the scope of the gist of the present invention described in the claims. For example, the magnetoresistance effect element may have layers other than the first ferromagnetic layer, the second ferromagnetic layer, the nonmagnetic layer, the first intermediate layer, the second intermediate layer, and the underlayer.

(実験例1:立方晶又は正方晶からなる非磁性層を有する磁気抵抗効果素子の抵抗値のシミュレーション結果)
 シミュレーションを用いた理論計算を行い、磁気抵抗効果素子の各層の材料を変えた際の磁気抵抗効果素子の抵抗値とMR比を求めた。シミュレーションは、以下の手順で行った。まずは、密度汎関数法に基づく第一原理計算コードVASP(Vienna Ab initio Simulation Package)を用いて、素子の構造最適化を行った。ただし、素子の面内格子定数はFeの格子定数に合わせている。次に、第一原理計算パッケージQuantum ESPRESSO内のpwscfコードを用いて伝導計算に必要な素子の有効ポテンシャルを得た。最後に、バリスティック伝導計算をQuantum ESPRESSOに含まれるpwcondコードを用いて行い、磁気抵抗値を得た。
(Experimental Example 1: Simulation Results of the Resistance Value of a Magnetoresistance Effect Element Having a Nonmagnetic Layer Made of a Cubic or Tetragonal Crystal)
Theoretical calculations were performed using simulations to determine the resistance value and MR ratio of the magnetoresistance effect element when the material of each layer of the magnetoresistance effect element was changed. The simulations were performed in the following procedure. First, the structure of the element was optimized using the first-principles calculation code VASP (Vienna Ab initio Simulation Package) based on the density functional theory. However, the in-plane lattice constant of the element was adjusted to the lattice constant of Fe. Next, the effective potential of the element required for the conduction calculation was obtained using the pwscf code in the first-principles calculation package Quantum ESPRESSO. Finally, ballistic conduction calculations were performed using the pwcond code included in Quantum ESPRESSO to obtain the magnetoresistance value.

 シミュレーションは、下記の8サンプルを計算した。
 サンプルs1:Fe/MnN/AlN/MnN/Fe
 サンプルs2:Co/CrN/AlN/CrN/Co
 サンプルs3:Co/MnN/AlN/MnN/Co
 サンプルs4:Fe/CrN/AlN/CrN/Fe
 サンプルs5:Fe/AlN/Fe
 サンプルs6:Fe/MgO/Fe
 サンプルs7:Co/MgO/Co
 サンプルs8:Co/AlN/Co
The simulation was carried out on the following eight samples:
Sample s1: Fe/MnN/AlN/MnN/Fe
Sample s2: Co/CrN/AlN/CrN/Co
Sample s3: Co/MnN/AlN/MnN/Co
Sample s4: Fe/CrN/AlN/CrN/Fe
Sample s5: Fe/AlN/Fe
Sample s6: Fe/MgO/Fe
Sample s7: Co/MgO/Co
Sample s8: Co/AlN/Co

 このシミュレーションでは、AlN及びMgOは立方晶として計算した。サンプルs1~s4は、第1強磁性層/第1中間層/非磁性層/第2中間層/第2強磁性層の順で、組成を示す。サンプルs5~s8は、第1強磁性層/非磁性層/第2強磁性層の順で、組成を示す。サンプルs1~s8のそれぞれは、第1強磁性層及び第2強磁性層の原子層数が等しい。サンプルs1~s4のそれぞれの第1中間層、非磁性層、第2中間層の原子層数は等しく、サンプルs5~s8のそれぞれの非磁性層の原子層数は等しい。またサンプルs1~s4の非磁性層の原子層数は、サンプルs5~s8のそれぞれの非磁性層の原子層数と等しい。またサンプルs1~s4の第1中間層ならびに第2中間層の原子層数は各々1層である。なお、原子層数は、磁気抵抗効果素子の積層方向の層数である。 In this simulation, AlN and MgO were calculated as cubic crystals. Samples s1 to s4 have compositions in the order of first ferromagnetic layer/first intermediate layer/non-magnetic layer/second intermediate layer/second ferromagnetic layer. Samples s5 to s8 have compositions in the order of first ferromagnetic layer/non-magnetic layer/second ferromagnetic layer. Each of samples s1 to s8 has the same number of atomic layers in the first ferromagnetic layer and the second ferromagnetic layer. Each of samples s1 to s4 has the same number of atomic layers in the first intermediate layer, non-magnetic layer, and second intermediate layer, and each of samples s5 to s8 has the same number of atomic layers in the non-magnetic layer. The number of atomic layers in the non-magnetic layer of each of samples s1 to s4 is also equal to the number of atomic layers in the non-magnetic layer of each of samples s5 to s8. The number of atomic layers in each of the first intermediate layer and the second intermediate layer of samples s1 to s4 is one layer. The number of atomic layers is the number of layers in the stacking direction of the magnetoresistance effect element.

 図3は、実験例1のシミュレーション結果を示す。図3の縦軸は、磁気抵抗効果素子のMR比であり、横軸は、サンプルs6の抵抗値で規格化したそれぞれのサンプルの抵抗値である。非磁性層がAlNであるサンプルs1~s5及びs8は、非磁性層がMgOであるサンプルs6、s7と比較して、磁気抵抗効果素子の抵抗が同等以下であった。立方晶系のAlNは、非磁性層の抵抗が低く、磁気抵抗効果素子にこの非磁性層を適用することで、磁気抵抗効果素子の高性能化が期待できる。なお、サンプルs8は、磁気抵抗効果素子の抵抗が高いが、第1中間層を有していないため、実際の素子として作製することは難しい。 Figure 3 shows the simulation results of Experimental Example 1. The vertical axis of Figure 3 is the MR ratio of the magnetoresistance effect element, and the horizontal axis is the resistance value of each sample normalized by the resistance value of sample s6. Samples s1 to s5 and s8, which have an AlN nonmagnetic layer, had magnetoresistance effect element resistances equal to or lower than samples s6 and s7, which have an MgO nonmagnetic layer. Cubic AlN has a low resistance of the nonmagnetic layer, and by applying this nonmagnetic layer to the magnetoresistance effect element, it is expected that the performance of the magnetoresistance effect element will be improved. Although sample s8 has a high resistance of the magnetoresistance effect element, it is difficult to fabricate it as an actual element because it does not have a first intermediate layer.

(実験例2:強磁性層がCoFe系の強磁性体で、非磁性層が立方晶又は正方晶である実際の磁気抵抗効果素子)
 実験例2では、実際の磁気抵抗効果素子を作製した。Crからなる下地層上に、厚み10nmのCoFe、厚み0.1nmのCrN、厚み2nmの立方晶AlN、厚み8nmのCoFe、厚み10nmのIrMn、厚み10nmのRuを順に成膜した。
(Experimental Example 2: Actual magnetoresistance effect element in which the ferromagnetic layer is a CoFe-based ferromagnetic material and the non-magnetic layer is a cubic or tetragonal crystal)
In Experimental Example 2, an actual magnetoresistance effect element was fabricated. On an underlayer made of Cr, CoFe with a thickness of 10 nm, CrN with a thickness of 0.1 nm, cubic AlN with a thickness of 2 nm, CoFe with a thickness of 8 nm, IrMn with a thickness of 10 nm, and Ru with a thickness of 10 nm were successively formed.

 作製された磁気抵抗効果素子の具体的な構成は下記となる。
 下地層:Cr
 第1強磁性層:厚み10nmのCoFe((001)結晶面に配向)
 第1中間層:厚み0.1nmのCrN
 非磁性層:厚み2nmの立方晶AlN
 第2強磁性層:厚み8nmのCoFe((001)結晶面に配向)
 反強磁性層:厚み10nmのIrMn
 キャップ層:厚み10nmのRu
The specific configuration of the manufactured magnetoresistance effect element is as follows.
Underlayer: Cr
First ferromagnetic layer: 10 nm thick CoFe (oriented in the (001) crystal plane)
First intermediate layer: 0.1 nm thick CrN
Non-magnetic layer: cubic AlN with a thickness of 2 nm
Second ferromagnetic layer: 8 nm thick CoFe (oriented in the (001) crystal plane)
Antiferromagnetic layer: 10 nm thick IrMn
Cap layer: Ru with a thickness of 10 nm

 図4は、実験例2で作製した磁気抵抗効果素子の断面TEM(Transmission Electron Microscope)(日本電子製 JEM-ARM200F)画像である。図4に示すように、非磁性層の近傍で、原子は乱れなく配列している。また図4に示すように、ナノビーム電子線回折法を用いた場合でも、立方晶に起因したスポットが確認された。すなわち、非磁性層が立方晶のAlNとなっていることが確認できる。立方晶のAlNは、準安定相で、所定の下地層でないと通常は形成されない。また非磁性層より上層においても原子が乱れなく配列しており、非磁性層より上層も立方晶構造であることが確認できる。 Figure 4 is a cross-sectional TEM (Transmission Electron Microscope) (JEM-ARM200F manufactured by JEOL) image of the magnetoresistance effect element produced in Experimental Example 2. As shown in Figure 4, the atoms are arranged without disorder near the nonmagnetic layer. Also as shown in Figure 4, spots caused by cubic crystals were confirmed even when nanobeam electron diffraction method was used. In other words, it can be confirmed that the nonmagnetic layer is cubic AlN. Cubic AlN is a metastable phase, and is not usually formed unless a specific underlayer is used. Furthermore, atoms are arranged without disorder in the layers above the nonmagnetic layer, confirming that the layers above the nonmagnetic layer also have a cubic crystal structure.

(実験例3:強磁性層がCoFe系の強磁性体で、非磁性層が立方晶又は正方晶である実際の磁気抵抗効果素子)
 実験例3では、実験例2から膜構成を変えて、実際の磁気抵抗効果素子を作製した。MgOからなる基板上に、Crからなる下地層、厚み10nmのCoFeAl、厚み0.14nmのTiN、厚み2.5nmの立方晶AlN、厚み8nmのCoFeAl、厚み10nmのIrMn、厚み10nmのRuを順に成膜した。
(Experimental Example 3: Actual magnetoresistance effect element in which the ferromagnetic layer is a CoFe-based ferromagnetic material and the non-magnetic layer is a cubic or tetragonal crystal)
In Experimental Example 3, an actual magnetoresistance effect element was fabricated by changing the film configuration from Experimental Example 2. On a substrate made of MgO, an underlayer made of Cr, a 10 nm thick Co2FeAl layer, a 0.14 nm thick TiN layer, a 2.5 nm thick cubic AlN layer, an 8 nm thick Co2FeAl layer, a 10 nm thick IrMn layer, and a 10 nm thick Ru layer were successively formed.

 作製された磁気抵抗効果素子の具体的な構成は下記となる。
 下地層:Cr
 第1強磁性層:厚み10nmのCoFeAl((001)結晶面に配向)
 第1中間層:厚み0.14nmのTiN
 非磁性層:厚み2.5nmの立方晶AlN
 第2強磁性層:厚み8nmのCoFeAl((001)結晶面に配向)
 反強磁性層:厚み10nmのIrMn
 キャップ層:厚み10nmのRu
The specific configuration of the manufactured magnetoresistance effect element is as follows.
Underlayer: Cr
First ferromagnetic layer: 10 nm thick Co2FeAl (oriented in the (001) crystal plane)
First intermediate layer: TiN with a thickness of 0.14 nm
Non-magnetic layer: cubic AlN with a thickness of 2.5 nm
Second ferromagnetic layer: 8 nm thick Co2FeAl (oriented in the (001) crystal plane)
Antiferromagnetic layer: 10 nm thick IrMn
Cap layer: Ru with a thickness of 10 nm

 図5は、実験例3で作製した磁気抵抗効果素子の断面TEM画像である。図5に示すように、実験例3でも非磁性層の近傍で原子が乱れなく配列しており、立方晶のAlNが形成されていることが確認できる。また非磁性層より上層においても原子が乱れなく配列しており、非磁性層より上層も立方晶構造であることが確認できる。 Figure 5 is a cross-sectional TEM image of the magnetoresistance effect element produced in Experimental Example 3. As shown in Figure 5, it can be confirmed that in Experimental Example 3 as well, the atoms are arranged without disorder near the nonmagnetic layer, and cubic AlN is formed. It can also be confirmed that the atoms are arranged without disorder in the layers above the nonmagnetic layer, and the layers above the nonmagnetic layer also have a cubic crystal structure.

 また図6は、実験例3で作製した磁気抵抗効果素子のX線回折(Rigaku製、SmartLab)結果である。図6に示すように、実験例3のX線回折スペクトルには、IrMn(002)結晶面由来のピークが確認された。IrMnは、非磁性層より上層に位置し、このピークが確認できるということは、非磁性層および非磁性層より上層も立方晶構造となっていることが確認できる。 Figure 6 shows the results of X-ray diffraction (Rigaku, SmartLab) of the magnetoresistance effect element produced in Experimental Example 3. As shown in Figure 6, a peak derived from the IrMn (002) crystal plane was confirmed in the X-ray diffraction spectrum of Experimental Example 3. IrMn is located in a layer above the nonmagnetic layer, and the fact that this peak can be confirmed confirms that the nonmagnetic layer and the layer above the nonmagnetic layer also have a cubic crystal structure.

 以上のように、第1中間層の厚み、組成を工夫することで、第1強磁性層上に、本来、形成されない、立方晶又は正方晶の非磁性層(AlN)が形成できることが示された。 As described above, it has been shown that by adjusting the thickness and composition of the first intermediate layer, a cubic or tetragonal nonmagnetic layer (AlN) can be formed on the first ferromagnetic layer, which would not normally be formed.

 (変形例1~3:第1中間層にMgOを用いた場合)
 また図7は、実験例3の変形例の磁気抵抗効果素子のX線回折結果である。図7の一番上のグラフは第1変形例のX線回折結果であり、中央のグラフは第2変形例のX線回折結果であり、一番下のグラフは第3変形例のX線回折結果である。
(Modifications 1 to 3: When MgO is used in the first intermediate layer)
7 shows the results of X-ray diffraction of the magnetoresistance effect element of the modified example of Experimental Example 3. The top graph in Fig. 7 shows the results of X-ray diffraction of the first modified example, the center graph shows the results of X-ray diffraction of the second modified example, and the bottom graph shows the results of X-ray diffraction of the third modified example.

 第1変形例は、第1強磁性層及び第2強磁性層がCoMnFeである点、第1中間層が1.5nmのMgOである点、非磁性層が1.0nmの立方晶AlNである点が実験例3の素子構成と異なる。 The first modified example differs from the element configuration of Experimental Example 3 in that the first and second ferromagnetic layers are CoMnFe, the first intermediate layer is 1.5 nm of MgO, and the nonmagnetic layer is 1.0 nm of cubic AlN.

 第2変形例は、第1強磁性層及び第2強磁性層がCoFeである点、第1中間層が1.0nmのMgOである点、非磁性層が1.5nmの立方晶AlNである点が実験例3の素子構成と異なる。 The second modified example differs from the element configuration of Experimental Example 3 in that the first and second ferromagnetic layers are CoFe, the first intermediate layer is 1.0 nm of MgO, and the nonmagnetic layer is 1.5 nm of cubic AlN.

 第3変形例は、第1強磁性層及び第2強磁性層がCoMnFeである点、第1中間層を有さない点、非磁性層が2.0nmのMgOである点が実験例3の素子構成と異なる。 The third modified example differs from the element configuration of experimental example 3 in that the first and second ferromagnetic layers are CoMnFe, there is no first intermediate layer, and the nonmagnetic layer is 2.0 nm of MgO.

 図7では、第1変形例から第3変形例のいずれでも、IrMn(002)結晶面由来のピークが確認された。すなわち、非磁性層および非磁性層の上層に積層される層の結晶性は、非磁性層が窒化膜の場合(第1変形例及び第2変形例)でも、非磁性層がMgOの場合(第3変形例)と遜色ないと言える。 In Figure 7, a peak originating from the IrMn (002) crystal plane was confirmed in all of the first to third modifications. In other words, it can be said that the crystallinity of the nonmagnetic layer and the layer stacked on top of the nonmagnetic layer is comparable to that of the nonmagnetic layer made of MgO (third modification) even when the nonmagnetic layer is a nitride film (first and second modifications).

 (変形例4:第1中間層にMnNを用いた場合)
 第4変形例は、第1強磁性層及び第2強磁性層がCoMnFeである点、第1中間層が0.2nm以上0.8nm以下のMnNである点、非磁性層が2.0nmの立方晶AlNである点が実験例3の素子構成と異なる。なお、第1中間層を成膜する際は、Mnを成膜した。第1中間層と隣接するAlNから第1中間層に窒素が拡散し、第1中間層はMnNとなっていると考えられる。
(Modification 4: When MnN is used for the first intermediate layer)
The fourth modified example differs from the element configuration of Experimental Example 3 in that the first ferromagnetic layer and the second ferromagnetic layer are CoMnFe, the first intermediate layer is MnN having a thickness of 0.2 nm to 0.8 nm, and the nonmagnetic layer is cubic AlN having a thickness of 2.0 nm. Note that Mn was deposited when the first intermediate layer was formed. It is believed that nitrogen diffused from the AlN adjacent to the first intermediate layer into the first intermediate layer, causing the first intermediate layer to become MnN.

 図8は、実験例3の変形例4の磁気抵抗効果素子のX線回折結果である。第1中間層の膜厚が異なる4サンプルの結果を図8に示す。図8に示すように、第4変形例でも、IrMn(002)結晶面由来のピークが確認された。すなわち、非磁性層および非磁性層の上層に積層される層が立方晶構造となっていることが確認できる。 Figure 8 shows the X-ray diffraction results for the magnetoresistance effect element of Variation 4 of Experimental Example 3. The results for four samples with different film thicknesses for the first intermediate layer are shown in Figure 8. As shown in Figure 8, a peak derived from the IrMn (002) crystal plane was also confirmed in the fourth variation. In other words, it can be confirmed that the nonmagnetic layer and the layer stacked on top of the nonmagnetic layer have a cubic crystal structure.

 以上のように、第1中間層の厚み、組成を工夫することで、第1強磁性層上に、本来、形成されない、立方晶又は正方晶の非磁性層(AlN)が形成できることが示された。 As described above, it has been shown that by adjusting the thickness and composition of the first intermediate layer, a cubic or tetragonal nonmagnetic layer (AlN) can be formed on the first ferromagnetic layer, which would not normally be formed.

(実験例4:CoFe系の強磁性体におけるMgO非磁性層を立方晶AlNに置換した場合のMR比)
 実験例4では、従来、MgOのみからなる非磁性層の一部を、立方晶AlNでの置換可能性について検討した。変形例1、2から、非磁性層の置き換えとして、MgOを第1中間層とし、立方晶AlNを非磁性層とすることで、MgOの一部を立方晶AlNとした場合のMR比がどのようになるか検討した。実験例4の膜構成は、上述の第1変形例と同じとした。すなわち各層の層構成を下記とした。第1中間層と非磁性層との総厚は、2.5nmで固定した。
 下地層:Cr
 第1強磁性層:厚み10nmのCoMnFe(Co 66at%、Mn 17at% Fe 17at%)
 第1中間層:MgO((1)0.5nm、(2)0.7nm、(3)1.0nm、(4)1.5nm、(5)2.0nm)
 非磁性層:立方晶AlN((1)2.0nm、(2)1.8nm、(3)1.5nm、(4)1.0nm、(5)0.5nm)
 第2強磁性層:厚み8nmのCoMnFe
 反強磁性層:厚み10nmのIrMn
 キャップ層:厚み10nmのRu
(Experimental Example 4: MR ratio when MgO non-magnetic layer in CoFe-based ferromagnetic material is replaced with cubic AlN)
In Experimental Example 4, the possibility of replacing a part of the non-magnetic layer, which is conventionally made only of MgO, with cubic AlN was examined. From Modifications 1 and 2, the MR ratio was examined when MgO was used as the first intermediate layer and cubic AlN was used as the non-magnetic layer to replace the non-magnetic layer, and a part of MgO was replaced with cubic AlN. The film structure of Experimental Example 4 was the same as that of the above-mentioned first modification. That is, the layer structure of each layer was as follows. The total thickness of the first intermediate layer and the non-magnetic layer was fixed at 2.5 nm.
Underlayer: Cr
First ferromagnetic layer: 10 nm thick CoMnFe (Co 66 at%, Mn 17 at%, Fe 17 at%)
First intermediate layer: MgO ((1) 0.5 nm, (2) 0.7 nm, (3) 1.0 nm, (4) 1.5 nm, (5) 2.0 nm)
Nonmagnetic layer: cubic AlN ((1) 2.0 nm, (2) 1.8 nm, (3) 1.5 nm, (4) 1.0 nm, (5) 0.5 nm)
Second ferromagnetic layer: 8 nm thick CoMnFe
Antiferromagnetic layer: 10 nm thick IrMn
Cap layer: Ru with a thickness of 10 nm

 図9は、実験例4の結果を示し、第1中間層と非磁性層との比率を変更した際の磁気抵抗効果素子のMR比を示す。図9の左から右にかけての5つの点でのそれぞれの厚みは上記(1)~(5)を示す。図9に示すように、通常、MgOのみで構成される非磁性層3を、MgOを第1中間層とし、立方晶AlNを非磁性層とする形で置換えた場合、MgOを立方晶AlNに5割前後置き換えても、MR率は、ほぼ100%を維持し、立方晶AlNが、磁気素子のバリア層として機能することが明らかになった。また、8割前後まで立方晶AlNで、MgOを置換えた場合でも、MR率は低下するものの、磁気抵抗効果素子として機能することが示された。立方晶AlNで、MgOを多く置換えることができれば、抵抗値をより下げることができるため、磁気抵抗効果素子10の性能として問題ない可能性がある。 Figure 9 shows the results of Experimental Example 4, and shows the MR ratio of the magnetoresistance effect element when the ratio of the first intermediate layer and the non-magnetic layer is changed. The thicknesses at the five points from left to right in Figure 9 indicate (1) to (5) above. As shown in Figure 9, when the non-magnetic layer 3, which is usually composed of only MgO, is replaced with MgO as the first intermediate layer and cubic AlN as the non-magnetic layer, it was revealed that even if about 50% of the MgO is replaced with cubic AlN, the MR ratio remains almost 100%, and cubic AlN functions as a barrier layer of the magnetic element. It was also shown that even if about 80% of the MgO is replaced with cubic AlN, the MR ratio decreases, but the magnetoresistance effect element still functions. If more MgO can be replaced with cubic AlN, the resistance value can be reduced, so there is a possibility that there will be no problem with the performance of the magnetoresistance effect element 10.

(実験例5:MR比と抵抗値)
 実験例5では、実験例4の例も含め、第1中間層、非磁性層、第2中間層の膜構成を変えて、磁気抵抗効果素子のMR比及びRA(面積抵抗積)を求めた。RAは、第1強磁性層1と第2強磁性層2の磁化の向きが平行の場合の抵抗Rと磁気抵抗効果素子10の面内方向の面積との積で求めることができる。図10は、実験例5の磁気抵抗効果素子のMR比を示し、図11は実験例5の磁気抵抗効果素子のRAを示す。図10及び図11の横軸は、第1中間層及び第2中間層の膜厚である。また図10及び図11には、第1中間層、非磁性層、第2中間層の膜構成を記載しており、3層構造の場合は第1中間層/非磁性層/第2中間層の順で表記し、2層構造の場合は第1中間層/非磁性層の順で表記している。また非磁性層の材料の後ろに記載している数値は、非磁性層の厚みで単位はnmである。なお、MgO/AlNは、実験例4の例を、図10,図11に合わせ示している。図10及び図11に示すように、CoFe系において、磁気抵抗効果素子の第1中間層、非磁性層を構成する非磁性体の膜構成をMgO以外のもので変更しても、磁気抵抗効果素子の磁気抵抗変化が確認され、それぞれの膜構成の磁気抵抗効果素子は適切に機能している。
(Experimental Example 5: MR ratio and resistance value)
In the fifth experimental example, including the fourth experimental example, the film configuration of the first intermediate layer, the non-magnetic layer, and the second intermediate layer was changed to obtain the MR ratio and RA (area resistance product) of the magnetoresistance effect element. The RA can be obtained by the product of the resistance R P when the magnetization directions of the first ferromagnetic layer 1 and the second ferromagnetic layer 2 are parallel and the area in the in-plane direction of the magnetoresistance effect element 10. FIG. 10 shows the MR ratio of the magnetoresistance effect element of the fifth experimental example, and FIG. 11 shows the RA of the magnetoresistance effect element of the fifth experimental example. The horizontal axis of FIG. 10 and FIG. 11 is the film thickness of the first intermediate layer and the second intermediate layer. Also, FIG. 10 and FIG. 11 show the film configuration of the first intermediate layer, the non-magnetic layer, and the second intermediate layer, and in the case of a three-layer structure, the order is the first intermediate layer/non-magnetic layer/second intermediate layer, and in the case of a two-layer structure, the order is the first intermediate layer/non-magnetic layer. The numerical value written after the material of the non-magnetic layer is the thickness of the non-magnetic layer in nm. Note that, for MgO/AlN, an example of Experimental Example 4 is shown in Figures 10 and 11. As shown in Figures 10 and 11, even if the film configuration of the non-magnetic material constituting the first intermediate layer and non-magnetic layer of the magnetoresistance effect element in the CoFe system is changed to something other than MgO, the magnetoresistance change of the magnetoresistance effect element is confirmed, and the magnetoresistance effect element of each film configuration functions properly.

(実験例6:非磁性層上に形成されたMnGa系(フェリ磁性系)の磁性体膜の特性)
 非磁性層3上の第2強磁性層2をMnGa系の磁性膜としたサンプルを作製し、磁気特性を測定した。非磁性層3上の第2強磁性層2がMnGa系の磁性膜である場合の磁気抵抗効果素子の磁気抵抗効果の報告はされていない。非磁性層3を立方晶又は正方晶とすることで、非磁性層3上の第2強磁性層2をMnGa系の磁性膜にした。
(Experimental Example 6: Characteristics of MnGa-based (ferrimagnetic) magnetic film formed on a nonmagnetic layer)
A sample was produced in which the second ferromagnetic layer 2 on the nonmagnetic layer 3 was a MnGa-based magnetic film, and the magnetic properties were measured. There have been no reports on the magnetoresistance effect of a magnetoresistance effect element in which the second ferromagnetic layer 2 on the nonmagnetic layer 3 is a MnGa-based magnetic film. The nonmagnetic layer 3 is made to have a cubic or tetragonal crystal structure, thereby making the second ferromagnetic layer 2 on the nonmagnetic layer 3 a MnGa-based magnetic film.

 実験例6では、以下の層構成の3つのサンプルを作成した。
 サンプルMnGa1:Cr/厚み2nmのMgO/厚み3.0nmのMnGa
 サンプルMnGa2:Cr/厚み0.8nmのMgO/厚み2.5nmの立方晶AlN/厚み3.0nmのMnGa
 サンプルMnGa3:Cr/厚み2.5nmの立方晶AlN/厚み3.0nmのMnGa
In Experimental Example 6, three samples having the following layer configuration were prepared.
Sample MnGa1: Cr/2 nm thick MgO/3.0 nm thick MnGa
Sample MnGa2: Cr/0.8 nm thick MgO/2.5 nm thick cubic AlN/3.0 nm thick MnGa
Sample MnGa3: Cr/2.5 nm thick cubic AlN/3.0 nm thick MnGa

 図12は、実験例6のサンプルの磁気特性を示す。図12で示す磁気特性は、表面磁気カー効果を利用して求め、図12の縦軸は偏光面の回転(カー回転角)であり、横軸はサンプルに印加した磁場強度である。外部磁場は、面直方向に印加した。図12の(a)はサンプルMnGa1の結果であり、(b)はサンプルMnGa2の結果であり、(c)はサンプルMnGa3の結果である。 Figure 12 shows the magnetic properties of the samples of Experimental Example 6. The magnetic properties shown in Figure 12 were determined using the surface magnetic Kerr effect, with the vertical axis of Figure 12 representing the rotation of the polarization plane (Kerr rotation angle) and the horizontal axis representing the magnetic field strength applied to the sample. The external magnetic field was applied perpendicular to the surface. Figure 12 (a) shows the results for sample MnGa1, (b) shows the results for sample MnGa2, and (c) shows the results for sample MnGa3.

 図12の(a)に示すように、MgO膜上に成膜されたMnGaは、ヒステリシスループが確認されなかった。すなわち、サンプルMnGa1のMnGaは、強磁性の特性を示していない。つまり、MgO上には、Mn系のフェリ磁性体を形成することができなかったものと推定される。これに対し、図12の(b)及び(c)に示すように、立方晶のAlN上に成膜されたサンプルMnGa2及びサンプルMnGa3のMnGaは、ヒステリシスループを示し、強磁性特性を示した。すなわち、本開示では、MnGa等のフェリ磁性体膜を立方晶又は正方晶の非磁性層3上に形成することで、磁気抵抗効果がえられることを見いだした。 As shown in FIG. 12(a), no hysteresis loop was observed in the MnGa film formed on the MgO film. That is, the MnGa of sample MnGa1 does not exhibit ferromagnetic properties. In other words, it is presumed that a Mn-based ferrimagnetic material could not be formed on MgO. In contrast, as shown in FIG. 12(b) and (c), the MnGa of sample MnGa2 and sample MnGa3 formed on cubic AlN exhibited a hysteresis loop and ferromagnetic properties. That is, in this disclosure, it has been discovered that a magnetoresistance effect can be obtained by forming a ferrimagnetic material film such as MnGa on a cubic or tetragonal nonmagnetic layer 3.

 図13は、実験例6のサンプルのX線回折結果を示す。図13の(a)はサンプルMnGa1の結果であり、(b)はサンプルMnGa2の結果であり、(c)はサンプルMnGa3の結果である。サンプルMnGa2及びサンプルMnGa3は、MnGaの(002)面に由来するピークが確認された。これに対し、サンプルMnGa1は、MnGaの(002)面に由来するピークが確認されなかった。これは、MgO上には、正方晶のMnGaを形成することができていないためと考えられる。この結果は、図12で示す結果と一致した。 Figure 13 shows the X-ray diffraction results for the samples of Experimental Example 6. Figure 13 (a) shows the results for sample MnGa1, (b) shows the results for sample MnGa2, and (c) shows the results for sample MnGa3. Peaks derived from the (002) plane of MnGa were confirmed in samples MnGa2 and MnGa3. In contrast, no peaks derived from the (002) plane of MnGa were confirmed in sample MnGa1. This is thought to be because tetragonal MnGa could not be formed on MgO. This result was consistent with the results shown in Figure 12.

(実験例7:MnGa系(フェリ磁性系)の磁性体膜の磁気特性に対する磁性体膜の膜厚依存性)
 実験例7では、下層からCr/厚み2.5nmの立方晶AlN/MnGaの順に積層された層構成のサンプルを作製し、MnGa層の膜厚を変更し、磁気特性を測定した。MnGa層は、膜厚が3nm、5nm、10nm、20nm、50nmのサンプルをそれぞれ準備した。図14は、実験例7の磁気特性を示す。図14で示す磁気特性は、表面磁気カー効果を利用して求め、図14の縦軸は偏光面の回転(カー回転角)であり、横軸はサンプルに印加した磁場強度である。
(Experimental Example 7: Dependence of Magnetic Properties of MnGa-Based (Ferrimagnetic) Magnetic Film on Film Thickness)
In Experimental Example 7, samples were prepared with a layer structure in which Cr/cubic AlN with a thickness of 2.5 nm/MnGa were stacked in this order from the bottom, and the thickness of the MnGa layer was changed to measure the magnetic properties. Samples of MnGa layers with thicknesses of 3 nm, 5 nm, 10 nm, 20 nm, and 50 nm were prepared. Figure 14 shows the magnetic properties of Experimental Example 7. The magnetic properties shown in Figure 14 were obtained using the surface magnetic Kerr effect, and the vertical axis of Figure 14 represents the rotation of the polarization plane (Kerr rotation angle), and the horizontal axis represents the magnetic field strength applied to the sample.

 図14に示すように、何れの場合でもヒステリシスループが確認された。すなわち、MnGa層の膜厚が厚い場合でも、強磁性層の結晶構造は維持され、強磁性層は磁気異方性を示していた。 As shown in Figure 14, a hysteresis loop was observed in all cases. In other words, even when the MnGa layer was thick, the crystal structure of the ferromagnetic layer was maintained, and the ferromagnetic layer exhibited magnetic anisotropy.

(実験例8:MnGa系(フェリ磁性系)の磁性体膜の磁気特性に対する非磁性層の膜厚依存性)
 実験例8では、下層からCr/MgO/厚み2.5nmの立方晶AlN/厚み40nmのMnGaの順に積層された層構成のサンプルを作製し、MgO層の膜厚を変更し、磁気特性を測定した。MgO層は、膜厚が0nm、0.5nm、0.8nm、1.1nm、2.0nmのサンプルをそれぞれ準備した。図15は、実験例8の磁気特性を示す。図15で示す磁気特性は、表面磁気カー効果を利用して求め、図15の縦軸は偏光面の回転(カー回転角)であり、横軸はサンプルに印加した磁場強度である。
(Experimental Example 8: Dependence of the Magnetic Properties of MnGa-Based (Ferrimagnetic) Magnetic Film on the Thickness of the Nonmagnetic Layer)
In Experimental Example 8, samples were prepared with a layer structure in which Cr/MgO/cubic AlN with a thickness of 2.5 nm/MnGa with a thickness of 40 nm were stacked from the bottom, and the thickness of the MgO layer was changed to measure the magnetic properties. Samples with MgO layers having thicknesses of 0 nm, 0.5 nm, 0.8 nm, 1.1 nm, and 2.0 nm were prepared. Figure 15 shows the magnetic properties of Experimental Example 8. The magnetic properties shown in Figure 15 were obtained by utilizing the surface magnetic Kerr effect, and the vertical axis of Figure 15 is the rotation of the polarization plane (Kerr rotation angle), and the horizontal axis is the magnetic field strength applied to the sample.

 図15に示すように、MgO層の膜厚が1.1nm、2.0nmのサンプルは、ほぼゼロの値で推移し、ヒステリシスループは確認できなかった。一方、MgO層の膜厚が1.1nm未満のサンプルは、ヒステリシスループが確認された。すなわち、MnGa系(フェリ磁性系)の磁性体膜を用いた場合、MgO層の膜厚が厚くなると、強磁性層の磁気特定が低下することが分かり、図8で示す実験例4の結果とも整合性が確認された。 As shown in Figure 15, samples with MgO layer thicknesses of 1.1 nm and 2.0 nm showed a near-zero value, and no hysteresis loop was observed. On the other hand, a hysteresis loop was observed in samples with MgO layer thicknesses of less than 1.1 nm. In other words, when using a MnGa-based (ferrimagnetic) magnetic film, it was found that the magnetic properties of the ferromagnetic layer decrease as the MgO layer thickness increases, and this is consistent with the results of Experimental Example 4 shown in Figure 8.

(実験例9:MnGa系(フェリ磁性系)の磁性体膜を第2強磁性層とした磁気抵抗効果素子)
 実験例9では、第2強磁性層がMnGaである磁気抵抗効果素子を実際に作製し、その特性を評価した。Crからなる下地層上に、厚み10nmのFeCo、厚み0.9nmのMg、厚み0.6nmのMgO、厚み2.0nmの立方晶AlN、厚み3nmのMnGa、保護層を順に成膜した。
(Experimental Example 9: Magnetoresistance effect element using MnGa-based (ferrimagnetic) magnetic film as the second ferromagnetic layer)
In Experimental Example 9, a magnetoresistance effect element having a second ferromagnetic layer of MnGa was actually fabricated and its characteristics were evaluated. On an underlayer made of Cr, a 10 nm thick FeCo layer, a 0.9 nm thick Mg layer, a 0.6 nm thick MgO layer, a 2.0 nm thick cubic AlN layer, a 3 nm thick MnGa layer, and a protective layer were successively formed.

 作製された磁気抵抗効果素子の具体的な構成は下記となる。
 下地層:Cr
 第1強磁性層:厚み10nmのFeCo((001)結晶面に配向)
 第1中間層:厚み0.9nmのMgと厚み0.6nmのMgO
 非磁性層:立方晶AlN
 第2強磁性層:厚み3nmのMnGa((001)結晶面に配向)
 保護層:Ta/Ru
The specific configuration of the manufactured magnetoresistance effect element is as follows.
Underlayer: Cr
First ferromagnetic layer: 10 nm thick FeCo (oriented in the (001) crystal plane)
First intermediate layer: 0.9 nm thick Mg and 0.6 nm thick MgO
Nonmagnetic layer: cubic AlN
Second ferromagnetic layer: 3 nm thick MnGa (oriented in the (001) crystal plane)
Protective layer: Ta/Ru

 図16は、実験例9の磁気抵抗効果素子のX線回折結果を示す。図16に示すように、L1構造(正方晶)のMnGaフェリ磁性体に由来するピークが確認された。すなわち、図16は、非磁性層上にMnGaフェリ磁性体を有する磁気抵抗効果素子が作製できたことを示す。 Fig. 16 shows the results of X-ray diffraction of the magnetoresistance effect element of Experimental Example 9. As shown in Fig. 16, a peak derived from the MnGa ferrimagnetic material having the L10 structure (tetragonal crystal) was confirmed. That is, Fig. 16 shows that a magnetoresistance effect element having a MnGa ferrimagnetic material on a nonmagnetic layer was successfully fabricated.

 図17は、実験例9の磁気抵抗効果素子の磁気特性を示す。図17で示す磁気特性は、表面磁気カー効果を利用して求め、図17の縦軸は偏光面の回転(カー回転角)であり、横軸はサンプルに印加した磁場強度である。図17に示すように、ヒステリシスループを有する磁気特性が確認された。これは、MnGaフェリ磁性体が第2強磁性層として機能することを示す。 Figure 17 shows the magnetic characteristics of the magnetoresistance effect element of Experimental Example 9. The magnetic characteristics shown in Figure 17 were obtained using the surface magnetic Kerr effect, with the vertical axis of Figure 17 representing the rotation of the polarization plane (Kerr rotation angle) and the horizontal axis representing the magnetic field strength applied to the sample. As shown in Figure 17, magnetic characteristics with a hysteresis loop were confirmed. This indicates that the MnGa ferrimagnetic material functions as a second ferromagnetic layer.

(実験例10:非磁性層をGaNとした場合の磁気抵抗効果素子)
 実験例10では、非磁性層をGaNとした磁気抵抗効果素子を作製した。Crからなる下地層上に、厚み10nmのCoMnFe、厚み0.6nmのMgO、立方晶GaN、厚み0.6nmのMgO、厚み8nmのCoMnFe、厚み10nmのIrMn、厚み10nmのRuを順に成膜した。
(Experimental Example 10: Magnetoresistance effect element with GaN nonmagnetic layer)
In Experimental Example 10, a magnetoresistance effect element was fabricated in which the nonmagnetic layer was made of GaN. On an underlayer made of Cr, a 10 nm thick CoMnFe film, a 0.6 nm thick MgO film, cubic GaN, a 0.6 nm thick MgO film, a 8 nm thick CoMnFe film, a 10 nm thick IrMn film, and a 10 nm thick Ru film were successively formed.

 作製された磁気抵抗効果素子の具体的な構成は下記となる。
 下地層:Cr
 第1強磁性層:厚み10nmのCoMnFe((001)結晶面に配向)
 第1中間層:厚み0.6nmのMgO
 非磁性層:立方晶GaN
 第2中間層:厚み0.6nmのMgO
 第2強磁性層:厚み8nmのCoMnFe((001)結晶面に配向)
 反強磁性層:厚み10nmのIrMn
 キャップ層:厚み10nmのRu
The specific configuration of the manufactured magnetoresistance effect element is as follows.
Underlayer: Cr
First ferromagnetic layer: 10 nm thick CoMnFe (oriented in the (001) crystal plane)
First intermediate layer: MgO having a thickness of 0.6 nm
Nonmagnetic layer: cubic GaN
Second intermediate layer: MgO with a thickness of 0.6 nm
Second ferromagnetic layer: 8 nm thick CoMnFe (oriented in the (001) crystal plane)
Antiferromagnetic layer: 10 nm thick IrMn
Cap layer: Ru with a thickness of 10 nm

 実験例10では、GaNの厚みが0nm、0.2nm、0.6nm、0.9nmの4サンプルを作製した。GaNの厚みが0nmの場合は、第1中間層と第2中間層が合わさった1.2nmのMgOが非磁性層となる。 In Experimental Example 10, four samples were produced with GaN thicknesses of 0 nm, 0.2 nm, 0.6 nm, and 0.9 nm. When the GaN thickness was 0 nm, the 1.2 nm MgO layer formed by combining the first and second intermediate layers became the nonmagnetic layer.

 図18は、実験例10の磁気抵抗効果素子のX線回折結果を示す。図18に示すように、実験例10の磁気抵抗効果素子においても、IrMn(002)結晶面由来のピークが確認された。すなわち、非磁性層および非磁性層の上層に積層される層が立方晶構造となっていることが確認できる。 Figure 18 shows the X-ray diffraction results for the magnetoresistance effect element of Experimental Example 10. As shown in Figure 18, a peak derived from the IrMn (002) crystal plane was also confirmed in the magnetoresistance effect element of Experimental Example 10. In other words, it can be confirmed that the nonmagnetic layer and the layer stacked on top of the nonmagnetic layer have a cubic crystal structure.

 図19は、GaNの非磁性層のバンド構造を計算した結果である。バンド構造は、第1原理計算パッケージquantum espressoを用いたシミュレーションで求めた。なお、立方晶GaNの結晶構造として閃亜鉛鉱型構造を仮定した。バンド構造をシミュレーションする際の計算条件として、相関交換ポテンシャルに一般化勾配近似を、平面波基底のカットオフエネルギーに600eVを、格子定数に第1原理計算より得た0.458nmを用いた。図19において、κΔ5は、Δバンド電子がトンネルした際の減衰定数を示し、κΔ1は、Δ1バンド電子がトンネルした際の減衰定数を示し、Δは、Δの対称性を有するエネルギーバンドを示し、Δは、Δ1の対称性を有するエネルギーバンドを示す。MgO非磁性層のバンドギャップは、約8eVであり、AlN非磁性層のバンドギャップは約5eVであり、GaN非磁性層のバンドギャップは約3eVである。GaNを非磁性層に用いた磁気抵抗効果素子は、MgO又はAlNを非磁性層に用いた磁気抵抗効果素子より低抵抗となる。 FIG. 19 shows the result of calculating the band structure of the GaN nonmagnetic layer. The band structure was obtained by simulation using the first-principles calculation package quantum espresso. The zinc-blende structure was assumed as the crystal structure of the cubic GaN. The calculation conditions for simulating the band structure were the generalized gradient approximation for the correlation exchange potential, 600 eV for the cutoff energy of the plane wave basis, and 0.458 nm obtained from the first-principles calculation for the lattice constant. In FIG. 19, κ Δ5 indicates the attenuation constant when Δ 5 band electrons tunnel, κ Δ1 indicates the attenuation constant when Δ 1 band electrons tunnel, Δ 5 indicates an energy band having Δ 5 symmetry, and Δ 1 indicates an energy band having Δ 1 symmetry. The band gap of the MgO nonmagnetic layer is about 8 eV, the band gap of the AlN nonmagnetic layer is about 5 eV, and the band gap of the GaN nonmagnetic layer is about 3 eV. A magnetoresistance effect element using GaN for the nonmagnetic layer has a lower resistance than a magnetoresistance effect element using MgO or AlN for the nonmagnetic layer.

 図20は、実験例10の磁気抵抗効果素子(非磁性層がGaN)の非磁性層の厚みと素子抵抗の関係と、非磁性層がMgOであることを除き実験例10と同じ構成の磁気抵抗効果素子の非磁性層の厚みと素子抵抗の関係と、を示す。上記のシミュレーション結果で求められた結果と同様に、非磁性層がGaNである実験例10の磁気抵抗効果素子は、非磁性層がMgOである磁気抵抗効果素子より素子抵抗が低い。 Figure 20 shows the relationship between the thickness of the nonmagnetic layer and element resistance of the magnetoresistance effect element of Experimental Example 10 (with a GaN nonmagnetic layer), and the relationship between the thickness of the nonmagnetic layer and element resistance of a magnetoresistance effect element having the same configuration as Experimental Example 10 except that the nonmagnetic layer is MgO. As with the results obtained from the simulation results above, the magnetoresistance effect element of Experimental Example 10 with a GaN nonmagnetic layer has a lower element resistance than a magnetoresistance effect element with an MgO nonmagnetic layer.

 図21は、実験例10の磁気抵抗効果素子のMR比を示す。図21に示す磁気抵抗効果素子は、GaNの厚みが0.9nmのサンプルである。図21の横軸は、磁気抵抗効果素子の熱処理温度を示す。この熱処理は、磁気抵抗効果素子を積層後に行うアニールである。磁気抵抗効果素子はアニールすることで原子の再配列が生じ、性能が向上する。図21の縦軸は、磁気抵抗効果素子のMR比である。図21に示すように、実験例10の磁気抵抗効果素子は、100%以上の磁気抵抗変化率を示す。 Figure 21 shows the MR ratio of the magnetoresistance effect element of Experimental Example 10. The magnetoresistance effect element shown in Figure 21 is a sample with a GaN thickness of 0.9 nm. The horizontal axis of Figure 21 shows the heat treatment temperature of the magnetoresistance effect element. This heat treatment is annealing performed after the magnetoresistance effect element is laminated. Annealing the magnetoresistance effect element causes atomic rearrangement, improving performance. The vertical axis of Figure 21 is the MR ratio of the magnetoresistance effect element. As shown in Figure 21, the magnetoresistance effect element of Experimental Example 10 shows a magnetoresistance change rate of more than 100%.

 以上から、本開示の立方晶又は正方晶の窒素を含む非磁性層は、低抵抗である上、トンネルバリア層として機能する。FeCo系の磁性膜は磁気抵抗効果が生じ、フェリ磁性体の磁性膜は磁気抵抗効果が生じる可能性が示された。 From the above, the non-magnetic layer containing cubic or tetragonal nitrogen disclosed herein has low resistance and functions as a tunnel barrier layer. It has been shown that a magnetoresistance effect occurs in an FeCo-based magnetic film, and that a magnetoresistance effect can occur in a ferrimagnetic magnetic film.

 また、本開示の立方晶又は正方晶の窒素を含む非磁性層上にフェリ磁性体を形成することで、磁気抵抗効果を得ることができる。この磁気抵抗効果素子は、磁気抵抗効果素子の高性能化、高密度化を実現できる可能性がある。 Furthermore, by forming a ferrimagnetic material on the non-magnetic layer containing cubic or tetragonal nitrogen of the present disclosure, a magnetoresistance effect can be obtained. This magnetoresistance effect element has the potential to realize high performance and high density magnetoresistance effect elements.

1…第1強磁性層、2…第2強磁性層、3…非磁性層、4…第1中間層、5…第2中間層、9…下地層、10,11…磁気抵抗効果素子 1...first ferromagnetic layer, 2...second ferromagnetic layer, 3...non-magnetic layer, 4...first intermediate layer, 5...second intermediate layer, 9...underlayer, 10, 11...magnetoresistance effect element

Claims (12)

 第1強磁性層と、
 第2強磁性層と、
 前記第1強磁性層と前記第2強磁性層とに挟まれ、立方晶又は正方晶の窒化物を含む非磁性層と、
 前記第1強磁性層と前記非磁性層とに挟まれ、立方晶又は正方晶の非磁性体を含む第1中間層と、を備える、磁気抵抗効果素子。
A first ferromagnetic layer;
A second ferromagnetic layer;
a nonmagnetic layer sandwiched between the first ferromagnetic layer and the second ferromagnetic layer and containing a cubic or tetragonal nitride;
a first intermediate layer sandwiched between the first ferromagnetic layer and the nonmagnetic layer and including a cubic or tetragonal nonmagnetic material;
 前記第2強磁性層と前記非磁性層とに挟まれ、立方晶又は正方晶の非磁性体を含む第2中間層をさらに備える、請求項1に記載の磁気抵抗効果素子。 The magnetoresistance effect element of claim 1, further comprising a second intermediate layer sandwiched between the second ferromagnetic layer and the nonmagnetic layer and including a cubic or tetragonal nonmagnetic material.  下地層をさらに備え、
 前記第1強磁性層は、前記第2強磁性層より前記下地層の近くにあり、
 前記第2強磁性層は、Mn系のフェリ磁性体を含む、請求項1に記載の磁気抵抗効果素子。
Further comprising a base layer;
the first ferromagnetic layer is closer to the underlayer than the second ferromagnetic layer;
2. The magnetoresistance effect element according to claim 1, wherein the second ferromagnetic layer includes a Mn-based ferrimagnetic material.
 前記第2強磁性層は、MnGa合金を含む、請求項3に記載の磁気抵抗効果素子。 The magnetoresistance effect element of claim 3, wherein the second ferromagnetic layer includes an MnGa alloy.  前記第1強磁性層は、Mn系のフェリ磁性体を含む、請求項3に記載の磁気抵抗効果素子。 The magnetoresistance effect element according to claim 3, wherein the first ferromagnetic layer includes a Mn-based ferrimagnetic material.  前記非磁性層は、Al、Ga、Inからなる群から選択される少なくとも1種の元素の窒化物を含む、請求項1に記載の磁気抵抗効果素子。 The magnetoresistance effect element of claim 1, wherein the nonmagnetic layer contains a nitride of at least one element selected from the group consisting of Al, Ga, and In.  前記第1中間層の前記非磁性体の結晶構造は、岩塩型又はひずんだ岩塩型の正方晶である、請求項1に記載の磁気抵抗効果素子。 The magnetoresistance effect element according to claim 1, wherein the crystal structure of the non-magnetic material of the first intermediate layer is a rock-salt type or a distorted rock-salt type tetragonal crystal.  前記第1中間層の前記非磁性体は、Cr、Ti、Mn、CrN、TiN、MgO、MnNからなる群から選択されるいずれかである、請求項1に記載の磁気抵抗効果素子。 The magnetoresistance effect element according to claim 1, wherein the non-magnetic material of the first intermediate layer is any one selected from the group consisting of Cr, Ti, Mn, CrN, TiN, MgO, and MnN.  前記第1中間層の厚みは、1.1nm未満である、請求項3に記載の磁気抵抗効果素子。 The magnetoresistance effect element of claim 3, wherein the thickness of the first intermediate layer is less than 1.1 nm.  前記第2中間層の前記非磁性体の結晶構造は、岩塩型又はひずんだ岩塩型の正方晶である、請求項2に記載の磁気抵抗効果素子。 The magnetoresistance effect element according to claim 2, wherein the crystal structure of the non-magnetic material of the second intermediate layer is a rock-salt type or a distorted rock-salt type tetragonal crystal.  前記第2中間層の前記非磁性体は、Cr、Ti、Mn、CrN、TiN、MgO、MnNからなる群から選択されるいずれかである、請求項2に記載の磁気抵抗効果素子。 The magnetoresistance effect element according to claim 2, wherein the non-magnetic material of the second intermediate layer is any one selected from the group consisting of Cr, Ti, Mn, CrN, TiN, MgO, and MnN.  前記第2中間層の厚みは、1.1nm未満である、請求項2に記載の磁気抵抗効果素子。 The magnetoresistance effect element of claim 2, wherein the thickness of the second intermediate layer is less than 1.1 nm.
PCT/JP2023/042484 2023-01-17 2023-11-28 Magnetoresistance effect element WO2024154441A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023005203 2023-01-17
JP2023-005203 2023-01-17

Publications (1)

Publication Number Publication Date
WO2024154441A1 true WO2024154441A1 (en) 2024-07-25

Family

ID=91955651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042484 WO2024154441A1 (en) 2023-01-17 2023-11-28 Magnetoresistance effect element

Country Status (1)

Country Link
WO (1) WO2024154441A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232499A (en) * 2009-03-27 2010-10-14 Toshiba Corp Magnetoresistive element and magnetic memory
JP2013100597A (en) * 2011-10-11 2013-05-23 Ngk Insulators Ltd Method for producing film member
JP2015032713A (en) * 2013-08-02 2015-02-16 株式会社東芝 Magnetic resistance element and magnetic memory
JP2015176930A (en) * 2014-03-13 2015-10-05 株式会社東芝 Magnetoresistive element and magnetic memory
JP2018056388A (en) * 2016-09-29 2018-04-05 Tdk株式会社 Magnetoresistive effect element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232499A (en) * 2009-03-27 2010-10-14 Toshiba Corp Magnetoresistive element and magnetic memory
JP2013100597A (en) * 2011-10-11 2013-05-23 Ngk Insulators Ltd Method for producing film member
JP2015032713A (en) * 2013-08-02 2015-02-16 株式会社東芝 Magnetic resistance element and magnetic memory
JP2015176930A (en) * 2014-03-13 2015-10-05 株式会社東芝 Magnetoresistive element and magnetic memory
JP2018056388A (en) * 2016-09-29 2018-04-05 Tdk株式会社 Magnetoresistive effect element

Similar Documents

Publication Publication Date Title
US8934290B2 (en) Magnetoresistance effect device and method of production of the same
CN109560192B (en) Laminated structure, magnetoresistive element, magnetic head, sensor, high-frequency filter, and oscillator
EP2421063B1 (en) Ferromagnetic tunnel junction structure, and magnetoresistive effect element and spintronics device each comprising same
JP5800480B2 (en) Magnetic memory element
CN111276600B (en) Magnetoresistance effect element
EP2434556B1 (en) Ferromagnetic tunnel junction structure and magnetoresistive element using same
JP5429480B2 (en) Magnetoresistive element, MRAM, and magnetic sensor
US10177305B2 (en) Templating layers for perpendicularly magnetized heusler films
JP2005116703A (en) Magnetic detecting element
KR20020077797A (en) Magnetoresistance effect device and method for manufacturing the same
KR20200098390A (en) Device including Heusler Compounds with Non-Magnetic Spacer Layer for Formation of Synthetic Anti-Ferromagnets(SAF)
CN112349833B (en) Magneto-resistive effect element and wheatler alloy
CN112349831A (en) Magnetoresistive element and Wheatstone alloy
CN107408625A (en) Magnetoresistance effect element
KR20220069863A (en) IrAl AS A NON-MAGNETIC SPACER LAYER FOR FORMATION OF SYNTHETIC ANTI-FERROMAGNETS(SAF) WITH HEUSLER COMPOUNDS
CN107887502B (en) Magnetoresistive effect element
WO2014034639A1 (en) Magnetic multilayer film and tunneling magnetoresistance element
JP7375858B2 (en) magnetoresistive element
WO2024154441A1 (en) Magnetoresistance effect element
JP2007221086A (en) Tunnel-type magnetism detection element and method of manufacturing same
JPH07263773A (en) Magnetoresistance effect element and its manufacture
JP3891507B2 (en) Laminated film and magnetic element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024571637

Country of ref document: JP