[go: up one dir, main page]

WO2024154399A1 - Soil feeding apparatus - Google Patents

Soil feeding apparatus Download PDF

Info

Publication number
WO2024154399A1
WO2024154399A1 PCT/JP2023/037749 JP2023037749W WO2024154399A1 WO 2024154399 A1 WO2024154399 A1 WO 2024154399A1 JP 2023037749 W JP2023037749 W JP 2023037749W WO 2024154399 A1 WO2024154399 A1 WO 2024154399A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
roll
supplying device
drive unit
crushing
Prior art date
Application number
PCT/JP2023/037749
Other languages
French (fr)
Japanese (ja)
Inventor
三宅隆誠
草野正明
黒川洋之
岩田将則
永見伶
Original Assignee
日本国土開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本国土開発株式会社 filed Critical 日本国土開発株式会社
Publication of WO2024154399A1 publication Critical patent/WO2024154399A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C21/00Disintegrating plant with or without drying of the material
    • B02C21/02Transportable disintegrating plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/02Crushing or disintegrating by roller mills with two or more rollers
    • B02C4/08Crushing or disintegrating by roller mills with two or more rollers with co-operating corrugated or toothed crushing-rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/28Details
    • B02C4/32Adjusting, applying pressure to, or controlling the distance between, milling members
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material

Definitions

  • the present invention relates to a soil supplying device.
  • a rotary crusher is known that crushes lumps contained in the soil to be treated into fine particles before mixing the soil to be treated with land improvement materials in the mixing device and then supplies the soil to the mixing device (see, for example, Patent Document 1, etc.).
  • This rotary crusher has a pair of crushing rolls with crushing teeth on the circumference, and a scraper.
  • the crushing rolls are rotated in forward and reverse directions to crush lumps in the soil being treated that are poured in from above into fine particles.
  • the present invention aims to provide a soil supplying device that can prevent sudden loads from being placed on the rotary drive unit that rotates the rolls.
  • the soil supplying device of the present invention comprises a housing that receives soil from above, a first roll and a second roll that are provided at a predetermined distance within the housing and rotated by a rotary drive unit to send the received soil downward, and a first change unit that changes the predetermined distance between the first roll and the second roll to increase it according to the load on the rotary drive unit caused by the received soil.
  • the soil supplying device of the present invention can prevent sudden loads from being placed on the rotary drive unit that rotates the roll.
  • FIG. 1 is a side view of a self-propelled rotary crushing mixer.
  • FIG. 2(a) is a diagram showing the soil supplying device as viewed from the side ( ⁇ Y direction)
  • FIG. 2(b) is a diagram showing the soil supplying device as viewed from above (+Z direction).
  • 3A is a cross-sectional view taken along line AA in FIG. 2A
  • FIG. 3B is a cross-sectional view taken along line BB in FIG. 2A.
  • FIG. 4A is an enlarged view of the holding mechanism 16 of FIG. 3A
  • FIG. 4B is a view showing a state in which a load is applied to the crushing roll.
  • FIG. 1 is a side view of a self-propelled rotary crushing mixer.
  • FIG. 2(a) is a diagram showing the soil supplying device as viewed from the side ( ⁇ Y direction)
  • FIG. 2(b) is a diagram showing the soil supplying device as viewed from above (+Z direction).
  • 3A is
  • FIG. 5 is a diagram showing a state in which the shaft holding portion of the second shaft holder has been moved in the +Y direction from the state shown in FIG.
  • FIG. 6 is an enlarged view of the holding mechanism 17 shown in FIG.
  • FIG. 7 is a diagram for explaining the function of the sprocket 21.
  • 8(a) is a perspective view showing the vicinity of sprocket 21 as viewed from the -X direction
  • FIG. 8(b) is a view showing the vicinity of sprocket 21 in FIG. 8(a) as viewed from the direction of arrow J.
  • FIG. 9 is a block diagram showing a control system of the soil supplying device.
  • 10(a) to 10(d) are schematic diagrams showing the crushing roll as viewed from the +X direction.
  • FIG. 11 is a graph showing how the load changes when a foreign object is caught between the crushing rolls in the case where a disc spring is provided as in this embodiment and in the case where a disc spring is not provided (comparative example).
  • FIG. 12 is a diagram for explaining a method for removing foreign matter after the motor is stopped.
  • FIG. 13 is a diagram showing a modified example.
  • Fig. 1 shows a side view of a self-propelled rotary crushing mixer 100 having a soil supplying device 10.
  • the left-right direction on the paper of Fig. 1 is the X-axis direction (the arrow direction is the +X direction)
  • the direction perpendicular to the paper is the Y-axis direction (the direction into the paper is the +Y direction)
  • the up-down direction on the paper is the Z-axis direction (the arrow direction is the +Z direction).
  • the self-propelled rotary crushing mixer 100 includes a soil/sand supplying device 10, a powder supplying device 20, a mixer 30, a first transport conveyor 41, a second transport conveyor 42, and a traveling device 50.
  • the soil supplying device 10, the powder supplying device 20, the mixing device 30, the first transport conveyor 41, and the second transport conveyor 42 are supported by a support base 52, and a traveling device 50 is provided below the support base 52.
  • the traveling device 50 is an endless track or the like, and travels around a construction site, work site, etc. in response to remote control operation by a worker, etc.
  • the soil supplying device 10 crushes lumps contained in the soil (e.g. clay soil) that is poured in from above into fine particles, and then supplies the clay soil onto the first transport conveyor 41. Details of the soil supplying device 10 will be described later.
  • the soil e.g. clay soil
  • the powder supplying device 20 is provided on the -X side of the soil supplying device 10.
  • the powder supplying device 20 supplies additives onto the first transport conveyor 41.
  • the additives include lime-based solidification materials such as quicklime and hydrated lime, cement-based solidification materials such as ordinary cement and blast furnace cement, or soil improvement materials made of polymer materials.
  • the first transport conveyor 41 transports the clay soil supplied from the soil supplying device 10 and the additives supplied from the powder supplying device 20 toward the mixer 30.
  • the mixer 30 crushes and refines the clay soil, giving the raw soil a gentle particle size distribution.
  • the mixer 30 also mixes the clay soil with additives to produce improved soil, adjusting the properties and strength of the improved soil.
  • the mixing device 30 includes a fixed drum 31, a rotating drum 32, a rotation mechanism 33, a rotation motor 34, and a belt 35.
  • the fixed drum 31 is a cylindrical container. Clay soil and additives are fed into the fixed drum 31 from the first transport conveyor 41 via the inlet member 36, and the raw soil and additives are guided into the rotating drum 32 provided below the fixed drum 31 (-Z side).
  • the rotating drum 32 is a cylindrical container that rotates (spins) around the central axis of the cylinder (around the Z-axis) by a rotating drum drive motor (not shown).
  • a scraping bar (scraper) (not shown) is provided inside the rotating drum 32, extending in the Z-axis direction and with its upper end fixed to the fixed drum 31.
  • the scraping bar (not shown) is in contact with the inner circumferential surface of the rotating drum 32, so that as the rotating drum 32 rotates, clayey soil and the like adhering to the inner circumferential surface of the rotating drum 32 can be scraped off by the scraping bar (not shown).
  • the rotation mechanism 33 has a rotating shaft that extends vertically (Z-axis direction) and impact members that are provided on the rotating shaft in two stages, one above the other.
  • the rotating shaft is supported as a cantilever, with the lower end of the rotating shaft being a free end.
  • the rotating shaft is connected to a rotary motor 34 via a belt 35, and as the rotating shaft rotates around the Z-axis, the impact members crush and refine the clayey soil, and mix the clayey soil with additives.
  • the rotating direction of the rotating shaft and the rotating drum 32 may be the same or opposite.
  • the improved soil produced by crushing and mixing in the mixer 30 falls downward from the rotating drum 32 and is supplied onto the second transport conveyor 42.
  • the second transport conveyor 42 transports the improved soil supplied from the mixer 30 to a position away from the mixer 30 and discharges it.
  • the improved soil is used for purposes such as backfilling of structures, backfilling of buildings, backfilling of civil engineering structures, embankments for river embankments, embankments for roads, embankments for land development, railway embankments, airport embankments, and water surface reclamation.
  • the self-propelled rotary crusher/mixer 100 has a generator (not shown).
  • the generator is used as a power source for each device of the self-propelled rotary crusher/mixer 100.
  • the soil supplying device 10 (Details of the soil supplying device 10) The soil supplying device 10 will be described in detail below.
  • FIG. 2(a) shows the soil supplying device 10 as viewed from the side (-Y direction), and FIG. 2(b) shows the soil supplying device 10 as viewed from above (+Z direction).
  • FIG. 3(a) shows a cross-sectional view taken along line A-A in FIG. 2(a), and FIG. 3(b) shows a cross-sectional view taken along line B-B in FIG. 2(a).
  • the soil supplying device 10 includes a hopper 11, a housing 12, a pair of crushing rolls (first and second rolls) 13A and 13B, motors (rotational drive units) 14A and 14B, and chains 15A and 15B.
  • the hopper 11 receives the clayey soil supplied from above and guides it into the housing 12.
  • the housing 12 houses a pair of crushing rolls 13A, 13B inside. As shown in Figures 3(a) and 3(b), the housing 12 is hopper-shaped, and discharges clay from a lower opening 12a shown hatched in Figure 2(b).
  • the pair of crushing rolls 13A, 13B are arranged at a predetermined distance in the Y-axis direction, as shown in FIG. 2(b).
  • one of the crushing rolls 13A has a cylindrical shaft portion 132A, a cylindrical main body portion 133A having a larger diameter than the shaft portion 132A, and a plurality of crushing teeth 134A provided on the main body portion 133A.
  • the shaft portion 132A penetrates the housing 12, with one end (the end on the +X side) held by the holding mechanism 16 in FIG. 2(a) and the other end (the end on the -X side) held by the holding mechanism 17.
  • a sprocket 18A is provided near one end (the end on the +X side) of the shaft portion 132A.
  • the plurality of crushing teeth 134A protrude radially from the circumferential surface of the main body portion 133A.
  • the other crushing roll 13B has the same configuration as the crushing roll 13A. That is, the crushing roll 13B has a shaft portion 132B, a main body portion 133B, and a plurality of crushing teeth 134B. Like the shaft portion 132A, one end (the end on the +X side) of the shaft portion 132B is held by a holding mechanism 16, and the other end (the end on the -X side) is held by a holding mechanism 17. A sprocket 18B (see FIG. 3(a)) is provided near one end (the end on the +X side) of the shaft portion 132B.
  • the motor 14A has a rotating shaft 141A extending in the X-axis direction, and a sprocket 19A is provided on the rotating shaft 141A.
  • a chain 15A is hung between the sprocket 19A and a sprocket 18A provided on the shaft portion 132A of the crushing roll 13A. This allows the rotational force of the motor 14A to be transmitted to the crushing roll 13A.
  • the motor 14B has a rotating shaft 141B extending in the X-axis direction, and a sprocket 19B is provided on the rotating shaft 141B.
  • a chain 15B is hung between the sprocket 19B and a sprocket 18B provided on the shaft portion 132B of the crushing roll 13B. This allows the rotational force of the motor 14A to be transmitted to the crushing roll 13A.
  • the chain 15B is also hung on a sprocket 21 that functions as a chain tensioner and is provided near the sprocket 19B.
  • Fig. 4(a) is an enlarged view of the holding mechanism 16 of Fig. 3(a).
  • the holding mechanism 16 has a top plate portion 161, a bottom plate portion 162, side plate portions 163A and 163B, and a first shaft holder 65A and a second shaft holder 65B as first modified portions.
  • a frame body is formed by the top plate portion 161, the bottom plate portion 162, and the side plate portions 163A and 163B.
  • the first shaft holder 65A has a fixed portion 63A as a guide member, a shaft holding portion 61A, and a disc spring 62A as an elastic member.
  • the fixed portion 63A is the part painted gray on the left side of Figure 4(a) and is fixed to the side plate portion 163A.
  • the shaft holding part 61A is a member that supports the shaft part 132A of the crushing roll 13A via a bearing, and is arranged to be slidable in the Y-axis direction relative to the fixed part 63A.
  • the coned disc spring 62A is provided on the fixed portion 63A and constantly applies a force in the +Y direction (see arrow C in Figure 4(a)) to the shaft holding portion 61A. This maintains the shaft holding portion 61A in the state shown in Figure 4(a) until a predetermined or greater load in the -Y direction is applied to the crushing roll 13A.
  • the center-to-center distance between the shaft portions 132A and 132B at this time is H1.
  • the second shaft holder 65B has a bolt portion 63B, a shaft holding portion 61B, and a nut portion 64B.
  • the bolt portion 63B is the part painted gray on the right side of Figure 4(a) and has a rod portion 66B with a screw groove formed therein and a plate-shaped disk portion 67B provided at the -Y side end of the rod portion 66B.
  • the rod portion 66B penetrates the side plate portion 163B in the Y-axis direction and is screwed into it.
  • the rod portion 66B also penetrates the disk holding portion 68B (described later) in the Y-axis direction.
  • the shaft holder 61B is a member that supports the shaft 132B of the crushing roll 13B via a bearing.
  • the shaft holder 61B has a disk holder 68B that holds the disk 67B at the +Y end.
  • the disk holder 68B holds the disk 67B so that it can rotate freely around the Y axis, and holds the disk 67B so that the positional relationship between the shaft holder 61B and the bolt 63B in the Y axis direction does not change.
  • the nut portion 64B is screwed onto the bolt portion 63B from the +Y side of the side plate portion 163B.
  • the bolt portion 63B is free to rotate around the Y axis.
  • the bolt portion 63B and the shaft holding portion 61B move in the direction of the arrow E in FIG. 5.
  • the bolt portion 63B and the shaft holding portion 61B move in the opposite direction to the direction of the arrow E in FIG. 5.
  • FIG 6 is an enlarged view of the holding mechanism 17 of Figure 3(b).
  • the holding mechanism 17 has a top plate portion 171, a bottom plate portion 172, side plate portions 173A and 173B, a first shaft holder 75A, and a second shaft holder 75B.
  • a frame is formed by the top plate portion 171, the bottom plate portion 172, and the side plate portions 173A and 173B.
  • the first shaft holder 75A has a fixed portion 73A as a guide member, a shaft holding portion 71A, and a disc spring 72A as an elastic member.
  • the functions of each portion of the first shaft holder 75A are the same as those of the first shaft holder 65A described above.
  • the second shaft holder 75B has a bolt portion 73B, a shaft holding portion 71B, and a nut portion 74B.
  • the functions of the respective portions of the second shaft holder 75B are the same as those of the second shaft holder 65B described above.
  • the shaft holding portion 71B of the second shaft holder 75B must also be moved in the Y-axis direction the same distance as the shaft holding portion 61B.
  • the nut portion 74B of the second shaft holder 75B and the thread groove of the bolt portion 73B may be omitted so that the shaft holding portion 71B of the second shaft holder 75B moves in the Y-axis direction the same distance as the shaft holding portion 61B in conjunction with the movement of the shaft holding portion 61B of the second shaft holder 65B in the Y-axis direction.
  • Figure 8(a) shows an oblique view of the area near the sprocket 21 as seen from the -X direction.
  • Figure 8(b) shows the area near the sprocket 21 in Figure 8(a) as seen from the direction of the arrow J.
  • the sprocket 21 is attached to a mounting bracket 80 attached to the housing 12 via a slide mechanism 82.
  • the slide mechanism 82 has a bolt portion 83 that is attached to the mounting bracket 80 in a state that allows it to rotate around its axis, and a nut portion 84 that is screwed into the bolt portion 83.
  • the bolt portion 83 has a threaded groove.
  • the longitudinal direction of the bolt portion 83 coincides with the longitudinal direction of the long hole 80a formed in the mounting bracket 80.
  • the sprocket 21 is rotatably mounted on the +X side of the nut portion 84.
  • a cylindrical protrusion 85 that engages with the long hole 80a is provided on the -X side of the nut portion 84.
  • a threaded groove is formed in the protrusion 85, and a fixing nut 86 is screwed onto the protrusion 85 from the -X side of the mounting bracket 80.
  • the fixing nut 86 When the fixing nut 86 is tightened, the position of the sprocket 21 is fixed. On the other hand, when the fixing nut 86 is loosened, the nut portion 84 (and the sprocket 21) can be moved along the long hole 80a by rotating the bolt portion 83 with an impact driver or the like. In this way, the position of the sprocket 21 can be changed along the long hole 80a, so it is possible to apply tension to the chain 15B no matter where the sprocket 18B is located.
  • an electric rotation mechanism may be provided in the bolt portion 83, and the bolt portion 83 may be rotated by the electric rotation mechanism.
  • the electric rotation mechanism may rotate the bolt portion 83 automatically.
  • the electric rotation mechanism may rotate the bolt portion 83 from a state in which no tension is applied to the chain 15B, and stop the rotation of the bolt portion 83 when tension is applied to the chain 15B (when a force greater than a predetermined value is required to rotate the bolt portion 83).
  • FIG. 9 shows a block diagram of the control system of the soil supplying device 10.
  • the soil supplying device 10 includes a control unit (first control unit, second control unit) 90, an ammeter 92 as a current detection unit, a communication unit 94, and motor drivers 96A and 96B.
  • the ammeter 92 detects the current value of the motor 14A.
  • the communication unit 94 communicates with an external device (e.g., the mixing device 30), acquires the status of the external device (e.g., the processing volume, etc.), and notifies the control unit 90. Furthermore, when the soil supplying device 10 stops, the communication unit 94 transmits to the external device a change instruction issued from the control unit 90 regarding the processing of the external device. Note that an ammeter different from the ammeter 92 for detecting the current value of the motor 14B may be provided.
  • the motor drivers 96A and 96B supply current to the motors 14A and 14B under the control of the control unit 90.
  • the control unit 90 controls the motor drivers 96A and 96B based on the current value of the motor 14A detected by the ammeter 92 and the state of the external device acquired by the communication unit 94. For example, the control unit 90 identifies the load of the motor 14A from the detection value of the ammeter 92, and if it is determined that the load is overloaded, it instructs the motor drivers 96A and 96B to stop the motors 14A and 14B.
  • the control unit 90 may also identify the load of the motor 14B from the detection value of an ammeter other than the ammeter 92 that detects the current value of the motor 14B, and if it is determined that the load is overloaded, it may instruct the motor drivers 96A and 96B to stop the motors 14A and 14B.
  • a known inverter which is a control device formed by integrating the ammeter 92 and the motor driver A, may be used to detect the current value of the motor 14A and supply current, and a known inverter may also be used for the motor 14B.
  • the control unit 90 instructs the motor drivers 96A and 96B to slow down the rotation speed of the crushing rolls 13A and 13B in order to reduce the processing volume of the mixer 30. Conversely, when the processing volume of the mixer 30 is small, the control unit 90 instructs the motor drivers 96A and 96B to increase the rotation speed of the crushing rolls 13A and 13B in order to increase the processing volume of the mixer 30.
  • the control unit 90 can determine whether the processing volume of the mixer 30 is large or small based on the detection value of an ammeter that detects the current value of the rotary motor 34.
  • FIGS. 10(a) to 10(d) are schematic diagrams showing the crushing rolls 13A and 13B as viewed from the +X direction.
  • the nut portion 64B in FIG. 5 and the nut portion 74B in FIG. 6 are rotated to adjust the distance between the crushing rolls 13A, 13B to an appropriate distance.
  • the appropriate distance can be determined based on the properties of the clayey soil, etc.
  • the position of the sprocket 21 is adjusted so that tension is applied to the chain 15B.
  • the motors 14A and 14B are rotated to rotate the crushing rolls 13A and 13B in the direction of the arrows (forward and reverse directions).
  • the crushing rolls 13A and 13B rotating in this manner, clayey soil is poured in from above. If the poured clayey soil does not contain any foreign matter, the crushing rolls 13A and 13B can send it downward (onto the first transport conveyor 41) while crushing it.
  • the crushing rolls 13A and 13B may be pinched between the crushing rolls 13A and 13B (crushing teeth 134A and 134B), causing a load to be applied to the crushing rolls 13A and 13B.
  • the crushing roll 13A can move in the -Y direction as shown in FIG. 10(c). This widens the gap between the crushing rolls 13A and 13B, making it easier for the foreign matter to be sent downward. If the foreign matter is sent downward, the load on the crushing roll 13A will be reduced, and the crushing roll 13A will move in the +Y direction (return to its original position) due to the biasing force of the disc springs 62A and 72A.
  • the control unit 90 detects the current value of the motor 14A with an ammeter 92, and when the load reaches a predetermined threshold (overload), it issues an instruction to the motor drivers 96A, 96B to stop the supply of current to the motors 14A, 14B.
  • FIG. 11 is a graph showing how the load changes when a foreign object is caught between the crushing rolls 13A and 13B in the case where the disc springs 62A and 72A are provided as in this embodiment and in the case where the disc springs 62A and 72A are not provided (comparative example).
  • the load on the crushing rolls 13A, 13B reaches the mechanical component damage load between the detection of an overload and the stopping of the crushing rolls 13A, 13B, and there is a risk of the mechanical components being damaged.
  • the coned disc springs 62A, 72A by providing the coned disc springs 62A, 72A, the rising curve of the load on the crushing rolls 13A, 13B can be made more gentle than in the comparative example. As a result, the crushing rolls 13A, 13B can be stopped before the load on the crushing rolls 13A, 13B reaches the mechanical component damage load.
  • the coned disc springs 62A, 72A it is possible to extend the life of the mechanical components.
  • the operator can rotate the bolt portion 63B of the second shaft holder 65B as shown in FIG. 12, and move the crushing roll 13B in the +Y direction (the direction of the arrow E) to widen the gap H between the crushing rolls 13A, 13B.
  • An electric rotation mechanism may be provided on the bolt portion 63B, and the bolt portion 63B may be rotated by the electric rotation mechanism.
  • control unit 90 When motors 14A and 14B stop, control unit 90 outputs instructions to mixer 30 to stop processing or reduce the processing volume via communication unit 94. Control unit 90 also instructs first transport conveyor 41 to stop transport. This makes it possible to prevent the mixer 30 and first transport conveyor 41 from operating unnecessarily when clayey soil is not being supplied from soil supplying device 10. Control unit 90 does not need to issue instructions directly to mixer 30, first transport conveyor 41, etc., and may issue the above-mentioned instructions to a central control unit that controls the entire self-propelled rotary crusher mixer 100.
  • the soil supplying device 10 includes a housing 12 that receives clay from above, and crushing rolls 13A, 13B that are provided at a predetermined interval within the housing 12 and rotated by motors 14A, 14B to send the received clay downward.
  • the soil supplying device 10 also includes first shaft holders 65A, 75A that change the spacing between the crushing rolls 13A, 13B to increase in accordance with the load of the received clay. This increases the spacing between the crushing rolls 13A, 13B in accordance with the load, thereby preventing the motors 14A, 14B from being subjected to a sudden load (see FIG. 11).
  • increasing the spacing between the crushing rolls 13A, 13B in accordance with the load increases the likelihood that foreign matter causing the load will be sent downward.
  • the first shaft holders 65A, 75A have disc springs 62A, 72A, which increase the distance between the crushing rolls 13A, 13B and then decrease the distance between the crushing rolls 13A, 13B according to the load on the motor 14A. This allows the distance between the crushing rolls 13A, 13B to be maintained at an appropriate distance (a preset distance) when no load is applied.
  • the first shaft holder 65A (75A) has a shaft holding portion 61A (71A) that holds the crushing roll 13A, a disc spring 62A (72A) that biases the shaft holding portion 61A (71A), and a fixing portion 63A (73A) that guides the shaft holding portion 61A (71A) in the Y-axis direction. This allows the distance between the crushing rolls 13A and 13B in the Y-axis direction to be changed depending on the load.
  • this embodiment includes an ammeter 92 that detects the current value of motor 14A, and a control unit 90 that stops the current supply to motors 14A and 14B when the current value of ammeter 92 reaches or exceeds a predetermined value, so that control unit 90 can stop the current supply to motors 14A and 14B at the appropriate timing.
  • the elastic member of the first shaft holder 65A (75A) is a disc spring, but this is not limited to this.
  • the elastic member may be, for example, a compression coil spring, a leaf spring, rubber, or resin.
  • the number of disc springs can be changed as appropriate.
  • the first shaft holder 65A (75A) has an elastic member (the shaft holding portion 61A (71A) moves in response to the load), but instead of or in addition to this, the second shaft holder 65B (75B) may have an elastic member (the shaft holding portion 61B (71B) moves in response to the load).
  • control unit 90 may detect the interval between the crushing rolls 13A and 13B from a sensor or an image captured by a camera, display the detection result, or adjust the amount of clayey soil to be fed into the soil supplying device 10 based on the detection result.
  • the control unit 90 may also detect the temperature of at least one of the crushing rolls 13A and 13B (for example, the temperature of the bearings provided on the shafts 132A and 132B) using a sensor or the like, display the detection result, or adjust the amount of clayey soil to be fed into the soil supplying device 10 based on the detection result.
  • the amount of clayey soil fed is reduced and the motors 14A and 14B are rotated at a low speed. In this way, it is possible to inform the operator of the state of the soil supplying device 10 and to perform appropriate control according to the state of the soil supplying device 10.
  • control unit 90 may monitor the value of the soil meter provided on the first transport conveyor and adjust the rotation speed of the motors 14A and 14B to adjust the amount of clayey soil supplied from the soil supplying device 10.
  • control unit 90 or the central control unit that controls the entire self-propelled rotary crushing mixer 100 may monitor the wear condition of the inside of the mixer 30 (such as the impact members of the rotation mechanism 33) using images, etc., when the mixer 30 is in a low-speed state or stopped state, and may determine whether or not maintenance is required for the impact members, etc. based on the monitoring results.
  • the two crushing rolls 13A and 13B are rotated by two motors 14A and 14B, but the present invention is not limited to this.
  • the two crushing rolls 13A and 13B may be rotated by one motor.
  • the configuration shown in FIG. 13 can be used as an example.
  • a chain 15C is hung on a main sprocket 19 provided on the rotating shaft of the motor 14 and a sprocket 18A provided on the crushing roll 13A.
  • a sub sprocket 29 is meshed with the main sprocket 19, and a chain 15D is hung on the sub sprocket 29 and a sprocket 18B provided on the crushing roll 13B.
  • the sub sprocket 29 may be shifted in the -X direction from the main sprocket 19, and the chain 15C may be provided on the front side (+X side) and the chain 15D may be provided on the rear side (+X side).
  • the sprocket that functions as a tensioner has been omitted from Figure 13.
  • the soil fed into the soil supplying device 10 is described as being clayey soil, but other types of soil may also be used.
  • the rotary crushing mixer is described as being self-propelled, but this is not limited to the above.
  • the rotary crushing mixer may be of a stationary type (plant type).
  • the soil supplying device 10 may be used for purposes other than as a rotary crushing mixer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crushing And Grinding (AREA)

Abstract

In order to minimize a sudden load from being exerted on a rotary drive unit that rotates rolls in a soil feeding apparatus, this soil feeding apparatus comprises: a housing which receives soil fed from above; a first roll and a second roll that are provided at a prescribed interval in the housing and that are rotated by a rotary drive unit to discharge the received soil downward; and a first changing unit that, according to the load exerted by the received soil on the rotary drive unit, makes a change to increase the prescribed interval between the first roll and the second roll.

Description

土砂供給装置Sand supply device

 本発明は、土砂供給装置に関する。 The present invention relates to a soil supplying device.

 混合装置において被処理土と土地改良材とを混合する前に、被処理土中に含まれる塊状物を細粒に粉砕したうえで被処理土を混合装置に供給する回転式破砕機が知られている(例えば特許文献1等参照)。 A rotary crusher is known that crushes lumps contained in the soil to be treated into fine particles before mixing the soil to be treated with land improvement materials in the mixing device and then supplies the soil to the mixing device (see, for example, Patent Document 1, etc.).

 この回転式破砕機は、周上に破砕歯が設けられた一対の破砕ロールと、スクレーパと、を有しており、破砕ロールが正逆方向に回転駆動されることにより、上方から投入された被処理土中の塊状物が細粒に粉砕されるようになっている。 This rotary crusher has a pair of crushing rolls with crushing teeth on the circumference, and a scraper. The crushing rolls are rotated in forward and reverse directions to crush lumps in the soil being treated that are poured in from above into fine particles.

特開2005-238079公報JP 2005-238079 A

 上記特許文献1では、両破砕ロールの破砕歯間に粉砕できない異物を噛み込んだときには、両破砕ロールが互いに外側に向けて回転するようになっている。しかしながら、逆回転するまでの間に破砕ロールに負荷がかかりすぎてしまい、破砕ロールや、破砕ロールの軸受が破損する可能性がある。 In the above Patent Document 1, when a foreign object that cannot be crushed becomes caught between the crushing teeth of both crushing rolls, both crushing rolls rotate outward toward each other. However, the crushing rolls are subjected to too much load before they start to rotate in the opposite direction, which may damage the crushing rolls or their bearings.

 そこで、本発明では、ロールを回転する回転駆動部に急激な負荷がかかるのを抑制することが可能な土砂供給装置を提供することを目的とする。 The present invention aims to provide a soil supplying device that can prevent sudden loads from being placed on the rotary drive unit that rotates the rolls.

 本発明に係る土砂供給装置は、上方から土砂を受け入れる筐体と、前記筐体内に所定間隔で設けられ、回転駆動部により回転することにより、受け入れた前記土砂を下方に送り出す第1ロール及び第2ロールと、受け入れた前記土砂による前記回転駆動部の負荷に応じて前記第1ロールと前記第2ロールとの前記所定間隔を大きくするように変更する第1変更部と、を備える。 The soil supplying device of the present invention comprises a housing that receives soil from above, a first roll and a second roll that are provided at a predetermined distance within the housing and rotated by a rotary drive unit to send the received soil downward, and a first change unit that changes the predetermined distance between the first roll and the second roll to increase it according to the load on the rotary drive unit caused by the received soil.

 本発明の土砂供給装置によれば、ロールを回転する回転駆動部に急激な負荷がかかるのを抑制することができる。 The soil supplying device of the present invention can prevent sudden loads from being placed on the rotary drive unit that rotates the roll.

図1は、自走型回転式破砕混合機の側面図である。FIG. 1 is a side view of a self-propelled rotary crushing mixer. 図2(a)は、土砂供給装置を側方(-Y方向)から見た状態を示す図であり、図2(b)は、土砂供給装置を上方(+Z方向)から見た状態を示す図である。FIG. 2(a) is a diagram showing the soil supplying device as viewed from the side (−Y direction), and FIG. 2(b) is a diagram showing the soil supplying device as viewed from above (+Z direction). 図3(a)は、図2(a)のA-A線断面図であり、図3(b)は、図2(a)のB-B線断面図である。3A is a cross-sectional view taken along line AA in FIG. 2A, and FIG. 3B is a cross-sectional view taken along line BB in FIG. 2A. 図4(a)は、図3(a)の保持機構16を取り出して拡大して示す図であり、図4(b)は、破砕ロールに負荷がかかった状態を示す図である。FIG. 4A is an enlarged view of the holding mechanism 16 of FIG. 3A, and FIG. 4B is a view showing a state in which a load is applied to the crushing roll. 図5は、図4(a)の状態から、第2軸部ホルダの軸保持部を+Y方向に移動させた状態を示す図である。FIG. 5 is a diagram showing a state in which the shaft holding portion of the second shaft holder has been moved in the +Y direction from the state shown in FIG. 図6は、図3(b)の保持機構17を取り出して拡大して示す図である。FIG. 6 is an enlarged view of the holding mechanism 17 shown in FIG. 図7は、スプロケット21の作用について説明するための図である。FIG. 7 is a diagram for explaining the function of the sprocket 21. 図8(a)は、スプロケット21近傍を-X方向から見た状態を示す斜視図であり、図8(b)は、図8(a)のスプロケット21近傍を矢印J方向から見た状態を示す図である。8(a) is a perspective view showing the vicinity of sprocket 21 as viewed from the -X direction, and FIG. 8(b) is a view showing the vicinity of sprocket 21 in FIG. 8(a) as viewed from the direction of arrow J. 図9は、土砂供給装置の制御系を示すブロック図である。FIG. 9 is a block diagram showing a control system of the soil supplying device. 図10(a)~図10(d)は、破砕ロールを+X方向から見た状態を模式的に示す図である。10(a) to 10(d) are schematic diagrams showing the crushing roll as viewed from the +X direction. 図11は、本実施形態のように皿バネを設ける場合と、皿バネを設けない場合(比較例)とにおいて、破砕ロール間に異物が挟まった場合に、荷重がどのように変化するかを示すグラフである。FIG. 11 is a graph showing how the load changes when a foreign object is caught between the crushing rolls in the case where a disc spring is provided as in this embodiment and in the case where a disc spring is not provided (comparative example). 図12は、モータ停止後に異物を取り除く方法について説明するための図である。FIG. 12 is a diagram for explaining a method for removing foreign matter after the motor is stopped. 図13は、変形例を示す図である。FIG. 13 is a diagram showing a modified example.

 以下、一実施形態について、図1~図12に基づいて詳細に説明する。図1には、土砂供給装置10を有する自走型回転式破砕混合機100の側面図が示されている。なお、以下においては、図1の紙面左右方向をX軸方向(矢印方向が+X方向)、紙面直交方向をY軸方向(紙面奥方向が+Y方向)、紙面上下方向をZ軸方向(矢印方向が+Z方向)として説明する。 Below, one embodiment will be described in detail with reference to Figs. 1 to 12. Fig. 1 shows a side view of a self-propelled rotary crushing mixer 100 having a soil supplying device 10. In the following description, the left-right direction on the paper of Fig. 1 is the X-axis direction (the arrow direction is the +X direction), the direction perpendicular to the paper is the Y-axis direction (the direction into the paper is the +Y direction), and the up-down direction on the paper is the Z-axis direction (the arrow direction is the +Z direction).

 図1に示すように、自走型回転式破砕混合機100は、土砂供給装置10と、粉体供給装置20と、混合装置30と、第1搬送コンベア41と、第2搬送コンベア42と、走行装置50と、を備える。 As shown in FIG. 1, the self-propelled rotary crushing mixer 100 includes a soil/sand supplying device 10, a powder supplying device 20, a mixer 30, a first transport conveyor 41, a second transport conveyor 42, and a traveling device 50.

 土砂供給装置10、粉体供給装置20、混合装置30、第1搬送コンベア41、及び第2搬送コンベア42は、支持台52により支持されており、支持台52の下側に走行装置50が設けられている。走行装置50は、無限軌道等であり、作業者のリモコン操作等に応じて建設現場や工事現場等を走行する。 The soil supplying device 10, the powder supplying device 20, the mixing device 30, the first transport conveyor 41, and the second transport conveyor 42 are supported by a support base 52, and a traveling device 50 is provided below the support base 52. The traveling device 50 is an endless track or the like, and travels around a construction site, work site, etc. in response to remote control operation by a worker, etc.

 土砂供給装置10は、上方から投入された土砂(例えば粘性土)に含まれる塊状物を細粒に粉砕したうえで、粘性土を第1搬送コンベア41上に供給する。なお、土砂供給装置10の詳細については、後述する。 The soil supplying device 10 crushes lumps contained in the soil (e.g. clay soil) that is poured in from above into fine particles, and then supplies the clay soil onto the first transport conveyor 41. Details of the soil supplying device 10 will be described later.

 粉体供給装置20は、土砂供給装置10の-X側に設けられている。粉体供給装置20は、第1搬送コンベア41上に添加材を供給する。添加材は、生石灰、消石灰などの石灰系固化材や、普通セメント、高炉セメントなどのセメント系固化材、あるいは高分子材料からなる土質改良材などである。 The powder supplying device 20 is provided on the -X side of the soil supplying device 10. The powder supplying device 20 supplies additives onto the first transport conveyor 41. The additives include lime-based solidification materials such as quicklime and hydrated lime, cement-based solidification materials such as ordinary cement and blast furnace cement, or soil improvement materials made of polymer materials.

 第1搬送コンベア41は、土砂供給装置10から供給された粘性土及び粉体供給装置20から供給された添加材を混合装置30に向けて搬送する。 The first transport conveyor 41 transports the clay soil supplied from the soil supplying device 10 and the additives supplied from the powder supplying device 20 toward the mixer 30.

 混合装置30は、粘性土の破砕、細粒化を行い、原料土をなだらかな粒度分布にする。また、混合装置30は、粘性土と添加材を混合して改良土とすることで、改良土の性状や強度などを調整する。 The mixer 30 crushes and refines the clay soil, giving the raw soil a gentle particle size distribution. The mixer 30 also mixes the clay soil with additives to produce improved soil, adjusting the properties and strength of the improved soil.

 混合装置30は、固定ドラム31と、回転ドラム32と、回転機構33と、回転モータ34と、ベルト35と、を備える。 The mixing device 30 includes a fixed drum 31, a rotating drum 32, a rotation mechanism 33, a rotation motor 34, and a belt 35.

 固定ドラム31は、円筒状の容器である。固定ドラム31には、投入口部材36を介して第1搬送コンベア41から粘性土や添加材が投入され、固定ドラム31の下側(-Z側)に設けられた回転ドラム32内に原料土や添加材を導く。 The fixed drum 31 is a cylindrical container. Clay soil and additives are fed into the fixed drum 31 from the first transport conveyor 41 via the inlet member 36, and the raw soil and additives are guided into the rotating drum 32 provided below the fixed drum 31 (-Z side).

 回転ドラム32は、円筒状の容器であり、円筒の中心軸回り(Z軸回り)に、不図示の回転ドラム駆動用モータにより回転(自転)する。回転ドラム32の内側には、Z軸方向に伸び、固定ドラム31に上端側が固定された不図示の掻取棒(スクレーパ)が設けられている。不図示の掻取棒は、回転ドラム32の内周面に接しているため、回転ドラム32が回転することにより、回転ドラム32の内周面に付着した粘性土等を不図示の掻取棒によって掻き取ることができる。 The rotating drum 32 is a cylindrical container that rotates (spins) around the central axis of the cylinder (around the Z-axis) by a rotating drum drive motor (not shown). A scraping bar (scraper) (not shown) is provided inside the rotating drum 32, extending in the Z-axis direction and with its upper end fixed to the fixed drum 31. The scraping bar (not shown) is in contact with the inner circumferential surface of the rotating drum 32, so that as the rotating drum 32 rotates, clayey soil and the like adhering to the inner circumferential surface of the rotating drum 32 can be scraped off by the scraping bar (not shown).

 回転機構33は、鉛直方向(Z軸方向)に延びる回転軸と、回転軸に上下2段に設けられたインパクト部材と、を有する。なお、回転軸は片持ち支持されており、回転軸の下端部は自由端となっている。回転軸は、ベルト35を介して回転モータ34と接続されており、回転軸がZ軸回りに回転することで、インパクト部材によって粘性土の破砕、細粒化が行われ、粘性土と添加材の混合が行われる。なお、回転軸の回転方向と回転ドラム32の回転方向は、同じ方向でもよく逆方向でもよい。 The rotation mechanism 33 has a rotating shaft that extends vertically (Z-axis direction) and impact members that are provided on the rotating shaft in two stages, one above the other. The rotating shaft is supported as a cantilever, with the lower end of the rotating shaft being a free end. The rotating shaft is connected to a rotary motor 34 via a belt 35, and as the rotating shaft rotates around the Z-axis, the impact members crush and refine the clayey soil, and mix the clayey soil with additives. The rotating direction of the rotating shaft and the rotating drum 32 may be the same or opposite.

 混合装置30内で破砕・混合されることにより生成された改良土は、回転ドラム32から下方に落下し、第2搬送コンベア42上に供給される。第2搬送コンベア42は、混合装置30から供給された改良土を混合装置30から離れた位置まで搬送し、排出する。改良土は、例えば工作物の埋戻し、建築物の埋戻し、土木構造物の裏込め、河川築堤用盛土、道路用盛土、土地造成用盛土、鉄道盛土、空港盛土、水面埋立等の用途として用いられる。 The improved soil produced by crushing and mixing in the mixer 30 falls downward from the rotating drum 32 and is supplied onto the second transport conveyor 42. The second transport conveyor 42 transports the improved soil supplied from the mixer 30 to a position away from the mixer 30 and discharges it. The improved soil is used for purposes such as backfilling of structures, backfilling of buildings, backfilling of civil engineering structures, embankments for river embankments, embankments for roads, embankments for land development, railway embankments, airport embankments, and water surface reclamation.

 なお、自走型回転式破砕混合機100は、不図示の発電機を有する。発電機は、自走型回転式破砕混合機100が有する各装置の電源として用いられる。 The self-propelled rotary crusher/mixer 100 has a generator (not shown). The generator is used as a power source for each device of the self-propelled rotary crusher/mixer 100.

(土砂供給装置10の詳細について)
 以下、土砂供給装置10について、詳細に説明する。
(Details of the soil supplying device 10)
The soil supplying device 10 will be described in detail below.

 図2(a)には、土砂供給装置10を側方(-Y方向)から見た状態が示され、図2(b)には、土砂供給装置10を上方(+Z方向)から見た状態が示されている。また、図3(a)には、図2(a)のA-A線断面図が示され、図3(b)には、図2(a)のB-B線断面図が示されている。 FIG. 2(a) shows the soil supplying device 10 as viewed from the side (-Y direction), and FIG. 2(b) shows the soil supplying device 10 as viewed from above (+Z direction). FIG. 3(a) shows a cross-sectional view taken along line A-A in FIG. 2(a), and FIG. 3(b) shows a cross-sectional view taken along line B-B in FIG. 2(a).

 土砂供給装置10は、図2(a)、図2(b)、図3(a)に示すように、ホッパ11と、筐体12と、一対の破砕ロール(第1、第2ロール)13A,13Bと、モータ(回転駆動部)14A,14Bと、チェーン15A,15Bと、を備える。 As shown in Figures 2(a), 2(b), and 3(a), the soil supplying device 10 includes a hopper 11, a housing 12, a pair of crushing rolls (first and second rolls) 13A and 13B, motors (rotational drive units) 14A and 14B, and chains 15A and 15B.

 ホッパ11は、上方から供給される粘性土を受け入れ、筐体12内に導くものである。 The hopper 11 receives the clayey soil supplied from above and guides it into the housing 12.

 筐体12は、一対の破砕ロール13A,13Bを内部に収容している。筐体12は、図3(a)、図3(b)に示すようにホッパ状となっており、図2(b)においてハッチングを付して示す下部開口12aから粘性土を排出する。 The housing 12 houses a pair of crushing rolls 13A, 13B inside. As shown in Figures 3(a) and 3(b), the housing 12 is hopper-shaped, and discharges clay from a lower opening 12a shown hatched in Figure 2(b).

 一対の破砕ロール13A,13Bは、図2(b)に示すように、Y軸方向に所定間隔をあけた状態で設けられている。 The pair of crushing rolls 13A, 13B are arranged at a predetermined distance in the Y-axis direction, as shown in FIG. 2(b).

 一方の破砕ロール13Aは、図2(b)に示すように、円柱状の軸部132Aと、軸部132Aよりも径が大きい円柱状の本体部133Aと、本体部133Aに設けられた複数の破砕歯134Aと、を備える。軸部132Aは、筐体12を貫通した状態となっており、一端部(+X側の端部)が図2(a)の保持機構16により保持され、他端部(-X側の端部)が保持機構17により保持されている。軸部132Aの一端部(+X側の端部)近傍には、スプロケット18Aが設けられている。複数の破砕歯134Aは、本体部133Aの周面から放射方向に突出した状態となっている。 As shown in FIG. 2(b), one of the crushing rolls 13A has a cylindrical shaft portion 132A, a cylindrical main body portion 133A having a larger diameter than the shaft portion 132A, and a plurality of crushing teeth 134A provided on the main body portion 133A. The shaft portion 132A penetrates the housing 12, with one end (the end on the +X side) held by the holding mechanism 16 in FIG. 2(a) and the other end (the end on the -X side) held by the holding mechanism 17. A sprocket 18A is provided near one end (the end on the +X side) of the shaft portion 132A. The plurality of crushing teeth 134A protrude radially from the circumferential surface of the main body portion 133A.

 他方の破砕ロール13Bも破砕ロール13Aと同様の構成を有している。すなわち、破砕ロール13Bは、軸部132Bと、本体部133Bと、複数の破砕歯134Bと、を備える。軸部132Bは、軸部132Aと同様、一端部(+X側の端部)が保持機構16により保持され、他端部(-X側の端部)が保持機構17により保持されている。軸部132Bの一端部(+X側の端部)近傍には、スプロケット18B(図3(a)参照)が設けられている。 The other crushing roll 13B has the same configuration as the crushing roll 13A. That is, the crushing roll 13B has a shaft portion 132B, a main body portion 133B, and a plurality of crushing teeth 134B. Like the shaft portion 132A, one end (the end on the +X side) of the shaft portion 132B is held by a holding mechanism 16, and the other end (the end on the -X side) is held by a holding mechanism 17. A sprocket 18B (see FIG. 3(a)) is provided near one end (the end on the +X side) of the shaft portion 132B.

 モータ14Aは、図3(a)及び図2(a)に示すように、X軸方向に延びる回転軸141Aを有し、回転軸141Aには、スプロケット19Aが設けられている。スプロケット19Aと、破砕ロール13Aの軸部132Aに設けられたスプロケット18Aには、チェーン15Aが掛けられている。これにより、モータ14Aの回転力が破砕ロール13Aに伝達するようになっている。 As shown in Fig. 3(a) and Fig. 2(a), the motor 14A has a rotating shaft 141A extending in the X-axis direction, and a sprocket 19A is provided on the rotating shaft 141A. A chain 15A is hung between the sprocket 19A and a sprocket 18A provided on the shaft portion 132A of the crushing roll 13A. This allows the rotational force of the motor 14A to be transmitted to the crushing roll 13A.

 モータ14Bは、図3(a)に示すように、X軸方向に延びる回転軸141Bを有し、回転軸141Bには、スプロケット19Bが設けられている。スプロケット19Bと、破砕ロール13Bの軸部132Bに設けられたスプロケット18Bには、チェーン15Bが掛けられている。これにより、モータ14Aの回転力が破砕ロール13Aに伝達するようになっている。なお、チェーン15Bは、スプロケット19Bの近傍に設けられたチェーンテンショナとして機能するスプロケット21にも掛けられている。 As shown in FIG. 3(a), the motor 14B has a rotating shaft 141B extending in the X-axis direction, and a sprocket 19B is provided on the rotating shaft 141B. A chain 15B is hung between the sprocket 19B and a sprocket 18B provided on the shaft portion 132B of the crushing roll 13B. This allows the rotational force of the motor 14A to be transmitted to the crushing roll 13A. The chain 15B is also hung on a sprocket 21 that functions as a chain tensioner and is provided near the sprocket 19B.

 図4(a)は、図3(a)の保持機構16を取り出して拡大して示す図である。図4(a)に示すように、保持機構16は、天板部161と、底板部162と、側板部163A,163Bと、第1変更部としての第1軸部ホルダ65Aと、第2軸部ホルダ65Bと、を有する。天板部161、底板部162、及び側板部163A,163Bにより枠体が形成されている。 Fig. 4(a) is an enlarged view of the holding mechanism 16 of Fig. 3(a). As shown in Fig. 4(a), the holding mechanism 16 has a top plate portion 161, a bottom plate portion 162, side plate portions 163A and 163B, and a first shaft holder 65A and a second shaft holder 65B as first modified portions. A frame body is formed by the top plate portion 161, the bottom plate portion 162, and the side plate portions 163A and 163B.

 第1軸部ホルダ65Aは、ガイド部材としての固定部63Aと、軸保持部61Aと、弾性部材としての皿バネ62Aと、を有する。 The first shaft holder 65A has a fixed portion 63A as a guide member, a shaft holding portion 61A, and a disc spring 62A as an elastic member.

 固定部63Aは、図4(a)の左側のグレーに塗られた部分であり、側板部163Aに固定された状態となっている。 The fixed portion 63A is the part painted gray on the left side of Figure 4(a) and is fixed to the side plate portion 163A.

 軸保持部61Aは、破砕ロール13Aの軸部132Aをベアリングを介して軸支する部材であり、固定部63Aに対してY軸方向にスライド可能に設けられている。 The shaft holding part 61A is a member that supports the shaft part 132A of the crushing roll 13A via a bearing, and is arranged to be slidable in the Y-axis direction relative to the fixed part 63A.

 皿バネ62Aは、固定部63Aに設けられており、軸保持部61Aに対して+Y方向の力(図4(a)の矢印C参照)を常時付勢している。これにより、破砕ロール13Aに-Y方向の負荷が所定以上かかるまでは、軸保持部61Aを図4(a)の状態に維持する。このときの軸部132A,132Bの中心間距離はH1であるものとする。一方、破砕ロール13Aに-Y方向の負荷が所定以上かかると、皿バネ62Aの付勢力に抗して、軸保持部61Aが固定部63Aにガイドされて-Y方向(図4(b)の矢印D)に移動するようになっている。このとき、軸部132A,132Bの中心間距離はH2(>H1)となる。なお、図4(b)の状態から、破砕ロール13Aにかかる-Y方向の負荷が低減すると、皿バネ62Aの付勢力により、図4(a)の状態に戻りはじめる。 The coned disc spring 62A is provided on the fixed portion 63A and constantly applies a force in the +Y direction (see arrow C in Figure 4(a)) to the shaft holding portion 61A. This maintains the shaft holding portion 61A in the state shown in Figure 4(a) until a predetermined or greater load in the -Y direction is applied to the crushing roll 13A. The center-to-center distance between the shaft portions 132A and 132B at this time is H1. On the other hand, when a predetermined or greater load is applied to the crushing roll 13A in the -Y direction, the shaft holding portion 61A is guided by the fixed portion 63A and moves in the -Y direction (arrow D in Figure 4(b)) against the biasing force of the coned disc spring 62A. At this time, the center-to-center distance between the shaft portions 132A and 132B becomes H2 (>H1). Furthermore, when the load in the -Y direction applied to the crushing roll 13A is reduced from the state shown in FIG. 4(b), the biasing force of the disc spring 62A causes the roll to begin to return to the state shown in FIG. 4(a).

 第2軸部ホルダ65Bは、図4(a)に示すように、ボルト部63Bと、軸保持部61Bと、ナット部64Bと、を有する。 As shown in FIG. 4(a), the second shaft holder 65B has a bolt portion 63B, a shaft holding portion 61B, and a nut portion 64B.

 ボルト部63Bは、図4(a)の右側のグレーに塗られた部分であり、ねじ溝が形成された棒部66Bと、棒部66Bの-Y側端部に設けられた板状の円盤部67Bと、を有している。棒部66Bは、側板部163BをY軸方向に貫通し、かつ螺合している。また、棒部66Bは、後述する円盤保持部68BをY軸方向に貫通している。 The bolt portion 63B is the part painted gray on the right side of Figure 4(a) and has a rod portion 66B with a screw groove formed therein and a plate-shaped disk portion 67B provided at the -Y side end of the rod portion 66B. The rod portion 66B penetrates the side plate portion 163B in the Y-axis direction and is screwed into it. The rod portion 66B also penetrates the disk holding portion 68B (described later) in the Y-axis direction.

 軸保持部61Bは、破砕ロール13Bの軸部132Bをベアリングを介して軸支する部材である。軸保持部61Bは、+Y側端部に円盤部67Bを保持する円盤保持部68Bを有している。円盤保持部68Bは、Y軸周り回転自由に円盤部6Bを保持し、かつ、軸保持部61Bとボルト部63BとのY軸方向の位置関係が変化しないように円盤部6Bを保持している。 The shaft holder 61B is a member that supports the shaft 132B of the crushing roll 13B via a bearing. The shaft holder 61B has a disk holder 68B that holds the disk 67B at the +Y end. The disk holder 68B holds the disk 67B so that it can rotate freely around the Y axis, and holds the disk 67B so that the positional relationship between the shaft holder 61B and the bolt 63B in the Y axis direction does not change.

 ナット部64Bは、側板部163Bの+Y側からボルト部63Bに螺合している。ナット部64Bを+Y方向から見て左回りに回転し緩ませると、ボルト部63BはY軸周りに回転自由な状態となる。次にボルト部63Bの+Y側端部を+Y方向から見て左回りに回転させると、図5の矢印E方向にボルト部63B及び軸保持部61Bが移動する。また、ボルト部63Bの+Y側端部を+Y方向から見て右回りに回転させると、図5の矢印E方向とは反対方向にボルト部63B及び軸保持部61Bが移動する。続いて、ナット部64Bを+Y方向から見て右回りに回転し締め付けると、ボルト部63BはY軸周りの回転が拘束され、軸保持部61Bの位置が固定される。したがって、ボルト部63Bを回転させることで、図5に示す軸部132A,132Bの中心間距離H3を変更することができる。 The nut portion 64B is screwed onto the bolt portion 63B from the +Y side of the side plate portion 163B. When the nut portion 64B is rotated counterclockwise as viewed from the +Y direction to loosen it, the bolt portion 63B is free to rotate around the Y axis. Next, when the +Y side end of the bolt portion 63B is rotated counterclockwise as viewed from the +Y direction, the bolt portion 63B and the shaft holding portion 61B move in the direction of the arrow E in FIG. 5. Also, when the +Y side end of the bolt portion 63B is rotated clockwise as viewed from the +Y direction, the bolt portion 63B and the shaft holding portion 61B move in the opposite direction to the direction of the arrow E in FIG. 5. Next, when the nut portion 64B is rotated clockwise as viewed from the +Y direction to tighten it, the bolt portion 63B is restricted from rotating around the Y axis and the position of the shaft holding portion 61B is fixed. Therefore, by rotating the bolt portion 63B, the center-to-center distance H3 of the shaft portions 132A and 132B shown in FIG. 5 can be changed.

 図6は、図3(b)の保持機構17を取り出して拡大して示す図である。図6に示すように、保持機構17は、天板部171と、底板部172と、側板部173A,173Bと、第1軸部ホルダ75Aと、第2軸部ホルダ75Bと、を有する。天板部171、底板部172、及び側板部173A,173Bにより枠体が形成されている。 Figure 6 is an enlarged view of the holding mechanism 17 of Figure 3(b). As shown in Figure 6, the holding mechanism 17 has a top plate portion 171, a bottom plate portion 172, side plate portions 173A and 173B, a first shaft holder 75A, and a second shaft holder 75B. A frame is formed by the top plate portion 171, the bottom plate portion 172, and the side plate portions 173A and 173B.

 第1軸部ホルダ75Aは、ガイド部材としての固定部73Aと、軸保持部71Aと、弾性部材としての皿バネ72Aと、を有する。なお、第1軸部ホルダ75Aの各部の機能は、前述した第1軸部ホルダ65Aと同様である。 The first shaft holder 75A has a fixed portion 73A as a guide member, a shaft holding portion 71A, and a disc spring 72A as an elastic member. The functions of each portion of the first shaft holder 75A are the same as those of the first shaft holder 65A described above.

 第2軸部ホルダ75Bは、ボルト部73Bと、軸保持部71Bと、ナット部74Bと、を有する。なお、第2軸部ホルダ75Bの各部の機能は、前述した第2軸部ホルダ65Bと同様である。なお、前述のように、第2軸部ホルダ65Bの軸保持部61BをY軸方向に移動させる際には、第2軸部ホルダ75Bの軸保持部71Bについても軸保持部61Bと同一距離だけY軸方向に移動させる必要がある。なお、第2軸部ホルダ65Bの軸保持部61BがY軸方向に移動するのと連動して、第2軸部ホルダ75Bの軸保持部71Bが軸保持部61Bと同一距離だけY軸方向に移動するように、第2軸部ホルダ75Bのナット部74Bを省略し、ボルト部73Bのねじ溝を省略することとしてもよい。 The second shaft holder 75B has a bolt portion 73B, a shaft holding portion 71B, and a nut portion 74B. The functions of the respective portions of the second shaft holder 75B are the same as those of the second shaft holder 65B described above. As described above, when moving the shaft holding portion 61B of the second shaft holder 65B in the Y-axis direction, the shaft holding portion 71B of the second shaft holder 75B must also be moved in the Y-axis direction the same distance as the shaft holding portion 61B. The nut portion 74B of the second shaft holder 75B and the thread groove of the bolt portion 73B may be omitted so that the shaft holding portion 71B of the second shaft holder 75B moves in the Y-axis direction the same distance as the shaft holding portion 61B in conjunction with the movement of the shaft holding portion 61B of the second shaft holder 65B in the Y-axis direction.

 ここで、図5に示すように一対の破砕ロール13A,13Bの間隔を広げた場合、図3(a)に示すスプロケット18Bとスプロケット19Bとの間隔が狭くなるため、チェーン15Bが緩んでしまう。これを避けるため、本実施形態では、前述したスプロケット21を土砂供給装置10に設けることとしている。すなわち、本実施形態では、図7に示すように、スプロケット21の位置を図3(a)の位置から変更することで、チェーン15Bにテンションがかかるようにしている。 Here, if the distance between the pair of crushing rolls 13A, 13B is widened as shown in FIG. 5, the distance between sprocket 18B and sprocket 19B shown in FIG. 3(a) will become narrower, causing the chain 15B to become loose. To avoid this, in this embodiment, the aforementioned sprocket 21 is provided on the soil supplying device 10. That is, in this embodiment, as shown in FIG. 7, the position of the sprocket 21 is changed from the position shown in FIG. 3(a) so that tension is applied to the chain 15B.

 図8(a)には、スプロケット21近傍を-X方向から見た状態が斜視図にて示されている。また、図8(b)には、図8(a)のスプロケット21近傍を矢印J方向から見た状態が示されている。 Figure 8(a) shows an oblique view of the area near the sprocket 21 as seen from the -X direction. Figure 8(b) shows the area near the sprocket 21 in Figure 8(a) as seen from the direction of the arrow J.

 図8(a)に示すように、スプロケット21は、筐体12に設けられた取り付け金具80に対し、スライド機構82を介して設けられている。スライド機構82は、図8(b)に示すように、取り付け金具80に対して、軸回りの回転が可能な状態で設けられたボルト部83と、ボルト部83に螺合しているナット部84と、を有する。 As shown in FIG. 8(a), the sprocket 21 is attached to a mounting bracket 80 attached to the housing 12 via a slide mechanism 82. As shown in FIG. 8(b), the slide mechanism 82 has a bolt portion 83 that is attached to the mounting bracket 80 in a state that allows it to rotate around its axis, and a nut portion 84 that is screwed into the bolt portion 83.

 ボルト部83には、ねじ溝が形成されている。ボルト部83の長手方向は、取り付け金具80に形成された長孔80aの長手方向と一致している。ナット部84の+X側には、スプロケット21が回転可能に設けられている。また、ナット部84の-X側には、長孔80aに係合する円柱状の突起部85が設けられている。突起部85には、ねじ溝が形成されており、突起部85に対して、取り付け金具80の-X側から固定ナット86が螺合した状態となっている。 The bolt portion 83 has a threaded groove. The longitudinal direction of the bolt portion 83 coincides with the longitudinal direction of the long hole 80a formed in the mounting bracket 80. The sprocket 21 is rotatably mounted on the +X side of the nut portion 84. In addition, a cylindrical protrusion 85 that engages with the long hole 80a is provided on the -X side of the nut portion 84. A threaded groove is formed in the protrusion 85, and a fixing nut 86 is screwed onto the protrusion 85 from the -X side of the mounting bracket 80.

 固定ナット86が絞められた状態では、スプロケット21の位置が固定される。一方、固定ナット86を緩めた場合、ボルト部83をインパクトドライバ等で回転させることにより、ナット部84(及びスプロケット21)を長孔80aに沿って移動させることができる。このように、スプロケット21の位置を長孔80aに沿って変更できるため、スプロケット18Bがどこにあっても、チェーン15Bにテンションを掛けることが可能となっている。 When the fixing nut 86 is tightened, the position of the sprocket 21 is fixed. On the other hand, when the fixing nut 86 is loosened, the nut portion 84 (and the sprocket 21) can be moved along the long hole 80a by rotating the bolt portion 83 with an impact driver or the like. In this way, the position of the sprocket 21 can be changed along the long hole 80a, so it is possible to apply tension to the chain 15B no matter where the sprocket 18B is located.

 なお、ボルト部83に電動回転機構を設け、電動回転機構によりボルト部83を回転させるようにしてもよい。この場合、電動回転機構は、自動で、ボルト部83を回転するようにしてもよい。例えば、電動回転機構は、チェーン15Bにテンションがかかっていない状態からボルト部83を回転し、チェーン15Bにテンションがかかった段階(ボルト部83を回転させるのに所定以上の力を要するようになった段階)で、ボルト部83の回転を停止するようにしてもよい。 In addition, an electric rotation mechanism may be provided in the bolt portion 83, and the bolt portion 83 may be rotated by the electric rotation mechanism. In this case, the electric rotation mechanism may rotate the bolt portion 83 automatically. For example, the electric rotation mechanism may rotate the bolt portion 83 from a state in which no tension is applied to the chain 15B, and stop the rotation of the bolt portion 83 when tension is applied to the chain 15B (when a force greater than a predetermined value is required to rotate the bolt portion 83).

 図9には、土砂供給装置10の制御系がブロック図にて示されている。図9に示すように、土砂供給装置10は、制御部(第1制御部、第2制御部)90と、電流検出部としての電流計92と、通信部94と、モータドライバ96A,96Bと、を備える。 FIG. 9 shows a block diagram of the control system of the soil supplying device 10. As shown in FIG. 9, the soil supplying device 10 includes a control unit (first control unit, second control unit) 90, an ammeter 92 as a current detection unit, a communication unit 94, and motor drivers 96A and 96B.

 電流計92は、モータ14Aの電流値を検出する。通信部94は、外部装置(例えば混合装置30)と通信し、外部装置の状態(例えば処理量など)を取得し、制御部90に通知する。また、通信部94は、土砂供給装置10が停止した場合に、制御部90から出される外部装置の処理に関する変更指示を、外部装置に送信する。なお、モータ14Bの電流値を検出するための電流計92とは異なる電流計を備えても良い。 The ammeter 92 detects the current value of the motor 14A. The communication unit 94 communicates with an external device (e.g., the mixing device 30), acquires the status of the external device (e.g., the processing volume, etc.), and notifies the control unit 90. Furthermore, when the soil supplying device 10 stops, the communication unit 94 transmits to the external device a change instruction issued from the control unit 90 regarding the processing of the external device. Note that an ammeter different from the ammeter 92 for detecting the current value of the motor 14B may be provided.

 モータドライバ96A,96Bは、制御部90の指示の下、モータ14A,14Bに電流を供給する。制御部90は、電流計92により検出されるモータ14Aの電流値や、通信部94によって取得された外部装置の状態に基づいて、モータドライバ96A,96Bを制御する。例えば、制御部90は、電流計92の検出値からモータ14Aの負荷を特定し、過負荷と判断した場合に、モータドライバ96A,96Bにモータ14A,14Bの停止を指示する。また、制御部90は、モータ14Bの電流値を検出する電流計92とは異なる電流計の検出値からモータ14Bの負荷を特定し、過負荷と判断した場合に、モータドライバ96A,96Bにモータ14A、モータ14Bの停止を指示しても良い。なお、モータ14Aの電流値検出と電流供給には、電流計92とモータドライバAとが一体となって構成された制御機器である公知のインバータを用いても良く、モータ14Bについても同様に公知のインバータを用いても良い。また、制御部90は、混合装置30の処理量が多い場合に、混合装置30の処理量を減らすため、破砕ロール13A,13Bの回転速度が遅くなるように、モータドライバ96A、96Bに指示を出す。逆に、混合装置30の処理量が少ない場合には、制御部90は、混合装置30の処理量を増やすため、破砕ロール13A,13Bの回転速度を速くするようにモータドライバ96A、96Bに指示を出す。なお、制御部90は、混合装置30の処理量が多いか少ないかは、回転モータ34の電流値を検出する電流計の検出値などに基づいて判断することができる。 The motor drivers 96A and 96B supply current to the motors 14A and 14B under the control of the control unit 90. The control unit 90 controls the motor drivers 96A and 96B based on the current value of the motor 14A detected by the ammeter 92 and the state of the external device acquired by the communication unit 94. For example, the control unit 90 identifies the load of the motor 14A from the detection value of the ammeter 92, and if it is determined that the load is overloaded, it instructs the motor drivers 96A and 96B to stop the motors 14A and 14B. The control unit 90 may also identify the load of the motor 14B from the detection value of an ammeter other than the ammeter 92 that detects the current value of the motor 14B, and if it is determined that the load is overloaded, it may instruct the motor drivers 96A and 96B to stop the motors 14A and 14B. Note that a known inverter, which is a control device formed by integrating the ammeter 92 and the motor driver A, may be used to detect the current value of the motor 14A and supply current, and a known inverter may also be used for the motor 14B. In addition, when the processing volume of the mixer 30 is large, the control unit 90 instructs the motor drivers 96A and 96B to slow down the rotation speed of the crushing rolls 13A and 13B in order to reduce the processing volume of the mixer 30. Conversely, when the processing volume of the mixer 30 is small, the control unit 90 instructs the motor drivers 96A and 96B to increase the rotation speed of the crushing rolls 13A and 13B in order to increase the processing volume of the mixer 30. The control unit 90 can determine whether the processing volume of the mixer 30 is large or small based on the detection value of an ammeter that detects the current value of the rotary motor 34.

(土砂供給装置10の動作について)
 以下、土砂供給装置10の動作について説明する。図10(a)~図10(d)には、破砕ロール13A,13Bを+X方向から見た状態が模式的に示されている。
(Operation of the soil supplying device 10)
The following is a description of the operation of the soil supplying device 10. Figures 10(a) to 10(d) are schematic diagrams showing the crushing rolls 13A and 13B as viewed from the +X direction.

 本実施形態においては、準備段階において、図5のナット部64B及び図6のナット部74Bを回転させて、破砕ロール13A,13B間の間隔が適切な間隔となるように調整しておく。なお、適切な間隔は、粘性土の性状等に基づいて決定することができる。また、チェーン15Bにテンションがかかるように、スプロケット21の位置を調整しておく。 In this embodiment, in the preparation stage, the nut portion 64B in FIG. 5 and the nut portion 74B in FIG. 6 are rotated to adjust the distance between the crushing rolls 13A, 13B to an appropriate distance. The appropriate distance can be determined based on the properties of the clayey soil, etc. Also, the position of the sprocket 21 is adjusted so that tension is applied to the chain 15B.

 この状態で、図10(a)に示すように、モータ14A、14Bを回転させることで、破砕ロール13A,13Bを矢印方向(正逆方向)に回転させる。このように破砕ロール13A,13Bが回転した状態で、粘性土が上方から投入される。投入された粘性土に異物が含まれていなければ、破砕ロール13A,13Bは、粘性土を破砕しながら、下方(第1搬送コンベア41上)に送ることができる。 In this state, as shown in FIG. 10(a), the motors 14A and 14B are rotated to rotate the crushing rolls 13A and 13B in the direction of the arrows (forward and reverse directions). With the crushing rolls 13A and 13B rotating in this manner, clayey soil is poured in from above. If the poured clayey soil does not contain any foreign matter, the crushing rolls 13A and 13B can send it downward (onto the first transport conveyor 41) while crushing it.

 これに対し、図10(b)に示すように、粘性土に異物が含まれている場合には、異物が破砕ロール13A,13B(破砕歯134A,134B)に挟まれ、破砕ロール13A,13Bに負荷がかかるおそれがある。本実施形態では、破砕ロール13A,13Bに負荷がかかっても、図10(c)に示すように破砕ロール13Aが-Y方向に移動できるようになっている。これにより、破砕ロール13A,13B間の間隔が広くなるため、異物が下方に送られやすくなる。なお、異物が下方に送られれば、破砕ロール13Aにかかる負荷が小さくなるので、破砕ロール13Aは、皿バネ62A,72Aの付勢力により、+Y方向に移動する(元の位置に戻る)。 In contrast, as shown in FIG. 10(b), if the clay soil contains foreign matter, the foreign matter may be pinched between the crushing rolls 13A and 13B (crushing teeth 134A and 134B), causing a load to be applied to the crushing rolls 13A and 13B. In this embodiment, even if a load is applied to the crushing rolls 13A and 13B, the crushing roll 13A can move in the -Y direction as shown in FIG. 10(c). This widens the gap between the crushing rolls 13A and 13B, making it easier for the foreign matter to be sent downward. If the foreign matter is sent downward, the load on the crushing roll 13A will be reduced, and the crushing roll 13A will move in the +Y direction (return to its original position) due to the biasing force of the disc springs 62A and 72A.

 一方、破砕ロール13A,13B間の間隔が広くなっても、異物が下方に送られないこともあるが、本実施形態では、このような場合でも、皿バネ62A,72Aの作用により、破砕ロール13A,13Bに関連する機械部品の破損を低減することができる。なお、本実施形態では、制御部90は、モータ14Aの電流値を電流計92で検出し、負荷が予め定めた閾値に達した段階(過負荷になった段階)で、モータドライバ96A,96Bに指示を出し、モータ14A、14Bへの電流の供給を停止することとしている。 On the other hand, even if the gap between the crushing rolls 13A, 13B becomes wider, foreign objects may not be sent downward. However, in this embodiment, even in such a case, the action of the disc springs 62A, 72A can reduce damage to mechanical parts related to the crushing rolls 13A, 13B. In this embodiment, the control unit 90 detects the current value of the motor 14A with an ammeter 92, and when the load reaches a predetermined threshold (overload), it issues an instruction to the motor drivers 96A, 96B to stop the supply of current to the motors 14A, 14B.

 図11は、本実施形態のように皿バネ62A,72Aを設ける場合と、皿バネ62A,72Aを設けない場合(比較例)とにおいて、破砕ロール13A,13B間に異物が挟まった場合に、荷重がどのように変化するかを示すグラフである。 FIG. 11 is a graph showing how the load changes when a foreign object is caught between the crushing rolls 13A and 13B in the case where the disc springs 62A and 72A are provided as in this embodiment and in the case where the disc springs 62A and 72A are not provided (comparative example).

 皿バネ62A,72Aを設けない場合(比較例)においては、図11に示すように、過負荷を検出してから、破砕ロール13A,13Bを停止させるまでの間に、破砕ロール13A,13Bに係る負荷が機械部品破損荷重に達してしまうため、機械部品が破損するおそれがある。一方、本実施形態では、皿バネ62A,72Aを設けることで、破砕ロール13A,13Bにかかる負荷の上昇カーブを比較例よりも緩やかにすることができる。これにより、破砕ロール13A,13Bにかかる負荷が機械部品破損荷重に達する前に、破砕ロール13A,13Bを停止させることができる。すなわち、皿バネ62A,72Aを設けることにより、機械部品の長寿命化を図ることが可能となる。 When the coned disc springs 62A, 72A are not provided (comparative example), as shown in FIG. 11, the load on the crushing rolls 13A, 13B reaches the mechanical component damage load between the detection of an overload and the stopping of the crushing rolls 13A, 13B, and there is a risk of the mechanical components being damaged. On the other hand, in this embodiment, by providing the coned disc springs 62A, 72A, the rising curve of the load on the crushing rolls 13A, 13B can be made more gentle than in the comparative example. As a result, the crushing rolls 13A, 13B can be stopped before the load on the crushing rolls 13A, 13B reaches the mechanical component damage load. In other words, by providing the coned disc springs 62A, 72A, it is possible to extend the life of the mechanical components.

 なお、モータ14A,14Bが停止した場合、作業者は、図12に示すように、第2軸部ホルダ65Bのボルト部63Bを回転させ、破砕ロール13Bを+Y方向(矢印E方向)に移動させることで、破砕ロール13A,13B間の間隔Hを広くすればよい。これにより、破砕ロール13A,13Bの上側に溜まった粘性土を取り除かなくても、モータ14A,14Bの停止の原因となった異物を下側から取り除くことができる。なお、ボルト部63Bに電動回転機構を設け、電動回転機構によりボルト部63Bを回転させるようにしてもよい。 When the motors 14A, 14B stop, the operator can rotate the bolt portion 63B of the second shaft holder 65B as shown in FIG. 12, and move the crushing roll 13B in the +Y direction (the direction of the arrow E) to widen the gap H between the crushing rolls 13A, 13B. This makes it possible to remove the foreign matter that caused the motors 14A, 14B to stop from below, without having to remove the clay that has accumulated on the upper side of the crushing rolls 13A, 13B. An electric rotation mechanism may be provided on the bolt portion 63B, and the bolt portion 63B may be rotated by the electric rotation mechanism.

 なお、制御部90は、モータ14A,14Bが停止した段階で、混合装置30に対して、処理を停止する指示や、処理量を低減する指示を、通信部94を介して出力する。また、制御部90は、第1搬送コンベア41に対し、搬送停止を指示する。これにより、土砂供給装置10から粘性土が供給されないときに、混合装置30や第1搬送コンベア41が無駄に稼働するのを抑制することができる。なお、制御部90は、混合装置30や第1搬送コンベア41等に対して直接指示しなくてもよく、自走型回転式破砕混合機100全体を統括制御する中央制御部に上述した指示を出すようにしてもよい。 When motors 14A and 14B stop, control unit 90 outputs instructions to mixer 30 to stop processing or reduce the processing volume via communication unit 94. Control unit 90 also instructs first transport conveyor 41 to stop transport. This makes it possible to prevent the mixer 30 and first transport conveyor 41 from operating unnecessarily when clayey soil is not being supplied from soil supplying device 10. Control unit 90 does not need to issue instructions directly to mixer 30, first transport conveyor 41, etc., and may issue the above-mentioned instructions to a central control unit that controls the entire self-propelled rotary crusher mixer 100.

 以上、詳細に説明したように、本実施形態によると、土砂供給装置10は、上方から粘性土を受け入れる筐体12と、筐体12内に所定間隔で設けられ、モータ14A,14Bにより回転することにより、受け入れた粘性土を下方に送り出す破砕ロール13A,13Bとを備える。そして、土砂供給装置10は、受け入れた粘性土による負荷に応じて破砕ロール13A,13Bの間隔を大きくするように変更する第1軸部ホルダ65A、75Aを備えている。これにより、負荷に応じて破砕ロール13A,13Bの間隔が大きくなることで、モータ14A,14Bに急激な負荷がかかるのを抑制することができる(図11参照)。また、負荷に応じて破砕ロール13A,13Bの間隔が大きくなることで、負荷の原因となっている異物が下方に送られる可能性を高めることができる。 As described above in detail, according to this embodiment, the soil supplying device 10 includes a housing 12 that receives clay from above, and crushing rolls 13A, 13B that are provided at a predetermined interval within the housing 12 and rotated by motors 14A, 14B to send the received clay downward. The soil supplying device 10 also includes first shaft holders 65A, 75A that change the spacing between the crushing rolls 13A, 13B to increase in accordance with the load of the received clay. This increases the spacing between the crushing rolls 13A, 13B in accordance with the load, thereby preventing the motors 14A, 14B from being subjected to a sudden load (see FIG. 11). In addition, increasing the spacing between the crushing rolls 13A, 13B in accordance with the load increases the likelihood that foreign matter causing the load will be sent downward.

 また、本実施形態では、第1軸部ホルダ65A、75Aは皿バネ62A,72Aを有しており、破砕ロール13A,13Bの間隔を大きくした後、モータ14Aの負荷に応じて破砕ロール13A,13Bの間隔を小さくする。これにより、負荷がかかっていないときの破砕ロール13A,13Bの間隔を適切な間隔(予め設定した間隔)に維持することができる。 In addition, in this embodiment, the first shaft holders 65A, 75A have disc springs 62A, 72A, which increase the distance between the crushing rolls 13A, 13B and then decrease the distance between the crushing rolls 13A, 13B according to the load on the motor 14A. This allows the distance between the crushing rolls 13A, 13B to be maintained at an appropriate distance (a preset distance) when no load is applied.

 また、本実施形態では、第1軸部ホルダ65A(75A)は、破砕ロール13Aを保持する軸保持部61A(71A)と、軸保持部61A(71A)を付勢する皿バネ62A(72A)と、軸保持部61A(71A)をY軸方向にガイドする固定部63A(73A)とを有する。これにより、負荷に応じて、破砕ロール13A,13B間のY軸方向の間隔が変更されるようになっている。 In addition, in this embodiment, the first shaft holder 65A (75A) has a shaft holding portion 61A (71A) that holds the crushing roll 13A, a disc spring 62A (72A) that biases the shaft holding portion 61A (71A), and a fixing portion 63A (73A) that guides the shaft holding portion 61A (71A) in the Y-axis direction. This allows the distance between the crushing rolls 13A and 13B in the Y-axis direction to be changed depending on the load.

 また、本実施形態では、モータ14Aの電流値を検出する電流計92と、電流計92の電流値が所定の値以上となった場合に、モータ14A,14Bへの電流供給を停止する制御部90と、を備えるので、制御部90は、適切なタイミングで、モータ14A,14Bへの電流供給を停止することができる。 In addition, this embodiment includes an ammeter 92 that detects the current value of motor 14A, and a control unit 90 that stops the current supply to motors 14A and 14B when the current value of ammeter 92 reaches or exceeds a predetermined value, so that control unit 90 can stop the current supply to motors 14A and 14B at the appropriate timing.

 なお、上記実施形態では、第1軸部ホルダ65A(75A)が有する弾性部材が皿バネである場合について説明したが、これに限られるものではない。弾性部材は、例えば圧縮コイルバネや板バネ、ゴムや樹脂などでもよい。また、皿バネの枚数は適宜変更可能である。 In the above embodiment, the elastic member of the first shaft holder 65A (75A) is a disc spring, but this is not limited to this. The elastic member may be, for example, a compression coil spring, a leaf spring, rubber, or resin. The number of disc springs can be changed as appropriate.

 なお、上記実施形態では、第1軸部ホルダ65A(75A)が弾性部材を有する(軸保持部61A(71A)が負荷に応じて移動する)場合について説明したが、これに代えて又はこれとともに、第2軸部ホルダ65B(75B)が弾性部材を有している(軸保持部61B(71B)が負荷に応じて移動する)こととしてもよい。 In the above embodiment, the first shaft holder 65A (75A) has an elastic member (the shaft holding portion 61A (71A) moves in response to the load), but instead of or in addition to this, the second shaft holder 65B (75B) may have an elastic member (the shaft holding portion 61B (71B) moves in response to the load).

 なお、上記実施形態において、制御部90は、破砕ロール13A,13B間の間隔をセンサや、カメラで撮像した画像などから検出し、検出結果を表示したり、検出結果に基づいて、土砂供給装置0に投入する粘性土の量を調整するようにしてもよい。また、制御部90は、破砕ロール13A,13Bのうちの少なくとも一方の温度(例えば、軸部132A,132Bに設けられるベアリングの温度)をセンサ等を用いて検出し、検出結果を表示したり、検出結果に基づいて土砂供給装置0に投入する粘性土の量を調整するようにしてもよい。例えば、温度が所定値よりも高ければ、粘性土の投入量を減らし、モータ14A,14Bを低速回転する。このようにすることで、土砂供給装置10の状態を作業者に知らせたり、土砂供給装置10の状態に合わせて適切な制御を行うことが可能となる。 In the above embodiment, the control unit 90 may detect the interval between the crushing rolls 13A and 13B from a sensor or an image captured by a camera, display the detection result, or adjust the amount of clayey soil to be fed into the soil supplying device 10 based on the detection result. The control unit 90 may also detect the temperature of at least one of the crushing rolls 13A and 13B (for example, the temperature of the bearings provided on the shafts 132A and 132B) using a sensor or the like, display the detection result, or adjust the amount of clayey soil to be fed into the soil supplying device 10 based on the detection result. For example, if the temperature is higher than a predetermined value, the amount of clayey soil fed is reduced and the motors 14A and 14B are rotated at a low speed. In this way, it is possible to inform the operator of the state of the soil supplying device 10 and to perform appropriate control according to the state of the soil supplying device 10.

 なお、制御部90は、破砕ロール13A,13Bの間隔を広げた場合には、第1搬送コンベアに設けられた土砂計量器の値をモニタリングして、モータ14A,14Bの回転数を調整し、土砂供給装置10からの粘性土の供給量を調整するようにしてもよい。 In addition, when the distance between the crushing rolls 13A and 13B is increased, the control unit 90 may monitor the value of the soil meter provided on the first transport conveyor and adjust the rotation speed of the motors 14A and 14B to adjust the amount of clayey soil supplied from the soil supplying device 10.

 なお、制御部90又は自走型回転式破砕混合機100全体を統括制御する中央制御部は、混合装置30が低速状態または停止状態になったときに、混合装置30の内部(回転機構33が有するインパクト部材など)の摩耗状況を画像等を用いてモニタリングし、モニタリング結果に基づいて、インパクト部材などのメンテンナンス要否を判断してもよい。 In addition, the control unit 90 or the central control unit that controls the entire self-propelled rotary crushing mixer 100 may monitor the wear condition of the inside of the mixer 30 (such as the impact members of the rotation mechanism 33) using images, etc., when the mixer 30 is in a low-speed state or stopped state, and may determine whether or not maintenance is required for the impact members, etc. based on the monitoring results.

 なお、上記実施形態では、2つの破砕ロール13A,13Bを2つのモータ14A,14Bで回転させる場合について説明したが、これに限られるものではない。例えば、2つの破砕ロール13A,13Bを1つのモータで回転させることとしてもよい。この場合、一例として、図13に示すような構成を採用することができる。図13の例では、モータ14の回転軸に設けられたメインスプロケット19と、破砕ロール13Aに設けられたスプロケット18Aと、にチェーン15Cを掛ける。また、メインスプロケット19にサブスプロケット29を噛み合わせ、サブスプロケット29と、破砕ロール13Bに設けられたスプロケット18Bと、にチェーン15Dを掛ける。なお、チェーン15C,15Dが干渉しないように、サブスプロケット29は、メインスプロケット19よりも-X方向にずれた状態にし、チェーン15Cを手前側(+X側)、チェーン15Dを奥側(+X側)に設けるなどすればよい。なお、図13では、図示の便宜上、テンショナーとして機能するスプロケットの図示を省略している。 In the above embodiment, the two crushing rolls 13A and 13B are rotated by two motors 14A and 14B, but the present invention is not limited to this. For example, the two crushing rolls 13A and 13B may be rotated by one motor. In this case, the configuration shown in FIG. 13 can be used as an example. In the example of FIG. 13, a chain 15C is hung on a main sprocket 19 provided on the rotating shaft of the motor 14 and a sprocket 18A provided on the crushing roll 13A. A sub sprocket 29 is meshed with the main sprocket 19, and a chain 15D is hung on the sub sprocket 29 and a sprocket 18B provided on the crushing roll 13B. In order to prevent interference between the chains 15C and 15D, the sub sprocket 29 may be shifted in the -X direction from the main sprocket 19, and the chain 15C may be provided on the front side (+X side) and the chain 15D may be provided on the rear side (+X side). For ease of illustration, the sprocket that functions as a tensioner has been omitted from Figure 13.

 なお、上記実施形態では、土砂供給装置10に投入される土砂が粘性土である場合について説明したが、その他の土砂であってもよい。 In the above embodiment, the soil fed into the soil supplying device 10 is described as being clayey soil, but other types of soil may also be used.

 なお、上記実施形態では、回転式破砕混合機が自走式である場合について説明したが、これに限られるものではない。回転式破砕混合機は、定置型(プラント型)であってもよい。また、土砂供給装置10は、回転式破砕混合機以外の用途に用いることも可能である。 In the above embodiment, the rotary crushing mixer is described as being self-propelled, but this is not limited to the above. The rotary crushing mixer may be of a stationary type (plant type). In addition, the soil supplying device 10 may be used for purposes other than as a rotary crushing mixer.

 上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。 The above-described embodiment is a preferred example of the present invention. However, the present invention is not limited to this embodiment, and various modifications are possible without departing from the spirit of the present invention.

  10 土砂供給装置
  12 筐体
  14A,14B モータ(回転駆動部)
  13A,13B 破砕ロール(第1ロール、第2ロール)
  62A、72A 皿バネ(弾性部材)
  63A、73A 固定部(ガイド部材)
  65A、75A 第1軸部ホルダ(第1変更部)
  90 制御部(第1制御部、第2制御部)
  92 電流計(電流検出部)
10: Soil supply device 12: Housing 14A, 14B: Motor (rotation drive unit)
13A, 13B Crushing rolls (first roll, second roll)
62A, 72A Disc spring (elastic member)
63A, 73A Fixed portion (guide member)
65A, 75A First shaft holder (first modified part)
90 Control unit (first control unit, second control unit)
92 Ammeter (current detection unit)

Claims (6)

 上方から土砂を受け入れる筐体と、
 前記筐体内に所定間隔で設けられ、回転駆動部により回転することにより、受け入れた前記土砂を下方に送り出す第1ロール及び第2ロールと、
 受け入れた前記土砂による前記回転駆動部の負荷に応じて前記第1ロールと前記第2ロールとの前記所定間隔を大きくするように変更する第1変更部と、を備える土砂供給装置。
A housing that receives soil and sand from above;
A first roll and a second roll are provided at a predetermined interval in the housing and rotated by a rotary drive unit to send the received soil downward;
A soil supplying device comprising: a first change unit that changes the specified gap between the first roll and the second roll to a larger value in accordance with the load on the rotational drive unit caused by the received soil.
 前記第1変更部は、前記所定間隔を大きくしたのちに、前記回転駆動部の負荷に応じて前記第1ロールと前記第2ロールとの前記所定間隔を小さくする、請求項1に記載の土砂供給装置。 The soil supplying device according to claim 1, wherein the first change unit increases the predetermined distance and then decreases the predetermined distance between the first roll and the second roll in response to the load of the rotation drive unit.  前記第1変更部は、前記第1ロールと前記第2ロールとの前記所定間隔を保つために、前記第1ロールと前記第2ロールとの少なくとも一方を付勢する弾性部材と、前記回転駆動部の負荷に応じて前記第1ロールと前記第2ロールとの少なくとも一方の移動をガイドするガイド部材と、を有している請求項1に記載の土砂供給装置。 The soil supplying device according to claim 1, wherein the first change unit has an elastic member that biases at least one of the first roll and the second roll to maintain the predetermined distance between the first roll and the second roll, and a guide member that guides the movement of at least one of the first roll and the second roll according to the load of the rotation drive unit.  前記回転駆動部の電流値を検出する電流検出部と、
 前記第1変更部の変更が開始した後に、前記電流検出部の電流値が所定の値以上となった場合に、前記回転駆動部への電流供給を停止する第1制御部と、を備える請求項1に記載の土砂供給装置。
a current detection unit that detects a current value of the rotation drive unit;
The soil supplying device as described in claim 1, further comprising a first control unit that stops the supply of current to the rotation drive unit when the current value of the current detection unit becomes equal to or greater than a predetermined value after the first change unit begins to change.
 前記回転駆動部の駆動を停止した際に、前記土砂を処理する外部装置の前記土砂の処理に関する変更を指示する第2制御部を備える、請求項1に記載の土砂供給装置。 The soil supplying device according to claim 1, further comprising a second control unit that issues an instruction to change the soil processing of an external device that processes the soil when the rotation drive unit is stopped.  前記第1制御部は、前記土砂を処理する外部装置の状態に基づいて、前記回転駆動部に前記第1ロール及び前記第2ロールの回転速度調整の指示をする、請求項4に記載の土砂供給装置。 The soil supplying device according to claim 4, wherein the first control unit instructs the rotation drive unit to adjust the rotation speeds of the first roll and the second roll based on the state of an external device that processes the soil.
PCT/JP2023/037749 2023-01-20 2023-10-18 Soil feeding apparatus WO2024154399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-007432 2023-01-20
JP2023007432 2023-01-20

Publications (1)

Publication Number Publication Date
WO2024154399A1 true WO2024154399A1 (en) 2024-07-25

Family

ID=91955560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037749 WO2024154399A1 (en) 2023-01-20 2023-10-18 Soil feeding apparatus

Country Status (1)

Country Link
WO (1) WO2024154399A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228387A (en) * 1992-02-18 1993-09-07 Meiden Plant Kk Crusher of waste paper
JPH0699092A (en) * 1992-09-21 1994-04-12 Kawasaki Steel Corp Method of crushing sinter
JPH08281140A (en) * 1995-04-18 1996-10-29 Kobe Steel Ltd Operation of mobile crushing installation
JP2001254392A (en) * 2000-03-09 2001-09-21 Hitachi Constr Mach Co Ltd Agitating/mixing-type soil improving machine
JP2001262614A (en) * 2000-03-15 2001-09-26 Netsukoo Kk Fixed-quantity feeder for back-filled raw-material soil
JP2004267841A (en) * 2003-03-06 2004-09-30 Mino Shigen Kaihatsu:Kk Roll mill
JP2005238079A (en) * 2004-02-25 2005-09-08 Netsukoo Kk Rotary crushing device of soil improving machine
JP2007068499A (en) * 2005-09-09 2007-03-22 National Agriculture & Food Research Organization Feed rice straw crusher
JP2012115822A (en) * 2010-11-12 2012-06-21 Sakamoto:Kk Crusher for waste containing metal wire
JP2012120956A (en) * 2010-12-07 2012-06-28 Jdc Corp Method and apparatus for treating treating-object
US20180304271A1 (en) * 2017-04-21 2018-10-25 Thyssenkrupp Industrial Solutions (Canada) Inc. On-the-fly speed variation of double roll crushers for oil sands crushing

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228387A (en) * 1992-02-18 1993-09-07 Meiden Plant Kk Crusher of waste paper
JPH0699092A (en) * 1992-09-21 1994-04-12 Kawasaki Steel Corp Method of crushing sinter
JPH08281140A (en) * 1995-04-18 1996-10-29 Kobe Steel Ltd Operation of mobile crushing installation
JP2001254392A (en) * 2000-03-09 2001-09-21 Hitachi Constr Mach Co Ltd Agitating/mixing-type soil improving machine
JP2001262614A (en) * 2000-03-15 2001-09-26 Netsukoo Kk Fixed-quantity feeder for back-filled raw-material soil
JP2004267841A (en) * 2003-03-06 2004-09-30 Mino Shigen Kaihatsu:Kk Roll mill
JP2005238079A (en) * 2004-02-25 2005-09-08 Netsukoo Kk Rotary crushing device of soil improving machine
JP2007068499A (en) * 2005-09-09 2007-03-22 National Agriculture & Food Research Organization Feed rice straw crusher
JP2012115822A (en) * 2010-11-12 2012-06-21 Sakamoto:Kk Crusher for waste containing metal wire
JP2012120956A (en) * 2010-12-07 2012-06-28 Jdc Corp Method and apparatus for treating treating-object
US20180304271A1 (en) * 2017-04-21 2018-10-25 Thyssenkrupp Industrial Solutions (Canada) Inc. On-the-fly speed variation of double roll crushers for oil sands crushing

Similar Documents

Publication Publication Date Title
CN108816342B (en) Roller type flour mill with adjustable roll gap
JP6976355B2 (en) Cone crushing machines and crushing methods using such machines
AU2012292516A1 (en) A method and a device for sensing the properties of a material to be crushed
CN102527469B (en) Driving mechanism of particle crusher
CN111169940A (en) Device and method for detecting slippage of conveying belt of belt conveyor
WO2024154399A1 (en) Soil feeding apparatus
KR20070114432A (en) Belt Rod Polishing Machine
CN102302968B (en) Vertical grinder and installation mechanism of scraping plate device of vertical grinder
KR20070119181A (en) Concrete Waste Recycling Plant
JP3049473B2 (en) Sieving equipment for potter's earth
KR102211194B1 (en) Apparatus for separating foreign substances in construction waste
JP7137025B2 (en) rotary crusher
CN214681978U (en) Dry sludge crushing device
JPH08309213A (en) Roll machine
KR101287876B1 (en) Swing distribution apparatus of raw materials
JP2006175371A (en) Crushing apparatus
CN219043479U (en) Concrete shakes and sieves device
JPH11300222A (en) Crusher
WO2025032891A1 (en) Processing system and processing method
CN221816347U (en) Polyaluminum chloride production reducing mechanism
JP4135078B2 (en) Crushing machine
CN222469228U (en) A mixing and grinding machine for processing magnesia carbon bricks
CN218560084U (en) Belt line tensioning device that dangles
CN214358484U (en) Disc type uniform feeder
CN206273734U (en) A kind of conveyer belt charging gear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024571620

Country of ref document: JP