WO2024154207A1 - Binary refrigeration device - Google Patents
Binary refrigeration device Download PDFInfo
- Publication number
- WO2024154207A1 WO2024154207A1 PCT/JP2023/001050 JP2023001050W WO2024154207A1 WO 2024154207 A1 WO2024154207 A1 WO 2024154207A1 JP 2023001050 W JP2023001050 W JP 2023001050W WO 2024154207 A1 WO2024154207 A1 WO 2024154207A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- heat exchanger
- heater
- expansion valve
- compressor
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 187
- 239000003507 refrigerant Substances 0.000 claims abstract description 293
- 238000010257 thawing Methods 0.000 claims abstract description 54
- 238000001816 cooling Methods 0.000 claims abstract description 42
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical group O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 40
- 238000010438 heat treatment Methods 0.000 claims description 33
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 20
- 239000001569 carbon dioxide Substances 0.000 claims description 20
- 230000009977 dual effect Effects 0.000 claims description 13
- 238000009835 boiling Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 30
- 238000000034 method Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 13
- 230000008859 change Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 238000009826 distribution Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B7/00—Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
Definitions
- This disclosure relates to a dual refrigeration system.
- Patent Document 1 discloses that in an air conditioner equipped with a dual refrigeration cycle, when frost is removed from a heat exchanger used as an evaporator during cooling operation of the low-temperature refrigerant circuit, reverse cycle defrosting is performed by sending hot gas from the compressor to the heat exchanger via a four-way valve.
- Patent Document 1 discloses that in an air conditioner equipped with a dual cascade refrigeration cycle, when reverse cycle defrosting is performed, the compressor is operated in the high-temperature refrigerant circuit, and heat is exchanged in an intermediate heat exchanger between the low-temperature refrigerant circuit and the high-temperature refrigerant circuit, thereby suppressing the rise in the temperature of the refrigerant in the low-temperature refrigerant circuit.
- Patent Document 1 when reverse cycle defrosting is performed, the period required to defrost the heat exchanger increases due to factors such as the properties of the refrigerant.
- One example of the reason for this is that when a refrigerant made of carbon dioxide is used, the saturation temperature of the refrigerant is relatively low, and when the refrigerant is in a two-phase state, the temperature difference between the refrigerant and the frost to be defrosted cannot be sufficiently ensured, resulting in low defrosting capacity.
- the present disclosure aims to solve the problems described above, and its purpose is to provide a cascade refrigeration system that can improve defrosting capacity.
- the present disclosure relates to a cascade refrigeration system.
- the cascade refrigeration system includes a first refrigeration cycle including a first compressor, a first heat exchanger, a first expansion valve, a second heat exchanger, a second expansion valve, a third heat exchanger, and a heater, and in which a first refrigerant circulates; a second refrigeration cycle including a second compressor, a fourth heat exchanger, a third expansion valve, and a second heat exchanger, and in which a second refrigerant circulates; and a control device that controls the first refrigeration cycle and the second refrigeration cycle.
- the second heat exchanger exchanges heat between the first refrigerant and the second refrigerant.
- the control device controls the first refrigeration cycle and the second refrigeration cycle in a cooling mode or a defrosting mode.
- the cooling mode is a mode in which the first refrigerant discharged from the first compressor returns to the first compressor via the first heat exchanger, the first expansion valve, the second heat exchanger, the second expansion valve, and the third heat exchanger.
- the defrost mode is a mode in which the first refrigerant discharged from the first compressor returns to the first compressor via the third heat exchanger, the second expansion valve, the second heat exchanger, the first expansion valve, and the first heat exchanger.
- the heater is provided in the third heat exchanger. In the defrost mode, the control device controls the flow path of the first refrigerant in the third heat exchanger to be heated by the heater while the first refrigerant is flowing into the third heat exchanger.
- the flow path of the first refrigerant in the third heat exchanger is heated by a heater, thereby improving the defrosting capacity.
- FIG. 1 is a diagram showing the configuration of a dual refrigeration system according to a first embodiment.
- FIG. FIG. 13 is a diagram showing the arrangement of a heater in the third heat exchanger.
- FIG. 13 is a diagram showing the state of the third heat exchanger in the defrosting mode.
- 5 is a flowchart of control executed by the control device when the cascade refrigeration system operates in a defrost mode.
- FIG. 11 is a diagram showing an example of a change in the detected temperature of a third temperature sensor in a defrosting mode.
- FIG. 11 is a diagram showing the configuration of a dual refrigeration system according to a second embodiment.
- FIG. 11 is a diagram showing the configuration of a dual refrigeration system according to a third embodiment.
- FIG. 13 is a diagram showing the configuration of a dual refrigeration system according to a fourth embodiment.
- FIG. 13 is a diagram showing the arrangement of a sixth temperature sensor in the cascade refrigeration system of the fifth embodiment.
- 13 is a flowchart of control executed by a control device when the cascade refrigeration system of the fifth embodiment operates in a defrosting mode.
- FIG. 13 is a diagram showing an example of a change in power consumption in a defrost mode of the cascade refrigeration device of the fifth embodiment.
- FIG. 1 is a diagram showing the configuration of a cascade refrigeration system 200 according to a first embodiment.
- the cascade refrigeration system 200 includes a first refrigeration cycle 1, a second refrigeration cycle 2, and a control device 600.
- the first refrigeration cycle 1 is a low-stage refrigeration cycle.
- the second refrigeration cycle 2 is a high-stage refrigeration cycle.
- a multi-stage refrigeration cycle is configured in which the first refrigeration cycle 1 and the second refrigeration cycle 2 are connected by a second heat exchanger 103.
- cooling is performed in a low temperature range, for example, at minus several tens of degrees, by using such a multi-stage refrigeration cycle.
- the first refrigeration cycle 1 includes a first compressor 10, a four-way valve 11, a first heat exchanger 12, a first expansion valve 13, a second heat exchanger 103, a second expansion valve 14, a third heat exchanger 15, and a heater 20.
- a first refrigerant circulates through the first compressor 10, the four-way valve 11, the first heat exchanger 12, the first expansion valve 13, the second heat exchanger 103, the second expansion valve 14, and the third heat exchanger 15.
- the heater 20 is provided in the third heat exchanger 15.
- the heater 20 performs a heating operation when melting and removing frost that has adhered to the third heat exchanger 15.
- a blower fan 12F is provided in correspondence with the first heat exchanger 12.
- a blower fan 15F is provided in correspondence with the third heat exchanger 15.
- the second refrigeration cycle 2 includes a second compressor 100, a fourth heat exchanger 101, a third expansion valve 102, and a second heat exchanger 103.
- a second refrigerant circulates through the second compressor 100, the fourth heat exchanger 101, the third expansion valve 102, and the second heat exchanger 103.
- a blower fan 101F is provided corresponding to the fourth heat exchanger 101.
- the first refrigerant is, for example, a carbon dioxide refrigerant.
- Carbon dioxide refrigerant has a boiling point lower than -52°C.
- a refrigerant other than carbon dioxide refrigerant may be used as the first refrigerant.
- a refrigerant containing carbon dioxide as a main component may be used as the first refrigerant.
- the second refrigerant is, for example, a propane refrigerant. Note that a refrigerant other than propane refrigerant may be used as the second refrigerant.
- the first refrigerant and the second refrigerant may be the same type of refrigerant, or different types of refrigerants may be used.
- piping and equipment with a relatively low pressure resistance such as 4.25 MPaA, may be used in the first refrigeration cycle 1, rather than piping and equipment for high pressure resistance.
- piping and equipment with low pressure resistance are used in the first refrigeration cycle 1 because the thickness of the piping can be made thinner and the flow rate of the first refrigerant can be increased.
- the second heat exchanger 103 is a cascade heat exchanger, and exchanges heat between the first refrigerant flowing through the piping between the first expansion valve 13 and the second expansion valve 14 in the first refrigeration cycle 1 and the second refrigerant flowing through the piping between the third expansion valve 102 and the second compressor 100 in the second refrigeration cycle 2.
- the second heat exchanger 103 may be a double heat exchanger or a plate type heat exchanger.
- the various devices constituting the first refrigeration cycle 1 and the second refrigeration cycle 2 are housed separately in an outdoor unit 3, which is an outdoor unit, and an indoor unit 4, which is an indoor unit.
- the outdoor unit 3 is installed, for example, outdoors.
- the indoor unit 4 is installed, for example, inside a freezing room such as a freezer.
- the outdoor unit 3 houses the first compressor 10, four-way valve 11, first heat exchanger 12, first expansion valve 13, second heat exchanger 103, second expansion valve 14, third heat exchanger 15, and heater 20 in the first refrigeration cycle 1, and the second compressor 100, fourth heat exchanger 101, third expansion valve 102, and second heat exchanger 103 in the second refrigeration cycle 2.
- the indoor unit 4 houses the second expansion valve 14, the third heat exchanger 15, and the heater 20 in the first refrigeration cycle 1.
- An extension pipe 6 is provided between the second heat exchanger 103 of the outdoor unit 3 and the second expansion valve 14 of the indoor unit 4.
- An extension pipe 7 is provided between the four-way valve 11 of the outdoor unit 3 and the third heat exchanger 15.
- a first pressure sensor 31 for detecting the pressure of the first refrigerant discharged from the first compressor 10 and a first temperature sensor 32 for detecting the temperature of the first refrigerant discharged from the first compressor 10 are provided in the piping between the outlet of the first refrigerant in the first compressor 10 and the inlet of the four-way valve 11.
- a second pressure sensor 33 for detecting the pressure of the first refrigerant sucked into the first compressor 10 and a second temperature sensor 34 for detecting the temperature of the first refrigerant sucked into the first compressor 10 are provided in the piping between the third heat exchanger 15 and the inlet of the first compressor 10.
- a third temperature sensor 35 for detecting the temperature of the first refrigerant is provided between the first heat exchanger 12 and the second heat exchanger 103.
- a fourth temperature sensor 36 for detecting the temperature of the first refrigerant flowing out from the third heat exchanger 15 toward the second expansion valve 14 in a defrost mode described later is provided in the piping between the third heat exchanger 15 and the second expansion valve 14.
- a third pressure sensor 41 is provided in the piping between the second refrigerant outlet of the second compressor 100 and the fourth heat exchanger 101 to detect the pressure of the second refrigerant discharged from the second compressor 100.
- a fourth pressure sensor 42 is provided in the piping between the second heat exchanger 103 and the inlet of the second compressor 100 to detect the pressure of the second refrigerant sucked into the second compressor 100, and a fifth temperature sensor 43 is provided to detect the temperature of the second refrigerant sucked into the second compressor 100.
- the indoor unit 4 is provided with a sixth temperature sensor 23 that detects the temperature inside the freezer compartment in which the indoor unit 4 is installed.
- the control device 600 is housed in the outdoor unit 3.
- the control device 600 controls the devices housed in the outdoor unit 3 and the devices housed in the indoor unit 4.
- the control device 600 may be housed in the indoor unit 4, or may be provided in both the outdoor unit 3 and the indoor unit 4.
- the control device provided in the outdoor unit 3 and the control device provided in the indoor unit 4 communicate with each other, and these control devices control the devices housed in the outdoor unit 3 and the devices housed in the indoor unit 4.
- the control device 600 is composed of a CPU (Central Processing Unit) 601, memory 602 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown), etc.
- the CPU 601 deploys the programs stored in the ROM into the RAM etc. and executes them.
- the programs stored in the ROM are programs in which the processing procedures of the control device 600 are written.
- the control device 600 controls various devices in the cascade refrigeration device 200 in accordance with these programs. The control of such devices is not limited to processing by software, but can also be processed by dedicated hardware (electronic circuits).
- the control device 600 receives detection information from various sensors, such as the first pressure sensor 31, the second pressure sensor 33, the third pressure sensor 41, the fourth pressure sensor 42, the first temperature sensor 32, the second temperature sensor 34, the third temperature sensor 35, the fourth temperature sensor 36, the fifth temperature sensor 43, and the sixth temperature sensor 23.
- the control device 600 controls, for example, the first compressor 10, the four-way valve 11, the first expansion valve 13, the second expansion valve 14, the heater 20, the second compressor 100, the third expansion valve 102, and the fans 12F, 15F, and 101F, depending on the detection information of the various sensors mentioned above and other information.
- the control device 600 can control the operation of the first refrigeration cycle 1 and the second refrigeration cycle 2 in a cooling mode or a defrosting mode.
- the cooling mode is an operating mode in which the room in which the third heat exchanger 15 is provided is cooled by heat exchange using the third heat exchanger 15.
- the first refrigerant discharged from the first compressor 10 passes through the four-way valve 11, the first heat exchanger 12, the first expansion valve 13, the second heat exchanger 103, the second expansion valve 14, and the third heat exchanger 15, and returns to the first compressor 10.
- the first heat exchanger 12 is used as a condenser
- the third heat exchanger 15 is used as an evaporator.
- the defrost mode is an operating mode in which frost adhering to the third heat exchanger 15 is removed.
- the high-temperature, high-pressure first refrigerant discharged from the first compressor 10 passes through the third heat exchanger 15, the second expansion valve 14, the second heat exchanger 103, the first expansion valve 13, the four-way valve 11, and the first heat exchanger 12, and returns to the first compressor 10.
- the third heat exchanger 15 is used as a condenser
- the first heat exchanger 12 is used as an evaporator.
- the high-temperature, high-pressure gaseous first refrigerant discharged from the first compressor 10 is circulated in the opposite direction to the cooling mode and supplied to the third heat exchanger 15 to remove the frost that has adhered to the third heat exchanger 15.
- This defrosting is called reverse hot gas defrosting.
- the heater 20 is provided in a position in the third heat exchanger 15 where it can heat the downstream side of the flow path of the first refrigerant in the third heat exchanger 15 when the first refrigerant is flowing into the third heat exchanger 15 in defrost mode.
- the four-way valve 11 is configured to switch the direction in which the first refrigerant flows between the cooling mode and the defrost mode.
- the flow path in the four-way valve 11 is the flow path shown by the solid line
- the flow path in the defrost mode is the flow path shown by the dashed line.
- the flow path of the four-way valve 11 is switched to the first flow path so that the first refrigerant discharged from the first compressor 10 is supplied to the first heat exchanger 12, as shown by the solid line inside the four-way valve 11.
- the flow path of the four-way valve 11 is switched to the second flow path so that the first refrigerant discharged from the first compressor 10 is supplied to the third heat exchanger 15, as shown by the dashed line inside the four-way valve 11.
- the heat transfer area of the second heat exchanger 103 is, for example, within a range of 3% to 50% of the combined heat transfer area of the first heat exchanger 12 and the fourth heat exchanger 101. It is preferable that the heat transfer area of the second heat exchanger 103 is within a range of 8% to 30% of the combined heat transfer area of the first heat exchanger 12 and the fourth heat exchanger 101.
- the second refrigeration cycle 2 may have a lower pressure resistance for the piping and equipment than the first refrigeration cycle 1 by selecting a second refrigerant that has a lower pressure at the same temperature (e.g., saturation temperature) than the first refrigerant that is charged in the first refrigeration cycle 1.
- a second refrigerant that has a lower pressure at the same temperature (e.g., saturation temperature) than the first refrigerant that is charged in the first refrigeration cycle 1.
- the operating state of the first refrigeration cycle 1 will be described.
- the first refrigerant compressed in the first compressor 10 becomes high-temperature, high-pressure superheated vapor and is discharged from the first compressor 10.
- the first refrigerant discharged from the first compressor 10 flows into the first heat exchanger 12 via the four-way valve 11.
- the first refrigerant exchanges heat with the outdoor air and is condensed.
- the first expansion valve 13 is opened to the maximum degree.
- the first refrigerant flowing out of the first heat exchanger 12 flows into the second heat exchanger 103.
- the second heat exchanger 103 heat is exchanged between the first refrigerant and the second refrigerant.
- the first refrigerant is further condensed.
- the first refrigerant flowing out of the second heat exchanger 103 flows into the second expansion valve 14.
- the second expansion valve 14 the first refrigerant is expanded.
- the first refrigerant that flows out of the second expansion valve 14 flows into the third heat exchanger 15.
- the heater 20 is not operated.
- the third heat exchanger 15 the first refrigerant exchanges heat with the air inside the freezer and is evaporated. This causes the air inside the freezer to be cooled by the third heat exchanger 15.
- the first refrigerant that flows out of the third heat exchanger 15 flows into the suction side of the first compressor 10 via the four-way valve 11.
- the control device 600 controls the frequency of the first compressor 10 and the opening of the second expansion valve 14 so that the evaporation temperature of the third heat exchanger 15 and the suction superheat of the first compressor 10 reach preset target values in response to the detection information of the second pressure sensor 33 and the second temperature sensor 34.
- the control device 600 controls the first expansion valve 13 so that the opening of the first expansion valve 13 reaches its maximum opening.
- the control device 600 controls the first compressor 10 to stop operation when the internal temperature becomes equal to or lower than the internal temperature set by the user, according to the information detected by the sixth temperature sensor 23.
- the control device 600 may control the first compressor 10 to stop operation when the pressure detected by the second pressure sensor 33 becomes equal to or lower than the pressure corresponding to the internal temperature set by the user.
- the control device 600 may control the frequency of the second compressor 100 in accordance with the detection information of the first pressure sensor 31 so that the condensing temperature of the first heat exchanger 12 becomes a preset target value.
- the control device 600 may control the frequency of the second compressor 100 while maintaining the rotation speed of the fan 12F at a maximum speed so that the condensing temperature of the first heat exchanger 12 becomes a preset target value.
- the second refrigerant compressed in the second compressor 100 becomes high-temperature, high-pressure superheated vapor and is discharged from the second compressor 100.
- the second refrigerant discharged from the second compressor 100 flows into the fourth heat exchanger 101.
- the fourth heat exchanger 101 the second refrigerant exchanges heat with the outdoor air and is condensed.
- the second refrigerant flowing out of the fourth heat exchanger 101 flows into the third expansion valve 102.
- the third expansion valve 102 the second refrigerant is expanded.
- the second refrigerant flowing out of the third expansion valve 102 flows into the second heat exchanger 103.
- the second heat exchanger 103 the second refrigerant is evaporated by heat exchange with the first refrigerant.
- the second refrigerant flowing out of the second heat exchanger 103 flows into the second compressor 100.
- the control device 600 controls the opening of the third expansion valve 102 according to the detection information of the fourth pressure sensor 42 and the fifth temperature sensor 43 so that the suction superheat of the second compressor 100 becomes a preset target value.
- the control device 600 controls the rotation speed of the fan 101F according to the detection information of the third pressure sensor 41 so that the condensation temperature of the fourth heat exchanger 101 becomes the set target value (saturation temperature).
- the operating state of the first refrigeration cycle 1 will be described.
- the first refrigerant compressed in the first compressor 10 becomes high-temperature, high-pressure superheated vapor and is discharged from the first compressor 10.
- the first refrigerant discharged from the first compressor 10 flows into the third heat exchanger 15 via the four-way valve 11.
- the third heat exchanger 15 the first refrigerant exchanges heat with the air inside the storage unit and is condensed.
- the heater 20 is operated to heat.
- the fan 15F of the third heat exchanger 15 is stopped.
- the first refrigerant which has become superheated vapor, flows into the third heat exchanger 15 and the heater 20 performs heating operation, so that the frost adhering to the third heat exchanger 15 is melted and removed by the thermal energy of the first refrigerant and the thermal energy of the heater 20.
- the second expansion valve 14 In the defrost mode, the second expansion valve 14 is opened to the maximum degree.
- the first refrigerant that flows out of the third heat exchanger 15 flows into the second heat exchanger 103.
- the second heat exchanger 103 heat is exchanged between the first refrigerant and the second refrigerant.
- the first refrigerant In the second heat exchanger 103, the first refrigerant is cooled.
- the first refrigerant flowing out of the second heat exchanger 103 flows into the first expansion valve 13.
- the first refrigerant is expanded.
- the first refrigerant flowing out of the first expansion valve 13 flows into the first heat exchanger 12.
- the first heat exchanger 12 exchanges heat with the outdoor air and is evaporated.
- the first refrigerant flowing out of the first heat exchanger 12 flows into the suction side of the first compressor 10 via the four-way valve 11.
- the basic operating state of the second refrigeration cycle 2 in the defrost mode is the same as the operating state in the cooling mode.
- FIG. 2 is a diagram showing the arrangement of the heater 20 in the third heat exchanger 15.
- Fig. 2(A) shows a cross-sectional view of the third heat exchanger 15, which shows a schematic positional relationship between the heater 20 and a tube 61 through which the first refrigerant flows in the third heat exchanger 15.
- Fig. 2(B) shows a side view of the third heat exchanger 15, which shows a schematic positional relationship between the tube 61 and the heater 20.
- the third heat exchanger 15 is a multi-tube heat exchanger, and the tubes 61 through which the first refrigerant flows are arranged vertically in multiple stages, for example five stages.
- the first flow path 60 of the third heat exchanger 15 is a flow path through which the first refrigerant flows into the third heat exchanger 15 in the defrost mode.
- the first flow path 60 branches into multiple tubes 61, for example five tubes.
- the tubes 61 of each stage are extended inside the third heat exchanger 15 in the longitudinal direction (horizontal direction) of the third heat exchanger 15 and are folded back multiple times.
- the second flow path 62 of the third heat exchanger 15 is a flow path through which the first refrigerant flows out of the third heat exchanger 15 in the defrost mode.
- the tubes 61 of each stage merge into the second flow path 62.
- each tube 61 is shown to have a shape having multiple paths that go back and forth multiple times in the longitudinal direction of the third heat exchanger 15. Specifically, in FIG. 2, each tube 61 goes back and forth twice in the longitudinal direction of the third heat exchanger 15, forming four rows of paths extending in the longitudinal direction.
- the third heat exchanger 15 exchanges heat between the first refrigerant and the indoor air, and the air for heat exchange is supplied from the fan 15F shown in FIG. 1. As shown in FIG. 2(A), the air 15a supplied to the third heat exchanger 15 from the fan 15F shown in FIG. 1 is blown in a direction from the first row to the fourth row of each tube 61.
- the heater 20 includes a plurality of heater members 21.
- Each heater member 21 is a rod-shaped member whose heating element extends in the longitudinal direction of the third heat exchanger 15 so as to follow the extending direction of the third and fourth rows of paths of each tube 61 inside the third heat exchanger 15.
- a plurality of heater members 21 are provided corresponding to the multiple stages of tubes 61.
- heater members 21 are not provided above the first stage tube 61 and below the fifth stage tube 61, but heater members 21 may be provided above the first stage tube 61 and below the fifth stage tube 61.
- each heater member 21 is provided in a position where it can directly heat the third and fourth rows of paths of each tube 61.
- each heater member 21 is provided on the downstream side of each tube 61 provided in the third heat exchanger 15 in the direction in which the first refrigerant flows in defrost mode. Since each tube 61 in the third heat exchanger 15 has four rows of paths, the third and fourth rows of paths are downstream of 1/2 of the total length of each tube 61 in the direction in which the first refrigerant flows in defrost mode.
- the multiple heater members 21 may have the same heat capacity, or may include heater members with different heat capacities. In the following cases, the multiple heater members 21 may include heater members with different heat capacities. For example, in the third heat exchanger 15, ice roots caused by frost may form in the lower internal portion. In such cases, in order to melt such ice roots in the defrost mode and prevent frost from remaining, it is sufficient to configure at least the heater member 21 in the bottom row of the multiple heater members 21 to have a larger heat capacity than the heater member 21 in the top row.
- a phenomenon may occur in which a greater amount of frost adheres to a portion where the airflow speed from the fan 15F is faster than that of the portion where the airflow speed from the fan 15F is slower than that of the portion where the airflow speed from the fan 15F is faster.
- at least the heater member 21 provided at the position where the airflow speed from the fan 15F is the fastest may be configured to have a greater heat capacity than the heater member 21 provided at the position where the airflow speed from the fan 15F is the slowest.
- Fig. 3 is a diagram showing the state of the third heat exchanger 15 in the defrost mode.
- the temperature distribution in the third heat exchanger 15 and the state of the entire first refrigeration cycle 1 are shown divided into an initial period A after the start of the defrost mode, a middle period B, and a final period C after the start of the defrost mode.
- Temperature distribution diagrams (A1), (B1), and (C1) show the distribution of the ambient temperature T between the inlet position D1 of the first refrigerant in the third heat exchanger 15 and the outlet position D2 of the first refrigerant in the third heat exchanger 15 in the defrost mode.
- (A2) at the initial stage A, (B2) at the middle stage B, and (C2) at the end stage C are Mollier diagrams showing the state of the first refrigerant.
- Mollier diagrams (A2), (B2), and (C2) the vertical axis shows pressure p, and the horizontal axis shows specific enthalpy h.
- Mollier diagrams (A2), (B2), and (C2) the saturated liquid line and saturated vapor line are shown by curved lines.
- the Mollier diagrams (A2), (B2), and (C2) show the compression process a of the first refrigerant, the condensation process b of the first refrigerant, the expansion process c of the first refrigerant, and the evaporation process d of the first refrigerant in the first refrigeration cycle 1 during defrost mode, and correspond to the devices involved in each process.
- the first refrigerant is compressed by the first compressor 10, and the pressure and specific enthalpy of the first refrigerant increase.
- the first refrigerant is condensed by the third heat exchanger 15, and the specific enthalpy of the first refrigerant decreases while the pressure of the first refrigerant is maintained.
- the temperature of the first refrigerant further decreases in the third heat exchanger 15, so the specific enthalpy of the first refrigerant further decreases.
- the first refrigerant is expanded by the first expansion valve 13, and the pressure of the first refrigerant decreases while the specific enthalpy of the first refrigerant is maintained.
- the first refrigerant is evaporated by the first heat exchanger 12, and the specific enthalpy of the first refrigerant increases while the pressure of the first refrigerant is maintained.
- the high-temperature, high-pressure first refrigerant discharged from the first compressor 10 is supplied from the inlet in the defrost mode to the third heat exchanger 15, but as shown in the temperature distribution diagram (A1), the frost melts only in the area close to the inlet position D1 of the first refrigerant in the third heat exchanger 15, and the ambient temperature T rises from T2 to T1.
- the third heat exchanger 15 is in a state where the specific enthalpy h is on the saturated vapor line, as shown in the Mollier diagram (A2).
- the thermal energy of the high-temperature, high-pressure first refrigerant discharged from the first compressor 10 and the thermal energy generated by the heater 20 melt the frost from the inlet position D1 of the first refrigerant to a position between the inlet position D1 of the first refrigerant and the outlet position D2 of the first refrigerant, causing the ambient temperature T to rise.
- the specific enthalpy h of the third heat exchanger 15 becomes high, and the degree of superheat becomes higher than in the early period A of the defrost mode.
- the specific enthalpy h of the third heat exchanger 15 becomes even higher, and the degree of superheat becomes higher than in the middle of the defrost mode B.
- the transition from the initial state A to the middle state B, and the transition from the middle state B to the final state C can be performed by the conventional technology that does not use heating by the heater 20.
- the defrosting capacity of the cascade refrigeration system 200 can be improved.
- the time required to transition from the middle state B to the final state C can be significantly shortened.
- FIG. 4 is a flow chart of the control executed by the control device 600 when the cascade refrigeration system 200 operates in the defrost mode.
- the main control items during operation in the defrost mode are written within the boxes for each step.
- step S1 the control device 600 determines whether or not it is currently the start time of defrost mode operation.
- operation in defrost mode may be referred to as defrost operation.
- Whether or not it is currently the start time of defrost operation in step S1 is determined, for example, when the operation duration of cooling operation reaches a preset operation duration time, or when the current time becomes a time preset as the time to execute defrost operation.
- step S1 If the control device 600 determines in step S1 that the current time is not the start time of the defrost operation, the current operating state is a cooling operation state, and therefore the control device 600 continues operation in the cooling mode in step S15.
- the operation in the cooling mode may be referred to as the cooling operation.
- the control device 600 determines in step S1 that the current time is the start time of the defrost operation, the control device 600 reduces the frequency of the first compressor 10 to a preset frequency for the defrost operation in step S2. Note that the first compressor 10 may be stopped in step S2. By executing step S2, it is possible to prevent the pressure of the first refrigerant flowing through the first refrigeration cycle 1 from becoming higher than necessary in the defrost mode.
- step S3 the control device 600 switches the four-way valve 11 to the second flow path corresponding to the defrost mode.
- the control device 600 controls the opening of the second expansion valve 14 to the maximum opening.
- the control device 600 stops the fan 15F and controls the rotation speed of the first compressor 10 by controlling the frequency of the first compressor 10 so that the discharge temperature of the first compressor 10 detected by the first temperature sensor 32 becomes a preset temperature.
- step S4 the control device 600 determines whether the discharge pressure of the first compressor 10 detected by the first pressure sensor 31 is equal to or lower than the first threshold value. If it is determined in step S4 that the discharge pressure of the first compressor 10 is equal to or lower than the first threshold value, the control device 600 performs heating by the heater 20 in step S7.
- the first threshold value is set to a pressure value that makes it possible to prevent the pressure of the first refrigerant from excessively increasing in the first refrigeration cycle 1, even if heating is performed by the heater 20.
- the first threshold value is set to, for example, 3 MPaA.
- step S4 if it is determined in step S4 that the discharge pressure of the first compressor 10 is higher than the first threshold, the control device 600 starts the second compressor 100 in step S5. Then, in step S6, the second refrigeration cycle 2 is operated under the same operating conditions as those in the cooling mode, and the process proceeds to step S7, where heating is performed by the heater 20. Specifically, in step S6, the control device 600 controls the second compressor 100, the fan 101F, and the third expansion valve 102 with the same operating conditions as those in the cooling mode as target values. In this way, if it is determined in the defrost mode that the discharge pressure of the first compressor 10 is higher than the first threshold, the control device 600 checks the operating state of the second refrigeration cycle 2 and then starts heating by the heater 20.
- control device 600 determines in step S4 that the discharge pressure of the first compressor 10 is higher than the first threshold value, it executes the operation of the second refrigeration cycle 2 in steps S5 and S6, so that the first refrigerant of the first refrigeration cycle 1 is cooled by the second refrigerant of the second refrigeration cycle 2 in the second heat exchanger 103. This makes it possible to prevent the first refrigerant of the first refrigeration cycle 1 from rising to an excessively high pressure due to heating by the heater 20.
- step S8 the control device 600 determines whether the discharge pressure of the first compressor 10 detected by the first pressure sensor 31 is less than the second threshold value.
- the second threshold value is a pressure value that is preset as a target value for the discharge pressure of the first compressor 10 in the defrost mode.
- step S8 If it is determined in step S8 that the discharge pressure of the first compressor 10 is less than the second threshold, the control device 600 controls the first compressor 10 to increase the frequency of the first compressor 10 to increase the rotation speed thereof in step S9, and proceeds to step S11. On the other hand, if it is determined in step S8 that the discharge pressure of the first compressor 10 is equal to or greater than the second threshold, the control device 600 controls the first compressor 10 to decrease the frequency of the first compressor 10 if the discharge pressure of the first compressor 10 exceeds the second threshold in step S10, and proceeds to step S11.
- steps S8 to S10 control the discharge pressure of the first compressor 10 so that it is maintained at the target value of the discharge pressure in the defrost mode.
- step S11 the control device 600 determines whether the temperature detected by the fourth temperature sensor 36, i.e., the temperature of the first refrigerant flowing from the third heat exchanger 15 toward the second expansion valve 14, is equal to or higher than the third threshold value.
- the third threshold value is a preset temperature for determining that defrosting of the third heat exchanger 15 in the defrost mode has ended.
- the third threshold value is set to a temperature higher than the frost temperature, for example, 20°C.
- step S11 If it is determined in step S11 that the temperature detected by the fourth temperature sensor 36 is less than the third threshold value, the control device 600 determines in step S12 whether the second refrigeration cycle 2 is in operation. In step S12, for example, the control device 600 determines that the second refrigeration cycle 2 is in operation if the second compressor 100 is operating, and determines that the second refrigeration cycle 2 is not in operation if the second compressor 100 is stopped.
- step S12 If it is determined in step S12 that the second refrigeration cycle 2 is in operation, the control device 600 proceeds to step S7 and repeats the processes from step S7 onwards. On the other hand, if it is determined in step S12 that the second refrigeration cycle 2 is not in operation, the control device 600 proceeds to step S4 and repeats the processes from step S4 onwards.
- step S11 If it is determined in step S11 that the temperature detected by the fourth temperature sensor 36 is less than the third threshold, the control device 600 proceeds through step S12 and executes step S4 or step S7 to continue supplying high-temperature first refrigerant to the third heat exchanger 15 and heating the third heat exchanger 15 by the heater 20 until the temperature detected by the fourth temperature sensor 36 becomes equal to or greater than the third threshold.
- step S11 If it is determined in step S11 that the temperature detected by the fourth temperature sensor 36 is equal to or higher than the third threshold value, the control device 600 stops heating by the heater 20 in step S13.
- the control device 600 switches the operating state to cooling operation in step S14. This switches the flow path of the four-way valve 11 to the first flow path, and the first refrigerant discharged from the first compressor 10 is supplied to the first heat exchanger 12 via the four-way valve 11.
- the control device 600 determines that the defrosting has ended, and the heating of the third heat exchanger 15 by the heater 20 is stopped, and the supply of the first refrigerant from the first compressor 10 to the third heat exchanger 15 via the four-way valve 11 is stopped.
- Fig. 5 is a diagram showing an example of a change in the detected temperature of the fourth temperature sensor 36 in the defrost mode.
- the vertical axis indicates the detected temperature T of the fourth temperature sensor 36
- the horizontal axis indicates the elapsed time t from the start of the defrost operation.
- the solid line a shows the progress of the detected temperature T of the cascade refrigeration system 200 of the first embodiment
- the dashed line b shows the progress of the detected temperature T of a conventional cascade refrigeration system that is configured not to perform heating by the heater 20 in the defrost mode.
- the timing t1 at which the detected temperature T starts to rise as shown by solid line a is earlier than the timing t2 at which the detected temperature T starts to rise as shown by dashed line b in the configuration of the conventional technology.
- the above-described first embodiment can provide the following effects.
- the flow path of the first refrigerant in the third heat exchanger 15 is heated by the heater 20, so that the third heat exchanger 15 can be heated simultaneously by the thermal energy of the first refrigerant and the thermal energy of the heater 20.
- the timing at which defrosting of the third heat exchanger 15 ends is earlier than in the past. Therefore, in the cascade refrigeration system 200, the period required for defrosting can be shortened compared to the past. By obtaining such effects, the defrosting capacity of the cascade refrigeration system 200 can be improved.
- the temperature difference between the saturation temperature of the first refrigerant and the frost temperature is small in the defrost mode, so that defrosting by superheating the heater 20 has a greater effect in shortening the time required for defrosting the third heat exchanger 15.
- the defrosting capacity can be improved even if a refrigerant made of carbon dioxide or a refrigerant made of a mixed gas containing carbon dioxide as a main component is used as the first refrigerant. Therefore, in the cascade refrigeration system 200, a refrigerant that has little performance degradation due to pressure loss and a small GWP (Global Warming Potential), such as a refrigerant made of carbon dioxide or a refrigerant containing carbon dioxide as a main component, can be used as the first refrigerant.
- GWP Global Warming Potential
- R32, R290, R1234yf, and R1234ze(E) can be used as refrigerants that have a small GWP and a high COP (Coefficient of Performance).
- COP Coefficient of Performance
- Refrigerants made of carbon dioxide or containing carbon dioxide as the main component are low-toxicity and non-flammable refrigerants, so by using such a refrigerant as the first refrigerant in the cascade refrigeration system 200, the occurrence of fire and toxicity-related accidents can be suppressed even if the first refrigerant leaks into the freezer, for example.
- control device 600 determines that the temperature detected by the fourth temperature sensor 36 is equal to or higher than the third threshold, it stops heating by the heater 20 and switches the operation mode from the defrost mode to the cooling mode, thereby preventing frost from remaining on the third heat exchanger 15.
- the control device 600 determines whether or not to end the defrost mode depending on the temperature detected by the fourth temperature sensor 36, so that it can end the defrost mode at an appropriate timing corresponding to the change in the degree of frost adhesion, which changes depending on environmental conditions such as the surrounding temperature.
- control device 600 determines that the discharge pressure of the first compressor 10 is higher than the first threshold, it checks the operating state of the second refrigeration cycle 2 and then starts heating with the heater 20. This makes it possible to prevent the pressure of the first refrigerant in the first refrigeration cycle 1 from suddenly increasing to an excessive pressure due to heating by the heater 20.
- the heat capacity of at least the heater member 21 in the lowest tier is configured to be greater than the heat capacity of the heater member 21 in the highest tier, even if ice is formed due to frost in the lower part inside the third heat exchanger 15, the ice can be melted in defrost mode so that no frost remains.
- the heater members 21 are configured so that at least the heater member 21 arranged at the position where the air speed from the fan 15F is the fastest has a larger heat capacity than the heater member 21 arranged at the position where the air speed from the fan 15F is the slowest, it is possible to prevent frost from remaining in the third heat exchanger 15 in the defrost mode in areas where there is a large amount of frost.
- the inlet side of the third heat exchanger 15 is heated by the thermal energy of the first refrigerant, and the downstream side of the third heat exchanger 15 is heated by the thermal energy of the heater 20 at the same time, so that defrosting of the third heat exchanger 15 can be completed early.
- the cascade refrigeration system 200 can reduce the time required for defrosting compared to conventional systems, thereby preventing the temperature inside the freezer from rising during defrost mode.
- the heater 20 that heats the flow path of the first refrigerant in the defrost mode is provided in the flow path of the first refrigerant provided in the third heat exchanger 15 at a position that heats the downstream side of the direction in which the first refrigerant flows in the defrost mode. Therefore, in the third heat exchanger 15, frost that has formed in a position that is difficult to melt by the high-temperature first refrigerant supplied from the first compressor 10 to the third heat exchanger 15 in the defrost mode can be melted from the beginning of the defrost mode.
- Embodiment 2 (Overall configuration of cascade refrigeration system 200A)
- a first example of a cascade refrigeration system will be described, in which a part of the configuration of the first refrigeration cycle 1 is different from that of the first embodiment.
- Fig. 6 is a diagram showing the configuration of a cascade refrigeration system 200A of the second embodiment.
- the cascade refrigeration system 200A shown in FIG. 6 differs from the cascade refrigeration system 200 shown in FIG. 1 in that a bridge circuit 400 is provided and that the position of the first expansion valve 13 is different.
- the bridge circuit 400 is a bridge connection of four check valves.
- the bridge circuit 400 is connected to the first heat exchanger 12, the second heat exchanger 103, the first expansion valve 13, and the second expansion valve 14.
- the first refrigerant flowing out of the first heat exchanger 12 passes through the bridge circuit 400 and flows into the second heat exchanger 103.
- the first refrigerant that has been heat exchanged in the second heat exchanger 103 flows into the first expansion valve 13.
- the first refrigerant flowing out of the first expansion valve 13 passes through the bridge circuit 400 and flows into the second expansion valve 14.
- the first refrigerant flowing out of the second expansion valve 14 flows into the second heat exchanger 103 via the bridge circuit 400.
- the first refrigerant that has been heat exchanged in the second heat exchanger 103 flows into the first expansion valve 13.
- the first refrigerant flowing out of the first expansion valve 13 flows into the first heat exchanger 12 via the bridge circuit 400.
- the control device 600 controls the first expansion valve 13 and the second expansion valve 14 in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1.
- the cascade refrigeration system 200A configured in this way can operate in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1 described above.
- Embodiment 3 (Overall configuration of cascade refrigeration system 200B)
- a second example of a cascade refrigeration system will be described, in which a part of the configuration of the first refrigeration cycle 1 is different from that of the first embodiment.
- Fig. 7 is a diagram showing the configuration of a cascade refrigeration system 200B of the third embodiment.
- the cascade refrigeration system 200B shown in FIG. 7 differs from the cascade refrigeration system 200A shown in FIG. 6 in that a receiver 500 is provided between the second heat exchanger 103 and the first expansion valve 13.
- the receiver 500 is a tank having an internal space for storing the first refrigerant that flows in from the second heat exchanger 103.
- the receiver 500 is capable of storing the surplus first refrigerant in the first refrigeration cycle 1.
- the first refrigerant stored in the receiver 500 flows into the first expansion valve 13.
- the first refrigerant flowing out of the first heat exchanger 12 passes through the bridge circuit 400 and flows into the second heat exchanger 103.
- the first refrigerant that has been heat exchanged in the second heat exchanger 103 flows into the receiver 500 and is stored.
- the first refrigerant stored in the receiver 500 flows into the first expansion valve 13.
- the first refrigerant flowing out of the first expansion valve 13 passes through the bridge circuit 400 and flows into the second expansion valve 14.
- the first refrigerant flowing out of the second expansion valve 14 passes through the bridge circuit 400 and flows into the second heat exchanger 103.
- the first refrigerant that has been heat exchanged in the second heat exchanger 103 flows into the receiver 500 and is stored.
- the first refrigerant stored in the receiver 500 flows into the first expansion valve 13.
- the first refrigerant flowing out of the first expansion valve 13 passes through the bridge circuit 400 and flows into the second expansion valve 14.
- the control device 600 controls the first expansion valve 13 and the second expansion valve 14 in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1.
- the cascade refrigeration system 200B configured in this way, it is possible to operate in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1 described above.
- Embodiment 4 (Overall configuration of cascade refrigeration system 200C)
- a third example of a cascade refrigeration system will be described, in which a part of the configuration of the first refrigeration cycle 1 is different from that of the first embodiment.
- Fig. 8 is a diagram showing the configuration of a cascade refrigeration system 200C of the fourth embodiment.
- the cascade refrigeration system 200C shown in FIG. 8 differs from the cascade refrigeration system 200B shown in FIG. 7 in that a fifth heat exchanger 502 and a bypass valve 501 are provided between the outlet side of the receiver 500 and the first expansion valve 13, and between the suction side of the first compressor 10 and the first expansion valve 13.
- the fifth heat exchanger 502 is a cascade heat exchanger.
- the fifth heat exchanger 502 may be a double heat exchanger or a plate type heat exchanger.
- the fifth heat exchanger 502 exchanges heat between the first refrigerant flowing through the piping between the receiver 500 and the first expansion valve 13 and the first refrigerant flowing through the piping branched off from the suction side of the first compressor 10.
- the first refrigerant flowing through the piping between the receiver 500 and the first expansion valve 13 is the high temperature side
- the first refrigerant flowing through the piping branched off from the suction side of the first compressor 10 is the low temperature side.
- the first refrigerant flowing out of the receiver 500 is cooled in the fifth heat exchanger 502 and flows into the first expansion valve 13.
- the control device 600 controls the first expansion valve 13 and the second expansion valve 14 in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1.
- the cascade refrigeration system 200B configured in this way, it is possible to operate in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1 described above.
- the provision of the fifth heat exchanger 502 provides the following effects.
- the operation of the valve may become unstable and abnormal noise may occur during expansion.
- the first refrigerant flowing into the first expansion valve 13 is cooled by the fifth heat exchanger 502 to improve the degree of liquefaction, so that in the defrost mode, when the first refrigerant is expanded by the first expansion valve 13, the operation of the valve can be stabilized and the generation of abnormal noise during expansion can be suppressed.
- the first refrigerant flowing into the first expansion valve 13 is cooled by the fifth heat exchanger 502 to improve the degree of liquefaction, so that in the defrost mode, the degree of superheat when evaporating the first refrigerant can be reduced in the first heat exchanger 12, and heat exchange can be performed efficiently.
- the fifth heat exchanger 502 and the bypass valve 501 may be provided between the second heat exchanger 103 and the first expansion valve 13.
- Embodiment 5 (Configuration regarding placement of sixth temperature sensor 37)
- Fig. 9 is a diagram showing the arrangement of the sixth temperature sensor 37 in a cascade refrigeration system 200D of the fifth embodiment.
- the configuration of the third heat exchanger 15 shown in FIG. 9 differs from that shown in FIG. 2 in that a sixth temperature sensor 37 is provided inside the third heat exchanger 15.
- the sixth temperature sensor 37 is a sensor that detects the temperature inside the third heat exchanger 15.
- the sixth temperature sensor 37 is provided inside the third heat exchanger 15 at a bend (connection between rows) between the second and third rows of the fourth row of tubes 61 from the top. In this way, the sixth temperature sensor 37 is provided on the forward flow side of the third heat exchanger 15 in the direction in which the first refrigerant flows in defrost mode.
- the sixth temperature sensor 37 may be provided in any of the first to fifth rows of tubes 61 from the top inside the third heat exchanger 15.
- the sixth temperature sensor 37 may also be provided in multiple rows of tubes 61 inside the third heat exchanger 15.
- the sixth temperature sensor 37 may also be provided on the downstream side of the third heat exchanger 15 in the direction in which the first refrigerant flows in the defrost mode.
- the sixth temperature sensor 37 may be provided at any position in the third heat exchanger 15 at least in the defrost mode, so long as it is capable of detecting the temperature of the first refrigerant and understanding the status of defrosting using the thermal energy of the first refrigerant.
- the sixth temperature sensor 37 may also be provided in a portion of the third heat exchanger 15 other than the bent portion connecting the rows of tubes 61.
- FIG. 10 is a flow chart of the control executed by the control device 600 when the cascade refrigeration system 200D of embodiment 5 operates in the defrost mode.
- the main control items during operation in the defrost mode are written within the boxes of each step.
- Steps S1 to S10 are the same as those in the flowchart shown in FIG. 4.
- the control device 600 determines whether the detection value of the sixth temperature sensor 37 is equal to or greater than the fourth threshold value.
- the fourth threshold is preset to a temperature at which it is assumed that, in defrosting operation, the frost adhering to the third heat exchanger 15, and the portion of the tube outside the range of the tube 61 that can be melted by the heater 20, is being melted by the thermal energy of the first refrigerant. Therefore, in step S20, the control device 600 is able to grasp the progress of defrosting by the thermal energy of the first refrigerant in the defrosting mode, and is able to determine whether or not defrosting using the heater 20 is necessary.
- step S20 If it is determined in step S20 that the detection value of the sixth temperature sensor 37 is less than the fourth threshold, the process returns to step S7. On the other hand, if it is determined in step S20 that the detection value of the sixth temperature sensor 37 is equal to or greater than the fourth threshold, the control device 600 stops heating by the heater 20 in step S21.
- the control device 600 performs the same process as step S11 in FIG. 4 in step S22. If it is determined in step S22 that the temperature detected by the fourth temperature sensor 36 is equal to or higher than the third threshold, the control device 600 switches the operating state to cooling operation in step S23, similar to step S14 in FIG. 4.
- Fig. 11 is a diagram showing an example of change in power consumption in the defrost mode of the cascade refrigeration system 200D of embodiment 5.
- the vertical axis indicates the power consumption W in the defrost mode of the cascade refrigeration system 200D
- the horizontal axis indicates the elapsed time t from the start of the defrost operation.
- the solid line a indicates the change in power consumption of the cascade refrigeration system 200D of embodiment 5
- the dashed line b indicates the change in power consumption of the cascade refrigeration systems 200, 200A, 200B, and 200C of embodiments 1 to 4.
- the defrost mode in the defrost mode, defrosting by thermal energy of the first refrigerant and defrosting by thermal energy generated by heating the heater 20 are terminated simultaneously, so the power consumption W increases uniformly as shown by the dashed line b.
- the defrost mode in the defrost mode, defrosting by thermal energy generated by heating the heater 20 is terminated earlier than defrosting by thermal energy of the first refrigerant, so the rate of increase in the power consumption W decreases midway as shown by the solid line a.
- the power consumption in the defrost mode can be suppressed by stopping the heater 20 early in the defrost mode.
- the control device 600 stops heating by the heater 20. Therefore, compared to the first to fourth embodiments, the heater 20 can be stopped earlier in the defrost mode. In this way, by stopping the heater 20 earlier in the defrost mode, the amount of power consumption in the defrost mode can be reduced.
- the sixth temperature sensor 37 is provided inside the third heat exchanger 15 at the bend (connection between the rows) between the second and third rows of the tubes 61, so that the sixth temperature sensor 37 is prevented from erroneously detecting the actual temperature of the first refrigerant in the tubes 61 due to receiving thermal energy from the heater 20.
- the first refrigerant having a boiling point lower than ⁇ 52° C. to be filled into the first refrigeration cycle 1 may be carbon dioxide or R23.
- the characteristics required for the first refrigerant are preferably a refrigerant categorized as A1 in ASHRAE34, that is, a refrigerant that is low toxic and non-flammable.
- the first refrigerant is most preferably carbon dioxide, and a mixed refrigerant mainly composed of carbon dioxide may be used.
- a first or second class refrigerant piping is used depending on the maximum operating pressure, but in the case of carbon dioxide, a high-pressure refrigerant with a boiling point lower than -52°C as in this embodiment, a fourth class refrigerant piping is generally used.
- the minimum pressure-resistant elements of air conditioners and freezers such as multi-air conditioners for buildings that use R410A, have a pressure resistance of 4.25 MPaA or less.
- the cascade refrigeration system of this embodiment may be configured to use a high-pressure refrigerant in the first refrigeration cycle 1, while the minimum pressure-resistant elements in each element of the first refrigeration cycle 1 have a pressure resistance of 4.25 MPaA or less.
- the cascade refrigeration system 200 includes a first refrigeration cycle 1 including a first compressor 10, a first heat exchanger 12, a first expansion valve 13, a second heat exchanger 103, a second expansion valve 14, a third heat exchanger 15, and a heater 20, in which a first refrigerant circulates; a second refrigeration cycle 2 including a second compressor 100, a fourth heat exchanger 101, a third expansion valve 102, and a second heat exchanger 103, in which a second refrigerant circulates; and a control device 600 that controls the first refrigeration cycle 1 and the second refrigeration cycle 2.
- a first refrigeration cycle 1 including a first compressor 10, a first heat exchanger 12, a first expansion valve 13, a second heat exchanger 103, a second expansion valve 14, a third heat exchanger 15, and a heater 20, in which a first refrigerant circulates
- a second refrigeration cycle 2 including a second compressor 100, a fourth heat exchanger 101, a third expansion valve 102, and a second heat exchanger 103, in which a second refrig
- the second heat exchanger 103 exchanges heat between the first refrigerant and the second refrigerant.
- the control device 600 controls the first refrigeration cycle and the second refrigeration cycle in a cooling mode or a defrosting mode.
- the cooling mode is a mode in which the first refrigerant discharged from the first compressor 10 returns to the first compressor 10 via the first heat exchanger 12, the first expansion valve 13, the second heat exchanger 103, the second expansion valve 14, and the third heat exchanger 15.
- the defrosting mode is a mode in which the first refrigerant discharged from the first compressor 10 returns to the first compressor 10 via the third heat exchanger 15, the second expansion valve 14, the second heat exchanger 103, the first expansion valve 13, and the first heat exchanger 12.
- the heater is provided in the third heat exchanger. In the defrosting mode, the control device 600 controls the flow path of the first refrigerant in the third heat exchanger to be heated by the heater while the first refrigerant is flowing into the third heat exchanger 15.
- the heater 20 is provided in the flow path of the first refrigerant provided in the third heat exchanger 15 at a position that heats the downstream side of the direction in which the first refrigerant flows in the defrost mode.
- a first pressure sensor 31 is further provided to detect the pressure of the first refrigerant discharged from the first compressor 10, and in the defrost mode, the control device 600 determines whether the pressure of the first refrigerant detected by the first pressure sensor 31 is equal to or lower than a first threshold, and then starts heating by the heater 20 (step S7).
- control device 600 determines that the pressure of the first refrigerant detected by the first pressure sensor 31 is equal to or lower than the first threshold in the defrost mode, it immediately starts heating by the heater 20 (step S7).
- control device determines that the pressure of the first refrigerant detected by the first pressure sensor 31 is higher than the first threshold in the defrost mode, it starts control to circulate the second refrigerant in the second refrigeration cycle 2 (steps S5, S6), and then starts heating by the heater (step S7).
- a fourth temperature sensor 36 is further provided for detecting the temperature of the first refrigerant flowing out from the third heat exchanger 15 to the second expansion valve 14 in the defrost mode.
- the control device 600 ends the defrost mode and ends heating by the heater in response to the temperature of the first refrigerant detected by the fourth temperature sensor 36 becoming equal to or higher than the third threshold (steps S13, S14).
- a fourth temperature sensor 36 is provided for detecting the temperature of the first refrigerant flowing from the third heat exchanger 15 to the second expansion valve 14 in the defrost mode
- a sixth temperature sensor 37 is provided for detecting the temperature of the first refrigerant in the flow path of the first refrigerant inside the third heat exchanger 15 in a range that is not directly heated by the heater 20 in the defrost mode.
- control device 600 ends heating by the heater 20 in the defrost mode when the temperature of the first refrigerant detected by the sixth temperature sensor 37 reaches the fourth threshold (steps S20, S21), and ends the defrost mode when the temperature of the first refrigerant detected by the fourth temperature sensor 36 reaches the third threshold (steps S22, S23).
- the sixth temperature sensor 37 is provided inside the third heat exchanger 15, in the flow path of the first refrigerant, upstream of the range heated by the heater 20 in the direction in which the first refrigerant flows in defrost mode.
- the third heat exchanger 15 has tubes 61, which are the flow path of the first refrigerant, arranged in multiple stages in the vertical direction, and the heater 20 includes multiple heater members 21 arranged in the vertical direction corresponding to the multiple stages of tubes 61.
- the heater member 21 in the bottom stage has a larger heat capacity than the heater member 21 in the top stage.
- the third heat exchanger 15 further includes a fan 15F for blowing air to the third heat exchanger 15, the third heat exchanger 15 includes tubes 61, which are the flow path of the first refrigerant, arranged in multiple stages in the vertical direction, and the heater 20 includes multiple heater members 21 arranged in the vertical direction corresponding to the multiple stages of tubes 61.
- the heater member 21 arranged at the position where the wind speed of the air blown from the fan 15F is the fastest has a larger heat capacity than the heater member 21 arranged at the position where the wind speed of the air blown from the fan 15F is the slowest.
- the boiling point of the first refrigerant is lower than -52°C.
- the first refrigerant is carbon dioxide.
- the first refrigerant is a mixed gas containing carbon dioxide as the main component.
- the first refrigerant and the equipment constituting the first refrigeration cycle have a minimum pressure resistance of 4.25 MPaA or less.
- first compressor 12 first heat exchanger, 13 first expansion valve, 103 second heat exchanger, 14 second expansion valve, 15 third heat exchanger, 20 heater, 1 first refrigeration cycle, 100 second compressor, 101 fourth heat exchanger, 102 third expansion valve, 2 second refrigeration cycle, 600 control device, 200, 200A, 200B, 200C, 200D cascade refrigeration system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Defrosting Systems (AREA)
Abstract
A binary refrigeration device (200) comprises: a first refrigeration cycle (1) that includes a first compressor (10), a first heat exchanger (12), a first expansion valve (13), a second heat exchanger (103), a second expansion valve (14), a third heat exchanger (15), and a heater (20), and through which a first refrigerant circulates; a second refrigeration cycle (2) that includes a second compressor (100), a fourth heat exchanger (101), a third expansion valve (102), and a second heat exchanger (103), and through which a second refrigerant circulates; and a control device (600). The control device (600) controls the first refrigeration cycle and the second refrigeration cycle in a cooling mode or a defrosting mode. The defrosting mode is a mode in which the first refrigerant is made to circulate in the opposite direction from that of the cooling mode. The heater (20) is provided to the third heat exchanger (15). When in the defrosting mode, the control device (600) performs control in which the flow path of the first refrigerant in the third heat exchanger (15) is heated by the heater (20) while the first refrigerant is flowing into the third heat exchanger (15).
Description
本開示は、二元冷凍装置に関する。
This disclosure relates to a dual refrigeration system.
特許文献1には、二元冷凍サイクルを備えた空気調和装置において、低温側冷媒回路の冷房運転時に蒸発器として用いる熱交換器に付着した霜を除去する場合に、当該熱交換器に、圧縮機から四方弁を経てホットガスを送る逆サイクルデフロストをすることが開示されている。
Patent Document 1 discloses that in an air conditioner equipped with a dual refrigeration cycle, when frost is removed from a heat exchanger used as an evaporator during cooling operation of the low-temperature refrigerant circuit, reverse cycle defrosting is performed by sending hot gas from the compressor to the heat exchanger via a four-way valve.
さらに、特許文献1には、二元冷凍サイクルを備えた空気調和装置において、逆サイクルデフロストをする場合に、高温側冷媒回路で圧縮機を運転し、低温側冷媒回路と高温側冷媒回路との間の中間熱交換器で熱交換をすることにより、低温側冷媒回路の冷媒の温度の上昇を抑制することが開示されている。
Furthermore, Patent Document 1 discloses that in an air conditioner equipped with a dual cascade refrigeration cycle, when reverse cycle defrosting is performed, the compressor is operated in the high-temperature refrigerant circuit, and heat is exchanged in an intermediate heat exchanger between the low-temperature refrigerant circuit and the high-temperature refrigerant circuit, thereby suppressing the rise in the temperature of the refrigerant in the low-temperature refrigerant circuit.
しかし、特許文献1のように、逆サイクルデフロストをする場合には、冷媒の性質等の原因により、熱交換器の除霜に要する期間が長期間化するという課題があった。その理由の一例としては、例えば、二酸化炭素よりなる冷媒を用いる場合には、冷媒の飽和温度が比較的低いので、冷媒が二相状態では冷媒と除霜対象の霜との温度差が十分に確保できないこと等の要因により、除霜能力が低いということが考えられる。
However, as in Patent Document 1, when reverse cycle defrosting is performed, the period required to defrost the heat exchanger increases due to factors such as the properties of the refrigerant. One example of the reason for this is that when a refrigerant made of carbon dioxide is used, the saturation temperature of the refrigerant is relatively low, and when the refrigerant is in a two-phase state, the temperature difference between the refrigerant and the frost to be defrosted cannot be sufficiently ensured, resulting in low defrosting capacity.
本開示は、上記のような課題を解決するものであり、その目的は、除霜能力を向上させることができる二元冷凍装置を提供することである。
The present disclosure aims to solve the problems described above, and its purpose is to provide a cascade refrigeration system that can improve defrosting capacity.
本開示は、二元冷凍装置に関する。二元冷凍装置は、第1圧縮機、第1熱交換器、第1膨張弁、第2熱交換器、第2膨張弁、第3熱交換器、および、ヒータを含み、第1冷媒が循環する第1冷凍サイクルと、第2圧縮機、第4熱交換器、第3膨張弁、および、第2熱交換器を含み、第2冷媒が循環する第2冷凍サイクルと、第1冷凍サイクルおよび第2冷凍サイクルを制御する制御装置とを備える。第2熱交換器は、第1冷媒と第2冷媒との間で熱交換をする。制御装置は、第1冷凍サイクルおよび前記第2冷凍サイクルを、冷却モードまたは除霜モードで制御する。冷却モードは、第1圧縮機から吐出された第1冷媒が、第1熱交換器、第1膨張弁、第2熱交換器、第2膨張弁、および、第3熱交換器を経て第1圧縮機に戻るモードである。除霜モードは、第1圧縮機から吐出された第1冷媒が、第3熱交換器、第2膨張弁、第2熱交換器、第1膨張弁、および、第1熱交換器を経て第1圧縮機に戻るモードである。ヒータは、第3熱交換器に設けられる。制御装置は、除霜モードにおいて、第1冷媒が第3熱交換器に流入している状態で、第3熱交換器における第1冷媒の流路をヒータにより加熱する制御をする。
The present disclosure relates to a cascade refrigeration system. The cascade refrigeration system includes a first refrigeration cycle including a first compressor, a first heat exchanger, a first expansion valve, a second heat exchanger, a second expansion valve, a third heat exchanger, and a heater, and in which a first refrigerant circulates; a second refrigeration cycle including a second compressor, a fourth heat exchanger, a third expansion valve, and a second heat exchanger, and in which a second refrigerant circulates; and a control device that controls the first refrigeration cycle and the second refrigeration cycle. The second heat exchanger exchanges heat between the first refrigerant and the second refrigerant. The control device controls the first refrigeration cycle and the second refrigeration cycle in a cooling mode or a defrosting mode. The cooling mode is a mode in which the first refrigerant discharged from the first compressor returns to the first compressor via the first heat exchanger, the first expansion valve, the second heat exchanger, the second expansion valve, and the third heat exchanger. The defrost mode is a mode in which the first refrigerant discharged from the first compressor returns to the first compressor via the third heat exchanger, the second expansion valve, the second heat exchanger, the first expansion valve, and the first heat exchanger. The heater is provided in the third heat exchanger. In the defrost mode, the control device controls the flow path of the first refrigerant in the third heat exchanger to be heated by the heater while the first refrigerant is flowing into the third heat exchanger.
本開示の二元冷凍装置によれば、除霜モードにおいて、第1冷媒が第3熱交換器に流入している状態で、第3熱交換器における第1冷媒の流路をヒータにより加熱するので、除霜能力を向上させることができる。
In the dual cascade refrigeration system disclosed herein, in defrost mode, while the first refrigerant is flowing into the third heat exchanger, the flow path of the first refrigerant in the third heat exchanger is heated by a heater, thereby improving the defrosting capacity.
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
Below, the embodiments of the present invention will be described in detail with reference to the drawings. Several embodiments will be described below, but it is planned from the beginning of the application that the configurations described in each embodiment will be appropriately combined. Note that the same or equivalent parts in the drawings will be given the same reference numerals and their description will not be repeated.
実施の形態1.
(二元冷凍装置200の全体構成)
図1は、実施の形態1の二元冷凍装置200の構成を示す図である。二元冷凍装置200は、第1冷凍サイクル1と、第2冷凍サイクル2と、制御装置600とを含む。第1冷凍サイクル1は、低元冷凍サイクルである。第2冷凍サイクル2は、高元冷凍サイクルである。二元冷凍装置200では、第1冷凍サイクル1と第2冷凍サイクル2とが第2熱交換器103によって連結された多段構成の冷凍サイクルが構成される。二元冷凍装置200では、このような多段構成の冷凍サイクルにより、例えばマイナス数十度などの低温度帯での冷却を行う。Embodiment 1.
(Overall configuration of the cascade refrigeration system 200)
FIG. 1 is a diagram showing the configuration of acascade refrigeration system 200 according to a first embodiment. The cascade refrigeration system 200 includes a first refrigeration cycle 1, a second refrigeration cycle 2, and a control device 600. The first refrigeration cycle 1 is a low-stage refrigeration cycle. The second refrigeration cycle 2 is a high-stage refrigeration cycle. In the cascade refrigeration system 200, a multi-stage refrigeration cycle is configured in which the first refrigeration cycle 1 and the second refrigeration cycle 2 are connected by a second heat exchanger 103. In the cascade refrigeration system 200, cooling is performed in a low temperature range, for example, at minus several tens of degrees, by using such a multi-stage refrigeration cycle.
(二元冷凍装置200の全体構成)
図1は、実施の形態1の二元冷凍装置200の構成を示す図である。二元冷凍装置200は、第1冷凍サイクル1と、第2冷凍サイクル2と、制御装置600とを含む。第1冷凍サイクル1は、低元冷凍サイクルである。第2冷凍サイクル2は、高元冷凍サイクルである。二元冷凍装置200では、第1冷凍サイクル1と第2冷凍サイクル2とが第2熱交換器103によって連結された多段構成の冷凍サイクルが構成される。二元冷凍装置200では、このような多段構成の冷凍サイクルにより、例えばマイナス数十度などの低温度帯での冷却を行う。
(Overall configuration of the cascade refrigeration system 200)
FIG. 1 is a diagram showing the configuration of a
第1冷凍サイクル1は、第1圧縮機10、四方弁11、第1熱交換器12、第1膨張弁13、第2熱交換器103、第2膨張弁14、第3熱交換器15、および、ヒータ20を含む。第1冷凍サイクル1では、第1冷媒が、第1圧縮機10、四方弁11、第1熱交換器12、第1膨張弁13、第2熱交換器103、第2膨張弁14、および、第3熱交換器15を循環する。
The first refrigeration cycle 1 includes a first compressor 10, a four-way valve 11, a first heat exchanger 12, a first expansion valve 13, a second heat exchanger 103, a second expansion valve 14, a third heat exchanger 15, and a heater 20. In the first refrigeration cycle 1, a first refrigerant circulates through the first compressor 10, the four-way valve 11, the first heat exchanger 12, the first expansion valve 13, the second heat exchanger 103, the second expansion valve 14, and the third heat exchanger 15.
ヒータ20は、第3熱交換器15に設けられる。ヒータ20は、第3熱交換器15に付着した霜を溶融して除去する場合に加熱動作をする。
The heater 20 is provided in the third heat exchanger 15. The heater 20 performs a heating operation when melting and removing frost that has adhered to the third heat exchanger 15.
第1熱交換器12に対応して、送風用のファン12Fが設けられている。第3熱交換器15に対応して、送風用のファン15Fが設けられている。
A blower fan 12F is provided in correspondence with the first heat exchanger 12. A blower fan 15F is provided in correspondence with the third heat exchanger 15.
第2冷凍サイクル2は、第2圧縮機100、第4熱交換器101、第3膨張弁102、および、第2熱交換器103を含む。第2冷凍サイクル2では、第2冷媒が、第2圧縮機100、第4熱交換器101、第3膨張弁102、および、第2熱交換器103を循環する。第4熱交換器101に対応して、送風用のファン101Fが設けられている。
The second refrigeration cycle 2 includes a second compressor 100, a fourth heat exchanger 101, a third expansion valve 102, and a second heat exchanger 103. In the second refrigeration cycle 2, a second refrigerant circulates through the second compressor 100, the fourth heat exchanger 101, the third expansion valve 102, and the second heat exchanger 103. A blower fan 101F is provided corresponding to the fourth heat exchanger 101.
第1冷媒は、例えば二酸化炭素冷媒である。二酸化炭素冷媒は、沸点が-52℃よりも低い。第1冷媒は、二酸化炭素冷媒以外の冷媒が用いられてもよい。例えば第1冷媒としては、二酸化炭素を主成分として含む冷媒を用いてもよい。第2冷媒は、例えばプロパン冷媒である。なお、第2冷媒は、プロパン冷媒以外の冷媒が用いられてもよい。また、第1冷媒と第2冷媒とは、同じ種類の冷媒が用いられてもよく、異なる種類の冷媒が用いられてもよい。
The first refrigerant is, for example, a carbon dioxide refrigerant. Carbon dioxide refrigerant has a boiling point lower than -52°C. A refrigerant other than carbon dioxide refrigerant may be used as the first refrigerant. For example, a refrigerant containing carbon dioxide as a main component may be used as the first refrigerant. The second refrigerant is, for example, a propane refrigerant. Note that a refrigerant other than propane refrigerant may be used as the second refrigerant. Furthermore, the first refrigerant and the second refrigerant may be the same type of refrigerant, or different types of refrigerants may be used.
第1冷媒として沸点が-52℃よりも低い冷媒を用いる場合においては、第1冷凍サイクル1において、高耐圧用の配管および機器ではなく、耐圧が4.25MpaAのように比較的に低い配管および機器を用いてもよい。このように、第1冷凍サイクル1において耐圧が低い配管および機器を用いる場合には、配管の肉厚を薄くすることができること、および、第1冷媒の流量を多くすることができることなどの理由により、二元冷凍装置200の製造に要するコストを低減することができる。
When a refrigerant with a boiling point lower than -52°C is used as the first refrigerant, piping and equipment with a relatively low pressure resistance, such as 4.25 MPaA, may be used in the first refrigeration cycle 1, rather than piping and equipment for high pressure resistance. In this way, when piping and equipment with low pressure resistance are used in the first refrigeration cycle 1, the cost required to manufacture the cascade refrigeration system 200 can be reduced because the thickness of the piping can be made thinner and the flow rate of the first refrigerant can be increased.
第2熱交換器103は、カスケード熱交換器であり、第1冷凍サイクル1における第1膨張弁13と第2膨張弁14との間の配管を流れる第1冷媒と、第2冷凍サイクル2における第3膨張弁102と第2圧縮機100との間の配管を流れる第2冷媒との間で熱交換をさせる。なお、第2熱交換器103は、二重熱交換器を用いてもよく、プレート式熱交換器を用いてもよい。
The second heat exchanger 103 is a cascade heat exchanger, and exchanges heat between the first refrigerant flowing through the piping between the first expansion valve 13 and the second expansion valve 14 in the first refrigeration cycle 1 and the second refrigerant flowing through the piping between the third expansion valve 102 and the second compressor 100 in the second refrigeration cycle 2. The second heat exchanger 103 may be a double heat exchanger or a plate type heat exchanger.
二元冷凍装置200においては、第1冷凍サイクル1および第2冷凍サイクル2を構成する各種機器が、室外ユニットである室外機3と、室内ユニットである室内機4とに分けて収納されている。室外機3は、例えば屋外に設けられる。室内機4は、例えば冷凍庫のような冷凍室内に設けられている。
In the cascade refrigeration system 200, the various devices constituting the first refrigeration cycle 1 and the second refrigeration cycle 2 are housed separately in an outdoor unit 3, which is an outdoor unit, and an indoor unit 4, which is an indoor unit. The outdoor unit 3 is installed, for example, outdoors. The indoor unit 4 is installed, for example, inside a freezing room such as a freezer.
室外機3には、第1冷凍サイクル1における第1圧縮機10、四方弁11、第1熱交換器12、第1膨張弁13、第2熱交換器103、第2膨張弁14、第3熱交換器15、および、ヒータ20と、第2冷凍サイクル2における第2圧縮機100、第4熱交換器101、第3膨張弁102、および、第2熱交換器103とが収納されている。
The outdoor unit 3 houses the first compressor 10, four-way valve 11, first heat exchanger 12, first expansion valve 13, second heat exchanger 103, second expansion valve 14, third heat exchanger 15, and heater 20 in the first refrigeration cycle 1, and the second compressor 100, fourth heat exchanger 101, third expansion valve 102, and second heat exchanger 103 in the second refrigeration cycle 2.
室内機4には、第1冷凍サイクル1における第2膨張弁14、第3熱交換器15、および、ヒータ20が収納されている。室外機3の第2熱交換器103と、室内機4の第2膨張弁14との間には、延長配管6が設けられている。室外機3の四方弁11と、第3熱交換器15との間には、延長配管7が設けられている。
The indoor unit 4 houses the second expansion valve 14, the third heat exchanger 15, and the heater 20 in the first refrigeration cycle 1. An extension pipe 6 is provided between the second heat exchanger 103 of the outdoor unit 3 and the second expansion valve 14 of the indoor unit 4. An extension pipe 7 is provided between the four-way valve 11 of the outdoor unit 3 and the third heat exchanger 15.
第1冷凍サイクル1においては、各種のセンサが設けられている。第1圧縮機10における第1冷媒の出口と、四方弁11の入口との間の配管には、第1圧縮機10から吐出される第1冷媒の圧力を検出する第1圧力センサ31と、第1圧縮機10から吐出される第1冷媒の温度を検出する第1温度センサ32とが設けられている。第3熱交換器15と、第1圧縮機10の入口との間の配管には、第1圧縮機10に吸入される第1冷媒の圧力を検出する第2圧力センサ33と、第1圧縮機10に吸入される第1冷媒の温度を検出する第2温度センサ34とが設けられている。第1熱交換器12と第2熱交換器103との間には、第1冷媒の温度を検出する第3温度センサ35が設けられている。第3熱交換器15と第2膨張弁14との間の配管には、後述する除霜モードにおいて、第3熱交換器15から第2膨張弁14に向けて流出する第1冷媒の温度を検出する第4温度センサ36が設けられている。
In the first refrigeration cycle 1, various sensors are provided. A first pressure sensor 31 for detecting the pressure of the first refrigerant discharged from the first compressor 10 and a first temperature sensor 32 for detecting the temperature of the first refrigerant discharged from the first compressor 10 are provided in the piping between the outlet of the first refrigerant in the first compressor 10 and the inlet of the four-way valve 11. A second pressure sensor 33 for detecting the pressure of the first refrigerant sucked into the first compressor 10 and a second temperature sensor 34 for detecting the temperature of the first refrigerant sucked into the first compressor 10 are provided in the piping between the third heat exchanger 15 and the inlet of the first compressor 10. A third temperature sensor 35 for detecting the temperature of the first refrigerant is provided between the first heat exchanger 12 and the second heat exchanger 103. A fourth temperature sensor 36 for detecting the temperature of the first refrigerant flowing out from the third heat exchanger 15 toward the second expansion valve 14 in a defrost mode described later is provided in the piping between the third heat exchanger 15 and the second expansion valve 14.
第2冷凍サイクル2においては、各種のセンサが設けられている。第2圧縮機100における第2冷媒の出口と、第4熱交換器101との間の配管には、第2圧縮機100から吐出される第2冷媒の圧力を検出する第3圧力センサ41が設けられている。第2熱交換器103と、第2圧縮機100の入口との間の配管には、第2圧縮機100に吸入される第2冷媒の圧力を検出する第4圧力センサ42と、第2圧縮機100に吸入される第2冷媒の温度を検出する第5温度センサ43とが設けられている。
Various sensors are provided in the second refrigeration cycle 2. A third pressure sensor 41 is provided in the piping between the second refrigerant outlet of the second compressor 100 and the fourth heat exchanger 101 to detect the pressure of the second refrigerant discharged from the second compressor 100. A fourth pressure sensor 42 is provided in the piping between the second heat exchanger 103 and the inlet of the second compressor 100 to detect the pressure of the second refrigerant sucked into the second compressor 100, and a fifth temperature sensor 43 is provided to detect the temperature of the second refrigerant sucked into the second compressor 100.
室内機4には、室内機4が設けられた冷凍室の室内の温度を検出する第6温度センサ23が設けられている。
The indoor unit 4 is provided with a sixth temperature sensor 23 that detects the temperature inside the freezer compartment in which the indoor unit 4 is installed.
制御装置600は、室外機3に収納されている。制御装置600は、室外機3に収納された機器、および、室内機4に収納された機器を制御する。
The control device 600 is housed in the outdoor unit 3. The control device 600 controls the devices housed in the outdoor unit 3 and the devices housed in the indoor unit 4.
なお、制御装置600は、室内機4に収納されてもよく、室外機3および室内機4の両方に設けられてもよい。制御装置600が室外機3および室内機4の両方に設けられる場合は、室外機3に設けられた制御装置と、室内機4に設けられた制御装置とが情報通信をし、これらの制御装置により、室外機3に収納された機器、および、室内機4に収納された機器を制御する。
The control device 600 may be housed in the indoor unit 4, or may be provided in both the outdoor unit 3 and the indoor unit 4. When the control device 600 is provided in both the outdoor unit 3 and the indoor unit 4, the control device provided in the outdoor unit 3 and the control device provided in the indoor unit 4 communicate with each other, and these control devices control the devices housed in the outdoor unit 3 and the devices housed in the indoor unit 4.
制御装置600は、CPU(Central Processing Unit)601と、メモリ602(ROM(Read Only Memory)およびRAM(Random Access Memory))と、入出力バッファ(図示せず)等を含んで構成される。CPU601は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置600の処理手順が記されたプログラムである。制御装置600は、これらのプログラムにしたがって、二元冷凍装置200における各種機器の制御をする。このような機器の制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
The control device 600 is composed of a CPU (Central Processing Unit) 601, memory 602 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown), etc. The CPU 601 deploys the programs stored in the ROM into the RAM etc. and executes them. The programs stored in the ROM are programs in which the processing procedures of the control device 600 are written. The control device 600 controls various devices in the cascade refrigeration device 200 in accordance with these programs. The control of such devices is not limited to processing by software, but can also be processed by dedicated hardware (electronic circuits).
制御装置600は、例えば第1圧力センサ31、第2圧力センサ33、第3圧力センサ41、第4圧力センサ42、第1温度センサ32、第2温度センサ34、第3温度センサ35、第4温度センサ36、第5温度センサ43、および、第6温度センサ23などの各種センサから検出情報が入力される。
The control device 600 receives detection information from various sensors, such as the first pressure sensor 31, the second pressure sensor 33, the third pressure sensor 41, the fourth pressure sensor 42, the first temperature sensor 32, the second temperature sensor 34, the third temperature sensor 35, the fourth temperature sensor 36, the fifth temperature sensor 43, and the sixth temperature sensor 23.
制御装置600は、前述の各種センサの検出情報およびその他の情報に応じて、例えば第1圧縮機10、四方弁11、第1膨張弁13、第2膨張弁14、ヒータ20、第2圧縮機100、第3膨張弁102、および、ファン12F,15F,101Fを制御する。
The control device 600 controls, for example, the first compressor 10, the four-way valve 11, the first expansion valve 13, the second expansion valve 14, the heater 20, the second compressor 100, the third expansion valve 102, and the fans 12F, 15F, and 101F, depending on the detection information of the various sensors mentioned above and other information.
制御装置600は、第1冷凍サイクル1および第2冷凍サイクル2を冷却モードまたは除霜モードで運転する制御をすることが可能である。
The control device 600 can control the operation of the first refrigeration cycle 1 and the second refrigeration cycle 2 in a cooling mode or a defrosting mode.
冷却モードは、第3熱交換器15が設けられた室内を第3熱交換器15による熱交換により冷却する運転モードである。第1圧縮機10から吐出された第1冷媒が、四方弁11、第1熱交換器12、第1膨張弁13、第2熱交換器103、第2膨張弁14、および、第3熱交換器15を経て第1圧縮機10に戻るモードである。冷却モードでは、第1熱交換器12が凝縮器として用いられ、第3熱交換器15が蒸発器として用いられる。
The cooling mode is an operating mode in which the room in which the third heat exchanger 15 is provided is cooled by heat exchange using the third heat exchanger 15. In this mode, the first refrigerant discharged from the first compressor 10 passes through the four-way valve 11, the first heat exchanger 12, the first expansion valve 13, the second heat exchanger 103, the second expansion valve 14, and the third heat exchanger 15, and returns to the first compressor 10. In the cooling mode, the first heat exchanger 12 is used as a condenser, and the third heat exchanger 15 is used as an evaporator.
除霜モードは、第3熱交換器15に付着した霜を除去する運転モードである。除霜モードでは、第1圧縮機10から吐出された高温高圧の第1冷媒が、第3熱交換器15、第2膨張弁14、第2熱交換器103、第1膨張弁13、四方弁11、および、第1熱交換器12を経て第1圧縮機10に戻るモードである。除霜モードでは、第3熱交換器15が凝縮器として用いられ、第1熱交換器12が蒸発器として用いられる。
The defrost mode is an operating mode in which frost adhering to the third heat exchanger 15 is removed. In the defrost mode, the high-temperature, high-pressure first refrigerant discharged from the first compressor 10 passes through the third heat exchanger 15, the second expansion valve 14, the second heat exchanger 103, the first expansion valve 13, the four-way valve 11, and the first heat exchanger 12, and returns to the first compressor 10. In the defrost mode, the third heat exchanger 15 is used as a condenser, and the first heat exchanger 12 is used as an evaporator.
このように、除霜モードにおいて、第1圧縮機10から吐出された高温高圧のガス状の第1冷媒を冷却モードとは逆方向に循環させて、第3熱交換器15に供給することにより第3熱交換器15に付着した霜を除去する除霜は、リバースホットガス除霜と呼ばれる。
In this way, in the defrosting mode, the high-temperature, high-pressure gaseous first refrigerant discharged from the first compressor 10 is circulated in the opposite direction to the cooling mode and supplied to the third heat exchanger 15 to remove the frost that has adhered to the third heat exchanger 15. This defrosting is called reverse hot gas defrosting.
ヒータ20は、第3熱交換器15において、除霜モードで第1冷媒が第3熱交換器15に流入している状態で、第3熱交換器15における第1冷媒の流路の下流側を加熱することが可能な位置に設けられる。
The heater 20 is provided in a position in the third heat exchanger 15 where it can heat the downstream side of the flow path of the first refrigerant in the third heat exchanger 15 when the first refrigerant is flowing into the third heat exchanger 15 in defrost mode.
四方弁11は、冷却モードと除霜モードとで第1冷媒が流れる方向を切換えるように構成されている。四方弁11における流路は、冷却モードにおいて、実線で示す流路となり、除霜モードにおいて、破線で示す流路となる。冷却モードにおいて四方弁11の流路は、四方弁11の内部の実線で示すように第1圧縮機10から吐出された第1冷媒が第1熱交換器12に供給されるように第1流路に切換えられる。除霜モードにおいて、四方弁11の流路は、四方弁11の内部の破線で示すように、第1圧縮機10から吐出された第1冷媒が第3熱交換器15に供給されるように第2流路に切換えられる。
The four-way valve 11 is configured to switch the direction in which the first refrigerant flows between the cooling mode and the defrost mode. In the cooling mode, the flow path in the four-way valve 11 is the flow path shown by the solid line, and in the defrost mode, the flow path is the flow path shown by the dashed line. In the cooling mode, the flow path of the four-way valve 11 is switched to the first flow path so that the first refrigerant discharged from the first compressor 10 is supplied to the first heat exchanger 12, as shown by the solid line inside the four-way valve 11. In the defrost mode, the flow path of the four-way valve 11 is switched to the second flow path so that the first refrigerant discharged from the first compressor 10 is supplied to the third heat exchanger 15, as shown by the dashed line inside the four-way valve 11.
第2熱交換器103の伝熱面積は、例えば第1熱交換器12の伝熱面積と第4熱交換器101の伝熱面積とを合計した伝熱面積の3%~50%の範囲内である。第2熱交換器103の伝熱面積は、第1熱交換器12の伝熱面積と第4熱交換器101の伝熱面積とを合計した伝熱面積の8%~30%の範囲内であることが好ましい。
The heat transfer area of the second heat exchanger 103 is, for example, within a range of 3% to 50% of the combined heat transfer area of the first heat exchanger 12 and the fourth heat exchanger 101. It is preferable that the heat transfer area of the second heat exchanger 103 is within a range of 8% to 30% of the combined heat transfer area of the first heat exchanger 12 and the fourth heat exchanger 101.
なお、第2冷凍サイクル2は、封入される第2冷媒が、第1冷凍サイクル1に封入される第1冷媒と比べて、同一温度(例えば飽和温度)であるときの圧力が小さい冷媒を選択することにより、第1冷凍サイクル1と比べて、配管および機器の耐圧を低く設定してもよい。
In addition, the second refrigeration cycle 2 may have a lower pressure resistance for the piping and equipment than the first refrigeration cycle 1 by selecting a second refrigerant that has a lower pressure at the same temperature (e.g., saturation temperature) than the first refrigerant that is charged in the first refrigeration cycle 1.
(冷却モードの動作状態)
次に、図1を参照して、冷却モードの動作状態を説明する。 (Cooling mode operation status)
Next, the operating state of the cooling mode will be described with reference to FIG.
次に、図1を参照して、冷却モードの動作状態を説明する。 (Cooling mode operation status)
Next, the operating state of the cooling mode will be described with reference to FIG.
まず、第1冷凍サイクル1の動作状態を説明する。冷却モードでは、第1圧縮機10において圧縮された第1冷媒が、高温高圧の過熱蒸気となって第1圧縮機10から吐出される。第1圧縮機10から吐出された第1冷媒は、四方弁11を経て第1熱交換器12に流入する。第1熱交換器12においては、第1冷媒が、室外空気と熱交換し凝縮させられる。
First, the operating state of the first refrigeration cycle 1 will be described. In the cooling mode, the first refrigerant compressed in the first compressor 10 becomes high-temperature, high-pressure superheated vapor and is discharged from the first compressor 10. The first refrigerant discharged from the first compressor 10 flows into the first heat exchanger 12 via the four-way valve 11. In the first heat exchanger 12, the first refrigerant exchanges heat with the outdoor air and is condensed.
冷却モードでは、第1膨張弁13が最大開度とされている。第1熱交換器12から流出した第1冷媒が、第2熱交換器103に流入する。第2熱交換器103では、第1冷媒と、第2冷媒との間で熱交換がされる。第2熱交換器103では、第1冷媒がさらに凝縮される。第2熱交換器103から流出した第1冷媒が、第2膨張弁14に流入する。第2膨張弁14では、第1冷媒が膨張させられる。
In the cooling mode, the first expansion valve 13 is opened to the maximum degree. The first refrigerant flowing out of the first heat exchanger 12 flows into the second heat exchanger 103. In the second heat exchanger 103, heat is exchanged between the first refrigerant and the second refrigerant. In the second heat exchanger 103, the first refrigerant is further condensed. The first refrigerant flowing out of the second heat exchanger 103 flows into the second expansion valve 14. In the second expansion valve 14, the first refrigerant is expanded.
第2膨張弁14から流出した第1冷媒は、第3熱交換器15に流入する。冷却モードでは、ヒータ20が動作させられない。第3熱交換器15では、第1冷媒が、冷凍庫の庫内の空気と熱交換し蒸発させられる。これにより、第3熱交換器15により、冷凍庫の庫内の空気が冷却される。第3熱交換器15から流出した第1冷媒が、四方弁11を経て第1圧縮機10の吸入側に流入する。
The first refrigerant that flows out of the second expansion valve 14 flows into the third heat exchanger 15. In the cooling mode, the heater 20 is not operated. In the third heat exchanger 15, the first refrigerant exchanges heat with the air inside the freezer and is evaporated. This causes the air inside the freezer to be cooled by the third heat exchanger 15. The first refrigerant that flows out of the third heat exchanger 15 flows into the suction side of the first compressor 10 via the four-way valve 11.
制御装置600は、第2圧力センサ33および第2温度センサ34の検出情報に応じて、第3熱交換器15の蒸発温度および第1圧縮機10の吸入スーパーヒートが、予め設定された目標値となるように、第1圧縮機10の周波数および第2膨張弁14の開度を制御する。制御装置600は、第1膨張弁13の開度が最大開度となるように第1膨張弁13を制御する。
The control device 600 controls the frequency of the first compressor 10 and the opening of the second expansion valve 14 so that the evaporation temperature of the third heat exchanger 15 and the suction superheat of the first compressor 10 reach preset target values in response to the detection information of the second pressure sensor 33 and the second temperature sensor 34. The control device 600 controls the first expansion valve 13 so that the opening of the first expansion valve 13 reaches its maximum opening.
制御装置600は、第6温度センサ23の検出情報に応じて、庫内温度が、ユーザにより設定された庫内温度以下となった場合に、第1圧縮機10の運転を停止させる制御をする。なお、室外機3と室内機4との間において情報通信をすることができない構成例の場合、制御装置600は、第2圧力センサ33により検出された圧力が、ユーザにより設定された庫内温度に対応する圧力以下となったときに、第1圧縮機10の運転を停止させる制御をしてもよい。
The control device 600 controls the first compressor 10 to stop operation when the internal temperature becomes equal to or lower than the internal temperature set by the user, according to the information detected by the sixth temperature sensor 23. In a configuration example in which information communication is not possible between the outdoor unit 3 and the indoor unit 4, the control device 600 may control the first compressor 10 to stop operation when the pressure detected by the second pressure sensor 33 becomes equal to or lower than the pressure corresponding to the internal temperature set by the user.
制御装置600は、第1圧力センサ31の検出情報に応じて、第1熱交換器12の凝縮温度が予め設定された目標値となるように第2圧縮機100の周波数を制御してもよい。制御装置600は、第1熱交換器12の凝縮温度が予め設定された目標値となるように、ファン12Fの回転速度を最大速度に保持した状態で、第2圧縮機100の周波数を制御してもよい。制御装置600は、第1熱交換器12の凝縮温度が予め設定された目標値となるように制御する場合に、ファン12Fの回転速度の増加を最小限とするために、第3温度センサ35により検出される温度が外気温度+α℃(例えばα=0℃-2℃)となるようにファン12Fの回転速度を制御してもよい。
The control device 600 may control the frequency of the second compressor 100 in accordance with the detection information of the first pressure sensor 31 so that the condensing temperature of the first heat exchanger 12 becomes a preset target value. The control device 600 may control the frequency of the second compressor 100 while maintaining the rotation speed of the fan 12F at a maximum speed so that the condensing temperature of the first heat exchanger 12 becomes a preset target value. When controlling the condensing temperature of the first heat exchanger 12 to become a preset target value, the control device 600 may control the rotation speed of the fan 12F so that the temperature detected by the third temperature sensor 35 becomes the outside air temperature + α°C (for example, α = 0°C - 2°C) in order to minimize an increase in the rotation speed of the fan 12F.
次に、第2冷凍サイクル2の動作状態を説明する。冷却モードでは、第2圧縮機100において圧縮された第2冷媒が、高温高圧の過熱蒸気となって第2圧縮機100から吐出される。第2圧縮機100から吐出された第2冷媒は、第4熱交換器101に流入する。第4熱交換器101においては、第2冷媒が、室外空気と熱交換し凝縮させられる。
Next, the operating state of the second refrigeration cycle 2 will be described. In the cooling mode, the second refrigerant compressed in the second compressor 100 becomes high-temperature, high-pressure superheated vapor and is discharged from the second compressor 100. The second refrigerant discharged from the second compressor 100 flows into the fourth heat exchanger 101. In the fourth heat exchanger 101, the second refrigerant exchanges heat with the outdoor air and is condensed.
第4熱交換器101から流出した第2冷媒が、第3膨張弁102に流入する。第3膨張弁102では、第2冷媒が膨張させられる。第3膨張弁102から流出した第2冷媒は、第2熱交換器103に流入する。第2熱交換器103では、第1冷媒との熱交換により第2冷媒が蒸発される。第2熱交換器103から流出した第2冷媒が、第2圧縮機100に流入する。
The second refrigerant flowing out of the fourth heat exchanger 101 flows into the third expansion valve 102. In the third expansion valve 102, the second refrigerant is expanded. The second refrigerant flowing out of the third expansion valve 102 flows into the second heat exchanger 103. In the second heat exchanger 103, the second refrigerant is evaporated by heat exchange with the first refrigerant. The second refrigerant flowing out of the second heat exchanger 103 flows into the second compressor 100.
制御装置600は、第4圧力センサ42および第5温度センサ43の検出情報に応じて、第2圧縮機100の吸入スーパーヒートが、予め設定された目標値となるように、第3膨張弁102の開度を制御する。
The control device 600 controls the opening of the third expansion valve 102 according to the detection information of the fourth pressure sensor 42 and the fifth temperature sensor 43 so that the suction superheat of the second compressor 100 becomes a preset target value.
制御装置600は、第3圧力センサ41の検出情報に応じて、第4熱交換器101の凝縮温度が設定された目標値(飽和温度)となるように、ファン101Fの回転数を制御する。
The control device 600 controls the rotation speed of the fan 101F according to the detection information of the third pressure sensor 41 so that the condensation temperature of the fourth heat exchanger 101 becomes the set target value (saturation temperature).
(除霜モードの動作状態)
次に、図1を参照して、除霜モードの動作状態を説明する。 (Defrost mode operation status)
Next, the operation state of the defrosting mode will be described with reference to FIG.
次に、図1を参照して、除霜モードの動作状態を説明する。 (Defrost mode operation status)
Next, the operation state of the defrosting mode will be described with reference to FIG.
まず、第1冷凍サイクル1の動作状態を説明する。除霜モードでは、第1圧縮機10において圧縮された第1冷媒が、高温高圧の過熱蒸気となって第1圧縮機10から吐出される。第1圧縮機10から吐出された第1冷媒は、四方弁11を経て第3熱交換器15に流入する。第3熱交換器15においては、第1冷媒が、庫内空気と熱交換し凝縮させられる。除霜モードにおいては、ヒータ20が加熱動作をさせられる。第3熱交換器15のファン15Fは停止される。
First, the operating state of the first refrigeration cycle 1 will be described. In the defrost mode, the first refrigerant compressed in the first compressor 10 becomes high-temperature, high-pressure superheated vapor and is discharged from the first compressor 10. The first refrigerant discharged from the first compressor 10 flows into the third heat exchanger 15 via the four-way valve 11. In the third heat exchanger 15, the first refrigerant exchanges heat with the air inside the storage unit and is condensed. In the defrost mode, the heater 20 is operated to heat. The fan 15F of the third heat exchanger 15 is stopped.
除霜モードでは、過熱蒸気となった第1冷媒が第3熱交換器15に流入するともに、ヒータ20が加熱動作をするので、第3熱交換器15に付着している霜が、第1冷媒の熱エネルギ、および、ヒータ20の熱エネルギにより、溶融して除去される。
In the defrost mode, the first refrigerant, which has become superheated vapor, flows into the third heat exchanger 15 and the heater 20 performs heating operation, so that the frost adhering to the third heat exchanger 15 is melted and removed by the thermal energy of the first refrigerant and the thermal energy of the heater 20.
除霜モードでは、第2膨張弁14が最大開度とされる。第3熱交換器15から流出した第1冷媒が、第2熱交換器103に流入する。第2熱交換器103では、第1冷媒と、第2冷媒との間で熱交換がされる。第2熱交換器103では、第1冷媒が冷却される。
In the defrost mode, the second expansion valve 14 is opened to the maximum degree. The first refrigerant that flows out of the third heat exchanger 15 flows into the second heat exchanger 103. In the second heat exchanger 103, heat is exchanged between the first refrigerant and the second refrigerant. In the second heat exchanger 103, the first refrigerant is cooled.
第2熱交換器103から流出した第1冷媒が、第1膨張弁13に流入する。第1膨張弁13では、第1冷媒が膨張させられる。第1膨張弁13から流出した第1冷媒は、第1熱交換器12に流入する。第1熱交換器12では、第1冷媒が、室外空気と熱交換し蒸発させられる。第1熱交換器12から流出した第1冷媒が、四方弁11を経て第1圧縮機10の吸入側に流入する。
The first refrigerant flowing out of the second heat exchanger 103 flows into the first expansion valve 13. In the first expansion valve 13, the first refrigerant is expanded. The first refrigerant flowing out of the first expansion valve 13 flows into the first heat exchanger 12. In the first heat exchanger 12, the first refrigerant exchanges heat with the outdoor air and is evaporated. The first refrigerant flowing out of the first heat exchanger 12 flows into the suction side of the first compressor 10 via the four-way valve 11.
除霜モードにおける第2冷凍サイクル2の基本的な動作状態は、冷却モードの動作状態と同様である。
The basic operating state of the second refrigeration cycle 2 in the defrost mode is the same as the operating state in the cooling mode.
(ヒータ20の構成)
次にヒータ20の構成を説明する。図2は、第3熱交換器15におけるヒータ20の配置を示す図である。図2(A)においては、第3熱交換器15内で第1冷媒を流すチューブ61とヒータ20との位置関係を模式的に示す第3熱交換器15の断面図が示されている。図2(B)においては、チューブ61とヒータ20との位置関係を模式的に示す第3熱交換器15の側面図が示されている。 (Configuration of heater 20)
Next, the configuration of theheater 20 will be described. Fig. 2 is a diagram showing the arrangement of the heater 20 in the third heat exchanger 15. Fig. 2(A) shows a cross-sectional view of the third heat exchanger 15, which shows a schematic positional relationship between the heater 20 and a tube 61 through which the first refrigerant flows in the third heat exchanger 15. Fig. 2(B) shows a side view of the third heat exchanger 15, which shows a schematic positional relationship between the tube 61 and the heater 20.
次にヒータ20の構成を説明する。図2は、第3熱交換器15におけるヒータ20の配置を示す図である。図2(A)においては、第3熱交換器15内で第1冷媒を流すチューブ61とヒータ20との位置関係を模式的に示す第3熱交換器15の断面図が示されている。図2(B)においては、チューブ61とヒータ20との位置関係を模式的に示す第3熱交換器15の側面図が示されている。 (Configuration of heater 20)
Next, the configuration of the
図2(A)を参照して、第3熱交換器15は、多菅式の熱交換器であり、第1冷媒が流れるチューブ61が縦方向に例えば5段階のような複数段に分けて設けられている。第3熱交換器15の第1流路60は、除霜モードにおいて第1冷媒が第3熱交換器15に流入する流路である。第1流路60は、例えば5つのチューブなどの複数のチューブ61に分岐している。
Referring to FIG. 2(A), the third heat exchanger 15 is a multi-tube heat exchanger, and the tubes 61 through which the first refrigerant flows are arranged vertically in multiple stages, for example five stages. The first flow path 60 of the third heat exchanger 15 is a flow path through which the first refrigerant flows into the third heat exchanger 15 in the defrost mode. The first flow path 60 branches into multiple tubes 61, for example five tubes.
各段のチューブ61は、第3熱交換器15の内部で、第3熱交換器15の長手方向(横方向)に延在され、複数回折り返した形状である。第3熱交換器15の第2流路62は、除霜モードにおいて第1冷媒が第3熱交換器15から流出する流路である。各段のチューブ61は、第2流路62に合流する。
The tubes 61 of each stage are extended inside the third heat exchanger 15 in the longitudinal direction (horizontal direction) of the third heat exchanger 15 and are folded back multiple times. The second flow path 62 of the third heat exchanger 15 is a flow path through which the first refrigerant flows out of the third heat exchanger 15 in the defrost mode. The tubes 61 of each stage merge into the second flow path 62.
図2(A)において、2つのチューブ61の間を繋ぐ実線は、チューブ61が断面の手前側で図2(B)の左端部のチューブ61の形状のようにU字形状で屈曲して折り返すことを示している。図2(A)において、2つのチューブ61の間を繋ぐ破線は、チューブ61が断面の奥側で図2(B)の右端部のチューブ61の形状のようにU字形状で屈曲して折り返すことを示している。図2では、各チューブ61が第3熱交換器15の長手方向において複数回往復する複数パスを有する形状が示されている。具体的に、図2では、各チューブ61が、第3熱交換器15の長手方向で2回往復することにより当該長手方向に延在する4列の経路により構成されている。
In FIG. 2(A), the solid line connecting two tubes 61 indicates that the tube 61 is bent and folded back in a U-shape at the front side of the cross section, like the shape of the tube 61 at the left end of FIG. 2(B). In FIG. 2(A), the dashed line connecting two tubes 61 indicates that the tube 61 is bent and folded back in a U-shape at the back side of the cross section, like the shape of the tube 61 at the right end of FIG. 2(B). In FIG. 2, each tube 61 is shown to have a shape having multiple paths that go back and forth multiple times in the longitudinal direction of the third heat exchanger 15. Specifically, in FIG. 2, each tube 61 goes back and forth twice in the longitudinal direction of the third heat exchanger 15, forming four rows of paths extending in the longitudinal direction.
第3熱交換器15は、第1冷媒と室内空気との間で熱交換をするものであり、熱交換をする空気が図1に示すファン15Fから供給される。図2(A)に示すように、図1に示すファン15Fから第3熱交換器15に供給される空気15aは、各チューブ61の第1列目から第4列目に向かう方向に送風される。
The third heat exchanger 15 exchanges heat between the first refrigerant and the indoor air, and the air for heat exchange is supplied from the fan 15F shown in FIG. 1. As shown in FIG. 2(A), the air 15a supplied to the third heat exchanger 15 from the fan 15F shown in FIG. 1 is blown in a direction from the first row to the fourth row of each tube 61.
図2(A)および図2(B)に示すように、ヒータ20は、複数のヒータ部材21を含む。各ヒータ部材21は、第3熱交換器15の内部において、各チューブ61の3列目の経路および4列目の経路の延在方向に沿うように、発熱体が第3熱交換器15の長手方向に延在する棒形状の部材である。第3熱交換器15においては、複数段のチューブ61に対応して、複数のヒータ部材21が設けられている。
As shown in Figures 2(A) and 2(B), the heater 20 includes a plurality of heater members 21. Each heater member 21 is a rod-shaped member whose heating element extends in the longitudinal direction of the third heat exchanger 15 so as to follow the extending direction of the third and fourth rows of paths of each tube 61 inside the third heat exchanger 15. In the third heat exchanger 15, a plurality of heater members 21 are provided corresponding to the multiple stages of tubes 61.
図2(A)および図2(B)では、第1段目のチューブ61の上方と、第5段目のチューブ61の下方とにヒータ部材21が設けられていない例が示されているが、第1段目のチューブ61の上方と、第5段目のチューブ61の下方とには、ヒータ部材21が設けられてもよい。
In Fig. 2(A) and Fig. 2(B), an example is shown in which heater members 21 are not provided above the first stage tube 61 and below the fifth stage tube 61, but heater members 21 may be provided above the first stage tube 61 and below the fifth stage tube 61.
図2(A)では、各ヒータ部材21が、各チューブ61の3列目の経路と4列目の経路とを直接的に加熱できるような位置に設けられている。このように、各ヒータ部材21は、第3熱交換器15に設けられた各チューブ61において、除霜モードで第1冷媒が流れる方向における後流側に設けられている。第3熱交換器15における各チューブ61は、4列の経路を有するので、3列目の経路および4列目の経路は、除霜モードで第1冷媒の流れる方向において、各チューブ61での全長の1/2よりも後流側である。
In FIG. 2(A), each heater member 21 is provided in a position where it can directly heat the third and fourth rows of paths of each tube 61. In this way, each heater member 21 is provided on the downstream side of each tube 61 provided in the third heat exchanger 15 in the direction in which the first refrigerant flows in defrost mode. Since each tube 61 in the third heat exchanger 15 has four rows of paths, the third and fourth rows of paths are downstream of 1/2 of the total length of each tube 61 in the direction in which the first refrigerant flows in defrost mode.
複数のヒータ部材21は、熱容量が同じであってもよく、熱容量が異なるものが含まれてもよい。次のような場合に、複数のヒータ部材21は、熱容量が異なるものが含まれる。例えば、第3熱交換器15においては、内部の下方部分において、霜に起因する根氷が生じる場合がある。このような場合には、除霜モードでこのような根氷を溶かして霜が残らないようにするために、複数のヒータ部材21のうち、少なくとも最下段のヒータ部材21の熱容量が、最上段のヒータ部材21の熱容量よりも大きくなるように構成すればよい。
The multiple heater members 21 may have the same heat capacity, or may include heater members with different heat capacities. In the following cases, the multiple heater members 21 may include heater members with different heat capacities. For example, in the third heat exchanger 15, ice roots caused by frost may form in the lower internal portion. In such cases, in order to melt such ice roots in the defrost mode and prevent frost from remaining, it is sufficient to configure at least the heater member 21 in the bottom row of the multiple heater members 21 to have a larger heat capacity than the heater member 21 in the top row.
また、第3熱交換器15においては、ファン15Fからの送風の風速が速い部分は、当該部分よりもファン15Fからの送風の風速が遅い部分と比べて、霜の付着量が多くなるという現象が生じる場合がある。このような場合には、第3熱交換器15において、霜の付着量が多い箇所に除霜モードで霜が残らないようにするために、複数のヒータ部材21のうち、少なくともファン15Fからの送風の風速が最も速い位置に設けられたヒータ部材21が、ファン15Fからの送風の風速が最も遅い位置に設けられたヒータ部材21よりも熱容量が大きくなるように構成すればよい。
Furthermore, in the third heat exchanger 15, a phenomenon may occur in which a greater amount of frost adheres to a portion where the airflow speed from the fan 15F is faster than that of the portion where the airflow speed from the fan 15F is slower than that of the portion where the airflow speed from the fan 15F is faster. In such a case, in order to prevent frost from remaining in the portion where the amount of frost adheres more in the defrost mode in the third heat exchanger 15, at least the heater member 21 provided at the position where the airflow speed from the fan 15F is the fastest may be configured to have a greater heat capacity than the heater member 21 provided at the position where the airflow speed from the fan 15F is the slowest.
(除霜モードにおける第3熱交換器15の状態)
次に、除霜モードにおける第3熱交換器15の状態を説明する。図3は、除霜モードにおける第3熱交換器15の状態を示す図である。図3においては、第3熱交換器15内の温度分布および第1冷凍サイクル1全体の状態が、除霜モードの開始後の初期Aと、除霜モードの中期Bと、開始後の終期Cとに分けて示されている。 (State of thethird heat exchanger 15 in the defrosting mode)
Next, the state of thethird heat exchanger 15 in the defrost mode will be described. Fig. 3 is a diagram showing the state of the third heat exchanger 15 in the defrost mode. In Fig. 3, the temperature distribution in the third heat exchanger 15 and the state of the entire first refrigeration cycle 1 are shown divided into an initial period A after the start of the defrost mode, a middle period B, and a final period C after the start of the defrost mode.
次に、除霜モードにおける第3熱交換器15の状態を説明する。図3は、除霜モードにおける第3熱交換器15の状態を示す図である。図3においては、第3熱交換器15内の温度分布および第1冷凍サイクル1全体の状態が、除霜モードの開始後の初期Aと、除霜モードの中期Bと、開始後の終期Cとに分けて示されている。 (State of the
Next, the state of the
図3に示す初期A、中期B、および、終期Cにおいては、ともに、第3熱交換器15の状態の温度分布および第1冷凍サイクル1全体の状態が示されている。初期Aにおける(A1)、中期Bにおける(B1)、および、終期Cにおける(C1)は、第3熱交換器15内の各チューブ61における位置Dと、各チューブ61の周辺温度Tとの関係を示す温度分布図である。
In the initial period A, the middle period B, and the end period C shown in FIG. 3, the temperature distribution in the state of the third heat exchanger 15 and the state of the entire first refrigeration cycle 1 are shown. (A1) in the initial period A, (B1) in the middle period B, and (C1) in the end period C are temperature distribution diagrams showing the relationship between the position D in each tube 61 in the third heat exchanger 15 and the ambient temperature T of each tube 61.
温度分布図(A1)、(B1)、および、(C1)では、除霜モードにおける第3熱交換器15での第1冷媒の入口位置D1と、第3熱交換器15での第1冷媒の出口位置D2との間における周辺温度Tの分布が示されている。
Temperature distribution diagrams (A1), (B1), and (C1) show the distribution of the ambient temperature T between the inlet position D1 of the first refrigerant in the third heat exchanger 15 and the outlet position D2 of the first refrigerant in the third heat exchanger 15 in the defrost mode.
初期Aにおける(A2)、中期Bにおける(B2)、および、終期Cにおける(C2)は、第1冷媒の状態を示すモリエル線図である。モリエル線図(A2)、(B2)、および、(C2)においては、縦軸に圧力pが示され、横軸に比エンタルピhが示されている。モリエル線図(A2)、(B2)、および、(C2)においては、飽和液線および飽和蒸気線が曲線により示されている。
(A2) at the initial stage A, (B2) at the middle stage B, and (C2) at the end stage C are Mollier diagrams showing the state of the first refrigerant. In Mollier diagrams (A2), (B2), and (C2), the vertical axis shows pressure p, and the horizontal axis shows specific enthalpy h. In Mollier diagrams (A2), (B2), and (C2), the saturated liquid line and saturated vapor line are shown by curved lines.
モリエル線図(A2)、(B2)、および、(C2)においては、除霜モード時の第1冷凍サイクル1における第1冷媒の圧縮過程a、第1冷媒の凝縮過程b、第1冷媒の膨張過程c、および、第1冷媒の蒸発過程dと、各過程に関与する機器とが対応付けられて示されている。
The Mollier diagrams (A2), (B2), and (C2) show the compression process a of the first refrigerant, the condensation process b of the first refrigerant, the expansion process c of the first refrigerant, and the evaporation process d of the first refrigerant in the first refrigeration cycle 1 during defrost mode, and correspond to the devices involved in each process.
圧縮過程aにおいては、第1圧縮機10により第1冷媒が圧縮され、第1冷媒の圧力および比エンタルピが増加する。凝縮過程bにおいては、第3熱交換器15により第1冷媒が凝縮され、第1冷媒の圧力が維持された状態で第1冷媒の比エンタルピが減少する。さらに、凝縮過程bにおいては、第3熱交換器15において第1冷媒の温度がさらに低下するので、第1冷媒の比エンタルピがさらに減少する。膨張過程cにおいては、第1膨張弁13により第1冷媒が膨張され、第1冷媒の比エンタルピが維持された状態で第1冷媒の圧力が減少する。蒸発過程dにおいては、第1熱交換器12により第1冷媒が蒸発され、第1冷媒の圧力が維持された状態で第1冷媒の比エンタルピが増加する。
In the compression process a, the first refrigerant is compressed by the first compressor 10, and the pressure and specific enthalpy of the first refrigerant increase. In the condensation process b, the first refrigerant is condensed by the third heat exchanger 15, and the specific enthalpy of the first refrigerant decreases while the pressure of the first refrigerant is maintained. Furthermore, in the condensation process b, the temperature of the first refrigerant further decreases in the third heat exchanger 15, so the specific enthalpy of the first refrigerant further decreases. In the expansion process c, the first refrigerant is expanded by the first expansion valve 13, and the pressure of the first refrigerant decreases while the specific enthalpy of the first refrigerant is maintained. In the evaporation process d, the first refrigerant is evaporated by the first heat exchanger 12, and the specific enthalpy of the first refrigerant increases while the pressure of the first refrigerant is maintained.
除霜モードの初期Aでは、第3熱交換器15において、第1圧縮機10から吐出された高温高圧の第1冷媒が、除霜モードにおける入口から供給されるが、温度分布図(A1)に示すように、第3熱交換器15での第1冷媒の入口位置D1から近い領域のみ霜が溶けて周辺温度TがT2からT1に上昇する。このような除霜モードの初期Aでは、モリエル線図(A2)に示すように第3熱交換器15が、比エンタルピhが飽和蒸気線上にあるようなイメージの状態となる。
In the initial stage A of the defrost mode, the high-temperature, high-pressure first refrigerant discharged from the first compressor 10 is supplied from the inlet in the defrost mode to the third heat exchanger 15, but as shown in the temperature distribution diagram (A1), the frost melts only in the area close to the inlet position D1 of the first refrigerant in the third heat exchanger 15, and the ambient temperature T rises from T2 to T1. In such an initial stage A of the defrost mode, the third heat exchanger 15 is in a state where the specific enthalpy h is on the saturated vapor line, as shown in the Mollier diagram (A2).
除霜モードの中期Bでは、第3熱交換器15において、第1圧縮機10から吐出された高温高圧の第1冷媒の熱エネルギ、および、ヒータ20の加熱による熱エネルギにより、温度分布図(B1)に示すように、第3熱交換器15において、第1冷媒の入口位置D1から、第1冷媒の入口位置D1と第1冷媒の出口位置D2との間の位置まで、霜が溶けて周辺温度Tが上昇する。このような除霜モードの中期Bでは、モリエル線図(B2)に示すように、第3熱交換器15は、比エンタルピhが高くなり、除霜モードの初期Aよりも過熱度が高くなる。
In the middle period B of the defrost mode, in the third heat exchanger 15, as shown in the temperature distribution diagram (B1), the thermal energy of the high-temperature, high-pressure first refrigerant discharged from the first compressor 10 and the thermal energy generated by the heater 20 melt the frost from the inlet position D1 of the first refrigerant to a position between the inlet position D1 of the first refrigerant and the outlet position D2 of the first refrigerant, causing the ambient temperature T to rise. In such a middle period B of the defrost mode, as shown in the Mollier diagram (B2), the specific enthalpy h of the third heat exchanger 15 becomes high, and the degree of superheat becomes higher than in the early period A of the defrost mode.
除霜モードの終期Cでは、第3熱交換器15において、第1圧縮機10から吐出された高温高圧の第1冷媒の熱エネルギ、および、ヒータ20の加熱による熱エネルギにより、温度分布図(C1)に示すように、第3熱交換器15において、第1冷媒の入口位置D1から、第1冷媒の出口位置D2まで霜が溶けることにより、出口位置D2て周辺温度Tが例えばT2からT3に上昇する。このような除霜モードの終期Cでは、モリエル線図(C2)に示すように、第3熱交換器15は、さらに比エンタルピhが高くなり、除霜モードの中期Bよりも過熱度が高くなる。
At the end of the defrost mode C, as shown in the temperature distribution diagram (C1), the frost melts in the third heat exchanger 15 from the inlet position D1 of the first refrigerant to the outlet position D2 of the first refrigerant due to the thermal energy of the high-temperature, high-pressure first refrigerant discharged from the first compressor 10 and the thermal energy generated by the heater 20, causing the ambient temperature T at the outlet position D2 to rise, for example, from T2 to T3. At the end of the defrost mode C, as shown in the Mollier diagram (C2), the specific enthalpy h of the third heat exchanger 15 becomes even higher, and the degree of superheat becomes higher than in the middle of the defrost mode B.
除霜モードにおいて、初期Aの状態から中期Bの状態への移行、および、中期Bの状態から終期Cの状態への移行は、ヒータ20による加熱をしない従来の技術でも行なうことが可能である。しかし、実施の形態1のように、除霜モードにおいて、第1圧縮機10から吐出された高温高圧の第1冷媒の熱エネルギによる第3熱交換器15の除霜の実行中に、ヒータ20の加熱による熱エネルギを加えることにより、初期Aの状態から中期Bの状態への移行に要する時間、および、中期Bの状態から終期Cの状態への移行に要する時間を短時間化することが可能となり、第3熱交換器15全体の除霜に要する時間を高速化することができる。したがって、実施の形態1では、二元冷凍装置200の除霜能力を向上させることができる。特に、除霜モードにおいては、中期Bの状態から終期Cの状態への移行に要する時間を大幅に短時間可能となる。
In the defrost mode, the transition from the initial state A to the middle state B, and the transition from the middle state B to the final state C can be performed by the conventional technology that does not use heating by the heater 20. However, as in the first embodiment, by adding thermal energy by heating the heater 20 during the defrosting of the third heat exchanger 15 by the thermal energy of the high-temperature, high-pressure first refrigerant discharged from the first compressor 10 in the defrost mode, it is possible to shorten the time required to transition from the initial state A to the middle state B, and the time required to transition from the middle state B to the final state C, and the time required to defrost the entire third heat exchanger 15 can be increased. Therefore, in the first embodiment, the defrosting capacity of the cascade refrigeration system 200 can be improved. In particular, in the defrost mode, the time required to transition from the middle state B to the final state C can be significantly shortened.
(除霜モードの制御)
次に、二元冷凍装置200が除霜モードでの運転を実行する場合に制御装置600により実行される制御を説明する。 (Defrost mode control)
Next, the control executed by thecontrol device 600 when the cascade refrigeration system 200 operates in the defrost mode will be described.
次に、二元冷凍装置200が除霜モードでの運転を実行する場合に制御装置600により実行される制御を説明する。 (Defrost mode control)
Next, the control executed by the
図4は、二元冷凍装置200が除霜モードでの運転を実行する場合に制御装置600により実行される制御のフローチャートである。図4においては、除霜モードでの運転における主な制御事項が各ステップの枠内に記載される。
FIG. 4 is a flow chart of the control executed by the control device 600 when the cascade refrigeration system 200 operates in the defrost mode. In FIG. 4, the main control items during operation in the defrost mode are written within the boxes for each step.
制御装置600は、ステップS1により、現在が除霜モードの運転の開始時であるか否かを判断する。以下において、除霜モードの運転は、除霜運転と呼ぶ場合がある。ステップS1における除霜運転開始時であるか否かは、例えば、冷却運転の運転継続時間が予め設定された運転継続時間に達した場合、または、現在の時刻が除霜運転を実行する時刻として予め設定された時刻となった場合に成立する。
In step S1, the control device 600 determines whether or not it is currently the start time of defrost mode operation. In the following, operation in defrost mode may be referred to as defrost operation. Whether or not it is currently the start time of defrost operation in step S1 is determined, for example, when the operation duration of cooling operation reaches a preset operation duration time, or when the current time becomes a time preset as the time to execute defrost operation.
制御装置600は、ステップS1で現在が除霜運転の運転開始時ではないと判断された場合は、現在の運転状態が冷却運転の状態であるので、ステップS15により、冷却モードでの運転を継続する。以下において、冷却モードの運転は、冷却運転と呼ぶ場合がある。一方、ステップS1で現在が除霜運転の開始時であると判断された場合は、ステップS2により、第1圧縮機10の周波数を予め設定された除霜運転での周波数に低下させる。なお、ステップS2では、第1圧縮機10を停止させてもよい。ステップS2が実行されることにより、除霜モードにおいて、第1冷凍サイクル1を流れる第1冷媒の圧力が必要以上に高くならないようにすることができる。
If the control device 600 determines in step S1 that the current time is not the start time of the defrost operation, the current operating state is a cooling operation state, and therefore the control device 600 continues operation in the cooling mode in step S15. Hereinafter, the operation in the cooling mode may be referred to as the cooling operation. On the other hand, if the control device 600 determines in step S1 that the current time is the start time of the defrost operation, the control device 600 reduces the frequency of the first compressor 10 to a preset frequency for the defrost operation in step S2. Note that the first compressor 10 may be stopped in step S2. By executing step S2, it is possible to prevent the pressure of the first refrigerant flowing through the first refrigeration cycle 1 from becoming higher than necessary in the defrost mode.
制御装置600は、ステップS3により、四方弁11を除霜モードに対応する第2流路に切り換える。これにより、除霜モードにおいては、第1圧縮機10から吐出された高温高圧の第1冷媒が四方弁11を経て、第3熱交換器15に供給される。除霜モードにおいて、制御装置600は、第2膨張弁14の開度を最大開度に制御する。除霜モードにおいて、制御装置600は、ファン15Fを停止するとともに、第1温度センサ32によって検出される第1圧縮機10の吐出温度が予め設定された温度となるように、第1圧縮機10の周波数を制御することにより第1圧縮機10の回転速度を制御する。
In step S3, the control device 600 switches the four-way valve 11 to the second flow path corresponding to the defrost mode. As a result, in the defrost mode, the high-temperature, high-pressure first refrigerant discharged from the first compressor 10 passes through the four-way valve 11 and is supplied to the third heat exchanger 15. In the defrost mode, the control device 600 controls the opening of the second expansion valve 14 to the maximum opening. In the defrost mode, the control device 600 stops the fan 15F and controls the rotation speed of the first compressor 10 by controlling the frequency of the first compressor 10 so that the discharge temperature of the first compressor 10 detected by the first temperature sensor 32 becomes a preset temperature.
制御装置600は、ステップS4により、第1圧力センサ31により検出された第1圧縮機10の吐出圧力が第1閾値以下であるか否かを判断する。ステップS4で第1圧縮機10の吐出圧力が第1閾値以下であると判断された場合に、制御装置600は、ステップS7により、ヒータ20による加熱を実行する。第1閾値は、例えばヒータ20による加熱が行なわれても、第1冷凍サイクル1において第1冷媒の圧力が過剰に上昇しないようにすることが可能となる圧力値に設定される。第1閾値は、例えば3MpaAに設定されている。
In step S4, the control device 600 determines whether the discharge pressure of the first compressor 10 detected by the first pressure sensor 31 is equal to or lower than the first threshold value. If it is determined in step S4 that the discharge pressure of the first compressor 10 is equal to or lower than the first threshold value, the control device 600 performs heating by the heater 20 in step S7. The first threshold value is set to a pressure value that makes it possible to prevent the pressure of the first refrigerant from excessively increasing in the first refrigeration cycle 1, even if heating is performed by the heater 20. The first threshold value is set to, for example, 3 MPaA.
一方、ステップS4で第1圧縮機10の吐出圧力が第1閾値よりも高いと判断された場合に、制御装置600は、ステップS5により、第2圧縮機100を起動する。そして、ステップS6により、冷却モードでの運転条件と同様の運転条件で第2冷凍サイクル2の運転を実行させ、ステップS7に進み、ヒータ20による加熱を実行する。具体的に、制御装置600は、ステップS6において、冷却モードでの運転条件と同様の運転条件を目標値として、第2圧縮機100、ファン101F、および、第3膨張弁102を制御する。このように、制御装置600は、除霜モードにおいて、第1圧縮機10の吐出圧力が第1閾値よりも高いと判断された場合に、第2冷凍サイクル2の動作状態を確認してから、ヒータ20による加熱を開始させる。
On the other hand, if it is determined in step S4 that the discharge pressure of the first compressor 10 is higher than the first threshold, the control device 600 starts the second compressor 100 in step S5. Then, in step S6, the second refrigeration cycle 2 is operated under the same operating conditions as those in the cooling mode, and the process proceeds to step S7, where heating is performed by the heater 20. Specifically, in step S6, the control device 600 controls the second compressor 100, the fan 101F, and the third expansion valve 102 with the same operating conditions as those in the cooling mode as target values. In this way, if it is determined in the defrost mode that the discharge pressure of the first compressor 10 is higher than the first threshold, the control device 600 checks the operating state of the second refrigeration cycle 2 and then starts heating by the heater 20.
制御装置600は、ステップS4で第1圧縮機10の吐出圧力が第1閾値よりも高いと判断された場合に、ステップS5,S6で第2冷凍サイクル2の運転を実行させることにより、第2熱交換器103において、第1冷凍サイクル1の第1冷媒が第2冷凍サイクル2の第2冷媒によって冷却される。これにより、ヒータ20の加熱によって、第1冷凍サイクル1の第1冷媒が過剰に高い圧力に上昇するのを抑制することができる。
When the control device 600 determines in step S4 that the discharge pressure of the first compressor 10 is higher than the first threshold value, it executes the operation of the second refrigeration cycle 2 in steps S5 and S6, so that the first refrigerant of the first refrigeration cycle 1 is cooled by the second refrigerant of the second refrigeration cycle 2 in the second heat exchanger 103. This makes it possible to prevent the first refrigerant of the first refrigeration cycle 1 from rising to an excessively high pressure due to heating by the heater 20.
制御装置600は、ステップS8により、第1圧力センサ31により検出された第1圧縮機10の吐出圧力が第2閾値未満であるか否かを判断する。第2閾値は、除霜モードにおける第1圧縮機10の吐出圧力の目標値として予め設定された圧力値である。
In step S8, the control device 600 determines whether the discharge pressure of the first compressor 10 detected by the first pressure sensor 31 is less than the second threshold value. The second threshold value is a pressure value that is preset as a target value for the discharge pressure of the first compressor 10 in the defrost mode.
ステップS8で第1圧縮機10の吐出圧力が第2閾値未満であると判断された場合に、制御装置600は、ステップS9において、第1圧縮機10の周波数を増加させることにより第1圧縮機10の回転速度を増加させる制御をし、ステップS11に進む。一方、ステップS8で第1圧縮機10の吐出圧力が第2閾値以上であると判断された場合に、制御装置600は、ステップS10において、第1圧縮機10の吐出圧力が第2閾値を超える場合は第1圧縮機10の周波数を減少させることにより第1圧縮機10の周波数を減少させる制御をし、ステップS11に進む。
If it is determined in step S8 that the discharge pressure of the first compressor 10 is less than the second threshold, the control device 600 controls the first compressor 10 to increase the frequency of the first compressor 10 to increase the rotation speed thereof in step S9, and proceeds to step S11. On the other hand, if it is determined in step S8 that the discharge pressure of the first compressor 10 is equal to or greater than the second threshold, the control device 600 controls the first compressor 10 to decrease the frequency of the first compressor 10 if the discharge pressure of the first compressor 10 exceeds the second threshold in step S10, and proceeds to step S11.
除霜モードにおいては、ステップS8~S10により、第1圧縮機10の吐出圧力が除霜モードの吐出圧力の目標値に維持されるように制御される。
In the defrost mode, steps S8 to S10 control the discharge pressure of the first compressor 10 so that it is maintained at the target value of the discharge pressure in the defrost mode.
制御装置600は、ステップS11により、第4温度センサ36により検出された温度、すなわち、第3熱交換器15から第2膨張弁14に向けて流出する第1冷媒の温度が、第3閾値以上であるか否かを判断する。第3閾値は、除霜モードにおける第3熱交換器15の除霜が終了したと判断するために予め設定された温度である。第3閾値は、例えば20℃のように、霜の温度よりも高い温度に設定される。
In step S11, the control device 600 determines whether the temperature detected by the fourth temperature sensor 36, i.e., the temperature of the first refrigerant flowing from the third heat exchanger 15 toward the second expansion valve 14, is equal to or higher than the third threshold value. The third threshold value is a preset temperature for determining that defrosting of the third heat exchanger 15 in the defrost mode has ended. The third threshold value is set to a temperature higher than the frost temperature, for example, 20°C.
ステップS11で第4温度センサ36により検出された温度が第3閾値未満であると判断された場合に、制御装置600は、ステップS12により、第2冷凍サイクル2が運転中であるか否かを判断する。ステップS12において、制御装置600は、例えば、第2圧縮機100が動作中である場合に第2冷凍サイクル2が運転中であると判断し、第2圧縮機100が停止中である場合に第2冷凍サイクル2が運転中ではないと判断する。
If it is determined in step S11 that the temperature detected by the fourth temperature sensor 36 is less than the third threshold value, the control device 600 determines in step S12 whether the second refrigeration cycle 2 is in operation. In step S12, for example, the control device 600 determines that the second refrigeration cycle 2 is in operation if the second compressor 100 is operating, and determines that the second refrigeration cycle 2 is not in operation if the second compressor 100 is stopped.
ステップS12で第2冷凍サイクル2が運転中であると判断された場合に、制御装置600は、ステップS7に進み、前述したステップS7以降の処理を繰り返す。一方、ステップS12で第2冷凍サイクル2が運転中ではないと判断された場合に、制御装置600はステップS4に進み、前述したステップS4以降の処理を繰り返す。
If it is determined in step S12 that the second refrigeration cycle 2 is in operation, the control device 600 proceeds to step S7 and repeats the processes from step S7 onwards. On the other hand, if it is determined in step S12 that the second refrigeration cycle 2 is not in operation, the control device 600 proceeds to step S4 and repeats the processes from step S4 onwards.
ステップS11で第4温度センサ36により検出された温度が第3閾値未満であると判断された場合に、制御装置600は、ステップS12を経て、ステップS4またはステップS7を実行することにより、第4温度センサ36により検出された温度が第3閾値以上となるまで、第3熱交換器15への高温の第1冷媒の供給と、ヒータ20による第3熱交換器15の加熱とが継続する。
If it is determined in step S11 that the temperature detected by the fourth temperature sensor 36 is less than the third threshold, the control device 600 proceeds through step S12 and executes step S4 or step S7 to continue supplying high-temperature first refrigerant to the third heat exchanger 15 and heating the third heat exchanger 15 by the heater 20 until the temperature detected by the fourth temperature sensor 36 becomes equal to or greater than the third threshold.
ステップS11で第4温度センサ36により検出された温度が第3閾値以上であると判断された場合に、制御装置600は、ステップS13により、ヒータ20による加熱を停止させる。制御装置600は、ステップS14により、運転状態を冷却運転に切換える。これにより、四方弁11の流路が第1流路に切換えられ、第1圧縮機10から吐出される第1冷媒は、四方弁11を経て、第1熱交換器12に供給される。
If it is determined in step S11 that the temperature detected by the fourth temperature sensor 36 is equal to or higher than the third threshold value, the control device 600 stops heating by the heater 20 in step S13. The control device 600 switches the operating state to cooling operation in step S14. This switches the flow path of the four-way valve 11 to the first flow path, and the first refrigerant discharged from the first compressor 10 is supplied to the first heat exchanger 12 via the four-way valve 11.
このように、除霜運転が実行された場合に、制御装置600は、第4温度センサ36により検出された温度が第3閾値以上となったという条件が成立すると、除霜が終了したと判断し、ヒータ20による第3熱交換器15の加熱が停止するとともに、第1圧縮機10から四方弁11を経た第3熱交換器15への第1冷媒の供給が停止する。
In this way, when the defrosting operation is performed, if the condition that the temperature detected by the fourth temperature sensor 36 is equal to or higher than the third threshold is met, the control device 600 determines that the defrosting has ended, and the heating of the third heat exchanger 15 by the heater 20 is stopped, and the supply of the first refrigerant from the first compressor 10 to the third heat exchanger 15 via the four-way valve 11 is stopped.
(除霜モードにおける第4温度センサ36の温度の変化)
次に、除霜モードにおける第4温度センサ36の検出温度の変化の一例を説明する。図5は、除霜モードにおける第4温度センサ36の検出温度の変化の一例を示す図である。図5においては、縦軸に第4温度センサ36の検出温度Tが示され、横軸に除霜運転の開始時からの経過時間tが示される。 (Change in temperature of thefourth temperature sensor 36 in the defrosting mode)
Next, an example of a change in the detected temperature of thefourth temperature sensor 36 in the defrost mode will be described. Fig. 5 is a diagram showing an example of a change in the detected temperature of the fourth temperature sensor 36 in the defrost mode. In Fig. 5, the vertical axis indicates the detected temperature T of the fourth temperature sensor 36, and the horizontal axis indicates the elapsed time t from the start of the defrost operation.
次に、除霜モードにおける第4温度センサ36の検出温度の変化の一例を説明する。図5は、除霜モードにおける第4温度センサ36の検出温度の変化の一例を示す図である。図5においては、縦軸に第4温度センサ36の検出温度Tが示され、横軸に除霜運転の開始時からの経過時間tが示される。 (Change in temperature of the
Next, an example of a change in the detected temperature of the
図5においては、実施の形態1の二元冷凍装置200の検出温度Tの推移が実線aで示され、除霜モードにおいてヒータ20による加熱を実行しない構成の従来の二元冷凍装置の検出温度Tの推移が破線bで示される。
In FIG. 5, the solid line a shows the progress of the detected temperature T of the cascade refrigeration system 200 of the first embodiment, and the dashed line b shows the progress of the detected temperature T of a conventional cascade refrigeration system that is configured not to perform heating by the heater 20 in the defrost mode.
除霜モードにおいて、第1冷媒の熱エネルギによる除霜の実行中に、ヒータ20の加熱による熱エネルギを加える実施の形態1の構成では、実線aのように検出温度Tが上昇を開始するタイミングt1が、従来技術の構成による破線bのように検出温度Tが上昇を開始するタイミングt2よりも早期である。これにより、実施の形態1の構成では、従来技術の構成と比べて、第3熱交換器15の除霜が終了するタイミングが早期となるようにすることができる。
In the configuration of embodiment 1 in which thermal energy is added by heating with heater 20 while defrosting is being performed using thermal energy from the first refrigerant in the defrost mode, the timing t1 at which the detected temperature T starts to rise as shown by solid line a is earlier than the timing t2 at which the detected temperature T starts to rise as shown by dashed line b in the configuration of the conventional technology. As a result, in the configuration of embodiment 1, it is possible to make the timing at which defrosting of the third heat exchanger 15 ends earlier than in the configuration of the conventional technology.
以上に説明した実施の形態1においては、以下のような効果を得ることができる。図1~図5に示すように、二元冷凍装置200では、除霜モードにおいて、第1冷媒が第3熱交換器15に流入している状態で、第3熱交換器15における第1冷媒の流路をヒータ20により加熱するので、第3熱交換器15を第1冷媒の熱エネルギとヒータ20の熱エネルギとで同時に加熱することができる。このような加熱が行なわれることにより、第3熱交換器15の除霜が終了するタイミングが従来よりも早期となる。したがって、二元冷凍装置200では、除霜に要する期間を従来よりも短縮することができる。このような効果が得られることにより、二元冷凍装置200では、除霜能力を向上させることができる。
The above-described first embodiment can provide the following effects. As shown in Figs. 1 to 5, in the cascade refrigeration system 200, in the defrost mode, while the first refrigerant is flowing into the third heat exchanger 15, the flow path of the first refrigerant in the third heat exchanger 15 is heated by the heater 20, so that the third heat exchanger 15 can be heated simultaneously by the thermal energy of the first refrigerant and the thermal energy of the heater 20. By performing such heating, the timing at which defrosting of the third heat exchanger 15 ends is earlier than in the past. Therefore, in the cascade refrigeration system 200, the period required for defrosting can be shortened compared to the past. By obtaining such effects, the defrosting capacity of the cascade refrigeration system 200 can be improved.
実施の形態1のように、高圧冷媒である二酸化炭素を第1冷媒として用いる場合は、除霜モードにおいて、第1冷媒の飽和温度と霜の温度との温度差が小さいので、ヒータ20の過熱による除霜をすることにより、第3熱交換器15の除霜に要する期間の短縮効果がより大きくなる。
When carbon dioxide, a high-pressure refrigerant, is used as the first refrigerant as in the first embodiment, the temperature difference between the saturation temperature of the first refrigerant and the frost temperature is small in the defrost mode, so that defrosting by superheating the heater 20 has a greater effect in shortening the time required for defrosting the third heat exchanger 15.
二元冷凍装置200では、二酸化炭素よりなる冷媒、または、二酸化炭素を主成分として含む混合気体よりなる冷媒を第1冷媒として用いても、除霜能力を向上させることができる。したがって、二元冷凍装置200では、第1冷媒として、二酸化炭素よりなる冷媒、または、二酸化炭素を主成分として含む冷媒のように、圧力損失による性能低下が小さく、GWP(Global Warming Potential)が小さい冷媒を用いることができる。第1冷媒としては、例えばGWPが小さく、かつ、高COP(Coefficient of Performance)である冷媒として、R32、R290、R1234yf、R1234ze(E)を用いることができる。このような冷媒を第1冷媒として用いた場合には、第1冷凍サイクル1全体のCOPを向上させることができる。
In the cascade refrigeration system 200, the defrosting capacity can be improved even if a refrigerant made of carbon dioxide or a refrigerant made of a mixed gas containing carbon dioxide as a main component is used as the first refrigerant. Therefore, in the cascade refrigeration system 200, a refrigerant that has little performance degradation due to pressure loss and a small GWP (Global Warming Potential), such as a refrigerant made of carbon dioxide or a refrigerant containing carbon dioxide as a main component, can be used as the first refrigerant. As the first refrigerant, for example, R32, R290, R1234yf, and R1234ze(E) can be used as refrigerants that have a small GWP and a high COP (Coefficient of Performance). When such a refrigerant is used as the first refrigerant, the COP of the entire first refrigeration cycle 1 can be improved.
二酸化炭素よりなる冷媒、または、二酸化炭素を主成分として含む冷媒は、低毒性かつ不燃性を有する冷媒であるので、二元冷凍装置200では、このような冷媒を第1冷媒として用いることにより、例えば冷凍庫内に第1冷媒が漏洩した場合であっても、火災による事故および毒性による事故の発生を抑制することができる。
Refrigerants made of carbon dioxide or containing carbon dioxide as the main component are low-toxicity and non-flammable refrigerants, so by using such a refrigerant as the first refrigerant in the cascade refrigeration system 200, the occurrence of fire and toxicity-related accidents can be suppressed even if the first refrigerant leaks into the freezer, for example.
図4に示すように、制御装置600は、第4温度センサ36により検出された温度が第3閾値以上であると判断された場合に、ヒータ20による加熱を停止させ、運転モードを除霜モードから冷却モードに切換えるので、第3熱交換器15に霜が残ることを抑制することができる。
As shown in FIG. 4, when the control device 600 determines that the temperature detected by the fourth temperature sensor 36 is equal to or higher than the third threshold, it stops heating by the heater 20 and switches the operation mode from the defrost mode to the cooling mode, thereby preventing frost from remaining on the third heat exchanger 15.
図4に示すように、制御装置600は、第4温度センサ36により検出された温度に応じて、除霜モードを終了させるか否かを判断するので、周囲の温度などの環境条件により変化する霜の付着度合いの変化に対応した適切なタイミングで除霜を終了させることができる。
As shown in FIG. 4, the control device 600 determines whether or not to end the defrost mode depending on the temperature detected by the fourth temperature sensor 36, so that it can end the defrost mode at an appropriate timing corresponding to the change in the degree of frost adhesion, which changes depending on environmental conditions such as the surrounding temperature.
図4に示すように、制御装置600は、除霜モードにおいて、第1圧縮機10の吐出圧力が第1閾値よりも高いと判断された場合に、第2冷凍サイクル2の動作状態を確認してから、ヒータ20による加熱を開始させるので、ヒータ20の加熱によって、第1冷凍サイクル1の第1冷媒の圧力が過剰な圧力まで急上昇するのを抑制することができる。
As shown in FIG. 4, in the defrost mode, when the control device 600 determines that the discharge pressure of the first compressor 10 is higher than the first threshold, it checks the operating state of the second refrigeration cycle 2 and then starts heating with the heater 20. This makes it possible to prevent the pressure of the first refrigerant in the first refrigeration cycle 1 from suddenly increasing to an excessive pressure due to heating by the heater 20.
図2を用いて説明したように、複数のヒータ部材21については、少なくとも再下段の最下段のヒータ部材21の熱容量が、最上段のヒータ部材21の熱容量よりも大きくなるように構成した場合には、第3熱交換器15の内部の下方部分において、霜に起因する根氷が生じても、除霜モードで根氷を溶かし、霜が残らないようにすることができる。
As explained using FIG. 2, when the heat capacity of at least the heater member 21 in the lowest tier is configured to be greater than the heat capacity of the heater member 21 in the highest tier, even if ice is formed due to frost in the lower part inside the third heat exchanger 15, the ice can be melted in defrost mode so that no frost remains.
図2を用いて説明したように、複数のヒータ部材21については、複数のヒータ部材21のうち、少なくともファン15Fからの送風の風速が最も速い位置に設けられたヒータ部材21が、ファン15Fからの送風の風速が最も遅い位置に設けられたヒータ部材21よりも熱容量が大きくなるように構成した場合には、第3熱交換器15において、霜の付着量が多い箇所に、除霜モードで霜が残らないようにすることができる。
As explained using FIG. 2, when the heater members 21 are configured so that at least the heater member 21 arranged at the position where the air speed from the fan 15F is the fastest has a larger heat capacity than the heater member 21 arranged at the position where the air speed from the fan 15F is the slowest, it is possible to prevent frost from remaining in the third heat exchanger 15 in the defrost mode in areas where there is a large amount of frost.
除霜モードにおいては、第1冷媒の熱エネルギによる第3熱交換器15の入口側からの加熱と、ヒータ20の熱エネルギによる第3熱交換器15の後流側の加熱とが同時に行なわれるので、第3熱交換器15の除霜を早期に終了させることができる。
In the defrost mode, the inlet side of the third heat exchanger 15 is heated by the thermal energy of the first refrigerant, and the downstream side of the third heat exchanger 15 is heated by the thermal energy of the heater 20 at the same time, so that defrosting of the third heat exchanger 15 can be completed early.
二元冷凍装置200では、除霜に要する期間を従来よりも短縮することができることにより、除霜モード中における冷凍庫の庫内の温度が上昇することを抑制することができる。
The cascade refrigeration system 200 can reduce the time required for defrosting compared to conventional systems, thereby preventing the temperature inside the freezer from rising during defrost mode.
具体的に、図2に示すように、除霜モードにおいて第1冷媒の流路を加熱するヒータ20が、第3熱交換器15に設けられた第1冷媒の流路において、除霜モードで第1冷媒が流れる方向の下流側を加熱する位置に設けられている。したがって、第3熱交換器15において、除霜モードで第1圧縮機10から第3熱交換器15に供給される高温の第1冷媒により溶かしにくい位置に付着した霜を、除霜モードの初期から溶かすことができる。
Specifically, as shown in FIG. 2, the heater 20 that heats the flow path of the first refrigerant in the defrost mode is provided in the flow path of the first refrigerant provided in the third heat exchanger 15 at a position that heats the downstream side of the direction in which the first refrigerant flows in the defrost mode. Therefore, in the third heat exchanger 15, frost that has formed in a position that is difficult to melt by the high-temperature first refrigerant supplied from the first compressor 10 to the third heat exchanger 15 in the defrost mode can be melted from the beginning of the defrost mode.
実施の形態2.
(二元冷凍装置200Aの全体構成)
実施の形態2としては、実施の形態1と比較して第1冷凍サイクル1の構成の一部が異なる二元冷凍装置の第1例を説明する。図6は、実施の形態2の二元冷凍装置200Aの構成を示す図である。Embodiment 2.
(Overall configuration ofcascade refrigeration system 200A)
As the second embodiment, a first example of a cascade refrigeration system will be described, in which a part of the configuration of thefirst refrigeration cycle 1 is different from that of the first embodiment. Fig. 6 is a diagram showing the configuration of a cascade refrigeration system 200A of the second embodiment.
(二元冷凍装置200Aの全体構成)
実施の形態2としては、実施の形態1と比較して第1冷凍サイクル1の構成の一部が異なる二元冷凍装置の第1例を説明する。図6は、実施の形態2の二元冷凍装置200Aの構成を示す図である。
(Overall configuration of
As the second embodiment, a first example of a cascade refrigeration system will be described, in which a part of the configuration of the
図6に示す二元冷凍装置200Aが、図1に示す二元冷凍装置200と異なるのは、ブリッジ回路400が設けられたこと、および、第1膨張弁13が設けられた位置が異なることである。ブリッジ回路400は、4つの逆止弁がブリッジ接続されたものである。ブリッジ回路400は、第1熱交換器12、第2熱交換器103、第1膨張弁13、および、第2膨張弁14に接続されている。
The cascade refrigeration system 200A shown in FIG. 6 differs from the cascade refrigeration system 200 shown in FIG. 1 in that a bridge circuit 400 is provided and that the position of the first expansion valve 13 is different. The bridge circuit 400 is a bridge connection of four check valves. The bridge circuit 400 is connected to the first heat exchanger 12, the second heat exchanger 103, the first expansion valve 13, and the second expansion valve 14.
冷却モードにおいて、第1熱交換器12から流出した第1冷媒は、ブリッジ回路400を経て第2熱交換器103に流入する。第2熱交換器103で熱交換された第1冷媒は、第1膨張弁13に流入する。第1膨張弁13から流出した第1冷媒は、ブリッジ回路400を経て第2膨張弁14に流入する。
In the cooling mode, the first refrigerant flowing out of the first heat exchanger 12 passes through the bridge circuit 400 and flows into the second heat exchanger 103. The first refrigerant that has been heat exchanged in the second heat exchanger 103 flows into the first expansion valve 13. The first refrigerant flowing out of the first expansion valve 13 passes through the bridge circuit 400 and flows into the second expansion valve 14.
除霜モードにおいて、第2膨張弁14から流出した第1冷媒は、ブリッジ回路400を経て第2熱交換器103に流入する。第2熱交換器103で熱交換された第1冷媒は、第1膨張弁13に流入する。第1膨張弁13から流出した第1冷媒は、ブリッジ回路400を経て第1熱交換器12に流入する。
In defrost mode, the first refrigerant flowing out of the second expansion valve 14 flows into the second heat exchanger 103 via the bridge circuit 400. The first refrigerant that has been heat exchanged in the second heat exchanger 103 flows into the first expansion valve 13. The first refrigerant flowing out of the first expansion valve 13 flows into the first heat exchanger 12 via the bridge circuit 400.
第1膨張弁13および第2膨張弁14は、制御装置600が、冷却モードおよび除霜モードにおいて図1の二元冷凍装置200と同様の開閉制御を実行する。このような構成の二元冷凍装置200Aでは、前述した図1の二元冷凍装置200と同様の冷却モードでの運転および除霜モードでの運転を実行することが可能である。
The control device 600 controls the first expansion valve 13 and the second expansion valve 14 in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1. The cascade refrigeration system 200A configured in this way can operate in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1 described above.
実施の形態3.
(二元冷凍装置200Bの全体構成)
実施の形態3としては、実施の形態1と比較して第1冷凍サイクル1の構成の一部が異なる二元冷凍装置の第2例を説明する。図7は、実施の形態3の二元冷凍装置200Bの構成を示す図である。Embodiment 3.
(Overall configuration ofcascade refrigeration system 200B)
As the third embodiment, a second example of a cascade refrigeration system will be described, in which a part of the configuration of thefirst refrigeration cycle 1 is different from that of the first embodiment. Fig. 7 is a diagram showing the configuration of a cascade refrigeration system 200B of the third embodiment.
(二元冷凍装置200Bの全体構成)
実施の形態3としては、実施の形態1と比較して第1冷凍サイクル1の構成の一部が異なる二元冷凍装置の第2例を説明する。図7は、実施の形態3の二元冷凍装置200Bの構成を示す図である。
(Overall configuration of
As the third embodiment, a second example of a cascade refrigeration system will be described, in which a part of the configuration of the
図7に示す二元冷凍装置200Bが、図6に示す二元冷凍装置200Aと異なるのは、第2熱交換器103と第1膨張弁13との間に、受液器500が設けられたことである。受液器500は、第2熱交換器103から流入する第1冷媒を貯留する内部空間を有するタンクである。受液器500は、第1冷凍サイクル1において余剰分の第1冷媒を貯留することが可能となる。受液器500に貯留された第1冷媒は、第1膨張弁13に流入する。
The cascade refrigeration system 200B shown in FIG. 7 differs from the cascade refrigeration system 200A shown in FIG. 6 in that a receiver 500 is provided between the second heat exchanger 103 and the first expansion valve 13. The receiver 500 is a tank having an internal space for storing the first refrigerant that flows in from the second heat exchanger 103. The receiver 500 is capable of storing the surplus first refrigerant in the first refrigeration cycle 1. The first refrigerant stored in the receiver 500 flows into the first expansion valve 13.
冷却モードにおいて、第1熱交換器12から流出した第1冷媒は、ブリッジ回路400を経て第2熱交換器103に流入する。第2熱交換器103で熱交換された第1冷媒は、受液器500に流入して貯留される。受液器500に貯留された第1冷媒は、第1膨張弁13に流入する。第1膨張弁13から流出した第1冷媒は、ブリッジ回路400を経て第2膨張弁14に流入する。
In cooling mode, the first refrigerant flowing out of the first heat exchanger 12 passes through the bridge circuit 400 and flows into the second heat exchanger 103. The first refrigerant that has been heat exchanged in the second heat exchanger 103 flows into the receiver 500 and is stored. The first refrigerant stored in the receiver 500 flows into the first expansion valve 13. The first refrigerant flowing out of the first expansion valve 13 passes through the bridge circuit 400 and flows into the second expansion valve 14.
除霜モードにおいて、第2膨張弁14から流出した第1冷媒は、ブリッジ回路400を経て第2熱交換器103に流入する。第2熱交換器103で熱交換された第1冷媒は、受液器500に流入して貯留される。受液器500に貯留された第1冷媒は、第1膨張弁13に流入する。第1膨張弁13から流出した第1冷媒は、ブリッジ回路400を経て第2膨張弁14に流入する。
In defrost mode, the first refrigerant flowing out of the second expansion valve 14 passes through the bridge circuit 400 and flows into the second heat exchanger 103. The first refrigerant that has been heat exchanged in the second heat exchanger 103 flows into the receiver 500 and is stored. The first refrigerant stored in the receiver 500 flows into the first expansion valve 13. The first refrigerant flowing out of the first expansion valve 13 passes through the bridge circuit 400 and flows into the second expansion valve 14.
第1膨張弁13および第2膨張弁14は、制御装置600が、冷却モードおよび除霜モードにおいて図1の二元冷凍装置200と同様の開閉制御を実行する。このような構成の二元冷凍装置200Bでは、前述した図1の二元冷凍装置200と同様の冷却モードでの運転および除霜モードでの運転を実行することが可能である。
The control device 600 controls the first expansion valve 13 and the second expansion valve 14 in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1. In the cascade refrigeration system 200B configured in this way, it is possible to operate in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1 described above.
実施の形態4.
(二元冷凍装置200Cの全体構成)
実施の形態4としては、実施の形態1と比較して第1冷凍サイクル1の構成の一部が異なる二元冷凍装置の第3例を説明する。図8は、実施の形態4の二元冷凍装置200Cの構成を示す図である。Embodiment 4.
(Overall configuration ofcascade refrigeration system 200C)
As the fourth embodiment, a third example of a cascade refrigeration system will be described, in which a part of the configuration of thefirst refrigeration cycle 1 is different from that of the first embodiment. Fig. 8 is a diagram showing the configuration of a cascade refrigeration system 200C of the fourth embodiment.
(二元冷凍装置200Cの全体構成)
実施の形態4としては、実施の形態1と比較して第1冷凍サイクル1の構成の一部が異なる二元冷凍装置の第3例を説明する。図8は、実施の形態4の二元冷凍装置200Cの構成を示す図である。
(Overall configuration of
As the fourth embodiment, a third example of a cascade refrigeration system will be described, in which a part of the configuration of the
図8に示す二元冷凍装置200Cが、図7に示す二元冷凍装置200Bと異なるのは、受液器500の出口側と第1膨張弁13との間、および、第1圧縮機10の吸入側と第1膨張弁13との間に、第5熱交換器502およびバイパス弁501が設けられたことである。第5熱交換器502は、カスケード熱交換器である。なお、第5熱交換器502は、二重熱交換器を用いてもよく、プレート式熱交換器を用いてもよい。
The cascade refrigeration system 200C shown in FIG. 8 differs from the cascade refrigeration system 200B shown in FIG. 7 in that a fifth heat exchanger 502 and a bypass valve 501 are provided between the outlet side of the receiver 500 and the first expansion valve 13, and between the suction side of the first compressor 10 and the first expansion valve 13. The fifth heat exchanger 502 is a cascade heat exchanger. The fifth heat exchanger 502 may be a double heat exchanger or a plate type heat exchanger.
第5熱交換器502は、受液器500と第1膨張弁13との間の配管を流れる第1冷媒と、第1圧縮機10の吸入側から分岐した配管を流れる第1冷媒との間で熱交換をさせる。第5熱交換器502では、受液器500と第1膨張弁13との間の配管を流れる第1冷媒が高温側であり、第1圧縮機10の吸入側から分岐した配管を流れる第1冷媒が低温側である。これにより、受液器500から流出した第1冷媒は、第5熱交換器502において冷却されて第1膨張弁13に流入する。
The fifth heat exchanger 502 exchanges heat between the first refrigerant flowing through the piping between the receiver 500 and the first expansion valve 13 and the first refrigerant flowing through the piping branched off from the suction side of the first compressor 10. In the fifth heat exchanger 502, the first refrigerant flowing through the piping between the receiver 500 and the first expansion valve 13 is the high temperature side, and the first refrigerant flowing through the piping branched off from the suction side of the first compressor 10 is the low temperature side. As a result, the first refrigerant flowing out of the receiver 500 is cooled in the fifth heat exchanger 502 and flows into the first expansion valve 13.
第1膨張弁13および第2膨張弁14は、制御装置600が、冷却モードおよび除霜モードにおいて図1の二元冷凍装置200と同様の開閉制御を実行する。このような構成の二元冷凍装置200Bでは、前述した図1の二元冷凍装置200と同様の冷却モードでの運転および除霜モードでの運転を実行することが可能である。
The control device 600 controls the first expansion valve 13 and the second expansion valve 14 in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1. In the cascade refrigeration system 200B configured in this way, it is possible to operate in the cooling mode and the defrost mode in the same way as the cascade refrigeration system 200 in FIG. 1 described above.
第5熱交換器502が設けられたことにより、次のような効果を得ることができる。第1膨張弁13のような膨張弁で冷媒を膨張させる場合において、冷媒が二相流の場合には、弁の動作が不安定化したり、膨張するときに異音が発生するおそれがある。しかし、第1膨張弁13に流入する第1冷媒が第5熱交換器502で冷却されて液化度合いが向上することにより、除霜モードにおいて、第1膨張弁13で第1冷媒を膨張させる場合に弁の動作を安定化できるとともに、膨張するときの異音の発生を抑制することができる。さらに、第1膨張弁13に流入する第1冷媒が第5熱交換器502で冷却されて液化度合いが向上することにより、除霜モードにおいて、第1熱交換器12にいて、第1冷媒を蒸発させるときの過熱度を小さくすることができ、熱交換を効率的に行なうことができる。
The provision of the fifth heat exchanger 502 provides the following effects. When expanding a refrigerant with an expansion valve such as the first expansion valve 13, if the refrigerant is a two-phase flow, the operation of the valve may become unstable and abnormal noise may occur during expansion. However, the first refrigerant flowing into the first expansion valve 13 is cooled by the fifth heat exchanger 502 to improve the degree of liquefaction, so that in the defrost mode, when the first refrigerant is expanded by the first expansion valve 13, the operation of the valve can be stabilized and the generation of abnormal noise during expansion can be suppressed. Furthermore, the first refrigerant flowing into the first expansion valve 13 is cooled by the fifth heat exchanger 502 to improve the degree of liquefaction, so that in the defrost mode, the degree of superheat when evaporating the first refrigerant can be reduced in the first heat exchanger 12, and heat exchange can be performed efficiently.
なお、第5熱交換器502およびバイパス弁501は、受液器500を設けない場合では、第2熱交換器103と、第1膨張弁13との間に設けてもよい。
In addition, if the receiver 500 is not provided, the fifth heat exchanger 502 and the bypass valve 501 may be provided between the second heat exchanger 103 and the first expansion valve 13.
実施の形態5.
(第6温度センサ37の配置に関する構成)
実施の形態5としては、除霜モードにおいて、第3熱交換器15の内部に設けられた第6温度センサ37で検出された温度に応じてヒータ20を停止させる例を説明する。図9は、実施の形態5の二元冷凍装置200Dにおける第6温度センサ37の配置を示す図である。 Embodiment 5.
(Configuration regarding placement of sixth temperature sensor 37)
As the fifth embodiment, an example will be described in which, in the defrost mode, theheater 20 is stopped in response to the temperature detected by the sixth temperature sensor 37 provided inside the third heat exchanger 15. Fig. 9 is a diagram showing the arrangement of the sixth temperature sensor 37 in a cascade refrigeration system 200D of the fifth embodiment.
(第6温度センサ37の配置に関する構成)
実施の形態5としては、除霜モードにおいて、第3熱交換器15の内部に設けられた第6温度センサ37で検出された温度に応じてヒータ20を停止させる例を説明する。図9は、実施の形態5の二元冷凍装置200Dにおける第6温度センサ37の配置を示す図である。 Embodiment 5.
(Configuration regarding placement of sixth temperature sensor 37)
As the fifth embodiment, an example will be described in which, in the defrost mode, the
図9に示す第3熱交換器15の構成が図2に示すものと異なるのは、第3熱交換器15の内部に第6温度センサ37が設けられていることである。第6温度センサ37は、第3熱交換器15の内部の温度を検出するセンサである。
The configuration of the third heat exchanger 15 shown in FIG. 9 differs from that shown in FIG. 2 in that a sixth temperature sensor 37 is provided inside the third heat exchanger 15. The sixth temperature sensor 37 is a sensor that detects the temperature inside the third heat exchanger 15.
第6温度センサ37は、第3熱交換器15の内部において、上から4段目のチューブ61の2列目と3列目との間の屈曲部(列間の接続部)に設けられている。このように、第6温度センサ37は、第3熱交換器15において、除霜モードで第1冷媒の流れる方向における前流側に設けられている。なお、第6温度センサ37は、第3熱交換器15の内部における上から1段目~5段目のチューブ61のうち、どのチューブに設けられてもよい。また、第6温度センサ37は、第3熱交換器15の内部における複数段のチューブ61に設けられてもよい。
The sixth temperature sensor 37 is provided inside the third heat exchanger 15 at a bend (connection between rows) between the second and third rows of the fourth row of tubes 61 from the top. In this way, the sixth temperature sensor 37 is provided on the forward flow side of the third heat exchanger 15 in the direction in which the first refrigerant flows in defrost mode. The sixth temperature sensor 37 may be provided in any of the first to fifth rows of tubes 61 from the top inside the third heat exchanger 15. The sixth temperature sensor 37 may also be provided in multiple rows of tubes 61 inside the third heat exchanger 15.
また、第6温度センサ37は、第3熱交換器15において、除霜モードで第1冷媒の流れる方向における後流側に設けられてもよい。第6温度センサ37は、除霜モードにおいて、少なくとも第3熱交換器15内において、第1冷媒の温度を検出することにより、第1冷媒の熱エネルギによる除霜の状況を把握できるような位置であれば、どのような位置に設けられてもよい。
The sixth temperature sensor 37 may also be provided on the downstream side of the third heat exchanger 15 in the direction in which the first refrigerant flows in the defrost mode. The sixth temperature sensor 37 may be provided at any position in the third heat exchanger 15 at least in the defrost mode, so long as it is capable of detecting the temperature of the first refrigerant and understanding the status of defrosting using the thermal energy of the first refrigerant.
また、第6温度センサ37は、第3熱交換器15において、チューブ61の列間を繋ぐ屈曲部以外の部分に設けられてもよい。
The sixth temperature sensor 37 may also be provided in a portion of the third heat exchanger 15 other than the bent portion connecting the rows of tubes 61.
このように、第3熱交換器15の内部において、第1冷媒の温度を検出する第6温度センサ37を設けることにより、第1冷媒の熱エネルギによる除霜の状況を把握することが可能となる。
In this way, by providing a sixth temperature sensor 37 that detects the temperature of the first refrigerant inside the third heat exchanger 15, it is possible to grasp the status of defrosting using the thermal energy of the first refrigerant.
(除霜モードの制御)
次に、二元冷凍装置200Dが除霜モードでの運転を実行する場合に制御装置600により実行される制御を説明する。 (Defrost mode control)
Next, the control executed by thecontrol device 600 when the cascade refrigeration system 200D operates in the defrost mode will be described.
次に、二元冷凍装置200Dが除霜モードでの運転を実行する場合に制御装置600により実行される制御を説明する。 (Defrost mode control)
Next, the control executed by the
図10は、実施の形態5の二元冷凍装置200Dが除霜モードでの運転を実行する場合に制御装置600により実行される制御のフローチャートである。図10においては、除霜モードでの運転における主な制御事項が各ステップの枠内に記載される。
FIG. 10 is a flow chart of the control executed by the control device 600 when the cascade refrigeration system 200D of embodiment 5 operates in the defrost mode. In FIG. 10, the main control items during operation in the defrost mode are written within the boxes of each step.
ステップS1~ステップS10は、図4に示すフローチャートと同様の処理が実行される。制御装置600は、ステップS20により、第6温度センサ37の検出値が第4閾値以上となったか否かを判断する。
Steps S1 to S10 are the same as those in the flowchart shown in FIG. 4. In step S20, the control device 600 determines whether the detection value of the sixth temperature sensor 37 is equal to or greater than the fourth threshold value.
第4閾値は、除霜運転において、第3熱交換器15に付着した霜のうち、ヒータ20により溶かすことが可能なチューブ61の範囲外のチューブの部分が、第1冷媒の熱エネルギによって溶かされている状況であると想定される温度に予め設定されている。したがって、制御装置600は、ステップS20において、除霜モードにおける第1冷媒の熱エネルギによる除霜の進行状況を把握することが可能となり、ヒータ20を用いた除霜の要否を判断することが可能となる。
The fourth threshold is preset to a temperature at which it is assumed that, in defrosting operation, the frost adhering to the third heat exchanger 15, and the portion of the tube outside the range of the tube 61 that can be melted by the heater 20, is being melted by the thermal energy of the first refrigerant. Therefore, in step S20, the control device 600 is able to grasp the progress of defrosting by the thermal energy of the first refrigerant in the defrosting mode, and is able to determine whether or not defrosting using the heater 20 is necessary.
ステップS20で第6温度センサ37の検出値が第4閾値未満であると判断された場合に、処理はステップS7に戻る。一方、ステップS20で第6温度センサ37の検出値が第4閾値以上であると判断された場合に、制御装置600は、ステップS21により、ヒータ20による加熱を停止させる。
If it is determined in step S20 that the detection value of the sixth temperature sensor 37 is less than the fourth threshold, the process returns to step S7. On the other hand, if it is determined in step S20 that the detection value of the sixth temperature sensor 37 is equal to or greater than the fourth threshold, the control device 600 stops heating by the heater 20 in step S21.
制御装置600は、ステップS22により、図4のステップS11と同様の処理をする。ステップS22で第4温度センサ36により検出された温度が第3閾値以上であると判断された場合に、制御装置600は、ステップS23により、図4のステップS14と同様に、運転状態を冷却運転に切換える。
The control device 600 performs the same process as step S11 in FIG. 4 in step S22. If it is determined in step S22 that the temperature detected by the fourth temperature sensor 36 is equal to or higher than the third threshold, the control device 600 switches the operating state to cooling operation in step S23, similar to step S14 in FIG. 4.
(除霜モードにおける第4温度センサ36の温度の変化)
次に、二元冷凍装置200Dの除霜モードにおける消費電力の変化の一例を説明する。図11は、実施の形態5の二元冷凍装置200Dの除霜モードにおける消費電力の変化の一例を示す図である。図11においては、縦軸に二元冷凍装置200Dの除霜モードにおける消費電力量Wが示され、横軸に除霜運転の開始時からの経過時間tが示される。 (Change in temperature of thefourth temperature sensor 36 in the defrosting mode)
Next, an example of change in power consumption in the defrost mode of thecascade refrigeration system 200D will be described. Fig. 11 is a diagram showing an example of change in power consumption in the defrost mode of the cascade refrigeration system 200D of embodiment 5. In Fig. 11, the vertical axis indicates the power consumption W in the defrost mode of the cascade refrigeration system 200D, and the horizontal axis indicates the elapsed time t from the start of the defrost operation.
次に、二元冷凍装置200Dの除霜モードにおける消費電力の変化の一例を説明する。図11は、実施の形態5の二元冷凍装置200Dの除霜モードにおける消費電力の変化の一例を示す図である。図11においては、縦軸に二元冷凍装置200Dの除霜モードにおける消費電力量Wが示され、横軸に除霜運転の開始時からの経過時間tが示される。 (Change in temperature of the
Next, an example of change in power consumption in the defrost mode of the
図11においては、実施の形態5の二元冷凍装置200Dの消費電力量の推移が実線aで示され、実施の形態1~4の二元冷凍装置200,200A,200B,200Cの消費電力の推移が破線bで示される。
In FIG. 11, the solid line a indicates the change in power consumption of the cascade refrigeration system 200D of embodiment 5, and the dashed line b indicates the change in power consumption of the cascade refrigeration systems 200, 200A, 200B, and 200C of embodiments 1 to 4.
実施の形態1~4では、除霜モードにおいて第1冷媒の熱エネルギによる除霜と、ヒータ20の加熱による熱エネルギによる除霜とを同時に終了させるので、破線bのように消費電力量Wが一様に増加する。これに対し、実施の形態5では、除霜モードにおいて、ヒータ20の加熱による熱エネルギによる除霜を、第1冷媒の熱エネルギによる除霜よりも早いタイミングで終了させるので、実線aのように消費電力量Wの増加度が途中で減少する。これにより、実施の形態5では、除霜モードにおいてヒータ20を早期に停止させることにより、除霜モードにおける消費電力量を抑制することができる。
In the first to fourth embodiments, in the defrost mode, defrosting by thermal energy of the first refrigerant and defrosting by thermal energy generated by heating the heater 20 are terminated simultaneously, so the power consumption W increases uniformly as shown by the dashed line b. In contrast, in the fifth embodiment, in the defrost mode, defrosting by thermal energy generated by heating the heater 20 is terminated earlier than defrosting by thermal energy of the first refrigerant, so the rate of increase in the power consumption W decreases midway as shown by the solid line a. As a result, in the fifth embodiment, the power consumption in the defrost mode can be suppressed by stopping the heater 20 early in the defrost mode.
以上に説明したように、実施の形態5では、第6温度センサ37の検出値が第4閾値以上であると判断された場合に、制御装置600がヒータ20による加熱を停止させるので、実施の形態1~4の場合と比べて、除霜モードにおいてヒータ20を早期に停止させることができる。このように、除霜モードにおいてヒータ20を早期に停止させることにより、除霜モードにおける消費電力量を抑制することができる。
As described above, in the fifth embodiment, when it is determined that the detection value of the sixth temperature sensor 37 is equal to or greater than the fourth threshold value, the control device 600 stops heating by the heater 20. Therefore, compared to the first to fourth embodiments, the heater 20 can be stopped earlier in the defrost mode. In this way, by stopping the heater 20 earlier in the defrost mode, the amount of power consumption in the defrost mode can be reduced.
また、実施の形態5では、第6温度センサ37が、第3熱交換器15の内部において、チューブ61の2列目と3列目との間の屈曲部(列間の接続部)に設けられているので、第6温度センサ37が、ヒータ20から出る熱エネルギを受けることによって実際のチューブ61における第1冷媒の温度を誤検出することを抑制することができる。
In addition, in the fifth embodiment, the sixth temperature sensor 37 is provided inside the third heat exchanger 15 at the bend (connection between the rows) between the second and third rows of the tubes 61, so that the sixth temperature sensor 37 is prevented from erroneously detecting the actual temperature of the first refrigerant in the tubes 61 due to receiving thermal energy from the heater 20.
<他の変形例>
前述した実施の形態において、第1冷凍サイクル1に封入される沸点が-52℃よりも低い第1冷媒は、二酸化炭素またはR23であればよい。このような第1冷媒の室内への漏洩を想定すると、第1冷媒として求められる特性としては、ASHRAE34にてA1にカテゴライズされた冷媒、すなわち、低毒性かつ不燃性である冷媒が好ましい。具体的に、第1冷媒は、二酸化炭素が最も好ましく、二酸化炭素を主成分とした混合冷媒を用いてもよい。 <Other Modifications>
In the above-described embodiment, the first refrigerant having a boiling point lower than −52° C. to be filled into thefirst refrigeration cycle 1 may be carbon dioxide or R23. Assuming that such a first refrigerant leaks into the room, the characteristics required for the first refrigerant are preferably a refrigerant categorized as A1 in ASHRAE34, that is, a refrigerant that is low toxic and non-flammable. Specifically, the first refrigerant is most preferably carbon dioxide, and a mixed refrigerant mainly composed of carbon dioxide may be used.
前述した実施の形態において、第1冷凍サイクル1に封入される沸点が-52℃よりも低い第1冷媒は、二酸化炭素またはR23であればよい。このような第1冷媒の室内への漏洩を想定すると、第1冷媒として求められる特性としては、ASHRAE34にてA1にカテゴライズされた冷媒、すなわち、低毒性かつ不燃性である冷媒が好ましい。具体的に、第1冷媒は、二酸化炭素が最も好ましく、二酸化炭素を主成分とした混合冷媒を用いてもよい。 <Other Modifications>
In the above-described embodiment, the first refrigerant having a boiling point lower than −52° C. to be filled into the
また、一般的なフロン冷媒であるR404またはR410Aを第1冷媒として用いる場合は、使用最高圧力に応じて第1種または第2種の冷媒配管が用いられるが、この実施の形態のように沸点が-52℃よりも低い高圧冷媒である二酸化炭素は、一般的に第4種に相当する冷媒配管が用いられる。
When using the common fluorocarbon refrigerants R404 or R410A as the first refrigerant, a first or second class refrigerant piping is used depending on the maximum operating pressure, but in the case of carbon dioxide, a high-pressure refrigerant with a boiling point lower than -52°C as in this embodiment, a fourth class refrigerant piping is generally used.
例えば、R410Aが用いられているビル用のマルチエアコン等の空調機及び冷凍機の最小耐圧要素の耐圧は、4.25MPaA以下である。本実施の形態の二元冷凍装置は、第1冷凍サイクル1に高圧冷媒を用いつつ、第1冷凍サイクル1の各要素における最小耐圧要素の耐圧が4.25MPaA以下となるように構成してもよい。
For example, the minimum pressure-resistant elements of air conditioners and freezers, such as multi-air conditioners for buildings that use R410A, have a pressure resistance of 4.25 MPaA or less. The cascade refrigeration system of this embodiment may be configured to use a high-pressure refrigerant in the first refrigeration cycle 1, while the minimum pressure-resistant elements in each element of the first refrigeration cycle 1 have a pressure resistance of 4.25 MPaA or less.
(まとめ)
以下において、再び図面を参照して実施の形態について、総括する。 (summary)
Hereinafter, the embodiments will be summarized with reference to the drawings again.
以下において、再び図面を参照して実施の形態について、総括する。 (summary)
Hereinafter, the embodiments will be summarized with reference to the drawings again.
(第1項)本開示は、二元冷凍装置に関する。図1等に示すように、二元冷凍装置200は、第1圧縮機10、第1熱交換器12、第1膨張弁13、第2熱交換器103、第2膨張弁14、第3熱交換器15、および、ヒータ20を含み、第1冷媒が循環する第1冷凍サイクル1と、第2圧縮機100、第4熱交換器101、第3膨張弁102、および、第2熱交換器103を含み、第2冷媒が循環する第2冷凍サイクル2と、第1冷凍サイクル1および第2冷凍サイクル2を制御する制御装置600とを備える。第2熱交換器103は、第1冷媒と第2冷媒との間で熱交換をする。制御装置600は、第1冷凍サイクルおよび第2冷凍サイクルを、冷却モードまたは除霜モードで制御する。冷却モードは、第1圧縮機10から吐出された第1冷媒が、第1熱交換器12、第1膨張弁13、第2熱交換器103、第2膨張弁14、および、第3熱交換器15を経て第1圧縮機10に戻るモードである。除霜モードは、第1圧縮機10から吐出された第1冷媒が、第3熱交換器15、第2膨張弁14、第2熱交換器103、第1膨張弁13、および、第1熱交換器12を経て第1圧縮機10に戻るモードである。ヒータは、第3熱交換器に設けられる。制御装置600は、除霜モードにおいて、第1冷媒が第3熱交換器15に流入している状態で、第3熱交換器における第1冷媒の流路をヒータにより加熱する制御をする。
(Section 1) The present disclosure relates to a cascade refrigeration system. As shown in FIG. 1 etc., the cascade refrigeration system 200 includes a first refrigeration cycle 1 including a first compressor 10, a first heat exchanger 12, a first expansion valve 13, a second heat exchanger 103, a second expansion valve 14, a third heat exchanger 15, and a heater 20, in which a first refrigerant circulates; a second refrigeration cycle 2 including a second compressor 100, a fourth heat exchanger 101, a third expansion valve 102, and a second heat exchanger 103, in which a second refrigerant circulates; and a control device 600 that controls the first refrigeration cycle 1 and the second refrigeration cycle 2. The second heat exchanger 103 exchanges heat between the first refrigerant and the second refrigerant. The control device 600 controls the first refrigeration cycle and the second refrigeration cycle in a cooling mode or a defrosting mode. The cooling mode is a mode in which the first refrigerant discharged from the first compressor 10 returns to the first compressor 10 via the first heat exchanger 12, the first expansion valve 13, the second heat exchanger 103, the second expansion valve 14, and the third heat exchanger 15. The defrosting mode is a mode in which the first refrigerant discharged from the first compressor 10 returns to the first compressor 10 via the third heat exchanger 15, the second expansion valve 14, the second heat exchanger 103, the first expansion valve 13, and the first heat exchanger 12. The heater is provided in the third heat exchanger. In the defrosting mode, the control device 600 controls the flow path of the first refrigerant in the third heat exchanger to be heated by the heater while the first refrigerant is flowing into the third heat exchanger 15.
(第2項)第1項に記載の二元冷凍装置において、図2等に示すように、ヒータ20は、第3熱交換器15に設けられた第1冷媒の流路において、除霜モードで第1冷媒が流れる方向の下流側を加熱する位置に設けられている。
(2) In the cascade refrigeration system described in 1, as shown in FIG. 2 etc., the heater 20 is provided in the flow path of the first refrigerant provided in the third heat exchanger 15 at a position that heats the downstream side of the direction in which the first refrigerant flows in the defrost mode.
(第3項)第1項または第2項に記載の二元冷凍装置において、図4に示すように、第1圧縮機10から吐出される第1冷媒の圧力を検出する第1圧力センサ31をさらに備え、制御装置600は、除霜モードにおいて、第1圧力センサ31により検出された第1冷媒の圧力が第1閾値以下であるか否かを判定した後に、ヒータ20による加熱を開始させる(ステップS7)。
(3) In the cascade refrigeration system described in 1 or 2, as shown in FIG. 4, a first pressure sensor 31 is further provided to detect the pressure of the first refrigerant discharged from the first compressor 10, and in the defrost mode, the control device 600 determines whether the pressure of the first refrigerant detected by the first pressure sensor 31 is equal to or lower than a first threshold, and then starts heating by the heater 20 (step S7).
(第4項)第3項に記載の二元冷凍装置において、図4に示すように、制御装置600は、除霜モードにおいて、第1圧力センサ31により検出された第1冷媒の圧力が第1閾値以下であると判定された場合に、直ちにヒータ20による加熱を開始させる(ステップS7)。
(4) In the cascade refrigeration system described in 3, as shown in FIG. 4, when the control device 600 determines that the pressure of the first refrigerant detected by the first pressure sensor 31 is equal to or lower than the first threshold in the defrost mode, it immediately starts heating by the heater 20 (step S7).
(第5項)第3項に記載の二元冷凍装置において、図4に示すように、制御装置は、除霜モードにおいて、第1圧力センサ31により検出された第1冷媒の圧力が第1閾値よりも高いと判定された場合に、第2冷凍サイクル2において第2冷媒を循環させる制御を開始させた(ステップS5,S6)後、ヒータによる加熱を開始させる(ステップS7)。
(Section 5) In the cascade refrigeration system described in Section 3, as shown in FIG. 4, when the control device determines that the pressure of the first refrigerant detected by the first pressure sensor 31 is higher than the first threshold in the defrost mode, it starts control to circulate the second refrigerant in the second refrigeration cycle 2 (steps S5, S6), and then starts heating by the heater (step S7).
(第6項)第1項~第5項のいずれか1項に記載の二元冷凍装置において、図1に示すように、除霜モードにおいて第3熱交換器15から第2膨張弁14の側へ流出する第1冷媒の温度を検出する第4温度センサ36をさらに備える。図4に示すように、制御装置600は、除霜モードにおいて、第4温度センサ36により検出された第1冷媒の温度が第3閾値以上となったことに応じて、除霜モードを終了させるとともに、ヒータによる加熱を終了させる(ステップS13,S14)。
(Item 6) In the cascade refrigeration system described in any one of Items 1 to 5, as shown in FIG. 1, a fourth temperature sensor 36 is further provided for detecting the temperature of the first refrigerant flowing out from the third heat exchanger 15 to the second expansion valve 14 in the defrost mode. As shown in FIG. 4, in the defrost mode, the control device 600 ends the defrost mode and ends heating by the heater in response to the temperature of the first refrigerant detected by the fourth temperature sensor 36 becoming equal to or higher than the third threshold (steps S13, S14).
(第7項)第1項~第5項のいずれか1項に記載の二元冷凍装置において、図8に示すように、除霜モードにおいて第3熱交換器15から第2膨張弁14の側へ流出する第1冷媒の温度を検出する第4温度センサ36と、図9に示すように、第3熱交換器15の内部での第1冷媒の流路のうち、除霜モードにおいてヒータ20により直接加熱されない範囲の流路において第1冷媒の温度を検出する第6温度センサ37とをさらに備える。図10に示すように、制御装置600は、除霜モードにおいて、第6温度センサ37により検出された第1冷媒の温度が第4閾値となったことに応じて、ヒータ20による加熱を終了させ(ステップS20,S21)、第4温度センサ36により検出された第1冷媒の温度が第3閾値となったことに応じて、除霜モードを終了させる(ステップS22,S23)。
(7) In the cascade refrigeration system described in any one of paragraphs 1 to 5, as shown in FIG. 8, a fourth temperature sensor 36 is provided for detecting the temperature of the first refrigerant flowing from the third heat exchanger 15 to the second expansion valve 14 in the defrost mode, and as shown in FIG. 9, a sixth temperature sensor 37 is provided for detecting the temperature of the first refrigerant in the flow path of the first refrigerant inside the third heat exchanger 15 in a range that is not directly heated by the heater 20 in the defrost mode. As shown in FIG. 10, the control device 600 ends heating by the heater 20 in the defrost mode when the temperature of the first refrigerant detected by the sixth temperature sensor 37 reaches the fourth threshold (steps S20, S21), and ends the defrost mode when the temperature of the first refrigerant detected by the fourth temperature sensor 36 reaches the third threshold (steps S22, S23).
(第8項)第7項に記載の二元冷凍装置において、図9に示すように、第6温度センサ37は、第3熱交換器15の内部において、第1冷媒の流路のうち、ヒータ20が加熱する範囲よりも、除霜モードで第1冷媒が流れる方向の上流側の位置に設けられる。
(Item 8) In the cascade refrigeration system described in Item 7, as shown in FIG. 9, the sixth temperature sensor 37 is provided inside the third heat exchanger 15, in the flow path of the first refrigerant, upstream of the range heated by the heater 20 in the direction in which the first refrigerant flows in defrost mode.
(第9項)第1項~第8項のいずれか1項に記載の二元冷凍装置において、図2および図9に示すように、第3熱交換器15は、第1冷媒の流路であるチューブ61が上下方向に複数段に分けて設けられ、ヒータ20は、複数段のチューブ61に対応して上下方向に設けられた複数のヒータ部材21を含む。複数のヒータ部材21は、最下段のヒータ部材21が、最上段のヒータ部材21よりも熱容量が大きい。
(Item 9) In the dual cascade refrigeration system described in any one of items 1 to 8, as shown in Figs. 2 and 9, the third heat exchanger 15 has tubes 61, which are the flow path of the first refrigerant, arranged in multiple stages in the vertical direction, and the heater 20 includes multiple heater members 21 arranged in the vertical direction corresponding to the multiple stages of tubes 61. Of the multiple heater members 21, the heater member 21 in the bottom stage has a larger heat capacity than the heater member 21 in the top stage.
(第10項)第1項~第9項のいずれか1項に記載の二元冷凍装置において、図2および図9に示すように、第3熱交換器15に送風をするファン15Fをさらに備え、第3熱交換器15は、第1冷媒の流路であるチューブ61が上下方向に複数段に分けて設けられ、ヒータ20は、複数段のチューブ61に対応して上下方向に設けられた複数のヒータ部材21を含む。複数のヒータ部材21は、ファン15Fからの送風の風速が最も速い位置に設けられたヒータ部材21が、ファン15Fからの送風の風速が最も遅い位置に設けられたヒータ部材21よりも熱容量が大きい。
(Item 10) In the dual cascade refrigeration system described in any one of items 1 to 9, as shown in FIG. 2 and FIG. 9, the third heat exchanger 15 further includes a fan 15F for blowing air to the third heat exchanger 15, the third heat exchanger 15 includes tubes 61, which are the flow path of the first refrigerant, arranged in multiple stages in the vertical direction, and the heater 20 includes multiple heater members 21 arranged in the vertical direction corresponding to the multiple stages of tubes 61. Of the multiple heater members 21, the heater member 21 arranged at the position where the wind speed of the air blown from the fan 15F is the fastest has a larger heat capacity than the heater member 21 arranged at the position where the wind speed of the air blown from the fan 15F is the slowest.
(第11項)第1項~第10項のいずれか1項に記載の二元冷凍装置において、第1冷媒は、沸点が-52℃よりも低い。
(11) In the binary refrigeration system described in any one of paragraphs 1 to 10, the boiling point of the first refrigerant is lower than -52°C.
(第12項)第1項~第11項のいずれか1項に記載の二元冷凍装置において、第1冷媒は、二酸化炭素である。
(12) In the binary refrigeration system described in any one of paragraphs 1 to 11, the first refrigerant is carbon dioxide.
(第13項)第1項~第11項のいずれか1項に記載の二元冷凍装置において、第1冷媒は、二酸化炭素を主成分とする混合気体である。
(13) In the binary refrigeration system described in any one of paragraphs 1 to 11, the first refrigerant is a mixed gas containing carbon dioxide as the main component.
(第14項)第1項~第13項のいずれか1項に記載の二元冷凍装置において、第1冷媒は、第1冷凍サイクルを構成する機器は、最小耐圧が4.25MPaA以下である。
(14) In the cascade refrigeration system described in any one of paragraphs 1 to 13, the first refrigerant and the equipment constituting the first refrigeration cycle have a minimum pressure resistance of 4.25 MPaA or less.
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. The scope of the present disclosure is indicated by the claims, not by the description of the embodiments above, and is intended to include all modifications within the meaning and scope of the claims.
10 第1圧縮機、12 第1熱交換器、13 第1膨張弁、103 第2熱交換器、14 第2膨張弁、15 第3熱交換器、20 ヒータ、1 第1冷凍サイクル、100 第2圧縮機、101 第4熱交換器、102 第3膨張弁、2 第2冷凍サイクル、600 制御装置、200,200A,200B,200C,200D 二元冷凍装置。
10 first compressor, 12 first heat exchanger, 13 first expansion valve, 103 second heat exchanger, 14 second expansion valve, 15 third heat exchanger, 20 heater, 1 first refrigeration cycle, 100 second compressor, 101 fourth heat exchanger, 102 third expansion valve, 2 second refrigeration cycle, 600 control device, 200, 200A, 200B, 200C, 200D cascade refrigeration system.
Claims (14)
- 第1圧縮機、第1熱交換器、第1膨張弁、第2熱交換器、第2膨張弁、第3熱交換器、および、ヒータを含み、第1冷媒が循環する第1冷凍サイクルと、
第2圧縮機、第4熱交換器、第3膨張弁、および、前記第2熱交換器を含み、第2冷媒が循環する第2冷凍サイクルと、
前記第1冷凍サイクルおよび前記第2冷凍サイクルを制御する制御装置とを備え、
前記第2熱交換器は、前記第1冷媒と前記第2冷媒との間で熱交換をし、
前記制御装置は、前記第1冷凍サイクルおよび前記第2冷凍サイクルを、冷却モードまたは除霜モードで制御し、
前記冷却モードは、前記第1圧縮機から吐出された前記第1冷媒が、前記第1熱交換器、前記第1膨張弁、前記第2熱交換器、前記第2膨張弁、および、前記第3熱交換器を経て前記第1圧縮機に戻るモードであり、
前記除霜モードは、前記第1圧縮機から吐出された前記第1冷媒が、前記第3熱交換器、前記第2膨張弁、前記第2熱交換器、前記第1膨張弁、および、前記第1熱交換器を経て前記第1圧縮機に戻るモードであり、
前記ヒータは、前記第3熱交換器に設けられ、
前記制御装置は、前記除霜モードにおいて、前記第1冷媒が前記第3熱交換器に流入している状態で、前記第3熱交換器における前記第1冷媒の流路を前記ヒータにより加熱する制御をする、二元冷凍装置。 a first refrigeration cycle including a first compressor, a first heat exchanger, a first expansion valve, a second heat exchanger, a second expansion valve, a third heat exchanger, and a heater, in which a first refrigerant circulates;
a second refrigeration cycle including a second compressor, a fourth heat exchanger, a third expansion valve, and the second heat exchanger, in which a second refrigerant circulates;
a control device for controlling the first refrigeration cycle and the second refrigeration cycle,
The second heat exchanger exchanges heat between the first refrigerant and the second refrigerant,
The control device controls the first refrigeration cycle and the second refrigeration cycle in a cooling mode or a defrosting mode,
the cooling mode is a mode in which the first refrigerant discharged from the first compressor returns to the first compressor via the first heat exchanger, the first expansion valve, the second heat exchanger, the second expansion valve, and the third heat exchanger,
the defrosting mode is a mode in which the first refrigerant discharged from the first compressor returns to the first compressor via the third heat exchanger, the second expansion valve, the second heat exchanger, the first expansion valve, and the first heat exchanger,
The heater is provided in the third heat exchanger,
The control device, in the defrost mode, controls the heater to heat a flow path of the first refrigerant in the third heat exchanger while the first refrigerant is flowing into the third heat exchanger. - 前記ヒータは、前記第3熱交換器に設けられた前記第1冷媒の流路において、前記除霜モードで前記第1冷媒が流れる方向の下流側を加熱する位置に設けられている、請求項1に記載の二元冷凍装置。 The cascade refrigeration system according to claim 1, wherein the heater is provided in a position in the flow path of the first refrigerant provided in the third heat exchanger so as to heat the downstream side of the flow direction of the first refrigerant in the defrosting mode.
- 前記第1圧縮機から吐出される前記第1冷媒の圧力を検出する圧力センサをさらに備え、
前記制御装置は、前記除霜モードにおいて、前記圧力センサにより検出された前記第1冷媒の圧力が第1閾値以下であるか否かを判定した後に、前記ヒータによる加熱を開始させる、請求項1または請求項2に記載の二元冷凍装置。 a pressure sensor for detecting a pressure of the first refrigerant discharged from the first compressor,
3. The cascade refrigeration apparatus according to claim 1, wherein in the defrost mode, the control device starts heating by the heater after determining whether a pressure of the first refrigerant detected by the pressure sensor is equal to or lower than a first threshold value. - 前記制御装置は、前記除霜モードにおいて、前記圧力センサにより検出された前記第1冷媒の圧力が前記第1閾値以下であると判定された場合に、直ちに前記ヒータによる加熱を開始させる、請求項3に記載の二元冷凍装置。 The cascade refrigeration system of claim 3, wherein the control device immediately starts heating by the heater when it is determined that the pressure of the first refrigerant detected by the pressure sensor is equal to or lower than the first threshold value in the defrost mode.
- 前記制御装置は、前記除霜モードにおいて、前記圧力センサにより検出された前記第1冷媒の圧力が前記第1閾値よりも高いと判定された場合に、前記第2冷凍サイクルにおいて前記第2冷媒を循環させる制御を開始させた後、前記ヒータによる加熱を開始させる、請求項3に記載の二元冷凍装置。 The cascade refrigeration system of claim 3, wherein the control device starts control to circulate the second refrigerant in the second refrigeration cycle and then starts heating by the heater when the pressure of the first refrigerant detected by the pressure sensor is determined to be higher than the first threshold value in the defrost mode.
- 前記除霜モードにおいて前記第3熱交換器から前記第2膨張弁の側へ流出する前記第1冷媒の温度を検出する第1温度センサをさらに備え、
前記制御装置は、前記除霜モードにおいて、前記第1温度センサにより検出された前記第1冷媒の温度が第2閾値以上となったことに応じて、前記除霜モードを終了させるとともに、前記ヒータによる加熱を終了させる、請求項1~請求項5のいずれか1項に記載の二元冷凍装置。 a first temperature sensor that detects a temperature of the first refrigerant flowing out from the third heat exchanger to the second expansion valve in the defrosting mode;
The control device terminates the defrost mode and terminates heating by the heater in response to the temperature of the first refrigerant detected by the first temperature sensor becoming equal to or higher than a second threshold value in the defrost mode. The binary refrigeration device according to any one of claims 1 to 5. - 前記除霜モードにおいて前記第3熱交換器から前記第2膨張弁の側へ流出する前記第1冷媒の温度を検出する第1温度センサと、
前記第3熱交換器の内部での前記第1冷媒の流路のうち、前記除霜モードにおいて前記ヒータにより直接加熱されない範囲の流路において前記第1冷媒の温度を検出する第2温度センサとをさらに備え、
前記制御装置は、前記除霜モードにおいて、前記第2温度センサにより検出された前記第1冷媒の温度が第3閾値となったことに応じて、前記ヒータによる加熱を終了させ、前記第1温度センサにより検出された前記第1冷媒の温度が第4閾値となったことに応じて、前記除霜モードを終了させる、請求項1~請求項5のいずれか1項に記載の二元冷凍装置。 a first temperature sensor that detects a temperature of the first refrigerant flowing out from the third heat exchanger to a side of the second expansion valve in the defrosting mode;
a second temperature sensor configured to detect a temperature of the first refrigerant in a flow path of the first refrigerant in the third heat exchanger, the flow path being not directly heated by the heater in the defrost mode;
The control device, in the defrost mode, terminates heating by the heater in response to the temperature of the first refrigerant detected by the second temperature sensor reaching a third threshold value, and terminates the defrost mode in response to the temperature of the first refrigerant detected by the first temperature sensor reaching a fourth threshold value. The dual refrigeration device according to any one of claims 1 to 5. - 前記第2温度センサは、前記第3熱交換器の内部において、前記第1冷媒の流路のうち、前記ヒータが加熱する範囲よりも、前記除霜モードで前記第1冷媒が流れる方向の上流側の位置に設けられる、請求項7に記載の二元冷凍装置。 The cascade refrigeration system according to claim 7, wherein the second temperature sensor is provided inside the third heat exchanger in a position upstream of the flow path of the first refrigerant in the direction in which the first refrigerant flows in the defrost mode from the range heated by the heater.
- 前記第3熱交換器は、前記第1冷媒の流路が上下方向に複数段に分けて設けられ、
前記ヒータは、前記複数段の流路に対応して上下方向に設けられた複数のヒータ部材を含み、
前記複数のヒータ部材は、最下段の前記ヒータ部材が、最上段の前記ヒータ部材よりも熱容量が大きい、請求項1~請求項8のいずれか1項に記載の二元冷凍装置。 The third heat exchanger is provided such that a flow path of the first refrigerant is divided into a plurality of stages in a vertical direction,
the heater includes a plurality of heater members provided in a vertical direction corresponding to the plurality of stages of flow paths,
The cascade refrigeration system according to any one of claims 1 to 8, wherein the heater member at the bottom stage of the plurality of heater members has a larger heat capacity than the heater member at the top stage. - 前記第3熱交換器に送風をするファンをさらに備え、
前記第3熱交換器は、前記第1冷媒の流路が上下方向に複数段に分けて設けられ、
前記ヒータは、前記複数段の流路に対応して上下方向に設けられた複数のヒータ部材を含み、
前記複数のヒータ部材は、前記ファンからの送風の風速が最も速い位置に設けられた前記ヒータ部材が、前記ファンからの送風の風速が最も遅い位置に設けられた前記ヒータ部材よりも熱容量が大きい、請求項1~請求項9のいずれか1項に記載の二元冷凍装置。 Further comprising a fan for blowing air to the third heat exchanger,
The third heat exchanger is provided such that a flow path of the first refrigerant is divided into a plurality of stages in a vertical direction,
the heater includes a plurality of heater members provided in a vertical direction corresponding to the plurality of stages of flow paths,
The dual refrigeration apparatus according to any one of claims 1 to 9, wherein the plurality of heater members are arranged such that the heater member arranged at a position where the wind speed of the air from the fan is the fastest has a larger heat capacity than the heater member arranged at a position where the wind speed of the air from the fan is the slowest. - 前記第1冷媒は、沸点が-52℃よりも低い、請求項1~請求項10のいずれか1項に記載の二元冷凍装置。 The cascade refrigeration system according to any one of claims 1 to 10, wherein the first refrigerant has a boiling point lower than -52°C.
- 前記第1冷媒は、二酸化炭素である、請求項1~請求項11のいずれか1項に記載の二元冷凍装置。 The binary refrigeration system according to any one of claims 1 to 11, wherein the first refrigerant is carbon dioxide.
- 前記第1冷媒は、二酸化炭素を主成分とする混合気体である、請求項1~請求項11のいずれか1項に記載の二元冷凍装置。 The binary refrigeration system according to any one of claims 1 to 11, wherein the first refrigerant is a mixed gas containing carbon dioxide as a main component.
- 前記第1冷凍サイクルを構成する機器は、最小耐圧が4.25MPaA以下である、請求項1~請求項13のいずれか1項に記載の二元冷凍装置。 The dual refrigeration system according to any one of claims 1 to 13, wherein the equipment constituting the first refrigeration cycle has a minimum pressure resistance of 4.25 MPaA or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/001050 WO2024154207A1 (en) | 2023-01-16 | 2023-01-16 | Binary refrigeration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/001050 WO2024154207A1 (en) | 2023-01-16 | 2023-01-16 | Binary refrigeration device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024154207A1 true WO2024154207A1 (en) | 2024-07-25 |
Family
ID=91955493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/001050 WO2024154207A1 (en) | 2023-01-16 | 2023-01-16 | Binary refrigeration device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024154207A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61101761A (en) * | 1984-10-25 | 1986-05-20 | 松下電器産業株式会社 | Defroster for heat pump type air conditioner |
JP2004190917A (en) * | 2002-12-10 | 2004-07-08 | Sanyo Electric Co Ltd | Refrigeration device |
JP5595245B2 (en) * | 2010-11-26 | 2014-09-24 | 三菱電機株式会社 | Refrigeration equipment |
WO2018008108A1 (en) * | 2016-07-06 | 2018-01-11 | 三菱電機株式会社 | Refrigeration cycle system |
WO2020161834A1 (en) * | 2019-02-06 | 2020-08-13 | 三菱電機株式会社 | Refrigeration cycle device |
WO2022195727A1 (en) * | 2021-03-16 | 2022-09-22 | 三菱電機株式会社 | Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same |
-
2023
- 2023-01-16 WO PCT/JP2023/001050 patent/WO2024154207A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61101761A (en) * | 1984-10-25 | 1986-05-20 | 松下電器産業株式会社 | Defroster for heat pump type air conditioner |
JP2004190917A (en) * | 2002-12-10 | 2004-07-08 | Sanyo Electric Co Ltd | Refrigeration device |
JP5595245B2 (en) * | 2010-11-26 | 2014-09-24 | 三菱電機株式会社 | Refrigeration equipment |
WO2018008108A1 (en) * | 2016-07-06 | 2018-01-11 | 三菱電機株式会社 | Refrigeration cycle system |
WO2020161834A1 (en) * | 2019-02-06 | 2020-08-13 | 三菱電機株式会社 | Refrigeration cycle device |
WO2022195727A1 (en) * | 2021-03-16 | 2022-09-22 | 三菱電機株式会社 | Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10508826B2 (en) | Refrigeration cycle apparatus | |
KR100717444B1 (en) | Multi air conditioner and air conditioner control method | |
JP6320567B2 (en) | Air conditioner | |
JP6878612B2 (en) | Refrigeration cycle equipment | |
JP2008249236A (en) | Air conditioner | |
EP3708929B1 (en) | Refrigeration cycle device | |
JP6661843B1 (en) | Air conditioner | |
EP2645019B1 (en) | Heat pump hot-water supply device | |
JP4760974B2 (en) | Refrigeration equipment | |
JP2019184207A (en) | Air conditioner | |
CN207035539U (en) | Refrigerating circulatory device | |
JP7112057B1 (en) | air conditioner | |
JPWO2017037891A1 (en) | Refrigeration cycle equipment | |
JP7512650B2 (en) | Air conditioners | |
WO2024154207A1 (en) | Binary refrigeration device | |
US11015851B2 (en) | Refrigeration cycle device | |
JP6573723B2 (en) | Air conditioner | |
CN213089945U (en) | Air conditioner | |
KR101692243B1 (en) | Heat pump with cascade refrigerating cycle | |
JP2007298218A (en) | Refrigerating device | |
WO2021192074A1 (en) | Air conditioner | |
JPH06281273A (en) | Air conditioner | |
JP7561888B2 (en) | Air Conditioning Equipment | |
JPWO2019106755A1 (en) | Air conditioner | |
WO2021186490A1 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23917422 Country of ref document: EP Kind code of ref document: A1 |