[go: up one dir, main page]

WO2024152894A1 - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
WO2024152894A1
WO2024152894A1 PCT/CN2024/070220 CN2024070220W WO2024152894A1 WO 2024152894 A1 WO2024152894 A1 WO 2024152894A1 CN 2024070220 W CN2024070220 W CN 2024070220W WO 2024152894 A1 WO2024152894 A1 WO 2024152894A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
coupled
shielding
primary winding
primary
Prior art date
Application number
PCT/CN2024/070220
Other languages
English (en)
French (fr)
Inventor
陶淦
林文涛
何成军
张鹏
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2024152894A1 publication Critical patent/WO2024152894A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the technical field of household appliances, and in particular to an air conditioner.
  • the first type is that the primary winding and the secondary winding do not have Y capacitors, which has strong anti-interference ability.
  • the second type is that the primary winding and the secondary winding have Y capacitors, which has low cost.
  • An air conditioner comprising an outdoor unit and an indoor unit.
  • the indoor unit is connected to the outdoor unit.
  • the indoor unit comprises an electromagnetic compatibility component.
  • the electromagnetic compatibility component comprises a transformer.
  • the transformer comprises a magnetic core, a primary winding and a secondary winding.
  • the primary winding is wound around the magnetic core.
  • the secondary winding is wound around the magnetic core, and the secondary winding is located outside the primary winding.
  • the transformer further comprises at least one of the following: a first shielding winding, or a second shielding winding.
  • the first shielding winding is located between the magnetic core and the primary winding.
  • the second shielding winding is located between the primary winding and the secondary winding, and the winding method of the first shielding winding is opposite to that of the primary winding.
  • the primary winding generates a first displacement current for the first shielding winding
  • the magnetic core generates a second displacement current for the first shielding winding
  • the directions of the first displacement current and the second displacement current are opposite.
  • the primary winding generates a third displacement current for the second shielding winding
  • the secondary winding generates a fourth displacement current for the second shielding winding, and the directions of the third displacement current and the fourth displacement current are opposite.
  • FIG. 1A is a structural diagram of an air conditioner according to some embodiments.
  • FIG. 1B is a block diagram of an air conditioner according to some embodiments.
  • FIG1C is a circuit diagram of a simplified electromagnetic compatibility component according to some embodiments.
  • FIG2 is a block diagram of a system of an air conditioner according to some embodiments.
  • FIG3 is a circuit diagram of a simplified linear impedance stabilization network according to some embodiments.
  • FIG4A is a circuit diagram of a transformer according to some embodiments.
  • FIG4B is a circuit diagram of another transformer according to some embodiments.
  • FIG5 is a circuit diagram of a winding with the same number of turns according to some embodiments.
  • FIG6 is a circuit diagram of a winding with different numbers of turns according to some embodiments.
  • FIG7 is a circuit diagram of an auxiliary winding (equivalent to a second shielding winding) according to some embodiments.
  • FIG8 is a circuit diagram of a magnetic core-to-ground shielding according to some embodiments.
  • FIG9 is a structural diagram of a transformer according to some embodiments.
  • FIG10 is a circuit diagram of an electromagnetic compatibility component according to some embodiments.
  • FIG. 11A is an electromagnetic compatibility test diagram of a substrate including an electromagnetic compatibility component according to some embodiments.
  • FIG. 11B is an electromagnetic compatibility test diagram of a substrate that does not include an electromagnetic compatibility component according to some embodiments.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • Coupled and “connected” and their derivatives may be used.
  • the term “connected” should be understood in a broad sense. For example, “connected” can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • the term “coupled” indicates that two or more components are in direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the contents of this document.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and both include the following combinations of A, B, and C: A only, B only, C only, the combination of A and B, the combination of A and C, the combination of B and C, and the combination of A, B, and C.
  • parallel includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°;
  • perpendicular includes absolute perpendicularity and approximate perpendicularity, wherein the acceptable deviation range of approximate perpendicularity can also be, for example, a deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the acceptable deviation range of approximate equality can be, for example, the difference between the two equalities is less than or equal to 5% of either one.
  • Some embodiments of the present disclosure provide an air conditioner.
  • the air conditioner 1000 includes an indoor unit 10, an outdoor unit 20, and a pipeline 30.
  • the indoor unit 10 and the outdoor unit 20 are connected by the pipeline 30 to transmit the refrigerant.
  • the indoor unit 10 includes an indoor heat exchanger 400.
  • the outdoor unit 20 includes a compressor 201, a four-way valve 202, an outdoor heat exchanger 203, an outdoor fan 204, and an expansion valve 205.
  • the compressor 201, the outdoor heat exchanger 203, the expansion valve 205, and the indoor heat exchanger 400 connected in sequence form a refrigerant circuit, in which the refrigerant circulates and exchanges heat with the air through the outdoor heat exchanger 203 and the indoor heat exchanger 400, respectively, to realize the cooling mode or heating mode of the air conditioner 1000.
  • the compressor 201 is configured to compress the refrigerant so that the low-pressure refrigerant is compressed to form a high-pressure refrigerant.
  • the outdoor heat exchanger 203 is configured to perform heat exchange between outdoor air and the refrigerant transmitted in the outdoor heat exchanger 203.
  • the outdoor heat exchanger 203 works as a condenser in the cooling mode of the air conditioner 1000, so that the refrigerant compressed by the compressor 201 condenses by dissipating heat to the outdoor air through the outdoor heat exchanger 203.
  • the outdoor heat exchanger 203 works as an evaporator in the heating mode of the air conditioner 1000, so that the decompressed refrigerant absorbs the heat of the outdoor air through the outdoor heat exchanger 203 and evaporates.
  • the outdoor heat exchanger 203 further includes heat exchange fins to expand the contact area between the outdoor air and the refrigerant transmitted in the outdoor heat exchanger 203, thereby improving the heat exchange efficiency between the outdoor air and the refrigerant.
  • the outdoor fan 204 is configured to draw outdoor air into the outdoor unit 20 through the outdoor air inlet of the outdoor unit 20, and send the outdoor air after heat exchange with the outdoor heat exchanger 203 out through the outdoor air outlet of the outdoor unit 20.
  • the outdoor fan 204 provides power for the flow of outdoor air.
  • the expansion valve 205 is connected between the outdoor heat exchanger 203 and the indoor heat exchanger 400.
  • the pressure of the refrigerant flowing through the outdoor heat exchanger 203 and the indoor heat exchanger 400 is adjusted to adjust the flow rate of the refrigerant flowing between the outdoor heat exchanger 203 and the indoor heat exchanger 400.
  • the flow rate and pressure of the refrigerant flowing between the outdoor heat exchanger 203 and the indoor heat exchanger 400 will affect the heat exchange performance of the outdoor heat exchanger 203 and the indoor heat exchanger 400.
  • the expansion valve 205 can be an electronic valve.
  • the opening of the expansion valve 205 is adjustable to control the flow rate and pressure of the refrigerant flowing through the expansion valve 205.
  • the four-way valve 202 is connected to the refrigerant circuit, and is configured to switch the flow direction of the refrigerant in the refrigerant circuit so that the air conditioner 1000 performs a cooling mode or a heating mode.
  • the indoor heat exchanger 400 is configured to perform heat exchange between indoor air and the refrigerant transmitted in the indoor heat exchanger 400.
  • the indoor heat exchanger 400 operates as an evaporator in the cooling mode of the air conditioner 1000, so that the refrigerant after heat dissipation through the outdoor heat exchanger 203 absorbs the heat of the indoor air through the indoor heat exchanger 400 and evaporates.
  • the indoor heat exchanger 400 operates as a condenser in the heating mode of the air conditioner 1000, so that the refrigerant after heat absorption through the outdoor heat exchanger 203 dissipates the heat to the indoor air through the indoor heat exchanger 400 and condenses.
  • the indoor heat exchanger 400 further includes heat exchange fins to expand the contact area between the indoor air and the refrigerant transmitted in the indoor heat exchanger 400, thereby improving the heat exchange efficiency between the indoor air and the refrigerant.
  • the indoor unit 10 further includes an indoor fan 600, which is configured to draw indoor air into the indoor unit 10 through the indoor air inlet of the indoor unit 10, and send the indoor air after heat exchange with the indoor heat exchanger 400 through the indoor air outlet 120 of the indoor unit 10.
  • the indoor fan 600 provides power for the flow of indoor air.
  • the air conditioner 1000 further includes a substrate 200, which is configured to control and adjust the operating state of each component of the air conditioner 1000 to achieve various functions of the air conditioner 1000.
  • the substrate 200 controls the indoor air outlet temperature by adjusting the rotation speed of components such as the compressor 201, the outdoor fan 204, and the indoor fan 600.
  • the substrate 200 can also control the defrost cycle to timely remove frost accumulated on the surface of the evaporator (for example, when the air conditioner 1000 is in the heating mode, the outdoor heat exchanger 203 acts as the evaporator).
  • the air conditioner 1000 further includes a remote controller and a control panel.
  • the substrate 200 can also communicate with the remote controller to enable the user to remotely control the air conditioner 1000.
  • the substrate 200 can also display the status of the air conditioner 1000 on the display panel, such as the indoor temperature, the predetermined wind speed, etc.
  • the substrate 200 can also communicate with other electronic devices, such as thermostats and smart home systems.
  • the base plate 200 can also manage the power supply of the air conditioner 1000.
  • the base plate 200 adjusts the voltage and current provided to each component to ensure that each component can receive power within a preset range, thereby ensuring that each component can work efficiently and effectively.
  • the substrate 200 may be a printed circuit board (PCB).
  • the PCB includes an insulating material, such as fiberglass or plastic.
  • a conductive path is etched on the insulating material.
  • the substrate 200 controls and adjusts various functions of the air conditioner 1000 through the conductive path.
  • the substrate 200 adjusts the rotation speeds of the compressor 201 , the outdoor fan 204 , and the indoor fan 600 by adjusting the voltages provided to the compressor 201 , the outdoor fan 204 , and the indoor fan 600 , thereby adjusting the indoor air outlet temperature.
  • the base plate 200 of the air conditioner 1000 generates electromagnetic interference.
  • the electromagnetic interference generated by electronic products needs to meet relevant regulations or standards. Products that meet these regulations or standards can be called Electro Magnetic Compatibility (EMC).
  • EMC Electro Magnetic Compatibility
  • EMI testing includes: Radiated Emission testing, Conducted Emission testing, Harmonic testing, and Flicker testing.
  • the sources of electromagnetic interference include natural interference sources and man-made interference sources.
  • Natural interference sources include Noise generated by various phenomena, such as lightning, snow, rain, hail, sandstorm, etc.
  • sources of man-made interference such as various signal transmitters, oscillators, motors, and nuclear electromagnetic pulses generated by nuclear explosions.
  • Electromagnetic interference is divided into two types: conducted interference and radiated interference according to the coupling path.
  • Conducted interference is mainly caused by interference signals generated by electronic devices interfering with each other through conductive media or common power lines.
  • Radiated interference refers to the interference signals generated by electronic devices being transmitted to another electrical network or electronic device through spatial coupling.
  • the base plate of the central air conditioner in order to meet the requirements of electromagnetic compatibility, there are two main architectures for the base plate of the central air conditioner in the industry: the first is that there is no Y capacitor between the primary winding and the secondary winding in the transformer of the base plate 200. Although this architecture has strong anti-interference ability and isolation, it has a high electromagnetic compatibility cost. If the Y capacitor between the primary winding and the secondary winding is not added, a bulky filter device must be added to pass the electromagnetic compatibility test.
  • an electromagnetic compatibility component is provided on the substrate 200, and the circuit diagram of the electromagnetic compatibility component shown in FIG1C includes an interference source X, a Y capacitor Cy, a parasitic capacitor Cs, a sampling resistor Re, and a ground terminal GND.
  • the interference source X is connected in parallel with the Y capacitor Cy.
  • One end of the parasitic capacitor Cs is coupled to one end of the Y capacitor Cy, and the other end of the parasitic capacitor Cs is coupled to one end of the sampling resistor Re.
  • the other end of the sampling resistor Re is coupled to the other end of the Y capacitor Cy, and the other end of the sampling resistor Re is also coupled to the ground terminal GND.
  • the parasitic capacitor Cs includes a first sub-parasitic capacitor from the primary winding to the secondary winding, a second sub-parasitic capacitor from the primary winding to the ground terminal, and a third sub-parasitic capacitor from the secondary winding to the ground terminal.
  • the sum of the capacitance of the first sub-parasitic capacitor, the second sub-parasitic capacitor and the third sub-parasitic capacitor is also much smaller than the capacitance of the Y capacitor Cy.
  • This architecture has low electromagnetic compatibility cost, it has the following two problems: (1) Poor anti-interference performance. Primary surge voltage (i.e., instantaneous overvoltage exceeding the preset voltage, such as lightning strike) may cause damage to the pins of the main control chip. (2) Poor isolation. The secondary winding of the substrate 200 can measure a voltage of more than 100V to the ground, which is easy to be complained.
  • Primary surge voltage i.e., instantaneous overvoltage exceeding the preset voltage, such as lightning strike
  • the secondary winding of the substrate 200 can measure a voltage of more than 100V to the ground, which is easy to be complained.
  • the air conditioner 1000 further includes a substrate 200.
  • the substrate 200 includes an electromagnetic compatibility component 100.
  • the electromagnetic compatibility component 100 includes a transformer 1. By providing a first shielding winding and a second shielding winding in the transformer 1, the current generated by the substrate 200 to the earth is reduced. In this way, the electromagnetic interference generated by the substrate 200 is reduced.
  • Y capacitors are a type of safety capacitors that are configured to suppress common-mode interference. Y capacitors do not cause electric shock hazards after the capacitor fails.
  • Stray capacitance is a distributed capacitance between wires, between coils and housings, and between certain components. In addition to the capacitance between the plates, the sensor also has a capacitive connection between the plates and the surrounding body (various components and even the human body), which is also called stray capacitance. Stray capacitance not only changes the capacitance of the capacitive sensor, but also is extremely unstable because the capacitance of the sensor itself is very small, which also leads to unstable sensor characteristics and serious interference to the sensor.
  • Line Impedance Stabilization Network is an important auxiliary equipment in electromagnetic compatibility testing (for example, conducted interference testing) in power systems. LISN is set between the power grid and the equipment under test. LISN can isolate radio wave interference, provide stable test impedance for the equipment under test, and play a filtering role.
  • Figure 3 is a simplified circuit diagram of the linear impedance stabilization network 2, which includes a linear impedance stabilization network 2, an interference source X, a Y capacitor Cy, a total distributed capacitor Ca, and an earth terminal EARTH.
  • the linear impedance stabilization network 2 includes a first resistor R1 and a second resistor R2, the first resistor R1 is configured on the live wire L, and the second resistor R2 is configured on the neutral wire N.
  • the Y capacitor Cy is connected in parallel with the interference source X.
  • the live wire end and the neutral wire end of the linear impedance stabilization network 2 are respectively coupled to one end of the interference source X, and the other end of the interference source is coupled to one end of the total distributed capacitor Ca.
  • the other end of the total distributed capacitor Ca is coupled to the earth terminal EARTH, and one end of the linear impedance stabilization network 2 is coupled to the earth terminal EARTH.
  • the LISN 2 is configured to block external noise (e.g., The noise) enters the product (such as substrate 200) through the AC power line and is superimposed on the electromagnetic noise of the device, thereby interfering with the conducted emission test of the device.
  • the linear impedance stabilization network 2 is similar to the shielding room in the radiated emission test.
  • the linear impedance stabilization network 2 is further configured to ensure that the AC impedance of the electrical equipment seen from the AC power grid is the same. That is, within the entire test frequency, a stable and identical impedance (e.g., 50 ⁇ ) is provided from one site to another, between the phase line and the ground line of the product, and between the neutral line and the ground line. That is, the resistance values of the first resistor R1 and the second resistor R2 are both 50 ⁇ .
  • a stable and identical impedance e.g., 50 ⁇
  • Phase lines are configured to enable alternating current to have a power conversion function.
  • industrial electricity uses three-phase sinusoidal alternating current, and the conductors whose current phases differ by 120 degrees are called phase lines.
  • the role of the neutral line is to ensure that the voltages of each phase remain symmetrical when the load is asymmetrical, so as to ensure the reliable operation of the equipment. If any phase line is broken, it will only affect the load of this phase without affecting the loads of the other two phases.
  • the transformer 1 of the electromagnetic compatibility component 100 includes a magnetic core 12, a primary winding Np, and a secondary winding Ns.
  • the primary winding Np surrounds the magnetic core 12
  • the secondary winding Ns surrounds the magnetic core 12
  • the secondary winding Ns is located outside the primary winding Np.
  • the magnetic core 12 and the secondary winding Ns can be coupled to the earth terminal EARTH through coupling capacitors, respectively.
  • the electromagnetic interference generated by the transformer 1 can be reduced by reducing the first interference current Isg and the second interference current Icg.
  • the primary winding Np generates a first displacement current Iph1 to the first shielding winding Nc1, and the magnetic core 12 generates a second displacement current Ich1 to the first shielding winding Nc1. Since the first shielding winding Nc1 and the primary winding Np are wound in opposite ways, the first displacement current Iph1 and the second displacement current Ich1 have opposite directions.
  • the primary winding Np generates a third displacement current Iph2 for the second shielding winding Nc2, and the secondary winding Ns generates a fourth displacement current Ich2 for the second shielding winding Nc2.
  • the directions of the third displacement current Iph2 and the fourth displacement current Ich2 are opposite.
  • the displacement current (that is, the first interference current Isg) of the secondary winding Ns to the earth terminal EARTH is effectively reduced, and the electromagnetic interference generated by the secondary winding Ns is further reduced.
  • the displacement current (second interference current Icg) of the magnetic core 12 to the earth terminal EARTH is effectively reduced, and the electromagnetic interference generated by the magnetic core is further reduced.
  • the transformer 1 may only have a second shielding winding Nc2 added, in which case the secondary winding Ns is electrically isolated from the ground.
  • the first displacement current Iph1 and the second displacement current Ich1 may not be equal, and the third displacement current Iph2 and the fourth displacement current Ich2 may not be equal.
  • This setting is based on the consideration that if they are completely offset, the efficiency of the system will be low. Since the output power is certain, as long as the displacement current is generated, there will be losses, and the greater the displacement current, the greater the loss. Therefore, the displacement current may not be equal to the interference current, as long as the test requirements are met.
  • the first shielding winding Nc1 needs to be densely wound, and the second shielding winding Nc2 also needs to be densely wound. In some special cases, the first shielding winding Nc1 and the second shielding winding Nc2 need to be sparsely wound.
  • a wire spacing of ⁇ 1mm is considered dense winding
  • a wire spacing of >1mm is considered sparse winding
  • a first shielding winding Nc1 is provided between the magnetic core 12 and the primary winding Np, which can reduce the electromagnetic interference of the magnetic core 12 to the earth terminal EARTH.
  • a second shielding winding Nc2 is provided between the primary winding Np and the secondary winding Ns, which can reduce the electromagnetic interference of the primary winding Np to the secondary winding Ns, and further reduce the electromagnetic interference of the secondary winding Ns to the earth terminal EARTH.
  • the first shielding winding Nc1 and the second shielding winding Nc2 can respectively reduce the first interference current Isg and the second interference current Icg, thereby reducing the total interference current I sum and further reducing the electromagnetic interference generated by the transformer 1 .
  • the primary winding Np includes a first primary winding Np1 and a second primary winding Np2.
  • the first primary winding Np1 and the second primary winding Np2 are wound around the magnetic core 12, and the second primary winding Np2 is located outside the first primary winding Np1.
  • the first shielding winding Nc1 is located between the magnetic core 12 and the first primary winding Np1
  • the second shielding winding Nc2 is located between the second primary winding Np2 and the secondary winding Ns.
  • the first shielding winding Nc1 is wound in the opposite manner to the second primary winding Np2.
  • FIG5 is a circuit diagram of a winding with the same number of turns according to some embodiments.
  • the circuit diagram includes a primary winding Np, a secondary winding Ns, and a first coupling capacitor Cps.
  • the first coupling capacitor Cps is located between the primary winding Np and the secondary winding Ns, and the first coupling capacitor Cps is also a parasitic capacitance Cps of the primary winding Np of the transformer 1 to the secondary winding Ns.
  • the circuit diagram also includes a primary ground terminal GND1 and a secondary ground terminal GND2 , the primary winding Np is coupled to the primary ground terminal GND1 , and the secondary winding Ns is coupled to the secondary ground terminal GND2 .
  • Coupling capacitors also known as electric field coupling or electrostatic coupling, are a type of coupling due to the presence of distributed capacitance (i.e., parasitic capacitance). Coupling capacitors couple and isolate the strong current and weak current systems through capacitors, provide a high-frequency signal path, and prevent low-frequency current from entering the weak current system, thereby ensuring the reliability of the air conditioner 1000.
  • the primary winding Np and the secondary winding Ns have the same number of turns, for example, both are 100 turns.
  • the voltage of the primary winding Np rises from 0V to 100V
  • the voltage of the secondary winding Ns also rises from 0V to 100V. Since the voltages of the two windings are equal, no potential difference will be generated between the two windings, and no current will be generated. That is, the current Ips and the current Isp flowing through the first coupling capacitor Cps are 0. In other words, when the primary winding Np and the secondary winding Ns have the same number of turns, no displacement current is generated.
  • FIG. 6 is a circuit diagram of a winding with different numbers of turns according to some embodiments.
  • the circuit diagram includes a primary winding Np, a secondary winding Ns, a first coupling capacitor Cps, and a second coupling capacitor Csg.
  • the first coupling capacitor Cps is located between the primary winding Np and the secondary winding Ns, and the first coupling capacitor Cps is also the parasitic capacitance Cps of the primary winding Np of the transformer 1 to the secondary winding Ns.
  • the second coupling capacitor Csg is located between the secondary winding Ns and the earth terminal EARTH, and the second coupling capacitor Csg is also the parasitic capacitance Csg of the secondary winding Ns of the transformer 1 to the earth terminal EARTH.
  • the circuit diagram also includes a primary ground terminal GND1, a secondary ground terminal GND2 and an earth terminal EARTH.
  • the primary winding Np is coupled to the primary ground terminal GND1.
  • the secondary winding Ns is coupled to the secondary ground terminal GND2 and connected to the earth terminal EARTH through the second
  • the coupling capacitor Csg is coupled to the ground terminal EARTH.
  • the number of turns of the primary winding Np is 100, and the number of turns of the secondary winding Ns is 10.
  • the voltage of the primary winding Np rises from 0V to 100V, and the voltage of the secondary winding Ns rises from 0V to 10V. Since a potential difference is generated between the primary winding Np and the secondary winding Ns, a fifth displacement current Ips is also generated.
  • the fifth displacement current Ips will flow to the earth terminal EARTH through the parasitic capacitor Csg.
  • FIG. 7 is a circuit diagram of an auxiliary winding according to some embodiments.
  • the circuit diagram includes a primary winding Np, a secondary winding Ns, a first coupling capacitor Cps, a second coupling capacitor Csg, an auxiliary winding Nb, and a third coupling capacitor Cbs.
  • the first coupling capacitor Cps is also a parasitic capacitor Cps of the primary winding Np of the transformer 1 to the secondary winding Ns
  • the second coupling capacitor Csg is also a parasitic capacitor Csg of the secondary winding Ns of the transformer 1 to the earth terminal EARTH.
  • the third coupling capacitor Cbs is located between the auxiliary winding Nb and the secondary winding Ns, and the third coupling capacitor Cbs is also a parasitic capacitor Cbs of the auxiliary winding Nb of the transformer 1 to the secondary winding Ns.
  • the circuit diagram also includes a primary ground terminal GND1, a secondary ground terminal GND2 and an earth terminal EARTH.
  • the primary winding Np and the auxiliary winding Nb are coupled to the primary ground terminal GND1 respectively.
  • the secondary winding Ns is coupled to the secondary ground terminal GND2 and is coupled to the earth terminal EARTH through a second coupling capacitor Csg.
  • the number of turns of the primary winding Np is 100
  • the number of turns of the secondary winding Ns is 10
  • the number of turns of the auxiliary winding Nb is 9.
  • the voltage of the primary winding Np rises from 0V to 100V
  • the voltage of the secondary winding Ns rises from 0V to 10V
  • the voltage of the auxiliary winding Nb rises from 0V to 9V.
  • the potential difference between the primary winding Np and the secondary winding Ns generates a fifth displacement current Ips, which flows to the earth terminal EARTH through the parasitic capacitor Csg.
  • the displacement current flowing from the secondary winding Ns through the parasitic capacitor Csg to the earth terminal EARTH is Isg (that is, the first interference current Isg).
  • auxiliary winding Nb reduces the electromagnetic interference of the primary winding Np on the secondary winding Ns.
  • Figure 8 is a circuit diagram of a magnetic core 12 shielded from the ground according to some embodiments.
  • the circuit diagram includes a primary winding Np, a shielding winding Nc, a fourth coupling capacitor Cpc, a fifth coupling capacitor Ccg and a sixth coupling capacitor Ccc.
  • the fourth coupling capacitor Cpc is located between the primary winding Np and the magnetic core 12, and the fourth coupling capacitor Cpc is also the parasitic capacitance Cpc of the primary winding Np of the transformer 1 to the magnetic core 12.
  • the fifth coupling capacitor Ccg is located between the magnetic core 12 and the earth terminal EARTH, and the fifth coupling capacitor Ccg is also the parasitic capacitance Ccg of the magnetic core 12 of the transformer 1 to the earth terminal EARTH.
  • the sixth coupling capacitor Ccc is located between the shielding winding Nc and the magnetic core 12, and the sixth coupling capacitor Ccc is also the parasitic capacitance Ccc of the shielding winding Nc of the transformer 1 to the magnetic core 12.
  • the circuit diagram also includes a primary ground terminal GND1 and an earth terminal EARTH.
  • the primary winding Np and the shielding winding Nc are coupled to the primary ground terminal GND1 respectively, and the magnetic core 12 is coupled to the earth terminal EARTH through a fifth coupling capacitor Ccg.
  • the number of turns of the primary winding Np is 100
  • the number of turns of the shielding winding Nc is 25, and the magnetic core 12 can be regarded as having no coil.
  • the shielding winding Nc and the primary winding Np are wound in opposite ways, the number of turns of the shielding winding Nc can be regarded as -25.
  • the voltage of the primary winding Np rises from 0V to 100V
  • the voltage of the shielding winding Nc drops from 0V to -25V
  • the voltage of the magnetic core 12 can be regarded as 0V.
  • the potential difference between the primary winding Np and the magnetic core 12 generates the seventh displacement current Ipc, and the seventh displacement current Ipc>0A, and the seventh displacement current Ipc will flow to the earth terminal EARTH through the parasitic capacitor Ccg.
  • the displacement current flowing from the magnetic core 12 through the parasitic capacitor Ccg to the earth terminal EARTH is Icg.
  • the potential difference between the shielding winding Nc and the magnetic core 12 generates the eighth displacement current Icc.
  • the current direction of the eighth displacement current Icc is from the magnetic core 12 to the shielding winding Nc, that is, the eighth displacement current Icc ⁇ 0A.
  • the provision of the shielding winding Nc reduces the electromagnetic interference of the magnetic core 12 to the earth.
  • the transformer 1 can reduce the electromagnetic interference of the primary winding Np on the secondary winding Ns by adding the auxiliary winding Nb, and the transformer 1 can also reduce the electromagnetic interference of the magnetic core 12 on the earth by adding the shielding winding Nc.
  • the first shielding winding Nc1 in the circuit diagram of FIG. 4B is equivalent to the shielding winding Nc in FIG. 8
  • the second shielding winding Nc2 is equivalent to the auxiliary winding Nb in FIG. 7 .
  • the number of turns of the first shielding winding Nc1 is less than the number of turns of the primary winding Np.
  • the number of turns of the second shielding winding Nc2 is less than the number of turns of the secondary winding Ns, and the number of turns of the second shielding winding Nc2 is less than the number of turns of the first shielding winding Nc1.
  • the number of turns of the secondary winding Ns is less than the number of turns of the primary winding Np.
  • the number of turns of the first shielding winding Nc1 is less than 1/4 of the number of turns of the primary winding Np, and the number of turns of the second shielding winding Nc2 is 1/2 of the number of turns of the first shielding winding Nc1.
  • the number of turns of the primary winding Np is the sum of the number of turns of the first primary winding Np1 and the number of turns of the second primary winding Np2.
  • the number of turns of the first primary winding Np1 is 36
  • the number of turns of the second primary winding Np2 is 36
  • the number of turns of the secondary winding Ns is 12
  • the number of turns of the first shielding winding Nc1 is 14, and the number of turns of the second shielding winding Nc2 is 7.
  • the number of turns of the first shielding winding Nc1 is less than 1/4 of the number of turns of the primary winding Np
  • the number of turns of the second shielding winding Nc2 is 1/2 of the number of turns of the first shielding winding Nc1.
  • the voltage of the first primary winding Np1 rises from 0V to 36V
  • the voltage of the second primary winding Np2 rises from 0V to 36V
  • the voltage of the secondary winding Ns rises from 0V to 12V
  • the voltage of the first shielding winding Nc1 drops from 0V to -14V
  • the voltage of the second shielding winding Nc2 rises from 0V to 7V
  • the voltage of the magnetic core 12 can be regarded as 0V.
  • first primary winding Np1 generates a first displacement current Iph1 for the first shielding winding Nc1
  • the magnetic core 12 generates a second displacement current Ich1 for the first shielding winding Nc1
  • the directions of the first displacement current Iph1 and the second displacement current Ich1 are opposite.
  • the second primary winding Np2 generates a third displacement current Iph2 for the second shielding winding Nc2, and the secondary winding Ns generates a fourth displacement current Ich2 for the second shielding winding Nc2.
  • the directions of the third displacement current Iph2 and the fourth displacement current Ich2 are opposite.
  • the secondary winding Ns includes a first secondary winding Ns1 and a second secondary winding Ns2. It can be understood that providing multiple secondary windings can increase the isolation between the circuits of multiple electrical devices.
  • the transformer 1 includes a skeleton 11, PIN pins 13, a first shielding winding Nc1, a second shielding winding Nc2, a first primary winding Np1, a second primary winding Np2, a first secondary winding Ns1, a second secondary winding Ns2, an insulating tape and a retaining tape.
  • the skeleton 11 is configured to support the windings.
  • the windings include a first shielding winding Nc1, a second shielding winding Nc2, a first primary winding Np1, a second primary winding Np2, a first secondary winding Ns1 and a second secondary winding Ns2.
  • the PIN pins 13 and the frame 11 together form a complete bracket.
  • the input and output wires of the transformer 1 can be conveniently wound and welded on the PIN pins 13.
  • the thickness of the barrier tape on the side of each winding close to the PIN pin 13 is twice the thickness of the barrier tape on the side of each winding away from the PIN pin 13 .
  • a 6 mm retaining tape is provided on one side of each winding close to the PIN pin 13 (such as the left side), and a 3 mm retaining tape is provided on one side of each winding away from the PIN pin 13 (such as the right side).
  • two turns of insulating tape are wrapped between the first shielding winding Nc1 and the first primary winding Np1, one turn of insulating tape is wrapped between the first primary winding Np1 and the second primary winding Np2, one turn of insulating tape is wrapped between the second primary winding Np2 and the second shielding winding Nc2, three turns of insulating tape are wrapped between the second shielding winding Nc2 and the secondary winding Ns, one turn of insulating tape is wrapped between the first secondary winding Ns1 and the second secondary winding Ns2, and three turns of insulating tape are wrapped around the outermost part of the secondary winding Ns.
  • Ts in FIG. 9 represents the unit of revolutions, Truns.
  • the retaining wall tape is made of a polyester film composite non-woven fabric as a base material coated with an acrylic pressure-sensitive adhesive or a rubber plastic pressure-sensitive adhesive, and has pressure resistance, high temperature resistance, solvent resistance and the inherent bonding properties of pressure-sensitive adhesives.
  • the insulating tape is configured to prevent the edge of the transformer frame 11 from scratching the winding wire of the transformer 1.
  • the insulating tape is also configured to increase the winding density, enhance the stability of the winding, enhance the insulation strength between the windings, and enhance heat dissipation.
  • the electromagnetic compatibility component 100 further includes a first voltage terminal Vin, a second voltage terminal Vo, a primary ground terminal GND1, and a secondary ground terminal GND2.
  • the first end of the primary winding Np is coupled to the first voltage terminal Vin, and the second end of the primary winding Np is coupled to the primary ground terminal GND1.
  • the first end of the secondary winding Ns is coupled to the second voltage terminal Vo, and the second end of the secondary winding Ns is coupled to the secondary ground terminal GND2.
  • the electromagnetic compatibility component 100 further includes a Y capacitor Cy and a linear impedance stabilization network 2 , wherein the Y capacitor Cy is located between the primary ground terminal GND1 and the secondary ground terminal GND2 .
  • the linear impedance stabilization network 2 includes a first stabilization capacitor C1, a second stabilization capacitor C2, a third stabilization capacitor C3, a fourth stabilization capacitor C4, a first inductor L1, a second inductor L2, a first resistor R1, a second resistor R2 and an earth terminal EARTH.
  • the first end of the first stabilizing capacitor C1 is coupled to the first inductor L1
  • the second end of the first stabilizing capacitor C1 is coupled to the first end of the third stabilizing capacitor C3
  • the first end of the second stabilizing capacitor C2 is coupled to the second end of the first inductor L1
  • the second end of the second stabilizing capacitor C2 is coupled to the first end of the first resistor R1
  • the second end of the first resistor R1 is coupled to the first end of the second resistor R2
  • the second end of the second resistor R2 is coupled to the first end of the fourth stabilizing capacitor C4
  • the second end of the third stabilizing capacitor C3 is coupled to the first end of the second inductor L2
  • the second end of the fourth stabilizing capacitor C4 is coupled to the second end of the second inductor L2.
  • a second end of the first stabilizing capacitor C1 is coupled to the ground terminal EARTH, and a second end of the first resistor R1 is coupled to the ground terminal EARTH.
  • first stabilizing capacitor C1 the first inductor L1 , the second stabilizing capacitor C2 , the first resistor R1 , the second resistor R2 , the fourth stabilizing capacitor C4 , the second inductor L2 , and the third stabilizing capacitor C3 are coupled in sequence.
  • first resistor R1 and the second resistor R2 are both electromagnetic compatibility sampling resistors Re.
  • the first resistor R1 and the second resistor R2 are connected in parallel, and the resistance of the first resistor R1 and the second resistor R2 are both 50 ⁇ . Therefore, the common mode interference voltage Vcm of the transformer 1 is 25 ⁇ (Icg+Isg).
  • the electromagnetic compatibility component 100 further includes a rectifier circuit 3.
  • the rectifier circuit 3 includes four identical diodes D. A first end of the rectifier circuit 3 is coupled to a first end of the second stabilizing capacitor C2, a second end of the rectifier circuit 3 is coupled to a first end of the primary winding Np, a third end of the rectifier circuit 3 is coupled to a second end of the fourth stabilizing capacitor C4, and a fourth end of the rectifier circuit 3 is coupled to the primary ground terminal GND1.
  • the rectifier circuit 3 is configured to convert alternating current into direct current.
  • the transformer 1 further includes a diode D1 and a first electrolytic capacitor Cin1.
  • the positive terminal of the diode D1 is coupled to the first end of the secondary winding Ns
  • the negative terminal of the diode D1 is coupled to the second voltage terminal Vo
  • the negative terminal of the diode D1 is coupled to the positive terminal of the first electrolytic capacitor Cin1
  • the negative terminal of the first electrolytic capacitor Cin1 is coupled to the second end of the secondary winding Ns.
  • the electromagnetic compatibility component 100 further includes a second electrolytic capacitor Cin2.
  • a first end of the second electrolytic capacitor Cin2 is coupled to a first end of the primary winding Np, and a second end of the second electrolytic capacitor Cin2 is coupled to the primary ground terminal GND1.
  • the electromagnetic compatibility component 100 further includes a switch transistor Q.
  • a first electrode of the switch transistor Q is coupled to the primary winding Np, and a second electrode of the switch transistor Q is coupled to the primary ground terminal GND1.
  • the air conditioner 1000 will also generate electromagnetic interference during the switching process.
  • the provision of the diode D1 and the switching transistor Q can reduce the electromagnetic interference generated by the air conditioner 1000 during the switching process.
  • an EMC test is performed on the substrate 200 by a receiver or a spectrum analyzer.
  • the peak value (Peak, PK), the quasi-peak value (Quasi-Peak, QP), and the average value (Average, AV) refer to the values measured by the peak detector, the quasi-peak detector, and the average value detector in the receiver or the spectrum analyzer in the EMC test, respectively.
  • the peak value indicates the maximum value of the interference signal being measured.
  • the charging time constant of the peak detector is much smaller than the discharging time constant.
  • the quasi-peak value indicates the energy of the interference signal being measured, and the quasi-peak value is positively correlated with the pulse amplitude and repetition frequency of the interference signal.
  • the charging and discharging time constant of the quasi-peak detector is between the peak detector and the average detector.
  • the average detector is characterized by the same charging and discharging time constant, which is suitable for measuring continuous waves.
  • the relationship between the peak value, quasi-peak value and average value is PK ⁇ QP ⁇ AV.
  • the higher the repetition frequency of the interference signal the closer the quasi-peak value is to the peak value. If the input signal of the receiver is a sine wave, the three are equal.
  • a product may include continuous waves, pulse waves and random waves. These three detectors used in EMC testing can fully measure interference signals.
  • EN55022-MsinTermB QP is a limit value of the QP value specified in an EMC standard
  • EN55022-MsinTermB AV is a limit value of the AV value specified in an EMC standard. If the waveform of the electromagnetic compatibility test is above the above limit value waveform, or coincides with the waveform of the limit value, the test fails. If the waveform of the electromagnetic compatibility test is below the above limit value waveform, the test is successful.
  • the waveforms of the QP value and the AV value are respectively below the corresponding limit value waveforms, and the test is successful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filters And Equalizers (AREA)
  • Power Conversion In General (AREA)

Abstract

一种空调器,所述空调器包括室内机和室外机。所述室内机包括电磁兼容组件。所述电磁兼容组件包括变压器。所述变压器包括磁芯、初级绕组以及次级绕组。所述初级绕组和所述次级绕组依次环绕在磁芯周围。其中,所述变压器还包括:第一屏蔽绕组和第二屏蔽绕组。所述第一屏蔽绕组位于所述磁芯和所述初级绕组之间,所述第二屏蔽绕组位于所述初级绕组和所述次级绕组之间,且所述第一屏蔽绕组和所述初级绕组的绕法相反。

Description

空调器
本申请要求于2023年01月16日提交的、申请号为202310073550.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及家用电器技术领域,尤其涉及一种空调器。
背景技术
目前中央空调的基板为了满足电磁兼容性的要求,主要有2种架构:第一种架构是初级绕组和次级绕组没有Y电容,这种架构抗干扰能力强。第二种架构是初级绕组和次级绕组有Y电容,这种架构成本低。
发明内容
提供一种空调器,包括室外机、室内机。所述室内机与所述室外机相连。所述室内机包括电磁兼容组件。所述电磁兼容组件包括变压器。所述变压器包括磁芯、初级绕组和次级绕组。所述初级绕组环绕在所述磁芯上。所述次级绕组环绕在所述磁芯周围,且所述次级绕组位于所述初级绕组外围。所述变压器还包括以下至少之一:第一屏蔽绕组,或,第二屏蔽绕组。所述第一屏蔽绕组位于所述磁芯和所述初级绕组之间。所述第二屏蔽绕组位于所述初级绕组和所述次级绕组之间,所述第一屏蔽绕组和所述初级绕组的绕法相反。其中,所述初级绕组对所述第一屏蔽绕组产生第一位移电流,所述磁芯对所述第一屏蔽绕组产生第二位移电流,所述第一位移电流和所述第二位移电流的方向相反。所述初级绕组对所述第二屏蔽绕组产生第三位移电流,所述次级绕组对所述第二屏蔽绕组产生第四位移电流,所述第三位移电流和所述第四位移电流的方向相反。
附图说明
图1A为根据一些实施例的一种空调器的结构图;
图1B为根据一些实施例的一种空调器的框图;
图1C为根据一些实施例的一种简化的电磁兼容组件的电路图;
图2为根据一些实施例的一种空调器的系统的框图;
图3为根据一些实施例的一种简化的线性阻抗稳定网络的电路图;
图4A为根据一些实施例的一种变压器的电路图;
图4B为根据一些实施例的另一种变压器的电路图;
图5为根据一些实施例的一种绕组同圈数的电路图;
图6为根据一些实施例的一种绕组不同圈数的电路图;
图7为根据一些实施例的一种辅助绕组(相当于第二屏蔽绕组)的电路图;
图8为根据一些实施例的一种磁芯对地屏蔽的电路图;
图9为根据一些实施例的一种变压器的结构图;
图10为根据一些实施例的一种电磁兼容组件的电路图;
图11A为根据一些实施例的一种包括电磁兼容组件的基板的电磁兼容测试图;和
图11B为根据一些实施例的一种不包括电磁兼容组件的基板的电磁兼容测试图。
具体实施方式
下面将结合附图,对本公开一些实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、 材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
本公开一些实施例提供了一种空调器。
如图1A和图1B所示,空调器1000包括室内机10、室外机20以及管路30。室内机10和室外机20通过管路30连接以传输冷媒。室内机10包括室内换热器400。室外机20包括压缩机201、四通阀202、室外换热器203、室外风扇204和膨胀阀205。依序连接的压缩机201、室外换热器203、膨胀阀205和室内换热器400形成冷媒回路,冷媒在所述冷媒回路中循环流动,通过室外换热器203与室内换热器400分别与空气进行换热,以实现空调器1000的制冷模式或制热模式。
压缩机201被配置为压缩冷媒以使得低压冷媒受压缩形成高压冷媒。
室外换热器203被配置为将室外空气与在室外换热器203中传输的冷媒进行热交换。例如,室外换热器203在空调器1000的制冷模式下作为冷凝器进行工作,使得由压缩机201压缩的冷媒通过室外换热器203将热量散发至室外空气而冷凝。室外换热器203在空调器1000的制热模式下作为蒸发器进行工作,使得减压后的冷媒通过室外换热器203吸收室外空气的热量而蒸发。
在一些实施例中,室外换热器203还包括换热翅片,以扩大室外空气与室外换热器203中传输的冷媒之间的接触面积,从而提高室外空气与冷媒之间的热交换效率。
室外风扇204被配置为将室外空气经室外机20的室外进风口吸入至室外机20内,并将与室外换热器203换热后的室外空气经由室外机20的室外出风口送出。室外风扇204为室外空气的流动提供动力。
膨胀阀205连接于室外换热器203与室内换热器400之间,由膨胀阀205的开度大小 调节流经室外换热器203和室内换热器400的冷媒压力,以调节流通于室外换热器203和室内换热器400之间的冷媒流量。流通于室外换热器203和室内换热器400之间的冷媒的流量和压力将影响室外换热器203和室内换热器400的换热性能。膨胀阀205可以是电子阀。膨胀阀205的开度是可调节的,以控制流经膨胀阀205的冷媒的流量和压力。
四通阀202连接于所述冷媒回路内,四通阀202被配置为切换冷媒在冷媒回路中的流向以使空调器1000执行制冷模式或制热模式。
室内换热器400被配置为将室内空气与在室内换热器400中传输的冷媒进行热交换。例如,室内换热器400在空调器1000的制冷模式下作为蒸发器进行工作,使得经由室外换热器203散热后的冷媒通过室内换热器400吸收室内空气的热量而蒸发。室内换热器400在空调器1000的制热模式下作为冷凝器进行工作,使得经由室外换热器203吸热后的冷媒通过室内换热器400将热量散发至室内空气而冷凝。
在一些实施例中,室内换热器400还包括换热翅片,以扩大室内空气与室内换热器400中传输的冷媒之间的接触面积,从而提高室内空气与冷媒之间的热交换效率。
如图1A和图1B所示,室内机10还包括室内风扇600,室内风扇600被配置为将室内空气经室内机10的室内进风口吸入至室内机10内,并将与室内换热器400换热后的室内空气经由室内机10的室内出风口120送出。室内风扇600为室内空气的流动提供动力。
在一些实施例中,参照图2,空调器1000还包括基板200,基板200被配置为控制和调节空调器1000的各个部件的运行状态,以实现空调器1000的各个功能。例如,基板200通过调节压缩机201、室外风扇204、室内风扇600等部件的转速,来控制室内的出风温度。基板200还可以控制除霜周期,以及时去除积聚在蒸发器(例如,空调器1000在制热模式下,室外换热器203作为蒸发器)的表面的霜。
在一些实施例中,空调器1000还包括遥控器以及控制面板。基板200还可以与遥控器通信,以实现用户对空调器1000的远程控制。基板200还可以在显示面板上显示空调器1000的状态,例如室内温度、预定风速等。当然,基板200还可以与其他电子设备通信,例如恒温器和智能家居系统等。
在一些实施例中,基板200还可以管理空调器1000的电源,基板200调节提供给各个部件的电压和电流,以确保各个部件能够接收到预设范围内的电量,以此来确保各个部件能够高效且有效地工作。
基板200可以为印制电路板(Printed-Circuit Board,PCB)。PCB包括绝缘材料,例如玻璃纤维或塑料。绝缘材料上蚀刻有导电通路。基板200通过所述导电通路控制和调节空调器1000的各种功能。
例如,基板200通过调节提供给压缩机201、室外风扇204、室内风扇600的电压,来调节压缩机201、室外风扇204和室内风扇600的转速,进而调节室内的出风温度。
通常,空调器1000的基板200会产生电磁干扰。为了防止一些电子产品产生的电磁干扰影响或破坏另外的电子设备的工作,电子产品产生的电磁干扰需要满足有关规章或标准。符合这些规章或标准的产品就可称为具有电磁兼容性(Electro Magnetic Compatibility,EMC)。
可以理解的是,电磁兼容性,是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。电磁兼容性测试包括电磁干扰(Electro Magnetic Interference,EMI)测试以及电磁敏感度(Electromagnetic Susceptibility)测试两个方面。即EMC=EMI+EMS。
EMI测试包括:辐射发射(Radiated Emission)测试、传导发射(Conducted Emission)测试、谐波(Harmonic)测试以及闪烁(Flicker)测试等。
EMS测试包括:辐射抗干扰度(Radiated Susceptibility,RS)测试、传导抗干扰度(Conducted Susceptibility,CS)测试、静电放电(Electrostatic Discharge,ESD)抗干扰度测试、电快速瞬变脉冲群(Electrical Fast Transient/Burst,EFT/B)抗扰性测试、浪涌(Surge)抗扰度测试等。
产生电磁干扰的干扰源包括自然干扰源和人为干扰源。自然干扰源包括大气中发生的 各种现象,如雷电、风雪、暴雨、冰雹、沙暴等产生的噪声。人为干扰源是多种多样的,如各种信号发射机、振荡器、电动机以及由核爆炸产生的核电磁脉冲等。
电磁干扰根据耦合途径分为传导干扰和辐射干扰两种。传导干扰主要是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰。辐射干扰是指电子设备产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备。
如背景技术所述,目前业界中央空调的基板为了满足电磁兼容性的要求,主要有两种架构:第一种是基板200的变压器中的初级绕组和次级绕组之间没有Y电容。这种架构虽然抗干扰能力强、隔离性强,但是电磁兼容性成本高。如果不加上初级绕组和次级绕组之间的Y电容,就得加上笨重的滤波器件,才能使电磁兼容性测试合格。
第二种是基板200的变压器中的初级绕组和次级绕组之间设置有Y电容。在一些实施例中,如图1C所示,基板200上设置有电磁兼容组件,图1C所示的电磁兼容组件的电路图包括干扰源X、Y电容Cy、寄生电容器Cs、采样电阻Re和接地端GND。干扰源X与Y电容Cy并联。寄生电容器Cs的一端与Y电容Cy的一端耦接,寄生电容器Cs的另一端与采样电阻Re的一端耦接。采样电阻Re的另一端与Y电容Cy的另一端耦接,采样电阻Re的所述另一端还与接地端GND耦接。
寄生电容器Cs包括初级绕组到次级绕组的第一子寄生电容器、初级绕组对接地端的第二子寄生电容器,以及次级绕组对接地端的第三子寄生电容器。第一子寄生电容器、第二子寄生电容器以及第三子寄生电容器的容值加起来也远远小于Y电容Cy的容值。
在干扰源X一定的前提下,Y电容Cy的容值越小,采样电阻Re上的电流就会越小,基板200的电磁兼容性就会越好。
需要说明的是,这种架构虽然电磁兼容性成本低,但是存在以下两个问题:(1)抗干扰性差,初级浪涌电压(即超出预设电压的瞬间过电压,如雷击)可能造成主控芯片的管脚损坏。(2)隔离性差,基板200的次级绕组对大地,可测得100V以上的电压,易被投诉。
为解决上述问题,本公开一些实施例提供了一种空调器1000。如图2所示,空调器1000还包括基板200。基板200包括电磁兼容组件100。电磁兼容组件100包括变压器1。通过在变压器1中设置第一屏蔽绕组以及第二屏蔽绕组,来减小基板200对大地产生的电流。以此,来降低基板200产生的电磁干扰。
为了便于理解,首先对本公开一些实施例涉及到的一些术语或技术的基本概念进行简单的介绍和说明。
Y电容,是安规电容(Safety capacitor)的一种类型,被配置为抑制共模干扰。Y电容在电容器失效后,不会引起电击危险。
寄生电容(stray capacitance),是一种分布在导线之间、线圈与机壳之间以及某些元件之间的分布电容。并且传感器除有极板间电容外,极板与周围体(各种元件甚至人体)也产生电容联系,这种电容也被称为寄生电容。寄生电容不但改变了电容传感器的电容量,而且由于传感器本身电容量很小,寄生电容极不稳定,这也导致传感器特性不稳定,对传感器产生严重干扰。
线性阻抗稳定网络(Line Impedance Stabilization Network,LISN),是电力系统中电磁兼容测试(例如,传导干扰测试)中的一项重要辅助设备。LISN设置于电网与受试设备之间。LISN可以隔离电波干扰,为受试设备提供稳定的测试阻抗,并起到滤波的作用。如图3所示,图3为线性阻抗稳定网络2的简化电路图,该电路图中包括线性阻抗稳定网络2、干扰源X、Y电容Cy、总分布电容Ca和大地端EARTH。线性阻抗稳定网络2包括第一电阻R1和第二电阻R2,上述第一电阻R1被配置在火线L上,第二电阻R2被配置在零线N上。
Y电容Cy与干扰源X并联。上述线性阻抗稳定网络2的火线端以及零线端分别与干扰源X的一端耦接,干扰源的另一端与总分布电容Ca的一端耦接。总分布电容Ca的另一端与大地端EARTH耦接,线性阻抗稳定网络2的一端与大地端EARTH耦接。
在一些实施例中,线性阻抗稳定网络2被配置为阻止外部噪声(例如公共交流电网中 的噪声)通过交流电源线进入产品(例如基板200),并叠加到设备的电磁噪声上,从而干扰对设备的传导发射测试。线性阻抗稳定网络2类似于辐射发射测试中的屏蔽室。
在一些实施例中,线性阻抗稳定网络2还被配置为确保从交流电网看进去的用电设备交流阻抗相同。也即,在整个测试频率内,提供从一个场地到另一个场地,产品的相线和地线之间,以及中线和地线之间稳定的相同的阻抗(例如50Ω)。即上述第一电阻R1和第二电阻R2的阻值都为50Ω。
相线被配置为使交流电具有动力转换功能。例如工业用电采用三相正弦交流电,且电流相位相互相差120度的导线被称为相线。
中线的作用在于当负载不对称时,保证各相电压仍然对称,以保证设备的可靠工作。如果存在任一相线发生断路,也只影响本相负载,而不影响另外两相负载。
如图4A所示,电磁兼容组件100的变压器1包括磁芯12、初级绕组Np和次级绕组Ns。初级绕组Np环绕在磁芯12上,次级绕组Ns环绕在磁芯12周围,且次级绕组Ns位于初级绕组Np外围。并且,磁芯12以及次级绕组Ns可以分别通过耦合电容与大地端EARTH耦接。
在这种情况下,变压器1的干扰电流包括次级绕组Ns对大地端EARTH的第一干扰电流Isg,和磁芯12对大地端EARTH的第二干扰电流Icg。也就是说,总干扰电流Isum为第一干扰电流Isg和第二干扰电流Icg之和,即Isum=Isg+Icg。
可以理解的是,由于总干扰电流Isum越小,变压器1产生的电磁干扰就越小。因此,可以通过降低第一干扰电流Isg以及第二干扰电流Icg,来降低变压器1产生的电磁干扰。
如图4B所示,图4B为根据一些实施例的另一种变压器1的电路图。变压器1包括磁芯12、初级绕组Np和次级绕组Ns。与图4A相比,图4B中的变压器1还包括:第一屏蔽绕组Nc1和第二屏蔽绕组Nc2。第一屏蔽绕组Nc1位于磁芯12和初级绕组Np之间,第二屏蔽绕组Nc2位于初级绕组Np和次级绕组Ns之间。第一屏蔽绕组Nc1和初级绕组Np的绕法相反。
初级绕组Np对第一屏蔽绕组Nc1产生第一位移电流Iph1,磁芯12对第一屏蔽绕组Nc1产生第二位移电流Ich1。由于第一屏蔽绕组Nc1和初级绕组Np的绕法相反,因此第一位移电流Iph1和第二位移电流Ich1的方向相反。
初级绕组Np对第二屏蔽绕组Nc2产生第三位移电流Iph2,次级绕组Ns对第二屏蔽绕组Nc2产生第四位移电流Ich2,第三位移电流Iph2和第四位移电流Ich2的方向相反。
如图4B所示,在变压器1增加上述第一屏蔽绕组Nc1和第二屏蔽绕组Nc2的情况下,上述第一干扰电流Isg会被第四位移电流Ich2抵消一部分,上述第二干扰电流Icg会被第二位移电流Ich1抵消一部分,即Isg=Iph2-Ich2,Icg=Iph1-Ich1。
也就是说,此时次级绕组Ns对大地端EARTH的第一干扰电流Isg=Iph2-Ich2,远远小于原来没有第二屏蔽绕组Nc2的情况下的第一干扰电流Isg,也即第三位移电流Iph2。以此,有效地减小了次级绕组Ns对大地端EARTH的位移电流(即第一干扰电流Isg),进一步降低了次级绕组Ns产生的电磁干扰。
磁芯12对大地端EARTH的第二干扰电流Icg=Iph1-Ich1,远远小于原来没有第一屏蔽绕组Nc1的情况下的第二干扰电流Icg,也即第一位移电流Iph1。以此,有效地减小了磁芯12对大地端EARTH的位移电流(第二干扰电流Icg),进一步降低了磁芯产生的电磁干扰。
综上,参照图4B,Isum=Isg+Icg=(Iph2-Ich2)+(Iph1-Ich1)。由于减小了Isum,因此也降低了变压器1整体产生的电磁干扰。
在一些实施例中,变压器1可以只增加第一屏蔽绕组Nc1,此时磁芯12对大地端EARTH的位移电流为Icg=Iph1-Ich1,远远小于原来没有第一屏蔽绕组Nc1的位移电流Iph1。这样,减小了磁芯12对大地端EARTH的位移电流,以及磁芯12产生的电磁干扰。此时,Isum=Isg+Icg=Isg+Iph1-Ich1。由于减小了Isum,因此该实施例也能够降低变压器1整体产生的电磁干扰。
在一些实施例中,变压器1可以只增加第二屏蔽绕组Nc2,此时次级绕组Ns对大地 端EARTH的位移电流为Isg=Iph2-Ich2,远远小于原来没有第二屏蔽绕组Nc2的位移电流Iph2。这样,减小了初级绕组Np对次级绕组Ns以及对地的位移电流,降低了电磁干扰。此时,Isum=Isg+Icg=Iph2-Ich2+Icg。由于减小了Isum,因此该实施例也能够降低变压器1整体产生的电磁干扰。
需要说明的是,在一些实施例中,上述第一位移电流Iph1和第二位移电流Ich1可以不相等,第三位移电流Iph2和第四位移电流Ich2可以不相等。这样设置是考虑到若是完全抵消的话,系统的效率会低。由于输出功率是一定的,只要产生位移电流,就会有损耗,且位移电流越大,损耗就越大。因此位移电流可以不等于干扰电流,满足测试要求即可。
在一些实施例中,上述第一屏蔽绕组Nc1要密绕,第二屏蔽绕组Nc2也要密绕。而在一些特殊情况下,上述第一屏蔽绕组Nc1和第二屏蔽绕组Nc2则需要疏绕。
例如,导线间隔≤1mm为密绕,导线间隔>1mm为疏绕。
本公开一些实施例中在磁芯12和初级绕组Np之间设置第一屏蔽绕组Nc1,能够降低磁芯12对大地端EARTH的电磁干扰。在初级绕组Np和次级绕组Ns之间设置第二屏蔽绕组Nc2,能够降低初级绕组Np对次级绕组Ns的电磁干扰,并进一步降低次级绕组Ns对大地端EARTH的电磁干扰。
也即,第一屏蔽绕组Nc1以及第二屏蔽绕组Nc2可以分别降低第一干扰电流Isg以及第二干扰电流Icg,从而降低总干扰电流Isum,并进一步减小变压器1产生的电磁干扰。
在一些实施例中,如图4B所示,初级绕组Np包括第一初级绕组Np1和第二初级绕组Np2。第一初级绕组Np1和第二初级绕组Np2环绕在磁芯12周围,且第二初级绕组Np2位于第一初级绕组Np1外围。第一屏蔽绕组Nc1位于磁芯12和第一初级绕组Np1之间,第二屏蔽绕组Nc2位于第二初级绕组Np2和次级绕组Ns之间。例如,第一屏蔽绕组Nc1与第二初级绕组Np2的绕法相反。
需要说明的是,图4B至图8中各绕组端部的实心圆形符号“●”为各绕组的同名端标记。
以下详细介绍变压器1中各绕组之间的工作过程。
如图5所示,图5为根据一些实施例的一种绕组同圈数的电路图。该电路图中包括初级绕组Np、次级绕组Ns、以及第一耦合电容Cps。第一耦合电容Cps位于初级绕组Np和次级绕组Ns之间,并且第一耦合电容Cps也是变压器1初级绕组Np对次级绕组Ns的寄生电容Cps。
该电路图中还包括初级接地端GND1以及次级接地端GND2,初级绕组Np与初级接地端GND1耦接,次级绕组Ns与次级接地端GND2耦接。
可以理解的是,初级接地端GND1接地,次级接地端GND2不接地。耦合电容,又称电场耦合或静电耦合,是由于分布电容(即寄生电容)的存在而产生的一种耦合方式。耦合电容器是使得强电和弱电两个系统通过电容器耦合并隔离,提供高频信号通路,阻止低频电流进入弱电系统,从而保证空调器1000的可靠性。
在一些实施例中,初级绕组Np和次级绕组Ns的线圈匝数相同,例如,都为100圈。在变压器1工作过程中,初级绕组Np的电压从0V上升到100V,次级绕组Ns的电压也从0V上升到100V。由于两个绕组的电压相等,因此两个绕组之间不会产生电势差,同样也不会产生电流。即流过第一耦合电容Cps的电流Ips和电流Isp为0。也就是说,在初级绕组Np和次级绕组Ns的线圈匝数相同的情况下,没有位移电流产生。
如图6所示,图6为根据一些实施例的一种绕组不同圈数的电路图。该电路图中包括初级绕组Np、次级绕组Ns、第一耦合电容Cps以及第二耦合电容Csg。第一耦合电容Cps位于初级绕组Np和次级绕组Ns之间,并且第一耦合电容Cps也是变压器1的初级绕组Np对次级绕组Ns的寄生电容Cps。第二耦合电容Csg位于次级绕组Ns和大地端EARTH之间,并且第二耦合电容Csg也是变压器1的次级绕组Ns对大地端EARTH的寄生电容Csg。
该电路图中还包括初级接地端GND1、次级接地端GND2以及大地端EARTH。初级绕组Np与初级接地端GND1耦接。次级绕组Ns与次级接地端GND2耦接,并通过第二 耦合电容Csg与大地端EARTH耦接。
在一些实施例中,初级绕组Np的线圈匝数为100圈,次级绕组Ns的线圈匝数为10圈。在变压器1的工作过程中,初级绕组Np的电压从0V上升到100V,次级绕组Ns的电压从0V上升到10V。由于初级绕组Np和次级绕组Ns之间产生了电势差,因此也产生了第五位移电流Ips。该第五位移电流Ips会经过寄生电容Csg流向大地端EARTH。从次级绕组Ns经过寄生电容Csg流向大地端EARTH的位移电流即第一干扰电流Isg,且Isg=Ips>0A。
如图7所示,图7为根据一些实施例的一种辅助绕组的电路图。该电路图中包括初级绕组Np、次级绕组Ns、第一耦合电容Cps、第二耦合电容Csg、辅助绕组Nb以及第三耦合电容Cbs。第一耦合电容Cps也是变压器1的初级绕组Np对次级绕组Ns的寄生电容Cps,第二耦合电容Csg也是变压器1的次级绕组Ns对大地端EARTH的寄生电容Csg。第三耦合电容Cbs位于辅助绕组Nb和次级绕组Ns之间,并且第三耦合电容Cbs也是变压器1的辅助绕组Nb对次级绕组Ns的寄生电容Cbs。
该电路图中还包括初级接地端GND1、次级接地端GND2以及大地端EARTH。初级绕组Np、以及辅助绕组Nb分别与初级接地端GND1耦接。次级绕组Ns与次级接地端GND2耦接,并通过第二耦合电容Csg与大地端EARTH耦接。
在一些实施例中,初级绕组Np的线圈匝数为100圈,次级绕组Ns的线圈匝数为10圈,辅助绕组Nb的线圈匝数为9圈。在变压器1工作过程中,初级绕组Np的电压从0V上升到100V,次级绕组Ns的电压从0V上升到10V,辅助绕组Nb的电压从0V上升到9V。初级绕组Np和次级绕组Ns的电势差产生了第五位移电流Ips,该第五位移电流Ips会经过寄生电容Csg流向大地端EARTH。从次级绕组Ns经过寄生电容Csg流向大地端EARTH的位移电流为Isg(也即第一干扰电流Isg)。
由于辅助绕组Nb的电压比次级绕组Ns的电压低,因此辅助绕组Nb和次级绕组Ns之间产生了电势差,以及从次级绕组Ns流向辅助绕组Nb的第六位移电流Ibs,且第六位移电流Ibs与上述第五位移电流Ips流向相反,即Ibs<0A,Ips>0A。若Ips=-Ibs,则Isg=0A,此时初级绕组Np对次级绕组Ns的干扰为0。
可以理解的是,辅助绕组Nb的设置,降低了初级绕组Np对次级绕组Ns的电磁干扰。
如图8所示,图8为根据一些实施例的一种磁芯12对地屏蔽的电路图。该电路图中包括初级绕组Np、屏蔽绕组Nc、第四耦合电容Cpc、第五耦合电容Ccg以及第六耦合电容Ccc。第四耦合电容Cpc位于初级绕组Np和磁芯12之间,并且第四耦合电容Cpc也是变压器1的初级绕组Np对磁芯12的寄生电容Cpc。第五耦合电容Ccg位于磁芯12和大地端EARTH之间,并且第五耦合电容Ccg也是变压器1磁芯12对大地端EARTH的寄生电容Ccg。第六耦合电容Ccc位于屏蔽绕组Nc和磁芯12之间,并且第六耦合电容Ccc也是变压器1的屏蔽绕组Nc对磁芯12的寄生电容Ccc。
该电路图中还包括初级接地端GND1以及大地端EARTH。初级绕组Np、以及屏蔽绕组Nc分别与初级接地端GND1耦接,磁芯12通过第五耦合电容Ccg与大地端EARTH耦接。
在一些实施例中,初级绕组Np的线圈匝数为100圈,屏蔽绕组Nc的线圈匝数为25圈,磁芯12可视为没有线圈。并且由于屏蔽绕组Nc和初级绕组Np的绕法相反,因此屏蔽绕组Nc的线圈匝数可视为-25圈。
在变压器1的工作过程中,初级绕组Np的电压从0V上升到100V,屏蔽绕组Nc的电压从0V下降到-25V,磁芯12的电压可视为0V。初级绕组Np和磁芯12之间的电势差产生了第七位移电流Ipc,且第七位移电流Ipc>0A,该第七位移电流Ipc会经过寄生电容Ccg流向大地端EARTH。从磁芯12经过寄生电容Ccg流向大地端EARTH的位移电流为Icg。屏蔽绕组Nc和磁芯12的电势差产生了第八位移电流Icc。由于屏蔽绕组Nc的电压为-25V,磁芯12的电压为0V,因此第八位移电流Icc的电流方向为从磁芯12到屏蔽绕组Nc,即第八位移电流Icc<0A。
若Icg=Ipc+Icc=0A,即Ipc=-Icc,则此时磁芯12对大地端EARTH的位移电流为零, 也就是说,此时磁芯12对大地的干扰为零。
可以理解的是,屏蔽绕组Nc的设置,降低了磁芯12对大地的电磁干扰。
需要说明的是,上述图5至图8中的上半部分是指绕组的圈数。
综上所述,变压器1可以通过增加辅助绕组Nb来减小初级绕组Np对次级绕组Ns的电磁干扰,变压器1也可以通过增加屏蔽绕组Nc来减小磁芯12对大地的电磁干扰。
需要说明的是,正如图4B所示,图4B的电路图中的第一屏蔽绕组Nc1相当于上述图8的屏蔽绕组Nc,第二屏蔽绕组Nc2相当于上述图7的辅助绕组Nb。
需要说明的是,第一屏蔽绕组Nc1的圈数少于初级绕组Np的圈数。第二屏蔽绕组Nc2的圈数少于次级绕组Ns的圈数,且第二屏蔽绕组Nc2的圈数少于第一屏蔽绕组Nc1的圈数。也就是说,次级绕组Ns的圈数少于初级绕组Np的圈数。
在一些实施例中,第一屏蔽绕组Nc1的圈数少于初级绕组Np的圈数的1/4,第二屏蔽绕组Nc2的圈数为第一屏蔽绕组Nc1的圈数的1/2。
需要说明的是,在初级绕组Np包括第一初级绕组Np1和第二初级绕组Np2的情况下,初级绕组Np的圈数为第一初级绕组Np1的圈数以及第二初级绕组Np2的圈数之和。
如图4B所示,第一初级绕组Np1的圈数为36圈,第二初级绕组Np2的圈数为36圈,次级绕组Ns的圈数为12圈,第一屏蔽绕组Nc1的圈数为14圈,第二屏蔽绕组Nc2的圈数为7圈。以此,满足上述第一屏蔽绕组Nc1的圈数少于初级绕组Np的圈数的1/4,第二屏蔽绕组Nc2的圈数为第一屏蔽绕组Nc1的圈数的1/2。
在变压器1工作过程中,第一初级绕组Np1的电压从0V上升到36V,第二初级绕组Np2的电压从0V上升到36V,次级绕组Ns的电压从0V上升到12V,第一屏蔽绕组Nc1的电压从0V下降到-14V,第二屏蔽绕组Nc2的电压从0V上升到7V,磁芯12的电压可视为0V。
可以理解的是,第一初级绕组Np1对第一屏蔽绕组Nc1产生第一位移电流Iph1,磁芯12对第一屏蔽绕组Nc1产生第二位移电流Ich1,第一位移电流Iph1和第二位移电流Ich1的方向相反。
第二初级绕组Np2对第二屏蔽绕组Nc2产生第三位移电流Iph2,次级绕组Ns对第二屏蔽绕组Nc2产生第四位移电流Ich2,第三位移电流Iph2和第四位移电流Ich2的方向相反。
如图9所示,在一些实施例中,次级绕组Ns包括第一次级绕组Ns1和第二次级绕组Ns2。可以理解的是,设置多个次级绕组,可以增加多个用电器件的电路之间的隔离。
在一些实施例中,变压器1包括骨架11、PIN针脚13、第一屏蔽绕组Nc1、第二屏蔽绕组Nc2、第一初级绕组Np1、第二初级绕组Np2、第一次级绕组Ns1、第二次级绕组Ns2、绝缘胶带和挡墙胶带。骨架11被配置为支撑所述各绕组。
需要说明的是,所述各绕组包括第一屏蔽绕组Nc1、第二屏蔽绕组Nc2、第一初级绕组Np1、第二初级绕组Np2、第一次级绕组Ns1以及第二次级绕组Ns2。PIN针脚13与骨架11共同形成了一个完整的支架。变压器1各出入线可以方便地缠焊在PIN针脚13上。
在一些实施例中,各绕组的靠近PIN针脚13的一侧的挡墙胶带的厚度,为各绕组的远离PIN针脚13的一侧的挡墙胶带的厚度的两倍。
如图9所示,各绕组的靠近PIN针脚13的一侧(如左侧)设置有6毫米的挡墙胶带,各绕组的远离PIN针脚13的一侧(如右侧)设置有3毫米的挡墙胶带。
可以理解的是,将靠近PIN针脚13的一侧的挡墙胶带的厚度设置为远离PIN针脚13的一侧的挡墙胶带的厚度的两倍,能够减小变压器1各出入线的电流对变压器1内部各绕组的影响。
在一些实施例中,第一屏蔽绕组Nc1和第一初级绕组Np1之间缠绕了两圈绝缘胶带,第一初级绕组Np1和第二初级绕组Np2之间缠绕了一圈绝缘胶带,第二初级绕组Np2和第二屏蔽绕组Nc2之间缠绕了一圈绝缘胶带,第二屏蔽绕组Nc2和次级绕组Ns之间缠绕了三圈绝缘胶带,第一次级绕组Ns1和第二次级绕组Ns2之间缠绕了一圈绝缘胶带,在次级绕组Ns最外围缠绕了三圈绝缘胶带。
需要说明的是,图9中的Ts表示圈数单位Truns。
在一些实施例中,所述挡墙胶带以聚酯薄膜复合无纺布为基材涂布丙烯酸压敏胶或橡胶塑压敏胶而成,具有耐压、耐高温、耐溶剂及压敏胶固有的粘接特性。
在一些实施例中,所述绝缘胶带被配置为防止变压器1的骨架11包边划伤变压器1的绕组导线。并且,绝缘胶带还被配置为增加绕线密度、增强绕组的稳固性、增强绕组间的绝缘强度、加强散热。
如图10所示,电磁兼容组件100还包括第一电压端Vin、第二电压端Vo、初级接地端GND1和次级接地端GND2。初级绕组Np的第一端和第一电压端Vin耦接,初级绕组Np的第二端与初级接地端GND1耦接。次级绕组Ns的第一端与第二电压端Vo耦接,次级绕组Ns的第二端与次级接地端GND2耦接。
在一些实施例中,电磁兼容组件100还包括Y电容Cy和线性阻抗稳定网络2,Y电容Cy位于初级接地端GND1和次级接地端GND2之间。
线性阻抗稳定网络2包括第一稳定电容器C1、第二稳定电容器C2、第三稳定电容器C3、第四稳定电容器C4、第一电感L1、第二电感L2、第一电阻R1、第二电阻R2和大地端EARTH。
第一稳定电容器C1的第一端与第一电感L1耦接,第一稳定电容器C1的第二端与第三稳定电容器C3的第一端耦接,第二稳定电容器C2的第一端与第一电感L1的第二端耦接,第二稳定电容器C2的第二端与第一电阻R1的第一端耦接,第一电阻R1的第二端与第二电阻R2的第一端耦接,第二电阻R2的第二端与第四稳定电容器C4的第一端耦接,第三稳定电容器C3的第二端与第二电感L2的第一端耦接,第四稳定电容器C4的第二端与第二电感L2的第二端耦接。
并且,第一稳定电容器C1的第二端与大地端EARTH耦接,第一电阻R1的第二端与大地端EARTH耦接。
也即,第一稳定电容器C1、第一电感L1、第二稳定电容器C2、第一电阻R1、第二电阻R2、第四稳定电容器C4、第二电感L2、第三稳定电容器C3依次耦接。
需要说明的是,上述第一电阻R1和第二电阻R2均为电磁兼容采样电阻Re。第一电阻R1和第二电阻R2并联,且第一电阻R1和第二电阻R2的阻值都为50Ω。由此,变压器1的共模干扰电压Vcm=25×(Icg+Isg)。
在一些实施例中,电磁兼容组件100还包括整流电路3。整流电路3包括四个相同的二极管D。整流电路3的第一端与第二稳定电容器C2的第一端耦接,整流电路3的第二端与初级绕组Np的第一端耦接,整流电路3的第三端与第四稳定电容器C4的第二端耦接,整流电路3的第四端与初级接地端GND1耦接。
在一些实施例中,整流电路3被配置为将交流电转换为直流电。
如图10所示,变压器1还包括二极管D1和第一电解电容Cin1。二极管D1的正极端与次级绕组Ns的第一端耦接,二极管D1的负极端与第二电压端Vo耦接,二极管D1的负极端与第一电解电容Cin1的正极端耦接,第一电解电容Cin1的负极端与次级绕组Ns的第二端耦接。
在一些实施例中,电磁兼容组件100还包括第二电解电容Cin2。第二电解电容Cin2的第一端与初级绕组Np的第一端耦接,第二电解电容Cin2的第二端与初级接地端GND1耦接。
在一些实施例中,电磁兼容组件100还包括开关晶体管Q。开关晶体管Q的第一极与初级绕组Np耦接,开关晶体管Q的第二极与初级接地端GND1耦接。
可以理解的是,空调器1000在开关过程中也会产生电磁干扰,设置二极管D1和开关晶体管Q能够降低空调器1000在开关过程中产生的电磁干扰。
在一些实施例中,通过接收机或者频谱分析仪对基板200进行EMC测试。如图11A和图11B所示,峰值(Peak,PK)、准峰值(Quasi-Peak,QP)、平均值(Average,AV)分别是指EMC测试中的接收机或者频谱分析仪里面的峰值检波器、准峰值检波器和平均值检波器测量到的数值。
峰值表示所测量的干扰信号的最大值。峰值检波器的充电时间常数远远小与放电时间常数。准峰值表示所测量的干扰信号的能量大小,且准峰值与干扰信号的脉冲幅度及重复频率呈正相关。准峰值检波器的充放电时间常数位于峰值检波器以及平均值检波器之间。平均值检波器的特点是充放电时间常数相同,适用于对连续波的测量。
需要说明的是,峰值、准峰值和平均值的关系为PK≥QP≥AV。并且,干扰信号的重复频率越高,准峰值越接近峰值。若接收机的输入信号为正弦波,则三者相等。
可以理解的是,一个产品上可能包括连续波、脉冲波和随机波,EMC测试用到的这三种检波器,能够充分地对干扰信号进行测量。
如图11A和图11B所示,EN55022-MsinTermB QP为一种EMC标准所规定的的QP值的限定值,EN55022-MsinTermB AV为一种EMC标准所规定的的AV值的限定值。若电磁兼容测试的波形在上述限定值波形之上,或者与限定值的波形重合,则此时测试失败。若电磁兼容的波形在上述限定值波形之下,则此时测试成功。
如图11B所示,在基板200上未设置电磁兼容组件100的情况下,基板200的测试报告波形图中,QP值以及AV值的部分波形在对应的限定值波形之上,此时测试失败。
如图11A所示,在基板200上设置有电磁兼容组件100的情况下,基板200的测试报告波形图中,QP值以及AV值的波形分别在对应的限定值波形之下,此时测试成功。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (13)

  1. 一种空调器,包括:
    室内机;以及
    室外机,与所述室内机相连;
    基板,所述基板包括电磁兼容组件;所述电磁兼容组件包括变压器;
    所述变压器包括:
    磁芯;
    初级绕组,环绕在所述磁芯上;和
    次级绕组,环绕在所述磁芯的周围,且所述次级绕组位于所述初级绕组外围;
    所述变压器还包括:
    第一屏蔽绕组,位于所述磁芯和所述初级绕组之间;和
    第二屏蔽绕组,位于所述初级绕组和所述次级绕组之间;所述第一屏蔽绕组与所述初级绕组的绕法相反;
    其中,所述初级绕组对所述第一屏蔽绕组产生第一位移电流,所述磁芯对所述第一屏蔽绕组产生第二位移电流;所述第一位移电流和所述第二位移电流的方向相反;
    所述初级绕组对所述第二屏蔽绕组产生第三位移电流,所述次级绕组对所述第二屏蔽绕组产生第四位移电流;所述第三位移电流和所述第四位移电流的方向相反。
  2. 根据权利要求1所述的空调器,其中,
    所述第一屏蔽绕组的圈数少于所述初级绕组的圈数;
    所述第二屏蔽绕组的圈数少于所述第一屏蔽绕组的圈数。
  3. 根据权利要求2所述的空调器,其中,
    所述第一屏蔽绕组的圈数少于所述初级绕组的圈数的1/4;
    所述第二屏蔽绕组的圈数为第一屏蔽绕组的圈数的1/2。
  4. 根据权利要求1至3中任一项所述的空调器,其中,所述初级绕组包括:
    第一初级绕组,环绕在所述磁芯周围;和
    第二初级绕组,位于所述第一初级绕组外围;
    其中,所述第一屏蔽绕组位于所述磁芯和所述第一初级绕组之间,所述第二屏蔽绕组位于所述第二初级绕组和所述次级绕组之间。
  5. 根据权利要求4所述的空调器,其中,所述电磁兼容组件还包括:
    第一电压端,所述第一电压端与所述初级绕组的第一端耦接,
    初级接地端,所述初级接地端与所述初级绕组的第二端耦接;
    第二电压端,所述第二电压端与所述次级绕组的第一端耦接;以及
    次级接地端,所述次级接地端与所述次级绕组的第二端耦接。
  6. 根据权利要求5所述的空调器,其中,所述电磁兼容组件还包括Y电容,所述Y电容位于所述初级接地端和所述次级接地端之间。
  7. 根据权利要求6所述的空调器,其中,所述电磁兼容组件还包括:
    第一稳定电容器;
    第一电感,所述第一电感的第一端与所述第一稳定电容器的第一端耦接;
    第二稳定电容器,所述第二稳定电容器的第一端与所述第一电感的第二端耦接;
    第一电阻,所述第一电阻的第一端与所述第二稳定电容器的第二端耦接;
    第二电阻,所述第二电阻的第一端与所述第一电阻的第二端耦接;
    第四稳定电容器,所述第四稳定电容器的第一端与所述第二电阻的第二端耦接;
    第二电感,所述第二电感的第二端与所述第四稳定电容器的第二端耦接;
    第三稳定电容器,所述第三稳定电容器的第一端与所述第一稳定电容器的第二端耦接,所述第三稳定电容器的第二端与所述第二电感的第一端耦接;以及
    接地端,所述第一稳定电容器的第二端以及所述第一电阻的第二端分别与所述接地端耦接。
  8. 根据权利要求7所述的空调器,其中,所述电磁兼容组件还包括整流电路,所述整流电路被配置为将交流电转换为直流电;
    所述整流电路的第一端与所述第二稳定电容器的第一端耦接,所述整流电路的第二端与所述初级绕组的第一端耦接,所述整流电路的第三端与所述第四稳定电容器的第二端耦接,所述整流电路的第四端与所述初级接地端耦接。
  9. 根据权利要求8所述的空调器,其中,所述整流电路包括四个相同的二极管。
  10. 根据权利要求8或9所述的空调器,其中,所述变压器还包括:
    二极管,所述二极管的正极端与所述次级绕组的第一端耦接,所述二极管的负极端与所述第二电压端耦接;以及
    第一电解电容,所述二极管的负极端与所述第一电解电容的正极端耦接,所述第一电解电容的负极端与所述次级绕组的第二端耦接;
    所述电磁兼容组件还包括第二电解电容,所述第二电解电容的第一端与所述初级绕组的第一端耦接,所述第二电解电容的第二端与所述初级接地端耦接。
  11. 根据权利要求10所述的空调器,其中,所述电磁兼容组件还包括:开关晶体管,所述开关晶体管的第一极与所述初级绕组耦接,所述开关晶体管的第二极与所述初级接地端耦接。
  12. 根据权利要求4至10中任一项所述的空调器,其中,所述变压器还包括:
    骨架,所述第一屏蔽绕组、所述第一初级绕组、所述第二初级绕组、所述第二屏蔽绕组、所述次级绕组分别设置于所述骨架内;所述骨架被配置为支撑所述各绕组;
    针脚,设置于所述骨架的一侧,且被配置为焊接所述变压器内部的出入线;以及
    挡墙胶带,设置于所述各绕组与所述骨架之间;
    其中,所述各绕组的靠近所述针脚的一侧的挡墙胶带的厚度为所述各绕组的远离所述针脚的一侧的挡墙胶带的厚度的两倍。
  13. 根据权利要求12所述的空调器,其中,所述次级绕组包括:
    第一次级绕组;以及
    第二次级绕组;
    所述变压器还包括绝缘胶带,所述绝缘胶带设置于所述各绕组之间;
    其中,所述第一屏蔽绕组与所述第一初级绕组之间的绝缘胶带为两圈;
    所述第一初级绕组与所述第二初级绕组之间的绝缘胶带为一圈;
    所述第二初级绕组与所述第二屏蔽绕组之间的绝缘胶带为一圈;
    所述第二屏蔽绕组与所述次级绕组之间的绝缘胶带为三圈;
    所述第一次级绕组与所述第二次级绕组之间的绝缘胶带为一圈;所述次级绕组的最外围的绝缘胶带为三圈。
PCT/CN2024/070220 2023-01-16 2024-01-02 空调器 WO2024152894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310073550.5 2023-01-16
CN202310073550.5A CN116007167A (zh) 2023-01-16 2023-01-16 一种空调

Publications (1)

Publication Number Publication Date
WO2024152894A1 true WO2024152894A1 (zh) 2024-07-25

Family

ID=86021068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/070220 WO2024152894A1 (zh) 2023-01-16 2024-01-02 空调器

Country Status (2)

Country Link
CN (1) CN116007167A (zh)
WO (1) WO2024152894A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116007167A (zh) * 2023-01-16 2023-04-25 青岛海信日立空调系统有限公司 一种空调

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117657A (ja) * 1986-11-05 1988-05-21 Fuji Electric Co Ltd 半導体素子の駆動回路
CN102163492A (zh) * 2010-12-31 2011-08-24 崧顺电子(深圳)有限公司 一种无y电容的变压器及其制备方法
CN103093936A (zh) * 2011-11-02 2013-05-08 施耐德电器工业公司 变压器及其绕制方法
CN204167063U (zh) * 2014-10-08 2015-02-18 深圳市航嘉驰源电气股份有限公司 一种低共模噪声的变压器及充电器
CN206432896U (zh) * 2015-12-08 2017-08-22 电力集成公司 功率转换器与在功率转换器中使用的能量传输元件电路
CN109920633A (zh) * 2019-03-21 2019-06-21 惠州市纬特科技有限公司 减小电磁干扰的变压器
CN113258789A (zh) * 2021-06-28 2021-08-13 珠海拓芯科技有限公司 开关电源电路及电子设备
CN116007167A (zh) * 2023-01-16 2023-04-25 青岛海信日立空调系统有限公司 一种空调

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281149A (ja) * 1996-04-18 1997-10-31 Yazaki Corp センサ用磁気トランス
CN103474210A (zh) * 2013-08-27 2013-12-25 崧顺电子(深圳)有限公司 抗共模干扰的变压器
CN108122667A (zh) * 2017-12-05 2018-06-05 华为数字技术(苏州)有限公司 变压器及电源装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117657A (ja) * 1986-11-05 1988-05-21 Fuji Electric Co Ltd 半導体素子の駆動回路
CN102163492A (zh) * 2010-12-31 2011-08-24 崧顺电子(深圳)有限公司 一种无y电容的变压器及其制备方法
CN103093936A (zh) * 2011-11-02 2013-05-08 施耐德电器工业公司 变压器及其绕制方法
CN204167063U (zh) * 2014-10-08 2015-02-18 深圳市航嘉驰源电气股份有限公司 一种低共模噪声的变压器及充电器
CN206432896U (zh) * 2015-12-08 2017-08-22 电力集成公司 功率转换器与在功率转换器中使用的能量传输元件电路
CN109920633A (zh) * 2019-03-21 2019-06-21 惠州市纬特科技有限公司 减小电磁干扰的变压器
CN113258789A (zh) * 2021-06-28 2021-08-13 珠海拓芯科技有限公司 开关电源电路及电子设备
CN116007167A (zh) * 2023-01-16 2023-04-25 青岛海信日立空调系统有限公司 一种空调

Also Published As

Publication number Publication date
CN116007167A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
US20190025363A1 (en) Indicating circuit for switching power supply and use method thereof
WO2024152894A1 (zh) 空调器
CN100521855C (zh) 一种双重屏蔽抑制电磁干扰的电子镇流器
CN104270002B (zh) Pwm功率变换器传导电磁干扰无源抑制方法
CN201315484Y (zh) 浪涌电压抑制电路及具有所述电路的空调器
CN202077249U (zh) 一种抗电磁干扰及保护器
CN204333946U (zh) 一种变频空调
US20120014144A1 (en) Power supplying apparatus
WO2021147587A1 (zh) 用于三相空调系统的浪涌吸收电路
JPWO2020174563A1 (ja) 空気調和機
TW201308845A (zh) 一種電源供應器之共模雷擊抑制電路
WO2020151437A1 (zh) 电控组件及电器设备
CN205792213U (zh) 一种抗瞬态高电压的涡轮流量转换器
Wan et al. Limitations in applying the existing LISN topologies for low frequency conducted emission measurements and possible solution
Kasthala et al. Design and Development of Protective Coupling Interface for Characterizing the Residential Broadband PLC Channel
CN205753397U (zh) 一种以太网口防护滤波设计电路
Buzdugan et al. Power Quality versus Electromagnetic Compatibility in Adjustable Speed Drives
Forti et al. Power-line impedance and the origin of the low-frequency oscillatory transients
CN107147093A (zh) 应用于大功率电源适配器中的抗雷击电路及该电源适配器
CN107515357A (zh) 一种适用于mmc换流阀的交直流耐压试验系统
CN203396941U (zh) 用于电能表电快速瞬变脉冲群检测中的反馈干扰滤波网络
CN207336589U (zh) 一种应用于电磁兼容试验中的滤波装置
CN208921802U (zh) 击穿保险器测量系统及击穿保险器测量仪
CN108919020B (zh) 击穿保险器测量系统及击穿保险器测量仪
CN220964328U (zh) 浪涌抑制电路及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24744070

Country of ref document: EP

Kind code of ref document: A1