[go: up one dir, main page]

WO2024151089A1 - Optical system and camera module - Google Patents

Optical system and camera module Download PDF

Info

Publication number
WO2024151089A1
WO2024151089A1 PCT/KR2024/000510 KR2024000510W WO2024151089A1 WO 2024151089 A1 WO2024151089 A1 WO 2024151089A1 KR 2024000510 W KR2024000510 W KR 2024000510W WO 2024151089 A1 WO2024151089 A1 WO 2024151089A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lenses
optical system
optical axis
refractive power
Prior art date
Application number
PCT/KR2024/000510
Other languages
French (fr)
Korean (ko)
Inventor
심주용
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230051653A external-priority patent/KR20240112722A/en
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2024151089A1 publication Critical patent/WO2024151089A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms

Definitions

  • the present invention relates to an optical system for improved optical performance and a camera module including the same.
  • ADAS Advanced Driving Assistance System
  • ADAS Advanced Driving Assistance System
  • ADAS sensor devices detect vehicles in front and recognize lanes. Afterwards, when the target lane, target speed, and target ahead are determined, the vehicle's ESC (Electrical Stability Control), EMS (Engine Management System), and MDPS (Motor Driven Power Steering) are controlled.
  • ESC Electronic Stability Control
  • EMS Engine Management System
  • MDPS Microtor Driven Power Steering
  • ADAS can be implemented as an automatic parking system, a low-speed city driving assistance system, and a blind spot warning system.
  • Sensor devices for detecting the situation ahead in ADAS include GPS sensors, laser scanners, front radar, and Lidar, and the most representative ones are cameras for photographing the front, rear, and sides of the vehicle.
  • the camera can be placed outside or inside a vehicle to detect the surrounding conditions of the vehicle. Additionally, the camera may be placed inside the vehicle to detect the situation of the driver and passengers. For example, the camera can photograph the driver from a location adjacent to the driver and detect the driver's health status, drowsiness, drinking, etc. In addition, the camera can photograph the passenger at a location adjacent to the passenger, detect whether the passenger is sleeping, state of health, etc., and provide information about the passenger to the driver.
  • the imaging lens that forms the image.
  • interest in high performance such as high image quality and high resolution
  • research is being conducted on optical systems that include multiple lenses to realize this.
  • the characteristics of the optical system change when the camera is exposed to harsh environments, such as high temperature, low temperature, moisture, high humidity, etc., outside or inside the vehicle.
  • the camera has a problem in that it is difficult to uniformly derive excellent optical and aberration characteristics.
  • the embodiment seeks to provide an optical system and camera module with improved optical characteristics.
  • the embodiment seeks to provide an optical system and a camera module with excellent optical performance in low to high temperature environments.
  • Embodiments seek to provide an optical system and a camera module that can prevent or minimize changes in optical properties in various temperature ranges.
  • the optical system includes first to seventh lenses arranged along the optical axis, the first lens has a negative refractive power, and the second lens has negative (-) refractive power, the third lens has positive (+) refractive power, the fourth lens has positive (+) refractive power, and the fifth lens has negative (-) refractive power.
  • the sixth lens has positive (+) refractive power
  • the seventh lens has negative (-) refractive power
  • an aperture is disposed between the second lens and the third lens
  • the third lens may have the greatest thickness.
  • At least one of the first lens and the third lens may be made of glass, and at least one of the second lens and the fourth to seventh lenses may be made of plastic.
  • the sixth lens On the optical axis, the sixth lens may have a convex shape on both sides, and on the optical axis, the seventh lens may have a meniscus shape that is convex toward the object.
  • the absolute value of the focal length of the first lens may be the largest.
  • the maximum value of the distance between two lenses with the largest Abbe number difference among adjacent lenses may be smaller than the maximum value of the distance between two other adjacent lenses.
  • the fourth lens and the fifth lens may have the largest Abbe number difference among adjacent lenses.
  • TTL is the distance on the optical axis from the vertex of the object side of the first lens to the upper surface of the image sensor
  • ImgH is 1/ of the maximum diagonal length of the image sensor. It is 2.
  • the optical system includes first to seventh lenses disposed along the optical axis, the second lens has negative refractive power, and the third lens has positive (+) refractive power, the fourth lens has positive (+) refractive power, the fifth lens has negative (-) refractive power, and the sixth lens has positive (+) refractive power.
  • the seventh lens has a negative refractive power
  • the effective diameter of the second lens is the smallest among the first to seventh lenses
  • the effective diameter of the fourth lens is the smallest among the first to seventh lenses. It can be big.
  • the distance between the first lens and the second lens may be the largest.
  • An aperture is disposed between the second lens and the third lens, and includes a first lens group disposed on an object side with respect to the aperture and a second lens group disposed on a sensor side with respect to the aperture,
  • the sign of the composite focal length of the first lens group and the sign of the composite focal length of the second lens group may be different from each other.
  • At least one of the lenses disposed on the object side and the sensor side of the aperture may be made of glass.
  • the absolute value of the focal length of the first lens may be the largest.
  • the optical system and camera module according to the embodiment may have improved optical characteristics.
  • a plurality of lenses may have a set thickness, refractive power, and distance from adjacent lenses. Accordingly, the optical system and camera module according to the embodiment can have improved MTF characteristics, aberration control characteristics, resolution characteristics, etc. in a set angle of view range, and can have good optical performance in the periphery of the angle of view.
  • the optical system and camera module according to the embodiment may have good optical performance in a low to high temperature range (-40°C to 105°C).
  • a plurality of lenses included in the optical system may have set materials, refractive powers, and refractive indices. Accordingly, when the refractive index of each lens changes due to temperature change and the focal length of each lens changes due to this, mutual compensation can be made by the plastic lens and the glass lens. That is, the optical system can effectively distribute refractive power in a temperature range from low to high temperatures, and prevent or minimize changes in optical properties in the temperature range from low to high temperatures. Therefore, the optical system and camera module according to the embodiment can maintain improved optical properties in various temperature ranges.
  • the optical system and camera module according to the embodiment can satisfy the angle of view set through a mixture of a plastic lens and a glass lens and implement excellent optical characteristics. Because of this, the optical system can provide a slimmer vehicle camera module. Accordingly, the optical system and camera module can be provided for various applications and devices, and can have excellent optical properties even in harsh temperature environments, for example, when exposed to the exterior of a vehicle or inside a vehicle at high temperatures in the summer.
  • FIG. 1 is a side cross-sectional view of an optical system and a camera module having the same according to a first embodiment.
  • FIG. 2 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 1.
  • Figure 3 is a table showing the thickness of each lens and the spacing between adjacent lenses in the optical system of Figure 1.
  • FIG. 4 is a table showing Sag values of lens surfaces of the first to seventh lenses in the optical system of FIG. 1.
  • FIG. 5 is a table showing slope angle values of lens surfaces of the first to seventh lenses in the optical system of FIG. 1.
  • FIG. 6 is a graph showing data on the diffraction MTF (Modulation Transfer Function) of the optical system of FIG. 1 at room temperature.
  • MTF Modulation Transfer Function
  • FIG. 8 is a graph showing data on the diffraction MTF of the optical system of FIG. 1 at low temperature.
  • FIG. 9 is a graph showing data on aberration characteristics of the optical system of FIG. 1 at low temperature.
  • FIG. 10 is a graph showing data on the diffraction MTF of the optical system of FIG. 1 at high temperature.
  • FIG. 11 is a graph showing data on aberration characteristics of the optical system of FIG. 1 at high temperature.
  • FIG. 12 is a graph showing the peripheral light ratio of the optical system of FIG. 1.
  • Figure 13 is a side cross-sectional view of an optical system and a camera module having the same according to the second embodiment.
  • FIG. 14 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 13.
  • FIG. 16 is a table showing Sag values of lens surfaces of the first to seventh lenses in the optical system of FIG. 13.
  • FIG. 17 is a table showing the slope angles of the lens surfaces of the first to seventh lenses in the optical system of FIG. 13.
  • FIG. 18 is a graph showing data on the diffraction MTF (Modulation Transfer Function) of the optical system of FIG. 13 at room temperature.
  • MTF Modulation Transfer Function
  • FIG. 19 is a graph showing data on aberration characteristics of the optical system of FIG. 13 at room temperature.
  • FIG. 20 is a graph showing data on the diffraction MTF of the optical system of FIG. 13 at low temperature.
  • FIG. 21 is a graph showing data on aberration characteristics of the optical system of FIG. 13 at low temperature.
  • FIG. 22 is a graph showing data on diffraction MTF at high temperature of the optical system of FIG. 13.
  • FIG. 23 is a graph showing data on aberration characteristics of the optical system of FIG. 13 at high temperature.
  • Figure 24 is a graph showing the peripheral light ratio of the optical system of Figure 13.
  • Figure 25 is a side cross-sectional view of an optical system and a camera module having the same according to the third embodiment.
  • FIG. 26 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 25.
  • FIG. 27 is a table showing the thickness of each lens and the gap between adjacent lenses in the optical system of FIG. 25.
  • FIG. 28 is a table showing Sag values of lens surfaces of the first to seventh lenses in the optical system of FIG. 25.
  • Figure 29 is a table showing the slope angles of the lens surfaces of the first to seventh lenses in the optical system of Figure 25.
  • FIG. 30 is a graph showing data on the diffraction MTF of the optical system of FIG. 25 at room temperature.
  • Figure 31 is a graph showing data on aberration characteristics of the optical system of Figure 25 at room temperature.
  • FIG. 32 is a graph showing data on the diffraction MTF (Modulation Transfer Function) at low temperature of the optical system of FIG. 25.
  • Figure 33 is a graph showing data on the aberration characteristics of the optical system of Figure 25 at low temperature.
  • Figure 34 is a graph showing data on diffraction MTF at high temperature of the optical system of Figure 25.
  • Figure 35 is a graph showing data on the aberration characteristics of the optical system of Figure 25 at high temperature.
  • Figure 36 is a graph showing the peripheral light ratio of the optical system of Figure 25.
  • Figure 37 is a side cross-sectional view of an optical system and a camera module having the same according to the fourth embodiment.
  • Figure 38 is a table showing the aspheric coefficients of lenses in the optical system of Figure 37.
  • Figure 39 is a table showing the thickness of each lens and the gap between adjacent lenses in the optical system of Figure 37.
  • Figure 40 is a table showing Sag values of lens surfaces of the first to seventh lenses in the optical system of Figure 37.
  • Figure 41 is a table showing the slope angles of the lens surfaces of the first to seventh lenses in the optical system of Figure 37.
  • Figure 42 is a graph showing data on the diffraction MTF (Modulation Transfer Function) of the optical system of Figure 37 at room temperature.
  • Figure 43 is a graph showing data on aberration characteristics of the optical system of Figure 37 at room temperature.
  • Figure 44 is a graph showing data on the diffraction MTF of the optical system of Figure 37 at low temperature.
  • Figure 45 is a graph showing data on the aberration characteristics of the optical system of Figure 37 at low temperature.
  • Figure 46 is a graph showing data on diffraction MTF at high temperature of the optical system of Figure 37.
  • Figure 47 is a graph showing data on the aberration characteristics of the optical system of Figure 37 at high temperature.
  • Figure 48 is a graph showing the peripheral light ratio of the optical system of Figure 37.
  • Figure 49 is an example of a vehicle having an optical system according to an embodiment of the invention.
  • the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining or replacing.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and are not limited to the essence, sequence, or order of the component.
  • a component when a component is described as being 'connected', 'coupled', or 'connected' to another component, that component is directly 'connected', 'coupled', or 'connected' to that other component. In addition to cases, it may also include cases where the component is 'connected', 'coupled', or 'connected' by another component between that component and that other component.
  • top or bottom means that the two components are directly adjacent to each other. This includes not only cases of contact, but also cases where one or more other components are formed or disposed between two components.
  • top or bottom when expressed as “top” or “bottom,” the meaning of not only the upward direction but also the downward direction can be included based on one component.
  • object side may refer to the surface of the lens facing the object side based on the optical axis (OA)
  • sensor side may refer to the surface of the lens facing the imaging surface (image sensor) based on the optical axis. It can mean side.
  • Object side may be “water side”
  • sensor side may be “upper side”. That one side of the lens is convex may mean a convex shape in the optical axis or paraxial region, and that one side of the lens is concave may mean a concave shape in the optical axis or paraxial region.
  • the radius of curvature, center thickness, and optical axis spacing between lenses listed in the table for lens data may refer to values (unit, mm) at the optical axis.
  • the vertical direction may mean a direction perpendicular to the optical axis, and the end of the lens or lens surface may mean the end of the effective area of the lens through which incident light passes.
  • the size of the effective diameter of the lens surface may have a measurement error of up to ⁇ 0.4 mm depending on the measurement method.
  • the paraxial area refers to a very narrow area near the optical axis, and is an area where the distance at which light rays fall from the optical axis (OA) is almost zero.
  • the meaning of optical axis may include the center of each lens or a very narrow area near the optical axis.
  • the optical systems 1000, 1100, 1200, and 1300 according to the first to fourth embodiments of the present invention may include five or more lenses.
  • the optical systems 1000, 1100, 1200, and 1300 and camera modules having them may be mounted inside or outside the vehicle to monitor the driver or sense external objects or lanes.
  • the material of the lenses can be glass or plastic, and the coefficient of linear expansion of glass is smaller than that of plastic. Accordingly, a glass lens is used to prevent changes in the focal imaging position due to temperature changes.
  • glass lenses are more expensive than plastic lenses, and there is a problem in that it is difficult to meet the demand for lower costs. Accordingly, the lenses in the optical systems 1000, 1100, 1200, and 1300 are required to be a mixture of glass lenses and plastic lenses.
  • the optical system (1000, 1100, 1200, 1300) can reduce the thickness of the plastic lenses, providing lighter weight and lower costs, and the plastic lenses prevent various aberrations such as spherical aberration and chromatic aberration. Good correction may be possible. Additionally, since plastic lenses can provide aspherical lenses, distortion in the peripheral area can be minimized.
  • the optical system (1000, 1100, 1200, 1300) may include n lenses, the nth lens may be the last lens adjacent to the image sensor 500, and the n-1th lens may be the lens closest to the last lens. . n is an integer of 6 or more, for example, may be 6 to 8. The n lenses may have a ratio of glass lenses and plastic lenses ranging from 2:5 to 3:4.
  • At least one lens closest to the object within the optical system may be made of glass.
  • Two or fewer lenses closest to the object, for example, one lens may be made of glass. Since glass lenses have a smaller rate of change in contraction and expansion due to temperature changes than plastic lenses, glass lenses can be placed in an area adjacent to the outside of the lens barrel.
  • At least one lens disposed adjacent to the aperture STOP in the optical systems 1000, 1100, 1200, and 1300 may be made of glass.
  • the lens disposed closest to the aperture (STOP) on the sensor side of the aperture (STOP) may be made of glass. Since the lens placed adjacent to the aperture (STOP) is a lens with great influence in the optical system (1000, 1100, 1200, 1300), the lens made of glass can be placed so that the rate of change in contraction and expansion due to temperature change is small.
  • At least one lens closest to the image sensor 500 within the optical systems 1000, 1100, 1200, and 1300 may be made of plastic.
  • at least two lenses closest to the image sensor 500 may be made of plastic, and preferably, at least two lenses adjacent to the image sensor 500 may be made of plastic. That is, since the n-th and n-1-th lenses in the optical systems 1000, 1100, 1200, and 1300 are disposed as plastic lenses, various aberrations of light on the incident side of the image sensor 500 can be corrected.
  • lenses made of plastic may be continuously arranged, and lenses made of glass may be arranged continuously.
  • lenses made of plastic may be disposed between lenses made of glass.
  • lenses made of glass may be disposed between lenses made of plastic.
  • Each lens may have an object side and a sensor side.
  • the number of lenses with an aspherical sensor side and an aspherical object side may be greater than the number of plastic lenses.
  • the number of lenses with a spherical sensor side and a spherical object side may be smaller than a lens with aspherical surfaces on both sides. Since the optical systems (1000, 1100, 1200, and 1300) are equipped with more aspherical lenses than spherical lenses, various aberrations can be corrected.
  • the lens with the maximum refractive index may be located adjacent to the object.
  • the maximum refractive index may be 1.6 or more.
  • the color dispersion of incident light can be increased by a lens with the highest refractive index, and the center thickness can be thinner than the edge thickness. Additionally, since the lens with the maximum refractive index is disposed on the object side, it is easy to change the radius of curvature of the second and subsequent lenses and the center thickness can be increased.
  • the optical systems (1000, 1100, 1200, and 1300) may include a plurality of lens groups (LG1 and LG2). .
  • each of the plurality of lens groups LG1 and LG2 includes at least one lens.
  • the optical systems 1000, 1100, 1200, and 1300 include a first lens group (LG1) and a second lens group (LG2) sequentially arranged along the optical axis (OA) from the object side toward the image sensor 500.
  • the optical system (1000, 1100, 1200, 1300) may include n lenses, the nth lens may be the last lens, and the n-1th lens may be the lens closest to the last lens.
  • n is an integer of 5 or more, for example, may be 5 to 9.
  • the optical system (1000, 1100, 1200, 1300) consists of a first lens group (LG1), which is a plurality of lenses arranged on the object side based on the aperture (STOP), and a plurality of lenses arranged on the sensor side based on the aperture (STOP).
  • LG1 first lens group
  • STOP aperture
  • STOP sensor side based on the aperture
  • LG2 second lens group
  • the number of lenses for each of the first lens group (LG1) and the second lens group (LG2) may be different.
  • the number of lenses in the second lens group (LG2) may be greater than the number of lenses in the first lens group (LG1).
  • the first lens group LG1 may include at least one lens.
  • the first lens group LG1 may have three or fewer lenses.
  • the first lens group LG1 may preferably include two lenses.
  • the second lens group (LG2) may include four or more lenses.
  • the second lens group (LG2) may have 5 lenses.
  • the composite focal length of the first lens group (LG1) can be defined as F_LG1
  • the composite focal length of the second lens group (LG2) can be defined as F_LG2.
  • the signs of F_LG1 and F_LG2 may be different.
  • F_LG1 can have a negative (-) value
  • F_LG2 can have a positive (+) value. Through this, light can be spread from one of the two lens groups and then collected from the other lens group.
  • the difference between the absolute value of the composite focal length (F_LG1) of the first lens group (LG1) and the absolute value of the composite focal length (F_LG2) of the second lens group (LG2) may satisfy the range of 1 to 3.
  • the aperture (STOP) is disposed between the second lens (102, 202, 302, 402) and the third lens (103, 203, 303, 403), and the first lens group (LG1) includes first to second lenses (101-102, 201-202, 301-302, 401-402). And the second lens group (LG2) may include third to seventh lenses (103-107, 203-207, 303-307, and 403-407).
  • the composite focal length of the first lens group (LG1) has a negative (-) sign, and the focal length of at least one of the first lenses (101, 201, 301, 401) and the second lenses (102, 202, 302, 402) is the same focal length as the first lens group (LG1). It can have a sign of .
  • the Abbe number of the lens having the same sign as the sign of the composite focal length of the first lens group LG1 may be 40 or more.
  • the Abbe numbers of the first lenses (101, 201, 301, 401) and the second lenses (102, 202, 302, 402) may be 40 or more, and may preferably satisfy the range of 50 to 70. Through this, aberration of light passing through each lens can be removed. However, as an exception, lenses with relatively small refractive power may have an Abbe number of 40 or less.
  • the composite focal length of the second lens group has a positive (+) sign, and the focal length of at least one of the third lenses (103,203,303,403), fourth lenses (104,204,304,404), and sixth lenses (106,206,306,406) is the second lens group. It may have the same sign of the focal length as (LG2).
  • the Abbe number of the lens having the same sign as the sign of the composite focal length of the second lens group LG2 may be 40 or more.
  • the Abbe number of at least one of the fifth lenses (105, 205, 305, 405), the sixth lenses (106, 206, 306, 406), and the eighth lenses (108, 208, 308, 408) may be 40 or more. Through this, aberration of light passing through each lens can be removed. However, as an exception, lenses with relatively small refractive power may have an Abbe number of 40 or less.
  • a lens having a maximum effective diameter may be placed at the center of the object side and the sensor side. As you move from the object side to the sensor side, the effective diameter of the lens can increase and then decrease. As you move from the object side to the sensor side, the effective diameter of the lens may become smaller, then larger, and then smaller again.
  • the optical systems (1000, 1100, 1200, and 1300) can form a stable optical path.
  • the effective diameter may be the diameter of the effective area where effective light is incident on each lens.
  • the effective diameter is the length in the direction (X, Y) perpendicular to the optical axis, and is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side.
  • “Diameter of the lens surface” may mean “effective diameter of the lens.”
  • the “diameter of the lens” may be the diameter of the entire lens including the flange portion of the lens in addition to the effective area of the lens.
  • the flange of the lens is not shown in FIGS. 1, 13, 25, and 37, the flange may be a part that protrudes from the side of the lens in a direction perpendicular to the optical axis in order to couple the lens to the barrel. The flange may not allow effective light to enter.
  • spacers may be additionally disposed between the flanges of different lenses.
  • Each of the lenses 101-107, 201-207, 301-307, and 401-407 may include an effective area and an unactive area.
  • the effective area may be an area through which light incident on each of the lenses passes. In other words, the effective area can be defined as an effective area or effective diameter in which the incident light is refracted to realize optical characteristics.
  • the non-effective area may be placed around the active area.
  • the non-effective area may be an area where effective light is not incident from the plurality of lenses. In other words, the non-effective area may be an area unrelated to optical characteristics.
  • the end of the non-effective area may be an area fixed to a lens barrel or the like that accommodates the lens.
  • the total top length (TTL) within the optical systems (1000, 1100, 1200, and 1300) may be 5 times greater than Imgh, for example, 6 times or more and 8 times or less.
  • Total track length (TTL) is the distance on the optical axis (OA) from the center of the object side of the first lens to the image surface of the image sensor 500.
  • Imgh is 1/2 of the maximum diagonal length of the image sensor 500.
  • the effective focal length (EFL) is over 9 mm and the horizontal angle of view (FOV_H) is between 145 and 160 degrees, and is provided as an optical system for monitoring inside the vehicle in the vehicle camera module. can do.
  • the optical system and camera module according to the embodiment may be applied to a camera for an Advanced Driving Assistance System (ADAS) installed inside or outside a vehicle.
  • ADAS Advanced Driving Assistance System
  • the optical system (1000, 1100, 1200, 1300) may have a TTL/Imgh condition of 5 or more and 7 or less, for example, 5.5 or more and 6.5 or less.
  • the optical system (1000, 1100, 1200, 1300) sets the TTL/Imgh value to 5 or more and 7 or less, thereby providing a lens optical system for a vehicle. Accordingly, the optical systems 1000, 1100, 1200, and 1300 can provide images without exaggeration or distortion.
  • the effective diameter of at least one plastic lens within the optical system 1000, 1100, 1200, and 1300 may be smaller than the length of the image sensor 500.
  • the effective diameter is the diameter or length of the effective area where light is incident.
  • the length of the image sensor 500 is the maximum length of the diagonal in the direction perpendicular to the optical axis OA.
  • the number of lenses with an effective diameter larger than the length of the image sensor 500 is 65% or more or 75% or more, and the number of lenses with an effective diameter smaller than the length of the image sensor 500 is It may be less than 30% or less than 25%.
  • the lens unit may be a mixture of glass lenses and plastic lenses.
  • the number of lenses made of plastic may be 60% or more, and may range from 65% to 85%, compared to the total number of lenses. Accordingly, if more plastic lenses are placed within the camera module, the weight of the camera module can be reduced, and the plastic material makes it easy to polish and process, has strong external impact, and is highly price competitive and easy to secure materials. Additionally, various aberrations can be corrected using plastic lenses, preventing degradation of optical performance.
  • Embodiments of the invention can reduce the weight of the camera module by further mixing plastic lenses in the optical system (1000, 1100, 1200, and 1300), provide a cheaper manufacturing cost, and provide optical stability according to temperature changes. Deterioration of properties can be suppressed, various types of plastic lenses can replace glass lenses, and polishing and processing of lens surfaces such as aspherical surfaces or free-form surfaces can be easy.
  • the effective diameter of the lens closest to the object within the lens unit may be larger than the effective diameter of the lens closest to the image sensor 500. Accordingly, the brightness of the optical system can be controlled.
  • the effective diameter may be the average effective diameter of the object side and the sensor side of each lens.
  • the lens unit includes a first lens (101, 201, 301, 401), a second lens (102, 202, 302, 402), a third lens (103, 203, 303, 403), a fourth lens (104, 204, 304, 404), and a fifth lens (105, 205, 305, 40) aligned along the optical axis from the object side to the sensor side. 5), It may include a sixth lens (106, 206, 306, 406) and a seventh lens (107, 207, 307, 407).
  • the lens unit may be disposed in a camera module having an inner barrel on one side or the entire inner surface of the lens barrel.
  • the lens unit may be disposed in a camera module having a plurality of inner barrels around different lenses of the lens barrel.
  • the lens unit may be disposed in a camera module having a first inner barrel in contact with an outer surface of at least one lens of the lens barrel and a second inner barrel in contact with an outer surface of at least one lens.
  • the lens unit may be disposed in a camera module having a plurality of inner barrels, each of which is disposed between the outside of at least one or two lenses and the lens barrel.
  • the lens unit may be disposed in a camera module in which a plurality of inner barrels have a material different from that of the lens barrel.
  • the lenses constituting the lens unit at least some of the lenses made of glass may be placed on the lens barrel, and at least some of the lenses made of plastic may be placed on the inner barrel disposed within the lens barrel.
  • the optical systems 1000, 1100, 1200, and 1300
  • the lens unit is disposed in a camera module having a heterogeneous barrel to minimize decentering of a lens, such as a plastic lens, that expands according to temperature changes.
  • the lens barrel on which the lens unit is disposed has a plurality of inner barrels within the lens barrel, thereby maintaining the resolution of the optical system and suppressing deformation of the lenses due to temperature changes. Accordingly, the effective diameter of at least some of the glass lenses included in the lens unit may be smaller than the effective diameter of at least some of the plastic lenses.
  • the average effective diameter of plastic lenses is PLca_Aver, and if the average effective diameter of glass lenses is GLca_Aver, the condition of PLca_Aver ⁇ GLca_Aver can be satisfied. Additionally, the condition of 1.8 ⁇ GLca_Aver / PLca_Aver ⁇ 2.1 can be satisfied. Additionally, the relationship between the length of the image sensor 500 and the average effective diameter (PLca_Aver) of the plastic lens may satisfy the condition of 1.8 ⁇ PLca_Aver/Imgh ⁇ 2.1.
  • the average effective diameter of the glass materials may be 8 mm or more, for example, in the range of 9 mm to 11 mm.
  • the average effective diameter of the plastic material may be 8 mm or more, for example, in the range of 9 mm to 11 mm.
  • the lens with the minimum effective diameter may be made of plastic, and the lens with the maximum effective diameter may be made of glass.
  • the minimum effective diameter within the lens unit may be in the range of 7mm to 9mm, and the maximum effective diameter may be in the range of 10mm to 13mm.
  • Plastic lenses are designed to have a smaller effective diameter than glass lenses and are placed so as not to contact the lens barrel, thereby minimizing changes in optical performance due to temperature changes.
  • the optical systems (1000, 1100, 1200, 1300) can improve resolution and chromatic aberration control characteristics by controlling the incident light, and the vignetting characteristics of the optical systems (1000, 1100, 1200, 1300) can be improved. there is.
  • the optical system 1000, 1100, 1200, 1300 or the camera module may include an image sensor 500.
  • the image sensor 500 can detect light and convert it into an electrical signal.
  • the image sensor 500 can detect light that sequentially passes through the lens unit.
  • the image sensor 500 may include an element that can detect incident light, such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the optical system (1000, 1100, 1200, 1300) or camera module may include a filter (600).
  • the filter 600 may be placed between the last lens and the image sensor 500.
  • the filter 600 may be disposed between the image sensor 500 and a lens closest to the sensor among the lenses of the lens unit.
  • the filter 600 may be disposed between the nth lens and the image sensor 500.
  • the cover glass is disposed between the filter 600 and the image sensor 500, protects the upper part of the image sensor 500, and can prevent the reliability of the image sensor 500 from deteriorating.
  • the cover glass can be removed.
  • the cover glass may be a protective glass.
  • the filter 600 may include an infrared filter or an infrared cut-off filter.
  • the filter 600 may pass light in a set wavelength band and filter light in a different wavelength band.
  • radiant heat emitted from external light can be blocked from being transmitted to the image sensor 500. Additionally, the filter 600 can transmit visible light and reflect infrared rays.
  • the optical systems 1000, 1100, 1200, and 1300 may include an aperture (Stop).
  • the aperture can control the amount of light incident on the optical system (1000, 1100, 1200, 1300).
  • the effective diameter of the lens surface tends to increase from the object side to the aperture.
  • the effective diameter of the lens surfaces tends to decrease as it moves from the aperture to the sensor.
  • the fact that the effective diameter of the lens planes tends to increase or decrease does not mean only when the effective diameter of the lens planes increases or decreases. For example, this includes cases where the effective diameter of the lens surfaces increases and then decreases as it moves from the aperture to the sensor side.
  • the sum of the refractive indices of the lenses of the lens unit may be 9 or more, for example, in the range of 10 to 13, and the average refractive index may be in the range of 1.5 to 1.7.
  • the sum of the Abbe numbers of each lens may be 340 or more, for example, in the range of 350 to 380, and the average of the Abbe numbers may be 60 or less, for example, in the range of 45 to 55.
  • the sum of the central thicknesses of all lenses may be 18 mm or more, for example, in the range of 19 mm to 21 mm, and the average of the central thicknesses may be in the range of 2 mm to 3 mm.
  • the sum of the center spacings between the lenses at the optical axis (OA) may be greater than 4 mm, for example in the range of 5 mm to 7 mm, and may be less than the sum of the center thicknesses of the lenses.
  • the average value of the effective diameter of each lens surface (S1-S14) of the lens unit may be 3 mm or more, for example, in the range of 3.5 mm to 4.5 mm.
  • the F number may be 1.8 or less, for example, in the range of 1.5 to 1.7.
  • the horizontal field of view (FOV_H) of the vehicle optical system in the Y-axis direction may be greater than 40 degrees and less than 60 degrees, for example, in the range of 45 degrees to 50 degrees. Additionally, the vertical angle of view may be provided at a smaller angle than the horizontal angle of view. The vertical angle of view (FOV_V) may be greater than 20 degrees and less than 35 degrees, for example, in the range of 25 to 30 degrees.
  • the sensor length in the horizontal direction (Y) may be 8.64 mm ⁇ 0.5 mm
  • the sensor height in the vertical direction (X) may be 5.58 mm ⁇ 0.5 mm.
  • the horizontal angle of view (FOV_H) is the angle of view based on the horizontal length of the image sensor
  • the vertical angle of view (FOV_V) is the angle of view based on the vertical length of the image sensor. Accordingly, it is possible to suppress changes in the focus imaging position due to temperature changes, and it is possible to provide a vehicle camera in which various aberrations are well corrected.
  • the optical system applied to vehicle cameras usually monitors the situation on the road, the optical system can be designed based on the horizontal angle of view rather than all angles of view.
  • the optical system according to this embodiment is designed with a certain margin based on the inscribed circle of the image sensor. Optical performance can be guaranteed in an area that satisfies the range of horizontal angle of view (FOV_H).
  • the first lenses 101, 201, 301, and 401 can be made of glass even though they are designed using both plastic lenses and glass lenses. This has the advantage that glass material is more resistant to scratches than plastic material and is not sensitive to external temperature.
  • the first lenses 101, 201, 301, and 401 may be glass mold lenses that have an aspherical surface and are made of glass. Glass mold lenses can be produced by placing an optical glass ingot inside a mold that will have an aspherical shape and then heating and compressing it.
  • the angle of view may be greater than 40 degrees and less than 60 degrees, for example, in the range of 45 degrees to 50 degrees.
  • This horizontal angle of view may be a preset angle for an advanced driver assistance system (ADAS).
  • ADAS advanced driver assistance system
  • the optical systems 1000, 1100, 1200, and 1300 according to the embodiment may further include a reflection member for changing the path of light.
  • the reflecting member may be implemented as a prism that reflects light incident on the optical system (1000, 1100, 1200, 1300) in the direction of the lenses.
  • FIG. 1 is a side cross-sectional view of an optical system and a camera module having the same according to a first embodiment
  • FIG. 2 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 1
  • FIG. 3 is the thickness and thickness of each lens of the optical system of FIG. 1. This is a table showing the spacing between adjacent lenses
  • Figure 4 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 1
  • Figure 5 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 1.
  • FIG. 8 is a graph showing data on the diffraction MTF of the optical system of FIG. 1 at low temperature
  • FIG. 9 is a graph showing data on the aberration characteristics of the optical system of FIG. 1 at low temperature
  • FIG. 10 is a graph showing data on the diffraction MTF at high temperature of the optical system of FIG. 1
  • FIG. 11 is a graph showing data on aberration characteristics at high temperature of the optical system of FIG. 1
  • FIG. 12 is a graph showing the surroundings of the optical system of FIG. 1. This is a graph showing the light ratio.
  • the optical system 1000 includes a lens unit, and the lens unit may include a first lens 101 to a seventh lens 107.
  • the first to seventh lenses 101 to 107 may be sequentially arranged along the optical axis OA of the optical system 1000.
  • Light corresponding to object information may pass through the first to seventh lenses 101 to 107 and the filter 600 and be incident on the image sensor 500.
  • the first lens 101 may be placed closest to the object.
  • the first lens 101 may be placed furthest from the sensor side.
  • the first lens 101 may have negative refractive power at the optical axis OA.
  • the first lens 101 may include a plastic material or a glass material, for example, a glass material.
  • the first lens 101 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and protect the entrance side of the optical system 1000.
  • the object-side first surface S1 of the first lens 101 may be convex, and the sensor-side second surface S2 may be concave.
  • the first lens 101 may have a meniscus shape that is convex toward the object.
  • the first lens 101 may have a meniscus shape that is concave toward the sensor.
  • the first lens 101 is made of glass and may have an aspherical surface. At least one or both of the first surface (S1) and the second surface (S2) may be aspherical.
  • the aspheric coefficients of the first and second surfaces S1 and S2 may be provided as S1 and S2 of L3 in FIG. 2. At least one or both of the first surface S1 and the second surface S2 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the second lens 102 may be further spaced apart from the first lens 101. That is, the center spacing between the first and second lenses 101 and 102 may be the largest within the lens unit.
  • the refractive index (n1) of the first lens 101 may satisfy the condition of n1>1.6 or n1>1.62.
  • the refractive index (n1) of the first lens 101 satisfies the above conditions, the radius of curvature of the first and second lenses 101 and 102 can be increased, and lens manufacturing can be easy.
  • the refractive index (n1) of the first lens 101 is smaller than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 101 and 102. In this case, the lens surface must be made sharply concave or convex. It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
  • the second lens 102 may be disposed second on the object side.
  • the second lens 102 may be placed sixth on the sensor side.
  • the second lens 102 may be disposed between the first lens 101 and the third lens 103.
  • the second lens 102 may have negative refractive power at the optical axis (OA).
  • the second lens 102 may include plastic or glass.
  • the second lens 102 may be made of plastic.
  • the object-side third surface S3 of the second lens 102 may be concave, and the sensor-side fourth surface S4 may be convex.
  • the second lens 102 may have a meniscus shape that is convex toward the sensor.
  • the second lens 102 may have a meniscus shape that is concave toward the object.
  • the second lens 102 is made of plastic and may be aspherical.
  • At least one or both of the third surface S3 and the fourth surface S4 may be aspherical.
  • the aspherical coefficients of the third and fourth surfaces S3 and S4 can be provided as S1 and S2 of L2 in FIG. 2.
  • At least one or both of the third surface S3 and the fourth surface S4 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the aperture stop may be disposed around the fourth surface S4 on the sensor side of the second lens 102.
  • the aperture stop may be disposed around the object-side fifth surface S5 of the third lens 103.
  • Aperture can reduce TTL within the range of view angle, and miniaturization of the optical system is possible. Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 40 to 50 degrees.
  • FOV_H horizontal angle of view
  • the third lens 103 may be arranged third from the object side.
  • the third lens 103 may be placed fifth on the sensor side.
  • the third lens 103 may be disposed between the second lens 102 and the fourth lens 104.
  • the third lens 103 may have positive (+) refractive power at the optical axis (OA).
  • the third lens 103 may include plastic or glass.
  • the third lens 103 may be made of glass.
  • the object-side fifth surface S5 of the third lens 103 may be convex, and the sensor-side sixth surface S6 may be convex.
  • the third lens 103 may have a convex shape on both sides.
  • the third lens 103 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fourth lens 104 may be placed fourth on the object side.
  • the fourth lens 104 may be placed fourth on the sensor side.
  • the fourth lens 104 may be disposed between the third lens 103 and the fifth lens 105.
  • the fourth lens 104 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fourth lens 104 may have positive (+) refractive power.
  • the fourth lens 104 may include plastic or glass.
  • the fourth lens 104 may be made of plastic.
  • the object-side seventh surface S7 of the fourth lens 104 may be convex, and the sensor-side eighth surface S8 may be convex.
  • the fourth lens 104 may have a convex shape on both sides.
  • the fourth lens 104 is made of plastic and may be aspherical. At least one or both of the seventh surface S7 and the eighth surface S8 may be aspherical.
  • the aspherical coefficients of the seventh and eighth surfaces (S7 and S8) can be provided as S1 and S2 of L4 in FIG. 2. At least one or both of the seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fifth lens 105 may be placed fifth on the object side.
  • the fifth lens 105 may be placed third on the sensor side.
  • the fifth lens 105 may be disposed between the fourth lens 104 and the sixth lens 106.
  • the fifth lens 105 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fifth lens 105 may have negative (-) refractive power.
  • the fifth lens 105 may include plastic or glass.
  • the fifth lens 105 may be made of plastic.
  • the object-side ninth surface S9 of the fifth lens 105 may be convex, and the sensor-side tenth surface S10 may be concave.
  • the fifth lens 105 may have a meniscus shape that is convex toward the object.
  • the fifth lens 105 may have a meniscus shape that is concave toward the sensor.
  • the fifth lens 105 is made of plastic and may be aspherical.
  • At least one or both of the ninth surface S9 and the tenth surface S10 may be aspherical.
  • the aspheric coefficients of the 9th and 10th surfaces (S9 and S10) can be provided as S1 and S2 of L5 in FIG. 2.
  • At least one or both of the ninth surface S9 and the tenth surface S10 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the sixth lens 106 may be placed sixth on the object side.
  • the sixth lens 106 may be placed second on the sensor side.
  • the sixth lens 106 may be disposed between the fifth lens 105 and the seventh lens 107.
  • the sixth lens 106 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the sixth lens 106 may have positive (+) refractive power.
  • the sixth lens 106 may include plastic or glass.
  • the sixth lens 106 may be made of plastic.
  • the object-side 11th surface S11 of the sixth lens 106 may be convex and the sensor-side 12th surface S12 may be convex.
  • the sixth lens 106 may have a convex shape on both sides.
  • the sixth lens 106 is made of plastic and may be aspherical. At least one or both of the 11th surface (S11) and the 12th surface (S12) may be aspherical.
  • the aspheric coefficients of the 11th and 12th surfaces (S11 and S12) may be provided as S1 and S2 of L6 in FIG. 2.
  • the 11th surface S11 of the sixth lens 106 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the twelfth surface S12 of the sixth lens 106 may include a critical point from the optical axis OA to the end of the effective area.
  • the twelfth surface S12 may be located in a range of 75% to 80% of the effective radius r62 at the optical axis OA, preferably in a range of 76% to 77%.
  • the critical point of the twelfth surface S12 may be located in the range of 3.3 mm to 4 mm, preferably 3.5 mm to 3.6 mm, from the optical axis OA.
  • the seventh lens 107 may be placed furthest from the object.
  • the seventh lens 107 may be placed closest to the image sensor 500.
  • the seventh lens 107 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the seventh lens 107 may have negative (-) refractive power.
  • the seventh lens 107 may include plastic or glass.
  • the seventh lens 107 may be made of plastic.
  • the object-side 13th surface S13 of the seventh lens 107 may be concave and the sensor-side 14th surface S14 may be concave.
  • the seventh lens 107 may have a concave shape on both sides.
  • At least one or both of the 13th surface (S13) and the 14th surface (S14) may be aspherical.
  • the aspheric coefficients of the 13th and 14th surfaces (S13 and S14) can be provided as S13 and S14 of L7 in FIG. 2.
  • the 13th surface S13 of the seventh lens 107 may include a critical point from the optical axis OA to the end of the effective area.
  • the 13th surface S13 When the 13th surface S13 has a critical point, it may be located in the range of 65% to 75% of the effective radius r71 at the optical axis OA, preferably in the range of 69% to 72%.
  • the critical point of the 13th surface S13 may be located in the range of 3.5 mm to 4 mm, preferably 3.6 mm to 3.7 mm, from the optical axis OA.
  • the 14th surface S14 of the seventh lens 107 may include a critical point from the optical axis OA to the end of the effective area.
  • the 14th surface S14 When the 14th surface S14 has a critical point, it may be located in a range of 65% to 75% of the effective radius r72 at the optical axis OA, preferably in a range of 69% to 72%.
  • the critical point of the 14th surface S14 may be located in the range of 3.5 mm to 4 mm, preferably 3.6 mm to 3.7 mm, from the optical axis OA.
  • the seventh lens 107 may be a plastic lens closest to the image sensor 500. Additionally, by arranging two or more plastic lenses adjacent to the image sensor 500, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 500, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing the two lenses 106 and 107 adjacent to the image sensor 500 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
  • Table 1 shows the surface number (Surface), radius of curvature (Radius), center thickness of each lens or distance between lens surfaces (Thickness), refractive index (Index, nd), and Abbe number of the lens according to the first embodiment of the present invention. (Abbe,vd), effective radius (Semi Aperture), and focal length (Fcoal length). At this time, the unit of curvature radius and thickness or distance may be mm.
  • Table 2 shows the items of the above-described equations in the optical system 1000 of the embodiment, including TTL (Total track length) (mm), BFL (Back focal length), and effective focal length (F) (mm) of the optical system 1000. ), ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the 1st surface (S1) to the 14th surface (S14), refractive index sum , Abbe number sum, thickness sum (mm), sum of spacing between adjacent lenses, effective diameter characteristics, sum of refractive index of glass lens, sum of refractive index of plastic material, angle of view (FOV_H) (Degree), edge thickness (ET), F number It's about etc.
  • TTL Total track length
  • BFL Back focal length
  • F effective focal length
  • the center thickness of the first to seventh lenses (101 to 107) is expressed as CT1 to CT7
  • the edge thickness at the end of the effective area of each lens is expressed as ET1 to ET7
  • the center gap between two adjacent lenses is expressed as CT1 to CT7.
  • They are indicated as CG1 to CG6, and the edge spacing between the edges of each lens is indicated as EG1 to EG6.
  • Back focal length (BFL) is the optical axis distance from the image sensor 500 to the center of the last lens.
  • TTL is the optical axis distance from the center of the first surface S1 of the first lens 101 to the upper surface of the image sensor 500.
  • the lens surfaces of the first, second, fourth, fifth, sixth, and seventh lenses (101, 102, 104, 105, 106, and 107) among the lenses of the lens unit in the first embodiment may include an aspherical surface with a 30th order aspheric coefficient.
  • the first, second, fourth, fifth, sixth, and seventh lenses (101, 102, 104, 105, 106, and 107) may include lens surfaces having a 30th order aspherical coefficient.
  • an aspheric surface with a 30th order aspherical coefficient (a value other than “0”) can particularly significantly change the aspheric shape of the peripheral area, thereby improving the optical performance of the peripheral area of the field of view (FOV).
  • the thickness (T1-T7) of the first to seventh lenses (101-107) and the gap (G1-G6) between two adjacent lenses can be set. As shown in Figure 3, in the Y-axis direction, the thickness of each lens (T1-T7) can be expressed at intervals of 0.1mm or 0.2mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1mm or 0.2mm or more. It can be displayed every time.
  • the radius of curvature of the 13th surface (S13) of the 7th lens 107 at the optical axis OA is the largest among the lenses
  • the radius of curvature of the 13th surface (S13) of the 7th lens 107 is the largest among the lenses
  • the radius of curvature of the 13th surface (S13) of the 7th lens 107 is the largest among the lenses
  • the radius of curvature of the 13th surface (S13) of the 7th lens 107 is the largest among the lenses
  • the radius of curvature of the 13th surface (S13) of the 7th lens 107 is the largest among the lenses
  • the radius of curvature of (S12) may be the smallest among lenses.
  • the difference between the maximum radius of curvature and the minimum radius of curvature may be 50 times or more, for example, in the range of 50 to 60 times.
  • the radius of curvature of the lens constituting the optical system 1000 can be designed to be mostly small to satisfy the angle of view, focal length, and overall distance of the lens placed in the vehicle.
  • the lens placed on the object side of the plastic lens may have a strong refractive power to provide refraction to the plastic lens. Additionally, in order to strengthen the refractive power, the radius of curvature of the lens surface may be small.
  • the absolute value of the radius of curvature of the first surface (S1) of the first lens 101 may be greater than the absolute value of the radius of curvature of the second surface (S2).
  • the absolute value of the radius of curvature of the third surface (S3) of the second lens 102 may be smaller than the absolute value of the radius of curvature of the fourth surface (S4).
  • the absolute value of the radius of curvature of the fifth surface (S5) of the third lens 103 may be greater than the absolute value of the radius of curvature of the sixth surface (S6).
  • the absolute value of the radius of curvature of the seventh surface (S7) of the fourth lens 104 may be smaller than the absolute value of the radius of curvature of the eighth surface (S8).
  • the absolute value of the radius of curvature of the ninth surface (S9) of the fifth lens 105 may be greater than the absolute value of the radius of curvature of the tenth surface (S10).
  • the absolute value of the radius of curvature of the 11th surface (S11) of the sixth lens 106 may be greater than the absolute value of the radius of curvature of the 12th surface (S12).
  • the absolute value of the radius of curvature of the 13th surface (S13) of the seventh lens 107 may be greater than the absolute value of the radius of curvature of the 14th surface (S14).
  • the ratio of the radius of curvature of each lens may satisfy the following conditions.
  • the central thickness CT4 of the fourth lens 104 is the maximum of the lenses, and the first lens 101, the fifth lens 105 and the 7th and 7th.
  • the central thickness (CT1, CT5, CT7) of at least one of the lenses 107 is the minimum among the lenses.
  • the difference between the maximum and minimum center thickness of the lens may be in the range of 2 mm or more and 2.5 mm or less.
  • the center thickness of each lens may satisfy any one of the conditions below.
  • CT4 > CT3 > CT1, CT2, CT5, CT6, CT7
  • CT4 > CT1, CT2, CT3, CT6, CT7
  • the center spacing (CG1) between the first lens 101 and the second lens 102 is the maximum
  • the center spacing between the third and fourth lenses 103 and 104 At least one of CG3
  • the center distance CG4 between the fourth and fifth lenses 104 and 105 and the center distance CG6 between the sixth and seventh lenses 106 and 107 may be minimum.
  • the difference between the maximum center spacing and the minimum center spacing among the spaced lens spacing may be 3 mm or more, for example, in the range of 3 mm to 4 mm.
  • the center spacing between each lens can satisfy the following conditions.
  • a lens with the maximum effective diameter may be a glass lens.
  • the lens with the maximum effective diameter may be the fourth lens 104.
  • the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side.
  • the lens surface having the maximum effective diameter may be the seventh surface S7 of the fourth lens 104.
  • the lens having the minimum effective diameter may be the second lens 102.
  • the lens surface having the minimum effective diameter may be the fourth surface S4 of the second lens 102.
  • the effective diameter of a plastic lens may be smaller than that of a glass lens.
  • a lens made of plastic may be placed adjacent to the image sensor.
  • the effective diameter of each lens can satisfy any one of the conditions below.
  • CA_L4 CA_L7 > CA_L3 > CA_L1, CA_L2, CA_L5, CA_L6
  • CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7
  • the refractive index of the fifth lens 105 is the highest among the lenses and may be greater than 1.6, for example, greater than 1.65.
  • One or all of the second lens 102, fourth lens 104, sixth lens 106, and seventh lens 107 may have the lowest refractive index among the lenses.
  • the refractive index of the second lens 102, the sixth lens 106, and the seventh lens 108 may be the minimum among the lenses, and may be less than 1.6, for example, less than 1.55.
  • the difference between the maximum and minimum refractive indices may be 0.2 or more.
  • the incident efficiency is increased, and the lens adjacent to the glass material lens and the lens adjacent to the image sensor 500 are provided as low refractive index lenses made of plastic. It is possible to guide the image sensor 500 by adjusting the refractive power between the lens materials.
  • the refractive index of each lens may satisfy any one of the conditions below.
  • the Abbe number of the third lens 103 is the largest among the lenses and may be 60 or more.
  • the Abbe number of the fifth lens 105 is the minimum among the lenses and may be 25 or less.
  • the difference between the maximum refractive index and the minimum Abbe number may be 40 or more.
  • the Abbe number of each lens can satisfy any one of the conditions below.
  • the focal lengths F1, F2, F5, and F7 of the first, second, fifth, and seventh lenses 101, 102, 105, and 107 may have a negative (-) sign.
  • the first, second, fifth, and seventh lenses (101, 102, 105, and 107) may have negative refractive power.
  • the focal lengths F3, F4, and F6 of the third, fourth, and sixth lenses 103, 104, and 106 may have a positive (+) sign.
  • the third, fourth, and sixth lenses (103, 104, and 106) may have positive refractive power.
  • a third lens 103 with positive (+) refractive power may be disposed on the sensor side of the first lens 101 and the second lens 102 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
  • the fourth lens 104 and the fifth lens 105 which are adjacent lenses, can satisfy the following conditions.
  • the fourth lens 104 has positive refractive power and the fifth lens 105 has negative refractive power, so according to conditions 1 and 2, the refractive index of the fourth lens 104 is It is smaller than the refractive index of the fifth lens 105, and the dispersion value of the fourth lens 104 is greater than that of the fifth lens 105.
  • Chromatic aberration occurring in plastic lenses can be corrected with plastic lenses.
  • the fourth lens 104 and the fifth lens 105 which are plastic lenses arranged in succession, satisfy the refractive index difference of 0.1 to 0.15 and the Abbe number difference of 20 to 50, thereby reducing chromatic aberration occurring in the plastic lens. It can be compensated with
  • Optical systems produce chromatic aberration, and chromatic aberration is corrected using a bonded lens or two lenses placed in series. As the temperature changes from low to high, the lens repeats contraction and expansion. Since lenses made of the same material have the same amount of change in lens characteristics due to temperature changes, it is effective to correct chromatic aberration between lenses made of the same material even if the temperature changes. Therefore, in the first embodiment of the present invention, chromatic aberration occurring in the plastic lens can be corrected using the fourth lens 104 and the fifth lens 105.
  • the focal length of the first lens 101 is the largest among lenses and may be 50 or more to 60 or less.
  • the focal length of the sixth lens 106 is the minimum among the lenses, and the absolute value of the focal length of the seventh lens 106 may be 5 or more and 10 or less.
  • the absolute value of the focal length of each lens can satisfy any of the conditions below.
  • the thickness (T1) of the first lens 101 may have a difference between the maximum thickness and the minimum thickness of 1.1 times or more, for example, 1.2 to 1.5 times, the center thickness (CT1) is the minimum, and the edge thickness (ET1) is the minimum. It can be maximum.
  • the thickness T2 of the second lens 102 may have a maximum thickness ranging from 1 to 1.5 times the minimum thickness.
  • the second lens 102 may have a minimum center thickness (CT2) and a maximum edge thickness (ET2).
  • the thickness T3 of the third lens 103 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness.
  • the thickness T4 of the fourth lens 104 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 2 to 2.5 times the minimum thickness.
  • Condition 7 0.5 ⁇ CT7/ET7 ⁇ 1, 1 ⁇ ET7/CT7 ⁇ 1.5
  • Figures 6, 8, and 10 are graphs showing the diffraction MTF (modulation transfer function) at room temperature, low temperature, and high temperature in the optical system of Figure 1, showing the luminance ratio (modulation) according to spatial frequency. This is the graph shown. 6, 8, and 10, in the first embodiment of the invention, the deviation of MTF from low or high temperature based on room temperature may be less than 10%, that is, 7% or less.
  • Figures 7, 9, and 11 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 1.
  • 7, 9, and 11 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right.
  • the X-axis may represent focal length (mm) and distortion (%)
  • the Y-axis may represent the height of the image.
  • the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm
  • the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm. .
  • the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees
  • the room temperature is in the range of 22 degrees ⁇ 5 degrees or 18 to 27 degrees
  • the high temperature is 85 degrees or higher, for example, in the range of 85 to 105 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 7, 9, and 11 is less than 10%, for example, 5% or less, or is almost unchanged.
  • Table 3 compares the changes in optical characteristics such as EFL, BFL, F number (F#), TTL, and angle of view (FOV_D) at room temperature, low temperature, and high temperature in the optical system according to the first embodiment, and the change in optical properties at low temperature based on room temperature. It can be seen that the change rate of optical properties is 5% or less, for example, 3% or less, and the change rate of optical properties at low temperatures based on room temperature is 5% or less, for example, 3% or less.
  • the change in optical properties according to the temperature change from low to high temperature for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV_D) is 10% or less, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, temperature compensation for the plastic lenses is designed to prevent deterioration in the reliability of optical characteristics.
  • the optical system of the first embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
  • FOV field of view
  • FIG. 13 is a side cross-sectional view of an optical system and a camera module having the same according to a second embodiment
  • FIG. 14 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 13
  • FIG. 15 shows the thickness and thickness of each lens of the optical system of FIG. 13. This is a table showing the spacing between adjacent lenses
  • Figure 16 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 13
  • Figure 17 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 13.
  • Figure 18 is a graph showing data on the diffraction MTF (Modulation Transfer Function) at low temperature of the optical system of Figure 13
  • Figure 19 is a graph showing the aberration characteristics at low temperature of the optical system of Figure 13.
  • Figure 20 is a graph showing data on the diffraction MTF at room temperature of the optical system of Figure 13
  • Figure 21 is a graph showing data on aberration characteristics at room temperature of the optical system of Figure 13
  • Figure 22 is a graph showing data on the diffraction MTF at high temperature of the optical system of FIG. 13
  • FIG. 23 is a graph showing data on aberration characteristics at high temperature of the optical system of FIG. 13
  • FIG. 24 is the amount of ambient light of the optical system of FIG. 13. This is a graph showing rain.
  • the first lens 201 may be placed closest to the object.
  • the first lens 201 may be placed furthest from the sensor side.
  • the first lens 201 may have negative refractive power at the optical axis (OA).
  • the first lens 201 may include a plastic material or a glass material, for example, a glass material.
  • the first lens 201 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and protect the entrance side of the optical system 1100.
  • the object-side first surface S1 of the first lens 201 may be convex, and the sensor-side second surface S2 may be concave.
  • the first lens 201 may have a meniscus shape that is convex toward the object.
  • the first lens 201 may have a meniscus shape that is concave toward the sensor.
  • the first lens 201 is made of glass and may have an aspherical surface. At least one or both of the first surface (S1) and the second surface (S2) may be aspherical.
  • the aspheric coefficients of the first and second surfaces S1 and S2 may be provided as S1 and S2 of L3 in FIG. 14. At least one or both of the first surface S1 and the second surface S2 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the second lens 202 may be further spaced apart from the first lens 201. That is, the center spacing between the first and second lenses 201 and 202 may be the largest within the lens unit.
  • the refractive index (n1) of the first lens 201 may satisfy the condition of n1>1.6 or n1>1.62.
  • the refractive index (n1) of the first lens 201 satisfies the above conditions, the radius of curvature of the first and second lenses 201 and 202 can be increased, and lens manufacturing can be easy.
  • the refractive index (n1) of the first lens 201 is less than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 201 and 202. In this case, the lens manufacturing process is It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
  • the second lens 202 may be disposed second on the object side.
  • the second lens 202 may be placed sixth on the sensor side.
  • the second lens 202 may be disposed between the first lens 201 and the third lens 203.
  • the second lens 202 may have negative refractive power at the optical axis (OA).
  • the second lens 202 may include plastic or glass.
  • the second lens 202 may be made of plastic.
  • the aperture stop may be disposed around the fourth surface S4 on the sensor side of the second lens 202.
  • the aperture (Stop) may be disposed around the object-side fifth surface S5 of the third lens 203.
  • Aperture can reduce TTL within the range of view angle, and miniaturization of the optical system is possible. Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 40 to 50 degrees.
  • FOV_H horizontal angle of view
  • the third lens 203 may be arranged third from the object side.
  • the third lens 203 may be placed fifth on the sensor side.
  • the third lens 203 may be disposed between the second lens 202 and the fourth lens 204.
  • the third lens 203 may have positive (+) refractive power at the optical axis (OA).
  • the third lens 203 may include plastic or glass.
  • the third lens 203 may be made of glass.
  • the object-side fifth surface S5 of the third lens 203 may be convex, and the sensor-side sixth surface S6 may be convex.
  • the third lens 203 may have a convex shape on both sides.
  • the third lens 203 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fourth lens 204 may be placed fourth on the object side.
  • the fourth lens 204 may be placed fourth on the sensor side.
  • the fourth lens 204 may be disposed between the third lens 203 and the fifth lens 205.
  • the fourth lens 204 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fourth lens 204 may have positive (+) refractive power.
  • the fourth lens 204 may include plastic or glass.
  • the fourth lens 204 may be made of plastic.
  • the object-side seventh surface S7 of the fourth lens 204 may be convex, and the sensor-side eighth surface S8 may be concave.
  • the fourth lens 204 may have a meniscus shape that is convex toward the object.
  • the fourth lens 204 may have a meniscus shape that is concave toward the sensor.
  • the fourth lens 204 is made of plastic and may be aspherical.
  • At least one or both of the seventh surface S7 and the eighth surface S8 may be aspherical.
  • the aspherical coefficients of the seventh and eighth surfaces (S7 and S8) can be provided as S1 and S2 of L4 in FIG. 14. At least one or both of the seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fifth lens 205 may be placed fifth on the object side.
  • the fifth lens 205 may be placed third on the sensor side.
  • the fifth lens 205 may be disposed between the fourth lens 204 and the sixth lens 206.
  • the fifth lens 205 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fifth lens 205 may have negative refractive power.
  • the fifth lens 205 may include plastic or glass.
  • the fifth lens 205 may be made of plastic.
  • the object-side ninth surface S9 of the fifth lens 205 may be convex, and the sensor-side tenth surface S10 may be concave.
  • the fifth lens 205 may have a meniscus shape that is convex toward the object.
  • the fifth lens 205 may have a meniscus shape that is concave toward the sensor.
  • the fifth lens 205 is made of plastic and may be aspherical.
  • At least one or both of the ninth surface S9 and the tenth surface S10 may be aspherical.
  • the aspheric coefficients of the 9th and 10th surfaces (S9 and S10) can be provided as S1 and S2 of L5 in FIG. 14. At least one or both of the ninth surface S9 and the tenth surface S10 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the sixth lens 206 may be placed sixth on the object side.
  • the sixth lens 206 may be placed second on the sensor side.
  • the sixth lens 206 may be disposed between the fifth lens 205 and the seventh lens 207.
  • the sixth lens 206 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the sixth lens 206 may have positive (+) refractive power.
  • the sixth lens 206 may include plastic or glass.
  • the sixth lens 206 may be made of plastic.
  • the object-side 11th surface S11 of the sixth lens 206 may be convex, and the sensor-side 12th surface S12 may be convex.
  • the sixth lens 206 may have a convex shape on both sides.
  • the sixth lens 206 is made of plastic and may be aspherical. At least one or both of the 11th surface (S11) and the 12th surface (S12) may be aspherical.
  • the aspheric coefficients of the 11th and 12th surfaces (S11 and S12) can be provided as S1 and S2 of L6 in FIG. 14.
  • the 11th surface S11 of the sixth lens 106 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the twelfth surface S12 of the sixth lens 106 may include a critical point from the optical axis OA to the end of the effective area.
  • the twelfth surface S12 may be located in the range of 85% to 90% of the effective radius r62 at the optical axis OA, preferably in the range of 86% to 89%.
  • the critical point of the twelfth surface S12 may be located in the range of 3.5 mm to 4 mm, preferably 3.8 mm to 3.9 mm, from the optical axis OA.
  • the seventh lens 207 may be placed furthest from the object.
  • the seventh lens 207 may be placed closest to the image sensor 500.
  • the seventh lens 207 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the seventh lens 207 may have negative refractive power.
  • the seventh lens 207 may include plastic or glass.
  • the seventh lens 207 may be made of plastic.
  • the object-side 13th surface S13 of the seventh lens 207 may be convex, and the sensor-side 14th surface S14 may be concave.
  • the seventh lens 207 may have a meniscus shape that is convex toward the object.
  • the seventh lens 207 may have a meniscus shape that is concave toward the sensor.
  • At least one or both of the 13th surface (S13) and the 14th surface (S14) may be aspherical.
  • the aspheric coefficients of the 13th and 14th surfaces (S13 and S14) can be provided as S13 and S14 of L7 in FIG. 14.
  • the 13th surface S13 of the seventh lens 207 may include a critical point from the optical axis OA to the end of the effective area.
  • the 13th surface S13 When the 13th surface S13 has a critical point, it may be located in the range of 40% to 50% of the effective radius r71 at the optical axis OA, preferably in the range of 44% to 47%.
  • the critical point of the 13th surface S13 may be located in the range of 1.8 mm to 2.2 mm, preferably 1.9 mm to 2 mm, from the optical axis OA.
  • the 14th surface S14 of the seventh lens 207 may include a critical point from the optical axis OA to the end of the effective area.
  • the 14th surface S14 When the 14th surface S14 has a critical point, it may be located in the range of 50% to 60% of the effective radius r72 at the optical axis OA, preferably in the range of 54% to 56%.
  • the critical point of the 14th surface S14 may be located in the range of 2.5 mm to 3 mm, preferably 2.7 mm to 2.8 mm, from the optical axis OA.
  • the seventh lens 207 may be a plastic lens closest to the image sensor 500. Additionally, by arranging two or more plastic lenses adjacent to the image sensor 500, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 500, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing two lenses 206 and 207 adjacent to the image sensor 500 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
  • Table 4 shows the surface number (Surface), radius of curvature (Radius), center thickness of each lens or distance between lens surfaces (Thickness), refractive index (Index, nd), and Abbe number of the lens according to the second embodiment of the present invention. (Abbe,vd), effective radius (Semi Aperture), and focal length (Fcoal length). At this time, the unit of curvature radius and thickness or distance may be mm.
  • Table 5 shows the items of the above-described equations in the optical system 1100 of the embodiment, including the total track length (mm), back focal length (BFL), and effective focal length (F) of the optical system 1100 (mm). ), ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the first surface (S1) to the twelfth surface (S12), refractive index sum , Abbe number sum, thickness sum (mm), sum of spacing between adjacent lenses, effective diameter characteristics, sum of refractive index of glass lens, sum of refractive index of plastic material, angle of view (FOV_H) (Degree), edge thickness (ET), F number It's about things like that.
  • the center thickness of the first to seventh lenses is expressed as CT1 to CT7
  • the edge thickness at the end of the effective area of each lens is expressed as ET1 to ET7
  • the center gap between two adjacent lenses is expressed as CT1 to CT7.
  • They are indicated as CG1 to CG6, and the edge spacing between the edges of each lens is indicated as EG1 to EG6.
  • Back focal length (BFL) is the optical axis distance from the image sensor 500 to the center of the last lens.
  • TTL is the optical axis distance from the center of the first surface S1 of the first lens 201 to the upper surface of the image sensor 500.
  • the lens surfaces of the first, second, fourth, fifth, sixth, and seventh lenses (201, 202, 204, 205, 206, and 207) among the lenses of the lens unit in the second embodiment may include an aspherical surface with a 30th order aspheric coefficient.
  • the first, second, fourth, fifth, sixth, and seventh lenses (201, 202, 204, 205, 206, and 207) may include lens surfaces having a 30th order aspherical coefficient.
  • an aspheric surface with a 30th order aspherical coefficient (a value other than “0”) can particularly significantly change the aspheric shape of the peripheral area, thereby improving the optical performance of the peripheral area of the field of view (FOV).
  • the thickness (T1-T7) of the first to seventh lenses (201-207) and the gap (G1-G6) between two adjacent lenses can be set. As shown in Figure 3, in the Y-axis direction, the thickness of each lens (T1-T7) can be expressed at intervals of 0.1mm or 0.2mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1mm or 0.2mm or more. It can be displayed every time.
  • the radius of curvature of the first surface S1 of the first lens 201 at the optical axis OA is the largest among the lenses
  • the radius of curvature of the first surface S1 of the fifth lens 205 is the largest among the lenses
  • the radius of curvature of the first surface S1 of the fifth lens 205 is the largest among the lenses.
  • the radius of curvature of (S10) may be the smallest among lenses.
  • the difference between the maximum radius of curvature and the minimum radius of curvature may be 3 times or more, for example, in the range of 3 to 5 times.
  • the radius of curvature of the lens constituting the optical system 1100 can be designed to be mostly small to satisfy the angle of view, focal length, and overall distance of the lens placed in the vehicle.
  • the lens placed on the object side of the plastic lens may have a strong refractive power to provide refraction to the plastic lens. Additionally, in order to strengthen the refractive power, the radius of curvature of the lens surface may be small.
  • the absolute value of the radius of curvature of the first surface (S1) of the first lens 201 may be greater than the absolute value of the radius of curvature of the second surface (S2).
  • the absolute value of the radius of curvature of the third surface (S3) of the second lens 202 may be smaller than the absolute value of the radius of curvature of the fourth surface (S4).
  • the absolute value of the radius of curvature of the fifth surface S5 of the third lens 203 may be greater than the absolute value of the radius of curvature of the sixth surface S6.
  • the absolute value of the radius of curvature of the seventh surface (S7) of the fourth lens 204 may be smaller than the absolute value of the radius of curvature of the eighth surface (S8).
  • the absolute value of the radius of curvature of the ninth surface (S9) of the fifth lens 205 may be greater than the absolute value of the radius of curvature of the tenth surface (S10).
  • the absolute value of the radius of curvature of the 11th surface (S11) of the sixth lens 206 may be smaller than the absolute value of the radius of curvature of the 12th surface (S12).
  • the absolute value of the radius of curvature of the 13th surface (S13) of the seventh lens 207 may be greater than the absolute value of the radius of curvature of the 14th surface (S14).
  • the ratio of the radius of curvature of each lens may satisfy the following conditions.
  • the central thickness (CT4) of the fourth lens 204 is the largest among the lenses
  • the central thickness (CT4) of the first lens 201, the fifth lens 205, and the seventh lens 204 are the largest among the lenses.
  • the central thickness (CT1, CT5, CT7) of at least one of the lenses 207 is the minimum among the lenses.
  • the difference between the maximum and minimum center thickness of the lens may be in the range of 2 mm or more and 2.5 mm or less.
  • the center thickness of each lens may satisfy any one of the conditions below.
  • CT4 > CT2 > CT1, CT3, CT5, CT6, CT7
  • CT4 > CT1, CT2, CT3, CT6, CT7
  • CT2 CT2, CT3, CT4 > CT6 > CT1, CT5, CT7
  • the center spacing (CG1) between the first lens 201 and the second lens 202 is the maximum, and the center spacing between the fourth and fifth lenses 204 and 205 ( CG4) may be minimal.
  • the difference between the maximum center spacing and the minimum center spacing among the spaced lens spacing may be 3 mm or more, for example, in the range of 3 mm to 4 mm.
  • the center spacing between each lens can satisfy the following conditions.
  • a lens with the maximum effective diameter may be a glass lens.
  • the lens having the maximum effective diameter may be the fourth lens 204.
  • the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side.
  • the lens surface having the maximum effective diameter may be the seventh surface S7 of the fourth lens 204.
  • the lens having the minimum effective diameter may be the second lens 202.
  • the lens surface having the minimum effective diameter may be the fourth surface S4 of the second lens 202.
  • the effective diameter of a plastic lens may be smaller than that of a glass lens.
  • a lens made of plastic may be placed adjacent to the image sensor.
  • the effective diameter of each lens can satisfy any one of the conditions below.
  • CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7
  • the refractive index of the fifth lens 205 is the highest among the lenses and may be greater than 1.6, for example, greater than 1.65.
  • One or all of the second lens 202, fourth lens 204, sixth lens 206, and seventh lens 207 may have the lowest refractive index among the lenses.
  • the refractive index of the second lens 202, the sixth lens 206, and the seventh lens 108 may be the minimum among the lenses, and may be less than 1.6, for example, less than 1.55.
  • the difference between the maximum and minimum refractive indices may be 0.2 or more.
  • the incident efficiency is increased, and the lens adjacent to the glass material lens and the lens adjacent to the image sensor 500 are provided as low refractive index lenses made of plastic. It is possible to guide the image sensor 500 by adjusting the refractive power between the lens materials.
  • the refractive index of each lens may satisfy any one of the conditions below.
  • the Abbe number of the third lens 203 is the largest among the lenses and may be 60 or more.
  • the Abbe number of the fifth lens 205 is the minimum among the lenses and may be 25 or less.
  • the difference between the maximum refractive index and the minimum Abbe number may be 40 or more.
  • the focal lengths F1, F2, F5, and F7 of the first, second, fifth, and seventh lenses 201, 202, 205, and 207 may have a negative (-) sign.
  • the first, second, fifth, and seventh lenses 201, 202, 205, and 207 may have negative refractive power.
  • the focal lengths F3, F4, and F6 of the third, fourth, and sixth lenses 203, 204, and 206 may have a positive (+) sign.
  • the third, fourth, and sixth lenses (203, 204, and 206) may have positive refractive power.
  • a third lens 203 with positive (+) refractive power may be disposed on the sensor side of the first lens 201 and the second lens 202 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
  • the fourth lens 204 has positive refractive power and the fifth lens 205 has negative refractive power, so according to conditions 1 and 2, the refractive index of the fourth lens 204 is It is smaller than the refractive index of the fifth lens 205, and the dispersion value of the fourth lens 204 is greater than that of the fifth lens 205.
  • Chromatic aberration occurring in plastic lenses can be corrected with plastic lenses.
  • the fourth lens 204 and the fifth lens 205 which are plastic lenses arranged in succession, satisfy the refractive index difference of 0.1 to 0.15 and the Abbe number difference of 20 to 50, thereby reducing chromatic aberration occurring in the plastic lens. It can be compensated with
  • the maximum value of the distance between two lenses with the largest Abbe number difference among two adjacent lenses may be smaller than the maximum value of the distance between two other adjacent lenses.
  • the distance may mean the distance between two lenses, from the optical axis to the effective diameter area.
  • the two lenses with the largest difference in Abbe number may be the fourth lens 204 and the fifth lens 205.
  • the maximum value may be less than the maximum value of the distance between two other adjacent lenses.
  • the absolute value of the focal length of each lens can satisfy any of the conditions below.
  • the thickness (T1) of the first lens 201 may be 1.1 times or more, for example, 1.2 to 1.5 times the difference between the maximum and minimum thickness, the center thickness (CT1) is the minimum, and the edge thickness (ET1) is the minimum. It can be maximum.
  • the thickness T2 of the second lens 202 may have a maximum thickness in the range of 1 to 1.5 times the minimum thickness.
  • the second lens 202 may have a maximum center thickness (CT2) and a minimum edge thickness (ET2).
  • the thickness T3 of the third lens 203 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness.
  • the thickness T4 of the fourth lens 204 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 2 to 2.5 times the minimum thickness.
  • the thickness T5 of the fifth lens 205 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness.
  • the thickness T6 of the sixth lens 206 may be maximum at the center and minimum at the edge, with the maximum thickness being in the range of 1.5 to 2 times the minimum thickness.
  • the thickness T7 of the seventh lens 207 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness.
  • the thickness of each lens can satisfy any of the conditions below.
  • Condition 7 0.5 ⁇ CT7/ET7 ⁇ 1, 1 ⁇ ET7/CT7 ⁇ 1.5
  • the first interval G1 between the first and second lenses 201 and 202 may be maximum at the center and minimum at the edges.
  • the second gap G2 between the second and third lenses 202 and 203 may be minimum at the center and maximum at the edges.
  • the third gap G3 between the third and fourth lenses 203 and 204 may be maximum at the edge and minimum at the center.
  • the fourth gap G4 between the fourth and fifth lenses 204 and 205 may be minimum at the center and maximum at the edges.
  • the fifth gap G5 between the fifth and sixth lenses 205 and 206 may be maximum at the center and minimum at the edges.
  • the sixth gap G6 between the sixth and seventh lenses 206 and 207 may be minimum at the center and maximum at the edges.
  • Figures 18, 20, and 22 are graphs showing the diffraction MTF (modulation transfer function) at room temperature, low temperature, and high temperature in the optical system of Figure 13, showing the luminance ratio (modulation) according to spatial frequency. This is the graph shown. 18, 20, and 22, in the second embodiment of the invention, the deviation of MTF from low or high temperature based on room temperature may be less than 10%, that is, 7% or less.
  • Figures 19, 21, and 23 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 13.
  • 19, 21, and 23 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right.
  • the X-axis may represent focal length (mm) and distortion (%)
  • the Y-axis may represent the height of the image.
  • the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm
  • the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm. .
  • the optical system 1100 according to the second embodiment has You can see that in most areas, the measured values are adjacent to the Y axis. That is, the optical system 1100 according to the second embodiment has improved resolution and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
  • FOV field of view
  • the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees
  • the room temperature is in the range of 22 degrees ⁇ 5 degrees or 18 to 27 degrees
  • the high temperature is 85 degrees or higher, for example, in the range of 85 to 205 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 19, 21, and 23 is less than 10%, for example, 5% or less, or is almost unchanged.
  • Table 6 compares the changes in optical properties such as EFL, BFL, F number (F#), TTL, and angle of view (FOV_D) at room temperature, low temperature, and high temperature in the optical system according to the first embodiment, and the change in optical properties at low temperature based on room temperature. It can be seen that the change rate of optical properties is 5% or less, for example, 3% or less, and the change rate of optical properties at low temperatures based on room temperature is 5% or less, for example, 3% or less.
  • the change in optical properties according to the temperature change from low to high temperature for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV_D) is 10% or less, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, temperature compensation for the plastic lenses is designed to prevent deterioration in the reliability of optical characteristics.
  • the optical system of the first embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
  • FOV field of view
  • FIG. 25 is a side cross-sectional view of an optical system and a camera module having the same according to a third embodiment
  • FIG. 26 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 25
  • FIG. 27 shows the thickness and thickness of each lens of the optical system of FIG. 25. This is a table showing the spacing between adjacent lenses
  • Figure 28 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 25
  • Figure 29 is a table showing the lenses of the first to seventh lenses in the optical system of Figure 25.
  • FIG. 30 is a graph showing data on the diffraction MTF at room temperature of the optical system of Figure 25
  • Figure 31 is a graph showing data on aberration characteristics at room temperature of the optical system of Figure 25
  • FIG. 32 is a graph showing data on the diffraction MTF (Modulation Transfer Function) at low temperature of the optical system of FIG. 25
  • FIG. 33 is a graph showing data on aberration characteristics at low temperature of the optical system of FIG. 25
  • FIG. 34 is a graph showing data on the diffraction MTF at high temperature of the optical system of FIG. 25
  • FIG. 35 is a graph showing data on aberration characteristics at high temperature of the optical system of FIG. 25
  • FIG. 36 is the amount of ambient light of the optical system of FIG. 25. This is a graph showing rain.
  • the optical system 1200 includes a lens unit, and the lens unit may include a first lens 301 to a seventh lens 307.
  • the first to seventh lenses 301 to 307 may be sequentially arranged along the optical axis OA of the optical system 1200.
  • Light corresponding to object information may pass through the first to seventh lenses 301 to 307 and the filter 600 and enter the image sensor 500.
  • the first lens 301 may be placed closest to the object.
  • the first lens 301 may be placed furthest from the sensor side.
  • the first lens 301 may have negative (-) refractive power at the optical axis (OA).
  • the first lens 301 may include a plastic material or a glass material, for example, a glass material.
  • the first lens 301 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and protect the entrance side of the optical system 1200.
  • the object-side first surface S1 of the first lens 301 may be convex, and the sensor-side second surface S2 may be concave.
  • the first lens 301 may have a meniscus shape that is convex toward the object.
  • the first lens 301 may have a meniscus shape that is concave toward the sensor.
  • the first lens 301 is made of glass and may have an aspherical surface. At least one or both of the first surface (S1) and the second surface (S2) may be aspherical.
  • the aspheric coefficients of the first and second surfaces S1 and S2 may be provided as S1 and S2 of L3 in FIG. 26. At least one or both of the first surface S1 and the second surface S2 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the second lens 302 may be further spaced apart from the first lens 301. That is, the center spacing between the first and second lenses 301 and 302 may be the largest within the lens unit.
  • the refractive index (n1) of the first lens 301 may satisfy the condition of n1>1.6 or n1>1.62.
  • the refractive index (n1) of the first lens 301 satisfies the above conditions, the radius of curvature of the first and second lenses 301 and 302 can be increased, and lens manufacturing can be easy.
  • the refractive index (n1) of the first lens 301 is less than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 301 and 302, and in this case, lens manufacturing is required. It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
  • the second lens 302 may be disposed second on the object side.
  • the second lens 302 may be placed sixth on the sensor side.
  • the second lens 302 may be disposed between the first lens 301 and the third lens 303.
  • the second lens 302 may have negative refractive power at the optical axis (OA).
  • the second lens 302 may include plastic or glass.
  • the second lens 302 may be made of plastic.
  • the object-side third surface S3 of the second lens 302 may be concave, and the sensor-side fourth surface S4 may be convex.
  • the second lens 302 may have a meniscus shape that is convex toward the sensor.
  • the second lens 302 may have a meniscus shape that is concave toward the object.
  • the second lens 302 is made of plastic and may be aspherical.
  • At least one or both of the third surface S3 and the fourth surface S4 may be aspherical.
  • the aspherical coefficients of the third and fourth surfaces S3 and S4 can be provided as S1 and S2 of L2 in FIG. 26. At least one or both of the third surface S3 and the fourth surface S4 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the aperture (Stop) may be disposed around the fourth surface (S4) on the sensor side of the second lens (302).
  • the aperture (Stop) may be disposed around the object-side fifth surface S5 of the third lens 303.
  • Aperture can reduce TTL within the range of view angle, and miniaturization of the optical system is possible. Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 40 to 50 degrees.
  • FOV_H horizontal angle of view
  • the third lens 303 may be arranged third from the object side.
  • the third lens 303 may be placed fifth on the sensor side.
  • the third lens 303 may be disposed between the second lens 302 and the fourth lens 304.
  • the third lens 303 may have positive (+) refractive power at the optical axis (OA).
  • the third lens 303 may include plastic or glass.
  • the third lens 303 may be made of glass.
  • the object-side fifth surface S5 of the third lens 303 may be convex, and the sensor-side sixth surface S6 may be convex.
  • the third lens 303 may have a convex shape on both sides.
  • the third lens 303 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fourth lens 304 may be placed fourth on the object side.
  • the fourth lens 304 may be placed fourth on the sensor side.
  • the fourth lens 304 may be disposed between the third lens 303 and the fifth lens 305.
  • the fourth lens 304 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fourth lens 304 may have positive (+) refractive power.
  • the fourth lens 304 may include plastic or glass.
  • the fourth lens 304 may be made of plastic.
  • the object-side seventh surface S7 of the fourth lens 304 may be convex, and the sensor-side eighth surface S8 may be convex.
  • the fourth lens 304 may have a convex shape on both sides.
  • the fourth lens 304 is made of plastic and may be aspherical. At least one or both of the seventh surface S7 and the eighth surface S8 may be aspherical.
  • the aspheric coefficients of the seventh and eighth surfaces (S7 and S8) can be provided as S1 and S2 of L4 in FIG. 26. At least one or both of the seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fifth lens 305 may be placed fifth on the object side.
  • the fifth lens 305 may be placed third on the sensor side.
  • the fifth lens 305 may be disposed between the fourth lens 304 and the sixth lens 306.
  • the fifth lens 305 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fifth lens 305 may have negative (-) refractive power.
  • the fifth lens 305 may include plastic or glass.
  • the fifth lens 305 may be made of plastic.
  • the object-side ninth surface S9 of the fifth lens 305 may be convex, and the sensor-side tenth surface S10 may be concave.
  • the fifth lens 305 may have a meniscus shape that is convex toward the object.
  • the fifth lens 305 may have a meniscus shape that is concave toward the sensor.
  • the fifth lens 305 is made of plastic and may be aspherical.
  • At least one or both of the ninth surface S9 and the tenth surface S10 may be aspherical.
  • the aspheric coefficients of the 9th and 10th surfaces (S9 and S10) can be provided as S1 and S2 of L5 in FIG. 26. At least one or both of the ninth surface S9 and the tenth surface S10 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the sixth lens 306 may be placed sixth on the object side.
  • the sixth lens 306 may be placed second on the sensor side.
  • the sixth lens 306 may be disposed between the fifth lens 305 and the seventh lens 307.
  • the sixth lens 306 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the sixth lens 306 may have positive (+) refractive power.
  • the sixth lens 306 may include plastic or glass.
  • the sixth lens 306 may be made of plastic.
  • the object-side 11th surface S11 of the sixth lens 306 may be convex and the sensor-side 12th surface S12 may be convex.
  • the sixth lens 306 may have a convex shape on both sides.
  • the sixth lens 306 is made of plastic and may be aspherical. At least one or both of the 11th surface (S11) and the 12th surface (S12) may be aspherical.
  • the aspheric coefficients of the 11th and 12th surfaces (S11 and S12) can be provided as S1 and S2 of L6 in FIG. 26.
  • the 11th surface S11 of the sixth lens 106 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the twelfth surface S12 of the sixth lens 106 may include a critical point from the optical axis OA to the end of the effective area.
  • the twelfth surface S12 may be located in a range of 75% to 80% of the effective radius r62 at the optical axis OA, preferably in a range of 76% to 77%.
  • the critical point of the twelfth surface S12 may be located in the range of 3.3 mm to 4 mm, preferably 3.5 mm to 3.6 mm, from the optical axis OA.
  • the seventh lens 307 may be placed furthest from the object.
  • the seventh lens 307 may be placed closest to the image sensor 500.
  • the seventh lens 307 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the seventh lens 307 may have negative (-) refractive power.
  • the seventh lens 307 may include plastic or glass.
  • the seventh lens 307 may be made of plastic.
  • the object-side 13th surface S13 of the seventh lens 307 may be convex, and the sensor-side 14th surface S14 may be concave.
  • the seventh lens 307 may have a meniscus shape that is convex toward the object.
  • the seventh lens 307 may have a meniscus shape that is concave toward the sensor.
  • At least one or both of the 13th surface (S13) and the 14th surface (S14) may be aspherical.
  • the aspheric coefficients of the 13th and 14th surfaces (S13 and S14) can be provided as S13 and S14 of L7 in FIG. 26.
  • the 13th surface S13 of the seventh lens 307 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the 14th surface S14 of the seventh lens 307 may include a critical point from the optical axis OA to the end of the effective area.
  • the 14th surface S14 may be located in a range of 65% to 75% of the effective radius r72 at the optical axis OA, preferably in a range of 69% to 72%.
  • the critical point of the 14th surface S14 may be located in the range of 3.5 mm to 4 mm, preferably 3.7 mm to 3.8 mm, from the optical axis OA.
  • the seventh lens 307 may be a plastic lens closest to the image sensor 500. Additionally, by arranging two or more plastic lenses adjacent to the image sensor 500, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 500, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing two lenses 306 and 307 adjacent to the image sensor 500 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
  • Table 7 shows the surface number (Surface), radius of curvature (Radius), center thickness of each lens or distance between lens surfaces (Thickness), refractive index (Index, nd), and Abbe number of the lens according to the third embodiment of the present invention. (Abbe,vd), effective radius (Semi Aperture), and focal length (Fcoal length). At this time, the unit of curvature radius and thickness or distance may be mm.
  • Table 8 shows the items of the above-described equations in the optical system 1200 of the third embodiment, including the total track length (mm), back focal length (BFL), and effective focal length (F) of the optical system 1200.
  • mm ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the 1st side (S1) to the 12th side (S12), Sum of refractive indices, sum of Abbe numbers, sum of thickness (mm), sum of spacing between adjacent lenses, effective diameter characteristics, sum of refractive indices of glass lenses, sum of refractive indices of plastic materials, angle of view (FOV_H) (Degree), edge thickness (ET), This is about F numbers, etc.
  • FOV_H Angle of view
  • ET edge thickness
  • the center thickness of the first to seventh lenses is expressed as CT1 to CT7
  • the edge thickness at the end of the effective area of each lens is expressed as ET1 to ET7
  • the center gap between two adjacent lenses is expressed as CT1 to CT7.
  • They are indicated as CG1 to CG6, and the edge spacing between the edges of each lens is indicated as EG1 to EG6.
  • Back focal length (BFL) is the optical axis distance from the image sensor 500 to the center of the last lens.
  • TTL is the optical axis distance from the center of the first surface S1 of the first lens 301 to the upper surface of the image sensor 500.
  • the lens surfaces of the first, second, fourth, fifth, sixth, and seventh lenses (301, 302, 304, 305, 306, and 307) among the lenses of the lens unit in the third embodiment may include an aspherical surface with a 30th order aspheric coefficient.
  • the first, second, fourth, fifth, sixth, and seventh lenses (301, 302, 304, 305, 306, and 307) may include lens surfaces having a 30th order aspherical coefficient.
  • an aspheric surface with a 30th order aspherical coefficient (a value other than “0”) can particularly significantly change the aspheric shape of the peripheral area, thereby improving the optical performance of the peripheral area of the field of view (FOV).
  • the thickness (T1-T7) of the first to seventh lenses (301-307) and the gap (G1-G6) between two adjacent lenses can be set. As shown in Figure 3, in the Y-axis direction, the thickness of each lens (T1-T7) can be expressed at intervals of 0.1mm or 0.2mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1mm or 0.2mm or more. It can be displayed every time.
  • the radius of curvature of the first surface S1 of the first lens 301 at the optical axis OA is the largest among the lenses
  • the radius of curvature of the first surface S1 of the fifth lens 305 is the largest among the lenses
  • the radius of curvature of the first surface S1 of the fifth lens 305 is the largest among the lenses.
  • the radius of curvature of (S10) may be the smallest among lenses.
  • the difference between the maximum radius of curvature and the minimum radius of curvature may be 3 times or more, for example, in the range of 3 to 5 times.
  • the radius of curvature of the lens constituting the optical system 1200 can be designed to be mostly small to satisfy the angle of view, focal length, and overall distance of the lens placed in the vehicle.
  • the lens placed on the object side of the plastic lens may have a strong refractive power to provide refraction to the plastic lens. Additionally, in order to strengthen the refractive power, the radius of curvature of the lens surface may be small.
  • the absolute value of the radius of curvature of the first surface (S1) of the first lens 301 may be greater than the absolute value of the radius of curvature of the second surface (S2).
  • the absolute value of the radius of curvature of the third surface (S3) of the second lens 302 may be smaller than the absolute value of the radius of curvature of the fourth surface (S4).
  • the absolute value of the radius of curvature of the fifth surface (S5) of the third lens 303 may be greater than the absolute value of the radius of curvature of the sixth surface (S6).
  • the absolute value of the radius of curvature of the seventh surface (S7) of the fourth lens 304 may be smaller than the absolute value of the radius of curvature of the eighth surface (S8).
  • the absolute value of the radius of curvature of the ninth surface (S9) of the fifth lens 305 may be greater than the absolute value of the radius of curvature of the tenth surface (S10).
  • the absolute value of the radius of curvature of the 11th surface (S11) of the sixth lens 306 may be greater than the absolute value of the radius of curvature of the 12th surface (S12).
  • the absolute value of the radius of curvature of the 13th surface (S13) of the seventh lens 307 may be greater than the absolute value of the radius of curvature of the 14th surface (S14).
  • the ratio of the radius of curvature of each lens may satisfy the following conditions.
  • the central thickness (CT4) of the fourth lens 304 is the largest among the lenses
  • the central thickness (CT4) of the first lens 301, the fifth lens 305, and the seventh lens 304 are the largest among the lenses.
  • the central thickness (CT1, CT5, CT7) of at least one of the lenses 307 is the minimum among the lenses.
  • the difference between the maximum and minimum center thickness of the lens may be in the range of 2 mm or more and 2.5 mm or less.
  • the center thickness of each lens may satisfy any one of the conditions below.
  • CT4 > CT3 > CT1, CT2, CT5, CT6, CT7
  • CT4 > CT1, CT2, CT3, CT6, CT7
  • CT2 CT2, CT3, CT4 > CT6 > CT1, CT5, CT7
  • the center distance (CG1) between the first lens 301 and the second lens 302 is the maximum, and the center distance between the 6th and 7th lenses 306 and 307 ( CG6) may be minimal.
  • the difference between the maximum center spacing and the minimum center spacing among the spaced lens spacing may be 3 mm or more, for example, in the range of 3 mm to 4 mm.
  • the center spacing between each lens can satisfy the following conditions.
  • a lens with the maximum effective diameter may be a glass lens.
  • the lens having the maximum effective diameter may be the fourth lens 304.
  • the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side.
  • the lens surface having the maximum effective diameter may be the seventh surface S7 of the fourth lens 304.
  • the lens having the minimum effective diameter may be the second lens 302.
  • the lens surface having the minimum effective diameter may be the fourth surface S4 of the second lens 302.
  • the effective diameter of a plastic lens may be smaller than that of a glass lens.
  • a lens made of plastic may be placed adjacent to the image sensor.
  • the effective diameter of each lens can satisfy any one of the conditions below.
  • CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7
  • the refractive index of the fifth lens 305 is the highest among the lenses and may be greater than 1.6, for example, greater than 1.65.
  • One or all of the second lens 302, fourth lens 304, sixth lens 306, and seventh lens 307 may have the lowest refractive index among the lenses.
  • the refractive index of the second lens 302, the sixth lens 306, and the seventh lens 108 may be the minimum among the lenses, and may be less than 1.6, for example, less than 1.55.
  • the difference between the maximum and minimum refractive indices may be 0.2 or more.
  • the incident efficiency is increased, and the lens adjacent to the glass material lens and the lens adjacent to the image sensor 500 are provided as low refractive index lenses made of plastic. It is possible to guide the image sensor 500 by adjusting the refractive power between the lens materials.
  • the refractive index of each lens may satisfy any one of the conditions below.
  • the Abbe number of the third lens 303 is the largest among the lenses and may be 60 or more.
  • the Abbe number of the fifth lens 305 is the minimum among the lenses and may be 25 or less.
  • the difference between the maximum refractive index and the minimum Abbe number may be 40 or more.
  • the Abbe number of each lens can satisfy any one of the conditions below.
  • the focal lengths F1, F2, F5, and F7 of the first, second, fifth, and seventh lenses 301, 302, 305, and 307 may have a negative (-) sign.
  • the first, second, fifth, and seventh lenses (301, 302, 305, and 307) may have negative refractive power.
  • the focal lengths F3, F4, and F6 of the third, fourth, and sixth lenses 303, 304, and 306 may have a positive (+) sign.
  • the third, fourth, and sixth lenses (303, 304, and 306) may have positive (+) refractive power.
  • a third lens 303 with positive (+) refractive power may be disposed on the sensor side of the first lens 301 and the second lens 302 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
  • the fourth lens 304 and the fifth lens 305 which are adjacent lenses, can satisfy the following conditions.
  • the fourth lens 304 has positive refractive power and the fifth lens 305 has negative refractive power, so according to conditions 1 and 2, the refractive index of the fourth lens 304 is It is smaller than the refractive index of the fifth lens 305, and the dispersion value of the fourth lens 304 is greater than that of the fifth lens 305.
  • Chromatic aberration occurring in plastic lenses can be corrected with plastic lenses.
  • the fourth lens 304 and the fifth lens 305 which are plastic lenses arranged in succession, satisfy the refractive index difference of 0.1 to 0.15 and the Abbe number difference of 20 to 50, thereby reducing chromatic aberration occurring in the plastic lens. It can be compensated with
  • Optical systems produce chromatic aberration, and chromatic aberration is corrected using a bonded lens or two lenses placed in series. As the temperature changes from low to high, the lens repeats contraction and expansion. Since lenses made of the same material have the same amount of change in lens characteristics due to temperature changes, it is effective to correct chromatic aberration between lenses made of the same material even if the temperature changes. Therefore, in the third embodiment of the present invention, chromatic aberration occurring in the plastic lens can be corrected using the fourth lens 304 and the fifth lens 305.
  • the maximum value of the distance between two lenses with the largest Abbe number difference among two adjacent lenses may be smaller than the maximum value of the distance between two other adjacent lenses.
  • the distance may mean the distance between two lenses, from the optical axis to the effective diameter area.
  • the two lenses with the largest difference in Abbe number may be the fourth lens 304 and the fifth lens 305.
  • the maximum value may be less than the maximum value of the distance between two other adjacent lenses.
  • the focal length of the first lens 301 is the largest among lenses and may be 70 or more to 80 or less.
  • the focal length of the sixth lens 306 is the minimum among the lenses, and the absolute value of the focal length of the sixth lens 306 may be 8 or more and 12 or less.
  • the focal length of the first lens 301 is the largest among the lenses and the refractive power is the weakest, so the difference in Abbe number between the second lens 302 and the third lens 303 disposed on the sensor side of the first lens 301 is Although it is not large, it has the effect of reducing chromatic aberration.
  • the absolute value of the focal length of each lens can satisfy any of the conditions below.
  • the thickness (T1) of the first lens 301 may be 1.5 times or more, for example, 1.5 to 2 times the difference between the maximum thickness and the minimum thickness, the center thickness (CT1) is the minimum, and the edge thickness (ET1) is the minimum. It can be maximum.
  • the thickness T2 of the second lens 302 may have a maximum thickness in the range of 1 to 1.5 times the minimum thickness.
  • the second lens 302 may have a minimum center thickness (CT2) and a maximum edge thickness (ET2).
  • the thickness T3 of the third lens 303 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness.
  • the thickness T4 of the fourth lens 304 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 2 to 2.5 times the minimum thickness.
  • the thickness T5 of the fifth lens 305 may be minimum at the center and maximum at the edge, with the maximum thickness being in the range of 1.2 to 1.7 times the minimum thickness.
  • the thickness T6 of the sixth lens 306 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness.
  • the thickness T7 of the seventh lens 307 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness.
  • the thickness of each lens can satisfy any of the conditions below.
  • Condition 7 0.5 ⁇ CT7/ET7 ⁇ 1, 1 ⁇ ET7/CT7 ⁇ 1.5
  • the first interval G1 between the first and second lenses 301 and 302 may be maximum at the center and minimum at the edges.
  • the second gap G2 between the second and third lenses 302 and 303 may be minimum at the center and maximum at the edges.
  • the third gap G3 between the third and fourth lenses 303 and 304 may be maximum at the edge and minimum at the center.
  • the fourth gap G4 between the fourth and fifth lenses 304 and 305 may be minimum at the center and maximum at the edges.
  • the fifth gap G5 between the fifth and sixth lenses 305 and 306 may be maximum at the center and minimum at the edges.
  • the sixth gap G6 between the sixth and seventh lenses 306 and 307 may be minimum at the center and maximum at the edges.
  • Figures 31, 33, and 35 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 25. 31, 33, and 35 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right.
  • the X-axis may represent focal length (mm) and distortion (%), and the Y-axis may represent the height of the image.
  • the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm
  • the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm.
  • the optical system 1200 according to the third embodiment has You can see that in most areas, the measured values are adjacent to the Y axis.
  • the optical system 1000 according to the third embodiment has improved resolution and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
  • the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees
  • the room temperature is in the range of 22 degrees ⁇ 5 degrees or 18 to 27 degrees
  • the high temperature is 85 degrees or higher, for example, in the range of 85 to 105 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 31, 33, and 35 is less than 10%, for example, 5% or less, or is almost unchanged.
  • Table 9 compares the changes in optical characteristics such as EFL, BFL, F number (F#), TTL, and angle of view (FOV_H) at room temperature, low temperature, and high temperature in the optical system according to the third embodiment, and the changes in optical properties at low temperature based on room temperature. It can be seen that the change rate of optical properties is 5% or less, for example, 3% or less, and the change rate of optical properties at low temperatures based on room temperature is 5% or less, for example, 3% or less.
  • the change in optical properties according to the temperature change from low to high temperature for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV_D) is 10% or less, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, temperature compensation for the plastic lenses is designed to prevent deterioration in the reliability of optical characteristics.
  • the optical system of the third embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
  • FOV field of view
  • Figure 37 is a side cross-sectional view of the optical system and a camera module having the same according to the fourth embodiment
  • Figure 38 is a table showing the aspheric coefficients of the lenses in the optical system of Figure 37
  • Figure 39 is the thickness and thickness of each lens of the optical system of Figure 37.
  • This is a table showing the spacing between adjacent lenses
  • Figure 40 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 37
  • Figure 41 is a table showing the lenses of the first to seventh lenses in the optical system of Figure 37.
  • Figure 42 is a graph showing data on the diffraction MTF (Modulation Transfer Function) at room temperature of the optical system of Figure 37
  • Figure 43 is a graph showing the aberration characteristics at room temperature of the optical system of Figure 37.
  • Figure 44 is a graph showing data on the diffraction MTF at low temperature of the optical system of Figure 37
  • Figure 45 is a graph showing data on aberration characteristics at low temperature of the optical system of Figure 37
  • Figure 46 is a graph showing data on the diffraction MTF at high temperature of the optical system of Figure 37
  • Figure 47 is a graph showing data on aberration characteristics at high temperature of the optical system of Figure 37
  • Figure 48 is the amount of ambient light of the optical system of Figure 37. This is a graph showing rain.
  • the optical system 1300 includes a lens unit, and the lens unit may include a first lens 401 to a seventh lens 407.
  • the first to seventh lenses 401 to 407 may be sequentially arranged along the optical axis OA of the optical system 1300.
  • Light corresponding to object information may pass through the first to seventh lenses 401 to 407 and the filter 600 and enter the image sensor 500.
  • the first lens 401 may be placed closest to the object.
  • the first lens 401 may be placed furthest from the sensor side.
  • the first lens 401 may have negative (-) refractive power at the optical axis (OA).
  • the first lens 401 may include a plastic material or a glass material, for example, a glass material.
  • the first lens 401 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and protect the entrance side of the optical system 1300.
  • the object-side first surface S1 of the first lens 401 may be convex, and the sensor-side second surface S2 may be concave.
  • the first lens 401 may have a meniscus shape that is convex toward the object.
  • the first lens 401 may have a meniscus shape that is concave toward the sensor.
  • the first lens 401 is made of glass and may have an aspherical surface. At least one or both of the first surface (S1) and the second surface (S2) may be aspherical.
  • the aspherical coefficients of the first and second surfaces S1 and S2 can be provided as S1 and S2 of L3 in FIG. 38. At least one or both of the first surface S1 and the second surface S2 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the second lens 402 may be further spaced apart from the first lens 401. That is, the center spacing between the first and second lenses 401 and 402 may be the largest within the lens unit.
  • the refractive index (n1) of the first lens 401 may satisfy the condition of n1>1.6 or n1>1.62.
  • the refractive index (n1) of the first lens 401 satisfies the above conditions, the radius of curvature of the first and second lenses 401 and 402 can be increased, and lens manufacturing can be easy.
  • the refractive index (n1) of the first lens 401 is less than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 401 and 402. In this case, the lens surface must be formed to be sharply concave or convex. It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
  • the second lens 402 may be disposed second on the object side.
  • the second lens 402 may be placed sixth on the sensor side.
  • the second lens 402 may be disposed between the first lens 401 and the third lens 403.
  • the second lens 402 may have negative refractive power at the optical axis (OA).
  • the second lens 402 may include plastic or glass.
  • the second lens 402 may be made of plastic.
  • the object-side third surface S3 of the second lens 402 may be concave, and the sensor-side fourth surface S4 may be convex.
  • the second lens 402 may have a meniscus shape that is convex toward the sensor.
  • the second lens 402 may have a meniscus shape that is concave toward the object.
  • the second lens 402 is made of plastic and may be aspherical.
  • At least one or both of the third surface S3 and the fourth surface S4 may be aspherical.
  • the aspheric coefficients of the third and fourth surfaces (S3 and S4) can be provided as S1 and S2 of L2 in FIG. 38. At least one or both of the third surface S3 and the fourth surface S4 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the aperture stop may be disposed around the fourth surface S4 on the sensor side of the second lens 402.
  • the aperture (Stop) may be disposed around the object-side fifth surface S5 of the third lens 403.
  • Aperture can reduce TTL within the range of view angle, and miniaturization of the optical system is possible. Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 40 to 50 degrees.
  • FOV_H horizontal angle of view
  • the object-side fifth surface S5 of the third lens 403 may be convex, and the sensor-side sixth surface S6 may be convex.
  • the third lens 403 may have a convex shape on both sides.
  • the third lens 403 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fourth lens 404 may be placed fourth on the object side.
  • the fourth lens 404 may be placed fourth on the sensor side.
  • the fourth lens 404 may be disposed between the third lens 403 and the fifth lens 405.
  • the fourth lens 404 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fourth lens 404 may have positive (+) refractive power.
  • the fourth lens 404 may include plastic or glass.
  • the fourth lens 404 may be made of plastic.
  • the object-side seventh surface S7 of the fourth lens 404 may be convex, and the sensor-side eighth surface S8 may be convex.
  • the fourth lens 404 may have a convex shape on both sides.
  • the fourth lens 404 is made of plastic and may be aspherical. At least one or both of the seventh surface (S7) and the eighth surface (S8) may be aspherical.
  • the aspherical coefficients of the seventh and eighth surfaces (S7 and S8) can be provided as S1 and S2 of L4 in FIG. 38. At least one or both of the seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the fifth lens 405 may be placed fifth on the object side.
  • the fifth lens 405 may be placed third on the sensor side.
  • the fifth lens 405 may be disposed between the fourth lens 404 and the sixth lens 406.
  • the fifth lens 405 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the fifth lens 405 may have negative (-) refractive power.
  • the fifth lens 405 may include plastic or glass.
  • the fifth lens 405 may be made of plastic.
  • the object-side ninth surface S9 of the fifth lens 405 may be convex, and the sensor-side tenth surface S10 may be concave.
  • the fifth lens 405 may have a meniscus shape that is convex toward the object.
  • the fifth lens 405 may have a meniscus shape that is concave toward the sensor.
  • the fifth lens 405 is made of plastic and may be aspherical.
  • At least one or both of the ninth surface S9 and the tenth surface S10 may be aspherical.
  • the aspherical coefficients of the 9th and 10th surfaces (S9, S10) can be provided as S1 and S2 of L5 in FIG. 38. At least one or both of the ninth surface S9 and the tenth surface S10 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the sixth lens 406 may be placed sixth on the object side.
  • the sixth lens 406 may be placed second on the sensor side.
  • the sixth lens 406 may be disposed between the fifth lens 405 and the seventh lens 407.
  • the sixth lens 406 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the sixth lens 406 may have positive (+) refractive power.
  • the sixth lens 406 may include plastic or glass.
  • the sixth lens 406 may be made of plastic.
  • the object-side 11th surface S11 of the sixth lens 406 may be convex and the sensor-side 12th surface S12 may be convex.
  • the sixth lens 406 may have a convex shape on both sides.
  • the sixth lens 406 is made of plastic and may be aspherical. At least one or both of the 11th surface (S11) and the 12th surface (S12) may be aspherical.
  • the aspheric coefficients of the 11th and 12th surfaces (S11 and S12) can be provided as S1 and S2 of L6 in FIG. 38.
  • the 11th surface S11 of the sixth lens 406 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the twelfth surface S12 of the sixth lens 406 may include a critical point from the optical axis OA to the end of the effective area.
  • the twelfth surface S12 may be located in a range of 65% to 75% of the effective radius r62 at the optical axis OA, preferably in a range of 70% to 73%.
  • the critical point of the twelfth surface S12 may be located in the range of 3 mm to 3.5 mm, preferably 3.3 mm to 3.4 mm, from the optical axis OA.
  • the seventh lens 407 may be placed furthest from the object.
  • the seventh lens 407 may be placed closest to the image sensor 500.
  • the seventh lens 407 may have positive (+) or negative (-) refractive power at the optical axis (OA).
  • the seventh lens 407 may have negative refractive power.
  • the seventh lens 407 may include plastic or glass.
  • the seventh lens 407 may be made of plastic.
  • the object-side 13th surface S13 of the seventh lens 407 may be convex, and the sensor-side 14th surface S14 may be concave.
  • the seventh lens 407 may have a meniscus shape that is convex toward the object.
  • the seventh lens 407 may have a meniscus shape that is concave toward the sensor.
  • At least one or both of the 13th surface (S13) and the 14th surface (S14) may be aspherical.
  • the aspheric coefficients of the 13th and 14th surfaces (S13 and S14) can be provided as S13 and S14 of L7 in FIG. 38.
  • the 13th surface S13 of the seventh lens 407 may be provided without a critical point from the optical axis OA to the end of the effective area.
  • the 14th surface S14 of the seventh lens 407 may include a critical point from the optical axis OA to the end of the effective area.
  • the 14th surface S14 may be located in the range of 60% to 70% of the effective radius r72 at the optical axis OA, preferably in the range of 63% to 66%.
  • the critical point of the 14th surface S14 may be located in the range of 3 mm to 3.5 mm, preferably 3.3 mm to 3.4 mm, from the optical axis OA.
  • the seventh lens 407 may be a plastic lens closest to the image sensor 500. Additionally, by arranging two or more plastic lenses adjacent to the image sensor 500, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 500, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing two lenses 406 and 407 adjacent to the image sensor 500 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
  • Table 10 shows the surface number (Surface), radius of curvature (Radius), center thickness of each lens or distance between lens surfaces (Thickness), refractive index (Index, nd), and Abbe number of the lens according to the fourth embodiment of the present invention. (Abbe,vd), effective radius (Semi Aperture), and focal length (Fcoal length). At this time, the unit of curvature radius and thickness or distance may be mm.
  • Table 11 shows the items of the above-described equations in the optical system 1300 of the embodiment, including the total track length (mm), back focal length (BFL), and effective focal length (F) of the optical system 1300 (mm). ), ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the 1st surface (S1) to the 16th surface (S16), refractive index sum , Abbe number sum, thickness sum (mm), sum of spacing between adjacent lenses, effective diameter characteristics, sum of refractive index of glass lens, sum of refractive index of plastic material, angle of view (FOV_H) (Degree), edge thickness (ET), F number It's about things like that.
  • the center thickness of the first to seventh lenses (401 to 407) is expressed as CT1 to CT7
  • the edge thickness at the end of the effective area of each lens is expressed as ET1 to ET7
  • the center gap between two adjacent lenses is expressed as CT1 to CT7.
  • They are indicated as CG1 to CG6, and the edge spacing between the edges of each lens is indicated as EG1 to EG6.
  • Back focal length (BFL) is the optical axis distance from the image sensor 500 to the center of the last lens.
  • TTL is the optical axis distance from the center of the first surface S1 of the first lens 401 to the upper surface of the image sensor 500.
  • the lens surfaces of the first, second, fourth, fifth, sixth, and seventh lenses (401, 402, 404, 405, 406, and 407) among the lenses of the lens unit in the fourth embodiment may include an aspherical surface with a 30th order aspherical coefficient.
  • the first, second, fourth, fifth, sixth, and seventh lenses (401, 402, 404, 405, 406, and 407) may include lens surfaces having a 30th order aspherical coefficient.
  • an aspheric surface with a 30th order aspheric coefficient (a value other than “0”) can particularly significantly change the shape of the aspherical surface in the peripheral area, so the optical performance of the peripheral area of the field of view (FOV) can be well corrected.
  • the thickness (T1-T7) of the first to seventh lenses (401-407) and the gap (G1-G6) between two adjacent lenses can be set. As shown in Figure 3, in the Y-axis direction, the thickness of each lens (T1-T7) can be expressed at intervals of 0.1mm or 0.2mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1mm or 0.2mm or more. It can be displayed every time.
  • the radius of curvature of the ninth surface S9 of the fifth lens 405 at the optical axis OA is the largest among the lenses
  • the radius of curvature of the third surface S9 of the second lens 402 is the largest among the lenses.
  • the radius of curvature of (S3) may be the smallest among lenses.
  • the difference between the maximum radius of curvature and the minimum radius of curvature may be 15 times or more, for example, in the range of 15 to 25 times.
  • the radius of curvature of the lens constituting the optical system 1300 can be designed to be mostly small to satisfy the angle of view, focal length, and overall distance of the lens placed in the vehicle.
  • the lens placed on the object side of the plastic lens may have a strong refractive power to provide refraction to the plastic lens. Additionally, in order to strengthen the refractive power, the radius of curvature of the lens surface may be small.
  • the absolute value of the radius of curvature of the ninth surface (S9) of the fifth lens 405 may be greater than the absolute value of the radius of curvature of the tenth surface (S10).
  • the absolute value of the radius of curvature of the 11th surface (S11) of the sixth lens 406 may be greater than the absolute value of the radius of curvature of the 12th surface (S12).
  • the absolute value of the radius of curvature of the 13th surface (S13) of the seventh lens 407 may be greater than the absolute value of the radius of curvature of the 14th surface (S14).
  • the ratio of the radius of curvature of each lens may satisfy the following conditions.
  • the central thickness (CT4) of the fourth lens 404 is the largest among the lenses
  • the central thickness (CT4) of the first lens 401, the fifth lens 405, and the seventh lens 404 are the largest among the lenses.
  • the central thickness (CT1, CT5, CT7) of at least one of the lenses 407 is the minimum among the lenses.
  • the difference between the maximum and minimum center thickness of the lens may be in the range of 2 mm or more and 2.5 mm or less.
  • the center thickness of each lens may satisfy any one of the conditions below.
  • CT4 > CT2 > CT1, CT3, CT5, CT6, CT7
  • CT2 CT2, CT4, CT6 > CT3 > CT1, CT5, CT7
  • CT4 > CT1, CT2, CT3, CT5, CT6, CT7
  • CT2 CT4 > CT6 > CT1, CT3, CT5, CT7
  • the center spacing (CG1) between the first lens 401 and the second lens 402 is the maximum
  • the center spacing between the third and fourth lenses 403 and 404 At least one of CG3
  • the center distance CG6 between the sixth and seventh lenses 406 and 407 may be minimum.
  • the difference between the maximum center spacing and the minimum center spacing among the spaced lens spacing may be 3 mm or more, for example, in the range of 3 mm to 4 mm.
  • the center spacing between each lens can satisfy the following conditions.
  • a lens with the maximum effective diameter may be a glass lens.
  • the lens with the maximum effective diameter may be the fourth lens 404.
  • the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side.
  • the lens surface having the maximum effective diameter may be the seventh surface S7 of the fourth lens 404.
  • the lens with the minimum effective diameter may be the second lens 402.
  • the lens surface having the minimum effective diameter may be the fourth surface S4 of the second lens 402.
  • the effective diameter of a plastic lens may be smaller than that of a glass lens.
  • a lens made of plastic may be placed adjacent to the image sensor.
  • the effective diameter of each lens can satisfy any of the conditions below.
  • CA_L4 CA_L7 > CA_L1 > CA_L2, CA_L3, CA_L5, CA_L6
  • CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7
  • the refractive index of the first lens 401 is the highest among the lenses and may be greater than 1.8, for example, greater than 1.81.
  • One or all of the second lens 402, fourth lens 404, sixth lens 406, and seventh lens 407 may have the lowest refractive index among the lenses.
  • the refractive index of the second lens 402, the sixth lens 406, and the seventh lens 108 may be the minimum among the lenses, and may be less than 1.6, for example, less than 1.55.
  • the difference between the maximum and minimum refractive indices may be 0.2 or more.
  • the incident efficiency is increased, and the lens adjacent to the glass material lens and the lens adjacent to the image sensor 500 are provided as low refractive index lenses made of plastic. It is possible to guide the image sensor 500 by adjusting the refractive power between the lens materials.
  • the refractive index of each lens may satisfy any one of the conditions below.
  • the Abbe number of at least one of the second lens 402, fourth lens 404, sixth lens 406, and seventh lens 407 is the maximum among the lenses and may be 50 or more.
  • the Abbe number of the fifth lens 405 is the minimum among the lenses and may be 25 or less.
  • the difference between the maximum refractive index and the minimum Abbe number may be 40 or more.
  • the Abbe number of each lens can satisfy any one of the conditions below.
  • the focal lengths F1, F2, F5, and F7 of the first, second, fifth, and seventh lenses 401, 402, 405, and 407 may have a negative (-) sign.
  • the first, second, fifth, and seventh lenses (401, 402, 405, and 407) may have negative refractive power.
  • the focal lengths F3, F4, and F6 of the third, fourth, and sixth lenses 403, 404, and 406 may have a positive (+) sign.
  • the third, fourth, and sixth lenses (403, 404, and 406) may have positive (+) refractive power.
  • a third lens 403 with positive (+) refractive power may be disposed on the sensor side of the first lens 401 and the second lens 402 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
  • the fourth lens 404 and the fifth lens 405, which are adjacent lenses, can satisfy the following conditions.
  • the fourth lens 404 has positive refractive power and the fifth lens 405 has negative refractive power, so according to conditions 1 and 2, the refractive index of the fourth lens 404 is It is smaller than the refractive index of the fifth lens 405, and the dispersion value of the fourth lens 404 is greater than that of the fifth lens 405.
  • Chromatic aberration occurring in plastic lenses can be corrected with plastic lenses.
  • the fourth lens 404 and the fifth lens 405, which are plastic lenses arranged in succession satisfy the refractive index difference of 0.1 to 0.15 and the Abbe number difference of 20 to 50, thereby reducing chromatic aberration occurring in the plastic lens. It can be compensated with
  • Optical systems produce chromatic aberration, and chromatic aberration is corrected using a bonded lens or two lenses placed in series. As the temperature changes from low to high, the lens repeats contraction and expansion. Since lenses made of the same material have the same amount of change in lens characteristics due to temperature changes, it is effective to correct chromatic aberration between lenses made of the same material even if the temperature changes. Therefore, in the fourth embodiment of the present invention, chromatic aberration occurring in the plastic lens can be corrected using the fourth lens 404 and the fifth lens 405.
  • the maximum value of the distance between two lenses with the largest Abbe number difference among two adjacent lenses may be smaller than the maximum value of the distance between two other adjacent lenses.
  • the distance may mean the distance between two lenses, from the optical axis to the effective diameter area.
  • the two lenses with the largest difference in Abbe number may be the fourth lens 404 and the fifth lens 405.
  • the maximum value may be less than the maximum value of the distance between two other adjacent lenses.
  • the focal length of the first lens 401 is the largest among lenses and may be 100 or more and 120 or less.
  • the focal length of the fifth lens 405 is the minimum among the lenses, and the absolute value of the focal length of the fifth lens 405 may be 10 or more and 12 or less.
  • the focal length of the first lens 401 is the largest among the lenses and the refractive power is the weakest, so the difference in Abbe number between the second lens 402 and the fourth lens 404 disposed on the sensor side of the first lens 401 is Although it is not large, it is effective in reducing chromatic aberration.
  • the absolute value of the focal length of each lens can satisfy any of the conditions below.
  • the thickness T1 of the first lens 401 may be 1.5 to 2 times the difference between the maximum thickness and the minimum thickness, the center thickness CT1 may be the minimum, and the edge thickness ET1 may be the maximum.
  • the thickness T2 of the second lens 402 may have a maximum thickness in the range of 1 to 1.5 times the minimum thickness.
  • the second lens 402 may have a maximum center thickness (CT2) and a minimum edge thickness (ET2).
  • CT2 maximum center thickness
  • ET2 minimum edge thickness
  • the thickness T3 of the third lens 403 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness.
  • the thickness T4 of the fourth lens 404 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 2 to 2.5 times the minimum thickness.
  • the thickness T5 of the fifth lens 405 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness.
  • the thickness T6 of the sixth lens 406 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness.
  • the thickness T7 of the seventh lens 407 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness.
  • the thickness of each lens can satisfy any of the conditions below.
  • Condition 7 0.5 ⁇ CT7/ET7 ⁇ 1, 1.2 ⁇ ET7/CT7 ⁇ 1.7
  • the first interval G1 between the first and second lenses 401 and 402 may be maximum at the center and minimum at the edges.
  • the second gap G2 between the second and third lenses 402 and 403 may be minimum at the center and maximum at the edges.
  • the third gap G3 between the third and fourth lenses 403 and 404 may be maximum at the edge and minimum at the center.
  • the fourth gap G4 between the fourth and fifth lenses 404 and 405 may be minimum at the center and maximum at the edges.
  • the fifth gap G5 between the fifth and sixth lenses 405 and 406 may be maximum at the center and minimum at the edges.
  • the sixth gap G6 between the sixth and seventh lenses 406 and 407 may be minimum at the center and maximum at the edges.
  • Figures 42, 44, and 46 are graphs showing the diffraction MTF (modulation transfer function) at room temperature, low temperature, and high temperature in the optical system of Figure 37, showing the luminance ratio (modulation) according to spatial frequency. This is the graph shown. 42, 44, and 46, in the fourth embodiment of the invention, the deviation of MTF from low or high temperature based on room temperature may be less than 10%, that is, 7% or less.
  • Figures 43, 45, and 47 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 37.
  • 43, 45, and 47 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right.
  • the X-axis may represent focal length (mm) and distortion (%)
  • the Y-axis may represent the height of the image.
  • the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm
  • the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm.
  • the optical system 1300 according to the fourth embodiment has improved resolution and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
  • the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees
  • the room temperature is in the range of 22 degrees ⁇ 5 degrees or 18 to 27 degrees
  • the high temperature is 85 degrees or higher, for example, in the range of 85 to 405 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 43, 45, and 47 is less than 10%, for example, 5% or less, or is almost unchanged.
  • Table 12 compares the changes in optical characteristics such as EFL, BFL, F number (F#), TTL, and angle of view (FOV_H) at room temperature, low temperature, and high temperature in the optical system according to the fourth embodiment, and the changes in optical properties at low temperature based on room temperature. It can be seen that the change rate of optical properties is 5% or less, for example, 3% or less, and the change rate of optical properties at low temperatures based on room temperature is 5% or less, for example, 3% or less.
  • the change in optical properties according to the temperature change from low to high temperature for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV_D) is 10% or less, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, temperature compensation for the plastic lenses is designed to prevent deterioration in the reliability of optical characteristics.
  • the optical system of the fourth embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
  • FOV field of view
  • the optical systems 1000, 1100, 1200, and 1300 according to the first to fourth embodiments disclosed above may satisfy at least one or two of the equations described below. Accordingly, the optical systems 1000, 1100, 1200, and 1300 according to the first to fourth embodiments may have improved optical characteristics.
  • the optical system (1000, 1100, 1200, 1300) satisfies at least one mathematical equation
  • the optical system (1000, 1100, 1200, 1300) can effectively control aberration characteristics such as chromatic aberration and distortion aberration, Good optical performance can be achieved not only in the center of the field of view (FOV) but also in the periphery.
  • the optical systems 1000, 1100, 1200, and 1300 may have improved resolution.
  • the meaning of the thickness of the lens at the optical axis (OA) and the distance between the adjacent lenses at the optical axis (OA) described in the equations may refer to the first to fourth embodiments disclosed above.
  • f1 means the focal length of the first lens (101, 201, 301, 401).
  • the optical system can be set to have a shorter effective focal length compared to TTL. If Equation 1 is satisfied, the light incident from the object side to the first lens (101, 201, 301, 401) can be guided in the direction that converges from the optical axis, and if the refractive power of the first lens (101, 201, 301, 401) disposed closest to the object side is weak, the sensor Even if the difference from the Abbe number of the lens placed on the side is not large, chromatic aberration can be corrected. Additionally, the entire optical system may have a stable structure that spreads and collects light. In the first to fourth embodiments, preferably, 50 ⁇
  • Equation 2
  • the first lens group (LG1) refers to a lens group arranged on the object side based on the aperture (STOP).
  • STOP aperture
  • the optical system can have good optical performance at the set angle of view.
  • ⁇ 30 can be satisfied.
  • Equation 3 is the Abbe number of the first lens (101, 201, 301, 401).
  • the total focal length of the first lens group (LG1) has a negative (-) sign
  • the negative (-) focal length included in the first lens group (LG1) has a negative (-) sign.
  • Equation 3 may preferably satisfy 50 ⁇ v1 ⁇ 60
  • Equation 3 may preferably satisfy 20 ⁇ v1 ⁇ 30.
  • Equation 4 is the Abbe number of the second lens (102, 202, 302, 402).
  • the total focal length of the first lens group (LG1) has a negative (-) sign
  • the negative (-) focal length included in the first lens group (LG1) has a negative (-) sign.
  • Equation 4 may preferably satisfy 50 ⁇ v2 ⁇ 58.
  • Equation 5 is the Abbe number of the fifth lens (105, 205, 305, 405).
  • the total focal length of the second lens group (LG2) has a positive (+) sign, and is adjacent to the object side within the second lens group (LG2) and has a positive (+) sign.
  • Equation 5 may preferably satisfy 18 ⁇ v5 ⁇ 22.
  • Equation 6 CG1 is the center distance between the first lenses (101, 201, 301, 401) and the second lenses (102, 202, 302, 402), and ⁇ CG is the sum of the distances between adjacent lenses. If Equation 6 is satisfied, the light emitted from the first lens (101, 201, 301, 401), which has a large influence on the entire optical system, sets the optical path incident on the remaining lenses, and the optical system can have good optical performance at the set angle of view and focal distance. . In the first to fourth embodiments, Equation 6 may preferably satisfy 0.3 ⁇ CG1 / ⁇ CG ⁇ 0.5.
  • Equation 7 CG1 is the center distance between the first lenses (101, 201, 301, 401) and the second lenses (102, 202, 302, 402), and ⁇ CT is the sum of the center thicknesses of the lenses. If Equation 7 is satisfied, the light emitted from the first lens (101, 201, 301, 401), which has a large influence on the entire optical system, sets the optical path through which it is incident on the remaining lenses, and the optical system can have good optical performance at the set angle of view and focal distance. . In the first to fourth embodiments, Equation 7 may preferably satisfy 0.1 ⁇ ⁇ CT / ⁇ CG ⁇ 0.2.
  • Equation 8 is the center distance between the first lens (101, 201, 301, 401) and the second lens (102, 202, 302, 402), and is the distance from the center of the first surface (S1) of the first lens (101, 201, 301, 401) to the upper surface of the image sensor 500.
  • TTL which is the distance (mm) from the optical axis (OA)
  • Equation 8 is satisfied, the light emitted from the first lens (101, 201, 301, 401), which has a large influence on the entire optical system, sets the optical path incident on the remaining lenses, and the optical system can have good optical performance at the set angle of view and focal distance.
  • Equation 8 may preferably satisfy 0.1 ⁇ CG1 / TTL ⁇ 0.15.
  • Equation 9 is the sum of the central thicknesses ( ⁇ CT) of the first to seventh lenses (101-107, 201-207, 301-307, 401-407) and the image sensor 500 at the center of the first surface (S1) of the first lenses (101, 201, 301, 401).
  • TTL which is the distance (mm) from the optical axis (OA) to the upper surface of ).
  • OA optical axis
  • Equation 9 may preferably satisfy 0.5 ⁇ ⁇ CT / TTL ⁇ 0.8.
  • Equation 10 is the sum ( ⁇ CG) of the spacing of adjacent lenses among the first to seventh lenses (101-107, 201-207, 301-307, 401-407) and the optical axis from the center of the first surface (S1) to the top surface of the image sensor 500.
  • TTL which is the distance (mm) in (OA).
  • OA the distance
  • the power of the lenses must be increased, and to increase the power, the lenses become thicker. If it is less than the lower limit of Equation 10, the sum of the lens thicknesses becomes small and the refractive power becomes weaker, making it weaker than the desired power.
  • Equation 10 may preferably satisfy 0.1 ⁇ ⁇ CG / TTL ⁇ 0.3.
  • Equation 11 ⁇ CT is the sum of the central thicknesses of the lenses, and ⁇ CG is the sum of the spacing between adjacent lenses. If Equation 11 is satisfied, the optical system can have good optical performance at the set angle of view and focal length, and can reduce TTL. In the first to fourth embodiments, Equation 11 may preferably satisfy 3 ⁇ ⁇ CT / ⁇ CG ⁇ 3.5.
  • Equation 12 ⁇ Abb means the sum of Abbe's numbers of each of the plurality of lenses, and ⁇ Index means the sum of the refractive indices at the d-line of each of the plurality of lenses. If Equation 12 is satisfied, the optical systems (1000, 1100, 1200, and 1300) can have improved aberration characteristics and resolution. Optical characteristics can be controlled by using Equation 12 to set the sum of the Abbe numbers and refractive indices of the lenses. In the first to fourth embodiments, Equation 12 may satisfy 28 ⁇ ⁇ Abb / ⁇ Index ⁇ 33.
  • Equation 13 ⁇ CT is the sum of the center thicknesses of the lenses, and ⁇ ET is the end of the effective area of the lenses, that is, the sum of the edge thicknesses. If Equation 13 is satisfied, the optical system can have good optical performance at the set angle of view and focal length, and can reduce TTL. In the first to fourth embodiments, Equation 13 may preferably satisfy 1 ⁇ ⁇ CT / ⁇ ET ⁇ 1.3.
  • Equation 14 CT1 is the center thickness of the first lens (101, 201, 301, 401), and ET1 is the edge thickness of the first lens (101, 201, 301, 401).
  • CT1 is the center thickness of the first lens (101, 201, 301, 401)
  • ET1 is the edge thickness of the first lens (101, 201, 301, 401).
  • Equation 15 GLCa_AVER represents the average effective diameter of glass lenses, and PLCa_AVER represents the average effective diameter of plastic lenses.
  • the lens barrel on which the lens unit is disposed has at least one inner barrel within the lens barrel, and at least some of the plastic lenses included in the lens unit may be disposed in the inner barrel. In the case of plastic lenses, the amount of expansion is large at high temperatures, so more space is required within the lens barrel.
  • the effective diameter size of the glass lens and the effective diameter size of the plastic lens in Equation 15 By setting the effective diameter size of the glass lens and the effective diameter size of the plastic lens in Equation 15, deterioration of optical characteristics due to temperature changes can be suppressed, and the optical system (1000, 1100, 1200, 1300) can control the incident light. You can set the factors that affect aberration.
  • Equation 15 may preferably satisfy 0.5 ⁇ GLCa_AVER/PLCa_AVER ⁇ 1.2.
  • CA_L1S1 means the effective diameter of the first surface (S1) of the first lens (101, 201, 301, 401)
  • CA_L1S2 means the effective diameter of the second surface (S2) of the first lens (101, 201, 301, 401). If Equation 16 is satisfied, the deterioration of optical properties due to temperature changes can be suppressed, the optical system (1000, 1100, 1200, 1300) can control the incident light, and factors affecting aberration can be set. there is. In the first to fourth embodiments, Equation 16 may preferably satisfy 1 ⁇ CA_L1S1 / CA_L1S2 ⁇ 1.5.
  • CA_L1 refers to the effective diameter of the first lens (101, 201, 301, 401)
  • CA_L7 refers to the effective diameter of the seventh lens (107, 207, 307, 407).
  • the lens barrel on which the lens unit is disposed has at least one inner barrel within the lens barrel, and at least some of the plastic lenses included in the lens unit may be disposed in the inner barrel. In the case of plastic lenses, the amount of expansion is large at high temperatures, so more space is required within the lens barrel.
  • Equation 17 which sets the relationship between the effective diameter of the first lenses (101, 201, 301, 401) made of glass and the effective diameter of the seventh lenses (107, 207, 307) made of plastic, is satisfied, the deterioration of optical properties due to temperature changes can be suppressed.
  • the optical systems (1000, 1100, 1200, and 1300) can control incident light and set factors affecting aberration.
  • Equation 17 may preferably satisfy 0.8 ⁇ CA_L1 / CA_L7 ⁇ 1.2.
  • Equation 18 can establish the relationship between the size of the effective diameter (CA_L1) of the first lens (101, 201, 301, 401) and ImgH is the maximum diagonal length of the image sensor. If Equation 18 is satisfied, the TTL suitable for the vehicle optical system is satisfied and the set angle of view can be satisfied. If it is less than the lower limit of Equation 18, the effective diameter of the lens disposed in the optical system (1000, 1100, 1200, 1300) becomes the largest, which causes a problem in that the TTL becomes longer. If the upper limit of Equation 18 is exceeded, there is a problem that the angle of view becomes too large than the angle of view satisfied by the optical system (1000, 1100, 1200, 1300). In the first to fourth embodiments, Equation 18 may preferably satisfy 1.8 ⁇ CA_L1 / ImgH ⁇ 2.2.
  • Equation 19 CT_Max is the maximum central thickness among the lenses, and CG_Max is the maximum spacing between adjacent lenses. If Equation 19 is satisfied, the optical system can have good optical performance at the set angle of view and focal distance, and can reduce TTL. In the first to fourth embodiments, Equation 19 may preferably satisfy 1.2 ⁇ CT_Max / CG_Max ⁇ 2.
  • Equation 20 CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses, and CA_Min represents the minimum effective diameter among the object sides and sensor sides of the lenses. If Equation 20 is satisfied, the optical system can maintain optical performance and set the size for a slim and compact structure. In the first to fourth embodiments, Equation 20 may preferably satisfy 1.2 ⁇ CA_max / CA_min ⁇ 1.5.
  • Equation 21 CA_max represents the maximum effective diameter of the object sides and sensor sides of the lenses, and CA_Aver represents the average of the effective diameters of the object sides and sensor sides of the lenses. If Equation 21 is satisfied, the optical system can maintain optical performance and set the size for a slim and compact structure. In the first to fourth embodiments, Equation 21 may preferably satisfy 1 ⁇ CA_max / CA_Aver ⁇ 1.5.
  • Equation 22 CA_Min represents the minimum effective diameter among the object sides and sensor sides of the lenses, and CA_Aver represents the average of the effective diameters of the object sides and sensor sides of the lenses. If Equation 22 is satisfied, the optical system can maintain optical performance and set a size for a slim and compact structure. In the first to fourth embodiments, Equation 22 may preferably satisfy 0.7 ⁇ CA_min / CA_Aver ⁇ 0.9.
  • Equation 23 CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses, and Imgh represents 1/2 of the maximum diagonal length of the image sensor 500. If Equation 23 is satisfied, the optical system can maintain good optical performance and set a size for a slim and compact structure. In the first to fourth embodiments, Equation 23 may preferably satisfy 2 ⁇ CA_max / ImgH ⁇ 2.5.
  • TTL Total track length means the distance (mm) from the center of the first surface (S1) of the first lens (101, 201, 301, 401) to the upper surface of the image sensor 500 on the optical axis (OA). If Equation 24 is satisfied, a suitable automotive optical system can be provided. In the first to fourth embodiments, equation 24 may preferably satisfy 28 ⁇ TTL ⁇ 31.
  • Equation 25 means 1/2 of the maximum diagonal length of the image sensor 500. Equation 25 can set the diagonal size (ImgH) of the image sensor 500 and provide an optical system having a sensor size for a vehicle. In the first to fourth embodiments, Equation 25 may preferably satisfy 5 ⁇ ImgH ⁇ 5.5.
  • Equation 26 is the optical axis distance from the image sensor 500 to the center of the sensor side of the last lens. If Equation 26 is satisfied, installation space for the filter 600 and cover glass can be secured, assembly of components can be improved through the gap between the image sensor 500 and the last lens, and coupling reliability can be improved. . In the first to fourth embodiments, Equation 26 may preferably satisfy 3 ⁇ BFL ⁇ 3.5. If the BFL is less than the range of Equation 26, some of the light traveling to the image sensor may not be transmitted to the image sensor, which may cause resolution deterioration. If the BFL exceeds the range of Equation 26, stray light may enter and the aberration characteristics of the optical system may deteriorate.
  • Equation 27 can set the overall focal length (F) to suit the vehicle optical system. In the first to fourth embodiments, Equation 27 may satisfy 10 ⁇ F ⁇ 11.
  • FOV_H refers to the horizontal angle of view (Degree) of the optical system (1000, 1100, 1200, 1300), and can provide an angle of view suitable for the vehicle optical system.
  • 45 ⁇ FOV_H ⁇ 50 may be preferably satisfied.
  • Equation 29 determines the largest effective diameter (mm) among the object side and sensor side of the plurality of lenses, and TTL (Total track length) refers to the image from the vertex of the first surface (S1) of the first lens (101, 201, 301, 401). It means the distance (mm) from the optical axis (OA) to the upper surface of the sensor 500. Equation 29 establishes the relationship between the total optical axis length of the optical system and the maximum effective diameter, thereby providing an improved optical system for vehicles. In the first to fourth embodiments, Equation 29 may preferably satisfy 2.5 ⁇ TTL / CA_max ⁇ 2.7.
  • TTL Total track length
  • OA optical axis
  • ImgH the image It means 1/2 of the maximum diagonal length of the sensor 500.
  • the optical systems 1000, 1100, 1200, and 1300 can have a TTL for application to the automotive image sensor 500, thereby providing improved image quality.
  • equation 30 may preferably satisfy 5 ⁇ TTL / ImgH ⁇ 6.
  • Equation 31 BFL is the optical axis distance from the image sensor 500 to the center of the sensor side of the last lens, and ImgH is 1/2 of the maximum diagonal length of the image sensor 500. If Equation 31 is satisfied, the optical system (1000, 1100, 1200, 1300) can secure the BFL (Back focal length) to apply the size of the vehicle image sensor 500, and the last lens and image sensor 500 The distance between them can be set, and good optical characteristics can be achieved in the center and periphery of the field of view (FOV). In the first to fourth embodiments, Equation 31 may preferably satisfy 0.5 ⁇ BFL / ImgH ⁇ 0.7.
  • Equation 32 shows that TTL (Total track length) means the distance (mm) on the optical axis (OA) from the vertex of the first surface (S1) of the first lens (101, 201, 301, 401) to the upper surface of the image sensor 500, BFL refers to the optical axis distance from the image sensor 500 to the center of the sensor side of the last lens. If Equation 32 is satisfied, the optical system (1000, 1100, 1200, 1300) can secure BFL. In the first to fourth embodiments, Equation 32 may preferably satisfy 7 ⁇ TTL / BFL ⁇ 9.
  • TTL Total track length
  • OA optical axis
  • F the optical system is the effective focal length of Accordingly, an optical system for a driver assistance system can be provided. If the optical system (1000, 1100, 1200, 1300) according to the embodiment satisfies Equation 33, the optical system (1000, 1100, 1200, 1300) can have an appropriate focal length in the set TTL range, and the temperature range from low to high temperature.
  • Equation 33 may preferably satisfy 2.5 ⁇ TTL / F ⁇ 3.
  • Equation 34 F is the effective focal length of the optical system, and BFL is the optical axis distance from the image sensor 500 to the center of the sensor side of the last lens. If Equation 34 is satisfied, the optical systems 1000, 1100, 1200, and 1300 can have a set angle of view and an appropriate focal length, and an optical system for a vehicle can be provided. Additionally, the optical systems 1000, 1100, 1200, and 1300 can minimize the gap between the last lens and the image sensor 500, so that they can have good optical characteristics at the periphery of the field of view (FOV). In the first to fourth embodiments, Equation 34 may preferably satisfy 3 ⁇ F / BFL ⁇ 3.5.
  • Equation 35 F is the effective focal length of the optical system, and ImgH means 1/2 of the maximum diagonal length of the image sensor 500.
  • These optical systems 1000, 1100, 1200, and 1300) may have improved aberration characteristics in the size of the vehicle image sensor 500.
  • Equation 35 may preferably satisfy 2 ⁇ F / ImgH ⁇ 2.5.
  • Z is Sag and can mean the distance in the optical axis direction from an arbitrary position on the aspherical surface to the vertex of the aspherical surface.
  • Y may mean the distance from any location on the aspherical surface to the optical axis in a direction perpendicular to the optical axis.
  • c may refer to the curvature of the lens, and K may refer to the Conic constant.
  • A, B, C, D, E, and F may mean aspheric constants.
  • the optical systems 1000, 1100, 1200, and 1300 according to the first to fourth embodiments may satisfy at least one or two of Equations 1 to 36.
  • the optical systems 1000, 1100, 1200, and 1300 may have improved optical characteristics.
  • the optical system (1000, 1100, 1200, 1300) satisfies at least one or two of Equations 1 to 36, the optical system (1000, 1100, 1200, 1300) has improved resolution and reduces aberration and distortion. Characteristics can be improved.
  • the optical systems (1000, 1100, 1200, and 1300) can secure the back focal length (BFL) for applying the automotive image sensor 500, compensate for the degradation of optical characteristics due to temperature changes, and the last lens
  • BFL back focal length
  • the gap between the image sensor 500 and the image sensor 500 can be minimized, allowing good optical performance in the center and periphery of the field of view (FOV).
  • Table 13 shows the result values for Equations 1 to 35 described above in the optical systems (1000, 1100, 1200, and 1300) of the example.
  • the optical systems 1000, 1100, 1200, and 1300 satisfy at least one, two, or three of Equations 1 to 35.
  • the optical systems 1000, 1100, 1200, and 1300 according to the embodiment satisfy all of Equations 1 to 35. Accordingly, the optical systems 1000, 1100, 1200, and 1300 can have good optical performance and excellent optical characteristics in the center and periphery of the field of view (FOV).
  • FOV field of view
  • Embodiment 4 One 30 ⁇
  • Figure 49 is an example of a top view of a vehicle to which a camera module or optical system is applied according to an embodiment of the invention.
  • the vehicle camera system includes an image generator 11, a first information generator 12, and a second information generator 21, 22, 23, 24, 25, and 26. ) and a control unit 14.
  • the image generator 11 may include at least one camera module 31 disposed in the host vehicle, and can generate a front image of the host vehicle or an image inside the vehicle by filming the front of the host vehicle and/or the driver. there is.
  • the image generator 11 may use the camera module 31 to capture not only the front of the vehicle but also the surroundings of the vehicle in one or more directions to generate an image surrounding the vehicle.
  • the front image and peripheral image may be digital images and may include color images, black-and-white images, and infrared images. Additionally, the front image and surrounding image may include still images and moving images.
  • the image generator 11 provides the driver image, front image, and surrounding image to the control unit 14.
  • the first information generating unit 12 may include at least one radar or/and a camera disposed in the host vehicle, and generates first detection information by detecting the front of the host vehicle.
  • the first information generator 12 is disposed in the host vehicle and generates first detection information by detecting the location and speed of vehicles located in front of the host vehicle and the presence and location of pedestrians.
  • the first information generation unit 12 provides first detection information to the control unit 14.
  • the second information generators 21, 22, 23, 24, 25, and 26 are based on the front image generated by the image generator 11 and the first sensed information generated by the first information generator 12, Each side of the vehicle is sensed to generate second sensing information.
  • the second information generators 21, 22, 23, 24, 25, and 26 may include at least one radar or/and camera disposed on the host vehicle, and may include positions of vehicles located on the sides of the host vehicle. and speed can be detected or video taken.
  • the second information generation units 21, 22, 23, 24, 25, and 26 may be disposed at both front corners, side mirrors, and the rear center and rear corners of the vehicle, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An optical system according to an embodiment of the present invention comprises first to seventh lenses arranged along an optical axis, wherein: the first lens has negative (-) refractive power; the second lens has negative (-) refractive power; the third lens has positive (+) refractive power; the fourth lens has positive (+) refractive power; the fifth lens has negative (-) refractive power; the sixth lens has positive (+) refractive power; the seventh lens has negative (-) refractive power; a stop is arranged between the second lens and the third lens; and among the first to seventh lenses, the third lens has the largest thickness on the optical axis.

Description

광학계 및 카메라 모듈Optics and camera modules
본 발명은 향상된 광학 성능을 위한 광학계 및 이를 포함하는 카메라 모듈에 대한 것이다.The present invention relates to an optical system for improved optical performance and a camera module including the same.
ADAS(Advanced Driving Assistance System)란 운전자를 운전을 보조하기 위한 첨단 운전자 보조 시스템으로서, 전방의 상황을 센싱하고, 센싱된 결과에 기초하여 상황을 판단하고, 상황 판단에 기초하여 차량의 거동을 제어하는 것으로 구성된다. 예를 들어, ADAS 센서 장치는 전방의 차량을 감지하고, 차선을 인식한다. 이후 목표 차 선이나 목표 속도 및 전방의 타겟이 판단되면, 차량의 ESC(Electrical Stability Control), EMS(Engine Management System), MDPS(Motor Driven Power Steering) 등이 제어된다. 대표적으로, ADAS는 자동 주차 시스템, 저속 시내 주행 보조 시스템, 사각 지대 경고 시스템 등으로 구현될 수 있다.ADAS (Advanced Driving Assistance System) is an advanced driver assistance system to assist the driver in driving. It senses the situation ahead, judges the situation based on the sensed results, and controls the vehicle's behavior based on the situation judgment. It consists of For example, ADAS sensor devices detect vehicles in front and recognize lanes. Afterwards, when the target lane, target speed, and target ahead are determined, the vehicle's ESC (Electrical Stability Control), EMS (Engine Management System), and MDPS (Motor Driven Power Steering) are controlled. Typically, ADAS can be implemented as an automatic parking system, a low-speed city driving assistance system, and a blind spot warning system.
ADAS에서 전방의 상황을 감지하기 위한 센서 장치는 GPS 센서, 레이저 스캐너, 전방 레이더, Lidar 등이 있으며, 가장 대표적인 것은 차량의 전방, 후방 및 측방을 촬영하기 위한 카메라이다. Sensor devices for detecting the situation ahead in ADAS include GPS sensors, laser scanners, front radar, and Lidar, and the most representative ones are cameras for photographing the front, rear, and sides of the vehicle.
이러한 카메라는 차량의 외부 또는 내부에 배치되어 상기 차량의 주변 상황을 감지할 수 있다. 또한, 상기 카메라는 차량의 내부에 배치되어 운전자 및 동승자의 상황을 감지할 수 있다. 예를 들어, 상기 카메라는 운전자와 인접한 위치에서 상기 운전자를 촬영할 수 있고, 운전자의 건강 상태, 졸음 여부, 음주 여부 등을 감지할 수 있다. 또한, 상기 카메라는 동승자와 인접한 위치에서 상기 동승자를 촬영하며 동승자의 수면 여부, 건강 상태 등을 감지할 수 있고, 운전자에게 동승자에 대한 정보를 제공할 수 있다.These cameras can be placed outside or inside a vehicle to detect the surrounding conditions of the vehicle. Additionally, the camera may be placed inside the vehicle to detect the situation of the driver and passengers. For example, the camera can photograph the driver from a location adjacent to the driver and detect the driver's health status, drowsiness, drinking, etc. In addition, the camera can photograph the passenger at a location adjacent to the passenger, detect whether the passenger is sleeping, state of health, etc., and provide information about the passenger to the driver.
특히, 카메라에서 상(image)을 얻기 위해 가장 중요한 요소는 상(image)을 결상하는 촬상 렌즈이다. 최근 고화질, 고해상도 등 고성능에 대한 관심이 높아지고 있으며, 이를 구현하기 위해 복수의 렌즈를 포함하는 광학계에 대한 연구가 진행되고 있다. 그러나, 상기 카메라가 차량의 외부 또는 내부에서 가혹한 환경, 예컨대 고온, 저온, 수분, 고습 등에 노출될 경우 광학계의 특성이 변화하는 문제가 있다. 이 경우, 상기 카메라는 우수한 광학적 특성, 수차 특성을 균일하게 도출하기 어려운 문제점이 있다.In particular, the most important element in obtaining an image from a camera is the imaging lens that forms the image. Recently, interest in high performance, such as high image quality and high resolution, is increasing, and research is being conducted on optical systems that include multiple lenses to realize this. However, there is a problem that the characteristics of the optical system change when the camera is exposed to harsh environments, such as high temperature, low temperature, moisture, high humidity, etc., outside or inside the vehicle. In this case, the camera has a problem in that it is difficult to uniformly derive excellent optical and aberration characteristics.
따라서, 상술한 문제를 해결할 수 있는 새로운 광학계 및 카메라가 요구된다.Therefore, new optical systems and cameras that can solve the above-mentioned problems are required.
실시예는 광학 특성이 향상된 광학계 및 카메라 모듈을 제공하고자 한다.The embodiment seeks to provide an optical system and camera module with improved optical characteristics.
실시예는 저온 내지 고온의 환경에서 우수한 광학 성능을 가지는 광학계 및 카메라 모듈을 제공하고자 한다.The embodiment seeks to provide an optical system and a camera module with excellent optical performance in low to high temperature environments.
실시예는 다양한 온도 범위에서 광학적 특성이 변화하는 것을 방지 또는 최소화할 수 있는 광학계 및 카메라 모듈을 제공하고자 한다.Embodiments seek to provide an optical system and a camera module that can prevent or minimize changes in optical properties in various temperature ranges.
상기 기술적 과제를 해결하기 위하여, 본 발명의 실시예에 따른 광학계는 광축을 따라 배치되는 제1 내지 제7렌즈를 포함하고, 상기 제1렌즈는 음(-)의 굴절력을 갖고, 상기 제2렌즈는 음(-)의 굴절력을 갖고, 상기 제3렌즈는 양(+)의 굴절력을 갖고, 상기 제4렌즈는 양(+)의 굴절력을 갖고, 상기 제5렌즈는 음(-)의 굴절력을 갖고, 상기 제6렌즈는 양(+)의 굴절력을 갖고, 상기 제7렌즈는 음(-)의 굴절력을 갖고, 상기 제2렌즈와 상기 제3렌즈 사이에 조리개가 배치되고, 상기 광축에서 상기 제1 내지 제7렌즈 중 상기 제3렌즈의 두께가 가장 클 수 있다.In order to solve the above technical problem, the optical system according to an embodiment of the present invention includes first to seventh lenses arranged along the optical axis, the first lens has a negative refractive power, and the second lens has negative (-) refractive power, the third lens has positive (+) refractive power, the fourth lens has positive (+) refractive power, and the fifth lens has negative (-) refractive power. wherein the sixth lens has positive (+) refractive power, the seventh lens has negative (-) refractive power, an aperture is disposed between the second lens and the third lens, and the optical axis Among the first to seventh lenses, the third lens may have the greatest thickness.
상기 제1렌즈와 상기 제3렌즈 중 적어도 하나는 유리 재질이고, 상기 제2렌즈와 상기 제4 내지 제7렌즈 중 적어도 하나는 플라스틱 재질일 수 있다.At least one of the first lens and the third lens may be made of glass, and at least one of the second lens and the fourth to seventh lenses may be made of plastic.
상기 광축에서 상기 제6렌즈는 양면이 볼록한 형상이고, 상기 광축에서 상기 제7렌즈는 물체측으로 볼록한 메니스커스 형상일 수 있다.On the optical axis, the sixth lens may have a convex shape on both sides, and on the optical axis, the seventh lens may have a meniscus shape that is convex toward the object.
상기 제1 내지 제7렌즈 중 상기 제1렌즈의 초점 거리의 절대값이 가장 클 수 있다.Among the first to seventh lenses, the absolute value of the focal length of the first lens may be the largest.
상기 광축에서 유효경 영역까지, 인접하게 배치되는 렌즈 중 아베수 차이가 가장 큰 두 렌즈의 거리의 최대값은 다른 인접한 두 렌즈 사이의 거리의 최대값 보다 작을 수 있다.From the optical axis to the effective diameter area, the maximum value of the distance between two lenses with the largest Abbe number difference among adjacent lenses may be smaller than the maximum value of the distance between two other adjacent lenses.
상기 제4렌즈 및 상기 제5렌즈는 인접하게 배치되는 렌즈 중 아베수 차이가 가장 클 수 있다.The fourth lens and the fifth lens may have the largest Abbe number difference among adjacent lenses.
아래의 조건식을 만족할 수 있다. <조건식> 40 < FOV_H < 60 (상기 조건식에서 FOV_H는 상기 광학계의 수평 화각(Horizontal Degree)를 의미한다.)The conditional expression below can be satisfied. <Conditional expression> 40 < FOV_H < 60 (In the above conditional expression, FOV_H means the horizontal angle of view of the optical system.)
아래의 조건식을 만족할 수 있다. <조건식> 0.31< CG1 / ΣCG < 0.5 (상기 조건식에서 CG1은 상기 광축에서 상기 제1렌즈와 상기 제2렌즈 사이의 거리이고, ΣCG는 상기 광축에서 인접한 렌즈들 사이의 간격들의 합이다.)The conditional expression below can be satisfied. <Conditional expression> 0.31< CG1 / ΣCG < 0.5 (In the above conditional expression, CG1 is the distance between the first lens and the second lens on the optical axis, and ΣCG is the sum of the intervals between adjacent lenses on the optical axis.)
아래의 조건식을 만족할 수 있다. <조건식> 5 < TTL / ImgH < 7 (상기 조건식에서 TTL은 상기 제1렌즈의 물체측면의 정점으로부터 이미지 센서의 상면까지의 광축에서의 거리이고, ImgH는 상기 이미지 센서의 최대 대각 길이의 1/2이다.) The conditional expression below can be satisfied. <Conditional expression> 5 < TTL / ImgH < 7 (In the above conditional expression, TTL is the distance on the optical axis from the vertex of the object side of the first lens to the upper surface of the image sensor, and ImgH is 1/ of the maximum diagonal length of the image sensor. It is 2.)
상기 기술적 과제를 해결하기 위하여, 본 발명의 실시예에 따른 광학계는 광축을 따라 배치되는 제1 내지 제7렌즈를 포함하고, 상기 제2렌즈는 음(-)의 굴절력을 갖고, 상기 제3렌즈는 양(+)의 굴절력을 갖고, 상기 제4렌즈는 양(+)의 굴절력을 갖고, 상기 제5렌즈는 음(-)의 굴절력을 갖고, 상기 제6렌즈는 양(+)의 굴절력을 갖고, 상기 제7렌즈는 음(-)의 굴절력을 갖고, 상기 제1 내지 제7렌즈 중 상기 제2렌즈의 유효경이 가장 작고, 상기 제1 내지 제7렌즈 중 상기 제4렌즈의 유효경이 가장 클 수 있다.In order to solve the above technical problem, the optical system according to an embodiment of the present invention includes first to seventh lenses disposed along the optical axis, the second lens has negative refractive power, and the third lens has positive (+) refractive power, the fourth lens has positive (+) refractive power, the fifth lens has negative (-) refractive power, and the sixth lens has positive (+) refractive power. wherein the seventh lens has a negative refractive power, the effective diameter of the second lens is the smallest among the first to seventh lenses, and the effective diameter of the fourth lens is the smallest among the first to seventh lenses. It can be big.
상기 광축에서 인접한 렌즈 사이의 거리 중 상기 제1렌즈와 상기 제2렌즈 사이의 거리가 가장 클 수 있다.Among the distances between adjacent lenses on the optical axis, the distance between the first lens and the second lens may be the largest.
상기 제2렌즈와 상기 제3렌즈 사이에 조리개가 배치되고, 상기 조리개를 기준으로 물체측에 배치되는 제1렌즈군 및 상기 조리개를 기준으로 센서측에 배치되는 제2렌즈군을 포함하고, 상기 제1렌즈군의 합성 초점 거리의 부호와 상기 제2렌즈군의 합성 초점 거리의 부호는 서로 다를 수 있다.An aperture is disposed between the second lens and the third lens, and includes a first lens group disposed on an object side with respect to the aperture and a second lens group disposed on a sensor side with respect to the aperture, The sign of the composite focal length of the first lens group and the sign of the composite focal length of the second lens group may be different from each other.
상기 조리개의 물체측 및 센서측에 배치되는 렌즈 중 적어도 하는 유리 재질일 수 있다.At least one of the lenses disposed on the object side and the sensor side of the aperture may be made of glass.
상기 제1 내지 제7렌즈 중 상기 제1렌즈의 초점 거리의 절대값이 가장 클 수 있다.Among the first to seventh lenses, the absolute value of the focal length of the first lens may be the largest.
아래의 조건식을 만족할 수 있다. <조건식> 3 < ΣCT / ΣCG < 4 (상기 조건식에서 ΣCT는 상기 광축에서 상기 제1 내지 제7렌즈의 중심 두께의 합을 의미하고, ΣCG는 상기 광축에서 인접한 렌즈들 사이의 간격들의 합을 의미한다.)The conditional expression below can be satisfied. <Conditional expression> 3 < ΣCT / ΣCG < 4 (In the above conditional expression, ΣCT means the sum of the center thicknesses of the first to seventh lenses on the optical axis, and ΣCG means the sum of the spacing between adjacent lenses on the optical axis. do.)
실시예에 따른 광학계 및 카메라 모듈은 향상된 광학 특성을 가질 수 있다. 자세하게, 실시예에 따른 광학계에서 복수의 렌즈들은 설정된 두께, 굴절력 및 인접한 렌즈와의 간격을 가질 수 있다. 이에 따라, 실시예에 따른 광학계 및 카메라 모듈은 설정된 화각 범위에서 향상된 MTF 특성, 수차 제어 특성, 해상도 특성 등을 가질 수 있고, 화각의 주변부에서 양호한 광학 성능을 가질 수 있다.The optical system and camera module according to the embodiment may have improved optical characteristics. In detail, in the optical system according to the embodiment, a plurality of lenses may have a set thickness, refractive power, and distance from adjacent lenses. Accordingly, the optical system and camera module according to the embodiment can have improved MTF characteristics, aberration control characteristics, resolution characteristics, etc. in a set angle of view range, and can have good optical performance in the periphery of the angle of view.
또한, 실시예에 따른 광학계 및 카메라 모듈은 저온 내지 고온의 온도 범위(-40℃~105℃)에서 양호한 광학 성능을 가질 수 있다. 자세하게, 상기 광학계에 포함된 복수의 렌즈들은 설정된 재질, 굴절력, 및 굴절률을 가질 수 있다. 이에 따라, 온도 변화에 따른 각 렌즈의 굴절률이 변화되고, 이로 인해 각 렌즈의 초점 거리가 변화할 경우, 플라스틱 렌즈와 유리 렌즈에 의해 상호 보상할 수 있다. 즉, 상기 광학계는 저온 내지 고온의 온도 범위에서 굴절력에 대한 배분을 효과적으로 수행할 수 있고, 저온 내지 고온의 온도 범위에서 광학 특성이 변화하는 것을 방지 또는 최소화할 수 있다. 따라서, 실시예에 따른 광학계 및 카메라 모듈은 다양한 온도 범위에서 향상된 광학 특성을 유지할 수 있다.Additionally, the optical system and camera module according to the embodiment may have good optical performance in a low to high temperature range (-40°C to 105°C). In detail, a plurality of lenses included in the optical system may have set materials, refractive powers, and refractive indices. Accordingly, when the refractive index of each lens changes due to temperature change and the focal length of each lens changes due to this, mutual compensation can be made by the plastic lens and the glass lens. That is, the optical system can effectively distribute refractive power in a temperature range from low to high temperatures, and prevent or minimize changes in optical properties in the temperature range from low to high temperatures. Therefore, the optical system and camera module according to the embodiment can maintain improved optical properties in various temperature ranges.
또한, 실시예에 따른 광학계 및 카메라 모듈은 플라스틱 렌즈와 유리 렌즈의 혼합을 통해 설정된 화각을 만족하며 우수한 광학 특성을 구현할 수 있다. 이로 인해 상기 광학계는 보다 슬림한 차량용 카메라 모듈을 제공할 있다. 따라서, 상기 광학계 및 카메라 모듈은 다양한 어플리케이션 및 장치 등에 제공될 수 있고, 가혹한 온도 환경, 예를 들어 차량의 외부에 노출되거나 또는 여름철 고온의 차량 내부에서도 우수한 광학 특성을 가질 수 있다.Additionally, the optical system and camera module according to the embodiment can satisfy the angle of view set through a mixture of a plastic lens and a glass lens and implement excellent optical characteristics. Because of this, the optical system can provide a slimmer vehicle camera module. Accordingly, the optical system and camera module can be provided for various applications and devices, and can have excellent optical properties even in harsh temperature environments, for example, when exposed to the exterior of a vehicle or inside a vehicle at high temperatures in the summer.
도 1은 제1실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이다.1 is a side cross-sectional view of an optical system and a camera module having the same according to a first embodiment.
도 2는 도 1의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이다.FIG. 2 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 1.
도 3은 도 1의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이다.Figure 3 is a table showing the thickness of each lens and the spacing between adjacent lenses in the optical system of Figure 1.
도 4는 도 1의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Sag 값을 나타낸 표이다.FIG. 4 is a table showing Sag values of lens surfaces of the first to seventh lenses in the optical system of FIG. 1.
도 5는 도 1의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Slope Angle 값을 나타낸 표이다.FIG. 5 is a table showing slope angle values of lens surfaces of the first to seventh lenses in the optical system of FIG. 1.
도 6은 도 1의 광학계의 상온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이다.FIG. 6 is a graph showing data on the diffraction MTF (Modulation Transfer Function) of the optical system of FIG. 1 at room temperature.
도 7은 도 1의 광학계의 상온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.FIG. 7 is a graph showing data on aberration characteristics of the optical system of FIG. 1 at room temperature.
도 8은 도 1의 광학계의 저온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.FIG. 8 is a graph showing data on the diffraction MTF of the optical system of FIG. 1 at low temperature.
도 9는 도 1의 광학계의 저온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.FIG. 9 is a graph showing data on aberration characteristics of the optical system of FIG. 1 at low temperature.
도 10은 도 1의 광학계의 고온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.FIG. 10 is a graph showing data on the diffraction MTF of the optical system of FIG. 1 at high temperature.
도 11은 도 1의 광학계의 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.FIG. 11 is a graph showing data on aberration characteristics of the optical system of FIG. 1 at high temperature.
도 12는 도 1의 광학계의 주변 광량비를 나타낸 그래프이다.FIG. 12 is a graph showing the peripheral light ratio of the optical system of FIG. 1.
도 13은 제2실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이다.Figure 13 is a side cross-sectional view of an optical system and a camera module having the same according to the second embodiment.
도 14는 도 13의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이다.FIG. 14 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 13.
도 15는 도 13의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이다.FIG. 15 is a table showing the thickness of each lens and the gap between adjacent lenses in the optical system of FIG. 13.
도 16은 도 13의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Sag 값을 나타낸 표이다.FIG. 16 is a table showing Sag values of lens surfaces of the first to seventh lenses in the optical system of FIG. 13.
도 17은 도 13의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Slope Angle 을 나타낸 표이다.FIG. 17 is a table showing the slope angles of the lens surfaces of the first to seventh lenses in the optical system of FIG. 13.
도 18은 도 13의 광학계의 상온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이다.FIG. 18 is a graph showing data on the diffraction MTF (Modulation Transfer Function) of the optical system of FIG. 13 at room temperature.
도 19는 도 13의 광학계의 상온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.FIG. 19 is a graph showing data on aberration characteristics of the optical system of FIG. 13 at room temperature.
도 20은 도 13의 광학계의 저온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.FIG. 20 is a graph showing data on the diffraction MTF of the optical system of FIG. 13 at low temperature.
도 21은 도 13의 광학계의 저온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.FIG. 21 is a graph showing data on aberration characteristics of the optical system of FIG. 13 at low temperature.
도 22는 도 13의 광학계의 고온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.FIG. 22 is a graph showing data on diffraction MTF at high temperature of the optical system of FIG. 13.
도 23은 도 13의 광학계의 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.FIG. 23 is a graph showing data on aberration characteristics of the optical system of FIG. 13 at high temperature.
도 24는 도 13의 광학계의 주변 광량비를 나타낸 그래프이다.Figure 24 is a graph showing the peripheral light ratio of the optical system of Figure 13.
도 25는 제3실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이다.Figure 25 is a side cross-sectional view of an optical system and a camera module having the same according to the third embodiment.
도 26은 도 25의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이다.FIG. 26 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 25.
도 27은 도 25의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이다.FIG. 27 is a table showing the thickness of each lens and the gap between adjacent lenses in the optical system of FIG. 25.
도 28은 도 25의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Sag 값을 나타낸 표이다.FIG. 28 is a table showing Sag values of lens surfaces of the first to seventh lenses in the optical system of FIG. 25.
도 29는 도 25의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Slope Angle 을 나타낸 표이다.Figure 29 is a table showing the slope angles of the lens surfaces of the first to seventh lenses in the optical system of Figure 25.
도 30은 도 25의 광학계의 상온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.FIG. 30 is a graph showing data on the diffraction MTF of the optical system of FIG. 25 at room temperature.
도 31은 도 25의 광학계의 상온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.Figure 31 is a graph showing data on aberration characteristics of the optical system of Figure 25 at room temperature.
도 32은 도 25의 광학계의 저온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이다.FIG. 32 is a graph showing data on the diffraction MTF (Modulation Transfer Function) at low temperature of the optical system of FIG. 25.
도 33는 도 25의 광학계의 저온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.Figure 33 is a graph showing data on the aberration characteristics of the optical system of Figure 25 at low temperature.
도 34는 도 25의 광학계의 고온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.Figure 34 is a graph showing data on diffraction MTF at high temperature of the optical system of Figure 25.
도 35는 도 25의 광학계의 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.Figure 35 is a graph showing data on the aberration characteristics of the optical system of Figure 25 at high temperature.
도 36는 도 25의 광학계의 주변 광량비를 나타낸 그래프이다.Figure 36 is a graph showing the peripheral light ratio of the optical system of Figure 25.
도 37은 제4실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이다.Figure 37 is a side cross-sectional view of an optical system and a camera module having the same according to the fourth embodiment.
도 38은 도 37의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이다.Figure 38 is a table showing the aspheric coefficients of lenses in the optical system of Figure 37.
도 39는 도 37의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이다.Figure 39 is a table showing the thickness of each lens and the gap between adjacent lenses in the optical system of Figure 37.
도 40은 도 37의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Sag 값을 나타낸 표이다.Figure 40 is a table showing Sag values of lens surfaces of the first to seventh lenses in the optical system of Figure 37.
도 41은 도 37의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Slope Angle 을 나타낸 표이다.Figure 41 is a table showing the slope angles of the lens surfaces of the first to seventh lenses in the optical system of Figure 37.
도 42는 도 37의 광학계의 상온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이다.Figure 42 is a graph showing data on the diffraction MTF (Modulation Transfer Function) of the optical system of Figure 37 at room temperature.
도 43은 도 37의 광학계의 상온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.Figure 43 is a graph showing data on aberration characteristics of the optical system of Figure 37 at room temperature.
도 44는 도 37의 광학계의 저온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.Figure 44 is a graph showing data on the diffraction MTF of the optical system of Figure 37 at low temperature.
도 45는 도 37의 광학계의 저온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.Figure 45 is a graph showing data on the aberration characteristics of the optical system of Figure 37 at low temperature.
도 46은 도 37의 광학계의 고온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이다.Figure 46 is a graph showing data on diffraction MTF at high temperature of the optical system of Figure 37.
도 47은 도 37의 광학계의 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이다.Figure 47 is a graph showing data on the aberration characteristics of the optical system of Figure 37 at high temperature.
도 48은 도 37의 광학계의 주변 광량비를 나타낸 그래프이다.Figure 48 is a graph showing the peripheral light ratio of the optical system of Figure 37.
도 49은 발명의 실시예에 따른 광학계를 갖는 차량의 예이다.Figure 49 is an example of a vehicle having an optical system according to an embodiment of the invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
다만, 본 발명의 기술 사상은 설명되는 일부 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합 또는 치환하여 사용할 수 있다.However, the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining or replacing.
또한, 본 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 실시예가 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.In addition, terms (including technical and scientific terms) used in this embodiment have meanings that can be generally understood by those skilled in the art to which this embodiment belongs, unless specifically defined and described. The meaning of commonly used terms, such as terms defined in a dictionary, can be interpreted by considering the contextual meaning of the related technology.
또한, 본 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. Additionally, the terms used in this embodiment are for describing the embodiments and are not intended to limit the present invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.In this specification, the singular may also include the plural unless specifically stated in the phrase, and when described as "at least one (or more than one) of A and B and C", it is combined with A, B, and C. It can contain one or more of all possible combinations.
또한, 본 실시예의 구성 요소를 설명하는데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.Additionally, in describing the components of this embodiment, terms such as first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and are not limited to the essence, sequence, or order of the component.
그리고, 어떤 구성 요소가 다른 구성 요소에 '연결', '결합', 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 '연결', '결합', 또는 '접속'되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합', 또는 '접속'되는 경우도 포함할 수 있다.And, when a component is described as being 'connected', 'coupled', or 'connected' to another component, that component is directly 'connected', 'coupled', or 'connected' to that other component. In addition to cases, it may also include cases where the component is 'connected', 'coupled', or 'connected' by another component between that component and that other component.
또한, 각 구성 요소의 "상(위)" 또는 "하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, "상(위)" 또는 "하(아래)"는 두 개의 구성 요소들이 서로 직접 접촉되는 경우 뿐만 아니라, 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위)" 또는 "하(아래)"로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함될 수 있다. Additionally, when described as being formed or disposed “on top” or “bottom” of each component, “top” or “bottom” means that the two components are directly adjacent to each other. This includes not only cases of contact, but also cases where one or more other components are formed or disposed between two components. In addition, when expressed as “top” or “bottom,” the meaning of not only the upward direction but also the downward direction can be included based on one component.
발명의 설명에 있어서, "물체측면"은 광축(OA)을 기준으로 물체측을 향하는 렌즈의 면을 의미할 수 있고, "센서측면"은 광축을 기준으로 촬상 면(이미지 센서)을 향하는 렌즈의 면을 의미할 수 있다. "물체측면"은 "물측면"일 수 있고, "센서측면"은 "상측면"일 수 있다. 렌즈의 일면이 볼록하다는 것은 광축 또는 근축 영역(Paraxial region)에서 볼록한 형상을 의미할 수 있고, 렌즈의 일면이 오목하다는 것은 광축 또는 근축 영역에서의 오목한 형상을 의미할 수 있다. 렌즈 데이터에 대한 표에 기재된 곡률 반경, 중심 두께, 렌즈 사이의 광축 간격은 광축에서의 값(단위, mm)을 의미할 수 있다. 수직 방향은 광축과 수직인 방향을 의미할 수 있고, 렌즈 또는 렌즈면의 끝단은 입사된 광이 통과하는 렌즈의 유효 영역의 끝단을 의미할 수 있다. 렌즈면의 유효경의 크기는 측정 방법 등에 따라 최대 ±0.4 mm 정도의 측정 오차를 가질 수 있다. 상기 근축 영역이라 함은 광축 근처의 매우 좁은 영역을 의미하며, 광축(OA)으로부터 광선이 떨어지는 거리가 거의 0인 영역이다. 이하, 광축이라는 의미는 각 렌즈의 중심이거나 광축 근처의 매우 좁은 영역을 포함할 수 있다.In the description of the invention, “object side” may refer to the surface of the lens facing the object side based on the optical axis (OA), and “sensor side” may refer to the surface of the lens facing the imaging surface (image sensor) based on the optical axis. It can mean side. “Object side” may be “water side”, and “sensor side” may be “upper side”. That one side of the lens is convex may mean a convex shape in the optical axis or paraxial region, and that one side of the lens is concave may mean a concave shape in the optical axis or paraxial region. The radius of curvature, center thickness, and optical axis spacing between lenses listed in the table for lens data may refer to values (unit, mm) at the optical axis. The vertical direction may mean a direction perpendicular to the optical axis, and the end of the lens or lens surface may mean the end of the effective area of the lens through which incident light passes. The size of the effective diameter of the lens surface may have a measurement error of up to ±0.4 mm depending on the measurement method. The paraxial area refers to a very narrow area near the optical axis, and is an area where the distance at which light rays fall from the optical axis (OA) is almost zero. Hereinafter, the meaning of optical axis may include the center of each lens or a very narrow area near the optical axis.
도 1, 도 13, 도 25 및 도 37와 같이, 본 발명의 제1 내지 제4실시예에 따른 광학계(1000,1100,1200,1300)는 5매 이상의 렌즈들을 포함할 수 있다. 광학계(1000,1100,1200,1300) 및 이를 갖는 카메라 모듈은 차량 내부 또는 외부에 장착되어, 운전자 감시 또는 외부 물체나 차선을 센싱할 수 있다. 렌즈들의 재질은 유리 또는 플라스틱이 선택될 수 있으며, 선팽창 계수는 유리 재질이 플라스틱 재질보다 작다. 이에 따라 온도 변화에 따라 초점 결상 위치가 변화되는 것을 억제하기 위해 유리 렌즈를 채용하고 있다. 그러나, 유리 렌즈는 플라스틱 렌즈에 비해 고가이고, 저 비용화의 요구에 대응하기 어려운 문제가 있다. 따라서, 광학계(1000,1100,1200,1300) 내의 렌즈들은 유리 렌즈와 플라스틱 렌즈가 혼합된 구성이 요구되고 있다. 이러한 플라스틱 렌즈를 채용하므로, 광학계(1000,1100,1200,1300)는 플라스틱 렌즈의 두께가 줄어들 수 있어 경량화 및 저비용화를 제공할 수 있고, 플라스틱 렌즈로 인해 구면 수차, 색 수차와 같은 다양한 수차에 대해 양호한 보정이 가능할 수 있다. 또한 플라스틱 렌즈들은 비구면 렌즈를 제공할 수 있으므로, 주변부의 왜곡 부분을 최소화시켜 줄 수 있다.1, 13, 25, and 37, the optical systems 1000, 1100, 1200, and 1300 according to the first to fourth embodiments of the present invention may include five or more lenses. The optical systems 1000, 1100, 1200, and 1300 and camera modules having them may be mounted inside or outside the vehicle to monitor the driver or sense external objects or lanes. The material of the lenses can be glass or plastic, and the coefficient of linear expansion of glass is smaller than that of plastic. Accordingly, a glass lens is used to prevent changes in the focal imaging position due to temperature changes. However, glass lenses are more expensive than plastic lenses, and there is a problem in that it is difficult to meet the demand for lower costs. Accordingly, the lenses in the optical systems 1000, 1100, 1200, and 1300 are required to be a mixture of glass lenses and plastic lenses. By employing these plastic lenses, the optical system (1000, 1100, 1200, 1300) can reduce the thickness of the plastic lenses, providing lighter weight and lower costs, and the plastic lenses prevent various aberrations such as spherical aberration and chromatic aberration. Good correction may be possible. Additionally, since plastic lenses can provide aspherical lenses, distortion in the peripheral area can be minimized.
광학계(1000,1100,1200,1300)는 n개의 렌즈를 포함할 수 있으며, n 번째 렌즈는 이미지 센서(500)에 인접한 마지막 렌즈이며, n-1번째 렌즈는 마지막 렌즈에 가장 인접한 렌즈일 수 있다. n은 6 이상의 정수이며, 예컨대 6 내지 8일 수 있다. n개의 렌즈는 유리 재질의 렌즈와 플라스틱 재질의 렌즈의 비율이 2:5 ~ 3:4 범위일 수 있다.The optical system (1000, 1100, 1200, 1300) may include n lenses, the nth lens may be the last lens adjacent to the image sensor 500, and the n-1th lens may be the lens closest to the last lens. . n is an integer of 6 or more, for example, may be 6 to 8. The n lenses may have a ratio of glass lenses and plastic lenses ranging from 2:5 to 3:4.
광학계(1000,1100,1200,1300) 내에서 물체에 가장 가까운 적어도 1매의 렌즈는 유리 재질일 수 있다. 물체에 가장 가까운 2매 이하의 렌즈 예컨대, 1매의 렌즈는 유리 재질일 수 있다. 유리 재질의 렌즈들이 온도 변화에 따른 수축과 팽창의 변화율이 플라스틱 재질보다 작으므로, 렌즈 배럴 내에서 외부에 인접한 영역에 유리 재질의 렌즈들을 배치할 수 있다. At least one lens closest to the object within the optical system (1000, 1100, 1200, and 1300) may be made of glass. Two or fewer lenses closest to the object, for example, one lens may be made of glass. Since glass lenses have a smaller rate of change in contraction and expansion due to temperature changes than plastic lenses, glass lenses can be placed in an area adjacent to the outside of the lens barrel.
광학계(1000,1100,1200,1300) 내에서 조리개(STOP)에 인접하게 배치되는 적어도 1매의 렌즈는 유리 재질일 수 있다. 조리개(STOP)의 센서측에 조리개(STOP)와 가장 인접하게 배치되는 렌즈는 유리 재질일 수 있다. 조리개(STOP)와 인접하게 배치되는 렌즈는 광학계(1000,1100,1200,1300)에서 영향력이 큰 렌즈이므로, 온도 변화에 따른 수축과 팽창의 변화율이 작도록 유리 재질의 렌즈를 배치할 수 있다.At least one lens disposed adjacent to the aperture STOP in the optical systems 1000, 1100, 1200, and 1300 may be made of glass. The lens disposed closest to the aperture (STOP) on the sensor side of the aperture (STOP) may be made of glass. Since the lens placed adjacent to the aperture (STOP) is a lens with great influence in the optical system (1000, 1100, 1200, 1300), the lens made of glass can be placed so that the rate of change in contraction and expansion due to temperature change is small.
광학계(1000,1100,1200,1300) 내에서 이미지 센서(500)에 가장 가까운 적어도 하나의 렌즈는 플라스틱 재질일 수 있다. 예컨대, 이미지 센서(500)에 가장 가까운 적어도 2매의 렌즈는 플라스틱 재질일 수 있으며, 바람직하게 이미지 센서(500)에 인접한 적어도 2매의 렌즈는 플라스틱 재질일 수 있다. 즉, 광학계(1000,1100,1200,1300)에서 n번째 및 n-1번째 렌즈들은 플라스틱 렌즈로 배치되므로, 이미지 센서(500)의 입사측 광들에 대해 다양한 수차를 보정할 수 있다.At least one lens closest to the image sensor 500 within the optical systems 1000, 1100, 1200, and 1300 may be made of plastic. For example, at least two lenses closest to the image sensor 500 may be made of plastic, and preferably, at least two lenses adjacent to the image sensor 500 may be made of plastic. That is, since the n-th and n-1-th lenses in the optical systems 1000, 1100, 1200, and 1300 are disposed as plastic lenses, various aberrations of light on the incident side of the image sensor 500 can be corrected.
광학계(1000,1100,1200,1300) 내에서 플라스틱 재질의 렌즈끼리 연속적으로 배치될 수 있고, 유리 재질의 렌즈끼리 연속적으로 배치될 수 있다. 광학계(1000,1100,1200,1300) 내에서 플라스틱 재질의 렌즈는 유리 재질의 렌즈 사이에 배치될 수 있다. 광학계(1000,1100,1200,1300) 내에서 유리 재질의 렌즈는 플라스틱 재질의 렌즈 사이에 배치될 수 있다. Within the optical systems 1000, 1100, 1200, and 1300, lenses made of plastic may be continuously arranged, and lenses made of glass may be arranged continuously. Within the optical systems 1000, 1100, 1200, and 1300, lenses made of plastic may be disposed between lenses made of glass. Within the optical systems 1000, 1100, 1200, and 1300, lenses made of glass may be disposed between lenses made of plastic.
각 렌즈(101-107,201-207,301-307,401-407)는 물체측면과 센서측면을 가질 수 있다. 광학계는 비구면의 센서측면과 비 구면의 물체측면을 갖는 렌즈 매수는 플라스틱 렌즈 매수보다 많을 수 있다. 광학계는 구면의 센서측면과 구면의 물체측면을 갖는 렌즈 매수는 양면이 비구면인 렌즈보다 작을 수 있다. 광학계(1000,1100,1200,1300)는 비구면의 렌즈를 구면의 렌즈보다 더 많게 구비하므로, 다양한 수차를 보정할 수 있다.Each lens (101-107, 201-207, 301-307, 401-407) may have an object side and a sensor side. In an optical system, the number of lenses with an aspherical sensor side and an aspherical object side may be greater than the number of plastic lenses. In an optical system, the number of lenses with a spherical sensor side and a spherical object side may be smaller than a lens with aspherical surfaces on both sides. Since the optical systems (1000, 1100, 1200, and 1300) are equipped with more aspherical lenses than spherical lenses, various aberrations can be corrected.
광학계(1000,1100,1200,1300)의 렌즈들 중에서 최대 굴절률을 갖는 렌즈는 물체에 인접하게 위치할 수 있다. 최대 굴절률은 1.6 이상일 수 있다. 최대 굴절률을 갖는 렌즈에 의해 입사되는 광의 색 분산을 증가시켜 줄 수 있고, 중심 두께가 에지 두께보다 얇아질 수 있다. 또한 최대 굴절률을 갖는 렌즈가 물체측에 배치되므로, 두 번째 이후의 렌즈의 곡률 반경의 변경이 용이하고 중심 두께를 증가시켜 줄 수 있다. Among the lenses of the optical system (1000, 1100, 1200, and 1300), the lens with the maximum refractive index may be located adjacent to the object. The maximum refractive index may be 1.6 or more. The color dispersion of incident light can be increased by a lens with the highest refractive index, and the center thickness can be thinner than the edge thickness. Additionally, since the lens with the maximum refractive index is disposed on the object side, it is easy to change the radius of curvature of the second and subsequent lenses and the center thickness can be increased.
도 1, 도 13, 도 25 및 도 37과 같이, 발명의 제1 내지 제4실시예에 따른 광학계(1000,1100,1200,1300)는 복수의 렌즈군(LG1,LG2)을 포함할 수 있다. 자세하게, 복수의 렌즈군(LG1,LG2) 각각은 적어도 하나의 렌즈를 포함한다. 예를 들어, 광학계(1000,1100,1200,1300)는 물체측으로부터 이미지 센서(500)를 향해 광축(OA)을 따라 순차적으로 배치되는 제1렌즈군(LG1) 및 제2렌즈군(LG2)을 포함할 수 있다. 광학계(1000,1100,1200,1300)는 n개의 렌즈를 포함할 수 있으며, n 번째 렌즈는 마지막 렌즈이며, n-1번째 렌즈는 마지막 렌즈에 가장 인접한 렌즈일 수 있다. n은 5 이상의 정수이며, 예컨대 5 내지 9일 수 있다.As shown in FIGS. 1, 13, 25, and 37, the optical systems (1000, 1100, 1200, and 1300) according to the first to fourth embodiments of the invention may include a plurality of lens groups (LG1 and LG2). . In detail, each of the plurality of lens groups LG1 and LG2 includes at least one lens. For example, the optical systems 1000, 1100, 1200, and 1300 include a first lens group (LG1) and a second lens group (LG2) sequentially arranged along the optical axis (OA) from the object side toward the image sensor 500. may include. The optical system (1000, 1100, 1200, 1300) may include n lenses, the nth lens may be the last lens, and the n-1th lens may be the lens closest to the last lens. n is an integer of 5 or more, for example, may be 5 to 9.
광학계(1000,1100,1200,1300)는 조리개(STOP)를 기준으로 물체측에 배치되는 복수의 렌즈인 제1렌즈군(LG1)과 조리개(STOP)를 기준으로 센서측에 배치되는 복수의 렌즈인 제2렌즈군(LG2)을 포함할 수 있다. 제1렌즈군(LG1) 및 제2렌즈군(LG2) 각각의 렌즈 매수는 서로 다를 수 있다. 제2렌즈군(LG2)의 렌즈 매수는 제1렌즈군(LG1)의 렌즈 매수보다 더 많을 수 있다. The optical system (1000, 1100, 1200, 1300) consists of a first lens group (LG1), which is a plurality of lenses arranged on the object side based on the aperture (STOP), and a plurality of lenses arranged on the sensor side based on the aperture (STOP). may include a second lens group (LG2). The number of lenses for each of the first lens group (LG1) and the second lens group (LG2) may be different. The number of lenses in the second lens group (LG2) may be greater than the number of lenses in the first lens group (LG1).
제1렌즈군(LG1)은 적어도 하나의 렌즈를 포함할 수 있다. 제1렌즈군(LG1)은 3매 이하의 렌즈를 가질 수 있다. 제1렌즈군(LG1)은 바람직하 게, 2매의 렌즈일 수 있다. 제2렌즈군(LG2)은 4매 이상의 렌즈를 포함할 수 있다. 제2렌즈군(LG2)은 5매의 렌즈일 수 있다.The first lens group LG1 may include at least one lens. The first lens group LG1 may have three or fewer lenses. The first lens group LG1 may preferably include two lenses. The second lens group (LG2) may include four or more lenses. The second lens group (LG2) may have 5 lenses.
제1렌즈군(LG1)의 합성 초점거리는 F_LG1이고, 제2렌즈군(LG2)의 합성 초점거리는 F_LG2로 정의할 수 있으며, F_LG1 과 F_LG2의 부호는 서로 상이할 수 있다. F_LG1은 음(-)의 값을 갖고, F_LG2는 양(+)의 값을 가질 수 있다. 이를 통해, 2개의 렌즈군 중 어느 하나의 렌즈군에서 광이 퍼뜨려졌다가, 나머지 하나의 렌즈군에서 광이 모아질 수 있다. 제1렌즈군(LG1)의 합성 초점 거리(F_LG1)의 절대값과 제2렌즈군(LG2)의 합성 초점 거리(F_LG2)의 절대값의 차이는 1 내지 3의 범위를 만족할 수 있다. The composite focal length of the first lens group (LG1) can be defined as F_LG1, and the composite focal length of the second lens group (LG2) can be defined as F_LG2. The signs of F_LG1 and F_LG2 may be different. F_LG1 can have a negative (-) value, and F_LG2 can have a positive (+) value. Through this, light can be spread from one of the two lens groups and then collected from the other lens group. The difference between the absolute value of the composite focal length (F_LG1) of the first lens group (LG1) and the absolute value of the composite focal length (F_LG2) of the second lens group (LG2) may satisfy the range of 1 to 3.
조리개(STOP)는 제2렌즈(102,202,302,402)와 제3렌즈(103,203,303,403) 사이에 배치되고, 제1렌즈군(LG1)은 제1 내지 제2렌즈(101-102,201-202,301-302,401-402)를 포함하고, 제2렌즈군(LG2)은 제3 내지 제7렌즈(103-107,203-207,303-307,403-407)를 포함할 수 있다. 제1렌즈군(LG1)의 합성 초점 거리는 음(-)의 부호를 가지고, 제1렌즈(101,201,301,401), 제2렌즈(102,202,302,402) 중 적어도 하나의 초점 거리는 제1렌즈군(LG1)과 동일한 초점 거리의 부호를 가질 수 있다. 제1렌즈군(LG1)에서 제1렌즈군(LG1)의 합성 초점 거리의 부호와 동일한 부호를 갖는 렌즈의 아베수는 40 이상일 수 있다. 제1렌즈(101,201,301,401), 제2렌즈(102,202,302,402)의 아베수는 40 이상일 수 있고, 바람직하게 50 내지 70 범위를 만족할 수 있다. 이를 통해, 각 렌즈를 통과하는 광의 수차를 제거할 수 있다. 단, 굴절력이 상대적으로 작은 렌즈는 예외적으로 아베수가 40 이하일 수 있다.The aperture (STOP) is disposed between the second lens (102, 202, 302, 402) and the third lens (103, 203, 303, 403), and the first lens group (LG1) includes first to second lenses (101-102, 201-202, 301-302, 401-402). And the second lens group (LG2) may include third to seventh lenses (103-107, 203-207, 303-307, and 403-407). The composite focal length of the first lens group (LG1) has a negative (-) sign, and the focal length of at least one of the first lenses (101, 201, 301, 401) and the second lenses (102, 202, 302, 402) is the same focal length as the first lens group (LG1). It can have a sign of . In the first lens group LG1, the Abbe number of the lens having the same sign as the sign of the composite focal length of the first lens group LG1 may be 40 or more. The Abbe numbers of the first lenses (101, 201, 301, 401) and the second lenses (102, 202, 302, 402) may be 40 or more, and may preferably satisfy the range of 50 to 70. Through this, aberration of light passing through each lens can be removed. However, as an exception, lenses with relatively small refractive power may have an Abbe number of 40 or less.
제2렌즈군(LG2)의 합성 초점 거리는 양(+)의 부호를 가지고, 제3렌즈(103,203,303,403), 제4렌즈(104,204,304,404) 및 제6렌즈(106,206,306,406) 중 적어도 하나의 초점 거리는 제2렌즈군(LG2)과 동일한 초점 거리의 부호를 가질 수 있다. 제2렌즈군(LG2)에서 제2렌즈군(LG2)의 합성 초점 거리의 부호와 동일한 부호를 갖는 렌즈의 아베수는 40 이상일 수 있다. 제5렌즈(105,205,305,405), 제6렌즈(106,206,306,406) 및 제8렌즈(108,208,308,408) 중 적어도 하나의 아베수는 40 이상일 수 있다. 이를 통해, 각 렌즈를 통과하는 광의 수차를 제거할 수 있다. 단, 굴절력이 상대적으로 작은 렌즈는 예외적으로 아베수가 40 이하일 수 있다. The composite focal length of the second lens group (LG2) has a positive (+) sign, and the focal length of at least one of the third lenses (103,203,303,403), fourth lenses (104,204,304,404), and sixth lenses (106,206,306,406) is the second lens group. It may have the same sign of the focal length as (LG2). In the second lens group LG2, the Abbe number of the lens having the same sign as the sign of the composite focal length of the second lens group LG2 may be 40 or more. The Abbe number of at least one of the fifth lenses (105, 205, 305, 405), the sixth lenses (106, 206, 306, 406), and the eighth lenses (108, 208, 308, 408) may be 40 or more. Through this, aberration of light passing through each lens can be removed. However, as an exception, lenses with relatively small refractive power may have an Abbe number of 40 or less.
광학계(1000,1100,1200,1300) 내에서 최대 유효경을 갖는 렌즈는 물체측과 센서측의 중심 부분에 배치될 수 있다. 물체측에서 센서측으로 갈수록 렌즈의 유효경은 커지다가 작아질 수 있다. 물체측에서 센서측으로 갈수록 렌즈의 유효경은 작아졌다가 커지고, 다시 작아질 수 있다. 이를 통해, 광학계(1000,1100,1200,1300)로 입사되는 광은 광축에서 멀어졌다가 다시 광축으로 모이는 구조이므로, 광학계(1000,1100,1200,1300)는 안정적인 광경로를 형성할 수 있다. Within the optical systems 1000, 1100, 1200, and 1300, a lens having a maximum effective diameter may be placed at the center of the object side and the sensor side. As you move from the object side to the sensor side, the effective diameter of the lens can increase and then decrease. As you move from the object side to the sensor side, the effective diameter of the lens may become smaller, then larger, and then smaller again. Through this, since the light incident on the optical systems (1000, 1100, 1200, and 1300) moves away from the optical axis and then gathers back toward the optical axis, the optical systems (1000, 1100, 1200, and 1300) can form a stable optical path.
유효경은 각 렌즈에서 유효한 광들이 입사되는 유효 영역의 직경일 수 있다. 유효경은 광축과 직교하는 방향(X,Y)의 길이이며, 각 렌즈의 물체측면의 유효경과 센서측면의 유효경의 평균이다. "렌즈면의 직경"은 "렌즈의 유효경"을 의미할 수 있다. "렌즈의 직경"은 렌즈의 유효 영역 이외에 렌즈의 플랜지 부분을 포함하는 렌즈 전체의 직경일 수 있다. 도 1, 도 13, 도 25 및 도 37에는 렌즈의 플랜지가 도시되어 있지는 않으나, 플랜지는 렌즈가 배럴에 결합되기 위하여 렌즈의 측면으로부터 광축에 수직 방향으로 돌출 형성되는 부분일 수 있다. 플랜지는 유효한 광이 입사되지 않을 수 있다. 렌즈가 배럴에 결합되기 위해서 서로 다른 렌즈의 플랜지 사이에는 스페이서가 추가로 배치될 수 있다. The effective diameter may be the diameter of the effective area where effective light is incident on each lens. The effective diameter is the length in the direction (X, Y) perpendicular to the optical axis, and is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side. “Diameter of the lens surface” may mean “effective diameter of the lens.” The “diameter of the lens” may be the diameter of the entire lens including the flange portion of the lens in addition to the effective area of the lens. Although the flange of the lens is not shown in FIGS. 1, 13, 25, and 37, the flange may be a part that protrudes from the side of the lens in a direction perpendicular to the optical axis in order to couple the lens to the barrel. The flange may not allow effective light to enter. In order for the lens to be coupled to the barrel, spacers may be additionally disposed between the flanges of different lenses.
렌즈들(101-107,201-207,301-307,401-407) 각각은 유효 영역 및 비유효 영역을 포함할 수 있다. 유효 영역은 렌즈들 각각에 입사된 광이 통과하는 영역일 수 있다. 즉, 유효 영역은 입사된 광이 굴절되어 광학 특성을 구현하는 유효한 영역 또는 유효경으로 정의될 수 있다. 비유효 영역은 유효 영역의 둘레에 배치될 수 있다. 비유효 영역은 복수의 렌즈들에서 유효한 광이 입사되지 않는 영역일 수 있다. 즉, 비유효 영역은 광학 특성과 무관한 영역일 수 있다. 또한, 비유효 영역의 단부는 렌즈를 수용하는 렌즈 배럴 등에 고정되는 영역일 수 있다.Each of the lenses 101-107, 201-207, 301-307, and 401-407 may include an effective area and an unactive area. The effective area may be an area through which light incident on each of the lenses passes. In other words, the effective area can be defined as an effective area or effective diameter in which the incident light is refracted to realize optical characteristics. The non-effective area may be placed around the active area. The non-effective area may be an area where effective light is not incident from the plurality of lenses. In other words, the non-effective area may be an area unrelated to optical characteristics. Additionally, the end of the non-effective area may be an area fixed to a lens barrel or the like that accommodates the lens.
광학계(1000,1100,1200,1300) 내에서 TTL(Total top length)는 Imgh 보다 5배 초과 예컨대, 6배 이상 및 8배 이하일 수 있다. TTL(Total track length )은 첫 번째 렌즈의 물체측면의 중심으로부터 이미지 센서(500)의 상면까지의 광축(OA)에서의 거리이다. Imgh는 이미지 센서(500)의 최대 대각 길이의 1/2이다. 광학계(1000,1100,1200,1300) 내에서 유효 초점 거리(EFL)는 9 mm 이상 및 수평 화각(FOV_H)은 145도 이상 160도 미만으로 제공하여, 차량용 카메라 모듈에서 차량 내부 모니터링용 광학계로 제공할 수 있다. 예컨대, 실시예에 따른 광학계 및 카메라 모듈은 차량 실내 또는 실외에 구비되는 ADAS(Advanced Driving Assistance System)용 카메라에 적용될 수 있다.The total top length (TTL) within the optical systems (1000, 1100, 1200, and 1300) may be 5 times greater than Imgh, for example, 6 times or more and 8 times or less. Total track length (TTL) is the distance on the optical axis (OA) from the center of the object side of the first lens to the image surface of the image sensor 500. Imgh is 1/2 of the maximum diagonal length of the image sensor 500. Within the optical system (1000, 1100, 1200, 1300), the effective focal length (EFL) is over 9 mm and the horizontal angle of view (FOV_H) is between 145 and 160 degrees, and is provided as an optical system for monitoring inside the vehicle in the vehicle camera module. can do. For example, the optical system and camera module according to the embodiment may be applied to a camera for an Advanced Driving Assistance System (ADAS) installed inside or outside a vehicle.
광학계(1000,1100,1200,1300)는 TTL/Imgh의 조건이 5 이상 및 7 이하일 수 있으며, 예컨대 5.5 이상 및 6.5 이하일 수 있다. 광학계(1000,1100,1200,1300)가 TTL/Imgh의 값이 5 이상 및 7 이하로 설정해 줌으로써, 차량용 렌즈 광학계를 제공할 수 있다. 이에 따라, 광학계(1000,1100,1200,1300)는 결상되는 이미지에 대해 과장이나 왜곡이 없는 화상을 제공할 수 있다.The optical system (1000, 1100, 1200, 1300) may have a TTL/Imgh condition of 5 or more and 7 or less, for example, 5.5 or more and 6.5 or less. The optical system (1000, 1100, 1200, 1300) sets the TTL/Imgh value to 5 or more and 7 or less, thereby providing a lens optical system for a vehicle. Accordingly, the optical systems 1000, 1100, 1200, and 1300 can provide images without exaggeration or distortion.
광학계(1000,1100,1200,1300) 내에서 적어도 하나의 플라스틱 렌즈의 유효경은 이미지 센서(500)의 길이보다 작을 수 있다. 유효경은 광이 입사되는 유효 영역의 직경 또는 길이이다. 이미지 센서(500)의 길이는 광축(OA)에 직교하는 방향의 대각선의 최대 길이이다. 광학계(1000,1100,1200,1300) 내에서 이미지 센서(500)의 길이 보다 큰 유효경을 갖는 렌즈 매수는 65% 이상 또는 75% 이상이며, 이미지 센서(500)의 길이보다 작은 유효경을 갖는 렌즈는 30% 미만 또는 25% 미만일 수 있다. The effective diameter of at least one plastic lens within the optical system 1000, 1100, 1200, and 1300 may be smaller than the length of the image sensor 500. The effective diameter is the diameter or length of the effective area where light is incident. The length of the image sensor 500 is the maximum length of the diagonal in the direction perpendicular to the optical axis OA. Within the optical system (1000, 1100, 1200, 1300), the number of lenses with an effective diameter larger than the length of the image sensor 500 is 65% or more or 75% or more, and the number of lenses with an effective diameter smaller than the length of the image sensor 500 is It may be less than 30% or less than 25%.
렌즈부는 유리 재질의 렌즈와 플라스틱 재질의 렌즈들이 혼합될 수 있다. 플라스틱 재질의 렌즈들의 매수는 전체 렌즈 매수에 비해 60% 이상일 수 있으며, 65% 내지 85% 범위일 수 있다. 이에 따라 카메라 모듈 내에 플라스틱 렌즈가 더 배치될 경우, 카메라 모듈의 무게를 줄여줄 수 있고, 플라스틱 재질에 의해 연마, 가공이 쉽고, 외부 충격이 강하고 또한 가격 경쟁력이 높고 재료 확보가 용이할 수 있다. 또한 플라스틱 렌즈에 의해 각종 수차를 보정할 수 있어, 광학 성능 저하를 방지할 수 있다.The lens unit may be a mixture of glass lenses and plastic lenses. The number of lenses made of plastic may be 60% or more, and may range from 65% to 85%, compared to the total number of lenses. Accordingly, if more plastic lenses are placed within the camera module, the weight of the camera module can be reduced, and the plastic material makes it easy to polish and process, has strong external impact, and is highly price competitive and easy to secure materials. Additionally, various aberrations can be corrected using plastic lenses, preventing degradation of optical performance.
발명의 실시예는 광학계(1000,1100,1200,1300) 내에 플라스틱 렌즈를 더 혼합해 줌으로써, 카메라 모듈의 무게를 줄여줄 수 있고, 제조 원가를 보다 저렴하게 제공할 수 있고, 온도 변화에 따른 광학 특성의 저하를 억제할 수 있으며, 다양한 종류의 플라스틱 렌즈가 유리 렌즈를 대체할 수 있으며, 비구면 또는 자유 곡면과 같은 렌즈 면의 연마 및 가공이 용이할 수 있다. Embodiments of the invention can reduce the weight of the camera module by further mixing plastic lenses in the optical system (1000, 1100, 1200, and 1300), provide a cheaper manufacturing cost, and provide optical stability according to temperature changes. Deterioration of properties can be suppressed, various types of plastic lenses can replace glass lenses, and polishing and processing of lens surfaces such as aspherical surfaces or free-form surfaces can be easy.
렌즈부 내에서 물체측에 가장 가까운 렌즈의 유효경은 이미지 센서(500)에 가장 가까운 렌즈의 유효경 보다 클 수 있다. 이에 따라 광학계의 밝기를 제어할 수 있다. 유효경은 각 렌즈의 물체측면과 센서측면의 평균 유효 직경일 수 있다. 각 렌즈들의 유효경 크기를 제어함으로써, 광학계(1000,1100,1200,1300)는 입사하는 광을 제어하여 해상력, 온도 변화에 따른 광학 특성 저하를 보상할 수 있으며, 색수차 제어 특성을 개선시킬 수 있고, 광학계(1000,1100,1200,1300)의 비네팅(vignetting) 특성을 개선할 수 있다. The effective diameter of the lens closest to the object within the lens unit may be larger than the effective diameter of the lens closest to the image sensor 500. Accordingly, the brightness of the optical system can be controlled. The effective diameter may be the average effective diameter of the object side and the sensor side of each lens. By controlling the effective diameter size of each lens, the optical system (1000, 1100, 1200, and 1300) can control incident light to compensate for degradation in resolution and optical characteristics due to temperature changes, and improve chromatic aberration control characteristics. The vignetting characteristics of the optical system (1000, 1100, 1200, and 1300) can be improved.
렌즈부는 광축을 따라 물체측에서 센서측을 향해 정렬된, 제1렌즈(101,201,301,401), 제2렌즈(102,202,302,402), 제3렌즈(103,203,303,403), 제4렌즈(104,204,304,404), 제5렌즈(105,205,305,405), 제6렌즈(106,206,306,406) 및 제7렌즈(107,207,307,407)를 포함할 수 있다. The lens unit includes a first lens (101, 201, 301, 401), a second lens (102, 202, 302, 402), a third lens (103, 203, 303, 403), a fourth lens (104, 204, 304, 404), and a fifth lens (105, 205, 305, 40) aligned along the optical axis from the object side to the sensor side. 5), It may include a sixth lens (106, 206, 306, 406) and a seventh lens (107, 207, 307, 407).
렌즈부는 렌즈 배럴의 내면 일측 또는 전체에 이너 배럴을 갖는 카메라 모듈에 배치될 수 있다. 렌즈부는 렌즈 배럴의 서로 다른 렌즈들의 둘레에 복수의 이너 배럴을 갖는 카메라 모듈에 배치될 수 있다. 렌즈부는 렌즈 배럴의 적어도 한 렌즈의 외면에 접촉된 제1이너 배럴과 적어도 한 렌즈의 외면에 접촉된 제2이너 배럴을 갖는 카메라 모듈에 배치될 수 있다. 렌즈부는 적어도 하나 또는 2개 이상의 렌즈의 외측과 렌즈 배럴 사이에 각각 배치된 복수의 이너 배럴을 갖는 카메라 모듈에 배치될 수 있다. 렌즈부는 복수의 이너 배럴이 렌즈 배럴의 재질과 다른 재질을 갖는 카메라 모듈에 배치될 수 있다. The lens unit may be disposed in a camera module having an inner barrel on one side or the entire inner surface of the lens barrel. The lens unit may be disposed in a camera module having a plurality of inner barrels around different lenses of the lens barrel. The lens unit may be disposed in a camera module having a first inner barrel in contact with an outer surface of at least one lens of the lens barrel and a second inner barrel in contact with an outer surface of at least one lens. The lens unit may be disposed in a camera module having a plurality of inner barrels, each of which is disposed between the outside of at least one or two lenses and the lens barrel. The lens unit may be disposed in a camera module in which a plurality of inner barrels have a material different from that of the lens barrel.
렌즈부를 구성하는 렌즈 중 유리 재질의 렌즈 중 적어도 일부는 렌즈 배럴에 배치될 수 있고, 플라스틱 재질의 렌즈 중 적어도 일부는 렌즈 배럴 내에 배치된 이너 배럴에 배치될 수 있다. 이를 통해, 광학계(1000,1100,1200,1300)는 온도 변화에 따른 해상력을 유지할 수 있다. 렌즈부는 이종 배럴을 갖는 카메라 모듈에 배치되어 온도 변화에 따라 팽창되는 렌즈 예컨대, 플라스틱 렌즈의 디센터를 최소화할 수 있다. 렌즈부가 배치되는 렌즈 배럴은 렌즈 배럴 내에 복수의 이너 배럴을 구비함으로써, 온도 변화에 따른 광학계의 해상력을 유지하고 렌즈들의 변형을 억제할 수 있다. 따라서, 렌즈부에 포함되는 유리 재질 렌즈 중 적어도 일부의 유효경은 플라스틱 재질 렌즈 중 적어도 일부의 유효경보다 작을 수 있다.Among the lenses constituting the lens unit, at least some of the lenses made of glass may be placed on the lens barrel, and at least some of the lenses made of plastic may be placed on the inner barrel disposed within the lens barrel. Through this, the optical systems (1000, 1100, 1200, and 1300) can maintain resolution according to temperature changes. The lens unit is disposed in a camera module having a heterogeneous barrel to minimize decentering of a lens, such as a plastic lens, that expands according to temperature changes. The lens barrel on which the lens unit is disposed has a plurality of inner barrels within the lens barrel, thereby maintaining the resolution of the optical system and suppressing deformation of the lenses due to temperature changes. Accordingly, the effective diameter of at least some of the glass lenses included in the lens unit may be smaller than the effective diameter of at least some of the plastic lenses.
렌즈부 내에서 플라스틱 렌즈들의 평균 유효경보다 큰 렌즈들은 1매 이상 예컨대, 2매 이상일 수 있다. 플라스틱 재질의 렌즈들의 평균 유효경은 PLca_Aver이며, 유리 재질의 렌즈들의 평균 유효경은 GLca_Aver 인 경우, PLca_Aver < GLca_Aver의 조건을 만족할 수 있다. 또한 1.8 < GLca_Aver / PLca_Aver < 2.1의 조건을 만족할 수 있다. 또한 이미지 센서(500)의 길이와 플라스틱 렌즈의 평균 유효경(PLca_Aver)의 관계는 1.8 < PLca_Aver/Imgh < 2.1의 조건을 만족할 수 있다. 또한 유리 재질의 평균 유효경과 이미지 센서(500)의 길이 사이의 관계는 1.5 < GLca_Aver/Imgh < 2의 조건을 만족할 수 있다. 이미지 센서(500)의 최대 길이와 플라스틱 재질의 렌즈의 유효경 차이는 크지 않게 배치될 수 있다. 이에 따라 유효경이 작은 플라스틱 재질의 렌즈를 이미지 센서(500)에 인접하게 배치함으로써, 플라스틱 렌즈들이 이미지 센서(500)의 중심부에서 주변부까지 색을 분산시켜 줄 수 있다.There may be one or more lenses larger than the average effective diameter of the plastic lenses in the lens unit, for example, two or more lenses. The average effective diameter of plastic lenses is PLca_Aver, and if the average effective diameter of glass lenses is GLca_Aver, the condition of PLca_Aver < GLca_Aver can be satisfied. Additionally, the condition of 1.8 < GLca_Aver / PLca_Aver < 2.1 can be satisfied. Additionally, the relationship between the length of the image sensor 500 and the average effective diameter (PLca_Aver) of the plastic lens may satisfy the condition of 1.8 < PLca_Aver/Imgh < 2.1. Additionally, the relationship between the average effective age of the glass material and the length of the image sensor 500 may satisfy the condition of 1.5 < GLca_Aver/Imgh < 2. The difference between the maximum length of the image sensor 500 and the effective diameter of the plastic lens may be arranged to be small. Accordingly, by placing a plastic lens with a small effective diameter adjacent to the image sensor 500, the plastic lenses can disperse color from the center of the image sensor 500 to the periphery.
유리 재질들의 평균 유효경은 8mm 이상 예컨대, 9mm 내지 11mm 범위일 수 있다. 플라스틱 재질의 평균 유효경은 8mm 이상 예컨대, 9mm 내지 11mm 범위일 수 있다. 최소 유효경을 갖는 렌즈는 플라스틱 재질이며, 최대 유효경을 갖는 렌즈는 유리 재질일 수 있다. 렌즈부 내에서 최소 유효경은 7mm 내지 9mm 범위이고, 최대 유효경은 10mm 내지 13mm 범위일 수 있다. 플라스틱 재질의 렌즈는 유리 재질의 렌즈보다 유효경이 작게 설계되어 렌즈 배럴에 맞닿지 않게 배치되고, 이를 통해 온도 변화에 따른 광학 성능 변화를 최소화할 수 있다. 또한, 광학계(1000,1100,1200,1300)는 입사하는 광을 제어하여 해상력, 색수차 제어 특성을 개선시킬 수 있고, 광학계(1000,1100,1200,1300)의 비네팅(vignetting) 특성을 개선할 수 있다. The average effective diameter of the glass materials may be 8 mm or more, for example, in the range of 9 mm to 11 mm. The average effective diameter of the plastic material may be 8 mm or more, for example, in the range of 9 mm to 11 mm. The lens with the minimum effective diameter may be made of plastic, and the lens with the maximum effective diameter may be made of glass. The minimum effective diameter within the lens unit may be in the range of 7mm to 9mm, and the maximum effective diameter may be in the range of 10mm to 13mm. Plastic lenses are designed to have a smaller effective diameter than glass lenses and are placed so as not to contact the lens barrel, thereby minimizing changes in optical performance due to temperature changes. In addition, the optical systems (1000, 1100, 1200, 1300) can improve resolution and chromatic aberration control characteristics by controlling the incident light, and the vignetting characteristics of the optical systems (1000, 1100, 1200, 1300) can be improved. there is.
광학계(1000,1100,1200,1300) 또는 카메라 모듈은 이미지 센서(500)를 포함할 수 있다. 이미지 센서(500)는 광을 감지하고 전기적 신호로 변환할 수 있다. 이미지 센서(500)는 렌즈부를 순차적으로 통과한 광을 감지할 수 있다. 이미지 센서(500)는 CCD(Charge Coupled Device) 또는 CMOS(Complementary Metal Oxide Semiconductor) 등 입사되는 광을 감지할 수 있는 소자를 포함할 수 있다.The optical system 1000, 1100, 1200, 1300 or the camera module may include an image sensor 500. The image sensor 500 can detect light and convert it into an electrical signal. The image sensor 500 can detect light that sequentially passes through the lens unit. The image sensor 500 may include an element that can detect incident light, such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
광학계(1000,1100,1200,1300) 또는 카메라 모듈은 필터(600)를 포함할 수 있다. 필터(600)는 마지막 렌즈과 이미지 센서(500) 사이에 배치될 수 있다. 필터(600)는 렌즈부의 렌즈들 중 센서측에 가장 가까운 렌즈와 이미지 센서(500) 사이에 배치될 수 있다. 예를 들어, 필터(600)는 n번째 렌즈와 이미지 센서(500) 사이에 배치될 수 있다. The optical system (1000, 1100, 1200, 1300) or camera module may include a filter (600). The filter 600 may be placed between the last lens and the image sensor 500. The filter 600 may be disposed between the image sensor 500 and a lens closest to the sensor among the lenses of the lens unit. For example, the filter 600 may be disposed between the nth lens and the image sensor 500.
커버 글라스는 필터(600)와 이미지 센서(500) 사이에 배치되며, 이미지 센서(500)의 상부를 보호하며 이미지 센서(500)의 신뢰성 저하를 방지할 수 있다. 커버 글라스는 제거될 수 있다. 커버 글라스는 보호 글라스일 수 있다.The cover glass is disposed between the filter 600 and the image sensor 500, protects the upper part of the image sensor 500, and can prevent the reliability of the image sensor 500 from deteriorating. The cover glass can be removed. The cover glass may be a protective glass.
필터(600)는 적외선 필터 또는 적외선 컷 오프 필터(IR cut-off)를 포함할 수 있다. 필터(600)는 설정된 파장 대역의 광을 통과시키고, 이와 다른 파장 대역의 광을 필터링할 수 있다. 필터(600)가 적외선 필터를 포함할 경우 외부 광으로부터 방출되는 복사열이 이미지 센서(500)에 전달되는 것을 차단할 수 있다. 또한, 필터(600)는 가시광선을 투과할 수 있고 적외선을 반사할 수 있다.The filter 600 may include an infrared filter or an infrared cut-off filter. The filter 600 may pass light in a set wavelength band and filter light in a different wavelength band. When the filter 600 includes an infrared filter, radiant heat emitted from external light can be blocked from being transmitted to the image sensor 500. Additionally, the filter 600 can transmit visible light and reflect infrared rays.
실시예에 따른 광학계(1000,1100,1200,1300)는 조리개(Stop)를 포함할 수 있다. 조리개는 광학계(1000,1100,1200,1300)에 입사되는 광량을 조절할 수 있다. 물체와 조리개 사이에 배치되는 렌즈들에 있어서, 물체측에서 조리개로 갈수록 렌즈 면의 유효경이 증가하는 경향이 있다. 조리개와 센서 사이에 배치되는 렌즈 면들에 있어서, 조리개에서 센서측으로 갈수록 렌즈 면들의 유효경이 감소하는 경향이 있다. 렌즈 면들의 유효경이 증가하거나 감소하는 경향이 있다는 의미는 렌즈 면들의 유효경이 증가하거나 감소하는 경우만 의미하지는 않는다. 예컨대, 조리개에서 센서측으로 가면서 렌즈 면들의 유효경이 증가하다가 감소하는 경우도 포함한다.The optical systems 1000, 1100, 1200, and 1300 according to the embodiment may include an aperture (Stop). The aperture can control the amount of light incident on the optical system (1000, 1100, 1200, 1300). For lenses disposed between an object and an aperture, the effective diameter of the lens surface tends to increase from the object side to the aperture. For lens surfaces disposed between the aperture and the sensor, the effective diameter of the lens surfaces tends to decrease as it moves from the aperture to the sensor. The fact that the effective diameter of the lens planes tends to increase or decrease does not mean only when the effective diameter of the lens planes increases or decreases. For example, this includes cases where the effective diameter of the lens surfaces increases and then decreases as it moves from the aperture to the sensor side.
제1 내지 제4실시예의 광학계(1000,1100,1200,1300)에서 렌즈부의 렌즈들의 굴절률 합은 9 이상 예컨대, 10 내지 13 범위이며, 굴절률 평균은 1.5 내지 1.7 범위일 수 있다. 렌즈들 각각의 아베수 합은 340 이상 예컨대, 350 내지 380 범위이며, 아베수의 평균은 60 이하 예컨대, 45 내지 55 범위일 수 있다. 전체 렌즈의 중심 두께 합은 18mm 이상 예컨대, 19mm 내지 21mm 범위이며 중심 두께들의 평균은 2mm 내지 3mm 범위일 수 있다. 광축(OA)에서의 렌즈들 사이의 중심 간격들의 합은 4mm 이상 예컨대, 5mm 내지 7mm 범위이고 렌즈의 중심 두께 합보다 작을 수 있다. 또한 렌즈부의 각 렌즈 면(S1-S14)들의 유효경의 평균 값은 3mm 이상 예컨대, 3.5mm 내지 4.5mm 범위로 제공할 수 있다. In the optical systems 1000, 1100, 1200, and 1300 of the first to fourth embodiments, the sum of the refractive indices of the lenses of the lens unit may be 9 or more, for example, in the range of 10 to 13, and the average refractive index may be in the range of 1.5 to 1.7. The sum of the Abbe numbers of each lens may be 340 or more, for example, in the range of 350 to 380, and the average of the Abbe numbers may be 60 or less, for example, in the range of 45 to 55. The sum of the central thicknesses of all lenses may be 18 mm or more, for example, in the range of 19 mm to 21 mm, and the average of the central thicknesses may be in the range of 2 mm to 3 mm. The sum of the center spacings between the lenses at the optical axis (OA) may be greater than 4 mm, for example in the range of 5 mm to 7 mm, and may be less than the sum of the center thicknesses of the lenses. In addition, the average value of the effective diameter of each lens surface (S1-S14) of the lens unit may be 3 mm or more, for example, in the range of 3.5 mm to 4.5 mm.
발명의 제1 내지 제4실시예에 따른 광학계에서 F 넘버는 1.8 이하, 예컨대, 1.5 내지 1.7의 범위일 수 있다. 차량용 광학계는 Y축 방향의 수평 화각(FOV_H)는 40도 초과 및 60도 미만일 수 있으며, 예컨대 45도 내지 50도 범위일 수 있다. 또한 수직 화각은 수평 화각보다 작은 각도로 제공될 수 있다. 수직 화각(FOV_V)은 20도 초과 및 35도 미만일 수 있으며, 예컨대 25도 내지 30도 범위일 수 있다. 수평 방향(Y)의 센서 길이는 8.64mm±0.5mm일수 있으며, 수직 방향(X)의 센서 높이는 5.58mm±0.5mm일 수 있다. 수평 화각(FOV_H)은 이미지 센서의 수평(Horizontal) 길이를 기준으로 한 화각이고, 수직 화각(FOV_V)는 이미지 센서의 수직(Vertical) 길이를 기준으로 한 화각이다. 이에 따라 온도 변화에 따라 초점 결상 위치가 변화하는 것을 억제할 수 있고, 다양한 수차가 양호하게 보정되는 차량용 카메라로 제공할 수 있다. In the optical system according to the first to fourth embodiments of the invention, the F number may be 1.8 or less, for example, in the range of 1.5 to 1.7. The horizontal field of view (FOV_H) of the vehicle optical system in the Y-axis direction may be greater than 40 degrees and less than 60 degrees, for example, in the range of 45 degrees to 50 degrees. Additionally, the vertical angle of view may be provided at a smaller angle than the horizontal angle of view. The vertical angle of view (FOV_V) may be greater than 20 degrees and less than 35 degrees, for example, in the range of 25 to 30 degrees. The sensor length in the horizontal direction (Y) may be 8.64 mm ± 0.5 mm, and the sensor height in the vertical direction (X) may be 5.58 mm ± 0.5 mm. The horizontal angle of view (FOV_H) is the angle of view based on the horizontal length of the image sensor, and the vertical angle of view (FOV_V) is the angle of view based on the vertical length of the image sensor. Accordingly, it is possible to suppress changes in the focus imaging position due to temperature changes, and it is possible to provide a vehicle camera in which various aberrations are well corrected.
차량카메라에 적용되는 광학계는 보통 도로 위 상황을 모니터링하기 때문에 모든 화각이 아닌 수평 화각을 기준으로 광학계 설계될 수 있다. 본 실시예에 따른 광학계는 이미지 센서의 내접원을 기준으로 일정 여백을 두고 설계된다. 수평 화각(FOV_H)의 범위를 만족하는 영역에서 광학 성능이 보장될 수 있다.Since the optical system applied to vehicle cameras usually monitors the situation on the road, the optical system can be designed based on the horizontal angle of view rather than all angles of view. The optical system according to this embodiment is designed with a certain margin based on the inscribed circle of the image sensor. Optical performance can be guaranteed in an area that satisfies the range of horizontal angle of view (FOV_H).
실시예는 차량카메라에 적용되는 광학계이므로, 플라스틱 렌즈와 유리 렌즈를 함께 사용하여 설계함에도 제1렌즈(101,201,301,401)는 유리 재질로 제공할 수 있다. 이는 유리 재질이 플라스틱 재질 대비 스크래치에 강하고 외부 온도에 민감하지 않은 장점을 갖고 있다. 제1렌즈(101,201,301,401)는 비구면을 갖고 유리 재질로 이루어지는 글래스 몰드(Glass Mold) 렌즈일 수 있다. 글래스 몰드(Glass Mold) 렌즈는 비구면 모양이 될 금형 내부에 광학 유리 잉곳을 넣고 가열 및 압축 과정을 통해 제작될 수 있다. Since the embodiment is an optical system applied to a vehicle camera, the first lenses 101, 201, 301, and 401 can be made of glass even though they are designed using both plastic lenses and glass lenses. This has the advantage that glass material is more resistant to scratches than plastic material and is not sensitive to external temperature. The first lenses 101, 201, 301, and 401 may be glass mold lenses that have an aspherical surface and are made of glass. Glass mold lenses can be produced by placing an optical glass ingot inside a mold that will have an aspherical shape and then heating and compressing it.
차량 내부에 배치되거나 이물질에 의한 스크래치를 보다 효과적으로 방지하기 위해 유리 렌즈를 제1렌즈(101,201,301,401)로 사용하고, 외부 구조물과 비 접촉되도록 제1렌즈(101,201,301,401)의 물체측면은 완만한 곡면 형상을 가질 수 있다. 이를 통해, 외부 구조물과 접촉으로 스크래치 발생을 최소화할 수 있다. 차량 운행 시 운전자 감시, 차량의 전방/후방 촬영, 또는 차선 감지 및 차량 주변의 돌발 물질 감지를 위해 화각은 40도 초과 및 60도 미만일 수 있으며, 예컨대 45도 내지 50도 범위일 수 있다. 이러한 수평 화각은 첨단운전자 지원시스템(ADAS)용으로 미리 설정된 각도일 수 있다. In order to more effectively prevent scratches placed inside the vehicle or caused by foreign substances, a glass lens is used as the first lens (101, 201, 301, 401), and the object side of the first lens (101, 201, 301, 401) has a gently curved shape to avoid contact with external structures. You can. Through this, the occurrence of scratches due to contact with external structures can be minimized. For driver monitoring when driving a vehicle, photographing the front/rear of the vehicle, or detecting lanes and unexpected objects around the vehicle, the angle of view may be greater than 40 degrees and less than 60 degrees, for example, in the range of 45 degrees to 50 degrees. This horizontal angle of view may be a preset angle for an advanced driver assistance system (ADAS).
실시예에 따른 광학계(1000,1100,1200,1300)는 광의 경로를 변경하기 위한 반사 부재를 더 포함할 수 있다. 반사부재는 광학계(1000,1100,1200,1300)에 입사 광을 렌즈들 방향으로 반사하는 프리즘으로 구현될 수 있다. 이하, 실시예에 따른 광학계를 상세하게 설명하기로 한다. The optical systems 1000, 1100, 1200, and 1300 according to the embodiment may further include a reflection member for changing the path of light. The reflecting member may be implemented as a prism that reflects light incident on the optical system (1000, 1100, 1200, 1300) in the direction of the lenses. Hereinafter, the optical system according to the embodiment will be described in detail.
발명의 제1실시예에 따른 광학계에 대해 설명하기로 한다.The optical system according to the first embodiment of the invention will be described.
도 1은 제1실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이고, 도 2는 도 1의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이고, 도 3은 도 1의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이고, 도 4는 도 1의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Sag 값을 나타낸 표이고, 도 5는 도 1의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Slope Angle 값을 나타낸 표이고, 도 6은 도 1의 광학계의 상온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이고, 도 7은 도 1의 광학계의 상온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 8은 도 1의 광학계의 저온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이고, 도 9는 도 1의 광학계의 저온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 10은 도 1의 광학계의 고온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이고, 도 11은 도 1의 광학계의 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 12는 도 1의 광학계의 주변 광량비를 나타낸 그래프이다.FIG. 1 is a side cross-sectional view of an optical system and a camera module having the same according to a first embodiment, FIG. 2 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 1, and FIG. 3 is the thickness and thickness of each lens of the optical system of FIG. 1. This is a table showing the spacing between adjacent lenses, Figure 4 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 1, and Figure 5 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 1. It is a table showing the Slope Angle values of the planes, and Figure 6 is a graph showing data on the diffraction MTF (Modulation Transfer Function) at room temperature of the optical system of Figure 1, and Figure 7 is a graph showing the aberration characteristics at room temperature of the optical system of Figure 1. FIG. 8 is a graph showing data on the diffraction MTF of the optical system of FIG. 1 at low temperature, and FIG. 9 is a graph showing data on the aberration characteristics of the optical system of FIG. 1 at low temperature, and FIG. 10 is a graph showing data on the diffraction MTF at high temperature of the optical system of FIG. 1, FIG. 11 is a graph showing data on aberration characteristics at high temperature of the optical system of FIG. 1, and FIG. 12 is a graph showing the surroundings of the optical system of FIG. 1. This is a graph showing the light ratio.
도 1을 참조하면, 광학계(1000)는 렌즈부를 포함하며, 렌즈부는 제1렌즈(101) 내지 제7렌즈(107)를 포함할 수 있다. 제1 내지 제7렌즈(101~107)은 광학계(1000)의 광축(OA)을 따라 순차적으로 배치될 수 있다. 물체의 정보에 해당하는 광은 제1렌즈(101) 내지 제7렌즈(107), 및 필터(600)를 통과하여 이미지 센서(500)에 입사될 수 있다.Referring to FIG. 1, the optical system 1000 includes a lens unit, and the lens unit may include a first lens 101 to a seventh lens 107. The first to seventh lenses 101 to 107 may be sequentially arranged along the optical axis OA of the optical system 1000. Light corresponding to object information may pass through the first to seventh lenses 101 to 107 and the filter 600 and be incident on the image sensor 500.
제1렌즈(101)는 물체측에 가장 가깝게 배치될 수 있다. 제1렌즈(101)는 센서 측에서 가장 멀리 배치될 수 있다. 제1렌즈(101)는 광축(OA)에서 음(-)의 굴절력을 가질 수 있다. 제1렌즈(101)는 플라스틱 재질 또는 유리(glass) 재질을 포함할 수 있으며, 예컨대 유리 재질일 수 있다. 유리 재질의 제1렌즈(101)는 주변 환경에 따른 온도 변화에 따른 중심 위치와 곡률 반경 등의 변화를 줄여줄 수 있으며, 광학계(1000)의 입사측면을 보호할 수 있다. The first lens 101 may be placed closest to the object. The first lens 101 may be placed furthest from the sensor side. The first lens 101 may have negative refractive power at the optical axis OA. The first lens 101 may include a plastic material or a glass material, for example, a glass material. The first lens 101 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and protect the entrance side of the optical system 1000.
광축을 기준으로 제1렌즈(101)의 물체측 제1면(S1)은 볼록하며, 센서측 제2면(S2)은 오목할 수 있다. 제1렌즈(101)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제1렌즈(101)는 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제1렌즈(101)는 유리 재질이며, 비구면을 가질 수 있다. 제1면(S1) 및 제2면(S2) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제1,2면(S1,S2)의 비구면 계수는 도 2의 L3의 S1 및 S2로 제공될 수 있다. 제1면(S1) 및 제2면(S2) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side first surface S1 of the first lens 101 may be convex, and the sensor-side second surface S2 may be concave. The first lens 101 may have a meniscus shape that is convex toward the object. The first lens 101 may have a meniscus shape that is concave toward the sensor. The first lens 101 is made of glass and may have an aspherical surface. At least one or both of the first surface (S1) and the second surface (S2) may be aspherical. The aspheric coefficients of the first and second surfaces S1 and S2 may be provided as S1 and S2 of L3 in FIG. 2. At least one or both of the first surface S1 and the second surface S2 may be provided without a critical point from the optical axis OA to the end of the effective area.
제1렌즈(101)의 굴절 특성에 의해 제2렌즈(102)는 제1렌즈(101)로부터 더 이격될 수 있다. 즉, 제1,2렌즈(101,102) 사이의 중심 간격은 렌즈부 내에서 가장 클 수 있다. Due to the refractive characteristics of the first lens 101, the second lens 102 may be further spaced apart from the first lens 101. That is, the center spacing between the first and second lenses 101 and 102 may be the largest within the lens unit.
제1렌즈(101)의 굴절률(n1)은 n1> 1.6 또는 n1> 1.62의 조건을 만족할 수 있다. 제1렌즈(101)의 굴절률(n1)이 상기 조건을 만족할 경우, 제1,2렌즈(101,102)의 곡률 반경의 커질 수 있으며, 렌즈 제작이 용이할 수 있다. 제1렌즈(101)의 굴절률(n1)이 조건보다 작은 경우, 제1,2렌즈(101,102)의 굴절력을 증가시켜 주기 위해 렌즈 면을 급격하게 오목하거나 볼록하게 형성해야 하며, 이 경우 렌즈 제작이 용이하지 않고 렌즈 불량률도 높아지고 수율 저하의 원인이 될 수 있다.The refractive index (n1) of the first lens 101 may satisfy the condition of n1>1.6 or n1>1.62. When the refractive index (n1) of the first lens 101 satisfies the above conditions, the radius of curvature of the first and second lenses 101 and 102 can be increased, and lens manufacturing can be easy. If the refractive index (n1) of the first lens 101 is smaller than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 101 and 102. In this case, the lens surface must be made sharply concave or convex. It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
제2렌즈(102)는 물체 측에서 2번째로 배치될 수 있다. 제2렌즈(102)는 센서 측에서 6번째로 배치될 수 있다. 제2렌즈(102)는 제1렌즈(101)과 제3렌즈(103) 사이에 배치될 수 있다. 제2렌즈(102)는 광축(OA)에서 음(-)의 굴절력을 가질 수 있다. 제2렌즈(102)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제2렌즈(102)는 플라스틱 재질로 제공될 수 있다.The second lens 102 may be disposed second on the object side. The second lens 102 may be placed sixth on the sensor side. The second lens 102 may be disposed between the first lens 101 and the third lens 103. The second lens 102 may have negative refractive power at the optical axis (OA). The second lens 102 may include plastic or glass. For example, the second lens 102 may be made of plastic.
광축(OA)을 기준으로 제2렌즈(102)의 물체측 제3면(S3)은 오목하며, 센서측 제4면(S4)은 볼록할 수 있다. 제2렌즈(102)는 센서측으로 볼록한 메니스커스 형상을 가질 수 있다. 제2렌즈(102)는 물체측으로 오목한 메니스커스 형상을 가질 수 있다. 제2렌즈(102)는 플라스틱 재질이며, 비구면일 수 있다. 제3면(S3) 및 제4면(S4) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제3,4면(S3,S4)의 비구면 계수는 도 2의 L2의 S1 및 S2로 제공될 수 있다. 제3면(S3) 및 제4면(S4) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis OA, the object-side third surface S3 of the second lens 102 may be concave, and the sensor-side fourth surface S4 may be convex. The second lens 102 may have a meniscus shape that is convex toward the sensor. The second lens 102 may have a meniscus shape that is concave toward the object. The second lens 102 is made of plastic and may be aspherical. At least one or both of the third surface S3 and the fourth surface S4 may be aspherical. The aspherical coefficients of the third and fourth surfaces S3 and S4 can be provided as S1 and S2 of L2 in FIG. 2. At least one or both of the third surface S3 and the fourth surface S4 may be provided without a critical point from the optical axis OA to the end of the effective area.
조리개(Stop)는 제2렌즈(102)의 센서측 제4면(S4)의 둘레에 배치될 수 있다. 조리개(Stop)는 제3렌즈(103)의 물체측 제5면(S5)의 둘레에 배치될 수 있다. 조리개는 화각 범위 내에서 TTL을 줄여줄 수 있고, 광학계의 소형화가 가능하다. 이에 따라 광학계의 중량별 수율(yield by weight)의 저하를 방지하고 생산 효율의 향상을 도모할 수 있다. 또한, 수평 화각(FOV_H)을 40도 내지 50도에서 TTL을 줄여서 광학계를 소형화할 수 있다.The aperture stop may be disposed around the fourth surface S4 on the sensor side of the second lens 102. The aperture stop may be disposed around the object-side fifth surface S5 of the third lens 103. Aperture can reduce TTL within the range of view angle, and miniaturization of the optical system is possible. Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 40 to 50 degrees.
제3렌즈(103)는 물체 측에서 3번째로 배치될 수 있다. 제3렌즈(103)은 센서 측에서 5번째로 배치될 수 있다. 제3렌즈(103)은 제2렌즈(102)와 제4렌즈(104) 사이에 배치될 수 있다. 제3렌즈(103)는 광축(OA)에서 양(+)의 굴절력을 가질 수 있다. 제3렌즈(103)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제3렌즈(103)는 유리 재질로 제공될 수 있다.The third lens 103 may be arranged third from the object side. The third lens 103 may be placed fifth on the sensor side. The third lens 103 may be disposed between the second lens 102 and the fourth lens 104. The third lens 103 may have positive (+) refractive power at the optical axis (OA). The third lens 103 may include plastic or glass. For example, the third lens 103 may be made of glass.
광축을 기준으로 제3렌즈(103)의 물체측 제5면(S5)은 볼록하고, 센서측 제6면(S6)은 볼록할 수 있다. 제3렌즈(103)는 양면이 볼록한 형상을 가질 수 있다. 제3렌즈(103)는 유리 재질이며, 구면일 수 있다. 제5면(S5) 및 제6면(S6) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side fifth surface S5 of the third lens 103 may be convex, and the sensor-side sixth surface S6 may be convex. The third lens 103 may have a convex shape on both sides. The third lens 103 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
제4렌즈(104)는 물체 측에서 4번째로 배치될 수 있다. 제4렌즈(104)는 센서 측에서 4번째로 배치될 수 있다. 제4렌즈(104)은 제3렌즈(103)와 제5렌즈(105) 사이에 배치될 수 있다. 제4렌즈(104)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제4렌즈(104)는 양(+)의 굴절력을 가질 수 있다. 제4렌즈(104)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제4렌즈(104)는 플라스틱 재질로 제공될 수 있다. The fourth lens 104 may be placed fourth on the object side. The fourth lens 104 may be placed fourth on the sensor side. The fourth lens 104 may be disposed between the third lens 103 and the fifth lens 105. The fourth lens 104 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fourth lens 104 may have positive (+) refractive power. The fourth lens 104 may include plastic or glass. For example, the fourth lens 104 may be made of plastic.
광축을 기준으로 제4렌즈(104)의 물체측 제7면(S7)은 볼록하며, 센서측 제8면(S8)은 볼록할 수 있다. 제4렌즈(104)는 양면이 볼록한 형상을 가질 수 있다. 제4렌즈(104)는 플라스틱 재질이며, 비구면일 수 있다. 제7면(S7) 및 제8면(S8) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제7,8면(S7,S8)의 비구면 계수는 도 2의 L4의 S1 및 S2로 제공될 수 있다. 제7면(S7) 및 제8면(S8) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side seventh surface S7 of the fourth lens 104 may be convex, and the sensor-side eighth surface S8 may be convex. The fourth lens 104 may have a convex shape on both sides. The fourth lens 104 is made of plastic and may be aspherical. At least one or both of the seventh surface S7 and the eighth surface S8 may be aspherical. The aspherical coefficients of the seventh and eighth surfaces (S7 and S8) can be provided as S1 and S2 of L4 in FIG. 2. At least one or both of the seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
제5렌즈(105)는 물체 측에서 5번째로 배치될 수 있다. 제5렌즈(105)는 센서 측에서 3번째로 배치될 수 있다. 제5렌즈(105)은 제4렌즈(104)와 제6렌즈(106) 사이에 배치될 수 있다. 제5렌즈(105)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(105)는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(105)는 플라스틱 또는 유리 재질을 포함할 수 있다. 예를 들어, 제5렌즈(105)는 플라스틱 재질로 제공될 수 있다. The fifth lens 105 may be placed fifth on the object side. The fifth lens 105 may be placed third on the sensor side. The fifth lens 105 may be disposed between the fourth lens 104 and the sixth lens 106. The fifth lens 105 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fifth lens 105 may have negative (-) refractive power. The fifth lens 105 may include plastic or glass. For example, the fifth lens 105 may be made of plastic.
광축(OA)을 기준으로 제5렌즈(105)는 물체측 제9면(S9)은 볼록하고, 센서측 제10면(S10)은 오목할 수 있다. 제5렌즈(105)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제5렌즈(105)는 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제5렌즈(105)는 플라스틱 재질이며, 비구면일 수 있다. 제9면(S9) 및 제10면(S10) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제9,10면(S9,S10)의 비구면 계수는 도 2의 L5의 S1 및 S2로 제공될 수 있다. 제9면(S9) 및 제10면(S10) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis OA, the object-side ninth surface S9 of the fifth lens 105 may be convex, and the sensor-side tenth surface S10 may be concave. The fifth lens 105 may have a meniscus shape that is convex toward the object. The fifth lens 105 may have a meniscus shape that is concave toward the sensor. The fifth lens 105 is made of plastic and may be aspherical. At least one or both of the ninth surface S9 and the tenth surface S10 may be aspherical. The aspheric coefficients of the 9th and 10th surfaces (S9 and S10) can be provided as S1 and S2 of L5 in FIG. 2. At least one or both of the ninth surface S9 and the tenth surface S10 may be provided without a critical point from the optical axis OA to the end of the effective area.
제6렌즈(106)는 물체 측에서 6번째로 배치될 수 있다. 제6렌즈(106)는 센서 측에서 2번째로 배치될 수 있다. 제6렌즈(106)은 제5렌즈(105)와 제7렌즈(107) 사이에 배치될 수 있다. 제6렌즈(106)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제6렌즈(106)는 양(+)의 굴절력을 가질 수 있다. 제6렌즈(106)는 플라스틱 또는 유리 재질을 포함할 수 있다. 예를 들어, 제6렌즈(106)는 플라스틱 재질로 제공될 수 있다. The sixth lens 106 may be placed sixth on the object side. The sixth lens 106 may be placed second on the sensor side. The sixth lens 106 may be disposed between the fifth lens 105 and the seventh lens 107. The sixth lens 106 may have positive (+) or negative (-) refractive power at the optical axis (OA). The sixth lens 106 may have positive (+) refractive power. The sixth lens 106 may include plastic or glass. For example, the sixth lens 106 may be made of plastic.
광축(OA)을 기준으로 제6렌즈(106)는 물체측 제11면(S11)은 볼록하고, 센서측 제12면(S12)은 볼록할 수 있다. 제6렌즈(106)는 양면이 볼록한 형상을 가질 수 있다. 제6렌즈(106)는 플라스틱 재질이며, 비구면일 수 있다. 제11면(S11) 및 제12면(S12) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제11,12면(S11,S12)의 비구면 계수는 도 2의 L6의 S1 및 S2로 제공될 수 있다. Based on the optical axis OA, the object-side 11th surface S11 of the sixth lens 106 may be convex and the sensor-side 12th surface S12 may be convex. The sixth lens 106 may have a convex shape on both sides. The sixth lens 106 is made of plastic and may be aspherical. At least one or both of the 11th surface (S11) and the 12th surface (S12) may be aspherical. The aspheric coefficients of the 11th and 12th surfaces (S11 and S12) may be provided as S1 and S2 of L6 in FIG. 2.
제6렌즈(106)의 제11면(S11)은 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다. 제6렌즈(106)의 제12면(S12)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 포함할 수 있다. 제12면(S12)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r62)의 75% 내지 80% 범위, 바람직하게 76% 내지 77% 범위에 위치할 수 있다. 제12면(S12)의 임계점은 광축(OA)에서 3.3 mm 내지 4 mm 범위, 바람직하게 3.5 mm 내지 3.6 mm 범위에 위치할 수 있다. The 11th surface S11 of the sixth lens 106 may be provided without a critical point from the optical axis OA to the end of the effective area. The twelfth surface S12 of the sixth lens 106 may include a critical point from the optical axis OA to the end of the effective area. When the twelfth surface S12 has a critical point, it may be located in a range of 75% to 80% of the effective radius r62 at the optical axis OA, preferably in a range of 76% to 77%. The critical point of the twelfth surface S12 may be located in the range of 3.3 mm to 4 mm, preferably 3.5 mm to 3.6 mm, from the optical axis OA.
제7렌즈(107)은 물체 측에서 가장 멀리 배치될 수 있다. 제7렌즈(107)은 이미지 센서(500)에 가장 가깝게 배치될 수 있다. 제7렌즈(107)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(107)는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(107)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제7렌즈(107)는 플라스틱 재질로 제공될 수 있다. The seventh lens 107 may be placed furthest from the object. The seventh lens 107 may be placed closest to the image sensor 500. The seventh lens 107 may have positive (+) or negative (-) refractive power at the optical axis (OA). The seventh lens 107 may have negative (-) refractive power. The seventh lens 107 may include plastic or glass. For example, the seventh lens 107 may be made of plastic.
광축(OA)을 기준으로 제7렌즈(107)는 물체측 제13면(S13)은 오목하고, 센서측 제14면(S14)은 오목한 형상일 수 있다. 제7렌즈(107)은 양면이 오목한 형상을 가질 수 있다. 제13면(S13) 및 제14면(S14) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제13,14면(S13,S14)의 비구면 계수는 도 2의 L7의 S13 및 S14로 제공될 수 있다. Based on the optical axis OA, the object-side 13th surface S13 of the seventh lens 107 may be concave and the sensor-side 14th surface S14 may be concave. The seventh lens 107 may have a concave shape on both sides. At least one or both of the 13th surface (S13) and the 14th surface (S14) may be aspherical. The aspheric coefficients of the 13th and 14th surfaces (S13 and S14) can be provided as S13 and S14 of L7 in FIG. 2.
제7렌즈(107)의 제13면(S13)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 포함할 수 있다. 제13면(S13)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r71)의 65% 내지 75% 범위, 바람직하게 69% 내지 72% 범위에 위치할 수 있다. 제13면(S13)의 임계점은 광축(OA)에서 3.5 mm 내지 4 mm 범위, 바람직하게 3.6 mm 내지 3.7 mm 범위에 위치할 수 있다. 제7렌즈(107)의 제14면(S14)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 포함할 수 있다. 제14면(S14)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r72)의 65% 내지 75% 범위, 바람직하게 69% 내지 72% 범위에 위치할 수 있다. 제14면(S14)의 임계점은 광축(OA)에서 3.5 mm 내지 4 mm 범위, 바람직하게 3.6 mm 내지 3.7 mm 범위에 위치할 수 있다. The 13th surface S13 of the seventh lens 107 may include a critical point from the optical axis OA to the end of the effective area. When the 13th surface S13 has a critical point, it may be located in the range of 65% to 75% of the effective radius r71 at the optical axis OA, preferably in the range of 69% to 72%. The critical point of the 13th surface S13 may be located in the range of 3.5 mm to 4 mm, preferably 3.6 mm to 3.7 mm, from the optical axis OA. The 14th surface S14 of the seventh lens 107 may include a critical point from the optical axis OA to the end of the effective area. When the 14th surface S14 has a critical point, it may be located in a range of 65% to 75% of the effective radius r72 at the optical axis OA, preferably in a range of 69% to 72%. The critical point of the 14th surface S14 may be located in the range of 3.5 mm to 4 mm, preferably 3.6 mm to 3.7 mm, from the optical axis OA.
제7렌즈(107)는 이미지 센서(500)에 가장 인접한 플라스틱 렌즈일 수 있다. 또한 플라스틱 렌즈를 이미지 센서(500)에 인접하게 2매 이상 배치함으로써, 비구면을 갖는 렌즈 면에 의해 구면 수차와 색 수차 등의 수차를 개선할 수 있고, 해상도에 영향을 제어할 수 있다. 또한 이미지 센서(500)에 인접한 렌즈로 플라스틱 렌즈를 배치함으로써, 유리 재질의 렌즈 대비 조립 공차에 둔감할 수 있다. 즉, 조립 공차에 둔감하다는 의미는 조립 시 설계 대비 약간의 차이가 있게 조립되더라도 광학 성능에 크게 영향을 주지 않을 수 있다. 또한 이미지 센서(500)에 인접한 2매의 렌즈(106,107)를 플라스틱 재질로 제공해 줌으로써, 비구면을 갖는 렌즈 면에 의해 광학 성능을 개선시켜 줄 수 있으며, 예컨대 수차 특성 개선 및 해상도 저하를 방지할 수 있다.The seventh lens 107 may be a plastic lens closest to the image sensor 500. Additionally, by arranging two or more plastic lenses adjacent to the image sensor 500, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 500, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing the two lenses 106 and 107 adjacent to the image sensor 500 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
LensLens SurfaceSurface RadiusRadius ThicknessThickness ndnd vdvd Semi
Aperture
Semi
Aperture
Focal lengthFocal length
1One S1S1 21.41521.415 2.0002.000 1.6413 1.6413 55.1788 55.1788 5.3445.344 -51.1508 -51.1508
S2S2 12.48412.484 2.4842.484 4.4664.466
22 S3S3 -5.720-5.720 2.9562.956 1.5371 1.5371 55.7074 55.7074 4.3884.388 -26.5657 -26.5657
S4S4 -11.270-11.270 0.3000.300 4.2704.270
STOPSTOP -- -- 0.3000.300 4.2004.200
33 S5S5 23.71723.717 3.7463.746 1.6223 1.6223 63.8790 63.8790 4.7974.797 13.2530 13.2530
S6S6 -11.878-11.878 0.3000.300 5.3625.362
44 S7S7 9.8679.867 4.7644.764 1.5371 1.5371 55.7074 55.7074 5.8975.897 15.2476 15.2476
S8S8 -40.034-40.034 0.3000.300 5.7265.726
55 S9S9 299.296299.296 2.0002.000 1.6640 1.6640 21.2131 21.2131 5.3735.373 -10.7433 -10.7433
S10S10 6.9486.948 1.9711.971 4.7444.744
66 S11S11 34.50334.503 3.1573.157 1.5371 1.5371 55.7074 55.7074 4.8304.830 9.0902 9.0902
S12S12 -5.505-5.505 0.3000.300 4.8924.892
77 S13S13 -1096.716-1096.716 2.0002.000 1.5371 1.5371 55.7074 55.7074 5.2545.254 -11.4409 -11.4409
S14S14 6.1836.183 0.6660.666 5.2395.239
FilterFilter infinityinfinity 0.4400.440
1.9361.936
CoverCover infinityinfinity 0.3300.330
0.0440.044
ImageImage infinityinfinity 0.0000.000
표 1은 본 발명의 제1실시예에 따른 렌즈의 면 번호(Surface), 곡률반경(Radius), 각 렌즈의 중심 두께 또는 렌즈면 사이의 거리(Thickness), 굴절률(Index,nd), 아베수(Abbe,vd), 유효반경(Semi Aperture), 초점거리(Fcoal length)를 나타낸다. 이때, 곡률반경과 두께 또는 거리의 단위는 mm일 수 있다.Table 1 shows the surface number (Surface), radius of curvature (Radius), center thickness of each lens or distance between lens surfaces (Thickness), refractive index (Index, nd), and Abbe number of the lens according to the first embodiment of the present invention. (Abbe,vd), effective radius (Semi Aperture), and focal length (Fcoal length). At this time, the unit of curvature radius and thickness or distance may be mm.
항목item value 항목item value
FF 10.8775 10.8775 F-numberF-number 1.64001.6400
ET1ET1 2.3712 2.3712 FOV_HFOV_H 46.00 46.00
ET2ET2 3.6833 3.6833 EPDE.P.D. 6.6326 6.6326
ET3ET3 2.0000 2.0000 BFLBFL 3.4160 3.4160
ET4ET4 2.3491 2.3491 TDTD 26.5787 26.5787
ET5ET5 3.7244 3.7244 ImgHImgH 5.1450 5.1450
ET6ET6 2.1833 2.1833 SDSD 18.8390 18.8390
ET7ET7 1.8859 1.8859 TTLTTL 29.9947 29.9947
ΣIndexΣIndex 11.0760 11.0760 GLca_AverGLca_Aver 9.9849.984
ΣAbbeΣAbbe 363.1005 363.1005 PLca_AverPLca_Aver 10.12310.123
ΣCTΣCT 20.6237 20.6237 CT_maxCT_max 4.7644 4.7644
ΣCGΣCG 5.9550 5.9550 CT_minCT_min 2.0000 2.0000
CA_maxCA_max 11.79411.794 CT_AverCT_Aver 2.9462 2.9462
CA_minCA_min 8.4008.400 F_LG1F_LG1 -17.904-17.904
CA_AverCA_Aver 9.9719.971 F_LG2F_LG2 8.5788.578
표 2는 실시예의 광학계(1000)에서 상술한 수학식들의 항목에 대한 것으로, 광학계(1000)의 TTL(Total track length)(mm), BFL(Back focal length), 유효초점 거리(F)(mm), ImgH(mm), 유효경(CA)(mm), 두께(mm), TTL(mm), 제1면(S1)에서 제14면(S14)까지의 광축 거리인 TD(mm), 굴절률 합, 아베수 합, 두께 합(mm), 인접한 렌즈들 사이의 간격 합, 유효경 특성, 유리 렌즈의 굴절률 합, 플라스틱 재질의 굴절률 합, 화각(FOV_H)(Degree), 에지 두께(ET), F 넘버 등에 대한 것이다. Table 2 shows the items of the above-described equations in the optical system 1000 of the embodiment, including TTL (Total track length) (mm), BFL (Back focal length), and effective focal length (F) (mm) of the optical system 1000. ), ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the 1st surface (S1) to the 14th surface (S14), refractive index sum , Abbe number sum, thickness sum (mm), sum of spacing between adjacent lenses, effective diameter characteristics, sum of refractive index of glass lens, sum of refractive index of plastic material, angle of view (FOV_H) (Degree), edge thickness (ET), F number It's about etc.
제1 내지 제7렌즈(101~107)의 중심 두께는 CT1~CT7으로 나타내며, 각 렌즈의 유효 영역의 끝단인 에지 두께는 ET1~ET7으로 나타내며, 인접한 두 렌즈 사이의 중심 간격(Center gap)은 CG1~CG6으로 나타내며, 각 렌즈의 에지들 사이의 에지 간격은 EG1~EG6으로 나타낸다. BFL(Back focal length)은 이미지 센서(500)에서 마지막 렌즈의 중심까지의 광축 거리이다. TTL은 제1렌즈(101)의 제1면(S1)의 중심에서 이미지 센서(500)의 상면까지의 광축 거리이다. The center thickness of the first to seventh lenses (101 to 107) is expressed as CT1 to CT7, the edge thickness at the end of the effective area of each lens is expressed as ET1 to ET7, and the center gap between two adjacent lenses is expressed as CT1 to CT7. They are indicated as CG1 to CG6, and the edge spacing between the edges of each lens is indicated as EG1 to EG6. Back focal length (BFL) is the optical axis distance from the image sensor 500 to the center of the last lens. TTL is the optical axis distance from the center of the first surface S1 of the first lens 101 to the upper surface of the image sensor 500.
도 2와 같이, 제1실시예에 렌즈부의 렌즈들 중 제1,2,4,5,6,7렌즈(101,102,104,105,106,107)의 렌즈면은 30차 비구면 계수를 가진 비구면을 포함할 수 있다. 예를 들어, 제1,2,4,5,6,7렌즈(101,102,104,105,106,107)는 30차 비구면 계수를 가지는 렌즈면을 포함할 수 있다. 상기와 같이 30차 비구면 계수를 가진 비구면은("0"이 아닌 수치) 주변부의 비구면 형상을 특히 크게 변화시킬 수 있기 때문에 화각(FOV)의 주변부의 광학 성능을 양호하게 보정할 수 있다.As shown in FIG. 2, the lens surfaces of the first, second, fourth, fifth, sixth, and seventh lenses (101, 102, 104, 105, 106, and 107) among the lenses of the lens unit in the first embodiment may include an aspherical surface with a 30th order aspheric coefficient. For example, the first, second, fourth, fifth, sixth, and seventh lenses (101, 102, 104, 105, 106, and 107) may include lens surfaces having a 30th order aspherical coefficient. As described above, an aspheric surface with a 30th order aspherical coefficient (a value other than “0”) can particularly significantly change the aspheric shape of the peripheral area, thereby improving the optical performance of the peripheral area of the field of view (FOV).
제1 내지 제7렌즈(101-107)의 두께(T1-T7), 인접한 두 렌즈 사이의 간격(G1-G6)을 설정할 수 있다. 도 3과 같이, Y축 방향으로 각 렌즈의 두께(T1-T7)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있으며, 각 렌즈 간의 간격(G1-G6)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있다.The thickness (T1-T7) of the first to seventh lenses (101-107) and the gap (G1-G6) between two adjacent lenses can be set. As shown in Figure 3, in the Y-axis direction, the thickness of each lens (T1-T7) can be expressed at intervals of 0.1mm or 0.2mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1mm or 0.2mm or more. It can be displayed every time.
각 렌즈의 곡률 반경의 절대 값으로 비교하면, 광축(OA)에서 제7렌즈(107)의 제13면(S13)의 곡률 반경은 렌즈들 중에서 최대이며, 제6렌즈(106)의 제12면(S12)의 곡률 반경은 렌즈들 중에서 최소일 수 있다. 최대 곡률 반경과 최소 곡률 반경의 차이는 50배 이상 예컨대, 50배 내지 60배 범위일 수 있다. Comparing the absolute value of the radius of curvature of each lens, the radius of curvature of the 13th surface (S13) of the 7th lens 107 at the optical axis OA is the largest among the lenses, and the radius of curvature of the 13th surface (S13) of the 7th lens 107 is the largest among the lenses, and the radius of curvature of the 13th surface (S13) of the 7th lens 107 is the largest among the lenses, and the radius of curvature of the 13th surface (S13) of the 7th lens 107 is the largest among the lenses, and the 12th surface of the 6th lens 106 The radius of curvature of (S12) may be the smallest among lenses. The difference between the maximum radius of curvature and the minimum radius of curvature may be 50 times or more, for example, in the range of 50 to 60 times.
제1 내지 제7렌즈(101-107)의 물체측면 및 센서측면 중 곡률반경이 40 보다 큰 렌즈면은 1개 이상 4개 이하일 수 있다. 이를 통해, 광학계(1000)를 구성하는 렌즈의 곡률반경을 대부분 작게 설계하여 차량에 배치되는 렌즈의 화각, 초점 거리, 및 전장 거리를 만족시킬 수 있다. Among the object side and sensor side of the first to seventh lenses 101-107, there may be at least one or four lens surfaces with a radius of curvature greater than 40. Through this, the radius of curvature of the lens constituting the optical system 1000 can be designed to be mostly small to satisfy the angle of view, focal length, and overall distance of the lens placed in the vehicle.
플라스틱 렌즈의 유효경은 유리 재질의 렌즈의 유효경보다 작기 때문에 플라스틱 재질의 렌즈의 물체측에 배치된 렌즈는 플라스틱 렌즈로 굴절을 시켜주기 위하여 굴절력이 강할 수 있다. 또한, 굴절력을 강하게 하기 위하여 렌즈면의 곡률반경이 작을 수 있다.Since the effective diameter of a plastic lens is smaller than that of a glass lens, the lens placed on the object side of the plastic lens may have a strong refractive power to provide refraction to the plastic lens. Additionally, in order to strengthen the refractive power, the radius of curvature of the lens surface may be small.
제1렌즈(101)의 제1면(S1)의 곡률반경의 절대값은 제2면(S2)의 곡률반경의 절대값보다 클 수 있다. 제2렌즈(102)의 제3면(S3)의 곡률반경의 절대값은 제4면(S4)의 곡률반경의 절대값보다 작을 수 있다. 제3렌즈(103)의 제5면(S5)의 곡률반경의 절대값은 제6면(S6)의 곡률반경의 절대값보다 클 수 있다. 제4렌즈(104)의 제7면(S7)의 곡률반경의 절대값은 제8면(S8)의 곡률반경의 절대값보다 작을 수 있다. 제5렌즈(105)의 제9면(S9)의 곡률반경의 절대값은 제10면(S10)의 곡률반경의 절대값보다 클 수 있다. 제6렌즈(106)의 제11면(S11)의 곡률반경의 절대값은 제12면(S12)의 곡률반경의 절대값보다 클 수 있다. 제7렌즈(107)의 제13면(S13)의 곡률반경의 절대값은 제14면(S14)의 곡률반경의 절대값보다 클 수 있다. The absolute value of the radius of curvature of the first surface (S1) of the first lens 101 may be greater than the absolute value of the radius of curvature of the second surface (S2). The absolute value of the radius of curvature of the third surface (S3) of the second lens 102 may be smaller than the absolute value of the radius of curvature of the fourth surface (S4). The absolute value of the radius of curvature of the fifth surface (S5) of the third lens 103 may be greater than the absolute value of the radius of curvature of the sixth surface (S6). The absolute value of the radius of curvature of the seventh surface (S7) of the fourth lens 104 may be smaller than the absolute value of the radius of curvature of the eighth surface (S8). The absolute value of the radius of curvature of the ninth surface (S9) of the fifth lens 105 may be greater than the absolute value of the radius of curvature of the tenth surface (S10). The absolute value of the radius of curvature of the 11th surface (S11) of the sixth lens 106 may be greater than the absolute value of the radius of curvature of the 12th surface (S12). The absolute value of the radius of curvature of the 13th surface (S13) of the seventh lens 107 may be greater than the absolute value of the radius of curvature of the 14th surface (S14).
각 렌즈의 곡률 반경의 비율은 하기 조건을 만족할 수 있다.The ratio of the radius of curvature of each lens may satisfy the following conditions.
조건 1: 1.5 < L1R1/L1R| < 2Condition 1: 1.5 < L1R1/L1R| < 2
조건 2: 0.5 < |L2R1/L2R2| < 1Condition 2: 0.5 < |L2R1/L2R2| < 1
조건 3: 1.5 < |L3R1/L3R2| < 2Condition 3: 1.5 < |L3R1/L3R2| < 2
조건 4: 0.1 < |L4R1/L4R2| < 0.5Condition 4: 0.1 < |L4R1/L4R2| < 0.5
조건 5: 40 < |L5R1/L5R2| < 50Condition 5: 40 < |L5R1/L5R2| < 50
조건 6: 5 < |L6R1/L6R2| < 10Condition 6: 5 < |L6R1/L6R2| < 10
조건 7: 150 < |L7R1/L7R2| < 200Condition 7: 150 < |L7R1/L7R2| < 200
광축을 기준으로 렌즈의 중심 두께(CT)를 설명하면, 제4렌즈(104)의 중심 두께(CT4)는 렌즈들 중에서 최대이며, 제1렌즈(101), 제5렌즈(105) 및 제7렌즈(107) 중 적어도 하나의 중심 두께(CT1,CT5,CT7)는 렌즈들 중에서 최소이다. 렌즈 중 최대 중심 두께와 최소 중심 두께의 차이는 2 mm 이상 2.5 mm 이하의 범위 일 수 있다. If you describe the central thickness (CT) of the lens based on the optical axis, the central thickness CT4 of the fourth lens 104 is the maximum of the lenses, and the first lens 101, the fifth lens 105 and the 7th and 7th. The central thickness (CT1, CT5, CT7) of at least one of the lenses 107 is the minimum among the lenses. The difference between the maximum and minimum center thickness of the lens may be in the range of 2 mm or more and 2.5 mm or less.
각 렌즈의 중심 두께는 아래의 조건 중 어느 하나를 만족할 수 있다.The center thickness of each lens may satisfy any one of the conditions below.
조건 1: CT2, CT3, CT4, CT6 > CT1 = CT5 = CT7Condition 1: CT2, CT3, CT4, CT6 > CT1 = CT5 = CT7
조건 2: CT3, CT4, CT6 > CT2 > CT1, CT3, CT5, CT7 Condition 2: CT3, CT4, CT6 > CT2 > CT1, CT3, CT5, CT7
조건 3: CT4 > CT3 > CT1, CT2, CT5, CT6, CT7Condition 3: CT4 > CT3 > CT1, CT2, CT5, CT6, CT7
조건 4: CT4 > CT1, CT2, CT3, CT6, CT7Condition 4: CT4 > CT1, CT2, CT3, CT6, CT7
조건 5: CT3, CT4 > CT6 > CT1, CT2, CT5, CT7Condition 5: CT3, CT4 > CT6 > CT1, CT2, CT5, CT7
렌즈들 사이의 중심 간격(CG)를 설명하면, 제1렌즈(101) 및 제2렌즈(102) 사이의 중심 간격(CG1)은 최대이며, 제3,4렌즈(103,104) 사이의 중심 간격(CG3), 제4,5렌즈(104,105) 사이의 중심 간격(CG4) 및 제6,7렌즈(106,107) 사이의 중심 간격(CG6) 중 적어도 하나는 최소일 수 있다. 이격되는 렌즈 간격 중 최대 중심 간격과 최소 중심 간격의 차이는 3 mm 이상 예컨대, 3 mm 내지 4 mm 범위일 수 있다. Describing the center spacing (CG) between the lenses, the center spacing (CG1) between the first lens 101 and the second lens 102 is the maximum, and the center spacing between the third and fourth lenses 103 and 104 ( At least one of CG3), the center distance CG4 between the fourth and fifth lenses 104 and 105, and the center distance CG6 between the sixth and seventh lenses 106 and 107 may be minimum. The difference between the maximum center spacing and the minimum center spacing among the spaced lens spacing may be 3 mm or more, for example, in the range of 3 mm to 4 mm.
각 렌즈들 사이의 중심 간격은 아래의 조건을 만족할 수 있다.The center spacing between each lens can satisfy the following conditions.
조건 1: CG1 > CG2, CG3, CG4, CG5, CG6Condition 1: CG1 > CG2, CG3, CG4, CG5, CG6
조건 2: CG1, CG5 > CG2 > CG3, CG4, CG6Condition 2: CG1, CG5 > CG2 > CG3, CG4, CG6
조건 3: CG1, CG2, CG5 > CG3 = CG4 = CG6Condition 3: CG1, CG2, CG5 > CG3 = CG4 = CG6
조건 4: CG1 > CG5 > CG2, CG3, CG4, CG6 Condition 4: CG1 > CG5 > CG2, CG3, CG4, CG6
유효경에 대해 설명하면, 최대 유효경을 갖는 렌즈는 유리 재질의 렌즈일 수 있다. 최대 유효경을 갖는 렌즈는 제4렌즈(104)일 수 있다. 여기서, 유효경은 각 렌즈의 물체측면의 유효경과 센서측면의 유효경의 평균이다. 최대 유효경을 갖는 렌즈 면은 제4렌즈(104)의 제7면(S7) 일 수 있다. 최소 유효경을 갖는 렌즈는 제2렌즈(102)일 수 있다. 최소 유효경을 갖는 렌즈면은 제2렌즈(102)의 제4면(S4)일 수 있다. 플라스틱 재질의 렌즈의 유효경은 유리 재질의 렌즈의 유효경보다 작을 수 있다. 플라스틱 재질의 렌즈는 이미지 센서와 인접하게 배치될 수 있다. When explaining the effective diameter, a lens with the maximum effective diameter may be a glass lens. The lens with the maximum effective diameter may be the fourth lens 104. Here, the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side. The lens surface having the maximum effective diameter may be the seventh surface S7 of the fourth lens 104. The lens having the minimum effective diameter may be the second lens 102. The lens surface having the minimum effective diameter may be the fourth surface S4 of the second lens 102. The effective diameter of a plastic lens may be smaller than that of a glass lens. A lens made of plastic may be placed adjacent to the image sensor.
각 렌즈의 유효경은 아래의 조건 중 어느 하나를 만족할 수 있다.The effective diameter of each lens can satisfy any one of the conditions below.
조건 1: CA_L3, CA_L4, CA_L5, CA_L7 > CA_L1 > CA_L2, CA_L6Condition 1: CA_L3, CA_L4, CA_L5, CA_L7 > CA_L1 > CA_L2, CA_L6
조건 2: CA_L1, CA_L3, CA_L4, CA_L5, CA_L6, CA_L7 > CA_L2Condition 2: CA_L1, CA_L3, CA_L4, CA_L5, CA_L6, CA_L7 > CA_L2
조건 3: CA_L4, CA_L7 > CA_L3 > CA_L1, CA_L2, CA_L5, CA_L6Condition 3: CA_L4, CA_L7 > CA_L3 > CA_L1, CA_L2, CA_L5, CA_L6
조건 4: CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7Condition 4: CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7
조건 5: CA_L3, CA_L4, CA_L7 > CA_L5 > CA_L1, CA_L2, CA_L6Condition 5: CA_L3, CA_L4, CA_L7 > CA_L5 > CA_L1, CA_L2, CA_L6
조건 6: CA_L1, CA_L3, CA_L4, CA_L5, CA_L7 > CA_L6 > CA_L2Condition 6: CA_L1, CA_L3, CA_L4, CA_L5, CA_L7 > CA_L6 > CA_L2
조건 7: CA_L4 > CA_L7 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6Condition 7: CA_L4 > CA_L7 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6
굴절률을 설명하면, 제5렌즈(105)의 굴절률은 렌즈들 중에서 최대이며, 1.6초과, 예컨대, 1.65 초과일 수 있다. 제2렌즈(102), 제4렌즈(104), 제6렌즈(106) 및 제7렌즈(107) 중 어느 하나 또는 모두는 렌즈들 중에서 최소의 굴절률을 가질 수 있다. 예컨대, 2렌즈(102), 제6렌즈(106) 및 제7렌즈(108)의 굴절률은 렌즈들 중 최소일 수 있고, 1.6 미만, 예컨대 1.55 미만일 수 있다. 최대 굴절률과 최소 굴절률 차이는 0.2 이상일 수 있다. 물체에 가장 가까운 유리 재질 고 굴절률 렌즈로 제공하고, 유리 재질의 렌즈에 인접한 렌즈와 이미지 센서(500)에 인접한 렌즈를 플라스틱 재질의 저 굴절률 렌즈로 제공해 줌으로써, 입사 효율을 증가시키고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 굴절력을 조절하여 이미지 센서(500)로 가이드할 수 있다. Explaining the refractive index, the refractive index of the fifth lens 105 is the highest among the lenses and may be greater than 1.6, for example, greater than 1.65. One or all of the second lens 102, fourth lens 104, sixth lens 106, and seventh lens 107 may have the lowest refractive index among the lenses. For example, the refractive index of the second lens 102, the sixth lens 106, and the seventh lens 108 may be the minimum among the lenses, and may be less than 1.6, for example, less than 1.55. The difference between the maximum and minimum refractive indices may be 0.2 or more. By providing a high refractive index lens made of glass closest to the object, and providing a low refractive index lens made of plastic for the lens adjacent to the glass lens and the lens adjacent to the image sensor 500, the incident efficiency is increased, and the lens adjacent to the glass material lens and the lens adjacent to the image sensor 500 are provided as low refractive index lenses made of plastic. It is possible to guide the image sensor 500 by adjusting the refractive power between the lens materials.
각 렌즈의 굴절률은 아래의 조건 중 어느 하나를 만족할 수 있다.The refractive index of each lens may satisfy any one of the conditions below.
조건 1: n5 > n1 > n2, n3, n4, n6, n7Condition 1: n5 > n1 > n2, n3, n4, n6, n7
조건 2: n1, n3, n5 > n2 = n4 = n6 = n7 Condition 2: n1, n3, n5 > n2 = n4 = n6 = n7
조건 3: n1, n5 > n3 > n2, n4, n6, n7Condition 3: n1, n5 > n3 > n2, n4, n6, n7
조건 4: n5 > n1, n2, n3, n4, n6, n7Condition 4: n5 > n1, n2, n3, n4, n6, n7
아베수를 비교하면, 제3렌즈(103)의 아베수는 렌즈들 중 최대이며, 60 이상일 수 있다. 제5렌즈(105)의 아베수는 렌즈들 중 최소이며, 25 이하일 수 있다. 최대 굴절률과 최소 아베수 차이는 40 이상일 수 있다. 광학계(1000)의 중심 부분에 배치된 제3렌즈(103)의 아베수를 가장 크게 하고, 이미지 센서(500)에 인접한 저 굴절률을 갖는 제5렌즈(105)의 아베수를 가장 작게 제공해 줌으로써, 유리 재질과 플라스틱 재질의 렌즈들 사이로 진행되는 광의 색 분산을 조절하고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 색 분산을 증가하여 이미지 센서(500)로 가이드할 수 있다. Comparing the Abbe number, the Abbe number of the third lens 103 is the largest among the lenses and may be 60 or more. The Abbe number of the fifth lens 105 is the minimum among the lenses and may be 25 or less. The difference between the maximum refractive index and the minimum Abbe number may be 40 or more. By providing the largest Abbe number of the third lens 103 disposed in the center of the optical system 1000 and the smallest Abbe number of the fifth lens 105 with a low refractive index adjacent to the image sensor 500, The color dispersion of light traveling between glass and plastic lenses can be adjusted, and the color dispersion between the glass and plastic lenses can be increased to guide the light to the image sensor 500.
각 렌즈의 아베수는 아래의 조건 중 어느 하나를 만족할 수 있다.The Abbe number of each lens can satisfy any one of the conditions below.
조건 1: v2, v3, v4, v6, v7 > v1 > v5Condition 1: v2, v3, v4, v6, v7 > v1 > v5
조건 2: v3 > v2 = v4 = v6 = v7 > v1, v5Condition 2: v3 > v2 = v4 = v6 = v7 > v1, v5
조건 3: v3 > v1, v2, v4, v5, v6, v7Condition 3: v3 > v1, v2, v4, v5, v6, v7
조건 4: v1, v2, v3, v4, v6, v7 > v5Condition 4: v1, v2, v3, v4, v6, v7 > v5
제1,2,5,7렌즈(101,102,105,107)의 초점 거리(F1,F2,F5,F7)는 음(-)의 부호를 가질 수 있다. 제1,2,5,7렌즈(101,102,105,107)는 음(-)의 굴절력을 가질 수 있다. 제3,4,6렌즈(103,104,106)의 초점 거리(F3,F4,F6)는 양(+)의 부호를 가질 수 있다. 제3,4,6렌즈(103,104,106)의 양(+)의 굴절력을 가질 수 있다. 음(-)의 굴절력을 갖는 제1렌즈(101), 제2렌즈(102)의 센서 측에는 양(+)의 굴절력을 갖는 제3렌즈(103)가 배치될 수 있다. 이를 통해, 물체 측에서 입사된 광은 광축 방향에서 멀어지다가 다시 광축 방향으로 모일 수 있어, 안정적인 광 경로를 형성할 수 있다. The focal lengths F1, F2, F5, and F7 of the first, second, fifth, and seventh lenses 101, 102, 105, and 107 may have a negative (-) sign. The first, second, fifth, and seventh lenses (101, 102, 105, and 107) may have negative refractive power. The focal lengths F3, F4, and F6 of the third, fourth, and sixth lenses 103, 104, and 106 may have a positive (+) sign. The third, fourth, and sixth lenses (103, 104, and 106) may have positive refractive power. A third lens 103 with positive (+) refractive power may be disposed on the sensor side of the first lens 101 and the second lens 102 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
또한 인접하여 배치되는 렌즈인 제4렌즈(104)와 제5렌즈(105)는 하기 조건을 만족할 수 있다.Additionally, the fourth lens 104 and the fifth lens 105, which are adjacent lenses, can satisfy the following conditions.
조건 1: 양의 굴절력을 가진 렌즈의 굴절률 < 음의 굴절력을 가진 렌즈의 굴절률 Condition 1: Refractive index of a lens with positive refractive power < Refractive index of a lens with negative refractive power
조건 2: 양의 굴절력을 가진 렌즈의 분산값 > 음의 굴절력을 가진 렌즈의 분산값Condition 2: Dispersion value of a lens with positive refractive power > Dispersion value of a lens with negative refractive power
여기서, 플라스틱 렌즈들 중에서 제4렌즈(104)는 양의 굴절력을 갖고, 제5렌즈(105)는 음의 굴절력을 가짐에 따라, 조건 1,2 에 의하면 제4렌즈(104)의 굴절률이 제5렌즈(105)의 굴절률보다 작고, 제4렌즈(104)의 분산값이 제5렌즈(105)의 분산값보다 크다. 플라스틱 렌즈에서 발생되는 색수차는 플라스틱 렌즈로 보정할 수 있다. 또한, 연속해서 배치되는 플라스틱 렌즈인 제4렌즈(104)와 제5렌즈(105)가 굴절률 차이 0.1 이상 0.15 이하, 아베수 차이 20 이상 50 이하를 만족시킴으로써 플라스틱 렌즈에서 발생하는 색 수차를 플라스틱 렌즈로 보상할 수 있다. Here, among the plastic lenses, the fourth lens 104 has positive refractive power and the fifth lens 105 has negative refractive power, so according to conditions 1 and 2, the refractive index of the fourth lens 104 is It is smaller than the refractive index of the fifth lens 105, and the dispersion value of the fourth lens 104 is greater than that of the fifth lens 105. Chromatic aberration occurring in plastic lenses can be corrected with plastic lenses. In addition, the fourth lens 104 and the fifth lens 105, which are plastic lenses arranged in succession, satisfy the refractive index difference of 0.1 to 0.15 and the Abbe number difference of 20 to 50, thereby reducing chromatic aberration occurring in the plastic lens. It can be compensated with
광학계는 색 수차가 발생하며 접합 렌즈를 사용하거나 연속하게 배치된 두 렌즈를 사용하여 색수차를 보정한다. 저온에서 고온까지의 온도가 변화함에 따라 렌즈가 수축 및 팽창을 반복한다. 같은 소재의 렌즈들은 온도 변화에 따른 렌즈 특성 변화량이 동일하므로, 온도가 변화하더라도 같은 소재의 렌즈끼리 색 수차를 보정하는 것이 효과적이다. 따라서 본 발명의 제1실시예에서는 제4렌즈(104) 및 제5렌즈(105)를 사용하여 플라스틱 렌즈에서 발생하는 색 수차를 보정할 수 있다.Optical systems produce chromatic aberration, and chromatic aberration is corrected using a bonded lens or two lenses placed in series. As the temperature changes from low to high, the lens repeats contraction and expansion. Since lenses made of the same material have the same amount of change in lens characteristics due to temperature changes, it is effective to correct chromatic aberration between lenses made of the same material even if the temperature changes. Therefore, in the first embodiment of the present invention, chromatic aberration occurring in the plastic lens can be corrected using the fourth lens 104 and the fifth lens 105.
광축에서 유효경 영역까지, 인접하게 배치되는 두 렌즈 중 아베수 차이가 가장 큰 두 렌즈의 거리의 최대값은 다른 인접한 두 렌즈 사이의 거리의 최대값보다 작을 수 있다. 여기에서, 거리는 광축에서 유효경 영역까지, 두 렌즈 사이의 거리를 의미할 수 있다. 인접하게 배치되는 두 렌즈 중 아베수 차이가 가장 큰 두 렌즈는 제4렌즈(104) 및 제5렌즈(105)일 수 있다. 광축에서 유효경 영역까지 광축에 수직인 방향으로, 제4렌즈(104)의 센서측면(제8면(S8))과 제5렌즈(105)의 물체측면(제9면(S9))까지의 거리 중 최대값은 다른 인접한 두 렌즈 사이의 거리의 최대값보다 작을 수 있다. 이를 통해, 접합이 어려운 플라스틱 재질의 두 렌즈 사이의 거리를 작게 설계하고, 아베수 차이를 가장 크게 하여 접합하지 않은 상태에서도 접합 렌즈와 동일한 색수차를 줄일 수 있는 효과를 가질 수 있다. From the optical axis to the effective diameter area, the maximum value of the distance between two lenses with the largest Abbe number difference among two adjacent lenses may be smaller than the maximum value of the distance between two other adjacent lenses. Here, the distance may mean the distance between two lenses, from the optical axis to the effective diameter area. Among the two lenses disposed adjacently, the two lenses with the largest difference in Abbe number may be the fourth lens 104 and the fifth lens 105. The distance between the sensor side (eighth surface (S8)) of the fourth lens 104 and the object side (ninth side (S9)) of the fifth lens 105 in the direction perpendicular to the optical axis from the optical axis to the effective diameter area. The maximum value may be less than the maximum value of the distance between two other adjacent lenses. Through this, the distance between two lenses made of plastic, which are difficult to bond, is designed to be small, and the Abbe number difference is maximized to have the effect of reducing the same chromatic aberration as a bonded lens even in a non-bonded state.
초점 거리를 절대 값으로 비교하면, 제1렌즈(101)의 초점 거리는 렌즈들 중에서 최대이며, 50 이상 내지 60 이하일 수 있다. 제6렌즈(106)의 초점 거리는 렌즈들 중에서 최소이고, 제7렌즈(106)의 초점 거리의 절대값은 5 이상 내지 10 이하일 수 있다. When comparing focal lengths in absolute values, the focal length of the first lens 101 is the largest among lenses and may be 50 or more to 60 or less. The focal length of the sixth lens 106 is the minimum among the lenses, and the absolute value of the focal length of the seventh lens 106 may be 5 or more and 10 or less.
제1렌즈(101)의 초점 거리는 렌즈들 중 가장 크고, 굴절력이 가장 약하므로 제1렌즈(101)의 센서측에 배치되는 제2렌즈(102) 및 제3렌즈(103)의 아베수 차이가 크지 않아도 색수차 잡아줄 수 있는 효과가 있다. The focal length of the first lens 101 is the largest among the lenses and the refractive power is the weakest, so the difference in Abbe numbers between the second lens 102 and the third lens 103 disposed on the sensor side of the first lens 101 is Although it is not large, it is effective in reducing chromatic aberration.
각 렌즈의 초점거리의 절대값은 아래의 조건 중 어느 하나를 만족할 수 있다.The absolute value of the focal length of each lens can satisfy any of the conditions below.
조건 1: |f1| > |f2|, |f3|, |f4|, |f5|, |f6|, |f7|Condition 1: |f1| > |f2|, |f3|, |f4|, |f5|, |f6|, |f7|
조건 2: |f1| > |f2| > |f3|, |f4|, |f5|, |f6|, |f7|Condition 2: |f1| > |f2| > |f3|, |f4|, |f5|, |f6|, |f7|
조건 3: |f1|, |f2|, |f4| > |f3| > |f5|, |f6|, |f7|Condition 3: |f1|, |f2|, |f4| > |f3| > |f5|, |f6|, |f7|
조건 4: |f1|, |f2| > |f4| > |f3|, |f5|, |f6|, |f7| Condition 4: |f1|, |f2| > |f4| > |f3|, |f5|, |f6|, |f7|
조건 5: |f1|, |f2|, |f3|, |f4|, |f7| > |f5| > |f6|Condition 5: |f1|, |f2|, |f3|, |f4|, |f7| > |f5| > |f6|
조건 6: |f1|, |f2|, |f3|, |f4|, |f5|, |f7| > |f6| Condition 6: |f1|, |f2|, |f3|, |f4|, |f5|, |f7| > |f6|
조건 7: |f1|, |f2|, |f3|, |f4| > |f7| > |f5|, |f6|Condition 7: |f1|, |f2|, |f3|, |f4| > |f7| > |f5|, |f6|
제1렌즈(101)의 두께(T1)는 최대 두께와 최소 두께의 차이가 1.1배 이상 예컨대, 1.2배 내지 1.5배 범위일 수 있으며, 중심 두께(CT1)가 최소이고, 에지 두께(ET1)가 최대일 수 있다. 제2렌즈(102)의 두께(T2)는 최대 두께가 최소 두께의 1배 내지 1.5배 범위일 수 있다. 제2렌즈(102)는 중심 두께(CT2)가 최소이며, 에지 두께(ET2)는 최대일 수 있다. 제3렌즈(103)의 두께(T3)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1배 내지 1.5배 범위이다. 제4렌즈(104)의 두께(T4)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 2배 내지 2.5배 범위이다. 제5렌즈(105)의 두께(T5)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1.2배 내지 1.7배 범위이다. 제6렌즈(106)의 두께(T6)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 1.5배 내지 2배 범위이다. 제7렌즈(107)의 두께(T7)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1배 내지 1.5배 범위이다. The thickness (T1) of the first lens 101 may have a difference between the maximum thickness and the minimum thickness of 1.1 times or more, for example, 1.2 to 1.5 times, the center thickness (CT1) is the minimum, and the edge thickness (ET1) is the minimum. It can be maximum. The thickness T2 of the second lens 102 may have a maximum thickness ranging from 1 to 1.5 times the minimum thickness. The second lens 102 may have a minimum center thickness (CT2) and a maximum edge thickness (ET2). The thickness T3 of the third lens 103 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness. The thickness T4 of the fourth lens 104 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 2 to 2.5 times the minimum thickness. The thickness T5 of the fifth lens 105 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness. The thickness T6 of the sixth lens 106 may be maximum at the center and minimum at the edge, with the maximum thickness being in the range of 1.5 to 2 times the minimum thickness. The thickness T7 of the seventh lens 107 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness.
각 렌즈의 두께는 아래의 조건 중 어느 하나를 만족할 수 있다.The thickness of each lens can satisfy any of the conditions below.
조건 1: 0.5 < CT1/ET1 < 1, 1 < ET1/CT1 < 1.5Condition 1: 0.5 < CT1/ET1 < 1, 1 < ET1/CT1 < 1.5
조건 2: 0.5 < CT2/ET2 < 1, 1 < ET2/CT2 < 1.5Condition 2: 0.5 < CT2/ET2 < 1, 1 < ET2/CT2 < 1.5
조건 3: 0.5 < CT3/ET3 < 1, 1 < ET3/CT3 < 1.5Condition 3: 0.5 < CT3/ET3 < 1, 1 < ET3/CT3 < 1.5
조건 4: 2 < CT4/ET4 < 2.5, 0.1 < ET4/CT4 < 0.5Condition 4: 2 < CT4/ET4 < 2.5, 0.1 < ET4/CT4 < 0.5
조건 5: 0.5 < CT5/ET5 < 1, 1.2 < ET5/CT5 < 1.7Condition 5: 0.5 < CT5/ET5 < 1, 1.2 < ET5/CT5 < 1.7
조건 6: 1.2 < CT6/ET6 < 1.7, 0.5 < ET6/CT6 < 1Condition 6: 1.2 < CT6/ET6 < 1.7, 0.5 < ET6/CT6 < 1
조건 7: 0.5 < CT7/ET7 < 1, 1 < ET7/CT7 < 1.5Condition 7: 0.5 < CT7/ET7 < 1, 1 < ET7/CT7 < 1.5
조건 8: 1 < ΣCT/ΣET < 1.2, 0.5 < ΣET/ΣCT < 1Condition 8: 1 < ΣCT/ΣET < 1.2, 0.5 < ΣET/ΣCT < 1
렌즈들 사이의 간격(G1-G7) 중에서 제1,2렌즈(101,102) 사이의 제1간격(G1)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제2,3 렌즈(102,103) 사이의 제2간격(G2)은 중심부가 최소이고, 에지부가 최대일 수 있다. 제3,4렌즈(103,104) 사이의 제3간격(G3)은 에지부가 최대이고, 중심부가 최소일 수 있다. 제4,5렌즈(104,105) 사이의 제4간격(G4)은 중심부가 최소이고, 에지부가 최대일 수 있다. 제5,6렌즈(105,106) 사이의 제5간격(G5)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제6,7렌즈(106,107) 사이의 제6간격(G6)은 중심부가 최소이고, 에지부가 최대일 수 있다. Among the intervals G1-G7 between the lenses, the first interval G1 between the first and second lenses 101 and 102 may be maximum at the center and minimum at the edges. The second gap G2 between the second and third lenses 102 and 103 may be minimum at the center and maximum at the edges. The third gap G3 between the third and fourth lenses 103 and 104 may be maximum at the edge and minimum at the center. The fourth gap G4 between the fourth and fifth lenses 104 and 105 may be minimum at the center and maximum at the edges. The fifth gap G5 between the fifth and sixth lenses 105 and 106 may be maximum at the center and minimum at the edges. The sixth gap G6 between the sixth and seventh lenses 106 and 107 may be minimum at the center and maximum at the edges.
도 6, 도 8 및 도 10은 도 1의 광학계에서 상온, 저온 및 고온에서의 회절(Diffraction) MTF(Modulation transfer function)를 나타낸 그래프로서, 공간 주파수(spatial frequency)에 따른 휘도 비(modulation)를 나타낸 그래프이다. 도 6, 도 8 및 도 10과 같이, 발명의 제1실시예에서 상온을 기준으로 저온 또는 고온과의 MTF의 편차는 10% 미만 즉, 7% 이하일 수 있다. Figures 6, 8, and 10 are graphs showing the diffraction MTF (modulation transfer function) at room temperature, low temperature, and high temperature in the optical system of Figure 1, showing the luminance ratio (modulation) according to spatial frequency. This is the graph shown. 6, 8, and 10, in the first embodiment of the invention, the deviation of MTF from low or high temperature based on room temperature may be less than 10%, that is, 7% or less.
도 7, 도 9 및 도 11은 도 1의 광학계에서 상온, 저온 및 고온에서의 수차 특성을 나타낸 그래프다. 도 7, 도 9 및 도 11의 수차 그래프에서 좌측에서 우측 방향으로 구면 수차(Longitudinal Spherical Aberration), 비점 수차(Astigmatic Field Curves), 왜곡 수차(Distortion)를 측정한 그래프이다. 도 7, 도 9 및 도 11에서 X축은 초점 거리(mm) 및 왜곡도(%)를 나타낼 수 있고, Y축은 이미지의 높이(height)를 의미할 수 있다. 또한, 구면 수차에 대한 그래프는 약 435nm, 약 486nm, 약 546nm, 약 587nm, 약 656nm 파장 대역의 광에 대한 그래프이며, 비점 수차 및 왜곡 수차에 대한 그래프는 약 546nm 파장 대역의 광에 대한 그래프이다. 도 7, 도 9 및 도 11의 수차도에서는 상온, 저온 및 고온에서의 각 곡선들이 Y축에 근접할 수록 수차 보정 기능이 좋은 것으로 해석할 수 있는데, 제1실시예에 따른 광학계(1000)는 거의 대부분의 영역에서 측정 값들이 Y축에 인접한 것을 알 수 있다. 즉, 제1실시예에 따른 광학계(1000)는 향상된 해상력을 가지며 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다. 여기서, 저온은 -20도 이하의 예컨대, -20 내지 -40도 범위이며, 상온은 22도±5도 범위 또는 18도 내지 27도 범위이며, 고온은 85도 이상 예컨대, 85도 내지 105도의 범위일 수 있다. 이에 따라 도 7, 도 9 및 도 11의 저온에서 고온까지 휘도 비(modulation)의 저하가 10% 미만 예컨대, 5% 이하이거나, 거의 변경되지 않음을 알 수 있다. Figures 7, 9, and 11 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 1. 7, 9, and 11 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right. In FIGS. 7, 9, and 11, the X-axis may represent focal length (mm) and distortion (%), and the Y-axis may represent the height of the image. In addition, the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm, and the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm. . In the aberration diagrams of FIGS. 7, 9, and 11, it can be interpreted that the closer the curves at room temperature, low temperature, and high temperature are to the Y axis, the better the aberration correction function is. The optical system 1000 according to the first embodiment has You can see that in most areas, the measured values are adjacent to the Y axis. That is, the optical system 1000 according to the first embodiment has improved resolution and can have good optical performance not only in the center but also in the periphery of the field of view (FOV). Here, the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees, the room temperature is in the range of 22 degrees ± 5 degrees or 18 to 27 degrees, and the high temperature is 85 degrees or higher, for example, in the range of 85 to 105 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 7, 9, and 11 is less than 10%, for example, 5% or less, or is almost unchanged.
표 3은 제1실시예에 따른 광학계에서 상온, 저온 및 고온에서의 EFL, BFL, F넘버(F#), TTL 및 화각(FOV_D)와 같은 광학 특성의 변화를 비교하였으며, 상온을 기준으로 저온의 광학 특성의 변화율 5% 이하 예컨대, 3%이하로 나타남을 알 수 있으며, 상온을 기준으로 저온의 광학 특성의 변화율이 5% 이하 예컨대, 3% 이하로 나타남을 알 수 있다.Table 3 compares the changes in optical characteristics such as EFL, BFL, F number (F#), TTL, and angle of view (FOV_D) at room temperature, low temperature, and high temperature in the optical system according to the first embodiment, and the change in optical properties at low temperature based on room temperature. It can be seen that the change rate of optical properties is 5% or less, for example, 3% or less, and the change rate of optical properties at low temperatures based on room temperature is 5% or less, for example, 3% or less.
상온room temperature 저온low temperature 고온High temperature 저온/상온Low temperature/room temperature 고온/상온High temperature/room temperature
EFL(F)EFL(F) 10.88 10.88 10.79 10.79 10.99 10.99 99.17%99.17% 101.01%101.01%
BFLBFL 3.42 3.42 3.41 3.41 3.42 3.42 99.70%99.70% 100.00%100.00%
F#F# 1.64 1.64 1.63 1.63 1.66 1.66 99.39%99.39% 101.21%101.21%
TTLTTL 29.99 29.99 29.92 29.92 30.08 30.08 99.76%99.76% 100.30%100.30%
FOV_DFOV_D 54.69 54.69 55.19 55.19 54.10 54.10 100.91%100.91% 98.92%98.92%
따라서, 표 3과 같이, 저온에서 고온까지의 온도 변화에 따른 광학 특성의 변화 예컨대, 유효초점거리(EFL)의 변화율, TTL, BFL, F 넘버, 화각(FOV_D)의 변화율이 10% 이하 즉, 5% 이하 예컨대, 0 ~ 5% 범위임을 알 수 있다. 이는 적어도 한 매 또는 두 매 이상의 플라스틱 렌즈를 사용하더라도, 플라스틱 렌즈에 대한 온도보상이 가능하게 설계하여, 광학 특성의 신뢰성 저하를 방지할 수 있다. Therefore, as shown in Table 3, the change in optical properties according to the temperature change from low to high temperature, for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV_D) is 10% or less, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, temperature compensation for the plastic lenses is designed to prevent deterioration in the reliability of optical characteristics.
상기에 개시된 제1실시예의 광학계는 색수차, 왜곡 수차 등의 수차 특성을 효과적으로 제어할 수 있고, 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다.The optical system of the first embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
발명의 제2실시예에 따른 광학계에 대해 설명하기로 한다.The optical system according to the second embodiment of the invention will be described.
도 13은 제2실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이고, 도 14는 도 13의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이고, 도 15는 도 13의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이고, 도 16은 도 13의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Sag 값을 나타낸 표이고, 도 17은 도 13의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Slope Angle 을 나타낸 표이고, 도 18은 도 13의 광학계의 저온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이고, 도 19는 도 13의 광학계의 저온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 20은 도 13의 광학계의 상온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이고, 도 21은 도 13의 광학계의 상온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 22는 도 13의 광학계의 고온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이고, 도 23은 도 13의 광학계의 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 24는 도 13의 광학계의 주변 광량비를 나타낸 그래프이다.FIG. 13 is a side cross-sectional view of an optical system and a camera module having the same according to a second embodiment, FIG. 14 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 13, and FIG. 15 shows the thickness and thickness of each lens of the optical system of FIG. 13. This is a table showing the spacing between adjacent lenses, and Figure 16 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 13, and Figure 17 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 13. It is a table showing the Slope Angle of the surfaces, and Figure 18 is a graph showing data on the diffraction MTF (Modulation Transfer Function) at low temperature of the optical system of Figure 13, and Figure 19 is a graph showing the aberration characteristics at low temperature of the optical system of Figure 13. It is a graph showing data, Figure 20 is a graph showing data on the diffraction MTF at room temperature of the optical system of Figure 13, Figure 21 is a graph showing data on aberration characteristics at room temperature of the optical system of Figure 13, and Figure 22 is a graph showing data on the diffraction MTF at high temperature of the optical system of FIG. 13, FIG. 23 is a graph showing data on aberration characteristics at high temperature of the optical system of FIG. 13, and FIG. 24 is the amount of ambient light of the optical system of FIG. 13. This is a graph showing rain.
도 13을 참조하면, 광학계(1100)는 렌즈부를 포함하며, 렌즈부는 제1렌즈(201) 내지 제7렌즈(207)를 포함할 수 있다. 제1 내지 제7렌즈(201~207)은 광학계(1100)의 광축(OA)을 따라 순차적으로 배치될 수 있다. 물체의 정보에 해당하는 광은 제1렌즈(201) 내지 제7렌즈(207), 및 필터(600)를 통과하여 이미지 센서(500)에 입사될 수 있다.Referring to FIG. 13, the optical system 1100 includes a lens unit, and the lens unit may include a first lens 201 to a seventh lens 207. The first to seventh lenses 201 to 207 may be sequentially arranged along the optical axis OA of the optical system 1100. Light corresponding to object information may pass through the first to seventh lenses 201 to 207 and the filter 600 and be incident on the image sensor 500.
제1렌즈(201)는 물체측에 가장 가깝게 배치될 수 있다. 제1렌즈(201)는 센서 측에서 가장 멀리 배치될 수 있다. 제1렌즈(201)는 광축(OA)에서 음(-)의 굴절력을 가질 수 있다. 제1렌즈(201)는 플라스틱 재질 또는 유리(glass) 재질을 포함할 수 있으며, 예컨대 유리 재질일 수 있다. 유리 재질의 제1렌즈(201)는 주변 환경에 따른 온도 변화에 따른 중심 위치와 곡률 반경 등의 변화를 줄여줄 수 있으며, 광학계(1100)의 입사측면을 보호할 수 있다. The first lens 201 may be placed closest to the object. The first lens 201 may be placed furthest from the sensor side. The first lens 201 may have negative refractive power at the optical axis (OA). The first lens 201 may include a plastic material or a glass material, for example, a glass material. The first lens 201 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and protect the entrance side of the optical system 1100.
광축을 기준으로 제1렌즈(201)의 물체측 제1면(S1)은 볼록하며, 센서측 제2면(S2)은 오목할 수 있다. 제1렌즈(201)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제1렌즈(201)는 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제1렌즈(201)는 유리 재질이며, 비구면을 가질 수 있다. 제1면(S1) 및 제2면(S2) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제1,2면(S1,S2)의 비구면 계수는 도 14의 L3의 S1 및 S2로 제공될 수 있다. 제1면(S1) 및 제2면(S2) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side first surface S1 of the first lens 201 may be convex, and the sensor-side second surface S2 may be concave. The first lens 201 may have a meniscus shape that is convex toward the object. The first lens 201 may have a meniscus shape that is concave toward the sensor. The first lens 201 is made of glass and may have an aspherical surface. At least one or both of the first surface (S1) and the second surface (S2) may be aspherical. The aspheric coefficients of the first and second surfaces S1 and S2 may be provided as S1 and S2 of L3 in FIG. 14. At least one or both of the first surface S1 and the second surface S2 may be provided without a critical point from the optical axis OA to the end of the effective area.
제1렌즈(201)의 굴절 특성에 의해 제2렌즈(202)는 제1렌즈(201)로부터 더 이격될 수 있다. 즉, 제1,2렌즈(201,202) 사이의 중심 간격은 렌즈부 내에서 가장 클 수 있다. Due to the refractive characteristics of the first lens 201, the second lens 202 may be further spaced apart from the first lens 201. That is, the center spacing between the first and second lenses 201 and 202 may be the largest within the lens unit.
제1렌즈(201)의 굴절률(n1)은 n1> 1.6 또는 n1> 1.62의 조건을 만족할 수 있다. 제1렌즈(201)의 굴절률(n1)이 상기 조건을 만족할 경우, 제1,2렌즈(201,202)의 곡률 반경의 커질 수 있으며, 렌즈 제작이 용이할 수 있다. 제1렌즈(201)의 굴절률(n1)이 조건보다 작은 경우, 제1,2렌즈(201,202)의 굴절력을 증가시켜 주기 위해 렌즈 면을 급격하게 오목하거나 볼록하게 형성해야 하며, 이 경우 렌즈 제작이 용이하지 않고 렌즈 불량률도 높아지고 수율 저하의 원인이 될 수 있다.The refractive index (n1) of the first lens 201 may satisfy the condition of n1>1.6 or n1>1.62. When the refractive index (n1) of the first lens 201 satisfies the above conditions, the radius of curvature of the first and second lenses 201 and 202 can be increased, and lens manufacturing can be easy. If the refractive index (n1) of the first lens 201 is less than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 201 and 202. In this case, the lens manufacturing process is It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
제2렌즈(202)는 물체 측에서 2번째로 배치될 수 있다. 제2렌즈(202)는 센서 측에서 6번째로 배치될 수 있다. 제2렌즈(202)는 제1렌즈(201)과 제3렌즈(203) 사이에 배치될 수 있다. 제2렌즈(202)는 광축(OA)에서 음(-)의 굴절력을 가질 수 있다. 제2렌즈(202)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제2렌즈(202)는 플라스틱 재질로 제공될 수 있다.The second lens 202 may be disposed second on the object side. The second lens 202 may be placed sixth on the sensor side. The second lens 202 may be disposed between the first lens 201 and the third lens 203. The second lens 202 may have negative refractive power at the optical axis (OA). The second lens 202 may include plastic or glass. For example, the second lens 202 may be made of plastic.
광축(OA)을 기준으로 제2렌즈(202)의 물체측 제3면(S3)은 오목하며, 센서측 제4면(S4)은 볼록할 수 있다. 제2렌즈(202)는 센서측으로 볼록한 메니스커스 형상을 가질 수 있다. 제2렌즈(202)는 물체측으로 오목한 메니스커스 형상을 가질 수 있다. 제2렌즈(202)는 플라스틱 재질이며, 비구면일 수 있다. 제3면(S3) 및 제4면(S4) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제3,4면(S3,S4)의 비구면 계수는 도 14의 L2의 S1 및 S2로 제공될 수 있다. 제3면(S3) 및 제4면(S4) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis OA, the object-side third surface S3 of the second lens 202 may be concave, and the sensor-side fourth surface S4 may be convex. The second lens 202 may have a meniscus shape that is convex toward the sensor. The second lens 202 may have a meniscus shape that is concave toward the object. The second lens 202 is made of plastic and may be aspherical. At least one or both of the third surface S3 and the fourth surface S4 may be aspherical. The aspheric coefficients of the third and fourth surfaces (S3 and S4) can be provided as S1 and S2 of L2 in FIG. 14. At least one or both of the third surface S3 and the fourth surface S4 may be provided without a critical point from the optical axis OA to the end of the effective area.
조리개(Stop)는 제2렌즈(202)의 센서측 제4면(S4)의 둘레에 배치될 수 있다. 조리개(Stop)는 제3렌즈(203)의 물체측 제5면(S5)의 둘레에 배치될 수 있다. 조리개는 화각 범위 내에서 TTL을 줄여줄 수 있고, 광학계의 소형화가 가능하다. 이에 따라 광학계의 중량별 수율(yield by weight)의 저하를 방지하고 생산 효율의 향상을 도모할 수 있다. 또한, 수평 화각(FOV_H)을 40도 내지 50도에서 TTL을 줄여서 광학계를 소형화할 수 있다.The aperture stop may be disposed around the fourth surface S4 on the sensor side of the second lens 202. The aperture (Stop) may be disposed around the object-side fifth surface S5 of the third lens 203. Aperture can reduce TTL within the range of view angle, and miniaturization of the optical system is possible. Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 40 to 50 degrees.
제3렌즈(203)는 물체 측에서 3번째로 배치될 수 있다. 제3렌즈(203)은 센서 측에서 5번째로 배치될 수 있다. 제3렌즈(203)은 제2렌즈(202)와 제4렌즈(204) 사이에 배치될 수 있다. 제3렌즈(203)는 광축(OA)에서 양(+)의 굴절력을 가질 수 있다. 제3렌즈(203)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제3렌즈(203)는 유리 재질로 제공될 수 있다.The third lens 203 may be arranged third from the object side. The third lens 203 may be placed fifth on the sensor side. The third lens 203 may be disposed between the second lens 202 and the fourth lens 204. The third lens 203 may have positive (+) refractive power at the optical axis (OA). The third lens 203 may include plastic or glass. For example, the third lens 203 may be made of glass.
광축을 기준으로 제3렌즈(203)의 물체측 제5면(S5)은 볼록하고, 센서측 제6면(S6)은 볼록할 수 있다. 제3렌즈(203)는 양면이 볼록한 형상을 가질 수 있다. 제3렌즈(203)는 유리 재질이며, 구면일 수 있다. 제5면(S5) 및 제6면(S6) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side fifth surface S5 of the third lens 203 may be convex, and the sensor-side sixth surface S6 may be convex. The third lens 203 may have a convex shape on both sides. The third lens 203 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
제4렌즈(204)는 물체 측에서 4번째로 배치될 수 있다. 제4렌즈(204)는 센서 측에서 4번째로 배치될 수 있다. 제4렌즈(204)은 제3렌즈(203)와 제5렌즈(205) 사이에 배치될 수 있다. 제4렌즈(204)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제4렌즈(204)는 양(+)의 굴절력을 가질 수 있다. 제4렌즈(204)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제4렌즈(204)는 플라스틱 재질로 제공될 수 있다. The fourth lens 204 may be placed fourth on the object side. The fourth lens 204 may be placed fourth on the sensor side. The fourth lens 204 may be disposed between the third lens 203 and the fifth lens 205. The fourth lens 204 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fourth lens 204 may have positive (+) refractive power. The fourth lens 204 may include plastic or glass. For example, the fourth lens 204 may be made of plastic.
광축을 기준으로 제4렌즈(204)의 물체측 제7면(S7)은 볼록하며, 센서측 제8면(S8)은 오목할 수 있다. 제4렌즈(204)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제4렌즈(204)는 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제4렌즈(204)는 플라스틱 재질이며, 비구면일 수 있다. 제7면(S7) 및 제8면(S8) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제7,8면(S7,S8)의 비구면 계수는 도 14의 L4의 S1 및 S2로 제공될 수 있다. 제7면(S7) 및 제8면(S8) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side seventh surface S7 of the fourth lens 204 may be convex, and the sensor-side eighth surface S8 may be concave. The fourth lens 204 may have a meniscus shape that is convex toward the object. The fourth lens 204 may have a meniscus shape that is concave toward the sensor. The fourth lens 204 is made of plastic and may be aspherical. At least one or both of the seventh surface S7 and the eighth surface S8 may be aspherical. The aspherical coefficients of the seventh and eighth surfaces (S7 and S8) can be provided as S1 and S2 of L4 in FIG. 14. At least one or both of the seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
제5렌즈(205)는 물체 측에서 5번째로 배치될 수 있다. 제5렌즈(205)는 센서 측에서 3번째로 배치될 수 있다. 제5렌즈(205)은 제4렌즈(204)와 제6렌즈(206) 사이에 배치될 수 있다. 제5렌즈(205)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(205)는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(205)는 플라스틱 또는 유리 재질을 포함할 수 있다. 예를 들어, 제5렌즈(205)는 플라스틱 재질로 제공될 수 있다. The fifth lens 205 may be placed fifth on the object side. The fifth lens 205 may be placed third on the sensor side. The fifth lens 205 may be disposed between the fourth lens 204 and the sixth lens 206. The fifth lens 205 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fifth lens 205 may have negative refractive power. The fifth lens 205 may include plastic or glass. For example, the fifth lens 205 may be made of plastic.
광축(OA)을 기준으로 제5렌즈(205)는 물체측 제9면(S9)은 볼록하고, 센서측 제10면(S10)은 오목할 수 있다. 제5렌즈(205)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제5렌즈(205)는 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제5렌즈(205)는 플라스틱 재질이며, 비구면일 수 있다. 제9면(S9) 및 제10면(S10) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제9,10면(S9,S10)의 비구면 계수는 도 14의 L5의 S1 및 S2로 제공될 수 있다. 제9면(S9) 및 제10면(S10) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis OA, the object-side ninth surface S9 of the fifth lens 205 may be convex, and the sensor-side tenth surface S10 may be concave. The fifth lens 205 may have a meniscus shape that is convex toward the object. The fifth lens 205 may have a meniscus shape that is concave toward the sensor. The fifth lens 205 is made of plastic and may be aspherical. At least one or both of the ninth surface S9 and the tenth surface S10 may be aspherical. The aspheric coefficients of the 9th and 10th surfaces (S9 and S10) can be provided as S1 and S2 of L5 in FIG. 14. At least one or both of the ninth surface S9 and the tenth surface S10 may be provided without a critical point from the optical axis OA to the end of the effective area.
제6렌즈(206)는 물체 측에서 6번째로 배치될 수 있다. 제6렌즈(206)는 센서 측에서 2번째로 배치될 수 있다. 제6렌즈(206)은 제5렌즈(205)와 제7렌즈(207) 사이에 배치될 수 있다. 제6렌즈(206)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제6렌즈(206)는 양(+)의 굴절력을 가질 수 있다. 제6렌즈(206)는 플라스틱 또는 유리 재질을 포함할 수 있다. 예를 들어, 제6렌즈(206)는 플라스틱 재질로 제공될 수 있다. The sixth lens 206 may be placed sixth on the object side. The sixth lens 206 may be placed second on the sensor side. The sixth lens 206 may be disposed between the fifth lens 205 and the seventh lens 207. The sixth lens 206 may have positive (+) or negative (-) refractive power at the optical axis (OA). The sixth lens 206 may have positive (+) refractive power. The sixth lens 206 may include plastic or glass. For example, the sixth lens 206 may be made of plastic.
광축(OA)을 기준으로 제6렌즈(206)는 물체측 제11면(S11)은 볼록하고, 센서측 제12면(S12)은 볼록할 수 있다. 제6렌즈(206)는 양면이 볼록한 형상을 가질 수 있다. 제6렌즈(206)는 플라스틱 재질이며, 비구면일 수 있다. 제11면(S11) 및 제12면(S12) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제11,12면(S11,S12)의 비구면 계수는 도 14의 L6의 S1 및 S2로 제공될 수 있다. Based on the optical axis OA, the object-side 11th surface S11 of the sixth lens 206 may be convex, and the sensor-side 12th surface S12 may be convex. The sixth lens 206 may have a convex shape on both sides. The sixth lens 206 is made of plastic and may be aspherical. At least one or both of the 11th surface (S11) and the 12th surface (S12) may be aspherical. The aspheric coefficients of the 11th and 12th surfaces (S11 and S12) can be provided as S1 and S2 of L6 in FIG. 14.
제6렌즈(106)의 제11면(S11)은 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다. 제6렌즈(106)의 제12면(S12)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 포함할 수 있다. 제12면(S12)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r62)의 85% 내지 90% 범위, 바람직하게 86% 내지 89% 범위에 위치할 수 있다. 제12면(S12)의 임계점은 광축(OA)에서 3.5 mm 내지 4 mm 범위, 바람직하게 3.8 mm 내지 3.9 mm 범위에 위치할 수 있다. The 11th surface S11 of the sixth lens 106 may be provided without a critical point from the optical axis OA to the end of the effective area. The twelfth surface S12 of the sixth lens 106 may include a critical point from the optical axis OA to the end of the effective area. When the twelfth surface S12 has a critical point, it may be located in the range of 85% to 90% of the effective radius r62 at the optical axis OA, preferably in the range of 86% to 89%. The critical point of the twelfth surface S12 may be located in the range of 3.5 mm to 4 mm, preferably 3.8 mm to 3.9 mm, from the optical axis OA.
제7렌즈(207)은 물체 측에서 가장 멀리 배치될 수 있다. 제7렌즈(207)은 이미지 센서(500)에 가장 가깝게 배치될 수 있다. 제7렌즈(207)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(207)는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(207)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제7렌즈(207)는 플라스틱 재질로 제공될 수 있다. The seventh lens 207 may be placed furthest from the object. The seventh lens 207 may be placed closest to the image sensor 500. The seventh lens 207 may have positive (+) or negative (-) refractive power at the optical axis (OA). The seventh lens 207 may have negative refractive power. The seventh lens 207 may include plastic or glass. For example, the seventh lens 207 may be made of plastic.
광축(OA)을 기준으로 제7렌즈(207)는 물체측 제13면(S13)은 볼록하고, 센서측 제14면(S14)은 오목한 형상일 수 있다. 제7렌즈(207)은 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제7렌즈(207)은 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제13면(S13) 및 제14면(S14) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제13,14면(S13,S14)의 비구면 계수는 도 14의 L7의 S13 및 S14로 제공될 수 있다. Based on the optical axis OA, the object-side 13th surface S13 of the seventh lens 207 may be convex, and the sensor-side 14th surface S14 may be concave. The seventh lens 207 may have a meniscus shape that is convex toward the object. The seventh lens 207 may have a meniscus shape that is concave toward the sensor. At least one or both of the 13th surface (S13) and the 14th surface (S14) may be aspherical. The aspheric coefficients of the 13th and 14th surfaces (S13 and S14) can be provided as S13 and S14 of L7 in FIG. 14.
제7렌즈(207)의 제13면(S13)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 포함할 수 있다. 제13면(S13)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r71)의 40% 내지 50% 범위, 바람직하게 44% 내지 47% 범위에 위치할 수 있다. 제13면(S13)의 임계점은 광축(OA)에서 1.8 mm 내지 2.2 mm 범위, 바람직하게 1.9 mm 내지 2 mm 범위에 위치할 수 있다. 제7렌즈(207)의 제14면(S14)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 포함할 수 있다. 제14면(S14)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r72)의 50% 내지 60% 범위, 바람직하게 54% 내지 56% 범위에 위치할 수 있다. 제14면(S14)의 임계점은 광축(OA)에서 2.5 mm 내지 3 mm 범위, 바람직하게 2.7 mm 내지 2.8 mm 범위에 위치할 수 있다. The 13th surface S13 of the seventh lens 207 may include a critical point from the optical axis OA to the end of the effective area. When the 13th surface S13 has a critical point, it may be located in the range of 40% to 50% of the effective radius r71 at the optical axis OA, preferably in the range of 44% to 47%. The critical point of the 13th surface S13 may be located in the range of 1.8 mm to 2.2 mm, preferably 1.9 mm to 2 mm, from the optical axis OA. The 14th surface S14 of the seventh lens 207 may include a critical point from the optical axis OA to the end of the effective area. When the 14th surface S14 has a critical point, it may be located in the range of 50% to 60% of the effective radius r72 at the optical axis OA, preferably in the range of 54% to 56%. The critical point of the 14th surface S14 may be located in the range of 2.5 mm to 3 mm, preferably 2.7 mm to 2.8 mm, from the optical axis OA.
제7렌즈(207)는 이미지 센서(500)에 가장 인접한 플라스틱 렌즈일 수 있다. 또한 플라스틱 렌즈를 이미지 센서(500)에 인접하게 2매 이상 배치함으로써, 비구면을 갖는 렌즈 면에 의해 구면 수차와 색 수차 등의 수차를 개선할 수 있고, 해상도에 영향을 제어할 수 있다. 또한 이미지 센서(500)에 인접한 렌즈로 플라스틱 렌즈를 배치함으로써, 유리 재질의 렌즈 대비 조립 공차에 둔감할 수 있다. 즉, 조립 공차에 둔감하다는 의미는 조립 시 설계 대비 약간의 차이가 있게 조립되더라도 광학 성능에 크게 영향을 주지 않을 수 있다. 또한 이미지 센서(500)에 인접한 2매의 렌즈(206,207)를 플라스틱 재질로 제공해 줌으로써, 비구면을 갖는 렌즈 면에 의해 광학 성능을 개선시켜 줄 수 있으며, 예컨대 수차 특성 개선 및 해상도 저하를 방지할 수 있다.The seventh lens 207 may be a plastic lens closest to the image sensor 500. Additionally, by arranging two or more plastic lenses adjacent to the image sensor 500, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 500, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing two lenses 206 and 207 adjacent to the image sensor 500 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
LensLens SurfaceSurface RadiusRadius ThicknessThickness ndnd vdvd Semi
Aperture
Semi
Aperture
Focal lengthFocal length
1One S1S1 95.70495.704 2.0002.000 1.6413 1.6413 55.1788 55.1788 5.5835.583 -52.9632 -52.9632
S2S2 24.86524.865 2.2112.211 4.7134.713
22 S3S3 -6.903-6.903 3.8463.846 1.5371 1.5371 55.7074 55.7074 4.6344.634 -34.4158 -34.4158
S4S4 -13.162-13.162 0.3000.300 4.4294.429
STOPSTOP -- -- 0.3000.300 4.3174.317
33 S5S5 20.49720.497 3.7763.776 1.6223 1.6223 63.8790 63.8790 4.9754.975 13.4607 13.4607
S6S6 -13.164-13.164 0.3870.387 5.4515.451
44 S7S7 9.7759.775 4.0074.007 1.5371 1.5371 55.7074 55.7074 5.8645.864 20.4567 20.4567
S8S8 75.89575.895 0.3000.300 5.4985.498
55 S9S9 49.72549.725 2.0002.000 1.6640 1.6640 21.2131 21.2131 5.3765.376 -10.9438 -10.9438
S10S10 6.2386.238 0.8300.830 4.6884.688
66 S11S11 12.02712.027 3.3623.362 1.5371 1.5371 55.7074 55.7074 4.6964.696 17.6987 17.6987
S12S12 -40.922-40.922 1.3061.306 4.4574.457
77 S13S13 8.9898.989 2.0002.000 1.5371 1.5371 55.7074 55.7074 4.4904.490 -53.3287 -53.3287
S14S14 6.3106.310 0.6250.625 5.0505.050
FilterFilter infinityinfinity 0.4400.440
1.9361.936
CoverCover infinityinfinity 0.3300.330
0.0440.044
ImageImage infinityinfinity 0.0000.000
표 4는 본 발명의 제2실시예에 따른 렌즈의 면 번호(Surface), 곡률반경(Radius), 각 렌즈의 중심 두께 또는 렌즈면 사이의 거리(Thickness), 굴절률(Index,nd), 아베수(Abbe,vd), 유효반경(Semi Aperture), 초점거리(Fcoal length)를 나타낸다. 이때, 곡률반경과 두께 또는 거리의 단위는 mm일 수 있다.Table 4 shows the surface number (Surface), radius of curvature (Radius), center thickness of each lens or distance between lens surfaces (Thickness), refractive index (Index, nd), and Abbe number of the lens according to the second embodiment of the present invention. (Abbe,vd), effective radius (Semi Aperture), and focal length (Fcoal length). At this time, the unit of curvature radius and thickness or distance may be mm.
항목item value 항목item value
FF 10.863410.8634 F-numberF-number 1.64001.6400
ET1ET1 2.4636 2.4636 FOV_HFOV_H 46.00 46.00
ET2ET2 4.5362 4.5362 EPDE.P.D. 6.6241 6.6241
ET3ET3 2.0000 2.0000 BFLBFL 3.3752 3.3752
ET4ET4 2.0000 2.0000 TDTD 26.6249 26.6249
ET5ET5 3.6250 3.6250 ImgHImgH 5.1450 5.1450
ET6ET6 2.0000 2.0000 SDSD 18.2679 18.2679
ET7ET7 2.3358 2.3358 TTLTTL 30.0000 30.0000
ΣIndexΣIndex 11.0760 11.0760 GLca_AverGLca_Aver 10.36110.361
ΣAbbeΣAbbe 363.1005 363.1005 PLca_AverPLca_Aver 9.8369.836
ΣCTΣCT 20.9912 20.9912 CT_maxCT_max 4.0066 4.0066
ΣCGΣCG 5.6336 5.6336 CT_minCT_min 2.0000 2.0000
CA_maxCA_max 11.72711.727 CT_AverCT_Aver 2.9987 2.9987
CA_minCA_min 8.6348.634 F_LG1F_LG1 -21.283-21.283
CA_AverCA_Aver 9.8969.896 F_LG2F_LG2 8.8668.866
표 5는 실시예의 광학계(1100)에서 상술한 수학식들의 항목에 대한 것으로, 광학계(1100)의 TTL(Total track length)(mm), BFL(Back focal length), 유효초점 거리(F)(mm), ImgH(mm), 유효경(CA)(mm), 두께(mm), TTL(mm), 제1면(S1)에서 제12면(S12)까지의 광축 거리인 TD(mm), 굴절률 합, 아베수 합, 두께 합(mm), 인접한 렌즈들 사이의 간격 합, 유효경 특성, 유리 렌즈의 굴절률 합, 플라스틱 재질의 굴절률 합, 화각(FOV_H)(Degree), 에지 두께(ET), F 넘버 등에 대한 것이다. Table 5 shows the items of the above-described equations in the optical system 1100 of the embodiment, including the total track length (mm), back focal length (BFL), and effective focal length (F) of the optical system 1100 (mm). ), ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the first surface (S1) to the twelfth surface (S12), refractive index sum , Abbe number sum, thickness sum (mm), sum of spacing between adjacent lenses, effective diameter characteristics, sum of refractive index of glass lens, sum of refractive index of plastic material, angle of view (FOV_H) (Degree), edge thickness (ET), F number It's about things like that.
제1 내지 제7렌즈(201~207)의 중심 두께는 CT1~CT7으로 나타내며, 각 렌즈의 유효 영역의 끝단인 에지 두께는 ET1~ET7으로 나타내며, 인접한 두 렌즈 사이의 중심 간격(Center gap)은 CG1~CG6으로 나타내며, 각 렌즈의 에지들 사이의 에지 간격은 EG1~EG6으로 나타낸다. BFL(Back focal length)은 이미지 센서(500)에서 마지막 렌즈의 중심까지의 광축 거리이다. TTL은 제1렌즈(201)의 제1면(S1)의 중심에서 이미지 센서(500)의 상면까지의 광축 거리이다. The center thickness of the first to seventh lenses (201 to 207) is expressed as CT1 to CT7, the edge thickness at the end of the effective area of each lens is expressed as ET1 to ET7, and the center gap between two adjacent lenses is expressed as CT1 to CT7. They are indicated as CG1 to CG6, and the edge spacing between the edges of each lens is indicated as EG1 to EG6. Back focal length (BFL) is the optical axis distance from the image sensor 500 to the center of the last lens. TTL is the optical axis distance from the center of the first surface S1 of the first lens 201 to the upper surface of the image sensor 500.
도 14와 같이, 제2실시예에 렌즈부의 렌즈들 중 제1,2,4,5,6,7렌즈(201,202,204,205,206,207)의 렌즈면은 30차 비구면 계수를 가진 비구면을 포함할 수 있다. 예를 들어, 제1,2,4,5,6,7렌즈(201,202,204,205,206,207)는 30차 비구면 계수를 가지는 렌즈면을 포함할 수 있다. 상기와 같이 30차 비구면 계수를 가진 비구면은("0"이 아닌 수치) 주변부의 비구면 형상을 특히 크게 변화시킬 수 있기 때문에 화각(FOV)의 주변부의 광학 성능을 양호하게 보정할 수 있다.As shown in FIG. 14, the lens surfaces of the first, second, fourth, fifth, sixth, and seventh lenses (201, 202, 204, 205, 206, and 207) among the lenses of the lens unit in the second embodiment may include an aspherical surface with a 30th order aspheric coefficient. For example, the first, second, fourth, fifth, sixth, and seventh lenses (201, 202, 204, 205, 206, and 207) may include lens surfaces having a 30th order aspherical coefficient. As described above, an aspheric surface with a 30th order aspherical coefficient (a value other than “0”) can particularly significantly change the aspheric shape of the peripheral area, thereby improving the optical performance of the peripheral area of the field of view (FOV).
제1 내지 제7렌즈(201-207)의 두께(T1-T7), 인접한 두 렌즈 사이의 간격(G1-G6)을 설정할 수 있다. 도 3과 같이, Y축 방향으로 각 렌즈의 두께(T1-T7)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있으며, 각 렌즈 간의 간격(G1-G6)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있다.The thickness (T1-T7) of the first to seventh lenses (201-207) and the gap (G1-G6) between two adjacent lenses can be set. As shown in Figure 3, in the Y-axis direction, the thickness of each lens (T1-T7) can be expressed at intervals of 0.1mm or 0.2mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1mm or 0.2mm or more. It can be displayed every time.
각 렌즈의 곡률 반경의 절대 값으로 비교하면, 광축(OA)에서 제1렌즈(201)의 제1면(S1)의 곡률 반경은 렌즈들 중에서 최대이며, 제5렌즈(205)의 제10면(S10)의 곡률 반경은 렌즈들 중에서 최소일 수 있다. 최대 곡률 반경과 최소 곡률 반경의 차이는 3배 이상 예컨대, 3배 내지 5배 범위일 수 있다. Comparing the absolute value of the radius of curvature of each lens, the radius of curvature of the first surface S1 of the first lens 201 at the optical axis OA is the largest among the lenses, and the radius of curvature of the first surface S1 of the fifth lens 205 is the largest among the lenses, and the radius of curvature of the first surface S1 of the fifth lens 205 is the largest among the lenses. The radius of curvature of (S10) may be the smallest among lenses. The difference between the maximum radius of curvature and the minimum radius of curvature may be 3 times or more, for example, in the range of 3 to 5 times.
제1 내지 제7렌즈(201-207)의 물체측면 및 센서측면 중 곡률반경이 40 보다 큰 렌즈면은 1개 이상 4개 이하일 수 있다. 이를 통해, 광학계(1100)를 구성하는 렌즈의 곡률반경을 대부분 작게 설계하여 차량에 배치되는 렌즈의 화각, 초점 거리, 및 전장 거리를 만족시킬 수 있다. Among the object side and sensor side of the first to seventh lenses 201-207, there may be at least one or four lens surfaces with a radius of curvature greater than 40. Through this, the radius of curvature of the lens constituting the optical system 1100 can be designed to be mostly small to satisfy the angle of view, focal length, and overall distance of the lens placed in the vehicle.
플라스틱 렌즈의 유효경은 유리 재질의 렌즈의 유효경보다 작기 때문에 플라스틱 재질의 렌즈의 물체측에 배치된 렌즈는 플라스틱 렌즈로 굴절을 시켜주기 위하여 굴절력이 강할 수 있다. 또한, 굴절력을 강하게 하기 위하여 렌즈면의 곡률반경이 작을 수 있다.Since the effective diameter of a plastic lens is smaller than that of a glass lens, the lens placed on the object side of the plastic lens may have a strong refractive power to provide refraction to the plastic lens. Additionally, in order to strengthen the refractive power, the radius of curvature of the lens surface may be small.
제1렌즈(201)의 제1면(S1)의 곡률반경의 절대값은 제2면(S2)의 곡률반경의 절대값보다 클 수 있다. 제2렌즈(202)의 제3면(S3)의 곡률반경의 절대값은 제4면(S4)의 곡률반경의 절대값보다 작을 수 있다. 제3렌즈(203)의 제5면(S5)의 곡률반경의 절대값은 제6면(S6)의 곡률반경의 절대값보다 클 수 있다. 제4렌즈(204)의 제7면(S7)의 곡률반경의 절대값은 제8면(S8)의 곡률반경의 절대값보다 작을 수 있다. 제5렌즈(205)의 제9면(S9)의 곡률반경의 절대값은 제10면(S10)의 곡률반경의 절대값보다 클 수 있다. 제6렌즈(206)의 제11면(S11)의 곡률반경의 절대값은 제12면(S12)의 곡률반경의 절대값보다 작을 수 있다. 제7렌즈(207)의 제13면(S13)의 곡률반경의 절대값은 제14면(S14)의 곡률반경의 절대값보다 클 수 있다. The absolute value of the radius of curvature of the first surface (S1) of the first lens 201 may be greater than the absolute value of the radius of curvature of the second surface (S2). The absolute value of the radius of curvature of the third surface (S3) of the second lens 202 may be smaller than the absolute value of the radius of curvature of the fourth surface (S4). The absolute value of the radius of curvature of the fifth surface S5 of the third lens 203 may be greater than the absolute value of the radius of curvature of the sixth surface S6. The absolute value of the radius of curvature of the seventh surface (S7) of the fourth lens 204 may be smaller than the absolute value of the radius of curvature of the eighth surface (S8). The absolute value of the radius of curvature of the ninth surface (S9) of the fifth lens 205 may be greater than the absolute value of the radius of curvature of the tenth surface (S10). The absolute value of the radius of curvature of the 11th surface (S11) of the sixth lens 206 may be smaller than the absolute value of the radius of curvature of the 12th surface (S12). The absolute value of the radius of curvature of the 13th surface (S13) of the seventh lens 207 may be greater than the absolute value of the radius of curvature of the 14th surface (S14).
각 렌즈의 곡률 반경의 비율은 하기 조건을 만족할 수 있다.The ratio of the radius of curvature of each lens may satisfy the following conditions.
조건 1: 3 < L1R1/L1R| < 4Condition 1: 3 < L1R1/L1R| < 4
조건 2: 0.5 < |L2R1/L2R2| < 1Condition 2: 0.5 < |L2R1/L2R2| < 1
조건 3: 1.5 < |L3R1/L3R2| < 2Condition 3: 1.5 < |L3R1/L3R2| < 2
조건 4: 0.1 < |L4R1/L4R2| < 0.5Condition 4: 0.1 < |L4R1/L4R2| < 0.5
조건 5: 5 < |L5R1/L5R2| < 10Condition 5: 5 < |L5R1/L5R2| < 10
조건 6: 0.1 < |L6R1/L6R2| < 0.5Condition 6: 0.1 < |L6R1/L6R2| < 0.5
조건 7: 1 < |L7R1/L7R2| < 1.5Condition 7: 1 < |L7R1/L7R2| < 1.5
광축을 기준으로 렌즈의 중심 두께(CT)를 설명하면, 제4렌즈(204)의 중심 두께(CT4)는 렌즈들 중에서 최대이며, 제1렌즈(201), 제5렌즈(205) 및 제7렌즈(207) 중 적어도 하나의 중심 두께(CT1,CT5,CT7)는 렌즈들 중에서 최소이다. 렌즈 중 최대 중심 두께와 최소 중심 두께의 차이는 2 mm 이상 2.5 mm 이하의 범위 일 수 있다. When explaining the central thickness (CT) of the lens based on the optical axis, the central thickness (CT4) of the fourth lens 204 is the largest among the lenses, and the central thickness (CT4) of the first lens 201, the fifth lens 205, and the seventh lens 204 are the largest among the lenses. The central thickness (CT1, CT5, CT7) of at least one of the lenses 207 is the minimum among the lenses. The difference between the maximum and minimum center thickness of the lens may be in the range of 2 mm or more and 2.5 mm or less.
각 렌즈의 중심 두께는 아래의 조건 중 어느 하나를 만족할 수 있다.The center thickness of each lens may satisfy any one of the conditions below.
조건 1: CT2, CT3, CT4, CT6 > CT1 = CT5 = CT7Condition 1: CT2, CT3, CT4, CT6 > CT1 = CT5 = CT7
조건 2: CT4 > CT2 > CT1, CT3, CT5, CT6, CT7 Condition 2: CT4 > CT2 > CT1, CT3, CT5, CT6, CT7
조건 3: CT2, CT4 > CT3 > CT1, CT5, CT6, CT7Condition 3: CT2, CT4 > CT3 > CT1, CT5, CT6, CT7
조건 4: CT4 > CT1, CT2, CT3, CT6, CT7Condition 4: CT4 > CT1, CT2, CT3, CT6, CT7
조건 5: CT2, CT3, CT4 > CT6 > CT1, CT5, CT7Condition 5: CT2, CT3, CT4 > CT6 > CT1, CT5, CT7
렌즈들 사이의 중심 간격(CG)를 설명하면, 제1렌즈(201) 및 제2렌즈(202) 사이의 중심 간격(CG1)은 최대이며, 제4,5렌즈(204,205) 사이의 중심 간격(CG4) 은 최소일 수 있다. 이격되는 렌즈 간격 중 최대 중심 간격과 최소 중심 간격의 차이는 3 mm 이상 예컨대, 3 mm 내지 4 mm 범위일 수 있다. Describing the center spacing (CG) between the lenses, the center spacing (CG1) between the first lens 201 and the second lens 202 is the maximum, and the center spacing between the fourth and fifth lenses 204 and 205 ( CG4) may be minimal. The difference between the maximum center spacing and the minimum center spacing among the spaced lens spacing may be 3 mm or more, for example, in the range of 3 mm to 4 mm.
각 렌즈들 사이의 중심 간격은 아래의 조건을 만족할 수 있다.The center spacing between each lens can satisfy the following conditions.
조건 1: CG1 > CG2, CG3, CG4, CG5, CG6Condition 1: CG1 > CG2, CG3, CG4, CG5, CG6
조건 2: CG1, CG5, CG6 > CG2 > CG3, CG4Condition 2: CG1, CG5, CG6 > CG2 > CG3, CG4
조건 3: CG1, CG2, CG5, CG6 > CG3 > CG4 Condition 3: CG1, CG2, CG5, CG6 > CG3 > CG4
조건 4: CG1, CG2, CG3, CG5, CG6 > CG4 Condition 4: CG1, CG2, CG3, CG5, CG6 > CG4
조건 5: CG1, CG6 > CG5 > CG2, CG3, CG4 Condition 5: CG1, CG6 > CG5 > CG2, CG3, CG4
*조건 6: CG1 > CG6 > CG2, CG3, CG4, CG5 *Condition 6: CG1 > CG6 > CG2, CG3, CG4, CG5
유효경에 대해 설명하면, 최대 유효경을 갖는 렌즈는 유리 재질의 렌즈일 수 있다. 최대 유효경을 갖는 렌즈는 제4렌즈(204)일 수 있다. 여기서, 유효경은 각 렌즈의 물체측면의 유효경과 센서측면의 유효경의 평균이다. 최대 유효경을 갖는 렌즈 면은 제4렌즈(204)의 제7면(S7) 일 수 있다. 최소 유효경을 갖는 렌즈는 제2렌즈(202)일 수 있다. 최소 유효경을 갖는 렌즈면은 제2렌즈(202)의 제4면(S4)일 수 있다. 플라스틱 재질의 렌즈의 유효경은 유리 재질의 렌즈의 유효경보다 작을 수 있다. 플라스틱 재질의 렌즈는 이미지 센서와 인접하게 배치될 수 있다. When explaining the effective diameter, a lens with the maximum effective diameter may be a glass lens. The lens having the maximum effective diameter may be the fourth lens 204. Here, the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side. The lens surface having the maximum effective diameter may be the seventh surface S7 of the fourth lens 204. The lens having the minimum effective diameter may be the second lens 202. The lens surface having the minimum effective diameter may be the fourth surface S4 of the second lens 202. The effective diameter of a plastic lens may be smaller than that of a glass lens. A lens made of plastic may be placed adjacent to the image sensor.
각 렌즈의 유효경은 아래의 조건 중 어느 하나를 만족할 수 있다.The effective diameter of each lens can satisfy any one of the conditions below.
조건 1: CA_L3, CA_L4 > CA_L1 > CA_L2, CA_L5, CA_L6, CA_L7Condition 1: CA_L3, CA_L4 > CA_L1 > CA_L2, CA_L5, CA_L6, CA_L7
조건 2: CA_L1, CA_L3, CA_L4, CA_L5, CA_L6, CA_L7 > CA_L2Condition 2: CA_L1, CA_L3, CA_L4, CA_L5, CA_L6, CA_L7 > CA_L2
조건 3: CA_L4 > CA_L3 > CA_L1, CA_L2, CA_L5, CA_L6, CA_L7Condition 3: CA_L4 > CA_L3 > CA_L1, CA_L2, CA_L5, CA_L6, CA_L7
조건 4: CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7Condition 4: CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7
조건 5: CA_L1, CA_L3, CA_L4 > CA_L5 > CA_L2, CA_L6, CA_L7Condition 5: CA_L1, CA_L3, CA_L4 > CA_L5 > CA_L2, CA_L6, CA_L7
조건 6: CA_L1, CA_L3, CA_L4, CA_L5, CA_L7 > CA_L6 > CA_L2Condition 6: CA_L1, CA_L3, CA_L4, CA_L5, CA_L7 > CA_L6 > CA_L2
조건 7: CA_L1, CA_L3, CA_L4, CA_L5 > CA_L7 > CA_L2, CA_L6Condition 7: CA_L1, CA_L3, CA_L4, CA_L5 > CA_L7 > CA_L2, CA_L6
굴절률을 설명하면, 제5렌즈(205)의 굴절률은 렌즈들 중에서 최대이며, 1.6초과, 예컨대, 1.65 초과일 수 있다. 제2렌즈(202), 제4렌즈(204), 제6렌즈(206) 및 제7렌즈(207) 중 어느 하나 또는 모두는 렌즈들 중에서 최소의 굴절률을 가질 수 있다. 예컨대, 2렌즈(202), 제6렌즈(206) 및 제7렌즈(108)의 굴절률은 렌즈들 중 최소일 수 있고, 1.6 미만, 예컨대 1.55 미만일 수 있다. 최대 굴절률과 최소 굴절률 차이는 0.2 이상일 수 있다. 물체에 가장 가까운 유리 재질 고 굴절률 렌즈로 제공하고, 유리 재질의 렌즈에 인접한 렌즈와 이미지 센서(500)에 인접한 렌즈를 플라스틱 재질의 저 굴절률 렌즈로 제공해 줌으로써, 입사 효율을 증가시키고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 굴절력을 조절하여 이미지 센서(500)로 가이드할 수 있다. Describing the refractive index, the refractive index of the fifth lens 205 is the highest among the lenses and may be greater than 1.6, for example, greater than 1.65. One or all of the second lens 202, fourth lens 204, sixth lens 206, and seventh lens 207 may have the lowest refractive index among the lenses. For example, the refractive index of the second lens 202, the sixth lens 206, and the seventh lens 108 may be the minimum among the lenses, and may be less than 1.6, for example, less than 1.55. The difference between the maximum and minimum refractive indices may be 0.2 or more. By providing a high refractive index lens made of glass closest to the object, and providing a low refractive index lens made of plastic for the lens adjacent to the glass lens and the lens adjacent to the image sensor 500, the incident efficiency is increased, and the lens adjacent to the glass material lens and the lens adjacent to the image sensor 500 are provided as low refractive index lenses made of plastic. It is possible to guide the image sensor 500 by adjusting the refractive power between the lens materials.
각 렌즈의 굴절률은 아래의 조건 중 어느 하나를 만족할 수 있다.The refractive index of each lens may satisfy any one of the conditions below.
조건 1: n5 > n1 > n2, n3, n4, n6, n7Condition 1: n5 > n1 > n2, n3, n4, n6, n7
조건 2: n1, n3, n5 > n2 = n4 = n6 = n7 Condition 2: n1, n3, n5 > n2 = n4 = n6 = n7
조건 3: n1, n5 > n3 > n2, n4, n6, n7Condition 3: n1, n5 > n3 > n2, n4, n6, n7
조건 4: n5 > n1, n2, n3, n4, n6, n7Condition 4: n5 > n1, n2, n3, n4, n6, n7
아베수를 비교하면, 제3렌즈(203)의 아베수는 렌즈들 중 최대이며, 60 이상일 수 있다. 제5렌즈(205)의 아베수는 렌즈들 중 최소이며, 25 이하일 수 있다. 최대 굴절률과 최소 아베수 차이는 40 이상일 수 있다. 광학계(1100)의 중심 부분에 배치된 제3렌즈(203)의 아베수를 가장 크게 하고, 이미지 센서(500)에 인접한 저 굴절률을 갖는 제5렌즈(205)의 아베수를 가장 작게 제공해 줌으로써, 유리 재질과 플라스틱 재질의 렌즈들 사이로 진행되는 광의 색 분산을 조절하고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 색 분산을 증가하여 이미지 센서(500)로 가이드할 수 있다. Comparing the Abbe number, the Abbe number of the third lens 203 is the largest among the lenses and may be 60 or more. The Abbe number of the fifth lens 205 is the minimum among the lenses and may be 25 or less. The difference between the maximum refractive index and the minimum Abbe number may be 40 or more. By providing the largest Abbe number of the third lens 203 disposed in the center of the optical system 1100 and the smallest Abbe number of the fifth lens 205 with a low refractive index adjacent to the image sensor 500, The color dispersion of light traveling between glass and plastic lenses can be adjusted, and the color dispersion between the glass and plastic lenses can be increased to guide the light to the image sensor 500.
각 렌즈의 아베수는 아래의 조건 중 어느 하나를 만족할 수 있다.The Abbe number of each lens can satisfy any one of the conditions below.
조건 1: v2, v3, v4, v6, v7 > v1 > v5Condition 1: v2, v3, v4, v6, v7 > v1 > v5
조건 2: v3 > v2 = v4 = v6 = v7 > v1, v5Condition 2: v3 > v2 = v4 = v6 = v7 > v1, v5
조건 3: v3 > v1, v2, v4, v5, v6, v7Condition 3: v3 > v1, v2, v4, v5, v6, v7
조건 4: v1, v2, v3, v4, v6, v7 > v5Condition 4: v1, v2, v3, v4, v6, v7 > v5
제1,2,5,7렌즈(201,202,205,207)의 초점 거리(F1,F2,F5,F7)는 음(-)의 부호를 가질 수 있다. 제1,2,5,7렌즈(201,202,205,207)는 음(-)의 굴절력을 가질 수 있다. 제3,4,6렌즈(203,204,206)의 초점 거리(F3,F4,F6)는 양(+)의 부호를 가질 수 있다. 제3,4,6렌즈(203,204,206)의 양(+)의 굴절력을 가질 수 있다. 음(-)의 굴절력을 갖는 제1렌즈(201), 제2렌즈(202)의 센서 측에는 양(+)의 굴절력을 갖는 제3렌즈(203)가 배치될 수 있다. 이를 통해, 물체 측에서 입사된 광은 광축 방향에서 멀어지다가 다시 광축 방향으로 모일 수 있어, 안정적인 광 경로를 형성할 수 있다. The focal lengths F1, F2, F5, and F7 of the first, second, fifth, and seventh lenses 201, 202, 205, and 207 may have a negative (-) sign. The first, second, fifth, and seventh lenses 201, 202, 205, and 207 may have negative refractive power. The focal lengths F3, F4, and F6 of the third, fourth, and sixth lenses 203, 204, and 206 may have a positive (+) sign. The third, fourth, and sixth lenses (203, 204, and 206) may have positive refractive power. A third lens 203 with positive (+) refractive power may be disposed on the sensor side of the first lens 201 and the second lens 202 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
또한 인접하여 배치되는 렌즈인 제4렌즈(204)와 제5렌즈(205)는 하기 조건을 만족할 수 있다.Additionally, the fourth lens 204 and the fifth lens 205, which are adjacent lenses, can satisfy the following conditions.
조건 1: 양의 굴절력을 가진 렌즈의 굴절률 < 음의 굴절력을 가진 렌즈의 굴절률 Condition 1: Refractive index of a lens with positive refractive power < Refractive index of a lens with negative refractive power
조건 2: 양의 굴절력을 가진 렌즈의 분산값 > 음의 굴절력을 가진 렌즈의 분산값Condition 2: Dispersion value of a lens with positive refractive power > Dispersion value of a lens with negative refractive power
여기서, 플라스틱 렌즈들 중에서 제4렌즈(204)는 양의 굴절력을 갖고, 제5렌즈(205)는 음의 굴절력을 가짐에 따라, 조건 1,2 에 의하면 제4렌즈(204)의 굴절률이 제5렌즈(205)의 굴절률보다 작고, 제4렌즈(204)의 분산값이 제5렌즈(205)의 분산값보다 크다. 플라스틱 렌즈에서 발생되는 색수차는 플라스틱 렌즈로 보정할 수 있다. 또한, 연속해서 배치되는 플라스틱 렌즈인 제4렌즈(204)와 제5렌즈(205)가 굴절률 차이 0.1 이상 0.15 이하, 아베수 차이 20 이상 50 이하를 만족시킴으로써 플라스틱 렌즈에서 발생하는 색 수차를 플라스틱 렌즈로 보상할 수 있다. Here, among the plastic lenses, the fourth lens 204 has positive refractive power and the fifth lens 205 has negative refractive power, so according to conditions 1 and 2, the refractive index of the fourth lens 204 is It is smaller than the refractive index of the fifth lens 205, and the dispersion value of the fourth lens 204 is greater than that of the fifth lens 205. Chromatic aberration occurring in plastic lenses can be corrected with plastic lenses. In addition, the fourth lens 204 and the fifth lens 205, which are plastic lenses arranged in succession, satisfy the refractive index difference of 0.1 to 0.15 and the Abbe number difference of 20 to 50, thereby reducing chromatic aberration occurring in the plastic lens. It can be compensated with
광학계는 색 수차가 발생하며 접합 렌즈를 사용하거나 연속하게 배치된 두 렌즈를 사용하여 색수차를 보정한다. 저온에서 고온까지의 온도가 변화함에 따라 렌즈가 수축 및 팽창을 반복한다. 같은 소재의 렌즈들은 온도 변화에 따른 렌즈 특성 변화량이 동일하므로, 온도가 변화하더라도 같은 소재의 렌즈끼리 색 수차를 보정하는 것이 효과적이다. 따라서 본 발명의 제2실시예에서는 제4렌즈(204) 및 제5렌즈(205)를 사용하여 플라스틱 렌즈에서 발생하는 색 수차를 보정할 수 있다.Optical systems produce chromatic aberration, and chromatic aberration is corrected using a bonded lens or two lenses placed in series. As the temperature changes from low to high, the lens repeats contraction and expansion. Since lenses made of the same material have the same amount of change in lens characteristics due to temperature changes, it is effective to correct chromatic aberration between lenses made of the same material even if the temperature changes. Therefore, in the second embodiment of the present invention, chromatic aberration occurring in the plastic lens can be corrected using the fourth lens 204 and the fifth lens 205.
광축에서 유효경 영역까지, 인접하게 배치되는 두 렌즈 중 아베수 차이가 가장 큰 두 렌즈의 거리의 최대값은 다른 인접한 두 렌즈 사이의 거리의 최대값보다 작을 수 있다. 여기에서, 거리는 광축에서 유효경 영역까지, 두 렌즈 사이의 거리를 의미할 수 있다. 인접하게 배치되는 두 렌즈 중 아베수 차이가 가장 큰 두 렌즈는 제4렌즈(204) 및 제5렌즈(205)일 수 있다. 광축에서 유효경 영역까지 광축에 수직인 방향으로, 제4렌즈(204)의 센서측면(제8면(S8))과 제5렌즈(205)의 물체측면(제9면(S9))까지의 거리 중 최대값은 다른 인접한 두 렌즈 사이의 거리의 최대값보다 작을 수 있다. 이를 통해, 접합이 어려운 플라스틱 재질의 두 렌즈 사이의 거리를 작게 설계하고, 아베수 차이를 가장 크게 하여 접합하지 않은 상태에서도 접합 렌즈와 동일한 색수차를 줄일 수 있는 효과를 가질 수 있다. From the optical axis to the effective diameter area, the maximum value of the distance between two lenses with the largest Abbe number difference among two adjacent lenses may be smaller than the maximum value of the distance between two other adjacent lenses. Here, the distance may mean the distance between two lenses, from the optical axis to the effective diameter area. Among the two lenses disposed adjacently, the two lenses with the largest difference in Abbe number may be the fourth lens 204 and the fifth lens 205. The distance between the sensor side (eighth surface (S8)) of the fourth lens 204 and the object side (ninth side (S9)) of the fifth lens 205 in the direction perpendicular to the optical axis from the optical axis to the effective diameter area. The maximum value may be less than the maximum value of the distance between two other adjacent lenses. Through this, the distance between two lenses made of plastic, which are difficult to bond, is designed to be small, and the difference in Abbe number is maximized to have the effect of reducing the same chromatic aberration as a bonded lens even in a non-bonded state.
초점 거리를 절대 값으로 비교하면, 제7렌즈(207)의 초점 거리는 렌즈들 중에서 최대이며, 50 이상 내지 60 이하일 수 있다. 제5렌즈(205)의 초점 거리는 렌즈들 중에서 최소이고, 제7렌즈(205)의 초점 거리의 절대값은 8 이상 내지 12 이하일 수 있다. Comparing the focal lengths in absolute values, the focal length of the seventh lens 207 is the largest among the lenses and may be 50 or more and 60 or less. The focal length of the fifth lens 205 is the minimum among the lenses, and the absolute value of the focal length of the seventh lens 205 may be 8 or more and 12 or less.
각 렌즈의 초점거리의 절대값은 아래의 조건 중 어느 하나를 만족할 수 있다.The absolute value of the focal length of each lens can satisfy any of the conditions below.
조건 1: |f7| > |f1| > |f2|, |f3|, |f4|, |f5|, |f6|Condition 1: |f7| > |f1| > |f2|, |f3|, |f4|, |f5|, |f6|
조건 2: |f1|, |f7| > |f2| > |f3|, |f4|, |f5|, |f6|Condition 2: |f1|, |f7| > |f2| > |f3|, |f4|, |f5|, |f6|
조건 3: |f1|, |f2|, |f4|, |f6|, |f7| > |f3| > |f5|Condition 3: |f1|, |f2|, |f4|, |f6|, |f7| > |f3| > |f5|
조건 4: |f1|, |f2|, |f7| > |f4| > |f3|, |f5|, |f6| Condition 4: |f1|, |f2|, |f7| > |f4| > |f3|, |f5|, |f6|
조건 5: |f1|, |f2|, |f3|, |f4|, |f6|, |f7| > |f5|Condition 5: |f1|, |f2|, |f3|, |f4|, |f6|, |f7| > |f5|
조건 6: |f1|, |f2|, |f4|, |f7| > |f6| > |f3|, |f5| Condition 6: |f1|, |f2|, |f4|, |f7| > |f6| > |f3|, |f5|
조건 7: |f7| > |f1|, |f2|, |f3|, |f4|, |f5|, |f6|Condition 7: |f7| > |f1|, |f2|, |f3|, |f4|, |f5|, |f6|
제1렌즈(201)의 두께(T1)는 최대 두께와 최소 두께의 차이가 1.1배 이상 예컨대, 1.2배 내지 1.5배 범위일 수 있으며, 중심 두께(CT1)가 최소이고, 에지 두께(ET1)가 최대일 수 있다. 제2렌즈(202)의 두께(T2)는 최대 두께가 최소 두께의 1배 내지 1.5배 범위일 수 있다. 제2렌즈(202)는 중심 두께(CT2)가 최대이며, 에지 두께(ET2)는 최소일 수 있다. 제3렌즈(203)의 두께(T3)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1배 내지 1.5배 범위이다. 제4렌즈(204)의 두께(T4)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 2배 내지 2.5배 범위이다. 제5렌즈(205)의 두께(T5)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1.2배 내지 1.7배 범위이다. 제6렌즈(206)의 두께(T6)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 1.5배 내지 2배 범위이다. 제7렌즈(207)의 두께(T7)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1배 내지 1.5배 범위이다. The thickness (T1) of the first lens 201 may be 1.1 times or more, for example, 1.2 to 1.5 times the difference between the maximum and minimum thickness, the center thickness (CT1) is the minimum, and the edge thickness (ET1) is the minimum. It can be maximum. The thickness T2 of the second lens 202 may have a maximum thickness in the range of 1 to 1.5 times the minimum thickness. The second lens 202 may have a maximum center thickness (CT2) and a minimum edge thickness (ET2). The thickness T3 of the third lens 203 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness. The thickness T4 of the fourth lens 204 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 2 to 2.5 times the minimum thickness. The thickness T5 of the fifth lens 205 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness. The thickness T6 of the sixth lens 206 may be maximum at the center and minimum at the edge, with the maximum thickness being in the range of 1.5 to 2 times the minimum thickness. The thickness T7 of the seventh lens 207 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness.
각 렌즈의 두께는 아래의 조건 중 어느 하나를 만족할 수 있다.The thickness of each lens can satisfy any of the conditions below.
조건 1: 0.5 < CT1/ET1 < 1, 1.5 < ET1/CT1 < 2Condition 1: 0.5 < CT1/ET1 < 1, 1.5 < ET1/CT1 < 2
조건 2: 1 < CT2/ET2 < 1.5, 0.5 < ET2/CT2 < 1Condition 2: 1 < CT2/ET2 < 1.5, 0.5 < ET2/CT2 < 1
조건 3: 0.5 < CT3/ET3 < 1, 1 < ET3/CT3 < 1.5Condition 3: 0.5 < CT3/ET3 < 1, 1 < ET3/CT3 < 1.5
조건 4: 2 < CT4/ET4 < 2.5, 0.1 < ET4/CT4 < 0.5Condition 4: 2 < CT4/ET4 < 2.5, 0.1 < ET4/CT4 < 0.5
조건 5: 0.5 < CT5/ET5 < 1, 1.2 < ET5/CT5 < 1.7Condition 5: 0.5 < CT5/ET5 < 1, 1.2 < ET5/CT5 < 1.7
조건 6: 1.2 < CT6/ET6 < 1.7, 0.5 < ET6/CT6 < 1Condition 6: 1.2 < CT6/ET6 < 1.7, 0.5 < ET6/CT6 < 1
조건 7: 0.5 < CT7/ET7 < 1, 1 < ET7/CT7 < 1.5Condition 7: 0.5 < CT7/ET7 < 1, 1 < ET7/CT7 < 1.5
조건 8: 1 < ΣCT/ΣET < 1.2, 0.5 < ΣET/ΣCT < 1Condition 8: 1 < ΣCT/ΣET < 1.2, 0.5 < ΣET/ΣCT < 1
렌즈들 사이의 간격(G1-G7) 중에서 제1,2렌즈(201,202) 사이의 제1간격(G1)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제2,3 렌즈(202,203) 사이의 제2간격(G2)은 중심부가 최소이고, 에지부가 최대일 수 있다. 제3,4렌즈(203,204) 사이의 제3간격(G3)은 에지부가 최대이고, 중심부가 최소일 수 있다. 제4,5렌즈(204,205) 사이의 제4간격(G4)은 중심부가 최소이고, 에지부가 최대일 수 있다. 제5,6렌즈(205,206) 사이의 제5간격(G5)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제6,7렌즈(206,207) 사이의 제6간격(G6)은 중심부가 최소이고, 에지부가 최대일 수 있다. Among the intervals G1-G7 between the lenses, the first interval G1 between the first and second lenses 201 and 202 may be maximum at the center and minimum at the edges. The second gap G2 between the second and third lenses 202 and 203 may be minimum at the center and maximum at the edges. The third gap G3 between the third and fourth lenses 203 and 204 may be maximum at the edge and minimum at the center. The fourth gap G4 between the fourth and fifth lenses 204 and 205 may be minimum at the center and maximum at the edges. The fifth gap G5 between the fifth and sixth lenses 205 and 206 may be maximum at the center and minimum at the edges. The sixth gap G6 between the sixth and seventh lenses 206 and 207 may be minimum at the center and maximum at the edges.
도 18, 도 20 및 도 22는 도 13의 광학계에서 상온, 저온 및 고온에서의 회절(Diffraction) MTF(Modulation transfer function)를 나타낸 그래프로서, 공간 주파수(spatial frequency)에 따른 휘도 비(modulation)를 나타낸 그래프이다. 도 18, 도 20 및 도 22와 같이, 발명의 제2실시예에서 상온을 기준으로 저온 또는 고온과의 MTF의 편차는 10% 미만 즉, 7% 이하일 수 있다. Figures 18, 20, and 22 are graphs showing the diffraction MTF (modulation transfer function) at room temperature, low temperature, and high temperature in the optical system of Figure 13, showing the luminance ratio (modulation) according to spatial frequency. This is the graph shown. 18, 20, and 22, in the second embodiment of the invention, the deviation of MTF from low or high temperature based on room temperature may be less than 10%, that is, 7% or less.
도 19, 도 21 및 도 23은 도 13의 광학계에서 상온, 저온 및 고온에서의 수차 특성을 나타낸 그래프다. 도 19, 도 21 및 도 23의 수차 그래프에서 좌측에서 우측 방향으로 구면 수차(Longitudinal Spherical Aberration), 비점 수차(Astigmatic Field Curves), 왜곡 수차(Distortion)를 측정한 그래프이다. 도 19, 도 21 및 도 23에서 X축은 초점 거리(mm) 및 왜곡도(%)를 나타낼 수 있고, Y축은 이미지의 높이(height)를 의미할 수 있다. 또한, 구면 수차에 대한 그래프는 약 435nm, 약 486nm, 약 546nm, 약 587nm, 약 656nm 파장 대역의 광에 대한 그래프이며, 비점 수차 및 왜곡 수차에 대한 그래프는 약 546nm 파장 대역의 광에 대한 그래프이다. 도 19, 도 21 및 도 23의 수차도에서는 상온, 저온 및 고온에서의 각 곡선들이 Y축에 근접할 수록 수차 보정 기능이 좋은 것으로 해석할 수 있는데, 제2실시예에 따른 광학계(1100)는 거의 대부분의 영역에서 측정 값들이 Y축에 인접한 것을 알 수 있다. 즉, 제2실시예에 따른 광학계(1100)는 향상된 해상력을 가지며 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다. 여기서, 저온은 -20도 이하의 예컨대, -20 내지 -40도 범위이며, 상온은 22도±5도 범위 또는 18도 내지 27도 범위이며, 고온은 85도 이상 예컨대, 85도 내지 205도의 범위일 수 있다. 이에 따라 도 19, 도 21 및 도 23의 저온에서 고온까지 휘도 비(modulation)의 저하가 10% 미만 예컨대, 5% 이하이거나, 거의 변경되지 않음을 알 수 있다. Figures 19, 21, and 23 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 13. 19, 21, and 23 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right. In FIGS. 19, 21, and 23, the X-axis may represent focal length (mm) and distortion (%), and the Y-axis may represent the height of the image. In addition, the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm, and the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm. . In the aberration diagrams of FIGS. 19, 21, and 23, it can be interpreted that the closer the curves at room temperature, low temperature, and high temperature are to the Y axis, the better the aberration correction function is. The optical system 1100 according to the second embodiment has You can see that in most areas, the measured values are adjacent to the Y axis. That is, the optical system 1100 according to the second embodiment has improved resolution and can have good optical performance not only in the center but also in the periphery of the field of view (FOV). Here, the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees, the room temperature is in the range of 22 degrees ± 5 degrees or 18 to 27 degrees, and the high temperature is 85 degrees or higher, for example, in the range of 85 to 205 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 19, 21, and 23 is less than 10%, for example, 5% or less, or is almost unchanged.
표 6은 제1실시예에 따른 광학계에서 상온, 저온 및 고온에서의 EFL, BFL, F넘버(F#), TTL 및 화각(FOV_D)와 같은 광학 특성의 변화를 비교하였으며, 상온을 기준으로 저온의 광학 특성의 변화율 5% 이하 예컨대, 3%이하로 나타남을 알 수 있으며, 상온을 기준으로 저온의 광학 특성의 변화율이 5% 이하 예컨대, 3% 이하로 나타남을 알 수 있다.Table 6 compares the changes in optical properties such as EFL, BFL, F number (F#), TTL, and angle of view (FOV_D) at room temperature, low temperature, and high temperature in the optical system according to the first embodiment, and the change in optical properties at low temperature based on room temperature. It can be seen that the change rate of optical properties is 5% or less, for example, 3% or less, and the change rate of optical properties at low temperatures based on room temperature is 5% or less, for example, 3% or less.
상온room temperature 저온low temperature 고온High temperature 저온/상온Low temperature/room temperature 고온/상온High temperature/room temperature
EFL(F)EFL(F) 10.86 10.86 10.78 10.78 10.95 10.95 99.26%99.26% 100.82%100.82%
BFLBFL 3.38 3.38 3.37 3.37 3.38 3.38 99.70%99.70% 100.00%100.00%
F#F# 1.64 1.64 1.63 1.63 1.65 1.65 99.39%99.39% 100.60%100.60%
TTLTTL 30.00 30.00 29.92 29.92 30.08 30.08 99.73%99.73% 100.26%100.26%
FOV_DFOV_D 54.53 54.53 54.97 54.97 54.09 54.09 100.80%100.80% 99.19%99.19%
따라서, 표 6과 같이, 저온에서 고온까지의 온도 변화에 따른 광학 특성의 변화 예컨대, 유효초점거리(EFL)의 변화율, TTL, BFL, F 넘버, 화각(FOV_D)의 변화율이 10% 이하 즉, 5% 이하 예컨대, 0 ~ 5% 범위임을 알 수 있다. 이는 적어도 한 매 또는 두 매 이상의 플라스틱 렌즈를 사용하더라도, 플라스틱 렌즈에 대한 온도보상이 가능하게 설계하여, 광학 특성의 신뢰성 저하를 방지할 수 있다. Therefore, as shown in Table 6, the change in optical properties according to the temperature change from low to high temperature, for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV_D) is 10% or less, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, temperature compensation for the plastic lenses is designed to prevent deterioration in the reliability of optical characteristics.
상기에 개시된 제1실시예의 광학계는 색수차, 왜곡 수차 등의 수차 특성을 효과적으로 제어할 수 있고, 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다.The optical system of the first embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
발명의 제3실시예에 따른 광학계에 대해 설명하기로 한다.The optical system according to the third embodiment of the invention will be described.
도 25는 제3실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이고, 도 26은 도 25의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이고, 도 27은 도 25의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이고, 도 28은 도 25의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Sag 값을 나타낸 표이고, 도 29는 도 25의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Slope Angle 을 나타낸 표이고, 도 30은 도 25의 광학계의 상온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이고, 도 31은 도 25의 광학계의 상온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 32은 도 25의 광학계의 저온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이고, 도 33는 도 25의 광학계의 저온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 34는 도 25의 광학계의 고온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이고, 도 35는 도 25의 광학계의 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 36는 도 25의 광학계의 주변 광량비를 나타낸 그래프이다.FIG. 25 is a side cross-sectional view of an optical system and a camera module having the same according to a third embodiment, FIG. 26 is a table showing the aspheric coefficients of lenses in the optical system of FIG. 25, and FIG. 27 shows the thickness and thickness of each lens of the optical system of FIG. 25. This is a table showing the spacing between adjacent lenses, Figure 28 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 25, and Figure 29 is a table showing the lenses of the first to seventh lenses in the optical system of Figure 25. It is a table showing the Slope Angle of the planes, Figure 30 is a graph showing data on the diffraction MTF at room temperature of the optical system of Figure 25, and Figure 31 is a graph showing data on aberration characteristics at room temperature of the optical system of Figure 25. , FIG. 32 is a graph showing data on the diffraction MTF (Modulation Transfer Function) at low temperature of the optical system of FIG. 25, FIG. 33 is a graph showing data on aberration characteristics at low temperature of the optical system of FIG. 25, and FIG. 34 is a graph showing data on the diffraction MTF at high temperature of the optical system of FIG. 25, FIG. 35 is a graph showing data on aberration characteristics at high temperature of the optical system of FIG. 25, and FIG. 36 is the amount of ambient light of the optical system of FIG. 25. This is a graph showing rain.
도 25를 참조하면, 광학계(1200)는 렌즈부를 포함하며, 렌즈부는 제1렌즈(301) 내지 제7렌즈(307)를 포함할 수 있다. 제1 내지 제7렌즈(301~307)은 광학계(1200)의 광축(OA)을 따라 순차적으로 배치될 수 있다. 물체의 정보에 해당하는 광은 제1렌즈(301) 내지 제7렌즈(307), 및 필터(600)를 통과하여 이미지 센서(500)에 입사될 수 있다.Referring to FIG. 25, the optical system 1200 includes a lens unit, and the lens unit may include a first lens 301 to a seventh lens 307. The first to seventh lenses 301 to 307 may be sequentially arranged along the optical axis OA of the optical system 1200. Light corresponding to object information may pass through the first to seventh lenses 301 to 307 and the filter 600 and enter the image sensor 500.
제1렌즈(301)는 물체측에 가장 가깝게 배치될 수 있다. 제1렌즈(301)는 센서 측에서 가장 멀리 배치될 수 있다. 제1렌즈(301)는 광축(OA)에서 음(-)의 굴절력을 가질 수 있다. 제1렌즈(301)는 플라스틱 재질 또는 유리(glass) 재질을 포함할 수 있으며, 예컨대 유리 재질일 수 있다. 유리 재질의 제1렌즈(301)는 주변 환경에 따른 온도 변화에 따른 중심 위치와 곡률 반경 등의 변화를 줄여줄 수 있으며, 광학계(1200)의 입사측면을 보호할 수 있다. The first lens 301 may be placed closest to the object. The first lens 301 may be placed furthest from the sensor side. The first lens 301 may have negative (-) refractive power at the optical axis (OA). The first lens 301 may include a plastic material or a glass material, for example, a glass material. The first lens 301 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and protect the entrance side of the optical system 1200.
광축을 기준으로 제1렌즈(301)의 물체측 제1면(S1)은 볼록하며, 센서측 제2면(S2)은 오목할 수 있다. 제1렌즈(301)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제1렌즈(301)는 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제1렌즈(301)는 유리 재질이며, 비구면을 가질 수 있다. 제1면(S1) 및 제2면(S2) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제1,2면(S1,S2)의 비구면 계수는 도 26의 L3의 S1 및 S2로 제공될 수 있다. 제1면(S1) 및 제2면(S2) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side first surface S1 of the first lens 301 may be convex, and the sensor-side second surface S2 may be concave. The first lens 301 may have a meniscus shape that is convex toward the object. The first lens 301 may have a meniscus shape that is concave toward the sensor. The first lens 301 is made of glass and may have an aspherical surface. At least one or both of the first surface (S1) and the second surface (S2) may be aspherical. The aspheric coefficients of the first and second surfaces S1 and S2 may be provided as S1 and S2 of L3 in FIG. 26. At least one or both of the first surface S1 and the second surface S2 may be provided without a critical point from the optical axis OA to the end of the effective area.
제1렌즈(301)의 굴절 특성에 의해 제2렌즈(302)는 제1렌즈(301)로부터 더 이격될 수 있다. 즉, 제1,2렌즈(301,302) 사이의 중심 간격은 렌즈부 내에서 가장 클 수 있다. Due to the refractive characteristics of the first lens 301, the second lens 302 may be further spaced apart from the first lens 301. That is, the center spacing between the first and second lenses 301 and 302 may be the largest within the lens unit.
제1렌즈(301)의 굴절률(n1)은 n1> 1.6 또는 n1> 1.62의 조건을 만족할 수 있다. 제1렌즈(301)의 굴절률(n1)이 상기 조건을 만족할 경우, 제1,2렌즈(301,302)의 곡률 반경의 커질 수 있으며, 렌즈 제작이 용이할 수 있다. 제1렌즈(301)의 굴절률(n1)이 조건보다 작은 경우, 제1,2렌즈(301,302)의 굴절력을 증가시켜 주기 위해 렌즈 면을 급격하게 오목하거나 볼록하게 형성해야 하며, 이 경우 렌즈 제작이 용이하지 않고 렌즈 불량률도 높아지고 수율 저하의 원인이 될 수 있다.The refractive index (n1) of the first lens 301 may satisfy the condition of n1>1.6 or n1>1.62. When the refractive index (n1) of the first lens 301 satisfies the above conditions, the radius of curvature of the first and second lenses 301 and 302 can be increased, and lens manufacturing can be easy. If the refractive index (n1) of the first lens 301 is less than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 301 and 302, and in this case, lens manufacturing is required. It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
제2렌즈(302)는 물체 측에서 2번째로 배치될 수 있다. 제2렌즈(302)는 센서 측에서 6번째로 배치될 수 있다. 제2렌즈(302)는 제1렌즈(301)과 제3렌즈(303) 사이에 배치될 수 있다. 제2렌즈(302)는 광축(OA)에서 음(-)의 굴절력을 가질 수 있다. 제2렌즈(302)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제2렌즈(302)는 플라스틱 재질로 제공될 수 있다.The second lens 302 may be disposed second on the object side. The second lens 302 may be placed sixth on the sensor side. The second lens 302 may be disposed between the first lens 301 and the third lens 303. The second lens 302 may have negative refractive power at the optical axis (OA). The second lens 302 may include plastic or glass. For example, the second lens 302 may be made of plastic.
광축(OA)을 기준으로 제2렌즈(302)의 물체측 제3면(S3)은 오목하며, 센서측 제4면(S4)은 볼록할 수 있다. 제2렌즈(302)는 센서측으로 볼록한 메니스커스 형상을 가질 수 있다. 제2렌즈(302)는 물체측으로 오목한 메니스커스 형상을 가질 수 있다. 제2렌즈(302)는 플라스틱 재질이며, 비구면일 수 있다. 제3면(S3) 및 제4면(S4) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제3,4면(S3,S4)의 비구면 계수는 도 26의 L2의 S1 및 S2로 제공될 수 있다. 제3면(S3) 및 제4면(S4) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis OA, the object-side third surface S3 of the second lens 302 may be concave, and the sensor-side fourth surface S4 may be convex. The second lens 302 may have a meniscus shape that is convex toward the sensor. The second lens 302 may have a meniscus shape that is concave toward the object. The second lens 302 is made of plastic and may be aspherical. At least one or both of the third surface S3 and the fourth surface S4 may be aspherical. The aspherical coefficients of the third and fourth surfaces S3 and S4 can be provided as S1 and S2 of L2 in FIG. 26. At least one or both of the third surface S3 and the fourth surface S4 may be provided without a critical point from the optical axis OA to the end of the effective area.
조리개(Stop)는 제2렌즈(302)의 센서측 제4면(S4)의 둘레에 배치될 수 있다. 조리개(Stop)는 제3렌즈(303)의 물체측 제5면(S5)의 둘레에 배치될 수 있다. 조리개는 화각 범위 내에서 TTL을 줄여줄 수 있고, 광학계의 소형화가 가능하다. 이에 따라 광학계의 중량별 수율(yield by weight)의 저하를 방지하고 생산 효율의 향상을 도모할 수 있다. 또한, 수평 화각(FOV_H)을 40도 내지 50도에서 TTL을 줄여서 광학계를 소형화할 수 있다.The aperture (Stop) may be disposed around the fourth surface (S4) on the sensor side of the second lens (302). The aperture (Stop) may be disposed around the object-side fifth surface S5 of the third lens 303. Aperture can reduce TTL within the range of view angle, and miniaturization of the optical system is possible. Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 40 to 50 degrees.
제3렌즈(303)는 물체 측에서 3번째로 배치될 수 있다. 제3렌즈(303)은 센서 측에서 5번째로 배치될 수 있다. 제3렌즈(303)은 제2렌즈(302)와 제4렌즈(304) 사이에 배치될 수 있다. 제3렌즈(303)는 광축(OA)에서 양(+)의 굴절력을 가질 수 있다. 제3렌즈(303)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제3렌즈(303)는 유리 재질로 제공될 수 있다.The third lens 303 may be arranged third from the object side. The third lens 303 may be placed fifth on the sensor side. The third lens 303 may be disposed between the second lens 302 and the fourth lens 304. The third lens 303 may have positive (+) refractive power at the optical axis (OA). The third lens 303 may include plastic or glass. For example, the third lens 303 may be made of glass.
광축을 기준으로 제3렌즈(303)의 물체측 제5면(S5)은 볼록하고, 센서측 제6면(S6)은 볼록할 수 있다. 제3렌즈(303)는 양면이 볼록한 형상을 가질 수 있다. 제3렌즈(303)는 유리 재질이며, 구면일 수 있다. 제5면(S5) 및 제6면(S6) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side fifth surface S5 of the third lens 303 may be convex, and the sensor-side sixth surface S6 may be convex. The third lens 303 may have a convex shape on both sides. The third lens 303 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
제4렌즈(304)는 물체 측에서 4번째로 배치될 수 있다. 제4렌즈(304)는 센서 측에서 4번째로 배치될 수 있다. 제4렌즈(304)은 제3렌즈(303)와 제5렌즈(305) 사이에 배치될 수 있다. 제4렌즈(304)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제4렌즈(304)는 양(+)의 굴절력을 가질 수 있다. 제4렌즈(304)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제4렌즈(304)는 플라스틱 재질로 제공될 수 있다. The fourth lens 304 may be placed fourth on the object side. The fourth lens 304 may be placed fourth on the sensor side. The fourth lens 304 may be disposed between the third lens 303 and the fifth lens 305. The fourth lens 304 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fourth lens 304 may have positive (+) refractive power. The fourth lens 304 may include plastic or glass. For example, the fourth lens 304 may be made of plastic.
광축을 기준으로 제4렌즈(304)의 물체측 제7면(S7)은 볼록하며, 센서측 제8면(S8)은 볼록할 수 있다. 제4렌즈(304)는 양면이 볼록한 형상을 가질 수 있다. 제4렌즈(304)는 플라스틱 재질이며, 비구면일 수 있다. 제7면(S7) 및 제8면(S8) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제7,8면(S7,S8)의 비구면 계수는 도 26의 L4의 S1 및 S2로 제공될 수 있다. 제7면(S7) 및 제8면(S8) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side seventh surface S7 of the fourth lens 304 may be convex, and the sensor-side eighth surface S8 may be convex. The fourth lens 304 may have a convex shape on both sides. The fourth lens 304 is made of plastic and may be aspherical. At least one or both of the seventh surface S7 and the eighth surface S8 may be aspherical. The aspheric coefficients of the seventh and eighth surfaces (S7 and S8) can be provided as S1 and S2 of L4 in FIG. 26. At least one or both of the seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
제5렌즈(305)는 물체 측에서 5번째로 배치될 수 있다. 제5렌즈(305)는 센서 측에서 3번째로 배치될 수 있다. 제5렌즈(305)은 제4렌즈(304)와 제6렌즈(306) 사이에 배치될 수 있다. 제5렌즈(305)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(305)는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(305)는 플라스틱 또는 유리 재질을 포함할 수 있다. 예를 들어, 제5렌즈(305)는 플라스틱 재질로 제공될 수 있다. The fifth lens 305 may be placed fifth on the object side. The fifth lens 305 may be placed third on the sensor side. The fifth lens 305 may be disposed between the fourth lens 304 and the sixth lens 306. The fifth lens 305 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fifth lens 305 may have negative (-) refractive power. The fifth lens 305 may include plastic or glass. For example, the fifth lens 305 may be made of plastic.
광축(OA)을 기준으로 제5렌즈(305)는 물체측 제9면(S9)은 볼록하고, 센서측 제10면(S10)은 오목할 수 있다. 제5렌즈(305)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제5렌즈(305)는 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제5렌즈(305)는 플라스틱 재질이며, 비구면일 수 있다. 제9면(S9) 및 제10면(S10) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제9,10면(S9,S10)의 비구면 계수는 도 26의 L5의 S1 및 S2로 제공될 수 있다. 제9면(S9) 및 제10면(S10) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis OA, the object-side ninth surface S9 of the fifth lens 305 may be convex, and the sensor-side tenth surface S10 may be concave. The fifth lens 305 may have a meniscus shape that is convex toward the object. The fifth lens 305 may have a meniscus shape that is concave toward the sensor. The fifth lens 305 is made of plastic and may be aspherical. At least one or both of the ninth surface S9 and the tenth surface S10 may be aspherical. The aspheric coefficients of the 9th and 10th surfaces (S9 and S10) can be provided as S1 and S2 of L5 in FIG. 26. At least one or both of the ninth surface S9 and the tenth surface S10 may be provided without a critical point from the optical axis OA to the end of the effective area.
제6렌즈(306)는 물체 측에서 6번째로 배치될 수 있다. 제6렌즈(306)는 센서 측에서 2번째로 배치될 수 있다. 제6렌즈(306)은 제5렌즈(305)와 제7렌즈(307) 사이에 배치될 수 있다. 제6렌즈(306)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제6렌즈(306)는 양(+)의 굴절력을 가질 수 있다. 제6렌즈(306)는 플라스틱 또는 유리 재질을 포함할 수 있다. 예를 들어, 제6렌즈(306)는 플라스틱 재질로 제공될 수 있다. The sixth lens 306 may be placed sixth on the object side. The sixth lens 306 may be placed second on the sensor side. The sixth lens 306 may be disposed between the fifth lens 305 and the seventh lens 307. The sixth lens 306 may have positive (+) or negative (-) refractive power at the optical axis (OA). The sixth lens 306 may have positive (+) refractive power. The sixth lens 306 may include plastic or glass. For example, the sixth lens 306 may be made of plastic.
광축(OA)을 기준으로 제6렌즈(306)는 물체측 제11면(S11)은 볼록하고, 센서측 제12면(S12)은 볼록할 수 있다. 제6렌즈(306)는 양면이 볼록한 형상을 가질 수 있다. 제6렌즈(306)는 플라스틱 재질이며, 비구면일 수 있다. 제11면(S11) 및 제12면(S12) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제11,12면(S11,S12)의 비구면 계수는 도 26의 L6의 S1 및 S2로 제공될 수 있다. Based on the optical axis OA, the object-side 11th surface S11 of the sixth lens 306 may be convex and the sensor-side 12th surface S12 may be convex. The sixth lens 306 may have a convex shape on both sides. The sixth lens 306 is made of plastic and may be aspherical. At least one or both of the 11th surface (S11) and the 12th surface (S12) may be aspherical. The aspheric coefficients of the 11th and 12th surfaces (S11 and S12) can be provided as S1 and S2 of L6 in FIG. 26.
제6렌즈(106)의 제11면(S11)은 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다. 제6렌즈(106)의 제12면(S12)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 포함할 수 있다. 제12면(S12)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r62)의 75% 내지 80% 범위, 바람직하게 76% 내지 77% 범위에 위치할 수 있다. 제12면(S12)의 임계점은 광축(OA)에서 3.3 mm 내지 4 mm 범위, 바람직하게 3.5 mm 내지 3.6 mm 범위에 위치할 수 있다.The 11th surface S11 of the sixth lens 106 may be provided without a critical point from the optical axis OA to the end of the effective area. The twelfth surface S12 of the sixth lens 106 may include a critical point from the optical axis OA to the end of the effective area. When the twelfth surface S12 has a critical point, it may be located in a range of 75% to 80% of the effective radius r62 at the optical axis OA, preferably in a range of 76% to 77%. The critical point of the twelfth surface S12 may be located in the range of 3.3 mm to 4 mm, preferably 3.5 mm to 3.6 mm, from the optical axis OA.
제7렌즈(307)은 물체 측에서 가장 멀리 배치될 수 있다. 제7렌즈(307)은 이미지 센서(500)에 가장 가깝게 배치될 수 있다. 제7렌즈(307)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(307)는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(307)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제7렌즈(307)는 플라스틱 재질로 제공될 수 있다. The seventh lens 307 may be placed furthest from the object. The seventh lens 307 may be placed closest to the image sensor 500. The seventh lens 307 may have positive (+) or negative (-) refractive power at the optical axis (OA). The seventh lens 307 may have negative (-) refractive power. The seventh lens 307 may include plastic or glass. For example, the seventh lens 307 may be made of plastic.
광축(OA)을 기준으로 제7렌즈(307)는 물체측 제13면(S13)은 볼록하고, 센서측 제14면(S14)은 오목한 형상일 수 있다. 제7렌즈(307)은 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제7렌즈(307)는 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제13면(S13) 및 제14면(S14) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제13,14면(S13,S14)의 비구면 계수는 도 26의 L7의 S13 및 S14로 제공될 수 있다. Based on the optical axis OA, the object-side 13th surface S13 of the seventh lens 307 may be convex, and the sensor-side 14th surface S14 may be concave. The seventh lens 307 may have a meniscus shape that is convex toward the object. The seventh lens 307 may have a meniscus shape that is concave toward the sensor. At least one or both of the 13th surface (S13) and the 14th surface (S14) may be aspherical. The aspheric coefficients of the 13th and 14th surfaces (S13 and S14) can be provided as S13 and S14 of L7 in FIG. 26.
제7렌즈(307)의 제13면(S13)은 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다. 제7렌즈(307)의 제14면(S14)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 포함할 수 있다. 제14면(S14)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r72)의 65% 내지 75% 범위, 바람직하게 69% 내지 72% 범위에 위치할 수 있다. 제14면(S14)의 임계점은 광축(OA)에서 3.5 mm 내지 4 mm 범위, 바람직하게 3.7 mm 내지 3.8 mm 범위에 위치할 수 있다. The 13th surface S13 of the seventh lens 307 may be provided without a critical point from the optical axis OA to the end of the effective area. The 14th surface S14 of the seventh lens 307 may include a critical point from the optical axis OA to the end of the effective area. When the 14th surface S14 has a critical point, it may be located in a range of 65% to 75% of the effective radius r72 at the optical axis OA, preferably in a range of 69% to 72%. The critical point of the 14th surface S14 may be located in the range of 3.5 mm to 4 mm, preferably 3.7 mm to 3.8 mm, from the optical axis OA.
제7렌즈(307)는 이미지 센서(500)에 가장 인접한 플라스틱 렌즈일 수 있다. 또한 플라스틱 렌즈를 이미지 센서(500)에 인접하게 2매 이상 배치함으로써, 비구면을 갖는 렌즈 면에 의해 구면 수차와 색 수차 등의 수차를 개선할 수 있고, 해상도에 영향을 제어할 수 있다. 또한 이미지 센서(500)에 인접한 렌즈로 플라스틱 렌즈를 배치함으로써, 유리 재질의 렌즈 대비 조립 공차에 둔감할 수 있다. 즉, 조립 공차에 둔감하다는 의미는 조립 시 설계 대비 약간의 차이가 있게 조립되더라도 광학 성능에 크게 영향을 주지 않을 수 있다. 또한 이미지 센서(500)에 인접한 2매의 렌즈(306,307)를 플라스틱 재질로 제공해 줌으로써, 비구면을 갖는 렌즈 면에 의해 광학 성능을 개선시켜 줄 수 있으며, 예컨대 수차 특성 개선 및 해상도 저하를 방지할 수 있다.The seventh lens 307 may be a plastic lens closest to the image sensor 500. Additionally, by arranging two or more plastic lenses adjacent to the image sensor 500, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 500, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing two lenses 306 and 307 adjacent to the image sensor 500 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
LensLens SurfaceSurface RadiusRadius ThicknessThickness ndnd vdvd Semi
Aperture
Semi
Aperture
Focal lengthFocal length
1One S1S1 19.59319.593 2.0002.000 1.6413 1.6413 55.1788 55.1788 5.5455.545 -73.6385 -73.6385
S2S2 13.29513.295 2.5422.542 4.6194.619
22 S3S3 -5.916-5.916 3.1043.104 1.5371 1.5371 55.7074 55.7074 4.5304.530 -30.0942 -30.0942
S4S4 -11.042-11.042 0.6750.675 4.3244.324
STOPSTOP -- -- 0.3000.300 4.1274.127
33 S5S5 25.12625.126 3.5603.560 1.6223 1.6223 63.8790 63.8790 4.6684.668 13.8568 13.8568
S6S6 -12.415-12.415 0.4900.490 5.2065.206
44 S7S7 9.8899.889 4.2584.258 1.5371 1.5371 55.7074 55.7074 5.7305.730 16.0695 16.0695
S8S8 -57.619-57.619 0.3060.306 5.6905.690
55 S9S9 312.301312.301 2.0002.000 1.6640 1.6640 21.2131 21.2131 5.3965.396 -11.0568 -11.0568
S10S10 7.1547.154 1.9401.940 4.7734.773
66 S11S11 49.08449.084 3.0313.031 1.5371 1.5371 55.7074 55.7074 4.8094.809 9.7407 9.7407
S12S12 -5.730-5.730 0.3000.300 4.8364.836
77 S13S13 32.40032.400 2.0002.000 1.5371 1.5371 55.7074 55.7074 5.1335.133 -13.0293 -13.0293
S14S14 5.6315.631 0.7450.745 5.1615.161
FilterFilter infinityinfinity 0.4400.440
1.9361.936
CoverCover infinityinfinity 0.3300.330
0.0440.044
ImageImage infinityinfinity 0.0000.000
표 7은 본 발명의 제3실시예에 따른 렌즈의 면 번호(Surface), 곡률반경(Radius), 각 렌즈의 중심 두께 또는 렌즈면 사이의 거리(Thickness), 굴절률(Index,nd), 아베수(Abbe,vd), 유효반경(Semi Aperture), 초점거리(Fcoal length)를 나타낸다. 이때, 곡률반경과 두께 또는 거리의 단위는 mm일 수 있다.Table 7 shows the surface number (Surface), radius of curvature (Radius), center thickness of each lens or distance between lens surfaces (Thickness), refractive index (Index, nd), and Abbe number of the lens according to the third embodiment of the present invention. (Abbe,vd), effective radius (Semi Aperture), and focal length (Fcoal length). At this time, the unit of curvature radius and thickness or distance may be mm.
항목item value 항목item value
FF 10.884110.8841 F-numberF-number 1.64001.6400
ET1ET1 2.2492 2.2492 FOV_HFOV_H 46.00 46.00
ET2ET2 3.8136 3.8136 EPDE.P.D. 6.6367 6.6367
ET3ET3 2.0000 2.0000 BFLBFL 3.4945 3.4945
ET4ET4 2.0760 2.0760 TDTD 26.5055 26.5055
ET5ET5 3.5774 3.5774 ImgHImgH 5.1450 5.1450
ET6ET6 2.1499 2.1499 SDSD 18.1848 18.1848
ET7ET7 1.9162 1.9162 TTLTTL 30.000030.0000
ΣIndexΣIndex 11.0760 11.0760 GLca_AverGLca_Aver 10.01810.018
ΣAbbeΣAbbe 363.1005363.1005 PLca_AverPLca_Aver 10.07610.076
ΣCTΣCT 19.9524 19.9524 CT_maxCT_max 4.2575 4.2575
ΣCGΣCG 6.5531 6.5531 CT_minCT_min 2.0000 2.0000
CA_maxCA_max 11.46011.460 CT_AverCT_Aver 2.8503 2.8503
CA_minCA_min 8.2538.253 F_LG1F_LG1 -22.077-22.077
CA_AverCA_Aver 9.9399.939 F_LG2F_LG2 9.1469.146
표 8은 제3실시예의 광학계(1200)에서 상술한 수학식들의 항목에 대한 것으로, 광학계(1200)의 TTL(Total track length)(mm), BFL(Back focal length), 유효초점 거리(F)(mm), ImgH(mm), 유효경(CA)(mm), 두께(mm), TTL(mm), 제1면(S1)에서 제12면(S12)까지의 광축 거리인 TD(mm), 굴절률 합, 아베수 합, 두께 합(mm), 인접한 렌즈들 사이의 간격 합, 유효경 특성, 유리 렌즈의 굴절률 합, 플라스틱 재질의 굴절률 합, 화각(FOV_H)(Degree), 에지 두께(ET), F 넘버 등에 대한 것이다. Table 8 shows the items of the above-described equations in the optical system 1200 of the third embodiment, including the total track length (mm), back focal length (BFL), and effective focal length (F) of the optical system 1200. (mm), ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the 1st side (S1) to the 12th side (S12), Sum of refractive indices, sum of Abbe numbers, sum of thickness (mm), sum of spacing between adjacent lenses, effective diameter characteristics, sum of refractive indices of glass lenses, sum of refractive indices of plastic materials, angle of view (FOV_H) (Degree), edge thickness (ET), This is about F numbers, etc.
제1 내지 제7렌즈(301~307)의 중심 두께는 CT1~CT7으로 나타내며, 각 렌즈의 유효 영역의 끝단인 에지 두께는 ET1~ET7으로 나타내며, 인접한 두 렌즈 사이의 중심 간격(Center gap)은 CG1~CG6으로 나타내며, 각 렌즈의 에지들 사이의 에지 간격은 EG1~EG6으로 나타낸다. BFL(Back focal length)은 이미지 센서(500)에서 마지막 렌즈의 중심까지의 광축 거리이다. TTL은 제1렌즈(301)의 제1면(S1)의 중심에서 이미지 센서(500)의 상면까지의 광축 거리이다. The center thickness of the first to seventh lenses (301 to 307) is expressed as CT1 to CT7, the edge thickness at the end of the effective area of each lens is expressed as ET1 to ET7, and the center gap between two adjacent lenses is expressed as CT1 to CT7. They are indicated as CG1 to CG6, and the edge spacing between the edges of each lens is indicated as EG1 to EG6. Back focal length (BFL) is the optical axis distance from the image sensor 500 to the center of the last lens. TTL is the optical axis distance from the center of the first surface S1 of the first lens 301 to the upper surface of the image sensor 500.
도 26과 같이, 제3실시예에 렌즈부의 렌즈들 중 제1,2,4,5,6,7렌즈(301,302,304,305,306,307)의 렌즈면은 30차 비구면 계수를 가진 비구면을 포함할 수 있다. 예를 들어, 제1,2,4,5,6,7렌즈(301,302,304,305,306,307)는 30차 비구면 계수를 가지는 렌즈면을 포함할 수 있다. 상기와 같이 30차 비구면 계수를 가진 비구면은("0"이 아닌 수치) 주변부의 비구면 형상을 특히 크게 변화시킬 수 있기 때문에 화각(FOV)의 주변부의 광학 성능을 양호하게 보정할 수 있다.As shown in FIG. 26, the lens surfaces of the first, second, fourth, fifth, sixth, and seventh lenses (301, 302, 304, 305, 306, and 307) among the lenses of the lens unit in the third embodiment may include an aspherical surface with a 30th order aspheric coefficient. For example, the first, second, fourth, fifth, sixth, and seventh lenses (301, 302, 304, 305, 306, and 307) may include lens surfaces having a 30th order aspherical coefficient. As described above, an aspheric surface with a 30th order aspherical coefficient (a value other than “0”) can particularly significantly change the aspheric shape of the peripheral area, thereby improving the optical performance of the peripheral area of the field of view (FOV).
제1 내지 제7렌즈(301-307)의 두께(T1-T7), 인접한 두 렌즈 사이의 간격(G1-G6)을 설정할 수 있다. 도 3과 같이, Y축 방향으로 각 렌즈의 두께(T1-T7)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있으며, 각 렌즈 간의 간격(G1-G6)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있다.The thickness (T1-T7) of the first to seventh lenses (301-307) and the gap (G1-G6) between two adjacent lenses can be set. As shown in Figure 3, in the Y-axis direction, the thickness of each lens (T1-T7) can be expressed at intervals of 0.1mm or 0.2mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1mm or 0.2mm or more. It can be displayed every time.
각 렌즈의 곡률 반경의 절대 값으로 비교하면, 광축(OA)에서 제1렌즈(301)의 제1면(S1)의 곡률 반경은 렌즈들 중에서 최대이며, 제5렌즈(305)의 제10면(S10)의 곡률 반경은 렌즈들 중에서 최소일 수 있다. 최대 곡률 반경과 최소 곡률 반경의 차이는 3배 이상 예컨대, 3배 내지 5배 범위일 수 있다. Comparing the absolute value of the radius of curvature of each lens, the radius of curvature of the first surface S1 of the first lens 301 at the optical axis OA is the largest among the lenses, and the radius of curvature of the first surface S1 of the fifth lens 305 is the largest among the lenses, and the radius of curvature of the first surface S1 of the fifth lens 305 is the largest among the lenses. The radius of curvature of (S10) may be the smallest among lenses. The difference between the maximum radius of curvature and the minimum radius of curvature may be 3 times or more, for example, in the range of 3 to 5 times.
제1 내지 제7렌즈(301-307)의 물체측면 및 센서측면 중 곡률반경이 40 보다 큰 렌즈면은 1개 이상 4개 이하일 수 있다. 이를 통해, 광학계(1200)를 구성하는 렌즈의 곡률반경을 대부분 작게 설계하여 차량에 배치되는 렌즈의 화각, 초점 거리, 및 전장 거리를 만족시킬 수 있다. Among the object side and sensor side of the first to seventh lenses 301-307, there may be at least one or four lens surfaces with a radius of curvature greater than 40. Through this, the radius of curvature of the lens constituting the optical system 1200 can be designed to be mostly small to satisfy the angle of view, focal length, and overall distance of the lens placed in the vehicle.
플라스틱 렌즈의 유효경은 유리 재질의 렌즈의 유효경보다 작기 때문에 플라스틱 재질의 렌즈의 물체측에 배치된 렌즈는 플라스틱 렌즈로 굴절을 시켜주기 위하여 굴절력이 강할 수 있다. 또한, 굴절력을 강하게 하기 위하여 렌즈면의 곡률반경이 작을 수 있다.Since the effective diameter of a plastic lens is smaller than that of a glass lens, the lens placed on the object side of the plastic lens may have a strong refractive power to provide refraction to the plastic lens. Additionally, in order to strengthen the refractive power, the radius of curvature of the lens surface may be small.
제1렌즈(301)의 제1면(S1)의 곡률반경의 절대값은 제2면(S2)의 곡률반경의 절대값보다 클 수 있다. 제2렌즈(302)의 제3면(S3)의 곡률반경의 절대값은 제4면(S4)의 곡률반경의 절대값보다 작을 수 있다. 제3렌즈(303)의 제5면(S5)의 곡률반경의 절대값은 제6면(S6)의 곡률반경의 절대값보다 클 수 있다. 제4렌즈(304)의 제7면(S7)의 곡률반경의 절대값은 제8면(S8)의 곡률반경의 절대값보다 작을 수 있다. 제5렌즈(305)의 제9면(S9)의 곡률반경의 절대값은 제10면(S10)의 곡률반경의 절대값보다 클 수 있다. 제6렌즈(306)의 제11면(S11)의 곡률반경의 절대값은 제12면(S12)의 곡률반경의 절대값보다 클 수 있다. 제7렌즈(307)의 제13면(S13)의 곡률반경의 절대값은 제14면(S14)의 곡률반경의 절대값보다 클 수 있다. The absolute value of the radius of curvature of the first surface (S1) of the first lens 301 may be greater than the absolute value of the radius of curvature of the second surface (S2). The absolute value of the radius of curvature of the third surface (S3) of the second lens 302 may be smaller than the absolute value of the radius of curvature of the fourth surface (S4). The absolute value of the radius of curvature of the fifth surface (S5) of the third lens 303 may be greater than the absolute value of the radius of curvature of the sixth surface (S6). The absolute value of the radius of curvature of the seventh surface (S7) of the fourth lens 304 may be smaller than the absolute value of the radius of curvature of the eighth surface (S8). The absolute value of the radius of curvature of the ninth surface (S9) of the fifth lens 305 may be greater than the absolute value of the radius of curvature of the tenth surface (S10). The absolute value of the radius of curvature of the 11th surface (S11) of the sixth lens 306 may be greater than the absolute value of the radius of curvature of the 12th surface (S12). The absolute value of the radius of curvature of the 13th surface (S13) of the seventh lens 307 may be greater than the absolute value of the radius of curvature of the 14th surface (S14).
각 렌즈의 곡률 반경의 비율은 하기 조건을 만족할 수 있다.The ratio of the radius of curvature of each lens may satisfy the following conditions.
조건 1: 1 < |L1R1/L1R| < 1.5Condition 1: 1 < |L1R1/L1R| < 1.5
조건 2: 0.5 < |L2R1/L2R2| < 1Condition 2: 0.5 < |L2R1/L2R2| < 1
조건 3: 1.8 < |L3R1/L3R2| < 2.2Condition 3: 1.8 < |L3R1/L3R2| < 2.2
조건 4: 0.1 < |L4R1/L4R2| < 0.5Condition 4: 0.1 < |L4R1/L4R2| < 0.5
조건 5: 40 < |L5R1/L5R2| < 50Condition 5: 40 < |L5R1/L5R2| < 50
조건 6: 5 < |L6R1/L6R2| < 10Condition 6: 5 < |L6R1/L6R2| < 10
조건 7: 2 < |L7R1/L7R2| < 8Condition 7: 2 < |L7R1/L7R2| < 8
광축을 기준으로 렌즈의 중심 두께(CT)를 설명하면, 제4렌즈(304)의 중심 두께(CT4)는 렌즈들 중에서 최대이며, 제1렌즈(301), 제5렌즈(305) 및 제7렌즈(307) 중 적어도 하나의 중심 두께(CT1,CT5,CT7)는 렌즈들 중에서 최소이다. 렌즈 중 최대 중심 두께와 최소 중심 두께의 차이는 2 mm 이상 2.5 mm 이하의 범위 일 수 있다. When explaining the central thickness (CT) of the lens based on the optical axis, the central thickness (CT4) of the fourth lens 304 is the largest among the lenses, and the central thickness (CT4) of the first lens 301, the fifth lens 305, and the seventh lens 304 are the largest among the lenses. The central thickness (CT1, CT5, CT7) of at least one of the lenses 307 is the minimum among the lenses. The difference between the maximum and minimum center thickness of the lens may be in the range of 2 mm or more and 2.5 mm or less.
각 렌즈의 중심 두께는 아래의 조건 중 어느 하나를 만족할 수 있다.The center thickness of each lens may satisfy any one of the conditions below.
조건 1: CT2, CT3, CT4, CT6 > CT1 = CT5 = CT7Condition 1: CT2, CT3, CT4, CT6 > CT1 = CT5 = CT7
조건 2: CT3, CT4 > CT2 > CT1, CT5, CT6, CT7 Condition 2: CT3, CT4 > CT2 > CT1, CT5, CT6, CT7
조건 3: CT4 > CT3 > CT1, CT2, CT5, CT6, CT7Condition 3: CT4 > CT3 > CT1, CT2, CT5, CT6, CT7
조건 4: CT4 > CT1, CT2, CT3, CT6, CT7Condition 4: CT4 > CT1, CT2, CT3, CT6, CT7
조건 5: CT2, CT3, CT4 > CT6 > CT1, CT5, CT7Condition 5: CT2, CT3, CT4 > CT6 > CT1, CT5, CT7
렌즈들 사이의 중심 간격(CG)를 설명하면, 제1렌즈(301) 및 제2렌즈(302) 사이의 중심 간격(CG1)은 최대이며, 제6,7렌즈(306,307) 사이의 중심 간격(CG6) 은 최소일 수 있다. 이격되는 렌즈 간격 중 최대 중심 간격과 최소 중심 간격의 차이는 3 mm 이상 예컨대, 3 mm 내지 4 mm 범위일 수 있다. Describing the center distance (CG) between the lenses, the center distance (CG1) between the first lens 301 and the second lens 302 is the maximum, and the center distance between the 6th and 7th lenses 306 and 307 ( CG6) may be minimal. The difference between the maximum center spacing and the minimum center spacing among the spaced lens spacing may be 3 mm or more, for example, in the range of 3 mm to 4 mm.
각 렌즈들 사이의 중심 간격은 아래의 조건을 만족할 수 있다.The center spacing between each lens can satisfy the following conditions.
조건 1: CG1 > CG2, CG3, CG4, CG5, CG6Condition 1: CG1 > CG2, CG3, CG4, CG5, CG6
조건 2: CG1, CG5 > CG2 > CG3, CG4, CG6Condition 2: CG1, CG5 > CG2 > CG3, CG4, CG6
조건 3: CG1, CG2, CG5 > CG3 > CG4, CG6 Condition 3: CG1, CG2, CG5 > CG3 > CG4, CG6
조건 4: CG1, CG2, CG3, CG5 > CG4 > CG6Condition 4: CG1, CG2, CG3, CG5 > CG4 > CG6
조건 5: CG1 > CG5 > CG2, CG3, CG4, CG6 Condition 5: CG1 > CG5 > CG2, CG3, CG4, CG6
*조건 6: CG1, CG2, CG3, CG4, CG5 > CG6 *Condition 6: CG1, CG2, CG3, CG4, CG5 > CG6
유효경에 대해 설명하면, 최대 유효경을 갖는 렌즈는 유리 재질의 렌즈일 수 있다. 최대 유효경을 갖는 렌즈는 제4렌즈(304)일 수 있다. 여기서, 유효경은 각 렌즈의 물체측면의 유효경과 센서측면의 유효경의 평균이다. 최대 유효경을 갖는 렌즈 면은 제4렌즈(304)의 제7면(S7) 일 수 있다. 최소 유효경을 갖는 렌즈는 제2렌즈(302)일 수 있다. 최소 유효경을 갖는 렌즈면은 제2렌즈(302)의 제4면(S4)일 수 있다. 플라스틱 재질의 렌즈의 유효경은 유리 재질의 렌즈의 유효경보다 작을 수 있다. 플라스틱 재질의 렌즈는 이미지 센서와 인접하게 배치될 수 있다. When explaining the effective diameter, a lens with the maximum effective diameter may be a glass lens. The lens having the maximum effective diameter may be the fourth lens 304. Here, the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side. The lens surface having the maximum effective diameter may be the seventh surface S7 of the fourth lens 304. The lens having the minimum effective diameter may be the second lens 302. The lens surface having the minimum effective diameter may be the fourth surface S4 of the second lens 302. The effective diameter of a plastic lens may be smaller than that of a glass lens. A lens made of plastic may be placed adjacent to the image sensor.
각 렌즈의 유효경은 아래의 조건 중 어느 하나를 만족할 수 있다.The effective diameter of each lens can satisfy any one of the conditions below.
조건 1: CA_L4, CA_L5, CA_L7 > CA_L1 > CA_L2, CA_L3, CA_L6Condition 1: CA_L4, CA_L5, CA_L7 > CA_L1 > CA_L2, CA_L3, CA_L6
조건 2: CA_L1, CA_L3, CA_L4, CA_L5, CA_L6, CA_L7 > CA_L2Condition 2: CA_L1, CA_L3, CA_L4, CA_L5, CA_L6, CA_L7 > CA_L2
조건 3: CA_L1, CA_L4, CA_L5, CA_L7 > CA_L3 > CA_L2, CA_L6Condition 3: CA_L1, CA_L4, CA_L5, CA_L7 > CA_L3 > CA_L2, CA_L6
조건 4: CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7Condition 4: CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7
조건 5: CA_L4, CA_L7 > CA_L5 > CA_L1, CA_L2, CA_L3, CA_L6Condition 5: CA_L4, CA_L7 > CA_L5 > CA_L1, CA_L2, CA_L3, CA_L6
조건 6: CA_L1, CA_L3, CA_L4, CA_L5, CA_L7 > CA_L6 > CA_L2Condition 6: CA_L1, CA_L3, CA_L4, CA_L5, CA_L7 > CA_L6 > CA_L2
조건 7: CA_L4 > CA_L7 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6Condition 7: CA_L4 > CA_L7 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6
굴절률을 설명하면, 제5렌즈(305)의 굴절률은 렌즈들 중에서 최대이며, 1.6초과, 예컨대, 1.65 초과일 수 있다. 제2렌즈(302), 제4렌즈(304), 제6렌즈(306) 및 제7렌즈(307) 중 어느 하나 또는 모두는 렌즈들 중에서 최소의 굴절률을 가질 수 있다. 예컨대, 2렌즈(302), 제6렌즈(306) 및 제7렌즈(108)의 굴절률은 렌즈들 중 최소일 수 있고, 1.6 미만, 예컨대 1.55 미만일 수 있다. 최대 굴절률과 최소 굴절률 차이는 0.2 이상일 수 있다. 물체에 가장 가까운 유리 재질 고 굴절률 렌즈로 제공하고, 유리 재질의 렌즈에 인접한 렌즈와 이미지 센서(500)에 인접한 렌즈를 플라스틱 재질의 저 굴절률 렌즈로 제공해 줌으로써, 입사 효율을 증가시키고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 굴절력을 조절하여 이미지 센서(500)로 가이드할 수 있다. Describing the refractive index, the refractive index of the fifth lens 305 is the highest among the lenses and may be greater than 1.6, for example, greater than 1.65. One or all of the second lens 302, fourth lens 304, sixth lens 306, and seventh lens 307 may have the lowest refractive index among the lenses. For example, the refractive index of the second lens 302, the sixth lens 306, and the seventh lens 108 may be the minimum among the lenses, and may be less than 1.6, for example, less than 1.55. The difference between the maximum and minimum refractive indices may be 0.2 or more. By providing a high refractive index lens made of glass closest to the object, and providing a low refractive index lens made of plastic for the lens adjacent to the glass lens and the lens adjacent to the image sensor 500, the incident efficiency is increased, and the lens adjacent to the glass material lens and the lens adjacent to the image sensor 500 are provided as low refractive index lenses made of plastic. It is possible to guide the image sensor 500 by adjusting the refractive power between the lens materials.
각 렌즈의 굴절률은 아래의 조건 중 어느 하나를 만족할 수 있다.The refractive index of each lens may satisfy any one of the conditions below.
조건 1: n5 > n1 > n2, n3, n4, n6, n7Condition 1: n5 > n1 > n2, n3, n4, n6, n7
조건 2: n1, n3, n5 > n2 = n4 = n6 = n7 Condition 2: n1, n3, n5 > n2 = n4 = n6 = n7
조건 3: n1, n5 > n3 > n2, n4, n6, n7Condition 3: n1, n5 > n3 > n2, n4, n6, n7
조건 4: n5 > n1, n2, n3, n4, n6, n7Condition 4: n5 > n1, n2, n3, n4, n6, n7
아베수를 비교하면, 제3렌즈(303)의 아베수는 렌즈들 중 최대이며, 60 이상일 수 있다. 제5렌즈(305)의 아베수는 렌즈들 중 최소이며, 25 이하일 수 있다. 최대 굴절률과 최소 아베수 차이는 40 이상일 수 있다. 광학계(1200)의 중심 부분에 배치된 제3렌즈(303)의 아베수를 가장 크게 하고, 이미지 센서(500)에 인접한 저 굴절률을 갖는 제5렌즈(305)의 아베수를 가장 작게 제공해 줌으로써, 유리 재질과 플라스틱 재질의 렌즈들 사이로 진행되는 광의 색 분산을 조절하고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 색 분산을 증가하여 이미지 센서(500)로 가이드할 수 있다. Comparing the Abbe number, the Abbe number of the third lens 303 is the largest among the lenses and may be 60 or more. The Abbe number of the fifth lens 305 is the minimum among the lenses and may be 25 or less. The difference between the maximum refractive index and the minimum Abbe number may be 40 or more. By providing the largest Abbe number of the third lens 303 disposed in the center of the optical system 1200 and the smallest Abbe number of the fifth lens 305 with a low refractive index adjacent to the image sensor 500, The color dispersion of light traveling between glass and plastic lenses can be adjusted, and the color dispersion between the glass and plastic lenses can be increased to guide the light to the image sensor 500.
각 렌즈의 아베수는 아래의 조건 중 어느 하나를 만족할 수 있다.The Abbe number of each lens can satisfy any one of the conditions below.
조건 1: v2, v3, v4, v6, v7 > v1 > v5Condition 1: v2, v3, v4, v6, v7 > v1 > v5
조건 2: v3 > v2 = v4 = v6 = v7 > v1, v5Condition 2: v3 > v2 = v4 = v6 = v7 > v1, v5
조건 3: v3 > v1, v2, v4, v5, v6, v7Condition 3: v3 > v1, v2, v4, v5, v6, v7
조건 4: v1, v2, v3, v4, v6, v7 > v5Condition 4: v1, v2, v3, v4, v6, v7 > v5
제1,2,5,7렌즈(301,302,305,307)의 초점 거리(F1,F2,F5,F7)는 음(-)의 부호를 가질 수 있다. 제1,2,5,7렌즈(301,302,305,307)는 음(-)의 굴절력을 가질 수 있다. 제3,4,6렌즈(303,304,306)의 초점 거리(F3,F4,F6)는 양(+)의 부호를 가질 수 있다. 제3,4,6렌즈(303,304,306)의 양(+)의 굴절력을 가질 수 있다. 음(-)의 굴절력을 갖는 제1렌즈(301), 제2렌즈(302)의 센서 측에는 양(+)의 굴절력을 갖는 제3렌즈(303)가 배치될 수 있다. 이를 통해, 물체 측에서 입사된 광은 광축 방향에서 멀어지다가 다시 광축 방향으로 모일 수 있어, 안정적인 광 경로를 형성할 수 있다. The focal lengths F1, F2, F5, and F7 of the first, second, fifth, and seventh lenses 301, 302, 305, and 307 may have a negative (-) sign. The first, second, fifth, and seventh lenses (301, 302, 305, and 307) may have negative refractive power. The focal lengths F3, F4, and F6 of the third, fourth, and sixth lenses 303, 304, and 306 may have a positive (+) sign. The third, fourth, and sixth lenses (303, 304, and 306) may have positive (+) refractive power. A third lens 303 with positive (+) refractive power may be disposed on the sensor side of the first lens 301 and the second lens 302 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
또한 인접하여 배치되는 렌즈인 제4렌즈(304)와 제5렌즈(305)는 하기 조건을 만족할 수 있다.Additionally, the fourth lens 304 and the fifth lens 305, which are adjacent lenses, can satisfy the following conditions.
조건 1: 양의 굴절력을 가진 렌즈의 굴절률 < 음의 굴절력을 가진 렌즈의 굴절률 Condition 1: Refractive index of a lens with positive refractive power < Refractive index of a lens with negative refractive power
조건 2: 양의 굴절력을 가진 렌즈의 분산값 > 음의 굴절력을 가진 렌즈의 분산값Condition 2: Dispersion value of a lens with positive refractive power > Dispersion value of a lens with negative refractive power
여기서, 플라스틱 렌즈들 중에서 제4렌즈(304)는 양의 굴절력을 갖고, 제5렌즈(305)는 음의 굴절력을 가짐에 따라, 조건 1,2 에 의하면 제4렌즈(304)의 굴절률이 제5렌즈(305)의 굴절률보다 작고, 제4렌즈(304)의 분산값이 제5렌즈(305)의 분산값보다 크다. 플라스틱 렌즈에서 발생되는 색수차는 플라스틱 렌즈로 보정할 수 있다. 또한, 연속해서 배치되는 플라스틱 렌즈인 제4렌즈(304)와 제5렌즈(305)가 굴절률 차이 0.1 이상 0.15 이하, 아베수 차이 20 이상 50 이하를 만족시킴으로써 플라스틱 렌즈에서 발생하는 색 수차를 플라스틱 렌즈로 보상할 수 있다. Here, among the plastic lenses, the fourth lens 304 has positive refractive power and the fifth lens 305 has negative refractive power, so according to conditions 1 and 2, the refractive index of the fourth lens 304 is It is smaller than the refractive index of the fifth lens 305, and the dispersion value of the fourth lens 304 is greater than that of the fifth lens 305. Chromatic aberration occurring in plastic lenses can be corrected with plastic lenses. In addition, the fourth lens 304 and the fifth lens 305, which are plastic lenses arranged in succession, satisfy the refractive index difference of 0.1 to 0.15 and the Abbe number difference of 20 to 50, thereby reducing chromatic aberration occurring in the plastic lens. It can be compensated with
광학계는 색 수차가 발생하며 접합 렌즈를 사용하거나 연속하게 배치된 두 렌즈를 사용하여 색수차를 보정한다. 저온에서 고온까지의 온도가 변화함에 따라 렌즈가 수축 및 팽창을 반복한다. 같은 소재의 렌즈들은 온도 변화에 따른 렌즈 특성 변화량이 동일하므로, 온도가 변화하더라도 같은 소재의 렌즈끼리 색 수차를 보정하는 것이 효과적이다. 따라서 본 발명의 제3실시예에서는 제4렌즈(304) 및 제5렌즈(305)를 사용하여 플라스틱 렌즈에서 발생하는 색 수차를 보정할 수 있다.Optical systems produce chromatic aberration, and chromatic aberration is corrected using a bonded lens or two lenses placed in series. As the temperature changes from low to high, the lens repeats contraction and expansion. Since lenses made of the same material have the same amount of change in lens characteristics due to temperature changes, it is effective to correct chromatic aberration between lenses made of the same material even if the temperature changes. Therefore, in the third embodiment of the present invention, chromatic aberration occurring in the plastic lens can be corrected using the fourth lens 304 and the fifth lens 305.
광축에서 유효경 영역까지, 인접하게 배치되는 두 렌즈 중 아베수 차이가 가장 큰 두 렌즈의 거리의 최대값은 다른 인접한 두 렌즈 사이의 거리의 최대값보다 작을 수 있다. 여기에서, 거리는 광축에서 유효경 영역까지, 두 렌즈 사이의 거리를 의미할 수 있다. 인접하게 배치되는 두 렌즈 중 아베수 차이가 가장 큰 두 렌즈는 제4렌즈(304) 및 제5렌즈(305)일 수 있다. 광축에서 유효경 영역까지 광축에 수직인 방향으로, 제4렌즈(304)의 센서측면(제8면(S8))과 제5렌즈(305)의 물체측면(제9면(S9))까지의 거리 중 최대값은 다른 인접한 두 렌즈 사이의 거리의 최대값보다 작을 수 있다. 이를 통해, 접합이 어려운 플라스틱 재질의 두 렌즈 사이의 거리를 작게 설계하고, 아베수 차이를 가장 크게 하여 접합하지 않은 상태에서도 접합 렌즈와 동일한 색수차를 줄일 수 있는 효과를 가질 수 있다. From the optical axis to the effective diameter area, the maximum value of the distance between two lenses with the largest Abbe number difference among two adjacent lenses may be smaller than the maximum value of the distance between two other adjacent lenses. Here, the distance may mean the distance between two lenses, from the optical axis to the effective diameter area. Among the two lenses disposed adjacently, the two lenses with the largest difference in Abbe number may be the fourth lens 304 and the fifth lens 305. The distance between the sensor side (eighth surface (S8)) of the fourth lens 304 and the object side (ninth side (S9)) of the fifth lens 305 in the direction perpendicular to the optical axis from the optical axis to the effective diameter area. The maximum value may be less than the maximum value of the distance between two other adjacent lenses. Through this, the distance between two lenses made of plastic, which are difficult to bond, is designed to be small, and the Abbe number difference is maximized to have the effect of reducing the same chromatic aberration as a bonded lens even in a non-bonded state.
초점 거리를 절대 값으로 비교하면, 제1렌즈(301)의 초점 거리는 렌즈들 중에서 최대이며, 70 이상 내지 80 이하일 수 있다. 제6렌즈(306)의 초점 거리는 렌즈들 중에서 최소이고, 제6렌즈(306)의 초점 거리의 절대값은 8 이상 내지 12 이하일 수 있다. When comparing focal lengths in absolute values, the focal length of the first lens 301 is the largest among lenses and may be 70 or more to 80 or less. The focal length of the sixth lens 306 is the minimum among the lenses, and the absolute value of the focal length of the sixth lens 306 may be 8 or more and 12 or less.
제1렌즈(301)의 초점 거리는 렌즈들 중 가장 크고, 굴절력이 가장 약하므로 제1렌즈(301)의 센서측에 배치되는 제2렌즈(302) 및 제3렌즈(303)의 아베수 차이가 크지 않아도 색수차 잡아줄 수 있는 효과가 있다. The focal length of the first lens 301 is the largest among the lenses and the refractive power is the weakest, so the difference in Abbe number between the second lens 302 and the third lens 303 disposed on the sensor side of the first lens 301 is Although it is not large, it has the effect of reducing chromatic aberration.
각 렌즈의 초점거리의 절대값은 아래의 조건 중 어느 하나를 만족할 수 있다.The absolute value of the focal length of each lens can satisfy any of the conditions below.
조건 1: |f1| > |f2|, |f3|, |f4|, |f5|, |f6|, |f7|Condition 1: |f1| > |f2|, |f3|, |f4|, |f5|, |f6|, |f7|
조건 2: |f1| > |f2| > |f3|, |f4|, |f5|, |f6|, |f7|Condition 2: |f1| > |f2| > |f3|, |f4|, |f5|, |f6|, |f7|
조건 3: |f1|, |f2|, |f4| > |f3| > |f5|, |f6|, |f7|Condition 3: |f1|, |f2|, |f4| > |f3| > |f5|, |f6|, |f7|
조건 4: |f1|, |f2| > |f4| > |f3|, |f5|, |f6|, |f7| Condition 4: |f1|, |f2| > |f4| > |f3|, |f5|, |f6|, |f7|
조건 5: |f1|, |f2|, |f3|, |f4|, |f7| > |f5| > |f6|Condition 5: |f1|, |f2|, |f3|, |f4|, |f7| > |f5| > |f6|
조건 6: |f1|, |f2|, |f3|, |f4|, |f5|, |f7| > |f6| Condition 6: |f1|, |f2|, |f3|, |f4|, |f5|, |f7| > |f6|
조건 7: |f1|, |f2|, |f3|, |f4| > |f7| > |f5|, |f6|Condition 7: |f1|, |f2|, |f3|, |f4| > |f7| > |f5|, |f6|
제1렌즈(301)의 두께(T1)는 최대 두께와 최소 두께의 차이가 1.5배 이상 예컨대, 1.5배 내지 2배 범위일 수 있으며, 중심 두께(CT1)가 최소이고, 에지 두께(ET1)가 최대일 수 있다. 제2렌즈(302)의 두께(T2)는 최대 두께가 최소 두께의 1배 내지 1.5배 범위일 수 있다. 제2렌즈(302)는 중심 두께(CT2)가 최소이며, 에지 두께(ET2)는 최대일 수 있다. 제3렌즈(303)의 두께(T3)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1배 내지 1.5배 범위이다. 제4렌즈(304)의 두께(T4)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 2배 내지 2.5배 범위이다. 제5렌즈(305)의 두께(T5)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1.2배 내지 1.7배 범위이다. 제6렌즈(306)의 두께(T6)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 1.2배 내지 1.7배 범위이다. 제7렌즈(307)의 두께(T7)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1배 내지 1.5배 범위이다. The thickness (T1) of the first lens 301 may be 1.5 times or more, for example, 1.5 to 2 times the difference between the maximum thickness and the minimum thickness, the center thickness (CT1) is the minimum, and the edge thickness (ET1) is the minimum. It can be maximum. The thickness T2 of the second lens 302 may have a maximum thickness in the range of 1 to 1.5 times the minimum thickness. The second lens 302 may have a minimum center thickness (CT2) and a maximum edge thickness (ET2). The thickness T3 of the third lens 303 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness. The thickness T4 of the fourth lens 304 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 2 to 2.5 times the minimum thickness. The thickness T5 of the fifth lens 305 may be minimum at the center and maximum at the edge, with the maximum thickness being in the range of 1.2 to 1.7 times the minimum thickness. The thickness T6 of the sixth lens 306 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness. The thickness T7 of the seventh lens 307 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness.
각 렌즈의 두께는 아래의 조건 중 어느 하나를 만족할 수 있다.The thickness of each lens can satisfy any of the conditions below.
조건 1: 0.5 < CT1/ET1 < 1, 1.5 < ET1/CT1 < 2Condition 1: 0.5 < CT1/ET1 < 1, 1.5 < ET1/CT1 < 2
조건 2: 0.5 < CT2/ET2 < 1, 1 < ET2/CT2 < 1.5Condition 2: 0.5 < CT2/ET2 < 1, 1 < ET2/CT2 < 1.5
조건 3: 0.5 < CT3/ET3 < 1, 1 < ET3/CT3 < 1.5Condition 3: 0.5 < CT3/ET3 < 1, 1 < ET3/CT3 < 1.5
조건 4: 2 < CT4/ET4 < 2.5, 0.1 < ET4/CT4 < 0.5Condition 4: 2 < CT4/ET4 < 2.5, 0.1 < ET4/CT4 < 0.5
조건 5: 0.5 < CT5/ET5 < 1, 1.2 < ET5/CT5 < 1.7Condition 5: 0.5 < CT5/ET5 < 1, 1.2 < ET5/CT5 < 1.7
조건 6: 1.2 < CT6/ET6 < 1.7, 0.5 < ET6/CT6 < 1Condition 6: 1.2 < CT6/ET6 < 1.7, 0.5 < ET6/CT6 < 1
조건 7: 0.5 < CT7/ET7 < 1, 1 < ET7/CT7 < 1.5Condition 7: 0.5 < CT7/ET7 < 1, 1 < ET7/CT7 < 1.5
조건 8: 1 < ΣCT/ΣET < 1.2, 0.5 < ΣET/ΣCT < 1Condition 8: 1 < ΣCT/ΣET < 1.2, 0.5 < ΣET/ΣCT < 1
렌즈들 사이의 간격(G1-G7) 중에서 제1,2렌즈(301,302) 사이의 제1간격(G1)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제2,3 렌즈(302,303) 사이의 제2간격(G2)은 중심부가 최소이고, 에지부가 최대일 수 있다. 제3,4렌즈(303,304) 사이의 제3간격(G3)은 에지부가 최대이고, 중심부가 최소일 수 있다. 제4,5렌즈(304,305) 사이의 제4간격(G4)은 중심부가 최소이고, 에지부가 최대일 수 있다. 제5,6렌즈(305,306) 사이의 제5간격(G5)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제6,7렌즈(306,307) 사이의 제6간격(G6)은 중심부가 최소이고, 에지부가 최대일 수 있다. Among the intervals G1-G7 between the lenses, the first interval G1 between the first and second lenses 301 and 302 may be maximum at the center and minimum at the edges. The second gap G2 between the second and third lenses 302 and 303 may be minimum at the center and maximum at the edges. The third gap G3 between the third and fourth lenses 303 and 304 may be maximum at the edge and minimum at the center. The fourth gap G4 between the fourth and fifth lenses 304 and 305 may be minimum at the center and maximum at the edges. The fifth gap G5 between the fifth and sixth lenses 305 and 306 may be maximum at the center and minimum at the edges. The sixth gap G6 between the sixth and seventh lenses 306 and 307 may be minimum at the center and maximum at the edges.
도 30, 도 32 및 도 34은 도 25의 광학계에서 상온, 저온 및 고온에서의 회절(Diffraction) MTF(Modulation transfer function)를 나타낸 그래프로서, 공간 주파수(spatial frequency)에 따른 휘도 비(modulation)를 나타낸 그래프이다. 도 30, 도 32 및 도 34과 같이, 발명의 제3실시예에서 상온을 기준으로 저온 또는 고온과의 MTF의 편차는 10% 미만 즉, 7% 이하일 수 있다. Figures 30, 32, and 34 are graphs showing the diffraction MTF (modulation transfer function) at room temperature, low temperature, and high temperature in the optical system of Figure 25, showing the luminance ratio (modulation) according to spatial frequency. This is the graph shown. 30, 32, and 34, in the third embodiment of the invention, the deviation of MTF from low or high temperature based on room temperature may be less than 10%, that is, 7% or less.
도 31, 도 33 및 도 35은 도 25의 광학계에서 상온, 저온 및 고온에서의 수차 특성을 나타낸 그래프다. 도 31, 도 33 및 도 35의 수차 그래프에서 좌측에서 우측 방향으로 구면 수차(Longitudinal Spherical Aberration), 비점 수차(Astigmatic Field Curves), 왜곡 수차(Distortion)를 측정한 그래프이다. 도 31, 도 33 및 도 35에서 X축은 초점 거리(mm) 및 왜곡도(%)를 나타낼 수 있고, Y축은 이미지의 높이(height)를 의미할 수 있다. 또한, 구면 수차에 대한 그래프는 약 435nm, 약 486nm, 약 546nm, 약 587nm, 약 656nm 파장 대역의 광에 대한 그래프이며, 비점 수차 및 왜곡 수차에 대한 그래프는 약 546nm 파장 대역의 광에 대한 그래프이다. 도 31, 도 33 및 도 35의 수차도에서는 상온, 저온 및 고온에서의 각 곡선들이 Y축에 근접할 수록 수차 보정 기능이 좋은 것으로 해석할 수 있는데, 제3실시예에 따른 광학계(1200)는 거의 대부분의 영역에서 측정 값들이 Y축에 인접한 것을 알 수 있다. 즉, 제3실시예에 따른 광학계(1000)는 향상된 해상력을 가지며 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다. 여기서, 저온은 -20도 이하의 예컨대, -20 내지 -40도 범위이며, 상온은 22도±5도 범위 또는 18도 내지 27도 범위이며, 고온은 85도 이상 예컨대, 85도 내지 105도의 범위일 수 있다. 이에 따라 도 31, 도 33 및 도 35의 저온에서 고온까지 휘도 비(modulation)의 저하가 10% 미만 예컨대, 5% 이하이거나, 거의 변경되지 않음을 알 수 있다. Figures 31, 33, and 35 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 25. 31, 33, and 35 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right. In FIGS. 31, 33, and 35, the X-axis may represent focal length (mm) and distortion (%), and the Y-axis may represent the height of the image. In addition, the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm, and the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm. . In the aberration diagrams of FIGS. 31, 33, and 35, the closer the curves at room temperature, low temperature, and high temperature are to the Y axis, the better the aberration correction function is. The optical system 1200 according to the third embodiment has You can see that in most areas, the measured values are adjacent to the Y axis. That is, the optical system 1000 according to the third embodiment has improved resolution and can have good optical performance not only in the center but also in the periphery of the field of view (FOV). Here, the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees, the room temperature is in the range of 22 degrees ± 5 degrees or 18 to 27 degrees, and the high temperature is 85 degrees or higher, for example, in the range of 85 to 105 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 31, 33, and 35 is less than 10%, for example, 5% or less, or is almost unchanged.
표 9은 제3실시예에 따른 광학계에서 상온, 저온 및 고온에서의 EFL, BFL, F넘버(F#), TTL 및 화각(FOV_H)와 같은 광학 특성의 변화를 비교하였으며, 상온을 기준으로 저온의 광학 특성의 변화율 5% 이하 예컨대, 3%이하로 나타남을 알 수 있으며, 상온을 기준으로 저온의 광학 특성의 변화율이 5% 이하 예컨대, 3% 이하로 나타남을 알 수 있다.Table 9 compares the changes in optical characteristics such as EFL, BFL, F number (F#), TTL, and angle of view (FOV_H) at room temperature, low temperature, and high temperature in the optical system according to the third embodiment, and the changes in optical properties at low temperature based on room temperature. It can be seen that the change rate of optical properties is 5% or less, for example, 3% or less, and the change rate of optical properties at low temperatures based on room temperature is 5% or less, for example, 3% or less.
상온room temperature 저온low temperature 고온High temperature 저온/상온Low temperature/room temperature 고온/상온High temperature/room temperature
EFL(F)EFL(F) 10.88 10.88 10.79 10.79 11.00 11.00 99.17%99.17% 101.10%101.10%
BFLBFL 3.49 3.49 3.49 3.49 3.50 3.50 100.00 %100.00% 100.28%100.28%
F#F# 1.64 1.64 1.63 1.63 1.66 1.66 99.39%99.39% 101.21%101.21%
TTLTTL 30.00 30.00 29.93 29.93 30.09 30.09 99.76%99.76% 100.30%100.30%
FOV_DFOV_D 54.34 54.34 54.81 54.81 53.79 53.79 100.86%100.86% 98.98%98.98%
따라서, 표 9과 같이, 저온에서 고온까지의 온도 변화에 따른 광학 특성의 변화 예컨대, 유효초점거리(EFL)의 변화율, TTL, BFL, F 넘버, 화각(FOV_D)의 변화율이 10% 이하 즉, 5% 이하 예컨대, 0 ~ 5% 범위임을 알 수 있다. 이는 적어도 한 매 또는 두 매 이상의 플라스틱 렌즈를 사용하더라도, 플라스틱 렌즈에 대한 온도보상이 가능하게 설계하여, 광학 특성의 신뢰성 저하를 방지할 수 있다. Therefore, as shown in Table 9, the change in optical properties according to the temperature change from low to high temperature, for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV_D) is 10% or less, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, temperature compensation for the plastic lenses is designed to prevent deterioration in the reliability of optical characteristics.
상기에 개시된 제3실시예의 광학계는 색수차, 왜곡 수차 등의 수차 특성을 효과적으로 제어할 수 있고, 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다.The optical system of the third embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
발명의 제4실시예에 따른 광학계에 대해 설명하기로 한다.The optical system according to the fourth embodiment of the invention will be described.
도 37은 제4실시예에 따른 광학계 및 이를 갖는 카메라 모듈의 측 단면도이고, 도 38은 도 37의 광학계에서 렌즈들의 비구면 계수를 나타낸 표이고, 도 39는 도 37의 광학계의 각 렌즈의 두께 및 인접한 렌즈 간의 간격을 나타낸 표이고, 도 40은 도 37의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Sag 값을 나타낸 표이고, 도 41은 도 37의 광학계에서 제1 내지 제7렌즈의 렌즈 면들의 Slope Angle 을 나타낸 표이고, 도 42는 도 37의 광학계의 상온에서의 회절 MTF(Modulation Transfer Function)에 대한 데이터를 나타낸 그래프이고, 도 43은 도 37의 광학계의 상온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 44는 도 37의 광학계의 저온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이고, 도 45는 도 37의 광학계의 저온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 46은 도 37의 광학계의 고온에서의 회절 MTF에 대한 데이터를 나타낸 그래프이고, 도 47은 도 37의 광학계의 고온에서의 수차 특성에 대한 데이터를 나타낸 그래프이고, 도 48은 도 37의 광학계의 주변 광량비를 나타낸 그래프이다.Figure 37 is a side cross-sectional view of the optical system and a camera module having the same according to the fourth embodiment, Figure 38 is a table showing the aspheric coefficients of the lenses in the optical system of Figure 37, and Figure 39 is the thickness and thickness of each lens of the optical system of Figure 37. This is a table showing the spacing between adjacent lenses, Figure 40 is a table showing the Sag values of the lens surfaces of the first to seventh lenses in the optical system of Figure 37, and Figure 41 is a table showing the lenses of the first to seventh lenses in the optical system of Figure 37. It is a table showing the Slope Angle of the planes, Figure 42 is a graph showing data on the diffraction MTF (Modulation Transfer Function) at room temperature of the optical system of Figure 37, and Figure 43 is a graph showing the aberration characteristics at room temperature of the optical system of Figure 37. It is a graph showing data, Figure 44 is a graph showing data on the diffraction MTF at low temperature of the optical system of Figure 37, Figure 45 is a graph showing data on aberration characteristics at low temperature of the optical system of Figure 37, and Figure 46 is a graph showing data on the diffraction MTF at high temperature of the optical system of Figure 37, Figure 47 is a graph showing data on aberration characteristics at high temperature of the optical system of Figure 37, and Figure 48 is the amount of ambient light of the optical system of Figure 37. This is a graph showing rain.
도 37을 참조하면, 광학계(1300)는 렌즈부를 포함하며, 렌즈부는 제1렌즈(401) 내지 제7렌즈(407)를 포함할 수 있다. 제1 내지 제7렌즈(401~407)은 광학계(1300)의 광축(OA)을 따라 순차적으로 배치될 수 있다. 물체의 정보에 해당하는 광은 제1렌즈(401) 내지 제7렌즈(407), 및 필터(600)를 통과하여 이미지 센서(500)에 입사될 수 있다.Referring to FIG. 37, the optical system 1300 includes a lens unit, and the lens unit may include a first lens 401 to a seventh lens 407. The first to seventh lenses 401 to 407 may be sequentially arranged along the optical axis OA of the optical system 1300. Light corresponding to object information may pass through the first to seventh lenses 401 to 407 and the filter 600 and enter the image sensor 500.
제1렌즈(401)는 물체측에 가장 가깝게 배치될 수 있다. 제1렌즈(401)는 센서 측에서 가장 멀리 배치될 수 있다. 제1렌즈(401)는 광축(OA)에서 음(-)의 굴절력을 가질 수 있다. 제1렌즈(401)는 플라스틱 재질 또는 유리(glass) 재질을 포함할 수 있으며, 예컨대 유리 재질일 수 있다. 유리 재질의 제1렌즈(401)는 주변 환경에 따른 온도 변화에 따른 중심 위치와 곡률 반경 등의 변화를 줄여줄 수 있으며, 광학계(1300)의 입사측면을 보호할 수 있다. The first lens 401 may be placed closest to the object. The first lens 401 may be placed furthest from the sensor side. The first lens 401 may have negative (-) refractive power at the optical axis (OA). The first lens 401 may include a plastic material or a glass material, for example, a glass material. The first lens 401 made of glass can reduce changes in the center position and radius of curvature due to temperature changes in the surrounding environment, and protect the entrance side of the optical system 1300.
광축을 기준으로 제1렌즈(401)의 물체측 제1면(S1)은 볼록하며, 센서측 제2면(S2)은 오목할 수 있다. 제1렌즈(401)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제1렌즈(401)는 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제1렌즈(401)는 유리 재질이며, 비구면을 가질 수 있다. 제1면(S1) 및 제2면(S2) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제1,2면(S1,S2)의 비구면 계수는 도 38의 L3의 S1 및 S2로 제공될 수 있다. 제1면(S1) 및 제2면(S2) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side first surface S1 of the first lens 401 may be convex, and the sensor-side second surface S2 may be concave. The first lens 401 may have a meniscus shape that is convex toward the object. The first lens 401 may have a meniscus shape that is concave toward the sensor. The first lens 401 is made of glass and may have an aspherical surface. At least one or both of the first surface (S1) and the second surface (S2) may be aspherical. The aspherical coefficients of the first and second surfaces S1 and S2 can be provided as S1 and S2 of L3 in FIG. 38. At least one or both of the first surface S1 and the second surface S2 may be provided without a critical point from the optical axis OA to the end of the effective area.
제1렌즈(401)의 굴절 특성에 의해 제2렌즈(402)는 제1렌즈(401)로부터 더 이격될 수 있다. 즉, 제1,2렌즈(401,402) 사이의 중심 간격은 렌즈부 내에서 가장 클 수 있다. Due to the refractive characteristics of the first lens 401, the second lens 402 may be further spaced apart from the first lens 401. That is, the center spacing between the first and second lenses 401 and 402 may be the largest within the lens unit.
제1렌즈(401)의 굴절률(n1)은 n1> 1.6 또는 n1> 1.62의 조건을 만족할 수 있다. 제1렌즈(401)의 굴절률(n1)이 상기 조건을 만족할 경우, 제1,2렌즈(401,402)의 곡률 반경의 커질 수 있으며, 렌즈 제작이 용이할 수 있다. 제1렌즈(401)의 굴절률(n1)이 조건보다 작은 경우, 제1,2렌즈(401,402)의 굴절력을 증가시켜 주기 위해 렌즈 면을 급격하게 오목하거나 볼록하게 형성해야 하며, 이 경우 렌즈 제작이 용이하지 않고 렌즈 불량률도 높아지고 수율 저하의 원인이 될 수 있다.The refractive index (n1) of the first lens 401 may satisfy the condition of n1>1.6 or n1>1.62. When the refractive index (n1) of the first lens 401 satisfies the above conditions, the radius of curvature of the first and second lenses 401 and 402 can be increased, and lens manufacturing can be easy. If the refractive index (n1) of the first lens 401 is less than the condition, the lens surface must be sharply concave or convex to increase the refractive power of the first and second lenses 401 and 402. In this case, the lens surface must be formed to be sharply concave or convex. It is not easy, and the rate of lens defects increases and may cause a decrease in yield.
제2렌즈(402)는 물체 측에서 2번째로 배치될 수 있다. 제2렌즈(402)는 센서 측에서 6번째로 배치될 수 있다. 제2렌즈(402)는 제1렌즈(401)과 제3렌즈(403) 사이에 배치될 수 있다. 제2렌즈(402)는 광축(OA)에서 음(-)의 굴절력을 가질 수 있다. 제2렌즈(402)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제2렌즈(402)는 플라스틱 재질로 제공될 수 있다.The second lens 402 may be disposed second on the object side. The second lens 402 may be placed sixth on the sensor side. The second lens 402 may be disposed between the first lens 401 and the third lens 403. The second lens 402 may have negative refractive power at the optical axis (OA). The second lens 402 may include plastic or glass. For example, the second lens 402 may be made of plastic.
광축(OA)을 기준으로 제2렌즈(402)의 물체측 제3면(S3)은 오목하며, 센서측 제4면(S4)은 볼록할 수 있다. 제2렌즈(402)는 센서측으로 볼록한 메니스커스 형상을 가질 수 있다. 제2렌즈(402)는 물체측으로 오목한 메니스커스 형상을 가질 수 있다. 제2렌즈(402)는 플라스틱 재질이며, 비구면일 수 있다. 제3면(S3) 및 제4면(S4) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제3,4면(S3,S4)의 비구면 계수는 도 38의 L2의 S1 및 S2로 제공될 수 있다. 제3면(S3) 및 제4면(S4) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis OA, the object-side third surface S3 of the second lens 402 may be concave, and the sensor-side fourth surface S4 may be convex. The second lens 402 may have a meniscus shape that is convex toward the sensor. The second lens 402 may have a meniscus shape that is concave toward the object. The second lens 402 is made of plastic and may be aspherical. At least one or both of the third surface S3 and the fourth surface S4 may be aspherical. The aspheric coefficients of the third and fourth surfaces (S3 and S4) can be provided as S1 and S2 of L2 in FIG. 38. At least one or both of the third surface S3 and the fourth surface S4 may be provided without a critical point from the optical axis OA to the end of the effective area.
조리개(Stop)는 제2렌즈(402)의 센서측 제4면(S4)의 둘레에 배치될 수 있다. 조리개(Stop)는 제3렌즈(403)의 물체측 제5면(S5)의 둘레에 배치될 수 있다. 조리개는 화각 범위 내에서 TTL을 줄여줄 수 있고, 광학계의 소형화가 가능하다. 이에 따라 광학계의 중량별 수율(yield by weight)의 저하를 방지하고 생산 효율의 향상을 도모할 수 있다. 또한, 수평 화각(FOV_H)을 40도 내지 50도에서 TTL을 줄여서 광학계를 소형화할 수 있다.The aperture stop may be disposed around the fourth surface S4 on the sensor side of the second lens 402. The aperture (Stop) may be disposed around the object-side fifth surface S5 of the third lens 403. Aperture can reduce TTL within the range of view angle, and miniaturization of the optical system is possible. Accordingly, it is possible to prevent a decrease in the yield by weight of the optical system and improve production efficiency. Additionally, the optical system can be miniaturized by reducing the TTL at a horizontal angle of view (FOV_H) of 40 to 50 degrees.
제3렌즈(403)는 물체 측에서 3번째로 배치될 수 있다. 제3렌즈(403)은 센서 측에서 5번째로 배치될 수 있다. 제3렌즈(403)은 제2렌즈(402)와 제4렌즈(404) 사이에 배치될 수 있다. 제3렌즈(403)는 광축(OA)에서 양(+)의 굴절력을 가질 수 있다. 제3렌즈(403)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제3렌즈(403)는 유리 재질로 제공될 수 있다.The third lens 403 may be arranged third from the object side. The third lens 403 may be placed fifth on the sensor side. The third lens 403 may be disposed between the second lens 402 and the fourth lens 404. The third lens 403 may have positive (+) refractive power at the optical axis (OA). The third lens 403 may include plastic or glass. For example, the third lens 403 may be made of glass.
광축을 기준으로 제3렌즈(403)의 물체측 제5면(S5)은 볼록하고, 센서측 제6면(S6)은 볼록할 수 있다. 제3렌즈(403)는 양면이 볼록한 형상을 가질 수 있다. 제3렌즈(403)는 유리 재질이며, 구면일 수 있다. 제5면(S5) 및 제6면(S6) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side fifth surface S5 of the third lens 403 may be convex, and the sensor-side sixth surface S6 may be convex. The third lens 403 may have a convex shape on both sides. The third lens 403 is made of glass and may be spherical. At least one or both of the fifth surface S5 and the sixth surface S6 may be provided without a critical point from the optical axis OA to the end of the effective area.
제4렌즈(404)는 물체 측에서 4번째로 배치될 수 있다. 제4렌즈(404)는 센서 측에서 4번째로 배치될 수 있다. 제4렌즈(404)은 제3렌즈(403)와 제5렌즈(405) 사이에 배치될 수 있다. 제4렌즈(404)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제4렌즈(404)는 양(+)의 굴절력을 가질 수 있다. 제4렌즈(404)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제4렌즈(404)는 플라스틱 재질로 제공될 수 있다. The fourth lens 404 may be placed fourth on the object side. The fourth lens 404 may be placed fourth on the sensor side. The fourth lens 404 may be disposed between the third lens 403 and the fifth lens 405. The fourth lens 404 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fourth lens 404 may have positive (+) refractive power. The fourth lens 404 may include plastic or glass. For example, the fourth lens 404 may be made of plastic.
광축을 기준으로 제4렌즈(404)의 물체측 제7면(S7)은 볼록하며, 센서측 제8면(S8)은 볼록할 수 있다. 제4렌즈(404)는 양면이 볼록한 형상을 가질 수 있다. 제4렌즈(404)는 플라스틱 재질이며, 비구면일 수 있다. 제7면(S7) 및 제8면(S8) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제7,8면(S7,S8)의 비구면 계수는 도 38의 L4의 S1 및 S2로 제공될 수 있다. 제7면(S7) 및 제8면(S8) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis, the object-side seventh surface S7 of the fourth lens 404 may be convex, and the sensor-side eighth surface S8 may be convex. The fourth lens 404 may have a convex shape on both sides. The fourth lens 404 is made of plastic and may be aspherical. At least one or both of the seventh surface (S7) and the eighth surface (S8) may be aspherical. The aspherical coefficients of the seventh and eighth surfaces (S7 and S8) can be provided as S1 and S2 of L4 in FIG. 38. At least one or both of the seventh surface S7 and the eighth surface S8 may be provided without a critical point from the optical axis OA to the end of the effective area.
제5렌즈(405)는 물체 측에서 5번째로 배치될 수 있다. 제5렌즈(405)는 센서 측에서 3번째로 배치될 수 있다. 제5렌즈(405)은 제4렌즈(404)와 제6렌즈(406) 사이에 배치될 수 있다. 제5렌즈(405)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(405)는 음(-)의 굴절력을 가질 수 있다. 제5렌즈(405)는 플라스틱 또는 유리 재질을 포함할 수 있다. 예를 들어, 제5렌즈(405)는 플라스틱 재질로 제공될 수 있다. The fifth lens 405 may be placed fifth on the object side. The fifth lens 405 may be placed third on the sensor side. The fifth lens 405 may be disposed between the fourth lens 404 and the sixth lens 406. The fifth lens 405 may have positive (+) or negative (-) refractive power at the optical axis (OA). The fifth lens 405 may have negative (-) refractive power. The fifth lens 405 may include plastic or glass. For example, the fifth lens 405 may be made of plastic.
광축(OA)을 기준으로 제5렌즈(405)는 물체측 제9면(S9)은 볼록하고, 센서측 제10면(S10)은 오목할 수 있다. 제5렌즈(405)는 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제5렌즈(405)는 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제5렌즈(405)는 플라스틱 재질이며, 비구면일 수 있다. 제9면(S9) 및 제10면(S10) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제9,10면(S9,S10)의 비구면 계수는 도 38의 L5의 S1 및 S2로 제공될 수 있다. 제9면(S9) 및 제10면(S10) 중 적어도 하나 또는 모두는 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다.Based on the optical axis OA, the object-side ninth surface S9 of the fifth lens 405 may be convex, and the sensor-side tenth surface S10 may be concave. The fifth lens 405 may have a meniscus shape that is convex toward the object. The fifth lens 405 may have a meniscus shape that is concave toward the sensor. The fifth lens 405 is made of plastic and may be aspherical. At least one or both of the ninth surface S9 and the tenth surface S10 may be aspherical. The aspherical coefficients of the 9th and 10th surfaces (S9, S10) can be provided as S1 and S2 of L5 in FIG. 38. At least one or both of the ninth surface S9 and the tenth surface S10 may be provided without a critical point from the optical axis OA to the end of the effective area.
제6렌즈(406)는 물체 측에서 6번째로 배치될 수 있다. 제6렌즈(406)는 센서 측에서 2번째로 배치될 수 있다. 제6렌즈(406)은 제5렌즈(405)와 제7렌즈(407) 사이에 배치될 수 있다. 제6렌즈(406)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제6렌즈(406)는 양(+)의 굴절력을 가질 수 있다. 제6렌즈(406)는 플라스틱 또는 유리 재질을 포함할 수 있다. 예를 들어, 제6렌즈(406)는 플라스틱 재질로 제공될 수 있다. The sixth lens 406 may be placed sixth on the object side. The sixth lens 406 may be placed second on the sensor side. The sixth lens 406 may be disposed between the fifth lens 405 and the seventh lens 407. The sixth lens 406 may have positive (+) or negative (-) refractive power at the optical axis (OA). The sixth lens 406 may have positive (+) refractive power. The sixth lens 406 may include plastic or glass. For example, the sixth lens 406 may be made of plastic.
광축(OA)을 기준으로 제6렌즈(406)는 물체측 제11면(S11)은 볼록하고, 센서측 제12면(S12)은 볼록할 수 있다. 제6렌즈(406)는 양면이 볼록한 형상을 가질 수 있다. 제6렌즈(406)는 플라스틱 재질이며, 비구면일 수 있다. 제11면(S11) 및 제12면(S12) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제11,12면(S11,S12)의 비구면 계수는 도 38의 L6의 S1 및 S2로 제공될 수 있다. Based on the optical axis OA, the object-side 11th surface S11 of the sixth lens 406 may be convex and the sensor-side 12th surface S12 may be convex. The sixth lens 406 may have a convex shape on both sides. The sixth lens 406 is made of plastic and may be aspherical. At least one or both of the 11th surface (S11) and the 12th surface (S12) may be aspherical. The aspheric coefficients of the 11th and 12th surfaces (S11 and S12) can be provided as S1 and S2 of L6 in FIG. 38.
제6렌즈(406)의 제11면(S11)은 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다. 제6렌즈(406)의 제12면(S12)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 포함할 수 있다. 제12면(S12)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r62)의 65% 내지 75% 범위, 바람직하게 70% 내지 73% 범위에 위치할 수 있다. 제12면(S12)의 임계점은 광축(OA)에서 3 mm 내지 3.5 mm 범위, 바람직하게 3.3 mm 내지 3.4 mm 범위에 위치할 수 있다. The 11th surface S11 of the sixth lens 406 may be provided without a critical point from the optical axis OA to the end of the effective area. The twelfth surface S12 of the sixth lens 406 may include a critical point from the optical axis OA to the end of the effective area. When the twelfth surface S12 has a critical point, it may be located in a range of 65% to 75% of the effective radius r62 at the optical axis OA, preferably in a range of 70% to 73%. The critical point of the twelfth surface S12 may be located in the range of 3 mm to 3.5 mm, preferably 3.3 mm to 3.4 mm, from the optical axis OA.
제7렌즈(407)은 물체 측에서 가장 멀리 배치될 수 있다. 제7렌즈(407)은 이미지 센서(500)에 가장 가깝게 배치될 수 있다. 제7렌즈(407)는 광축(OA)에서 양(+) 또는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(407)는 음(-)의 굴절력을 가질 수 있다. 제7렌즈(407)는 플라스틱 또는 유리(glass) 재질을 포함할 수 있다. 예를 들어, 제7렌즈(407)는 플라스틱 재질로 제공될 수 있다. The seventh lens 407 may be placed furthest from the object. The seventh lens 407 may be placed closest to the image sensor 500. The seventh lens 407 may have positive (+) or negative (-) refractive power at the optical axis (OA). The seventh lens 407 may have negative refractive power. The seventh lens 407 may include plastic or glass. For example, the seventh lens 407 may be made of plastic.
광축(OA)을 기준으로 제7렌즈(407)는 물체측 제13면(S13)은 볼록하고, 센서측 제14면(S14)은 오목한 형상일 수 있다. 제7렌즈(407)은 물체측으로 볼록한 메니스커스 형상을 가질 수 있다. 제7렌즈(407)은 센서측으로 오목한 메니스커스 형상을 가질 수 있다. 제13면(S13) 및 제14면(S14) 중 적어도 하나 또는 모두는 비구면일 수 있다. 제13,14면(S13,S14)의 비구면 계수는 도 38의 L7의 S13 및 S14로 제공될 수 있다. Based on the optical axis OA, the object-side 13th surface S13 of the seventh lens 407 may be convex, and the sensor-side 14th surface S14 may be concave. The seventh lens 407 may have a meniscus shape that is convex toward the object. The seventh lens 407 may have a meniscus shape that is concave toward the sensor. At least one or both of the 13th surface (S13) and the 14th surface (S14) may be aspherical. The aspheric coefficients of the 13th and 14th surfaces (S13 and S14) can be provided as S13 and S14 of L7 in FIG. 38.
제7렌즈(407)의 제13면(S13)은 광축(OA)에서 유효 영역의 끝단까지 임계점 없이 제공될 수 있다. 제7렌즈(407)의 제14면(S14)은 광축(OA)에서 유효 영역의 끝단까지 임계점을 포함할 수 있다. 제14면(S14)이 임계점을 갖는 경우, 광축(OA)에서 유효 반경(r72)의 60% 내지 70% 범위, 바람직하게 63% 내지 66% 범위에 위치할 수 있다. 제14면(S14)의 임계점은 광축(OA)에서 3 mm 내지 3.5 mm 범위, 바람직하게 3.3 mm 내지 3.4 mm 범위에 위치할 수 있다. The 13th surface S13 of the seventh lens 407 may be provided without a critical point from the optical axis OA to the end of the effective area. The 14th surface S14 of the seventh lens 407 may include a critical point from the optical axis OA to the end of the effective area. When the 14th surface S14 has a critical point, it may be located in the range of 60% to 70% of the effective radius r72 at the optical axis OA, preferably in the range of 63% to 66%. The critical point of the 14th surface S14 may be located in the range of 3 mm to 3.5 mm, preferably 3.3 mm to 3.4 mm, from the optical axis OA.
제7렌즈(407)는 이미지 센서(500)에 가장 인접한 플라스틱 렌즈일 수 있다. 또한 플라스틱 렌즈를 이미지 센서(500)에 인접하게 2매 이상 배치함으로써, 비구면을 갖는 렌즈 면에 의해 구면 수차와 색 수차 등의 수차를 개선할 수 있고, 해상도에 영향을 제어할 수 있다. 또한 이미지 센서(500)에 인접한 렌즈로 플라스틱 렌즈를 배치함으로써, 유리 재질의 렌즈 대비 조립 공차에 둔감할 수 있다. 즉, 조립 공차에 둔감하다는 의미는 조립 시 설계 대비 약간의 차이가 있게 조립되더라도 광학 성능에 크게 영향을 주지 않을 수 있다. 또한 이미지 센서(500)에 인접한 2매의 렌즈(406,407)를 플라스틱 재질로 제공해 줌으로써, 비구면을 갖는 렌즈 면에 의해 광학 성능을 개선시켜 줄 수 있으며, 예컨대 수차 특성 개선 및 해상도 저하를 방지할 수 있다.The seventh lens 407 may be a plastic lens closest to the image sensor 500. Additionally, by arranging two or more plastic lenses adjacent to the image sensor 500, aberrations such as spherical aberration and chromatic aberration can be improved by the lens surface having an aspherical surface, and the influence on resolution can be controlled. Additionally, by placing a plastic lens as a lens adjacent to the image sensor 500, it can be insensitive to assembly tolerances compared to a lens made of glass. In other words, being insensitive to assembly tolerances means that optical performance may not be significantly affected even if the assembly is assembled with a slight difference compared to the design. In addition, by providing two lenses 406 and 407 adjacent to the image sensor 500 made of plastic, optical performance can be improved by the lens surface having an aspherical surface, for example, aberration characteristics can be improved and resolution can be prevented. .
LensLens SurfaceSurface RadiusRadius ThicknessThickness ndnd vdvd Semi
Aperture
Semi
Aperture
Focal lengthFocal length
1One S1S1 14.13614.136 2.0002.000 1.8297 1.8297 24.0394 24.0394 5.5865.586 -111.2740 -111.2740
S2S2 11.47211.472 3.0033.003 4.5524.552
22 S3S3 -5.742-5.742 3.8613.861 1.5371 1.5371 55.7074 55.7074 4.4124.412 -36.8873 -36.8873
S4S4 -9.984-9.984 0.3000.300 4.3164.316
STOPSTOP -- -- 0.3000.300 4.1184.118
33 S5S5 44.73744.737 3.0663.066 1.6998 1.6998 55.4589 55.4589 4.4344.434 16.2897 16.2897
S6S6 -14.866-14.866 0.3000.300 4.9704.970
44 S7S7 9.1739.173 4.1354.135 1.5371 1.5371 55.7074 55.7074 5.5725.572 15.0073 15.0073
S8S8 -55.980-55.980 0.3120.312 5.5285.528
55 S9S9 103.533103.533 2.0002.000 1.6679 1.6679 20.3792 20.3792 5.2605.260 -11.4574 -11.4574
S10S10 7.0717.071 1.9111.911 4.7464.746
66 S11S11 61.23861.238 3.1073.107 1.5371 1.5371 55.7074 55.7074 4.8044.804 12.1193 12.1193
S12S12 -7.154-7.154 0.3000.300 4.7654.765
77 S13S13 18.71318.713 2.0002.000 1.5371 1.5371 55.7074 55.7074 5.2445.244 -18.7281 -18.7281
S14S14 6.2986.298 0.6540.654 5.2965.296
FilterFilter infinityinfinity 0.4400.440
1.9361.936
CoverCover infinityinfinity 0.3300.330
0.0440.044
ImageImage infinityinfinity 0.0000.000
표 10은 본 발명의 제4실시예에 따른 렌즈의 면 번호(Surface), 곡률반경(Radius), 각 렌즈의 중심 두께 또는 렌즈면 사이의 거리(Thickness), 굴절률(Index,nd), 아베수(Abbe,vd), 유효반경(Semi Aperture), 초점거리(Fcoal length)를 나타낸다. 이때, 곡률반경과 두께 또는 거리의 단위는 mm일 수 있다.Table 10 shows the surface number (Surface), radius of curvature (Radius), center thickness of each lens or distance between lens surfaces (Thickness), refractive index (Index, nd), and Abbe number of the lens according to the fourth embodiment of the present invention. (Abbe,vd), effective radius (Semi Aperture), and focal length (Fcoal length). At this time, the unit of curvature radius and thickness or distance may be mm.
항목item value 항목item value
FF 10.881110.8811 F-numberF-number 1.64001.6400
ET1ET1 1.8827 1.8827 FOV_HFOV_H 46.00 46.00
ET2ET2 4.5313 4.5313 EPDE.P.D. 6.6348 6.6348
ET3ET3 2.0000 2.0000 BFLBFL 3.4043 3.4043
ET4ET4 2.0000 2.0000 TDTD 26.5957 26.5957
ET5ET5 3.4695 3.4695 ImgHImgH 5.1450 5.1450
ET6ET6 2.4636 2.4636 SDSD 17.4316 17.4316
ET7ET7 1.4949 1.4949 TTLTTL 29.9947 29.9947
ΣIndexΣIndex 11.3458 11.3458 GLca_AverGLca_Aver 9.7719.771
ΣAbbeΣAbbe 322.7071322.7071 PLca_AverPLca_Aver 9.9889.988
ΣCTΣCT 20.1687 20.1687 CT_maxCT_max 4.1347 4.1347
ΣCGΣCG 6.4270 6.4270 CT_minCT_min 2.0000 2.0000
CA_maxCA_max 11.17211.172 CT_AverCT_Aver 2.8812 2.8812
CA_minCA_min 8.2358.235 F_LG1F_LG1 -29.521-29.521
CA_AverCA_Aver 9.8149.814 F_LG2F_LG2 9.8109.810
표 11은 실시예의 광학계(1300)에서 상술한 수학식들의 항목에 대한 것으로, 광학계(1300)의 TTL(Total track length)(mm), BFL(Back focal length), 유효초점 거리(F)(mm), ImgH(mm), 유효경(CA)(mm), 두께(mm), TTL(mm), 제1면(S1)에서 제16면(S16)까지의 광축 거리인 TD(mm), 굴절률 합, 아베수 합, 두께 합(mm), 인접한 렌즈들 사이의 간격 합, 유효경 특성, 유리 렌즈의 굴절률 합, 플라스틱 재질의 굴절률 합, 화각(FOV_H)(Degree), 에지 두께(ET), F 넘버 등에 대한 것이다. Table 11 shows the items of the above-described equations in the optical system 1300 of the embodiment, including the total track length (mm), back focal length (BFL), and effective focal length (F) of the optical system 1300 (mm). ), ImgH (mm), effective diameter (CA) (mm), thickness (mm), TTL (mm), TD (mm), which is the optical axis distance from the 1st surface (S1) to the 16th surface (S16), refractive index sum , Abbe number sum, thickness sum (mm), sum of spacing between adjacent lenses, effective diameter characteristics, sum of refractive index of glass lens, sum of refractive index of plastic material, angle of view (FOV_H) (Degree), edge thickness (ET), F number It's about things like that.
제1 내지 제7렌즈(401~407)의 중심 두께는 CT1~CT7으로 나타내며, 각 렌즈의 유효 영역의 끝단인 에지 두께는 ET1~ET7으로 나타내며, 인접한 두 렌즈 사이의 중심 간격(Center gap)은 CG1~CG6으로 나타내며, 각 렌즈의 에지들 사이의 에지 간격은 EG1~EG6으로 나타낸다. BFL(Back focal length)은 이미지 센서(500)에서 마지막 렌즈의 중심까지의 광축 거리이다. TTL은 제1렌즈(401)의 제1면(S1)의 중심에서 이미지 센서(500)의 상면까지의 광축 거리이다. The center thickness of the first to seventh lenses (401 to 407) is expressed as CT1 to CT7, the edge thickness at the end of the effective area of each lens is expressed as ET1 to ET7, and the center gap between two adjacent lenses is expressed as CT1 to CT7. They are indicated as CG1 to CG6, and the edge spacing between the edges of each lens is indicated as EG1 to EG6. Back focal length (BFL) is the optical axis distance from the image sensor 500 to the center of the last lens. TTL is the optical axis distance from the center of the first surface S1 of the first lens 401 to the upper surface of the image sensor 500.
도 38과 같이, 제4실시예에 렌즈부의 렌즈들 중 제1,2,4,5,6,7렌즈(401,402,404,405,406,407)의 렌즈면은 30차 비구면 계수를 가진 비구면을 포함할 수 있다. 예를 들어, 제1,2,4,5,6,7렌즈(401,402,404,405,406,407)는 30차 비구면 계수를 가지는 렌즈면을 포함할 수 있다. 상기와 같이 30차 비구면 계수를 가진 비구면은("0"이 아닌 수치) 주변부의 비구면 형상을 특히 크게 변화시킬 수 있기 때문에 화각(FOV)의 주변부의 광학 성능을 양호하게 보정할 수 있다.As shown in FIG. 38, the lens surfaces of the first, second, fourth, fifth, sixth, and seventh lenses (401, 402, 404, 405, 406, and 407) among the lenses of the lens unit in the fourth embodiment may include an aspherical surface with a 30th order aspherical coefficient. For example, the first, second, fourth, fifth, sixth, and seventh lenses (401, 402, 404, 405, 406, and 407) may include lens surfaces having a 30th order aspherical coefficient. As described above, an aspheric surface with a 30th order aspheric coefficient (a value other than “0”) can particularly significantly change the shape of the aspherical surface in the peripheral area, so the optical performance of the peripheral area of the field of view (FOV) can be well corrected.
제1 내지 제7렌즈(401-407)의 두께(T1-T7), 인접한 두 렌즈 사이의 간격(G1-G6)을 설정할 수 있다. 도 3과 같이, Y축 방향으로 각 렌즈의 두께(T1-T7)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있으며, 각 렌즈 간의 간격(G1-G6)에 대해 0.1mm 또는 0.2mm 이상의 간격마다 나타낼 수 있다.The thickness (T1-T7) of the first to seventh lenses (401-407) and the gap (G1-G6) between two adjacent lenses can be set. As shown in Figure 3, in the Y-axis direction, the thickness of each lens (T1-T7) can be expressed at intervals of 0.1mm or 0.2mm or more, and the interval between each lens (G1-G6) can be expressed at intervals of 0.1mm or 0.2mm or more. It can be displayed every time.
각 렌즈의 곡률 반경의 절대 값으로 비교하면, 광축(OA)에서 제5렌즈(405)의 제9면(S9)의 곡률 반경은 렌즈들 중에서 최대이며, 제2렌즈(402)의 제3면(S3)의 곡률 반경은 렌즈들 중에서 최소일 수 있다. 최대 곡률 반경과 최소 곡률 반경의 차이는 15배 이상 예컨대, 15배 내지 25배 범위일 수 있다. Comparing the absolute value of the radius of curvature of each lens, the radius of curvature of the ninth surface S9 of the fifth lens 405 at the optical axis OA is the largest among the lenses, and the radius of curvature of the third surface S9 of the second lens 402 is the largest among the lenses. The radius of curvature of (S3) may be the smallest among lenses. The difference between the maximum radius of curvature and the minimum radius of curvature may be 15 times or more, for example, in the range of 15 to 25 times.
제1 내지 제7렌즈(401-407)의 물체측면 및 센서측면 중 곡률반경이 40 보다 큰 렌즈면은 1개 이상 4개 이하일 수 있다. 이를 통해, 광학계(1300)를 구성하는 렌즈의 곡률반경을 대부분 작게 설계하여 차량에 배치되는 렌즈의 화각, 초점 거리, 및 전장 거리를 만족시킬 수 있다. Among the object side and sensor side of the first to seventh lenses 401-407, there may be at least one or four lens surfaces with a radius of curvature greater than 40. Through this, the radius of curvature of the lens constituting the optical system 1300 can be designed to be mostly small to satisfy the angle of view, focal length, and overall distance of the lens placed in the vehicle.
플라스틱 렌즈의 유효경은 유리 재질의 렌즈의 유효경보다 작기 때문에 플라스틱 재질의 렌즈의 물체측에 배치된 렌즈는 플라스틱 렌즈로 굴절을 시켜주기 위하여 굴절력이 강할 수 있다. 또한, 굴절력을 강하게 하기 위하여 렌즈면의 곡률반경이 작을 수 있다.Since the effective diameter of a plastic lens is smaller than that of a glass lens, the lens placed on the object side of the plastic lens may have a strong refractive power to provide refraction to the plastic lens. Additionally, in order to strengthen the refractive power, the radius of curvature of the lens surface may be small.
제1렌즈(401)의 제1면(S1)의 곡률반경의 절대값은 제2면(S2)의 곡률반경의 절대값보다 클 수 있다. 제2렌즈(402)의 제3면(S3)의 곡률반경의 절대값은 제4면(S4)의 곡률반경의 절대값보다 작을 수 있다. 제3렌즈(403)의 제5면(S5)의 곡률반경의 절대값은 제6면(S6)의 곡률반경의 절대값보다 클 수 있다. 제4렌즈(404)의 제7면(S7)의 곡률반경의 절대값은 제8면(S8)의 곡률반경의 절대값보다 작을 수 있다. 제5렌즈(405)의 제9면(S9)의 곡률반경의 절대값은 제10면(S10)의 곡률반경의 절대값보다 클 수 있다. 제6렌즈(406)의 제11면(S11)의 곡률반경의 절대값은 제12면(S12)의 곡률반경의 절대값보다 클 수 있다. 제7렌즈(407)의 제13면(S13)의 곡률반경의 절대값은 제14면(S14)의 곡률반경의 절대값보다 클 수 있다. The absolute value of the radius of curvature of the first surface (S1) of the first lens 401 may be greater than the absolute value of the radius of curvature of the second surface (S2). The absolute value of the radius of curvature of the third surface (S3) of the second lens 402 may be smaller than the absolute value of the radius of curvature of the fourth surface (S4). The absolute value of the radius of curvature of the fifth surface (S5) of the third lens 403 may be greater than the absolute value of the radius of curvature of the sixth surface (S6). The absolute value of the radius of curvature of the seventh surface (S7) of the fourth lens 404 may be smaller than the absolute value of the radius of curvature of the eighth surface (S8). The absolute value of the radius of curvature of the ninth surface (S9) of the fifth lens 405 may be greater than the absolute value of the radius of curvature of the tenth surface (S10). The absolute value of the radius of curvature of the 11th surface (S11) of the sixth lens 406 may be greater than the absolute value of the radius of curvature of the 12th surface (S12). The absolute value of the radius of curvature of the 13th surface (S13) of the seventh lens 407 may be greater than the absolute value of the radius of curvature of the 14th surface (S14).
각 렌즈의 곡률 반경의 비율은 하기 조건을 만족할 수 있다.The ratio of the radius of curvature of each lens may satisfy the following conditions.
조건 1: 1 < |L1R1/L1R| < 1.5Condition 1: 1 < |L1R1/L1R| < 1.5
조건 2: 0.5 < |L2R1/L2R2| < 1Condition 2: 0.5 < |L2R1/L2R2| < 1
조건 3: 2.5 < |L3R1/L3R2| < 3.5Condition 3: 2.5 < |L3R1/L3R2| < 3.5
조건 4: 0.1 < |L4R1/L4R2| < 0.5Condition 4: 0.1 < |L4R1/L4R2| < 0.5
조건 5: 10 < |L5R1/L5R2| < 20Condition 5: 10 < |L5R1/L5R2| < 20
조건 6: 5 < |L6R1/L6R2| < 10Condition 6: 5 < |L6R1/L6R2| < 10
조건 7: 1 < |L7R1/L7R2| < 5Condition 7: 1 < |L7R1/L7R2| < 5
광축을 기준으로 렌즈의 중심 두께(CT)를 설명하면, 제4렌즈(404)의 중심 두께(CT4)는 렌즈들 중에서 최대이며, 제1렌즈(401), 제5렌즈(405) 및 제7렌즈(407) 중 적어도 하나의 중심 두께(CT1,CT5,CT7)는 렌즈들 중에서 최소이다. 렌즈 중 최대 중심 두께와 최소 중심 두께의 차이는 2 mm 이상 2.5 mm 이하의 범위 일 수 있다. When explaining the central thickness (CT) of the lens based on the optical axis, the central thickness (CT4) of the fourth lens 404 is the largest among the lenses, and the central thickness (CT4) of the first lens 401, the fifth lens 405, and the seventh lens 404 are the largest among the lenses. The central thickness (CT1, CT5, CT7) of at least one of the lenses 407 is the minimum among the lenses. The difference between the maximum and minimum center thickness of the lens may be in the range of 2 mm or more and 2.5 mm or less.
각 렌즈의 중심 두께는 아래의 조건 중 어느 하나를 만족할 수 있다.The center thickness of each lens may satisfy any one of the conditions below.
조건 1: CT2, CT3, CT4, CT6 > CT1 = CT5 = CT7Condition 1: CT2, CT3, CT4, CT6 > CT1 = CT5 = CT7
조건 2: CT4 > CT2 > CT1, CT3, CT5, CT6, CT7 Condition 2: CT4 > CT2 > CT1, CT3, CT5, CT6, CT7
조건 3: CT2, CT4, CT6 > CT3 > CT1, CT5, CT7Condition 3: CT2, CT4, CT6 > CT3 > CT1, CT5, CT7
조건 4: CT4 > CT1, CT2, CT3, CT5, CT6, CT7Condition 4: CT4 > CT1, CT2, CT3, CT5, CT6, CT7
조건 5: CT2, CT4 > CT6 > CT1, CT3, CT5, CT7Condition 5: CT2, CT4 > CT6 > CT1, CT3, CT5, CT7
렌즈들 사이의 중심 간격(CG)를 설명하면, 제1렌즈(401) 및 제2렌즈(402) 사이의 중심 간격(CG1)은 최대이며, 제3,4렌즈(403,404) 사이의 중심 간격(CG3), 및 제6,7렌즈(406,407) 사이의 중심 간격(CG6) 중 적어도 하나는 최소일 수 있다. 이격되는 렌즈 간격 중 최대 중심 간격과 최소 중심 간격의 차이는 3 mm 이상 예컨대, 3 mm 내지 4 mm 범위일 수 있다. Describing the center spacing (CG) between the lenses, the center spacing (CG1) between the first lens 401 and the second lens 402 is the maximum, and the center spacing between the third and fourth lenses 403 and 404 ( At least one of CG3), and the center distance CG6 between the sixth and seventh lenses 406 and 407 may be minimum. The difference between the maximum center spacing and the minimum center spacing among the spaced lens spacing may be 3 mm or more, for example, in the range of 3 mm to 4 mm.
각 렌즈들 사이의 중심 간격은 아래의 조건을 만족할 수 있다.The center spacing between each lens can satisfy the following conditions.
조건 1: CG1 > CG2, CG3, CG4, CG5, CG6Condition 1: CG1 > CG2, CG3, CG4, CG5, CG6
조건 2: CG1, CG5 > CG2 > CG3, CG4, CG6Condition 2: CG1, CG5 > CG2 > CG3, CG4, CG6
조건 3: CG1, CG2, CG4, CG5 > CG3 = CG6Condition 3: CG1, CG2, CG4, CG5 > CG3 = CG6
조건 4: CG1, CG2, CG5 > CG4 > CG3, CG4, CG6 Condition 4: CG1, CG2, CG5 > CG4 > CG3, CG4, CG6
조건 5: CG1 > CG5 > CG2, CG3, CG4, CG6 Condition 5: CG1 > CG5 > CG2, CG3, CG4, CG6
유효경에 대해 설명하면, 최대 유효경을 갖는 렌즈는 유리 재질의 렌즈일 수 있다. 최대 유효경을 갖는 렌즈는 제4렌즈(404)일 수 있다. 여기서, 유효경은 각 렌즈의 물체측면의 유효경과 센서측면의 유효경의 평균이다. 최대 유효경을 갖는 렌즈 면은 제4렌즈(404)의 제7면(S7) 일 수 있다. 최소 유효경을 갖는 렌즈는 제2렌즈(402)일 수 있다. 최소 유효경을 갖는 렌즈면은 제2렌즈(402)의 제4면(S4)일 수 있다. 플라스틱 재질의 렌즈의 유효경은 유리 재질의 렌즈의 유효경보다 작을 수 있다. 플라스틱 재질의 렌즈는 이미지 센서와 인접하게 배치될 수 있다. When explaining the effective diameter, a lens with the maximum effective diameter may be a glass lens. The lens with the maximum effective diameter may be the fourth lens 404. Here, the effective diameter is the average of the effective diameter of each lens on the object side and the effective diameter on the sensor side. The lens surface having the maximum effective diameter may be the seventh surface S7 of the fourth lens 404. The lens with the minimum effective diameter may be the second lens 402. The lens surface having the minimum effective diameter may be the fourth surface S4 of the second lens 402. The effective diameter of a plastic lens may be smaller than that of a glass lens. A lens made of plastic may be placed adjacent to the image sensor.
각 렌즈의 유효경은 아래의 조건 중 어느 하나를 만족할 수 있다.The effective diameter of each lens can satisfy any of the conditions below.
조건 1: CA_L4, CA_L7 > CA_L1 > CA_L2, CA_L3, CA_L5, CA_L6Condition 1: CA_L4, CA_L7 > CA_L1 > CA_L2, CA_L3, CA_L5, CA_L6
조건 2: CA_L1, CA_L3, CA_L4, CA_L5, CA_L6, CA_L7 > CA_L2Condition 2: CA_L1, CA_L3, CA_L4, CA_L5, CA_L6, CA_L7 > CA_L2
조건 3: CA_L1, CA_L4, CA_L5, CA_L6, CA_L7 > CA_L3 > CA_L2Condition 3: CA_L1, CA_L4, CA_L5, CA_L6, CA_L7 > CA_L3 > CA_L2
조건 4: CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7Condition 4: CA_L4 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6, CA_L7
조건 5: CA_L1, CA_L4, CA_L7 > CA_L5 > CA_L2, CA_L3, CA_L6Condition 5: CA_L1, CA_L4, CA_L7 > CA_L5 > CA_L2, CA_L3, CA_L6
조건 6: CA_L1, CA_L4, CA_L5, CA_L7 > CA_L6 > CA_L2, CA_L3Condition 6: CA_L1, CA_L4, CA_L5, CA_L7 > CA_L6 > CA_L2, CA_L3
조건 7: CA_L4 > CA_L7 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6Condition 7: CA_L4 > CA_L7 > CA_L1, CA_L2, CA_L3, CA_L5, CA_L6
굴절률을 설명하면, 제1렌즈(401)의 굴절률은 렌즈들 중에서 최대이며, 1.8초과, 예컨대, 1.81 초과일 수 있다. 제2렌즈(402), 제4렌즈(404), 제6렌즈(406) 및 제7렌즈(407) 중 어느 하나 또는 모두는 렌즈들 중에서 최소의 굴절률을 가질 수 있다. 예컨대, 2렌즈(402), 제6렌즈(406) 및 제7렌즈(108)의 굴절률은 렌즈들 중 최소일 수 있고, 1.6 미만, 예컨대 1.55 미만일 수 있다. 최대 굴절률과 최소 굴절률 차이는 0.2 이상일 수 있다. 물체에 가장 가까운 유리 재질 고 굴절률 렌즈로 제공하고, 유리 재질의 렌즈에 인접한 렌즈와 이미지 센서(500)에 인접한 렌즈를 플라스틱 재질의 저 굴절률 렌즈로 제공해 줌으로써, 입사 효율을 증가시키고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 굴절력을 조절하여 이미지 센서(500)로 가이드할 수 있다. When explaining the refractive index, the refractive index of the first lens 401 is the highest among the lenses and may be greater than 1.8, for example, greater than 1.81. One or all of the second lens 402, fourth lens 404, sixth lens 406, and seventh lens 407 may have the lowest refractive index among the lenses. For example, the refractive index of the second lens 402, the sixth lens 406, and the seventh lens 108 may be the minimum among the lenses, and may be less than 1.6, for example, less than 1.55. The difference between the maximum and minimum refractive indices may be 0.2 or more. By providing a high refractive index lens made of glass closest to the object, and providing a low refractive index lens made of plastic for the lens adjacent to the glass lens and the lens adjacent to the image sensor 500, the incident efficiency is increased, and the lens adjacent to the glass material lens and the lens adjacent to the image sensor 500 are provided as low refractive index lenses made of plastic. It is possible to guide the image sensor 500 by adjusting the refractive power between the lens materials.
각 렌즈의 굴절률은 아래의 조건 중 어느 하나를 만족할 수 있다.The refractive index of each lens may satisfy any one of the conditions below.
조건 1: n1 > n2, n3, n4, n5, n6, n7Condition 1: n1 > n2, n3, n4, n5, n6, n7
조건 2: n1, n3, n5 > n2 = n4 = n6 = n7 Condition 2: n1, n3, n5 > n2 = n4 = n6 = n7
조건 3: n1 > n3 > n2, n4, n5, n6, n7Condition 3: n1 > n3 > n2, n4, n5, n6, n7
조건 4: n1, n3 > n5 > n2, n4, n6, n7Condition 4: n1, n3 > n5 > n2, n4, n6, n7
아베수를 비교하면, 제2렌즈(402), 제4렌즈(404), 제6렌즈(406) 및 제7렌즈(407) 중 적어도 하나의 아베수는 렌즈들 중 최대이며, 50 이상일 수 있다. 제5렌즈(405)의 아베수는 렌즈들 중 최소이며, 25 이하일 수 있다. 최대 굴절률과 최소 아베수 차이는 40 이상일 수 있다. 광학계(1000)의 중심 부분에 배치되는 렌즈의 아베수를 가장 크게 하고, 이미지 센서(500)에 인접한 저 굴절률을 갖는 제5렌즈(405)의 아베수를 가장 작게 제공해 줌으로써, 유리 재질과 플라스틱 재질의 렌즈들 사이로 진행되는 광의 색 분산을 조절하고, 유리 재질과 플라스틱 재질의 렌즈들 사이의 색 분산을 증가하여 이미지 센서(500)로 가이드할 수 있다. When comparing Abbe numbers, the Abbe number of at least one of the second lens 402, fourth lens 404, sixth lens 406, and seventh lens 407 is the maximum among the lenses and may be 50 or more. . The Abbe number of the fifth lens 405 is the minimum among the lenses and may be 25 or less. The difference between the maximum refractive index and the minimum Abbe number may be 40 or more. By providing the largest Abbe number of the lens disposed in the center of the optical system 1000 and the smallest Abbe number of the fifth lens 405 with a low refractive index adjacent to the image sensor 500, glass and plastic materials It is possible to adjust the color dispersion of light traveling between the lenses and guide it to the image sensor 500 by increasing the color dispersion between the lenses made of glass and plastic.
각 렌즈의 아베수는 아래의 조건 중 어느 하나를 만족할 수 있다.The Abbe number of each lens can satisfy any one of the conditions below.
조건 1: v2, v3, v4, v6, v7 > v1 > v5Condition 1: v2, v3, v4, v6, v7 > v1 > v5
조건 2: v2 = v4 = v6 = v7 > v1, v3, v5Condition 2: v2 = v4 = v6 = v7 > v1, v3, v5
조건 3: v2, v4, v6, v7 > v3 > v1, v5Condition 3: v2, v4, v6, v7 > v3 > v1, v5
조건 4: v1, v2, v3, v4, v6, v7 > v5Condition 4: v1, v2, v3, v4, v6, v7 > v5
제1,2,5,7렌즈(401,402,405,407)의 초점 거리(F1,F2,F5,F7)는 음(-)의 부호를 가질 수 있다. 제1,2,5,7렌즈(401,402,405,407)는 음(-)의 굴절력을 가질 수 있다. 제3,4,6렌즈(403,404,406)의 초점 거리(F3,F4,F6)는 양(+)의 부호를 가질 수 있다. 제3,4,6렌즈(403,404,406)의 양(+)의 굴절력을 가질 수 있다. 음(-)의 굴절력을 갖는 제1렌즈(401), 제2렌즈(402)의 센서 측에는 양(+)의 굴절력을 갖는 제3렌즈(403)가 배치될 수 있다. 이를 통해, 물체 측에서 입사된 광은 광축 방향에서 멀어지다가 다시 광축 방향으로 모일 수 있어, 안정적인 광 경로를 형성할 수 있다. The focal lengths F1, F2, F5, and F7 of the first, second, fifth, and seventh lenses 401, 402, 405, and 407 may have a negative (-) sign. The first, second, fifth, and seventh lenses (401, 402, 405, and 407) may have negative refractive power. The focal lengths F3, F4, and F6 of the third, fourth, and sixth lenses 403, 404, and 406 may have a positive (+) sign. The third, fourth, and sixth lenses (403, 404, and 406) may have positive (+) refractive power. A third lens 403 with positive (+) refractive power may be disposed on the sensor side of the first lens 401 and the second lens 402 with negative (-) refractive power. Through this, the light incident from the object side can move away from the optical axis direction and then converge again in the optical axis direction, forming a stable optical path.
또한 인접하여 배치되는 렌즈인 제4렌즈(404)와 제5렌즈(405)는 하기 조건을 만족할 수 있다.Additionally, the fourth lens 404 and the fifth lens 405, which are adjacent lenses, can satisfy the following conditions.
조건 1: 양의 굴절력을 가진 렌즈의 굴절률 < 음의 굴절력을 가진 렌즈의 굴절률 Condition 1: Refractive index of a lens with positive refractive power < Refractive index of a lens with negative refractive power
조건 2: 양의 굴절력을 가진 렌즈의 분산값 > 음의 굴절력을 가진 렌즈의 분산값Condition 2: Dispersion value of a lens with positive refractive power > Dispersion value of a lens with negative refractive power
여기서, 플라스틱 렌즈들 중에서 제4렌즈(404)는 양의 굴절력을 갖고, 제5렌즈(405)는 음의 굴절력을 가짐에 따라, 조건 1,2 에 의하면 제4렌즈(404)의 굴절률이 제5렌즈(405)의 굴절률보다 작고, 제4렌즈(404)의 분산값이 제5렌즈(405)의 분산값보다 크다. 플라스틱 렌즈에서 발생되는 색수차는 플라스틱 렌즈로 보정할 수 있다. 또한, 연속해서 배치되는 플라스틱 렌즈인 제4렌즈(404)와 제5렌즈(405)가 굴절률 차이 0.1 이상 0.15 이하, 아베수 차이 20 이상 50 이하를 만족시킴으로써 플라스틱 렌즈에서 발생하는 색 수차를 플라스틱 렌즈로 보상할 수 있다. Here, among the plastic lenses, the fourth lens 404 has positive refractive power and the fifth lens 405 has negative refractive power, so according to conditions 1 and 2, the refractive index of the fourth lens 404 is It is smaller than the refractive index of the fifth lens 405, and the dispersion value of the fourth lens 404 is greater than that of the fifth lens 405. Chromatic aberration occurring in plastic lenses can be corrected with plastic lenses. In addition, the fourth lens 404 and the fifth lens 405, which are plastic lenses arranged in succession, satisfy the refractive index difference of 0.1 to 0.15 and the Abbe number difference of 20 to 50, thereby reducing chromatic aberration occurring in the plastic lens. It can be compensated with
광학계는 색 수차가 발생하며 접합 렌즈를 사용하거나 연속하게 배치된 두 렌즈를 사용하여 색수차를 보정한다. 저온에서 고온까지의 온도가 변화함에 따라 렌즈가 수축 및 팽창을 반복한다. 같은 소재의 렌즈들은 온도 변화에 따른 렌즈 특성 변화량이 동일하므로, 온도가 변화하더라도 같은 소재의 렌즈끼리 색 수차를 보정하는 것이 효과적이다. 따라서 본 발명의 제4실시예에서는 제4렌즈(404) 및 제5렌즈(405)를 사용하여 플라스틱 렌즈에서 발생하는 색 수차를 보정할 수 있다.Optical systems produce chromatic aberration, and chromatic aberration is corrected using a bonded lens or two lenses placed in series. As the temperature changes from low to high, the lens repeats contraction and expansion. Since lenses made of the same material have the same amount of change in lens characteristics due to temperature changes, it is effective to correct chromatic aberration between lenses made of the same material even if the temperature changes. Therefore, in the fourth embodiment of the present invention, chromatic aberration occurring in the plastic lens can be corrected using the fourth lens 404 and the fifth lens 405.
광축에서 유효경 영역까지, 인접하게 배치되는 두 렌즈 중 아베수 차이가 가장 큰 두 렌즈의 거리의 최대값은 다른 인접한 두 렌즈 사이의 거리의 최대값보다 작을 수 있다. 여기에서, 거리는 광축에서 유효경 영역까지, 두 렌즈 사이의 거리를 의미할 수 있다. 인접하게 배치되는 두 렌즈 중 아베수 차이가 가장 큰 두 렌즈는 제4렌즈(404) 및 제5렌즈(405)일 수 있다. 광축에서 유효경 영역까지 광축에 수직인 방향으로, 제4렌즈(404)의 센서측면(제8면(S8))과 제5렌즈(405)의 물체측면(제9면(S9))까지의 거리 중 최대값은 다른 인접한 두 렌즈 사이의 거리의 최대값보다 작을 수 있다. 이를 통해, 접합이 어려운 플라스틱 재질의 두 렌즈 사이의 거리를 작게 설계하고, 아베수 차이를 가장 크게 하여 접합하지 않은 상태에서도 접합 렌즈와 동일한 색수차를 줄일 수 있는 효과를 가질 수 있다. From the optical axis to the effective diameter area, the maximum value of the distance between two lenses with the largest Abbe number difference among two adjacent lenses may be smaller than the maximum value of the distance between two other adjacent lenses. Here, the distance may mean the distance between two lenses, from the optical axis to the effective diameter area. Among the two lenses disposed adjacently, the two lenses with the largest difference in Abbe number may be the fourth lens 404 and the fifth lens 405. The distance between the sensor side (eighth surface (S8)) of the fourth lens 404 and the object side (ninth side (S9)) of the fifth lens 405 in the direction perpendicular to the optical axis from the optical axis to the effective diameter area. The maximum value may be less than the maximum value of the distance between two other adjacent lenses. Through this, the distance between two lenses made of plastic, which are difficult to bond, is designed to be small, and the Abbe number difference is maximized to have the effect of reducing the same chromatic aberration as a bonded lens even in a non-bonded state.
초점 거리를 절대 값으로 비교하면, 제1렌즈(401)의 초점 거리는 렌즈들 중에서 최대이며, 100 이상 내지 120 이하일 수 있다. 제5렌즈(405)의 초점 거리는 렌즈들 중에서 최소이고, 제5렌즈(405)의 초점 거리의 절대값은 10 이상 내지 12 이하일 수 있다. When comparing focal lengths in absolute values, the focal length of the first lens 401 is the largest among lenses and may be 100 or more and 120 or less. The focal length of the fifth lens 405 is the minimum among the lenses, and the absolute value of the focal length of the fifth lens 405 may be 10 or more and 12 or less.
제1렌즈(401)의 초점 거리는 렌즈들 중 가장 크고, 굴절력이 가장 약하므로 제1렌즈(401)의 센서측에 배치되는 제2렌즈(402) 및 제4렌즈(404)의 아베수 차이가 크지 않아도 색수차 잡아줄 수 있는 효과가 있다. The focal length of the first lens 401 is the largest among the lenses and the refractive power is the weakest, so the difference in Abbe number between the second lens 402 and the fourth lens 404 disposed on the sensor side of the first lens 401 is Although it is not large, it is effective in reducing chromatic aberration.
각 렌즈의 초점거리의 절대값은 아래의 조건 중 어느 하나를 만족할 수 있다.The absolute value of the focal length of each lens can satisfy any of the conditions below.
조건 1: |f1| > |f2|, |f3|, |f4|, |f5|, |f6|, |f7|Condition 1: |f1| > |f2|, |f3|, |f4|, |f5|, |f6|, |f7|
조건 2: |f1| > |f2| > |f3|, |f4|, |f5|, |f6|, |f7|Condition 2: |f1| > |f2| > |f3|, |f4|, |f5|, |f6|, |f7|
조건 3: |f1|, |f2|, |f7| > |f3| > |f4|, |f5|, |f6|Condition 3: |f1|, |f2|, |f7| > |f3| > |f4|, |f5|, |f6|
조건 4: |f1|, |f2|, |f3|, |f7| > |f4| > |f5|, |f6| Condition 4: |f1|, |f2|, |f3|, |f7| > |f4| > |f5|, |f6|
조건 5: |f1|, |f2|, |f3|, |f4|, |f6|, |f7| > |f5|Condition 5: |f1|, |f2|, |f3|, |f4|, |f6|, |f7| > |f5|
조건 6: |f1|, |f2|, |f3|, |f4|, |f7| > |f6| > |f5|Condition 6: |f1|, |f2|, |f3|, |f4|, |f7| > |f6| > |f5|
조건 7: |f1|, |f2| > |f7| > |f3|, |f4|, |f5|, |f6|Condition 7: |f1|, |f2| > |f7| > |f3|, |f4|, |f5|, |f6|
제1렌즈(401)의 두께(T1)는 최대 두께와 최소 두께의 차이가 1.5배 내지 2배 범위일 수 있으며, 중심 두께(CT1)가 최소이고, 에지 두께(ET1)가 최대일 수 있다. 제2렌즈(402)의 두께(T2)는 최대 두께가 최소 두께의 1배 내지 1.5배 범위일 수 있다. 제2렌즈(402)는 중심 두께(CT2)가 최대이며, 에지 두께(ET2)는 최소일 수 있다. 제3렌즈(403)의 두께(T3)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1배 내지 1.5배 범위이다. 제4렌즈(404)의 두께(T4)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 2배 내지 2.5배 범위이다. 제5렌즈(405)의 두께(T5)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1.2배 내지 1.7배 범위이다. 제6렌즈(406)의 두께(T6)는 중심에서 최대이고 에지에서 최소일 수 있으며, 최대 두께는 최소 두께의 1.2배 내지 1.7배 범위이다. 제7렌즈(407)의 두께(T7)는 중심에서 최소이고 에지에서 최대일 수 있으며, 최대 두께는 최소 두께의 1.2배 내지 1.7배 범위이다. The thickness T1 of the first lens 401 may be 1.5 to 2 times the difference between the maximum thickness and the minimum thickness, the center thickness CT1 may be the minimum, and the edge thickness ET1 may be the maximum. The thickness T2 of the second lens 402 may have a maximum thickness in the range of 1 to 1.5 times the minimum thickness. The second lens 402 may have a maximum center thickness (CT2) and a minimum edge thickness (ET2). The thickness T3 of the third lens 403 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1 to 1.5 times the minimum thickness. The thickness T4 of the fourth lens 404 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 2 to 2.5 times the minimum thickness. The thickness T5 of the fifth lens 405 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness. The thickness T6 of the sixth lens 406 may be maximum at the center and minimum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness. The thickness T7 of the seventh lens 407 may be minimum at the center and maximum at the edge, with the maximum thickness ranging from 1.2 to 1.7 times the minimum thickness.
각 렌즈의 두께는 아래의 조건 중 어느 하나를 만족할 수 있다.The thickness of each lens can satisfy any of the conditions below.
조건 1: 0.5 < CT1/ET1 < 1, 1.5 < ET1/CT1 < 2Condition 1: 0.5 < CT1/ET1 < 1, 1.5 < ET1/CT1 < 2
조건 2: 1 < CT2/ET2 < 1.5, 0.5 < ET2/CT2 < 1Condition 2: 1 < CT2/ET2 < 1.5, 0.5 < ET2/CT2 < 1
조건 3: 0.5 < CT3/ET3 < 1, 1 < ET3/CT3 < 1.5Condition 3: 0.5 < CT3/ET3 < 1, 1 < ET3/CT3 < 1.5
조건 4: 2 < CT4/ET4 < 2.5, 0.1 < ET4/CT4 < 0.5Condition 4: 2 < CT4/ET4 < 2.5, 0.1 < ET4/CT4 < 0.5
조건 5: 0.5 < CT5/ET5 < 1, 1.2 < ET5/CT5 < 1.7Condition 5: 0.5 < CT5/ET5 < 1, 1.2 < ET5/CT5 < 1.7
조건 6: 1.2 < CT6/ET6 < 1.7, 0.5 < ET6/CT6 < 1Condition 6: 1.2 < CT6/ET6 < 1.7, 0.5 < ET6/CT6 < 1
조건 7: 0.5 < CT7/ET7 < 1, 1.2 < ET7/CT7 < 1.7Condition 7: 0.5 < CT7/ET7 < 1, 1.2 < ET7/CT7 < 1.7
조건 8: 1 < ΣCT/ΣET < 1.2, 0.5 < ΣET/ΣCT < 1Condition 8: 1 < ΣCT/ΣET < 1.2, 0.5 < ΣET/ΣCT < 1
렌즈들 사이의 간격(G1-G7) 중에서 제1,2렌즈(401,402) 사이의 제1간격(G1)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제2,3 렌즈(402,403) 사이의 제2간격(G2)은 중심부가 최소이고, 에지부가 최대일 수 있다. 제3,4렌즈(403,404) 사이의 제3간격(G3)은 에지부가 최대이고, 중심부가 최소일 수 있다. 제4,5렌즈(404,405) 사이의 제4간격(G4)은 중심부가 최소이고, 에지부가 최대일 수 있다. 제5,6렌즈(405,406) 사이의 제5간격(G5)은 중심부가 최대이고, 에지부가 최소일 수 있다. 제6,7렌즈(406,407) 사이의 제6간격(G6)은 중심부가 최소이고, 에지부가 최대일 수 있다. Among the intervals G1-G7 between the lenses, the first interval G1 between the first and second lenses 401 and 402 may be maximum at the center and minimum at the edges. The second gap G2 between the second and third lenses 402 and 403 may be minimum at the center and maximum at the edges. The third gap G3 between the third and fourth lenses 403 and 404 may be maximum at the edge and minimum at the center. The fourth gap G4 between the fourth and fifth lenses 404 and 405 may be minimum at the center and maximum at the edges. The fifth gap G5 between the fifth and sixth lenses 405 and 406 may be maximum at the center and minimum at the edges. The sixth gap G6 between the sixth and seventh lenses 406 and 407 may be minimum at the center and maximum at the edges.
도 42, 도 44 및 도 46은 도 37의 광학계에서 상온, 저온 및 고온에서의 회절(Diffraction) MTF(Modulation transfer function)를 나타낸 그래프로서, 공간 주파수(spatial frequency)에 따른 휘도 비(modulation)를 나타낸 그래프이다. 도 42, 도 44 및 도 46과 같이, 발명의 제4실시예에서 상온을 기준으로 저온 또는 고온과의 MTF의 편차는 10% 미만 즉, 7% 이하일 수 있다. Figures 42, 44, and 46 are graphs showing the diffraction MTF (modulation transfer function) at room temperature, low temperature, and high temperature in the optical system of Figure 37, showing the luminance ratio (modulation) according to spatial frequency. This is the graph shown. 42, 44, and 46, in the fourth embodiment of the invention, the deviation of MTF from low or high temperature based on room temperature may be less than 10%, that is, 7% or less.
도 43, 도 45 및 도 47는 도 37의 광학계에서 상온, 저온 및 고온에서의 수차 특성을 나타낸 그래프다. 도 43, 도 45 및 도 47의 수차 그래프에서 좌측에서 우측 방향으로 구면 수차(Longitudinal Spherical Aberration), 비점 수차(Astigmatic Field Curves), 왜곡 수차(Distortion)를 측정한 그래프이다. 도 43, 도 45 및 도 47에서 X축은 초점 거리(mm) 및 왜곡도(%)를 나타낼 수 있고, Y축은 이미지의 높이(height)를 의미할 수 있다. 또한, 구면 수차에 대한 그래프는 약 435nm, 약 486nm, 약 546nm, 약 587nm, 약 656nm 파장 대역의 광에 대한 그래프이며, 비점 수차 및 왜곡 수차에 대한 그래프는 약 546nm 파장 대역의 광에 대한 그래프이다. 도 43, 도 45 및 도 47의 수차도에서는 상온, 저온 및 고온에서의 각 곡선들이 Y축에 근접할 수록 수차 보정 기능이 좋은 것으로 해석할 수 있는데, 제4실시예에 따른 광학계(1300)는 거의 대부분의 영역에서 측정 값들이 Y축에 인접한 것을 알 수 있다. 즉, 제4실시예에 따른 광학계(1300)는 향상된 해상력을 가지며 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다. 여기서, 저온은 -20도 이하의 예컨대, -20 내지 -40도 범위이며, 상온은 22도±5도 범위 또는 18도 내지 27도 범위이며, 고온은 85도 이상 예컨대, 85도 내지 405도의 범위일 수 있다. 이에 따라 도 43, 도 45 및 도 47의 저온에서 고온까지 휘도 비(modulation)의 저하가 10% 미만 예컨대, 5% 이하이거나, 거의 변경되지 않음을 알 수 있다. Figures 43, 45, and 47 are graphs showing aberration characteristics at room temperature, low temperature, and high temperature in the optical system of Figure 37. 43, 45, and 47 are graphs measuring spherical aberration, astigmatic field curves, and distortion from left to right. In FIGS. 43, 45, and 47, the X-axis may represent focal length (mm) and distortion (%), and the Y-axis may represent the height of the image. In addition, the graph for spherical aberration is a graph for light in the wavelength band of about 435 nm, about 486 nm, about 546 nm, about 587 nm, and about 656 nm, and the graph for astigmatism and distortion is a graph for light in the wavelength band of about 546 nm. . In the aberration diagrams of FIGS. 43, 45, and 47, it can be interpreted that the closer the curves at room temperature, low temperature, and high temperature are to the Y axis, the better the aberration correction function is. The optical system 1300 according to the fourth embodiment has You can see that in most areas, the measured values are adjacent to the Y axis. That is, the optical system 1300 according to the fourth embodiment has improved resolution and can have good optical performance not only in the center but also in the periphery of the field of view (FOV). Here, the low temperature is -20 degrees or lower, for example, in the range of -20 to -40 degrees, the room temperature is in the range of 22 degrees ± 5 degrees or 18 to 27 degrees, and the high temperature is 85 degrees or higher, for example, in the range of 85 to 405 degrees. It can be. Accordingly, it can be seen that the decrease in luminance ratio (modulation) from the low temperature to the high temperature in FIGS. 43, 45, and 47 is less than 10%, for example, 5% or less, or is almost unchanged.
표 12은 제4실시예에 따른 광학계에서 상온, 저온 및 고온에서의 EFL, BFL, F넘버(F#), TTL 및 화각(FOV_H)와 같은 광학 특성의 변화를 비교하였으며, 상온을 기준으로 저온의 광학 특성의 변화율 5% 이하 예컨대, 3%이하로 나타남을 알 수 있으며, 상온을 기준으로 저온의 광학 특성의 변화율이 5% 이하 예컨대, 3% 이하로 나타남을 알 수 있다.Table 12 compares the changes in optical characteristics such as EFL, BFL, F number (F#), TTL, and angle of view (FOV_H) at room temperature, low temperature, and high temperature in the optical system according to the fourth embodiment, and the changes in optical properties at low temperature based on room temperature. It can be seen that the change rate of optical properties is 5% or less, for example, 3% or less, and the change rate of optical properties at low temperatures based on room temperature is 5% or less, for example, 3% or less.
상온room temperature 저온low temperature 고온High temperature 저온/상온Low temperature/room temperature 고온/상온High temperature/room temperature
EFL(F)EFL(F) 10.88 10.88 10.81 10.81 10.97 10.97 99.35%99.35% 100.82%100.82%
BFLBFL 3.40 3.40 3.40 3.40 3.41 3.41 100.00 %100.00% 100.29%100.29%
F#F# 1.64 1.64 1.63 1.63 1.65 1.65 99.39%99.39% 100.60%100.60%
TTLTTL 30.00 30.00 29.93 29.93 30.09 30.09 99.76%99.76% 100.30%100.30%
FOV_DFOV_D 54.51 54.51 54.90 54.90 54.03 54.03 100.71%100.71% 99.11%99.11%
따라서, 표 12과 같이, 저온에서 고온까지의 온도 변화에 따른 광학 특성의 변화 예컨대, 유효초점거리(EFL)의 변화율, TTL, BFL, F 넘버, 화각(FOV_D)의 변화율이 10% 이하 즉, 5% 이하 예컨대, 0 ~ 5% 범위임을 알 수 있다. 이는 적어도 한 매 또는 두 매 이상의 플라스틱 렌즈를 사용하더라도, 플라스틱 렌즈에 대한 온도보상이 가능하게 설계하여, 광학 특성의 신뢰성 저하를 방지할 수 있다. Therefore, as shown in Table 12, the change in optical properties according to the temperature change from low to high temperature, for example, the rate of change in effective focal length (EFL), TTL, BFL, F number, and angle of view (FOV_D) is 10% or less, that is, It can be seen that it is in the range of 5% or less, for example, 0 to 5%. Even if at least one or two plastic lenses are used, temperature compensation for the plastic lenses is designed to prevent deterioration in the reliability of optical characteristics.
상기에 개시된 제4실시예의 광학계는 색수차, 왜곡 수차 등의 수차 특성을 효과적으로 제어할 수 있고, 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다.The optical system of the fourth embodiment disclosed above can effectively control aberration characteristics such as chromatic aberration and distortion aberration, and can have good optical performance not only in the center but also in the periphery of the field of view (FOV).
상기에 개시된 제1 내지 제4실시예에 따른 광학계(1000,1100,1200,1300)는 이하에서 설명되는 수학식들 중 적어도 하나 또는 둘 이상을 만족할 수 있다. 이에 따라, 제1 내지 제4실시예에 따른 광학계(1000,1100,1200,1300)는 향상된 광학 특성을 가질 수 있다. 예를 들어, 광학계(1000,1100,1200,1300)가 적어도 하나의 수학식을 만족할 경우, 광학계(1000,1100,1200,1300)는 색수차, 왜곡 수차 등의 수차 특성을 효과적으로 제어할 수 있고, 화각(FOV)의 중심부뿐만 아니라 주변부에서도 양호한 광학 성능을 가질 수 있다. 또한, 광학계(1000,1100,1200,1300)는 향상된 해상력을 가질 수 있다. 또한, 수학식들에 기재된 렌즈의 광축(OA)에서의 두께, 인접한 렌즈들의 광축(OA)에서의 간격이 의미하는 것은 상기에 개시된 제1 내지 제4실시예를 참조할 수 있다. The optical systems 1000, 1100, 1200, and 1300 according to the first to fourth embodiments disclosed above may satisfy at least one or two of the equations described below. Accordingly, the optical systems 1000, 1100, 1200, and 1300 according to the first to fourth embodiments may have improved optical characteristics. For example, when the optical system (1000, 1100, 1200, 1300) satisfies at least one mathematical equation, the optical system (1000, 1100, 1200, 1300) can effectively control aberration characteristics such as chromatic aberration and distortion aberration, Good optical performance can be achieved not only in the center of the field of view (FOV) but also in the periphery. Additionally, the optical systems 1000, 1100, 1200, and 1300 may have improved resolution. In addition, the meaning of the thickness of the lens at the optical axis (OA) and the distance between the adjacent lenses at the optical axis (OA) described in the equations may refer to the first to fourth embodiments disclosed above.
[수학식 1][Equation 1]
30 < |f1| < 12030 < |f1| < 120
수학식 1에서 f1는 제1렌즈(101,201,301,401)의 초점거리를 의미한다. 광학계의 성능을 위해 광학계에서 TTL 대비 짧은 유효 초점 거리를 갖기 위해 설정될 수 있다. 수학식 1을 만족하면 물체측에서 제1렌즈(101,201,301,401)로 입사하는 광을 광축에서 모이는 방향으로 가이드할 수 있고, 물체측에 가장 가깝게 배치되는 제1렌즈(101,201,301,401)의 굴절력을 약한 경우, 센서측에 배치되는 렌즈의 아베수와 차이가 크지 않아도 색수차를 잡아줄 수 있다. 또한, 전체 광학계는 광을 퍼뜨렸다가 모으는 구조가 안정적일 수 있다. 제1 내지 제4실시예에서 바람직하게, 50 < |f1| < 115를 만족할 수 있다.In Equation 1, f1 means the focal length of the first lens (101, 201, 301, 401). For the performance of the optical system, the optical system can be set to have a shorter effective focal length compared to TTL. If Equation 1 is satisfied, the light incident from the object side to the first lens (101, 201, 301, 401) can be guided in the direction that converges from the optical axis, and if the refractive power of the first lens (101, 201, 301, 401) disposed closest to the object side is weak, the sensor Even if the difference from the Abbe number of the lens placed on the side is not large, chromatic aberration can be corrected. Additionally, the entire optical system may have a stable structure that spreads and collects light. In the first to fourth embodiments, preferably, 50 < |f1| < 115 can be satisfied.
[수학식 2][Equation 2]
10 < |F_LG1| < 3010 < |F_LG1| < 30
수학식 2에서 |F_LG1|는 제1렌즈군(LG1)의 초점거리를 의미한다. 제1렌즈군(LG1)은 조리개(STOP)를 기준으로 물체측에 배치되는 렌즈 그룹을 의미한다. 제1렌즈군(LG1)의 초점 거리가 수학식 2를 만족할 경우, 광학계는 설정된 화각에서 양호한 광학 성능을 가질 수 있다. 제1 내지 제4실시예에서 바람직하게, 15 < |F_LG1| < 30를 만족할 수 있다.In Equation 2, |F_LG1| means the focal length of the first lens group (LG1). The first lens group (LG1) refers to a lens group arranged on the object side based on the aperture (STOP). When the focal length of the first lens group LG1 satisfies Equation 2, the optical system can have good optical performance at the set angle of view. In the first to fourth embodiments, preferably, 15 < |F_LG1| < 30 can be satisfied.
[수학식 3][Equation 3]
20 < v1 < 6020 < v1 < 60
수학식 3에서 v1은 제1렌즈(101,201,301,401)의 아베수이다. 광학계(1000,1100,1200,1300)에서 제1렌즈군(LG1)의 전체 초점 거리는 음(-)의 부호를 갖고, 제1렌즈군(LG1)에 포함되는 음(-)의 초점 거리를 갖는 제1렌즈(101,201,301,401)의 아베수를 크게 설정하여 렌즈의 색수차를 줄일 수 있는 효과가 있다. 제1 내지 제3실시예에서 수학식 3은 바람직하게, 50 < v1 < 60를 만족할 수 있고, 제4실시예에서 수학식 3는 바람직하게, 20 < v1 < 30을 만족할 수 있다.In Equation 3, v1 is the Abbe number of the first lens (101, 201, 301, 401). In the optical system (1000, 1100, 1200, 1300), the total focal length of the first lens group (LG1) has a negative (-) sign, and the negative (-) focal length included in the first lens group (LG1) has a negative (-) sign. By setting the Abbe number of the first lens (101, 201, 301, 401) to be large, there is an effect of reducing chromatic aberration of the lens. In the first to third embodiments, Equation 3 may preferably satisfy 50 < v1 < 60, and in the fourth embodiment, Equation 3 may preferably satisfy 20 < v1 < 30.
[수학식 4][Equation 4]
45 < v2 < 6045 < v2 < 60
수학식 4에서 v2은 제2렌즈(102,202,302,402)의 아베수이다. 광학계(1000,1100,1200,1300)에서 제1렌즈군(LG1)의 전체 초점 거리는 음(-)의 부호를 갖고, 제1렌즈군(LG1)에 포함되는 음(-)의 초점 거리를 갖는 제2렌즈(102,202,302,402)의 아베수를 크게 설정하여 렌즈의 색수차를 줄일 수 있는 효과가 있다. 제1 내지 제4실시예에서 수학식 4은 바람직하게, 50 < v2 < 58를 만족할 수 있다.In Equation 4, v2 is the Abbe number of the second lens (102, 202, 302, 402). In the optical system (1000, 1100, 1200, 1300), the total focal length of the first lens group (LG1) has a negative (-) sign, and the negative (-) focal length included in the first lens group (LG1) has a negative (-) sign. By setting the Abbe number of the second lens (102, 202, 302, 402) to be large, there is an effect of reducing chromatic aberration of the lens. In the first to fourth embodiments, Equation 4 may preferably satisfy 50 < v2 < 58.
[수학식 5][Equation 5]
15 < v5 < 2515 < v5 < 25
수학식 5에서 v5은 제5렌즈(105,205,305,405)의 아베수이다. 광학계(1000,1100,1200,1300)에서 제2렌즈군(LG2)의 전체 초점 거리는 양(+)의 부호를 갖고, 제2렌즈군(LG2) 내에서 물체측에 인접하고 양(+)의 초점 거리를 갖는 제5렌즈(105,205,305,405)의 아베수를 낮게 설정하여 제5렌즈(105,205,305,405)의 센서측에 배치되는 렌즈의 색수차를 줄일 수 있는 효과가 있다. 제1 내지 제4실시예에서 수학식 5은 바람직하게, 18 < v5 < 22를 만족할 수 있다.In Equation 5, v5 is the Abbe number of the fifth lens (105, 205, 305, 405). In the optical system (1000, 1100, 1200, 1300), the total focal length of the second lens group (LG2) has a positive (+) sign, and is adjacent to the object side within the second lens group (LG2) and has a positive (+) sign. By setting the Abbe number of the fifth lens (105, 205, 305, 405) having a focal length low, there is an effect of reducing chromatic aberration of the lens disposed on the sensor side of the fifth lens (105, 205, 305, 405). In the first to fourth embodiments, Equation 5 may preferably satisfy 18 < v5 < 22.
[수학식 6][Equation 6]
0.1 < CG1 / ΣCG < 0.50.1 < CG1 / ΣCG < 0.5
수학식 6에서 CG1은 제1렌즈(101,201,301,401)와 제2렌즈(102,202,302,402) 사이의 중심 간격이며, ΣCG는 인접한 렌즈들 사이의 간격들의 합이다. 수학식 6을 만족할 경우, 전체 광학계에서 영향력이 큰 제1렌즈(101,201,301,401)에서 출사되는 광이 나머지 렌즈에 입사되는 광 경로를 설정해주고, 광학계는 설정된 화각 및 초점거리에서 양호한 광학 성능을 가질 수 있다. 제1 내지 제4실시예에서 수학식 6은 바람직하게, 0.3 < CG1 / ΣCG < 0.5를 만족할 수 있다.In Equation 6, CG1 is the center distance between the first lenses (101, 201, 301, 401) and the second lenses (102, 202, 302, 402), and ΣCG is the sum of the distances between adjacent lenses. If Equation 6 is satisfied, the light emitted from the first lens (101, 201, 301, 401), which has a large influence on the entire optical system, sets the optical path incident on the remaining lenses, and the optical system can have good optical performance at the set angle of view and focal distance. . In the first to fourth embodiments, Equation 6 may preferably satisfy 0.3 < CG1 / ΣCG < 0.5.
[수학식 7][Equation 7]
0.1 < CG1 / ΣCT < 0.30.1 < CG1 / ΣCT < 0.3
수학식 7에서 CG1은 제1렌즈(101,201,301,401)와 제2렌즈(102,202,302,402) 사이의 중심 간격이고, ΣCT는 렌즈들의 중심 두께의 합이다. 수학식 7을 만족할 경우, 전체 광학계에서 영향력이 큰 제1렌즈(101,201,301,401)에서 출사되는 광이 나머지 렌즈에 입사되는 광 경로를 설정해주고, 광학계는 설정된 화각 및 초점거리에서 양호한 광학 성능을 가질 수 있다. 제1 내지 제4실시예에서 수학식 7은 바람직하게, 0.1 < ΣCT / ΣCG < 0.2를 만족할 수 있다.In Equation 7, CG1 is the center distance between the first lenses (101, 201, 301, 401) and the second lenses (102, 202, 302, 402), and ΣCT is the sum of the center thicknesses of the lenses. If Equation 7 is satisfied, the light emitted from the first lens (101, 201, 301, 401), which has a large influence on the entire optical system, sets the optical path through which it is incident on the remaining lenses, and the optical system can have good optical performance at the set angle of view and focal distance. . In the first to fourth embodiments, Equation 7 may preferably satisfy 0.1 < ΣCT / ΣCG < 0.2.
[수학식 8][Equation 8]
0.01 < CG1 / TTL < 0.20.01 < CG1 / TTL < 0.2
수학식 8에서 CG1은 제1렌즈(101,201,301,401)와 제2렌즈(102,202,302,402) 사이의 중심 간격이고, 제1렌즈(101,201,301,401)의 제1면(S1)의 중심에서 이미지 센서(500)의 상면까지의 광축(OA)에서의 거리(mm)인 TTL의 관계를 설정할 수 있다. 수학식 8을 만족할 경우, 전체 광학계에서 영향력이 큰 제1렌즈(101,201,301,401)에서 출사되는 광이 나머지 렌즈에 입사되는 광 경로를 설정해주고, 광학계는 설정된 화각 및 초점거리에서 양호한 광학 성능을 가질 수 있다. 제1 내지 제4실시예에서 수학식 8은 바람직하게, 0.1 < CG1 / TTL < 0.15를 만족할 수 있다.In Equation 8, CG1 is the center distance between the first lens (101, 201, 301, 401) and the second lens (102, 202, 302, 402), and is the distance from the center of the first surface (S1) of the first lens (101, 201, 301, 401) to the upper surface of the image sensor 500. The relationship between TTL, which is the distance (mm) from the optical axis (OA), can be set. If Equation 8 is satisfied, the light emitted from the first lens (101, 201, 301, 401), which has a large influence on the entire optical system, sets the optical path incident on the remaining lenses, and the optical system can have good optical performance at the set angle of view and focal distance. . In the first to fourth embodiments, Equation 8 may preferably satisfy 0.1 < CG1 / TTL < 0.15.
[수학식 9][Equation 9]
0.3 < ΣCT / TTL < 0.80.3 < ΣCT / TTL < 0.8
수학식 9는 제1 내지 제7렌즈(101-107,201-207,301-307,401-407)의 중심 두께의 합(ΣCT)과 제1렌즈(101,201,301,401)의 제1면(S1)의 중심에서 이미지 센서(500)의 상면까지의 광축(OA)에서의 거리(mm)인 TTL의 관계를 설정할 수 있다. TTL을 줄이려면 광 굴절이 많이 발생해야 한다. 광을 많이 굴절시키기 위해 렌즈들의 파워가 커져야 하고, 파워를 크게하기 위해 렌즈가 두꺼워진다. 수학식 9의 하한치 미만인 경우, 렌즈 두께의 합이 작아지게 되고 굴절력이 약해지게 된다. 수학식 9의 상한치 초과인 경우, 렌즈들의 두께의 합이 지나치게 증가하여 TTL 이 증가하게 되는 문제가 있다. 제1 내지 제4실시예에서 수학식 9는 바람직하게, 0.5 < ΣCT / TTL < 0.8를 만족할 수 있다. Equation 9 is the sum of the central thicknesses (ΣCT) of the first to seventh lenses (101-107, 201-207, 301-307, 401-407) and the image sensor 500 at the center of the first surface (S1) of the first lenses (101, 201, 301, 401). It is possible to set the relationship of TTL, which is the distance (mm) from the optical axis (OA) to the upper surface of ). To reduce TTL, a lot of light refraction must occur. In order to refract a lot of light, the power of the lenses must be increased, and to increase the power, the lenses become thicker. If it is less than the lower limit of Equation 9, the sum of the lens thicknesses becomes small and the refractive power becomes weak. If the upper limit of Equation 9 is exceeded, there is a problem in that the sum of the thicknesses of the lenses increases excessively, resulting in an increase in TTL. In the first to fourth embodiments, Equation 9 may preferably satisfy 0.5 < ΣCT / TTL < 0.8.
[수학식 10][Equation 10]
0.1 < ΣCG / TTL < 0.50.1 < ΣCG / TTL < 0.5
수학식 10은 제1 내지 제7렌즈(101-107,201-207,301-307,401-407) 중 인접한 렌즈 간격의 합(ΣCG)과 제1면(S1)의 중심에서 이미지 센서(500)의 상면까지의 광축(OA)에서의 거리(mm)인 TTL의 관계를 설정할 수 있다. TTL을 줄이려면 광 굴절이 많이 발생해야 한다. 광을 많이 굴절시키기 위해 렌즈들의 파워가 커져야 하고, 파워를 크게 하기 위해 렌즈가 두꺼워진다. 수학식 10의 하한치 미만인 경우, 렌즈 두께의 합이 작아지게 되고 굴절력이 약해져 원하는 파워보다 약해지게 된다. 수학식 10의 상한치 초과인 경우, 렌즈들의 두께의 합이 지나치게 증가하여 TTL 이 증가하게 되는 문제가 있다. 제1 내지 제4실시예에서 수학식 10은 바람직하게, 0.1 < ΣCG / TTL < 0.3를 만족할 수 있다. Equation 10 is the sum (ΣCG) of the spacing of adjacent lenses among the first to seventh lenses (101-107, 201-207, 301-307, 401-407) and the optical axis from the center of the first surface (S1) to the top surface of the image sensor 500. You can set the relationship between TTL, which is the distance (mm) in (OA). To reduce TTL, a lot of light refraction must occur. In order to refract a lot of light, the power of the lenses must be increased, and to increase the power, the lenses become thicker. If it is less than the lower limit of Equation 10, the sum of the lens thicknesses becomes small and the refractive power becomes weaker, making it weaker than the desired power. If the upper limit of Equation 10 is exceeded, there is a problem in that the sum of the thicknesses of the lenses increases excessively, resulting in an increase in TTL. In the first to fourth embodiments, Equation 10 may preferably satisfy 0.1 < ΣCG / TTL < 0.3.
[수학식 11][Equation 11]
3 < ΣCT / ΣCG < 43 < ΣCT / ΣCG < 4
수학식 11에서 ΣCT는 렌즈들의 중심 두께의 합이며, ΣCG는 인접한 렌즈들 사이의 간격들의 합이다. 수학식 11을 만족할 경우, 광학계는 설정된 화각 및 초점거리에서 양호한 광학 성능을 가질 수 있고, TTL을 축소시켜 줄 수 있다. 제1 내지 제4실시예에서 수학식 11은 바람직하게, 3 < ΣCT / ΣCG < 3.5를 만족할 수 있다.In Equation 11, ΣCT is the sum of the central thicknesses of the lenses, and ΣCG is the sum of the spacing between adjacent lenses. If Equation 11 is satisfied, the optical system can have good optical performance at the set angle of view and focal length, and can reduce TTL. In the first to fourth embodiments, Equation 11 may preferably satisfy 3 < ΣCT / ΣCG < 3.5.
[수학식 12][Equation 12]
25 < ΣAbb / ΣIndex < 3525 < ΣAbb / ΣIndex < 35
수학식 12에서 ΣAbb는 복수의 렌즈 각각의 아베수(Abbe’s number)의 합을 의미하고, ΣIndex는 복수의 렌즈 각각의 d-line에서의 굴절률들의 합을 의미한다. 수학식 12을 만족할 경우, 광학계(1000,1100,1200,1300)는 향상된 수차 특성 및 해상력을 가질 수 있다. 수학식 12를 렌즈들의 아베수 합과 굴절률의 합을 설정해 주어, 광학 특성을 제어할 수 있다. 제1 내지 제4실시예에서 바람직하게, 수학식 12은 28 < ΣAbb / ΣIndex < 33를 만족할 수 있다. In Equation 12, ΣAbb means the sum of Abbe's numbers of each of the plurality of lenses, and ΣIndex means the sum of the refractive indices at the d-line of each of the plurality of lenses. If Equation 12 is satisfied, the optical systems (1000, 1100, 1200, and 1300) can have improved aberration characteristics and resolution. Optical characteristics can be controlled by using Equation 12 to set the sum of the Abbe numbers and refractive indices of the lenses. In the first to fourth embodiments, Equation 12 may satisfy 28 < ΣAbb / ΣIndex < 33.
[수학식 13][Equation 13]
1 < ΣCT / ΣET < 21 < ΣCT / ΣET < 2
수학식 13에서 ΣCT는 렌즈들의 중심 두께의 합이며, ΣET는 렌즈들의 유효 영역의 끝단 즉, 에지 두께들의 합이다. 수학식 13을 만족할 경우, 광학계는 설정된 화각 및 초점거리에서 양호한 광학 성능을 가질 수 있고, TTL을 축소시켜 줄 수 있다. 제1 내지 제4실시예에서 바람직하게, 수학식 13은 바람직하게, 1 < ΣCT / ΣET < 1.3를 만족할 수 있다.In Equation 13, ΣCT is the sum of the center thicknesses of the lenses, and ΣET is the end of the effective area of the lenses, that is, the sum of the edge thicknesses. If Equation 13 is satisfied, the optical system can have good optical performance at the set angle of view and focal length, and can reduce TTL. In the first to fourth embodiments, Equation 13 may preferably satisfy 1 < ΣCT / ΣET < 1.3.
[수학식 14] [Equation 14]
0.5 < CT1 / ET1 < 1.50.5 < CT1 / ET1 < 1.5
수학식 14에서 CT1은 제1렌즈(101,201,301,401)의 중심 두께이고, ET1은 제1렌즈(101,201,301,401)의 에지 두께이다. 이를 통해, 광학계의 화각에 영향을 주는 요소를 설정할 수 있으며, 유효 초점 거리(EFL)에 영향을 주는 요소를 설정할 수 있다. 수학식 14은 제1 내지 제4실시예에서 바람직하게 0.7 < CT1 / ET1 < 1.2을 만족할 수 있다.In Equation 14, CT1 is the center thickness of the first lens (101, 201, 301, 401), and ET1 is the edge thickness of the first lens (101, 201, 301, 401). Through this, it is possible to set factors that affect the angle of view of the optical system and factors that affect the effective focal length (EFL). Equation 14 may preferably satisfy 0.7 < CT1 / ET1 < 1.2 in the first to fourth embodiments.
[수학식 15][Equation 15]
0.5 < GLCa_AVER/PLCa_AVER < 1.50.5 < GLCa_AVER/PLCa_AVER < 1.5
수학식 15에서 GLCa_AVER는 유리 렌즈들의 평균 유효경을 나타내며, PLCa_AVER은 플라스틱 렌즈의 평균 유효경을 나타낸다. 렌즈부가 배치되는 렌즈 배럴은 렌즈 배럴 내에 적어도 하나의 이너 배럴을 구비하고, 렌즈부에 포함되는 플라스틱 재질 렌즈 중 적어도 일부는 이너 배럴에 배치될 수 있다. 플라스틱 재질의 렌즈의 경우, 고온에서 팽창량이 많아 렌즈 배럴 내 더 넓은 공간을 필요로 하다. 수학식 15에서 유리 렌즈의 유효경 크기와 플라스틱 렌즈의 유효경 크기를 설정해 주어, 온도 변화에 따른 광학 특성의 저하를 억제할 수 있고, 광학계(1000,1100,1200,1300)는 입사되는 광을 제어할 수 있으며 수차에 영향을 주는 요소를 설정할 수 있다. 제1 내지 제4실시예에서 수학식 15는 바람직하게, 0.5 < GLCa_AVER/PLCa_AVER < 1.2를 만족할 수 있다. In Equation 15, GLCa_AVER represents the average effective diameter of glass lenses, and PLCa_AVER represents the average effective diameter of plastic lenses. The lens barrel on which the lens unit is disposed has at least one inner barrel within the lens barrel, and at least some of the plastic lenses included in the lens unit may be disposed in the inner barrel. In the case of plastic lenses, the amount of expansion is large at high temperatures, so more space is required within the lens barrel. By setting the effective diameter size of the glass lens and the effective diameter size of the plastic lens in Equation 15, deterioration of optical characteristics due to temperature changes can be suppressed, and the optical system (1000, 1100, 1200, 1300) can control the incident light. You can set the factors that affect aberration. In the first to fourth embodiments, Equation 15 may preferably satisfy 0.5 < GLCa_AVER/PLCa_AVER < 1.2.
[수학식 16][Equation 16]
1 < CA_L1S1 / CA_L1S2 < 21 < CA_L1S1 / CA_L1S2 < 2
수학식 16에서 CA_L1S1은 제1렌즈(101,201,301,401)의 제1면(S1)의 유효경을 의미하고, CA_L1S2는 제1렌즈(101,201,301,401)의 제2면(S2)의 유효경을 의미한다. 수학식 16를 만족하는 경우, 온도 변화에 따른 광학 특성의 저하를 억제할 수 있고, 광학계(1000,1100,1200,1300)는 입사되는 광을 제어할 수 있으며 수차에 영향을 주는 요소를 설정할 수 있다. 제1 내지 제4실시예에서 수학식 16은 바람직하게, 1 < CA_L1S1 / CA_L1S2 < 1.5를 만족할 수 있다.In Equation 16, CA_L1S1 means the effective diameter of the first surface (S1) of the first lens (101, 201, 301, 401), and CA_L1S2 means the effective diameter of the second surface (S2) of the first lens (101, 201, 301, 401). If Equation 16 is satisfied, the deterioration of optical properties due to temperature changes can be suppressed, the optical system (1000, 1100, 1200, 1300) can control the incident light, and factors affecting aberration can be set. there is. In the first to fourth embodiments, Equation 16 may preferably satisfy 1 < CA_L1S1 / CA_L1S2 < 1.5.
[수학식 17][Equation 17]
0.5 < CA_L1 / CA_L7 < 1.50.5 < CA_L1 / CA_L7 < 1.5
수학식 17에서 CA_L1은 제1렌즈(101,201,301,401)의 유효경을 의미하고, CA_L7는 제7렌즈(107,207,307,407)의 유효경을 의미한다. 렌즈부가 배치되는 렌즈 배럴은 렌즈 배럴 내에 적어도 하나의 이너 배럴을 구비하고, 렌즈부에 포함되는 플라스틱 재질 렌즈 중 적어도 일부는 이너 배럴에 배치될 수 있다. 플라스틱 재질의 렌즈의 경우, 고온에서 팽창량이 많아 렌즈 배럴 내 더 넓은 공간을 필요로 하다. 따라서, 유리 재질의 제1렌즈(101,201,301,401)의 유효경과 플라스틱 재질의 제7렌즈(107,207,307)의 유효경의 관계를 설정한 수학식 17를 만족하는 경우, 온도 변화에 따른 광학 특성의 저하를 억제할 수 있고, 광학계(1000,1100,1200,1300)는 입사되는 광을 제어할 수 있으며 수차에 영향을 주는 요소를 설정할 수 있다. 제1 내지 제4실시예에서 수학식 17은 바람직하게, 0.8 < CA_L1 / CA_L7 < 1.2를 만족할 수 있다.In Equation 17, CA_L1 refers to the effective diameter of the first lens (101, 201, 301, 401), and CA_L7 refers to the effective diameter of the seventh lens (107, 207, 307, 407). The lens barrel on which the lens unit is disposed has at least one inner barrel within the lens barrel, and at least some of the plastic lenses included in the lens unit may be disposed in the inner barrel. In the case of plastic lenses, the amount of expansion is large at high temperatures, so more space is required within the lens barrel. Therefore, if Equation 17, which sets the relationship between the effective diameter of the first lenses (101, 201, 301, 401) made of glass and the effective diameter of the seventh lenses (107, 207, 307) made of plastic, is satisfied, the deterioration of optical properties due to temperature changes can be suppressed. The optical systems (1000, 1100, 1200, and 1300) can control incident light and set factors affecting aberration. In the first to fourth embodiments, Equation 17 may preferably satisfy 0.8 < CA_L1 / CA_L7 < 1.2.
[수학식 18][Equation 18]
1 < CA_L1 / ImgH < 2.51 < CA_L1 / ImgH < 2.5
수학식 18는 제1렌즈(101,201,301,401)의 유효경의 크기(CA_L1)와 ImgH는 이미지 센서의 최대 대각선 길이의 관계를 설정할 수 있다. 수학식 18를 만족할 경우, 차량용 광학계에 적합한 TTL을 만족하며, 설정된 화각을 만족할 수 있다. 수학식 18의 하한치 미만인 경우, 광학계(1000,1100,1200,1300)에 배치되는 렌즈의 유효경이 가장 크게 되고, 이로 인해 TTL 이 길어지게 되는 문제가 있다. 수학식 18의 상한치 초과하는 경우, 광학계(1000,1100,1200,1300)에서 만족하는 화각보다 지나치게 커지게 되는 문제가 있다. 제1 내지 제4실시예에서 수학식 18는 바람직하게, 1.8 < CA_L1 / ImgH < 2.2을 만족할 수 있다.Equation 18 can establish the relationship between the size of the effective diameter (CA_L1) of the first lens (101, 201, 301, 401) and ImgH is the maximum diagonal length of the image sensor. If Equation 18 is satisfied, the TTL suitable for the vehicle optical system is satisfied and the set angle of view can be satisfied. If it is less than the lower limit of Equation 18, the effective diameter of the lens disposed in the optical system (1000, 1100, 1200, 1300) becomes the largest, which causes a problem in that the TTL becomes longer. If the upper limit of Equation 18 is exceeded, there is a problem that the angle of view becomes too large than the angle of view satisfied by the optical system (1000, 1100, 1200, 1300). In the first to fourth embodiments, Equation 18 may preferably satisfy 1.8 < CA_L1 / ImgH < 2.2.
[수학식 19][Equation 19]
1 < CT_Max / CG_Max < 21 < CT_Max / CG_Max < 2
수학식 19에서 CT_Max는 렌즈들 중 최대 중심 두께이고, CG_Max는 인접한 렌즈들 사이의 최대 간격이다. 수학식 19를 만족할 경우, 광학계는 설정된 화각 및 초점거리에서 양호한 광학 성능을 가질 수 있고, TTL을 축소시켜 줄 수 있다. 제1 내지 제4실시예에서 바람직하게, 수학식 19은 바람직하게, 1.2 < CT_Max / CG_Max < 2를 만족할 수 있다.In Equation 19, CT_Max is the maximum central thickness among the lenses, and CG_Max is the maximum spacing between adjacent lenses. If Equation 19 is satisfied, the optical system can have good optical performance at the set angle of view and focal distance, and can reduce TTL. In the first to fourth embodiments, Equation 19 may preferably satisfy 1.2 < CT_Max / CG_Max < 2.
[수학식 20][Equation 20]
1 < CA_max / CA_min < 21 < CA_max / CA_min < 2
수학식 20에서 CA_max는 렌즈들의 물체측면들과 센서측면들 중 최대 유효경을 나타내고, CA_Min은 렌즈들의 물체측면들과 센서측면들 중 최소 유효경을 나타낸다. 수학식 20를 만족할 경우, 광학계는 광학 성능을 유지하며 슬림하고 컴팩트한 구조를 위한 크기를 설정할 수 있다. 제1 내지 제4실시예에서 수학식 20는 바람직하게, 1.2 < CA_max / CA_min < 1.5를 만족할 수 있다.In Equation 20, CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses, and CA_Min represents the minimum effective diameter among the object sides and sensor sides of the lenses. If Equation 20 is satisfied, the optical system can maintain optical performance and set the size for a slim and compact structure. In the first to fourth embodiments, Equation 20 may preferably satisfy 1.2 < CA_max / CA_min < 1.5.
[수학식 21][Equation 21]
1 < CA_max / CA_Aver < 21 < CA_max / CA_Aver < 2
수학식 21에서 CA_max는 렌즈들의 물체측면들과 센서측면들 중 최대 유효경을 나타내고, CA_Aver는 렌즈들의 물체측면들과 센서측면들의 유효경의 평균을 나타낸다. 수학식 21을 만족할 경우, 광학계는 광학 성능을 유지하며 슬림하고 컴팩트한 구조를 위한 크기를 설정할 수 있다. 제1 내지 제4실시예에서 수학식 21은 바람직하게, 1 < CA_max / CA_Aver < 1.5를 만족할 수 있다.In Equation 21, CA_max represents the maximum effective diameter of the object sides and sensor sides of the lenses, and CA_Aver represents the average of the effective diameters of the object sides and sensor sides of the lenses. If Equation 21 is satisfied, the optical system can maintain optical performance and set the size for a slim and compact structure. In the first to fourth embodiments, Equation 21 may preferably satisfy 1 < CA_max / CA_Aver < 1.5.
[수학식 22][Equation 22]
0.5 < CA_min / CA_Aver < 10.5 < CA_min / CA_Aver < 1
수학식 22에서 CA_Min은 렌즈들의 물체측면들과 센서측면들 중 최소 유효경을 나타내고, CA_Aver는 렌즈들의 물체측면들과 센서측면들의 유효경의 평균을 나타낸다. 수학식 22를 만족할 경우, 광학계는 광학 성능을 유지하며 슬림하고 컴팩트한 구조를 위한 크기를 설정할 수 있다. 제1 내지 제4실시예에서 수학식 22은 바람직하게, 0.7 < CA_min / CA_Aver < 0.9를 만족할 수 있다.In Equation 22, CA_Min represents the minimum effective diameter among the object sides and sensor sides of the lenses, and CA_Aver represents the average of the effective diameters of the object sides and sensor sides of the lenses. If Equation 22 is satisfied, the optical system can maintain optical performance and set a size for a slim and compact structure. In the first to fourth embodiments, Equation 22 may preferably satisfy 0.7 < CA_min / CA_Aver < 0.9.
[수학식 23][Equation 23]
2 < CA_max / ImgH < 32 < CA_max / ImgH < 3
수학식 23는 CA_max는 렌즈들의 물체측면들과 센서측면들 중 최대 유효경을 나타내고, Imgh는 이미지 센서(500)의 최대 대각 길이의 1/2를 의미한다. 수학식 23를 만족할 경우, 광학계는 양호한 광학 성능을 유지할 수 있으며 슬림하고 컴팩트한 구조를 위한 크기를 설정할 수 있다. 제1 내지 제4실시예에서 수학식 23는 바람직하게, 2 < CA_max / ImgH < 2.5를 만족할 수 있다. In Equation 23, CA_max represents the maximum effective diameter among the object sides and sensor sides of the lenses, and Imgh represents 1/2 of the maximum diagonal length of the image sensor 500. If Equation 23 is satisfied, the optical system can maintain good optical performance and set a size for a slim and compact structure. In the first to fourth embodiments, Equation 23 may preferably satisfy 2 < CA_max / ImgH < 2.5.
[수학식 24][Equation 24]
25 < TTL < 3225 < TTL < 32
수학식 24에서 TTL(Total track length)은 제1렌즈(101,201,301,401)의 제1면(S1)의 중심에서 이미지 센서(500)의 상면까지의 광축(OA)에서의 거리(mm)를 의미한다. 수학식 24를 만족하는 경우, 적합한 차량용 광학계를 제공할 수 있다. 제1 내지 제4실시예에서 수학식 24는 바람직하게, 28 < TTL < 31를 만족할 수 있다. In Equation 24, TTL (Total track length) means the distance (mm) from the center of the first surface (S1) of the first lens (101, 201, 301, 401) to the upper surface of the image sensor 500 on the optical axis (OA). If Equation 24 is satisfied, a suitable automotive optical system can be provided. In the first to fourth embodiments, equation 24 may preferably satisfy 28 < TTL < 31.
[수학식 25][Equation 25]
5 < ImgH < 65 < ImgH < 6
수학식 25는 ImgH는 이미지 센서(500)의 최대 대각 길이의 1/2를 의미한다. 수학식 25은 이미지 센서(500)의 대각 크기(ImgH)를 설정할 수 있으며, 차량용 센서 사이즈를 갖는 광학계를 제공할 수 있다. 제1 내지 제4실시예에서 수학식 25는 바람직하게, 5 < ImgH < 5.5를 만족할 수 있다. In Equation 25, ImgH means 1/2 of the maximum diagonal length of the image sensor 500. Equation 25 can set the diagonal size (ImgH) of the image sensor 500 and provide an optical system having a sensor size for a vehicle. In the first to fourth embodiments, Equation 25 may preferably satisfy 5 < ImgH < 5.5.
[수학식 26][Equation 26]
3 < BFL < 43 < BFL < 4
수학식 26에서 BFL은 이미지 센서(500)에서 마지막 렌즈의 센서측면의 중심까지의 광축 거리이다. 수학식 26을 만족할 경우, 필터(600) 및 커버 글라스의 설치 공간을 확보할 수 있고 이미지 센서(500)와 마지막 렌즈 사이의 간격을 통해 구성 요소들의 조립성을 개선하며 결합 신뢰성을 개선할 수 있다. 제1 내지 제4실시예에서 수학식 26는 바람직하게, 3 < BFL < 3.5를 만족할 수 있다. BFL이 수학식 26의 범위 미만인 경우 이미지 센서로 진행되는 일부 광이 이미지 센서로 전달되지 못하여 해상도 저하의 원인이 될 수 있다. BFL이 수학식 26의 범위를 초과하는 경우 잡광이 유입되어 광학계의 수차 특성이 저하될 수 있다.In Equation 26, BFL is the optical axis distance from the image sensor 500 to the center of the sensor side of the last lens. If Equation 26 is satisfied, installation space for the filter 600 and cover glass can be secured, assembly of components can be improved through the gap between the image sensor 500 and the last lens, and coupling reliability can be improved. . In the first to fourth embodiments, Equation 26 may preferably satisfy 3 < BFL < 3.5. If the BFL is less than the range of Equation 26, some of the light traveling to the image sensor may not be transmitted to the image sensor, which may cause resolution deterioration. If the BFL exceeds the range of Equation 26, stray light may enter and the aberration characteristics of the optical system may deteriorate.
[수학식 27][Equation 27]
9 < F < 129 < F < 12
수학식 27는 전체 초점 거리(F)를 차량용 광학계에 맞게 설정할 수 있다. 제1 내지 제4실시예에서 수학식 27는 10 < F < 11를 만족할 수 있다. Equation 27 can set the overall focal length (F) to suit the vehicle optical system. In the first to fourth embodiments, Equation 27 may satisfy 10 < F < 11.
[수학식 28][Equation 28]
40 < FOV_H < 6040 < FOV_H < 60
수학식 28에서 FOV_H는 광학계(1000,1100,1200,1300)의 수평 화각(Degree)을 의미하며, 차량용 광학계에 적합한 화각을 제공할 수 있다. 제1 내지 제4실시예에서 바람직하게, 45 < FOV_H < 50를 만족할 수 있다.In Equation 28, FOV_H refers to the horizontal angle of view (Degree) of the optical system (1000, 1100, 1200, 1300), and can provide an angle of view suitable for the vehicle optical system. In the first to fourth embodiments, 45 < FOV_H < 50 may be preferably satisfied.
[수학식 29][Equation 29]
2 < TTL / CA_max < 32 < TTL / CA_max < 3
수학식 29에서 CA_max는 복수의 렌즈들의 물체측면 및 센서측면 중 가장 큰 유효경(mm)를 의미하며, TTL(Total track length)은 제1렌즈(101,201,301,401)의 제1면(S1)의 정점으로부터 이미지 센서(500)의 상면까지의 광축(OA)에서의 거리(mm)를 의미한다. 수학식 29는 광학계의 전체 광축 길이와 최대 유효경의 관계를 설정하여, 개선된 차량용 광학계를 제공할 수 있다. 제1 내지 제4실시예에서 수학식 29는 바람직하게, 2.5 < TTL / CA_max < 2.7를 만족할 수 있다.In Equation 29, CA_max refers to the largest effective diameter (mm) among the object side and sensor side of the plurality of lenses, and TTL (Total track length) refers to the image from the vertex of the first surface (S1) of the first lens (101, 201, 301, 401). It means the distance (mm) from the optical axis (OA) to the upper surface of the sensor 500. Equation 29 establishes the relationship between the total optical axis length of the optical system and the maximum effective diameter, thereby providing an improved optical system for vehicles. In the first to fourth embodiments, Equation 29 may preferably satisfy 2.5 < TTL / CA_max < 2.7.
[수학식 30][Equation 30]
5 < TTL / ImgH < 75 <TTL/ImgH<7
수학식 30는 TTL(Total track length)은 제1렌즈의 제1면(S1)의 정점으로부터 이미지 센서(500)의 상면까지의 광축(OA)에서의 거리(mm)를 의미하고, ImgH는 이미지 센서(500)의 최대 대각 길이의 1/2를 의미한다. 수학식 30를 만족할 경우, 광학계(1000,1100,1200,1300)는 차량용 이미지 센서(500)의 적용을 위한 TTL을 가질 수 있어, 보다 개선된 화질을 제공할 수 있다. 제1 내지 제4실시예에서 수학식 30는 바람직하게, 5 < TTL / ImgH < 6 를 만족할 수 있다.In Equation 30, TTL (Total track length) means the distance (mm) on the optical axis (OA) from the vertex of the first surface (S1) of the first lens to the upper surface of the image sensor 500, and ImgH is the image It means 1/2 of the maximum diagonal length of the sensor 500. When Equation 30 is satisfied, the optical systems 1000, 1100, 1200, and 1300 can have a TTL for application to the automotive image sensor 500, thereby providing improved image quality. In the first to fourth embodiments, equation 30 may preferably satisfy 5 < TTL / ImgH < 6.
[수학식 31][Equation 31]
0.5 < BFL / ImgH < 10.5 <BFL/ImgH<1
수학식 31은 BFL은 이미지 센서(500)에서 마지막 렌즈의 센서측면의 중심까지의 광축 거리이고, ImgH는 이미지 센서(500)의 최대 대각 길이의 1/2를 의미한다. 수학식 31을 만족할 경우, 광학계(1000,1100,1200,1300)는 차량용 이미지 센서(500)의 크기를 적용하기 위한 BFL(Back focal length)을 확보할 수 있고, 마지막 렌즈와 이미지 센서(500) 사이의 간격을 설정할 수 있고, 화각(FOV)의 중심부 및 주변부에서 양호한 광학 특성을 가질 수 있다. 제1 내지 제4실시예에서 수학식 31은 바람직하게, 0.5 < BFL / ImgH < 0.7를 만족할 수 있다.In Equation 31, BFL is the optical axis distance from the image sensor 500 to the center of the sensor side of the last lens, and ImgH is 1/2 of the maximum diagonal length of the image sensor 500. If Equation 31 is satisfied, the optical system (1000, 1100, 1200, 1300) can secure the BFL (Back focal length) to apply the size of the vehicle image sensor 500, and the last lens and image sensor 500 The distance between them can be set, and good optical characteristics can be achieved in the center and periphery of the field of view (FOV). In the first to fourth embodiments, Equation 31 may preferably satisfy 0.5 < BFL / ImgH < 0.7.
[수학식 32][Equation 32]
7 < TTL / BFL < 107 <TTL/BFL<10
수학식 32는 TTL(Total track length)은 제1렌즈(101,201,301,401)의 제1면(S1)의 정점으로부터 이미지 센서(500)의 상면까지의 광축(OA)에서의 거리(mm)를 의미하고, BFL은 이미지 센서(500)에서 마지막 렌즈의 센서측면의 중심까지의 광축 거리를 의미한다. 수학식 32을 만족할 경우, 광학계(1000,1100,1200,1300)는 BFL을 확보할 수 있다. 제1 내지 제4실시예에서 수학식 32는 바람직하게, 7 < TTL / BFL < 9를 만족할 수 있다.Equation 32 shows that TTL (Total track length) means the distance (mm) on the optical axis (OA) from the vertex of the first surface (S1) of the first lens (101, 201, 301, 401) to the upper surface of the image sensor 500, BFL refers to the optical axis distance from the image sensor 500 to the center of the sensor side of the last lens. If Equation 32 is satisfied, the optical system (1000, 1100, 1200, 1300) can secure BFL. In the first to fourth embodiments, Equation 32 may preferably satisfy 7 < TTL / BFL < 9.
[수학식 33][Equation 33]
2 < TTL / F < 32 < TTL / F < 3
수학식 33는 TTL(Total track length)은 제1렌즈의 제1면(S1)의 정점으로부터 이미지 센서(500)의 상면까지의 광축(OA)에서의 거리(mm)를 의미하고, F는 광학계의 유효 초점 거리이다. 이에 따라 운전자 지원시스템용 광학계를 제공할 수 있다. 실시예에 따른 광학계(1000,1100,1200,1300)가 수학식 33을 만족할 경우, 광학계(1000,1100,1200,1300)는 설정된 TTL 범위에서 적절한 초점 거리를 가질 수 있고, 저온에서 고온으로 온도가 변화함에도 적절한 초점 거리를 유지하며 결상이 될 수 있는 광학계를 제공한다. 수학식 33의 하한치 미만인 경우, 렌즈들의 굴절력을 증가시켜야 할 필요가 있어, 구면수차 또는 왜곡 수차의 보정이 어려워지며, 수학식 33의 상한치 초과인 경우, 렌즈들이 유효경이나 TTL이 길어지게 되어, 촬상 렌즈계가 대형화되는 문제가 발생될 수 있다. 제1 내지 제4실시예에서 수학식 33는 바람직하게, 2.5 < TTL / F < 3를 만족할 수 있다.In Equation 33, TTL (Total track length) means the distance (mm) on the optical axis (OA) from the vertex of the first surface (S1) of the first lens to the upper surface of the image sensor 500, and F is the optical system is the effective focal length of Accordingly, an optical system for a driver assistance system can be provided. If the optical system (1000, 1100, 1200, 1300) according to the embodiment satisfies Equation 33, the optical system (1000, 1100, 1200, 1300) can have an appropriate focal length in the set TTL range, and the temperature range from low to high temperature. Provides an optical system that can form images while maintaining an appropriate focal distance even as the If it is less than the lower limit of Equation 33, it is necessary to increase the refractive power of the lenses, making correction of spherical aberration or distortion aberration difficult, and if it is more than the upper limit of Equation 33, the effective diameter or TTL of the lenses becomes longer, making it difficult to capture images. A problem may arise where the lens system becomes larger. In the first to fourth embodiments, Equation 33 may preferably satisfy 2.5 < TTL / F < 3.
[수학식 34][Equation 34]
3 < F / BFL < 43 < F/BFL < 4
수학식 34은 F는 광학계의 유효 초점 거리이고, BFL은 이미지 센서(500)에서 마지막 렌즈의 센서측면의 중심까지의 광축 거리를 의미한다. 수학식 34을 만족할 경우, 광학계(1000,1100,1200,1300)는 설정된 화각을 가지며 적절한 초점 거리를 가질 수 있고, 차량용 광학계를 제공될 수 있다. 또한, 광학계(1000,1100,1200,1300)는 마지막 렌즈와 이미지 센서(500) 사이의 간격을 최소화할 수 있어 화각(FOV)의 주변부에서 양호한 광학 특성을 가질 수 있다. 제1 내지 제4실시예에서 수학식 34은 바람직하게, 3 < F / BFL < 3.5를 만족할 수 있다.In Equation 34, F is the effective focal length of the optical system, and BFL is the optical axis distance from the image sensor 500 to the center of the sensor side of the last lens. If Equation 34 is satisfied, the optical systems 1000, 1100, 1200, and 1300 can have a set angle of view and an appropriate focal length, and an optical system for a vehicle can be provided. Additionally, the optical systems 1000, 1100, 1200, and 1300 can minimize the gap between the last lens and the image sensor 500, so that they can have good optical characteristics at the periphery of the field of view (FOV). In the first to fourth embodiments, Equation 34 may preferably satisfy 3 < F / BFL < 3.5.
[수학식 35][Equation 35]
2 < F / ImgH < 32 < F/ImgH < 3
수학식 35은 F는 광학계의 유효 초점 거리이고, ImgH는 이미지 센서(500)의 최대 대각 길이의 1/2를 의미한다. 이러한 광학계(1000,1100,1200,1300)는 차량용 이미지 센서(500)의 크기에서 향상된 수차 특성을 가질 수 있다. 제1 내지 제4실시예에서 수학식 35은 바람직하게, 2 < F / ImgH < 2.5를 만족할 수 있다.In Equation 35, F is the effective focal length of the optical system, and ImgH means 1/2 of the maximum diagonal length of the image sensor 500. These optical systems (1000, 1100, 1200, and 1300) may have improved aberration characteristics in the size of the vehicle image sensor 500. In the first to fourth embodiments, Equation 35 may preferably satisfy 2 < F / ImgH < 2.5.
[수학식 36][Equation 36]
Figure PCTKR2024000510-appb-img-000001
Figure PCTKR2024000510-appb-img-000001
수학식 36에서 Z는 Sag로 비구면 상의 임의의 위치로부터 비구면의 정점까지의 광축 방향의 거리를 의미할 수 있다. Y는 비구면 상의 임의의 위치로부터 광축까지의 광축에 수직인 방향으로의 거리를 의미할 수 있다. c는 렌즈의 곡률을 의미할 수 있고, K는 코닉 상수를 의미할 수 있다. 또한, A, B, C, D, E,F는 비구면 계수(Aspheric constant)를 의미할 수 있다.In Equation 36, Z is Sag and can mean the distance in the optical axis direction from an arbitrary position on the aspherical surface to the vertex of the aspherical surface. Y may mean the distance from any location on the aspherical surface to the optical axis in a direction perpendicular to the optical axis. c may refer to the curvature of the lens, and K may refer to the Conic constant. Additionally, A, B, C, D, E, and F may mean aspheric constants.
제1 내지 제4실시예에 따른 광학계(1000,1100,1200,1300)는 수학식 1 내지 수학식 36 중 적어도 하나 또는 둘 이상의 수학식을 만족할 수 있다. 이 경우, 광학계(1000,1100,1200,1300)는 향상된 광학 특성을 가질 수 있다. 자세하게, 광학계(1000,1100,1200,1300)가 수학식 1 내지 수학식 36 중 적어도 하나 또는 둘 이상의 수학식을 만족할 경우 광학계(1000,1100,1200,1300)는 향상된 해상력을 가지며, 수차 및 왜곡 특성을 개선할 수 있다. 또한, 광학계(1000,1100,1200,1300)는 차량용 이미지 센서(500)를 적용하기 위한 BFL(Back focal length)을 확보할 수 있고, 온도 변화에 따른 광학 특성 저하를 보상할 수 있으며, 마지막 렌즈와 이미지 센서(500) 사이의 간격을 최소화할 수 있어 화각(FOV)의 중심부 및 주변부에서 양호한 광학 성능을 가질 수 있다. The optical systems 1000, 1100, 1200, and 1300 according to the first to fourth embodiments may satisfy at least one or two of Equations 1 to 36. In this case, the optical systems 1000, 1100, 1200, and 1300 may have improved optical characteristics. In detail, if the optical system (1000, 1100, 1200, 1300) satisfies at least one or two of Equations 1 to 36, the optical system (1000, 1100, 1200, 1300) has improved resolution and reduces aberration and distortion. Characteristics can be improved. In addition, the optical systems (1000, 1100, 1200, and 1300) can secure the back focal length (BFL) for applying the automotive image sensor 500, compensate for the degradation of optical characteristics due to temperature changes, and the last lens The gap between the image sensor 500 and the image sensor 500 can be minimized, allowing good optical performance in the center and periphery of the field of view (FOV).
표 13은 실시예의 광학계(1000,1100,1200,1300)에서 상술한 수학식 1 내지 수학식 35에 대한 결과 값에 대한 것이다. 표 13을 참조하면, 광학계(1000,1100,1200,1300)는 수학식 1 내지 수학식 35 중 적어도 하나, 두 개 이상 또는 세 개 이상을 만족하는 것을 알 수 있다. 자세하게, 실시예에 따른 광학계(1000,1100,1200,1300)는 수학식 1 내지 수학식 35을 모두 만족하는 것을 알 수 있다. 이에 따라, 광학계(1000,1100,1200,1300)는 화각(FOV)의 중심부와 주변부에서 양호한 광학 성능을 가질 수 있고 우수한 광학 특성을 가질 수 있다. Table 13 shows the result values for Equations 1 to 35 described above in the optical systems (1000, 1100, 1200, and 1300) of the example. Referring to Table 13, it can be seen that the optical systems 1000, 1100, 1200, and 1300 satisfy at least one, two, or three of Equations 1 to 35. In detail, it can be seen that the optical systems 1000, 1100, 1200, and 1300 according to the embodiment satisfy all of Equations 1 to 35. Accordingly, the optical systems 1000, 1100, 1200, and 1300 can have good optical performance and excellent optical characteristics in the center and periphery of the field of view (FOV).
수학식math equation 제1실시예Embodiment 1 제2실시예Second embodiment 제3실시예Third embodiment 제4실시예Embodiment 4
1One 30 < |f1| < 12030 < |f1| < 120 51.151 51.151 52.963 52.963 73.639 73.639 111.274 111.274
22 10 < |F_LG1| < 3010 < |F_LG1| < 30 17.904 17.904 21.283 21.283 22.077 22.077 29.521 29.521
33 20 < v1 < 6020 < v1 < 60 55.179 55.179 55.179 55.179 55.179 55.179 24.039 24.039
44 45 < v2 < 6045 < v2 < 60 55.707 55.707 55.707 55.707 55.707 55.707 55.707 55.707
55 15 < v5 < 2515 < v5 < 25 21.213 21.213 21.213 21.213 21.213 21.213 20.379 20.379
66 0.1 < CG1 / ΣCG < 0.50.1 < CG1 / ΣCG < 0.5 0.417 0.417 0.392 0.392 0.388 0.388 0.467 0.467
77 0.1 < CG1 / ΣCT < 0.30.1 < CG1 / ΣCT < 0.3 0.120 0.120 0.105 0.105 0.127 0.127 0.149 0.149
88 0.01 < CG1 / TTL < 0.20.01 < CG1 / TTL < 0.2 0.083 0.083 0.074 0.074 0.085 0.085 0.100 0.100
99 0.3 < ΣCT / TTL < 0.80.3 < ΣCT / TTL < 0.8 0.688 0.688 0.700 0.700 0.665 0.665 0.672 0.672
1010 0.1 < ΣCG / TTL < 0.50.1 < ΣCG / TTL < 0.5 0.199 0.199 0.188 0.188 0.218 0.218 0.214 0.214
1111 3 < ΣCT / ΣCG < 43 < ΣCT / ΣCG < 4 3.463 3.463 3.726 3.726 3.045 3.045 3.138 3.138
1212 25 < ΣAbb / ΣIndex < 3525 < ΣAbb / ΣIndex < 35 32.78332.783 32.78332.783 32.78332.783 28.44328.443
1313 1 < ΣCT / ΣET < 21 < ΣCT / ΣET < 2 1.133 1.133 1.107 1.107 1.122 1.122 1.130 1.130
1414 0.5 < CT1 / ET1 < 1.50.5 < CT1 / ET1 < 1.5 0.843 0.843 0.812 0.812 0.889 0.889 1.062 1.062
1515 0.5 < GLCa_AVER/PLCa_AVER < 1.50.5 < GLCa_AVER/PLCa_AVER < 1.5 0.986 0.986 1.053 1.053 0.994 0.994 0.978 0.978
1616 1 < CA_L1S1 / CA_L1S2 < 21 < CA_L1S1 / CA_L1S2 < 2 1.197 1.197 1.185 1.185 1.200 1.200 1.227 1.227
1717 0.5 < CA_L1 / CA_L7 < 1.50.5 < CA_L1 / CA_L7 < 1.5 0.935 0.935 1.079 1.079 0.987 0.987 0.962 0.962
1818 1 < CA_L1 / ImgH < 2.51 < CA_L1 / ImgH < 2.5 1.907 1.907 2.001 2.001 1.976 1.976 1.970 1.970
1919 1 < CT_Max / CG_Max < 21 < CT_Max / CG_Max < 2 1.918 1.918 1.812 1.812 1.675 1.675 1.377 1.377
2020 1 < CA_max / CA_min < 21 < CA_max / CA_min < 2 1.404 1.404 1.358 1.358 1.389 1.389 1.357 1.357
2121 1 < CA_max / CA_Aver < 21 < CA_max / CA_Aver < 2 1.183 1.183 1.185 1.185 1.153 1.153 1.138 1.138
2222 0.5 < CA_min / CA_Aver < 10.5 < CA_min / CA_Aver < 1 0.842 0.842 0.872 0.872 0.830 0.830 0.839 0.839
2323 2 < CA_max / ImgH < 32 < CA_max / ImgH < 3 2.292 2.292 2.279 2.279 2.227 2.227 2.171 2.171
2424 25 < TTL < 3225 < TTL < 32 29.995 29.995 30.000 30.000 30.000 30.000 29.995 29.995
2525 5 < ImgH < 65 < ImgH < 6 5.145 5.145 5.145 5.145 5.145 5.145 5.145 5.145
2626 3 < BFL < 43 < BFL < 4 3.416 3.416 3.375 3.375 3.495 3.495 3.404 3.404
2727 9 < F < 129 < F < 12 10.878 10.878 10.863 10.863 10.884 10.884 10.881 10.881
2828 40 < FOV_H < 6040 < FOV_H < 60 46.0046.00 46.0046.00 46.0046.00 46.0046.00
2929 2 < TTL / CA_max < 32 < TTL / CA_max < 3 2.543 2.543 2.558 2.558 2.618 2.618 2.685 2.685
3030 5 < TTL / ImgH < 75 <TTL/ImgH<7 5.830 5.830 5.831 5.831 5.831 5.831 5.830 5.830
3131 0.5 < BFL / ImgH < 10.5 <BFL/ImgH<1 0.664 0.664 0.656 0.656 0.679 0.679 0.662 0.662
3232 7 < TTL / BFL < 107 <TTL/BFL<10 8.781 8.781 8.888 8.888 8.585 8.585 8.811 8.811
3333 2 < TTL / F < 32 < TTL / F < 3 2.757 2.757 2.762 2.762 2.756 2.756 2.757 2.757
3434 3 < F / BFL < 43 < F/BFL < 4 3.184 3.184 3.219 3.219 3.115 3.115 3.196 3.196
3535 2 < F / ImgH < 32 < F/ImgH < 3 2.114 2.114 2.111 2.111 2.115 2.115 2.115 2.115
도 49는 발명의 실시예에 따른 카메라 모듈 또는 광학계가 적용된 차량의 평면도의 예이다. 도 49를 참조하면, 발명의 실시예에 따른 차량용 카메라 시스템은, 영상 생성부(11), 제1정보 생성부(12), 제2정보 생성부(21,22,23,24,25,26) 및 제어부(14)를 포함한다. 영상 생성부(11)는 자차량에 배치되는 적어도 하나의 카메라 모듈(31)을 포함할 수 있으며, 자차량의 전방 또는/및 운전자를 촬영하여 자차량의 전방영상이나 차량 내부 영상을 생성할 수 있다. 영상 생성부(11)는 카메라 모듈(31)을 이용하여 자차량의 전방뿐만 아니라 하나 이상의 방향에 대한 자차량의 주변을 촬영하여 자차량의 주변영상을 생성할 수 있다. 여기서, 전방영상 및 주변영상은 디지털 영상일 수 있으며, 컬러 영상, 흑백 영상 및 적외선 영상 등을 포함할 수 있다. 또한 전방영상 및 주변영상은 정지영상 및 동영상을 포함할 수 있다. 영상 생성부(11)는 운전자 영상, 전방영상 및 주변영상을 제어부(14)에 제공한다. 이어서, 제1정보 생성부(12)는 자차량에 배치되는 적어도 하나의 레이더 또는/및 카메라를 포함할 수 있으며, 자차량의 전방을 감지하여 제1감지정보를 생성한다. 구체적으로, 제1정보 생성부(12)는 자차량에 배치되고, 자차량의 전방에 위치한 차량들의 위치 및 속도, 보행자의 여부 및 위치 등을 감지하여 제1감지정보를 생성한다. Figure 49 is an example of a top view of a vehicle to which a camera module or optical system is applied according to an embodiment of the invention. Referring to FIG. 49, the vehicle camera system according to an embodiment of the invention includes an image generator 11, a first information generator 12, and a second information generator 21, 22, 23, 24, 25, and 26. ) and a control unit 14. The image generator 11 may include at least one camera module 31 disposed in the host vehicle, and can generate a front image of the host vehicle or an image inside the vehicle by filming the front of the host vehicle and/or the driver. there is. The image generator 11 may use the camera module 31 to capture not only the front of the vehicle but also the surroundings of the vehicle in one or more directions to generate an image surrounding the vehicle. Here, the front image and peripheral image may be digital images and may include color images, black-and-white images, and infrared images. Additionally, the front image and surrounding image may include still images and moving images. The image generator 11 provides the driver image, front image, and surrounding image to the control unit 14. Next, the first information generating unit 12 may include at least one radar or/and a camera disposed in the host vehicle, and generates first detection information by detecting the front of the host vehicle. Specifically, the first information generator 12 is disposed in the host vehicle and generates first detection information by detecting the location and speed of vehicles located in front of the host vehicle and the presence and location of pedestrians.
제1정보 생성부(12)에서 생성한 제1감지정보를 이용하여 자차량과 앞차와의 거리를 일정하게 유지하도록 제어할 수 있고, 운전자가 자차량의 주행 차로를 변경하고자 하는 경우나 후진 주차 시와 같이 기 설정된 특정한 경우에 차량 운행의 안정성을 높일 수 있다. 제1정보 생성부(12)는 제1감지정보를 제어부(14)에 제공한다. 제2정보 생성부(21,22,23,24,25,26)는 영상 생성부(11)에서 생성한 전방영상과 제1정보 생성부(12)에서 생성한 제 1 감지정보에 기초하여, 자차량의 각 측면을 감지하여 제2감지정보를 생성한다. 구체적으로, 제2정보 생성부(21,22,23,24,25,26)는 자차량에 배치되는 적어도 하나의 레이더 또는/및 카메라를 포함할 수 있으며, 자차량의 측면에 위치한 차량들의 위치 및 속도를 감지하거나 영상을 촬영할 수 있다. 여기서, 제2정보 생성부(21,22,23,24,25,26)는 자차량의 전방 양 코너, 사이드 미러, 및 후방 중앙 및 후방 양 코너에 각각 배치될 수 있다. Using the first detection information generated by the first information generator 12, the distance between the own vehicle and the vehicle in front can be controlled to maintain a constant distance, and when the driver wants to change the driving lane of the own vehicle or reverse parking, The stability of vehicle operation can be improved in certain preset cases, such as when driving. The first information generation unit 12 provides first detection information to the control unit 14. The second information generators 21, 22, 23, 24, 25, and 26 are based on the front image generated by the image generator 11 and the first sensed information generated by the first information generator 12, Each side of the vehicle is sensed to generate second sensing information. Specifically, the second information generators 21, 22, 23, 24, 25, and 26 may include at least one radar or/and camera disposed on the host vehicle, and may include positions of vehicles located on the sides of the host vehicle. and speed can be detected or video taken. Here, the second information generation units 21, 22, 23, 24, 25, and 26 may be disposed at both front corners, side mirrors, and the rear center and rear corners of the vehicle, respectively.
이러한 차량용 카메라 시스템 중 적어도 하나의 정보 생성부는 상기에 개시된 실시예에 기재된 광학계 및 이를 갖는 카메라 모듈을 구비할 수 있으며, 자차량의 전방, 후방, 각 측면 또는 코너 영역을 통해 획득된 정보를 이용하여 사용자에게 제공하거나 처리하여 자동 운전 또는 주변 안전으로부터 차량과 물체를 보호할 수 있다.At least one information generator of these vehicle camera systems may include an optical system described in the above-described embodiment and a camera module having the same, and may use information acquired through the front, rear, each side, or corner area of the vehicle. It can be provided to the user or processed to protect vehicles and objects from autonomous driving or ambient safety.
발명의 실시예에 따른 카메라 모듈의 광학계는 안전 규제, 자율주행 기능의 강화 및 편의성 증가를 위해 차량 내에 복수로 탑재될 수 있다. 또한 카메라 모듈의 광학계는 차선유지시스템(LKAS: Lane keeping assistance system), 차선이탈 경보시스템(LDWS), 운전자 감시 시스템(DMS: Driver monitoring system)과 같은 제어를 위한 부품으로서, 차량 내에 적용되고 있다. 이러한 차량용 카메라 모듈은 주위 온도 변화에도 안정적인 광학 성능을 구현할 수 있고 가격 경쟁력이 있는 모듈을 제공하여, 차량용 부품의 신뢰성을 확보할 수 있다.The optical system of the camera module according to an embodiment of the invention can be mounted in multiple numbers in a vehicle to improve safety regulations, strengthen autonomous driving functions, and increase convenience. Additionally, the optical system of the camera module is used in vehicles as a control component for lane keeping assistance systems (LKAS), lane departure warning systems (LDWS), and driver monitoring systems (DMS). These automotive camera modules can provide stable optical performance despite changes in ambient temperature and provide price-competitive modules to ensure the reliability of automotive components.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The features, structures, effects, etc. described in the embodiments above are included in at least one embodiment of the present invention and are not necessarily limited to only one embodiment. Furthermore, the features, structures, effects, etc. illustrated in each embodiment can be combined or modified and implemented in other embodiments by a person with ordinary knowledge in the field to which the embodiments belong. Therefore, contents related to such combinations and modifications should be construed as being included in the scope of the present invention.
또한, 이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.In addition, although the above description has been made focusing on the examples, this is only an example and does not limit the present invention, and those skilled in the art will understand the above examples without departing from the essential characteristics of the present embodiment. You will be able to see that various modifications and applications are possible. For example, each component specifically shown in the examples can be modified and implemented. And these variations and differences in application should be construed as being included in the scope of the present invention as defined in the appended claims.

Claims (10)

  1. 광축을 따라 배치되는 제1 내지 제7렌즈를 포함하고, It includes first to seventh lenses arranged along the optical axis,
    상기 제1렌즈는 음(-)의 굴절력을 갖고, The first lens has negative refractive power,
    상기 제2렌즈는 음(-)의 굴절력을 갖고, The second lens has negative refractive power,
    상기 제3렌즈는 양(+)의 굴절력을 갖고, The third lens has positive (+) refractive power,
    상기 제4렌즈는 양(+)의 굴절력을 갖고, The fourth lens has positive (+) refractive power,
    상기 제5렌즈는 음(-)의 굴절력을 갖고, The fifth lens has negative refractive power,
    상기 제6렌즈는 양(+)의 굴절력을 갖고, The sixth lens has positive refractive power,
    상기 제7렌즈는 음(-)의 굴절력을 갖고, The seventh lens has negative refractive power,
    상기 제2렌즈와 상기 제3렌즈 사이에 조리개가 배치되고, An aperture is disposed between the second lens and the third lens,
    상기 광축에서 상기 제1 내지 제7렌즈 중 상기 제3렌즈의 두께가 가장 큰 광학계.An optical system in which the third lens has the largest thickness among the first to seventh lenses on the optical axis.
  2. 제1항에 있어서,According to paragraph 1,
    상기 제1렌즈와 상기 제3렌즈 중 적어도 하나는 유리 재질이고,At least one of the first lens and the third lens is made of glass,
    상기 제2렌즈와 상기 제4 내지 제7렌즈 중 적어도 하나는 플라스틱 재질인 광학계.An optical system in which at least one of the second lens and the fourth to seventh lenses is made of plastic.
  3. 제1항에 있어서,According to paragraph 1,
    상기 광축에서 상기 제6렌즈는 양면이 볼록한 형상이고, At the optical axis, the sixth lens has a convex shape on both sides,
    상기 광축에서 상기 제7렌즈는 물체측으로 볼록한 메니스커스 형상인 광학계.An optical system in which the seventh lens has a meniscus shape convex toward the object on the optical axis.
  4. 제1항에 있어서,According to paragraph 1,
    상기 제1 내지 제7렌즈 중 상기 제1렌즈의 초점 거리의 절대값이 가장 큰 광학계.An optical system in which the absolute value of the focal length of the first lens among the first to seventh lenses is the largest.
  5. 제1항에 있어서,According to paragraph 1,
    상기 광축에서 유효경 영역까지, 인접하게 배치되는 렌즈 중 아베수 차이가 가장 큰 두 렌즈의 거리의 최대값은 다른 인접한 두 렌즈 사이의 거리의 최대값 보다 작은 광학계.An optical system wherein, from the optical axis to the effective diameter area, the maximum distance between two lenses with the largest Abbe number difference among adjacent lenses is smaller than the maximum distance between the other two adjacent lenses.
  6. 제1항에 있어서, According to paragraph 1,
    상기 제4렌즈 및 상기 제5렌즈는 인접하게 배치되는 렌즈 중 아베수 차이가 가장 큰 광학계.The fourth lens and the fifth lens are an optical system in which the difference in Abbe number is the largest among adjacent lenses.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,According to any one of claims 1 to 6,
    아래의 조건식을 만족하는 광학계.An optical system that satisfies the condition below.
    <조건식><Conditional expression>
    40 < FOV_H < 6040 < FOV_H < 60
    (상기 조건식에서 FOV_H는 상기 광학계의 수평 화각(Horizontal Degree)를 의미한다.)(FOV_H in the above conditional expression refers to the horizontal angle of view of the optical system.)
  8. 제1항 내지 제6항 중 어느 한 항에 있어서, According to any one of claims 1 to 6,
    아래의 조건식을 만족하는 광학계.An optical system that satisfies the condition below.
    <조건식><Conditional expression>
    0.3 < CG1 / ΣCG < 0.50.3 < CG1 / ΣCG < 0.5
    (상기 조건식에서 CG1은 상기 광축에서 상기 제1렌즈와 상기 제2렌즈 사이의 거리이고, ΣCG는 상기 광축에서 인접한 렌즈들 사이의 간격들의 합이다.)(In the above conditional expression, CG1 is the distance between the first lens and the second lens on the optical axis, and ΣCG is the sum of the intervals between adjacent lenses on the optical axis.)
  9. 제1항 내지 제6항 중 어느 한 항에 있어서, According to any one of claims 1 to 6,
    아래의 조건식을 만족하는 광학계.An optical system that satisfies the condition below.
    <조건식><conditional expression>
    5 < TTL / ImgH < 75 <TTL/ImgH<7
    (상기 조건식에서 TTL은 상기 제1렌즈의 물체측면의 정점으로부터 이미지 센서의 상면까지의 광축에서의 거리이고, ImgH는 상기 이미지 센서의 최대 대각 길이의 1/2이다.) (In the above conditional expression, TTL is the distance on the optical axis from the vertex of the object side of the first lens to the upper surface of the image sensor, and ImgH is 1/2 of the maximum diagonal length of the image sensor.)
  10. 광축을 따라 배치되는 제1 내지 제7렌즈를 포함하고, It includes first to seventh lenses arranged along the optical axis,
    상기 제2렌즈는 음(-)의 굴절력을 갖고, The second lens has negative refractive power,
    상기 제3렌즈는 양(+)의 굴절력을 갖고, The third lens has positive (+) refractive power,
    상기 제4렌즈는 양(+)의 굴절력을 갖고, The fourth lens has positive (+) refractive power,
    상기 제5렌즈는 음(-)의 굴절력을 갖고, The fifth lens has negative refractive power,
    상기 제6렌즈는 양(+)의 굴절력을 갖고, The sixth lens has positive refractive power,
    상기 제7렌즈는 음(-)의 굴절력을 갖고, The seventh lens has negative refractive power,
    상기 제1 내지 제7렌즈 중 상기 제2렌즈의 유효경이 가장 작고, Among the first to seventh lenses, the effective diameter of the second lens is the smallest,
    상기 제1 내지 제7렌즈 중 상기 제4렌즈의 유효경이 가장 큰 광학계.An optical system in which the fourth lens has the largest effective diameter among the first to seventh lenses.
PCT/KR2024/000510 2023-01-12 2024-01-10 Optical system and camera module WO2024151089A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2023-0005019 2023-01-12
KR20230005019 2023-01-12
KR10-2023-0051653 2023-04-19
KR1020230051653A KR20240112722A (en) 2023-01-12 2023-04-19 Optical system and camera module

Publications (1)

Publication Number Publication Date
WO2024151089A1 true WO2024151089A1 (en) 2024-07-18

Family

ID=91897298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/000510 WO2024151089A1 (en) 2023-01-12 2024-01-10 Optical system and camera module

Country Status (1)

Country Link
WO (1) WO2024151089A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111007643A (en) * 2019-12-26 2020-04-14 瑞声通讯科技(常州)有限公司 Camera optics
CN111965795A (en) * 2020-09-17 2020-11-20 王振 Imaging optical system
CN112711127A (en) * 2021-01-12 2021-04-27 天津欧菲光电有限公司 Imaging system, lens module and electronic equipment
JP6882838B2 (en) * 2019-03-07 2021-06-02 カンタツ株式会社 Imaging lens
JP7155361B2 (en) * 2017-09-13 2022-10-18 マクセル株式会社 Imaging lens system and imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155361B2 (en) * 2017-09-13 2022-10-18 マクセル株式会社 Imaging lens system and imaging device
JP6882838B2 (en) * 2019-03-07 2021-06-02 カンタツ株式会社 Imaging lens
CN111007643A (en) * 2019-12-26 2020-04-14 瑞声通讯科技(常州)有限公司 Camera optics
CN111965795A (en) * 2020-09-17 2020-11-20 王振 Imaging optical system
CN112711127A (en) * 2021-01-12 2021-04-27 天津欧菲光电有限公司 Imaging system, lens module and electronic equipment

Similar Documents

Publication Publication Date Title
WO2020145637A1 (en) Image capturing lens
WO2023163511A1 (en) Optical system and camera module
WO2023239159A1 (en) Optical system and camera module comprising same
WO2024151089A1 (en) Optical system and camera module
WO2024151088A1 (en) Optical system and camera module
WO2024151087A1 (en) Optical system and camera module
WO2024085431A1 (en) Optical system and camera module
WO2024043757A1 (en) Optical system and camera module
WO2024049284A1 (en) Optical system and camera module
WO2024181808A1 (en) Optical system and camera module
WO2024049283A1 (en) Optical system and camera module
WO2024039153A1 (en) Optical system and camera module
WO2024049285A1 (en) Optical system and camera module
WO2024162827A1 (en) Optical system and camera module comprising same
WO2024177346A1 (en) Optical system and camera module
WO2023239204A1 (en) Optical system and camera module
WO2025005510A1 (en) Optical system and camera module
WO2024063501A1 (en) Optical system and camera module
WO2024080800A1 (en) Receiving optical system, transmitting optical system, sensor system, and lidar device
WO2024205219A1 (en) Optical system and camera module
WO2024128816A1 (en) Optical system and camera module
WO2024136387A1 (en) Optical system and camera module
WO2024186070A1 (en) Optical system and camera module
WO2024106964A1 (en) Optical system and camera module
WO2023106797A1 (en) Optical system and camera module comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24741710

Country of ref document: EP

Kind code of ref document: A1