[go: up one dir, main page]

WO2024149262A1 - 一种高磁感低铁损无取向电工钢板及其制造方法 - Google Patents

一种高磁感低铁损无取向电工钢板及其制造方法 Download PDF

Info

Publication number
WO2024149262A1
WO2024149262A1 PCT/CN2024/071433 CN2024071433W WO2024149262A1 WO 2024149262 A1 WO2024149262 A1 WO 2024149262A1 CN 2024071433 W CN2024071433 W CN 2024071433W WO 2024149262 A1 WO2024149262 A1 WO 2024149262A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
oriented electrical
electrical steel
temperature
manufacturing
Prior art date
Application number
PCT/CN2024/071433
Other languages
English (en)
French (fr)
Inventor
张峰
吕学钧
房现石
王波
崔敏
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Publication of WO2024149262A1 publication Critical patent/WO2024149262A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/02Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a steel plate and a manufacturing method thereof, and in particular to a non-oriented electrical steel plate and a manufacturing method thereof.
  • electrical steel sheets which are raw and auxiliary materials for various motors, compressors, EI cores, drive motors, etc., require non-oriented electrical steel sheets to have higher magnetic induction and lower iron loss while having relatively low manufacturing costs.
  • Normalizing annealing, or intermediate annealing + secondary cold rolling, is used to improve the favorable texture of steel.
  • the main problems with the above method are that the manufacturing process is complicated, the manufacturing cost is high, and additional measures such as continuous casting electromagnetic stirring and normalizing annealing are required to eliminate the tile-shaped defects.
  • One of the purposes of the present invention is to provide a non-oriented electrical steel sheet, which is obtained by optimizing the chemical composition design and process design of the steel, and has excellent electromagnetic properties, excellent surface quality and no shingle-shaped defects on the surface.
  • the present invention provides a non-oriented electrical steel sheet, which contains the following chemical elements in mass %:
  • Si 1.20-2.40%
  • Mn 0.10-0.40%
  • Al 0.10-0.60%
  • the balance is Fe and inevitable impurities
  • the mass percentage of Si+Al is: 1.30-2.80%.
  • the unavoidable impurities include S, N, O and Ti, and the contents of S, N, O and Ti satisfy at least one of the following: S ⁇ 0.0020%, N ⁇ 0.0020%, O ⁇ 0.0020%, Ti ⁇ 0.0010%.
  • C is easy to combine with Nb, V, and Ti to form fine C-containing inclusions, which deteriorate the electromagnetic properties of the finished steel sheet.
  • the mass percentage of C element is controlled to be 0 ⁇ C ⁇ 0.0030%, for example, 0.0008% ⁇ C ⁇ 0.0030%.
  • the upper limit of C content can also be 0.0025%, etc.
  • Si can increase the resistivity of the material, thereby improving the electromagnetic properties of the finished steel sheet.
  • the Si content is lower than 1.20%, the iron loss cannot be effectively reduced.
  • the Si content is higher than 2.40%, the manufacturing cost will increase significantly.
  • the mass percentage of the Si element is controlled to be between 1.20-2.40%.
  • the lower limit of the Si content can also be 1.35%, 1.85%, etc.
  • the upper limit of the Si content can also be 2.37%, 2.20%, etc.
  • Mn combines with S to form MnS, which suppresses the adverse effects of S.
  • Mn content is lower than 0.10%, it does not play a good role in fixing S.
  • Mn content is higher than 0.40%, it will lead to a significant increase in manufacturing costs.
  • the mass percentage of the Mn element is controlled between 0.10-0.40%.
  • the lower limit of the Mn content can also be 0.12%, 0.18%, etc.
  • the upper limit of the Mn content can also be 0.35%, etc.
  • Al can increase the resistivity of the material, thereby improving the electromagnetic properties of the finished steel sheet.
  • the mass percentage of the Al element is controlled between 0.10-0.60%.
  • the lower limit of the Al content can also be 0.18%, etc.
  • the upper limit of the Al content can also be 0.48%, etc.
  • the total content of Si+Al is limited to 1.30%-2.80% because: when the total content of Si and Al is lower than 1.30%, a ⁇ phase transition will occur during the hot rolling process, and the hot rolling recrystallization structure is sufficient, so no ridge-like defects will occur.
  • the manufacturing process needs to add a normalizing annealing step to improve the magnetic induction, the hot rolling recrystallization structure is sufficient, and no ridge-like defects will occur. Therefore, the present invention focuses on solving the problem of making the non-oriented electrical steel sheet have no ridge-like defects when the total content of Si and Al is within the range of 1.30-2.80% without normalizing annealing.
  • the lower limit of the total content of Si+Al can also be 1.83%, 2.28%, etc.
  • the upper limit of the total content of Si+Al can also be 2.72%, 2.41%, etc.
  • the microstructure of the non-oriented electrical steel sheet (i.e., finished cold-rolled sheet) of the present invention is ferrite equiaxed grains (completely recrystallized), which have regular morphology, large size (compared with conventional products of the same grade, the average grain size is 10-30 ⁇ m higher) and uniform distribution.
  • the average grain size of the non-oriented electrical steel sheet measured according to standard GB T 6394-2017 is 60-140 ⁇ m.
  • the non-oriented electrical steel sheet of the present invention has a thickness of 0.35-0.65 mm.
  • the non-oriented electrical steel sheet of the present invention has an iron loss P 15/50 ⁇ 3.60 W/kg, and a magnetic induction B 50 ⁇ 1.730 T.
  • Another object of the present invention is to provide a method for manufacturing a non-oriented electrical steel sheet, which obtains a non-oriented electrical steel sheet with high magnetic induction and low iron loss by controlling the hot rolling rough rolling pass and the reduction rate, as well as the temperature drop after hot rolling coiling, and the surface quality of the steel sheet is excellent, without ridge-like defects (i.e., uneven thickness, unevenness, and corrugated defects similar to corrugations that appear along the rolling direction of the finished steel sheet).
  • the present invention provides a method for manufacturing a non-oriented electrical steel sheet, which comprises the steps of:
  • the hot rolling rough rolling is controlled to be 2-4 times (for example, 3-4 times), and the reduction rate of the last rough rolling is 51%-67%, in order to ensure that the residual secondary columnar crystals of the intermediate billet are completely crushed, so as to provide a basis for the subsequent fine rolling to form equiaxed crystals with complete recrystallization and regular shape. If the reduction rate of the last pass is higher than 67%, the rolling load is too large, and the equipment capacity is required to be high. At the same time, the hot rolled plate shape is not good and edge cracks are prone to occur.
  • the reduction rate of the last pass is lower than 51%, the residual secondary columnar crystals of the intermediate billet cannot be completely crushed, and 5-20% of the coarse columnar crystals or equiaxed crystals with a ratio of the major axis to the minor axis greater than 4 will still remain after the subsequent fine rolling, which will deteriorate the electromagnetic properties of the finished steel plate and produce ridge-like defects.
  • the cooling rate of the hot rolled coil in the temperature range of 400-650°C is limited to 1.0-4.0°C/min because: after the present invention is subjected to rough rolling, finish rolling and coiling in sequence, the residual heat of the hot rolled coil is used to promote the growth of the recrystallized microstructure in the steel and achieve uniform equiaxed grain size in the steel.
  • the temperature drop rate is lower than 1.0°C/min, a large amount of oxide layer and nitride layer will be formed, which is not conducive to the improvement of the electromagnetic properties of the finished steel plate; if the temperature drop rate is higher than 4.0°C/min, the growth of the recrystallized microstructure is insufficient, and the uniformity and proportion of the ⁇ 111 ⁇ texture grain orientation are poor, which will be inherited to the finished steel plate after cold rolling and continuous annealing, resulting in the appearance of ridge defects.
  • the blast furnace molten iron is sequentially subjected to molten iron pretreatment, converter smelting, RH refining and continuous casting to obtain a continuous casting billet (for example, the target nominal thickness of the continuous casting billet is about 230 mm).
  • the superheat of the molten steel is 15-45°C; and/or, continuous casting is adopted for casting, and the equiaxed grain ratio (i.e., the percentage of equiaxed grains in the total grains) of the obtained continuous casting billet is 18%-64%.
  • the equiaxed grains are measured according to the standard GB/T 226-2015 "Macrostructure and Defect Acid Etching Test Method for Steel".
  • the temperature entering the furnace is from room temperature to 850°C, and the temperature exiting the furnace is from 1050°C to 1200°C.
  • the rough rolling passes are 2-4 passes.
  • the finishing rolling temperature is 700-950°C.
  • the microstructure of the obtained hot-rolled steel sheet is ferrite equiaxed grains with a recrystallization rate of 85-90%, and the ridge defects can be avoided without the need for a normalizing annealing step.
  • the coiling temperature is 550-780°C.
  • the thickness of the steel plate obtained by coiling is 2.0-2.6 mm.
  • the continuous annealing temperature is 820-980°C.
  • FIG. 1 shows the relationship between the temperature drop rate after coiling and the magnetic induction B 50 in the method for manufacturing a non-oriented electrical steel sheet according to the present invention.
  • FIG. 2 shows the relationship between the final rough rolling reduction ratio and the recrystallization ratio in the method for manufacturing the non-oriented electrical steel sheet according to the present invention.
  • FIG. 3 shows the microstructure of the finished steel sheet of Example 1 of the non-oriented electrical steel sheet according to the present invention.
  • FIG. 4 shows the microstructure of the finished steel sheet of Comparative Example 1. As shown in FIG. 4
  • FIG1 shows the relationship between the temperature drop rate after coiling and the magnetic induction B 50 in the method for manufacturing the non-oriented electrical steel sheet of the present invention based on a large number of experimental results.
  • Figure 2 shows the relationship between the final rough rolling reduction rate and the recrystallization rate in the method for manufacturing non-oriented electrical steel sheets according to the present invention based on a large number of experimental results.
  • the recrystallization rate of the hot-rolled steel plate can be controlled at 85%-90%, which can avoid the appearance of ridge defects on the surface of the finished steel plate.
  • Table 1 lists the chemical element contents of the electrical steel sheets of Examples 1-6 and Comparative Examples 1-2.
  • the non-oriented electrical steel sheets of Examples 1 to 6 of the present invention are all prepared by the following steps:
  • the heating temperature into the furnace is from room temperature to 850°C, and the heating temperature out of the furnace is 1050-1200°C;
  • Comparative Example 1 is basically the same as that of the embodiment of the present invention, but the temperature drop control is not performed after coiling, but natural cooling is performed, and the process parameters of rough rolling do not meet the requirements of the present invention.
  • the manufacturing process of Comparative Example 2 is basically the same as that of the embodiment of the present invention, but the process parameters of temperature drop control after coiling do not meet the requirements of the present invention.
  • the present invention also samples the finished steel sheets of Example 1 and Comparative Example 1 and analyzes their microstructures.
  • Figures 3 and 4 show the microstructures of the finished steel sheets of Example 1 and Comparative Example 1 of the present invention, respectively.
  • the microstructure of the finished steel plate of Example 1 is completely recrystallized ferrite equiaxed grains, and the equiaxed grains have regular morphology, coarse size, and uniform distribution.
  • the present invention also samples the non-oriented electrical steel sheets of Examples 1-6 and the comparative steel sheets of Comparative Examples 1-2, observes the samples of the steel sheets of each embodiment and comparative example, and tests various related properties. The results of the observation and related performance tests are listed in Table 3. The specific testing methods of the related properties are as follows:
  • Iron loss performance test Based on the national standard GB/T 3658-1990, the Epstein square circle method is used for iron loss performance test.
  • the test temperature is 20°C constant temperature test, the sample size is 30mm ⁇ 300mm, the target mass is 0.5kg, and the test parameter is P 15/50 .
  • Magnetic induction performance test Based on the national standard GB/T 3658-1990, the Epstein square circle method was used to test the iron loss performance.
  • the test temperature was 20°C constant temperature test, the sample size was 30mm ⁇ 300mm, the target mass was 0.5kg, and the test parameter was B 50 .
  • Table 3 lists the observations and related performance test results of the non-oriented electrical steel sheets of Examples 1-6 and the comparative steel sheets of Comparative Examples 1-2.
  • Comparative Example 1 does not meet the requirements of the present invention, resulting in the appearance of ridge-like defects on its surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

一种高磁感低铁损无取向电工钢板,其含有以质量%计的如下化学元素:0<C≤0.0030%、Si:1.20-2.40%、Mn:0.10-0.40%、Al:0.10-0.60%;余量为Fe和不可避免的杂质;其中Si+Al:1.30-2.80%。相应地,还公开了一种高磁感低铁损无取向电工钢板的制造方法,其包括步骤:冶炼和铸造;加热;粗轧、精轧和卷取:其中控制粗轧道次为2-4次,粗轧末道次的压下率为51%-67%;在卷取之后的温降过程中,在400-650℃的范围内控制温降速率为1.0-4.0℃/min;不进行常化退火直接酸洗后进行冷轧;连续退火和涂覆绝缘涂层。

Description

一种高磁感低铁损无取向电工钢板及其制造方法 技术领域
本发明涉及一种钢板及其制造方法,尤其涉及一种无取向电工钢板及其制造方法。
背景技术
随着节能、降耗、环保需求的日益加严,作为各类电机、压缩机、EI铁芯、驱动电机等原辅材料的电工钢板,在制造成本相对较低的情况下,需要无取向电工钢板具有更高的磁感和更低的铁损。
在现有技术中,常见的电磁性能优化方法主要有:
增加钢中的Si、Al元素含量,以有效降低钢的铁损。例如,日本专利特开平8-3699的日本专利文献采用的技术方案。
采用薄板坯连铸连轧或者薄带连铸,以有效提高钢的磁感。例如,公开好为CN1948517A,公开日为2007年4月18日,名称为“一种压缩机专用钢冷轧电工钢的制造方法”的中国专利文献专利公开的技术方案。
向钢中添加Ca、Mg、RE、Sn、Sb元素,以净化钢质和改善有利织构。例如,公开号为CN1078270A,公开日为1993年11月10日,名称为“磁性能优良的无取向电工钢板及其制法”的中国专利文献公开的技术方案。
采用常化退火,或者中间退火+二次冷轧,以改善钢的有利织构。例如,公开号为CN1370850A,公开日为2002年9月25日,名称为“高磁感系列无取向电工钢及生产方法”的中国专利文献公开的技术方案。
采用上述方法存在的主要问题是,其制造工艺复杂,制造成本高,且需要额外采用连铸电磁搅拌,常化退火等措施以消除瓦棱状缺陷。
发明内容
本发明的目的之一在于提供一种无取向电工钢板,其通过优化钢的化学成分设计和工艺设计,获得的无取向电工钢板在具有优异电磁性能的前提下,还能获得优异的表面质量,并且表面无瓦棱状缺陷。
为了实现上述目的,本发明提供了一种无取向电工钢板,其含有以质量%计的如下化学元素:
0<C≤0.0030%、Si:1.20-2.40%、Mn:0.10-0.40%、Al:0.10-0.60%;余量为Fe和不可避免的杂质;其中Si+Al的质量百分含量为:1.30-2.80%。
优选地,不可避免的杂质包括S、N、O和Ti,并且S、N、O和Ti含量满足如下中的至少一种:S≤0.0020%,N≤0.0020%、O≤0.0020%,Ti≤0.0010%。
在本发明所述的无取向电工钢板中,各化学元素的设计原理如下:
C:C容易与Nb、V、Ti结合形成细小的C化物夹杂物,劣化成品钢板的电磁性能。基于此,在本发明所述的无取向电工钢板中,控制C元素的质量百分含量为0<C≤0.0030%,例如0.0008%≤C≤0.0030%。作为示例,C含量的上限还可以为0.0025%等。
Si:Si可以提高材料的电阻率,从而改善成品钢板的电磁性能。Si含量低于1.20%时,无法有效降低铁损,Si含量高于2.40%时,会导致制造成本显著增加。基于此,在本发明所述的无取向电工钢板中,控制Si元素的质量百分含量在1.20-2.40%之间。作为示例,Si含量的下限还可以为1.35%、1.85%等,Si含量的上限还可以为2.37%、2.20%等。
Mn:Mn和S结合生成MnS,抑制S的不利作用。Mn含量低于0.10%时,起不到很好的固S作用,Mn含量高于0.40%时,会导致制造成本显著增加。基于此,在本发明所述的无取向电工钢板中,控制Mn元素的质量百分含量在0.10-0.40%之间。作为示例,Mn含量的下限还可以为0.12%、0.18%等,Mn含量的上限还可以为0.35%等。
Al:Al可以提高材料的电阻率,从而改善成品钢板的电磁性能。Al含量低于0.10%时,无法有效降低铁损,Al含量高于0.60%时,会导致制造成本显著增加。基于此,在本发明所述的无取向电工钢板中,控制Al元素的质量百分含量在0.10-0.60%之间。作为示例,Al含量的下限还可以为0.18%等,Al含量的上限还可以为0.48%等。
在本发明中,限定Si+Al的合计含量为1.30%-2.80%是因为:当Si、Al含量总和低于1.30%时,热轧轧制过程会发生γ→α相变,热轧再结晶组织充分,因此不会出现瓦棱状缺陷。而当Si、Al含量总和高于2.80%时,制造过程需要增加常化退火步骤,以改善磁感,热轧再结晶组织充分,也不会出现瓦棱状缺陷。因此,本发明重点解决的是,在Si、Al含量总和在1.30-2.80%范围内,在不采用常化退火的情况下,使得无取向电工钢板具有,且不发生瓦棱状缺陷。作为示例,Si+Al合计含量的下限还可以为1.83%、2.28%等,Si+Al合计含量的上限还可以为2.72%、2.41%等。
优选地,本发明所述的无取向电工钢板(即成品冷轧板)的微观组织为铁素体等轴晶粒(完全再结晶),其形貌规整、尺寸粗大(与常规同牌号产品相比,平均晶粒尺寸高10-30μm)且分布均匀。优选地,所述无取向电工钢板根据标准GB T 6394-2017测得的平均晶粒尺寸为60-140μm。
优选地,本发明所述的无取向电工钢板的厚度为0.35-0.65mm。
优选地,本发明所述的无取向电工钢板的铁损P15/50≤3.60W/kg,磁感B50≥1.730T。
本发明的另一目的在于提供一种无取向电工钢板的制造方法,其通过控制热轧粗轧道次和压下率,以及热轧卷取后的温降,获得了高磁感低铁损的无取向电工钢板,且钢板的表面质量优异,无瓦棱状缺陷(即,沿成品钢板轧制方向上出现的粗细不均、凸凹不平、类似瓦楞的波纹状缺陷。)。
为了实现上述目的,本发明提供了一种无取向电工钢板的制造方法,其包括步骤:
(1)冶炼和铸造;
(2)加热;
(3)粗轧、精轧和卷取:其中控制粗轧道次为2-4次,粗轧末道次的压下率为51%-67%;在卷取之后的温降过程中,在400-650℃的范围内控制温降速率为1.0-4.0℃/min;
(4)不进行常化退火直接酸洗后进行冷轧;
(5)连续退火和涂覆绝缘涂层。
在本发明所述的制造方法中,控制热轧粗轧2-4道次(例如3-4次),末道次粗轧压下率51%-67%,是为了确保对中间坯的残余二次柱状晶进行完全破碎,为后续精轧形成再结晶完全、形状规则的等轴晶提供基础。如果末道次压下率高于67%,则轧制负荷过大,对设备能力要求高,同时,热轧板型不好,容易出现边裂。如果末道次压下率低于51%,则不能对中间坯的残余二次柱状晶进行完全破碎,后续精轧之后仍会保留5-20%的粗大柱状晶或者长短轴之比大于4的等轴晶,这会劣化成品钢板的电磁性能,并产生瓦棱状缺陷。
在本发明所述的制造方法中,限制热轧卷在400-650℃的温度范围内的冷却速率在1.0-4.0℃/min是因为:本发明在依次经过粗轧、精轧和卷取之后,借助热卷余热促进钢中的再结晶显微组织生长,并且实现钢中的等轴晶粒尺寸均匀。如果温降速度低于1.0℃/min,会形成大量的氧化层、氮化层,不利于成品钢板的电磁性能改善;若温降速率高于4.0℃/min,则再结晶显微组织生长不充分,{111}织构晶粒取向度均一性差、比例高,这会遗传至冷轧、连退成品钢板,导致出现瓦棱状缺陷。
优选地,在步骤(1)中,高炉铁水在依次经过铁水预处理、转炉冶炼、RH精炼和连铸浇铸之后,得到连铸坯(例如连铸坯的目标公称厚度为约230mm)。
优选地,在步骤(1)中,钢水过热度为15-45℃;和/或,采用连铸进行铸造,所得连铸坯的等轴晶率(即,等轴晶粒占全部晶粒的数量百分比)为18%-64%。在本文中,等轴晶粒根据标准GB/T 226-2015“钢的低倍组织及缺陷酸蚀检验法”测得。
优选地,在步骤(2)中,入炉温度为室温至850℃,出炉温度为1050-1200℃。
优选地,在步骤(3)中,粗轧道次为2-4道次。
优选地,在步骤(3)中,精轧温度为700-950℃。
优选地,在步骤(3)中,所得热轧钢板的显微组织为再结晶率为85-90%的铁素体等轴晶粒,其无需进行常化退火步骤即可避免瓦棱状缺陷。
优选地,在步骤(3)中,卷取温度为550-780℃。
优选地,在步骤(3)中,卷取所得钢板的厚度为2.0-2.6mm。
优选地,在步骤(5)中,连续退火温度为820-980℃。
本发明所述的无取向电工钢板及其制造方法具有如下所述的优点以及有益效果:
通过优化钢的化学成分设计,同时控制热轧粗轧道次和压下率,以及热轧卷取后的温降,获得了的无取向电工钢板,其铁损P15/50≤3.60W/kg,磁感B50≥1.730T,与此同时钢板的表面质量优异,无瓦棱状缺陷,同时制造成本低廉。
附图说明
图1显示了本发明所述的无取向电工钢板的制造方法中的卷取后温降速率与磁感B50之间的关系。
图2显示了本发明所述的无取向电工钢板的制造方法中的粗轧末道次压下率与再结晶率之间的关系。
图3显示了本发明所述的无取向电工钢板的实施例1的成品钢板的显微组织。
图4显示了比较例1的成品钢板的显微组织。
具体实施方式
发明人通过研究发现,针对本发明成分配比的无取向电工钢板,卷取后温降速率与磁感B50具有密切的关系。图1显示了基于大量实验结果的本发明所述的无取向电工钢板的制造方法中的卷取后温降速率与磁感B50之间的关系。
如图1所示,当卷取后的温降速率高于1℃/min,钢板的磁感B50获得显著提升。另一方面,温降速率也不是越高越好,当温降速率高于4℃/min,钢板的磁感B50又会显著下降。
此外,发明人通过研究还发现,针对本发明成分配比的无取向电工钢板,粗轧末道次压下率与成品钢板的表面质量具有密切的关系。图2显示了基于大量实验结果的本发明所述的无取向电工钢板的制造方法中的粗轧末道次压下率与再结晶率之间的关系。
如图2所示的,当粗轧末道次压下率为51%-67%时,可以将热轧钢板的再结晶率控制在85-90%,这可以避免成品钢板表面出现瓦棱状缺陷。
下面将结合具体的实施例和说明书附图对本发明所述的无取向电工钢板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-6和比较例1-2
表1列出了实施例1-6和比较例1-2的电工钢板的化学元素含量。
表1(wt%,余量为Fe和除S、N、O、Ti以外的其他不可避免的杂质)
本发明的实施例1-6的无取向电工钢板均采用以下步骤流程制得:
(1)高炉铁水在依次经过铁水预处理、转炉冶炼、RH精炼和连铸浇铸之后,得到目标公称厚度230mm的连铸坯。
(2)加热:加热入炉温度为室温至850℃,加热出炉温度为1050-1200℃;
(3)粗轧、精轧和卷取:其中控制粗轧道次为2-4次,粗轧末道次的压下率为51%-67%;精轧温度为700-950℃;卷取温度为550-780℃;在卷取之后的温降过程中,在400-650℃的范围内控制温降速率为1.0-4.0℃/min,然后自然冷却;
(4)不进行常化退火直接酸洗后进行冷轧;
(5)在干气氛条件下进行连续退火和涂覆绝缘涂层;其中连续退火温度为820-980℃;
需要说明的是,比较例1的制造流程与本发明实施例基本相同,但是卷取后不进行温降控制,而是自然冷却,并且粗轧的工艺参数不满足本发明的要求。比较例2的制造流程与本发明实施例基本相同,但是卷取后的温降控制的工艺参数不满足本发明的要求。
表2列出了实施例1-6和比较例1-2的电工钢板的制造方法的具体工艺参数。
为了对本发明所述的无取向电工钢板进行分析,本发明还对实施例1和比较例1的成品钢板进行了取样,并对其微观组织进行分析。图3和图4分别显示了本发明实施例1和比较例1的成品钢板的显微组织。
从图3中可以看出,实施例1的成品钢板的显微组织为完全再结晶的铁素体等轴晶粒,等轴晶粒形貌规整、尺寸粗大,分布均匀。
而从图4中可以看出,比较例1的成品钢板的微观组织虽然也为完全再结晶的铁素体等轴晶粒,但是等轴晶粒尺寸大小分布不均匀,且局部出现偏聚、细晶现象。
此外,本发明还对实施例1-6的无取向电工钢板和比较例1-2的对比钢板进行了取样,并针对各实施例和比较例钢板的样品进行观察,并进行相关各项性能进行测试,将观察及相关性能测试得到的结果列于表3中,相关性能具体测试手段如下所述:
铁损性能测试:基于国家标准GB/T 3658-1990,采用爱波斯坦方圈法进行铁损性能测试,测试温度为20℃恒温测试,试样尺寸为30mm×300mm,目标质量为0.5kg,测试参数为P15/50
磁感性能测试:基于国家标准GB/T 3658-1990,采用爱波斯坦方圈法进行铁损性能测试,测试温度为20℃恒温测试,试样尺寸为30mm×300mm,目标质量为0.5kg,测试参数为B50
表3列出了实施例1-6的无取向电工钢板和比较例1-2的对比钢板的观察及相关性能测试结果。
表3
结合表1、表2和表3可以看出,在符合本发明设计要求的实施例1-6中,由于采用了本发明独特的粗轧工艺和卷取后温降控制工艺,在不采用常化退火的条件下,最终所得的成品钢板表面没有瓦棱状缺陷,并且同时还兼具良好的电磁性能,成品钢板铁损P15/50≤3.6W/kg,且磁感B50≥1.730T。
而比较例1的粗轧工艺不满足本发明要求,导致其表面出现了瓦棱状缺陷。
比较例2的卷取后温降速度过高,导致其磁感低于本发明各实施例。
需要注意的是,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (11)

  1. 一种无取向电工钢板,其含有以质量%计的如下化学元素:
    0<C≤0.0030%、Si:1.20-2.40%、Mn:0.10-0.40%、Al:0.10-0.60%;余量为Fe和不可避免的杂质;
    其中Si+Al的质量百分含量为:1.30-2.80%。
  2. 根据权利要求1所述的无取向电工钢板,其中,不可避免的杂质包括S、N、O和Ti,并且S、N、O和Ti含量满足如下中的至少一种:S≤0.0020%,N≤0.0020%、O≤0.0020%,Ti≤0.0010%。
  3. 根据权利要求1所述的无取向电工钢板,其中,所述无取向电工钢板的微观组织为铁素体等轴晶粒;优选地,所述无取向电工钢板根据标准GB T 6394-2017测得的平均晶粒尺寸为60-140μm。
  4. 根据权利要求1所述的无取向电工钢板,其中,所述无取向电工钢板的厚度为0.35-0.65mm。
  5. 根据权利要求1所述的无取向电工钢板,其中,所述无取向电工钢板的铁损P15/50≤3.60W/kg,磁感B50≥1.730T。
  6. 一种制造权利要求1-5中任一项所述的无取向电工钢板的方法,其包括如下步骤:
    (1)冶炼和铸造;
    (2)加热;
    (3)粗轧、精轧和卷取:粗轧道次为2-4次,粗轧末道次的压下率为51%-67%;在卷取之后的温降过程中,在400-650℃的范围内控制温降速率为1.0-4.0℃/min;
    (4)不进行常化退火直接酸洗后进行冷轧;
    (5)连续退火和涂覆绝缘涂层。
  7. 根据权利要求6所述的方法,其中,在步骤(1)中,钢水过热度为15-45℃;和/或,采用连铸进行铸造,所得连铸坯的等轴晶率为18%-64%。
  8. 根据权利要求6所述的方法,其中,在步骤(2)中,入炉温度为室温至850℃,出炉温度为1050-1200℃。
  9. 根据权利要求6所述的方法,其中,在步骤(3)中,粗轧后的中间坯厚度为35-50mm;和/或精轧温度为700-950℃;和/或所得热轧钢板的显微组织为再结晶率为85-90%的铁素体等轴晶粒。
  10. 根据权利要求6所述的方法,其中,在步骤(3)中,卷取温度为550-780℃;和/或卷取所得钢板厚度为2.0-2.6mm。
  11. 根据权利要求6所述的方法,其中,在步骤(5)中,连续退火温度为820-980℃。
PCT/CN2024/071433 2023-01-10 2024-01-09 一种高磁感低铁损无取向电工钢板及其制造方法 WO2024149262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310032922.XA CN118326239A (zh) 2023-01-10 2023-01-10 一种高磁感低铁损无取向电工钢板及其制造方法
CN202310032922.X 2023-01-10

Publications (1)

Publication Number Publication Date
WO2024149262A1 true WO2024149262A1 (zh) 2024-07-18

Family

ID=91777485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/071433 WO2024149262A1 (zh) 2023-01-10 2024-01-09 一种高磁感低铁损无取向电工钢板及其制造方法

Country Status (2)

Country Link
CN (1) CN118326239A (zh)
WO (1) WO2024149262A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221355A (ja) * 1989-02-23 1990-09-04 Nkk Corp 表面性状の優れた無方向性電磁鋼板およびその製造方法
CN1078270A (zh) 1991-10-22 1993-11-10 浦项综合制铁株式会社 磁性能优良的无取向电工钢板及其制法
JPH07331331A (ja) * 1994-06-02 1995-12-19 Nippon Steel Corp 磁気特性が極めて優れた無方向性珪素鋼板の製造方法
JPH083699A (ja) 1994-04-22 1996-01-09 Kawasaki Steel Corp 歪取焼鈍後鉄損に優れる無方向性電磁鋼板およびその製造方法
JP2001295002A (ja) * 2000-04-10 2001-10-26 Kawasaki Steel Corp 高周波磁気特性に優れる無方向性電磁鋼板
CN1370850A (zh) 2001-11-27 2002-09-25 武汉钢铁(集团)公司 高磁感系列无取向电工钢及生产方法
CN1948517A (zh) 2005-10-15 2007-04-18 鞍钢集团新钢铁有限责任公司 一种压缩机专用钢冷轧电工钢的制造方法
CN103388106A (zh) * 2013-06-27 2013-11-13 宝山钢铁股份有限公司 一种高磁感低铁损无取向电工钢板及其制造方法
CN104073714A (zh) * 2013-03-28 2014-10-01 宝山钢铁股份有限公司 表面良好的高磁感低铁损无取向电工钢板及其制造方法
CN104789862A (zh) * 2015-03-20 2015-07-22 宝山钢铁股份有限公司 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法
CN108004463A (zh) * 2016-10-28 2018-05-08 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢及其制造方法
CN113106224A (zh) * 2021-03-18 2021-07-13 武汉钢铁有限公司 一种提高无取向硅钢铁损均匀性的方法
CN114574756A (zh) * 2022-02-15 2022-06-03 山西太钢不锈钢股份有限公司 一种低铁损高磁感无取向电工钢及其制造方法
CN115198203A (zh) * 2021-04-09 2022-10-18 宝山钢铁股份有限公司 一种免常化中间退火的无取向电工钢板及其制造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221355A (ja) * 1989-02-23 1990-09-04 Nkk Corp 表面性状の優れた無方向性電磁鋼板およびその製造方法
CN1078270A (zh) 1991-10-22 1993-11-10 浦项综合制铁株式会社 磁性能优良的无取向电工钢板及其制法
JPH083699A (ja) 1994-04-22 1996-01-09 Kawasaki Steel Corp 歪取焼鈍後鉄損に優れる無方向性電磁鋼板およびその製造方法
JPH07331331A (ja) * 1994-06-02 1995-12-19 Nippon Steel Corp 磁気特性が極めて優れた無方向性珪素鋼板の製造方法
JP2001295002A (ja) * 2000-04-10 2001-10-26 Kawasaki Steel Corp 高周波磁気特性に優れる無方向性電磁鋼板
CN1370850A (zh) 2001-11-27 2002-09-25 武汉钢铁(集团)公司 高磁感系列无取向电工钢及生产方法
CN1948517A (zh) 2005-10-15 2007-04-18 鞍钢集团新钢铁有限责任公司 一种压缩机专用钢冷轧电工钢的制造方法
CN104073714A (zh) * 2013-03-28 2014-10-01 宝山钢铁股份有限公司 表面良好的高磁感低铁损无取向电工钢板及其制造方法
CN103388106A (zh) * 2013-06-27 2013-11-13 宝山钢铁股份有限公司 一种高磁感低铁损无取向电工钢板及其制造方法
CN104789862A (zh) * 2015-03-20 2015-07-22 宝山钢铁股份有限公司 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法
CN108004463A (zh) * 2016-10-28 2018-05-08 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢及其制造方法
CN113106224A (zh) * 2021-03-18 2021-07-13 武汉钢铁有限公司 一种提高无取向硅钢铁损均匀性的方法
CN115198203A (zh) * 2021-04-09 2022-10-18 宝山钢铁股份有限公司 一种免常化中间退火的无取向电工钢板及其制造方法
CN114574756A (zh) * 2022-02-15 2022-06-03 山西太钢不锈钢股份有限公司 一种低铁损高磁感无取向电工钢及其制造方法

Also Published As

Publication number Publication date
CN118326239A (zh) 2024-07-12

Similar Documents

Publication Publication Date Title
CN114196887B (zh) 新能源驱动电机用无取向硅钢及其生产方法
JP6580700B2 (ja) 表面状態が良好な高磁束密度・低鉄損・無方向性電磁鋼板及びその製造方法
CN109252102B (zh) 一种提高低硅无取向硅钢磁性能的方法
WO2021037061A1 (zh) 一种600MPa级无取向电工钢板及其制造方法
CN107245646B (zh) 一种板面周向高磁感低铁损无取向硅钢的制备方法
CN101992210B (zh) 一种生产冷轧无取向硅钢无铝钢种的方法
WO2022213853A1 (zh) 一种无取向电工钢板及其制造方法
CN114427023A (zh) 一种提升常规流程中低牌号无取向硅钢性能均匀性的方法
JP7378585B2 (ja) 無方向性電磁鋼板及びその製造方法
WO2021037062A1 (zh) 一种无取向电工钢板及其制造方法
CN104328342A (zh) 一种变频高效压缩机用无取向硅钢及生产方法
WO2021037064A1 (zh) 一种含Cu无取向电工钢板及其制造方法
CN101748263B (zh) 一种取向硅钢板坯的加热方法
CN110640104B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN100467625C (zh) 一种生产取向硅钢的方法
WO2024149262A1 (zh) 一种高磁感低铁损无取向电工钢板及其制造方法
WO2021238895A1 (zh) 一种低成本极低铝的无取向电工钢板及其制造方法
CN111286594A (zh) 一种ftsr生产线供料的中牌号无取向硅钢的生产方法
WO2024022109A1 (zh) 一种高磁感无取向电工钢板及其制造方法
US20250109466A1 (en) Non-oriented electrical steel plate with good magnetic performance and manufacturing method therefor
WO2025148719A1 (zh) 一种高磁感取向硅钢及其制造方法
CN118668128A (zh) 一种高磁感无取向电工钢板及其制造方法
WO2024188130A1 (zh) 一种高强度低铁损无取向电工钢板及其制造方法
WO2024017347A1 (zh) 一种无取向电工钢板及其制造方法
CN118326238A (zh) 一种无瓦楞状缺陷的无取向电工钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24741259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024741259

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2024741259

Country of ref document: EP

Effective date: 20250630