[go: up one dir, main page]

WO2024149066A1 - 无线链路失败报告方法以及用户设备 - Google Patents

无线链路失败报告方法以及用户设备 Download PDF

Info

Publication number
WO2024149066A1
WO2024149066A1 PCT/CN2023/142340 CN2023142340W WO2024149066A1 WO 2024149066 A1 WO2024149066 A1 WO 2024149066A1 CN 2023142340 W CN2023142340 W CN 2023142340W WO 2024149066 A1 WO2024149066 A1 WO 2024149066A1
Authority
WO
WIPO (PCT)
Prior art keywords
scg
rlf
deactivated
link failure
information
Prior art date
Application number
PCT/CN2023/142340
Other languages
English (en)
French (fr)
Inventor
常宁娟
刘仁茂
Original Assignee
夏普株式会社
常宁娟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 常宁娟 filed Critical 夏普株式会社
Publication of WO2024149066A1 publication Critical patent/WO2024149066A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure relates to the technical field of wireless communications, and more specifically, to a method for reporting a wireless link failure when a wireless link fails in wireless communications and a corresponding user equipment.
  • the present disclosure proposes a solution to the problem of how to implement wireless link failure reporting under a fast MCG recovery mechanism in an NR system.
  • the purpose of the embodiments of the present disclosure is to propose a solution to the problem of how to implement a radio link failure report under a fast MCG recovery mechanism in an NR system. More specifically, the present disclosure proposes a solution to how to record the corresponding radio link failure information related to the fast MCG recovery process in a radio link failure report for a radio link failure event when fast MCG recovery is configured in an NR system.
  • the present disclosure provides a method for radio link failure reporting performed in a user equipment and a corresponding user equipment.
  • a wireless link failure reporting method comprising: It includes: the user equipment UE monitors the radio link failure RLF of the main cell group MCG; the UE determines that it is in the deactivated state of the secondary cell group SCG; the UE saves the first RLF information or the second RLF information in the RLF report; wherein the first RLF information is set to the time from the deactivation of the SCG to the occurrence of the RLF; the second RLF information is set to the measurement result of the available main cell or neighboring cell corresponding to the moment when the SCG is deactivated.
  • the deactivation of the SCG refers to the most recent deactivation of the SCG.
  • the SCG is deactivated when the UE enters the SCG deactivation state based on the SCG deactivation indication in the wireless resource control RRC command received from the network side.
  • the RRC message is an RRC reconfiguration message
  • the SCG deactivation indication is an scg-State information element set to deactivated.
  • the UE saves the first RLF information or the second RLF information in the RLF report.
  • the wireless link failure reporting method also includes: the UE receives a UEInformationRequest message from the network side, the UEInformationRequest message carries an indication/request for requesting the UE to report the saved RLF report; and the UE includes the content of the saved RLF report in a UEInformationResponse message, and sends the UEInformationResponse message to the network side.
  • a radio link failure reporting method including: a user equipment UE initiates a fast MCG recovery process and starts a timer T316; when the timer T316 times out, the UE saves third RLF information in the RLF report; wherein, if SCG is deactivated during the operation of T316, the UE sets the third RLF information to indicate that the cause of the fast MCG recovery failure is that the SCG is deactivated; if SCG is not deactivated during the operation of T316, the UE sets the third RLF information to indicate that the fast MCG recovery failure is caused by the deactivation of the SCG; The reason for the failure of MCG recovery is T316 timeout.
  • the SCG is deactivated when the UE enters the SCG deactivation state based on the SCG deactivation indication in the wireless resource control RRC command received from the network side.
  • the RRC command is not an RRC reconfiguration message including a synchronization reconfiguration information element for the MCG.
  • a user equipment UE comprising: a processor; and a memory storing instructions; wherein the instructions, when executed by the processor, execute the radio link failure reporting method described in the context.
  • FIG1 is a schematic flow chart showing a radio link failure reporting method in Embodiment 1 of the present disclosure.
  • FIG2 is a schematic flow chart showing a radio link failure reporting method in Embodiment 2 of the present disclosure.
  • FIG3 is a schematic flow chart showing a radio link failure reporting method in Embodiment 3 of the present disclosure.
  • FIG4 is a schematic flow chart showing a radio link failure reporting method in Embodiment 4 of the present disclosure.
  • FIG5 is a block diagram showing a user equipment UE involved in the present disclosure.
  • the following uses the NR mobile communication system as an example application environment to specifically describe multiple implementations of the present disclosure.
  • the present disclosure is not limited to the following implementations, but can be applied to more other wireless communication systems, such as an LTE system connected to a 5G core network.
  • the base station in the present disclosure may be any type of base station, including Node B, enhanced base station eNB, 5G communication system base station gNB; or micro base station, pico base station, macro base station, home base station, etc.; the network side generally refers to the base station.
  • the cell may also be a cell under any type of base station mentioned above. If there is no special explanation, the cell, beam, and transmission point (TRP) may be interchangeable, and the base station may also be a central unit (gNB-Central Unit, gNB-CU) or a distributed unit (gNB-Distributed Unit, gNB-DU) constituting the base station.
  • gNB-Central Unit gNB-CU
  • gNB-Distributed Unit gNB-Distributed Unit
  • LTE system is also used to refer to 5G and subsequent LTE systems (such as eLTE system, or LTE system that can be connected to the 5G core network), and LTE may be replaced by Evolved Universal Terrestrial Radio Access (E-UTRA) or Evolved Universal Terrestrial Radio Access Network E-UTRAN.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Different embodiments may also work in combination, for example, the same variables/parameters/nouns in different embodiments are interpreted the same.
  • Cancel, release, delete, clear, and clear may be replaced. Execute, use and apply are replaceable. Configure and reconfigure are replaceable. Monitor and detect are replaceable. Initiate and trigger are replaceable.
  • the user mobility in the connected state is mainly achieved through the handover process, which refers to the process of changing the serving cell (primary cell) of the UE in the Radio Resource Control (RRC) connected state.
  • the general handover process includes the following stages: Stage 1: Measurement stage. The UE measures the radio link corresponding to the serving cell or the neighboring cell based on the configured measurement configuration. When the configured measurement reporting conditions are met, the UE sends a measurement report to the base station.
  • Stage 2 Handover preparation stage. The base station determines to trigger the handover for the UE based on the received measurement report and other factors such as the base station load. The source base station and the target base station obtain the handover command configured by the target base station through the handover preparation process.
  • Stage 3 Handover execution stage.
  • the source base station sends the handover command to the UE, and the UE that receives the handover command immediately applies the configuration of the handover command to execute the handover.
  • the UE detects the handover process through a timer T304. When the handover process is initiated, the UE starts the T304 timer; when the handover process is completed (the random access process is successfully completed), the UE stops the timer T304; when T304 times out, the UE considers that the handover has failed.
  • handover refers to the change of the primary cell initiated by the network side.
  • the concepts of source cell, source primary cell (Primary Cell, PCell), and source master cell group (Master Cell Group, MCG) are generally interchangeable, referring to the cell that serves the UE and is connected before the handover process is initiated, that is, the cell that sends a radio resource control RRC message containing a handover command to the UE.
  • the concepts of target cell, target primary cell PCell, and target master cell group MCG are generally interchangeable; they refer to the cell indicated by the target cell identifier contained in the handover command, or the cell described as performing downlink synchronization or random access during the handover process.
  • the handover command is used to trigger the UE to perform a handover, and in the NR system it is an RRC reconfiguration message containing a synchronous reconfiguration (Reconfiguration with sync) information element, and further, it is an RRC reconfiguration message containing a synchronous reconfiguration (Reconfiguration with sync) information element for the master cell group MCG.
  • the handover can also be referred to as a synchronous reconfiguration of the MCG.
  • the synchronous reconfiguration information element may include configuration information of the target cell, such as the target cell identifier, the target cell frequency, the public configuration of the target cell such as system information, the random access configuration used by the UE to access the target cell, the security parameter configuration of the UE in the target cell, the wireless bearer configuration of the UE in the target cell, etc.
  • UE In order to improve the data transmission efficiency of UE, UE establishes links with two base stations at the same time, that is, the wireless resources used by UE are provided by different schedulers located in the two base stations.
  • the wireless access between these two base stations and UE can be the same or different standards (Radio Access Technology, RAT), such as both are NR, or one is NR and the other is LTE, also known as Evolved Universal Terrestrial Radio Access (E-UTRA).
  • RAT Radio Access Technology
  • the master base station Master Node, MN
  • MgNB MgNB
  • MeNB MgNB
  • MeNB MgNB
  • MeNB MgNB
  • SeNB secondary base station
  • SgNB SgNB
  • SeNB SeNB
  • SCG Secondary Cell Group
  • SCG Secondary Cell Group
  • EN-DC using 4G core network
  • NGEN-DC using 5G core network
  • the master base station and the secondary base station are both NR
  • the DC is called NR-DC.
  • MCG contains a primary cell (PCell) and optionally one or more secondary cells (SCell).
  • PCell operates on the primary frequency, and the UE performs the initial connection establishment process or the connection re-establishment process through the primary frequency.
  • SCG contains a PSCell and optionally one or more SCells.
  • PSCell refers to the SCG cell where the UE performs random access when performing the synchronization reconfiguration process or the SCG addition process.
  • PCell and PSCell are also collectively referred to as special cells SpCell.
  • DC is configured, the DRB and SRB of the UE are supported to be configured as split bearers.
  • Split SRB supports transmission through two paths, MCG and SCG.
  • split bearers can be for either the uplink path or the downlink path. Supports configuration of SRB1 and SRB2 as split SRB.
  • the network side can decide which path to choose to send data based on some criteria such as channel quality.
  • the UE determines whether to use the MCG path or send on both paths based on the RRC signaling configuration on the network side. When not configured as split SRB, SRB1 and SRB2 are transmitted via the MCG path.
  • SRB3 can also be established for the SN, which is mainly used to transmit configurations associated with the SCG between the SN and the UE.
  • the establishment and release of SRB3 are determined by the SN, and the configuration of split SRB for SRB3 is not supported.
  • the UE can configure split SRB1 and SRB3 at the same time.
  • the existing wireless link failure reporting mechanism is the existing wireless link failure reporting mechanism
  • the UE will generate and save a radio link failure report (RLF report) when a radio link failure (RLF) or a handover failure (HOF) occurs, and save the radio link failure information in the UE variable VarRLF-Report.
  • RLF report radio link failure report
  • HAF handover failure
  • the UE only saves the RLF report of the most recent connection failure (RLF or HOF), that is, when a connection failure occurs, the UE will clear the last saved RLF report, and then save the failure information corresponding to the most recent connection failure in the RLF report variable.
  • the UE can inform the network side through an RRC message that there is an available radio link failure report (such as indicated by the rlf-InfoAvailable information element).
  • the network side can request the UE to report its saved radio link failure report through an RRC message (such as the rlf-ReportReq information element in the UEInformationRequest message to indicate the request).
  • the UE will report the saved radio link failure report (rlf-Report information element in the UEInformationResponse message) to the network side in the response RRC message.
  • the RLF reporting mechanism is an important mechanism in the SON function.
  • the radio link failure report obtained by the network side is used for network optimization, such as network coverage and mobility robustness optimization.
  • the radio link failure report contains information related to the link failure, including the measurement results of the source cell, target cell or neighbor cell when the link failure occurs, location information, the primary cell identifier where the link failure occurs, the link failure type (RLF or HOF), the RLF reason, the time from the connection failure to the RLF report reporting (recorded as timeSinceFailure information element), the time from the last receipt of the handover command (handover initiation or handover execution) to the connection failure (recorded as timeConnFailure information element), the time between the next UE entering the RRC connection state after the connection failure and the failure of the re-establishment process (recorded as timeUntilReconnection information element), and the RRC re-establishment cell identifier.
  • RLF and HOF are collectively referred to as
  • the dual link and carrier aggregation enhancement project of Release 16 introduces a fast MCG link recovery mechanism.
  • the fast MCG link recovery mechanism when a radio link failure (RLF) occurs in the MCG of the UE, if The UE is configured with T316 (i.e., fast MCG recovery is enabled) and the secondary cell group SCG link is in an available state (i.e., there is no ongoing PSCell addition and change process (i.e., T04 corresponding to the PSCell is not running), or the SCG is not suspended, or the SCG is not in a deactivated state). At this time, neither the MCG nor the SCG is in a suspended (or interrupted) state or the timer T316 is not running.
  • RLF radio link failure
  • the UE initiates the MCG failure information process, starts the timer T316, and sends the MCG failure information (MCGFailureInformation) message containing the MCG link failure information to the main base station through the SCG path (such as split SRB1 or SRB3), instead of directly triggering the RRC connection re-establishment process.
  • MCG failure information MCG failure information
  • the UE will suspend the transmission of the MCG path, such as suspending the transmission on the MCG side corresponding to all SRBs and DRBs except SRB0, and reset the MAC entity corresponding to the MCG, and wait for the response from the network side during the operation of timer T316.
  • the main base station that receives the MCG failure information RRC message can send an RRC reconfiguration message containing a synchronization reconfiguration information element to the UE through the SCG link to trigger the UE to switch to a new cell or send an RRC release message to release the UE's RRC connection.
  • the UE stops T316 and performs corresponding operations according to the received response message (RRC reconfiguration message or RRC release message). If T316 times out, the UE initiates the RRC re-establishment process.
  • This fast MCG link recovery mechanism/process can be applied to situations where MR-DC (Multi-Radio access technology Dual Connectivity) is configured, such as NE-DC (NR E-UTRA Dual Connectivity), EN-DC (E-UTRA NR Dual Connectivity), NR DC (New Radio Dual Connectivity), NGEN-DC (Next Generation-radio access network E-UTRA NR Dual Connectivity), LTE DC (intra-E-UTRAN DC), etc.
  • MR-DC Multi-Radio access technology Dual Connectivity
  • NE-DC NR E-UTRA Dual Connectivity
  • EN-DC E-UTRA NR Dual Connectivity
  • NR DC New Radio Dual Connectivity
  • NGEN-DC Next Generation-radio access network E-UTRA NR Dual Connectivity
  • LTE DC intra-E-UTRAN DC
  • the SCG activation and deactivation mechanism is introduced in version 17. By activating and deactivating the entire SCG cell group to adapt to the dynamically changing UE traffic volume/traffic rate, it is expected to further save the power overhead caused by unnecessary uplink and downlink transmission or link monitoring when the UE traffic volume is low.
  • Both MN and SN can request to activate or deactivate SCG.
  • MN decides whether to activate or deactivate SCG, and sends SCG activation and deactivation commands to UE through RRC message of SRB1.
  • RRC message such as RRC reconfiguration message
  • UE performs SCG deactivation operation; otherwise, when the RRC message does not contain scg-State information element, UE performs SCG activation operation.
  • UE performs one or more of the following operations: considers SCG to be deactivated, resets SCG MAC, indicates to the lower layer of RRC that SCG is deactivated, stops RLM for SCG if Radio Link monitoring (RLM) and Beam Failure Detection (BFD) related parameters are not configured (i.e., bfd-and-RLM information element is not set to true), stops timer T310/T312 for SCG, etc.
  • RLM Radio Link monitoring
  • BFD Beam Failure Detection
  • the UE performs one or more of the following operations: considers that the SCG is activated, restores the RLM to the SCG if the UE is configured with a deactivated SCG before receiving the activation command, and indicates to the lower layer of RRC that the SCG is activated.
  • the MAC layer of the UE When the MAC layer of the UE receives the SCG deactivation indication from the RRC layer, it deactivates all SCells and PSCells of the SCG.
  • the UE When in SCG deactivation (PSCell is deactivated), the UE does not send the Sounding Reference Signal (SRS) on the PSCell of the SCG, does not report the Channel Status Information (CSI) used for the PSCell of the SCG, does not send the Uplink-Shared Channel (UL-SCH) on the PSCell of the SCG, does not trigger random access on the PSCell of the SCG, does not monitor the PDCCH on the PSCell of the SCG, does not monitor the PDCCH of the PSCell used for the SCG, and does not send the Physical Uplink Control Channel (PUCCH) on the PSCell of the SCG.
  • SRS Sounding Reference Signal
  • CSI Channel Status Information
  • UL-SCH Uplink-Shared Channel
  • the MAC layer of the UE When the MAC layer of the UE receives the SCG activation indication from the RRC layer, it activates the SCG.
  • SCG activation PSCell is activated
  • the UE When in SCG activation (PSCell is activated), the UE is allowed to send SRS on the PSCell of the SCG, report CSI for the PSCell of the SCG, trigger random access on the PSCell of the SCG, monitor PDCCH on the PSCell of the SCG, monitor PDCCH for the PSCell of the SCG, and allow PUCCH to be sent on the PSCell of the SCG.
  • the activation/deactivation of the SCG and the activation/deactivation of the PSCell can be interchangeable.
  • One of the goals of the SON function of Release 18 is to optimize the fast MCG recovery function, that is, the network side collects SON information from the UE side and the information stored on the network side to make the fast MCG recovery function better implemented, such as optimizing the configuration of the T316 timer and improving the success rate of the fast MCG recovery process.
  • the UE can make the most of the fast MCG recovery function to achieve link recovery, avoiding the service interruption caused by the long MCG failure information process or entering the RRC re-establishment process.
  • MRO mobility robustness optimization
  • the failure of fast MCG recovery may be due to T316 timeout or SCG failure during T316 operation.
  • the reason for T316 timeout may be that the network side cannot select a suitable switching target site during the fast MCG recovery process, or the RRC reconfiguration message or RRC release message sent by the network side cannot be delivered to the UE due to poor SCG link quality or SCG being deactivated.
  • the above-mentioned scenario of "upon fast MCG recovery” that still needs further study can be understood as when the UE has MCG RLF and wants to restore the link by initiating a fast MCG recovery process, because the SCG is suspended or the SCG is in a deactivated state, etc., the UE determines that the fast MCG recovery process cannot be initiated, resulting in a failure to initiate the fast MCG recovery process, which can also be regarded as a fast MCG recovery failure.
  • the RAN2 working group has not yet conducted relevant discussions, which is called the issue of concern in this disclosure.
  • the present disclosure proposes a method for setting the RLF report in the previous scenario (i.e., the UE fails to recover the fast MCG due to the SCG being deactivated during T316). Method to quickly find out the cause of MCG recovery failure.
  • This embodiment provides a method for reporting a wireless link failure performed on a UE.
  • the network side can infer whether SCG deactivation has occurred (occurred) in the RLF scenario or the wireless environment (wireless link measurement result) at the time of SCG deactivation, thereby determining whether SCG deactivation caused the failure of fast MCG recovery and whether the SCG deactivation is an inappropriate operation.
  • Such information and judgment can be used as a reference for the network side to decide whether to perform SCG deactivation and when to perform SCG deactivation in the future, in order to avoid the failure of initiating the fast MCG recovery process due to inappropriate SCG deactivation.
  • the UE saves one or more of the following information in VarRLF-Rport: first RLF information, set to the time from SCG deactivation to the occurrence of RLF; second RLF information, set to the measurement results of the available primary cell or neighboring cell corresponding to the moment when the SCG is deactivated.
  • this embodiment is applicable to the following scenario: the UE performs an SCG deactivation operation and enters the SCG deactivation state, and then the RLF of the MCG occurs.
  • the UE since the SCG is in the deactivated state, the UE cannot initiate a fast MCG recovery process and can only initiate an RRC connection re-establishment process to restore the MCG link.
  • the embodiment may include the following steps, as shown in FIG1 .
  • Step 110 The UE detects the RLF of the MCG.
  • Step 120 The UE saves one or more of the following information in the RLF report variable (such as VarRLF-Rport) used to record the RLF information:
  • the first RLF information is set to the time from when the SCG is deactivated to when the RLF occurs. It can also be described as the first RLF information used to record the time from when the SCG is deactivated. It can also be described as the first RLF information being used to record the time when the UE is in the SCG deactivated state before the RLF.
  • the second RLF information includes the measurement results of the valid serving cell or neighboring cell obtained by the UE when the SCG is deactivated.
  • the serving cell refers to the serving cell or primary cell PCell of the MCG.
  • the neighboring cell refers to the measurement result values of one or more best measured cells (best measured cells) other than the primary cell for each configured measurement object.
  • step 120 when the UE determines that the UE is in the SCG deactivated state when the RLF occurs, the above information is included in the RLF report. That is, if the UE is in the SCG deactivated state when the RLF occurs or before the RLF, the above information is included in the RLF report.
  • the deactivation of the SCG refers to the most recent deactivation of the SCG, that is, the most recent time the UE entered the SCG deactivation state from the SCG activation.
  • the UE enters the SCG deactivation state from the SCG activation based on the SCG activation deactivation information (scg-State information element is set to deactivated) in the RRC command received from the network side.
  • the UE has not undergone an SCG activation/deactivation state change in the primary cell where the RLF currently occurs, that is, when the UE enters the current primary cell (such as switching to the current primary cell or connecting to the current primary cell through the RRC recovery process, at which time the scg-State information element in the switching command or the RRC recovery message is set to deactivated), the SCG is configured to be in a deactivated state, and the UE does not necessarily change from the SCG activation state to the SCG deactivation state in the current primary cell, but may always be in the SCG deactivation state.
  • the UE may be in the SCG activation state or the SCG deactivation state before entering the current primary cell.
  • the SCG being deactivated is equivalent to the last received RRC message (RRC reconfiguration message or RRC recovery message) containing the scg-State information element set to deactivated.
  • SCG deactivation is an operation/action of the UE entering the SCG deactivated state, rather than a state of SCG deactivation.
  • step 120 is performed when the UE is configured with timer T316.
  • the UE being configured with timer T316 is equivalent to the UE being enabled with the fast MCG recovery function.
  • This embodiment provides a radio link failure reporting method executed on a UE.
  • the UE sets the reason for the failure of the fast MCG recovery process as SCG deactivation in the RLF report, avoiding setting the reason as T316 timeout.
  • Such information allows the network side to know that the real reason for the failure of the fast MCG recovery process is that SCG was deactivated during the operation of T316, rather than simply due to T316 timeout, thereby avoiding the network side from making wrong judgments.
  • the UE during the fast MCG recovery process, if the UE's SCG is deactivated, the UE will continue to perform the fast MCG recovery process until the T316 timer times out and the fast MCG recovery process fails.
  • the UE determines whether to set the fast MCG recovery failure cause in the RLF report to SCG deactivation or T316 timeout based on whether the SCG deactivation operation occurs during the T316 operation.
  • the embodiment may include the following steps, as shown in FIG. 2 .
  • Step 210 T316 timeout occurs on the UE.
  • Step 220 The UE saves the following information in the RLF report variable (such as VarRLF-Rport) used to record RLF information:
  • the third RLF information is set to the reason for the fast MCG recovery failure.
  • the third RLF information is set to indicate that the reason for the fast MCG recovery failure is that the SCG is deactivated; when the UE determines that the SCG is not deactivated during the operation of T316, the third RLF information is set to indicate that the reason for the fast MCG recovery failure is T316 timeout.
  • the UE also initiates a fast MCG recovery process and starts timer T316; and during the operation of T316, the UE receives an RRC message indicating SCG deactivation.
  • this embodiment can also be described as:
  • Step 210A The UE performs an SCG deactivation operation. Based on receiving an RRC message indicating SCG deactivation, the UE enters an SCG deactivation state from an SCG activation state.
  • Step 220A When step 210A occurs, the UE saves the following information in the RLF report variable (such as VarRLF-Rport) used to record RLF information:
  • the third RLF information is set to the reason for the fast MCG recovery failure.
  • the third RLF information is set to indicate that the reason for the fast MCG recovery failure is that the SCG is deactivated.
  • the RRC message for indicating SCG deactivation does not include a synchronization reconfiguration information element for MCG, that is, the RRC message is not an RRC reconfiguration message instructing the UE to perform switching.
  • step 210A the UE also initiates a fast MCG recovery process and starts timer T316. Therefore, step 220A is performed when the UE is configured with T316.
  • this embodiment can also be described as: when the UE saves the RLF report and sets the content of the RLF report, if the UE has previously performed a fast MCG recovery process, the third RLF information is set according to the following steps: if SCG is deactivated during the fast MCG recovery process, the third RLF information is set to indicate that the reason for the failure of the fast MCG recovery is that the SCG is deactivated; otherwise; the third RLF information is set to indicate that the reason for the failure of the fast MCG recovery is that T316 has timed out.
  • the UE sets the third RLF information when it determines that the timer T316 corresponding to the fast MCG recovery process executed previously has timed out.
  • SCG deactivation is an operation/action of the UE entering an SCG deactivation state, rather than an SCG deactivation state.
  • This embodiment provides a radio link failure reporting method executed on a UE. Through the information contained in the RLF report, the network side can learn whether the SCG deactivation occurs during the T316 operation, thereby avoiding inappropriate SCG deactivation and improving the success rate of the fast MCG recovery process.
  • the embodiment may include the following steps, as shown in FIG3 .
  • Step 310 The SCG is deactivated, that is, the UE performs an SCG deactivation operation.
  • the UE enters the SCG deactivation state based on receiving an RRC message indicating SCG deactivation.
  • Step 320 The UE sets the RLF report variable (such as VarRLF-Rport) stores the following information: the fourth RLF information is used to indicate whether the deactivation operation of the SCG occurs during the operation of T316.
  • the RLF report variable such as VarRLF-Rport
  • the UE when the SCG deactivation operation occurs during T316 operation, that is, during the fast MCG recovery process, the UE receives an RRC message indicating SCG deactivation and enters the SCG deactivation state, the UE includes the fourth RLF information in the RLF report, indicating that the SCG deactivation occurred during T316 operation.
  • the RRC message indicating SCG deactivation does not include a synchronous reconfiguration information element for MCG, that is, the RRC message is not an RRC reconfiguration message instructing the UE to perform a handover.
  • the UE where the MCG RLF occurs determines that the SCG is deactivated, and the fast MCG recovery process is not initiated (the fast MCG recovery initiation fails); the UE receives the RRC message indicating the SCG deactivation and enters the SCG deactivation state before the MCG RLF is detected, and the UE includes the fourth RLF information in the RLF report, indicating that the SCG deactivation does not occur during the T316 operation, that is, the SCG deactivation occurs before the RLF is detected.
  • the UE when the UE is configured with timer T316, the UE includes the fourth RLF information in the RLF report.
  • SCG deactivation is an operation/action of the UE entering an SCG deactivation state, rather than an SCG deactivation state.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment provides a method for reporting RLF information executed on a UE.
  • the UE can report relevant information to the base station in the RLF report to provide more accurate connection failure information to the network side.
  • This embodiment is the method of embodiments 1 to 3 when the UE reports through the RRC process.
  • the embodiment may include the following steps, as shown in FIG. 4 .
  • Step 420 The UE includes the content of the saved RLF report in a UEInformationResponse message and sends the UEInformationResponse message to the network side.
  • the RLF report included in the RRC message includes one or more of the first RLF information to the fourth RLF information in the aforementioned embodiment.
  • FIG. 5 is a block diagram of the user equipment UE involved in the present disclosure.
  • the user equipment UE 50 includes a processor 501 and a memory 502.
  • the processor 501 may include, for example, a microprocessor, a microcontroller, an embedded processor, etc.
  • the memory 502 may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memories, etc.
  • Program instructions are stored on the memory 502. When the instructions are executed by the processor 501, the above-mentioned radio link failure reporting method described in detail in the present invention may be executed.
  • the method of the present invention and the equipment involved have been described above in conjunction with the preferred embodiments. It will be appreciated by those skilled in the art that the method shown above is exemplary only. The method of the present invention is not limited to the steps and sequence shown above.
  • the base station and user equipment shown above may include more modules, for example, modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, etc.
  • the various identifiers shown above are exemplary only and not restrictive, and the present invention is not limited to the specific information elements that are examples of these identifiers. Those skilled in the art may make many changes and modifications based on the teachings of the illustrated embodiments.
  • the program running on the device may be a program that enables a computer to implement the functions of the embodiments of the present disclosure by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory systems.
  • the program for implementing the functions of each embodiment of the present disclosure may be recorded on a computer-readable recording medium.
  • the corresponding functions may be implemented by causing a computer system to read the programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” here may be a computer system embedded in the device, and may include an operating system or hardware (such as peripheral devices).
  • “Computer system” may be a computer system embedded in the device, and may include an operating system or hardware (such as peripheral devices).
  • the “computer-readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium that dynamically stores a program for a short time, or any other recording medium that is readable by a computer.
  • circuits e.g., monolithic or multi-chip integrated circuits.
  • Circuits designed to perform the functions described in this specification may include general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above devices.
  • DSPs digital signal processors
  • ASICs application-specific integrated circuits
  • FPGAs field programmable gate arrays
  • the general-purpose processor may be a microprocessor, or any existing processor, controller, microcontroller, or state machine.
  • the above circuits may be digital circuits or analog circuits. In the case where new integrated circuit technologies have emerged to replace existing integrated circuits due to advances in semiconductor technology, one or more embodiments of the present disclosure may also be implemented using these new integrated circuit technologies.
  • present disclosure is not limited to the above-mentioned embodiments. Although various examples of the embodiments have been described, the present disclosure is not limited thereto.
  • Fixed or non-mobile electronic devices installed indoors or outdoors can be used as terminal devices or communication devices, such as AV equipment, kitchen equipment, cleaning equipment, air conditioners, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种无线链路失败报告方法以及用户设备。无线链路失败报告方法包括:用户设备UE监测到主小区组MCG的无线链路失败RLF;所述UE判定其处于辅小区组SCG去激活状态;所述UE在RLF报告中保存用于指示从SCG被去激活到发生RLF所经历的时间的第一RLF信息或用于指示当SCG被去激活的时刻所对应的主小区或邻小区的测量结果的第二RLF信息。

Description

无线链路失败报告方法以及用户设备 技术领域
本公开涉及无线通信技术领域,更具体地,本公开涉及在无线通信中无线链路失败时的无线链路失败报告方法以及对应的用户设备。
背景技术
2021年12月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#94e次全会上批准了一个Release 18技术标准的新的研究项目(参见非专利文献:RP-213553:New WID on further enhancement of data collection for SON(Self-Organising Networks)/MDT(Minimization of Drive Tests)in NR and EN-DC)。这个项目的研究目的是对基于版本17的NR系统中的网络数据收集过程进行进一步增强,以更好地实现自组织自优化网络以及最小化路测的目的。其中研究的具体技术之一是实现快速主小区组(Master Cell Group,MCG)恢复机制下的移动性能优化机制。
本公开针对在NR系统中如何实现快速MCG恢复机制下的无线链路失败报告问题提出解决方法。
发明内容
本公开实施例的目的在于如何就实现在NR系统中快速MCG恢复机制下的无线链路失败报告的问题提出解决方法。更具体地,本公开针对在NR系统中如何对在配置了快速MCG恢复时的无线链路失败事件在无线链路失败报告中记录其对应的与快速MCG恢复过程相关的无线链路失败信息提出了解决方法。本公开提供了在用户设备中执行的无线链路失败报告的方法以及相应的用户设备。
根据本公开的第一方面,提出了一种无线链路失败报告方法,包 括:用户设备UE监测到主小区组MCG的无线链路失败RLF;所述UE判定其处于辅小区组SCG去激活状态;所述UE在RLF报告中保存第一RLF信息或第二RLF信息;其中,所述第一RLF信息设置为从SCG被去激活到发生RLF所经历的时间;所述第二RLF信息设置为当SCG被去激活的时刻所对应的可用的主小区或邻小区的测量结果。
在上述第一方面的无线链路失败报告方法中,优选地,所述SCG被去激活指的是最近一次的SCG被去激活。
在上述第一方面的无线链路失败报告方法中,优选地,所述SCG被去激活是UE基于从网络侧收到的无线资源控制RRC命令中的SCG去激活指示进入SCG去激活状态。
在上述第一方面的无线链路失败报告方法中,优选地,所述RRC消息是RRC重配置消息,所述SCG去激活指示是设置为deactivated的scg-State信息元素。
在上述第一方面的无线链路失败报告方法中,优选地,所述UE在被配置了定时器T316时,在RLF报告中保存第一RLF信息或第二RLF信息。
在上述第一方面的无线链路失败报告方法中,优选地,所述无线链路失败报告方法还包括:所述UE收到来自网络侧的UEInformationRequest消息,所述UEInformationRequest消息携带了用于请求UE上报所保存的RLF报告的指示/请求;和所述UE将所保存的RLF报告中的内容包含在UEInformationResponse消息中,向网络侧发送UEInformationResponse消息。
根据本公开的第二方面,提出了一种无线链路失败报告方法,包括:用户设备UE发起快速MCG恢复过程,启动定时器T316;定时器T316超时,所述UE在RLF报告中保存第三RLF信息;其中,若在所述T316运行期间发生了SCG被去激活,UE设置第三RLF信息用于指示快速MCG恢复失败原因是SCG被去激活;若在所述T316运行期间未发生SCG被去激活时,UE设置第三RLF信息用于指示快 速MCG恢复失败原因是T316超时。
在上述第二方面的无线链路失败报告方法中,优选地,所述SCG被去激活是UE基于从网络侧收到的无线资源控制RRC命令中的SCG去激活指示进入SCG去激活状态。
在上述第二方面的无线链路失败报告方法中,优选地,所述RRC命令不是包含用于MCG的同步重配置信息元素的RRC重配置消息。
根据本公开的第三方面,提出了一种用户设备UE,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行根据上下文所述的无线链路失败报告方法。
附图说明
为了更完整地理解本公开及其优势,现在将参考结合附图的以下描述,其中:
图1是表示本公开的实施例1中的无线链路失败报告方法的示意流程图。
图2是表示本公开的实施例2中的无线链路失败报告方法的示意流程图。
图3是表示本公开的实施例3中的无线链路失败报告方法的示意流程图。
图4是表示本公开的实施例4中的无线链路失败报告方法的示意流程图。
图5是表示本公开所涉及的用户设备UE的框图。
在附图中,相同或相似的结构均以相同或相似的附图标记进行标识。
具体实施方式
根据结合附图对本公开示例性实施例的以下详细描述,本公开的其它方面、优势和突出特征对于本领域技术人员将变得显而易见。
在本公开中,术语“包括”和“含有”及其派生词意为包括而非 限制;术语“或”是包含性的,意为和/或。
在本说明书中,下述用于描述本公开原理的各种实施例只是说明,不应该以任何方式解释为限制公开的范围。参照附图的下述描述用于帮助全面理解由权利要求及其等同物限定的本公开的示例性实施例。下述描述包括多种具体细节来帮助理解,但这些细节应认为仅仅是示例性的。因此,本领域普通技术人员应认识到,在不背离本公开的范围和精神的情况下,可以对本文中描述的实施例进行多种改变和修改。此外,为了清楚和简洁起见,省略了公知功能和结构的描述。此外,贯穿附图,相同参考数字用于相似功能和操作。
下文以NR移动通信系统作为示例应用环境,具体描述了根据本公开的多个实施方式。然而,需要指出的是,本公开不限于以下实施方式,而是可适用于更多其它的无线通信系统,如连接到5G核心网的LTE系统等。
本公开中的基站可以是任何类型基站,包含Node B、增强基站eNB、5G通信系统基站gNB;或者微基站、微微基站、宏基站、家庭基站等;所述网络侧一般指的是基站。所述小区也可以是上述任何类型基站下的小区,若无特殊说明,小区、光束(beam)、传输点(Transmission point,TRP)之间可以互换,基站也可以是组成基站的中心单元(gNB-Central Unit,gNB-CU)或分布式单元(gNB-Distributed Unit,gNB-DU)。LTE系统也用于指代5G及其之后的LTE系统(如称为eLTE系统,或者可以连接到5G核心网的LTE系统),同时LTE可以用演进的通用陆地无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)或演进的通用陆地无线接入网E-UTRAN来替换。不同的实施例之间也可以结合工作,比如不同实施例中相同的变量/参数/名词等作相同解释。取消、释放、删除、清空和清除等可以替换。执行、使用和应用可替换。配置和重配置可以替换。监测(monitor)和检测(detect)可替换。发起和触发可替换。
下列描述了本公开涉及的现有技术中的过程或概念。
切换过程:
连接态的用户移动性主要通过切换过程来实现,所述切换即指的是处于无线资源控制(Radio Resource Control,RRC)连接态的UE变更服务小区(主小区)的过程。一般的切换过程包含下述阶段:阶段1:测量阶段。UE基于被配置的测量配置对服务小区或邻小区所对应的无线链路进行测量,当满足所配置的测量上报条件时,UE向基站发送测量报告。阶段2:切换准备阶段。基站结合收到的测量报告以及其他因素如基站负载等确定对该UE触发切换,源基站和目标基站通过切换准备过程获取目标基站配置的切换命令。阶段3:切换执行阶段。源基站将切换命令下发给UE,收到切换命令的UE立即应用该切换命令的配置执行切换。UE通过一个定时器T304来检测切换过程,当切换过程发起时,UE开启T304定时器;当切换过程完成(随机接入过程成功完成)时,UE停止定时器T304;当T304超时,UE认为切换失败。
在本公开中,切换指的是网络侧发起的主小区的变更。源小区、源主小区(Primary Cell,PCell)、源主小区组(Master Cell Group,MCG)的概念一般可互换,指的是切换过程发起之前所连接的为UE服务的小区即向UE发送包含切换命令的无线资源控制RRC消息的小区。目标小区、目标主小区PCell、目标主小区组MCG的概念一般可以互换;指切换命令中所包含的目标小区标识所指示的小区,或描述为切换过程中执行下行同步或随机接入的小区。所述切换命令用于触发UE执行切换,在NR系统中是包含同步重配置(Reconfigurationwithsync)信息元素的RRC重配置消息,更进一步地,是包含用于主小区组MCG的同步重配置(Reconfigurationwithsync)信息元素的RRC重配置消息。此时,切换也可称为MCG的同步重配置。其中,所述同步重配置信息元素可以包含目标小区的配置信息,例如目标小区标识、目标小区频率、目标小区的公共配置如系统信息、UE接入到目标小区所使用的随机接入配置、UE在目标小区的安全参数配置、UE在目标小区的无线承载配置等。
双连接(Dual Connectivity):
为了提高UE的数据传输效率,UE同时与两个基站建立链路,也就是UE所使用的无线资源由位于两个基站的不同调度器提供。这两个基站与UE之间的无线接入可以是相同或不同的制式(Radio Access Technology,RAT),如都是NR,或一个是NR,一个是LTE也称演进的通用陆地无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)。在这两个基站中,一个称为主基站(Master Node,MN)或MgNB、MeNB,主基站下的服务小区组称为主小区组(Master Cell Group,MCG);另一个称为辅基站(Secondary Node,SN)或SgNB、SeNB,辅基站下的服务小区组称为辅小区组(Secondary Cell Group,SCG)。当主基站是LTE,辅基站是NR时的DC称为EN-DC(使用4G核心网)或NGEN-DC(使用5G核心网);当主基站和辅基站都是NR时的DC称为NR-DC。MCG包含一个主小区(Primary Cell,PCell)和可选的一个或多个辅小区(Secondary Cell,SCell)。PCell工作在主频率上,UE通过主频率执行初始连接建立过程或连接重建立过程。SCG包含一个PSCell和可选的一个或多个SCell。PSCell是指UE在执行同步重配置过程或SCG添加过程时执行随机接入的SCG小区。PCell和PSCell也统称为特殊小区SpCell。在配置了DC时,支持对UE的DRB和SRB配置为分裂承载(split bearer)。Split SRB支持通过MCG和SCG两条路径传输。在应用副本(duplication)发送机制时,MCG和SCG路径上还可以传RRC协议数据单元(Protocol Data Unit,PDU)的副本,以提高传输的速率或可靠性。Split承载可以是对上行路径,也可以是对下行路径的。支持对SRB1和SRB2配置为split SRB。对下行,网络侧可以根据一些准则如信道质量等决定选择哪条路径发送数据。对上行,UE根据网络侧的RRC信令配置来确定是使用MCG路径还是在两条路径上都发送。在未配置为split SRB时,SRB1和SRB2是通过MCG路径传输的。此外,在配置了DC时,也可以为SN建立SRB3,主要用于传输SN和UE之间与SCG关联的配置等。SRB3的建立和释放都是由SN来决定的,不支持对SRB3配置split SRB。UE可以同时配置split SRB1和SRB3。
现有机制中的无线链路失败上报机制:
NR系统中,UE会在发生无线链路失败(Radio Link Failure,RLF)或切换失败(Handover Failure,HOF)时生成并保存一个无线链路失败报告(RLF report),并将无线链路失败信息保存在UE变量VarRLF-Report。一般情况下,UE仅保存最近一次连接失败(RLF或HOF)的RLF报告,也就是说发生连接失败时,UE会清空上一次所保存的RLF报告,然后在RLF report变量中保存最近一次连接失败对应的失败信息。在恢复与网络侧的连接(如通过RRC重建立过程或用于建立新连接的RRC建立过程)后,UE可以通过RRC消息告知网络侧其上有可用的无线链路失败报告(如rlf-InfoAvailable信息元素来指示)。网络侧在收到所述指示后,可以通过RRC消息(如UEInformationRequest消息中的rlf-ReportReq信息元素来指示所述请求)来请求UE上报其保存的无线链路失败报告。UE会在响应RRC消息中将所保存的无线链路失败报告(UEInformationResponse消息中的rlf-Report信息元素)上报给网络侧。RLF报告机制是SON功能中的一种重要机制,网络侧获取的所述无线链路失败报告用于网络优化,如网络覆盖和移动鲁棒性优化。无线链路失败报告中包含了链接失败相关的信息,包括链路失败发生时的源小区、目标小区或邻居小区的测量结果、位置信息、发生链路失败的主小区标识、链路失败类型(RLF还是HOF)、RLF理由、从连接失败到RLF报告上报之间所经历的时间(记作timeSinceFailure信息元素)、最近一次收到切换命令(切换发起或切换执行)到连接失败所经历的时间(记做timeConnFailure信息元素)、连接失败和重建立过程失败后下次UE进入RRC连接状态之间的时间(记作timeUntilReconnection信息元素)、RRC重建立小区标识等。RLF和HOF统称为连接失败。
快速MCG链路恢复机制:
版本16的双链接和载波聚合增强项目(参见文献RP-190452中)引入了一种快速MCG链路恢复机制。在快速MCG链路恢复机制中,当UE的MCG发生无线链路失败(Radio Link Failure,RLF)时,若 UE被配置了T316(即被使能了快速MCG恢复)且辅小区组SCG链路处于可用状态(即没有正在进行的PSCell添加变更过程(即PSCell对应的T04不在运行),或SCG不是被挂起状态(not suspended),或SCG不处于去激活状态),此时,MCG和SCG都不在被挂起(或称中断)状态或者定时器T316不在运行状态,则UE发起MCG失败信息流程,启动定时器T316,通过SCG路径(如split SRB1或SRB3)将包含MCG链路失败信息的MCG失败信息(MCGFailureInformation)消息发送给主基站,而不是直接触发RRC连接重建立过程。在MCG失败信息流程中,UE会暂停MCG路径的传输,如挂起除SRB0之外所有SRB和DRB对应的MCG侧的传输,并重置MCG对应的MAC实体,并在定时器T316运行期间等待网络侧的响应。收到MCG失败信息RRC消息的主基站可以通过SCG链路向UE发送包含同步重配置信息元素的RRC重配置消息来触发UE切换到一个新的小区或者发送RRC释放消息来释放UE的RRC连接。UE在收到上述RRC重配置消息或RRC释放消息后,停止T316,根据收到的响应消息(RRC重配置消息或RRC释放消息)执行对应的操作。若T316超时,则UE发起RRC重建立过程。这种快速MCG链路恢复机制/过程可以应用于被配置了MR-DC(Multi-Radio access technology Dual Connectivity)的情况,比如NE-DC(NR E-UTRA Dual Connectivity)、EN-DC(E-UTRA NR Dual Connectivity)、NR DC(New Radio Dual Connectivity)、NGEN-DC(Next Generation-radio access network E-UTRA NR Dual Connectivity)、LTE DC(intra-E-UTRAN DC)等。MCG失败信息的过程/机制和快速MCG恢复是可互换的,为描述方便,本公开中一般使用快速MCG恢复来指代MCG失败信息过程。
SCG激活/去激活(activation/deactivation)机制
版本17中引入SCG的激活去激活机制,通过将整个SCG小区组激活和去激活以适应动态变化的UE业务量/业务速率,以期望在UE业务量低时进一步节省不必要的上下行发送或链路监测所带来的功率开销。
MN和SN都可以请求激活或去激活SCG。由MN来决定是否激活或去激活SCG,并通过SRB1的RRC消息向UE发送SCG激活去激活命令。当UE从SRB1上收到的RRC消息(如RRC重配置消息)包含了scg-State信息元素(设置为deactivated)时,UE执行SCG的去激活操作;否则当RRC消息中不包含scg-State信息元素时,UE执行SCG的激活操作。在SCG去激活过程中,UE执行下述操作的一个或多个:认为SCG是去激活的、重置SCG的MAC、向RRC的下层指示SCG被去激活、若未配置无线链路监测(Radio Link monitoring,RLM)和波束失败检测(Beam Failure Detection,BFD)相关参数(即bfd-and-RLM信息元素未设置为true),则停止对SCG的RLM、停止用于SCG的定时器T310/T312等。在SCG激活的过程中,UE执行下述一个或多个操作:认为SCG被激活、若接收到该激活命令之前UE被配置了一个去激活SCG,则恢复对SCG的RLM、以及向RRC的下层指示SCG被激活。
UE的MAC层收到RRC层的SCG去激活指示时,去激活SCG所有的SCell和PSCell。当处于SCG deactivation时(PSCell是去激活的),UE不在SCG的PSCell上发送探测参考信号(Sounding Reference Signal,SRS)、不上报用于SCG的PSCell的信道状态信息(Channel Status Information,CSI)、不在SCG的PSCell上发送上行共享信道(Uplink-Shared Channel,UL-SCH)、不在SCG的PSCell触发随机接入、不在SCG的PSCell监听PDCCH、不监听用于SCG的PSCell的PDCCH、不在SCG的PSCell发送物理上行控制信道(Physical Uplink Control Channel,PUCCH)。UE的MAC层收到RRC层的SCG激活指示时,激活SCG。当处于SCG activation时(PSCell是激活的),UE允许在SCG的PSCell上发送SRS、上报用于SCG的PSCell的CSI、在SCG的PSCell触发随机接入、在SCG的PSCell监听PDCCH、监听用于SCG的PSCell的PDCCH以及允许在SCG的PSCell发送PUCCH。本发明中,SCG的激活/去激活和PSCell的激活/去激活之间可以替换。
版本18的SON功能的目标之一就是实现对快速MCG恢复功能的优化,也就是网络侧通过收集来自UE侧的SON信息和网络侧所存储的信息来使得快速MCG恢复功能可以更好的实现,如优化T316定时器的配置、提升快速MCG恢复过程的成功率等。最终实现当发生RLF时UE能够最大程度地利用快速MCG恢复功能实现链路恢复,避免过长的MCG失败信息过程或进入到RRC重建立过程而带来的业务中断。在最近的3GPP RAN2工作组中,对该目标所达成的一些结论包括:对于快速MCG恢复的移动鲁棒性优化(Mobility Robust Optimisation,MRO)功能,至少考虑T316超时和在快速MCG恢复过程中(即T316运行期间)发生SCG失败或SCG去激活的场景。对于当发生快速MCG恢复(upon fast MCG recovery)的场景需要进一步研究。此外,RAN2同意了通过增强RLF报告来支持快速MCG恢复MRO功能,且快速MCG恢复失败原因需要被包含在RLF报告中以用于快速MCG恢复优化,但细节尚未敲定。
从上述结论可知,一方面,快速MCG恢复失败可以是T316超时或者T316运行期间发生了SCG失败。而T316超时的原因,可能是在快速MCG恢复过程中网络侧无法选择合适的切换目标站点、或网络侧发送的RRC重配置消息或者RRC释放消息因为SCG链路质量不好或者SCG被去激活而无法送达UE。另一方面,上述尚需要进一步研究的“当发生快速MCG恢复(upon fast MCG recovery)”的场景,可以理解为当UE发生MCG RLF,想要通过发起快速MCG恢复过程来恢复链路时,由于SCG被挂起或SCG处于去激活状态等,UE判断无法发起快速MCG恢复过程,从而导致快速MCG恢复过程发起失败,而这也可以被看作一种快速MCG恢复失败。对于后一种场景(即快速MCG恢复触发失败)下的如何执行快速MCG恢复优化问题,目前RAN2工作组尚未进行相关讨论,这称为本公开所关注的问题。此外,本公开对于前一种场景(即UE在T316运行期间因为SCG被去激活而导致的快速MCG恢复失败)提出了一种在RLF报告中设置 快速MCG恢复失败原因的方法。
下述各实施例基于上述问题给出解决方法,如无特殊说明,实施例之间并不是互斥的,实施例之间可以结合,或者一些概念或定义在各实施例之间是可以通用的。
实施例1
该实施例给出了一种在UE上执行的无线链路失败报告方法。通过该方法中所述无线链路失败报告中的信息,网络侧可以推断所述RLF场景下是否发生了(发生过)SCG去激活或SCG去激活时的无线环境(无线链路测量结果),从而确定是否SCG去激活导致的快速MCG恢复失败和所述SCG去激活是否是一个不恰当的操作。这样的信息和判断可以用于网络侧在之后决定是否执行SCG去激活以及何时执行SCG去激活的参考,以期避免不恰当的SCG去激活而带来的快速MCG恢复过程的发起失败。
在该实施例中,UE在VarRLF-Rport中保存如下信息的一种或多种:第一RLF信息,设置为从SCG去激活到发生RLF所经历的时间;第二RLF信息,设置为当SCG被去激活的时刻所对应的可用的主小区或邻小区的测量结果。
优选地,该实施例适用于下述场景:UE执行SCG去激活操作,进入SCG去激活状态,后续发生MCG的RLF。这种情况下,由于SCG处于去激活状态,UE无法发起快速MCG恢复过程,只能发起RRC连接重建立过程来恢复MCG链路。
作为一例,该实施例可包含下述步骤,如图1所示。
步骤110:UE监测到了MCG的RLF。
步骤120:UE在用于记录RLF信息的RLF报告变量(如VarRLF-Rport)中保存如下信息的一种或多种:
第一RLF信息,设置为从SCG被去激活到发生RLF所经历的时间。也可以描述为第一RLF信息用于记录从SCG被去激活以来所经 历的时间。还可以描述为第一RLF信息用于记录UE在RLF之前处于SCG去激活态的时间。
第二RLF信息,包含在SCG被去激活时,UE所获得的有效的服务小区或邻小区的测量结果。可选地,所述服务小区指的是MCG的服务小区或主小区PCell。可选地,邻小区指对每一个被配置的测量对象,除主小区之外的一个或多个最好测量小区(best measured cells)的测量结果值。
优选地,在步骤120中,当UE判断所述RLF发生时UE处于SCG去激活状态时,在RLF报告中包含上述信息。也就是说,若UE在发生RLF时或RLF之前处于SCG去激活状态,则在RLF报告中包含上述信息。
优选地,所述SCG被去激活指的是最近一次的SCG被去激活,即最近一次UE从SCG激活进入SCG去激活状态。可选地,UE基于从网络侧收到的RRC命令中的SCG激活去激活信息(scg-State信息元素设置为deactivated)从SCG激活进入到SCG去激活状态。此外,在一种情况下,UE在当前发生RLF的主小区内并未发生过SCG激活/去激活状态变更,也就是说,UE进入当前主小区时(如切换到当前主小区或通过RRC恢复过程连接到该当前主小区,此时切换命令或RRC恢复消息中的scg-State信息元素设置为deactivated),SCG就被配置成了去激活状态,UE在当前主小区内并不一定发生从SCG激活态到SCG去激活态的变更,而是可能一直处于SCG去激活态,UE在进入当前主小区前可能处于SCG激活状态也可能处于SCG去激活状态。那么,可选地,在这种情况下,所述SCG被去激活等同于最近一次收到包含了scg-State信息元素设置为deactivated的RRC消息(RRC重配置消息或RRC恢复消息)。SCG被去激活是一种UE进入到SCG去激活状态的操作/动作,而不是一种SCG去激活的状态。
优选地,步骤120在UE被配置了定时器T316时执行。UE被配置了定时器T316等同于UE被使能了快速MCG恢复功能。
实施例2
该实施例给出了一种在UE上执行的无线链路失败报告方法。当UE在快速MCG恢复过程中发生了SCG被去激活时,UE在RLF报告中设置快速MCG恢复过程失败的原因为SCG被去激活,避免将所述原因设置为T316超时。这样的信息可以使得网络侧获知所述快速MCG恢复过程失败的真实原因是在T316运行期间发生了SCG被去激活,而不是单纯的T316超时而导致的,从而避免网络侧做了错误的判断。
按照当前的3GPP协议规范文档38.331,在快速MCG恢复过程中,若UE的SCG被去激活,则UE会继续执行快速MCG恢复过程,直到T316定时器超时快速MCG恢复过程失败。在该实施例中,当T316超时,UE根据T316运行期间是否发生了SCG被去激活操作来确定将RLF报告中的快速MCG恢复失败原因设置未SCG被去激活还是T316超时。
作为一例,该实施例可包含下述步骤,如图2所示。
步骤210:UE上发生了T316超时。
步骤220:UE在用于记录RLF信息的RLF报告变量(如VarRLF-Rport)中保存如下信息:
第三RLF信息,设置为快速MCG恢复失败原因。当UE判断在所述T316运行期间发生了SCG被去激活时,设置第三RLF信息用于指示快速MCG恢复失败原因是SCG被去激活;当UE判断在所述T316运行期间未发生SCG被去激活时,设置第三RLF信息用于指示快速MCG恢复失败原因是T316超时。
显然地,在步骤210之前还包括,UE发起快速MCG恢复过程,并启动定时器T316;以及在T316运行期间,UE收到了用于指示SCG去激活的RRC消息。
作为变形例,该实施例还可以描述为:
步骤210A:UE执行SCG被去激活操作。UE基于收到了用于指示SCG去激活的RRC消息从SCG激活状态进入到SCG去激活状态。
步骤220A:在步骤210A发生时,UE在用于记录RLF信息的RLF报告变量(如VarRLF-Rport)中保存如下信息:
第三RLF信息,设置为快速MCG恢复失败原因。当UE判断SCG被去激活时有正在运行的定时器T316,则设置第三RLF信息用于指示快速MCG恢复失败原因是SCG被去激活。
可选地,所述用于指示SCG去激活的RRC消息不包含用于MCG的同步重配置信息元素,也就是说所述RRC消息不是指示UE执行切换的RRC重配置消息。
显然地,在步骤210A之前还包括,UE发起快速MCG恢复过程,并启动定时器T316。因此步骤220A在UE被配置了T316时执行。
作为另一变形例,该实施例还可以描述为:当UE保存RLF报告,设置RLF报告的内容时,若UE在此之前执行了快速MCG恢复过程,则按下列步骤设置第三RLF信息:若在快速MCG恢复过程中发生了SCG被去激活,则设置第三RLF信息用于指示快速MCG恢复失败原因是SCG被去激活;否则;设置第三RLF信息用于指示快速MCG恢复失败原因是T316超时。可选地,UE在判断在此之前执行了快速MCG恢复过程所对应的定时器T316超时的时候,设置第三RLF信息。
该实施例中,SCG被去激活是一种UE进入到SCG去激活状态的操作/动作,而不是一种SCG去激活的状态。
实施例3
该实施例给出了一种在UE上执行的无线链路失败报告方法。通过包含在RLF报告中的信息,网络侧可以获知SCG被去激活是否发生在T316运行期间,从而对不恰当的SCG去激活可以规避,提高快速MCG恢复流程的成功率。
作为一例,该实施例可包含下述步骤,如图3所示。
步骤310:SCG被去激活,即UE执行SCG被去激活操作。UE基于收到了用于指示SCG去激活的RRC消息进入到SCG去激活状态。
步骤320:UE在用于记录RLF信息的RLF报告变量(如 VarRLF-Rport)中保存如下信息:第四RLF信息,用于指示所述SCG被去激活的操作是否发生在T316运行期间。
可选地,当SCG被去激活的操作发生在T316运行期间,即在快速MCG恢复过程中,UE收到用于指示SCG去激活的RRC消息进入到SCG去激活状态的情况下,UE才在RLF报告中包含第四RLF信息,指示了SCG被去激活发生在T316运行期间。可选地,所述用于指示SCG去激活的RRC消息不包含用于MCG的同步重配置信息元素,也就是说所述RRC消息不是指示UE执行切换的RRC重配置消息。
可选地,当SCG被去激活的操作不是发生在T316运行期间,即发生MCG RLF的UE判断由于SCG被去激活,而未发起快速MCG恢复过程(快速MCG恢复发起失败);所述UE收到用于指示SCG去激活的RRC消息进入到SCG去激活状态是发生在MCG RLF被检测到之前,UE才在RLF报告中包含第四RLF信息,指示了SCG被去激活不是发生在T316运行期间,也就是SCG被去激活发生在检测到RLF之前。
可选地,当UE被配置了定时器T316时,UE才在RLF报告中包含第四RLF信息。
该实施例中,SCG被去激活是一种UE进入到SCG去激活状态的操作/动作,而不是一种SCG去激活的状态。
实施例4:
该实施例给出了一种在UE上执行的RLF信息报告方法。通过该实施例所述方法,则UE可以在RLF报告中将相关信息上报给基站,以向网络侧提供更精确的连接失败信息。该实施例是实施例1~3在UE通过RRC过程上报时的方法。
作为一例,该实施例可包含下述步骤,如图4所示。
步骤420:UE将所保存的RLF报告中的内容包含在UEInformationResponse消息中,向网络侧发送UEInformationResponse 消息。所述RRC消息中包含的RLF报告中包含前述实施例中的第一RLF信息至第四RLF信息中的一项或多项。
实施例5
该实施例对本公开的用户设备UE进行说明。图5是表示本公开所涉及的用户设备UE的框图。如图5所示,该用户设备UE50包括处理器501和存储器502。处理器501例如可以包括微处理器、微控制器、嵌入式处理器等。存储器502例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器502上存储有程序指令。该指令在由处理器501运行时,可以执行本发明中详细描述的上述的无线链路失败报告方法。
上文已经结合优选实施例对本公开的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的。本公开的方法并不局限于上面示出的步骤和顺序。上面示出的基站和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本公开并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
运行在根据本公开的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本公开各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计 算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本公开的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本公开并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本公开并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本公开的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本公开也包括不偏离本公开主旨的任何设计改动。另外,可以在权利要求的范围内对本公开进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本公开的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种无线链路失败报告方法,包括:
    用户设备UE监测到主小区组MCG的无线链路失败RLF;
    所述UE判定其处于辅小区组SCG去激活状态;
    所述UE在RLF报告中保存第一RLF信息或第二RLF信息;
    其中,所述第一RLF信息设置为从SCG被去激活到发生RLF所经历的时间;所述第二RLF信息设置为当SCG被去激活的时刻所对应的可用的主小区或邻小区的测量结果。
  2. 根据权利要求1所述的无线链路失败报告方法,其中,
    所述SCG被去激活指的是最近一次的SCG被去激活。
  3. 根据权利要求1或2所述的无线链路失败报告方法,其中,
    所述SCG被去激活是UE基于从网络侧收到的无线资源控制RRC命令中的SCG去激活指示进入SCG去激活状态。
  4. 根据权利要求3所述的无线链路失败报告方法,其中,
    所述RRC消息是RRC重配置消息,所述SCG去激活指示是设置为deactivated的scg-State信息元素。
  5. 根据权利要求1所述的无线链路失败报告方法,其中,
    所述UE在被配置了定时器T316时,在RLF报告中保存第一RLF信息或第二RLF信息。
  6. 根据权利要求1或者2所述的无线链路失败报告方法,其中,
    所述无线链路失败报告方法还包括:
    所述UE收到来自网络侧的UEInformationRequest消息,所述UE InformationRequest消息携带了用于请求UE上报所保存的RLF报告的指示/请求;和
    所述UE将所保存的RLF报告中的内容包含在UEInformationRes ponse消息中,向网络侧发送UEInformationResponse消息。
  7. 一种无线链路失败报告方法,包括:
    用户设备UE发起快速主小区组恢复过程,启动定时器T316;
    定时器T316超时,
    所述UE在RLF报告中保存第三RLF信息;
    其中,若在所述T316运行期间发生了SCG被去激活,UE设置第三RLF信息用于指示快速主小区组恢复失败原因是SCG被去激活;若在所述T316运行期间未发生SCG被去激活时,UE设置第三RLF信息用于指示快速主小区组恢复失败原因是T316超时。
  8. 根据权利要求7所述的无线链路失败报告方法,其中,
    所述SCG被去激活是UE基于从网络侧收到的无线资源控制RRC命令中的SCG去激活指示进入SCG去激活状态。
  9. 根据权利要求8所述的无线链路失败报告方法,其中,
    所述RRC命令不是包含用于MCG的同步重配置信息元素的RRC重配置消息。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,所述存储器上存储有指令;
    其中,所述指令在由所述处理器运行时,使所述用户设备执行根据权利要求1-9中任意一项所述的无线链路失败报告方法。
PCT/CN2023/142340 2023-01-12 2023-12-27 无线链路失败报告方法以及用户设备 WO2024149066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310064563.6A CN118338348A (zh) 2023-01-12 2023-01-12 无线链路失败报告方法以及用户设备
CN202310064563.6 2023-01-12

Publications (1)

Publication Number Publication Date
WO2024149066A1 true WO2024149066A1 (zh) 2024-07-18

Family

ID=91768284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/142340 WO2024149066A1 (zh) 2023-01-12 2023-12-27 无线链路失败报告方法以及用户设备

Country Status (2)

Country Link
CN (1) CN118338348A (zh)
WO (1) WO2024149066A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190608A1 (zh) * 2020-03-26 2021-09-30 夏普株式会社 无线链路失败报告方法以及用户设备
WO2021249973A1 (en) * 2020-06-10 2021-12-16 Telefonaktiebolaget Lm Ericsson (Publ) Method, product and apparatus for treating master cell group, mcg, failure and radio link failure, rlf, reporting
CN114125966A (zh) * 2019-01-25 2022-03-01 中兴通讯股份有限公司 用于上报主小区组失败的方法和装置
WO2022205374A1 (zh) * 2021-04-01 2022-10-06 Oppo广东移动通信有限公司 一种处理无线链路失败的方法及装置、通信设备
CN115334577A (zh) * 2021-05-11 2022-11-11 大唐移动通信设备有限公司 一种信息处理方法及装置
CN115428503A (zh) * 2020-04-09 2022-12-02 联想(北京)有限公司 用于故障报告的方法及装置
CN115516916A (zh) * 2022-08-08 2022-12-23 北京小米移动软件有限公司 一种上报方法、装置、设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125966A (zh) * 2019-01-25 2022-03-01 中兴通讯股份有限公司 用于上报主小区组失败的方法和装置
WO2021190608A1 (zh) * 2020-03-26 2021-09-30 夏普株式会社 无线链路失败报告方法以及用户设备
CN115428503A (zh) * 2020-04-09 2022-12-02 联想(北京)有限公司 用于故障报告的方法及装置
WO2021249973A1 (en) * 2020-06-10 2021-12-16 Telefonaktiebolaget Lm Ericsson (Publ) Method, product and apparatus for treating master cell group, mcg, failure and radio link failure, rlf, reporting
WO2022205374A1 (zh) * 2021-04-01 2022-10-06 Oppo广东移动通信有限公司 一种处理无线链路失败的方法及装置、通信设备
CN115334577A (zh) * 2021-05-11 2022-11-11 大唐移动通信设备有限公司 一种信息处理方法及装置
CN115516916A (zh) * 2022-08-08 2022-12-23 北京小米移动软件有限公司 一种上报方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN118338348A (zh) 2024-07-12

Similar Documents

Publication Publication Date Title
US20230164866A1 (en) Radio link failure reporting method and user equipment
WO2020151653A1 (zh) 由用户设备执行的切换方法以及用户设备
WO2010105567A1 (zh) 切换优化方法、设备及系统
WO2022057783A1 (zh) 无线链路失败报告方法以及用户设备
WO2011006376A1 (zh) 切换失败指示信息的通知方法与装置
WO2022127731A1 (zh) 小区变更方法以及用户设备
WO2020221193A1 (zh) 条件切换方法及对应的用户设备
US20230262542A1 (en) Handover information reporting method and user equipment
TWI858257B (zh) 無線電鏈路失敗恢復方法及對應的使用者設備
WO2023125649A1 (zh) 连接建立失败报告方法和用户设备
WO2023005967A1 (zh) 切换信息报告方法以及用户设备
WO2022127730A1 (zh) 由用户设备执行的方法以及用户设备
WO2023040955A1 (zh) 切换信息报告方法以及用户设备
WO2024027704A1 (zh) 切换信息报告方法以及用户设备
WO2022257974A1 (zh) 切换信息报告方法、用户设备以及通信系统
WO2024149066A1 (zh) 无线链路失败报告方法以及用户设备
WO2021254197A1 (zh) 由用户设备执行的方法以及用户设备
WO2023134763A1 (zh) 信息报告方法以及用户设备
WO2021057702A1 (zh) 无线链路失败恢复方法以及用户设备
WO2024094056A1 (zh) 信息报告方法以及用户设备
WO2024067624A1 (zh) 信息报告方法以及用户设备
WO2025060960A1 (zh) 链路恢复信息报告方法以及用户设备
WO2024008076A1 (zh) 切换信息报告方法以及用户设备
WO2022237612A1 (zh) 网络转换方法以及用户设备
WO2022116938A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23915819

Country of ref document: EP

Kind code of ref document: A1