WO2024148586A1 - 确定开启时间的方法、装置、通信设备及存储介质 - Google Patents
确定开启时间的方法、装置、通信设备及存储介质 Download PDFInfo
- Publication number
- WO2024148586A1 WO2024148586A1 PCT/CN2023/071980 CN2023071980W WO2024148586A1 WO 2024148586 A1 WO2024148586 A1 WO 2024148586A1 CN 2023071980 W CN2023071980 W CN 2023071980W WO 2024148586 A1 WO2024148586 A1 WO 2024148586A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- processing
- duration
- message
- rrc
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 109
- 238000004891 communication Methods 0.000 title claims abstract description 59
- 230000009849 deactivation Effects 0.000 claims abstract description 92
- 230000004044 response Effects 0.000 claims description 67
- 238000011084 recovery Methods 0.000 claims description 37
- 230000008569 process Effects 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000003213 activating effect Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 17
- 230000000875 corresponding effect Effects 0.000 description 13
- 230000004913 activation Effects 0.000 description 12
- 238000010295 mobile communication Methods 0.000 description 11
- 238000007726 management method Methods 0.000 description 10
- 230000002779 inactivation Effects 0.000 description 8
- 230000009471 action Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
Definitions
- the present disclosure relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular to a method, an apparatus, a communication device and a storage medium for determining a start time of a deactivation timer of a secondary cell (Scell).
- Scell secondary cell
- Scell secondary cell
- the embodiments of the present disclosure disclose a method, an apparatus, a communication device, and a storage medium for determining a start time of a deactivation timer of a secondary cell (Scell).
- Scell secondary cell
- a method for determining a start time of a secondary cell Scell deactivation timer is provided, wherein the method is executed by a terminal and includes:
- the RRC message is one of the following:
- the method further comprises:
- the time offset is determined based on a processing time for performing processing for the RRC message.
- the processing time in response to the RRC message being the RRC connection reconfiguration message or the RRC connection recovery message, the processing time includes:
- a first processing duration is a processing delay for receiving the RRC message
- the second processing duration is the duration between receiving the RRC message and sending a response message of the RRC message to the access network device.
- the processing time in response to the RRC message being the RRC switching message, the processing time includes:
- the first processing duration is the processing delay of receiving the RRC message
- the third processing duration is the switching interruption duration
- the fourth processing duration is the duration for processing the time advance TA, and the duration for processing TA includes: the duration from the end of the switching interruption duration to the receipt of a valid TA command, and the duration for applying TA.
- the processing time further includes a fifth processing duration determined based on a predetermined communication protocol.
- a device for determining a start time of a secondary cell Scell deactivation timer includes:
- a determination module configured to determine a start time of the Scell deactivation timer based on a reference time and a time offset
- the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the determining module is further configured that the RRC message is one of the following:
- the determining module is further configured to:
- the time offset is determined based on a processing time for performing processing for the RRC message.
- the determining module in response to the RRC message being the RRC connection reconfiguration message or the RRC connection recovery message, is further configured to:
- a first processing duration is a processing delay for receiving the RRC message
- the second processing duration is the duration between receiving the RRC message and sending a response message of the RRC message to the access network device.
- the determining module in response to the RRC message being the RRC switching message, is further configured to:
- the first processing duration is the processing delay of receiving the RRC message
- the third processing duration is the switching interruption duration
- the fourth processing duration is the duration for processing the time advance TA, and the duration for processing TA includes: the duration from the end of the switching interruption duration to the receipt of a valid TA command, and the duration for applying TA.
- the determination module is further configured so that the processing time further includes a fifth processing duration determined based on a predetermined communication protocol.
- the determination module is further configured to set the processing duration to be a duration determined based on a time slot.
- a communication device including:
- a memory for storing instructions executable by the processor
- the processor is configured to implement the method described in any embodiment of the present disclosure when running the executable instructions.
- a computer storage medium stores a computer executable program, and when the executable program is executed by a processor, the method described in any embodiment of the present disclosure is implemented.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset, wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer can be clearly determined. Compared with the case where the start time of the Scell deactivation timer is uncertain, the Scell deactivation timer can be started in time, and the operation in the Scell deactivation timer start scenario can be performed in time, making the wireless communication more reliable.
- Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment.
- Fig. 2 is a schematic flow chart showing a method for determining a start time of a deactivation timer of a secondary cell Scell according to an exemplary embodiment.
- Fig. 3 is a schematic flow chart showing a method for determining a start time of a deactivation timer of a secondary cell Scell according to an exemplary embodiment.
- Fig. 4 is a schematic flow chart showing a method for determining a start time of a deactivation timer of a secondary cell Scell according to an exemplary embodiment.
- Fig. 5 is a schematic flow chart showing a method for determining a start time of a deactivation timer of a secondary cell Scell according to an exemplary embodiment.
- Fig. 6 is a schematic diagram showing a device for determining a start time of a deactivation timer of a secondary cell Scell according to an exemplary embodiment.
- Fig. 7 is a schematic diagram showing the structure of a terminal according to an exemplary embodiment.
- Fig. 8 is a block diagram of a base station according to an exemplary embodiment.
- first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
- first information may also be referred to as the second information
- second information may also be referred to as the first information.
- word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
- FIG1 shows a schematic diagram of the structure of a wireless communication system provided by an embodiment of the present disclosure.
- the wireless communication system is a communication system based on mobile communication technology, and the wireless communication system may include: a plurality of user equipments 110 and a plurality of base stations 120 .
- the user equipment 110 may be a device that provides voice and/or data connectivity to a user.
- the user equipment 110 may communicate with one or more core networks via a radio access network (RAN).
- RAN radio access network
- the user equipment 110 may be an IoT user equipment, such as a sensor device, a mobile phone, and a computer with an IoT user equipment.
- IoT user equipment such as a sensor device, a mobile phone, and a computer with an IoT user equipment.
- it may be a fixed, portable, pocket-sized, handheld, computer-built-in, or vehicle-mounted device.
- a station STA
- a subscriber unit a subscriber station, a mobile station, a mobile station, a remote station, an access point, a remote terminal, an access terminal, a user terminal, a user agent, a user device, or a user equipment.
- the user equipment 110 may also be a device of an unmanned aerial vehicle.
- the user device 110 may be a vehicle-mounted device, such as a driving computer with wireless communication function, or a wireless user device connected to a driving computer.
- the user device 110 may be a roadside device, such as a street lamp, a signal lamp, or other roadside device with wireless communication function.
- the base station 120 may be a network-side device in a wireless communication system.
- the wireless communication system may be a fourth generation mobile communication technology (4G) system, also known as a long term evolution (LTE) system; or, the wireless communication system may be a 5G system, also known as a new air interface system or a 5G NR system. Alternatively, the wireless communication system may be a next generation system of the 5G system.
- the access network in the 5G system may be called NG-RAN (New Generation-Radio Access Network).
- the base station 120 can be an evolved base station (eNB) adopted in the 4G system.
- the base station 120 can also be a base station (gNB) adopting a centralized distributed architecture in the 5G system.
- the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed units, DU).
- the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack;
- the distributed unit is provided with a physical (Physical, PHY) layer protocol stack.
- the specific implementation method of the base station 120 is not limited in the embodiment of the present disclosure.
- a wireless connection may be established between the base station 120 and the user equipment 110 via a wireless air interface.
- the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
- an E2E (End to End) connection may also be established between the user devices 110.
- V2X vehicle-to-everything
- V2V vehicle to vehicle
- V2I vehicle to Infrastructure
- V2P vehicle to pedestrian
- the above user equipment can be considered as the terminal equipment in the following embodiments.
- the wireless communication system may further include a network management device 130 .
- the network management device 130 may be a core network device in a wireless communication system, for example, the network management device 130 may be a mobility management entity (MME) in an evolved packet core (EPC). Alternatively, the network management device may also be other core network devices, such as a serving gateway (SGW), a public data network gateway (PGW), a policy and charging rules function (PCRF), or a home subscriber server (HSS).
- SGW serving gateway
- PGW public data network gateway
- PCRF policy and charging rules function
- HSS home subscriber server
- the embodiments of the present disclosure list multiple implementation methods to clearly illustrate the technical solutions of the embodiments of the present disclosure.
- those skilled in the art can understand that the multiple implementation methods provided by the embodiments of the present disclosure can be implemented separately, or can be implemented together with the methods of other embodiments of the embodiments of the present disclosure, or can be implemented separately or in combination with other related technical solutions. Some methods in the art are performed together; the embodiments of the present disclosure are not limited to this.
- Scell secondary cell
- RRC radio resource control
- CE media access control control element
- this embodiment provides a method for determining a start time of a secondary cell Scell deactivation timer, wherein the method is executed by a terminal and includes:
- Step 21 Determine the start time of the Scell deactivation timer based on the reference time and the time offset;
- the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the terminal involved in the present disclosure may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a road side unit (RSU, Road Side Unit), a smart home terminal, an industrial sensor device and/or a medical device, etc.
- the terminal may be a Redcap terminal or a predetermined version of a new air interface NR terminal (for example, an R17 NR terminal).
- the base stations involved in the present disclosure may be various types of base stations, for example, base stations of third generation mobile communication (3G) networks, base stations of fourth generation mobile communication (4G) networks, base stations of fifth generation mobile communication (5G) networks, or other evolved base stations.
- 3G third generation mobile communication
- 4G fourth generation mobile communication
- 5G fifth generation mobile communication
- a start time for starting or restarting a Scell deactivation timer is determined based on a reference time and a time offset; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- a start time of a Scell deactivation timer is determined based on a reference time and a time offset; wherein the reference time includes a time slot (slot n) for receiving a radio resource control RRC message, and the RRC message is used to activate the Scell.
- slot n is the last slot in which a PDSCH transmission carrying an RRC message is received.
- the time slot for receiving the RRC message is the last slot in which the terminal receives the RRC message.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset determined based on a predetermined communication protocol; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset determined based on configuration information sent by a base station; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset determined based on configuration information configured by a user; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset determined based on information locally stored in the terminal; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- a start time of a Scell deactivation timer is determined based on a reference time and a time offset; wherein the reference time is determined based on a reception time of an RRC connection reconfiguration message received during a Scell addition process, and the RRC message is used to activate the Scell.
- a start time of a Scell deactivation timer is determined based on a reference time and a time offset; wherein the reference time is determined based on a reception time of an RRC handover message received during a cell handover (at Handover), and the RRC message is used to activate the Scell.
- a start time of a Scell deactivation timer is determined based on a reference time and a time offset; wherein the reference time is determined based on a reception time of an RRC connection recovery message received during an RRC connection recovery (at RRC Resume), and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell; and the time offset is determined based on a processing time for processing the RRC message.
- the time offset is determined based on a processing time for performing processing on an RRC message.
- a start time of a Scell deactivation timer is determined based on a reference time and the time offset, wherein the reference time is determined based on a reception time of receiving the RRC message, and the RRC message is used to activate the Scell.
- the processing of the RRC message includes at least one of the following:
- the time offset is determined based on the processing time of performing processing for the RRC message; wherein, in response to the RRC message being the RRC connection reconfiguration message or the RRC connection recovery message, the processing time includes: a first processing duration, which is a processing delay for receiving the RRC message; and a second processing duration, which is a duration between receiving the RRC message and sending a response message of the RRC message to the access network device.
- the start time of the Scell deactivation timer is determined; wherein, the reference time is determined based on the reception time of the RRC message, and the RRC message is used to activate the Scell.
- the reception in this example may correspond to the time point when data decoding is completed.
- the response message in response to the RRC message being the RRC connection reconfiguration message, the response message may be an RRC connection reconfiguration complete message.
- the response message in response to the RRC message being an RRC connection recovery message, the response message may be an RRC connection recovery complete message.
- the processing of the RRC message includes at least one of the following:
- TA Processing time advance
- the time offset is determined based on the processing time of performing processing for the RRC message; wherein, in response to the RRC message being the RRC handover message, the processing time includes: a first processing duration, which is a processing delay for receiving the RRC message; a third processing duration, which is a handover interruption duration; and a fourth processing duration, which is a duration of a processing time advance TA, wherein the duration of processing TA includes: a duration from the end of the handover interruption duration to the receipt of a valid TA command, and a duration of applying TA.
- the start time of the Scell deactivation timer is determined; wherein the reference time is determined based on the reception time of the RRC message, and the RRC message is used to activate the Scell.
- the time offset is determined based on the processing time of performing processing for the RRC message; wherein, in response to the RRC message being the RRC connection reconfiguration message or the RRC connection recovery message, the processing time includes: a first processing duration, which is the processing delay for receiving the RRC message; a second processing duration, which is the duration between receiving the RRC message and sending a response message of the RRC message to the access network device; and a fifth processing duration, which is a preset duration.
- the fifth processing duration is a duration determined based on a predetermined communication protocol.
- the start time of the Scell deactivation timer is determined; wherein the reference time is determined based on the reception time of the RRC message, and the RRC message is used to activate the Scell.
- the time offset is determined based on the processing time of performing the processing for the RRC message; wherein, in response to the RRC message being the RRC switching message, the processing time includes: a first processing duration, which is the processing delay for receiving the RRC message; a third processing duration, which is the switching interruption duration; a fourth processing duration, which is the duration of the processing time advance TA, wherein the duration for processing TA includes: the duration from the end of the switching interruption duration to the receipt of a valid TA command, and the duration for applying TA; and a fifth processing duration, wherein the fifth processing duration is a preset duration.
- the fifth processing duration is a duration determined based on a predetermined communication protocol. Based on the reference time and the time offset, determining the start time of the Scell deactivation timer; wherein the reference time is determined based on the reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the time offset is determined based on a processing time for performing processing on an RRC message.
- the processing time is a time determined based on a time slot.
- a start time of a Scell deactivation timer is determined based on a reference time and the time offset; wherein the reference time is determined based on a reception time of the RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer is determined based on the reference time and the time offset; wherein the reference time is determined based on the reception time of the radio resource control RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer can be clearly determined. Compared with the case where the start time of the Scell deactivation timer is uncertain, the Scell deactivation timer can be started in time, and the operation in the Scell deactivation timer start scenario can be performed in time, making the wireless communication more reliable.
- this embodiment provides a method for determining a start time of a secondary cell Scell deactivation timer, wherein the method is executed by a terminal and includes:
- Step 31 determining a time offset based on a processing time for performing processing for the RRC message
- the RRC message is used to activate the Scell; and the time offset is used to determine the start time of the Scell deactivation timer.
- a time offset is determined based on a processing time for performing processing on an RRC message, and a start time of a Scell deactivation timer is determined based on a reference time and the time offset, wherein the reference time is determined based on a reception time of receiving the RRC message, and the RRC message is used to activate the Scell.
- the time offset is determined based on the processing time of performing processing for the RRC message; wherein, in response to the RRC message being the RRC connection reconfiguration message or the RRC connection recovery message, the processing time includes: a first processing duration, which is a processing delay for receiving the RRC message; and a second processing duration, which is a duration between receiving the RRC message and sending a response message of the RRC message to the access network device.
- the start time of the Scell deactivation timer is determined; wherein, the reference time is determined based on the reception time of the RRC message, and the RRC message is used to activate the Scell.
- the time offset is determined based on the processing time of performing processing for the RRC message; wherein, in response to the RRC message being the RRC handover message, the processing time includes: a first processing duration, which is a processing delay for receiving the RRC message; a third processing duration, which is a handover interruption duration; and a fourth processing duration, which is a duration of a processing time advance TA, wherein the duration of processing TA includes: a duration from the end of the handover interruption duration to the receipt of a valid TA command, and a duration of applying TA.
- the start time of the Scell deactivation timer is determined; wherein the reference time is determined based on the reception time of the RRC message, and the RRC message is used to activate the Scell.
- the time offset is determined based on the processing time of performing processing for the RRC message; wherein, in response to the RRC message being the RRC connection reconfiguration message or the RRC connection recovery message, the processing time includes: a first processing duration, which is the processing delay for receiving the RRC message; a second processing duration, which is the duration between receiving the RRC message and sending a response message of the RRC message to the access network device; and a fifth processing duration, which is a preset duration.
- the fifth processing duration is a duration determined based on a predetermined communication protocol.
- the start time of the Scell deactivation timer is determined; wherein the reference time is determined based on the reception time of the RRC message, and the RRC message is used to activate the Scell.
- the time offset is determined based on the processing time of performing processing for the RRC message; wherein, in response to the RRC message being the RRC switching message, the processing time includes: a first processing duration, which is a processing delay for receiving the RRC message; a third processing duration, which is a switching interruption duration; a fourth processing duration, which is a duration for processing a time advance TA, wherein the duration for processing TA includes: a duration from the end of the switching interruption duration to the receipt of a valid TA command, and a duration for applying TA; and a fifth processing duration, wherein the fifth processing duration is a pre-set duration.
- the fifth processing duration is a duration determined based on a predetermined communication protocol.
- the start time of the Scell deactivation timer is determined; wherein the reference time is determined based on the reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- this embodiment provides a method for determining a start time of a secondary cell Scell deactivation timer, wherein the method is executed by a terminal and includes:
- Step 41 Determine the start time of the Scell deactivation timer based on the reference time and the processing time;
- the reference time is determined based on a reception time of a radio resource control RRC message, where the RRC message is used to activate the Scell; and the processing time is a time for executing a process for the RRC message.
- the start time of the Scell deactivation timer is determined based on a reference time and a processing time; wherein the reference time is determined based on a reception time of a radio resource control RRC message, the RRC message being used to activate the Scell; and the processing time is a time for executing a process for the RRC message.
- the processing time includes: a first processing time duration, which is a processing delay for receiving the RRC message; and a second processing time duration, which is a time duration between receiving the RRC message and sending a response message to the RRC message to the access network device.
- the start time of the Scell deactivation timer is determined based on a reference time and a processing time; wherein the reference time is determined based on a reception time of a radio resource control RRC message, the RRC message being used to activate the Scell; and the processing time is a time for performing processing on the RRC message.
- the processing time includes: a first processing time length, which is a processing delay for receiving the RRC message; and a second processing time length, which is a time length between receiving the RRC message and sending a response message to the RRC message to the access network device.
- the start time of the Scell deactivation timer is determined based on a reference time and a processing time; wherein the reference time is determined based on the reception time of a radio resource control RRC message, the RRC message being used to activate the Scell; and the processing time is the time for executing the processing for the RRC message.
- the processing time includes: a first processing duration, which is a processing delay for receiving the RRC message; a third processing duration, which is a switching interruption duration; a fourth processing duration, which is a duration for processing a time advance TA, the duration for processing TA includes: a duration from the end of the switching interruption duration to the receipt of a valid TA command, and a duration for applying TA; and a fifth processing duration, the fifth processing duration being determined based on a predetermined communication protocol.
- the start time of the Scell deactivation timer is determined based on a reference time and a processing time; wherein the reference time is determined based on a reception time of a radio resource control RRC message, the RRC message being used to activate the Scell; and the processing time is a time for executing a process for the RRC message.
- the processing time includes: a first processing time duration, which is a processing delay for receiving the RRC message; and a second processing time duration, which is a time duration between receiving the RRC message and sending a response message to the RRC message to the access network device.
- the start time of the Scell deactivation timer is determined based on a reference time and a processing time; wherein the reference time is determined based on the reception time of a radio resource control RRC message, the RRC message being used to activate the Scell; and the processing time is the time for executing the processing for the RRC message.
- the processing time includes: a first processing duration, which is a processing delay for receiving the RRC message; a second processing duration, which is a duration between receiving the RRC message and sending a response message of the RRC message to the access network device; and a fifth processing duration, which is determined based on a predetermined communication protocol.
- the start time of the Scell deactivation timer is determined based on a reference time and a processing time; wherein the reference time is determined based on the reception time of a radio resource control RRC message, the RRC message being used to activate the Scell; and the processing time is the time for executing the processing for the RRC message.
- the processing time includes: a first processing duration, which is a processing delay for receiving the RRC message; a third processing duration, which is a switching interruption duration; a fourth processing duration, which is a duration for processing a time advance TA, the duration for processing TA includes: a duration from the end of the switching interruption duration to the receipt of a valid TA command, and a duration for applying TA; and a fifth processing duration, the fifth processing duration being determined based on a predetermined communication protocol.
- this embodiment provides a method for determining a start time of a secondary cell Scell deactivation timer, wherein the method is executed by a terminal and includes:
- Step 51 Determine the start time of the Scell deactivation timer based on the reference time
- the reference time is determined based on the reception time of a radio resource control (RRC) message, and the RRC message is used to activate Scell.
- RRC radio resource control
- the terminal involved in the present disclosure may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a road side unit (RSU, Road Side Unit), a smart home terminal, an industrial sensor device and/or a medical device, etc.
- the terminal may be a Redcap terminal or a predetermined version of a new air interface NR terminal (for example, an R17 NR terminal).
- the base stations involved in the present disclosure may be various types of base stations, for example, base stations of third generation mobile communication (3G) networks, base stations of fourth generation mobile communication (4G) networks, base stations of fifth generation mobile communication (5G) networks, or other evolved base stations.
- 3G third generation mobile communication
- 4G fourth generation mobile communication
- 5G fifth generation mobile communication
- a start time of a Scell deactivation timer is determined based on a reference time, wherein the reference time is determined based on a reception time of an RRC connection reconfiguration message received during a Scell addition process, and the RRC message is used to activate the Scell.
- a start time of a Scell deactivation timer is determined based on a reference time, wherein the reference time is determined based on a reception time of an RRC switching message received during a cell switching process, and the RRC message is used to activate the Scell.
- a start time of a Scell deactivation timer is determined based on a reference time, wherein the reference time is determined based on a reception time of an RRC connection recovery message received during an RRC connection recovery (at RRC Resume) process, and the RRC message is used to activate the Scell.
- a start time for starting or restarting a Scell deactivation timer is determined; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset; wherein the reference time is a time slot for receiving a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset determined based on a predetermined communication protocol; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset determined based on configuration information sent by a base station; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset determined based on configuration information configured by a user; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset determined based on information locally stored in the terminal; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- a start time of a Scell deactivation timer is determined based on a reference time and a time offset; wherein the reference time is determined based on a reception time of an RRC connection reconfiguration message received during a Scell addition process, and the RRC message is used to activate the Scell.
- a start time of a Scell deactivation timer is determined based on a reference time and a time offset; wherein the reference time is determined based on a reception time of an RRC handover message received during a cell handover (at Handover), and the RRC message is used to activate the Scell.
- a start time of a Scell deactivation timer is determined based on a reference time and a time offset; wherein the reference time is determined based on a reception time of an RRC connection recovery message received during an RRC connection recovery (at RRC Resume), and the RRC message is used to activate the Scell.
- the start time of the Scell deactivation timer is determined based on a reference time and a time offset; wherein the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell; and the time offset is determined based on a processing time for processing the RRC message.
- the time offset is determined based on a processing time for performing processing on an RRC message.
- a start time of a Scell deactivation timer is determined based on a reference time and the time offset, wherein the reference time is determined based on a reception time of receiving the RRC message, and the RRC message is used to activate the Scell.
- the processing of the RRC message includes at least one of the following:
- the time offset is determined based on the processing time of performing processing for the RRC message; wherein, in response to the RRC message being the RRC connection reconfiguration message or the RRC connection recovery message, the processing time includes: a first processing duration, which is a processing delay for receiving the RRC message; and a second processing duration, which is a duration between receiving the RRC message and sending a response message of the RRC message to the access network device.
- the start time of the Scell deactivation timer is determined; wherein, the reference time is determined based on the reception time of the RRC message, and the RRC message is used to activate the Scell.
- the response message in response to the RRC message being the RRC connection reconfiguration message, the response message may be an RRC connection reconfiguration complete message.
- the response message in response to the RRC message being an RRC connection recovery message, the response message may be an RRC connection recovery complete message.
- the processing of the RRC message includes at least one of the following:
- the time offset is determined based on the processing time of performing processing for the RRC message; wherein, in response to the RRC message being the RRC handover message, the processing time includes: a first processing duration, which is a processing delay for receiving the RRC message; a third processing duration, which is a handover interruption duration; and a fourth processing duration, which is a duration of a processing time advance TA, wherein the duration of processing TA includes: a duration from the end of the handover interruption duration to the receipt of a valid TA command, and a duration of applying TA.
- the start time of the Scell deactivation timer is determined; wherein the reference time is determined based on the reception time of the RRC message, and the RRC message is used to activate the Scell.
- the time offset is determined based on the processing time of performing processing for the RRC message; wherein, in response to the RRC message being the RRC connection reconfiguration message or the RRC connection recovery message, the processing time includes: a first processing duration, which is the processing delay for receiving the RRC message; a second processing duration, which is the duration between receiving the RRC message and sending a response message of the RRC message to the access network device; and a fifth processing duration, which is a preset duration.
- the fifth processing duration is a duration determined based on a predetermined communication protocol.
- the start time of the Scell deactivation timer is determined; wherein the reference time is determined based on the reception time of the RRC message, and the RRC message is used to activate the Scell.
- the time offset is determined based on the processing time of performing processing for the RRC message; wherein, in response to the RRC message being the RRC switching message, the processing time includes: a first processing duration, which is a processing delay for receiving the RRC message; a third processing duration, which is a switching interruption duration; a fourth processing duration, which is a duration for processing a time advance TA, wherein the duration for processing TA includes: a duration from the end of the switching interruption duration to the receipt of a valid TA command, and a duration for applying TA; and a fifth processing duration, wherein the fifth processing duration is a pre-set duration.
- the fifth processing duration is a duration determined based on a predetermined communication protocol.
- the start time of the Scell deactivation timer is determined; wherein the reference time is determined based on the reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the time offset is determined based on a processing time for performing processing on an RRC message.
- the processing time is a time determined based on a time slot.
- a start time of a Scell deactivation timer is determined based on a reference time and the time offset; wherein the reference time is determined based on a reception time of the RRC message, and the RRC message is used to activate the Scell.
- the start time of the Scell inactivation timer is based on the current time plus an offset value (a first offset value, corresponding to the time offset of the present disclosure), and the offset value is at least related to the duration of processing the RRC message.
- the duration of processing the RRC message can be converted to a statistical unit of slots.
- the conversion process is to divide the duration by the duration occupied by the slot (NR slot length), and then the duration in slots is converted; and the duration occupied by the slot is related to the numerology of the activated scell.
- starting the Scell inactivity timer includes starting and restarting.
- the current time is the time slot n at which the Scell direct activation message (RRC message in the present disclosure) is received;
- Slot n may be the last slot in which a PDSCH transmission carrying an RRC message is received.
- the Scell direct activation method includes:
- the first method is direct SCell Activation at SCell addition (i.e., directly using the configuration information in the RRC message to activate the SCell);
- the second method is direct SCell Activation at Handover (i.e., directly using the configuration information in the handover message to activate the SCell);
- the third method is direct SCell Activation at RRC Resume (i.e. directly using the configuration information in the RRC resume message to activate the SCell).
- the first offset value may be related to the duration of processing the RRC message.
- the duration of processing the RRC message includes a processing delay duration of receiving the RRC message (corresponding to the first processing duration);
- the corresponding first processing duration may be a value agreed upon in the protocol
- the processing delay duration of the RRC message may be defined for the first mode, the second mode, and the third mode, respectively. That is, the processing delay duration of the RRC message corresponding to the first mode, the second mode, and the third mode may be configured to be the same or different, so as to achieve flexible duration configuration.
- the first offset value is at least related to the duration of processing the RRC message.
- the duration of processing the RRC message includes a processing delay of receiving the RRC message (a first processing duration) and a delay of feeding back a response message of the RRC message to the network (a second processing duration);
- the processing delay of receiving the RRC message (corresponding to the first processing duration in the present disclosure) is T RRC_Process , which is the RRC processing delay defined in clause 12 of TS 38.331.
- the received RRC message is an RRC connection reconfiguration message
- the RRC response message (the response message of the RRC message described in the present disclosure) fed back to the network is an RRC connection reconfiguration completion message.
- the received RRC message is an RRC connection recovery message; and the RRC response message fed back to the network is an RRC connection recovery complete message.
- the offset value is at least related to the duration of processing the RRC message.
- the duration of processing the RRC message includes the processing delay of receiving the RRC message (first processing duration), the switching interruption duration (third processing duration), and the processing TA duration (fourth processing duration);
- the processing delay of receiving the RRC message (corresponding to the first processing duration in the present disclosure) is T RRC_Process , which is the RRC processing delay defined in clause 12 of TS 38.331.
- the switching interruption duration (corresponding to the third processing duration in the present disclosure) is T interrupt , which is the interruption time of the switching process specified in clause 6.1.1.
- the TA processing duration (corresponding to the fourth processing duration in the present disclosure) includes the duration from the completion of the handover interruption duration statistics to the receipt of a valid TA command and the application of TA.
- the TA command is used for the target primary cell.
- the received TA is applied to the delay of the uplink transmission of the target PCell and is greater than or equal to k+1 time slots, where k is defined in clause 4.2 of TS 38.213.
- the terminal when the terminal receives a direct SCell activation command [1X, TS 38.331] for a secondary cell ending in time slot n, the terminal applies the corresponding actions in [11, TS 38.321] according to the minimum requirements defined in [10, TS 38.133], except for the following cases:
- the action of sCellDeactivationTimer related to the secondary cell [11, TS 38.321] is applied by the UE at slot n+(T RRC_Process +T 1 )/NR slot length as defined in [10, TS 38.133] when the SCell is added or the RRCResume is performed.
- the action of sCellDeactivationTimer related to the secondary cell [11, TS 38.321] is applied by the UE at the time of SCell addition or RRCResume according to the definition of [10, TS 38.133] in slot n + (T RRC_Process + T 1 + Tx) / NR slot length;
- the action of sCellDeactivationTimer related to the secondary cell [11, TS 38.321] is applied by the UE in slot n+(T RRC_Process +T 2 +T 3 )/NR slot length as defined in [10, TS 38.133] during handover.
- the second processing duration, the third processing duration, and the fourth processing duration mentioned above may be added, for example, the fifth processing duration.
- Tx is added as the fifth processing duration.
- a second offset value may be added on the basis that the first offset value is at least related to the duration of processing the RRC message.
- t milliseconds (eg, 1 ms) are added as the second additional offset value.
- the start time of the Scell deactivation timer is based on the current time plus an offset value (a first offset value, corresponding to the time offset of the present invention).
- the offset value is at least related to the duration of processing the RRC message.
- the determination method needs to be based on the terminal capability and/or network capability to be used.
- this operation can only be performed if the terminal has the capability to start or restart the Scell deactivation timer in the Scell direct activation mode. For a terminal that does not have this capability, when to start or restart the Scell deactivation timer can be determined based on its own implementation.
- the terminal only when the network issues the capability of starting or restarting the Scell deactivation timer in accordance with the Scell direct activation mode, can the terminal start or restart the Scell inactivation timer in this mode.
- the terminal enters a cell that does not support this function, when to start or restart the Scell inactivation timer can be determined based on its own implementation.
- the operation can be performed only when the network sends the capability of starting or restarting the Scell deactivation timer according to the Scell direct activation mode and the terminal has the capability of starting or restarting the Scell inactivation timer according to the Scell direct activation mode. Otherwise, the terminal can determine when to start or restart the Scell inactivation timer based on its own implementation.
- the Scell deactivation timer may also be referred to as the Scell inactivation timer.
- an embodiment of the present disclosure provides a device for determining a start time of a secondary cell Scell deactivation timer, wherein the device includes:
- a determination module 61 is configured to determine a start time of a Scell deactivation timer based on a reference time and a time offset;
- the reference time is determined based on a reception time of a radio resource control RRC message, and the RRC message is used to activate the Scell.
- the determining module 61 is further configured that the RRC message is one of the following:
- the determining module 61 is further configured to:
- the time offset is determined based on a processing time for performing processing for the RRC message.
- the determining module 61 in response to the RRC message being the RRC connection reconfiguration message or the RRC connection recovery message, is further configured to:
- a first processing duration is a processing delay for receiving the RRC message
- the second processing duration is the duration between receiving the RRC message and sending a response message of the RRC message to the access network device.
- the determining module 61 in response to the RRC message being the RRC switching message, is further configured to:
- the first processing duration is the processing delay of receiving the RRC message
- the third processing duration is the switching interruption duration
- the fourth processing duration is the duration for processing the time advance TA, and the duration for processing TA includes: the duration from the end of the switching interruption duration to the receipt of a valid TA command, and the duration for applying TA.
- the determination module 61 is further configured so that the processing time further includes a fifth processing duration determined based on a predetermined communication protocol.
- the determination module 61 is further configured to set the processing time to be a time determined based on a time slot.
- the present disclosure provides a communication device, the communication device comprising:
- a memory for storing processor-executable instructions
- the processor is configured to: implement the method applied to any embodiment of the present disclosure when running the executable instructions.
- the processor may include various types of storage media, which are non-temporary computer storage media that can continue to memorize information stored thereon after the communication device loses power.
- the processor may be connected to the memory via a bus or the like to read the executable program stored in the memory.
- An embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer executable program, and when the executable program is executed by a processor, the method of any embodiment of the present disclosure is implemented.
- an embodiment of the present disclosure provides a structure of a terminal.
- this embodiment provides a terminal 800 , which may specifically be a mobile phone, a computer, a digital broadcast terminal, a message transceiver, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
- the terminal 800 may include one or more of the following components: a processing component 802 , a memory 804 , a power component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , a sensor component 814 , and a communication component 816 .
- the processing component 802 generally controls the overall operation of the terminal 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
- the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above-mentioned method.
- the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
- the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
- the memory 804 is configured to store various types of data to support operations on the device 800. Examples of such data include instructions for any application or method operating on the terminal 800, contact data, phone book data, messages, pictures, videos, etc.
- the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
- SRAM static random access memory
- EEPROM electrically erasable programmable read-only memory
- EPROM erasable programmable read-only memory
- PROM programmable read-only memory
- ROM read-only memory
- magnetic memory flash memory
- flash memory magnetic disk or optical disk.
- Power component 806 provides power to various components of terminal 800.
- Power component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to terminal 800.
- the multimedia component 808 includes a screen that provides an output interface between the terminal 800 and the user.
- the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
- the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
- the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
- the audio component 810 is configured to output and/or input audio signals.
- the audio component 810 includes a microphone (MIC), and when the terminal 800 is in an operation mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
- the received audio signal can be further stored in the memory 804 or sent via the communication component 816.
- the audio component 810 also includes a speaker for outputting audio signals.
- I/O interface 812 provides an interface between processing component 802 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
- the sensor assembly 814 includes one or more sensors for providing various aspects of status assessment for the terminal 800.
- the sensor assembly 814 can detect the open/closed state of the device 800, the relative positioning of the components, such as the display and keypad of the terminal 800, and the sensor assembly 814 can also detect the position change of the terminal 800 or a component of the terminal 800, the presence or absence of contact between the user and the terminal 800, the orientation or acceleration/deceleration of the terminal 800 and the temperature change of the terminal 800.
- the sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
- the sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
- the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
- the communication component 816 is configured to facilitate wired or wireless communication between the terminal 800 and other devices.
- the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
- the communication component 816 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
- the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
- the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
- RFID radio frequency identification
- IrDA infrared data association
- UWB ultra-wideband
- Bluetooth Bluetooth
- terminal 800 can be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components to perform the above methods.
- ASICs application-specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- controllers microcontrollers, microprocessors or other electronic components to perform the above methods.
- a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 804 including instructions, and the instructions can be executed by the processor 820 of the terminal 800 to complete the above method.
- the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
- an embodiment of the present disclosure illustrates a structure of a base station.
- the base station 900 may be provided as a network-side device.
- the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions executable by the processing component 922, such as an application.
- the application stored in the memory 932 may include one or more modules, each corresponding to a set of instructions.
- the processing component 922 is configured to execute instructions to execute any method of the aforementioned method applied to the base station.
- the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input/output (I/O) interface 958.
- the base station 900 may operate based on an operating system stored in the memory 932, such as Windows Server TM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
- Measurement Of Unknown Time Intervals (AREA)
Abstract
本公开实施例提供了一种确定辅小区Scell去激活定时器的开启时间的方法、装置、通信设备及存储介质。这里,基于接收用于激活Scell的RRC消息的接收时间和时间偏移量,可以明确确定Scell去激活定时器的开启时间,相较于Scell去激活定时器的开启时间不确定的情况,能够及时开启Scell去激活定时器,及时执行在Scell去激活定时器开启场景下的操作,使得无线通信更加可靠。
Description
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种确定辅小区Scell去激活定时器的开启时间的方法、装置、通信设备及存储介质。
在无线通信系统中,包括多种方式进行辅小区(Scell,Secondary Cell)的激活。
本公开实施例公开了一种确定辅小区Scell去激活定时器的开启时间的方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种确定辅小区Scell去激活定时器的开启时间的方法,其中,所述方法由终端执行,包括:
基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;
其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,所述RRC消息为以下之一:
在Scell添加过程中接收的RRC连接重配置消息;
在小区切换过程中接收的RRC切换消息;
在RRC连接恢复过程中接收的RRC连接恢复消息。
在一个实施例中,所述方法还包括:
基于执行针对所述RRC消息的处理的处理时间,确定所述时间偏移量。
在一个实施例中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,所述处理时间包括:
第一处理时长,为接收所述RRC消息的处理时延;以及
第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长。
在一个实施例中,响应于所述RRC消息为所述RRC切换消息,所述处理时间包括:
第一处理时长,为接收所述RRC消息的处理时延;
第三处理时长,为切换中断时长;以及
第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长。
在一个实施例中,所述处理时间还包括基于预定通信协议确定的第五处理时长。
在一个实施例中,所述处理时长为基于时隙slot确定的时长。
根据本公开实施例的第二方面,提供一种确定辅小区Scell去激活定时器的开启时间的装置,其中,所述装置包括:
确定模块,被配置为基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;
其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,所述确定模块还被配置为所述RRC消息为以下之一:
在Scell添加过程中接收的RRC连接重配置消息;
在小区切换过程中接收的RRC切换消息;
在RRC连接恢复过程中接收的RRC连接恢复消息。
在一个实施例中,所述确定模块还被配置为:
基于执行针对所述RRC消息的处理的处理时间,确定所述时间偏移量。
在一个实施例中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,所述确定模块还被配置为:
第一处理时长,为接收所述RRC消息的处理时延;以及
第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长。
在一个实施例中,响应于所述RRC消息为所述RRC切换消息,所述确定模块还被配置为:
第一处理时长,为接收所述RRC消息的处理时延;
第三处理时长,为切换中断时长;以及
第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长。
在一个实施例中,所述确定模块还被配置为所述处理时间还包括基于预定通信协议确定的第五处理时长。
在一个实施例中,所述确定模块还被配置为所述处理时长为基于时隙slot确定的时长。
根据本公开实施例的第三方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第四方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
在本公开实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。这里,基于接收用于激活Scell的RRC消息的接收时间和时间偏移量,可以明确确定Scell去激活定时器的开启时间,相较于Scell去激活定时器的开启时间不确定的情况,能够及时开启Scell去激活定时器,及时执行在Scell去激活定时器开启场景下的操作,使得无线通信更加可靠。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种确定辅小区Scell去激活定时器的开启时间的方法的流程示意图。
图3是根据一示例性实施例示出的一种确定辅小区Scell去激活定时器的开启时间的方法的流程示意图。
图4是根据一示例性实施例示出的一种确定辅小区Scell去激活定时器的开启时间的方法的流程示意图。
图5是根据一示例性实施例示出的一种确定辅小区Scell去激活定时器的开启时间的方法的流程示意图。
图6是根据一示例性实施例示出的一种确定辅小区Scell去激活定时器的开启时间的装置的示意图。
图7是根据一示例性实施例示出的一种终端的结构示意图。
图8是根据一示例性实施例示出的一种基站的框图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的
情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技
术中的一些方法一起被执行;本公开实施例并不对此作出限定。
相关技术中,存在多种方式进行辅小区(Scell,Secondary Cell)的激活。例如,一种方式可以通过无线资源控制(RRC,Radio Resource Control)消息直接激活Scell,其中,RRC消息携带了小区状态为激活的信息。又例如,另一种方式可以通过激活小区的媒体接入控制(MAC,Media Access Control)控制单元(CE,Control Element)激活Scell。Scell非激活定时器需要被开启或者重启。但是,对于上述第一种方式,并没有确定Scell非激活定时器开启或者重启时间的机制。
如图2所示,本实施例中提供一种确定辅小区Scell去激活定时器的开启时间的方法,其中,所述方法由终端执行,包括:
步骤21、基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;
其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
这里,本公开所涉及的终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。在一些实施例中,该终端可以是Redcap终端或者预定版本的新空口NR终端(例如,R17的NR终端)。
本公开中涉及的基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一个实施例中,基于参考时间和时间偏移量,确定用于启动或者重启Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间包括接收无线资源控制RRC消息的时隙(slot n),所述RRC消息用于激活Scell。
在一个实施例中,slot n为接收到携带RRC消息的PDSCH传输的最后一个slot。
在一个实施例中,接收RRC消息的时隙为终端接收到RRC消息的最后一个slot。
在一个实施例中,基于参考时间和基于预定通信协议确定的时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和基于基站发送的配置信息确定的时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和基于用户配置的配置信息确定的时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和基于终端本地存储的信息确定的时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于在Scell添加(at Scell addition)过程中接收的RRC连接重配置消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于在小区切换(at Handover)过程中接收的RRC切换消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于在RRC连接恢复(at RRCResume)过程中接收的RRC连接恢复消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell;所述时间偏移量基于针对所述RRC消息的处理的处理时间确定。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,针对所述RRC消息的处理包括以下至少之一:
接收所述RRC消息;以及
向接入网设备发送所述RRC消息的响应消息。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;以及第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
示例性地,第二处理时长可以是从X时刻直到发送RRC消息的响应消息之间的时长;其中,X=slot n+TRRC_Process/NR slot length;slot n为接收RRC消息的时隙,TRRC_Process为处理接收到的RRC消息的时长,NR slot length为NR的时隙时长。在一个实施例中,本示例中的接收可以对应数据解码完成的时间点。
在一个实施例中,响应于所述RRC消息为所述RRC连接重配置消息,所述响应消息可以是RRC连接重配置完成消息。
在一个实施例中,响应于所述RRC消息为RRC连接恢复消息,所述响应消息可以是RRC连接恢复完成消息。
在一个实施例中,响应于所述RRC消息为所述RRC切换消息,针对所述RRC消息的处理包括以下至少之一:
处理接收到的所述RRC消息;
切换终端的处理;以及
处理时间提前量(TA,Time Advanced)。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC切换消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第三处理时长,为切换中断时长;以及第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
示例性地,切换中断时长结束至接收到有效TA命令的时长可以是Y时刻直至接收到有效TA命令的时长;其中,Y=slot n+(TRRC_Process+Tinterrupt)/NR slot length;slot n为接收RRC消息的时隙,TRRC_Process为处理接收到的RRC消息的时长,NR slot length为NR的时隙时长,需要说明的是,本示例对应的时长和时刻通过时隙表征。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长;以及第五处理时长,所述第五处理时长为预先设置的时长。示例性地,所述第五处理时长为基于预定通信协议确定的时长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC切换消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第三处理时长,为切换中断时长;第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长;以及第五处理时长,所述第五处理时长为预先设置的时长。示例性地,所述第五处理时长为基于预定通信协议确定的时
长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量。所述处理时间为基于时隙slot确定的时间。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
本公开实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。这里,基于接收用于激活Scell的RRC消息的接收时间和时间偏移量,可以明确确定Scell去激活定时器的开启时间,相较于Scell去激活定时器的开启时间不确定的情况,能够及时开启Scell去激活定时器,及时执行在Scell去激活定时器开启场景下的操作,使得无线通信更加可靠。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图3所示,本实施例中提供一种确定辅小区Scell去激活定时器的开启时间的方法,其中,所述方法由终端执行,包括:
步骤31、基于执行针对RRC消息的处理的处理时间,确定时间偏移量;
其中,所述RRC消息用于激活Scell;所述时间偏移量用于确定Scell去激活定时器的开启时间。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定时间偏移量。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;以及第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC切换消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第三处理时长,为切换中断时长;以及第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长;以及第五处理时长,所述第五处理时长为预先设置的时长。示例性地,所述第五处理时长为基于预定通信协议确定的时长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC切换消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第三处理时长,为切换中断时长;第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长;以及第五处理时长,所述第五处理时长为预先设置的时长。示例性地,所述第五处理时长为基于预定通信协议确定的时长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以
与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图4所示,本实施例中提供一种确定辅小区Scell去激活定时器的开启时间的方法,其中,所述方法由终端执行,包括:
步骤41、基于参考时间和处理时间,确定Scell去激活定时器的开启时间;
其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell;所述处理时间为执行针对所述RRC消息的处理的时间。
在一个实施例中,基于参考时间和处理时间,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell;所述处理时间为执行针对所述RRC消息的处理的时间。响应于所述RRC消息为所述RRC连接重配置消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;以及第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长。
在一个实施例中,基于参考时间和处理时间,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell;所述处理时间为执行针对所述RRC消息的处理的时间。响应于所述RRC消息为RRC连接恢复消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;以及第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长。
在一个实施例中,基于参考时间和处理时间,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell;所述处理时间为执行针对所述RRC消息的处理的时间。响应于所述RRC消息为所述RRC切换消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第三处理时长,为切换中断时长;第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长;以及第五处理时长,所述第五处理时长为基于预定通信协议确定的。
在一个实施例中,基于参考时间和处理时间,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell;所述处理时间为执行针对所述RRC消息的处理的时间。响应于所述RRC消息为所述RRC连接重配置消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;以及第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长。
在一个实施例中,基于参考时间和处理时间,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell;所述处理时间为执行针对所述RRC消息的处理的时间。响应于所述RRC消息为RRC连接恢复消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长;以及第五处理时长,所述第五处理时长为基于预定通信协议确定的。
在一个实施例中,基于参考时间和处理时间,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell;所述处理时间为执行针对所述RRC消息的处理的时间。响应于所述RRC消息为所述RRC切换消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第三处理时长,为切换中断时长;第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长;以及第五处理时长,所述第五处理时长为基于预定通信协议确定的。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图5所示,本实施例中提供一种确定辅小区Scell去激活定时器的开启时间的方法,其中,所述方法由终端执行,包括:
步骤51、基于参考时间,确定Scell去激活定时器的开启时间;
其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活
Scell。
这里,本公开所涉及的终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。在一些实施例中,该终端可以是Redcap终端或者预定版本的新空口NR终端(例如,R17的NR终端)。
本公开中涉及的基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一个实施例中,基于参考时间,确定Scell去激活定时器的开启时间;其中,所述参考时间基于在Scell添加(at Scell addition)过程中接收的RRC连接重配置消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间,确定Scell去激活定时器的开启时间;其中,所述参考时间基于在小区切换(at Handover)过程中接收的RRC切换消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间,确定Scell去激活定时器的开启时间;其中,所述参考时间基于在RRC连接恢复(at RRCResume)过程中接收的RRC连接恢复消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间,确定用于启动或者重启Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间为接收无线资源控制RRC消息的时隙(slot),所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和基于预定通信协议确定的时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和基于基站发送的配置信息确定的时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和基于用户配置的配置信息确定的时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和基于终端本地存储的信息确定的时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于在Scell添加(at Scell addition)过程中接收的RRC连接重配置消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于在小区切换(at Handover)过程中接收的RRC切换消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于在RRC连接恢复(at RRCResume)过程中接收的RRC连接恢复消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell;所述时间偏移量基于针对所述RRC消息的处理的处理时间确定。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,针对所述RRC消息的处理包括以下至少之一:
接收所述RRC消息;以及
向接入网设备发送所述RRC消息的响应消息。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;以及第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
示例性地,第二处理时长可以是从X时刻直到发送RRC消息的响应消息之间的时长;其中,X=slot n+TRRC_Process/NR slot length;slot n为接收RRC消息的时隙,TRRC_Process为处理接收到的RRC消息的时长,NR slot length为NR的时隙时长。
在一个实施例中,响应于所述RRC消息为所述RRC连接重配置消息,所述响应消息可以是RRC连接重配置完成消息。
在一个实施例中,响应于所述RRC消息为RRC连接恢复消息,所述响应消息可以是RRC连接恢复完成消息。
在一个实施例中,响应于所述RRC消息为所述RRC切换消息,针对所述RRC消息的处理包括以下至少之一:
处理接收到的所述RRC消息;
切换终端的处理;以及
处理时间提前量TA。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC切换消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第三处理时长,为切换中断时长;以及第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
示例性地,切换中断时长结束至接收到有效TA命令的时长可以是Y时刻直至接收到有效TA命令的时长;其中,Y=slot n+(TRRC_Process+Tinterrupt)/NR slot length;slot n为接收RRC消息的时隙,TRRC
_Process为处理接收到的RRC消息的时长,NR slot length为NR的时隙时长。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长;以及第五处理时长,所述第五处理时长为预先设置的时长。示例性地,所述第五处理时长为基于预定通信协议确定的时长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量;其中,响应于所述RRC消息为所述RRC切换消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第三处理时长,为切换中断时长;第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长;以及第五处理时长,所述第五处理时长为预先设置的时长。示例性地,所述第五处理时长为基于预定通信协议确定的时长。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,基于执行针对RRC消息的处理的处理时间,确定所述时间偏移量。所述处理时间为基于时隙slot确定的时间。基于参考时间和所述时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收所述RRC消息的接收时间确定,所述RRC消息用于激活Scell。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以
与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
为了更好地理解本公开实施例,以下通过一个示例性实施例对本公开技术方案做进一步说明:
在一个实施例中,在Scell直接激活方式下,Scell非激活定时器的开启时刻为在当前时刻基础上加上一个偏移值(第一偏移值,对应本公开的时间偏移量),该偏移值至少和处理RRC消息的时长相关。
在一个实施例中,处理RRC消息的时长可以换算到以时隙(slot)的统计单位。例如,换算过程为将时长除以slot占用的时长(NR slot length),则换算得到以slot为单位的时长;而slot占用的时长和激活的scell的numerology有关。
在一个实施例中,Scell非激活定时器的开启包括启动(start)和重启(restart)。
在一个实施例中,当前时刻为接收到Scell直接激活消息(本公开中的RRC消息)的时隙n;
作为一个实施例,Slot n可以是接收到携带RRC消息的PDSCH传输的最后一个slot。
在一个实施例中,Scell直接激活方式包括:
第一方式,为direct SCell Activation at SCell addition(即直接用RRC消息中配置信息进行scell激活);
第二方式,为direct SCell Activation at Handover(即直接用切换消息中配置信息进行scell激活);以及
第三方式,为direct SCell Activation at RRCResume(即直接用RRC resume消息中配置信息进行scell激活)。
在一个实施例中,该第一偏移值可以是与处理RRC消息的时长相关,示例性地,处理RRC消息的时长包括接收到RRC消息的处理延迟时长(对应第一处理时长);
在一个实施例中,对应第一处理时长可以是协议约定的值;
在一个实施例中,针对所述第一方式、所述第二方式和所述第三方式可以分别定义RRC消息的处理延迟时长。即,所述第一方式、第二方式和第三方式对应的RRC消息的处理延迟时长可以配置为相同也可以不同,以实现灵活的时长配置。
在一个实施例中,针对第一方式和第三方式,该第一偏移值至少和处理RRC消息的时长相关,示例性地,处理RRC消息的时长包括收到RRC消息的处理延迟(第一处理时长)以及向网络反馈RRC消息的响应消息的延迟(第二处理时长);
在一个实施例中,收到RRC消息的处理延迟(对应本公开中第一处理时长)为TRRC_Process,为在clause 12 of TS 38.331中定义的RRC处理时延。
在一个实施例中,向网络反馈RRC消息的响应消息的延迟(对应本公开中第二处理时长)为收到RRC消息的处理延迟后直到能够发送RRC消息的响应消息的时间间隔;这里,所述时间间隔可以是从X时刻直到发送RRC消息的响应消息之间的时长;其中,X=slot n+TRRC_Process/NR slot length;slot n为收到携带RRC消息的PDSCH传输的最后一个slot,TRRC_Process为处理接收到的RRC消息的时长,NR slot length为NR的时隙时长。
在一个实施例中,对于第一方式,收到的RRC消息为RRC连接重配置消息;而向网络反馈的RRC响应消息(本公开中所述RRC消息的响应消息)为RRC连接重配置完成消息。
在一个实施例中,对于第三方式,收到的RRC消息为RRC连接恢复消息;而向网络反馈的RRC响应消息为RRC连接恢复完成消息。
在一个实施例中,针对第二方式,该偏移值至少和处理RRC消息的时长相关。示例性地,处理RRC消息的时长包括收到RRC消息的处理延迟(第一处理时长)、切换中断时长(第三处理时长)、处理TA时长(第四处理时长);
在一个实施例中,收到RRC消息的处理延迟(对应本公开中第一处理时长)为TRRC_Process,为在clause 12 of TS 38.331中定义的RRC处理时延。
在一个实施例中,切换中断时长(对应本公开中第三处理时长)为Tinterrupt,为在clause 6.1.1中规定的切换过程的中断时间。
在一个实施例中,处理TA时长(对应本公开中第四处理时长)包括从切换中断时长统计完成到收到有效TA命令以及应用TA的时长。
示例性地,切换中断时长结束至接收到有效TA命令的时长可以是Y时刻直至接收到有效TA命令的时长;其中,Y=slot n+(TRRC_Process+Tinterrupt)/NR slot length;slot n为收到携带RRC消息的PDSCH传输的最后一个slot,TRRC_Process为处理接收到的RRC消息的时长,NR slot length为NR的时隙时长。TA命令用于目标主小区。
示例性地,将收到的TA应用于目标PCell的上行链路传输的延迟,并且大于或等于k+1时隙,其中,k在TS 38.213的4.2条款中定义。
在一个实施例中,当终端收到在时隙n结束的辅小区的直接SCell激活命令[1X,TS 38.331]时,终端根据[10,TS 38.133]中定义的最低要求应用[11,TS 38.321]中的相应动作,但以下情况除外:
在一个实施例中,与辅小区[11,TS 38.321]相关的sCellDeactivationTimer的动作,UE在SCell添加时或RRCResume时,按照[10,TS 38.133]的定义在slot n+(TRRC_Process+T1)/NR slot length应用。
在一个实施例中,与辅小区[11,TS 38.321]相关的sCellDeactivationTimer的动作,UE在SCell添加时或RRCResume时,按照[10,TS 38.133]的定义在slot n+(TRRC_Process+T1+Tx)/NR slot length应用;
在一个实施例中,与辅小区[11,TS 38.321]相关的sCellDeactivationTimer的动作,UE在切换时按照[10,TS 38.133]中的定义在slot n+(TRRC_Process+T2+T3)/NR slot length应用。
在一个实施例中,除了以上提及的第一处理时长、第二处理时长、第三处理时长和第四处理时长,还可以再附加协议约定的其他延迟值,例如,第五处理时长。
比如下面这个实施例中,即附加了Tx作为第五处理时长。
在一个实施例中,与辅小区[11,TS 38.321]相关的sCellDeactivationTimer的动作,UE在切换时按照[10,TS 38.133]中的定义在slot n+(TRRC_Process+T2+T3+Tx)/NR slot length直接激活SCell。
在一个实施例中,在第一偏移值至少和处理RRC消息的时长相关的基础上还可以附加第二偏移值。
比如下面这个实施例中,即附加了t毫秒(例如1ms)作为第二个附加偏移值。
在一个实施例中,与辅小区[11,TS 38.321]相关的sCellDeactivationTimer的动作,UE在切换时按照[10,TS 38.133]中的定义在slot n+1+(TRRC_Process+T2+T3+Tx)/NR slot length直接激活SCell。
另外,在Scell直接激活方式下,Scell去激活定时器的开启时刻为在当前时刻基础上加上一个偏移值(第一偏移值,对应本公开的时间偏移量),该偏移值至少和处理RRC消息的时长相关的确定方式需要基于终端能力和/或者网络能力才能运用。
在一个实施例中,只有终端具有按照该Scell直接激活方式进行Scell去激活定时器的启动或者重启的能力才能进行该操作。不具备该能力的终端,对于何时进行Scell去激活定时器的启动或者重启可以基于自身实现确定。
在一个实施例中,只有网络下发了按照该Scell直接激活方式进行Scell去激活定时器的启动或者重启的能力,终端才能按照该方式进行Scell非激活定时器的启动或者重启。终端进入到不支持该功能的小区,对于何时进行Scell非激活定时器的启动或者重启可以基于自身实现确定。
在一个实施例中,只有网络下发了按照该Scell直接激活方式进行Scell去激活定时器的启动或者重启的能力且终端具有按照该Scell直接激活方式进行Scell非激活定时器的启动或者重启的能力两个条件同时满足才能进行该操作。否则,终端何时进行Scell非激活定时器的启动或者重启可以基于自身实现确定。
需要说明的是,在某些场景下,在本公开中,Scell去激活定时器也可以被称为Scell非激活定时器。
如图6所示,本公开实施例中提供一种确定辅小区Scell去激活定时器的开启时间的装置,其中,所述装置包括:
确定模块61,被配置为基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;
其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
在一个实施例中,所述确定模块61还被配置为所述RRC消息为以下之一:
在Scell添加过程中接收的RRC连接重配置消息;
在小区切换过程中接收的RRC切换消息;
在RRC连接恢复过程中接收的RRC连接恢复消息。
在一个实施例中,所述确定模块61还被配置为:
基于执行针对所述RRC消息的处理的处理时间,确定所述时间偏移量。
在一个实施例中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,所述确定模块61还被配置为:
第一处理时长,为接收所述RRC消息的处理时延;以及
第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长。
在一个实施例中,响应于所述RRC消息为所述RRC切换消息,所述确定模块61还被配置为:
第一处理时长,为接收所述RRC消息的处理时延;
第三处理时长,为切换中断时长;以及
第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长。
在一个实施例中,所述确定模块61还被配置为所述处理时间还包括基于预定通信协议确定的第五处理时长。
在一个实施例中,所述确定模块61还被配置为所述处理时间为基于时隙slot确定的时间。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图7所示,本公开一个实施例提供一种终端的结构。
参照图7所示终端800本实施例提供一种终端800,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可
以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图8所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图8,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。
Claims (16)
- 一种确定辅小区Scell去激活定时器的开启时间的方法,其中,所述方法由终端执行,包括:基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
- 根据权利要求1所述的方法,其中,所述RRC消息为以下之一:在Scell添加过程中接收的RRC连接重配置消息;在小区切换过程中接收的RRC切换消息;在RRC连接恢复过程中接收的RRC连接恢复消息。
- 根据权利要求1所述的方法,其中,所述方法还包括:基于执行针对所述RRC消息的处理的处理时间,确定所述时间偏移量。
- 根据权利要求3所述的方法,其中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;以及第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长。
- 根据权利要求3所述的方法,其中,响应于所述RRC消息为所述RRC切换消息,所述处理时间包括:第一处理时长,为接收所述RRC消息的处理时延;第三处理时长,为切换中断时长;以及第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长。
- 根据权利要求4或者5所述的方法,其中,所述处理时间还包括基于预定通信协议确定的第五处理时长。
- 根据权利要求4至6任一项所述的方法,其中,所述处理时间为基于时隙slot确定的时间。
- 一种确定辅小区Scell去激活定时器的开启时间的装置,其中,所述装置包括:确定模块,被配置为基于参考时间和时间偏移量,确定Scell去激活定时器的开启时间;其中,所述参考时间基于接收无线资源控制RRC消息的接收时间确定,所述RRC消息用于激活Scell。
- 根据权利要求8所述的装置,其中,所述确定模块还被配置为所述RRC消息为以下之一:在Scell添加过程中接收的RRC连接重配置消息;在小区切换过程中接收的RRC切换消息;在RRC连接恢复过程中接收的RRC连接恢复消息。
- 根据权利要求8所述的装置,其中,所述确定模块还被配置为:基于执行针对所述RRC消息的处理的处理时间,确定所述时间偏移量。
- 根据权利要求10所述的装置,其中,响应于所述RRC消息为所述RRC连接重配置消息或者RRC连接恢复消息,所述确定模块还被配置为:第一处理时长,为接收所述RRC消息的处理时延;以及第二处理时长,为接收到所述RRC消息直至向接入网设备发送所述RRC消息的响应消息之间的时长。
- 根据权利要求10所述的装置,其中,响应于所述RRC消息为所述RRC切换消息,所述确定模块还被配置为:第一处理时长,为接收所述RRC消息的处理时延;第三处理时长,为切换中断时长;以及第四处理时长,为处理时间提前量TA的时长,所述处理TA的时长包括:切换中断时长结束至接收到有效TA命令的时长,和应用TA的时长。
- 根据权利要求11或者12所述的装置,其中,所述确定模块还被配置为所述处理时间还包括基于预定通信协议确定的第五处理时长。
- 根据权利要求11至13任一项所述的装置,其中,所述确定模块还被配置为所述处理时间为基于时隙slot确定的时间。
- 一种通信设备,其中,包括:天线;存储器;处理器,分别与所述天线及存储器连接,被配置为通过执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至7任一项提供的方法。
- 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至7任一项提供的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380008054.XA CN116326178A (zh) | 2023-01-12 | 2023-01-12 | 确定开启时间的方法、装置、通信设备及存储介质 |
PCT/CN2023/071980 WO2024148586A1 (zh) | 2023-01-12 | 2023-01-12 | 确定开启时间的方法、装置、通信设备及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/071980 WO2024148586A1 (zh) | 2023-01-12 | 2023-01-12 | 确定开启时间的方法、装置、通信设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024148586A1 true WO2024148586A1 (zh) | 2024-07-18 |
Family
ID=86780156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/071980 WO2024148586A1 (zh) | 2023-01-12 | 2023-01-12 | 确定开启时间的方法、装置、通信设备及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116326178A (zh) |
WO (1) | WO2024148586A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180027461A1 (en) * | 2015-04-07 | 2018-01-25 | Fujitsu Limited | Deactivation Method and Apparatus for a Secondary Cell and Communications System |
CN112911655A (zh) * | 2019-11-19 | 2021-06-04 | 维沃移动通信有限公司 | 去激活辅小区的方法、指示去激活辅小区的方法和设备 |
WO2022083544A1 (zh) * | 2020-10-22 | 2022-04-28 | 展讯通信(上海)有限公司 | 辅小区状态的配置方法、激活辅小区的方法、设备及介质 |
CN115103460A (zh) * | 2020-03-12 | 2022-09-23 | 展讯通信(上海)有限公司 | 辅小区组的激活方法及装置、存储介质、ue、基站 |
-
2023
- 2023-01-12 WO PCT/CN2023/071980 patent/WO2024148586A1/zh unknown
- 2023-01-12 CN CN202380008054.XA patent/CN116326178A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180027461A1 (en) * | 2015-04-07 | 2018-01-25 | Fujitsu Limited | Deactivation Method and Apparatus for a Secondary Cell and Communications System |
CN112911655A (zh) * | 2019-11-19 | 2021-06-04 | 维沃移动通信有限公司 | 去激活辅小区的方法、指示去激活辅小区的方法和设备 |
CN115103460A (zh) * | 2020-03-12 | 2022-09-23 | 展讯通信(上海)有限公司 | 辅小区组的激活方法及装置、存储介质、ue、基站 |
WO2022083544A1 (zh) * | 2020-10-22 | 2022-04-28 | 展讯通信(上海)有限公司 | 辅小区状态的配置方法、激活辅小区的方法、设备及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN116326178A (zh) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112042224B (zh) | 切换小区的方法、装置、通信设备及存储介质 | |
EP4120760A1 (en) | Method and device for communication processing | |
CN110786035B (zh) | 控制资源集合的处理方法、装置及计算机存储介质 | |
CN110945921B (zh) | 被调度载波的激活时刻确定方法及装置、设备及介质 | |
CN112075099A (zh) | 定时器的控制方法、装置、通信设备及存储介质 | |
WO2024168619A1 (zh) | 信息传输方法、装置、通信设备及存储介质 | |
WO2021031216A1 (zh) | 切换处理方法及装置 | |
WO2020248140A1 (zh) | 跟踪区更新方法及装置、通信设备及存储介质 | |
CN111096063B (zh) | 非连续接收drx的处理方法、装置及计算机存储介质 | |
WO2024164200A1 (zh) | 确定随机接入的资源的方法、装置、通信设备及存储介质 | |
WO2024168862A1 (zh) | 接入控制方法、装置、通信设备及存储介质 | |
CN117858128B (zh) | 提早识别的方法、装置、通信设备及存储介质 | |
EP4319258A1 (en) | Measurement gap pre-configuration processing method and apparatus, communication device, and storage medium | |
US20230371117A1 (en) | Method and apparatus for controlling timer, communication device, and storage medium | |
CN114503503B (zh) | 暂停监听的方法、装置、通信设备及存储介质 | |
WO2024148586A1 (zh) | 确定开启时间的方法、装置、通信设备及存储介质 | |
CN113841452B (zh) | 发送数据的方法、装置、用户设备及存储介质 | |
WO2023137677A1 (zh) | 切换bwp的方法、装置、通信设备及存储介质 | |
WO2021007731A1 (zh) | 定时提前量指示方法、装置、通信设备及存储介质 | |
WO2020252643A1 (zh) | 一种信息处理方法、装置及计算机存储介质 | |
WO2024138474A1 (zh) | 寻呼方法、装置、通信设备及存储介质 | |
WO2024159540A1 (zh) | 信息指示方法、装置、通信设备及存储介质 | |
WO2024168887A1 (zh) | Srs配置信息的更新方法、装置、通信设备及存储介质 | |
CN113412638B (zh) | 一种数据传输的方法、装置、通信设备及存储介质 | |
WO2024168540A1 (zh) | 数据传输方法、装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23915356 Country of ref document: EP Kind code of ref document: A1 |