WO2024142840A1 - Control device - Google Patents
Control device Download PDFInfo
- Publication number
- WO2024142840A1 WO2024142840A1 PCT/JP2023/043965 JP2023043965W WO2024142840A1 WO 2024142840 A1 WO2024142840 A1 WO 2024142840A1 JP 2023043965 W JP2023043965 W JP 2023043965W WO 2024142840 A1 WO2024142840 A1 WO 2024142840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- calculation unit
- damping force
- pitch
- target damping
- vehicle
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
Definitions
- Control devices that control damping force adjustable shock absorbers that are interposed between the vehicle body and wheels are known (Patent Documents 1 and 2). Conventional control devices control the damping force of the damping force adjustable shock absorbers so as to suppress vibrations in the vertical direction of the vehicle body.
- FIG. 1 is an overall configuration diagram showing a four-wheeled automobile to which a controller according to an embodiment of the present invention is applied; 1 is a diagram illustrating a vehicle behavior control device according to an embodiment of the present invention.
- FIG. 2 is a control block diagram showing a controller according to the first embodiment.
- FIG. 4 is a block diagram showing a GSP calculation unit in FIG. 3 .
- FIG. 4 is a block diagram showing a BLQ controller in FIG. 3 .
- FIG. 6 is an explanatory diagram illustrating a damping coefficient upper limit calculation unit in FIG. 5 .
- FIG. 6 is an explanatory diagram illustrating a command value calculation unit in FIG. 5 .
- 6 is a block diagram showing a target damping force calculation unit and a corrected damping coefficient calculation unit in FIG.
- FIG. 6 is a block diagram showing the sprung vertical vibration damping BLQ in FIG. 5 .
- FIG. 6 is a block diagram showing the roll vibration suppression BLQ in FIG. 5 .
- FIG. 6 is a block diagram showing the pitch vibration damping BLQ in FIG. 5 .
- FIG. 1 is an explanatory diagram showing a vehicle model used in designing a sprung vertical vibration damping BLQ.
- FIG. 2 is an explanatory diagram showing a vehicle model used in designing a roll vibration damping system BLQ.
- FIG. 2 is an explanatory diagram showing a vehicle model used in designing a pitch vibration damping BLQ.
- FIG. 1 shows a vehicle to which a controller 11, which is a control device, is applied.
- a vehicle behavior control device 1 including the controller 11 is applied to this vehicle.
- the vehicle behavior control device 1 is composed of a suspension device 5 constituting a damping force generating device, and a controller 11 constituting a vehicle control device.
- left and right front wheels and left and right rear wheels (hereinafter collectively referred to as wheels 3) are provided on the underside of a vehicle body 2 constituting the body of the vehicle.
- the wheels 3 are composed of tires 4, which act as springs that absorb small irregularities in the road surface.
- the suspension device 5 is installed between the vehicle body 2 and the vehicle wheels 3.
- This suspension device 5 is composed of a suspension spring 6 (hereinafter referred to as the spring 6) and a damping force adjustable shock absorber (hereinafter referred to as the variable damper 7) that is installed between the vehicle body 2 and the wheels 3 in a parallel relationship with the spring 6.
- FIG. 2 shows a case where one set of suspension devices 5 is provided between the vehicle body 2 and the wheels 3.
- a total of four sets of suspension devices 5 are provided, for example, individually and independently between the four wheels 3 and the vehicle body 2, and FIG. 2 shows only one of these sets diagrammatically.
- variable damper 7 of the suspension device 5 is configured using a damping force adjustable hydraulic shock absorber interposed between the vehicle body 2 and the wheel 3.
- This variable damper 7 is provided with a variable damping force actuator 8 consisting of a damping force adjustment valve or the like in order to continuously adjust the characteristics of the generated damping force (i.e., the damping force characteristics) from hard characteristics to soft characteristics.
- the variable damper 7 constitutes a force generating mechanism that generates an adjustable force between the vehicle body 2 and the wheel 3.
- the variable damping force actuator 8 does not necessarily have to be configured to continuously adjust the damping force characteristics, and may be capable of adjusting the damping force in multiple stages, for example, two or more stages.
- the variable damper 7 may also be a pressure control type or a flow rate control type.
- the variable damper 7 may also be a type that controls viscosity, such as a magnetorheological fluid or an electrorheological fluid.
- the controller 11 constitutes a control device for the variable damper 7 and controls the damping characteristics of the variable damper 7.
- the controller 11 is composed of, for example, a microcomputer.
- the controller 11 is connected to, for example, a CAN9 (Controller Area Network), which is a line network required for data communication.
- the controller 11 acquires vehicle driving specifications through the CAN9.
- the vehicle driving specifications include, for example, wheel speed, slip ratio, longitudinal acceleration, engine torque, brake fluid pressure, road surface friction coefficient, and independent braking/driving force control flags for each of the four wheels.
- the output side of the controller 11 is connected to the damping force variable actuator 8 of the variable damper 7.
- the controller 11 also has a storage unit 11A consisting of a ROM, a RAM, a non-volatile memory, etc.
- the storage unit 11A of the controller 11 stores various programs, information (vehicle information), data, etc. for controlling the variable damper 7.
- the state estimation unit 12 estimates the vehicle state (vehicle motion, vehicle behavior) using the CAN signal. That is, the state estimation unit 12 estimates the sprung-unsprung relative velocity, vehicle body absolute vertical velocity (sprung velocity), unsprung-road relative velocity, unsprung absolute vertical velocity (unsprung velocity), roll rate, roll angle, pitch rate, and pitch angle based on the signal (CAN signal) flowing through CAN 9. For example, the state estimation unit 12 estimates the sprung-unsprung relative velocity, vehicle body absolute vertical velocity, unsprung-road relative velocity, unsprung absolute vertical velocity, roll rate, roll angle, pitch rate, and pitch angle based on the vehicle steering angle, longitudinal acceleration, lateral acceleration, yaw rate, wheel speed of each wheel 3, presence or absence of brake operation, and master cylinder hydraulic pressure.
- the state estimation unit 12 constitutes a vehicle behavior calculation unit that calculates vehicle behavior. Specifically, the state estimation unit 12 includes a vertical movement calculation unit that determines the state related to the vertical movement of the vehicle. The state estimation unit 12 includes a roll movement calculation unit that determines the state related to the roll movement of the vehicle. The state estimation unit 12 includes a pitch movement calculation unit that determines the state related to the pitch movement of the vehicle. The state estimation unit 12 includes an attitude change detection unit that detects changes in the attitude of the vehicle body.
- the GSP calculation unit 13 (gain scheduling parameter calculation unit) constitutes a weighting coefficient calculation unit that calculates a weighting coefficient that brings the actual target damping force based on the calculation value of the state estimation unit 12 (vehicle behavior calculation unit) closer to a value close to a pre-determined target damping force.
- the GSP calculation unit 13 calculates the heave GSP, roll GSP r and pitch GSP p based on the vehicle speed acquired from the CAN 9, for example.
- the heave GSP is a weighting coefficient that adjusts the heave target damping force for suppressing the vertical movement of the vehicle.
- the roll GSP r is a weighting coefficient that adjusts the roll target damping force for suppressing the movement of the vehicle in the roll direction.
- the pitch GSP p is a weighting coefficient that adjusts the pitch target damping force for suppressing the movement of the vehicle in the pitch direction.
- the GSP calculation unit 13 calculates weighting coefficients (heave GSP, roll GSP r , pitch GSP p ) that bring this actual target damping force closer to a value close to a pre-calculated target damping force.
- the GSP calculation unit 13 outputs the heave GSP, roll GSP r , and pitch GSP p to the BLQ controller 20.
- suspension devices 5 are provided individually and independently in total, for example, between the four wheels 3 and the vehicle body 2, and only one of these is illustrated diagrammatically in FIG. 12.
- the sprung vertical vibration damping BLQ21 is designed based on the state equation of the vehicle model in FIG. 12, as shown in the design method described below.
- the sprung vertical vibration damping BLQ21 includes a Bp calculation unit 21A, a multiplier 21B, a Bp calculation unit 21C, a multiplier 21D, a multiplier 21E, and a heave target damping force calculation unit 21F.
- the Bp calculation unit 21A calculates the maximum value of Bp according to the relative speed based on the previously calculated Bp and the heave GSP.
- the multiplier 21B multiplies the maximum value of Bp output from the Bp calculation unit 21A by the relative speed.
- the Bp calculation unit 21C calculates the maximum value of Bp according to the sprung speed based on the previously calculated Bp and the heave GSP.
- the roll vibration suppression BLQ22 receives the vehicle state output from the state estimation unit 12 and the roll GSP r output from the GSP calculation unit 13.
- the roll vibration suppression BLQ22 calculates the roll target damping force of the variable damper 7 for reducing roll vibration based on the roll rate and roll angle output from the state estimation unit 12 and the roll GSP r output from the GSP calculation unit 13.
- the roll vibration suppression BLQ22 is designed based on the vehicle model shown in FIG. 13, for example.
- FIG. 13 the simplest one-degree-of-freedom rotational motion model is illustrated as a vehicle model taking roll into consideration. In an actual vehicle, two sets of this motion model are provided on the front wheel side and the rear wheel side, and only one of them is illustrated in FIG. 13.
- the roll vibration suppression BLQ22 is designed based on the state equation of the vehicle model in FIG. 13, as shown in the design method described later.
- the pitch vibration damping BLQ23 receives the vehicle state output from the state estimation unit 12 and the pitch GSP p output from the GSP calculation unit 13.
- the pitch vibration damping BLQ23 calculates the pitch target damping force of the variable damper 7 for reducing pitch vibration based on the pitch rate and pitch angle output from the state estimation unit 12 and the pitch GSP p output from the GSP calculation unit 13.
- the pitch vibration damping BLQ23 is designed based on the vehicle model shown in FIG. 14, for example.
- FIG. 14 illustrates a simplest one-degree-of-freedom rotational motion model as a vehicle model taking pitch into consideration. In an actual vehicle, two sets of this motion model are provided on the left and right sides, and only one of them is illustrated in FIG. 14.
- the pitch vibration damping BLQ23 is designed based on the state equation of the vehicle model in FIG. 14, as shown in the design method described later.
- the sprung vertical vibration damping BLQ21, the pitch vibration damping BLQ23, and the target damping force calculation unit 24 constitute an actual target damping force calculation unit that calculates an actual target damping force based on the heave GSP, roll GSP r , and pitch GSP p (weighting coefficients) by the GSP calculation unit 13 (weighting coefficient calculation unit) and the calculation results by the state estimation unit 12 (vertical movement calculation unit, pitch movement calculation unit).
- the target damping force calculation unit 24 includes an adder 24A and a damping force dead zone calculation unit 24B.
- the adder 24A adds the heave target damping force from the sprung vertical vibration damping BLQ21, the roll target damping force from the roll vibration damping BLQ22, and the pitch target damping force from the pitch vibration damping BLQ23, and calculates the sum of these to form a BLQ target damping force.
- the damping coefficient upper limit calculation unit 25 calculates a maximum damping coefficient Cmax, which is an upper limit value of the damping coefficient C. As shown in FIG. 6, the damping coefficient upper limit calculation unit 25 is a maximum damping coefficient map that calculates the maximum damping coefficient Cmax based on the vehicle state.
- the damping coefficient upper limit calculation unit 25 includes, for example, a characteristic line 25A that shows the relationship between the relative speed x * between the sprung and unsprung parts and the maximum damping coefficient Cmax.
- the damping coefficient upper limit calculation unit 25 outputs the maximum damping coefficient Cmax based on the relative speed x * .
- the maximum damping coefficient Cmax may be set to a value between the low speed setting value C1 and the high speed setting value C2.
- the maximum damping coefficient Cmax may be set to a value between the low speed setting value C1 and the high speed setting value C3.
- the high speed setting values C2, C3 are appropriately set in consideration of the structure, specifications, damping force characteristics, etc. of the variable damper 7.
- the low speed setting value C1 and the high speed setting values C2, C3 are all constant values in the above example, they may be configured to change according to the relative speed x * .
- the corrected damping coefficient calculation unit 26 calculates a target damping coefficient C corresponding to the actual target damping force, and outputs a corrected damping coefficient Ca based on the target damping coefficient C and the maximum damping coefficient Cmax (see FIG. 8).
- the corrected damping coefficient calculation unit 26 includes a target damping coefficient calculation unit 27 and a minimum value selection unit 28.
- the minimum value selection unit 28 compares the target damping coefficient C output from the target damping coefficient calculation unit 27 with the maximum damping coefficient Cmax output from the damping coefficient upper limit calculation unit 25, selects the smaller of these coefficients C and Cmax, and outputs it as the corrected damping coefficient Ca. Therefore, the minimum value selection unit 28 and the damping coefficient upper limit calculation unit 25 constitute a correction unit that calculates the corrected damping coefficient Ca by lowering the upper limit of the target damping coefficient C in the region where the relative speed x * between the sprung and unsprung parts of the vehicle is low.
- the correction unit sets the corrected damping coefficient Ca so that the damping force increases with an increase in the relative speed x * , the slope of the damping force with respect to the relative speed x * is small when the relative speed x * is low, and the slope of the damping force with respect to the relative speed x * is large when the relative speed x * is high.
- the correction unit has a maximum damping coefficient Cmax according to the relative speed x * , and corrects the target damping coefficient C to the maximum damping coefficient Cmax when the target damping coefficient C exceeds the maximum damping coefficient Cmax.
- the command value calculation unit 29 constitutes a control signal output unit that outputs a control signal corresponding to the corrected damping coefficient Ca to the variable damper 7 (damping force adjustable shock absorber).
- the command value calculation unit 29 outputs a command current value I as a control signal corresponding to the corrected damping coefficient Ca.
- the command value calculation unit 29 is a damping coefficient map that variably sets the relationship between the corrected damping coefficient Ca and the command current value I according to the relative speed x * . This damping coefficient map was created based on test data by the inventors.
- the command value calculation unit 29 specifies a command current value I for adjusting the damping force characteristics of the variable damper 7 based on the corrected damping coefficient Ca and the relative speed x * , and outputs this command current value I to the damping force variable actuator 8 of the variable damper 7.
- the command value calculation unit 29 also outputs a control signal (command current value I) for controlling the variable damper 7 so as to conform the damping force adjustable shock absorber to the skyhook theory, for example.
- This command value calculation unit 29 has a hard-side characteristic line 29A shown by a solid line in FIG. 7, and a soft-side characteristic line 29B shown by a dashed line in FIG. 7. At this time, the hard-side characteristic line 29A is positioned in a range where the corrected damping coefficient Ca is larger than that of the soft-side characteristic line 29B.
- the damping force generated by the variable damper 7 is variably adjusted continuously or in multiple stages between hard and soft according to the command current value I supplied to the damping force variable actuator 8.
- Equation 29 the Q pitch and R pitch of the pitch vibration damping BLQ23 were set to the values shown in Equation 29, and p pitch was calculated.
- a target damping force calculation unit 24 of the BLQ controller 20 calculates an actual target damping force based on the heave target damping force, the roll target damping force, and the pitch target damping force.
- a target damping coefficient calculation unit 27 of the BLQ controller 20 calculates a target damping coefficient C by dividing the actual target damping force by the relative speed x * .
- a minimum value selection unit 28 of the BLQ controller 20 selects the smaller of the target damping coefficient C output from the target damping coefficient calculation unit 27 and the maximum damping coefficient Cmax output from the damping coefficient upper limit calculation unit 25, and outputs it as a corrected damping coefficient Ca.
- a command value calculation unit 29 of the BLQ controller 20 calculates a command current value I according to the corrected damping coefficient Ca and the relative speed x * .
- the command current value I is then input to the variable damping force actuator 8 of the variable damper 7, controlling the drive of the variable damping force actuator 8.
- the damping force characteristics of the variable damper 7 are variable between hard characteristics and soft characteristics and are continuously controlled.
- the controller 11 of the first embodiment is equipped with pitch vibration damping BLQ23, and calculates the command current value I based on the pitch target damping force calculated by the pitch vibration damping BLQ23. Therefore, pitch vibration can be suppressed more effectively than when the pitch vibration damping BLQ23 is omitted.
- the controller 11 as a control device includes a weighting coefficient calculation unit (GSP calculation unit 13) that calculates weighting coefficients (heave GSP, pitch GSP p ) for making an actual target damping force based on a calculated value by a vehicle behavior calculation unit (state estimation unit 12) approach a value close to a previously determined target damping force, a vertical motion calculation unit (state estimation unit 12) that calculates a state related to the vertical motion of the vehicle, a pitch motion calculation unit (state estimation unit 12) that calculates a state related to the pitch motion of the vehicle, weighting coefficients by the weighting coefficient calculation unit, the vertical motion calculation unit, and an actual target damping force calculation unit (sprung vertical vibration damping BLQ21, pitch vibration damping BLQ23, target damping force calculation unit 24) that calculates the actual target damping force based on the calculation results of the pitch motion calculation unit, a target damping coefficient calculation unit (target damping coefficient calculation unit 27) that calculates a target damping coefficient based on a
- * has a correction unit (minimum value selection unit 28) that calculates a corrected damping coefficient Ca that lowers the upper limit of the target damping coefficient C in a low-speed region, and a control signal output unit (command value calculation unit 29) that outputs a control signal corresponding to the corrected damping coefficient Ca to a damping force adjustable shock absorber (variable damper 7).
- minimum value selection unit 28 that calculates a corrected damping coefficient Ca that lowers the upper limit of the target damping coefficient C in a low-speed region
- a control signal output unit command value calculation unit 29
- the weighting coefficient calculation unit calculates, as weighting coefficients, a heave GSP related to the vertical movement of the vehicle and a pitch GSP p related to the movement of the vehicle in the pitch direction
- the actual target damping force calculation unit includes a heave BLQ (sprung vertical vibration damping BLQ21) that calculates a target damping force in the vertical direction of the vehicle based on the heave GSP and the calculation result of the vertical movement calculation unit, and a pitch BLQ (pitch vibration damping BLQ23) that calculates a target damping force in the pitch direction of the vehicle based on the pitch GSP p and the calculation result of the pitch movement calculation unit, and calculates the actual target damping force based on the target damping force calculated by the heave BLQ (heave target damping force) and the target damping force calculated by the pitch BLQ (pitch target damping force).
- the controller 11 can control the damping force of the variable damper 7 based on the heave target damping force for suppressing the vertical vibration of the sprung mass and the pitch target damping force for suppressing the pitch vibration. As a result, both the vertical vibration of the sprung mass and the pitch vibration can be reduced.
- the controller 11 calculates the actual target damping force based on the weighting coefficients (heave GSP, pitch GSP p ) and the vehicle state (sprung-unsprung relative velocity, vehicle body absolute vertical velocity (sprung velocity), unsprung-road relative velocity, unsprung absolute vertical velocity (unsprung velocity), pitch rate, pitch angle).
- the tuning parameters can be reduced and the controller 11 (sprung vertical vibration damping BLQ21, pitch vibration damping BLQ23) can be easily tuned.
- the correction section (minimum value selection section 28) of the controller 11 sets the corrected damping coefficient Ca so that the damping force increases as the relative velocity x * increases, the slope of the damping force with respect to the relative velocity x * is small when the relative velocity x * is low, and the slope of the damping force with respect to the relative velocity is large when the relative velocity x* is high, and the correction section has a maximum damping coefficient Cmax according to the relative velocity x * , and when the target damping coefficient C exceeds the maximum damping coefficient Cmax, outputs the corrected damping coefficient Ca obtained by correcting the target damping coefficient C to the maximum damping coefficient Cmax.
- the controller 11 calculates a corrected damping coefficient Ca with a higher upper limit of the target damping coefficient C compared to when the relative velocity x* is low.
- the relative velocity x * is high, such as during the extension stroke or retraction stroke of the variable damper 7, it is possible to calculate a large value of the corrected damping coefficient Ca without restricting the target damping coefficient C as much as possible.
- the relative velocity x * is high, a large damping force can be generated by the variable damper 7, vibration control performance can be ensured, and ride comfort can be improved.
- the controller 11 further includes a posture change detection unit (state estimation unit 12) that detects posture changes of the vehicle body 2, and the correction unit (minimum value selection unit 28) reduces the amount of correction when it determines that a posture change will occur based on the detection result of the posture change detection unit.
- a posture change detection unit state estimation unit 12
- the correction unit minimum value selection unit 28
- the correction unit increases the correction amount and lowers the upper limit of the target damping coefficient when the relative speed is low. This makes it possible to suppress sudden changes in the damping force.
- the correction unit decreases the correction amount and relaxes the upper limit of the target damping coefficient. This makes it possible to generate a damping force that resists the change in the posture of the vehicle body, and ensures vibration control performance.
- the controller 11 further includes a roll motion calculation unit (state estimation unit 12) that determines a state related to the motion of the vehicle in the roll direction.
- the weighting coefficient calculation unit (GSP calculation unit 13) calculates, as the weighting coefficients, a heave GSP related to the motion of the vehicle in the vertical direction, a roll GSP r related to the motion of the vehicle in the roll direction, and a pitch GSP p related to the motion of the vehicle in the pitch direction
- the actual target damping force calculation unit calculates a heave BLQ (sprung vertical damping BLQ21) that calculates a target damping force in the vertical direction of the vehicle based on the heave GSP and the calculation result of the vertical motion calculation unit, a roll BLQ (roll damping BLQ22) that calculates a target damping force in the roll direction of the vehicle based on the roll GSP r and the calculation result of the roll motion calculation unit, and a pitch GSP p related to the motion of the vehicle in
- pitch BLQ pitch vibration suppression BLQ23
- a target damping force in the pitch direction of the vehicle based on p and the calculation result of the pitch motion calculation unit, and calculates the actual target damping force based on the target damping force (heave target damping force) calculated by the heave BLQ, the target damping force (roll target damping force) calculated by the roll BLQ, and the target damping force (pitch target damping force) calculated by the pitch BLQ.
- the actual target damping force calculation unit (sprung vertical vibration damping BLQ21, roll vibration damping BLQ22, pitch vibration damping BLQ23, target damping force calculation unit 24) can calculate the actual target damping force based on the calculation results of the roll motion calculation unit in addition to the calculation results of the vertical motion calculation unit and pitch motion calculation unit.
- the controller 11 can control the damping force of the variable damper 7 based on the roll target damping force for suppressing roll vibration in addition to the heave target damping force for suppressing vertical vibration in the sprung mass and the pitch target damping force for suppressing pitch vibration.
- roll vibration can also be reduced.
- the controller 11 calculates the actual target damping force based on the weighting coefficients (heave GSP, roll GSP r , pitch GSP p ) and the vehicle state (sprung-unsprung relative velocity, vehicle body absolute vertical velocity (sprung velocity), unsprung-road relative velocity, unsprung absolute vertical velocity (unsprung velocity), roll rate, roll angle, pitch rate, pitch angle). Therefore, it is not necessary to solve the Riccati equation again, and by adjusting the weighting coefficients (heave GSP, roll GSP r , pitch GSP p ), the tuning parameters can be reduced and the controller 11 (sprung vertical vibration damping BLQ21, roll vibration damping BLQ22, pitch vibration damping BLQ23) can be easily tuned.
- Figs. 1, 2, 16 and 17 show a second embodiment.
- the second embodiment is characterized in that the weighting coefficient calculation unit changes the coefficients according to the road surface condition, the vehicle weight and the selected damping force mode.
- the same components as those in the first embodiment described above are given the same reference numerals and their explanations will be omitted.
- the controller 31 according to the second embodiment constitutes a control device for the variable damper 7 and controls the damping characteristics of the variable damper 7 (see Figures 1 and 2).
- the controller 31 is configured in a manner similar to the controller 11 according to the first embodiment.
- the controller 31 is configured, for example, by a microcomputer and is connected to the CAN 9.
- the controller 31 acquires specifications related to the running of the vehicle through the CAN 9.
- the output side of the controller 31 is connected to the damping force variable actuator 8 of the variable damper 7.
- the controller 31 also has a storage unit 31A consisting of a ROM, a RAM, a non-volatile memory, etc.
- the storage unit 31A of the controller 31 stores various programs, information (vehicle information), data, etc. for controlling the variable damper 7.
- the controller 31 includes a state estimation unit 12, a GSP calculation unit 34, and a BLQ controller 20.
- the controller 31 includes a road surface index calculation unit 32 and a weight estimation unit 33.
- the road surface index calculation unit 32 obtains, for example, the sprung velocity etc. from the state estimation unit 12, and uses these to output a road surface index.
- the road surface index calculation unit 32 estimates the vertical acceleration of the vehicle body 2 (sprung mass) from the sprung velocity etc.
- the road surface index calculation unit 32 is equipped with, for example, a band pass filter, and extracts undulating road components of a predetermined frequency band (for example, 0.5 to 2 Hz) from the sprung mass vertical acceleration.
- the road surface index calculation unit 32 outputs a road surface index (undulating road index) corresponding to the magnitude of the undulating road component (undulating road level) to the GSP calculation unit 34.
- the road surface index corresponding to the undulating road is 0.
- the road surface index corresponding to the undulating road is 1.
- the road surface index is a normalized value between 0 and 1. That is, the road surface index is an index of the up-down, pitch, and roll movements (0.5 to 2 Hz) of the vehicle body 2 caused by road surface input, expressed as a value between 0 and 1.
- the road surface index calculation unit 32 is not limited to acquiring the sprung velocity and the like from the state estimation unit 12, but may acquire detection values from a vertical acceleration sensor to calculate the road surface index.
- the road surface index calculation unit 32 may also acquire road surface information in the traveling direction of the vehicle from a camera or the like to calculate the road surface index.
- the GSP calculation unit 34 constitutes a weighting coefficient calculation unit that calculates a weighting coefficient that brings the actual target damping force based on the calculation value of the state estimation unit 12 (vehicle behavior calculation unit) closer to a value close to a target damping force obtained in advance.
- the vehicle speed acquired from the CAN 9 the road surface index from the road surface index calculation unit 32, and the estimated weight from the weight estimation unit 33 are input to the GSP calculation unit 34.
- a car mode as a damping force mode is input to the GSP calculation unit 34.
- the car mode includes three types of modes, for example, a normal mode (Normal), a sports mode (Sport), and a comfort mode (Comfort).
- the car mode is selected, for example, by a mode selection switch (not shown) provided on the vehicle.
- the GSP calculation unit 34 calculates the heave GSP, roll GSP r , and pitch GSP p based on the vehicle speed, the road surface index, the weight estimation unit, and the car mode.
- the car mode is not limited to three types of modes, but may have two types of modes, or may have four or more types of modes.
- the GSP calculation unit 34 calculates weighting coefficients (heave GSP, roll GSP r , pitch GSP p ) that bring this actual target damping force closer to a value close to a pre-calculated target damping force.
- the GSP calculation unit 34 outputs the heave GSP, roll GSP r , and pitch GSP p to the BLQ controller 20.
- the GSP calculation unit 34 includes a lookup table that records, for example, the relationship between the vehicle speed, road surface index, estimated weight, car mode, and the heave GSP, roll GSP r , and pitch GSP p .
- the heave GSP, roll GSP r , and pitch GSP p are determined by tuning in an actual vehicle test. Specifically, the heave GSP is finely adjusted by referring to vibration data and the like after the rough characteristics are determined by sensory evaluation in an actual vehicle test.
- the GSP calculation unit 34 decreases the value of the heave GSP compared to when the car mode is the normal mode.
- the GSP calculation unit 34 calculates the roll GSP r and pitch GSP p according to the vehicle speed, road surface index, estimated weight, and car mode, similar to the heave GSP.
- the GSP calculation unit 34 is provided with three types of lookup tables corresponding to the road surface index, the estimated weight, and the car mode.
- the GSP calculation unit 34 calculates the heave GSP, the roll GSP r , and the pitch GSP p by taking these three types of lookup tables into consideration.
- the present invention is not limited to this, and the GSP calculation unit 34 may calculate the heave GSP, the roll GSP r , and the pitch GSP p based on a single lookup table that combines the three types of lookup tables in FIG. 17.
- the weighting coefficient calculation unit (GSP calculation unit 34) changes the coefficient according to the road surface condition. Therefore, the actual target damping force can be changed according to the road surface condition, thereby improving ride comfort and vehicle stability.
- the weighting coefficient calculation unit (GSP calculation unit 34) changes the coefficient according to the weight of the vehicle body 2. Therefore, the actual target damping force can be changed according to the weight of the vehicle body 2, thereby improving ride comfort and vehicle stability.
- the weighting coefficient calculation unit (GSP calculation unit 34) changes the coefficient according to the selected damping force mode (car mode). Therefore, the actual target damping force can be changed according to the selected car mode, thereby improving ride comfort and vehicle stability.
- the controller 41 according to the third embodiment constitutes a control device for the variable damper 7 and controls the damping characteristics of the variable damper 7 (see Figures 1 and 2).
- the controller 41 is configured in a manner similar to the controller 11 according to the first embodiment.
- the controller 41 is configured, for example, by a microcomputer and is connected to the CAN 9.
- the controller 41 acquires specifications related to the running of the vehicle through the CAN 9.
- the output side of the controller 41 is connected to the variable damping force actuator 8 of the variable damper 7.
- the controller 41 also has a storage unit 41A consisting of a ROM, a RAM, a non-volatile memory, etc.
- the storage unit 41A of the controller 41 stores various programs, information (vehicle information), data, etc. for controlling the variable damper 7.
- the controller 41 includes a state estimation unit 12, a GSP calculation unit 34, and a BLQ controller 42.
- the controller 31 includes a road surface index calculation unit 32 and a weight estimation unit 33.
- the third embodiment can achieve substantially the same effects as the first and second embodiments.
- the weighting coefficient calculation unit (GSP calculation unit 34, correction gain calculation unit 43A, 44A, 45A) changes the coefficients according to the weight balance between the front and rear of the vehicle body 2 and the weight of the vehicle body 2, which are determined in advance.
- the heave BLQ spring vertical damping BLQ21
- roll BLQ roll damping BLQ22
- pitch BLQ pitch damping BLQ23
- the controllers 11, 31, 41 have been described as acquiring vehicle driving parameters via the CAN 9, but the present invention is not limited to this.
- the controllers 11, 31, 41 may be connected to, for example, an acceleration sensor that detects the vertical acceleration of the sprung and unsprung parts, or a wheel speed sensor that detects the wheel speed, and the detected values of these sensors may be acquired as vehicle driving parameters.
- the controllers 11, 31, 41 may also acquire vehicle driving parameters from other controllers, etc.
- the controllers 11, 31, 41 are provided with a state estimation unit 12 including a vertical motion calculation unit, a roll motion calculation unit, and a pitch motion calculation unit.
- the state estimation unit 12 determines the state related to the vertical motion of the vehicle from the CAN signal, determines the state related to the roll motion of the vehicle from the CAN signal, and determines the state related to the pitch motion of the vehicle from the CAN signal.
- the damping force adjustable shock absorber is configured with a variable damper 7 made of a semi-active damper.
- an active damper either an electric actuator or a hydraulic actuator
- the damping force adjustable shock absorber that generates an adjustable force between the vehicle body 2 side and the wheel 3 side is configured with a variable damper 7 made of a hydraulic shock absorber.
- the damping force adjustable shock absorber may be configured with an air suspension, an electromagnetic suspension, or the like, in addition to a hydraulic shock absorber.
- Vehicle behavior control device 2: Vehicle body, 3: Wheels, 5: Suspension device, 7: Adjustable damping shock absorber (variable damper), 8: Variable damping actuator, 9: CAN, 11, 31, 41: Controller (control device), 12: State estimation unit (vehicle behavior calculation unit, vertical movement calculation unit, roll movement calculation unit, pitch movement calculation unit, attitude change detection unit), 13, 34: GPS calculation unit (weighting coefficient calculation unit), 20, 42: BLQ controller, 21, 43 : sprung upper and lower vibration damping BLQ (heave BLQ), 22, 44: roll vibration damping BLQ (roll BLQ), 23, 45: pitch vibration damping BLQ (pitch BLQ), 24: target damping force calculation unit (actual target damping force calculation unit), 25: damping coefficient upper limit calculation unit, 26: corrected damping coefficient calculation unit, 27: target damping coefficient calculation unit (target damping coefficient calculation unit), 28: minimum value selection unit (correction unit), 29: command value calculation unit (control signal output unit), 32: road surface index calculation
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
Description
本開示は、例えば4輪自動車等の減衰力調整式緩衝器を制御する制御装置に関する。 This disclosure relates to a control device that controls a damping force adjustable shock absorber, for example, in a four-wheeled vehicle.
車両の車体と車輪との間に介装された減衰力調整式緩衝器を制御する制御装置が知られている(特許文献1,2)。従来技術の制御装置は、車体の上下方向の振動を抑制するように、減衰力調整式緩衝器の減衰力等を制御している。 Control devices that control damping force adjustable shock absorbers that are interposed between the vehicle body and wheels are known (Patent Documents 1 and 2). Conventional control devices control the damping force of the damping force adjustable shock absorbers so as to suppress vibrations in the vertical direction of the vehicle body.
ところで、従来技術の制御装置は、車体の上下方向の振動を抑制するために、例えば双線形最適制御(BLQ)を行っていた。このとき、上下方向(ヒーブ)の振動に加えて、ピッチの振動も抑制できることが好ましい。しかしながら、BLQを用いて上下方向に加えてピッチの振動も抑制するためには、フルビークルモデルで最適化を図る必要があり、チューナビリティが悪いという問題がある。一方、スカイフック制御ではゲインスケジューリングパラメータ(GSP)を利用した制御が知られている。しかしながら、BLQにGSPを適用した場合には、コントローラが2つになってしまい、制御性が悪い、という課題がある。 Incidentally, conventional control devices perform, for example, bilinear optimal control (BLQ) to suppress vertical vibrations of the vehicle body. In this case, it is preferable to be able to suppress pitch vibrations in addition to vertical (heave) vibrations. However, in order to use BLQ to suppress pitch vibrations in addition to vertical vibrations, optimization must be performed using a full vehicle model, which poses the problem of poor tunability. Meanwhile, control using gain scheduling parameters (GSP) is known for skyhook control. However, when GSP is applied to BLQ, there is an issue that two controllers are required, resulting in poor controllability.
本発明の目的の一つは、チューナビリティを確保しつつ上下方向とピッチの振動を抑制することができる減衰力調整式緩衝器の制御装置を提供することにある。 One of the objectives of the present invention is to provide a control device for a damping force adjustable shock absorber that can suppress vertical and pitch vibrations while ensuring tunability.
本発明の一実施形態は、車両に設けられ、発生する減衰力を調整可能な減衰力調整式緩衝器の制御装置であって、車両挙動算出部の算出値に基づき実目標減衰力を算出する際に、前記実目標減衰力を予め求めた目標減衰力と近い値に近付けるための重み係数を算出する重み係数算出部と、前記車両の上下方向の運動状態を求める上下運動算出部と、前記車両のピッチ方向の運動状態を求めるピッチ運動算出部と、前記重み係数算出部による前記重み係数と、前記上下運動算出部および前記ピッチ運動算出部の算出結果とに基づき前記実目標減衰力を算出する実目標減衰力算出部と、前記実目標減衰力算出部の算出値に基づき目標減衰係数を算出する目標減衰係数算出部と、前記車両のばね上とばね下との間の相対速度が所定値よりも低速な領域で、前記目標減衰係数の上限を低下させた補正減衰係数を算出する補正部と、前記補正減衰係数に対応した制御信号を前記減衰力調整式緩衝器に出力する制御信号出力部と、を有し、前記補正部は、前記補正減衰係数を、前記相対速度の上昇に応じて減衰力が大きくなり、かつ前記相対速度が前記所定値よりも低速なときに前記相対速度に対する減衰力の傾きが小さく、前記相対速度が前記所定値よりも高速なときに前記相対速度に対する減衰力の傾きが大きくなるように設定し、前記補正部は、前記相対速度に応じた最大減衰係数を有し、前記目標減衰係数が前記最大減衰係数を超えるときに、前記目標減衰係数を前記最大減衰係数に補正することを特徴としている。 One embodiment of the present invention is a control device for a damping force adjustable shock absorber that is provided in a vehicle and capable of adjusting the damping force generated, comprising: a weighting coefficient calculation unit that calculates a weighting coefficient for bringing the actual target damping force closer to a pre-determined target damping force when calculating an actual target damping force based on a calculated value from a vehicle behavior calculation unit; a vertical motion calculation unit that calculates the vertical motion state of the vehicle; a pitch motion calculation unit that calculates the pitch motion state of the vehicle; an actual target damping force calculation unit that calculates the actual target damping force based on the weighting coefficient calculated by the weighting coefficient calculation unit and the calculation results of the vertical motion calculation unit and the pitch motion calculation unit; a target damping coefficient calculation unit that calculates a target damping coefficient based on the calculated value from the actual target damping force calculation unit; and a weighting coefficient calculation unit that calculates a weighting coefficient between the sprung and unsprung portions of the vehicle. The damping force control system has a correction unit that calculates a corrected damping coefficient that lowers the upper limit of the target damping coefficient in a region where the relative speed is slower than a predetermined value, and a control signal output unit that outputs a control signal corresponding to the corrected damping coefficient to the damping force adjustable shock absorber, the correction unit sets the corrected damping coefficient so that the damping force increases as the relative speed increases, and the slope of the damping force with respect to the relative speed is small when the relative speed is slower than the predetermined value and the slope of the damping force with respect to the relative speed is large when the relative speed is faster than the predetermined value, the correction unit has a maximum damping coefficient according to the relative speed, and when the target damping coefficient exceeds the maximum damping coefficient, corrects the target damping coefficient to the maximum damping coefficient.
本発明の一実施形態によれば、チューナビリティを確保しつつ上下方向とピッチの振動を抑制することができる。 According to one embodiment of the present invention, it is possible to suppress vertical and pitch vibrations while ensuring tunability.
以下、本発明の実施形態による制御装置を4輪自動車に適用した場合を例に挙げ、添付図面に従って詳細に説明する。 Below, we will explain in detail an example of a control device according to an embodiment of the present invention applied to a four-wheeled vehicle, with reference to the attached drawings.
図1は、制御装置であるコントローラ11が適用された車両を示している。この車両には、コントローラ11を含めた車両挙動制御装置1が適用されている。図2に示すように、車両挙動制御装置1は、減衰力発生装置を構成するサスペンション装置5と、車両制御装置を構成するコントローラ11とにより構成されている。ここで、図2において、車両のボディを構成する車体2の下側には、例えば左,右の前輪と左,右の後輪(以下、総称して車輪3という)が設けられている。この車輪3は、タイヤ4を含んで構成されており、タイヤ4は、路面の細かい凹凸を吸収するばねとして作用する。 FIG. 1 shows a vehicle to which a controller 11, which is a control device, is applied. A vehicle behavior control device 1 including the controller 11 is applied to this vehicle. As shown in FIG. 2, the vehicle behavior control device 1 is composed of a suspension device 5 constituting a damping force generating device, and a controller 11 constituting a vehicle control device. Here, in FIG. 2, for example, left and right front wheels and left and right rear wheels (hereinafter collectively referred to as wheels 3) are provided on the underside of a vehicle body 2 constituting the body of the vehicle. The wheels 3 are composed of tires 4, which act as springs that absorb small irregularities in the road surface.
サスペンション装置5は、車両の車体2と車両の車輪3との間に介装して設けられている。このサスペンション装置5は、懸架ばね6(以下、スプリング6という)と、スプリング6と並列関係をなして車体2と車輪3との間に設けられた減衰力調整式緩衝器(以下、可変ダンパ7という)とにより構成される。 The suspension device 5 is installed between the vehicle body 2 and the vehicle wheels 3. This suspension device 5 is composed of a suspension spring 6 (hereinafter referred to as the spring 6) and a damping force adjustable shock absorber (hereinafter referred to as the variable damper 7) that is installed between the vehicle body 2 and the wheels 3 in a parallel relationship with the spring 6.
なお、図2中では1組のサスペンション装置5を、車体2と車輪3との間に設けた場合を示している。しかし、サスペンション装置5は、例えば4つの車輪3と車体2との間に個別に独立して合計4組設けられるもので、このうちの1組のみを図2では模式的に示している。 Note that FIG. 2 shows a case where one set of suspension devices 5 is provided between the vehicle body 2 and the wheels 3. However, a total of four sets of suspension devices 5 are provided, for example, individually and independently between the four wheels 3 and the vehicle body 2, and FIG. 2 shows only one of these sets diagrammatically.
ここで、サスペンション装置5の可変ダンパ7は、車体2と車輪3との間に介装して設けられた減衰力調整式の油圧緩衝器を用いて構成される。この可変ダンパ7には、発生減衰力の特性(即ち、減衰力特性)をハードな特性(硬特性)からソフトな特性(軟特性)に連続的に調整するため、減衰力調整バルブ等からなる減衰力可変アクチュエータ8が付設されている。可変ダンパ7は、車体2と車輪3の間で調整可能な力を発生する力発生機構を構成している。なお、減衰力可変アクチュエータ8は、減衰力特性を必ずしも連続的に調整する構成でなくてもよく、例えば2段階以上の複数段階で減衰力を調整可能なものであってもよい。また、可変ダンパ7は、圧力制御タイプでもよく、流量制御タイプであってもよい。可変ダンパ7は、磁気粘性流体や電気粘性流体のように粘性を制御するタイプであってもよい。 Here, the variable damper 7 of the suspension device 5 is configured using a damping force adjustable hydraulic shock absorber interposed between the vehicle body 2 and the wheel 3. This variable damper 7 is provided with a variable damping force actuator 8 consisting of a damping force adjustment valve or the like in order to continuously adjust the characteristics of the generated damping force (i.e., the damping force characteristics) from hard characteristics to soft characteristics. The variable damper 7 constitutes a force generating mechanism that generates an adjustable force between the vehicle body 2 and the wheel 3. Note that the variable damping force actuator 8 does not necessarily have to be configured to continuously adjust the damping force characteristics, and may be capable of adjusting the damping force in multiple stages, for example, two or more stages. The variable damper 7 may also be a pressure control type or a flow rate control type. The variable damper 7 may also be a type that controls viscosity, such as a magnetorheological fluid or an electrorheological fluid.
コントローラ11は、可変ダンパ7の制御装置を構成し、可変ダンパ7の減衰特性を制御する。コントローラ11は、例えばマイクロコンピュータにより構成されている。コントローラ11は、例えばデータ通信に必要な回線網であるCAN9(Controller Area Network)に接続されている。コントローラ11は、CAN9を通じて、車両の走行に関する諸元を取得する。このとき、車両の走行に関する諸元は、例えば車輪速、スリップ率、前後加速度、エンジントルク、ブレーキ液圧、路面摩擦係数、4輪独立の制駆動力制御フラグ等を含んでいる。コントローラ11の出力側は、可変ダンパ7の減衰力可変アクチュエータ8に接続されている。 The controller 11 constitutes a control device for the variable damper 7 and controls the damping characteristics of the variable damper 7. The controller 11 is composed of, for example, a microcomputer. The controller 11 is connected to, for example, a CAN9 (Controller Area Network), which is a line network required for data communication. The controller 11 acquires vehicle driving specifications through the CAN9. At this time, the vehicle driving specifications include, for example, wheel speed, slip ratio, longitudinal acceleration, engine torque, brake fluid pressure, road surface friction coefficient, and independent braking/driving force control flags for each of the four wheels. The output side of the controller 11 is connected to the damping force variable actuator 8 of the variable damper 7.
また、コントローラ11は、ROM、RAM、不揮発性メモリ等からなる記憶部11Aを有している。コントローラ11の記憶部11Aには、可変ダンパ7を制御するための各種のプログラム、情報(車両情報)、データ等が格納されている。 The controller 11 also has a storage unit 11A consisting of a ROM, a RAM, a non-volatile memory, etc. The storage unit 11A of the controller 11 stores various programs, information (vehicle information), data, etc. for controlling the variable damper 7.
図3に示すように、コントローラ11は、状態推定部12、GSP算出部13、BLQコントローラ20を備えている。 As shown in FIG. 3, the controller 11 includes a state estimation unit 12, a GSP calculation unit 13, and a BLQ controller 20.
状態推定部12は、CAN信号を用いて車両状態(車両運動、車両挙動)を推定する。即ち、状態推定部12は、CAN9に流れる信号(CAN信号)を基に、ばね上-ばね下間相対速度、車体絶対上下速度(ばね上速度)、ばね下-路面間相対速度、ばね下絶対上下速度(ばね下速度)、ロールレイト、ロール角、ピッチレイト、ピッチ角を推定する。例えば、状態推定部12は、車両の操舵角、前後加速度、左右加速度、ヨーレイト、各車輪3の車輪速、ブレーキ操作の有無、マスタシリンダ液圧に基づいて、ばね上-ばね下間相対速度、車体絶対上下速度、ばね下-路面間相対速度、ばね下絶対上下速度、ロールレイト、ロール角、ピッチレイト、ピッチ角を推定する。 The state estimation unit 12 estimates the vehicle state (vehicle motion, vehicle behavior) using the CAN signal. That is, the state estimation unit 12 estimates the sprung-unsprung relative velocity, vehicle body absolute vertical velocity (sprung velocity), unsprung-road relative velocity, unsprung absolute vertical velocity (unsprung velocity), roll rate, roll angle, pitch rate, and pitch angle based on the signal (CAN signal) flowing through CAN 9. For example, the state estimation unit 12 estimates the sprung-unsprung relative velocity, vehicle body absolute vertical velocity, unsprung-road relative velocity, unsprung absolute vertical velocity, roll rate, roll angle, pitch rate, and pitch angle based on the vehicle steering angle, longitudinal acceleration, lateral acceleration, yaw rate, wheel speed of each wheel 3, presence or absence of brake operation, and master cylinder hydraulic pressure.
なお、前後加速度、左右加速度、ヨーレイト、車輪速等から車両をモデル化した車両モデル(運動方程式)、カルマンフィルタ等を用いてばね上-ばね下間相対速度、車体絶対上下速度、ばね下-路面間相対速度、ばね下絶対上下速度、ロールレイト、ロール角、ピッチレイト、ピッチ角等を推定する技術については、例えば特開2012-47553号公報を含む各種の文献(車両状態の推定に関する文献)に記載されているため、これ以上の説明は省略する。 Note that technology for estimating the sprung-unsprung relative velocity, vehicle body absolute vertical velocity, unsprung-road relative velocity, unsprung absolute vertical velocity, roll rate, roll angle, pitch rate, pitch angle, etc. using a vehicle model (equation of motion) that models the vehicle from longitudinal acceleration, lateral acceleration, yaw rate, wheel speed, etc., and a Kalman filter, etc., is described in various documents (documents related to estimating vehicle states), including JP2012-47553A, and therefore will not be described further here.
状態推定部12は、車両挙動を算出する車両挙動算出部を構成している。具体的には、状態推定部12は、車両の上下方向の運動に関する状態を求める上下運動算出部を備えている。状態推定部12は、車両のロール方向の運動に関する状態を求めるロール運動算出部を備えている。状態推定部12は、車両のピッチ方向の運動に関する状態を求めるピッチ運動算出部を備えている。状態推定部12は、車体の姿勢変化を検出する姿勢変化検出部を備えている。 The state estimation unit 12 constitutes a vehicle behavior calculation unit that calculates vehicle behavior. Specifically, the state estimation unit 12 includes a vertical movement calculation unit that determines the state related to the vertical movement of the vehicle. The state estimation unit 12 includes a roll movement calculation unit that determines the state related to the roll movement of the vehicle. The state estimation unit 12 includes a pitch movement calculation unit that determines the state related to the pitch movement of the vehicle. The state estimation unit 12 includes an attitude change detection unit that detects changes in the attitude of the vehicle body.
状態推定部12は、推定した状態値(運動値)、即ち、ばね上-ばね下間相対速度、車体絶対上下速度、ばね下-路面間相対速度、ばね下絶対上下速度、ロールレイト、ロール角、ピッチレイト、ピッチ角等に対応する信号を、BLQコントローラ20に出力する。 The state estimation unit 12 outputs signals corresponding to the estimated state values (motion values), i.e., the sprung-unsprung relative velocity, the vehicle body absolute vertical velocity, the unsprung-road relative velocity, the unsprung absolute vertical velocity, the roll rate, the roll angle, the pitch rate, the pitch angle, etc., to the BLQ controller 20.
なお、車両挙動算出部は、ばね上速度、ロールレイト、ピッチレイト等を検出する各種センサでもよい。また、車両挙動算出部は、車輪速や車両の進行方向の路面情報(プレビュー)に基づいて、ばね上加速度、ロールレイト、ピッチレイト等を推定してもよい。 The vehicle behavior calculation unit may be various sensors that detect the sprung speed, roll rate, pitch rate, etc. The vehicle behavior calculation unit may also estimate the sprung acceleration, roll rate, pitch rate, etc. based on the wheel speed and road surface information (preview) in the vehicle's traveling direction.
GSP算出部13(ゲインスケジューリングパラメータ算出部)は、状態推定部12(車両挙動算出部)の算出値に基づく実目標減衰力を、予め求めた目標減衰力と近い値に近付ける重み係数を算出する重み係数算出部を構成している。GSP算出部13は、例えばCAN9から取得する車速に基づいて、ヒーブGSP、ロールGSPr、ピッチGSPpを算出する。ヒーブGSPは、車両の上下方向の運動を抑制するためのヒーブ目標減衰力を調整する重み係数である。ロールGSPrは、車両のロール方向の運動を抑制するためのロール目標減衰力を調整する重み係数である。ピッチGSPpは、車両のピッチ方向の運動を抑制するためのピッチ目標減衰力を調整する重み係数である。 The GSP calculation unit 13 (gain scheduling parameter calculation unit) constitutes a weighting coefficient calculation unit that calculates a weighting coefficient that brings the actual target damping force based on the calculation value of the state estimation unit 12 (vehicle behavior calculation unit) closer to a value close to a pre-determined target damping force. The GSP calculation unit 13 calculates the heave GSP, roll GSP r and pitch GSP p based on the vehicle speed acquired from the CAN 9, for example. The heave GSP is a weighting coefficient that adjusts the heave target damping force for suppressing the vertical movement of the vehicle. The roll GSP r is a weighting coefficient that adjusts the roll target damping force for suppressing the movement of the vehicle in the roll direction. The pitch GSP p is a weighting coefficient that adjusts the pitch target damping force for suppressing the movement of the vehicle in the pitch direction.
即ち、GSP算出部13は、BLQコントローラ20が状態推定部12(車両挙動算出部)の算出値である車両状態(例えば、ばね上-ばね下間相対速度、車体絶対上下速度、ばね下-路面間相対速度、ばね下絶対上下速度、ロールレイト、ロール角、ピッチレイト、ピッチ角等)に基づいて実目標減衰力を求めるときに、この実目標減衰力を予め求めた目標減衰力と近い値に近付ける重み係数(ヒーブGSP、ロールGSPr、ピッチGSPp)を算出する。GSP算出部13は、ヒーブGSP、ロールGSPr、ピッチGSPpをBLQコントローラ20に出力する。 That is, when the BLQ controller 20 calculates an actual target damping force based on the vehicle state (e.g., sprung-unsprung relative velocity, vehicle body absolute vertical velocity, unsprung-road surface relative velocity, unsprung absolute vertical velocity, roll rate, roll angle, pitch rate, pitch angle, etc.) which is a calculated value of the state estimation unit 12 (vehicle behavior calculation unit), the GSP calculation unit 13 calculates weighting coefficients (heave GSP, roll GSP r , pitch GSP p ) that bring this actual target damping force closer to a value close to a pre-calculated target damping force. The GSP calculation unit 13 outputs the heave GSP, roll GSP r , and pitch GSP p to the BLQ controller 20.
図4に示すように、GSP算出部13は、例えば車速とヒーブGSPとの関係を記録したルックアップテーブルを備えている。このとき、ヒーブGSPは、実車試験でのチューニングによって決定されている。具体的には、ヒーブGSPは、実車試験による官能評価によって概略の特性が決められた後に、振動データ等を参照して微調整されている。また、GSP算出部13は、車速とロールGSPとの関係を記録したルックアップテーブルと、車速とピッチGSPとの関係を記録したルックアップテーブルと、を備えている。ロールGSPr、ピッチGSPpも、ヒーブGSPと同様に、実車試験でのチューニングによって決定されている。 As shown in Fig. 4, the GSP calculation unit 13 includes a lookup table that records the relationship between the vehicle speed and the heave GSP. At this time, the heave GSP is determined by tuning in an actual vehicle test. Specifically, the heave GSP is finely adjusted by referring to vibration data and the like after the rough characteristics are determined by a sensory evaluation in an actual vehicle test. The GSP calculation unit 13 also includes a lookup table that records the relationship between the vehicle speed and the roll GSP, and a lookup table that records the relationship between the vehicle speed and the pitch GSP. The roll GSPr and the pitch GSPp are also determined by tuning in an actual vehicle test, like the heave GSP.
ヒーブGSP、ロールGSPr、ピッチGSPpは、0から1までに正規化された値である。ヒーブGSP、ロールGSPr、ピッチGSPpは、例えば図4に示すように、低速では小さい値となり、高速では大きい値となる。なお、ヒーブGSP、ロールGSPr、ピッチGSPpは、これに限らず、車速に拘わらず値が同一な一定値でもよい。 The heave GSP, roll GSP r and pitch GSP p are normalized values between 0 and 1. The heave GSP, roll GSP r and pitch GSP p have small values at low speeds and large values at high speeds, as shown in Fig. 4 for example. Note that the heave GSP, roll GSP r and pitch GSP p are not limited to this and may be constant values that are the same regardless of the vehicle speed.
BLQコントローラ20は、双線形最適制御理論に基づいて指令値となる指令電流(制御信号)を算出する。図5に示すように、BLQコントローラ20は、ばね上上下制振BLQ21、ロール制振BLQ22、ピッチ制振BLQ23、目標減衰力算出部24、減衰係数上限算出部25、補正減衰係数算出部26、指令値算出部29を備えている。 The BLQ controller 20 calculates a command current (control signal) that becomes a command value based on bilinear optimal control theory. As shown in FIG. 5, the BLQ controller 20 includes a sprung vertical vibration damping BLQ21, a roll vibration damping BLQ22, a pitch vibration damping BLQ23, a target damping force calculation unit 24, a damping coefficient upper limit calculation unit 25, a corrected damping coefficient calculation unit 26, and a command value calculation unit 29.
ばね上上下制振BLQ21には、状態推定部12から出力される車両状態と、GSP算出部13から出力されるヒーブGSPとが入力される。ばね上上下制振BLQ21は、状態推定部12から出力されるばね上-ばね下間相対速度、車体絶対上下速度、ばね下-路面間相対速度、ばね下絶対上下速度と、GSP算出部13から出力されるヒーブGSPとに基づいて、上下振動を低減するための可変ダンパ7のヒーブ目標減衰力を算出する。ばね上上下制振BLQ21は、例えば図12に示す車両モデルに基づいて設計されている。図12中では1組のサスペンション装置5を、車体2と車輪3との間に設けた場合を例示している。しかし、サスペンション装置5は、例えば4輪の車輪3と車体2との間に個別に独立して合計4組設けられるものであり、このうちの1組のみを図12では模式的に図示している。ばね上上下制振BLQ21は、後述の設計方法に示すように、図12の車両モデルの状態方程式に基づいて設計されている。 The vehicle state output from the state estimation unit 12 and the heave GSP output from the GSP calculation unit 13 are input to the sprung vertical vibration damping BLQ21. The sprung vertical vibration damping BLQ21 calculates the heave target damping force of the variable damper 7 to reduce vertical vibration based on the sprung-unsprung relative velocity, vehicle body absolute vertical velocity, unsprung-road surface relative velocity, and unsprung absolute vertical velocity output from the state estimation unit 12, and the heave GSP output from the GSP calculation unit 13. The sprung vertical vibration damping BLQ21 is designed based on the vehicle model shown in FIG. 12, for example. FIG. 12 illustrates an example in which one set of suspension devices 5 is provided between the vehicle body 2 and the wheels 3. However, the suspension devices 5 are provided individually and independently in total, for example, between the four wheels 3 and the vehicle body 2, and only one of these is illustrated diagrammatically in FIG. 12. The sprung vertical vibration damping BLQ21 is designed based on the state equation of the vehicle model in FIG. 12, as shown in the design method described below.
図9に示すように、ばね上上下制振BLQ21は、Bp算出部21A、乗算器21B、Bp算出部21C、乗算器21D、乗算器21E、ヒーブ目標減衰力算出部21Fを備えている。Bp算出部21Aは、予め求めたBpとヒーブGSPとに基づいて、相対速度に応じたBpの最大値を求める。乗算器21Bは、Bp算出部21Aから出力されたBpの最大値と相対速度とを乗算する。Bp算出部21Cは、予め求めたBpとヒーブGSPとに基づいて、ばね上速度に応じたBpの最大値を求める。乗算器21Dは、Bp算出部21Cから出力されたBpの最大値とばね上速度とを乗算する。乗算器21Eは、乗算器21Bによる算出値と乗算器21Dによる算出値とを乗算する。ヒーブ目標減衰力算出部21Fは、乗算器21Eによる算出値と、予め求めたRの逆行列(R-1)とを乗算し、ヒーブ目標減衰力を算出する。このようにして、ばね上上下制振BLQ21は、後述の数12式の右辺に左側から相対速度を乗算した値を演算する。これにより、ばね上上下制振BLQ21は、後述の数12式の左辺に左側から相対速度を乗算したヒーブ目標減衰力を算出する。なお、ばね上上下制振BLQ21は、相対速度に応じたBpと、ばね上速度に応じたBpとに基づいて、ヒーブ目標減衰力を算出する場合を例示したが、本発明はこれに限らない。ばね上上下制振BLQ21は、相対速度、ばね上速度に応じたBpに加えて、他の車両状態に応じたBpに基づいて、ヒーブ目標減衰力を算出してもよい。 As shown in FIG. 9, the sprung vertical vibration damping BLQ21 includes a Bp calculation unit 21A, a multiplier 21B, a Bp calculation unit 21C, a multiplier 21D, a multiplier 21E, and a heave target damping force calculation unit 21F. The Bp calculation unit 21A calculates the maximum value of Bp according to the relative speed based on the previously calculated Bp and the heave GSP. The multiplier 21B multiplies the maximum value of Bp output from the Bp calculation unit 21A by the relative speed. The Bp calculation unit 21C calculates the maximum value of Bp according to the sprung speed based on the previously calculated Bp and the heave GSP. The multiplier 21D multiplies the maximum value of Bp output from the Bp calculation unit 21C by the sprung speed. The multiplier 21E multiplies the value calculated by the multiplier 21B by the value calculated by the multiplier 21D. The heave target damping force calculation unit 21F multiplies the calculated value by the multiplier 21E by the inverse matrix (R -1 ) of R obtained in advance to calculate the heave target damping force. In this way, the sprung vertical damping BLQ21 calculates a value obtained by multiplying the right side of the equation (12) described later by the relative speed from the left side. As a result, the sprung vertical damping BLQ21 calculates the heave target damping force by multiplying the left side of the equation (12) described later by the relative speed from the left side. Note that, although the sprung vertical damping BLQ21 has exemplified a case in which the heave target damping force is calculated based on Bp according to the relative speed and Bp according to the sprung speed, the present invention is not limited to this. The sprung vertical damping BLQ21 may calculate the heave target damping force based on Bp according to other vehicle conditions in addition to Bp according to the relative speed and sprung speed.
ロール制振BLQ22には、状態推定部12から出力される車両状態と、GSP算出部13から出力されるロールGSPrとが入力される。ロール制振BLQ22は、状態推定部12から出力されるロールレイト、ロール角と、GSP算出部13から出力されるロールGSPrとに基づいて、ロール振動を低減するための可変ダンパ7のロール目標減衰力を算出する。ロール制振BLQ22は、例えば図13に示す車両モデルに基づいて設計されている。図13中では、ロールを考慮した車両モデルとして最も単純な1自由度回転運動モデルを例示している。実際の車両では、この運動モデルが前輪側と後輪側で合計2組設けられるものであり、このうちの1組のみを図13では模式的に図示している。ロール制振BLQ22は、後述の設計方法に示すように、図13の車両モデルの状態方程式に基づいて設計されている。 The roll vibration suppression BLQ22 receives the vehicle state output from the state estimation unit 12 and the roll GSP r output from the GSP calculation unit 13. The roll vibration suppression BLQ22 calculates the roll target damping force of the variable damper 7 for reducing roll vibration based on the roll rate and roll angle output from the state estimation unit 12 and the roll GSP r output from the GSP calculation unit 13. The roll vibration suppression BLQ22 is designed based on the vehicle model shown in FIG. 13, for example. In FIG. 13, the simplest one-degree-of-freedom rotational motion model is illustrated as a vehicle model taking roll into consideration. In an actual vehicle, two sets of this motion model are provided on the front wheel side and the rear wheel side, and only one of them is illustrated in FIG. 13. The roll vibration suppression BLQ22 is designed based on the state equation of the vehicle model in FIG. 13, as shown in the design method described later.
図10に示すように、ロール制振BLQ22は、Bp算出部22A、乗算器22B、ロール目標減衰力算出部22Cを備えている。Bp算出部22Aは、予め求めたBrollprollとロールGSPrとに基づいて、ロールレイトに応じたBrollprollの最大値を求める。乗算器22Bは、Bp算出部22Aから出力されたBrollprollの最大値とロールレイトとを乗算する。ロール目標減衰力算出部22Cは、乗算器22Bによる算出値と、予め求めたRrollの逆行列(Rroll -1)とを乗算し、ロール目標減衰力を算出する。このようにして、ロール制振BLQ22は、後述の数20式の右辺に左側から相対速度を乗算した値を演算する。これにより、ロール制振BLQ22は、後述の数20式の左辺に左側からロールレイトを乗算したロール目標減衰力を算出する。 As shown in FIG. 10, the roll vibration suppression BLQ22 includes a Bp calculation unit 22A, a multiplier 22B, and a roll target damping force calculation unit 22C. The Bp calculation unit 22A calculates the maximum value of B roll p roll according to the roll rate based on the previously calculated B roll p roll and roll GSP r . The multiplier 22B multiplies the maximum value of B roll p roll output from the Bp calculation unit 22A by the roll rate. The roll target damping force calculation unit 22C multiplies the calculated value by the multiplier 22B by the previously calculated inverse matrix (R roll -1 ) of R roll to calculate the roll target damping force. In this way, the roll vibration suppression BLQ22 calculates a value obtained by multiplying the right side of the formula 20 described later by the relative velocity from the left side. As a result, the roll vibration suppression BLQ22 calculates a roll target damping force obtained by multiplying the left side of the formula 20 described later by the roll rate from the left side.
ピッチ制振BLQ23には、状態推定部12から出力される車両状態と、GSP算出部13から出力されるピッチGSPpとが入力される。ピッチ制振BLQ23は、状態推定部12から出力されるピッチレイト、ピッチ角と、GSP算出部13から出力されるピッチGSPpとに基づいて、ピッチ振動を低減するための可変ダンパ7のピッチ目標減衰力を算出する。ピッチ制振BLQ23は、例えば図14に示す車両モデルに基づいて設計されている。図14中では、ピッチを考慮した車両モデルとして最も単純な1自由度回転運動モデルを例示している。実際の車両では、この運動モデルが左側と右側で合計2組設けられるものであり、このうちの1組のみを図14では模式的に図示している。ピッチ制振BLQ23は、後述の設計方法に示すように、図14の車両モデルの状態方程式に基づいて設計されている。 The pitch vibration damping BLQ23 receives the vehicle state output from the state estimation unit 12 and the pitch GSP p output from the GSP calculation unit 13. The pitch vibration damping BLQ23 calculates the pitch target damping force of the variable damper 7 for reducing pitch vibration based on the pitch rate and pitch angle output from the state estimation unit 12 and the pitch GSP p output from the GSP calculation unit 13. The pitch vibration damping BLQ23 is designed based on the vehicle model shown in FIG. 14, for example. FIG. 14 illustrates a simplest one-degree-of-freedom rotational motion model as a vehicle model taking pitch into consideration. In an actual vehicle, two sets of this motion model are provided on the left and right sides, and only one of them is illustrated in FIG. 14. The pitch vibration damping BLQ23 is designed based on the state equation of the vehicle model in FIG. 14, as shown in the design method described later.
図11に示すように、ピッチ制振BLQ23は、Bp算出部23A、乗算器23B、ピッチ目標減衰力算出部23Cを備えている。Bp算出部23Aは、予め求めたBpitchppitchとピッチGSPpとに基づいて、ピッチレイトに応じたBpitchppitchの最大値を求める。乗算器23Bは、Bp算出部23Aから出力されたBpitchppitchの最大値とピッチレイトとを乗算する。ピッチ目標減衰力算出部23Cは、乗算器23Bによる算出値と、予め求めたRpitchの逆行列(Rpitch -1)とを乗算し、ピッチ目標減衰力を算出する。このようにして、ピッチ制振BLQ23は、後述の数27式の右辺に左側から相対速度を乗算した値を演算する。これにより、ピッチ制振BLQ23は、後述の数27式の左辺に左側からピッチレイトを乗算したピッチ目標減衰力を算出する。 As shown in FIG. 11, the pitch vibration damping BLQ 23 includes a Bp calculation unit 23A, a multiplier 23B, and a pitch target damping force calculation unit 23C. The Bp calculation unit 23A calculates the maximum value of B pitch p pitch according to the pitch rate based on the previously calculated B pitch p pitch and pitch GSP p . The multiplier 23B multiplies the maximum value of B pitch p pitch output from the Bp calculation unit 23A by the pitch rate. The pitch target damping force calculation unit 23C multiplies the calculated value by the multiplier 23B by the previously calculated inverse matrix (R pitch -1 ) of R pitch to calculate the pitch target damping force. In this way, the pitch vibration damping BLQ 23 calculates a value obtained by multiplying the right side of Equation 27 described later by the relative speed from the left side. As a result, the pitch vibration damping BLQ 23 calculates a pitch target damping force obtained by multiplying the left side of Equation 27 described later by the pitch rate from the left side.
目標減衰力算出部24は、ばね上上下制振BLQ21、ロール制振BLQ22、ピッチ制振BLQ23から出力される3つの目標減衰力(ヒーブ目標減衰力、ロール目標減衰力、ピッチ目標減衰力)に基づいて、各可変ダンパ7の実目標減衰力を算出する(図5参照)。ばね上上下制振BLQ21、ピッチ制振BLQ23および目標減衰力算出部24は、GSP算出部13(重み係数算出部)によるヒーブGSP、ロールGSPr、ピッチGSPp(重み係数)と、状態推定部12(上下運動算出部、ピッチ運動算出部)の算出結果に基づき実目標減衰力を算出する実目標減衰力算出部を構成している。 The target damping force calculation unit 24 calculates an actual target damping force of each variable damper 7 based on three target damping forces (heave target damping force, roll target damping force, pitch target damping force) output from the sprung vertical vibration damping BLQ21, the roll vibration damping BLQ22, and the pitch vibration damping BLQ23 (see FIG. 5). The sprung vertical vibration damping BLQ21, the pitch vibration damping BLQ23, and the target damping force calculation unit 24 constitute an actual target damping force calculation unit that calculates an actual target damping force based on the heave GSP, roll GSP r , and pitch GSP p (weighting coefficients) by the GSP calculation unit 13 (weighting coefficient calculation unit) and the calculation results by the state estimation unit 12 (vertical movement calculation unit, pitch movement calculation unit).
図8に示すように、目標減衰力算出部24は、加算器24Aと、減衰力不感帯算出部24Bとを備えている。加算器24Aは、ばね上上下制振BLQ21からのヒーブ目標減衰力と、ロール制振BLQ22からのロール目標減衰力と、ピッチ制振BLQ23からのピッチ目標減衰力とを加算して、これらを合算したBLQ目標減衰力を算出する。 As shown in FIG. 8, the target damping force calculation unit 24 includes an adder 24A and a damping force dead zone calculation unit 24B. The adder 24A adds the heave target damping force from the sprung vertical vibration damping BLQ21, the roll target damping force from the roll vibration damping BLQ22, and the pitch target damping force from the pitch vibration damping BLQ23, and calculates the sum of these to form a BLQ target damping force.
減衰力不感帯算出部24Bは、加算器24Aから出力されたBLQ目標減衰力に対して不感帯を設定する。減衰力不感帯算出部24Bは、BLQ目標減衰力に不感帯に設定した実目標減衰力を出力する。 The damping force deadband calculation unit 24B sets a deadband for the BLQ target damping force output from the adder 24A. The damping force deadband calculation unit 24B outputs the actual target damping force that is set to the deadband for the BLQ target damping force.
双線形最適制御(BLQ)は、微小な路面入力でも制御が働くため、微小な路面入力に対して高い減衰力が発生することで乗り心地が悪化する虞れがある。そこで、減衰力不感帯算出部24BではBLQ目標減衰力に対して不感帯を設定する。これにより、減衰力不感帯算出部24Bは、微小な目標減衰力に対して制御が働かないようにする。 Because bilinear optimal control (BLQ) operates even with very small road inputs, there is a risk that ride comfort will deteriorate if a high damping force is generated in response to a very small road input. Therefore, the damping force dead zone calculation unit 24B sets a dead zone for the BLQ target damping force. This prevents the damping force dead zone calculation unit 24B from operating with control for very small target damping forces.
BLQの制御ゲインが車速によって変わる場合には、不感帯選択処理でも、同様に車速に応じて不感帯を設定する。BLQの制御ゲインがカーモードによっても異なる場合には、不感帯選択処理でも、同様にカーモードに応じて不感帯を設定する。 If the control gain of the BLQ varies depending on the vehicle speed, the dead band selection process also sets the dead band according to the vehicle speed. If the control gain of the BLQ varies depending on the car mode, the dead band selection process also sets the dead band according to the car mode.
うねり路走行時において、ばね上速度や相対変位が0を跨ぐときには目標減衰力が小さくなり、このとき減衰力不感帯が設定されていると制御量が出力されず、制振性が悪化してしまう。そこで、うねり路走行時には制振性を優先するため、小さな目標減衰力でも制御量を出力するように、暫定BLQ減衰力不感帯に対して、うねり路指数が高い場合には不感帯を小さくする緩和処理を行う。また、チューニング性の向上を図るため、不感帯緩和処理の有効と無効を切り換え可能にしてもよい。 When driving on undulating roads, the target damping force becomes smaller when the sprung speed or relative displacement crosses zero, and if a damping force dead band is set at this time, the control amount is not output, resulting in a deterioration in vibration control. Therefore, in order to prioritize vibration control when driving on undulating roads, a mitigation process is performed for the provisional BLQ damping force dead band, which reduces the dead band when the undulating road index is high, so that a control amount is output even with a small target damping force. Also, in order to improve tuning, the dead band mitigation process may be made switchable between enabled and disabled.
なお、目標減衰力算出部24は、ヒーブ目標減衰力、ロール目標減衰力、ピッチ目標減衰力を加算するものとしたが、本発明はこれに限らない。目標減衰力算出部24は、例えばヒーブ目標減衰力、ロール目標減衰力、ピッチ目標減衰力のうち最も大きな値を選択してもよい。 Note that the target damping force calculation unit 24 adds the heave target damping force, roll target damping force, and pitch target damping force, but the present invention is not limited to this. The target damping force calculation unit 24 may select, for example, the largest value among the heave target damping force, roll target damping force, and pitch target damping force.
減衰係数上限算出部25は、減衰係数Cの上限値である最大減衰係数Cmaxを算出する。図6に示すように、減衰係数上限算出部25は、車両状態に基づいて最大減衰係数Cmaxを算出する最大減衰係数マップである。減衰係数上限算出部25は、例えばばね上-ばね下間の相対速度x*と最大減衰係数Cmaxとの関係を示した特性線25Aを備えている。減衰係数上限算出部25は、相対速度x*に基づいて最大減衰係数Cmaxを出力する。このとき、最大減衰係数Cmaxは、可変ダンパ7で発生可能な減衰係数の最大値を超えない範囲の値に設定されている。最大減衰係数Cmaxは、相対速度x*が所定のしきい値Vtよりも低速なときには小さい値に設定され、相対速度x*がしきい値Vtよりも高速なときには大きい値に設定される。 The damping coefficient upper limit calculation unit 25 calculates a maximum damping coefficient Cmax, which is an upper limit value of the damping coefficient C. As shown in FIG. 6, the damping coefficient upper limit calculation unit 25 is a maximum damping coefficient map that calculates the maximum damping coefficient Cmax based on the vehicle state. The damping coefficient upper limit calculation unit 25 includes, for example, a characteristic line 25A that shows the relationship between the relative speed x * between the sprung and unsprung parts and the maximum damping coefficient Cmax. The damping coefficient upper limit calculation unit 25 outputs the maximum damping coefficient Cmax based on the relative speed x * . At this time, the maximum damping coefficient Cmax is set to a value within a range that does not exceed the maximum value of the damping coefficient that can be generated by the variable damper 7. The maximum damping coefficient Cmax is set to a small value when the relative speed x * is slower than a predetermined threshold value Vt, and is set to a large value when the relative speed x * is faster than the threshold value Vt.
具体的には、相対速度x*がしきい値Vtよりも低速なとき(-Vt<x*<Vt)には、最大減衰係数Cmaxは、小さい値の低速設定値C1に設定される。一方、伸び側(正側)の相対速度x*がしきい値Vtよりも高速なとき(x*>Vt)には、最大減衰係数Cmaxは、低速設定値C1よりも大きい値の高速設定値C2に設定される。同様に、縮み側(負側)の相対速度x*がしきい値Vtよりも高速なとき(x*<-Vt)には、最大減衰係数Cmaxは、低速設定値C1よりも大きい値の高速設定値C3に設定される。 Specifically, when the relative speed x * is lower than the threshold value Vt (-Vt<x * <Vt), the maximum damping coefficient Cmax is set to a small low-speed setting value C1. On the other hand, when the relative speed x * on the extension side (positive side) is higher than the threshold value Vt (x * >Vt), the maximum damping coefficient Cmax is set to a high-speed setting value C2 that is higher than the low-speed setting value C1. Similarly, when the relative speed x * on the contraction side (negative side) is higher than the threshold value Vt (x * <-Vt), the maximum damping coefficient Cmax is set to a high-speed setting value C3 that is higher than the low-speed setting value C1.
相対速度x*がしきい値Vtに近い値となるときには、最大減衰係数Cmaxは、低速設定値C1と高速設定値C2との間の値に設定してもよい。同様に、相対速度x*がしきい値(-Vt)に近い値となるときには、最大減衰係数Cmaxは、低速設定値C1と高速設定値C3との間の値に設定してもよい。 When the relative velocity x * is close to the threshold value Vt, the maximum damping coefficient Cmax may be set to a value between the low speed setting value C1 and the high speed setting value C2. Similarly, when the relative velocity x * is close to the threshold value (-Vt), the maximum damping coefficient Cmax may be set to a value between the low speed setting value C1 and the high speed setting value C3.
高速設定値C2,C3は、可変ダンパ7の構造、仕様、減衰力特性等を考慮して適宜設定される。また、低速設定値C1および高速設定値C2,C3は、いずれも一定値である場合を例示したが、相対速度x*に応じて変化する構成としてもよい。 The high speed setting values C2, C3 are appropriately set in consideration of the structure, specifications, damping force characteristics, etc. of the variable damper 7. In addition, although the low speed setting value C1 and the high speed setting values C2, C3 are all constant values in the above example, they may be configured to change according to the relative speed x * .
なお、しきい値Vtは、例えばジャークの発生状況を考慮して実験的に得られるものであり、可変ダンパ7の構造、減衰力特性等に応じて適宜設定される。また、しきい値Vtは、相対速度x*の正側と負側で同じ値に設定してもよく、相対速度x*の正側と負側で互いに異なる値に設定してもよい。 The threshold value Vt is obtained experimentally, for example, taking into consideration the occurrence state of jerk, and is set appropriately depending on the structure and damping force characteristics of the variable damper 7. The threshold value Vt may be set to the same value on the positive side and the negative side of the relative velocity x * , or may be set to different values on the positive side and the negative side of the relative velocity x * .
補正減衰係数算出部26は、実目標減衰力に対応した目標減衰係数Cを算出し、この目標減衰係数Cと最大減衰係数Cmaxとに基づいて、補正減衰係数Caを出力する(図8参照)。補正減衰係数算出部26は、目標減衰係数算出部27と最小値選択部28とを備えている。 The corrected damping coefficient calculation unit 26 calculates a target damping coefficient C corresponding to the actual target damping force, and outputs a corrected damping coefficient Ca based on the target damping coefficient C and the maximum damping coefficient Cmax (see FIG. 8). The corrected damping coefficient calculation unit 26 includes a target damping coefficient calculation unit 27 and a minimum value selection unit 28.
目標減衰係数算出部27は、実目標減衰力算出部の算出値に基づき目標減衰係数Cを算出する目標減衰係数算出部を構成している。目標減衰係数算出部27は、目標減衰力算出部24から出力された実目標減衰力に対応した目標減衰係数Cを算出する。具体的には、目標減衰係数算出部27は、除算器によって構成され、実目標減衰力から相対速度x*を除算して目標減衰係数Cを算出する。 The target damping coefficient calculation unit 27 constitutes a target damping coefficient calculation unit that calculates the target damping coefficient C based on the calculated value of the actual target damping force calculation unit 24. The target damping coefficient calculation unit 27 calculates the target damping coefficient C corresponding to the actual target damping force output from the target damping force calculation unit 24. Specifically, the target damping coefficient calculation unit 27 is constituted by a divider, and calculates the target damping coefficient C by dividing the actual target damping force by the relative speed x * .
最小値選択部28は、目標減衰係数算出部27から出力される目標減衰係数Cと減衰係数上限算出部25から出力される最大減衰係数Cmaxとを比較し、これらの係数C,Cmaxのうちで小さい方の値を選択し、補正減衰係数Caとして出力する。このため、最小値選択部28および減衰係数上限算出部25は、車両のばね上とばね下との間の相対速度x*が低速な領域で、目標減衰係数Cの上限を低下させた補正減衰係数Caを算出する補正部を構成している。 The minimum value selection unit 28 compares the target damping coefficient C output from the target damping coefficient calculation unit 27 with the maximum damping coefficient Cmax output from the damping coefficient upper limit calculation unit 25, selects the smaller of these coefficients C and Cmax, and outputs it as the corrected damping coefficient Ca. Therefore, the minimum value selection unit 28 and the damping coefficient upper limit calculation unit 25 constitute a correction unit that calculates the corrected damping coefficient Ca by lowering the upper limit of the target damping coefficient C in the region where the relative speed x * between the sprung and unsprung parts of the vehicle is low.
このとき、補正部は、補正減衰係数Caを、相対速度x*の上昇に応じて減衰力が大きくなり、かつ相対速度x*が低速なときに該相対速度x*に対する減衰力の傾きが小さく、相対速度x*が高速なときに相対速度x*に対する減衰力の傾きが大きくなるように設定する。これに加え、補正部は、相対速度x*に応じた最大減衰係数Cmaxを有し、目標減衰係数Cが該最大減衰係数Cmaxを超えるときに、目標減衰係数Cを該最大減衰係数Cmaxに補正する。 At this time, the correction unit sets the corrected damping coefficient Ca so that the damping force increases with an increase in the relative speed x * , the slope of the damping force with respect to the relative speed x * is small when the relative speed x * is low, and the slope of the damping force with respect to the relative speed x * is large when the relative speed x * is high. In addition, the correction unit has a maximum damping coefficient Cmax according to the relative speed x * , and corrects the target damping coefficient C to the maximum damping coefficient Cmax when the target damping coefficient C exceeds the maximum damping coefficient Cmax.
指令値算出部29は、補正減衰係数Caに対応した制御信号を可変ダンパ7(減衰力調整式緩衝器)に出力する制御信号出力部を構成している。指令値算出部29は、補正減衰係数Caに対応した制御信号としての指令電流値Iを出力する。図7に示すように、指令値算出部29は、補正減衰係数Caと指令電流値Iとの関係を相対速度x*に従って可変に設定する減衰係数マップである。この減衰係数マップは、発明者等による試験データに基づいて作成されたものである。そして、指令値算出部29は、補正減衰係数Caと相対速度x*とに基づいて、可変ダンパ7の減衰力特性を調整するための指令電流値Iを特定し、この指令電流値Iを可変ダンパ7の減衰力可変アクチュエータ8に出力する。 The command value calculation unit 29 constitutes a control signal output unit that outputs a control signal corresponding to the corrected damping coefficient Ca to the variable damper 7 (damping force adjustable shock absorber). The command value calculation unit 29 outputs a command current value I as a control signal corresponding to the corrected damping coefficient Ca. As shown in FIG. 7, the command value calculation unit 29 is a damping coefficient map that variably sets the relationship between the corrected damping coefficient Ca and the command current value I according to the relative speed x * . This damping coefficient map was created based on test data by the inventors. Then, the command value calculation unit 29 specifies a command current value I for adjusting the damping force characteristics of the variable damper 7 based on the corrected damping coefficient Ca and the relative speed x * , and outputs this command current value I to the damping force variable actuator 8 of the variable damper 7.
また、指令値算出部29は、例えば減衰力調整式緩衝器をスカイフック理論に適合させるように可変ダンパ7を制御するための制御信号(指令電流値I)を出力する。この指令値算出部29は、図7中に実線で示されるハード側の特性線29Aと、図7中に破線で示されるソフト側の特性線29Bとを有する。このとき、ハード側の特性線29Aは、ソフト側の特性線29Bよりも補正減衰係数Caが大きい範囲に配置されている。 The command value calculation unit 29 also outputs a control signal (command current value I) for controlling the variable damper 7 so as to conform the damping force adjustable shock absorber to the skyhook theory, for example. This command value calculation unit 29 has a hard-side characteristic line 29A shown by a solid line in FIG. 7, and a soft-side characteristic line 29B shown by a dashed line in FIG. 7. At this time, the hard-side characteristic line 29A is positioned in a range where the corrected damping coefficient Ca is larger than that of the soft-side characteristic line 29B.
そして、相対速度x*と補正減衰係数Caが入力されると、指令値算出部29の減衰係数マップ中で補正減衰係数Caと相対速度x*との交点を求める。この交点がハード側の特性線29Aよりも補正減衰係数Caが大きい範囲に配置されるときには、指令電流値Iを大きくして減衰力特性をハードな特性に設定する。一方、交点がソフト側の特性線29Bよりも補正減衰係数Caが小さい範囲に配置されるときには、指令電流値Iを小さくして減衰力特性をソフトな特性に設定する。さらに、交点がハード側の特性線29Aとソフト側の特性線29Bの間の範囲に配置されるときには、指令電流値Iを補正減衰係数Caに応じて調整し、減衰力特性をハードとソフトの中間の特性に設定する。 When the relative velocity x * and the corrected damping coefficient Ca are input, an intersection between the corrected damping coefficient Ca and the relative velocity x * is found in the damping coefficient map of the command value calculation unit 29. When this intersection is located in a range where the corrected damping coefficient Ca is larger than the hard side characteristic line 29A, the command current value I is increased to set the damping force characteristics to hard characteristics. On the other hand, when the intersection is located in a range where the corrected damping coefficient Ca is smaller than the soft side characteristic line 29B, the command current value I is decreased to set the damping force characteristics to soft characteristics. Furthermore, when the intersection is located in a range between the hard side characteristic line 29A and the soft side characteristic line 29B, the command current value I is adjusted according to the corrected damping coefficient Ca, and the damping force characteristics are set to intermediate characteristics between hard and soft.
以上により、可変ダンパ7の発生減衰力は、減衰力可変アクチュエータ8に供給された指令電流値Iに従ってハードとソフトとの間で連続的、または複数段で可変に調整される。 As a result, the damping force generated by the variable damper 7 is variably adjusted continuously or in multiple stages between hard and soft according to the command current value I supplied to the damping force variable actuator 8.
次に、ばね上上下制振BLQ21、ロール制振BLQ22、ピッチ制振BLQ23の設計方法を説明すると共に、ゲインスケジューリングパラメータ(GSP)を使ったこれらのチューニングについて説明する。 Next, we will explain how to design sprung vertical vibration damping BLQ21, roll vibration damping BLQ22, and pitch vibration damping BLQ23, and how to tune them using gain scheduling parameters (GSP).
(1)上下運動制御系(ばね上上下制振BLQ21)の設計について
上下運動を対象とした制御設計モデル(1/4車両モデル)を図12に示す。ここで、車体2(ばね上)の絶対上下変位をzb、ばね下の絶対上下変位をzt、路面の絶対上下変位をz0、ばね上質量(車体質量)をmb、ばね下質量mt、車体2とばね下との間(ばね上-ばね下間)のばね定数をks、タイヤばね定数をkt、ダンパ減衰係数をc、ばね上とばね下間に働く制御力をfとする。また、ソフト減衰力特性にプラスして制御力fが働くと考え、ダンパ減衰係数cはソフト減衰力特性の減衰係数を設定する。
(1) Design of the vertical movement control system (sprung vertical vibration suppression BLQ21) A control design model (1/4 vehicle model) targeting vertical movement is shown in Figure 12. Here, the absolute vertical displacement of the vehicle body 2 (sprung mass) is zb , the absolute vertical displacement of the unsprung mass is zt , the absolute vertical displacement of the road surface is z0 , the sprung mass (vehicle mass) is mb , the unsprung mass mt , the spring constant between the vehicle body 2 and the unsprung mass (sprung-unsprung) is ks , the tire spring constant is kt , the damper damping coefficient is c, and the control force acting between the sprung mass and unsprung mass is f. Also, considering that the control force f acts in addition to the soft damping force characteristics, the damper damping coefficient c is set to the damping coefficient of the soft damping force characteristics.
このとき、ばね上-ばね下間の相対変位をzbt、ばね下―路面間の相対変位をzt0とすると、相対変位zbt,zt0および状態方程式は、以下の数1式ないし数3式に示す通りである。状態方程式中で状態変数xおよび出力yは、数4式および数5式に示す通りである。式中のドットは、時間tによる1階微分(d/dt)を意味する。ドットが2つであれば、2階微分(d2/dt2)を意味する。 In this case, if the relative displacement between the sprung and unsprung parts is z bt and the relative displacement between the unsprung part and the road surface is z t0 , the relative displacements z bt , z t0 and the state equations are as shown in the following formulas 1 to 3. In the state equations, the state variable x and the output y are as shown in formulas 4 and 5. A dot in the equations means a first-order differential with respect to time t (d/dt). Two dots mean a second-order differential (d2/dt2).
なお、車体2とばね下間に働く外力uは制御力fであるとし(u=f)、外乱wは検出路面変位z0であるとしている(w=z0)。また、状態方程式の各要素は、数6式に示す通りである。 The external force u acting between the vehicle body 2 and the unsprung mass is the control force f (u=f), and the disturbance w is the detected road surface displacement z0 (w=z0). The elements of the state equation are as shown in Equation 6.
前述の状態方程式を踏まえて、双線形最適制御理論に基づく上下運動制御系(ばね上上下制振BLQ21)の設計方法について説明する。前述の状態方程式では制御力fを用いたが、双線形システムの場合には入力を減衰係数ucとして取り扱う。よって、数3式は、以下のような状態方程式で記述される。 Based on the above-mentioned state equation, a method for designing a vertical motion control system (sprung vertical vibration suppression BLQ21) based on bilinear optimal control theory will be described. In the above-mentioned state equation, a control force f was used, but in the case of a bilinear system, the input is treated as a damping coefficient u c . Therefore, the formula 3 is described by the following state equation.
ここで、x*は状態変数xを含む行列のため、制御力fを減衰係数入力ucと相対速度で表すと数8式のようになる。このとき、x*は数9式に示す通りである。 Here, x * is a matrix including the state variable x, so when the control force f is expressed in terms of the damping coefficient input u c and the relative velocity, it becomes as in Equation 8. At this time, x * is as shown in Equation 9.
一般に入力が不規則である場合には状態変数が確率変数となるので、評価関数は期待値で表された数10式を用いる。但し、状態量(ばね上-ばね下間相対変位、ばね上速度、ばね下-路面間相対変位、ばね下速度)を評価関数に用いる。また、CTQCは出力に対する重み行列であり、Rは入力に対する重み行列である。 Generally, when the input is irregular, the state variables become random variables, so the evaluation function uses the formula (10) expressed as an expected value. However, the state quantities (sprung-unsprung relative displacement, sprung velocity, unsprung-road relative displacement, and unsprung velocity) are used in the evaluation function. Also, C T QC is a weighting matrix for the output, and R is a weighting matrix for the input.
ここで、数11式を満たすような最適制御入力uc 0を求める。上記の問題をダイナミックプログラミングによって解き、最適制御入力uc 0は定常問題と考えると、最適制御入力uc 0は数12式のように求められる。 Here, an optimal control input u c 0 that satisfies Expression 11 is obtained. If the above problem is solved by dynamic programming and the optimal control input u c 0 is considered to be a stationary problem, the optimal control input u c 0 can be obtained as shown in Expression 12.
但し、数12式のpは数13式の一意正定解である。 However, p in equation (12) is the unique positive definite solution to equation (13).
ここで,ばね上上下制振BLQ21のQとRはそれぞれ数14式に示す値を設定して、pを算出した。 Here, the values of Q and R of the sprung upper and lower vibration damping BLQ21 were set to the values shown in formula 14, and p was calculated.
(2)ロール運動制御系(ロール制振BLQ22)の設計について
前述の上下運動の制御系と同様にして、双線形制御理論に基づくロール制振BLQ22を設計する。運動モデルは、図13に示すロールを考慮した車両モデルとして最も単純な1自由度回転運動モデルである。
(2) Design of the roll motion control system (roll vibration suppression BLQ22) In the same manner as the above-mentioned vertical motion control system, the roll vibration suppression BLQ22 is designed based on the bilinear control theory. The motion model is a one-degree-of-freedom rotational motion model, which is the simplest vehicle model considering roll, as shown in FIG.
ここで、車体のロール角をθ、路面の左右輪での絶対上下変位をそれぞれx0l,x0r、車体ロール慣性をI、ばね上―ばね下間のばね定数をks、スタビライザのばね定数をkst、ダンパ減衰係数をc、ばね上とばね下間に働く左右輪での外力をFr,Flとしている。図13より、ロール方向の運動方程式は、数15式のように導出される。 Here, the roll angle of the vehicle body is θ, the absolute vertical displacements of the left and right wheels on the road surface are x 0l and x 0r , respectively, the vehicle body roll inertia is I, the spring constant between the sprung and unsprung masses is k s , the spring constant of the stabilizer is k st , the damper damping coefficient is c, and the external forces acting between the sprung and unsprung masses at the left and right wheels are F r and F l . From Fig. 13, the equation of motion in the roll direction is derived as shown in equation 15.
双線形システムのため状態方程式は、数16式に示す通りとする。 Because this is a bilinear system, the state equation is as shown in Equation 16.
ここで、双線形システムのため外力を左右輪の減衰係数入力cr,clと相対速度で表すと数17式のようになる。 Here, because it is a bilinear system, the external force can be expressed by the damping coefficient inputs c r and c l of the left and right wheels and the relative speed as in Eq. (17).
また、状態変数xroll,x* rollと、制御力ucrollと、外乱wrollを、それぞれ数18式の通りとする。 Moreover, the state variables x roll , x * roll , the control force u croll , and the disturbance w roll are expressed by the following equation (18).
このとき、状態方程式の各要素は数19式に示す通りとなる。 At this time, each element of the state equation is as shown in Equation 19.
この状態方程式より、上下振動の制御系の制御と同様にして最適制御入力u0 crollを求めると、数20式となる。 From this state equation, the optimum control input u 0 croll is obtained as in the case of the vertical vibration control system, as in Equation 20.
但し、数20式のprollは数21式の一意正定解である。 Here, p roll in equation (20) is a unique positive definite solution to equation (21).
ここで,ロール制振BLQ22のQrollとRrollはそれぞれ数22式に示す値を設定して、prollを算出した。 Here, the values of Q roll and R roll of the roll vibration suppression BLQ22 are set to those shown in the formula 22, and p roll is calculated.
(3)ピッチ運動制御系(ピッチ制振BLQ23)の設計について
前述の上下運動、ロール運動の制御系と同様にして、双線形制御理論に基づくピッチ制振BLQ23を設計する。運動モデルは図14に示すピッチを考慮した車両モデルとして最も単純な1自由度回転運動モデルである。
(3) Design of pitch motion control system (pitch vibration suppression BLQ23) In the same manner as the above-mentioned vertical motion and roll motion control systems, the pitch vibration suppression BLQ23 is designed based on bilinear control theory. The motion model is the simplest one-degree-of-freedom rotational motion model as a vehicle model considering pitch, as shown in Figure 14.
ここで、フロント・リアサスペンションから車体にかかる上下力をFFr,FRr、フロント・リアのばね定数をkFr,kRr、フロント・リアの減数係数をcFr,cRr、重心からフロント・リアサスペンションまでの水平方向距離をLFr,LRr、ピッチ角度をΦ、フロント・リアの車高変位をx2Fr,x2Rr、フロント・リアの路面高さをx0Fr,x0Rr、フロント・リアアクチュエータが発生させる上下力をFFrAct,FRrActと、1/2重心周りのピッチ方向ばね上慣性モーメントとIyyとしている。図14より、ロール方向の運動方程式は、数23式のように導出される。 Here, the vertical forces acting on the vehicle body from the front and rear suspensions are F Fr and F Rr , the front and rear spring constants are k Fr and k Rr , the front and rear reduction coefficients are c Fr and c Rr , the horizontal distances from the center of gravity to the front and rear suspensions are L Fr and L Rr , the pitch angle is Φ, the front and rear vehicle height displacements are x 2 Fr and x 2 Rr , the front and rear road surface heights are x 0 Fr and x 0 Rr , the vertical forces generated by the front and rear actuators are F FrAct and F RrAct , and the pitch direction sprung inertia moment around the 1/2 center of gravity is I yy . From FIG. 14 , the equation of motion in the roll direction is derived as shown in Equation 23.
ここで、双線形システムのため状態方程式を、数24式に示す通りとする。 Here, the state equation for the bilinear system is as shown in Equation 24.
また、状態変数xpitch,x* pitchと、制御力ucpitchと、外乱wpitchを、それぞれ数25式の通りとする。 Moreover, the state variables x pitch , x * pitch , the control force u cpitch , and the disturbance w pitch are expressed by the following equation 25.
このとき、状態方程式の各要素は数26式に示す通りとなる。 At this time, each element of the state equation is as shown in Equation 26.
この状態方程式より、上下振動の制御系の制御と同様にして最適制御入力u0 cpitchを求めると、数27式となる。 From this state equation, the optimum control input u 0 cpitch can be calculated as in the case of the vertical vibration control system, as given by equation (27).
但し、数27式のppitchは数28式の一意正定解である。 However, p pitch in equation (27) is a unique positive definite solution to equation (28).
ここで、ピッチ制振BLQ23のQpitchとRpitchはそれぞれ数29式に示す値を設定して、ppitchを算出した。 Here, the Q pitch and R pitch of the pitch vibration damping BLQ23 were set to the values shown in Equation 29, and p pitch was calculated.
(4)ゲインスケジューリングパラメータを使ったチューニングについて
上下振動、ロール振動、ピッチ振動の制御系に対する最適制御入力は、数11式、数20式、数27式で示される。このとき、BTp、Broll
Tproll、Bpitch
Tppitchの理論的な最大値(制御量最大値)と最小値(制御量最小値)を予め計算によって求める。例えばBroll
Tproll、Bpitch
Tppitchの最大値と最小値の一例を、以下に示す。BTpも同様に、予め計算によって求めることができる。
(4) Tuning Using Gain Scheduling Parameters The optimal control inputs to the control systems for vertical vibration, roll vibration, and pitch vibration are expressed by equations 11, 20, and 27. At this time, the theoretical maximum values (maximum control amount) and minimum values (minimum control amount) of B T p, B roll T p roll , and B pitch T p pitch are found in advance by calculation. For example, an example of the maximum and minimum values of B roll T p roll and B pitch T p pitch is shown below. B T p can also be found in advance by calculation in the same way.
この最大値と最長値との間の値をパラメータ(ヒーブGSP、ロールGSPr、ピッチGSPp)を用いて線形補間し、任意の制御量を選択する。ヒーブGSP、ロールGSPr、ピッチGSPpを用いて求めた制御量と数11式、数20式、数27式とに基づいて、上下制振、ロール制振、ピッチ制振の目標減衰力を求めることができる。 A value between the maximum value and the longest value is linearly interpolated using the parameters (heave GSP, roll GSP r , pitch GSP p ) to select an arbitrary control amount. Based on the control amount calculated using the heave GSP, roll GSP r , and pitch GSP p and equations 11, 20, and 27, the target damping forces for vertical vibration suppression, roll vibration suppression, and pitch vibration suppression can be calculated.
ゲインスケジューリングパラメータを使用せずにBLQをチューニングする場合には、Q、R、Qroll、Rroll、Qpitch、Rpitchを変更して、その都度Riccati方程式を解き直す必要がある。これに対し、ゲインスケジューリングパラメータ(ヒーブGSP、ロールGSPr、ピッチGSPp)を使用してBLQをチューニングする場合には、Riccati方程式を解き直す必要がなく、低工数でチューニングすることができる。 When tuning the BLQ without using gain scheduling parameters, it is necessary to change Q, R, Q roll , R roll , Q pitch , and R pitch and re-solve the Riccati equation each time. In contrast, when tuning the BLQ using gain scheduling parameters (heave GSP, roll GSP r , pitch GSP p ), it is not necessary to re-solve the Riccati equation, and tuning can be performed with a low man-hour.
第1の実施形態による車両挙動制御装置1は、上述の如き構成を有するもので、次に、コントローラ11を用いて可変ダンパ7の減衰力特性を可変に制御する処理について説明する。 The vehicle behavior control device 1 according to the first embodiment has the configuration described above. Next, we will explain the process of variably controlling the damping force characteristics of the variable damper 7 using the controller 11.
コントローラ11には、車両の走行時にCAN9を介して、車両の走行に関する諸元が入力される。コントローラ11の状態推定部12は、CAN信号に基づいて、車両状態となるばね上-ばね下間相対速度、車体絶対上下速度(ばね上速度)、ばね下-路面間相対速度、ばね下絶対上下速度(ばね下速度)、ロールレイト、ロール角、ピッチレイト、ピッチ角等を推定する。 When the vehicle is traveling, vehicle travel-related specifications are input to the controller 11 via the CAN 9. Based on the CAN signals, the state estimation unit 12 of the controller 11 estimates the vehicle state, including the sprung-unsprung relative velocity, vehicle body absolute vertical velocity (sprung velocity), unsprung-road relative velocity, unsprung absolute vertical velocity (unsprung velocity), roll rate, roll angle, pitch rate, and pitch angle.
このとき、コントローラ11のBLQコントローラ20には、状態推定部12が算出した車両状態と、GSP算出部13が算出したヒーブGSP、ロールGSPr、ピッチGSPpとが入力される。BLQコントローラ20のばね上上下制振BLQ21は、車両状態とヒーブGSPとに基づいて、ヒーブ目標減衰力を算出する。BLQコントローラ20のロール制振BLQ22は、車両状態とロールGSPrとに基づいて、ロール目標減衰力を算出する。BLQコントローラ20のピッチ制振BLQ23は、車両状態とピッチGSPpとに基づいて、ヒーブ目標減衰力を算出する。 At this time, the vehicle state calculated by the state estimation unit 12 and the heave GSP, roll GSP r and pitch GSP p calculated by the GSP calculation unit 13 are input to the BLQ controller 20 of the controller 11. The sprung vertical vibration damping BLQ 21 of the BLQ controller 20 calculates a heave target damping force based on the vehicle state and the heave GSP. The roll vibration damping BLQ 22 of the BLQ controller 20 calculates a roll target damping force based on the vehicle state and the roll GSP r . The pitch vibration damping BLQ 23 of the BLQ controller 20 calculates a heave target damping force based on the vehicle state and the pitch GSP p .
BLQコントローラ20の目標減衰力算出部24は、ヒーブ目標減衰力、ロール目標減衰力、ピッチ目標減衰力に基づいて実目標減衰力を算出する。BLQコントローラ20の目標減衰係数算出部27は、実目標減衰力から相対速度x*を除算して目標減衰係数Cを算出する。BLQコントローラ20の最小値選択部28は、目標減衰係数算出部27から出力される目標減衰係数Cと減衰係数上限算出部25から出力される最大減衰係数Cmaxとのうちで小さい方の値を選択し、補正減衰係数Caとして出力する。BLQコントローラ20の指令値算出部29は、補正減衰係数Caと相対速度x*とに応じた指令電流値Iを算出する。 A target damping force calculation unit 24 of the BLQ controller 20 calculates an actual target damping force based on the heave target damping force, the roll target damping force, and the pitch target damping force. A target damping coefficient calculation unit 27 of the BLQ controller 20 calculates a target damping coefficient C by dividing the actual target damping force by the relative speed x * . A minimum value selection unit 28 of the BLQ controller 20 selects the smaller of the target damping coefficient C output from the target damping coefficient calculation unit 27 and the maximum damping coefficient Cmax output from the damping coefficient upper limit calculation unit 25, and outputs it as a corrected damping coefficient Ca. A command value calculation unit 29 of the BLQ controller 20 calculates a command current value I according to the corrected damping coefficient Ca and the relative speed x * .
そして、指令電流値Iは、可変ダンパ7の減衰力可変アクチュエータ8に入力され、減衰力可変アクチュエータ8の駆動が制御される。これにより、可変ダンパ7の減衰力特性は、ハードな特性(硬特性)とソフトな特性(軟特性)との間で可変となって連続的に制御される。 The command current value I is then input to the variable damping force actuator 8 of the variable damper 7, controlling the drive of the variable damping force actuator 8. As a result, the damping force characteristics of the variable damper 7 are variable between hard characteristics and soft characteristics and are continuously controlled.
特に、第1の実施形態のコントローラ11は、ピッチ制振BLQ23を備えると共に、ピッチ制振BLQ23が算出したピッチ目標減衰力に基づいて指令電流値Iを算出する。このため、ピッチ制振BLQ23を省いた場合に比べて、ピッチ振動を抑制することができる。 In particular, the controller 11 of the first embodiment is equipped with pitch vibration damping BLQ23, and calculates the command current value I based on the pitch target damping force calculated by the pitch vibration damping BLQ23. Therefore, pitch vibration can be suppressed more effectively than when the pitch vibration damping BLQ23 is omitted.
このような本実施形態によるピッチ振動の改善効果を確認するために、第1の実施形態と比較例について、うねり路を走行した場合の実車試験を行った。そのときの結果を、図15に示す。なお、実車試験では、車速は100km/hとし、ヒーブGSPは0.6とし、ピッチGSPpは0.3とした。 In order to confirm the effect of improving pitch vibration by this embodiment, an actual vehicle test was conducted on the first embodiment and the comparative example when the vehicle was traveling on an undulating road. The results are shown in Fig. 15. In the actual vehicle test, the vehicle speed was 100 km/h, the heave GSP was 0.6, and the pitch GSP p was 0.3.
図15中で、実線は第1の実施形態による特性を示している。但し、このときのコントローラ11は、ロール目標減衰力を算出するときに、このロール目標減衰力のゲインを0にする。即ち、図15中の実線は、第1の実施形態のコントローラ11からロール制振BLQ22を省いたときの特性を示している。一方、図15中で、破線は比較例(従来技術)による特性を示している。このとき、比較例は、特許文献1によるコントローラを用いた場合に対応している。即ち、比較例では、ばね上上下振動だけを抑制する目標減衰力に基づいて可変ダンパ7を制御する。図15に示すように、第1の実施形態では、比較例に比べてピッチ角の振幅が低減し、例えばピッチ振動が7.3%程度改善(低減)されることが分かる。 In FIG. 15, the solid line indicates the characteristics according to the first embodiment. However, when the controller 11 calculates the roll target damping force, the gain of this roll target damping force is set to 0. That is, the solid line in FIG. 15 indicates the characteristics when the roll vibration suppression BLQ22 is omitted from the controller 11 of the first embodiment. On the other hand, in FIG. 15, the dashed line indicates the characteristics according to the comparative example (prior art). At this time, the comparative example corresponds to the case where the controller according to Patent Document 1 is used. That is, in the comparative example, the variable damper 7 is controlled based on the target damping force that suppresses only the sprung vertical vibration. As shown in FIG. 15, in the first embodiment, the amplitude of the pitch angle is reduced compared to the comparative example, and it can be seen that, for example, the pitch vibration is improved (reduced) by about 7.3%.
かくして、本実施形態による制御装置としてのコントローラ11は、車両挙動算出部(状態推定部12)の算出値に基づく実目標減衰力を、予め求めた目標減衰力と近い値に近付ける重み係数(ヒーブGSP、ピッチGSPp)を算出する重み係数算出部(GSP算出部13)と、車両の上下方向の運動に関する状態を求める上下運動算出部(状態推定部12)と、車両のピッチ方向の運動に関する状態を求めるピッチ運動算出部(状態推定部12)と、前記重み係数算出部による重み係数と、前記上下運動算出部、前記ピッチ運動算出部の算出結果に基づき前記実目標減衰力を算出する実目標減衰力算出部(ばね上上下制振BLQ21、ピッチ制振BLQ23、目標減衰力算出部24)と、前記実目標減衰力算出部の算出値に基づき目標減衰係数を算出する目標減衰係数算出部(目標減衰係数算出部27)と、車両のばね上とばね下との間の相対速度x*が低速な領域で、前記目標減衰係数Cの上限を低下させた補正減衰係数Caを算出する補正部(最小値選択部28)と、前記補正減衰係数Caに対応した制御信号を減衰力調整式緩衝器(可変ダンパ7)に出力する制御信号出力部(指令値算出部29)と、を有している。 Thus, the controller 11 as a control device according to this embodiment includes a weighting coefficient calculation unit (GSP calculation unit 13) that calculates weighting coefficients (heave GSP, pitch GSP p ) for making an actual target damping force based on a calculated value by a vehicle behavior calculation unit (state estimation unit 12) approach a value close to a previously determined target damping force, a vertical motion calculation unit (state estimation unit 12) that calculates a state related to the vertical motion of the vehicle, a pitch motion calculation unit (state estimation unit 12) that calculates a state related to the pitch motion of the vehicle, weighting coefficients by the weighting coefficient calculation unit, the vertical motion calculation unit, and an actual target damping force calculation unit (sprung vertical vibration damping BLQ21, pitch vibration damping BLQ23, target damping force calculation unit 24) that calculates the actual target damping force based on the calculation results of the pitch motion calculation unit, a target damping coefficient calculation unit (target damping coefficient calculation unit 27) that calculates a target damping coefficient based on a calculated value by the actual target damping force calculation unit, and a relative velocity x between the sprung and unsprung parts of the vehicle. * has a correction unit (minimum value selection unit 28) that calculates a corrected damping coefficient Ca that lowers the upper limit of the target damping coefficient C in a low-speed region, and a control signal output unit (command value calculation unit 29) that outputs a control signal corresponding to the corrected damping coefficient Ca to a damping force adjustable shock absorber (variable damper 7).
このとき、前記重み係数算出部(GSP算出部13)は、重み係数として、車両の上下方向の運動に関するヒーブGSPと、車両のピッチ方向の運動に関するピッチGSPpと、を算出し、前記実目標減衰力算出部は、前記ヒーブGSPと前記上下運動算出部の算出結果とに基づいて車両の上下方向の目標減衰力を算出するヒーブBLQ(ばね上上下制振BLQ21)と、前記ピッチGSPpと前記ピッチ運動算出部の算出結果とに基づいて車両のピッチ方向の目標減衰力を算出するピッチBLQ(ピッチ制振BLQ23)と、を備え、前記ヒーブBLQが算出した前記目標減衰力(ヒーブ目標減衰力)と、前記ピッチBLQが算出した前記目標減衰力(ピッチ目標減衰力)と、に基づいて前記実目標減衰力を算出する。 At this time, the weighting coefficient calculation unit (GSP calculation unit 13) calculates, as weighting coefficients, a heave GSP related to the vertical movement of the vehicle and a pitch GSP p related to the movement of the vehicle in the pitch direction, and the actual target damping force calculation unit includes a heave BLQ (sprung vertical vibration damping BLQ21) that calculates a target damping force in the vertical direction of the vehicle based on the heave GSP and the calculation result of the vertical movement calculation unit, and a pitch BLQ (pitch vibration damping BLQ23) that calculates a target damping force in the pitch direction of the vehicle based on the pitch GSP p and the calculation result of the pitch movement calculation unit, and calculates the actual target damping force based on the target damping force calculated by the heave BLQ (heave target damping force) and the target damping force calculated by the pitch BLQ (pitch target damping force).
このため、コントローラ11は、ばね上の上下振動を抑制するためのヒーブ目標減衰力と、ピッチ振動を抑制するためのピッチ目標減衰力とに基づいて、可変ダンパ7の減衰力を制御することができる。この結果、ばね上の上下振動とピッチ振動の両方を低減することができる。また、コントローラ11は、重み係数(ヒーブGSP、ピッチGSPp)と、車両状態(ばね上-ばね下間相対速度、車体絶対上下速度(ばね上速度)、ばね下-路面間相対速度、ばね下絶対上下速度(ばね下速度)、ピッチレイト、ピッチ角)とに基づいて、実目標減衰力を算出する。このため、Riccati方程式を解き直す必要がなく、重み係数(ヒーブGSP、ピッチGSPp)を調整することによって、チューニングパラメータを削減して、コントローラ11(ばね上上下制振BLQ21、ピッチ制振BLQ23)を容易にチューニングすることができる。 Therefore, the controller 11 can control the damping force of the variable damper 7 based on the heave target damping force for suppressing the vertical vibration of the sprung mass and the pitch target damping force for suppressing the pitch vibration. As a result, both the vertical vibration of the sprung mass and the pitch vibration can be reduced. In addition, the controller 11 calculates the actual target damping force based on the weighting coefficients (heave GSP, pitch GSP p ) and the vehicle state (sprung-unsprung relative velocity, vehicle body absolute vertical velocity (sprung velocity), unsprung-road relative velocity, unsprung absolute vertical velocity (unsprung velocity), pitch rate, pitch angle). Therefore, it is not necessary to solve the Riccati equation again, and by adjusting the weighting coefficients (heave GSP, pitch GSP p ), the tuning parameters can be reduced and the controller 11 (sprung vertical vibration damping BLQ21, pitch vibration damping BLQ23) can be easily tuned.
また、コントローラ11の補正部(最小値選択部28)は、補正減衰係数Caを、相対速度x*の上昇に応じて減衰力が大きくなり、かつ相対速度x*が低速なときに該相対速度x*に対する減衰力の傾きが小さく、相対速度x*が高速なときに相対速度に対する減衰力の傾きが大きくなるように設定し、前記補正部は、前記相対速度x*に応じた最大減衰係数Cmaxを有し、前記目標減衰係数Cが該最大減衰係数Cmaxを超えるときに、前記目標減衰係数Cを該最大減衰係数Cmaxに補正した補正減衰係数Caを出力する。 Further, the correction section (minimum value selection section 28) of the controller 11 sets the corrected damping coefficient Ca so that the damping force increases as the relative velocity x * increases, the slope of the damping force with respect to the relative velocity x * is small when the relative velocity x * is low, and the slope of the damping force with respect to the relative velocity is large when the relative velocity x* is high, and the correction section has a maximum damping coefficient Cmax according to the relative velocity x * , and when the target damping coefficient C exceeds the maximum damping coefficient Cmax, outputs the corrected damping coefficient Ca obtained by correcting the target damping coefficient C to the maximum damping coefficient Cmax.
このため、可変ダンパ7の伸長行程と縮小行程との間で行程反転するときのように、相対速度x*が低速なときには、コントローラ11は、目標減衰係数Cの上限を低下させた補正減衰係数Caを出力し、この補正減衰係数Caに対応した指令電流値Iを可変ダンパ7に出力する。これにより、減衰力の急変に起因する異音やジャークの発生を低減することができる。 For this reason, when the relative speed x * is low, such as when the variable damper 7 reverses between the extension stroke and the retraction stroke, the controller 11 outputs a corrected damping coefficient Ca that lowers the upper limit of the target damping coefficient C, and outputs a command current value I corresponding to this corrected damping coefficient Ca to the variable damper 7. This makes it possible to reduce the occurrence of abnormal noise and jerks caused by a sudden change in the damping force.
一方、コントローラ11は、相対速度x*が高速なときには、低速なときに比べて目標減衰係数Cの上限を上昇させた補正減衰係数Caを算出する。この場合、可変ダンパ7の伸長行程や縮小行程の途中のように、相対速度x*が高速なときには、目標減衰係数Cをできるだけ制限せずに、大きな値の補正減衰係数Caを算出することができる。この結果、相対速度x*が高速なときには、可変ダンパ7によって大きな減衰力を発生させて、制振性を確保することができ、乗り心地を向上することができる。 On the other hand, when the relative velocity x * is high, the controller 11 calculates a corrected damping coefficient Ca with a higher upper limit of the target damping coefficient C compared to when the relative velocity x* is low. In this case, when the relative velocity x * is high, such as during the extension stroke or retraction stroke of the variable damper 7, it is possible to calculate a large value of the corrected damping coefficient Ca without restricting the target damping coefficient C as much as possible. As a result, when the relative velocity x * is high, a large damping force can be generated by the variable damper 7, vibration control performance can be ensured, and ride comfort can be improved.
コントローラ11は、車体2の姿勢変化を検出する姿勢変化検出部(状態推定部12)をさらに備え、前記補正部(最小値選択部28)は、前記姿勢変化検出部の検出結果に基づき姿勢変化が生じると判断したときには、補正量を小さくする。 The controller 11 further includes a posture change detection unit (state estimation unit 12) that detects posture changes of the vehicle body 2, and the correction unit (minimum value selection unit 28) reduces the amount of correction when it determines that a posture change will occur based on the detection result of the posture change detection unit.
このとき、車体2の姿勢変化が生じないときには、補正部は、補正量を大きくして相対速度が低速なときに目標減衰係数の上限を低下させる。これにより、減衰力の急変を抑制することができる。一方、車体の姿勢変化が生じるときには、補正部は、補正量を小さくして目標減衰係数の上限の制限を緩和する。これにより、車体の姿勢変化に抗した減衰力を発生させることができ、制振性能を確保することができる。 At this time, when there is no change in the posture of the vehicle body 2, the correction unit increases the correction amount and lowers the upper limit of the target damping coefficient when the relative speed is low. This makes it possible to suppress sudden changes in the damping force. On the other hand, when there is a change in the posture of the vehicle body, the correction unit decreases the correction amount and relaxes the upper limit of the target damping coefficient. This makes it possible to generate a damping force that resists the change in the posture of the vehicle body, and ensures vibration control performance.
コントローラ11は、車両のロール方向の運動に関する状態を求めるロール運動算出部(状態推定部12)をさらに備えている。この場合、前記重み係数算出部(GSP算出部13)は、前記重み係数として、車両の上下方向の運動に関するヒーブGSPと、車両のロール方向の運動に関するロールGSPrと、車両のピッチ方向の運動に関するピッチGSPpと、を算出し、前記実目標減衰力算出部は、前記ヒーブGSPと前記上下運動算出部の算出結果とに基づいて車両の上下方向の目標減衰力を算出するヒーブBLQ(ばね上上下制振BLQ21)と、前記ロールGSPrと前記ロール運動算出部の算出結果とに基づいて車両のロール方向の目標減衰力を算出するロールBLQ(ロール制振BLQ22)と、前記ピッチGSPpと前記ピッチ運動算出部の算出結果とに基づいて車両のピッチ方向の目標減衰力を算出するピッチBLQ(ピッチ制振BLQ23)と、を備え、前記ヒーブBLQが算出した前記目標減衰力(ヒーブ目標減衰力)と、前記ロールBLQが算出した前記目標減衰力(ロール目標減衰力)と、前記ピッチBLQが算出した前記目標減衰力(ピッチ目標減衰力)と、に基づいて前記実目標減衰力を算出する。 The controller 11 further includes a roll motion calculation unit (state estimation unit 12) that determines a state related to the motion of the vehicle in the roll direction. In this case, the weighting coefficient calculation unit (GSP calculation unit 13) calculates, as the weighting coefficients, a heave GSP related to the motion of the vehicle in the vertical direction, a roll GSP r related to the motion of the vehicle in the roll direction, and a pitch GSP p related to the motion of the vehicle in the pitch direction, and the actual target damping force calculation unit calculates a heave BLQ (sprung vertical damping BLQ21) that calculates a target damping force in the vertical direction of the vehicle based on the heave GSP and the calculation result of the vertical motion calculation unit, a roll BLQ (roll damping BLQ22) that calculates a target damping force in the roll direction of the vehicle based on the roll GSP r and the calculation result of the roll motion calculation unit, and a pitch GSP p related to the motion of the vehicle in the pitch direction. and a pitch BLQ (pitch vibration suppression BLQ23) that calculates a target damping force in the pitch direction of the vehicle based on p and the calculation result of the pitch motion calculation unit, and calculates the actual target damping force based on the target damping force (heave target damping force) calculated by the heave BLQ, the target damping force (roll target damping force) calculated by the roll BLQ, and the target damping force (pitch target damping force) calculated by the pitch BLQ.
このため、実目標減衰力算出部(ばね上上下制振BLQ21、ロール制振BLQ22、ピッチ制振BLQ23、目標減衰力算出部24)は、上下運動算出部、ピッチ運動算出部の算出結果に加えて、ロール運動算出部の算出結果に基づき前記実目標減衰力を算出することができる。即ち、コントローラ11は、ばね上の上下振動を抑制するためのヒーブ目標減衰力と、ピッチ振動を抑制するためのピッチ目標減衰力とに加えて、ロール振動を抑制するためのロール目標減衰力に基づいて、可変ダンパ7の減衰力を制御することができる。この結果、ばね上の上下振動、ピッチ振動に加えて、ロール振動も低減することができる。 As a result, the actual target damping force calculation unit (sprung vertical vibration damping BLQ21, roll vibration damping BLQ22, pitch vibration damping BLQ23, target damping force calculation unit 24) can calculate the actual target damping force based on the calculation results of the roll motion calculation unit in addition to the calculation results of the vertical motion calculation unit and pitch motion calculation unit. In other words, the controller 11 can control the damping force of the variable damper 7 based on the roll target damping force for suppressing roll vibration in addition to the heave target damping force for suppressing vertical vibration in the sprung mass and the pitch target damping force for suppressing pitch vibration. As a result, in addition to the vertical vibration and pitch vibration in the sprung mass, roll vibration can also be reduced.
第1の実施形態では、コントローラ11は、重み係数(ヒーブGSP、ロールGSPr、ピッチGSPp)と、車両状態(ばね上-ばね下間相対速度、車体絶対上下速度(ばね上速度)、ばね下-路面間相対速度、ばね下絶対上下速度(ばね下速度)、ロールレイト、ロール角、ピッチレイト、ピッチ角)とに基づいて、実目標減衰力を算出する。このため、Riccati方程式を解き直す必要がなく、重み係数(ヒーブGSP、ロールGSPr、ピッチGSPp)を調整することによって、チューニングパラメータを削減して、コントローラ11(ばね上上下制振BLQ21、ロール制振BLQ22、ピッチ制振BLQ23)を容易にチューニングすることができる。 In the first embodiment, the controller 11 calculates the actual target damping force based on the weighting coefficients (heave GSP, roll GSP r , pitch GSP p ) and the vehicle state (sprung-unsprung relative velocity, vehicle body absolute vertical velocity (sprung velocity), unsprung-road relative velocity, unsprung absolute vertical velocity (unsprung velocity), roll rate, roll angle, pitch rate, pitch angle). Therefore, it is not necessary to solve the Riccati equation again, and by adjusting the weighting coefficients (heave GSP, roll GSP r , pitch GSP p ), the tuning parameters can be reduced and the controller 11 (sprung vertical vibration damping BLQ21, roll vibration damping BLQ22, pitch vibration damping BLQ23) can be easily tuned.
次に、図1、図2、図16および図17は第2の実施形態を示している。第2の実施形態の特徴は、重み係数算出部は、路面の状態、車両の重量および選択された減衰力モードに応じて係数を変更することにある。なお、第2の実施形態では、上述した第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, Figs. 1, 2, 16 and 17 show a second embodiment. The second embodiment is characterized in that the weighting coefficient calculation unit changes the coefficients according to the road surface condition, the vehicle weight and the selected damping force mode. In the second embodiment, the same components as those in the first embodiment described above are given the same reference numerals and their explanations will be omitted.
第2の実施形態によるコントローラ31は、可変ダンパ7の制御装置を構成し、可変ダンパ7の減衰特性を制御する(図1、図2参照)。コントローラ31は、第1の実施形態によるコントローラ11とほぼ同様に構成されている。コントローラ31は、例えばマイクロコンピュータにより構成され、CAN9に接続されている。コントローラ31は、CAN9を通じて、車両の走行に関する諸元を取得する。コントローラ31の出力側は、可変ダンパ7の減衰力可変アクチュエータ8に接続されている。 The controller 31 according to the second embodiment constitutes a control device for the variable damper 7 and controls the damping characteristics of the variable damper 7 (see Figures 1 and 2). The controller 31 is configured in a manner similar to the controller 11 according to the first embodiment. The controller 31 is configured, for example, by a microcomputer and is connected to the CAN 9. The controller 31 acquires specifications related to the running of the vehicle through the CAN 9. The output side of the controller 31 is connected to the damping force variable actuator 8 of the variable damper 7.
また、コントローラ31は、ROM、RAM、不揮発性メモリ等からなる記憶部31Aを有している。コントローラ31の記憶部31Aには、可変ダンパ7を制御するための各種のプログラム、情報(車両情報)、データ等が格納されている。 The controller 31 also has a storage unit 31A consisting of a ROM, a RAM, a non-volatile memory, etc. The storage unit 31A of the controller 31 stores various programs, information (vehicle information), data, etc. for controlling the variable damper 7.
図16に示すように、コントローラ31は、状態推定部12、GSP算出部34、BLQコントローラ20を備えている。これに加え、コントローラ31は、路面指数算出部32、重量推定部33を備えている。 As shown in FIG. 16, the controller 31 includes a state estimation unit 12, a GSP calculation unit 34, and a BLQ controller 20. In addition, the controller 31 includes a road surface index calculation unit 32 and a weight estimation unit 33.
路面指数算出部32は、例えば状態推定部12からばね上速度等を取得し、これらを用いて路面指数を出力する。路面指数算出部32は、ばね上速度等から車体2(ばね上)の上下加速度を推定する。路面指数算出部32は、例えばバンドパスフィルタ等を備え、ばね上上下加速度から所定周波数帯域(例えば0.5~2Hz)のうねり路成分を抽出する。路面指数算出部32は、うねり路成分の大きさ(うねり路レベル)に応じた路面指数(うねり路指数)を、GSP算出部34に出力する。このとき、うねり路成分が抽出されずに最小値になる場合、うねり路に応じた路面指数は0になる。一方、うねり路成分が最大値になる場合、うねり路に応じた路面指数は1になる。このように、路面指数は、0~1までの間に正規化された値になっている。即ち、路面指数は、路面入力による車体2の上下・ピッチ・ロール運動(0.5~2Hz)を0~1で指数化したものである。 The road surface index calculation unit 32 obtains, for example, the sprung velocity etc. from the state estimation unit 12, and uses these to output a road surface index. The road surface index calculation unit 32 estimates the vertical acceleration of the vehicle body 2 (sprung mass) from the sprung velocity etc. The road surface index calculation unit 32 is equipped with, for example, a band pass filter, and extracts undulating road components of a predetermined frequency band (for example, 0.5 to 2 Hz) from the sprung mass vertical acceleration. The road surface index calculation unit 32 outputs a road surface index (undulating road index) corresponding to the magnitude of the undulating road component (undulating road level) to the GSP calculation unit 34. At this time, if the undulating road component is not extracted and is at its minimum value, the road surface index corresponding to the undulating road is 0. On the other hand, if the undulating road component is at its maximum value, the road surface index corresponding to the undulating road is 1. In this way, the road surface index is a normalized value between 0 and 1. That is, the road surface index is an index of the up-down, pitch, and roll movements (0.5 to 2 Hz) of the vehicle body 2 caused by road surface input, expressed as a value between 0 and 1.
なお、路面指数算出部32は、状態推定部12からばね上速度等を取得するものに限らず、上下加速度センサからの検出値を取得して、路面指数を算出してもよい。また、路面指数算出部32は、カメラ等から車両の進行方向の路面情報を取得して、路面指数を算出してもよい。 The road surface index calculation unit 32 is not limited to acquiring the sprung velocity and the like from the state estimation unit 12, but may acquire detection values from a vertical acceleration sensor to calculate the road surface index. The road surface index calculation unit 32 may also acquire road surface information in the traveling direction of the vehicle from a camera or the like to calculate the road surface index.
重量推定部33は、例えばCAN信号に基づいて車体2の絶対上下変位等を取得する。重量推定部33は、車体2の絶対上下変位等に基づいて車体2の重量を推定し、推定重量をGSP算出部34に出力する。なお、重量推定部33は、車体2の絶対上下変位等から車体2の重量を推定するもの限らず、例えば可変ダンパ7のストロークを検出するストロークセンサからの信号に基づいて、車体2の重量を推定してもよい。重量推定部33は、車体の重量を検出する重量センサからの検出値を取得して、車体2の重量を求めてもよい。 The weight estimation unit 33 acquires the absolute vertical displacement of the vehicle body 2 based on, for example, a CAN signal. The weight estimation unit 33 estimates the weight of the vehicle body 2 based on, for example, the absolute vertical displacement of the vehicle body 2, and outputs the estimated weight to the GPS calculation unit 34. Note that the weight estimation unit 33 is not limited to estimating the weight of the vehicle body 2 from, for example, the absolute vertical displacement of the vehicle body 2, and may estimate the weight of the vehicle body 2 based on, for example, a signal from a stroke sensor that detects the stroke of the variable damper 7. The weight estimation unit 33 may obtain the weight of the vehicle body 2 by acquiring a detection value from a weight sensor that detects the weight of the vehicle body.
GSP算出部34(ゲインスケジューリングパラメータ算出部)は、状態推定部12(車両挙動算出部)の算出値に基づく実目標減衰力を、予め求めた目標減衰力と近い値に近付ける重み係数を算出する重み係数算出部を構成している。GSP算出部34には、例えばCAN9から取得する車速と、路面指数算出部32からの路面指数と、重量推定部33からの推定重量とが入力される。これに加え、GSP算出部34には、減衰力モードとしてのカーモードが入力される。この場合、カーモードは、例えば通常モード(Normal)、スポーツモード(Sport)、快適モード(Comfort)の3種類のモードを含んでいる。カーモードは、例えば車両に設けられたモード選択スイッチ(図示せず)によって選択されている。GSP算出部34には、車速、路面指数、重量推定部、カーモードに基づいて、ヒーブGSP、ロールGSPr、ピッチGSPpを算出する。なお、カーモードは、3種類のモードに限らず、2種類のモードを有してもよく、4種類以上のモードを有してもよい。 The GSP calculation unit 34 (gain scheduling parameter calculation unit) constitutes a weighting coefficient calculation unit that calculates a weighting coefficient that brings the actual target damping force based on the calculation value of the state estimation unit 12 (vehicle behavior calculation unit) closer to a value close to a target damping force obtained in advance. For example, the vehicle speed acquired from the CAN 9, the road surface index from the road surface index calculation unit 32, and the estimated weight from the weight estimation unit 33 are input to the GSP calculation unit 34. In addition, a car mode as a damping force mode is input to the GSP calculation unit 34. In this case, the car mode includes three types of modes, for example, a normal mode (Normal), a sports mode (Sport), and a comfort mode (Comfort). The car mode is selected, for example, by a mode selection switch (not shown) provided on the vehicle. The GSP calculation unit 34 calculates the heave GSP, roll GSP r , and pitch GSP p based on the vehicle speed, the road surface index, the weight estimation unit, and the car mode. The car mode is not limited to three types of modes, but may have two types of modes, or may have four or more types of modes.
即ち、GSP算出部34は、BLQコントローラ20が状態推定部12(車両挙動算出部)の算出値である車両状態(例えば、ばね上-ばね下間相対速度、車体絶対上下速度、ばね下-路面間相対速度、ばね下絶対上下速度、ロールレイト、ロール角、ピッチレイト、ピッチ角等)に基づいて実目標減衰力を求めるときに、この実目標減衰力を予め求めた目標減衰力と近い値に近付ける重み係数(ヒーブGSP、ロールGSPr、ピッチGSPp)を算出する。GSP算出部34は、ヒーブGSP、ロールGSPr、ピッチGSPpをBLQコントローラ20に出力する。 That is, when the BLQ controller 20 calculates an actual target damping force based on the vehicle state (e.g., sprung-unsprung relative velocity, vehicle body absolute vertical velocity, unsprung-road surface relative velocity, unsprung absolute vertical velocity, roll rate, roll angle, pitch rate, pitch angle, etc.) which is a calculated value of the state estimation unit 12 (vehicle behavior calculation unit), the GSP calculation unit 34 calculates weighting coefficients (heave GSP, roll GSP r , pitch GSP p ) that bring this actual target damping force closer to a value close to a pre-calculated target damping force. The GSP calculation unit 34 outputs the heave GSP, roll GSP r , and pitch GSP p to the BLQ controller 20.
図17に示すように、GSP算出部34は、例えば車速、路面指数、推定重量、カーモードとヒーブGSP、ロールGSPr、ピッチGSPpとの関係を記録したルックアップテーブルを備えている。このとき、ヒーブGSP、ロールGSPr、ピッチGSPpは、実車試験でのチューニングによって決定されている。具体的には、ヒーブGSPは、実車試験による官能評価によって概略の特性が決められた後に、振動データ等を参照して微調整されている。また、GSP算出部34は、車速、路面指数、推定重量、カーモードとロールGSPとの関係を記録したルックアップテーブルと、車速、路面指数、推定重量、カーモードとピッチGSPとの関係を記録したルックアップテーブルと、を備えている。ロールGSPr、ピッチGSPpも、ヒーブGSPと同様に、実車試験でのチューニングによって決定されている。 As shown in FIG. 17, the GSP calculation unit 34 includes a lookup table that records, for example, the relationship between the vehicle speed, road surface index, estimated weight, car mode, and the heave GSP, roll GSP r , and pitch GSP p . At this time, the heave GSP, roll GSP r , and pitch GSP p are determined by tuning in an actual vehicle test. Specifically, the heave GSP is finely adjusted by referring to vibration data and the like after the rough characteristics are determined by sensory evaluation in an actual vehicle test. In addition, the GSP calculation unit 34 includes a lookup table that records the relationship between the vehicle speed, road surface index, estimated weight, car mode, and roll GSP, and a lookup table that records the relationship between the vehicle speed, road surface index, estimated weight, car mode, and pitch GSP. The roll GSP r and pitch GSP p are also determined by tuning in an actual vehicle test, like the heave GSP.
GSP算出部34は、例えば図17に示すように、低速では小さい値のヒーブGSPを算出し、高速では大きい値のヒーブGSPを算出する。GSP算出部34は、路面指数に基づいてうねり路判定したときには、ヒーブGSPの値を大きくする。GSP算出部34は、推定重量が大きいときには、推定重量が小さいときに比べて、ヒーブGSPの値を大きくする。GSP算出部34は、カーモードがスポーツモードのときには、カーモードが通常モードのときに比べて、ヒーブGSPの値を大きくする。GSP算出部34は、カーモードが快適モードのときには、カーモードが通常モードのときに比べて、ヒーブGSPの値を小さくする。GSP算出部34は、ヒーブGSPと同様に、車速、路面指数、推定重量、カーモードに応じたロールGSPr、ピッチGSPpを算出する。 As shown in FIG. 17, for example, the GSP calculation unit 34 calculates a small value of the heave GSP at low speeds and a large value of the heave GSP at high speeds. When the GSP calculation unit 34 judges the road to be undulating based on the road surface index, the GSP calculation unit 34 increases the value of the heave GSP. When the estimated weight is large, the GSP calculation unit 34 increases the value of the heave GSP compared to when the estimated weight is small. When the car mode is the sports mode, the GSP calculation unit 34 increases the value of the heave GSP compared to when the car mode is the normal mode. When the car mode is the comfort mode, the GSP calculation unit 34 decreases the value of the heave GSP compared to when the car mode is the normal mode. The GSP calculation unit 34 calculates the roll GSP r and pitch GSP p according to the vehicle speed, road surface index, estimated weight, and car mode, similar to the heave GSP.
図17では、GSP算出部34は、路面指数、推定重量、カーモードに応じた3種類のルックアップテーブルを備えた場合を例示している。GSP算出部34は、これら3種類のルックアップテーブルを考慮した上で、ヒーブGSP、ロールGSPr、ピッチGSPpを算出する。本発明はこれに限らず、GSP算出部34は、図17中の3種類のルックアップテーブルを統合した単一のルックアップテーブルに基づいて、ヒーブGSP、ロールGSPr、ピッチGSPpを算出してもよい。 17 shows an example in which the GSP calculation unit 34 is provided with three types of lookup tables corresponding to the road surface index, the estimated weight, and the car mode. The GSP calculation unit 34 calculates the heave GSP, the roll GSP r , and the pitch GSP p by taking these three types of lookup tables into consideration. The present invention is not limited to this, and the GSP calculation unit 34 may calculate the heave GSP, the roll GSP r , and the pitch GSP p based on a single lookup table that combines the three types of lookup tables in FIG. 17.
かくして、第2の実施形態でも、第1の実施形態とほぼ同様の作用効果を得ることができる。第2の実施形態では、重み係数算出部(GSP算出部34)は、路面の状態に応じて係数を変更する。このため、路面の状態に応じて実目標減衰力を変更して、乗り心地や車両安定性を向上させることができる。重み係数算出部(GSP算出部34)は、車体2の重量に応じて係数を変更する。このため、車体2の重量に応じて実目標減衰力を変更して、乗り心地や車両安定性を向上させることができる。重み係数算出部(GSP算出部34)は、選択された減衰力モード(カーモード)に応じて係数を変更する。このため、選択されたカーモードに応じて実目標減衰力を変更して、乗り心地や車両安定性を向上させることができる。 Thus, in the second embodiment, it is possible to obtain substantially the same effect as in the first embodiment. In the second embodiment, the weighting coefficient calculation unit (GSP calculation unit 34) changes the coefficient according to the road surface condition. Therefore, the actual target damping force can be changed according to the road surface condition, thereby improving ride comfort and vehicle stability. The weighting coefficient calculation unit (GSP calculation unit 34) changes the coefficient according to the weight of the vehicle body 2. Therefore, the actual target damping force can be changed according to the weight of the vehicle body 2, thereby improving ride comfort and vehicle stability. The weighting coefficient calculation unit (GSP calculation unit 34) changes the coefficient according to the selected damping force mode (car mode). Therefore, the actual target damping force can be changed according to the selected car mode, thereby improving ride comfort and vehicle stability.
なお、第2の実施形態では、GSP算出部34は、路面指数、推定重量、カーモードに基づいて重み係数(ヒーブGSP、ロールGSPr、ピッチGSPp)を算出するものとしたが、本発明はこれに限らない。GSP算出部34は、路面指数、推定重量、カーモードのうちいずれか1つまたは2つに基づいて、重み係数(ヒーブGSP、ロールGSPr、ピッチGSPp)を算出してもよい。 In the second embodiment, the GSP calculation unit 34 calculates the weighting coefficients (heave GSP, roll GSP r , pitch GSP p ) based on the road surface index, the estimated weight, and the car mode, but the present invention is not limited to this. The GSP calculation unit 34 may calculate the weighting coefficients (heave GSP, roll GSP r , pitch GSP p ) based on any one or two of the road surface index, the estimated weight, and the car mode.
また、第2の実施形態では、路面指数は、うねり路指数である場合を例示したが、本発明はこれに限らない。路面指数は、例えば悪路等のようにうねり路以外の路面の状態に応じた指数であってもよい。 In the second embodiment, the road surface index is an undulating road index, but the present invention is not limited to this. The road surface index may be an index corresponding to the condition of a road surface other than an undulating road, such as a rough road.
次に、図1、図2、図18ないし図22は第3の実施形態を示している。第3の実施形態の特徴は、重み係数算出部は、予め求めた車体の前後の重量バランスと車体の重量に応じて係数を変更することにある。なお、第3の実施形態では、上述した第1,第2の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, Figs. 1, 2, 18 to 22 show a third embodiment. The third embodiment is characterized in that the weighting coefficient calculation unit changes the coefficients according to the pre-determined front-rear weight balance of the vehicle body and the weight of the vehicle body. In the third embodiment, the same components as those in the first and second embodiments described above are given the same reference numerals, and their explanation will be omitted.
第3の実施形態によるコントローラ41は、可変ダンパ7の制御装置を構成し、可変ダンパ7の減衰特性を制御する(図1、図2参照)。コントローラ41は、第1の実施形態によるコントローラ11とほぼ同様に構成されている。コントローラ41は、例えばマイクロコンピュータにより構成され、CAN9に接続されている。コントローラ41は、CAN9を通じて、車両の走行に関する諸元を取得する。コントローラ41の出力側は、可変ダンパ7の減衰力可変アクチュエータ8に接続されている。 The controller 41 according to the third embodiment constitutes a control device for the variable damper 7 and controls the damping characteristics of the variable damper 7 (see Figures 1 and 2). The controller 41 is configured in a manner similar to the controller 11 according to the first embodiment. The controller 41 is configured, for example, by a microcomputer and is connected to the CAN 9. The controller 41 acquires specifications related to the running of the vehicle through the CAN 9. The output side of the controller 41 is connected to the variable damping force actuator 8 of the variable damper 7.
また、コントローラ41は、ROM、RAM、不揮発性メモリ等からなる記憶部41Aを有している。コントローラ41の記憶部41Aには、可変ダンパ7を制御するための各種のプログラム、情報(車両情報)、データ等が格納されている。 The controller 41 also has a storage unit 41A consisting of a ROM, a RAM, a non-volatile memory, etc. The storage unit 41A of the controller 41 stores various programs, information (vehicle information), data, etc. for controlling the variable damper 7.
図18に示すように、コントローラ41は、状態推定部12、GSP算出部34、BLQコントローラ42を備えている。これに加え、コントローラ31は、路面指数算出部32、重量推定部33を備えている。 As shown in FIG. 18, the controller 41 includes a state estimation unit 12, a GSP calculation unit 34, and a BLQ controller 42. In addition, the controller 31 includes a road surface index calculation unit 32 and a weight estimation unit 33.
BLQコントローラ42は、双線形最適制御理論に基づいて指令値となる指令電流(制御信号)を算出する。BLQコントローラ42は、第1の実施形態によるBLQコントローラ20と同様に構成されている。このとき、図19に示すように、BLQコントローラ42は、ばね上上下制振BLQ43、ロール制振BLQ44、ピッチ制振BLQ45、目標減衰力算出部24、減衰係数上限算出部25、補正減衰係数算出部26、指令値算出部29を備えている。 The BLQ controller 42 calculates a command current (control signal) that becomes a command value based on bilinear optimal control theory. The BLQ controller 42 is configured in the same manner as the BLQ controller 20 according to the first embodiment. In this case, as shown in FIG. 19, the BLQ controller 42 includes a sprung vertical vibration damping BLQ43, a roll vibration damping BLQ44, a pitch vibration damping BLQ45, a target damping force calculation unit 24, a damping coefficient upper limit calculation unit 25, a corrected damping coefficient calculation unit 26, and a command value calculation unit 29.
ばね上上下制振BLQ43は、第1の実施形態によるばね上上下制振BLQ21と同様に構成されている。ばね上上下制振BLQ43には、状態推定部12から出力される車両状態と、GSP算出部34から出力されるヒーブGSPと、重量推定部33から出力された推定重量とが入力される。ばね上上下制振BLQ43は、状態推定部12から出力されるばね上-ばね下間相対速度、車体絶対上下速度、ばね下-路面間相対速度、ばね下絶対上下速度と、GSP算出部34から出力されるヒーブGSPと、重量推定部33から出力された推定重量とに基づいて、上下振動を低減するための可変ダンパ7のヒーブ目標減衰力を、前輪用と後輪用に分けて算出する。 The sprung vertical vibration damping BLQ43 is configured in the same manner as the sprung vertical vibration damping BLQ21 according to the first embodiment. The vehicle state output from the state estimation unit 12, the heave GSP output from the GSP calculation unit 34, and the estimated weight output from the weight estimation unit 33 are input to the sprung vertical vibration damping BLQ43. The sprung vertical vibration damping BLQ43 calculates the heave target damping force of the variable damper 7 for reducing vertical vibration, separately for the front and rear wheels, based on the sprung-unsprung relative velocity, vehicle body absolute vertical velocity, unsprung-road surface relative velocity, and unsprung absolute vertical velocity output from the state estimation unit 12, the heave GSP output from the GSP calculation unit 34, and the estimated weight output from the weight estimation unit 33.
図20に示すように、ばね上上下制振BLQ43は、補正ゲイン算出部43A、Bp算出部43B、乗算器43C、Bp算出部43D、乗算器43E、乗算器43F、ヒーブ目標減衰力算出部43Gを備えている。補正ゲイン算出部43Aは、推定重量に基づいて、前輪用の補正ゲインと後輪用の補正ゲインを算出する。Bp算出部43Bは、予め求めたBpとヒーブGSPとに基づいて、相対速度に応じたBpの最大値を求める。乗算器43Cは、補正ゲイン算出部43Aから出力された補正ゲインと、Bp算出部43Bから出力されたBpの最大値と、相対速度とを乗算する。Bp算出部43Dは、予め求めたBpとヒーブGSPとに基づいて、ばね上速度に応じたBpの最大値を求める。乗算器43Eは、補正ゲイン算出部43Aから出力された補正ゲインと、Bp算出部43Dから出力されたBpの最大値と、ばね上速度とを乗算する。乗算器43Fは、乗算器43Cによる算出値と、乗算器43Eによる算出値とを乗算する。ヒーブ目標減衰力算出部43Gは、乗算器43Fによる算出値と、予め求めたRの逆行列(R-1)とを乗算し、前輪用のヒーブ目標減衰力と、後輪用のヒーブ目標減衰力とを算出する。なお、ばね上上下制振BLQ43は、相対速度に応じたBpと、ばね上速度に応じたBpとに基づいて、ヒーブ目標減衰力を算出する場合を例示したが、本発明はこれに限らない。ばね上上下制振BLQ43は、相対速度、ばね上速度に応じたBpに加えて、他の車両状態に応じたBpに基づいて、ヒーブ目標減衰力を算出してもよい。 As shown in FIG. 20, the sprung vertical vibration damping BLQ 43 includes a correction gain calculation unit 43A, a Bp calculation unit 43B, a multiplier 43C, a Bp calculation unit 43D, a multiplier 43E, a multiplier 43F, and a heave target damping force calculation unit 43G. The correction gain calculation unit 43A calculates a correction gain for the front wheels and a correction gain for the rear wheels based on the estimated weight. The Bp calculation unit 43B calculates the maximum value of Bp according to the relative speed based on the previously obtained Bp and heave GSP. The multiplier 43C multiplies the correction gain output from the correction gain calculation unit 43A, the maximum value of Bp output from the Bp calculation unit 43B, and the relative speed. The Bp calculation unit 43D calculates the maximum value of Bp according to the sprung speed based on the previously obtained Bp and heave GSP. The multiplier 43E multiplies the correction gain output from the correction gain calculation unit 43A, the maximum value of Bp output from the Bp calculation unit 43D, and the sprung speed. The multiplier 43F multiplies the value calculated by the multiplier 43C and the value calculated by the multiplier 43E. The heave target damping force calculation unit 43G multiplies the value calculated by the multiplier 43F and the inverse matrix (R -1 ) of R obtained in advance to calculate the heave target damping force for the front wheels and the heave target damping force for the rear wheels. Note that, although the sprung vertical damping BLQ 43 has exemplified a case in which the heave target damping force is calculated based on the Bp according to the relative speed and the Bp according to the sprung speed, the present invention is not limited to this. The sprung vertical damping BLQ 43 may calculate the heave target damping force based on the Bp according to other vehicle conditions in addition to the Bp according to the relative speed and the sprung speed.
ロール制振BLQ44には、状態推定部12から出力される車両状態と、GSP算出部34から出力されるロールGSPrと、重量推定部33から出力された推定重量とが入力される。ロール制振BLQ22は、状態推定部12から出力されるロールレイト、ロール角と、GSP算出部34から出力されるロールGSPと、重量推定部33から出力された推定重量とに基づいて、ロール振動を低減するための可変ダンパ7のロール目標減衰力を、前輪用と後輪用に分けて算出する。 The roll vibration suppression BLQ 44 receives as input the vehicle state output from the state estimation unit 12, the roll GSP r output from the GSP calculation unit 34, and the estimated weight output from the weight estimation unit 33. The roll vibration suppression BLQ 22 calculates the roll target damping force of the variable damper 7 for reducing roll vibration separately for the front wheels and the rear wheels, based on the roll rate and roll angle output from the state estimation unit 12, the roll GSP output from the GSP calculation unit 34, and the estimated weight output from the weight estimation unit 33.
図21に示すように、ロール制振BLQ44は、補正ゲイン算出部44A、Bp算出部44B、乗算器44C,44D、ロール目標減衰力算出部44Eを備えている。補正ゲイン算出部44Aは、推定重量に基づいて、前輪用の補正ゲインと後輪用の補正ゲインを算出する。Bp算出部44Bは、予め求めたBrollprollとロールGSPrとに基づいて、ロールレイトに応じたBrollprollの最大値を求める。乗算器44Cは、補正ゲイン算出部44Aから出力された補正ゲインと、Bp算出部44Bから出力されたBrollprollの最大値とを乗算する。乗算器44Dは、乗算器44Cによる算出値とロールレイトとを乗算する。ロール目標減衰力算出部44Eは、乗算器44Dによる算出値と、予め求めたRrollの逆行列(Rroll -1)とを乗算し、前輪用のロール目標減衰力と、後輪用のロール目標減衰力とを算出する。 As shown in Fig. 21, the roll vibration suppression BLQ 44 includes a correction gain calculation unit 44A, a Bp calculation unit 44B, multipliers 44C and 44D, and a roll target damping force calculation unit 44E. The correction gain calculation unit 44A calculates a correction gain for the front wheels and a correction gain for the rear wheels based on the estimated weight. The Bp calculation unit 44B calculates a maximum value of B roll p roll according to the roll rate based on the previously calculated B roll p roll and roll GSP r . The multiplier 44C multiplies the correction gain output from the correction gain calculation unit 44A by the maximum value of B roll p roll output from the Bp calculation unit 44B. The multiplier 44D multiplies the value calculated by the multiplier 44C by the roll rate. The target roll damping force calculation section 44E multiplies the value calculated by the multiplier 44D by the inverse matrix (R roll -1 ) of R roll determined in advance, to calculate a target roll damping force for the front wheels and a target roll damping force for the rear wheels.
ピッチ制振BLQ45には、状態推定部12から出力される車両状態と、GSP算出部34から出力されるピッチGSPpと、重量推定部33から出力された推定重量とが入力される。ピッチ制振BLQ45は、状態推定部12から出力されるピッチレイト、ピッチ角と、GSP算出部34から出力されるピッチGSPpとに基づいて、ピッチ振動を低減するための可変ダンパ7のピッチ目標減衰力を前輪用と後輪用に分けて算出する。 The pitch vibration suppression BLQ 45 receives as input the vehicle state output from the state estimation unit 12, the pitch GSP p output from the GSP calculation unit 34, and the estimated weight output from the weight estimation unit 33. The pitch vibration suppression BLQ 45 calculates the pitch target damping force of the variable damper 7 for reducing pitch vibration separately for the front wheels and the rear wheels, based on the pitch rate and pitch angle output from the state estimation unit 12, and the pitch GSP p output from the GSP calculation unit 34.
図22に示すように、ピッチ制振BLQ45は、補正ゲイン算出部45A、Bp算出部45B、乗算器45C,45D、ピッチ目標減衰力算出部45Eを備えている。補正ゲイン算出部45Aは、推定重量に基づいて、前輪用の補正ゲインと後輪用の補正ゲインを算出する。Bp算出部45Bは、予め求めたBpitchppitchとピッチGSPpとに基づいて、ピッチレイトに応じたBpitchppitchの最大値を求める。乗算器45Cは、補正ゲイン算出部45Aから出力された補正ゲインと、Bp算出部45Bから出力されたBpitchppitchの最大値とを乗算する。乗算器45Dは、乗算器45Cによる算出値とピッチレイトとを乗算する。ピッチ目標減衰力算出部45Eは、乗算器45Dによる算出値と、予め求めたRpitchの逆行列(Rpitch -1)とを乗算し、前輪用のピッチ目標減衰力と後輪用のピッチ目標減衰力とを算出する。 As shown in Fig. 22, the pitch vibration suppression BLQ 45 includes a correction gain calculation unit 45A, a Bp calculation unit 45B, multipliers 45C and 45D, and a pitch target damping force calculation unit 45E. The correction gain calculation unit 45A calculates a correction gain for the front wheels and a correction gain for the rear wheels based on the estimated weight. The Bp calculation unit 45B calculates a maximum value of B pitch p pitch according to the pitch rate based on the previously calculated B pitch p pitch and pitch GSP p . The multiplier 45C multiplies the correction gain output from the correction gain calculation unit 45A by the maximum value of B pitch p pitch output from the Bp calculation unit 45B. The multiplier 45D multiplies the value calculated by the multiplier 45C by the pitch rate. The pitch target damping force calculation unit 45E multiplies the value calculated by the multiplier 45D by the inverse matrix (R pitch -1 ) of R pitch obtained in advance to calculate a pitch target damping force for the front wheels and a pitch target damping force for the rear wheels.
このとき、GSP算出部34および補正ゲイン算出部43A,44A,45Aは、重み係数算出部を構成している。 At this time, the GSP calculation unit 34 and the correction gain calculation units 43A, 44A, and 45A constitute a weighting coefficient calculation unit.
かくして、第3の実施形態でも、第1,第2の実施形態とほぼ同様の作用効果を得ることができる。第3の実施形態では、重み係数算出部(GSP算出部34、補正ゲイン算出部43A,44A,45A)は、予め求めた車体2の前後の重量バランスと車体2の重量に応じて係数を変更する。具体的には、ヒーブBLQ(ばね上上下制振BLQ21)、ロールBLQ(ロール制振BLQ22)およびピッチBLQ(ピッチ制振BLQ23)は、車体の前後の重量バランスを考慮してヒーブ目標減衰力、ロール目標減衰力、ピッチ目標減衰力を算出する。このため、車両の重量に応じた比率で前輪側の目標減衰力と後輪側の目標減衰力の比率を調整することができる。この結果、車両の乗車人数や搭載重量等に応じて、車両の乗り心地や車両安定性が変化するときでも、乗り心地等を向上させることができる。 Thus, the third embodiment can achieve substantially the same effects as the first and second embodiments. In the third embodiment, the weighting coefficient calculation unit (GSP calculation unit 34, correction gain calculation unit 43A, 44A, 45A) changes the coefficients according to the weight balance between the front and rear of the vehicle body 2 and the weight of the vehicle body 2, which are determined in advance. Specifically, the heave BLQ (spring vertical damping BLQ21), roll BLQ (roll damping BLQ22) and pitch BLQ (pitch damping BLQ23) calculate the heave target damping force, roll target damping force and pitch target damping force taking into account the front and rear weight balance of the vehicle body. Therefore, the ratio between the target damping force on the front wheel side and the target damping force on the rear wheel side can be adjusted at a ratio according to the weight of the vehicle. As a result, the ride comfort can be improved even when the ride comfort and vehicle stability of the vehicle change depending on the number of passengers in the vehicle, the load weight, etc.
第3の実施形態では、コントローラ41は、第2の実施形態のGSP算出部34を備えるものとしたが、第1の実施形態のGSP算出部13を備えてもよい。また、第3の実施形態では、重み係数算出部は、GSP算出部34および補正ゲイン算出部43A,44A,45Aによって構成するものとした。本発明はこれに限らず、GSP算出部34および補正ゲイン算出部43A,44A,45Aを統合してルックアップテーブルを形成し、このルックアップテーブルによって重み係数算出部を構成してもよい。 In the third embodiment, the controller 41 includes the GSP calculation unit 34 of the second embodiment, but may include the GSP calculation unit 13 of the first embodiment. Also, in the third embodiment, the weighting coefficient calculation unit is configured by the GSP calculation unit 34 and the correction gain calculation units 43A, 44A, and 45A. The present invention is not limited to this, and the GSP calculation unit 34 and the correction gain calculation units 43A, 44A, and 45A may be integrated to form a lookup table, and the weighting coefficient calculation unit may be configured by this lookup table.
なお、図4、図17は、GSP算出部13,34を構成するルックアップテーブルの一例を示すものであり、図6は、減衰係数上限算出部25の一例を示すものであり、図7は、指令値算出部29の一例を示すものであり、本発明はこれらに限らない。GSP算出部、減衰係数上限算出部、指令値算出部は、車両の諸元等を考慮して適宜設定される。 Note that Figs. 4 and 17 show examples of lookup tables constituting the GSP calculation units 13 and 34, Fig. 6 shows an example of the damping coefficient upper limit calculation unit 25, and Fig. 7 shows an example of the command value calculation unit 29, but the present invention is not limited to these. The GSP calculation unit, the damping coefficient upper limit calculation unit, and the command value calculation unit are set appropriately taking into account the vehicle specifications, etc.
前記各実施形態では、コントローラ11,31,41は、CAN9を通じて、車両の走行に関する諸元を取得する場合を例に挙げて説明したが、本発明はこれに限らない。コントローラ11,31,41は、例えばばね上やばね下の上下加速度を検出する加速度センサや車輪速を検出する車輪速センサ等に接続され、これらのセンサの検出値を車両の走行に関する諸元として取得してもよい。また、コントローラ11,31,41は、他のコントローラ等から車両の走行に関する諸元を取得してもよい。 In the above embodiments, the controllers 11, 31, 41 have been described as acquiring vehicle driving parameters via the CAN 9, but the present invention is not limited to this. The controllers 11, 31, 41 may be connected to, for example, an acceleration sensor that detects the vertical acceleration of the sprung and unsprung parts, or a wheel speed sensor that detects the wheel speed, and the detected values of these sensors may be acquired as vehicle driving parameters. The controllers 11, 31, 41 may also acquire vehicle driving parameters from other controllers, etc.
前記各実施形態では、コントローラ11,31,41は、上下運動算出部、ロール運動算出部、ピッチ運動算出部を含む状態推定部12を備えるものとした。このとき、状態推定部12は、CAN信号から車両の上下方向の運動に関する状態を求め、CAN信号から車両のロール方向の運動に関する状態を求め、CAN信号から車両のピッチ方向の運動に関する状態を求めるものとした。本発明はこれに限らず、例えばコントローラ11,31,41は、上下方向の加速度センサ、ロールセンサ、ピッチセンサ等に接続され、これらのセンサの検出値に基づいて、車両の上下方向の運動に関する状態、車両のロール方向の運動に関する状態、車両のピッチ方向の運動に関する状態を算出してもよい。この場合、コントローラ11,31,41のうちそれぞれの状態を算出する部分が、上下運動算出部、ロール運動算出部、ピッチ運動算出部を構成する。 In each of the above embodiments, the controllers 11, 31, 41 are provided with a state estimation unit 12 including a vertical motion calculation unit, a roll motion calculation unit, and a pitch motion calculation unit. In this case, the state estimation unit 12 determines the state related to the vertical motion of the vehicle from the CAN signal, determines the state related to the roll motion of the vehicle from the CAN signal, and determines the state related to the pitch motion of the vehicle from the CAN signal. The present invention is not limited to this, and for example, the controllers 11, 31, 41 may be connected to a vertical acceleration sensor, a roll sensor, a pitch sensor, etc., and calculate the state related to the vertical motion of the vehicle, the state related to the roll motion of the vehicle, and the state related to the pitch motion of the vehicle based on the detection values of these sensors. In this case, the parts of the controllers 11, 31, 41 that calculate the respective states constitute the vertical motion calculation unit, the roll motion calculation unit, and the pitch motion calculation unit.
前記各実施形態では、減衰力調整式緩衝器としてセミアクティブダンパからなる可変ダンパ7である場合を例に挙げて説明した。本発明はこれに限らず、減衰力調整式緩衝器としてアクティブダンパ(電気アクチュエータ、油圧アクチュエータのいずれか)を用いるようにしてもよい。前記各実施形態では、車体2側と車輪3側との間で調整可能な力を発生する減衰力調整式緩衝器を、油圧緩衝器からなる可変ダンパ7により構成する場合を例に挙げて説明した。本発明はこれに限らず、例えば減衰力調整式緩衝器を液圧緩衝器の他に、エアサスペンション、電磁サスペンション等により構成してもよい。 In the above embodiments, the damping force adjustable shock absorber is configured with a variable damper 7 made of a semi-active damper. The present invention is not limited to this, and an active damper (either an electric actuator or a hydraulic actuator) may be used as the damping force adjustable shock absorber. In the above embodiments, the damping force adjustable shock absorber that generates an adjustable force between the vehicle body 2 side and the wheel 3 side is configured with a variable damper 7 made of a hydraulic shock absorber. The present invention is not limited to this, and the damping force adjustable shock absorber may be configured with an air suspension, an electromagnetic suspension, or the like, in addition to a hydraulic shock absorber.
前記各実施形態では、4輪自動車に用いる車両挙動装置を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば2輪、3輪自動車、または作業車両、運搬車両であるトラック、バス等にも適用できるものである。 In each of the above embodiments, a vehicle behavior device for use in a four-wheeled vehicle has been described as an example. However, the present invention is not limited to this, and can also be applied to, for example, two-wheeled and three-wheeled vehicles, or work vehicles and transport vehicles such as trucks and buses.
前記各実施形態で記載した具体的な数値は、一例を示したものであり、例示した値に限らない。また、前記各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。 The specific numerical values described in each of the above embodiments are merely examples, and are not limited to the values shown. It goes without saying that each of the above embodiments is merely an example, and partial substitution or combination of the configurations shown in different embodiments is possible.
なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, but includes various modified examples. For example, the above-described embodiments have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described. It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace part of the configuration of each embodiment with other configurations.
本願は、2022年12月26日付出願の日本国特許出願第2022-207940号に基づく優先権を主張する。2022年12月26日付出願の日本国特許出願第2022-207940号の明細書、特許請求の範囲、図面、および要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority to Japanese Patent Application No. 2022-207940, filed December 26, 2022. The entire disclosure of Japanese Patent Application No. 2022-207940, filed December 26, 2022, including the specification, claims, drawings, and abstract, is hereby incorporated by reference in its entirety into this application.
1:車両挙動制御装置、2:車体、3:車輪、5:サスペンション装置、7:減衰力調整式緩衝器(可変ダンパ)、8:減衰力可変アクチュエータ、9:CAN、11,31,41:コントローラ(制御装置)、12:状態推定部(車両挙動算出部、上下運動算出部、ロール運動算出部、ピッチ運動算出部、姿勢変化検出部)、13,34:GSP算出部(重み係数算出部)、20,42:BLQコントローラ、21,43:ばね上上下制振BLQ(ヒーブBLQ)、22,44:ロール制振BLQ(ロールBLQ)、23,45:ピッチ制振BLQ(ピッチBLQ)、24:目標減衰力算出部(実目標減衰力算出部)、25:減衰係数上限算出部、26:補正減衰係数算出部、27:目標減衰係数算出部(目標減衰係数算出部)、28:最小値選択部(補正部)、29:指令値算出部(制御信号出力部)、32:路面指数算出部、33:重量推定部 1: Vehicle behavior control device, 2: Vehicle body, 3: Wheels, 5: Suspension device, 7: Adjustable damping shock absorber (variable damper), 8: Variable damping actuator, 9: CAN, 11, 31, 41: Controller (control device), 12: State estimation unit (vehicle behavior calculation unit, vertical movement calculation unit, roll movement calculation unit, pitch movement calculation unit, attitude change detection unit), 13, 34: GPS calculation unit (weighting coefficient calculation unit), 20, 42: BLQ controller, 21, 43 : sprung upper and lower vibration damping BLQ (heave BLQ), 22, 44: roll vibration damping BLQ (roll BLQ), 23, 45: pitch vibration damping BLQ (pitch BLQ), 24: target damping force calculation unit (actual target damping force calculation unit), 25: damping coefficient upper limit calculation unit, 26: corrected damping coefficient calculation unit, 27: target damping coefficient calculation unit (target damping coefficient calculation unit), 28: minimum value selection unit (correction unit), 29: command value calculation unit (control signal output unit), 32: road surface index calculation unit, 33: weight estimation unit
Claims (10)
車両挙動算出部の算出値に基づき実目標減衰力を算出する際に、前記実目標減衰力を予め求めた目標減衰力と近い値に近付けるための重み係数を算出する重み係数算出部と、
前記車両の上下方向の運動状態を求める上下運動算出部と、
前記車両のピッチ方向の運動状態を求めるピッチ運動算出部と、
前記重み係数算出部による前記重み係数と、前記上下運動算出部および前記ピッチ運動算出部の算出結果とに基づき前記実目標減衰力を算出する実目標減衰力算出部と、
前記実目標減衰力算出部の算出値に基づき目標減衰係数を算出する目標減衰係数算出部と、
前記車両のばね上とばね下との間の相対速度が所定値よりも低速な領域で、前記目標減衰係数の上限を低下させた補正減衰係数を算出する補正部と、
前記補正減衰係数に対応した制御信号を前記減衰力調整式緩衝器に出力する制御信号出力部と、を有し、
前記補正部は、前記補正減衰係数を、前記相対速度の上昇に応じて減衰力が大きくなり、かつ前記相対速度が前記所定値よりも低速なときに前記相対速度に対する減衰力の傾きが小さく、前記相対速度が前記所定値よりも高速なときに前記相対速度に対する減衰力の傾きが大きくなるように設定し、
前記補正部は、前記相対速度に応じた最大減衰係数を有し、前記目標減衰係数が前記最大減衰係数を超えるときに、前記目標減衰係数を前記最大減衰係数に補正する
制御装置。 A control device for a damping force adjustable shock absorber that is provided in a vehicle and is capable of adjusting a generated damping force,
a weighting coefficient calculation unit that calculates a weighting coefficient for making the actual target damping force closer to a predetermined target damping force when calculating an actual target damping force based on a calculated value of the vehicle behavior calculation unit;
A vertical motion calculation unit that calculates a vertical motion state of the vehicle;
a pitch motion calculation unit that calculates a motion state in a pitch direction of the vehicle;
an actual target damping force calculation unit that calculates the actual target damping force based on the weighting coefficient calculated by the weighting coefficient calculation unit and the calculation results of the vertical movement calculation unit and the pitch movement calculation unit;
a target damping coefficient calculation unit that calculates a target damping coefficient based on the calculated value of the actual target damping force calculation unit;
a correction unit that calculates a corrected damping coefficient by lowering an upper limit of the target damping coefficient in a region where a relative speed between a sprung portion and an unsprung portion of the vehicle is lower than a predetermined value;
a control signal output unit that outputs a control signal corresponding to the corrected damping coefficient to the damping force adjustable shock absorber,
the correction unit sets the corrected damping coefficient so that the damping force increases as the relative velocity increases, and so that a slope of the damping force with respect to the relative velocity is small when the relative velocity is slower than the predetermined value and a slope of the damping force with respect to the relative velocity is large when the relative velocity is faster than the predetermined value,
The correction unit has a maximum damping coefficient according to the relative speed, and when the target damping coefficient exceeds the maximum damping coefficient, corrects the target damping coefficient to the maximum damping coefficient.
車体の姿勢変化を検出する姿勢変化検出部をさらに備え、
前記補正部は、前記姿勢変化検出部の検出結果に基づき姿勢変化が生じると判断したときには、補正量を小さくする、制御装置。 The control device according to claim 1 ,
Further comprising a posture change detection unit for detecting a posture change of the vehicle body,
The correction unit reduces an amount of correction when it determines that a posture change will occur based on a detection result from the posture change detection unit.
前記車両のロール方向の運動状態を求めるロール運動算出部をさらに備える、制御装置。 The control device according to claim 1 ,
The control device further includes a roll motion calculation unit that determines a motion state in a roll direction of the vehicle.
前記重み係数算出部は、路面の状態に応じて前記重み係数を変更する、制御装置。 The control device according to claim 1 ,
The weighting coefficient calculation unit changes the weighting coefficient depending on a road surface condition.
前記重み係数算出部は、車体の重量に応じて前記重み係数を変更する、制御装置。 The control device according to claim 1 ,
The weighting coefficient calculation unit changes the weighting coefficient according to a weight of a vehicle body.
前記重み係数算出部は、選択された減衰力モードに応じて前記重み係数を変更する、制御装置。 The control device according to claim 1 ,
The weighting coefficient calculation unit changes the weighting coefficient in accordance with a selected damping force mode.
前記重み係数算出部は、予め求めた車体の前後の重量バランスと前記車体の重量に応じて前記重み係数を変更する、制御装置。 The control device according to claim 1 ,
The weighting coefficient calculation unit changes the weighting coefficient according to a predetermined front-rear weight balance of the vehicle body and the weight of the vehicle body.
前記重み係数算出部は、前記重み係数として、前記車両の上下方向の運動に関するヒーブGSPと、前記車両のピッチ方向の運動に関するピッチGSPと、を算出し、
前記実目標減衰力算出部は、前記ヒーブGSPと前記上下運動算出部の算出結果とに基づいて前記車両の上下方向の目標減衰力を算出するヒーブBLQと、前記ピッチGSPと前記ピッチ運動算出部の算出結果とに基づいて前記車両のピッチ方向の目標減衰力を算出するピッチBLQと、を備え、
前記実目標減衰力算出部は、前記ヒーブBLQが算出した目標減衰力と、前記ピッチBLQが算出した目標減衰力と、に基づいて前記実目標減衰力を算出する、制御装置。 The control device according to claim 1 ,
The weighting coefficient calculation unit calculates, as the weighting coefficient, a heave GSP related to a vertical movement of the vehicle and a pitch GSP related to a pitch movement of the vehicle,
The actual target damping force calculation unit includes a heave BLQ that calculates a target damping force in the vertical direction of the vehicle based on the heave GSP and the calculation result of the vertical movement calculation unit, and a pitch BLQ that calculates a target damping force in the pitch direction of the vehicle based on the pitch GSP and the calculation result of the pitch movement calculation unit,
A control device wherein the actual target damping force calculation unit calculates the actual target damping force based on the target damping force calculated by the heave BLQ and the target damping force calculated by the pitch BLQ.
前記重み係数算出部は、前記重み係数として、前記車両の上下方向の運動に関するヒーブGSPと、前記車両のロール方向の運動に関するロールGSPと、前記車両のピッチ方向の運動に関するピッチGSPと、を算出し、
前記実目標減衰力算出部は、前記ヒーブGSPと前記上下運動算出部の算出結果とに基づいて前記車両の上下方向の目標減衰力を算出するヒーブBLQと、前記ロールGSPと前記ロール運動算出部の算出結果とに基づいて前記車両のロール方向の目標減衰力を算出するロールBLQと、前記ピッチGSPと前記ピッチ運動算出部の算出結果とに基づいて前記車両のピッチ方向の目標減衰力を算出するピッチBLQと、を備え、
前記実目標減衰力算出部は、前記ヒーブBLQが算出した目標減衰力と、前記ロールBLQが算出した目標減衰力と、前記ピッチBLQが算出した目標減衰力と、に基づいて前記実目標減衰力を算出する、制御装置。 The control device according to claim 3,
the weighting coefficient calculation unit calculates, as the weighting coefficients, a heave GSP related to a vertical motion of the vehicle, a roll GSP related to a roll motion of the vehicle, and a pitch GSP related to a pitch motion of the vehicle;
The actual target damping force calculation unit includes a heave BLQ that calculates a target damping force in the vertical direction of the vehicle based on the heave GSP and the calculation result of the vertical movement calculation unit, a roll BLQ that calculates a target damping force in the roll direction of the vehicle based on the roll GSP and the calculation result of the roll movement calculation unit, and a pitch BLQ that calculates a target damping force in the pitch direction of the vehicle based on the pitch GSP and the calculation result of the pitch movement calculation unit,
A control device wherein the actual target damping force calculation unit calculates the actual target damping force based on the target damping force calculated by the heave BLQ, the target damping force calculated by the roll BLQ, and the target damping force calculated by the pitch BLQ.
前記ヒーブBLQ、前記ロールBLQおよび前記ピッチBLQは、車体の前後の重量バランスを考慮して目標減衰力を算出する、制御装置。 The control device according to claim 9,
A control device that calculates target damping forces for the heave BLQ, the roll BLQ and the pitch BLQ by taking into account the front and rear weight balance of a vehicle body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020257007621A KR20250044448A (en) | 2022-12-26 | 2023-12-08 | controller |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022207940 | 2022-12-26 | ||
JP2022-207940 | 2022-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024142840A1 true WO2024142840A1 (en) | 2024-07-04 |
Family
ID=91717502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/043965 WO2024142840A1 (en) | 2022-12-26 | 2023-12-08 | Control device |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20250044448A (en) |
WO (1) | WO2024142840A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010260484A (en) * | 2009-05-08 | 2010-11-18 | Toyota Motor Corp | Damping force control device |
WO2018061770A1 (en) * | 2016-09-28 | 2018-04-05 | 日立オートモティブシステムズ株式会社 | Suspension control apparatus |
WO2021187161A1 (en) * | 2020-03-18 | 2021-09-23 | 日立Astemo株式会社 | Vehicle control device, vehicle control method, and vehicle control system |
JP2022125573A (en) * | 2021-02-17 | 2022-08-29 | 日立Astemo株式会社 | suspension controller |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5463263B2 (en) | 2009-11-30 | 2014-04-09 | 日立オートモティブシステムズ株式会社 | Suspension control device for vehicle |
JP6026207B2 (en) | 2012-09-28 | 2016-11-16 | 日立オートモティブシステムズ株式会社 | Suspension control device |
-
2023
- 2023-12-08 KR KR1020257007621A patent/KR20250044448A/en active Pending
- 2023-12-08 WO PCT/JP2023/043965 patent/WO2024142840A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010260484A (en) * | 2009-05-08 | 2010-11-18 | Toyota Motor Corp | Damping force control device |
WO2018061770A1 (en) * | 2016-09-28 | 2018-04-05 | 日立オートモティブシステムズ株式会社 | Suspension control apparatus |
WO2021187161A1 (en) * | 2020-03-18 | 2021-09-23 | 日立Astemo株式会社 | Vehicle control device, vehicle control method, and vehicle control system |
JP2022125573A (en) * | 2021-02-17 | 2022-08-29 | 日立Astemo株式会社 | suspension controller |
Also Published As
Publication number | Publication date |
---|---|
KR20250044448A (en) | 2025-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9114683B2 (en) | Vehicle control device and method | |
EP1623856B1 (en) | Suspension control system | |
CN104105628B (en) | The control device of vehicle and the control method of vehicle | |
CN104080629B (en) | The control device of vehicle and the control method of vehicle | |
US9452653B2 (en) | Vehicle controlling apparatus and method | |
JP6026207B2 (en) | Suspension control device | |
CN104080672B (en) | The control device of vehicle and the control method of vehicle | |
CN104024008B (en) | The control device of vehicle | |
KR20190038925A (en) | Suspension control device | |
CN104080671B (en) | The control device of vehicle and the control method of vehicle | |
WO2019187223A1 (en) | Suspension control device | |
CN104080628B (en) | The control method controlling device and vehicle of vehicle | |
US9132710B2 (en) | Damping force control device for vehicle | |
CN104080668B (en) | The control device of vehicle and the control method of vehicle | |
WO2013133059A1 (en) | Vehicle control apparatus, and vehicle control method | |
JPH06247126A (en) | System for closed and/or open loop control of car chassis | |
JP2013241075A (en) | Suspension control device | |
WO2024142840A1 (en) | Control device | |
JP2874427B2 (en) | Active suspension system for vehicles | |
CN119836355A (en) | Control device | |
WO2013161537A1 (en) | Vehicle control device and vehicle control method | |
US20250010679A1 (en) | Vehicle control apparatus and vehicle control system | |
JP2023088532A (en) | Vehicle control system and vehicle control device | |
JP2024168897A (en) | Vehicle control device | |
WO2024009702A1 (en) | Device and method for controlling electronically controlled suspension |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23911621 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024567396 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20257007621 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020257007621 Country of ref document: KR |