[go: up one dir, main page]

WO2024139658A1 - 透镜天线 - Google Patents

透镜天线 Download PDF

Info

Publication number
WO2024139658A1
WO2024139658A1 PCT/CN2023/128263 CN2023128263W WO2024139658A1 WO 2024139658 A1 WO2024139658 A1 WO 2024139658A1 CN 2023128263 W CN2023128263 W CN 2023128263W WO 2024139658 A1 WO2024139658 A1 WO 2024139658A1
Authority
WO
WIPO (PCT)
Prior art keywords
nested
lens antenna
tail end
annular inclined
antenna according
Prior art date
Application number
PCT/CN2023/128263
Other languages
English (en)
French (fr)
Inventor
苏国生
肖飞
黄立文
刘培涛
赖展军
黄伟青
陈翰
张碧明
陆尧
Original Assignee
京信通信技术(广州)有限公司
京信射频技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司, 京信射频技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2024139658A1 publication Critical patent/WO2024139658A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Definitions

  • the present application relates to the field of communication technology, and in particular to an antenna, and more specifically to a lens antenna.
  • Common lens antennas include spherical Luneburg lens antennas assembled from multiple layers of spheres and cylindrical lens antennas assembled from multiple layers of cylinders. Their common feature is that the feed source is placed on one side of the multi-layer sphere or multi-layer cylinder, and the normal direction of the feed source radiation passes through the center of the sphere or cylinder, so that the electromagnetic wave forms a plane wave on the other side of the sphere or cylinder, thereby improving the antenna gain.
  • the sphere and cylinder are usually divided into multiple layers, and the dielectric constants of different layers vary from 2 to 1 from the inside to the outside. Since the multi-layer sphere is a closed structure, its processing difficulty is greater than that of multi-layer nested cylinders. On the other hand, since the sections of the sphere passing through the center of the circle are the same, the horizontal and vertical beams of the antenna are relatively consistent, and the gain is higher.
  • One cross-section of the cylinder is a circle like the sphere, and the other cross-section perpendicular to it is a rectangle, resulting in inconsistent horizontal and vertical radiation patterns of the antenna.
  • the antenna gain is lower than that of the spherical Luneburg lens.
  • radiation units are usually added in the length direction of the cylinder.
  • the purpose of this application is to solve the above-mentioned problem and provide a lens antenna.
  • the nesting assembly includes at least one first nesting body having a first annular inclined surface and a tail end nesting body embedded in the first nesting body, wherein the first annular inclined surface and the tail end nesting body constitute the nesting
  • the sleeve assembly has an active surface, which gradually narrows from the first nested body to the tail end nested body.
  • the lens antenna provided in the present application is formed by appropriately changing the structure of a cylindrical lens antenna, its overall structure is similar to that of a cylindrical lens antenna, so the overall structure is simple and easy to process; at the same time, since the structural improvement of the cylindrical lens antenna is carried out in the direction of a spherical Luneburg lens antenna, the modified structure is similar to the spherical Luneburg lens antenna in performance, thereby also improving the antenna gain, realizing multiple beams, and the horizontal and vertical beams are relatively consistent;
  • the phase of the electromagnetic waves passing through different paths of the lens can be adjusted by adjusting the cone shapes on both sides of the lens antenna, thereby achieving the purpose of adjusting the antenna radiation pattern performance;
  • the size of the lens antenna provided by the present application is smaller than that of a cylinder, and may also be smaller than that of a sphere, thereby achieving the purpose of miniaturization.
  • FIG. 1 is a perspective view of a lens antenna according to an embodiment of the present application.
  • FIG. 2 is a perspective exploded view of the lens antenna shown in FIG. 1 .
  • FIG3 is an axial side view of the lens antenna shown in FIG1 , illustrating the radiation path of the electromagnetic wave;
  • FIG4 is a normal side view of the lens antenna shown in FIG1 , illustrating the radiation path of the electromagnetic wave;
  • FIG. 5 is a horizontal plane radiation diagram of the beam of the lens antenna shown in FIG. 1 .
  • FIG. 6 is a vertical plane radiation diagram of the beam of the lens antenna shown in FIG. 1 .
  • FIG. 7 is a perspective view of a lens antenna according to another embodiment of the present application.
  • FIG. 8 is a perspective exploded view of the lens antenna shown in FIG. 7 .
  • FIG. 9 is a perspective view of a lens antenna according to another embodiment of the present application.
  • FIG. 10 is a perspective exploded view of the lens antenna shown in FIG. 9 .
  • FIG. 11 is a perspective view of a lens antenna according to another embodiment of the present application.
  • FIG. 12 is a perspective exploded view of the lens antenna shown in FIG. 11 .
  • FIG. 13 is an axial side view of the lens antenna shown in FIG. 11 .
  • FIG. 14 is a normal side view of the lens antenna shown in FIG. 11 .
  • FIG. 15 shows an original cylindrical lens antenna used to form a lens antenna according to another embodiment of the present application.
  • FIG. 16a shows a lens antenna formed by processing the original cylindrical lens antenna shown in FIG. 15. Line stereogram.
  • FIG. 16 b shows a perspective exploded view of the lens antenna shown in FIG. 16 a .
  • FIG. 17 shows an axial side view of the lens antenna shown in FIGS. 16a-16b.
  • FIG. 19 shows an original cylindrical lens antenna used to form a lens antenna according to another embodiment of the present application.
  • FIG. 20 a shows a stereoscopic view of a lens antenna formed by processing the original cylindrical lens antenna shown in FIG. 19 .
  • FIG. 20 b shows a perspective exploded view of the lens antenna shown in FIG. 20 a .
  • FIG. 22 a shows a stereoscopic view of a lens antenna formed by processing the original cylindrical lens antenna shown in FIG. 21 .
  • FIG. 22 b shows a perspective exploded view of the lens antenna shown in FIG. 22 a .
  • FIG. 23 shows an axial side view of the lens antenna shown in FIGS. 22a-22b.
  • FIG. 24 shows a normal side view of the lens antenna shown in FIGS. 22a-22b.
  • a lens antenna 100 includes:
  • the nesting assembly 12 includes: a first nesting body 122, which has a first cylindrical surface 1222, first annular inclined surfaces 1224 formed on both axial sides of the first cylindrical surface 1222, and a first nesting hole 1226 that passes axially; a second nesting body 124, which has a second cylindrical surface 1242, second annular inclined surfaces 1244 formed on both axial sides of the second cylindrical surface 1242, and a second nesting hole 1246 that passes axially; and a tail end nesting body 126, which has a tail end cylindrical surface 1262;
  • the tail end nesting body 126 is sleeved in the second nesting hole 1246, and the second nesting body 124 is sleeved in the first nesting hole 1226; each of the first annular inclined surface 1224, the corresponding second annular inclined surface 1244 and the tail end annular inclined surface 1264 constitute an action surface of the nesting component 12, and each of the action surfaces is a conical action surface.
  • the electromagnetic wave when the electromagnetic wave propagates in the left-view section direction of the lens antenna, its principle is consistent with that of the spherical Luneburg lens.
  • the electromagnetic wave In the normal direction (the direction perpendicular to the axial direction), the electromagnetic wave passes through three layers of dielectrics in sequence.
  • the first nested body 122, the second nested body 124 and the tail nested body 126 are shown in the figure.
  • the letter O represents the feed source position.
  • the electromagnetic wave of the feed source O reaches the P point of the isophase plane after passing through the points A, B, C, D, E and F.
  • the letters AF represent the boundary points of different media (nested bodies).
  • the non-normal line direction as shown in the propagation direction in FIG.
  • the electromagnetic wave of the feed source O reaches the P point after passing through the points A1, B1, E1 and F1, that is, the electromagnetic wave passes through the first nested body 122, the second nested body 124, the first nested body 122 and the air in sequence.
  • the path lengths of the two propagation paths OP and OP1 of the electromagnetic wave are different, since the average dielectric constant of the medium passed by the propagation path OP is greater than the average dielectric constant of the medium passed by the propagation path OP1, the technical effect of the points P and P1 being located on the same isophase plane is achieved.
  • the electromagnetic wave when the electromagnetic wave propagates in the side-view section direction of the lens antenna, its propagation path is related to the shape of the lens medium.
  • the electromagnetic wave In the normal direction (the direction perpendicular to the axial direction), the electromagnetic wave sequentially passes through three layers of medium, namely, the first nested body 122, the second nested body 124 and the tail nested body 126.
  • the electromagnetic wave of the feed source O passes through points A, B, C, D, E and F and reaches point P of the isophase plane. Letters A-F represent the boundary points of the two media respectively.
  • the electromagnetic wave of the feed source O reaches the point P1 after passing through points A1, B1, C1, and D1, that is, the electromagnetic wave passes through the first nested body 122, the second nested body 124, the tail nested body 126, and the air in sequence.
  • Figure 3 that is, when propagating in the non-normal line direction, the electromagnetic wave does not necessarily reach the point P1 after being refracted from the first nested body 122, but may also reach the point P1 directly after passing through the second nested body 124 or the tail nested body 126.
  • the electromagnetic wave when the electromagnetic wave is incident, it does not necessarily pass through the first nested body 122 first.
  • the electromagnetic wave When the angle with the normal direction is large, the electromagnetic wave will pass through the tail nested body 126 after being incident, and directly reach the point P1. Although the path lengths of the two propagation paths OP and OP1 of the electromagnetic wave are different, since the average dielectric constant of the medium passed by OP is greater than that of OP1, the technical effect of P and P1 being located on the same equiphase plane is also achieved.
  • Figure 5 is the horizontal plane radiation pattern of the beam of the lens antenna shown in Figure 1.
  • Figure 6 is the vertical plane radiation pattern of the beam of the lens antenna shown in Figure 1. It can be seen from these two figures that the frequency band of the electromagnetic wave is 703-960MHz, the two radiation patterns are basically the same, the side lobe of the horizontal plane radiation pattern is about 20dB, and the side lobe of the vertical plane radiation pattern is about 23dB. The difference between the two values is very small, so it can fully meet the use requirements of the lens antenna.
  • the tail end nested body 126 further includes a tail end annular inclined surface 1264 formed on both axial sides of the tail end cylindrical surface 1262 .
  • the lens antenna is formed by processing the cylindrical lens into a structure with two ends being conical.
  • the cylindrical lens may be processed in other ways to form a lens antenna with more structures and more functions. This will be described below.
  • FIG. 7-8 show a lens antenna 200 according to another embodiment of the present application.
  • the structure of the lens antenna 200 is similar to that of the lens antenna 100, except that:
  • the active surface formed by the first annular inclined surface 2224 of the first nested body 222 , the corresponding second annular inclined surface 2244 of the second nested body 224 and the tail end annular inclined surface 2264 of the tail end nested body 226 is an annular curved surface convex toward the axis of the first nesting hole 2226 .
  • the cone profile of the present application can also be a cone obtained around the axis in various shapes such as various curves or multiple line segments.
  • the cone shape is formed by rotating a curve.
  • the cone obtained by rotation is more symmetrical on a multi-beam antenna that requires multiple feed sources to be placed, and the directional diagrams of different beams are more consistent.
  • the figure obtained by rotation is only one of the ways, and it can also be an irregular cone, such as the upper cone and the lower cone have different shapes.
  • the lens antenna described in this embodiment can achieve similar technical effects as those of the above embodiments, and will not be described in detail here.
  • FIGS. 9-10 show a lens antenna 300 according to another embodiment of the present application.
  • the structure of the lens antenna 300 is similar to that of the lens antenna 100 described in conjunction with FIGS. 1-4, except that: in this embodiment, in addition to the first nested body 322, the second nested body 324 and the tail nested body 326, it further includes a third nested body 321 sleeved in the second nested body 324, a fourth nested body 323 sleeved in the third nested body 321 and a fifth nested body 325 sleeved in the fourth nested body 323; the tail nested body 326 is sleeved in the fifth nested body 325; the corresponding annular inclined surfaces of the first to fifth nested bodies and the active surface formed by the tail nested body 326 are annular curved surfaces protruding outward from the axis of the first nesting hole 3226.
  • the dielectric constants of the six nested bodies from the first nested body 322 to the tail nested body 326 increase in sequence.
  • the first to fifth nested bodies all have corresponding cylindrical surfaces (not numbered), annular inclined surfaces formed on both axial sides of the cylindrical surfaces, and axially penetrating nested holes.
  • the axis of the annular inclined surface of each of the first to fifth nested bodies coincides with the axis of the corresponding cylindrical surface.
  • the lens antenna described in this embodiment can achieve similar technical effects as those of the above embodiments, which will not be described in detail here.
  • FIGS. 9-10 show a lens antenna 400 according to another embodiment of the present application.
  • the structure of the lens antenna 400 is similar to the structure of the lens antenna 300 described in conjunction with FIGS. 9-10 , except that: in this embodiment, the axis of the first annular inclined surface 4224 of the first nested body 422 is aligned with the axis of the first cylindrical surface 4222. A certain angle is formed between them, so it seems that the first annular inclined surface 4224 is slightly inclined relative to the axial direction.
  • the respective axes of the corresponding annular inclined surfaces 4242, 4214, 4234, 4254 of the second to fifth nested bodies 424, 421, 423, 425 also form a certain angle between them and the axes of the respective corresponding cylindrical surfaces.
  • the two axial ends of the tail end nesting body 426 also form a tail end annular inclined surface 4264, and the axis of the tail end annular inclined surface 4264 and the axis of the tail end cylindrical surface (not numbered) of the tail end nesting body 426 also form a certain angle.
  • an opening 42262 is formed at the bottom of the first nesting hole 4226 .
  • the lens antenna 400 is a 6-layer structure, and its two ends are conical, but the center of the cone is inconsistent with the center of the cylinder, so that the overall lens antenna 400 forms an irregular shape, so that the electromagnetic wave can pass through layers of different shapes when it is obliquely incident, thereby achieving the purpose of converting the electromagnetic wave into a plane wave. Due to the irregular shape, the lower end of the first nested body 422 is cut off to form the above-mentioned opening 42262.
  • the lens antenna 400 formed has inclined conical action surfaces at both axial ends.
  • lens antenna 500 according to another embodiment of the present application.
  • the lens antenna 500 in this embodiment is formed by chamfering each axial end face of the cylindrical lens 502 shown in FIG. 15 to form a plurality of, for example, four, evenly distributed chamfered surfaces. Therefore, the structure of the multi-layer nested body of the lens antenna 500 in this embodiment is similar to the lens antenna 300 described in conjunction with FIGS.
  • the first annular inclined surface 5224 of the first nested body 522 is surrounded by a plurality of, for example, four, evenly distributed and sequentially connected chamfered surfaces 52242; similarly, the corresponding annular inclined surfaces of the second to fifth nested bodies 524, 521, 523 and 525 are also surrounded by a plurality of, for example, four, evenly distributed and sequentially connected chamfered surfaces (not numbered).
  • the two axial ends of the tail end nested body 526 also form a plurality of, for example, four, evenly distributed and sequentially connected beveled surfaces (not numbered).
  • the chamfered surface of each of the first to fifth nested bodies is a fan-shaped chamfered surface.
  • the two axial ends of the formed lens antenna 500 have an action surface composed of multiple, for example, 4, evenly distributed and sequentially connected beveled surfaces.
  • these multiple beveled surfaces can be evenly distributed or unevenly distributed, that is, the size of each beveled surface can be different.
  • the lens antenna described in this embodiment can achieve similar technical effects as those of the above embodiments, which will not be described in detail here.
  • the corresponding annular inclined surfaces (not numbered) of the first to fifth nested bodies 622, 624, 621, 623, 625 are surrounded by two sections of evenly distributed and sequentially connected chamfered surfaces; similarly, the axial ends of the tail end nested body 626 also form two sections of evenly distributed and sequentially connected chamfered surfaces (not numbered).
  • the two axial ends of the formed lens antenna 600 have an active surface consisting of two sections of evenly distributed and sequentially connected beveled surfaces.
  • each of the chamfered surfaces in the first to fifth nested bodies is a semicircular chamfered surface.
  • these multiple bevel sections can be evenly distributed or unevenly distributed, that is, the size of each bevel section can be different.
  • the lens antenna described in this embodiment can achieve similar technical effects as those of the above embodiments, and will not be described in detail here.
  • the corresponding annular inclined surfaces (not labeled) of the first to fifth nested bodies 722, 724, 721, 723, 725 are surrounded by multiple, for example, 8, evenly distributed and sequentially connected trapezoidal beveled surfaces, and the tail nested body 726 is a regular polygonal prism structure, such as a regular octagonal prism structure. Accordingly, multiple, for example, 8, evenly distributed and sequentially connected rectangular cut surfaces (not labeled) are formed on the corresponding cylindrical surfaces (not labeled) of the first to fifth nested bodies 722, 724, 721, 723, 725.
  • the lens antenna provided in this application can cover the 5G frequency bands of various operators and has the advantages of simple structure, small size and low cost.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Support Of Aerials (AREA)

Abstract

一种透镜天线,包括:嵌套组件及设置在所述嵌套组件下方的馈源;所述嵌套组件包括至少一个具有第一环形倾斜面的第一嵌套体及嵌入所述第一嵌套体内的尾端嵌套体,所述第一环形倾斜面及尾端嵌套体构成了所述嵌套组件的作用面,所述作用面从所述第一嵌套体到所述尾端嵌套体逐渐变窄。本透镜天线结构简单、易于加工并且水平面和垂直面波束一致。

Description

透镜天线 技术领域
本申请涉及通讯技术领域,尤其涉及一种天线,更具体涉及一种透镜天线。
背景技术
常见的透镜天线有由多层球体组装而成的球形龙伯透镜天线及由多层圆柱体组装而成的圆柱体透镜天线,其共同特点是将馈源放在多层球体或多层圆柱体的一侧,馈源辐射的法线方向穿过球体或圆柱体中心,使电磁波在球体或圆柱体的另一侧形成平面波,从而提升天线增益。
然而,一方面,由于技术水平限制,目前无法制造内部介电常数连续渐变的单一材料。为了实现介电常数的连续渐变特性,通常将球体和圆柱体分成多层,不同层的介电常数从里到外由2到1变化。由于多层球体是封闭构造,其加工难度比多层嵌套的圆柱体大。另一方面,由于球形穿过圆心的各个切面都是一样的,所以天线的水平面和垂直面波束比较一致,增益较高,而圆柱形的一个截面与球形一样是圆,与之垂直的另一截面是矩形,导致天线的水平面和垂直面方向图不一致,天线增益比球形龙伯透镜低,为了提升天线增益,通常在圆柱体的长度方向上增加辐射单元。
概括而言,球形龙伯透镜的水平面和垂直面波束比较一致,但是透镜本身的加工难度高,导致成本上升,而圆柱体透镜虽然加工容易,但是天线的水平面和垂直面的波束比的一致性很低。
因此,实有必要提供一种改进的透镜天线,以克服上述现有技术的缺点,从电气性能、物理特征等诸多方面对现有技术进行优化。
发明内容
本申请的目的在解决上述问题,提供一种透镜天线。
为满足本申请的目的,本申请采用如下技术方案:
一种透镜天线,包括:
嵌套组件及设置在所述嵌套组件下方的馈源;
所述嵌套组件包括至少一个具有第一环形倾斜面的第一嵌套体及嵌入所述第一嵌套体内的尾端嵌套体,所述第一环形倾斜面及尾端嵌套体构成了所述嵌 套组件的作用面,所述作用面从所述第一嵌套体到所述尾端嵌套体逐渐变窄。
相对于现有技术,本申请的优势如下:
由于本申请提供的透镜天线是在圆柱体透镜天线的基础上对其构造进行适当改变而形成,因此其整体结构类似于圆柱体透镜天线,故此整体结构简单、易于加工;同时,由于对圆柱体透镜天线的构造改良是朝着球形龙伯透镜天线的方向进行的,因此改造后的结构在性能上类似于球形龙伯透镜天线,从而也提高了天线增益,实现了多个波束,并且水平面和垂直面波束比较一致;
此外,本申请提供的透镜天线除了厚度及介电常数可以调节,还可以通过调整透镜天线两侧的锥体形状,可以调节穿过透镜不同路径的电磁波的相位,达到调节天线方向图性能的目的;
并且,在相同直径下,本申请提供的透镜天线的尺寸小于圆柱形,也可以小于球形,从而达到小型化的目的。
附图说明
图1为根据本申请一个实施例的透镜天线的立体图。
图2为图1所示透镜天线的立体分解图。
图3为图1所示透镜天线的轴向侧视图,展示了电磁波的辐射路径;
图4为图1所示透镜天线的法向侧视图,展示了电磁波的辐射路径;
图5为图1所示透镜天线的波束的水平面方向图。
图6为图1所示透镜天线的波束的垂直面方向图。
图7为根据本申请另一个实施例的透镜天线的立体图。
图8为图7所示透镜天线的立体分解图。
图9为根据本申请另一个实施例的透镜天线的立体图。
图10为图9所示透镜天线的立体分解图。
图11为根据本申请另一个实施例的透镜天线的立体图。
图12为图11所示透镜天线的立体分解图。
图13为图11所示透镜天线的轴向侧视图。
图14为图11所示透镜天线的法向侧视图。
图15展示了用于形成根据本申请另一个实施例的透镜天线的原始圆柱体透镜天线。
图16a展示了对图15所示的原始圆柱体透镜天线进行加工后形成的透镜天 线的立体图。
图16b展示了图16a所示透镜天线的立体分解图。
图17展示了图16a-16b所示透镜天线的轴向侧视图。
图18展示了图16a-16b所示透镜天线的法向侧视图。
图19展示了用于形成根据本申请另一个实施例的透镜天线的原始圆柱体透镜天线。
图20a展示了对图19所示的原始圆柱体透镜天线进行加工后形成的透镜天线的立体图。
图20b展示了图20a所示透镜天线的立体分解图。
图21展示了图20a所示透镜天线的尾端嵌套体的放大结构图。
图22a展示了对图21所示的原始圆柱体透镜天线进行加工后形成的透镜天线的立体图。
图22b展示了图22a所示透镜天线的立体分解图。
图23展示了图22a-22b所示透镜天线的轴向侧视图。
图24展示了图22a-22b所示透镜天线的法向侧视图。
具体实施方式
根据本申请的一个实施例,结合图1-4,一种透镜天线100包括:
嵌套组件12及设置在所述嵌套组件12下方的馈源14;
所述嵌套组件12包括:第一嵌套体122,其具有第一圆柱面1222、形成于所述第一圆柱面1222轴向两侧的第一环形倾斜面1224及轴向贯通的第一嵌套孔1226;第二嵌套体124,其具有第二圆柱面1242、形成于所述第二圆柱面1242轴向两侧的第二环形倾斜面1244及轴向贯通的第二嵌套孔1246;及尾端嵌套体126,其具有尾端圆柱面1262;
所述尾端嵌套体126套设在所述第二嵌套孔1246内,所述第二嵌套体124套设在所述第一嵌套孔1226内;每个所述第一环形倾斜面1224、对应的第二环形倾斜面1244及尾端环形倾斜面1264构成了所述嵌套组件12的一个作用面,每个所述作用面为锥形作用面。
参考图3,当电磁波在透镜天线的左视切面方向上传播时,其原理与球形龙伯透镜一致。在法线方向(与轴向垂直的方向)上,电磁波依次穿过了3层介 质,也就是所述第一嵌套体122、第二嵌套体124及尾端嵌套体126,在该图中,字母O表示馈源位置,馈源O的电磁波经过A、B、C、D、E、F点后到达等相位面的P点,字母A-F分别代表不同介质(嵌套体)的分界点。在非法线方向,如图3中传播方向所示,馈源O的电磁波经过A1、B1、E1、F1点后到达P1点,即电磁波依次经过第一嵌套体122、第二嵌套体124、第一嵌套体122及空气。虽然电磁波的两个传播路径OP与OP1的路径长度不同,但由于传播路径OP经过的介质的平均介电常数大于传播路径OP1经过的介质的平均介电常数,因此实现P点和P1点位于同一个等相位面上的技术效果。
类似地,参考图4,当电磁波在透镜天线的侧视切面方向上传播时,其传播路径与透镜介质的形状相关。在法线方向(与轴向垂直的方向)上,电磁波依次穿过了3层介质,也就是所述第一嵌套体122、第二嵌套体124及尾端嵌套体126,馈源O的电磁波经过A、B、C、D、E、F点后到达等相位面的P点,字母A-F分别代表两种介质的分界点。在非法线方向图,如图中传播方向所示,馈源O的电磁波经过A1、B1、C1、D1点后到达P1点,即电磁波依次经过第一嵌套体122、第二嵌套体124及尾端嵌套体126及空气,这点与图3不同,即在非法线方向传播时,电磁波不一定都从第一嵌套体122折射后到达P1点,也可能从第二嵌套体124或尾端嵌套体126穿出后直接到达P1点,同理,电磁波入射时也不一定先穿过第一嵌套体122,与法线方向的夹角较大时,电磁波会从尾端嵌套体126入射后从该尾端嵌套体126穿出,直接到达P1点。虽然电磁波的两个传播路径OP与OP1的路径长度不同,但由于OP经过的介质平均介电常数大于OP1,因此也实现了P和P1位于同一个等相位面上的技术效果。
图5为图1所示透镜天线的波束的水平面方向图。图6为图1所示透镜天线的波束的垂直面方向图。从这两个图可以看出:电磁波的频段为703-960MHz,两个方向图基本一致,水平面方向图的副瓣约为20dB,垂直面方向图的副瓣约为23dB,两个数值差异很小,因此完全能满足透镜天线的使用需求。
优选地,所述尾端嵌套体126进一步包括形成于所述尾端圆柱面1262轴向两侧的尾端环形倾斜面1264。
在上述实施例中,通过将圆柱体透镜加工为两端为圆锥形的构造而形成了上述透镜天线。在本申请的其他实施例中,也可以对圆柱体透镜进行其他加工,从而形成更多构造和实现更多功能的透镜天线。下面对此继续描述。
图7-8展示了根据本申请另一个实施例的透镜天线200。该实施例中描述的 透镜天线200与上述透镜天线100的结构类似,区别在于:
第一嵌套体222的第一环形倾斜面2224、对应的第二嵌套体224的第二环形倾斜面2244及尾端嵌套体226的尾端环形倾斜面2264所构成的作用面为朝着第一嵌套孔2226的轴心凸出的环形曲面。
由结合图3-4描述的电磁波从馈源沿着透镜天线传播的方式可知:电磁波在侧视图方向的传播与透镜天线的形状之间的关系较大,本申请的锥体轮廓除了结合图1-2通过直线旋转得到的圆锥形轮廓外,还可以是各类曲线或多个线段等不同形状绕轴线得到的锥体。比如在结合图7-8描述的透镜天线200中,锥体形状为曲线旋转而成。通过旋转得到的锥体在需要放置多个馈源的多波束天线上更具对称性,不同波束的方向图更一致。然而,需要指出的是,旋转得到的图形只是其中一种方式,也可以是不规则的锥体,如上半锥体与下半锥体形状不一样。
该实施例中描述的透镜天线可以实现与上述实施例类似的技术效果,在此不再赘述。
图9-10展示了根据本申请另一个实施例的透镜天线300。该透镜天线300的结构与结合图1-4描述的透镜天线100的结构类似,区别在于:在该实施例中,除了第一嵌套体322、第二嵌套体324及尾端嵌套体326之外,进一步包括套设在所述第二嵌套体324内的第三嵌套体321、套设在所述第三嵌套体321内的第四嵌套体323及套设在所述第四嵌套体323内的第五嵌套体325;所述尾端嵌套体326套设在所述第五嵌套体325内;所述第一到第五嵌套体的对应环形倾斜面及尾端嵌套体326所构成的作用面为从第一嵌套孔3226的轴心向外凸出的环形曲面。
在该实施例中,从第一嵌套体322依次到尾端嵌套体326的六个嵌套体的介电常数依次增大。此外,第一到第五嵌套体均具有相应的圆柱面(未标号)、形成于所述圆柱面轴向两侧的环形倾斜面及轴向贯通的嵌套孔。并且,所述第一到第五嵌套体中的每一个的环形倾斜面的轴线与对应圆柱面的轴线重合。
该实施例中描述的透镜天线可以实现与上述实施例类似的技术效果,在此不再赘述。
图11-14展示了根据本申请另一个实施例的透镜天线400。该透镜天线400的结构与结合图9-10描述的透镜天线300的结构类似,区别在于:在该实施例中,第一嵌套体422的第一环形倾斜面4224的轴线与第一圆柱面4222的轴线 之间形成一定角度,因此看起来第一环形倾斜面4224是相对于轴向稍微倾斜设置。类似地,第二到第五嵌套体424、421、423、425的相应环形倾斜面4242、4214、4234、4254各自的轴线与各自对应的圆柱面的轴线之间也形成一定角度。
对应地,尾端嵌套体426的轴向两端也形成尾端环形倾斜面4264,其轴线与所述尾端嵌套体426的尾端圆柱面(未标号)的轴线之间也形成一定角度。
此外,第一嵌套孔4226的底部形成开口42262。
在该实施例中,透镜天线400为6层结构,其两端为圆锥形,但圆锥形的中心与圆柱形的中心不一致,使整体透镜天线400形成不规则形状,使电磁波斜入射时可以穿过不同形状的层,从而实现将电磁波转化为平面波的目的。由于形状不规则,因此所述第一嵌套体422的下端被切断而形成上述开口42262。
当将这些嵌套体互相嵌套组合后,所形成的透镜天线400的轴向两端具有倾斜的圆锥面形状的作用面。
该实施例中描述的透镜天线可以实现与上述实施例类似的技术效果,在此不再赘述。
图15-18展示了根据本申请另一个实施例的透镜天线500。通过将图15所示的圆柱体透镜502的每个轴向端面斜切而形成多个比如4个均匀分布的斜切面而形成本实施例中的透镜天线500。因此,本实施例中的透镜天线500的多层嵌套体的结构与结合图9-10描述的透镜天线300类似,区别在于:在当前实施例中,第一嵌套体522的第一环形倾斜面5224由多段比如4段均匀分布并且依次衔接的斜切面52242围成;类似地,第二到第五嵌套体524、521、523及525的相应环形倾斜面也由多段比如4段均匀分布并且依次衔接的斜切面(未标号)围成。
进一步地,尾端嵌套体526的轴向两端也形成多段比如4段均匀分布并且依次衔接的斜切面(未标号)。
在上述实施例中,从第一到第五嵌套体中的每个的斜切面为扇形斜切面。
当将这些嵌套体互相嵌套组合后,所形成的透镜天线500的轴向两端具有由多段比如4段均匀分布并且依次衔接的斜切面构成的作用面。此外,需要注意的是:这些多段斜切面可以是均匀分布,也可以是不均分布,也就是每个斜切面的大小可以不同。
该实施例中描述的透镜天线可以实现与上述实施例类似的技术效果,在此不再赘述。
图19-21展示了根据本申请另一个实施例的透镜天线600。通过将图19所示的圆柱体透镜602的每个轴向端面斜切而形成多个比如2个均匀分布的斜切面而形成本实施例中的透镜天线600。因此,本实施例中的透镜天线600的多层嵌套体的结构与结合图15-18描述的透镜天线500类似,区别在于:在当前实施例中,第一到第五嵌套体622、624、621、623、625的相应环形倾斜面(未标号)由2段均匀分布并且依次衔接的斜切面围成;类似地,尾端嵌套体626的轴向两端也形成2段均匀分布并且依次衔接的斜切面(未标号)。
当将这些嵌套体互相嵌套组合后,所形成的透镜天线600的轴向两端具有由2段均匀分布并且依次衔接的斜切面构成的作用面。
在上述实施例中,从第一到第五嵌套体中的每个斜切面为半圆环形斜切面。
此外,需要注意的是:这些多段斜切面可以是均匀分布,也可以是不均分布,也就是每个斜切面的大小可以不同。
该实施例中描述的透镜天线可以实现与上述实施例类似的技术效果,在此不再赘述。
图22-24展示了根据本申请另一个实施例的透镜天线700。本实施例中的透镜天线700的多层嵌套体的结构与结合图15-18描述的透镜天线500类似,区别在于:在当前实施例中,第一到第五嵌套体722、724、721、723、725的相应环形倾斜面(未标号)由多段比如8段均匀分布并且依次衔接的梯形斜切面围成,而尾端嵌套体726为正多边形棱柱结构,比如正八边形棱柱结构。相应地,第一到第五嵌套体722、724、721、723、725的相应圆柱面(未标号)上形成多段比如8段均匀分布并且依次衔接的矩形切面(未标号)。
需要说明的是:除正八边形外,所述透镜天线的主体结构可以是任意多边形组成的形状,如三角形,四边形,六边形等等,多边形的边长可以不等。进一步的,主体结构可以是中间部分为多边形柱体,两侧为圆锥形或其它曲线旋转而成的锥体。该实施例中描述的透镜天线可以实现与上述实施例类似的技术效果,在此不再赘述。
综上所述,本申请提供的透镜天线可覆盖各运商的5G频段,具备结构简单、体积小和成本低的优点。

Claims (17)

  1. 一种透镜天线,其特征在于包括:
    嵌套组件及设置在所述嵌套组件下方的馈源;
    所述嵌套组件包括至少一个具有第一环形倾斜面的第一嵌套体及嵌入所述第一嵌套体内的尾端嵌套体,所述第一环形倾斜面及尾端嵌套体构成了所述嵌套组件的作用面,所述作用面从所述第一嵌套体到所述尾端嵌套体逐渐变窄。
  2. 根据权利要求1所述的透镜天线,其特征在于:所述第一嵌套体具有第一圆柱面、形成于所述第一圆柱面轴向两侧的第一环形倾斜面及轴向贯通的第一嵌套孔;所述尾端嵌套体具有尾端圆柱面。
  3. 根据权利要求2所述的透镜天线,其特征在于:所述嵌套组件进一步包括第二嵌套体,其具有第二圆柱面、形成于所述第二圆柱面轴向两侧的第二环形倾斜面及轴向贯通的第二嵌套孔。
  4. 根据权利要求3所述的透镜天线,其特征在于:所述尾端嵌套体套设在所述第二嵌套孔内,第二嵌套体套设在所述第一嵌套孔内。
  5. 根据权利要求3所述的透镜天线,其特征在于:所述尾端嵌套体进一步包括形成于所述尾端圆柱面轴向两侧的尾端环形倾斜面;所述第一环形倾斜面、对应的第二环形倾斜面及尾端环形倾斜面构成了所述作用面,所述作用面为锥形作用面。
  6. 根据权利要求4所述的透镜天线,其特征在于:所述第一环形倾斜面、第二环形倾斜面及尾端环形倾斜面所构成的作用面为朝着所述第一嵌套孔的轴心凸出的环形曲面。
  7. 根据权利要求3所述的透镜天线,其特征在于:所述嵌套组件进一步包括套设在所述第二嵌套体内的第三嵌套体、套设在所述第三嵌套体内的第四嵌套体及套设在所述第四嵌套体内的第五嵌套体;所述尾端嵌套体套设在所述第五嵌套体内;所述第二到第五嵌套体均具有对应的圆柱面、形成于对应圆柱面轴向两侧的环形倾斜面及轴向贯通的嵌套孔。
  8. 根据权利要求7所述的透镜天线,其特征在于:所述第一到第五嵌套体的对应环形倾斜面及尾端嵌套体构成了所述作用面,所述作用面为从第一嵌套孔的轴心向外凸出的环形曲面。
  9. 根据权利要求8所述的透镜天线,其特征在于:从所述第一嵌套体依次到尾端嵌套体的六个嵌套体的介电常数依次增大。
  10. 根据权利要求8所述的透镜天线,其特征在于:第一到第五嵌套体中的每一个的环形倾斜面的轴线与各自圆柱面的轴线重合。
  11. 根据权利要求8所述的透镜天线,其特征在于:所述第一到第五嵌套体中的每一个的环形倾斜面的轴线与各自圆柱面的轴线之间形成夹角;所述尾端嵌套体的轴向两端也形成尾端环形倾斜面,其轴线与所述尾端嵌套体的尾端圆柱面的轴线之间也形成夹角。
  12. 根据权利要求11所述的透镜天线,其特征在于:所述第一嵌套孔的底部形成开口。
  13. 根据权利要求7所述的透镜天线,其特征在于:所述第一到第五嵌套体的相应环形倾斜面由多段均匀分布并且依次衔接的斜切面围成。
  14. 根据权利要求13所述的透镜天线,其特征在于:所述尾端嵌套体的轴向两端也形成多段均匀分布并且依次衔接的斜切面。
  15. 根据权利要求14所述的透镜天线,其特征在于:所述第一到第五嵌套体中每个的斜切面为扇形斜切面或半圆环斜切面或梯形斜切面。
  16. 根据权利要求13所述的透镜天线,其特征在于:所述尾端嵌套体的尾端圆柱面上形成八段均匀分布并且依次衔接的矩形切面,从而形成正多边形棱柱结构的尾端嵌套体。
  17. 根据权利要求16所述的透镜天线,其特征在于:所述第一到第五嵌套体的相应圆柱面上形成八段均匀分布并且依次衔接的矩形切面。
PCT/CN2023/128263 2022-12-31 2023-10-31 透镜天线 WO2024139658A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211735203.6A CN116417805A (zh) 2022-12-31 2022-12-31 透镜天线
CN202211735203.6 2022-12-31

Publications (1)

Publication Number Publication Date
WO2024139658A1 true WO2024139658A1 (zh) 2024-07-04

Family

ID=87050439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128263 WO2024139658A1 (zh) 2022-12-31 2023-10-31 透镜天线

Country Status (2)

Country Link
CN (1) CN116417805A (zh)
WO (1) WO2024139658A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116417805A (zh) * 2022-12-31 2023-07-11 京信通信技术(广州)有限公司 透镜天线

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140022126A1 (en) * 2012-07-20 2014-01-23 Raytheon Company Geodesic Lens Antenna with Azimuth and Elevation Beamforming
CN205122778U (zh) * 2015-02-16 2016-03-30 航天特种材料及工艺技术研究所 一种半球龙伯透镜天线
CN106207482A (zh) * 2016-08-16 2016-12-07 成都信息工程大学 柱状分层龙勃透镜
WO2019034119A1 (zh) * 2017-08-18 2019-02-21 西安肖氏天线科技有限公司 一种超轻人工介质多层圆柱透镜
CN112216983A (zh) * 2020-11-20 2021-01-12 江苏晨创科技有限公司 一种应用于s波段的龙伯透镜天线
CN113471682A (zh) * 2021-07-05 2021-10-01 广东曼克维通信科技有限公司 一种透镜天线
CN114597632A (zh) * 2022-02-14 2022-06-07 广东盛路通信科技股份有限公司 一种双频多波束龙伯透镜天线
US20220239007A1 (en) * 2021-01-26 2022-07-28 Envistacom, Llc Luneburg lens-based satellite antenna system
CN116417805A (zh) * 2022-12-31 2023-07-11 京信通信技术(广州)有限公司 透镜天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210159597A1 (en) * 2019-11-25 2021-05-27 Envistacom, Llc High-gain, wide-angle, multi-beam, multi-frequency beamforming lens antenna
CN113451782B (zh) * 2021-06-03 2022-11-08 中山大学 一种具备宽扫描角度的平面龙伯透镜天线
CN114583464A (zh) * 2022-03-07 2022-06-03 成都频岢微电子有限公司 一种三层多波束龙伯透镜天线

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140022126A1 (en) * 2012-07-20 2014-01-23 Raytheon Company Geodesic Lens Antenna with Azimuth and Elevation Beamforming
CN205122778U (zh) * 2015-02-16 2016-03-30 航天特种材料及工艺技术研究所 一种半球龙伯透镜天线
CN106207482A (zh) * 2016-08-16 2016-12-07 成都信息工程大学 柱状分层龙勃透镜
WO2019034119A1 (zh) * 2017-08-18 2019-02-21 西安肖氏天线科技有限公司 一种超轻人工介质多层圆柱透镜
CN112216983A (zh) * 2020-11-20 2021-01-12 江苏晨创科技有限公司 一种应用于s波段的龙伯透镜天线
US20220239007A1 (en) * 2021-01-26 2022-07-28 Envistacom, Llc Luneburg lens-based satellite antenna system
CN113471682A (zh) * 2021-07-05 2021-10-01 广东曼克维通信科技有限公司 一种透镜天线
CN114597632A (zh) * 2022-02-14 2022-06-07 广东盛路通信科技股份有限公司 一种双频多波束龙伯透镜天线
CN116417805A (zh) * 2022-12-31 2023-07-11 京信通信技术(广州)有限公司 透镜天线

Also Published As

Publication number Publication date
CN116417805A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US4658258A (en) Taperd horn antenna with annular choke channel
CN107275788B (zh) 一种基于金属微扰结构的毫米波扇形波束柱面龙伯透镜天线
US2599896A (en) Dielectrically wedged biconical antenna
WO2024139658A1 (zh) 透镜天线
US11431101B2 (en) Artificial dielectric material and focusing lenses made of it
US4467330A (en) Dielectric structures for radomes
EP3959776A1 (en) Artificial dielectric material and focusing lenses made of it
US12322372B2 (en) Acoustic Luneburg meta lens and design method thereof
US11616307B2 (en) Artificial dielectric material and focusing lenses made of it
NZ752904A (en) Artificial dielectric material and focusing lenses made of it
CN206098624U (zh) 一种类y型双层旋转互补超材料微单元结构
CN108767488B (zh) 频率选择表面、频率选择表面结构及天线罩
US6721103B1 (en) Method for fabricating luneburg lenses
CN217134688U (zh) 人工介电材料及由其制成的聚焦透镜
CN118117309A (zh) 一种多层介质透镜天线
US8729511B2 (en) Electromagnetic wave beam splitter
TWI736448B (zh) 球形梯度折射率透鏡
CN107359421B (zh) 基于羊角状基本单元结构的左手材料
CN112134026B (zh) 一种三维结构的多频超材料吸波体
CN216488529U (zh) 基于人造介电材料的电磁透镜
CN116613540A (zh) 一种具有匹配层的聚焦透镜
CN116826387A (zh) 应用于5g通信的球形透镜
JP2018148292A (ja) 分配合成回路
US10581179B2 (en) Symmetric leaky wave antenna
US9142892B2 (en) Metamaterial and metamaterial antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23909591

Country of ref document: EP

Kind code of ref document: A1