WO2024135690A1 - Polyurethane foam and composition for producing polyurethane foam - Google Patents
Polyurethane foam and composition for producing polyurethane foam Download PDFInfo
- Publication number
- WO2024135690A1 WO2024135690A1 PCT/JP2023/045528 JP2023045528W WO2024135690A1 WO 2024135690 A1 WO2024135690 A1 WO 2024135690A1 JP 2023045528 W JP2023045528 W JP 2023045528W WO 2024135690 A1 WO2024135690 A1 WO 2024135690A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyurethane foam
- mass
- technology
- parts
- polyol
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/36—Hydroxylated esters of higher fatty acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/16—Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2101/00—Manufacture of cellular products
Definitions
- This technology relates to polyurethane foams and compositions for producing polyurethane foams.
- Polyurethane foams are used in a wide variety of fields, from furniture such as sofas and chairs, bedding such as mattresses and pillows, clothing such as underwear, daily necessities such as dish sponges and cleaning sponges, interior products for vehicles and aircraft such as car seats, toys, and miscellaneous goods.
- Various developments are being carried out to improve quality and add new functions according to each field and purpose.
- Patent Document 1 discloses a rigid polyurethane foam produced using a prepolymer that is a reaction product of at least one polyisocyanate component, at least one hydroxy-functional acrylate component, and at least one polyol component that is a biopolymer containing castor oil, soybean oil, etc.
- Patent Document 2 discloses a technique for producing biodegradable polyurethane foams using a composition containing a mixture based on poly(hydroxybutyrate) polymer, renewable polyol, isocyanate, and additives.
- the main objective of this technology is to provide a technique for producing new polyurethane foams that can reduce the environmental burden.
- the biodegradability after 45 days is 15% or less, To provide a polyurethane foam having a biodegradability of 30% or more after 180 days.
- the polyurethane foam according to the present technology can use a biomass-derived ester polyol as a raw material.
- the polyurethane foam according to the present technology may also use a primary amine as a raw material.
- a polyol and Biomass-derived isocyanate comprising:
- the polyol used in the composition for producing a polyurethane foam according to the present technology can include a biomass-derived polyol.
- the present technology also provides a polyurethane foam formed using the composition for producing a polyurethane foam according to the present technology.
- the biomass content of the polyurethane foam according to the present technology can be 50% or more.
- the polyurethane foam according to the present technology is characterized in that, in the ISO 14885-2 biodegradability test, the biodegradability after 45 days is 15% or less and the biodegradability after 180 days is 30% or more. Since the polyurethane foam according to the present technology has a biodegradability of 15% or less after 45 days, it is possible to prevent early deterioration and maintain quality for a certain period of time. Furthermore, since the polyurethane foam according to the present technology has a biodegradability of 30% or more after 180 days, it is possible to exhibit good biodegradability in a general environment.
- the polyurethane foam according to the present technology may be any of flexible, rigid, and semi-rigid polyurethane foams, but is preferably flexible. Specifically, it is preferable for the polyurethane foam to have an elongation of 50% or more, and more preferably, it is preferable for the polyurethane foam to have an elongation of 90% or more. A polyurethane foam having an elongation in this range is sufficiently flexible compared to semi-rigid and rigid polyurethane foams, and can be said to be a flexible polyurethane foam.
- the hardness of the polyurethane foam according to the present technology is not particularly limited as long as it does not impair the purpose and effect of the present technology, but the lower limit is, for example, 10 or more, preferably 20 or more, more preferably 30 or more, and even more preferably 40 or more.
- the upper limit of the hardness of the polyurethane foam is, for example, 100 or less, preferably 90 or less, more preferably 80 or less, and even more preferably 70 or less.
- the hardness is a value measured using an Asker rubber hardness tester type F.
- the foam density of the polyurethane foam according to the present technology is not particularly limited as long as it does not impair the purpose and effects of the present technology, but the lower limit is, for example, 20 kg/m 3 , preferably 40 kg/m 3 , more preferably 60 kg/m 3 , and even more preferably 70 kg/m 3.
- the upper limit of the foam density of the polyurethane foam is, for example, 200 kg/m 3 , preferably 150 kg/m 3 , more preferably 100 kg/m 3 , and even more preferably 90 kg/m 3. By setting the foam density within this range, the appearance of the polyurethane foam is further improved.
- yeast fungi that break down polyurethane were being developed, but these fungi were specialized decomposition fungi and had the problem of not being biodegradable in general environments.
- conventional foams that were highly biodegradable even in general environments also had the problem of rapid deterioration and poor quality retention.
- the polyurethane foam related to this technology has good quality retention, despite being biodegradable even in general environments.
- the polyurethane foam of this technology can be used for a wide variety of purposes in a wide variety of fields, taking advantage of its high quality.
- it can be used favorably in furniture such as sofas and chairs, bedding such as mattresses and pillows, clothing such as underwear, daily necessities such as tableware and cleaning sponges, vehicle and aircraft interior products such as car seats, architectural joint materials, architectural cushioning materials, architectural sealing materials, home appliance sealing materials, soundproofing materials, packaging materials, vehicle insulation materials, condensation prevention materials, interior materials, home appliance insulation materials, pipe insulation materials, various covers, cushioning materials, toys, miscellaneous goods, etc.
- the polyurethane foam according to the present technology can use biomass-derived ester polyols and primary amines as raw materials.
- other materials that can be used as raw materials for general polyurethane foams can be freely selected and used as long as they do not impair the purpose and effects of the present technology.
- the composition for producing the polyurethane foam according to the present technology will be described below.
- the polyurethane foam manufacturing composition used in this technology can contain biodegradable polyols, isocyanates, primary amines, blowing agents, catalysts, foam stabilizers, biodegradation accelerators, etc. Each component is described in detail below.
- Biodegradable polyols As the biodegradable polyols that can be used in the present technology, one or more biodegradable polyols that can be used in the production of polyurethane foams can be freely selected and used as long as the purpose and effect of the present technology are not impaired.
- polyglycolic acid PGA
- polylactic acid PLA
- polybutylene succinate PBS
- polybutylene succinate adipate PBSA
- polybutylene adipate terephthalate PBAT
- PCL polycaprolactone
- PEG polyethylene glycol
- PVA polyvinyl alcohol
- PHA polyhydroxyalkanoic acid
- cellulose cellulose acetate, chitosan, starch, modified starch, xylitol, sorbitol, mannitol, maltitol, castor oil-based polyols, and other hydroxyl-containing biomass-derived ester-based polyols can be mentioned.
- a biomass-derived ester-based polyol having a hydroxyl group such as a castor oil-based polyol represented by the following chemical formula (1), and polycaprolactone (PCL) represented by the following chemical formula (2) may be used in combination.
- PCL polycaprolactone
- the content of the biodegradable polyol per 100 parts by mass of polyol is, for example, 50 parts by mass or more, preferably 55 parts by mass or more, more preferably 60 parts by mass or more, and even more preferably 65 parts by mass or more.
- the upper limit of the content of biodegradable polyol per 100 parts by mass of polyol is not particularly limited as long as it does not impair the action or effect of the present technology, and in consideration of biodegradability, it is preferable to use all biodegradable polyols.
- the upper limit of the content of plant-derived polyol per 100 parts by mass of polyol can be set, for example, to 100 parts by mass or less, 90 parts by mass or less, 85 parts by mass or less, 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, etc.
- the isocyanate that can be used in the present technology can be freely selected from one or more isocyanates that can be used in the production of polyurethane foam, as long as the purpose and effect of the present technology are not impaired.
- Examples of the isocyanate that can be used in the present technology include aromatic isocyanates, aliphatic isocyanates, and alicyclic isocyanates.
- Aromatic isocyanates that can be used in this technology include, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, xylylene diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, and 3,3'-dimethoxy-4,4'-biphenylene diisocyanate.
- an aliphatic isocyanate and/or an alicyclic isocyanate as the isocyanate.
- Aliphatic isocyanates and alicyclic isocyanates have the characteristic of being highly degradable, and therefore can contribute to the environment.
- the polyurethane foam of this technology is decomposed into an isocyanate-derived amine and a polyol by hydrolysis of the ester bond portion derived from the polyol and the urethane bond derived from the polyol and isocyanate.
- aliphatic isocyanates and/or alicyclic isocyanates which have degradability, as the isocyanate, a highly degradable polyurethane foam can be produced.
- Aliphatic isocyanates include, for example, trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), hexamethylene diisocyanate (HDI), pentamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate, These include isocyanate methyl caproate, lysine diisocyanate, trimethylhexamethylene diisocyanate, 1,5-pentamethylene diisocyanate (PDI), decamethylene diisocyanate, lysine ester triisocyanate, 1,6,11-undecane triisocyanate, 1,3,6-hexamethylene triisocyanate, and lys
- Alicyclic isocyanates include 1,3-cyclopentane diisocyanate, 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), dimer acid diisocyanate, transcyclohexane 1,
- IPDI isophorone diisocyanate
- isocyanates include monocyclic alicyclic isocyanates such as 4-diisocyanate, hydrogenated tolylene diisocyanate (hydrogenated TDI), and hydrogenated tetramethylxylylene diisocyanate (hydrated TMXDI); and crosslinked cyclic alicyclic isocyanates such as norbornene diisocyanate, norbornane diisocyanate
- HDI isocyanurate (HDI trimer, 2,4,6-trioxo-1,3,5-triazine-1,3,5-triyltris(6,1-hexanediyl)triisocyanate) represented by the following chemical formula (3), which is a trimer of hexamethylene diisocyanate (HDI), 1,5-PDI isocyanurate represented by the following chemical formula (4), which is a trimer of 1,5-pentamethylene diisocyanate (PDI), and lysine triisocyanate (LTI (2,6-Diisocyanato hexanoic acid 2-isocyanatoethyl ester)) represented by the following chemical formula (5).
- HDI trimer 2,4,6-trioxo-1,3,5-triazine-1,3,5-triyltris(6,1-hexanediyl)triisocyanate
- PDI 1,5-PDI isocyanurate
- LTI 2,6
- the number of carbon atoms in the isocyanate used in this technology is no particular limit to the number of carbon atoms in the isocyanate used in this technology, but for example, when using a trimer of isocyanate, it is preferable that the number of carbon atoms in the monomeric isocyanate is 6 or more.
- the isocyanate group (NCO group) content (NCO%) in the isocyanate used in this technology can be, for example, 50% or less, 40% or less, preferably 35% or less, and more preferably 30% or less.
- the amount of isocyanate used in this technology can be freely set as long as it does not impair the purpose and effects of this technology.
- the lower limit of the isocyanate in the composition is, for example, 20 parts by mass or more, preferably 40 parts by mass or more, more preferably 50 parts by mass or more, even more preferably 60 parts by mass or more, and particularly preferably 70 parts by mass or more, per 100 parts by mass of polyol.
- the upper limit of the isocyanate content in the composition is, for example, 200 parts by mass or less, preferably 150 parts by mass or less, more preferably 130 parts by mass or less, and even more preferably 100 parts by mass or less, per 100 parts by mass of polyol. Setting the upper limit of the isocyanate content in the composition within this range has the advantage of reducing costs.
- the isocyanate index can also be freely set as long as it does not impair the purpose and effect of the technology.
- the lower limit of the isocyanate index is, for example, 60 or more, preferably 70 or more, and more preferably 80 or more.
- the upper limit of the isocyanate index is, for example, 130 or less, preferably 120 or less, and more preferably 110 or less. Setting the upper limit of the isocyanate index content of the polyurethane foam within this range has the benefit of reducing costs, and also prevents the polyurethane foam from becoming too hard, making it brittle and losing its flexibility, thereby improving the elasticity of the polyurethane foam.
- the isocyanate index is a value calculated by [(isocyanate equivalent in the composition for producing polyurethane foam/active hydrogen equivalent in the composition for producing polyurethane foam) x 100].
- Primary amines can be used.
- primary amines having at least one primary amino group and an active hydrogen group such as a hydroxyl group and having two to four functional groups can be used in the present technology.
- the balance between the resinification reaction and the foaming reaction is very important. For example, if the resinification reaction is slower than the foaming reaction, the thickening of the polyurethane foam manufacturing composition is also slower, which means that the gas generated in the foaming reaction is more likely to escape, resulting in unstable foaming behavior. In addition, the cure time is longer, which makes it unsuitable for general molding, making it difficult to mass-produce, and causing problems such as poor design of the manufactured polyurethane foam.
- this technology uses primary amines to hasten the initial thickening (cream time), promote internal heat generation, improve the reactivity of the resinification reaction, and increase the reactivity of the foaming reaction to shorten the rise time.
- one method is to increase the amount of catalyst to increase reactivity, but increasing the amount of catalyst causes problems such as destabilizing the resinification reaction and foaming reaction.
- Another method is to use a prepolymer that has been partially reacted with polyol and/or isocyanate in advance as a raw material to shorten the reaction time, but because prepolymers have a high viscosity, there is a problem that the increase in viscosity of the raw material mixture reduces the stirrability.
- this technology by using a primary amine, there is no need to increase the amount of catalyst, and the resinification reaction and foaming reaction are stabilized. Furthermore, because the reactivity is high even without using a prepolymer, it is possible to suppress the increase in viscosity of the raw material mixture and prevent a decrease in stirrability.
- the amount of primary amine used in the polyurethane foam production composition according to the present technology can be freely set as long as it does not impair the purpose and effect of the technology.
- the lower limit of the content of primary amine in the polyurethane foam production composition is, for example, 0.5 parts by mass or more, preferably 1 part by mass or more, and more preferably 2 parts by mass or more, per 100 parts by mass of polyol.
- the upper limit of the content of the primary amine in the composition for producing polyurethane foam is, for example, 20 parts by mass or less, preferably 15 parts by mass or less, more preferably 10 parts by mass or less, and even more preferably 7 parts by mass or less, per 100 parts by mass of polyol.
- the number average molecular weight of the primary amine that can be used in this technology is not particularly limited as long as it does not impair the purpose and effect of this technology.
- the lower limit of the number average molecular weight of the primary amine that can be used in this technology is, for example, 800 or more, preferably 1800 or more, and more preferably 2400 or more.
- the weight average molecular weight of the primary amine that can be used in this technology is not particularly limited as long as it does not impair the purpose and effect of this technology.
- the lower limit of the weight average molecular weight of the primary amine that can be used in this technology is, for example, 800 or more, preferably 1800 or more, and more preferably 2400 or more.
- the lower limit of the number average molecular weight and/or weight average molecular weight of the primary amine that can be used in this technology within this range, it is possible to prevent instability of the resinification reaction and the foaming reaction due to excessively high reactivity during production, and also to prevent a decrease in stirrability due to an increase in viscosity during prepolymerization. In addition, it is possible to maintain a good balance between the resinification reaction and the foaming reaction, and to prevent uneven foaming, uneven hardness, and poor foaming, etc.
- the upper limit of the number average molecular weight of the primary amine that can be used in this technology is, for example, 12,000 or less, preferably 8,000 or less, and more preferably 6,000 or less.
- the upper limit of the weight average molecular weight of the primary amine that can be used in this technology is, for example, 12,000 or less, preferably 8,000 or less, and more preferably 6,000 or less.
- the number of oxyalkylene repeat units in the primary amine that can be used in this technology is not particularly limited as long as it does not impair the purpose and effect of this technology.
- the lower limit of the number of oxyalkylene repeat units in the primary amine that can be used in this technology is, for example, 10 or more, preferably 20 or more, more preferably 30 or more, and even more preferably 40 or more.
- the upper limit of the number of oxyalkylene repeat units in the primary amine that can be used in this technology is, for example, 200 or less, preferably 160 or less, more preferably 120 or less, and even more preferably 100 or less.
- the reactivity during production can be improved.
- a good balance between the resinification reaction and the foaming reaction can be maintained, and ultimately a polyurethane foam with excellent mechanical properties and design properties can be obtained.
- the kinetic viscosity of the primary amine that can be used in this technology is not particularly limited as long as it does not impair the purpose and effect of this technology.
- the lower limit of the kinetic viscosity of the primary amine that can be used in this technology is, for example, 100 cSt or more, preferably 200 cSt or more, and more preferably 300 cSt or more at 25°C.
- the upper limit of the kinetic viscosity of the primary amine that can be used in this technology is, for example, 2000 cSt or less, preferably 1500 cSt or less, and more preferably 1000 cSt or less at 25°C.
- the amine hydrogen equivalent (AHEW) of the primary amine that can be used in this technology is not particularly limited as long as it does not impair the purpose and effect of this technology.
- the lower limit of the amine hydrogen equivalent (AHEW) of the primary amine that can be used in this technology is, for example, 100 or more, preferably 200 or more, and more preferably 300 or more.
- the upper limit of the amine hydrogen equivalent (AHEW) of the primary amine that can be used in this technology is, for example, 2000 or less, preferably 1500 or less, and more preferably 1000 or less.
- AHEW amine hydrogen equivalent
- the amine hydrogen equivalent weight (AHEW) of a primary amine is defined as the molecular weight of a polyetheramine divided by the number of active amine hydrogens per molecule.
- the amine hydrogen equivalent weight (AHEW) of a primary amine can be calculated according to conventional techniques known to those skilled in the art, but preferably, it can be calculated by determining the content of amine group nitrogen using the procedure described in ISO 9702.
- primary amines that can be used in this technology include one or more primary amines selected from polyester primary amines, polyether triamines obtained by addition polymerization of oxyalkylene represented by the following chemical formula (6), polyether primary amines such as poly(propylene glycol) triamine and polyoxypropylene diamine, and one or more of these primary amines can be freely selected and used.
- the proportion of primary amines in all amines is preferably 90% or more, and more preferably 94% or more.
- a foaming agent can be used in the composition for producing polyurethane foam according to the present technology.
- the foaming agent that can be used in the present technology one or more foaming agents that can be used in the production of polyurethane foam can be freely selected and used as long as the purpose and effect of the present technology are not impaired.
- Examples of the foaming agent include water, hydrocarbons, and halogenated compounds.
- Examples of the hydrocarbons include cyclopentane, isopentane, and normal pentane.
- Examples of the halogenated compounds include methylene chloride, trichlorofluoromethane, dichlorodifluoromethane, nonafluorobutyl methyl ether, nonafluorobutyl ethyl ether, pentafluoroethyl methyl ether, and heptafluoroisopropyl methyl ether.
- water may be any of ion-exchanged water, tap water, and distilled water.
- the amount of blowing agent used in the polyurethane foam production composition according to the present technology can be freely set as long as it does not impair the purpose and effect of the technology.
- the lower limit of the blowing agent content in the polyurethane foam production composition is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more, per 100 parts by mass of polyol.
- the upper limit of the blowing agent content in the polyurethane foam production composition is, for example, 10 parts by mass or less, preferably 8 parts by mass or less, and more preferably 5 parts by mass or less, per 100 parts by mass of polyol.
- Catalyst A catalyst can be used in the composition for producing polyurethane foam according to the present technology.
- the catalyst that can be used in the present technology one or more catalysts that can be used in the production of polyurethane foam can be freely selected and used, as long as the purpose and effect of the present technology are not impaired.
- catalysts examples include tin catalysts such as tin neodecanoate, dibutyltin dilaurate, and stannous octoate, and metal catalysts (organometallic catalysts) such as phenylmercury propionate and lead octenate.
- triethylamine triethylenediamine (TEDA)
- tetramethylguanidine diethanolamine
- bis(2-dimethylaminoethyl)ether N,N,N',N",N"-pentamethyldiethylenetriamine
- imidazole-based compounds piperazine-based amines such as dimethylpiperazine, N-methyl-N'-(2-dimethylamino)ethylpiperazine, and N-methyl-N'-(2-hydroxyethyl)piperazine
- morpholine-based amines such as N-methylmorpholine and N-ethylmorpholine
- 1,8-diazabicyclo[4,5-diamine]pyrazine 1,8-diazabicyclo[4,5-diamine]pyrazine.
- Amine catalysts such as amines called DBU homologues, such as 1,5-diazabicyclo-[4,3,0]-nonene-5 (DBN), 1,8-diazabicyclo-[5,3,0]-decene-7 (DBD), and 1,4-diazabicyclo-[3,3,0]octene-4 (DBO), can also be used, but among these amine catalysts, tertiary amine catalysts and secondary amine catalysts are preferred, and those with a molecular weight of less than 700 are more preferred, those with a molecular weight of less than 500 are even more preferred, and those with a molecular weight of less than 300 are even more preferred.
- DBN 1,5-diazabicyclo-[4,3,0]-nonene-5
- DBD 1,8-diazabicyclo-[5,3,0]-decene-7
- DBO 1,4-diazabicyclo-[3,3,0]octene-4
- the amount of catalyst used in the polyurethane foam production composition according to the present technology can be freely set as long as it does not impair the purpose and effect of the technology.
- the lower limit of the catalyst content in the polyurethane foam production composition is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more, per 100 parts by mass of polyol.
- the upper limit of the catalyst content in the composition for producing polyurethane foam is, for example, 30 parts by mass or less, preferably 25 parts by mass or less, and more preferably 20 parts by mass or less, per 100 parts by mass of polyol.
- Foam stabilizer A foam stabilizer can be used in the composition for producing polyurethane foam according to the present technology.
- foam stabilizer that can be used in the present technology one or more foam stabilizers that can be used in the production of polyurethane foam can be freely selected and used as long as they do not impair the purpose and effect of the present technology.
- foam stabilizers include silicone-based foam stabilizers, fluorine-containing compound-based foam stabilizers, surfactants, etc.
- silicone-based foam stabilizers include those that are mainly composed of siloxane chains, those in which the siloxane chain and polyether chain have a linear structure, those that are branched and unbranched, and those in which the polyether chain is modified to be pendant to the siloxane chain.
- the amount of foam stabilizer used in the polyurethane foam production composition according to the present technology can be freely set as long as it does not impair the purpose and effect of the technology.
- the lower limit of the foam stabilizer content in the polyurethane foam production composition is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, and more preferably 0.5 parts by mass or more, per 100 parts by mass of polyol.
- the upper limit of the foam stabilizer content in the polyurethane foam production composition is, for example, 10 parts by mass or less, preferably 7 parts by mass or less, and more preferably 5 parts by mass or less, per 100 parts by mass of polyol. Setting the upper limit of the foam stabilizer content in the polyurethane foam production composition within this range can contribute to cost reduction.
- Biodegradation Accelerator A biodegradation accelerator can be used in the composition for producing a polyurethane foam according to the present technology.
- a biodegradation accelerator when a biodegradable raw material is used as a raw material for the polyurethane foam according to the present technology, the biodegradability can be improved.
- biodegradation promoter that can be used in this technology
- one or more types of biodegradation promoter that can be used in polyurethane foam can be freely selected and used, as long as it does not impair the purpose and effect of this technology.
- biodegradation promoters examples include sugars such as glucose, xylose, galactose, maltose, sucrose, chitin, and cellulose; starches; amino acids; peptides; gums such as tamarind gum; and lignin.
- the amount of biodegradation promoter used in the polyurethane foam production composition according to the present technology can be freely set as long as it does not impair the purpose and effect of the present technology.
- the lower limit of the content of the biodegradation promoter in the polyurethane foam production composition is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more, per 100 parts by mass of polyol.
- the upper limit of the content of the biodegradation accelerator in the composition for producing polyurethane foam is, for example, 10 parts by mass or less, preferably 7 parts by mass or less, and more preferably 5 parts by mass or less, per 100 parts by mass of polyol.
- composition for producing polyurethane foam according to the present technology one or more other components that can be freely selected depending on the purpose from various components that can be used in compositions for producing polyurethane foam may be used as other components, as long as the purpose and effects of the present technology are not impaired.
- Ingredients that can be used in the polyurethane foam manufacturing composition according to this technology include, for example, flame retardants, stabilizers, plasticizers, colorants, antioxidants, crosslinking agents, antibacterial agents, dispersants, and ultraviolet absorbers.
- the polyurethane foam according to the present technology can be produced by preparing a composition by mixing each component of the composition for producing polyurethane foam according to the present technology described above, and proceeding with a resinification reaction and a foaming reaction.
- a resinification reaction and a foaming reaction any general method can be freely combined and used as long as it does not impair the purpose and effect of the present technology.
- slab foaming is a method in which a polyurethane foam manufacturing composition (raw material for polyurethane foam) is mixed and discharged onto a belt conveyer, and foamed at atmospheric pressure and room temperature.
- mold foaming is a method in which a polyurethane foam manufacturing composition (raw material for polyurethane foam) is mixed and injected into the cavity of a mold (metal mold), and foamed to the shape of the cavity.
- mold foaming is preferably used from the viewpoint of ease of manufacturing.
- this technology by using a primary amine, it is possible to perform mold molding even when a large amount of biomass-derived raw material is used.
- composition for producing polyurethane foam contains a polyol and an isocyanate derived from biomass.
- a primary amine, a blowing agent, a catalyst, a foam stabilizer, a biodegradation promoter, etc. can be contained as necessary.
- Each component will be described in detail below.
- the details of the primary amine, the blowing agent, the catalyst, the foam stabilizer, and the biodegradation promoter are the same as those of the first embodiment described above, so that the description will be omitted here.
- polyols that can be used in the production of polyurethane foam can be freely selected and used in combination.
- polyols include polyester polyols, polycarbonate polyols, polyester ether polyols, polycaprolactone polyols, and polylactic acid polyols.
- Polyether polyols include, for example, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, etc., which are obtained by polymerizing cyclic ethers such as ethylene oxide, propylene oxide, etc., respectively, and copolyethers thereof. They can also be obtained by polymerizing the cyclic ethers using polyhydric alcohols such as glycerin, trimethylolethane, etc. Commercially available polyether polyols may also be used.
- a polymer polyol can be used as the polyether polyol.
- a polymer polyol is one obtained by polymerizing an ethylenically unsaturated monomer in a polyether polyol, or one obtained by emulsifying and dispersing a polymer of an ethylenically unsaturated monomer in a polyether polyol. Specific examples include those obtained by graft polymerizing acrylonitrile, styrene, etc. onto a polyether polyol, and those obtained by dispersing polystyrene or polyacrylonitrile in a polyether polyol.
- polyester polyols include aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid; aliphatic carboxylic acids such as ricinoleic acid; aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as hexahydrophthalic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid; and acid esters or acid anhydrides of these with ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol,
- polyester polyol include polyester polyols obtained by dehydration condensation reaction with 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-
- polycarbonate polyols include those obtained by reacting at least one of polyhydric alcohols such as ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, and diethylene glycol with diethylene carbonate, dimethyl carbonate, diethyl carbonate, etc.
- polyhydric alcohols such as ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanedi
- polyester ether polyols examples include aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid; aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as hexahydrophthalic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid; and those obtained by dehydration condensation reaction of acid esters or acid anhydrides of these with glycols such as diethylene glycol or propylene oxide adducts, or mixtures of these.
- aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid
- aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and naphthalenedicarbox
- biomass-derived polyol As the biomass-derived polyol that can be used in this technology, one or more types of biomass-derived polyol that can be used in the production of polyurethane foam can be freely selected and used, as long as the action and effect of this technology are not impaired.
- biomass-derived polyols examples include polyols derived from natural fats and oils.
- Natural fat-derived polyols are natural fats and oils such as castor oil, soybean oil, rapeseed oil, and coconut oil, or derivatives thereof (modified natural fat and oil polyols, unmodified natural fat and oil polyols, etc.), which contain hydroxyl groups on the hydrocarbon chain and have two or more hydroxyl groups per molecule. In this technology, two or more of these may be used in combination.
- Other biomass-derived polyols include, for example, corn-derived polyols and cashew nut shell liquid-derived polyols. Commercially available biomass-derived polyols may also be used.
- Castor oil includes unmodified castor oil, modified castor oil, dehydrated castor oil, hydrogenated castor oil, etc. More specifically, it is preferable to use the castor oil-based polyol represented by the above chemical formula (1).
- the content of biomass-derived polyol per 100 parts by mass of polyol is, for example, 45 parts by mass or more, preferably 65 parts by mass or more, more preferably 85 parts by mass or more, and even more preferably 95 parts by mass or more.
- the upper limit of the content of biomass-derived polyol per 100 parts by mass of polyol is not particularly limited as long as it does not impair the action or effect of the present technology, and in consideration of reducing the environmental load, it is preferable to use all biomass-derived polyols.
- the upper limit of the content of biomass-derived polyol per 100 parts by mass of polyol can be set, for example, to 100 parts by mass or less, 90 parts by mass or less, 85 parts by mass or less, 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, etc.
- a biodegradable polyol can also be used in consideration of the environment. Details of the biodegradable polyol are the same as those of the biodegradable polyol used in the first embodiment described above, so a detailed explanation will be omitted here.
- composition for producing a polyurethane foam according to the second embodiment is characterized in that a biomass-derived isocyanate is used as the isocyanate.
- a biomass-derived isocyanate is used as the isocyanate.
- biomass-derived isocyanate one or more types of biomass-derived isocyanates that can be used in the production of polyurethane foam can be freely selected and used, so long as they do not impair the action and effect of this technology.
- examples include 1,5-pentamethylene diisocyanate (PDI), lysine triisocyanate (LTI (2,6-Diisocyanato hexanoic acid 2-isocyanatoethyl ester)), lysine diisocyanate (LDI (Hexanoic acid, 2,6-diisocyanato)), dimer acid diisocyanate (DDI (3,4-dihexyl-5-(10-isocyanatodec-1-en-1-yl)-6-(8-isocyanatooctyl)cyclohex-1-ene)), etc.
- PDI 1,5-pentamethylene diisocyanate
- LTI 2,6-Diisocyanato hexa
- 1,5-PDI isocyanurate which is a trimer of 1,5-pentamethylene diisocyanate (PDI) and is represented by the above chemical formula (4)
- LTI lysine triisocyanate
- the content of biomass-derived isocyanate per 100 parts by mass of isocyanate is, for example, 40 parts by mass or more, preferably 45 parts by mass or more, more preferably 50 parts by mass or more, and even more preferably 55 parts by mass or more.
- the upper limit of the content of biomass-derived isocyanate per 100 parts by mass of isocyanate is not particularly limited as long as it does not impair the action and effect of the present technology, and in consideration of reducing the environmental load, it is preferable to use all biomass-derived isocyanate.
- the upper limit of the content of biomass-derived isocyanate per 100 parts by mass of isocyanate can be set, for example, to 100 parts by mass or less, 90 parts by mass or less, 85 parts by mass or less, 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, etc.
- the amount of biomass-derived isocyanate used in this technology can be adjusted to the amount of isocyanate and isocyanate index described in the first embodiment above, and when used in combination with other isocyanates, the amount of the other isocyanates can be taken into consideration.
- the polyurethane foam of the second embodiment is a polyurethane foam produced using the composition for producing a polyurethane foam of the second embodiment described above.
- the degree of biodegradability of the polyurethane foam according to the second embodiment is not particularly limited, but similar to the polyurethane foam according to the first embodiment described above, in the ISO 14885-2 biodegradability test, it is preferable that the degree of biodegradability after 45 days is 15% or less, and that the degree of biodegradability after 180 days is 30% or more.
- the biomass degree of the polyurethane foam according to the present technology can be freely set as long as it does not impair the action and effect of the present technology.
- the lower limit of the biomass degree of the polyurethane foam according to the present technology is, for example, 20% or more, preferably 25% or more, more preferably 30% or more, even more preferably 35% or more, and particularly preferably 40% or more.
- the hardness, density, and other properties and uses of the polyurethane foam according to the second embodiment are the same as those of the polyurethane foam according to the first embodiment described above, so a description thereof will be omitted here.
- the polyurethane foam according to the second embodiment can be produced by mixing the components of the composition for producing polyurethane foam according to the second embodiment described above to prepare a composition, and then allowing a resinification reaction and a foaming reaction to proceed. Details of the production method are the same as those of the method for producing polyurethane foam according to the first embodiment described above, and therefore will not be described here.
- Petroleum-derived polypropylene glycol polyol Sanyo Chemical Industries, Ltd. "KC737" Petroleum-derived polycaprolactone polyol 1: Daicel Corporation "Placcel 308" Petroleum-derived polycaprolactone polyol 2: Daicel Corporation "Placcel 205U” Biomass-derived refined castor oil (ricinoleic acid triglyceride): Ito Oil Mills, Ltd. "H-30” Biomass-derived sebacic acid ester polyol: Ito Oil Mills "SE-2013C” Petroleum-derived polyetheramine: Mitsui Fine Chemicals Co., Ltd.
- T5000 Tin neodecanoate: "Neostan U50" by Nitto Chemical Industries Co., Ltd. TEDA (triethylenediamine): Evonik Japan Co., Ltd.
- DBU diazabicycloundecene
- U-CAT SA-102 1,2-Dimethylimidazole (70%) + EG (30%): Evonik Japan Co., Ltd.
- DBCO 2040 Silicone foam stabilizer: Evonik Japan Co., Ltd.
- compositions were first poured into a foaming box (open without a lid) and allowed to foam freely, and the reactivity and foam moldability (appearance and foam condition) were confirmed. Next, after preparing compositions by mixing the raw materials shown in Table 1 below, the compositions were transferred to a mold and allowed to foam, to produce each polyurethane foam.
- the weight and pH were checked periodically, and if there was a weight loss due to water evaporation, water was replenished to keep the moisture content at 50-75%, and if a decrease in compost was observed, a mixture of vermiculite and water (weight ratio 1:1) was added. If the pH was 9 or higher, it was neutralized with acetic acid to keep the pH at a constant 7-9, and the inside was stirred at least once a week.
- the hardness was measured using an Asker rubber hardness tester, type F.
- biomass content could be increased to 75%.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
[Problem] To provide a technology for producing a novel polyurethane foam that can reduce the load on the environment. [Solution] The present technology provides a polyurethane foam having a biodegradation degree after 45 days of at most 15% and a biodegradation degree after 180 days of at least 30%, as measured in the biodegradation degree test of ISO 14885-2. Moreover, the present technology provides: a composition for producing a polyurethane foam, the composition comprising a polyol and a biomass-derived isocyanate; and a polyurethane foam formed using said composition for producing a polyurethane foam.
Description
本技術は、ポリウレタンフォーム、及びポリウレタンフォーム製造用組成物に関する。
This technology relates to polyurethane foams and compositions for producing polyurethane foams.
ポリウレタンフォームは、ソファーや椅子等の家具、マットレスや枕等の寝具、下着等の衣類、食器用スポンジや掃除用スポンジ等の生活必需品、車内シート等の車両・航空機内装用製品、玩具、雑貨に至るまで、様々な分野で幅広く使用されている。そして、それぞれの分野や目的に応じて、品質を向上させたり、新たな機能を付与したりと、様々な開発が進められている。
Polyurethane foams are used in a wide variety of fields, from furniture such as sofas and chairs, bedding such as mattresses and pillows, clothing such as underwear, daily necessities such as dish sponges and cleaning sponges, interior products for vehicles and aircraft such as car seats, toys, and miscellaneous goods. Various developments are being carried out to improve quality and add new functions according to each field and purpose.
また、近年、持続可能な社会の形成に貢献するために、バイオマス資源を用いて発泡体を製造する技術も提案されている。例えば、特許文献1では、少なくとも1種のポリイソシアネート成分、少なくとも1種のヒドロキシ官能性アクリレート成分、及び、ひまし油、大豆油等を含有するバイオポリマーである少なくとも1種のポリオール成分の反応生成物であるプレポリマーを使用して製造される硬質ポリウレタン発泡体が開示されている。
In addition, in recent years, technologies for producing foams using biomass resources have been proposed to contribute to the creation of a sustainable society. For example, Patent Document 1 discloses a rigid polyurethane foam produced using a prepolymer that is a reaction product of at least one polyisocyanate component, at least one hydroxy-functional acrylate component, and at least one polyol component that is a biopolymer containing castor oil, soybean oil, etc.
また、環境に配慮する目的で、生分解性の高い発泡体を製造する技術も提案されている。例えば、特許文献2では、ポリ(ヒドロキシブチレート)ポリマー、再生可能源のポリオール、イソシアネートおよび添加剤をベースとした混合物を含む組成物を用いて、生分解性ポリウレタン系発泡体を製造する技術が開示されている。
In addition, techniques for producing highly biodegradable foams have been proposed for the purpose of being environmentally friendly. For example, Patent Document 2 discloses a technique for producing biodegradable polyurethane foams using a composition containing a mixture based on poly(hydroxybutyrate) polymer, renewable polyol, isocyanate, and additives.
前述の通り、バイオマス資源を用いたり、発泡体に生分解性を付与したりする技術が開発されつつあるが、更なる環境への配慮が望まれているのが実情である。そこで、本技術では、環境負荷を低減し得る新規なポリウレタンフォームを製造する技術を提供することを主目的とする。
As mentioned above, technologies that use biomass resources and impart biodegradability to foams are being developed, but the reality is that further consideration for the environment is desired. Therefore, the main objective of this technology is to provide a technique for producing new polyurethane foams that can reduce the environmental burden.
本技術では、まず、ISO14885-2の生分解度試験において、
45日後の生分解度が15%以下であり、
180日後の生分解度が30%以上である、ポリウレタンフォームを提供する。
本技術に係るポリウレタンフォームは、原料として、バイオマス由来エステル系ポリオールを用いることができる。
本技術に係るポリウレタンフォームは、原料として、第1級アミンを用いることもできる。 In this technology, first, in the biodegradability test of ISO14885-2,
The biodegradability after 45 days is 15% or less,
To provide a polyurethane foam having a biodegradability of 30% or more after 180 days.
The polyurethane foam according to the present technology can use a biomass-derived ester polyol as a raw material.
The polyurethane foam according to the present technology may also use a primary amine as a raw material.
45日後の生分解度が15%以下であり、
180日後の生分解度が30%以上である、ポリウレタンフォームを提供する。
本技術に係るポリウレタンフォームは、原料として、バイオマス由来エステル系ポリオールを用いることができる。
本技術に係るポリウレタンフォームは、原料として、第1級アミンを用いることもできる。 In this technology, first, in the biodegradability test of ISO14885-2,
The biodegradability after 45 days is 15% or less,
To provide a polyurethane foam having a biodegradability of 30% or more after 180 days.
The polyurethane foam according to the present technology can use a biomass-derived ester polyol as a raw material.
The polyurethane foam according to the present technology may also use a primary amine as a raw material.
本技術では、次に、ポリオールと、
バイオマス由来のイソシアネートと、
を含有する、ポリウレタンフォーム製造用組成物を提供する。
本技術に係るポリウレタンフォーム製造用組成物に用いる前記ポリオールには、バイオマス由来のポリオールを含むことができる。
本技術では、また、本技術に係るポリウレタンフォーム製造用組成物を用いて形成されたポリウレタンフォームを提供する。
本技術に係るポリウレタンフォームのバイオマス度は、50%以上とすることができる。 In the present technology, next, a polyol and
Biomass-derived isocyanate;
The present invention provides a composition for producing polyurethane foam, comprising:
The polyol used in the composition for producing a polyurethane foam according to the present technology can include a biomass-derived polyol.
The present technology also provides a polyurethane foam formed using the composition for producing a polyurethane foam according to the present technology.
The biomass content of the polyurethane foam according to the present technology can be 50% or more.
バイオマス由来のイソシアネートと、
を含有する、ポリウレタンフォーム製造用組成物を提供する。
本技術に係るポリウレタンフォーム製造用組成物に用いる前記ポリオールには、バイオマス由来のポリオールを含むことができる。
本技術では、また、本技術に係るポリウレタンフォーム製造用組成物を用いて形成されたポリウレタンフォームを提供する。
本技術に係るポリウレタンフォームのバイオマス度は、50%以上とすることができる。 In the present technology, next, a polyol and
Biomass-derived isocyanate;
The present invention provides a composition for producing polyurethane foam, comprising:
The polyol used in the composition for producing a polyurethane foam according to the present technology can include a biomass-derived polyol.
The present technology also provides a polyurethane foam formed using the composition for producing a polyurethane foam according to the present technology.
The biomass content of the polyurethane foam according to the present technology can be 50% or more.
以下、本技術を実施するための好適な形態について説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、いずれの実施形態も組み合わせることが可能である。また、これらにより本技術の範囲が狭く解釈されることはない。
Below, a preferred embodiment for implementing this technology will be described. The embodiment described below is an example of a representative embodiment of this technology, and any of the embodiments can be combined. Furthermore, the scope of this technology should not be interpreted narrowly because of these.
[第1実施形態]
1.ポリウレタンフォーム
本技術に係るポリウレタンフォームは、ISO14885-2の生分解度試験において、45日後の生分解度が15%以下であり、180日後の生分解度が30%以上であることを特徴とする。本技術に係るポリウレタンフォームは、45日後の生分解度が15%以下であることにより、早期劣化を防止し、一定期間、品質を保持することができる。また、本技術に係るポリウレタンフォームは、180日後の生分解度が30%以上であることにより、一般的な環境下において、良好な生分解性を示すことができる。 [First embodiment]
1. Polyurethane foam The polyurethane foam according to the present technology is characterized in that, in the ISO 14885-2 biodegradability test, the biodegradability after 45 days is 15% or less and the biodegradability after 180 days is 30% or more. Since the polyurethane foam according to the present technology has a biodegradability of 15% or less after 45 days, it is possible to prevent early deterioration and maintain quality for a certain period of time. Furthermore, since the polyurethane foam according to the present technology has a biodegradability of 30% or more after 180 days, it is possible to exhibit good biodegradability in a general environment.
1.ポリウレタンフォーム
本技術に係るポリウレタンフォームは、ISO14885-2の生分解度試験において、45日後の生分解度が15%以下であり、180日後の生分解度が30%以上であることを特徴とする。本技術に係るポリウレタンフォームは、45日後の生分解度が15%以下であることにより、早期劣化を防止し、一定期間、品質を保持することができる。また、本技術に係るポリウレタンフォームは、180日後の生分解度が30%以上であることにより、一般的な環境下において、良好な生分解性を示すことができる。 [First embodiment]
1. Polyurethane foam The polyurethane foam according to the present technology is characterized in that, in the ISO 14885-2 biodegradability test, the biodegradability after 45 days is 15% or less and the biodegradability after 180 days is 30% or more. Since the polyurethane foam according to the present technology has a biodegradability of 15% or less after 45 days, it is possible to prevent early deterioration and maintain quality for a certain period of time. Furthermore, since the polyurethane foam according to the present technology has a biodegradability of 30% or more after 180 days, it is possible to exhibit good biodegradability in a general environment.
本技術に係るポリウレタンフォームは、軟質ポリウレタンフォーム、硬質ポリウレタンフォーム、半硬質ポリウレタンフォームのいずれであっても良いが、特に、軟質ポリウレタンフォームとすることが好ましい。具体的には、伸びが50%以上のものが好ましく、伸びが90%以上のものがより好ましい。この範囲の伸びを有するポリウレタンフォームは、半硬質、硬質ポリウレタンフォームに比べ、十分に柔軟であり、軟質ポリウレタンフォームといえる。
The polyurethane foam according to the present technology may be any of flexible, rigid, and semi-rigid polyurethane foams, but is preferably flexible. Specifically, it is preferable for the polyurethane foam to have an elongation of 50% or more, and more preferably, it is preferable for the polyurethane foam to have an elongation of 90% or more. A polyurethane foam having an elongation in this range is sufficiently flexible compared to semi-rigid and rigid polyurethane foams, and can be said to be a flexible polyurethane foam.
また、本技術に係るポリウレタンフォームの硬度は、本技術の目的や効果を損なわない限り特に限定されないが、その下限値は、例えば10以上、好ましくは20以上、より好ましくは30以上、更に好ましくは40以上である。また、ポリウレタンフォームの硬度の上限値は、例えば100以下、好ましくは90以下、より好ましくは80以下、更に好ましくは70以下である。なお、本技術において、硬度は、アスカーゴム硬度計F型にて測定された値である。
The hardness of the polyurethane foam according to the present technology is not particularly limited as long as it does not impair the purpose and effect of the present technology, but the lower limit is, for example, 10 or more, preferably 20 or more, more preferably 30 or more, and even more preferably 40 or more. The upper limit of the hardness of the polyurethane foam is, for example, 100 or less, preferably 90 or less, more preferably 80 or less, and even more preferably 70 or less. In the present technology, the hardness is a value measured using an Asker rubber hardness tester type F.
本技術に係るポリウレタンフォームのフォーム密度は、本技術の目的や効果を損なわない限り、特に限定されないが、その下限値は、例えば20kg/m3、好ましくは40kg/m3、より好ましくは60kg/m3、更に好ましくは70kg/m3である。また、ポリウレタンフォームのフォーム密度の上限値は、例えば200kg/m3、好ましくは150kg/m3、より好ましくは100kg/m3、更に好ましくは90kg/m3である。フォーム密度をこの範囲とすることにより、ポリウレタンフォームの外観が更に良好になる。
The foam density of the polyurethane foam according to the present technology is not particularly limited as long as it does not impair the purpose and effects of the present technology, but the lower limit is, for example, 20 kg/m 3 , preferably 40 kg/m 3 , more preferably 60 kg/m 3 , and even more preferably 70 kg/m 3. The upper limit of the foam density of the polyurethane foam is, for example, 200 kg/m 3 , preferably 150 kg/m 3 , more preferably 100 kg/m 3 , and even more preferably 90 kg/m 3. By setting the foam density within this range, the appearance of the polyurethane foam is further improved.
従来技術においては、ポリウレタンを分解する酵母菌等も開発されつつあったが、これらの菌は、特殊な分解菌であり、一般的な環境において生分解性を示さないといった問題があった。一方、一般的な環境においても高い生分解性を示す従来の発泡体の場合、劣化が早く、品質保持性が悪いという問題もあった。しかし、本技術に係るポリウレタンフォームは、一般的な環境においても生分解性を示すにも関わらず、品質保持性も良好である。
In conventional technology, yeast fungi that break down polyurethane were being developed, but these fungi were specialized decomposition fungi and had the problem of not being biodegradable in general environments. On the other hand, conventional foams that were highly biodegradable even in general environments also had the problem of rapid deterioration and poor quality retention. However, the polyurethane foam related to this technology has good quality retention, despite being biodegradable even in general environments.
本技術に係るポリウレタンフォームは、その品質の高さを利用して、あらゆる分野であらゆる用途に用いることができる。例えば、ソファーや椅子等の家具、マットレスや枕等の寝具、下着等の衣類、食器や掃除用スポンジ等の生活必需品、車内シート等の車両・航空機内装用製品、建築目地材、建築用緩衝材、建築用シール材、家電用シール材、防音材、梱包材、車両用断熱材、結露防止材、内装材、家電断熱材、配管断熱材、各種カバー、クッション材、玩具、雑貨等に好適に用いることができる。
The polyurethane foam of this technology can be used for a wide variety of purposes in a wide variety of fields, taking advantage of its high quality. For example, it can be used favorably in furniture such as sofas and chairs, bedding such as mattresses and pillows, clothing such as underwear, daily necessities such as tableware and cleaning sponges, vehicle and aircraft interior products such as car seats, architectural joint materials, architectural cushioning materials, architectural sealing materials, home appliance sealing materials, soundproofing materials, packaging materials, vehicle insulation materials, condensation prevention materials, interior materials, home appliance insulation materials, pipe insulation materials, various covers, cushioning materials, toys, miscellaneous goods, etc.
2.ポリウレタンフォーム製造用組成物
本技術に係るポリウレタンフォームは、原料として、バイオマス由来エステル系ポリオールや、第1級アミンを用いることができる。また、その他、本技術の目的や作用効果を損なわない限り、一般的なポリウレタンフォームの原料として用いることができる材料を、自由に選択して用いることができる。以下、本技術に係るポリウレタンフォームを製造するための組成物について、説明する。 2. Composition for Producing Polyurethane Foam The polyurethane foam according to the present technology can use biomass-derived ester polyols and primary amines as raw materials. In addition, other materials that can be used as raw materials for general polyurethane foams can be freely selected and used as long as they do not impair the purpose and effects of the present technology. The composition for producing the polyurethane foam according to the present technology will be described below.
本技術に係るポリウレタンフォームは、原料として、バイオマス由来エステル系ポリオールや、第1級アミンを用いることができる。また、その他、本技術の目的や作用効果を損なわない限り、一般的なポリウレタンフォームの原料として用いることができる材料を、自由に選択して用いることができる。以下、本技術に係るポリウレタンフォームを製造するための組成物について、説明する。 2. Composition for Producing Polyurethane Foam The polyurethane foam according to the present technology can use biomass-derived ester polyols and primary amines as raw materials. In addition, other materials that can be used as raw materials for general polyurethane foams can be freely selected and used as long as they do not impair the purpose and effects of the present technology. The composition for producing the polyurethane foam according to the present technology will be described below.
本技術に用いるポリウレタンフォーム製造用組成物には、生分解性ポリオール、イソシアネート、第1級アミン、発泡剤、触媒、整泡剤、生分解促進剤等を含有させることができる。以下、各成分について、詳細に説明する。
The polyurethane foam manufacturing composition used in this technology can contain biodegradable polyols, isocyanates, primary amines, blowing agents, catalysts, foam stabilizers, biodegradation accelerators, etc. Each component is described in detail below.
(1)生分解性ポリオール
本技術に用いることができる生分解性ポリオールとしては、本技術の目的や作用効果を損なわない限り、ポリウレタンフォームの製造に用いることができる生分解性ポリオールを、1種又は2種以上、自由に選択して用いることができる。例えば 、ポリグリコール酸(PGA)、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンアジペートテレフタレート(PBAT)、ポリカプロラクトン(PCL)、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリヒドロキシアルカン酸(PHA)、セルロース、酢酸セルロース、キトサン、澱粉、加工澱粉、キシリトール、ソルビトール、マンニトール、マルチトール、ヒマシ油系ポリオール等の水酸基を有するバイオマス由来エステル系ポリオール等が挙げられる。この中でも、本技術では、下記の化学式(1)で表されるヒマシ油系ポリオール等の水酸基を有するバイオマス由来エステル系ポリオールを用いることが好ましく、下記の化学式(2)で表されるポリカプロラクトン(PCL)を併用してもよい。なお、ポリオールとして、全て生分解性ポリオールを用いることが好ましいが、他のポリオールを混合して用いてもよい。他のポリオールについては、後述する第2実施形態で説明する。 (1) Biodegradable polyols As the biodegradable polyols that can be used in the present technology, one or more biodegradable polyols that can be used in the production of polyurethane foams can be freely selected and used as long as the purpose and effect of the present technology are not impaired. For example, polyglycolic acid (PGA), polylactic acid (PLA), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polybutylene adipate terephthalate (PBAT), polycaprolactone (PCL), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyhydroxyalkanoic acid (PHA), cellulose, cellulose acetate, chitosan, starch, modified starch, xylitol, sorbitol, mannitol, maltitol, castor oil-based polyols, and other hydroxyl-containing biomass-derived ester-based polyols can be mentioned. Among these, in the present technology, it is preferable to use a biomass-derived ester-based polyol having a hydroxyl group, such as a castor oil-based polyol represented by the following chemical formula (1), and polycaprolactone (PCL) represented by the following chemical formula (2) may be used in combination. Note that, although it is preferable to use all biodegradable polyols as polyols, other polyols may be mixed and used. The other polyols will be described in the second embodiment described later.
本技術に用いることができる生分解性ポリオールとしては、本技術の目的や作用効果を損なわない限り、ポリウレタンフォームの製造に用いることができる生分解性ポリオールを、1種又は2種以上、自由に選択して用いることができる。例えば 、ポリグリコール酸(PGA)、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンアジペートテレフタレート(PBAT)、ポリカプロラクトン(PCL)、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリヒドロキシアルカン酸(PHA)、セルロース、酢酸セルロース、キトサン、澱粉、加工澱粉、キシリトール、ソルビトール、マンニトール、マルチトール、ヒマシ油系ポリオール等の水酸基を有するバイオマス由来エステル系ポリオール等が挙げられる。この中でも、本技術では、下記の化学式(1)で表されるヒマシ油系ポリオール等の水酸基を有するバイオマス由来エステル系ポリオールを用いることが好ましく、下記の化学式(2)で表されるポリカプロラクトン(PCL)を併用してもよい。なお、ポリオールとして、全て生分解性ポリオールを用いることが好ましいが、他のポリオールを混合して用いてもよい。他のポリオールについては、後述する第2実施形態で説明する。 (1) Biodegradable polyols As the biodegradable polyols that can be used in the present technology, one or more biodegradable polyols that can be used in the production of polyurethane foams can be freely selected and used as long as the purpose and effect of the present technology are not impaired. For example, polyglycolic acid (PGA), polylactic acid (PLA), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polybutylene adipate terephthalate (PBAT), polycaprolactone (PCL), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyhydroxyalkanoic acid (PHA), cellulose, cellulose acetate, chitosan, starch, modified starch, xylitol, sorbitol, mannitol, maltitol, castor oil-based polyols, and other hydroxyl-containing biomass-derived ester-based polyols can be mentioned. Among these, in the present technology, it is preferable to use a biomass-derived ester-based polyol having a hydroxyl group, such as a castor oil-based polyol represented by the following chemical formula (1), and polycaprolactone (PCL) represented by the following chemical formula (2) may be used in combination. Note that, although it is preferable to use all biodegradable polyols as polyols, other polyols may be mixed and used. The other polyols will be described in the second embodiment described later.
本技術に係るポリウレタンフォーム製造用組成物において、ポリオール100質量部に対する生分解性ポリオールの含有量としては、例えば50質量部以上とし、好ましくは55質量部以上、より好ましくは60質量部以上、更に好ましくは65質量部以上である。ポリオール100質量部に対する生分解性ポリオールの含有量をこの範囲とすることで、環境負荷低減効果を向上させることができる。
In the polyurethane foam manufacturing composition according to the present technology, the content of the biodegradable polyol per 100 parts by mass of polyol is, for example, 50 parts by mass or more, preferably 55 parts by mass or more, more preferably 60 parts by mass or more, and even more preferably 65 parts by mass or more. By setting the content of the biodegradable polyol per 100 parts by mass of polyol within this range, the effect of reducing the environmental load can be improved.
本技術に係るポリウレタンフォーム製造用組成物において、ポリオール100質量部に対する生分解性ポリオールの含有量の上限は、本技術の作用や効果を損なわない限り、特に限定されず、生分解性を考慮すると、全て生分解性ポリオールを用いることが好ましい。ポリオール100質量部に対する植物由来ポリオールの含有量の上限としては、例えば100質量部以下、90質量部以下、85質量部以下、80質量部以下、75質量部以下、70質量部以下等に設定することができる。
In the polyurethane foam manufacturing composition according to the present technology, the upper limit of the content of biodegradable polyol per 100 parts by mass of polyol is not particularly limited as long as it does not impair the action or effect of the present technology, and in consideration of biodegradability, it is preferable to use all biodegradable polyols. The upper limit of the content of plant-derived polyol per 100 parts by mass of polyol can be set, for example, to 100 parts by mass or less, 90 parts by mass or less, 85 parts by mass or less, 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, etc.
(2)イソシアネート
本技術に用いることができるイソシアネートは、本技術の目的や作用効果を損なわない限り、ポリウレタンフォームの製造に用いることができるイソシアネートを、1種又は2種以上、自由に選択して用いることができる。例えば、芳香族イソシアネート、脂肪族イソシアネート、及び脂環族イソシアネート等が挙げられる。 (2) Isocyanate The isocyanate that can be used in the present technology can be freely selected from one or more isocyanates that can be used in the production of polyurethane foam, as long as the purpose and effect of the present technology are not impaired. Examples of the isocyanate that can be used in the present technology include aromatic isocyanates, aliphatic isocyanates, and alicyclic isocyanates.
本技術に用いることができるイソシアネートは、本技術の目的や作用効果を損なわない限り、ポリウレタンフォームの製造に用いることができるイソシアネートを、1種又は2種以上、自由に選択して用いることができる。例えば、芳香族イソシアネート、脂肪族イソシアネート、及び脂環族イソシアネート等が挙げられる。 (2) Isocyanate The isocyanate that can be used in the present technology can be freely selected from one or more isocyanates that can be used in the production of polyurethane foam, as long as the purpose and effect of the present technology are not impaired. Examples of the isocyanate that can be used in the present technology include aromatic isocyanates, aliphatic isocyanates, and alicyclic isocyanates.
本技術に用いることができる芳香族イソシアネートとしては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート等が挙げられる。
Aromatic isocyanates that can be used in this technology include, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, xylylene diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, and 3,3'-dimethoxy-4,4'-biphenylene diisocyanate.
本技術では、イソシアネートとして、脂肪族イソシアネート及び/又は脂環族イソシアネートを用いることが好ましい。脂肪族イソシアネートや脂環族イソシアネートは、分解性が高いといった特徴を有するため、環境面で貢献することができる。本技術に係るポリウレタンフォームは、ポリオール由来のエステル結合部分が加水分解し、ポリオール及びイソシアネート由来のウレタン結合が加水分解することによりイソシアネート由来のアミンとポリオールに分解される。本技術では、イソシアネートとして、分解性を有する脂肪族イソシアネート及び/又は脂環族イソシアネートを用いることで、分解性の高いポリウレタンフォームを製造することができる。
In this technology, it is preferable to use an aliphatic isocyanate and/or an alicyclic isocyanate as the isocyanate. Aliphatic isocyanates and alicyclic isocyanates have the characteristic of being highly degradable, and therefore can contribute to the environment. The polyurethane foam of this technology is decomposed into an isocyanate-derived amine and a polyol by hydrolysis of the ester bond portion derived from the polyol and the urethane bond derived from the polyol and isocyanate. In this technology, by using aliphatic isocyanates and/or alicyclic isocyanates, which have degradability, as the isocyanate, a highly degradable polyurethane foam can be produced.
脂肪族イソシアネートとしては、例えば、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート(テトラメチレンジイソシアネ-ト、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート)、ヘキサメチレンジイソシアネート(HDI)、ペンタメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカプロエート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート(PDI)、デカメチレンジイソシアネート、リジンエステルトリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、リジントリイソシアネート(LTI(2,6-Diisocyanato hexanoic acid 2-isocyanatoethyl ester))等が挙げられる。
Aliphatic isocyanates include, for example, trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), hexamethylene diisocyanate (HDI), pentamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate, These include isocyanate methyl caproate, lysine diisocyanate, trimethylhexamethylene diisocyanate, 1,5-pentamethylene diisocyanate (PDI), decamethylene diisocyanate, lysine ester triisocyanate, 1,6,11-undecane triisocyanate, 1,3,6-hexamethylene triisocyanate, and lysine triisocyanate (LTI (2,6-Diisocyanato hexanoic acid 2-isocyanatoethyl ester)).
脂環族イソシアネートとしては、1,3-シクロペンタンジイソシアネート、1,3-シクロペンテンジイソシアネート、シクロヘキサンジイソシアネート(1,4-シクロヘキサンジイソシアネ-ト、1,3-シクロヘキサンジイソシアネート)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、ダイマー酸ジイソシアネート、トランスシクロヘキサン1,4-ジイソシアネート、水素添加トリレンジイソシアネート(水添TDI)、水素添加テトラメチルキシリレンジイソシアネート(水加TMXDI)等の単環式脂環族イソシアネート;ノルボルネンジイソシアネート、ノルボルナンジイソシアネートメチル、ジイソシアナートメチルビシクロヘプタン、ビシクロヘプタントリイソシアネート、ジ(ジイソシアナートメチル)トリシクロデカン等の架橋環式脂環族イソシアネート等が挙げられる。
Alicyclic isocyanates include 1,3-cyclopentane diisocyanate, 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), dimer acid diisocyanate, transcyclohexane 1, Examples of such isocyanates include monocyclic alicyclic isocyanates such as 4-diisocyanate, hydrogenated tolylene diisocyanate (hydrogenated TDI), and hydrogenated tetramethylxylylene diisocyanate (hydrated TMXDI); and crosslinked cyclic alicyclic isocyanates such as norbornene diisocyanate, norbornane diisocyanate methyl, diisocyanatomethyl bicycloheptane, bicycloheptane triisocyanate, and di(diisocyanatomethyl)tricyclodecane.
この中でも、本技術では、ヘキサメチレンジイソシアネート(HDI)のトリマー体である下記化学式(3)で表されるHDIイソシアヌレート(HDIトリマー、2,4,6-トリオキソ-1,3,5-トリアジン-1,3,5-トリイルトリス(6,1-ヘキサンジイル)トリイソシアナート)、1,5-ペンタメチレンジイソシアネート(PDI)のトリマー体である下記化学式(4)で表される1,5-PDIイソシアヌレート、下記化学式(5)で表されるリジントリイソシアネート(LTI(2,6-Diisocyanato hexanoic acid 2-isocyanatoethyl ester))を選択することが好ましい。
Among these, in this technology, it is preferable to select HDI isocyanurate (HDI trimer, 2,4,6-trioxo-1,3,5-triazine-1,3,5-triyltris(6,1-hexanediyl)triisocyanate) represented by the following chemical formula (3), which is a trimer of hexamethylene diisocyanate (HDI), 1,5-PDI isocyanurate represented by the following chemical formula (4), which is a trimer of 1,5-pentamethylene diisocyanate (PDI), and lysine triisocyanate (LTI (2,6-Diisocyanato hexanoic acid 2-isocyanatoethyl ester)) represented by the following chemical formula (5).
本技術に用いるイソシアネートの炭素数は特に限定されないが、例えば、イソシアネートのトリマー体を用いる場合は、モノマーであるイソシアネートの炭素数が6以上であることが好ましい。
There is no particular limit to the number of carbon atoms in the isocyanate used in this technology, but for example, when using a trimer of isocyanate, it is preferable that the number of carbon atoms in the monomeric isocyanate is 6 or more.
本技術に用いるイソシアネート中のイソシアネート基(NCO基)含有率(NCO%)は、例えば、50%以下が例示でき、40%以下、好ましくは35%以下、より好ましくは30%以下である。
The isocyanate group (NCO group) content (NCO%) in the isocyanate used in this technology can be, for example, 50% or less, 40% or less, preferably 35% or less, and more preferably 30% or less.
本技術に用いるイソシアネートの量は、本技術の目的や効果を損なわない限り、自由に設定することができる。本技術では、組成物中のイソシアネートの下限値は、ポリオール100質量部に対して、例えば、20質量部以上、好ましくは40質量部以上、より好ましくは50質量部以上、更に好ましくは60質量部以上、特に好ましくは70質量部以上である。組成物中のイソシアネートの含有量の下限値を、この範囲とすることにより、製造されるポリウレタンフォームのフォーム形状を更に良好にすることができる。
The amount of isocyanate used in this technology can be freely set as long as it does not impair the purpose and effects of this technology. In this technology, the lower limit of the isocyanate in the composition is, for example, 20 parts by mass or more, preferably 40 parts by mass or more, more preferably 50 parts by mass or more, even more preferably 60 parts by mass or more, and particularly preferably 70 parts by mass or more, per 100 parts by mass of polyol. By setting the lower limit of the isocyanate content in the composition within this range, the foam shape of the polyurethane foam produced can be further improved.
本技術では、組成物中のイソシアネートの含有量の上限値は、ポリオール100質量部に対して、例えば200質量部以下、好ましくは150質量部以下、より好ましくは130質量部以下、更に好ましくは100質量部以下である。組成物中のイソシアネートの含有量の上限値を、この範囲とすることにより、コスト削減のメリットがある。
In this technology, the upper limit of the isocyanate content in the composition is, for example, 200 parts by mass or less, preferably 150 parts by mass or less, more preferably 130 parts by mass or less, and even more preferably 100 parts by mass or less, per 100 parts by mass of polyol. Setting the upper limit of the isocyanate content in the composition within this range has the advantage of reducing costs.
本技術において、イソシアネートインデックスも、本技術の目的や効果を損なわない限り、自由に設定することができる。本技術では、イソシアネートインデックスの下限値は、例えば60以上、好ましくは70以上、より好ましくは80以上である。ポリウレタンフォームのイソシアネートインデックスの下限値を、この範囲とすることにより、製造するポリウレタンフォームの強度を向上させることができる。
In this technology, the isocyanate index can also be freely set as long as it does not impair the purpose and effect of the technology. In this technology, the lower limit of the isocyanate index is, for example, 60 or more, preferably 70 or more, and more preferably 80 or more. By setting the lower limit of the isocyanate index of the polyurethane foam within this range, the strength of the polyurethane foam produced can be improved.
本技術では、イソシアネートインデックスの上限値は、例えば130以下、好ましくは120以下、より好ましくは110以下である。ポリウレタンフォームのイソシアネートインデックスの含有量の上限値を、この範囲とすることにより、コスト削減のメリットがあり、また、ポリウレタンフォームの硬度が硬くなりすぎて脆くなり柔軟性が損なわれることを防止し、ポリウレタンフォームの弾性を向上させることができる。
In this technology, the upper limit of the isocyanate index is, for example, 130 or less, preferably 120 or less, and more preferably 110 or less. Setting the upper limit of the isocyanate index content of the polyurethane foam within this range has the benefit of reducing costs, and also prevents the polyurethane foam from becoming too hard, making it brittle and losing its flexibility, thereby improving the elasticity of the polyurethane foam.
なお、本技術において、イソシアネートインデックスは、[(ポリウレタンフォーム製造用組成物中のイソシアネート当量/ポリウレタンフォーム製造用組成物中の活性水素の当量)×100]で算出した値である。
In this technology, the isocyanate index is a value calculated by [(isocyanate equivalent in the composition for producing polyurethane foam/active hydrogen equivalent in the composition for producing polyurethane foam) x 100].
(3)第1級アミン
本技術では、第1級アミンを用いることができる。特に、本技術では、少なくとも1個の第1級アミノ基を有し、水酸基等の活性水素基を含んだ官能基数が2~4官能の第1級アミンを用いることができる。 (3) Primary amines In the present technology, primary amines can be used. In particular, primary amines having at least one primary amino group and an active hydrogen group such as a hydroxyl group and having two to four functional groups can be used in the present technology.
本技術では、第1級アミンを用いることができる。特に、本技術では、少なくとも1個の第1級アミノ基を有し、水酸基等の活性水素基を含んだ官能基数が2~4官能の第1級アミンを用いることができる。 (3) Primary amines In the present technology, primary amines can be used. In particular, primary amines having at least one primary amino group and an active hydrogen group such as a hydroxyl group and having two to four functional groups can be used in the present technology.
ポリウレタンフォームを製造する際は、樹脂化反応と泡化反応のバランスが非常に重要である。例えば、泡化反応に比べて樹脂化反応が遅いと、ポリウレタンフォーム製造用組成物の増粘も遅いため、泡化反応で発生したガスが抜けやすくなってしまい、発泡挙動が安定しないといった問題があった。また、キュアタイム(硬化時間)も長くなり、一般的なモールド成型に合わなくなり、量産性が悪く、製造されたポリウレタンフォームの意匠性も悪くなるといった問題があった。しかし、本技術では、第1級アミンを用いることで、初期の増粘(クリームタイム)を早め、内部発熱を促進し、樹脂化反応の反応性を向上させると共に、泡化反応の反応性を高めてライズタイムも短縮することができる。その結果、生分解度を向上させるために、例えば、脂肪族イソシアネート及び/又は脂環族イソシアネートや、生分解性ポリオール等、製造時の反応性が低い原料を用いた場合であっても、樹脂化反応と泡化反応とのバランスを良好に保つことができる。
When manufacturing polyurethane foam, the balance between the resinification reaction and the foaming reaction is very important. For example, if the resinification reaction is slower than the foaming reaction, the thickening of the polyurethane foam manufacturing composition is also slower, which means that the gas generated in the foaming reaction is more likely to escape, resulting in unstable foaming behavior. In addition, the cure time is longer, which makes it unsuitable for general molding, making it difficult to mass-produce, and causing problems such as poor design of the manufactured polyurethane foam. However, this technology uses primary amines to hasten the initial thickening (cream time), promote internal heat generation, improve the reactivity of the resinification reaction, and increase the reactivity of the foaming reaction to shorten the rise time. As a result, a good balance between the resinification reaction and the foaming reaction can be maintained even when raw materials with low reactivity during manufacturing, such as aliphatic isocyanates and/or alicyclic isocyanates and biodegradable polyols, are used to improve biodegradability.
また、製造時の反応性が低い原料を用いてポリウレタンフォームを製造する場合、反応性を高めるために、触媒を増量する手法があるが、触媒を増量すると樹脂化反応や泡化反応が不安定化するといった問題があった。また、予めポリオール及び/又はイソシアネートの一部を反応させたプレポリマーを原料として用いることにより、反応時間の短縮を図る手法もあるが、プレポリマーは粘度が高いため、原料混合物の粘度上昇によって撹拌性が低下する問題があった。しかし、本技術では、第1級アミンを用いることで、触媒を増量する必要がないため、樹脂化反応や泡化反応が安定化する。また、プレポリマーを用いなくても反応性が高いため、原料混合物の粘度上昇を抑制して撹拌性低下を防止することができる。
When manufacturing polyurethane foam using raw materials with low reactivity during production, one method is to increase the amount of catalyst to increase reactivity, but increasing the amount of catalyst causes problems such as destabilizing the resinification reaction and foaming reaction. Another method is to use a prepolymer that has been partially reacted with polyol and/or isocyanate in advance as a raw material to shorten the reaction time, but because prepolymers have a high viscosity, there is a problem that the increase in viscosity of the raw material mixture reduces the stirrability. However, with this technology, by using a primary amine, there is no need to increase the amount of catalyst, and the resinification reaction and foaming reaction are stabilized. Furthermore, because the reactivity is high even without using a prepolymer, it is possible to suppress the increase in viscosity of the raw material mixture and prevent a decrease in stirrability.
本技術に係るポリウレタンフォーム製造用組成物に用いる第1級アミンの量は、本技術の目的や効果を損なわない限り、自由に設定することができる。本技術では、ポリウレタンフォーム製造用組成物中の第1級アミンの含有量の下限値は、ポリオール100質量部に対して、例えば、0.5質量部以上、好ましくは1質量部以上、より好ましくは2質量部以上である。ポリウレタンフォーム製造用組成物中の第1級アミンの含有量の下限値を、この範囲とすることにより、樹脂化反応及び泡化反応の反応性を向上させることができる。その結果、反応性が悪い原料を用いた場合であっても、樹脂化反応と泡化反応とのバランスを良好に保つことができ、ひいては、機械的特性、及び意匠性の優れたポリウレタンフォームを得ることができる。
The amount of primary amine used in the polyurethane foam production composition according to the present technology can be freely set as long as it does not impair the purpose and effect of the technology. In the present technology, the lower limit of the content of primary amine in the polyurethane foam production composition is, for example, 0.5 parts by mass or more, preferably 1 part by mass or more, and more preferably 2 parts by mass or more, per 100 parts by mass of polyol. By setting the lower limit of the content of primary amine in the polyurethane foam production composition within this range, the reactivity of the resinification reaction and the foaming reaction can be improved. As a result, even when a raw material with poor reactivity is used, a good balance between the resinification reaction and the foaming reaction can be maintained, and ultimately, a polyurethane foam with excellent mechanical properties and design properties can be obtained.
本技術では、ポリウレタンフォーム製造用組成物中の第1級アミンの含有量の上限値は、ポリオール100質量部に対して、例えば、20質量部以下、好ましくは15質量部以下、より好ましくは10質量部以下、更に好ましくは7質量部以下である。ポリウレタンフォーム製造用組成物中の第1級アミンの含有量の上限値を、この範囲とすることにより、製造時の反応性が高すぎることによる樹脂化反応及び泡化反応の不安定化を防止し、また、プレポリマー化の粘度上昇による撹拌性低下を防止することができる。また、泡化反応に比べて樹脂化反応が早すぎると、泡化反応が進行する前に、硬化が進んでしまうため、発泡ムラや硬度ムラができたり、発泡不良となったりする場合があるが、ポリウレタンフォーム製造用組成物中の第1級アミンの含有量の上限値を、この範囲とすることにより、樹脂化反応と泡化反応とのバランスを良好に保つことができ、発泡ムラや硬度ムラ、及び発泡不良等を防止することができる。
In this technology, the upper limit of the content of the primary amine in the composition for producing polyurethane foam is, for example, 20 parts by mass or less, preferably 15 parts by mass or less, more preferably 10 parts by mass or less, and even more preferably 7 parts by mass or less, per 100 parts by mass of polyol. By setting the upper limit of the content of the primary amine in the composition for producing polyurethane foam within this range, it is possible to prevent instability of the resinification reaction and the foaming reaction due to excessively high reactivity during production, and to prevent a decrease in stirrability due to an increase in viscosity during prepolymerization. In addition, if the resinification reaction is too fast compared to the foaming reaction, curing may progress before the foaming reaction progresses, resulting in uneven foaming and hardness, or poor foaming. However, by setting the upper limit of the content of the primary amine in the composition for producing polyurethane foam within this range, it is possible to maintain a good balance between the resinification reaction and the foaming reaction, and to prevent uneven foaming, hardness, poor foaming, and the like.
本技術に用いることができる第1級アミンの数平均分子量は、本技術の目的や作用効果を損なわない限り特に限定されない。本技術に用いることができる第1級アミンの数平均分子量の下限値としては、例えば、800以上、好ましくは1800以上、より好ましくは2400以上である。また、本技術に用いることができる第1級アミンの重量平均分子量は、本技術の目的や作用効果を損なわない限り特に限定されない。本技術に用いることができる第1級アミンの重量平均分子量の下限値としては、例えば、800以上、好ましくは1800以上、より好ましくは2400以上である。本技術に用いることができる第1級アミンの数平均分子量及び/又は重量平均分子量の下限値を、この範囲とすることにより、製造時の反応性が高すぎることによる樹脂化反応及び泡化反応の不安定化を防止し、また、プレポリマー化の粘度上昇による撹拌性低下を防止することができる。また、樹脂化反応と泡化反応とのバランスを良好に保つことができ、発泡ムラや硬度ムラ、及び発泡不良等を防止することができる。
The number average molecular weight of the primary amine that can be used in this technology is not particularly limited as long as it does not impair the purpose and effect of this technology. The lower limit of the number average molecular weight of the primary amine that can be used in this technology is, for example, 800 or more, preferably 1800 or more, and more preferably 2400 or more. The weight average molecular weight of the primary amine that can be used in this technology is not particularly limited as long as it does not impair the purpose and effect of this technology. The lower limit of the weight average molecular weight of the primary amine that can be used in this technology is, for example, 800 or more, preferably 1800 or more, and more preferably 2400 or more. By setting the lower limit of the number average molecular weight and/or weight average molecular weight of the primary amine that can be used in this technology within this range, it is possible to prevent instability of the resinification reaction and the foaming reaction due to excessively high reactivity during production, and also to prevent a decrease in stirrability due to an increase in viscosity during prepolymerization. In addition, it is possible to maintain a good balance between the resinification reaction and the foaming reaction, and to prevent uneven foaming, uneven hardness, and poor foaming, etc.
本技術に用いることができる第1級アミンの数平均分子量の上限値としては、例えば、12000以下、好ましくは8000以下、より好ましくは6000以下である。また、本技術に用いることができる第1級アミンの重量平均分子量の上限値としては、例えば、12000以下、好ましくは8000以下、より好ましくは6000以下である。本技術に用いることができる第1級アミンの数平均分子量及び/又は重量平均分子量の上限値を、この範囲とすることにより、製造時の反応性を向上させることができる。その結果、反応性が低い原料を用いた場合であっても、樹脂化反応と泡化反応とのバランスを良好に保つことができ、ひいては、機械的特性、及び意匠性の優れたポリウレタンフォームを得ることができる。
The upper limit of the number average molecular weight of the primary amine that can be used in this technology is, for example, 12,000 or less, preferably 8,000 or less, and more preferably 6,000 or less. The upper limit of the weight average molecular weight of the primary amine that can be used in this technology is, for example, 12,000 or less, preferably 8,000 or less, and more preferably 6,000 or less. By setting the upper limit of the number average molecular weight and/or weight average molecular weight of the primary amine that can be used in this technology within this range, the reactivity during production can be improved. As a result, even when a raw material with low reactivity is used, a good balance between the resinification reaction and the foaming reaction can be maintained, and ultimately, a polyurethane foam with excellent mechanical properties and design properties can be obtained.
本技術に用いることができる第1級アミンにおけるオキシアルキレン繰り返し単位の数も、本技術の目的や作用効果を損なわない限り特に限定されない。本技術に用いることができる第1級アミンにおけるオキシアルキレン繰り返し単位の数の下限値としては、例えば、10以上、好ましくは20以上、より好ましくは30以上、更に好ましくは40以上である。本技術に用いることができる第1級アミンにおけるオキシアルキレン繰り返し単位の数の下限値を、この範囲とすることにより、製造時の反応性が高すぎることによる樹脂化反応及び泡化反応の不安定化を防止し、また、プレポリマー化の粘度上昇による撹拌性低下を防止することができる。また、樹脂化反応と泡化反応とのバランスを良好に保つことができ、発泡ムラや硬度ムラ、及び発泡不良等を防止することができる。
The number of oxyalkylene repeat units in the primary amine that can be used in this technology is not particularly limited as long as it does not impair the purpose and effect of this technology. The lower limit of the number of oxyalkylene repeat units in the primary amine that can be used in this technology is, for example, 10 or more, preferably 20 or more, more preferably 30 or more, and even more preferably 40 or more. By setting the lower limit of the number of oxyalkylene repeat units in the primary amine that can be used in this technology within this range, it is possible to prevent instability of the resinification reaction and the foaming reaction due to excessively high reactivity during production, and to prevent a decrease in stirrability due to an increase in viscosity during prepolymerization. In addition, it is possible to maintain a good balance between the resinification reaction and the foaming reaction, and to prevent uneven foaming, uneven hardness, and poor foaming, etc.
本技術に用いることができる第1級アミンにおけるオキシアルキレン繰り返し単位の数の上限値としては、例えば、200以下、好ましくは160以下、より好ましくは120以下、更に好ましくは100以下である。本技術に用いることができる第1級アミンにおけるオキシアルキレン繰り返し単位の数の上限値を、この範囲とすることにより、製造時の反応性を向上させることができる。その結果、反応性が悪い原料を用いた場合であっても、樹脂化反応と泡化反応とのバランスを良好に保つことができ、ひいては、機械的特性、及び意匠性の優れたポリウレタンフォームを得ることができる。
The upper limit of the number of oxyalkylene repeat units in the primary amine that can be used in this technology is, for example, 200 or less, preferably 160 or less, more preferably 120 or less, and even more preferably 100 or less. By setting the upper limit of the number of oxyalkylene repeat units in the primary amine that can be used in this technology within this range, the reactivity during production can be improved. As a result, even when a raw material with poor reactivity is used, a good balance between the resinification reaction and the foaming reaction can be maintained, and ultimately a polyurethane foam with excellent mechanical properties and design properties can be obtained.
本技術に用いることができる第1級アミンの動粘度も、本技術の目的や作用効果を損なわない限り特に限定されない。本技術に用いることができる第1級アミンの動粘度の下限値は、例えば、25℃において、100cSt以上、好ましくは200cSt以上、より好ましくは300cSt以上である。
The kinetic viscosity of the primary amine that can be used in this technology is not particularly limited as long as it does not impair the purpose and effect of this technology. The lower limit of the kinetic viscosity of the primary amine that can be used in this technology is, for example, 100 cSt or more, preferably 200 cSt or more, and more preferably 300 cSt or more at 25°C.
本技術に用いることができる第1級アミンの動粘度の上限値は、例えば、25℃において、2000cSt以下、好ましくは1500cSt以下、より好ましくは1000cSt以下である。
The upper limit of the kinetic viscosity of the primary amine that can be used in this technology is, for example, 2000 cSt or less, preferably 1500 cSt or less, and more preferably 1000 cSt or less at 25°C.
本技術に用いることができる第1級アミンのアミン水素当量(AHEW)は、本技術の目的や作用効果を損なわない限り特に限定されない。本技術に用いることができる第1級アミンのアミン水素当量(AHEW)の下限値としては、例えば、100以上、好ましくは200以上、より好ましくは300以上である。本技術に用いることができる第1級アミンのアミン水素当量(AHEW)の下限値を、この範囲とすることにより、樹脂化反応時の反応性が高すぎることによる樹脂化反応の不安定化を防止し、また、プレポリマー化の粘度上昇による撹拌性低下を防止することができる。また、樹脂化反応と泡化反応とのバランスを良好に保つことができ、発泡ムラや硬度ムラ、及び発泡不良等を防止することができる。
The amine hydrogen equivalent (AHEW) of the primary amine that can be used in this technology is not particularly limited as long as it does not impair the purpose and effect of this technology. The lower limit of the amine hydrogen equivalent (AHEW) of the primary amine that can be used in this technology is, for example, 100 or more, preferably 200 or more, and more preferably 300 or more. By setting the lower limit of the amine hydrogen equivalent (AHEW) of the primary amine that can be used in this technology within this range, it is possible to prevent instability of the resinification reaction due to excessively high reactivity during the resinification reaction, and also to prevent a decrease in stirrability due to an increase in viscosity during prepolymerization. In addition, it is possible to maintain a good balance between the resinification reaction and the foaming reaction, and to prevent uneven foaming, uneven hardness, and poor foaming, etc.
本技術に用いることができる第1級アミンのアミン水素当量(AHEW)の上限値としては、例えば、2000以下、好ましくは1500以下、より好ましくは1000以下である。本技術に用いることができる第1級アミンのアミン水素当量(AHEW)の上限値を、この範囲とすることにより、樹脂化反応の反応性を向上させることができる。その結果、反応性が低い原料を用いた場合であっても、樹脂化反応と泡化反応とのバランスを良好に保つことができ、ひいては、機械的特性の優れたポリウレタンフォームを得ることができる。
The upper limit of the amine hydrogen equivalent (AHEW) of the primary amine that can be used in this technology is, for example, 2000 or less, preferably 1500 or less, and more preferably 1000 or less. By setting the upper limit of the amine hydrogen equivalent (AHEW) of the primary amine that can be used in this technology within this range, the reactivity of the resinification reaction can be improved. As a result, even when a raw material with low reactivity is used, a good balance between the resinification reaction and the foaming reaction can be maintained, and ultimately a polyurethane foam with excellent mechanical properties can be obtained.
なお、本技術において、第1級アミンのアミン水素当量(AHEW:Amine Hydrogen Equivalent Weight)とは、1分子当りの活性アミン水素の数で除されたポリエーテルアミンの分子量として定義される。第1級アミンのアミン水素当量(AHEW)は、当業者に既知且つ従来の技術に従い算出することができるが、好ましくは、ISO9702に記載の手順を用いてアミン基窒素の含量を決定することにより算出することができる。
In this technology, the amine hydrogen equivalent weight (AHEW) of a primary amine is defined as the molecular weight of a polyetheramine divided by the number of active amine hydrogens per molecule. The amine hydrogen equivalent weight (AHEW) of a primary amine can be calculated according to conventional techniques known to those skilled in the art, but preferably, it can be calculated by determining the content of amine group nitrogen using the procedure described in ISO 9702.
本技術に用いることができる第1級アミンの具体例としては、例えば、ポリエステル第1級アミン及び下記の化学式(6)で表されるオキシアルキレンを付加重合したポリエーテルトリアミン、ポリ(プロピレングリコール)トリアミン、ポリオキシプロピレンジアミン等のポリエーテル第1級アミン等から選択される1以上の第1級アミンが挙げられ、これらの第1級アミンを1種又は2種以上、自由に選択して用いることができる。
Specific examples of primary amines that can be used in this technology include one or more primary amines selected from polyester primary amines, polyether triamines obtained by addition polymerization of oxyalkylene represented by the following chemical formula (6), polyether primary amines such as poly(propylene glycol) triamine and polyoxypropylene diamine, and one or more of these primary amines can be freely selected and used.
なお、本技術に係るポリウレタンフォーム製造用組成物には、第1級アミンの他に、本技術の目的や作用効果を損なわない限り、第2級アミンや第3級アミンを用いることも可能である。この場合、全アミンにおける第1級アミンの割合としては、90%以上が好ましく、94%以上がより好ましい。全アミンにおける第1級アミンの割合をこの範囲とすることで、樹脂化反応の反応性を向上させることができる。その結果、反応性が悪い原料を用いた場合であっても、樹脂化反応と泡化反応とのバランスを良好に保つことができ、ひいては、機械的特性の優れたポリウレタンフォームを得ることができる。
In addition to primary amines, secondary amines and tertiary amines can also be used in the polyurethane foam manufacturing composition according to the present technology, so long as they do not impair the purpose and effect of the present technology. In this case, the proportion of primary amines in all amines is preferably 90% or more, and more preferably 94% or more. By setting the proportion of primary amines in all amines within this range, the reactivity of the resinification reaction can be improved. As a result, even when a raw material with poor reactivity is used, a good balance can be maintained between the resinification reaction and the foaming reaction, and ultimately a polyurethane foam with excellent mechanical properties can be obtained.
(4)発泡剤
本技術に係るポリウレタンフォーム製造用組成物には、発泡剤を用いることができる。本技術に用いることができる発泡剤としては、本技術の目的や作用効果を損なわない限り、ポリウレタンフォームの製造に用いることができる発泡剤を、1種又は2種以上、自由に選択して用いることができる。 (4) Foaming Agent A foaming agent can be used in the composition for producing polyurethane foam according to the present technology. As the foaming agent that can be used in the present technology, one or more foaming agents that can be used in the production of polyurethane foam can be freely selected and used as long as the purpose and effect of the present technology are not impaired.
本技術に係るポリウレタンフォーム製造用組成物には、発泡剤を用いることができる。本技術に用いることができる発泡剤としては、本技術の目的や作用効果を損なわない限り、ポリウレタンフォームの製造に用いることができる発泡剤を、1種又は2種以上、自由に選択して用いることができる。 (4) Foaming Agent A foaming agent can be used in the composition for producing polyurethane foam according to the present technology. As the foaming agent that can be used in the present technology, one or more foaming agents that can be used in the production of polyurethane foam can be freely selected and used as long as the purpose and effect of the present technology are not impaired.
発泡剤としては、例えば、水、炭化水素、ハロゲン系化合物等を挙げることができる。炭化水素としては、シクロペンタン、イソペンタン、ノルマルペンタン等を挙げることができる。前記ハロゲン系化合物としては、塩化メチレン、トリクロロフルオロメタン、ジクロロジフルオロメタン、ノナフルオロブチルメチルエーテル、ノナフルオロブチルエチルエーテル、ペンタフルオロエチルメチルエーテル、ヘプタフルオロイソプロピルメチルエーテル等を挙げることができる。本技術では、これらの中でも発泡剤として水を用いることが好ましい。水は、イオン交換水、水道水、蒸留水等の何れでもよい。
Examples of the foaming agent include water, hydrocarbons, and halogenated compounds. Examples of the hydrocarbons include cyclopentane, isopentane, and normal pentane. Examples of the halogenated compounds include methylene chloride, trichlorofluoromethane, dichlorodifluoromethane, nonafluorobutyl methyl ether, nonafluorobutyl ethyl ether, pentafluoroethyl methyl ether, and heptafluoroisopropyl methyl ether. Among these, it is preferable to use water as the foaming agent in this technology. The water may be any of ion-exchanged water, tap water, and distilled water.
本技術に係るポリウレタンフォーム製造用組成物に用いる発泡剤の量は、本技術の目的や効果を損なわない限り、自由に設定することができる。本技術では、ポリウレタンフォーム製造用組成物中の発泡剤の含有量の下限値は、ポリオール100質量部に対して、例えば、0.1質量部以上、好ましくは0.5質量部以上、より好ましくは1質量部以上である。ポリウレタンフォーム製造用組成物中の発泡剤の含有量の下限値を、この範囲とすることにより、発泡性を向上させることができ、その結果、機械的特性や外観の優れたポリウレタンフォームを得ることができる。
The amount of blowing agent used in the polyurethane foam production composition according to the present technology can be freely set as long as it does not impair the purpose and effect of the technology. In the present technology, the lower limit of the blowing agent content in the polyurethane foam production composition is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more, per 100 parts by mass of polyol. By setting the lower limit of the blowing agent content in the polyurethane foam production composition within this range, it is possible to improve the foamability, and as a result, it is possible to obtain a polyurethane foam with excellent mechanical properties and appearance.
本技術では、ポリウレタンフォーム製造用組成物中の発泡剤の含有量の上限値は、ポリオール100質量部に対して、例えば、10質量部以下、好ましくは8質量部以下、より好ましくは5質量部以下である。ポリウレタンフォーム製造用組成物中の発泡剤の含有量の上限値を、この範囲とすることにより、発泡過剰による形成不良を抑制することができ、また、コスト削減に貢献することもできる。
In this technology, the upper limit of the blowing agent content in the polyurethane foam production composition is, for example, 10 parts by mass or less, preferably 8 parts by mass or less, and more preferably 5 parts by mass or less, per 100 parts by mass of polyol. By setting the upper limit of the blowing agent content in the polyurethane foam production composition within this range, it is possible to suppress formation defects due to excessive foaming, and also to contribute to cost reduction.
(5)触媒
本技術に係るポリウレタンフォーム製造用組成物には、触媒を用いることができる。本技術に用いることができる触媒としては、本技術の目的や作用効果を損なわない限り、ポリウレタンフォームの製造に用いることができる触媒を、1種又は2種以上、自由に選択して用いることができる。 (5) Catalyst A catalyst can be used in the composition for producing polyurethane foam according to the present technology. As the catalyst that can be used in the present technology, one or more catalysts that can be used in the production of polyurethane foam can be freely selected and used, as long as the purpose and effect of the present technology are not impaired.
本技術に係るポリウレタンフォーム製造用組成物には、触媒を用いることができる。本技術に用いることができる触媒としては、本技術の目的や作用効果を損なわない限り、ポリウレタンフォームの製造に用いることができる触媒を、1種又は2種以上、自由に選択して用いることができる。 (5) Catalyst A catalyst can be used in the composition for producing polyurethane foam according to the present technology. As the catalyst that can be used in the present technology, one or more catalysts that can be used in the production of polyurethane foam can be freely selected and used, as long as the purpose and effect of the present technology are not impaired.
触媒としては、例えば、ネオデカン酸錫、ジブチル錫ジラウレート、スタナスオクトエート等の錫触媒や、フェニル水銀プロピオン酸塩あるいはオクテン酸鉛等の金属触媒(有機金属触媒)等が挙げられる。また、トリエチルアミン、トリエチレンジアミン(TEDA)、テトラメチルグアニジン、ジエタノールアミン、ビス(2-ジメチルアミノエチル)エーテル、N,N,N′,N″,N″-ペンタメチルジエチレントリアミン、イミダゾール系化合物、ジメチルピペラジン、N-メチル-N’-(2-ジメチルアミノ)エチルピペラジン、N-メチル-N’-(2-ヒドロキシエチル)ピペラジン等のピペラジン系アミン、N-メチルモルホリン、N-エチルモルホリン等のモルホリン系アミン、1,8-ジアザビシクロ-[5,4,0]-ウンデセン-7(DBU)、1,5-ジアザビシクロ-[4,3,0]-ノネン-5(DBN)、1,8-ジアザビシクロ-[5,3,0]-デセン-7(DBD)、1,4-ジアザビシクロ-[3,3,0]オクテン-4(DBO)等のDBU同属体と称されるアミン等のアミン触媒も用いることができるが、これらのアミン触媒のうち、3級アミン触媒、2級アミン触媒が好ましく、さらに分子量700未満が好ましく、分子量500未満がより好ましく、分子量300未満がさらに好ましい。
Examples of catalysts include tin catalysts such as tin neodecanoate, dibutyltin dilaurate, and stannous octoate, and metal catalysts (organometallic catalysts) such as phenylmercury propionate and lead octenate. In addition, triethylamine, triethylenediamine (TEDA), tetramethylguanidine, diethanolamine, bis(2-dimethylaminoethyl)ether, N,N,N',N",N"-pentamethyldiethylenetriamine, imidazole-based compounds, piperazine-based amines such as dimethylpiperazine, N-methyl-N'-(2-dimethylamino)ethylpiperazine, and N-methyl-N'-(2-hydroxyethyl)piperazine, morpholine-based amines such as N-methylmorpholine and N-ethylmorpholine, and 1,8-diazabicyclo[4,5-diamine]pyrazine. Amine catalysts such as amines called DBU homologues, such as 1,5-diazabicyclo-[4,3,0]-nonene-5 (DBN), 1,8-diazabicyclo-[5,3,0]-decene-7 (DBD), and 1,4-diazabicyclo-[3,3,0]octene-4 (DBO), can also be used, but among these amine catalysts, tertiary amine catalysts and secondary amine catalysts are preferred, and those with a molecular weight of less than 700 are more preferred, those with a molecular weight of less than 500 are even more preferred, and those with a molecular weight of less than 300 are even more preferred.
本技術に係るポリウレタンフォーム製造用組成物に用いる触媒の量は、本技術の目的や効果を損なわない限り、自由に設定することができる。本技術では、ポリウレタンフォーム製造用組成物中の触媒の含有量の下限値は、ポリオール100質量部に対して、例えば、0.1質量部以上、好ましくは0.5質量部以上、より好ましくは1質量部以上である。ポリウレタンフォーム製造用組成物中の触媒の含有量の下限値を、この範囲とすることにより、樹脂化反応や泡化反応を促進させることができ、その結果、機械的特性や外観の優れたポリウレタンフォームを得ることができる。
The amount of catalyst used in the polyurethane foam production composition according to the present technology can be freely set as long as it does not impair the purpose and effect of the technology. In the present technology, the lower limit of the catalyst content in the polyurethane foam production composition is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more, per 100 parts by mass of polyol. By setting the lower limit of the catalyst content in the polyurethane foam production composition within this range, the resinification reaction and the foaming reaction can be promoted, and as a result, a polyurethane foam with excellent mechanical properties and appearance can be obtained.
本技術では、ポリウレタンフォーム製造用組成物中の触媒の含有量の上限値は、ポリオール100質量部に対して、例えば、30質量部以下、好ましくは25質量部以下、より好ましくは20質量部以下である。ポリウレタンフォーム製造用組成物中の触媒の含有量の上限値を、この範囲とすることにより、樹脂化反応や泡化反応の不安定化を防止し、樹脂化反応と泡化反応のバランスを良好に保つことができる。その結果、機械的特性や外観の優れたポリウレタンフォームを得ることができる。
In this technology, the upper limit of the catalyst content in the composition for producing polyurethane foam is, for example, 30 parts by mass or less, preferably 25 parts by mass or less, and more preferably 20 parts by mass or less, per 100 parts by mass of polyol. By setting the upper limit of the catalyst content in the composition for producing polyurethane foam within this range, it is possible to prevent destabilization of the resinification reaction and the foaming reaction, and to maintain a good balance between the resinification reaction and the foaming reaction. As a result, it is possible to obtain a polyurethane foam with excellent mechanical properties and appearance.
(6)整泡剤
本技術に係るポリウレタンフォーム製造用組成物には、整泡剤を用いることができる。本技術に用いることができる整泡剤としては、本技術の目的や作用効果を損なわない限り、ポリウレタンフォームの製造に用いることができる整泡剤を、1種又は2種以上、自由に選択して用いることができる。 (6) Foam stabilizer A foam stabilizer can be used in the composition for producing polyurethane foam according to the present technology. As the foam stabilizer that can be used in the present technology, one or more foam stabilizers that can be used in the production of polyurethane foam can be freely selected and used as long as they do not impair the purpose and effect of the present technology.
本技術に係るポリウレタンフォーム製造用組成物には、整泡剤を用いることができる。本技術に用いることができる整泡剤としては、本技術の目的や作用効果を損なわない限り、ポリウレタンフォームの製造に用いることができる整泡剤を、1種又は2種以上、自由に選択して用いることができる。 (6) Foam stabilizer A foam stabilizer can be used in the composition for producing polyurethane foam according to the present technology. As the foam stabilizer that can be used in the present technology, one or more foam stabilizers that can be used in the production of polyurethane foam can be freely selected and used as long as they do not impair the purpose and effect of the present technology.
整泡剤としては、例えば、シリコーン系整泡剤、含フッ素化合物系整泡剤、界面活性剤等を挙げることができる。シリコーン系整泡剤としては、シロキサン鎖主体からなるもの、シロキサン鎖とポリエーテル鎖が線状の構造をとるもの、分岐し枝分かれしたもの、ポリエーテル鎖がシロキサン鎖にペンダント状に変性されたもの等が挙げられる。
Examples of foam stabilizers include silicone-based foam stabilizers, fluorine-containing compound-based foam stabilizers, surfactants, etc. Examples of silicone-based foam stabilizers include those that are mainly composed of siloxane chains, those in which the siloxane chain and polyether chain have a linear structure, those that are branched and unbranched, and those in which the polyether chain is modified to be pendant to the siloxane chain.
本技術に係るポリウレタンフォーム製造用組成物に用いる整泡剤の量は、本技術の目的や効果を損なわない限り、自由に設定することができる。本技術では、ポリウレタンフォーム製造用組成物中の整泡剤の含有量の下限値は、ポリオール100質量部に対して、例えば、0.1質量部以上、好ましくは0.3質量部以上、より好ましくは0.5質量部以上である。ポリウレタンフォーム製造用組成物中の整泡剤の含有量の下限値を、この範囲とすることにより、発泡反応を安定化することができ、その結果、機械的特性や外観の優れたポリウレタンフォームを得ることができる。
The amount of foam stabilizer used in the polyurethane foam production composition according to the present technology can be freely set as long as it does not impair the purpose and effect of the technology. In the present technology, the lower limit of the foam stabilizer content in the polyurethane foam production composition is, for example, 0.1 parts by mass or more, preferably 0.3 parts by mass or more, and more preferably 0.5 parts by mass or more, per 100 parts by mass of polyol. By setting the lower limit of the foam stabilizer content in the polyurethane foam production composition within this range, the foaming reaction can be stabilized, and as a result, a polyurethane foam with excellent mechanical properties and appearance can be obtained.
本技術では、ポリウレタンフォーム製造用組成物中の整泡剤の含有量の上限値は、ポリオール100質量部に対して、例えば、10質量部以下、好ましくは7質量部以下、より好ましくは5質量部以下である。ポリウレタンフォーム製造用組成物中の整泡剤の含有量の上限値を、この範囲とすることにより、コスト削減に貢献することができる。
In this technology, the upper limit of the foam stabilizer content in the polyurethane foam production composition is, for example, 10 parts by mass or less, preferably 7 parts by mass or less, and more preferably 5 parts by mass or less, per 100 parts by mass of polyol. Setting the upper limit of the foam stabilizer content in the polyurethane foam production composition within this range can contribute to cost reduction.
(7)生分解促進剤
本技術に係るポリウレタンフォーム製造用組成物には、生分解促進剤を用いることができる。生分解促進剤を用いることで、本技術に係るポリウレタンフォームの原料として生分解性の原料を用いた場合に、生分解性を向上させることができる。 (7) Biodegradation Accelerator A biodegradation accelerator can be used in the composition for producing a polyurethane foam according to the present technology. By using a biodegradation accelerator, when a biodegradable raw material is used as a raw material for the polyurethane foam according to the present technology, the biodegradability can be improved.
本技術に係るポリウレタンフォーム製造用組成物には、生分解促進剤を用いることができる。生分解促進剤を用いることで、本技術に係るポリウレタンフォームの原料として生分解性の原料を用いた場合に、生分解性を向上させることができる。 (7) Biodegradation Accelerator A biodegradation accelerator can be used in the composition for producing a polyurethane foam according to the present technology. By using a biodegradation accelerator, when a biodegradable raw material is used as a raw material for the polyurethane foam according to the present technology, the biodegradability can be improved.
本技術に用いることができる生分解促進剤としては、本技術の目的や作用効果を損なわない限り、ポリウレタンフォームに用いることができる生分解促進剤を、1種又は2種以上、自由に選択して用いることができる。
As for the biodegradation promoter that can be used in this technology, one or more types of biodegradation promoter that can be used in polyurethane foam can be freely selected and used, as long as it does not impair the purpose and effect of this technology.
生分解促進剤としては、例えば、グルコース、キシロース、ガラクトース、マルトース、スクロース、キチン、セルロース等の糖類;澱粉類;アミノ酸;ペプチド;タマリンドガム等のガム質;リグニン等を挙げることができる。
Examples of biodegradation promoters include sugars such as glucose, xylose, galactose, maltose, sucrose, chitin, and cellulose; starches; amino acids; peptides; gums such as tamarind gum; and lignin.
本技術に係るポリウレタンフォーム製造用組成物に用いる生分解促進剤の量は、本技術の目的や効果を損なわない限り、自由に設定することができる。本技術では、ポリウレタンフォーム製造用組成物中の生分解促進剤の含有量の下限値は、ポリオール100質量部に対して、例えば、0.1質量部以上、好ましくは0.5質量部以上、より好ましくは1質量部以上である。
The amount of biodegradation promoter used in the polyurethane foam production composition according to the present technology can be freely set as long as it does not impair the purpose and effect of the present technology. In the present technology, the lower limit of the content of the biodegradation promoter in the polyurethane foam production composition is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more, per 100 parts by mass of polyol.
本技術では、ポリウレタンフォーム製造用組成物中の生分解促進剤の含有量の上限値は、ポリオール100質量部に対して、例えば、10質量部以下、好ましくは7質量部以下、より好ましくは5質量部以下である。
In this technology, the upper limit of the content of the biodegradation accelerator in the composition for producing polyurethane foam is, for example, 10 parts by mass or less, preferably 7 parts by mass or less, and more preferably 5 parts by mass or less, per 100 parts by mass of polyol.
(8)その他
本技術に係るポリウレタンフォーム製造用組成物には、本技術の目的や効果を損なわない限り、その他の成分として、ポリウレタンフォーム製造用組成物に用いることができる各種成分を、目的に応じて1種又は2種以上自由に選択して用いることができる。 (8) Others In the composition for producing polyurethane foam according to the present technology, one or more other components that can be freely selected depending on the purpose from various components that can be used in compositions for producing polyurethane foam may be used as other components, as long as the purpose and effects of the present technology are not impaired.
本技術に係るポリウレタンフォーム製造用組成物には、本技術の目的や効果を損なわない限り、その他の成分として、ポリウレタンフォーム製造用組成物に用いることができる各種成分を、目的に応じて1種又は2種以上自由に選択して用いることができる。 (8) Others In the composition for producing polyurethane foam according to the present technology, one or more other components that can be freely selected depending on the purpose from various components that can be used in compositions for producing polyurethane foam may be used as other components, as long as the purpose and effects of the present technology are not impaired.
本技術に係るポリウレタンフォーム製造用組成物に用いることができる成分としては、例えば、難燃剤、安定剤、可塑剤、着色剤、酸化防止剤、架橋剤、抗菌剤、分散剤、紫外線吸収剤等を挙げることができる。
Ingredients that can be used in the polyurethane foam manufacturing composition according to this technology include, for example, flame retardants, stabilizers, plasticizers, colorants, antioxidants, crosslinking agents, antibacterial agents, dispersants, and ultraviolet absorbers.
3.ポリウレタンフォームの製造方法
本技術に係るポリウレタンフォームは、前述した本技術に係るポリウレタンフォーム製造用組成物の各成分を混合して組成物を調製し、樹脂化反応及び泡化反応を進行させることにより製造することができる。樹脂化反応及び泡化反応の方法は、本技術の目的や効果を損なわない限り、一般的は方法を自由に組み合わせて採用することができる。 3. Method for Producing Polyurethane Foam The polyurethane foam according to the present technology can be produced by preparing a composition by mixing each component of the composition for producing polyurethane foam according to the present technology described above, and proceeding with a resinification reaction and a foaming reaction. As for the method for the resinification reaction and the foaming reaction, any general method can be freely combined and used as long as it does not impair the purpose and effect of the present technology.
本技術に係るポリウレタンフォームは、前述した本技術に係るポリウレタンフォーム製造用組成物の各成分を混合して組成物を調製し、樹脂化反応及び泡化反応を進行させることにより製造することができる。樹脂化反応及び泡化反応の方法は、本技術の目的や効果を損なわない限り、一般的は方法を自由に組み合わせて採用することができる。 3. Method for Producing Polyurethane Foam The polyurethane foam according to the present technology can be produced by preparing a composition by mixing each component of the composition for producing polyurethane foam according to the present technology described above, and proceeding with a resinification reaction and a foaming reaction. As for the method for the resinification reaction and the foaming reaction, any general method can be freely combined and used as long as it does not impair the purpose and effect of the present technology.
本技術に係るポリウレタンフォームの製造方法における発泡は、スラブ発泡及びモールド発泡のいずれを採用することもできる。スラブ発泡は、ポリウレタンフォーム製造用組成物(ポリウレタンフォームの原料)を混合してベルトコンベア上に吐出し、大気圧下、常温で発泡させる方法である。一方、モールド発泡は、モールド(金型)のキャビティにポリウレタンフォーム製造用組成物(ポリウレタンフォームの原料)を混合して注入し、キャビティ形状に発泡させる方法である。本技術では、製造し易さの観点から、モールド発泡を採用することが好ましい。前述したように、本技術では、第1級アミンを用いることで、バイオマス由来の原料を多く用いた場合であっても、モールド成型を行うことを可能とした。
In the polyurethane foam manufacturing method according to the present technology, either slab foaming or mold foaming can be used for the foaming. Slab foaming is a method in which a polyurethane foam manufacturing composition (raw material for polyurethane foam) is mixed and discharged onto a belt conveyer, and foamed at atmospheric pressure and room temperature. On the other hand, mold foaming is a method in which a polyurethane foam manufacturing composition (raw material for polyurethane foam) is mixed and injected into the cavity of a mold (metal mold), and foamed to the shape of the cavity. In this technology, mold foaming is preferably used from the viewpoint of ease of manufacturing. As mentioned above, in this technology, by using a primary amine, it is possible to perform mold molding even when a large amount of biomass-derived raw material is used.
[第2実施形態]
1.ポリウレタンフォーム製造用組成物
本技術に係るポリウレタンフォーム製造用組成物には、ポリオールと、バイオマス由来のイソシアネートと、を含有する。その他、必要に応じて、第1級アミン、発泡剤、触媒、整泡剤、生分解促進剤等を含有させることができる。以下、各成分について、詳細に説明する。なお、第1級アミン、発泡剤、触媒、整泡剤、生分解促進剤の詳細については、前述した第1実施形態と同一であるため、ここでは説明を割愛する。 [Second embodiment]
1. Composition for producing polyurethane foam The composition for producing polyurethane foam according to the present technology contains a polyol and an isocyanate derived from biomass. In addition, a primary amine, a blowing agent, a catalyst, a foam stabilizer, a biodegradation promoter, etc. can be contained as necessary. Each component will be described in detail below. The details of the primary amine, the blowing agent, the catalyst, the foam stabilizer, and the biodegradation promoter are the same as those of the first embodiment described above, so that the description will be omitted here.
1.ポリウレタンフォーム製造用組成物
本技術に係るポリウレタンフォーム製造用組成物には、ポリオールと、バイオマス由来のイソシアネートと、を含有する。その他、必要に応じて、第1級アミン、発泡剤、触媒、整泡剤、生分解促進剤等を含有させることができる。以下、各成分について、詳細に説明する。なお、第1級アミン、発泡剤、触媒、整泡剤、生分解促進剤の詳細については、前述した第1実施形態と同一であるため、ここでは説明を割愛する。 [Second embodiment]
1. Composition for producing polyurethane foam The composition for producing polyurethane foam according to the present technology contains a polyol and an isocyanate derived from biomass. In addition, a primary amine, a blowing agent, a catalyst, a foam stabilizer, a biodegradation promoter, etc. can be contained as necessary. Each component will be described in detail below. The details of the primary amine, the blowing agent, the catalyst, the foam stabilizer, and the biodegradation promoter are the same as those of the first embodiment described above, so that the description will be omitted here.
(1)ポリオール
本技術には、ポリウレタンフォームの製造に用いることができるポリオールを、1種又は2種以上、自由に選択して併用することができる。ポリオールとしては、例えば、ポリエステルポリオール、ポリカーボネートポリオール、ポリエステルエーテルポリオール、ポリカプロラクトンポリオール、ポリ乳酸ポリオール等を挙げることができる。 (1) Polyol In the present technology, one or more polyols that can be used in the production of polyurethane foam can be freely selected and used in combination. Examples of polyols include polyester polyols, polycarbonate polyols, polyester ether polyols, polycaprolactone polyols, and polylactic acid polyols.
本技術には、ポリウレタンフォームの製造に用いることができるポリオールを、1種又は2種以上、自由に選択して併用することができる。ポリオールとしては、例えば、ポリエステルポリオール、ポリカーボネートポリオール、ポリエステルエーテルポリオール、ポリカプロラクトンポリオール、ポリ乳酸ポリオール等を挙げることができる。 (1) Polyol In the present technology, one or more polyols that can be used in the production of polyurethane foam can be freely selected and used in combination. Examples of polyols include polyester polyols, polycarbonate polyols, polyester ether polyols, polycaprolactone polyols, and polylactic acid polyols.
ポリエーテルポリオールとしては、例えば、エチレンオキサイド、プロピレンオキサイド等の環状エーテルをそれぞれ重合させて得られるポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等、及びこれらのコポリエーテル等が挙げられる。また、グリセリン、トリメチロールエタン等の多価アルコールを用い、前記環状エーテルを重合させて得ることもできる。また、ポリエーテルポリオールとして、市販のものを用いてもよい。
Polyether polyols include, for example, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, etc., which are obtained by polymerizing cyclic ethers such as ethylene oxide, propylene oxide, etc., respectively, and copolyethers thereof. They can also be obtained by polymerizing the cyclic ethers using polyhydric alcohols such as glycerin, trimethylolethane, etc. Commercially available polyether polyols may also be used.
また、ポリエーテルポリオールとして、ポリマーポリオールを用いることができる。ポリマーポリオールとは、ポリエーテルポリオール中でエチレン性不飽和モノマーを重合させて得られるもの、又はポリエーテルポリオール中にエチレン性不飽和モノマーの重合物を乳化分散させて得られるもの等である。具体的には、例えば、ポリエーテルポリオールにアクリロニトリル、スチレン等をグラフト重合させたものや、ポリエーテルポリオール中にポリスチレンやポリアクリロニトリルを分散させたもの等が挙げられる。
Also, a polymer polyol can be used as the polyether polyol. A polymer polyol is one obtained by polymerizing an ethylenically unsaturated monomer in a polyether polyol, or one obtained by emulsifying and dispersing a polymer of an ethylenically unsaturated monomer in a polyether polyol. Specific examples include those obtained by graft polymerizing acrylonitrile, styrene, etc. onto a polyether polyol, and those obtained by dispersing polystyrene or polyacrylonitrile in a polyether polyol.
ポリエステルポリオールとしては、例えば、コハク酸、アジピン酸、セバシン酸、アゼライン酸等の脂肪族ジカルボン酸;リシノレイン酸等の脂肪族カルボン酸;フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環族ジカルボン酸;又はこれらの酸エステルもしくは酸無水物と、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール等、もしくは、これらの混合物との脱水縮合反応で得られるポリエステルポリオール;ε-カプロラクトン、メチルバレロラクトン等のラクトンモノマーの開環重合で得られるポリラクトンポリオール、ポリカプロラクトンポリオール等を挙げることができる。また、これらのほかに、ポリエステルポリオールとしては、例えば、天然由来のエステル基を有するポリオールが挙げられる。
Examples of polyester polyols include aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid; aliphatic carboxylic acids such as ricinoleic acid; aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as hexahydrophthalic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid; and acid esters or acid anhydrides of these with ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, Examples of the polyester polyol include polyester polyols obtained by dehydration condensation reaction with 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, or a mixture thereof; polylactone polyols and polycaprolactone polyols obtained by ring-opening polymerization of lactone monomers such as ε-caprolactone and methylvalerolactone. In addition to these, examples of polyester polyols include polyols having naturally occurring ester groups.
ポリカーボネートポリオールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、ジエチレングリコール等の多価アルコールの少なくとも1種と、ジエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等とを反応させて得られるものを挙げることができる。
Examples of polycarbonate polyols include those obtained by reacting at least one of polyhydric alcohols such as ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, and diethylene glycol with diethylene carbonate, dimethyl carbonate, diethyl carbonate, etc.
ポリエステルエーテルポリオールとしては、例えば、コハク酸、アジピン酸、セバシン酸、アゼライン酸等の脂肪族ジカルボン酸;フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環族ジカルボン酸;又はこれらの酸エステルもしくは酸無水物と、ジエチレングリコール、もしくはプロピレンオキシド付加物等のグリコール等、又は、これらの混合物との脱水縮合反応で得られるものを挙げることができる。
Examples of polyester ether polyols include aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid; aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as hexahydrophthalic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid; and those obtained by dehydration condensation reaction of acid esters or acid anhydrides of these with glycols such as diethylene glycol or propylene oxide adducts, or mixtures of these.
本技術では、ポリオールとして、バイオマス由来のポリオールを用いることが好ましい。本技術に用いることができるバイオマス由来ポリオールは、本技術の作用や効果を損なわない限り、ポリウレタンフォームの製造に用いることができるバイオマス由来ポリオールを1種又は2種以上、自由に選択して用いることができる。
In this technology, it is preferable to use a biomass-derived polyol as the polyol. As the biomass-derived polyol that can be used in this technology, one or more types of biomass-derived polyol that can be used in the production of polyurethane foam can be freely selected and used, as long as the action and effect of this technology are not impaired.
本技術に用いることができるバイオマス由来ポリオールとしては、例えば、天然油脂由来ポリオールが挙げられる。天然油脂由来ポリオールとは、ヒマシ油、大豆油、菜種油、ヤシ油等の天然油脂又はその誘導体(変性天然油脂ポリオール、未変性天然油脂ポリオールなど)であって、炭化水素鎖上に水酸基を含み、1分子中に2以上の水酸基を有する。本技術では、これら2種以上を組み合わせて用いてもよい。その他のバイオマス由来ポリオールとしては、例えば、トウモロコシ由来ポリオール、カシューナッツ殻液由来ポリオール等が挙げられる。また、バイオマス由来ポリオールとして、市販のものを用いてもよい。
Examples of biomass-derived polyols that can be used in this technology include polyols derived from natural fats and oils. Natural fat-derived polyols are natural fats and oils such as castor oil, soybean oil, rapeseed oil, and coconut oil, or derivatives thereof (modified natural fat and oil polyols, unmodified natural fat and oil polyols, etc.), which contain hydroxyl groups on the hydrocarbon chain and have two or more hydroxyl groups per molecule. In this technology, two or more of these may be used in combination. Other biomass-derived polyols include, for example, corn-derived polyols and cashew nut shell liquid-derived polyols. Commercially available biomass-derived polyols may also be used.
この中でも本技術では、ヒマシ油を用いることが好ましい。「ヒマシ油」には、未変性ヒマシ油、変性ヒマシ油、脱水ヒマシ油、水素添加されたヒマシ油等のいずれも包含する。より具体的には、前記化学式(1)で表されるひまし油系ポリオールを用いることが好ましい。
Among these, it is preferable to use castor oil in this technology. "Castor oil" includes unmodified castor oil, modified castor oil, dehydrated castor oil, hydrogenated castor oil, etc. More specifically, it is preferable to use the castor oil-based polyol represented by the above chemical formula (1).
本技術に係るポリウレタンフォーム製造用組成物において、ポリオール100質量部に対するバイオマス由来ポリオールの含有量としては、例えば45質量部以上、好ましくは65質量部以上、より好ましくは85質量部以上、更に好ましくは95質量部以上である。ポリオール100質量部に対するバイオマス由来ポリオールの含有量をこの範囲とすることで、環境負荷低減効果を向上させることができる。
In the polyurethane foam manufacturing composition according to the present technology, the content of biomass-derived polyol per 100 parts by mass of polyol is, for example, 45 parts by mass or more, preferably 65 parts by mass or more, more preferably 85 parts by mass or more, and even more preferably 95 parts by mass or more. By setting the content of biomass-derived polyol per 100 parts by mass of polyol within this range, the effect of reducing the environmental load can be improved.
本技術に係るポリウレタンフォーム製造用組成物において、ポリオール100質量部に対するバイオマス由来ポリオールの含有量の上限は、本技術の作用や効果を損なわない限り、特に限定されず、環境負荷低減を考慮すると、全てバイオマス由来ポリオールを用いることが好ましい。ポリオール100質量部に対するバイオマス由来ポリオールの含有量の上限としては、例えば100質量部以下、90質量部以下、85質量部以下、80質量部以下、75質量部以下、70質量部以下等に設定することができる。
In the polyurethane foam manufacturing composition according to the present technology, the upper limit of the content of biomass-derived polyol per 100 parts by mass of polyol is not particularly limited as long as it does not impair the action or effect of the present technology, and in consideration of reducing the environmental load, it is preferable to use all biomass-derived polyols. The upper limit of the content of biomass-derived polyol per 100 parts by mass of polyol can be set, for example, to 100 parts by mass or less, 90 parts by mass or less, 85 parts by mass or less, 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, etc.
本技術では、環境に考慮して、生分解性ポリオールを用いることもできる。生分解性ポリオールの詳細は、前述した第1実施形態で用いる生分解性ポリオールと同一であるため、ここでは説明を割愛する。
In this technology, a biodegradable polyol can also be used in consideration of the environment. Details of the biodegradable polyol are the same as those of the biodegradable polyol used in the first embodiment described above, so a detailed explanation will be omitted here.
(2)バイオマス由来のイソシアネート
第2実施形態のポリウレタンフォーム製造用組成物では、イソシアネートとして、バイオマス由来のイソシアネートを用いることを特徴とする。バイオマス由来のイソシアネートを用いることで、製造されるポリウレタンフォームのバイオマス度を高めることができ、環境負荷低減に貢献することができる。 (2) Biomass-derived isocyanate The composition for producing a polyurethane foam according to the second embodiment is characterized in that a biomass-derived isocyanate is used as the isocyanate. By using the biomass-derived isocyanate, the biomass content of the polyurethane foam produced can be increased, which can contribute to reducing the environmental load.
第2実施形態のポリウレタンフォーム製造用組成物では、イソシアネートとして、バイオマス由来のイソシアネートを用いることを特徴とする。バイオマス由来のイソシアネートを用いることで、製造されるポリウレタンフォームのバイオマス度を高めることができ、環境負荷低減に貢献することができる。 (2) Biomass-derived isocyanate The composition for producing a polyurethane foam according to the second embodiment is characterized in that a biomass-derived isocyanate is used as the isocyanate. By using the biomass-derived isocyanate, the biomass content of the polyurethane foam produced can be increased, which can contribute to reducing the environmental load.
バイオマス由来のイソシアネートとしては、本技術の作用や効果を損なわない限り、ポリウレタンフォームの製造に用いることができるバイオマス由来のイソシアネートを1種又は2種以上、自由に選択して用いることができる。例えば、1,5-ペンタメチレンジイソシアネート(PDI)、リジントリイソシアネート(LTI(2,6-Diisocyanato hexanoic acid 2-isocyanatoethyl ester))、リジンジイソシアネート(LDI(Hexanoic acid, 2,6-diisocyanato))、ダイマー酸ジイソシアネート(DDI(3,4-dihexyl-5-(10-isocyanatodec-1-en-1-yl)-6-(8-isocyanatooctyl)cyclohex-1-ene))等が挙げられる。この中でも、本技術では、1,5-ペンタメチレンジイソシアネート(PDI)のトリマー体である前記化学式(4)で表される1,5-PDIイソシアヌレート、前記化学式(5)で表されるリジントリイソシアネート(LTI(2,6-Diisocyanato hexanoic acid 2-isocyanatoethyl ester))を選択することが好ましい。
As the biomass-derived isocyanate, one or more types of biomass-derived isocyanates that can be used in the production of polyurethane foam can be freely selected and used, so long as they do not impair the action and effect of this technology. Examples include 1,5-pentamethylene diisocyanate (PDI), lysine triisocyanate (LTI (2,6-Diisocyanato hexanoic acid 2-isocyanatoethyl ester)), lysine diisocyanate (LDI (Hexanoic acid, 2,6-diisocyanato)), dimer acid diisocyanate (DDI (3,4-dihexyl-5-(10-isocyanatodec-1-en-1-yl)-6-(8-isocyanatooctyl)cyclohex-1-ene)), etc. Among these, in this technology, it is preferable to select 1,5-PDI isocyanurate, which is a trimer of 1,5-pentamethylene diisocyanate (PDI) and is represented by the above chemical formula (4), and lysine triisocyanate (LTI (2,6-Diisocyanato hexanoic acid 2-isocyanatoethyl ester)), which is represented by the above chemical formula (5).
本技術では、バイオマス由来のイソシアネートの他に、一般的に用いられる石油由来等のその他のイソシアネートを併用することも可能である。その他のイソシアネートの詳細は、前述した第1実施形態で用いることができるイソシアネートと同一であるため、ここでは説明を割愛する。
In this technology, in addition to biomass-derived isocyanates, it is also possible to use other commonly used isocyanates, such as petroleum-derived isocyanates. Details of the other isocyanates are the same as those that can be used in the first embodiment described above, so a description is omitted here.
本技術に係るポリウレタンフォーム製造用組成物において、イソシアネート100質量部に対するバイオマス由来のイソシアネートの含有量としては、例えば40質量部以上、好ましくは45質量部以上、より好ましくは50質量部以上、更に好ましくは55質量部以上である。イソシアネート100質量部に対するバイオマス由来のイソシアネートの含有量をこの範囲とすることで、環境負荷低減効果を向上させることができる。
In the polyurethane foam manufacturing composition according to the present technology, the content of biomass-derived isocyanate per 100 parts by mass of isocyanate is, for example, 40 parts by mass or more, preferably 45 parts by mass or more, more preferably 50 parts by mass or more, and even more preferably 55 parts by mass or more. By setting the content of biomass-derived isocyanate per 100 parts by mass of isocyanate within this range, the effect of reducing the environmental load can be improved.
本技術に係るポリウレタンフォーム製造用組成物において、イソシアネート100質量部に対するバイオマス由来のイソシアネートの含有量の上限は、本技術の作用や効果を損なわない限り、特に限定されず、環境負荷低減を考慮すると、全てバイオマス由来のイソシアネートを用いることが好ましい。イソシアネート100質量部に対するバイオマス由来のイソシアネートの含有量の上限としては、例えば100質量部以下、90質量部以下、85質量部以下、80質量部以下、75質量部以下、70質量部以下等に設定することができる。
In the polyurethane foam manufacturing composition according to the present technology, the upper limit of the content of biomass-derived isocyanate per 100 parts by mass of isocyanate is not particularly limited as long as it does not impair the action and effect of the present technology, and in consideration of reducing the environmental load, it is preferable to use all biomass-derived isocyanate. The upper limit of the content of biomass-derived isocyanate per 100 parts by mass of isocyanate can be set, for example, to 100 parts by mass or less, 90 parts by mass or less, 85 parts by mass or less, 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, etc.
なお、本技術に用いるバイオマス由来のイソシアネートの量は、前述した第1実施形態で記載したイソシアネートの量やイソシアネートインデックスとなるように、また、他のイソシアネートと併用する場合には、他のイソシアネートの量も考慮して、調整することができる。
The amount of biomass-derived isocyanate used in this technology can be adjusted to the amount of isocyanate and isocyanate index described in the first embodiment above, and when used in combination with other isocyanates, the amount of the other isocyanates can be taken into consideration.
2.ポリウレタンフォーム
第2実施形態のポリウレタンフォームは、前述した第2実施形態のポリウレタンフォーム製造用組成物を用いて製造されたポリウレタンフォームである。 2. Polyurethane Foam The polyurethane foam of the second embodiment is a polyurethane foam produced using the composition for producing a polyurethane foam of the second embodiment described above.
第2実施形態のポリウレタンフォームは、前述した第2実施形態のポリウレタンフォーム製造用組成物を用いて製造されたポリウレタンフォームである。 2. Polyurethane Foam The polyurethane foam of the second embodiment is a polyurethane foam produced using the composition for producing a polyurethane foam of the second embodiment described above.
第2実施形態に係るポリウレタンフォームの生分解度は特に限定されないが、前述した第1実施形態に係るポリウレタンフォームと同様に、ISO14885-2の生分解度試験において、45日後の生分解度が15%以下であることが好ましく、また、180日後の生分解度が30%以上であることが好ましい。
The degree of biodegradability of the polyurethane foam according to the second embodiment is not particularly limited, but similar to the polyurethane foam according to the first embodiment described above, in the ISO 14885-2 biodegradability test, it is preferable that the degree of biodegradability after 45 days is 15% or less, and that the degree of biodegradability after 180 days is 30% or more.
本技術に係るポリウレタンフォームのバイオマス度は、本技術の作用や効果を損なわない限り、自由に設定することができる。本技術に係るポリウレタンフォームのバイオマス度の下限は、例えば20%以上、好ましくは25%以上、より好ましくは30%以上、更に好ましくは35%以上、特に好ましくは40%以上である。本技術に係るポリウレタンフォームのバイオマス度は、高ければ高いほど、環境に貢献することができるため、バイオマス度の上限に制限はない。
The biomass degree of the polyurethane foam according to the present technology can be freely set as long as it does not impair the action and effect of the present technology. The lower limit of the biomass degree of the polyurethane foam according to the present technology is, for example, 20% or more, preferably 25% or more, more preferably 30% or more, even more preferably 35% or more, and particularly preferably 40% or more. The higher the biomass degree of the polyurethane foam according to the present technology, the more it can contribute to the environment, so there is no upper limit to the biomass degree.
なお、本技術において「バイオマス度」は、下記の数式を用いて算出した値である。
バイオマス度(%)={(バイオマス材料重量×バイオマス材料のバイオマス度/100)/全原料重量}×100 In this technology, the "biomass degree" is a value calculated using the following formula.
Biomass ratio (%)={(weight of biomass material×biomass ratio of biomass material/100)/weight of total raw materials}×100
バイオマス度(%)={(バイオマス材料重量×バイオマス材料のバイオマス度/100)/全原料重量}×100 In this technology, the "biomass degree" is a value calculated using the following formula.
Biomass ratio (%)={(weight of biomass material×biomass ratio of biomass material/100)/weight of total raw materials}×100
なお、第2実施形態に係るポリウレタンフォームの硬度、密度等のその他の特性や用途は、前述した第1実施形態に係るポリウレタンフォームと同一であるため、ここでは説明を割愛する。
The hardness, density, and other properties and uses of the polyurethane foam according to the second embodiment are the same as those of the polyurethane foam according to the first embodiment described above, so a description thereof will be omitted here.
3.ポリウレタンフォームの製造方法
第2実施形態に係るポリウレタンフォームは、前述した第2実施形態に係るポリウレタンフォーム製造用組成物の各成分を混合して組成物を調製し、樹脂化反応及び泡化反応を進行させることにより製造することができる。製造方法の詳細は、前述した第1実施形態に係るポリウレタンフォームの製造方法と同一であるため、ここでは説明を割愛する。 3. Method for Producing Polyurethane Foam The polyurethane foam according to the second embodiment can be produced by mixing the components of the composition for producing polyurethane foam according to the second embodiment described above to prepare a composition, and then allowing a resinification reaction and a foaming reaction to proceed. Details of the production method are the same as those of the method for producing polyurethane foam according to the first embodiment described above, and therefore will not be described here.
第2実施形態に係るポリウレタンフォームは、前述した第2実施形態に係るポリウレタンフォーム製造用組成物の各成分を混合して組成物を調製し、樹脂化反応及び泡化反応を進行させることにより製造することができる。製造方法の詳細は、前述した第1実施形態に係るポリウレタンフォームの製造方法と同一であるため、ここでは説明を割愛する。 3. Method for Producing Polyurethane Foam The polyurethane foam according to the second embodiment can be produced by mixing the components of the composition for producing polyurethane foam according to the second embodiment described above to prepare a composition, and then allowing a resinification reaction and a foaming reaction to proceed. Details of the production method are the same as those of the method for producing polyurethane foam according to the first embodiment described above, and therefore will not be described here.
以下、実施例に基づいて本技術を更に詳細に説明する。なお、以下に説明する実施例は、本技術の代表的な実施例の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。
The present technology will be described in more detail below with reference to examples. Note that the examples described below are representative examples of the present technology, and should not be construed as narrowing the scope of the present technology.
なお、特に記載のない限り、本実施例で使用した各材料は、以下の通りである。
石油由来ポリプロピレングリコール系ポリオール:三洋化成工業株式会社「KC737」
石油由来ポリカプロラクトン系ポリオール1:株式会社ダイセル「プラクセル308」
石油由来ポリカプロラクトン系ポリオール2:株式会社ダイセル「プラクセル205U」
バイオマス由来精製ヒマシ油(リシノレイン酸トリグリセリド):伊藤製油株式会社「H-30」
バイオマス由来セバシン酸系エステルポリオール:伊藤製油株式会社「SE-2013C」
石油由来ポリエーテルアミン:三井化学ファイン株式会社「T5000」
ネオデカン酸スズ:日東化成工業株「ネオスタンU50」
TEDA(トリエチレンジアミン):エボニックジャパン株式会社「DABCOクリスタル」
DBU(ジアザビシクロウンデセン):サンアプロ株式会社「U-CAT SA-102」
1,2-ジメチルイミダゾール(70%)+EG(30%):エボニックジャパン株式会社「DABCO 2040」
シリコーン系整泡剤:エボニックジャパン株式会社「B-8742LF2」(比較例1~4、実施例4、6)、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社「L594plus」(実施例1~3、5、7、8)
ジフェニルメタンジイソシアネート:東ソー株式会社「ミリオネートNM」
ヘキサメチレンジイソシアネート(HDI)トリマー:旭化成株式会社「デュラネートTLA-100」
ペンタメチレンジイソシアネート(PDI)トリマー:三井化学株式会社「スタビオD-376N」 Unless otherwise specified, the materials used in the present examples are as follows.
Petroleum-derived polypropylene glycol polyol: Sanyo Chemical Industries, Ltd. "KC737"
Petroleum-derived polycaprolactone polyol 1: Daicel Corporation "Placcel 308"
Petroleum-derived polycaprolactone polyol 2: Daicel Corporation "Placcel 205U"
Biomass-derived refined castor oil (ricinoleic acid triglyceride): Ito Oil Mills, Ltd. "H-30"
Biomass-derived sebacic acid ester polyol: Ito Oil Mills "SE-2013C"
Petroleum-derived polyetheramine: Mitsui Fine Chemicals Co., Ltd. "T5000"
Tin neodecanoate: "Neostan U50" by Nitto Chemical Industries Co., Ltd.
TEDA (triethylenediamine): Evonik Japan Co., Ltd. "DABCO Crystal"
DBU (diazabicycloundecene): San-Apro Co., Ltd. "U-CAT SA-102"
1,2-Dimethylimidazole (70%) + EG (30%): Evonik Japan Co., Ltd. "DABCO 2040"
Silicone foam stabilizer: Evonik Japan Co., Ltd. "B-8742LF2" (Comparative Examples 1 to 4, Examples 4 and 6), Momentive Performance Materials Japan LLC "L594plus" (Examples 1 to 3, 5, 7 and 8)
Diphenylmethane diisocyanate: Tosoh Corporation "Millionate NM"
Hexamethylene diisocyanate (HDI) trimer: Asahi Kasei Corporation "Duranate TLA-100"
Pentamethylene diisocyanate (PDI) trimer: Mitsui Chemicals, Inc. "STABIO D-376N"
石油由来ポリプロピレングリコール系ポリオール:三洋化成工業株式会社「KC737」
石油由来ポリカプロラクトン系ポリオール1:株式会社ダイセル「プラクセル308」
石油由来ポリカプロラクトン系ポリオール2:株式会社ダイセル「プラクセル205U」
バイオマス由来精製ヒマシ油(リシノレイン酸トリグリセリド):伊藤製油株式会社「H-30」
バイオマス由来セバシン酸系エステルポリオール:伊藤製油株式会社「SE-2013C」
石油由来ポリエーテルアミン:三井化学ファイン株式会社「T5000」
ネオデカン酸スズ:日東化成工業株「ネオスタンU50」
TEDA(トリエチレンジアミン):エボニックジャパン株式会社「DABCOクリスタル」
DBU(ジアザビシクロウンデセン):サンアプロ株式会社「U-CAT SA-102」
1,2-ジメチルイミダゾール(70%)+EG(30%):エボニックジャパン株式会社「DABCO 2040」
シリコーン系整泡剤:エボニックジャパン株式会社「B-8742LF2」(比較例1~4、実施例4、6)、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社「L594plus」(実施例1~3、5、7、8)
ジフェニルメタンジイソシアネート:東ソー株式会社「ミリオネートNM」
ヘキサメチレンジイソシアネート(HDI)トリマー:旭化成株式会社「デュラネートTLA-100」
ペンタメチレンジイソシアネート(PDI)トリマー:三井化学株式会社「スタビオD-376N」 Unless otherwise specified, the materials used in the present examples are as follows.
Petroleum-derived polypropylene glycol polyol: Sanyo Chemical Industries, Ltd. "KC737"
Petroleum-derived polycaprolactone polyol 1: Daicel Corporation "Placcel 308"
Petroleum-derived polycaprolactone polyol 2: Daicel Corporation "Placcel 205U"
Biomass-derived refined castor oil (ricinoleic acid triglyceride): Ito Oil Mills, Ltd. "H-30"
Biomass-derived sebacic acid ester polyol: Ito Oil Mills "SE-2013C"
Petroleum-derived polyetheramine: Mitsui Fine Chemicals Co., Ltd. "T5000"
Tin neodecanoate: "Neostan U50" by Nitto Chemical Industries Co., Ltd.
TEDA (triethylenediamine): Evonik Japan Co., Ltd. "DABCO Crystal"
DBU (diazabicycloundecene): San-Apro Co., Ltd. "U-CAT SA-102"
1,2-Dimethylimidazole (70%) + EG (30%): Evonik Japan Co., Ltd. "DABCO 2040"
Silicone foam stabilizer: Evonik Japan Co., Ltd. "B-8742LF2" (Comparative Examples 1 to 4, Examples 4 and 6), Momentive Performance Materials Japan LLC "L594plus" (Examples 1 to 3, 5, 7 and 8)
Diphenylmethane diisocyanate: Tosoh Corporation "Millionate NM"
Hexamethylene diisocyanate (HDI) trimer: Asahi Kasei Corporation "Duranate TLA-100"
Pentamethylene diisocyanate (PDI) trimer: Mitsui Chemicals, Inc. "STABIO D-376N"
<実験例1>
実験例1では、ポリウレタンフォームの生分解性について調べた。 <Experimental Example 1>
In Experimental Example 1, the biodegradability of polyurethane foam was examined.
実験例1では、ポリウレタンフォームの生分解性について調べた。 <Experimental Example 1>
In Experimental Example 1, the biodegradability of polyurethane foam was examined.
(1)ポリウレタンフォームの製造
下記表1に示す各原料を混合して組成物を調製後した後、まず、発泡箱(蓋なしの開放状態で)に注入し、フリー発泡させて、反応性・フォームの成形性(外観・フォーム状態)を確認した。次いで、下記表1に示す各原料を混合して組成物を調製後した後、モールドに移して発泡させることにより、各ポリウレタンフォームを製造した。 (1) Production of polyurethane foams After preparing compositions by mixing the raw materials shown in Table 1 below, the compositions were first poured into a foaming box (open without a lid) and allowed to foam freely, and the reactivity and foam moldability (appearance and foam condition) were confirmed. Next, after preparing compositions by mixing the raw materials shown in Table 1 below, the compositions were transferred to a mold and allowed to foam, to produce each polyurethane foam.
下記表1に示す各原料を混合して組成物を調製後した後、まず、発泡箱(蓋なしの開放状態で)に注入し、フリー発泡させて、反応性・フォームの成形性(外観・フォーム状態)を確認した。次いで、下記表1に示す各原料を混合して組成物を調製後した後、モールドに移して発泡させることにより、各ポリウレタンフォームを製造した。 (1) Production of polyurethane foams After preparing compositions by mixing the raw materials shown in Table 1 below, the compositions were first poured into a foaming box (open without a lid) and allowed to foam freely, and the reactivity and foam moldability (appearance and foam condition) were confirmed. Next, after preparing compositions by mixing the raw materials shown in Table 1 below, the compositions were transferred to a mold and allowed to foam, to produce each polyurethane foam.
(2)生分解性試験
製造したポリウレタンフォームについて、下記の方法を用いて生分解性試験を行った。 (2) Biodegradability Test The produced polyurethane foams were subjected to a biodegradability test using the following method.
製造したポリウレタンフォームについて、下記の方法を用いて生分解性試験を行った。 (2) Biodegradability Test The produced polyurethane foams were subjected to a biodegradability test using the following method.
[土壌埋没試験]
鶏糞堆肥4kg、牛糞堆肥1kg、過リン酸石灰20g、菌種100gを混合してコンポストを調製し、コンポスト:水=1:1の重量比で水を加えて混合した後、蓋をして、常温24時間で培養後、更に58℃24時間培養を行った。培養後の完熟コンポストが、水分蒸発によって重量損失があった場合には、水を補充して水分量が50~75%となるように、また、pHが9以上の場合は酢酸で中和してpH7~9となるように調整し、完熟コンポストを調製した。 [Soil burial test]
Compost was prepared by mixing 4 kg of chicken manure compost, 1 kg of cow manure compost, 20 g of superphosphate, and 100 g of bacteria, and then water was added at a weight ratio of compost:water = 1:1, and the mixture was then covered and cultured at room temperature for 24 hours, and then further cultured at 58°C for 24 hours. If the fully matured compost after culture had lost weight due to water evaporation, water was replenished to adjust the moisture content to 50-75%, and if the pH was 9 or higher, it was neutralized with acetic acid to adjust the pH to 7-9, thereby preparing fully matured compost.
鶏糞堆肥4kg、牛糞堆肥1kg、過リン酸石灰20g、菌種100gを混合してコンポストを調製し、コンポスト:水=1:1の重量比で水を加えて混合した後、蓋をして、常温24時間で培養後、更に58℃24時間培養を行った。培養後の完熟コンポストが、水分蒸発によって重量損失があった場合には、水を補充して水分量が50~75%となるように、また、pHが9以上の場合は酢酸で中和してpH7~9となるように調整し、完熟コンポストを調製した。 [Soil burial test]
Compost was prepared by mixing 4 kg of chicken manure compost, 1 kg of cow manure compost, 20 g of superphosphate, and 100 g of bacteria, and then water was added at a weight ratio of compost:water = 1:1, and the mixture was then covered and cultured at room temperature for 24 hours, and then further cultured at 58°C for 24 hours. If the fully matured compost after culture had lost weight due to water evaporation, water was replenished to adjust the moisture content to 50-75%, and if the pH was 9 or higher, it was neutralized with acetic acid to adjust the pH to 7-9, thereby preparing fully matured compost.
調製した完熟コンポストに、製造したポリウレタンフォームの試験片(100×150×20mm)を、完熟コンポスト:試験片=15:1の重量比(乾燥重量比6:1)で混合し、密栓した状態で、58℃にて放置した。定期的に重量及びpHを確認し、水分蒸発によって重量損失があった場合には、水を補充して水分量が常に50~75%となるように、コンポストの減少が見られた場合は、バーミキュライトと水(重量比1:1)の混合物を追加した。また、pHが9以上の場合は酢酸で中和して常にpH7~9となるように調整し、1週間に1回以上、内部の撹拌を行った。
The polyurethane foam test pieces (100 x 150 x 20 mm) were mixed with the prepared fully matured compost in a weight ratio of fully matured compost:test pieces = 15:1 (dry weight ratio 6:1), sealed and left at 58°C. The weight and pH were checked periodically, and if there was a weight loss due to water evaporation, water was replenished to keep the moisture content at 50-75%, and if a decrease in compost was observed, a mixture of vermiculite and water (weight ratio 1:1) was added. If the pH was 9 or higher, it was neutralized with acetic acid to keep the pH at a constant 7-9, and the inside was stirred at least once a week.
試験片を埋没してから45日後に、崩壊に注意しながら試験片を取り出した。土壌等の付着物を水で洗浄した後、60℃の恒温槽にて、24時間乾燥し、下記の数式を用いて、重量損失率を算出した。
{(埋没前重量-45日後の重量)/(埋没前重量)}×100=重量損失率(%) After 45 days from burying the test specimens, the specimens were removed while taking care not to collapse. After washing off any attached soil with water, the specimens were dried in a thermostatic chamber at 60°C for 24 hours, and the weight loss rate was calculated using the following formula.
{(weight before burial - weight after 45 days) / (weight before burial)} x 100 = weight loss rate (%)
{(埋没前重量-45日後の重量)/(埋没前重量)}×100=重量損失率(%) After 45 days from burying the test specimens, the specimens were removed while taking care not to collapse. After washing off any attached soil with water, the specimens were dried in a thermostatic chamber at 60°C for 24 hours, and the weight loss rate was calculated using the following formula.
{(weight before burial - weight after 45 days) / (weight before burial)} x 100 = weight loss rate (%)
[生分解度]
実施例1、比較例1、2、及び後述する実験例2で製造した実施例5について、ISO14855-2に準拠して、180日間の生分解度を測定した。 [Biodegradability]
The biodegradability of Example 1, Comparative Examples 1 and 2, and Example 5 produced in Experimental Example 2 described later was measured for 180 days in accordance with ISO 14855-2.
実施例1、比較例1、2、及び後述する実験例2で製造した実施例5について、ISO14855-2に準拠して、180日間の生分解度を測定した。 [Biodegradability]
The biodegradability of Example 1, Comparative Examples 1 and 2, and Example 5 produced in Experimental Example 2 described later was measured for 180 days in accordance with ISO 14855-2.
(3)結果
結果を下記の表1に示す。また、180日間の生分解度の経時的変化を図1のグラフに示す。
(3) Results The results are shown in Table 1. The change in biodegradability over 180 days is shown in the graph of Figure 1.
結果を下記の表1に示す。また、180日間の生分解度の経時的変化を図1のグラフに示す。
<実験例2>
実験例2では、ポリウレタンフォームの製造に用いる原料の違いによる各種物性への影響を調べた。 <Experimental Example 2>
In Experimental Example 2, the influence of differences in raw materials used in the production of polyurethane foam on various physical properties was investigated.
実験例2では、ポリウレタンフォームの製造に用いる原料の違いによる各種物性への影響を調べた。 <Experimental Example 2>
In Experimental Example 2, the influence of differences in raw materials used in the production of polyurethane foam on various physical properties was investigated.
(1)ポリウレタンフォームの製造
下記表2に示す各原料を混合して組成物を調製後した後、モールドに移して発泡させることにより、各ポリウレタンフォームを製造した。 (1) Production of Polyurethane Foams Each of the polyurethane foams was produced by mixing the raw materials shown in Table 2 below to prepare a composition, which was then transferred to a mold and foamed.
下記表2に示す各原料を混合して組成物を調製後した後、モールドに移して発泡させることにより、各ポリウレタンフォームを製造した。 (1) Production of Polyurethane Foams Each of the polyurethane foams was produced by mixing the raw materials shown in Table 2 below to prepare a composition, which was then transferred to a mold and foamed.
(2)評価
製造したポリウレタンフォームについて、下記の方法を用いて各物性の評価を行った。 (2) Evaluation The produced polyurethane foams were evaluated for various physical properties using the following methods.
製造したポリウレタンフォームについて、下記の方法を用いて各物性の評価を行った。 (2) Evaluation The produced polyurethane foams were evaluated for various physical properties using the following methods.
[反応性]
下記表2に示す各原料を混合して組成物を調製後した後、発泡箱(蓋なしの開放状態で)に注入し、フリー発泡させて、ライズタイムを確認した。
×:ライズタイム180秒超、または増粘が不十分で気泡が抜けてフォーム化が進行しない状態。
△:ライズタイム120~180秒。
〇:ライズタイム120秒未満。 [Reactivity]
The raw materials shown in Table 2 below were mixed to prepare a composition, which was then poured into a foaming box (open without a lid) and allowed to foam freely, and the rise time was confirmed.
×: Rise time exceeds 180 seconds, or thickening is insufficient, air bubbles escape, and foaming does not progress.
△: Rise time 120 to 180 seconds.
◯: Rise time less than 120 seconds.
下記表2に示す各原料を混合して組成物を調製後した後、発泡箱(蓋なしの開放状態で)に注入し、フリー発泡させて、ライズタイムを確認した。
×:ライズタイム180秒超、または増粘が不十分で気泡が抜けてフォーム化が進行しない状態。
△:ライズタイム120~180秒。
〇:ライズタイム120秒未満。 [Reactivity]
The raw materials shown in Table 2 below were mixed to prepare a composition, which was then poured into a foaming box (open without a lid) and allowed to foam freely, and the rise time was confirmed.
×: Rise time exceeds 180 seconds, or thickening is insufficient, air bubbles escape, and foaming does not progress.
△: Rise time 120 to 180 seconds.
◯: Rise time less than 120 seconds.
[フォーム形状]
下記表2に示す各原料を混合して組成物を調製後した後、発泡箱(蓋なしの開放状態で)に注入し、フリー発泡させて、フォームの状態を確認した。
×:フォームの発泡成形時に、フォームがダウンし、又は、外観にクラックが入り、外観不良。若しくは、フォーム内部をカット面におけるセルが荒れるもの。
△:フォームの発泡成形時に、若干の変形。
〇:フォームの発泡成形性、外観、セルもほぼ均一で、いずれも良好のもの。 [Form shape]
The raw materials shown in Table 2 below were mixed to prepare a composition, which was then poured into a foaming box (open and without a lid) and allowed to foam freely, and the state of the foam was confirmed.
×: The foam collapses during foam expansion molding, or cracks appear on the exterior, resulting in poor appearance, or the cells on the cut surface inside the foam become rough.
△: Slight deformation during foam expansion molding.
◯: The foam moldability, appearance, and cells are almost uniform, all of which are good.
下記表2に示す各原料を混合して組成物を調製後した後、発泡箱(蓋なしの開放状態で)に注入し、フリー発泡させて、フォームの状態を確認した。
×:フォームの発泡成形時に、フォームがダウンし、又は、外観にクラックが入り、外観不良。若しくは、フォーム内部をカット面におけるセルが荒れるもの。
△:フォームの発泡成形時に、若干の変形。
〇:フォームの発泡成形性、外観、セルもほぼ均一で、いずれも良好のもの。 [Form shape]
The raw materials shown in Table 2 below were mixed to prepare a composition, which was then poured into a foaming box (open and without a lid) and allowed to foam freely, and the state of the foam was confirmed.
×: The foam collapses during foam expansion molding, or cracks appear on the exterior, resulting in poor appearance, or the cells on the cut surface inside the foam become rough.
△: Slight deformation during foam expansion molding.
◯: The foam moldability, appearance, and cells are almost uniform, all of which are good.
[密度]
モールド形成後に、100mm角×厚み20mmに裁断して得られたサンプルに対し、JIS K7222:2005に基づいて密度を測定した。 [density]
After the molding, the mold was cut into a sample having a size of 100 mm square and a thickness of 20 mm, and the density of the obtained sample was measured in accordance with JIS K7222:2005.
モールド形成後に、100mm角×厚み20mmに裁断して得られたサンプルに対し、JIS K7222:2005に基づいて密度を測定した。 [density]
After the molding, the mold was cut into a sample having a size of 100 mm square and a thickness of 20 mm, and the density of the obtained sample was measured in accordance with JIS K7222:2005.
[硬さ]
アスカーゴム硬度計F型にて測定した。 [Hardness]
The hardness was measured using an Asker rubber hardness tester, type F.
アスカーゴム硬度計F型にて測定した。 [Hardness]
The hardness was measured using an Asker rubber hardness tester, type F.
(3)結果
結果を下記の表2に示す。 (3) Results The results are shown in Table 2 below.
結果を下記の表2に示す。 (3) Results The results are shown in Table 2 below.
(4)考察
表2に示す通り、バイオマス由来エステル系ポリオールを用いた実施例6~8は反応性が低下する傾向があったが、実施例2、4及び5に示すように、第1級アミンを用いることで、反応性が向上した。また、実施例3に示すように、ポリオールとして、ポリカプロラクトン系ポリオールとバイオマス由来エステル系ポリオールを併用することでも、反応性を向上させることができた。 (4) Observations As shown in Table 2, the reactivity tended to decrease in Examples 6 to 8 using a biomass-derived ester-based polyol, but the reactivity was improved by using a primary amine as shown in Examples 2, 4, and 5. In addition, as shown in Example 3, the reactivity could also be improved by using a polycaprolactone-based polyol and a biomass-derived ester-based polyol in combination as the polyol.
表2に示す通り、バイオマス由来エステル系ポリオールを用いた実施例6~8は反応性が低下する傾向があったが、実施例2、4及び5に示すように、第1級アミンを用いることで、反応性が向上した。また、実施例3に示すように、ポリオールとして、ポリカプロラクトン系ポリオールとバイオマス由来エステル系ポリオールを併用することでも、反応性を向上させることができた。 (4) Observations As shown in Table 2, the reactivity tended to decrease in Examples 6 to 8 using a biomass-derived ester-based polyol, but the reactivity was improved by using a primary amine as shown in Examples 2, 4, and 5. In addition, as shown in Example 3, the reactivity could also be improved by using a polycaprolactone-based polyol and a biomass-derived ester-based polyol in combination as the polyol.
更に、バイオマス由来のイソシアネートを使用することにより、バイオマス度を75%まで高くすることができた。
Furthermore, by using isocyanate derived from biomass, the biomass content could be increased to 75%.
Claims (7)
- ISO14885-2の生分解度試験において、
45日後の生分解度が15%以下であり、
180日後の生分解度が30%以上である、ポリウレタンフォーム。 In the ISO14885-2 biodegradability test,
The biodegradability after 45 days is 15% or less,
A polyurethane foam having a biodegradability of 30% or more after 180 days. - 原料として、バイオマス由来エステル系ポリオールを用いる、請求項1に記載のポリウレタンフォーム。 The polyurethane foam according to claim 1, which uses a biomass-derived ester polyol as a raw material.
- 原料として、第1級アミンを用いる、請求項1又は2に記載のポリウレタンフォーム。 The polyurethane foam according to claim 1 or 2, which uses a primary amine as a raw material.
- ポリオールと、
バイオマス由来のイソシアネートと、
を含有する、ポリウレタンフォーム製造用組成物。 A polyol,
Biomass-derived isocyanate;
A composition for producing polyurethane foam comprising: - 前記ポリオールには、バイオマス由来のポリオールを含む、請求項4に記載のポリウレタンフォーム製造用組成物。 The composition for producing polyurethane foam according to claim 4, wherein the polyol includes a biomass-derived polyol.
- 請求項4又は5に記載のポリウレタンフォーム製造用組成物を用いて形成されたポリウレタンフォーム。 Polyurethane foam formed using the composition for producing polyurethane foam according to claim 4 or 5.
- バイオマス度が50%以上である、請求項6に記載のポリウレタンフォーム。 The polyurethane foam according to claim 6, having a biomass content of 50% or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022204444 | 2022-12-21 | ||
JP2022-204444 | 2022-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024135690A1 true WO2024135690A1 (en) | 2024-06-27 |
Family
ID=91588588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/045528 WO2024135690A1 (en) | 2022-12-21 | 2023-12-19 | Polyurethane foam and composition for producing polyurethane foam |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024135690A1 (en) |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19643816A1 (en) * | 1996-10-30 | 1998-05-07 | Basf Ag | Polyurethane preparation using an increase in materials |
JP2001294748A (en) * | 2000-04-10 | 2001-10-23 | Natl Inst Of Advanced Industrial Science & Technology Meti | Biodegradable tubing material |
US20050013793A1 (en) * | 2003-01-16 | 2005-01-20 | Beckman Eric J. | Biodegradable polyurethanes and use thereof |
US20070299151A1 (en) * | 2004-11-05 | 2007-12-27 | Guelcher Scott A | Degradable Polyurethane Foams |
US20090130174A1 (en) * | 2007-08-20 | 2009-05-21 | Vanderbilt University | Poly (ester urethane) urea foams with enhanced mechanical and biological properties |
JP2009527598A (en) * | 2006-02-24 | 2009-07-30 | ぺー・アガー・ベー・インドウストリアル・エシ・アー | Composition for preparing biodegradable polyurethane foam and biodegradable polyurethane foam |
JP2009527595A (en) * | 2006-02-24 | 2009-07-30 | ぺー・アガー・ベー・インドウストリアル・エシ・アー | Compositions for preparing degradable polyol polyesters, polyol polyesters, elastomers, foams, paints and adhesives, and methods for obtaining degradable polyol polyester foams |
US20100068171A1 (en) * | 2008-05-27 | 2010-03-18 | Vanderbilt University | Injectable bone/polymer composite bone void fillers |
WO2010135792A1 (en) * | 2009-05-29 | 2010-12-02 | Vicino Jose Ricardo De Lello | Method for producing polyurethane precursor polyols from natural and renewable resources, and polyurethanes and degradable and biodegradable composites produced thereby |
JP2011225863A (en) * | 2010-04-02 | 2011-11-10 | Dainichiseika Color & Chem Mfg Co Ltd | Biopolyurethane resin |
JP2011225851A (en) * | 2010-03-31 | 2011-11-10 | Mitsubishi Chemicals Corp | Polyurethane derived from biomass resources and method for producing the same |
JP2013514406A (en) * | 2009-12-16 | 2013-04-25 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing polyester polyol |
US11072694B1 (en) * | 2021-02-16 | 2021-07-27 | Evoco Limited | Biobased compositions |
WO2021148064A1 (en) * | 2020-01-22 | 2021-07-29 | Ustav Makromolekularni Chemie Av Cr, V.V.I. | Biodegradable polyurethane foam, biodegradable polyurethane foam-based material for saccharide-cleaving enzyme production, method of synthesis and use thereof |
JP2022133252A (en) * | 2021-03-01 | 2022-09-13 | ベイビーフォーム・ユーケイ・リミテッド | Biodegradable plant growth foam and composition for forming the same |
-
2023
- 2023-12-19 WO PCT/JP2023/045528 patent/WO2024135690A1/en active Search and Examination
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19643816A1 (en) * | 1996-10-30 | 1998-05-07 | Basf Ag | Polyurethane preparation using an increase in materials |
JP2001294748A (en) * | 2000-04-10 | 2001-10-23 | Natl Inst Of Advanced Industrial Science & Technology Meti | Biodegradable tubing material |
US20050013793A1 (en) * | 2003-01-16 | 2005-01-20 | Beckman Eric J. | Biodegradable polyurethanes and use thereof |
US20070299151A1 (en) * | 2004-11-05 | 2007-12-27 | Guelcher Scott A | Degradable Polyurethane Foams |
JP2009527595A (en) * | 2006-02-24 | 2009-07-30 | ぺー・アガー・ベー・インドウストリアル・エシ・アー | Compositions for preparing degradable polyol polyesters, polyol polyesters, elastomers, foams, paints and adhesives, and methods for obtaining degradable polyol polyester foams |
JP2009527598A (en) * | 2006-02-24 | 2009-07-30 | ぺー・アガー・ベー・インドウストリアル・エシ・アー | Composition for preparing biodegradable polyurethane foam and biodegradable polyurethane foam |
US20090130174A1 (en) * | 2007-08-20 | 2009-05-21 | Vanderbilt University | Poly (ester urethane) urea foams with enhanced mechanical and biological properties |
US20100068171A1 (en) * | 2008-05-27 | 2010-03-18 | Vanderbilt University | Injectable bone/polymer composite bone void fillers |
WO2010135792A1 (en) * | 2009-05-29 | 2010-12-02 | Vicino Jose Ricardo De Lello | Method for producing polyurethane precursor polyols from natural and renewable resources, and polyurethanes and degradable and biodegradable composites produced thereby |
JP2013514406A (en) * | 2009-12-16 | 2013-04-25 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing polyester polyol |
JP2011225851A (en) * | 2010-03-31 | 2011-11-10 | Mitsubishi Chemicals Corp | Polyurethane derived from biomass resources and method for producing the same |
JP2011225863A (en) * | 2010-04-02 | 2011-11-10 | Dainichiseika Color & Chem Mfg Co Ltd | Biopolyurethane resin |
WO2021148064A1 (en) * | 2020-01-22 | 2021-07-29 | Ustav Makromolekularni Chemie Av Cr, V.V.I. | Biodegradable polyurethane foam, biodegradable polyurethane foam-based material for saccharide-cleaving enzyme production, method of synthesis and use thereof |
US11072694B1 (en) * | 2021-02-16 | 2021-07-27 | Evoco Limited | Biobased compositions |
JP2022133252A (en) * | 2021-03-01 | 2022-09-13 | ベイビーフォーム・ユーケイ・リミテッド | Biodegradable plant growth foam and composition for forming the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI460194B (en) | Composition for polyurethane foam, polyurethane foam obtained from the composition, and use of the foam | |
US8178591B2 (en) | Carbon dioxide blown low density, flexible microcellular polyurethane elastomers | |
CA2857609C (en) | Washable viscoelastic flexible polyurethane foams | |
US20030191274A1 (en) | Oxylated vegetable-based polyol having increased functionality and urethane material formed using the polyol | |
US20020058774A1 (en) | Transesterified polyol having selectable and increased functionality and urethane material products formed using the polyol | |
TW200906879A (en) | Polyurethane elastomer with enhanced hydrolysis resistance | |
US5234965A (en) | Process for the production of polyurethane foams | |
US20130150476A1 (en) | Washable viscoelastic flexible polyurethane foams | |
WO2024135690A1 (en) | Polyurethane foam and composition for producing polyurethane foam | |
JP2024006120A (en) | Composition for producing polyurethane foam, and polyurethane foam | |
US20100204356A1 (en) | Polyurethanes, polyureas, and process for their production | |
JP2023023881A (en) | Method for producing urethane prepolymer, method for producing polyurethane foam, urethane prepolymer, and polyurethane foam | |
TW201241028A (en) | Low-resilience soft polyurethane foam and method for producing same | |
JP2024089122A (en) | Composition for production of polyurethane foam, and polyurethane foam | |
JP3937811B2 (en) | Method for producing flexible polyurethane foam | |
JP2004231706A (en) | Seat cushion | |
JP2005281374A (en) | Lignocellulose-derived polyol and method for producing the same, and polyurethane foam | |
JP2004231710A (en) | Method for manufacturing viscoelastic polyurethane foam for bedding | |
CN109790268A (en) | Flexible polyurethane foams forming glycol composition and flexible polyurethane foams | |
JP2024125788A (en) | Composition for producing polyurethane foam, polyurethane foam, sound-absorbing material, and base material for vehicle ceiling | |
US20140128492A1 (en) | Polyurethanes Obtained From Hydroxyalkanoate Crosslinking Agents | |
JP2004285152A (en) | Low repulsive urethane foam and method for producing the same | |
JP2024081211A (en) | Polyurethane foam | |
JP4099150B2 (en) | Sugar-derived polyol, method for producing the same, and polyurethane foam | |
JP2004231705A (en) | Method for producing viscoelastic polyurethane foam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23907050 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) |