[go: up one dir, main page]

WO2024134951A1 - Epoxy resin composition, cured product, and semiconductor device - Google Patents

Epoxy resin composition, cured product, and semiconductor device Download PDF

Info

Publication number
WO2024134951A1
WO2024134951A1 PCT/JP2023/026985 JP2023026985W WO2024134951A1 WO 2024134951 A1 WO2024134951 A1 WO 2024134951A1 JP 2023026985 W JP2023026985 W JP 2023026985W WO 2024134951 A1 WO2024134951 A1 WO 2024134951A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
mass
cured product
examples
Prior art date
Application number
PCT/JP2023/026985
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 酒井
真 鈴木
剛 上村
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2024134951A1 publication Critical patent/WO2024134951A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to an epoxy resin composition, a cured product, and a semiconductor device.
  • semiconductor devices such as electronic devices have become larger and thinner, and it is becoming increasingly important to densely pack the semiconductor elements (also called chips) that make up the semiconductor device. For this reason, packaging methods for semiconductor elements have been improved.
  • semiconductor elements have been packaged after being diced into individual pieces. This packaging method is not suitable for large semiconductor devices because the package is larger than the chip. For this reason, a technology that packages at the wafer level (wafer-level chip-size packaging technology) has come to be used, where packaging is done before the chips are cut up after the circuit formation is complete.
  • Wafer-level packaging usually involves a process of sealing between the semiconductor element and the substrate, where a cured resin composition called an encapsulant is inserted to improve the semiconductor element's moisture resistance, heat resistance, and reliability against external stress.
  • a cured resin composition called an encapsulant
  • One method of sealing is the compression mold method, in which an encapsulant is inserted into the cavity below the semiconductor element and the encapsulant is cured while applying pressure (see, for example, Patent Document 1).
  • the chip-first method wherein the semiconductor element is placed on the substrate and sealed with resin, and then a wiring layer is formed on top of that
  • the chip-last method wherein a rewiring layer is formed on a wafer-like support made of silicon or the like, then the semiconductor element is placed on top of it and sealed, and finally the support is removed.
  • the chip-first method since the rewiring layer is formed on the resin composition, it is required that the cured resin composition does not cause problems such as peeling off from the semiconductor element during the rewiring layer formation process.
  • the mounted substrate is diced to separate the IC chip packages. Since the dicing process requires minimal warping of the substrate, there has been a demand for resin compositions that can prevent substrate warping.
  • the objective is to provide an epoxy resin composition that hardens to prevent warping of the substrate and peeling from the chip, as well as a hardened product and a semiconductor device that use the same.
  • epoxy resin compositions have used epoxy resins that combine epoxy resins with flexible epoxy resins to prevent warping of the substrate.
  • epoxy resin compositions that contain a large amount of flexible epoxy resins can peel off from the semiconductor element when immersed in the developing solution used in the rewiring layer formation process.
  • microvoids refer to voids with a maximum width of 0.5 ⁇ m or less when a cross section is observed using an SEM image (accelerating voltage: 1 kV, magnification: 5000 times).
  • one embodiment of the present invention is an epoxy resin composition that contains an epoxy resin, a filler, and at least one selected from a curing agent and a curing catalyst, the epoxy resin contains a flexible epoxy resin, and the content of the flexible epoxy resin is 8.0% by mass to 25.0% by mass relative to the epoxy resin.
  • an epoxy resin composition that gives a cured product that can prevent warping of a substrate and peeling from a chip, as well as a cured product and a semiconductor device using the same.
  • Epoxy resin composition contains an epoxy resin, a filler, and at least one selected from a curing agent and a curing catalyst, and further contains other components as required.
  • the epoxy resin includes a flexible epoxy resin and other epoxy resins.
  • the flexible epoxy resin is contained in order to prevent warping of a substrate on which a cured product of the epoxy resin composition is placed.
  • the flexible epoxy resin refers to an epoxy resin that satisfies the following three conditions: 1. Number average molecular weight: 800 to 2,500 2. Epoxy equivalent: 400 g/eq. to 1,200 g/eq. 3. No condensed polycyclic hydrocarbons in the molecule
  • the number average molecular weight of the flexible epoxy resin is 800 to 2,500, and preferably 800 to 2,000. If the number average molecular weight is less than 800, the substrate may warp significantly, and if it exceeds 2,500, the ratio of microvoids increases, solvent resistance deteriorates, and peeling from the chip may occur.
  • the number average molecular weight can be measured using a general method for measuring number average molecular weight. For example, it can be measured in terms of standard polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as the elution solvent.
  • the epoxy equivalent of the flexible epoxy resin is 400 g/eq. to 1,200 g/eq., and preferably 400 g/eq. to 1,000 g/eq. If the epoxy equivalent is less than 400 g/eq., the substrate may warp significantly, and if it exceeds 1,200 g/eq., the ratio of microvoids in the cured product may increase, causing peeling from the semiconductor element during the rewiring formation process.
  • the epoxy equivalent is the mass of the resin containing one equivalent of epoxy groups, as defined in JIS K7236:2001. Note that "eq.” is an abbreviation of "equivalent.”
  • flexible epoxy resins include aliphatic epoxy resins.
  • aliphatic epoxy resins include polyalkylene glycol type epoxy resins.
  • polyalkylene glycol type epoxy resins include polytetramethylene glycol type epoxy resins, polyethylene glycol type epoxy resins, and polypropylene glycol type epoxy resins.
  • the flexible epoxy resin may be synthesized as appropriate, or a commercially available product may be used.
  • Commercially available products include, for example, YX7400N (polytetramethylene glycol type epoxy resin, epoxy equivalent 440 g/eq., average molecular weight 880, manufactured by Mitsubishi Chemical Corporation), Epogo-se PT polymer type (polytetramethylene glycol type epoxy resin, epoxy equivalent 1,072 g/eq., average molecular weight 2,140, manufactured by Yokkaichi Chemical Co., Ltd.), Epogo-se PT general grade (polytetramethylene glycol type epoxy resin, epoxy equivalent weight 435g/eq., average molecular weight 700-800, Yokkaichi Chemical Co., Ltd.), SR-8EGS (polytetramethylene glycol type epoxy resin, epoxy equivalent weight 262g/eq., average molecular weight 510-550, Sakamoto Yakuhin Kogyo Co., Ltd.), PG-207
  • the content of the flexible epoxy resin is 8.0% by mass to 25.0% by mass, more preferably 8.0% by mass to 16.5% by mass, and even more preferably 9.0% by mass to 16.5% by mass, relative to the total epoxy resin.
  • the content of the flexible epoxy resin falls within this range, it is possible to prevent wafer warpage, suppress the occurrence of microvoids, improve solvent resistance, and prevent peeling from the chip.
  • the other epoxy resin is an epoxy resin other than the flexible epoxy resin described above.
  • the other epoxy resin is not particularly limited as long as it is a variety of epoxy resins generally used for semiconductor encapsulation and can be appropriately used depending on the purpose, but an epoxy resin that is liquid at room temperature (25°C) is preferred.
  • the epoxy equivalent of the other epoxy resin is preferably 50 g/eq. to 10,000 g/eq., more preferably 50 g/eq. to 1,000 g/eq., and even more preferably 100 g/eq. to 500 g/eq.
  • epoxy resins include, for example, glycidylamine type epoxy resins, alicyclic epoxy resins, bisphenol type epoxy resins, biphenyl type epoxy resins, aminophenol type epoxy resins, and naphthalene type epoxy resins.
  • glycidylamine type epoxy resins include diglycidyl aniline, diglycidyl toluidine, tetraglycidyl-m-xylylenediamine tetraglycidyl bis(aminomethyl)cyclohexane, and the like.
  • Examples of alicyclic epoxy resins include vinyl(3,4-cyclohexene) dioxide, 2-(3,4-epoxycyclohexyl)-5,1-spiro-(3,4-epoxycyclohexyl)-m-dioxane, and the like.
  • Examples of bisphenol type epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, and the like.
  • Examples of bisphenol A type epoxy resins include p-glycidyloxyphenyl dimethyl trisbisphenol A diglycidyl ether.
  • biphenyl type epoxy resins include biphenyl aralkyl type epoxy resins, 3,3',5,5'-tetramethyl-4,4'-diglycidyloxybiphenyl.
  • aminophenol type epoxy resins include triglycidyl-p-aminophenol.
  • naphthalene type epoxy resins include 1,6-bis(2,3-epoxypropoxy)naphthalene.
  • the number of epoxy groups contained in one molecule of other epoxy resins may be one (monofunctional epoxy resin) or two or more (multifunctional epoxy resin), but from the standpoint of reliability (thermal cycle property), two or more (multifunctional epoxy resin) is preferred. There is no particular limit to the upper limit of the number of epoxy groups, and it can be selected appropriately depending on the purpose, but five or less is preferred. Examples of monofunctional epoxy resins include p-tert-butylphenyl glycidyl ether.
  • multifunctional epoxy resins examples include diepoxy resins such as 1,4-phenyldimethanol diglycidyl ether; triepoxy resins such as trimethylolpropane triglycidyl ether and glycerin triglycidyl ether.
  • diepoxy resins such as 1,4-phenyldimethanol diglycidyl ether
  • triepoxy resins such as trimethylolpropane triglycidyl ether and glycerin triglycidyl ether.
  • hydantoin-type epoxy resins such as 1,3-diglycidyl-5-methyl-5-ethylhydantoin
  • epoxy resins with a silicone skeleton such as 1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane
  • epoxy resins with a skeleton derived from plants may also be used.
  • the other epoxy resins may be used alone or in combination of two or more.
  • aminophenol type epoxy resins, bisphenol type epoxy resins, and glycidylamine type epoxy resins are preferred from the standpoint of reliability. It is preferable to contain more aminophenol type epoxy resins than other epoxy resins as the other epoxy resins, since this increases the glass transition point of the epoxy resin composition.
  • epoxy resins may be appropriately synthesized or commercially available.
  • Commercially available products include, for example, RE410S (bisphenol F type liquid epoxy resin, epoxy equivalent 178 g/eq, average molecular weight 360, manufactured by Nippon Kayaku Co., Ltd.) and EP-3950L (glycidylamine type liquid epoxy resin, epoxy equivalent 95 g/eq, average molecular weight 270, manufactured by ADEKA Corporation).
  • the content of the epoxy resin (flexible epoxy resin and other epoxy resin) in the epoxy resin composition is preferably 10.0% by mass to 27.0% by mass, and more preferably 15.0% by mass to 21.0% by mass, based on the total epoxy resin composition.
  • the content of the bisphenol type epoxy resin is preferably 20% by mass to 30% by mass, based on the total amount of epoxy resin.
  • the content of the glycidylamine type epoxy resin is preferably 50% by mass to 70% by mass, based on the total amount of epoxy resin.
  • the epoxy resin composition according to the embodiment contains at least one of a curing agent and a curing catalyst.
  • the curing agent is contained to cure the epoxy resin
  • the curing catalyst is contained to promote the curing of the epoxy resin.
  • Either the curing agent or the curing catalyst may be used alone or in combination, but it is preferable to use them in combination in order to increase the curing speed.
  • the curing agent is not particularly limited as long as it can cure the epoxy resin, and can be appropriately selected according to the purpose.
  • the curing agent include amine-based curing agents, phenol-based curing agents, and acid anhydride-based curing agents.
  • the amine-based curing agent include aromatic amines. Examples of the aromatic amine include methylenedianiline, m-phenylenediamine, 4,4'-diaminodiphenyl sulfone, and 3,3'-diaminodiphenyl sulfone.
  • phenol-based curing agent examples include phenol novolac resin, cresol novolac resin, naphthol-modified phenol resin, dicyclopentadiene-modified phenol resin, and p-xylene-modified phenol resin.
  • acid anhydride curing agent examples include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhymic anhydride, dodecenyl succinic anhydride, methylnadic anhydride, etc. These may be used alone or in combination of two or more.
  • the curing agent may be either a synthetic one or a commercially available product.
  • commercially available products include MEH-8005 (phenol-based curing agent, manufactured by Meiwa Kasei Co., Ltd.) and HN-2200 (acid anhydride-based curing agent, manufactured by Showa Denko Materials Co., Ltd.).
  • the content of the curing agent is not particularly limited and can be selected appropriately depending on the purpose.
  • the stoichiometric equivalent ratio with the epoxy resin is preferably 0.01 to 0.50, more preferably 0.05 to 0.40, and even more preferably 0.08 to 0.30.
  • the content (ratio) of the curing agent is preferably 1% by mass to 30% by mass, and more preferably 4% by mass to 15% by mass, based on the epoxy resin composition excluding the filler. If the content of the curing agent is within this numerical range, it is advantageous in that warping of the substrate can be prevented and sufficient adhesive strength is exhibited.
  • the curing catalyst is not particularly limited as long as it is a curing catalyst generally used in a resin composition and can be appropriately selected according to the purpose, and examples thereof include tertiary amine compounds (excluding heterocyclic compounds containing a nitrogen atom), phosphorus-based curing accelerators, and heterocyclic compounds containing a nitrogen atom. These may be used alone or in combination of two or more. Among these, heterocyclic compounds containing a nitrogen atom are preferred from the viewpoint of reliability (thermal cycle property).
  • a heterocyclic compound containing a nitrogen atom refers to a compound in which a nitrogen atom is a constituent atom of a heterocycle.
  • Heterocyclic compounds containing nitrogen atoms include, for example, imidazoles such as 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2,4-diamino-6-[2'-methylimidazolyl-(1')]ethyl-s-triazine, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole; diazabicyclo Examples of such compounds include undecene (DBU), DBU-phenol salt, DBU-octylate salt, DBU-p-toluenesulfonate, DBU-formate salt, DBU-orthophthalate salt, DBU-phenol
  • the curing catalyst may be a synthetic product or a commercially available product.
  • commercially available products include 2MZA (2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, manufactured by Shikoku Chemical Industry Corporation), 2E4MZ (2-ethyl-4-methylimidazole, manufactured by Shikoku Chemical Industry Corporation, 2-phenyl-4-methyl-5-hydroxymethylimidazole), and 2P4MHZ (2-phenyl-4-methyl-5-hydroxymethylimidazole, manufactured by Shikoku Chemical Industry Corporation).
  • the amount of the curing catalyst is not particularly limited and can be selected appropriately depending on the purpose, but from the viewpoint of reactivity, it is preferably 0.1% by mass to 10% by mass, and more preferably 0.5% by mass to 5% by mass, based on the total epoxy resin composition.
  • the filler is contained in order to adjust the properties of the cured product of the epoxy resin composition (mainly the linear expansion coefficient, elastic modulus, and water absorption).
  • the type of filler is not particularly limited and can be appropriately selected depending on the purpose.
  • the filler include silica such as fused silica and crystalline silica; calcium carbonate, clay, aluminum, alumina, silicon nitride, silicon carbide, boron nitride, calcium silicate, potassium titanate, aluminum nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, titania, aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate. These may be used alone or in combination of two or more. Among these, silica filler is preferred from the viewpoint of being able to increase the loading amount.
  • the filler may be surface-treated.
  • the surface treatment agent there are no particular limitations on the surface treatment agent, and it can be selected appropriately depending on the purpose.
  • a silane coupling agent can be used.
  • silane coupling agent there are no particular limitations on the silane coupling agent, and it can be selected appropriately depending on the purpose. Examples include epoxy-based, methacryl-based, amino-based, vinyl-based, glycidoxy-based, and mercapto-based agents.
  • the volume average particle size of the filler is not particularly limited and can be appropriately selected depending on the purpose. For example, 0.1 ⁇ m to 9.0 ⁇ m is preferable, and 0.2 ⁇ m to 8.0 ⁇ m is more preferable.
  • the volume average particle size refers to the volume average particle size D50 (particle size that is 50% cumulative from the small diameter side of the volume-based particle size distribution) measured using a laser diffraction method.
  • the shape of the filler is not particularly limited and can be selected appropriately depending on the purpose. Examples include spherical, irregular, and scale-like shapes.
  • the filler content is preferably 50% by mass to 95% by mass, more preferably 60% by mass to 90% by mass, and even more preferably 65% by mass to 85% by mass, based on the total epoxy resin composition.
  • the filler content in an epoxy resin composition can be measured by the following method. First, weigh out the epoxy resin composition into a crucible. The weighed cured product is heated to 850°C at a rate of 20°C/min and held at this temperature for 30 minutes. After cooling, the residue (ignition residue) remaining in the crucible is weighed. The filler content is calculated from the amount of filler obtained.
  • the other components are not particularly limited as long as they are those used in ordinary epoxy resin compositions and can be appropriately selected depending on the purpose, and examples thereof include colorants such as dyes, pigments, and carbon black; silicone oils; surfactants; antioxidants; antimony oxides such as antimony trioxide, antimony tetraoxide, and antimony pentoxide; conventionally known flame retardants such as brominated epoxy resins; ion trapping agents; leveling agents; antioxidants; antifoaming agents; reactive diluents; elastomers, etc. These may be used alone or in combination of two or more.
  • the microvoid refers to a gap (void) having a maximum width of 0.5 ⁇ m or less when a cross section of a cured product is observed with a scanning electron microscope (SEM) under conditions of an acceleration voltage of 1 kV and a magnification of 5,000 times. Since the microvoid has a property of absorbing a solvent, a cured product having many microvoids is a cured product that absorbs a lot of solvent and has poor solvent resistance. Therefore, the degree of occurrence of microvoids is an index of solvent resistance.
  • the proportion of microvoids is measured as follows.
  • the epoxy resin composition is heated at 150°C for 1 hour to produce a cured product.
  • the resulting cured product is sliced at equal intervals of 50 nm using a focused ion beam (FIB: COBRA (manufactured by Orsay Physics)), and each slice is observed using an SEM (AURIGA (manufactured by Carl Zeiss), accelerating voltage: 1 kV, magnification: 5,000x).
  • FIB focused ion beam
  • SEM AURIGA (manufactured by Carl Zeiss)
  • accelerating voltage 1 kV
  • magnification magnification: 5,000x
  • an SEM image components with different electron densities are shown as images of different shades. In other words, the filler, resin components, and voids appear on the image as different shades.
  • the obtained successive SEM images are superimposed using 3D image processing software (Dragonfly (Ver.
  • microvoid ratio is preferably 38% or less, and more preferably 30% or less.
  • solvent resistance is evaluated based on the degree of change in mass when the cured product is immersed in a solvent. Specifically, the cured product of the epoxy resin composition is immersed in a solvent for a predetermined time, and the mass change rate before and after immersion in the solvent is calculated and evaluated.
  • the mass change rate is preferably 0.50% or less, more preferably 0.30% or less.
  • the epoxy resin composition according to the embodiment can be suitably used as a liquid compression mold material since it becomes a cured product that can prevent warping of the substrate and peeling from the chip.
  • it contains a flexible epoxy resin, it has good injectability, which is a property that allows it to be injected into fine grooves, and can be suitably used for mounting on semiconductor devices that need to be mounted in finer grooves (fine pitch). For example, even in a fine gap where the distance between the substrate and the semiconductor element (chip) is 15 ⁇ m or less, or a fine location where the bump pitch (distance between the centers of the bumps) is 150 ⁇ m or less, the epoxy resin composition can be injected to seal the semiconductor element.
  • the epoxy resin composition according to the embodiment can prevent warping of the substrate and peeling from the chip even when these fine locations are sealed. As a result, it is possible to prevent cracks in the cured product, which are the cause of peeling between the cured product and the chip, and to prevent the occurrence of cracks between the cured product and the chip.
  • the method for producing the epoxy resin composition according to the embodiment is not particularly limited and can be appropriately selected depending on the purpose.
  • the method includes mixing and stirring the above-mentioned components.
  • the epoxy resin is solid, it is preferable to liquefy and fluidize it by heating or other means before mixing.
  • the components may be mixed simultaneously, or some of the components may be mixed first and the remaining components may be mixed later. For example, if it is difficult to uniformly disperse the filler in the epoxy resin, the epoxy resin and filler may be mixed first and the remaining components may be mixed later.
  • the equipment used for mixing and stirring is not particularly limited and can be selected appropriately depending on the purpose. Examples include a roll mill, ball mill, bead mill, Raikai mixer, Henschel mixer, planetary mixer, etc.
  • the cured product according to the embodiment is obtained by curing the above-mentioned epoxy resin composition.
  • the size and shape of the cured product are not particularly limited and can be appropriately selected depending on the purpose.
  • the method for producing the cured product is not particularly limited and can be selected appropriately depending on the purpose, but examples include heating, transfer molding, and compression molding.
  • the above-mentioned epoxy resin composition is thermosetting, and at temperatures of 100°C to 200°C, it is preferable for it to cure in 0.1 to 3 hours, and preferably 0.25 to 2 hours.
  • the semiconductor device includes a support, a semiconductor element, and the cured product of the epoxy resin composition described above.
  • the cured product of the epoxy resin composition may be obtained by filling and sealing a gap between the semiconductor element and the support with the epoxy resin composition.
  • the support is not particularly limited as long as it is capable of fixing a semiconductor element, and can be appropriately selected depending on the purpose.
  • a substrate and the like can be mentioned.
  • the substrate is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include a lead frame, a pre-wired tape carrier, a wiring board, glass, a silicon wafer, etc.
  • the size, shape, and material of the substrate are not particularly limited as long as they are commonly used as substrates, and can be appropriately selected depending on the purpose.
  • the semiconductor element is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include active elements such as semiconductor chips, transistors, diodes, and thyristors, and passive elements such as capacitors, resistors, resistor arrays, coils, and switches.
  • the size, shape, and material of the semiconductor element are not particularly limited as long as they are used as ordinary semiconductor elements, and can be appropriately selected depending on the purpose.
  • the cured product of the epoxy resin composition is filled into the gap between the support and the semiconductor element.
  • the thickness of the cured product of the epoxy resin composition there is no particular limit to the thickness of the cured product of the epoxy resin composition, and it can be appropriately selected depending on the purpose, for example, 10 ⁇ m or more and 800 ⁇ m or less.
  • the shape of the epoxy resin composition there is no particular limit to the shape of the epoxy resin composition, and it can be appropriately selected depending on the purpose.
  • the cured product of the epoxy resin composition is placed in the gap between the support and the semiconductor element, thereby encapsulating the semiconductor element.
  • the method for manufacturing the semiconductor device according to this embodiment is not particularly limited and can be appropriately selected depending on the purpose.
  • the semiconductor device can be manufactured by a process of filling with an epoxy resin composition and a process of curing the epoxy resin composition.
  • the step of filling the epoxy resin composition is a step of filling the gap between the support and the semiconductor element with the epoxy resin composition.
  • the method of filling the epoxy resin composition there is no particular limit to the method of filling the epoxy resin composition, and it can be appropriately selected depending on the purpose, and examples of the method include a dispensing method, a casting method, and a printing method.
  • the amount of the epoxy resin composition to be filled there is no particular limit to the amount of the epoxy resin composition to be filled, and it can be appropriately selected depending on the purpose, and examples of the amount include an amount that results in a thickness of the cured product of 10 ⁇ m or more and 800 ⁇ m or less.
  • the step of curing the epoxy resin composition is a step of curing the epoxy resin composition between the support and the semiconductor element.
  • the method of curing the epoxy resin composition is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include transfer molding or compression molding of the support, the epoxy resin composition, and the semiconductor element.
  • Examples 1 to 14 Comparative Examples 1 to 3
  • the components in the formulations shown in Tables 1 to 4 were mixed using a triple roll mill to uniformly disperse each component, thereby obtaining epoxy resin compositions.
  • Flexible epoxy resin 1 diglycidyl ether of polytetramethylene glycol, epoxy equivalent 440 g/eq., average molecular weight 880, product name: YX7400N, manufactured by Mitsubishi Chemical Corporation
  • Flexible epoxy resin 2 diglycidyl ether of polytetramethylene glycol, epoxy equivalent 1,072 g/eq., average molecular weight 2,140, product name: Epogo-se-PT polymer type, manufactured by Yokkaichi Chemical Co., Ltd.
  • Epoxy resins used in the examples and comparative examples are as follows.
  • Epoxy resin 1 glycidylamine type liquid epoxy resin, epoxy equivalent 95 g/eq., average molecular weight 270, product name: EP-3950L, manufactured by ADEKA Corporation
  • Epoxy resin 2 bisphenol F type liquid epoxy resin, epoxy equivalent 178 g/eq., average molecular weight 360, product name: RE410S, manufactured by Nippon Kayaku Co., Ltd.
  • Epoxy resin 3 bisphenol F type liquid epoxy resin, epoxy equivalent 160 g/eq., average molecular weight 360, product name: YDF870GS, manufactured by Nippon Steel Chemical & Material Co., Ltd.
  • the curing agents used in the examples and comparative examples are as follows.
  • Curing agent 1 phenolic curing agent, hydroxyl equivalent 139 to 143 g/eq., product name: MEH-8005, manufactured by Meiwa Kasei Co., Ltd.
  • Hardener 2 acid anhydride hardener, product name: HN-2200, manufactured by Showa Denko Materials Co., Ltd.
  • the curing catalysts used in the examples and comparative examples are as follows. Curing catalyst (2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, product name: 2MZA, manufactured by Shikoku Chemical Industries Co., Ltd.)
  • the fillers used in the examples and comparative examples are as follows.
  • Filler 1 (average particle size 0.3 ⁇ m, product name: SE1050SMO, manufactured by Admatechs Co., Ltd.)
  • Filler 2 (average particle size 0.6 ⁇ m, product name: SE2200SME, manufactured by Admatechs Co., Ltd.)
  • Filler 3 (average particle size 0.05 ⁇ m, product name: YA050C-SM1, manufactured by Admatechs Co., Ltd.)
  • the resulting epoxy resin composition was measured and evaluated for microvoids, solvent resistance, warpage, and elastic modulus. The evaluation results are shown in Tables 1 to 4.
  • ⁇ Microvoids> Each of the obtained epoxy resin compositions was heated under the condition of 150°C/1 hour to prepare a cured product.
  • the obtained cured product was sliced at equal intervals of 50 nm using a focused ion beam (FIB) and observed with an SEM (accelerating voltage: 1 kV, magnification: 5,000 times) each time.
  • FIB focused ion beam
  • SEM accelerating voltage: 1 kV, magnification: 5,000 times
  • components with different electron densities are represented as images of different shades. That is, the filler, resin component, and voids appear on the image as different shades.
  • the obtained continuous SEM images were superimposed using 3D image processing software to construct a 3D structure.
  • the filler, resin component, and voids were set from the contrast difference of the obtained 3D structure, and then the image was divided and a machine learning segmentation function that recognizes the shade of each region was used to recognize and extract the filler, resin component, and microvoids, and the volume fraction (%) of each component was calculated.
  • the microvoid ratio was calculated from the following formula using the obtained volume fraction, and evaluated based on the following evaluation criteria. The volume fraction of the filler is not involved in the calculation of the microvoid ratio.
  • the following equipment and 3D image processing software were used in measuring the microvoids.
  • FIB COBRA (manufactured by OrsayPhysics)
  • SEM AURIGA (manufactured by Carl Zeiss)
  • 3D image processing software Dragonfly (Ver. 2022.1, manufactured by Object Research System)
  • each epoxy resin composition was placed on a silicon wafer with a diameter of 300 mm and a thickness of 775 ⁇ m, and molded to a diameter of 292 mm and a thickness of 500 ⁇ m under conditions of 120° C./400 seconds, and then cured at 150° C./1 hour.
  • the warpage of the obtained silicon wafer molded product was measured with a shadow moire type warpage measuring device (Thermoray AXP2.0, manufactured by Therma Precision Co., Ltd.), and the warpage was evaluated based on the following evaluation criteria.
  • Warpage is 10,000 ⁇ m or less.
  • B Warpage is 10,000 ⁇ m or more, or the wafer is cracked.
  • ⁇ Elastic modulus> Each epoxy resin composition was cured at 150°C for 1 hour to prepare a test piece measuring 10.0 mm wide, 50.0 mm long, and 2.0 mm thick.
  • the storage modulus of the obtained test piece was measured at 30°C by the DCB method using a viscoelasticity analyzer (viscoelasticity measuring device DMA7100, manufactured by Hitachi High-Tech Science Corporation). The measurement conditions were as follows: Frequency: 1Hz Strain amplitude: 10 ⁇ m Heating rate: 3°C/min
  • microvoid evaluation results and the solvent resistance evaluation results for Examples 1 to 14 and Comparative Examples 1 to 3 are consistent. This makes it clear that a high microvoid ratio leads to poor solvent resistance, and that one of the causes of poor solvent resistance (peeling from the chip) of the cured product of the epoxy resin composition is the occurrence of microvoids within the cured product.
  • Comparative Example 3 which does not contain epoxy resin, caused wafer cracking during the warpage evaluation, and the warpage of the substrate was further deteriorated compared to Comparative Example 2. From these results, it was revealed that by setting the content of flexible epoxy resin to 8.0% by mass to 25.0% by mass relative to the epoxy resin, it is possible to suppress microvoids, improve solvent resistance, and prevent substrate warpage.

Landscapes

  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided are: an epoxy resin composition that yields a cured product that can prevent warping of a board and peeling from a chip; a cured product using the same; and a semiconductor device. The epoxy resin composition contains an epoxy resin, a filler, and at least one selected from a curing agent and a curing catalyst. The epoxy resin contains a flexible epoxy resin, and the content of flexible epoxy resin is from 8.0 mass% to 25.0 mass% relative to the epoxy resin.

Description

エポキシ樹脂組成物、硬化物、及び半導体装置Epoxy resin composition, cured product, and semiconductor device

 本発明は、エポキシ樹脂組成物、硬化物、及び半導体装置に関する。 The present invention relates to an epoxy resin composition, a cured product, and a semiconductor device.

 電子機器などの半導体装置は、近年、大型化又は薄型化しており、半導体装置を構成する半導体素子(チップとも称する)を高密度に実装することの重要性が増している。このため、半導体素子のパッケ-ジ方法が改良されてきた。従来、半導体素子は、個片化してからパッケ-ジする方法により行われてきた。この方法では、パッケ-ジがチップより大きくなるため、このパッケ-ジ方法は大型の半導体装置に向かなかった。そこで、回路形成完了後のチップに切り分けられていないウェハ-レベルでパッケ-ジする技術(ウェハ-レベルチップサイズパッケ-ジ技術)が用いられるようになっている。 In recent years, semiconductor devices such as electronic devices have become larger and thinner, and it is becoming increasingly important to densely pack the semiconductor elements (also called chips) that make up the semiconductor device. For this reason, packaging methods for semiconductor elements have been improved. Traditionally, semiconductor elements have been packaged after being diced into individual pieces. This packaging method is not suitable for large semiconductor devices because the package is larger than the chip. For this reason, a technology that packages at the wafer level (wafer-level chip-size packaging technology) has come to be used, where packaging is done before the chips are cut up after the circuit formation is complete.

 ウェハ-レベルの実装には、通常、半導体素子と基板との間に、半導体素子の耐湿性、耐熱性、外部応力に対する信頼性の向上を目的として、封止材と呼ばれる樹脂組成物の硬化物を入れて封止する工程を有する。封止する方法の一つに、半導体素子の下部の空洞(キャビティ)に封止材を入れ、圧力をかけながら封止材を硬化させるコンプレッションモ-ルド方式がある(例えば、特許文献1参照)。 Wafer-level packaging usually involves a process of sealing between the semiconductor element and the substrate, where a cured resin composition called an encapsulant is inserted to improve the semiconductor element's moisture resistance, heat resistance, and reliability against external stress. One method of sealing is the compression mold method, in which an encapsulant is inserted into the cavity below the semiconductor element and the encapsulant is cured while applying pressure (see, for example, Patent Document 1).

特開2021-161206号公報JP 2021-161206 A

 ウェハ-レベルの実装においては、半導体素子と基板とを固定する工程、及び半導体素子と基板との間を樹脂組成物により封止する工程の他に、半導体素子とはんだボ-ルとを電気的につなぐ層を形成する工程(所謂、再配線層形成工程)がある。一般的に、再配線層形成工程と、樹脂組成物により封止する工程との順序により、チップファ-スト法(基板に半導体素子を載せて樹脂で封止してから、その上に配線層を形成する)と、チップラスト法(Siなどでできたウェハ-状の支持体に再配線層を形成してから、半導体素子を載せて封止し、最後に支持体を除去する)と呼ばれる方法に分けられる。特にチップファ-スト法では、樹脂組成物上に再配線層が形成されるため、再配線層形成工程の際に樹脂組成物の硬化物には、半導体素子等からの剥離などの不具合が起きないことが求められる。 In wafer-level mounting, in addition to the process of fixing the semiconductor element to the substrate and the process of sealing the space between the semiconductor element and the substrate with a resin composition, there is also a process of forming a layer that electrically connects the semiconductor element to the solder balls (the so-called rewiring layer formation process). Generally, depending on the order of the rewiring layer formation process and the sealing process with a resin composition, there are two methods called the chip-first method (wherein the semiconductor element is placed on the substrate and sealed with resin, and then a wiring layer is formed on top of that) and the chip-last method (wherein a rewiring layer is formed on a wafer-like support made of silicon or the like, then the semiconductor element is placed on top of it and sealed, and finally the support is removed). In particular, in the chip-first method, since the rewiring layer is formed on the resin composition, it is required that the cured resin composition does not cause problems such as peeling off from the semiconductor element during the rewiring layer formation process.

 更に、ウェハ-レベルの実装においては、実装された基板は、ICチップパッケ-ジの個片化のためにダイシングされる。ダイシング工程においては、基板の反りが小さいことが要求されるため、基板の反りを防止することができる樹脂組成物が求められてきた。 Furthermore, in wafer-level mounting, the mounted substrate is diced to separate the IC chip packages. Since the dicing process requires minimal warping of the substrate, there has been a demand for resin compositions that can prevent substrate warping.

 基板の反り、及びチップからの剥離の防止ができる硬化物となるエポキシ樹脂組成物、並びにそれを用いた硬化物、及び半導体装置の提供を目的とする。 The objective is to provide an epoxy resin composition that hardens to prevent warping of the substrate and peeling from the chip, as well as a hardened product and a semiconductor device that use the same.

 従来の樹脂組成物には、基板の反りを防止するために、エポキシ樹脂と柔軟性エポキシ樹脂とを併用したエポキシ樹脂組成物が用いられてきた。しかしながら、柔軟性エポキシ樹脂を多く含有するエポキシ樹脂組成物は、再配線層形成工程において用いられる現像液である溶剤に浸漬されると、半導体素子との剥離を起こすことがある。  Conventional resin compositions have used epoxy resins that combine epoxy resins with flexible epoxy resins to prevent warping of the substrate. However, epoxy resin compositions that contain a large amount of flexible epoxy resins can peel off from the semiconductor element when immersed in the developing solution used in the rewiring layer formation process.

 発明者らがこの現象について検討した結果、柔軟性エポキシ樹脂を多く含有するエポキシ樹脂組成物からなる硬化物は、硬化物内にマイクロボイドと呼ばれる細かいボイド泡を内包することに着目した。そして、このマイクロボイドは硬化物内に溶剤を取り込みやすく、硬化物の溶剤に対する耐性(耐溶剤性)を悪化させること、そして、硬化物の耐溶剤性の悪化が半導体素子との剥離を生じる原因であることを見出した。そこで、発明者らは、柔軟性エポキシ樹脂の割合について検討を重ね、本発明の完成に至った。本発明において、マイクロボイドとは、断面をSEM画像(加速電圧:1kV、倍率:5000倍)で観察したときに最大幅が0.5μm以下のボイドをいう。 After studying this phenomenon, the inventors noticed that cured products made from epoxy resin compositions containing a large amount of flexible epoxy resin contain fine void bubbles called microvoids within the cured product. They discovered that these microvoids easily trap solvents in the cured product, worsening the resistance of the cured product to solvents (solvent resistance), and that the deterioration of the solvent resistance of the cured product is the cause of peeling from the semiconductor element. The inventors then conducted extensive research into the proportion of flexible epoxy resin, leading to the completion of this invention. In this invention, microvoids refer to voids with a maximum width of 0.5 μm or less when a cross section is observed using an SEM image (accelerating voltage: 1 kV, magnification: 5000 times).

 前記目的を達成するため、本発明の一実施態様は、エポキシ樹脂、フィラ-、並びに硬化剤及び硬化触媒から選択される少なくともいずれかを含有し、エポキシ樹脂は、柔軟性エポキシ樹脂を含有し、柔軟性エポキシ樹脂の含有量が、エポキシ樹脂に対して8.0質量%~25.0質量%であるエポキシ樹脂組成物である。 In order to achieve the above object, one embodiment of the present invention is an epoxy resin composition that contains an epoxy resin, a filler, and at least one selected from a curing agent and a curing catalyst, the epoxy resin contains a flexible epoxy resin, and the content of the flexible epoxy resin is 8.0% by mass to 25.0% by mass relative to the epoxy resin.

 本発明によれば、基板の反り、及びチップからの剥離の防止ができる硬化物となるエポキシ樹脂組成物、並びにそれを用いた硬化物、及び半導体装置を提供することができる。
発明を実施するための形態
According to the present invention, it is possible to provide an epoxy resin composition that gives a cured product that can prevent warping of a substrate and peeling from a chip, as well as a cured product and a semiconductor device using the same.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

(エポキシ樹脂組成物)
 実施態様に係るエポキシ樹脂組成物は、エポキシ樹脂、フィラ-、並びに硬化剤及び硬化触媒から選択される少なくともいずれかを含有し、更に必要に応じてその他の成分を含有する。
(Epoxy resin composition)
The epoxy resin composition according to the embodiment contains an epoxy resin, a filler, and at least one selected from a curing agent and a curing catalyst, and further contains other components as required.

<エポキシ樹脂>
 エポキシ樹脂は、柔軟性エポキシ樹脂とその他のエポキシ樹脂とを含有する。
<Epoxy resin>
The epoxy resin includes a flexible epoxy resin and other epoxy resins.

<<柔軟性エポキシ樹脂>>
 柔軟性エポキシ樹脂は、エポキシ樹脂組成物の硬化物を載せた基板の反りを防止するために含有される。実施態様において、柔軟性エポキシ樹脂とは、以下の3つの条件を満たすエポキシ樹脂を指す。
1.数平均分子量が、800~2,500
2.エポキシ当量が、400g/eq.~1,200g/eq.
3.分子内に縮合多環炭化水素を有さない
<<Flexible epoxy resin>>
The flexible epoxy resin is contained in order to prevent warping of a substrate on which a cured product of the epoxy resin composition is placed. In an embodiment, the flexible epoxy resin refers to an epoxy resin that satisfies the following three conditions:
1. Number average molecular weight: 800 to 2,500
2. Epoxy equivalent: 400 g/eq. to 1,200 g/eq.
3. No condensed polycyclic hydrocarbons in the molecule

 柔軟性エポキシ樹脂の数平均分子量は、800~2,500であり、800~2,000が好ましい。なお、数平均分子量が800未満の場合、基板の反りが大きくなることがあり、2,500超の場合、マイクロボイドの比率が高くなり、耐溶剤性が悪化し、チップからの剥離が起こることがある。数平均分子量の測定方法は、一般的な数平均分子量の測定方法を用いることができる。例えば、溶出溶媒にテトラヒドロフランを用いたゲル浸透クロマトグラフィ-(GPC)による標準ポリスチレン換算として測定することができる。 The number average molecular weight of the flexible epoxy resin is 800 to 2,500, and preferably 800 to 2,000. If the number average molecular weight is less than 800, the substrate may warp significantly, and if it exceeds 2,500, the ratio of microvoids increases, solvent resistance deteriorates, and peeling from the chip may occur. The number average molecular weight can be measured using a general method for measuring number average molecular weight. For example, it can be measured in terms of standard polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as the elution solvent.

 柔軟性エポキシ樹脂のエポキシ当量は400g/eq.~1,200g/eq.であり、400g/eq.~1,000g/eq.が好ましい。なお、エポキシ当量が、400g/eq.未満であると、基板の反りが大きくなるという不具合が起こることがあり、1,200g/eq.超であると、硬化物内のマイクロボイド比率が高くなり、再配線形成工程内での半導体素子からの剥離という不具合が起こることがある。ここで、エポキシ当量とは、JISK7236:2001に定義されているように、1当量のエポキシ基を含む樹脂の質量である。なお、「eq.」とは、「equivalent(当量)」を略記したものである。 The epoxy equivalent of the flexible epoxy resin is 400 g/eq. to 1,200 g/eq., and preferably 400 g/eq. to 1,000 g/eq. If the epoxy equivalent is less than 400 g/eq., the substrate may warp significantly, and if it exceeds 1,200 g/eq., the ratio of microvoids in the cured product may increase, causing peeling from the semiconductor element during the rewiring formation process. Here, the epoxy equivalent is the mass of the resin containing one equivalent of epoxy groups, as defined in JIS K7236:2001. Note that "eq." is an abbreviation of "equivalent."

 柔軟性エポキシ樹脂の具体例は、例えば、脂肪族エポキシ樹脂が挙げられる。脂肪族エポキシ樹脂は、例えば、ポリアルキレングリコ-ル型エポキシ樹脂が挙げられる。ポリアルキレングリコ-ル型エポキシ樹脂は、例えば、ポリテトラメチレングリコ-ル型エポキシ樹脂、ポリエチレングリコ-ル型エポキシ樹脂、ポリプロピレングリコ-ル型エポキシ樹脂などが挙げられる。 Specific examples of flexible epoxy resins include aliphatic epoxy resins. Examples of aliphatic epoxy resins include polyalkylene glycol type epoxy resins. Examples of polyalkylene glycol type epoxy resins include polytetramethylene glycol type epoxy resins, polyethylene glycol type epoxy resins, and polypropylene glycol type epoxy resins.

 柔軟性エポキシ樹脂は、適宜合成しても、市販品を用いてもよい。市販品は、例えば、YX7400N(ポリテトラメチレングリコ-ル型エポキシ樹脂、エポキシ当量440g/eq.、平均分子量880、三菱ケミカル株式会社製)、エポゴ-セ-PT高分子タイプ(ポリテトラメチレングリコ-ル型エポキシ樹脂、エポキシ当量1,072g/eq.、平均分子量2,140、四日市合成株式会社製)、エポゴ-セ-PT一般グレ-ド(ポリテトラメチレングリコ-ル型エポキシ樹脂、エポキシ当量435g/eq.、平均分子量700~800、四日市合成株式会社)、SR-8EGS(ポリテトラメチレングリコ-ル型エポキシ樹脂、エポキシ当量262g/eq.、平均分子量510~550、阪本薬品工業株式会社)、PG-207GS(ポリテトラメチレングリコ-ル型エポキシ樹脂、エポキシ当量300~330g/eq.、平均分子量600~660、日鉄ケミカル&マテリアル株式会社)などが挙げられる。 The flexible epoxy resin may be synthesized as appropriate, or a commercially available product may be used. Commercially available products include, for example, YX7400N (polytetramethylene glycol type epoxy resin, epoxy equivalent 440 g/eq., average molecular weight 880, manufactured by Mitsubishi Chemical Corporation), Epogo-se PT polymer type (polytetramethylene glycol type epoxy resin, epoxy equivalent 1,072 g/eq., average molecular weight 2,140, manufactured by Yokkaichi Chemical Co., Ltd.), Epogo-se PT general grade (polytetramethylene glycol type epoxy resin, epoxy equivalent weight 435g/eq., average molecular weight 700-800, Yokkaichi Chemical Co., Ltd.), SR-8EGS (polytetramethylene glycol type epoxy resin, epoxy equivalent weight 262g/eq., average molecular weight 510-550, Sakamoto Yakuhin Kogyo Co., Ltd.), PG-207GS (polytetramethylene glycol type epoxy resin, epoxy equivalent weight 300-330g/eq., average molecular weight 600-660, Nippon Steel Chemical & Material Co., Ltd.), etc.

 柔軟性エポキシ樹脂の含有量は、エポキシ樹脂全体に対して、8.0質量%~25.0質量%であり、8.0質量%~16.5質量%がより好ましく、9.0質量%~16.5質量%が更に好ましい。柔軟性エポキシ樹脂の含有量の値が、この範囲に含まれると、ウェハ-反りを防止しつつ、マイクロボイドの発生を抑え、耐溶剤性を向上させ、チップからの剥離を防止することができる。 The content of the flexible epoxy resin is 8.0% by mass to 25.0% by mass, more preferably 8.0% by mass to 16.5% by mass, and even more preferably 9.0% by mass to 16.5% by mass, relative to the total epoxy resin. When the content of the flexible epoxy resin falls within this range, it is possible to prevent wafer warpage, suppress the occurrence of microvoids, improve solvent resistance, and prevent peeling from the chip.

<<その他のエポキシ樹脂>>
 その他のエポキシ樹脂は、前述の柔軟性エポキシ樹脂以外のエポキシ樹脂である。その他のエポキシ樹脂は、一般的に半導体封止用として使用される各種のエポキシ樹脂であれば、特に制限はなく、目的に応じて適宜用いることができるが、常温(25℃)において液体であるエポキシ樹脂が好ましい。その他のエポキシ樹脂のエポキシ当量は、50g/eq.~10,000g/eq.が好ましく、50g/eq.~1,000g/eq.がより好ましく、100g/eq.~500g/eq.がさらに好ましい。
<<Other epoxy resins>>
The other epoxy resin is an epoxy resin other than the flexible epoxy resin described above. The other epoxy resin is not particularly limited as long as it is a variety of epoxy resins generally used for semiconductor encapsulation and can be appropriately used depending on the purpose, but an epoxy resin that is liquid at room temperature (25°C) is preferred. The epoxy equivalent of the other epoxy resin is preferably 50 g/eq. to 10,000 g/eq., more preferably 50 g/eq. to 1,000 g/eq., and even more preferably 100 g/eq. to 500 g/eq.

 その他のエポキシ樹脂は、例えば、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、ビスフェノ-ル型エポキシ樹脂、ビフェニル型エポキシ樹脂、アミノフェノ-ル型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙げられる。グリシジルアミン型エポキシ樹脂は、例えば、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジル-m-キシリレンジアミンテトラグリシジルビス(アミノメチル)シクロヘキサンなどが挙げられる。脂環式エポキシ樹脂は、例えば、ビニル(3,4-シクロヘキセン)ジオキシド、2-(3,4-エポキシシクロヘキシル)-5,1-スピロ-(3,4-エポキシシクロヘキシル)-m-ジオキサンなどが挙げられる。ビスフェノ-ル型エポキシ樹脂は、例えば、ビスフェノ-ルA型エポキシ樹脂、ビスフェノ-ルF型エポキシ樹脂などが挙げられる。ビスフェノ-ルA型エポキシ樹脂は、例えば、p-グリシジルオキシフェニルジメチルトリスビスフェノ-ルAジグリシジルエ-テルなどが挙げられる。ビフェニル型エポキシ樹脂は、例えば、ビフェニルアラルキル型エポキシ樹脂、3,3’,5,5’-テトラメチル-4,4’-ジグリシジルオキシビフェニルなどが挙げられる。アミノフェノ-ル型エポキシ樹脂は、例えば、トリグリシジル-p-アミノフェノ-ルなどが挙げられる。ナフタレン型エポキシ樹脂は、例えば、1,6-ビス(2,3-エポキシプロポキシ)ナフタレンなどが挙げられる。 Other epoxy resins include, for example, glycidylamine type epoxy resins, alicyclic epoxy resins, bisphenol type epoxy resins, biphenyl type epoxy resins, aminophenol type epoxy resins, and naphthalene type epoxy resins. Examples of glycidylamine type epoxy resins include diglycidyl aniline, diglycidyl toluidine, tetraglycidyl-m-xylylenediamine tetraglycidyl bis(aminomethyl)cyclohexane, and the like. Examples of alicyclic epoxy resins include vinyl(3,4-cyclohexene) dioxide, 2-(3,4-epoxycyclohexyl)-5,1-spiro-(3,4-epoxycyclohexyl)-m-dioxane, and the like. Examples of bisphenol type epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, and the like. Examples of bisphenol A type epoxy resins include p-glycidyloxyphenyl dimethyl trisbisphenol A diglycidyl ether. Examples of biphenyl type epoxy resins include biphenyl aralkyl type epoxy resins, 3,3',5,5'-tetramethyl-4,4'-diglycidyloxybiphenyl. Examples of aminophenol type epoxy resins include triglycidyl-p-aminophenol. Examples of naphthalene type epoxy resins include 1,6-bis(2,3-epoxypropoxy)naphthalene.

 その他のエポキシ樹脂の1分子中に含まれるエポキシ基の数は、1つ(単官能エポキシ樹脂)でも、2つ以上(多官能エポキシ樹脂)であってもよいが、信頼性(サ-マルサイクル性)の点から、2以上(多官能エポキシ樹脂)が好ましい。エポキシ基の数の上限は、特に制限はなく、目的に応じて適宜選択できるが、5以下が好ましい。単官能エポキシ樹脂は、例えば、p-tert-ブチルフェニルグリシジルエ-テルなどが挙げられる。多官能エポキシ樹脂は、例えば、1,4-フェニルジメタノ-ルジグリシジルエ-テル等のジエポキシ樹脂;トリメチロ-ルプロパントリグリシジルエ-テル、グリセリントリグリシジルエ-テル等のトリエポキシ樹脂などが挙げられる。上記の他に、1,3-ジグリシジル-5-メチル-5-エチルヒダントイン等のヒダントイン型エポキシ樹脂;1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン等のシリコ-ン骨格を有するエポキシ樹脂;植物由来の骨格を有するエポキシ樹脂であってもよい。 The number of epoxy groups contained in one molecule of other epoxy resins may be one (monofunctional epoxy resin) or two or more (multifunctional epoxy resin), but from the standpoint of reliability (thermal cycle property), two or more (multifunctional epoxy resin) is preferred. There is no particular limit to the upper limit of the number of epoxy groups, and it can be selected appropriately depending on the purpose, but five or less is preferred. Examples of monofunctional epoxy resins include p-tert-butylphenyl glycidyl ether. Examples of multifunctional epoxy resins include diepoxy resins such as 1,4-phenyldimethanol diglycidyl ether; triepoxy resins such as trimethylolpropane triglycidyl ether and glycerin triglycidyl ether. In addition to the above, hydantoin-type epoxy resins such as 1,3-diglycidyl-5-methyl-5-ethylhydantoin; epoxy resins with a silicone skeleton such as 1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane; and epoxy resins with a skeleton derived from plants may also be used.

 その他エポキシ樹脂は、1種単独で使用しても、2種以上を併用してもよい。これらの中でも、信頼性の点から、アミノフェノ-ル型エポキシ樹脂、ビスフェノ-ル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂が好ましい。なお、その他のエポキシ樹脂として、アミノフェノ-ル型エポキシ樹脂をその他のエポキシ樹脂より多く含有すると、エポキシ樹脂組成物のガラス転移点を上げられるため、好ましい。 The other epoxy resins may be used alone or in combination of two or more. Among these, aminophenol type epoxy resins, bisphenol type epoxy resins, and glycidylamine type epoxy resins are preferred from the standpoint of reliability. It is preferable to contain more aminophenol type epoxy resins than other epoxy resins as the other epoxy resins, since this increases the glass transition point of the epoxy resin composition.

 その他のエポキシ樹脂は、適宜合成をしたものでも、市販品を用いてもよい。市販品は、例えば、RE410S(ビスフェノ-ルF型液状エポキシ樹脂、エポキシ当量178g/eq、平均分子量360、日本化薬株式会社製)、EP-3950L(グリシジルアミン型液状エポキシ樹脂、エポキシ当量95g/eq、平均分子量270、株式会社ADEKA製)などが挙げられる。 Other epoxy resins may be appropriately synthesized or commercially available. Commercially available products include, for example, RE410S (bisphenol F type liquid epoxy resin, epoxy equivalent 178 g/eq, average molecular weight 360, manufactured by Nippon Kayaku Co., Ltd.) and EP-3950L (glycidylamine type liquid epoxy resin, epoxy equivalent 95 g/eq, average molecular weight 270, manufactured by ADEKA Corporation).

 エポキシ樹脂組成物におけるエポキシ樹脂(柔軟性エポキシ樹脂及びその他のエポキシ樹脂)の含有量は、エポキシ樹脂組成物全体に対して、10.0質量%~27.0質量%が好ましく、15.0質量%~21.0質量%がより好ましい。その他のエポキシ樹脂としてビスフェノ-ル型エポキシ樹脂を用いる場合は、ビスフェノ-ル型エポキシ樹脂の含有量は、エポキシ樹脂全量に対して、20質量%~30質量%が好ましい。また、その他のエポキシ樹脂としてグリシジルアミン型エポキシ樹脂を用いる場合は、グリシジルアミン型エポキシ樹脂の含有量は、エポキシ樹脂全量に対して、50質量%~70質量%が好ましい。 The content of the epoxy resin (flexible epoxy resin and other epoxy resin) in the epoxy resin composition is preferably 10.0% by mass to 27.0% by mass, and more preferably 15.0% by mass to 21.0% by mass, based on the total epoxy resin composition. When a bisphenol type epoxy resin is used as the other epoxy resin, the content of the bisphenol type epoxy resin is preferably 20% by mass to 30% by mass, based on the total amount of epoxy resin. When a glycidylamine type epoxy resin is used as the other epoxy resin, the content of the glycidylamine type epoxy resin is preferably 50% by mass to 70% by mass, based on the total amount of epoxy resin.

<硬化剤、硬化触媒>
 実施態様に係るエポキシ樹脂組成物は、硬化剤及び硬化触媒の少なくともいずれかを含有する。硬化剤は前述のエポキシ樹脂を硬化させ、硬化触媒は前述のエポキシ樹脂の硬化を促進させるために含有される。硬化剤及び硬化触媒は、どちらか一方でも、併用してもよいが、硬化速度を速める点から、併用することが好ましい。
<Curing agent, curing catalyst>
The epoxy resin composition according to the embodiment contains at least one of a curing agent and a curing catalyst. The curing agent is contained to cure the epoxy resin, and the curing catalyst is contained to promote the curing of the epoxy resin. Either the curing agent or the curing catalyst may be used alone or in combination, but it is preferable to use them in combination in order to increase the curing speed.

<<硬化剤>>
 硬化剤は、エポキシ樹脂を硬化させることができれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、アミン系硬化剤、フェノ-ル系硬化剤、酸無水物系硬化剤などが挙げられる。アミン系硬化剤は、例えば、芳香族アミンなどが挙げられる。芳香族アミンは、例えば、メチレンジアニリン、m-フェニレンジアミン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホンなどが挙げられる。フェノ-ル系硬化剤は、例えば、フェノ-ルノボラック樹脂、クレゾ-ルノボラック樹脂、ナフト-ル修飾フェノ-ル樹脂、ジシクロペンタジエン修飾フェノ-ル樹脂、p-キシレン修飾フェノ-ル樹脂などが挙げられる。酸無水物系硬化剤は、例えば、メチルテトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、アルキル化テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルハイミック無水物、ドデセニル無水コハク酸、メチルナド酸無水物などが挙げられる。これらは1種単独で使用しても、2種以上を併用してもよい。
<<Curing agent>>
The curing agent is not particularly limited as long as it can cure the epoxy resin, and can be appropriately selected according to the purpose. Examples of the curing agent include amine-based curing agents, phenol-based curing agents, and acid anhydride-based curing agents. Examples of the amine-based curing agent include aromatic amines. Examples of the aromatic amine include methylenedianiline, m-phenylenediamine, 4,4'-diaminodiphenyl sulfone, and 3,3'-diaminodiphenyl sulfone. Examples of the phenol-based curing agent include phenol novolac resin, cresol novolac resin, naphthol-modified phenol resin, dicyclopentadiene-modified phenol resin, and p-xylene-modified phenol resin. Examples of the acid anhydride curing agent include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhymic anhydride, dodecenyl succinic anhydride, methylnadic anhydride, etc. These may be used alone or in combination of two or more.

 硬化剤は、適宜合成したものでも、市販品を用いてもよい。市販品は、例えば、MEH-8005(フェノ-ル系硬化剤、明和化成株式会社製)、HN-2200(酸無水物系硬化剤、昭和電工マテリアルズ株式会社製)などが挙げられる。 The curing agent may be either a synthetic one or a commercially available product. Examples of commercially available products include MEH-8005 (phenol-based curing agent, manufactured by Meiwa Kasei Co., Ltd.) and HN-2200 (acid anhydride-based curing agent, manufactured by Showa Denko Materials Co., Ltd.).

 硬化剤の含有量は、特に制限はなく、目的に応じて適宜選択することができる。エポキシ樹脂との化学量論上の当量比(硬化剤当量/エポキシ基当量)が0.01~0.50が好ましく、0.05~0.40がより好ましく、0.08~0.30が更に好ましい。硬化剤の含有量(割合)は、フィラ-を除いたエポキシ樹脂組成物に対して、1質量%~30質量%が好ましく、4質量%~15質量%がより好ましい。硬化剤の含有量がこの数値範囲内であると、基板の反りを防止でき、且つ十分な接着強度の発現という利点がある。 The content of the curing agent is not particularly limited and can be selected appropriately depending on the purpose. The stoichiometric equivalent ratio with the epoxy resin (curing agent equivalent/epoxy group equivalent) is preferably 0.01 to 0.50, more preferably 0.05 to 0.40, and even more preferably 0.08 to 0.30. The content (ratio) of the curing agent is preferably 1% by mass to 30% by mass, and more preferably 4% by mass to 15% by mass, based on the epoxy resin composition excluding the filler. If the content of the curing agent is within this numerical range, it is advantageous in that warping of the substrate can be prevented and sufficient adhesive strength is exhibited.

<<硬化触媒>>
 硬化触媒は、一般的に、樹脂組成物に用いられる硬化触媒であれば、特に制限はなく、目的に応じて適宜選択できるが、第三級アミン化合物(窒素原子を含有する複素環化合物は除く)、リン系硬化促進剤、窒素原子を含有する複素環化合物が挙げられる。これらは、1種単独で使用しても2種以上を併用してもよい。これらの中でも、信頼性(サ-マルサイクル性)の点から、窒素原子を含有する複素環化合物が好ましい。窒素原子を含有する複素環化合物とは、窒素原子が複素環の構成原子となっている化合物を指す。
<<Curing catalyst>>
The curing catalyst is not particularly limited as long as it is a curing catalyst generally used in a resin composition and can be appropriately selected according to the purpose, and examples thereof include tertiary amine compounds (excluding heterocyclic compounds containing a nitrogen atom), phosphorus-based curing accelerators, and heterocyclic compounds containing a nitrogen atom. These may be used alone or in combination of two or more. Among these, heterocyclic compounds containing a nitrogen atom are preferred from the viewpoint of reliability (thermal cycle property). A heterocyclic compound containing a nitrogen atom refers to a compound in which a nitrogen atom is a constituent atom of a heterocycle.

 窒素原子を含有する複素環化合物は、例えば、2-メチルイミダゾ-ル、2-ウンデシルイミダゾ-ル、2-ヘプタデシルイミダゾ-ル、2-エチル-4-メチルイミダゾ-ル、2-フェニルイミダゾ-ル、2-フェニル-4-メチルイミダゾ-ル、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]エチル-s-トリアジン、2-フェニル-4,5-ジヒドロキシメチルイミダゾ-ル、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾ-ル、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンゾイミダゾ-ル等のイミダゾ-ル類;ジアザビシクロウンデセン(DBU)、DBU-フェノ-ル塩、DBU-オクチル酸塩、DBU-p-トルエンスルホン酸塩、DBU-ギ酸塩、DBU-オルソフタル酸塩、DBU-フェノ-ルノボラック樹脂塩、DBU系テトラフェニルボレ-ト塩、ジアザビシクロノネン(DBN)、DBN-フェノ-ルノボラック樹脂塩、ジアザビシクロオクタン、ピラゾ-ル、オキサゾ-ル、チアゾ-ル、イミダゾリン、ピラジン、モルホリン、チアジン、インド-ル、イソインド-ル、ベンゾイミダゾ-ル、プリン、キノリン、イソキノリン、キノキサリン、シンノリン、プテリジンなどが挙げられる。これらは、1種単独で使用しても2種以上を併用して用いてもよい。これらの中でも、反応性の観点から、(2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2-エチル-4-メチルイミダゾ-ル、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾ-ルが好ましい。 Heterocyclic compounds containing nitrogen atoms include, for example, imidazoles such as 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2,4-diamino-6-[2'-methylimidazolyl-(1')]ethyl-s-triazine, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole; diazabicyclo Examples of such compounds include undecene (DBU), DBU-phenol salt, DBU-octylate salt, DBU-p-toluenesulfonate, DBU-formate salt, DBU-orthophthalate salt, DBU-phenol novolac resin salt, DBU-based tetraphenylborate salt, diazabicyclononene (DBN), DBN-phenol novolac resin salt, diazabicyclooctane, pyrazole, oxazole, thiazole, imidazoline, pyrazine, morpholine, thiazine, indole, isoindole, benzimidazole, purine, quinoline, isoquinoline, quinoxaline, cinnoline, and pteridine. These compounds may be used alone or in combination of two or more. Among these, from the viewpoint of reactivity, (2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, 2-ethyl-4-methylimidazole, and 2-phenyl-4-methyl-5-hydroxymethylimidazole are preferred.

 硬化触媒は、合成したものでも、市販品を用いてもよい。市販品としては、例えば、2MZA(2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、四国化成工業株式会社製)、2E4MZ(2-エチル-4-メチルイミダゾ-ル、四国化成工業株式会社2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾ-ル製)、2P4MHZ(2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾ-ル、四国化成工業株式会社製)などが挙げられる。 The curing catalyst may be a synthetic product or a commercially available product. Examples of commercially available products include 2MZA (2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, manufactured by Shikoku Chemical Industry Corporation), 2E4MZ (2-ethyl-4-methylimidazole, manufactured by Shikoku Chemical Industry Corporation, 2-phenyl-4-methyl-5-hydroxymethylimidazole), and 2P4MHZ (2-phenyl-4-methyl-5-hydroxymethylimidazole, manufactured by Shikoku Chemical Industry Corporation).

 硬化触媒の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、反応性の点から、エポキシ樹脂組成物全体に対して、0.1質量%~10質量%が好ましく、0.5質量%~5質量%がより好ましい。 The amount of the curing catalyst is not particularly limited and can be selected appropriately depending on the purpose, but from the viewpoint of reactivity, it is preferably 0.1% by mass to 10% by mass, and more preferably 0.5% by mass to 5% by mass, based on the total epoxy resin composition.

<フィラ->
 フィラ-は、エポキシ樹脂組成物の硬化物特性(主に線膨張係数、弾性率、吸水率)を調整するために含有される。フィラ-の種類は、特に制限はなく、目的に応じて適宜選択でき、例えば、溶融シリカ、結晶シリカ等のシリカ;炭酸カルシウム、クレ-、アルミニウム、アルミナ、窒化ケイ素、炭化ケイ素、窒化ホウ素、珪酸カルシウム、チタン酸カリウム、窒化アルミニウム、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、充填量を高くできる点から、シリカフィラ-が好ましい。
<Filler>
The filler is contained in order to adjust the properties of the cured product of the epoxy resin composition (mainly the linear expansion coefficient, elastic modulus, and water absorption). The type of filler is not particularly limited and can be appropriately selected depending on the purpose. Examples of the filler include silica such as fused silica and crystalline silica; calcium carbonate, clay, aluminum, alumina, silicon nitride, silicon carbide, boron nitride, calcium silicate, potassium titanate, aluminum nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, titania, aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate. These may be used alone or in combination of two or more. Among these, silica filler is preferred from the viewpoint of being able to increase the loading amount.

 フィラ-は、表面処理が施されたものであってもよい。表面処理剤は、特に制限はなく、目的に応じて適宜選択でき、例えば、シランカップリング剤などが挙げられる。 The filler may be surface-treated. There are no particular limitations on the surface treatment agent, and it can be selected appropriately depending on the purpose. For example, a silane coupling agent can be used.

 シランカップリング剤は、特に制限がなく、目的に応じて適宜選択でき、例えば、エポキシ系、メタクリル系、アミノ系、ビニル系、グリシドキシ系、メルカプト系などが挙げられる。 There are no particular limitations on the silane coupling agent, and it can be selected appropriately depending on the purpose. Examples include epoxy-based, methacryl-based, amino-based, vinyl-based, glycidoxy-based, and mercapto-based agents.

 フィラ-の体積平均粒径は、特に制限はなく、目的に応じて適宜選択でき、例えば、0.1μm~9.0μmが好ましく、0.2μm~8.0μmがより好ましい。本実施形態において、体積平均粒径は、レ-ザ-回折法を用いて測定される体積平均粒径D50(体積基準の粒度分布の小径側からの累積50%となる粒径)をいう。 The volume average particle size of the filler is not particularly limited and can be appropriately selected depending on the purpose. For example, 0.1 μm to 9.0 μm is preferable, and 0.2 μm to 8.0 μm is more preferable. In this embodiment, the volume average particle size refers to the volume average particle size D50 (particle size that is 50% cumulative from the small diameter side of the volume-based particle size distribution) measured using a laser diffraction method.

 フィラ-の形状は、特に制限はなく、目的に応じて適宜選択でき、例えば、球状、不定形、りん片状などが挙げられる。 The shape of the filler is not particularly limited and can be selected appropriately depending on the purpose. Examples include spherical, irregular, and scale-like shapes.

 フィラ-の含有量は、エポキシ樹脂組成物全体に対して、50質量%~95質量%が好ましく、60質量%~90質量%がより好ましく、65質量%~85質量%が更に好ましい。 The filler content is preferably 50% by mass to 95% by mass, more preferably 60% by mass to 90% by mass, and even more preferably 65% by mass to 85% by mass, based on the total epoxy resin composition.

 エポキシ樹脂組成物に含有されるフィラ-の含有量を測定するには、以下の方法により測定できる。まず、エポキシ樹脂組成物をるつぼに計量する。計量した硬化物を、20℃/分間の速度で、850℃まで昇温し、この温度にて30分間保持する。冷却後、るつぼ内に残った残分(強熱残分)を計量する。得られたフィラ-の量から、フィラ-の含有量を算出する。 The filler content in an epoxy resin composition can be measured by the following method. First, weigh out the epoxy resin composition into a crucible. The weighed cured product is heated to 850°C at a rate of 20°C/min and held at this temperature for 30 minutes. After cooling, the residue (ignition residue) remaining in the crucible is weighed. The filler content is calculated from the amount of filler obtained.

<その他の成分>
 その他の成分としては、通常のエポキシ樹脂組成物に用いられるものであれば、特に制限はなく、目的に応じて適宜選択でき、例えば、染料、顔料、カ-ボンブラック等の着色剤;シリコ-ンオイル;界面活性剤;酸化防止剤;三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等の酸化アンチモン;ブロム化エポキシ樹脂等の従来公知の難燃剤;イオントラップ剤;レベリング剤;酸化防止剤;消泡剤;反応性希釈剤;エラストマ-などが挙げられる。これらは、1種単独でも、2種以上を併用してもよい。
<Other ingredients>
The other components are not particularly limited as long as they are those used in ordinary epoxy resin compositions and can be appropriately selected depending on the purpose, and examples thereof include colorants such as dyes, pigments, and carbon black; silicone oils; surfactants; antioxidants; antimony oxides such as antimony trioxide, antimony tetraoxide, and antimony pentoxide; conventionally known flame retardants such as brominated epoxy resins; ion trapping agents; leveling agents; antioxidants; antifoaming agents; reactive diluents; elastomers, etc. These may be used alone or in combination of two or more.

 その他の成分の含有量としては、本発明の効果を阻害するものでなければ、特に制限はなく、目的応じて適宜選択できる。 There are no particular limitations on the content of other ingredients, and they can be selected appropriately depending on the purpose, so long as they do not impair the effects of the present invention.

<エポキシ樹脂組成物の物性>
<<マイクロボイド>>
 本実施形態において、マイクロボイドとは、硬化物の断面を走査電子顕微鏡(SEM)にて、加速電圧:1kV、倍率:5,000倍)の条件にて観察したときの最大幅が0.5μm以下の空隙(ボイド)をいう。マイクロボイドは、溶剤を取り込む性質があるため、マイクロボイドが多い硬化物は溶剤を多く取り込む硬化物であり、耐溶剤性が悪い硬化物である。したがって、マイクロボイドの発生の程度は耐溶剤性の指標となる。このようなマイクロボイドが多く発生する硬化物となるエポキシ樹脂組成物を封止材として用いた際に、硬化物に溶剤が触れると、硬化物内に溶剤が取り込まれ、硬化物が封止している半導体素子(チップ)と硬化物との密着性が低下し、剥離の原因となる。
<Physical Properties of Epoxy Resin Composition>
<<Microvoids>>
In this embodiment, the microvoid refers to a gap (void) having a maximum width of 0.5 μm or less when a cross section of a cured product is observed with a scanning electron microscope (SEM) under conditions of an acceleration voltage of 1 kV and a magnification of 5,000 times. Since the microvoid has a property of absorbing a solvent, a cured product having many microvoids is a cured product that absorbs a lot of solvent and has poor solvent resistance. Therefore, the degree of occurrence of microvoids is an index of solvent resistance. When an epoxy resin composition that produces a cured product having many microvoids is used as an encapsulant, if the cured product comes into contact with a solvent, the solvent is absorbed into the cured product, and the adhesion between the semiconductor element (chip) encapsulated by the cured product and the cured product decreases, causing peeling.

 マイクロボイドの割合(マイクロボイド比率)は、次のようにして測定する。エポキシ樹脂組成物を、150℃/1時間の条件下で加熱して、硬化物を作製する。得られた硬化物を収束イオンビ-ム(FIB:COBRA(OrsayPhysics製))により、50nmに等間隔スライス加工をしながら都度SEM観察(AURIGA(CarlZeiss製)、加速電圧:1kV、倍率:5,000倍)を実施する。SEM画像においては、電子密度が異なる成分は異なる濃淡の像として表される。即ち、フィラ-、樹脂成分、及びボイドは、異なる濃淡として画像上に現れる。取得された連続SEM像を3D画像処理ソフト(Dragonfly(Ver.2022.1、ObjectResearchSystem製))によって重ね合わせて3D構造の構築を行う。その後、得られた3D構造のコントラスト差からフィラ-、樹脂成分、ボイドを設定した後に、画像を分割して各領域の濃淡を認識する機械学習セグメンテ-ション機能を用い、フィラ-、樹脂成分、マイクロボイドをそれぞれ認識、及び抽出し、それぞれの成分の体積率を算出する。得られた体積率を用いて以下の式よりマイクロボイド比率を算出できる。マイクロボイドの割合(マイクロボイド比率)は、38%以下が好ましく、30%以下がより好ましい。 The proportion of microvoids (microvoid ratio) is measured as follows. The epoxy resin composition is heated at 150°C for 1 hour to produce a cured product. The resulting cured product is sliced at equal intervals of 50 nm using a focused ion beam (FIB: COBRA (manufactured by Orsay Physics)), and each slice is observed using an SEM (AURIGA (manufactured by Carl Zeiss), accelerating voltage: 1 kV, magnification: 5,000x). In an SEM image, components with different electron densities are shown as images of different shades. In other words, the filler, resin components, and voids appear on the image as different shades. The obtained successive SEM images are superimposed using 3D image processing software (Dragonfly (Ver. 2022.1, manufactured by Object Research System)) to construct a 3D structure. Then, filler, resin components, and voids are set from the contrast difference of the obtained 3D structure, and then a machine learning segmentation function is used to divide the image and recognize the shading of each area, recognizing and extracting the filler, resin components, and microvoids, and calculating the volume ratio of each component. The obtained volume ratios can be used to calculate the microvoid ratio according to the following formula. The proportion of microvoids (microvoid ratio) is preferably 38% or less, and more preferably 30% or less.

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

<<耐溶剤性>>
 再配線層形成工程においては溶剤が用いられる。従って、硬化物は溶剤に曝される可能性が高い。そのため、硬化物は溶剤に溶けない性質である耐溶剤性を有することが望まれる。本実施形態において、耐溶剤性の評価は、硬化物を溶剤に浸漬したときの質量の変化の程度で行う。具体的には、エポキシ樹脂組成物の硬化物を溶剤に所定時間浸漬させて、溶剤の浸漬前後の質量変化率を算出して評価する。質量変化率は、0.50%以下が好ましく、0.30%以下がより好ましい。
<<Solvent resistance>>
A solvent is used in the rewiring layer formation process. Therefore, the cured product is likely to be exposed to the solvent. Therefore, it is desirable for the cured product to have solvent resistance, which is the property of not dissolving in a solvent. In this embodiment, the solvent resistance is evaluated based on the degree of change in mass when the cured product is immersed in a solvent. Specifically, the cured product of the epoxy resin composition is immersed in a solvent for a predetermined time, and the mass change rate before and after immersion in the solvent is calculated and evaluated. The mass change rate is preferably 0.50% or less, more preferably 0.30% or less.

 耐溶剤性の評価に用いる溶剤及び浸漬時間は、例えば、60℃に加熱したプロピレングリコ-ルモノメチルエ-テルアセテ-トに30分間、常温の乳酸エチルに20分間、常温のテトラメチルアンモニウムヒドロキシド2.38%溶液に30分間、60℃に加熱したプロピレングリコ-ルモノメチルエ-テルアセテ-ト:プロピレングリコ-ルモノメチルエ-テル=3:7溶液に30分間などである。 The solvents and immersion times used to evaluate solvent resistance are, for example, 30 minutes in propylene glycol monomethyl ether acetate heated to 60°C, 20 minutes in ethyl lactate at room temperature, 30 minutes in a 2.38% solution of tetramethylammonium hydroxide at room temperature, and 30 minutes in a solution of propylene glycol monomethyl ether acetate:propylene glycol monomethyl ether = 3:7 heated to 60°C.

<<用途>>
 実施態様に係るエポキシ樹脂組成物は、基板の反り、及びチップからの剥離の防止ができる硬化物となることから、液状コンプレッションモ-ルド材として好適に用いることができる。特に、柔軟性エポキシ樹脂を含有するため、細かい溝に注入できる性質である注入性が良好であるため、より細かい溝(ファインピッチ)に実装する必要がある半導体装置への実装に好適に用いることができる。例えば、基板と半導体素子(チップ)との距離が15μm以下である微細な間隙、バンプピッチ(バンプ中心間の距離)が、150μm以下である微細な箇所であっても、エポキシ樹脂組成物を注入し、半導体素子を封止することができる。そして、実施態様に係るエポキシ樹脂組成物は、これらの微細な箇所を封止した場合であっても、基板の反りとチップからの剥離とを防止できる。その結果、硬化物とチップとの間の剥離の原因である硬化物内の亀裂を防止することができ、硬化物とチップとの間のクラックの発生を防止できる。
<<Applications>>
The epoxy resin composition according to the embodiment can be suitably used as a liquid compression mold material since it becomes a cured product that can prevent warping of the substrate and peeling from the chip. In particular, since it contains a flexible epoxy resin, it has good injectability, which is a property that allows it to be injected into fine grooves, and can be suitably used for mounting on semiconductor devices that need to be mounted in finer grooves (fine pitch). For example, even in a fine gap where the distance between the substrate and the semiconductor element (chip) is 15 μm or less, or a fine location where the bump pitch (distance between the centers of the bumps) is 150 μm or less, the epoxy resin composition can be injected to seal the semiconductor element. And, the epoxy resin composition according to the embodiment can prevent warping of the substrate and peeling from the chip even when these fine locations are sealed. As a result, it is possible to prevent cracks in the cured product, which are the cause of peeling between the cured product and the chip, and to prevent the occurrence of cracks between the cured product and the chip.

<エポキシ樹脂組成物の製造方法>
 実施態様に係るエポキシ樹脂組成物の製造方法は、特に制限はなく、目的に応じて適宜選択でき、例えば、上記の成分を混合撹拌する方法が挙げられる。
<Method of producing epoxy resin composition>
The method for producing the epoxy resin composition according to the embodiment is not particularly limited and can be appropriately selected depending on the purpose. For example, the method includes mixing and stirring the above-mentioned components.

 なお、上記エポキシ樹脂が固形の場合には、加熱などにより液状化、及び流動化した後に混合することが好ましい。 If the epoxy resin is solid, it is preferable to liquefy and fluidize it by heating or other means before mixing.

 また、各成分を同時に混合しても、一部成分を先に混合し、残りの成分を後から混合してもよい。例えば、エポキシ樹脂に対し、フィラ-を均一に分散させることが困難な場合は、エポキシ樹脂と、フィラ-とを先に混合し、残りの成分を後から混合してもよい。 The components may be mixed simultaneously, or some of the components may be mixed first and the remaining components may be mixed later. For example, if it is difficult to uniformly disperse the filler in the epoxy resin, the epoxy resin and filler may be mixed first and the remaining components may be mixed later.

 混合撹拌に用いられる装置は、特に制限はなく、目的に応じて適宜選択でき、例えば、ロ-ルミル、ボ-ルミル、ビ-ズミル、ライカイ機、ヘンシェルミキサ-、プラネタリ-ミキサ-などが挙げられる。 The equipment used for mixing and stirring is not particularly limited and can be selected appropriately depending on the purpose. Examples include a roll mill, ball mill, bead mill, Raikai mixer, Henschel mixer, planetary mixer, etc.

(硬化物)
 実施態様に係る硬化物は、前述のエポキシ樹脂組成物を硬化させて得られるものである。硬化物の大きさ、及び形状は、特に制限はなく、目的に応じて適宜選択できる。
(Cured product)
The cured product according to the embodiment is obtained by curing the above-mentioned epoxy resin composition. The size and shape of the cured product are not particularly limited and can be appropriately selected depending on the purpose.

 硬化物の製造方法は、特に制限はなく、目的応じて適宜選択することができるが、例えば、加熱する方法、トランスファ-成形やコンプレッション成形する方法などが挙げられる。前述のエポキシ樹脂組成物は熱硬化性であり、温度100℃~200℃の条件下では、0.1時間~3時間で硬化することが好ましく、0.25時間~2時間で硬化することが好ましい。 The method for producing the cured product is not particularly limited and can be selected appropriately depending on the purpose, but examples include heating, transfer molding, and compression molding. The above-mentioned epoxy resin composition is thermosetting, and at temperatures of 100°C to 200°C, it is preferable for it to cure in 0.1 to 3 hours, and preferably 0.25 to 2 hours.

(半導体装置)
 本実施形態に係る半導体装置は、支持体と、半導体素子と、上述のエポキシ樹脂組成物の硬化物と、を有する。エポキシ樹脂組成物の硬化物は、例えば、半導体素子と、支持体との間隙をエポキシ樹脂組成物で充填させて封止させたものが挙げられる。
(Semiconductor device)
The semiconductor device according to the present embodiment includes a support, a semiconductor element, and the cured product of the epoxy resin composition described above. For example, the cured product of the epoxy resin composition may be obtained by filling and sealing a gap between the semiconductor element and the support with the epoxy resin composition.

<支持体>
 支持体は、半導体素子を固定できるものであれば、特に制限はなく、目的に応じて適宜選択でき、例えば、基板などが挙げられる。
<Support>
The support is not particularly limited as long as it is capable of fixing a semiconductor element, and can be appropriately selected depending on the purpose. For example, a substrate and the like can be mentioned.

<<基板>>
 基板は、特に制限はなく、目的に応じて適宜選択でき、例えば、リ-ドフレ-ム、配線済みのテ-プキャリア、配線板、ガラス、シリコンウェハ-などが挙げられる。基板の大きさ、形状、材質については、通常の基板として用いられるものであれば、特に制限はなく、目的に応じて適宜選択できる。
<<Substrate>>
The substrate is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include a lead frame, a pre-wired tape carrier, a wiring board, glass, a silicon wafer, etc. The size, shape, and material of the substrate are not particularly limited as long as they are commonly used as substrates, and can be appropriately selected depending on the purpose.

<半導体素子>
 半導体素子は、特に制限はなく、目的に応じて適宜選択でき、例えば、半導体チップ、トランジスタ、ダイオ-ド、サイリスタ等の能動素子;コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などが挙げられる。半導体素子の大きさ、形状、材質については、通常の半導体素子として用いられるものであれば、特に制限はなく、目的に応じて適宜選択できる。
<Semiconductor element>
The semiconductor element is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include active elements such as semiconductor chips, transistors, diodes, and thyristors, and passive elements such as capacitors, resistors, resistor arrays, coils, and switches. The size, shape, and material of the semiconductor element are not particularly limited as long as they are used as ordinary semiconductor elements, and can be appropriately selected depending on the purpose.

 エポキシ樹脂組成物の硬化物は、支持体と半導体素子との間隙に充填される。エポキシ樹脂組成物の硬化物の厚みとしては、特に制限はなく、目的に応じて適宜選択でき、例えば、10μm以上800μm以下が挙げられる。エポキシ樹脂組成物の形状は、特に制限はなく、目的に応じて適宜選択できる。エポキシ樹脂組成物の硬化物は、支持体と半導体素子との間隙に配置されることで、半導体素子を封止する。 The cured product of the epoxy resin composition is filled into the gap between the support and the semiconductor element. There is no particular limit to the thickness of the cured product of the epoxy resin composition, and it can be appropriately selected depending on the purpose, for example, 10 μm or more and 800 μm or less. There is no particular limit to the shape of the epoxy resin composition, and it can be appropriately selected depending on the purpose. The cured product of the epoxy resin composition is placed in the gap between the support and the semiconductor element, thereby encapsulating the semiconductor element.

 本実施形態に係る半導体装置の製造方法は、特に制限はなく、目的応じて適宜選択することができ、例えば、エポキシ樹脂組成物を充填する工程、エポキシ樹脂組成物を硬化する工程により製造することができる。 The method for manufacturing the semiconductor device according to this embodiment is not particularly limited and can be appropriately selected depending on the purpose. For example, the semiconductor device can be manufactured by a process of filling with an epoxy resin composition and a process of curing the epoxy resin composition.

 エポキシ樹脂組成物を充填する工程は、支持体と半導体素子との間の空隙にエポキシ樹脂組成物を充填する工程である。エポキシ樹脂組成物を充填する方法としては、特に制限はなく、目的に応じて適宜選択でき、例えば、ディスペンス方式、注型方式、印刷方式などが挙げられる。エポキシ樹脂組成物を充填する量は、特に制限はなく、目的に応じて適宜選択でき、例えば、硬化物の厚みが10μm以上800μm以下となるような量が挙げられる。 The step of filling the epoxy resin composition is a step of filling the gap between the support and the semiconductor element with the epoxy resin composition. There is no particular limit to the method of filling the epoxy resin composition, and it can be appropriately selected depending on the purpose, and examples of the method include a dispensing method, a casting method, and a printing method. There is no particular limit to the amount of the epoxy resin composition to be filled, and it can be appropriately selected depending on the purpose, and examples of the amount include an amount that results in a thickness of the cured product of 10 μm or more and 800 μm or less.

 エポキシ樹脂組成物を硬化する工程は、支持体上と半導体素子との間のエポキシ樹脂組成物を硬化させる工程である。エポキシ樹脂組成物を硬化させる方法は、特に制限はなく、目的に応じて適宜選択でき、例えば、支持体、エポキシ樹脂組成物、及び半導体素子をトランスファ-成形やコンプレッション成形方法が挙げられる。
実施例
The step of curing the epoxy resin composition is a step of curing the epoxy resin composition between the support and the semiconductor element. The method of curing the epoxy resin composition is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include transfer molding or compression molding of the support, the epoxy resin composition, and the semiconductor element.
Example

(実施例1~14、比較例1~3)
 表1~4に記載の配合において、三本ロ-ルミルを用いて混合し、各成分を均一に分散することでエポキシ樹脂組成物を得た。
(Examples 1 to 14, Comparative Examples 1 to 3)
The components in the formulations shown in Tables 1 to 4 were mixed using a triple roll mill to uniformly disperse each component, thereby obtaining epoxy resin compositions.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

 実施例及び比較例において用いた柔軟性エポキシ樹脂は、下記のとおりである。
・柔軟性エポキシ樹脂1(ポリテトラメチレングリコ-ルのジグリシジルエ-テル、エポキシ当量440g/eq.、平均分子量880、商品名:YX7400N、三菱ケミカル株式会社製)
・柔軟性エポキシ樹脂2(ポリテトラメチレングリコ-ルのジグリシジルエ-テル、エポキシ当量1,072g/eq.、平均分子量2,140、商品名:エポゴ-セ-PT高分子タイプ、四日市合成株式会社製)
The flexible epoxy resins used in the examples and comparative examples are as follows.
Flexible epoxy resin 1 (diglycidyl ether of polytetramethylene glycol, epoxy equivalent 440 g/eq., average molecular weight 880, product name: YX7400N, manufactured by Mitsubishi Chemical Corporation)
Flexible epoxy resin 2 (diglycidyl ether of polytetramethylene glycol, epoxy equivalent 1,072 g/eq., average molecular weight 2,140, product name: Epogo-se-PT polymer type, manufactured by Yokkaichi Chemical Co., Ltd.)

 実施例及び比較例において用いたエポキシ樹脂(柔軟性エポキシ樹脂以外のエポキシ樹脂)は、下記のとおりである。
・エポキシ樹脂1(グリシジルアミン型液状エポキシ樹脂、エポキシ当量95g/eq.、平均分子量270、商品名:EP-3950L、株式会社ADEKA製)・エポキシ樹脂2(ビスフェノ-ルF型液状エポキシ樹脂、エポキシ当量178g/eq.、平均分子量360、商品名:RE410S、日本化薬株式会社製)
・エポキシ樹脂3(ビスフェノ-ルF型液状エポキシ樹脂、エポキシ当量160g/eq.、平均分子量360、商品名:YDF870GS、日鉄ケミカル&マテリアル株式会社製)
The epoxy resins (epoxy resins other than flexible epoxy resins) used in the examples and comparative examples are as follows.
Epoxy resin 1 (glycidylamine type liquid epoxy resin, epoxy equivalent 95 g/eq., average molecular weight 270, product name: EP-3950L, manufactured by ADEKA Corporation) Epoxy resin 2 (bisphenol F type liquid epoxy resin, epoxy equivalent 178 g/eq., average molecular weight 360, product name: RE410S, manufactured by Nippon Kayaku Co., Ltd.)
Epoxy resin 3 (bisphenol F type liquid epoxy resin, epoxy equivalent 160 g/eq., average molecular weight 360, product name: YDF870GS, manufactured by Nippon Steel Chemical & Material Co., Ltd.)

 実施例及び比較例において用いた硬化剤は、下記のとおりである。
・硬化剤1(フェノ-ル系硬化剤、水酸基当量139~143g/eq.、商品名:MEH-8005、明和化成株式会社製)
・硬化剤2(酸無水物系硬化剤、商品名:HN-2200、昭和電工マテリアルズ株式会社製)
The curing agents used in the examples and comparative examples are as follows.
Curing agent 1 (phenolic curing agent, hydroxyl equivalent 139 to 143 g/eq., product name: MEH-8005, manufactured by Meiwa Kasei Co., Ltd.)
Hardener 2 (acid anhydride hardener, product name: HN-2200, manufactured by Showa Denko Materials Co., Ltd.)

 実施例及び比較例において用いた硬化触媒は、下記のとおりである。
・硬化触媒(2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、商品名:2MZA、四国化成工業株式会社製)
The curing catalysts used in the examples and comparative examples are as follows.
Curing catalyst (2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, product name: 2MZA, manufactured by Shikoku Chemical Industries Co., Ltd.)

 実施例及び比較例において用いたフィラ-は、下記のとおりである。
・フィラ-1(平均粒径0.3μm、商品名:SE1050SMO、株式会社アドマテックス製)
・フィラ-2(平均粒径0.6μm、商品名:SE2200SME、株式会社アドマテックス製)
・フィラ-3(平均粒径0.05μm、商品名:YA050C-SM1、株式会社アドマテックス製)
The fillers used in the examples and comparative examples are as follows.
Filler 1 (average particle size 0.3 μm, product name: SE1050SMO, manufactured by Admatechs Co., Ltd.)
Filler 2 (average particle size 0.6 μm, product name: SE2200SME, manufactured by Admatechs Co., Ltd.)
Filler 3 (average particle size 0.05 μm, product name: YA050C-SM1, manufactured by Admatechs Co., Ltd.)

 実施例及び比較例において用いたその他の成分は、下記のとおりである。
・ブラック4(カ-ボンブラック、オリオンエンジニアドカ-ボンズ株式会社製)
・KBM-403(3-グリシドキシプロピルトリメトキシシラン、信越化学工業株式会社製)
Other components used in the examples and comparative examples are as follows.
・Black 4 (Carbon Black, manufactured by Orion Engineered Carbons Co., Ltd.)
KBM-403 (3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.)

 得られたエポキシ樹脂組成物について、マイクロボイド、耐溶剤性、反り、及び弾性率を測定、及び評価した。評価結果は、表1~4に併記した。 The resulting epoxy resin composition was measured and evaluated for microvoids, solvent resistance, warpage, and elastic modulus. The evaluation results are shown in Tables 1 to 4.

<マイクロボイド>
 得られたそれぞれのエポキシ樹脂組成物を、150℃/1時間の条件下で加熱して、硬化物を作製した。得られた硬化物を収束イオンビ-ム(FIB)により、50nmに等間隔スライス加工をしながら都度SEM観察(加速電圧:1kV、倍率:5,000倍)を実施した。SEM画像においては、電子密度が異なる成分は異なる濃淡の像として表される。即ち、フィラ-、樹脂成分、及びボイドは、異なる濃淡として画像上に現れる。取得された連続SEM像を3D画像処理ソフトによって重ね合わせて3D構造の構築を行った。その後、得られた3D構造のコントラスト差からフィラ-、樹脂成分、ボイドを設定した後に、画像を分割して各領域の濃淡を認識する機械学習セグメンテ-ション機能を用い、フィラ-、樹脂成分、マイクロボイドをそれぞれ認識、及び抽出し、それぞれの成分の体積率(%)を算出した。得られた体積率を用いて以下の式よりマイクロボイド比率を算出し、下記評価基準に基づき、評価した。なお、フィラ-の体積率は、マイクロボイド比率の計算に関与しない。マイクロボイドの測定において使用した装置、3D画像処理ソフトは以下である。
 FIB:COBRA(OrsayPhysics製)
 SEM:AURIGA(CarlZeiss製)
 3D画像処理ソフト:Dragonfly(Ver.2022.1、ObjectResearchSystem製)
<Microvoids>
Each of the obtained epoxy resin compositions was heated under the condition of 150°C/1 hour to prepare a cured product. The obtained cured product was sliced at equal intervals of 50 nm using a focused ion beam (FIB) and observed with an SEM (accelerating voltage: 1 kV, magnification: 5,000 times) each time. In an SEM image, components with different electron densities are represented as images of different shades. That is, the filler, resin component, and voids appear on the image as different shades. The obtained continuous SEM images were superimposed using 3D image processing software to construct a 3D structure. After that, the filler, resin component, and voids were set from the contrast difference of the obtained 3D structure, and then the image was divided and a machine learning segmentation function that recognizes the shade of each region was used to recognize and extract the filler, resin component, and microvoids, and the volume fraction (%) of each component was calculated. The microvoid ratio was calculated from the following formula using the obtained volume fraction, and evaluated based on the following evaluation criteria. The volume fraction of the filler is not involved in the calculation of the microvoid ratio. The following equipment and 3D image processing software were used in measuring the microvoids.
FIB: COBRA (manufactured by OrsayPhysics)
SEM: AURIGA (manufactured by Carl Zeiss)
3D image processing software: Dragonfly (Ver. 2022.1, manufactured by Object Research System)

Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006

-評価基準-
 A:0.0%~30.0%
 B:30.1%~38.0%
 C:38.1%以上
-Evaluation criteria-
A: 0.0% to 30.0%
B: 30.1% to 38.0%
C: 38.1% or more

<耐溶剤性>
 各エポキシ樹脂組成物について、150℃/1時間で硬化させ、横70mm、縦150mm、厚み500μmのサイズの試験片を作製した。その試験片の初期質量を測定後、60℃に加熱されたプロピレングリコ-ルモノメチルエ-テルアセテ-ト内に30分浸漬させた。浸漬後に表面に付着しているプロピレングリコ-ルモノメチルエ-テルアセテ-トを除去した後に質量を測定し、以下の式から質量増加量(質量変化率に相当する)を算出し、下記評価基準に基づき評価した。
<Solvent resistance>
Each epoxy resin composition was cured at 150°C for 1 hour to prepare a test piece measuring 70 mm wide, 150 mm long, and 500 μm thick. The initial mass of the test piece was measured, and then the piece was immersed in propylene glycol monomethyl ether acetate heated to 60°C for 30 minutes. After immersion, the propylene glycol monomethyl ether acetate adhering to the surface was removed, and the mass was measured. The mass increase (corresponding to the mass change rate) was calculated from the following formula, and the test piece was evaluated based on the following evaluation criteria.

Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007

-評価基準-
 A:0.00%~0.30%
 B:0.31%~0.50%
 C:0.51%以上
-Evaluation criteria-
A: 0.00% to 0.30%
B: 0.31% to 0.50%
C: 0.51% or more

<反り>
 モ-ルド装置(WCM-300、アピックヤマダ株式会社製)を用いて、直径300mm、厚み775μmのシリコンウェハ-に、各エポキシ樹脂組成物をのせ、120℃/400秒間の条件において、直径292mm、厚み500μmの成型をした後に150℃/1時間で硬化させた。得られたシリコンウェハ-成型品の反りをシャド-モアレ式反り測定装置(サ-モレイAXP2.0株式会社サ-マプレシジョン製)で測定し、下記評価基準に基づき、反りを評価した。
<Warping>
Using a molding device (WCM-300, manufactured by Apic Yamada Co., Ltd.), each epoxy resin composition was placed on a silicon wafer with a diameter of 300 mm and a thickness of 775 μm, and molded to a diameter of 292 mm and a thickness of 500 μm under conditions of 120° C./400 seconds, and then cured at 150° C./1 hour. The warpage of the obtained silicon wafer molded product was measured with a shadow moire type warpage measuring device (Thermoray AXP2.0, manufactured by Therma Precision Co., Ltd.), and the warpage was evaluated based on the following evaluation criteria.

-評価基準-
 A:反りが10,000μm以下
 B:反りが、10,000μm以上、又はウェハ-割れ
-Evaluation criteria-
A: Warpage is 10,000 μm or less. B: Warpage is 10,000 μm or more, or the wafer is cracked.

<弾性率>
 各エポキシ樹脂組成物について、150℃/1時間で硬化させ、横10.0mm、縦50.0mm、厚み2.0mmのサイズの試験片を作製した。得られた試験片について粘弾性分析装置(粘弾性測定装置DMA7100、株式会社日立ハイテクサイエンス製)を用い、DCB法により30℃の貯蔵弾性率を測定した。測定条件は、以下のとおりである。
 周波数:1Hz
 歪振幅:10μm
 昇温速度:3℃/min
<Elastic modulus>
Each epoxy resin composition was cured at 150°C for 1 hour to prepare a test piece measuring 10.0 mm wide, 50.0 mm long, and 2.0 mm thick. The storage modulus of the obtained test piece was measured at 30°C by the DCB method using a viscoelasticity analyzer (viscoelasticity measuring device DMA7100, manufactured by Hitachi High-Tech Science Corporation). The measurement conditions were as follows:
Frequency: 1Hz
Strain amplitude: 10 μm
Heating rate: 3°C/min

 実施例1~14、比較例1~3のマイクロボイドの判定結果と、耐溶剤性の判定結果とは一致している。このことから、マイクロボイド比率が高いと、耐溶剤性が悪化することが明らかであり、エポキシ樹脂組成物の硬化物の耐溶剤性の悪化(チップからの剥離)の原因のひとつが、硬化物内にマイクロボイドが発生していることであることが明らかになった。 The microvoid evaluation results and the solvent resistance evaluation results for Examples 1 to 14 and Comparative Examples 1 to 3 are consistent. This makes it clear that a high microvoid ratio leads to poor solvent resistance, and that one of the causes of poor solvent resistance (peeling from the chip) of the cured product of the epoxy resin composition is the occurrence of microvoids within the cured product.

 実施例1~14のエポキシ樹脂組成物は、マイクロボイド及び耐溶剤性の判定が全て「B」以上であり、反りの判定もすべて「A」であった。これに対し、柔軟性エポキシ樹脂の割合がエポキシ樹脂に対して26.4質量%である比較例1は、マイクロボイド及び耐溶剤性の評価結果が「C」であり、柔軟性エポキシ樹脂の割合がエポキシ樹脂に対して25質量%を超えると、耐溶剤性が悪化することが明らかになった。また、柔軟性エポキシ樹脂の割合がエポキシ樹脂に対して7.0質量%である比較例2は、反りの評価結果が「B」であり、柔軟性エポキシ樹脂の割合がエポキシ樹脂に対して8.0質量%未満であると、反りが悪化することが明らかになった。更に、エポキシ樹脂を含有しない比較例3は、反りの評価の際にウェハ-割れを起こし、基板の反りが比較例2と比較して更に悪化する結果となった。これらの結果から、柔軟性エポキシ樹脂の含有量が、エポキシ樹脂に対して8.0質量%~25.0質量%とすることで、マイクロボイドを抑え、耐溶剤性を良好にしつつ、基板の反りを防止できることが明らかになった。 The epoxy resin compositions of Examples 1 to 14 were all rated as "B" or higher for microvoids and solvent resistance, and all were rated as "A" for warpage. In contrast, Comparative Example 1, in which the proportion of flexible epoxy resin relative to the epoxy resin was 26.4% by mass, was rated as "C" for microvoids and solvent resistance, and it was revealed that solvent resistance deteriorates when the proportion of flexible epoxy resin relative to the epoxy resin exceeds 25% by mass. In Comparative Example 2, in which the proportion of flexible epoxy resin relative to the epoxy resin was 7.0% by mass, the warpage was rated as "B," and it was revealed that warpage deteriorates when the proportion of flexible epoxy resin relative to the epoxy resin is less than 8.0% by mass. Furthermore, Comparative Example 3, which does not contain epoxy resin, caused wafer cracking during the warpage evaluation, and the warpage of the substrate was further deteriorated compared to Comparative Example 2. From these results, it was revealed that by setting the content of flexible epoxy resin to 8.0% by mass to 25.0% by mass relative to the epoxy resin, it is possible to suppress microvoids, improve solvent resistance, and prevent substrate warpage.

 柔軟性エポキシ樹脂の含有量が、エポキシ樹脂に対して8.0質量%~16.5質量%である実施例1~7、10~11は、マイクロボイド及び耐溶剤性の判定が「A」であるのに対し、柔軟性エポキシ樹脂の含有量がエポキシ樹脂に対して16.5質量%以上である実施例8~9、12~13は、マイクロボイド及び耐溶剤性の判定が「B」であった。これらの結果から、柔軟性エポキシ樹脂の含有量が、エポキシ樹脂に対して8.0質量%~16.5質量%とすることで、マイクロボイドの抑制と、耐溶剤性を更に良好にできることが明らかになった。 In Examples 1 to 7 and 10 to 11, in which the content of flexible epoxy resin was 8.0% to 16.5% by mass relative to the epoxy resin, the microvoids and solvent resistance were rated as "A," whereas in Examples 8 to 9 and 12 to 13, in which the content of flexible epoxy resin was 16.5% by mass or more relative to the epoxy resin, the microvoids and solvent resistance were rated as "B." These results demonstrate that by setting the content of flexible epoxy resin to 8.0% to 16.5% by mass relative to the epoxy resin, it is possible to suppress microvoids and further improve solvent resistance.

 本発明の実施形態及び実施例を説明したが、これらは例として提示したものであり、発明の範囲を限定することは意図していない。実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiments and examples of the present invention have been described, these are presented as examples and are not intended to limit the scope of the invention. The embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention. The embodiments and their modifications are within the scope of the invention and its equivalents as set forth in the claims, as well as the scope and gist of the invention.

Claims (10)

 エポキシ樹脂、フィラ-、並びに硬化剤及び硬化触媒から選択される少なくともいずれかを含有し、
 前記エポキシ樹脂は、柔軟性エポキシ樹脂を含有し、
 前記柔軟性エポキシ樹脂の含有量が、前記エポキシ樹脂に対して8.0質量%~25.0質量%であることを特徴とする
エポキシ樹脂組成物。
Contains an epoxy resin, a filler, and at least one selected from a curing agent and a curing catalyst;
The epoxy resin comprises a flexible epoxy resin,
The content of the flexible epoxy resin is 8.0% by mass to 25.0% by mass relative to the epoxy resin.
 前記柔軟性エポキシ樹脂の含有量が、前記エポキシ樹脂に対して8.0質量%~16.5質量%である
請求項1に記載のエポキシ樹脂組成物。
2. The epoxy resin composition according to claim 1, wherein the content of the flexible epoxy resin is 8.0% by mass to 16.5% by mass based on the epoxy resin.
 前記柔軟性エポキシ樹脂が、脂肪族エポキシ樹脂である
請求項1または2に記載のエポキシ樹脂組成物。
3. The epoxy resin composition according to claim 1, wherein the flexible epoxy resin is an aliphatic epoxy resin.
 前記エポキシ樹脂が、ビスフェノ-ル型エポキシ樹脂、及びグリシジルアミン型エポキシ樹脂から選択される少なくとも1種を含有する
請求項1または2に記載のエポキシ樹脂組成物。
3. The epoxy resin composition according to claim 1, wherein the epoxy resin comprises at least one selected from the group consisting of bisphenol-type epoxy resins and glycidylamine-type epoxy resins.
 前記硬化剤が、フェノ-ル系硬化剤、アミン系硬化剤、及び酸無水物系硬化剤から選択される少なくとも1種である
請求項1または2に記載のエポキシ樹脂組成物。
3. The epoxy resin composition according to claim 1, wherein the curing agent is at least one selected from the group consisting of a phenol-based curing agent, an amine-based curing agent, and an acid anhydride-based curing agent.
 前記硬化剤の含有量が、前記フィラ-を除いた前記エポキシ樹脂組成物に対して4質量%~15質量%である
請求項1または2に記載のエポキシ樹脂組成物。
3. The epoxy resin composition according to claim 1, wherein the content of the curing agent is 4% by mass to 15% by mass based on the epoxy resin composition excluding the filler.
 液状コンプレッションモ-ルド材として用いられる
請求項1または2に記載のエポキシ樹脂組成物。
3. The epoxy resin composition according to claim 1, which is used as a liquid compression molding material.
 バンプピッチが150μm以下の半導体チップの封止に用いられる
請求項1または2に記載のエポキシ樹脂組成物。
3. The epoxy resin composition according to claim 1, which is used for sealing semiconductor chips having a bump pitch of 150 μm or less.
 請求項1または2に記載のエポキシ樹脂組成物により得られる硬化物。 A cured product obtained from the epoxy resin composition according to claim 1 or 2.  請求項9に記載の硬化物を有する半導体装置。 A semiconductor device having the cured product according to claim 9.
PCT/JP2023/026985 2022-12-23 2023-07-24 Epoxy resin composition, cured product, and semiconductor device WO2024134951A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022207377 2022-12-23
JP2022-207377 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024134951A1 true WO2024134951A1 (en) 2024-06-27

Family

ID=91588310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026985 WO2024134951A1 (en) 2022-12-23 2023-07-24 Epoxy resin composition, cured product, and semiconductor device

Country Status (2)

Country Link
TW (1) TW202426567A (en)
WO (1) WO2024134951A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079904A (en) * 2009-10-05 2011-04-21 Hitachi Chem Co Ltd Epoxy resin composition, resin composition for seal-filling semiconductor, and semiconductor device
WO2016129472A1 (en) * 2015-02-13 2016-08-18 積水化学工業株式会社 Sealant for organic electroluminescence display element
WO2018221681A1 (en) * 2017-05-31 2018-12-06 日立化成株式会社 Liquid resin composition for sealing and electronic component device
JP2021161206A (en) * 2020-03-31 2021-10-11 味の素株式会社 Resin composition, resin paste, cured product, resin sheet, printed wiring board, semiconductor chip package, and semiconductor device
WO2021261064A1 (en) * 2020-06-23 2021-12-30 ナミックス株式会社 Liquid compression molding material
WO2022024839A1 (en) * 2020-07-27 2022-02-03 積水化学工業株式会社 Sealant for organic el display element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079904A (en) * 2009-10-05 2011-04-21 Hitachi Chem Co Ltd Epoxy resin composition, resin composition for seal-filling semiconductor, and semiconductor device
WO2016129472A1 (en) * 2015-02-13 2016-08-18 積水化学工業株式会社 Sealant for organic electroluminescence display element
WO2018221681A1 (en) * 2017-05-31 2018-12-06 日立化成株式会社 Liquid resin composition for sealing and electronic component device
JP2021161206A (en) * 2020-03-31 2021-10-11 味の素株式会社 Resin composition, resin paste, cured product, resin sheet, printed wiring board, semiconductor chip package, and semiconductor device
WO2021261064A1 (en) * 2020-06-23 2021-12-30 ナミックス株式会社 Liquid compression molding material
WO2022024839A1 (en) * 2020-07-27 2022-02-03 積水化学工業株式会社 Sealant for organic el display element

Also Published As

Publication number Publication date
TW202426567A (en) 2024-07-01

Similar Documents

Publication Publication Date Title
JP7531557B2 (en) Liquid resin composition for sealing and electronic component device
TWI796293B (en) Epoxy resin composition for semiconductor encapsulation and method for producing semiconductor device
JP7531558B2 (en) Liquid resin composition for compression molding and electronic component device
KR102295921B1 (en) Resin composition, resin film, and semiconductor device and method for manufacturing same
TWI763877B (en) Thermosetting epoxy resin sheet for semiconductor sealing, semiconductor device, and manufacturing method thereof
JP2004210901A (en) Liquid epoxy resin composition and electronic component device
KR101226358B1 (en) Semiconductor Encapsulating Epoxy Resin Composition and Semiconductor Device
JP6233441B2 (en) Liquid epoxy resin composition and electronic component device
JP2023171548A (en) Hollow package and method for manufacturing the same
JP2015193851A (en) Liquid epoxy resin composition and electronic part device
JP2020107767A (en) Sealing resin composition, hollow package and method for manufacturing the same
WO2020255749A1 (en) Composition for sealing, semiconductor device, and method for producing semiconductor device
WO2024134951A1 (en) Epoxy resin composition, cured product, and semiconductor device
JP2643706B2 (en) Thermosetting resin composition and semiconductor device
JP2022060062A (en) Epoxy resin composition and electronic component device
JP4835851B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2015180760A (en) Liquid epoxy resin composition and electronic part device
JP2015110803A (en) Liquid epoxy resin composition and electronic component device
JP5929977B2 (en) Liquid epoxy resin composition and electronic component device
JP6482016B2 (en) Encapsulant composition and semiconductor device using the same
WO2024075342A1 (en) Epoxy resin composition, semiconductor device, and method for producing semiconductor device
JP2015180759A (en) Liquid epoxy resin composition and electronic part device
JP2023183768A (en) Sealing resin composition
JP5804479B2 (en) Manufacturing method of resin-encapsulated semiconductor device and resin-encapsulated semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23906335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024565589

Country of ref document: JP