WO2024131916A1 - Compositions and methods for inhibiting expression of 17beta-hydroxysteroid dehydrogenase type 13 (hsd17b13) - Google Patents
Compositions and methods for inhibiting expression of 17beta-hydroxysteroid dehydrogenase type 13 (hsd17b13) Download PDFInfo
- Publication number
- WO2024131916A1 WO2024131916A1 PCT/CN2023/140803 CN2023140803W WO2024131916A1 WO 2024131916 A1 WO2024131916 A1 WO 2024131916A1 CN 2023140803 W CN2023140803 W CN 2023140803W WO 2024131916 A1 WO2024131916 A1 WO 2024131916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hsd17b13
- dsrna
- subject
- nucleotide
- agent
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 205
- 239000000203 mixture Substances 0.000 title claims abstract description 99
- 230000014509 gene expression Effects 0.000 title claims abstract description 92
- 108010070743 3(or 17)-beta-hydroxysteroid dehydrogenase Proteins 0.000 title claims abstract description 25
- 102100034067 Dehydrogenase/reductase SDR family member 11 Human genes 0.000 title claims abstract description 24
- 230000002401 inhibitory effect Effects 0.000 title claims description 28
- 101000806241 Homo sapiens 17-beta-hydroxysteroid dehydrogenase 13 Proteins 0.000 claims abstract description 773
- 102100037429 17-beta-hydroxysteroid dehydrogenase 13 Human genes 0.000 claims abstract description 770
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 595
- 230000000692 anti-sense effect Effects 0.000 claims abstract description 384
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 199
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 199
- 239000002157 polynucleotide Substances 0.000 claims abstract description 199
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 158
- 201000010099 disease Diseases 0.000 claims abstract description 155
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims abstract description 80
- 238000011282 treatment Methods 0.000 claims abstract description 53
- 125000003729 nucleotide group Chemical group 0.000 claims description 417
- 239000002773 nucleotide Substances 0.000 claims description 310
- 108091081021 Sense strand Proteins 0.000 claims description 175
- 210000004027 cell Anatomy 0.000 claims description 129
- 230000000295 complement effect Effects 0.000 claims description 92
- -1 Merck&Co. 's ) Chemical compound 0.000 claims description 75
- 108020004999 messenger RNA Proteins 0.000 claims description 66
- 101150000579 Hsd17b13 gene Proteins 0.000 claims description 64
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol group Chemical group [C@@H]1(CC[C@H]2[C@@H]3CC=C4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)[C@H](C)CCCC(C)C HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 64
- 230000008685 targeting Effects 0.000 claims description 63
- 150000002632 lipids Chemical class 0.000 claims description 46
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 claims description 40
- 210000004185 liver Anatomy 0.000 claims description 35
- 230000004048 modification Effects 0.000 claims description 35
- 238000012986 modification Methods 0.000 claims description 35
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 claims description 32
- 239000003446 ligand Substances 0.000 claims description 30
- 208000008338 non-alcoholic fatty liver disease Diseases 0.000 claims description 27
- OVRNDRQMDRJTHS-KEWYIRBNSA-N N-acetyl-D-galactosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-KEWYIRBNSA-N 0.000 claims description 26
- 208000035657 Abasia Diseases 0.000 claims description 25
- 238000001990 intravenous administration Methods 0.000 claims description 25
- 208000026594 alcoholic fatty liver disease Diseases 0.000 claims description 24
- 239000003814 drug Substances 0.000 claims description 23
- 102000039446 nucleic acids Human genes 0.000 claims description 23
- 108020004707 nucleic acids Proteins 0.000 claims description 23
- 230000007423 decrease Effects 0.000 claims description 21
- 230000009467 reduction Effects 0.000 claims description 21
- 229920002477 rna polymer Polymers 0.000 claims description 20
- 102100037114 Elongin-C Human genes 0.000 claims description 19
- 101001011859 Homo sapiens Elongin-A Proteins 0.000 claims description 19
- 101001011846 Homo sapiens Elongin-B Proteins 0.000 claims description 19
- 101000881731 Homo sapiens Elongin-C Proteins 0.000 claims description 19
- 101000836005 Homo sapiens S-phase kinase-associated protein 1 Proteins 0.000 claims description 19
- 235000012000 cholesterol Nutrition 0.000 claims description 19
- 208000019425 cirrhosis of liver Diseases 0.000 claims description 18
- 230000002255 enzymatic effect Effects 0.000 claims description 18
- 229940124597 therapeutic agent Drugs 0.000 claims description 18
- 239000003937 drug carrier Substances 0.000 claims description 16
- 235000021588 free fatty acids Nutrition 0.000 claims description 16
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 claims description 16
- 102100026430 Transcription elongation factor A protein 1 Human genes 0.000 claims description 13
- 238000002203 pretreatment Methods 0.000 claims description 13
- 208000007082 Alcoholic Fatty Liver Diseases 0.000 claims description 12
- 206010016654 Fibrosis Diseases 0.000 claims description 12
- 230000007882 cirrhosis Effects 0.000 claims description 12
- 125000005647 linker group Chemical group 0.000 claims description 12
- 206010053219 non-alcoholic steatohepatitis Diseases 0.000 claims description 12
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 11
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims description 10
- 108010023302 HDL Cholesterol Proteins 0.000 claims description 10
- 108010028554 LDL Cholesterol Proteins 0.000 claims description 10
- 230000005764 inhibitory process Effects 0.000 claims description 10
- KLDXJTOLSGUMSJ-BXKVDMCESA-N (3s,3as,6s,6as)-2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan-3,6-diol Chemical class O[C@H]1CO[C@H]2[C@@H](O)CO[C@H]21 KLDXJTOLSGUMSJ-BXKVDMCESA-N 0.000 claims description 8
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 8
- 238000007920 subcutaneous administration Methods 0.000 claims description 8
- 238000011285 therapeutic regimen Methods 0.000 claims description 8
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 claims description 7
- 210000003734 kidney Anatomy 0.000 claims description 7
- 230000003278 mimic effect Effects 0.000 claims description 7
- 239000005541 ACE inhibitor Substances 0.000 claims description 6
- XPCFTKFZXHTYIP-PMACEKPBSA-N Benazepril Chemical compound C([C@@H](C(=O)OCC)N[C@@H]1C(N(CC(O)=O)C2=CC=CC=C2CC1)=O)CC1=CC=CC=C1 XPCFTKFZXHTYIP-PMACEKPBSA-N 0.000 claims description 6
- 208000008964 Chemical and Drug Induced Liver Injury Diseases 0.000 claims description 6
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 claims description 6
- 206010072268 Drug-induced liver injury Diseases 0.000 claims description 6
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 claims description 6
- 208000008589 Obesity Diseases 0.000 claims description 6
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 6
- 230000015556 catabolic process Effects 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 238000006731 degradation reaction Methods 0.000 claims description 6
- 208000006454 hepatitis Diseases 0.000 claims description 6
- 231100000283 hepatitis Toxicity 0.000 claims description 6
- 231100000832 liver cell necrosis Toxicity 0.000 claims description 6
- 210000004962 mammalian cell Anatomy 0.000 claims description 6
- 235000020824 obesity Nutrition 0.000 claims description 6
- HYAFETHFCAUJAY-UHFFFAOYSA-N pioglitazone Chemical compound N1=CC(CC)=CC=C1CCOC(C=C1)=CC=C1CC1C(=O)NC(=O)S1 HYAFETHFCAUJAY-UHFFFAOYSA-N 0.000 claims description 6
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 claims description 6
- 229930003427 Vitamin E Natural products 0.000 claims description 5
- 238000009825 accumulation Methods 0.000 claims description 5
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 claims description 5
- 235000019165 vitamin E Nutrition 0.000 claims description 5
- 229940046009 vitamin E Drugs 0.000 claims description 5
- 239000011709 vitamin E Substances 0.000 claims description 5
- 230000003542 behavioural effect Effects 0.000 claims description 4
- ONKSSDKXDIVIHK-UHFFFAOYSA-N n,n-didecyldodecanamide Chemical group CCCCCCCCCCCC(=O)N(CCCCCCCCCC)CCCCCCCCCC ONKSSDKXDIVIHK-UHFFFAOYSA-N 0.000 claims description 4
- 239000002083 C09CA01 - Losartan Substances 0.000 claims description 3
- 102000005701 Calcium-Binding Proteins Human genes 0.000 claims description 3
- 108010045403 Calcium-Binding Proteins Proteins 0.000 claims description 3
- 102100025012 Dipeptidyl peptidase 4 Human genes 0.000 claims description 3
- 229940089838 Glucagon-like peptide 1 receptor agonist Drugs 0.000 claims description 3
- 108091093094 Glycol nucleic acid Proteins 0.000 claims description 3
- 101000684208 Homo sapiens Prolyl endopeptidase FAP Proteins 0.000 claims description 3
- 229940122355 Insulin sensitizer Drugs 0.000 claims description 3
- JVWLUVNSQYXYBE-UHFFFAOYSA-N Ribitol Natural products OCC(C)C(O)C(O)CO JVWLUVNSQYXYBE-UHFFFAOYSA-N 0.000 claims description 3
- 229920002115 Sodium cellulose phosphate Polymers 0.000 claims description 3
- 229940123518 Sodium/glucose cotransporter 2 inhibitor Drugs 0.000 claims description 3
- 239000000556 agonist Substances 0.000 claims description 3
- 239000002333 angiotensin II receptor antagonist Substances 0.000 claims description 3
- 229940126317 angiotensin II receptor antagonist Drugs 0.000 claims description 3
- 239000002214 arabinonucleotide Substances 0.000 claims description 3
- 229960004530 benazepril Drugs 0.000 claims description 3
- HTQMVQVXFRQIKW-UHFFFAOYSA-N candesartan Chemical compound CCOC1=NC2=CC=CC(C(O)=O)=C2N1CC(C=C1)=CC=C1C1=CC=CC=C1C1=NN=NN1 HTQMVQVXFRQIKW-UHFFFAOYSA-N 0.000 claims description 3
- 239000002934 diuretic Substances 0.000 claims description 3
- 229940030606 diuretics Drugs 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 210000005260 human cell Anatomy 0.000 claims description 3
- 229960002003 hydrochlorothiazide Drugs 0.000 claims description 3
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 claims description 3
- 239000003112 inhibitor Substances 0.000 claims description 3
- 125000001921 locked nucleotide group Chemical group 0.000 claims description 3
- 229960000519 losartan potassium Drugs 0.000 claims description 3
- 229940080268 lotensin Drugs 0.000 claims description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 3
- 229940101576 microzide Drugs 0.000 claims description 3
- GNZCSGYHILBXLL-UHFFFAOYSA-N n-tert-butyl-6,7-dichloro-3-methylsulfonylquinoxalin-2-amine Chemical compound ClC1=C(Cl)C=C2N=C(S(C)(=O)=O)C(NC(C)(C)C)=NC2=C1 GNZCSGYHILBXLL-UHFFFAOYSA-N 0.000 claims description 3
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 claims description 3
- 229960005095 pioglitazone Drugs 0.000 claims description 3
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 claims description 3
- 229940071643 prefilled syringe Drugs 0.000 claims description 3
- 235000008160 pyridoxine Nutrition 0.000 claims description 3
- 239000011677 pyridoxine Substances 0.000 claims description 3
- HEBKCHPVOIAQTA-ZXFHETKHSA-N ribitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)CO HEBKCHPVOIAQTA-ZXFHETKHSA-N 0.000 claims description 3
- 229940053634 sodium cellulose phosphate Drugs 0.000 claims description 3
- 239000003451 thiazide diuretic agent Substances 0.000 claims description 3
- 229940011671 vitamin b6 Drugs 0.000 claims description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 abstract description 26
- 108090000623 proteins and genes Proteins 0.000 abstract description 14
- 150000001875 compounds Chemical class 0.000 description 77
- 108090000765 processed proteins & peptides Proteins 0.000 description 57
- 150000007523 nucleic acids Chemical class 0.000 description 53
- 229920001184 polypeptide Polymers 0.000 description 53
- 102000004196 processed proteins & peptides Human genes 0.000 description 53
- 230000000694 effects Effects 0.000 description 51
- 230000009368 gene silencing by RNA Effects 0.000 description 47
- 108091030071 RNAI Proteins 0.000 description 41
- 230000000670 limiting effect Effects 0.000 description 35
- 210000001519 tissue Anatomy 0.000 description 35
- 239000000523 sample Substances 0.000 description 33
- 108091034117 Oligonucleotide Proteins 0.000 description 31
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 27
- 239000013598 vector Substances 0.000 description 24
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 21
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 20
- 239000008194 pharmaceutical composition Substances 0.000 description 18
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 17
- 230000002441 reversible effect Effects 0.000 description 17
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 16
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 14
- 239000002777 nucleoside Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 229940124447 delivery agent Drugs 0.000 description 13
- 210000002966 serum Anatomy 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 108020004459 Small interfering RNA Proteins 0.000 description 12
- 239000011541 reaction mixture Substances 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 11
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 11
- 150000004713 phosphodiesters Chemical class 0.000 description 11
- 125000006239 protecting group Chemical group 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 235000000346 sugar Nutrition 0.000 description 11
- 230000001225 therapeutic effect Effects 0.000 description 11
- HTSGKJQDMSTCGS-UHFFFAOYSA-N 1,4-bis(4-chlorophenyl)-2-(4-methylphenyl)sulfonylbutane-1,4-dione Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(C(=O)C=1C=CC(Cl)=CC=1)CC(=O)C1=CC=C(Cl)C=C1 HTSGKJQDMSTCGS-UHFFFAOYSA-N 0.000 description 10
- 229930024421 Adenine Natural products 0.000 description 10
- 229960000643 adenine Drugs 0.000 description 10
- 229940104302 cytosine Drugs 0.000 description 10
- ZTWTYVWXUKTLCP-UHFFFAOYSA-L ethenyl-dioxido-oxo-$l^{5}-phosphane Chemical compound [O-]P([O-])(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-L 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 229940035893 uracil Drugs 0.000 description 10
- 238000005160 1H NMR spectroscopy Methods 0.000 description 9
- 241000282414 Homo sapiens Species 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 239000012472 biological sample Substances 0.000 description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 9
- 210000000056 organ Anatomy 0.000 description 9
- 229920000768 polyamine Polymers 0.000 description 9
- 230000001603 reducing effect Effects 0.000 description 9
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 8
- 239000002202 Polyethylene glycol Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 230000037396 body weight Effects 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 150000003833 nucleoside derivatives Chemical class 0.000 description 8
- 125000003835 nucleoside group Chemical group 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 8
- 101100176011 Caenorhabditis elegans gls-1 gene Proteins 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 7
- 102000000574 RNA-Induced Silencing Complex Human genes 0.000 description 7
- 108010016790 RNA-Induced Silencing Complex Proteins 0.000 description 7
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 7
- 150000001408 amides Chemical group 0.000 description 7
- 230000004071 biological effect Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000007385 chemical modification Methods 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 235000021317 phosphate Nutrition 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 235000018102 proteins Nutrition 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- 241000282567 Macaca fascicularis Species 0.000 description 6
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 108091093037 Peptide nucleic acid Proteins 0.000 description 6
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000013604 expression vector Substances 0.000 description 6
- 239000007943 implant Substances 0.000 description 6
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000003755 preservative agent Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 239000013603 viral vector Substances 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 101000869986 Mus musculus Dehydrogenase/reductase SDR family member 11 Proteins 0.000 description 5
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000012267 brine Substances 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 235000014633 carbohydrates Nutrition 0.000 description 5
- 239000000562 conjugate Substances 0.000 description 5
- NLFBCYMMUAKCPC-KQQUZDAGSA-N ethyl (e)-3-[3-amino-2-cyano-1-[(e)-3-ethoxy-3-oxoprop-1-enyl]sulfanyl-3-oxoprop-1-enyl]sulfanylprop-2-enoate Chemical compound CCOC(=O)\C=C\SC(=C(C#N)C(N)=O)S\C=C\C(=O)OCC NLFBCYMMUAKCPC-KQQUZDAGSA-N 0.000 description 5
- 235000019439 ethyl acetate Nutrition 0.000 description 5
- 210000003494 hepatocyte Anatomy 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 125000004437 phosphorous atom Chemical group 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229910052938 sodium sulfate Inorganic materials 0.000 description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 101100058513 Caenorhabditis elegans glo-2 gene Proteins 0.000 description 4
- 101100504918 Caenorhabditis elegans glo-3 gene Proteins 0.000 description 4
- 101100038209 Caenorhabditis elegans glo-4 gene Proteins 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- FKLJPTJMIBLJAV-UHFFFAOYSA-N Compound IV Chemical compound O1N=C(C)C=C1CCCCCCCOC1=CC=C(C=2OCCN=2)C=C1 FKLJPTJMIBLJAV-UHFFFAOYSA-N 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 4
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 4
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 241000282560 Macaca mulatta Species 0.000 description 4
- 239000007832 Na2SO4 Substances 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 108010039918 Polylysine Proteins 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 239000003613 bile acid Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 239000008121 dextrose Substances 0.000 description 4
- SQGRDKSRFFUBBU-UHFFFAOYSA-N ethyl 4-(2-bromo-4-fluorophenyl)-6-(morpholin-4-ylmethyl)-2-(1,3-thiazol-2-yl)-1,4-dihydropyrimidine-5-carboxylate Chemical compound N1C(C=2SC=CN=2)=NC(C=2C(=CC(F)=CC=2)Br)C(C(=O)OCC)=C1CN1CCOCC1 SQGRDKSRFFUBBU-UHFFFAOYSA-N 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 238000007913 intrathecal administration Methods 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 210000005229 liver cell Anatomy 0.000 description 4
- 229920000656 polylysine Polymers 0.000 description 4
- 239000002342 ribonucleoside Substances 0.000 description 4
- 125000002652 ribonucleotide group Chemical group 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 229940113082 thymine Drugs 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 3
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 3
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 239000004380 Cholic acid Substances 0.000 description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- 101000869981 Homo sapiens Dehydrogenase/reductase SDR family member 11 Proteins 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 208000023146 Pre-existing disease Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- KDCGOANMDULRCW-UHFFFAOYSA-N Purine Natural products N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 3
- 241000700157 Rattus norvegicus Species 0.000 description 3
- 108091028664 Ribonucleotide Proteins 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 3
- 235000019416 cholic acid Nutrition 0.000 description 3
- 229960002471 cholic acid Drugs 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000002716 delivery method Methods 0.000 description 3
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229930182830 galactose Natural products 0.000 description 3
- 230000030279 gene silencing Effects 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 210000002064 heart cell Anatomy 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 3
- 210000003292 kidney cell Anatomy 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 208000019423 liver disease Diseases 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 150000008300 phosphoramidites Chemical class 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 239000002336 ribonucleotide Substances 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 231100000240 steatosis hepatitis Toxicity 0.000 description 3
- 150000003431 steroids Chemical class 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 229920001059 synthetic polymer Polymers 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 238000011269 treatment regimen Methods 0.000 description 3
- FTVLMFQEYACZNP-UHFFFAOYSA-N trimethylsilyl trifluoromethanesulfonate Chemical compound C[Si](C)(C)OS(=O)(=O)C(F)(F)F FTVLMFQEYACZNP-UHFFFAOYSA-N 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- HSINOMROUCMIEA-FGVHQWLLSA-N (2s,4r)-4-[(3r,5s,6r,7r,8s,9s,10s,13r,14s,17r)-6-ethyl-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2-methylpentanoic acid Chemical compound C([C@@]12C)C[C@@H](O)C[C@H]1[C@@H](CC)[C@@H](O)[C@@H]1[C@@H]2CC[C@]2(C)[C@@H]([C@H](C)C[C@H](C)C(O)=O)CC[C@H]21 HSINOMROUCMIEA-FGVHQWLLSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Chemical compound C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 2
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 2
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 2
- 108010060191 3(17)-hydroxysteroid dehydrogenase Proteins 0.000 description 2
- 238000004679 31P NMR spectroscopy Methods 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- RYVNIFSIEDRLSJ-UHFFFAOYSA-N 5-(hydroxymethyl)cytosine Chemical compound NC=1NC(=O)N=CC=1CO RYVNIFSIEDRLSJ-UHFFFAOYSA-N 0.000 description 2
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 2
- HCGHYQLFMPXSDU-UHFFFAOYSA-N 7-methyladenine Chemical compound C1=NC(N)=C2N(C)C=NC2=N1 HCGHYQLFMPXSDU-UHFFFAOYSA-N 0.000 description 2
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 2
- 208000005452 Acute intermittent porphyria Diseases 0.000 description 2
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 2
- 108010082126 Alanine transaminase Proteins 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 2
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 208000017667 Chronic Disease Diseases 0.000 description 2
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 2
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 208000004930 Fatty Liver Diseases 0.000 description 2
- 208000000666 Fowlpox Diseases 0.000 description 2
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 206010019708 Hepatic steatosis Diseases 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- 229930010555 Inosine Natural products 0.000 description 2
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 2
- 108010007622 LDL Lipoproteins Proteins 0.000 description 2
- 102000007330 LDL Lipoproteins Human genes 0.000 description 2
- 108090001090 Lectins Proteins 0.000 description 2
- 102000004856 Lectins Human genes 0.000 description 2
- SMEROWZSTRWXGI-UHFFFAOYSA-N Lithocholsaeure Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)CC2 SMEROWZSTRWXGI-UHFFFAOYSA-N 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- KPKZJLCSROULON-QKGLWVMZSA-N Phalloidin Chemical compound N1C(=O)[C@@H]([C@@H](O)C)NC(=O)[C@H](C)NC(=O)[C@H](C[C@@](C)(O)CO)NC(=O)[C@H](C2)NC(=O)[C@H](C)NC(=O)[C@@H]3C[C@H](O)CN3C(=O)[C@@H]1CSC1=C2C2=CC=CC=C2N1 KPKZJLCSROULON-QKGLWVMZSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 206010036182 Porphyria acute Diseases 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 241000287219 Serinus canaria Species 0.000 description 2
- 108091027967 Small hairpin RNA Proteins 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- XVIYCJDWYLJQBG-UHFFFAOYSA-N acetic acid;adamantane Chemical compound CC(O)=O.C1C(C2)CC3CC1CC2C3 XVIYCJDWYLJQBG-UHFFFAOYSA-N 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 230000000368 destabilizing effect Effects 0.000 description 2
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 208000010706 fatty liver disease Diseases 0.000 description 2
- 235000019152 folic acid Nutrition 0.000 description 2
- 239000011724 folic acid Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000012226 gene silencing method Methods 0.000 description 2
- 239000003163 gonadal steroid hormone Substances 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 229960003786 inosine Drugs 0.000 description 2
- 239000000138 intercalating agent Substances 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000007914 intraventricular administration Methods 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- SMEROWZSTRWXGI-HVATVPOCSA-N lithocholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 SMEROWZSTRWXGI-HVATVPOCSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 108091070501 miRNA Proteins 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- RFLHDXQRFPJPRR-UHFFFAOYSA-N n'-benzylpropane-1,3-diamine Chemical compound NCCCNCC1=CC=CC=C1 RFLHDXQRFPJPRR-UHFFFAOYSA-N 0.000 description 2
- QTNLALDFXILRQO-UHFFFAOYSA-N nonadecane-1,2,3-triol Chemical compound CCCCCCCCCCCCCCCCC(O)C(O)CO QTNLALDFXILRQO-UHFFFAOYSA-N 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 125000002811 oleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 229920001308 poly(aminoacid) Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 230000004952 protein activity Effects 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- BNWCETAHAJSBFG-UHFFFAOYSA-N tert-butyl 2-bromoacetate Chemical compound CC(C)(C)OC(=O)CBr BNWCETAHAJSBFG-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- 230000010474 transient expression Effects 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical group CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical group C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- REPVLJRCJUVQFA-UHFFFAOYSA-N (-)-isopinocampheol Chemical group C1C(O)C(C)C2C(C)(C)C1C2 REPVLJRCJUVQFA-UHFFFAOYSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- YIMATHOGWXZHFX-WCTZXXKLSA-N (2r,3r,4r,5r)-5-(hydroxymethyl)-3-(2-methoxyethoxy)oxolane-2,4-diol Chemical compound COCCO[C@H]1[C@H](O)O[C@H](CO)[C@H]1O YIMATHOGWXZHFX-WCTZXXKLSA-N 0.000 description 1
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 1
- KJTPWUVVLPCPJD-AUWJEWJLSA-N (2z)-7-amino-2-[(4-hydroxy-3,5-dimethylphenyl)methylidene]-5,6-dimethoxy-3h-inden-1-one Chemical compound O=C1C=2C(N)=C(OC)C(OC)=CC=2C\C1=C\C1=CC(C)=C(O)C(C)=C1 KJTPWUVVLPCPJD-AUWJEWJLSA-N 0.000 description 1
- QGVQZRDQPDLHHV-DPAQBDIFSA-N (3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthrene-3-thiol Chemical compound C1C=C2C[C@@H](S)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 QGVQZRDQPDLHHV-DPAQBDIFSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- ZIZMDHZLHJBNSQ-UHFFFAOYSA-N 1,2-dihydrophenazine Chemical compound C1=CC=C2N=C(C=CCC3)C3=NC2=C1 ZIZMDHZLHJBNSQ-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Chemical group OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- MZMNEDXVUJLQAF-UHFFFAOYSA-N 1-o-tert-butyl 2-o-methyl 4-hydroxypyrrolidine-1,2-dicarboxylate Chemical compound COC(=O)C1CC(O)CN1C(=O)OC(C)(C)C MZMNEDXVUJLQAF-UHFFFAOYSA-N 0.000 description 1
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- NVKAWKQGWWIWPM-ABEVXSGRSA-N 17-β-hydroxy-5-α-Androstan-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 NVKAWKQGWWIWPM-ABEVXSGRSA-N 0.000 description 1
- UHUHBFMZVCOEOV-UHFFFAOYSA-N 1h-imidazo[4,5-c]pyridin-4-amine Chemical compound NC1=NC=CC2=C1N=CN2 UHUHBFMZVCOEOV-UHFFFAOYSA-N 0.000 description 1
- LXKGKXYIAAKOCT-SHYZEUOFSA-N 2'-deoxyuridine 3'-monophosphate Chemical compound C1[C@H](OP(O)(O)=O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 LXKGKXYIAAKOCT-SHYZEUOFSA-N 0.000 description 1
- UTQNKKSJPHTPBS-UHFFFAOYSA-N 2,2,2-trichloroethanone Chemical group ClC(Cl)(Cl)[C]=O UTQNKKSJPHTPBS-UHFFFAOYSA-N 0.000 description 1
- 125000000453 2,2,2-trichloroethyl group Chemical group [H]C([H])(*)C(Cl)(Cl)Cl 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- 125000001917 2,4-dinitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C(=C1*)[N+]([O-])=O)[N+]([O-])=O 0.000 description 1
- AZUHIVLOSAPWDM-UHFFFAOYSA-N 2-(1h-imidazol-2-yl)-1h-imidazole Chemical compound C1=CNC(C=2NC=CN=2)=N1 AZUHIVLOSAPWDM-UHFFFAOYSA-N 0.000 description 1
- PIINGYXNCHTJTF-UHFFFAOYSA-N 2-(2-azaniumylethylamino)acetate Chemical group NCCNCC(O)=O PIINGYXNCHTJTF-UHFFFAOYSA-N 0.000 description 1
- ASDQMECUMYIVBG-UHFFFAOYSA-N 2-[2-(2-aminoethoxy)ethoxy]ethanol Chemical compound NCCOCCOCCO ASDQMECUMYIVBG-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 1
- 125000006276 2-bromophenyl group Chemical group [H]C1=C([H])C(Br)=C(*)C([H])=C1[H] 0.000 description 1
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical compound CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- QWTBDIBOOIAZEF-UHFFFAOYSA-N 3-[chloro-[di(propan-2-yl)amino]phosphanyl]oxypropanenitrile Chemical compound CC(C)N(C(C)C)P(Cl)OCCC#N QWTBDIBOOIAZEF-UHFFFAOYSA-N 0.000 description 1
- RKVHNYJPIXOHRW-UHFFFAOYSA-N 3-bis[di(propan-2-yl)amino]phosphanyloxypropanenitrile Chemical compound CC(C)N(C(C)C)P(N(C(C)C)C(C)C)OCCC#N RKVHNYJPIXOHRW-UHFFFAOYSA-N 0.000 description 1
- HIAJCGFYHIANNA-QIZZZRFXSA-N 3b-Hydroxy-5-cholenoic acid Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@@H](CCC(O)=O)C)[C@@]1(C)CC2 HIAJCGFYHIANNA-QIZZZRFXSA-N 0.000 description 1
- 125000006283 4-chlorobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1Cl)C([H])([H])* 0.000 description 1
- 125000004217 4-methoxybenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1OC([H])([H])[H])C([H])([H])* 0.000 description 1
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 1
- UJBCLAXPPIDQEE-UHFFFAOYSA-N 5-prop-1-ynyl-1h-pyrimidine-2,4-dione Chemical compound CC#CC1=CNC(=O)NC1=O UJBCLAXPPIDQEE-UHFFFAOYSA-N 0.000 description 1
- KXBCLNRMQPRVTP-UHFFFAOYSA-N 6-amino-1,5-dihydroimidazo[4,5-c]pyridin-4-one Chemical compound O=C1NC(N)=CC2=C1N=CN2 KXBCLNRMQPRVTP-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- IWHLYPDWHHPVAA-UHFFFAOYSA-N 6-hydroxyhexanoic acid Chemical compound OCCCCCC(O)=O IWHLYPDWHHPVAA-UHFFFAOYSA-N 0.000 description 1
- IHLOTZVBEUFDMD-UUOKFMHZSA-N 7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2,2-dioxo-1h-imidazo[4,5-c][1,2,6]thiadiazin-4-one Chemical class O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(NS(=O)(=O)NC2=O)=C2N=C1 IHLOTZVBEUFDMD-UUOKFMHZSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- HRYKDUPGBWLLHO-UHFFFAOYSA-N 8-azaadenine Chemical compound NC1=NC=NC2=NNN=C12 HRYKDUPGBWLLHO-UHFFFAOYSA-N 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 208000030090 Acute Disease Diseases 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 229940122361 Bisphosphonate Drugs 0.000 description 1
- 125000003860 C1-C20 alkoxy group Chemical group 0.000 description 1
- 101100180402 Caenorhabditis elegans jun-1 gene Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Chemical group CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 101001035741 Drosophila melanogaster 3-hydroxyacyl-CoA dehydrogenase type-2 Proteins 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 208000031220 Hemophilia Diseases 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 206010019851 Hepatotoxicity Diseases 0.000 description 1
- 208000035150 Hypercholesterolemia Diseases 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010007013 Melanocyte-Stimulating Hormones Proteins 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- BKAYIFDRRZZKNF-VIFPVBQESA-N N-acetylcarnosine Chemical compound CC(=O)NCCC(=O)N[C@H](C(O)=O)CC1=CN=CN1 BKAYIFDRRZZKNF-VIFPVBQESA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- KYRVNWMVYQXFEU-UHFFFAOYSA-N Nocodazole Chemical compound C1=C2NC(NC(=O)OC)=NC2=CC=C1C(=O)C1=CC=CS1 KYRVNWMVYQXFEU-UHFFFAOYSA-N 0.000 description 1
- 229910004679 ONO2 Inorganic materials 0.000 description 1
- BQMQLJQPTQPEOV-UHFFFAOYSA-N OP(=O)OC=C Chemical group OP(=O)OC=C BQMQLJQPTQPEOV-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 101710125609 Peroxisomal multifunctional enzyme type 2 Proteins 0.000 description 1
- 102100022587 Peroxisomal multifunctional enzyme type 2 Human genes 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 108010009711 Phalloidine Proteins 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 102000007615 Pulmonary Surfactant-Associated Protein A Human genes 0.000 description 1
- 108010007100 Pulmonary Surfactant-Associated Protein A Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 101710175177 Very-long-chain 3-oxoacyl-CoA reductase Proteins 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- RLXCFCYWFYXTON-JTTSDREOSA-N [(3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-16-yl] N-hexylcarbamate Chemical group C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC(OC(=O)NCCCCCC)[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 RLXCFCYWFYXTON-JTTSDREOSA-N 0.000 description 1
- YQVISGXICTVSDQ-UHFFFAOYSA-O [c-]1nn[nH]n1.CC(C)[NH2+]C(C)C Chemical compound [c-]1nn[nH]n1.CC(C)[NH2+]C(C)C YQVISGXICTVSDQ-UHFFFAOYSA-O 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 125000000641 acridinyl group Chemical class C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- PPQRONHOSHZGFQ-LMVFSUKVSA-N aldehydo-D-ribose 5-phosphate Chemical group OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PPQRONHOSHZGFQ-LMVFSUKVSA-N 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 125000005122 aminoalkylamino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229960003473 androstanolone Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- HUTDDBSSHVOYJR-UHFFFAOYSA-H bis[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O HUTDDBSSHVOYJR-UHFFFAOYSA-H 0.000 description 1
- 150000004663 bisphosphonates Chemical class 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- CKDOCTFBFTVPSN-UHFFFAOYSA-N borneol Chemical group C1CC2(C)C(C)CC1C2(C)C CKDOCTFBFTVPSN-UHFFFAOYSA-N 0.000 description 1
- 229940116229 borneol Drugs 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N butyl alcohol Substances CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000023852 carbohydrate metabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012230 colorless oil Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 238000009223 counseling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- JVHIPYJQMFNCEK-UHFFFAOYSA-N cytochalasin Natural products N1C(=O)C2(C(C=CC(C)CC(C)CC=C3)OC(C)=O)C3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 JVHIPYJQMFNCEK-UHFFFAOYSA-N 0.000 description 1
- ZMAODHOXRBLOQO-UHFFFAOYSA-N cytochalasin-A Natural products N1C(=O)C23OC(=O)C=CC(=O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 ZMAODHOXRBLOQO-UHFFFAOYSA-N 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 235000021004 dietary regimen Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Chemical group C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000013583 drug formulation Substances 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004129 fatty acid metabolism Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229940014144 folate Drugs 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229920000370 gamma-poly(glutamate) polymer Polymers 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 230000007686 hepatotoxicity Effects 0.000 description 1
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 108091008039 hormone receptors Proteins 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000003949 imides Chemical group 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000003963 intermediate filament Anatomy 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- DDVBPZROPPMBLW-ZJBINBEQSA-N latrunculin a Chemical compound C([C@H]1[C@@]2(O)C[C@H]3C[C@H](O2)CC[C@@H](/C=C\C=C/CC\C(C)=C/C(=O)O3)C)SC(=O)N1 DDVBPZROPPMBLW-ZJBINBEQSA-N 0.000 description 1
- DDVBPZROPPMBLW-UHFFFAOYSA-N latrunculin-A Natural products O1C(=O)C=C(C)CCC=CC=CC(C)CCC(O2)CC1CC2(O)C1CSC(=O)N1 DDVBPZROPPMBLW-UHFFFAOYSA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000004322 lipid homeostasis Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 150000002634 lipophilic molecules Chemical class 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 210000003632 microfilament Anatomy 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000001483 mobilizing effect Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- URBXHNSZZLMBOT-UHFFFAOYSA-N n-[9-(4-fluoro-3,5,6-trihydroxyoxan-2-yl)purin-6-yl]benzamide Chemical compound OC1C(F)C(O)C(O)OC1N1C2=NC=NC(NC(=O)C=3C=CC=CC=3)=C2N=C1 URBXHNSZZLMBOT-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 125000001893 nitrooxy group Chemical group [O-][N+](=O)O* 0.000 description 1
- 229950006344 nocodazole Drugs 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N p-hydroxybenzoic acid methyl ester Natural products COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 125000006503 p-nitrobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1[N+]([O-])=O)C([H])([H])* 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- MCYTYTUNNNZWOK-LCLOTLQISA-N penetratin Chemical compound C([C@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCCNC(N)=N)[C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(N)=O)C1=CC=CC=C1 MCYTYTUNNNZWOK-LCLOTLQISA-N 0.000 description 1
- ONTNXMBMXUNDBF-UHFFFAOYSA-N pentatriacontane-17,18,19-triol Chemical compound CCCCCCCCCCCCCCCCC(O)C(O)C(O)CCCCCCCCCCCCCCCC ONTNXMBMXUNDBF-UHFFFAOYSA-N 0.000 description 1
- 239000000863 peptide conjugate Substances 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- FAQJJMHZNSSFSM-UHFFFAOYSA-N phenylglyoxylic acid Chemical compound OC(=O)C(=O)C1=CC=CC=C1 FAQJJMHZNSSFSM-UHFFFAOYSA-N 0.000 description 1
- 238000005731 phosphitylation reaction Methods 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 125000005544 phthalimido group Chemical group 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Chemical group 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 125000006853 reporter group Chemical group 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- DPCQJLQPDJPRCM-UHFFFAOYSA-N s-acetyl ethanethioate Chemical compound CC(=O)SC(C)=O DPCQJLQPDJPRCM-UHFFFAOYSA-N 0.000 description 1
- COFLCBMDHTVQRA-UHFFFAOYSA-N sapphyrin Chemical compound N1C(C=2NC(C=C3N=C(C=C4NC(=C5)C=C4)C=C3)=CC=2)=CC=C1C=C1C=CC5=N1 COFLCBMDHTVQRA-UHFFFAOYSA-N 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 230000001743 silencing effect Effects 0.000 description 1
- 108091069025 single-strand RNA Proteins 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 229940063675 spermine Drugs 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- SFVFIFLLYFPGHH-UHFFFAOYSA-M stearalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SFVFIFLLYFPGHH-UHFFFAOYSA-M 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000007863 steatosis Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical group NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 150000003456 sulfonamides Chemical group 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003457 sulfones Chemical group 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- RJVBVECTCMRNFG-ANKJNSLFSA-N swinholide a Chemical compound C1[C@H](OC)C[C@H](C)O[C@H]1CC[C@H](C)[C@H](O)[C@H](C)[C@@H]1[C@@H](C)[C@H](O)C[C@H](O)[C@H](C)[C@@H](OC)C[C@H](CC=C2)O[C@@H]2C[C@@H](O)C/C=C(\C)/C=C/C(=O)O[C@H]([C@@H](C)[C@@H](O)[C@@H](C)CC[C@@H]2O[C@@H](C)C[C@H](C2)OC)[C@@H](C)[C@H](O)C[C@H](O)[C@H](C)[C@@H](OC)C[C@H](CC=C2)O[C@@H]2C[C@@H](O)C/C=C(\C)/C=C/C(=O)O1 RJVBVECTCMRNFG-ANKJNSLFSA-N 0.000 description 1
- GDACDJNQZCXLNU-UHFFFAOYSA-N swinholide-A Natural products C1C(OC)CC(C)OC1CCC(C)C(O)C(C)C1C(C)C(O)CC(O)C(C)C(OC)CC(CC=C2)OC2CC(O)CC=C(C)C=CC(=O)O1 GDACDJNQZCXLNU-UHFFFAOYSA-N 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000037 tert-butyldiphenylsilyl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1[Si]([H])([*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229960000874 thyrotropin Drugs 0.000 description 1
- 230000001748 thyrotropin Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000000025 triisopropylsilyl group Chemical group C(C)(C)[Si](C(C)C)(C(C)C)* 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- SFVVQRJOGUKCEG-OPQSFPLASA-N β-MSH Chemical compound C1C[C@@H](O)[C@H]2C(COC(=O)[C@@](O)([C@@H](C)O)C(C)C)=CCN21 SFVVQRJOGUKCEG-OPQSFPLASA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/10—Applications; Uses in screening processes
- C12N2320/11—Applications; Uses in screening processes for the determination of target sites, i.e. of active nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2330/00—Production
- C12N2330/30—Production chemically synthesised
Definitions
- the invention relates, in part, to compositions and methods that can be used to inhibit 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) gene expression.
- HSD17B13 It is known that the highest expression level of HSD17B13 is found in hepatocytes of the liver, while lower levels can be detected in ovaries, bone marrow, kidney, brain, lung, skeletal muscle, bladder, and testis. Hepatocytes, which form the parenchymal tissue of the liver, are responsible for mobilizing lipids for energy and storing excess lipids in the form of lipid droplets (LDs) making the liver the primary organ responsible for lipid homeostasis.
- LDs lipid droplets
- HSD17B13 may also play a role in the lipid metabolic pathway. Liver up-regulation of HSD17B13 has been reported to be observed in fatty liver patients, supporting a role for this enzyme in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) .
- NAFLD non-alcoholic fatty liver disease
- novel therapeutics targeting HSD17B13 represents a novel approach to reducing HSD17B13 levels and treating hepatologic diseases, such as nonalcoholic fatty liver disease.
- the present disclosure features novel HSD17B13 gene-specific RNAi agents, compositions that include HSD17B13 RNAi agents, and methods for inhibiting expression of an HSD17B13 gene in vitro and/or in vivo using the HSD17B13 RNAi agents and compositions that include HSD17B13 RNAi agents described herein.
- the HSD17B13 RNAi agents described herein can selectively and efficiently decrease, inhibit, or silence expression of an HSD17B13 gene in a subject, e.g., a human or animal subject.
- a double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17 ⁇ -hydroxysteroid dehydrogenase type 13 HSD17B13
- the dsRNA agent includes a sense strand and an antisense strand
- the sense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: l
- the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 2.
- the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region at least 17 nucleotides in length, wherein said sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from any one of nucleotides 45-85, 49-85, 576-606, 651-681, 659-689, 666-696, 760-790, 769-799, 772-802, 817-847, 841-871, 876-906, 959-989, 1000-1030, or 1508-1538of the nucleotide sequence of SEQ ID NO: l and said antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the nucleotide sequence of SEQ ID NO: 2.
- the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region at least 17 nucleotides in length, wherein said sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from any one of nucleotides 54-72, 56-74, 59-77, 60-78, 581-599, 656-674, 664-682, 671-689, 765-783, 774-792, 777-795, 822-840, 846-864, 881-899, 964-982, 1005-1023, or 1513-1531 of the nucleotide sequence of SEQ ID NO: l and said antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the nucleotide sequence of SEQ ID NO: 2.
- the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region at least 15, 16, 17 nucleotides in length, wherein said sense strand comprises at least 15, 16, 17, 18, 19 or 20 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from any one of nucleotides 45-65, 46-66, 47-67, 48-68, 49-69, 50-70, 51-71, 52-72, 53-73, 54-74, 55-75, 56-76, 57-77, 58-78, 59-79, 60-80, 61-81, 62-82, 63-83, 64-84or 65-85 of the nucleotide sequence of SEQ ID NO: l and said antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 2.
- the dsRNA agent including a sense strand and an antisense strand, nucleotide positions 2 to 18 in the antisense strand including a region of complementarity to a HSD17B13 RNA transcript, wherein the region of complementarity includes at least 15 contiguous nucleotides that differ by 0, 1, 2, or 3 nucleotides from one of the antisense sequences listed in one of Tables 1-3, and optionally including a targeting ligand.
- the region of complementarity to a HSD17B13 RNA transcript includes at least 15, 16, 17, 18, 19 or 20 contiguous nucleotides that differ by no more than 3 nucleotides from one of the antisense sequences listed in one of Tables 1-3.
- the antisense strand of dsRNA is at least substantially complementary to any one of a target region of SEQ ID NO: 1 and is provided in any one of Tables 1-3.
- the antisense strand of dsRNA is fully complementary to any one of a target region of SEQ ID NO: 1 and is provided in any one of Tables 1-3.
- the dsRNA agent includes a sense strand sequence set forth in any one of Tables 1-3, wherein the sense strand sequence is at least substantially complementary to the antisense strand sequence in the dsRNA agent. In certain embodiments, the dsRNA agent includes a sense strand sequence set forth in any one of Tables 1-3, wherein the sense strand sequence is fully complementary to the antisense strand sequence in the dsRNA agent. In some embodiments, the dsRNA agent includes an antisense strand sequence set forth in any one of Tables 1-3. In some embodiments, the dsRNA agent includes the sequences set forth as a duplex sequence in any of Tables 1-3.
- the antisense strand of dsRNA comprises a nucleotide sequence SI: 5’-z 1 AGAAGCAGAAGGAUUUz 2 -3’, wherein z 1 and z 2 each independently represents a nucleotide sequence which is0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length, wherein the nucleotide sequence SI is substantially or fully complementary to part of a HSD17B13 mRNA transcript.
- z 1 is selected from C, G, A or U.
- z 1 is U.
- z 2 is absent.
- z 2 is a nucleotide sequence selected from C, CU, CA, CC, CG, CUU, CUA, CUC, CUG, CUAC, CUAU, CUAA, CUAG, CUAGG, CUAGUU, CUAGGA, CUAGGAU, CUAGGAUG, CUAGGAUGA or CUAGGAUGAUGUUCAUGGCUUUG.
- the antisense strand of dsRNA consists of the nucleotide sequence SI: 5’-z 1 AGAAGCAGAAGGAUUUz 2 -3’, wherein z 1 and z 2 are each independently as defined above.
- the antisense strand of dsRNA consists of a nucleotide sequence SI’ : 5’-z 1 AGAAGCAGAAGGAUUUCz 2’ -3’, wherein z 1 is selected from C, G, A or U, z 2’ is a nucleotide sequence selected from U, A, C, G, UU, UA, UC, UG, UAC, UAU, UAA, UAG, UAGG, UAGUU, UAGGA, UAGGAU, UAGGAUG, AUUUCUAG, UAGGAUGA or UAGGAUGAUGUUCAUGGCUUUG.
- the sense strand of dsRNA comprises a nucleotide sequence SII: 5’-z 3 AAAUCCUUCUGCUUCUz 4 -3’, wherein z 3 and z 4 each independently represents a nucleotide sequence which is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length.
- z 4 is selected from C, G, A or U.
- z 4 is A.
- z 3 is absent.
- z 3 is a nucleotide sequence selected from G, AG, UG, GG, CG, AAG, UAG, GAG, CAG, CUAG, GUAG, AUAG, UUAG, CCUAG, UCCUAG, AUCCUAG, CAUCCUAG, UCAUCCUAG or CAAAGCCAUGAACAUCAUCCUAG.
- the sense strand of dsRNA consists of a nucleotide sequence SII: 5’-z 3 AAAUCCUUCUGCUUCUz 4 -3’, wherein z 3 and z 4 each independently as defined above.
- the sense strand of dsRNA consists of a nucleotide sequence SII’: 5’-z 3’ GAAAUCCUUCUGCUUCUz 4 -3’, wherein z 4 is selected from C, G, A or U, z 3’ is a nucleotide sequence selected from A, U, G, C, AA, UA, GA, CA, CUA, GUA, AUA, UUA, CCUA, UCCUA, AUCCUA, CAUCCUA, UCAUCCUA or CAAAGCCAUGAACAUCAUCCUA. It can be understood that the sense strand is substantially or fully complementary to the corresponding antisense strand.
- z 1 is a nucleotide sequence substantially or fully complementary to z 4 .
- z 2 is a nucleotide sequence substantially or fully complementary to z 3 .
- z 2’ is a nucleotide sequence substantially or fully complementary to z 3’ .
- the dsRNA agent includes a sense strand and an antisense strand, wherein the antisense strand of dsRNA consists of the nucleotide sequence SI or SI' as described above, wherein the sense strand is substantially or fully complementary to the antisense strand sequence, forming a duplex region of at least 15, 16, 17, 18, or 19 nucleotides with0, 1, 2 or 3 mismatches.
- the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA comprises the nucleotide sequence SII and the antisense strand of dsRNA comprises the nucleotide sequence SI, wherein the nucleotide sequence SII and SI are as described above.
- the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA consists of the nucleotide sequence SII and the antisense strand of dsRNA consists of the nucleotide sequence SI, wherein the nucleotide sequence SII and SI are as described above.
- the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA comprises the nucleotide sequence SII’ and the antisense strand of dsRNA comprises the nucleotide sequence SI’, wherein the nucleotide sequence SII’ and SI’ are as described above.
- the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA consists of the nucleotide sequence SII’ and the antisense strand of dsRNA consists of the nucleotide sequence SI’, wherein the nucleotide sequence SII’ and SI’ are as described above.
- the antisense strand of dsRNA comprises a nucleotide sequence SIII: 5’-z 5 GUGAUCAGAAGCAGAAz 6 -3’, wherein z 5 and z 6 each independently represents a nucleotide sequence which is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length, wherein the nucleotide sequence SIII is substantially or fully complementary to part of a HSD17B13 mRNA transcript.
- z 5 is selected from C, G, A or U.
- z 5 is U.
- z 5 is absent.
- z 5 is a nucleotide sequence selected from G, GU, GA, GC, GG, GGU, GGA, GGC, GGG, GGAC, GGAU, GGAA, GGAUU, GGAUGA, GGAUUU, GGAUUUC, GGAUUUCU, GGAUUUCUA or GGAUUUCUAGGAUGAUGUUCAUG.
- the antisense strand of dsRNA consists of the nucleotide sequence SIII: 5’-z 5 GUGAUCAGAAGCAGAAz 6 -3’, wherein z 5 and z 6 are each independently as defined above.
- the antisense strand of dsRNA consists of a nucleotide sequence SIII’ : 5’-z 5 GUGAUCAGAAGCAGAAGz 6’ -3’, wherein z 5 is selected from C, G, A or U, z 6’ is a nucleotide sequence selected from U, A, C, G, GU, GA, GC, GG, GAC, GAU, GAA, GAUU, GAUGA, GAUUU, GAUUUC, GAUUUCU, GAUUUCUA or GAUUUCUAGGAUGAUGUUCAUG.
- the sense strand of dsRNA comprises a nucleotide sequence SIV: 5’-z 7 UUCUGCUUCUGAUCACz 8 -3’, wherein z 7 and z 8 each independently represents a nucleotide sequence which is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length.
- z 8 is selected from C, G, A or U.
- z 8 is A.
- z 7 is absent.
- z 7 is a nucleotide sequence selected from C, AC, UC, GC, CC, ACC, UCC, GCC, CCC, GUCC, AUCC, UUCC, AAUCC, AAAUCC, GAAAUCC, AGAAAUCC, UAGAAAUCC or CAUGAACAUCAUCCUAGAAAUCC.
- the sense strand of dsRNA consists of a nucleotide sequence SIV: 5’-z 7 UUCUGCUUCUGAUCACz 8 -3’, wherein z 7 and z 8 each independently as defined above.
- the sense strand of dsRNA consists of a nucleotide sequence SIV’: 5’-z 7’ CUUCUGCUUCUGAUCACz 8 -3’, wherein z 8 is selected from C, G, A or U, z 7’ is a nucleotide sequence selected from A, U, G, C, AC, UC, GC, CC, GUC, AUC, UUC, AAUC, AAAUC, GAAAUC, AGAAAUC, UAGAAAUC or CAUGAACAUCAUCCUAGAAAUC. It can be understood that the sense strand is substantially or fully complementary to the corresponding antisense strand.
- z 5 is a nucleotide sequence substantially or fully complementary to z 8 .
- z 6 is a nucleotide sequence substantially or fully complementary to z 7 .
- z 6’ is a nucleotide sequence substantially or fully complementary to z 7’ .
- the dsRNA agent includes a sense strand and an antisense strand, wherein the antisense strand of dsRNA comprises the nucleotide sequence SIII or SIII' as described above, wherein the sense strand is substantially or fully complementary to the antisense strand sequence, forming a duplex region of at least 15, 16, 17, 18, or 19nucleotides with 0, 1, 2 or 3 mismatches.
- the dsRNA agent includes a sense strand and an antisense strand, wherein the antisense strand of dsRNA consists of the nucleotide sequence SIII or SIII' as described above, wherein the sense strand is substantially or fully complementary to the antisense strand sequence, forming a duplex region of at least 15, 16, 17, 18, or 19 nucleotides with 0, 1, 2 or 3 mismatches.
- the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA comprises the nucleotide sequence SIV and the antisense strand of dsRNA comprises the nucleotide sequence SIII, wherein the nucleotide sequence SIII and SIV are as described above.
- the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA consists of the nucleotide sequence SIV and the antisense strand of dsRNA consists of the nucleotide sequence SIII, wherein the nucleotide sequence SIII and SIV are as described above.
- the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA comprises the nucleotide sequence SIV’ and the antisense strand of dsRNA comprises the nucleotide sequence SIII’, wherein the nucleotide sequence SIII’ and SIV’ are as described above.
- the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA consists of the nucleotide sequence SIV’ and the antisense strand of dsRNA consists of the nucleotide sequence SIII’, wherein the nucleotide sequence SIII’ and SIV’ are as described above.
- the dsRNA agent includes at least one modified nucleotide. In certain embodiments, all or substantially all of the nucleotides of the antisense strand are modified nucleotides. In certain embodiments, all or substantially all of the nucleotides of the sense strand and the antisense strand are modified nucleotides.
- At least one of the modified nucleotides comprises: 2’-O-methyl nucleotide, 2’-Fluoro nucleotide, 2’-deoxy nucleotide, 2’ 3’-seco nucleotide mimic, locked nucleotide, unlocked nucleic acid nucleotide (UNA) , glycol nucleic acid nucleotide (GNA) , 2’-F-Arabino nucleotide, 2’-methoyxyethyl nucleotide, abasic nucleotide, ribitol, inverted nucleotide, inverted abasic nucleotide, inverted 2’-Ome nucleotide, inverted 2’-deoxy nucleotide, isomannide nucleotide, 2’-amino-modified nucleotide, 2’-alkyl-modified nucleotide, mopholino nucleot
- the dsRNA agent includes an E-vinylphosphonate nucleotide at the 5′ end of the guide strand. In certain embodiments, the dsRNA agent includes at least one phosphorothioate internucleoside linkage. In certain embodiments, the sense strand includes at least one phosphorothioate internucleoside linkage. In some embodiments, the antisense strand includes at least one phosphorothioate internucleoside linkage. In some embodiments, the sense strand includes 1, 2, 3, 4, 5, or 6, phosphorothioate internucleoside linkages. In some embodiments, the antisense strand includes 1, 2, 3, 4, 5, or 6, phosphorothioate internucleoside linkages.
- the antisense strand comprises 15or more modified nucleotides independently selected from a 2’-O-methyl nucleotide and a 2’-fluoro nucleotide, wherein less than6 modified nucleotides are 2’-fluoro nucleotides.
- the antisense strand comprises 3 or 5 2’-fluoro nucleotides, preferably, the antisense strand comprises 5 2’-fluoro nucleotides.
- the antisense strand comprises 5 2’-fluoro nucleotides and a 5'-phosphonate modified nucleotide, preferably, wherein the 5'-phosphonate modified nucleotide is a nucleotide comprising vinyl phosphonate.
- the sense strand comprises 15 or more modified nucleotides independently selected from a 2’-O-methyl nucleotide and a 2’-fluoro nucleotide, wherein less than 4 modified nucleotides are 2’-fluoro nucleotides. In certain embodiments, the sense strand comprises 3 2’-fluoro nucleotides.
- the antisense strand comprises 15 or more modified nucleotides independently selected from a 2’-O-methyl nucleotide and a 2’-fluoro nucleotide, wherein at least 16 modified nucleotides are 2’-O-methyl nucleotide and the nucleotides at position 2, 7, 12, 14 and/or 16 counting from the first matching position from the 5’ end of the antisense strand are a 2’-fluoro nucleotide.
- the nucleotides at position 2, 7, 12, 14 and 16 counting from the first matching position from the 5’ end of the antisense strand are 2’-fluoro nucleotides and 5’ terminal nucleotide of the antisense strand is a nucleotide comprising vinyl phosphonate, preferably, wherein said nucleotide comprising vinyl phosphonate is VPu*as defined in this invention.
- the sense strand comprises 15or more modified nucleotides independently selected from a 2’-O-methyl nucleotide and a 2’-fluoro nucleotide, preferably, wherein at least 18 modified nucleotides are 2’-O-methyl nucleotide and the nucleotides at position9, 11 and/or 13 counting from the first matching position from the 3’ end of the sense strand are 2’-fluoro nucleotides.
- the sense strand is complementary or substantially complementary to the antisense strand, and the region of complementarity is between 16 and 23 nucleotides in length. In some embodiments, the region of complementarity is 19-21 nucleotides in length. In certain embodiments, the region of complementarity is 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some embodiments, each strand is no more than40nucleotides in length. In some embodiments, each strand is no more than 30 nucleotides in length. In some embodiments, each strand is no more than 25 nucleotides in length. In some embodiments, each strand is no more than 23 nucleotides in length. In some embodiments, each strand is no more than 21 nucleotides in length.
- the dsRNA agent includes at least one modified nucleotide and further includes one or more targeting groups or linking groups.
- the one or more targeting groups or linking groups are conjugated to the sense strand.
- the targeting group or linking group includes N-acetyl-galactosamine (GalNAc) .
- the targeting group has a structure as Formula (X) :
- n is independently selected from 1 or 2.
- the dsRNA agent includes a targeting group that is conjugated to the 5’-terminal end of the sense strand. In some embodiments, the dsRNA agent includes a targeting group that is conjugated to the 3'-terminal end of the sense strand. In some embodiments, the antisense strand includes one inverted abasic residue at 3’-terminal end. In certain embodiments, the sense strand includes one or two inverted abasic residues and/or one or two imann residues at3’ or/and5’ terminal end. In some embodiments, the dsRNA agent has two blunt ends. In some embodiments, at least one strand includes a 3’ overhang of at least 1 nucleotide. In some embodiments, at least one strand includes a 3’ overhang of at least 2 nucleotides.
- a double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17 ⁇ -hydroxysteroid dehydrogenase type 13 HSD17B13
- the dsRNA agent including a sense strand and an antisense strand, wherein the sense strand complementary to the antisense strand, wherein the antisense strand comprises a region complementary to part of an mRNA encoding HSD17B13, wherein each strand is about 14 to about 30 nucleotides in length
- the sense strand sequence may be represented by formula (I) : 5′- (N′ L ) n′ N′ L N′ L N′ L N′ N1 N′ N2 N′ N3 N′ L N′ F N′ L N′ N4 N′ N5 N′ N6 N′ L N′ L N′ L (N′ L ) m′ -3′ (I)
- n′ is 1 and m′ is 1, or n′ is 1 and m′ is 2, or n′ is 1 and m′ is 3, or n′ is 1 and m′ is 4, or n′ is 1 and m′ is 5, or n′ is 3 and m′ is 1, or n′ is 3 and m′ is 2, or n′ is 3 and m′ is 3, or n′ is 5 and m′ is 1.
- the dsRNA agent includes a targeting group that is conjugated to the 5’-terminal end of the sense strand, preferably, the targeting group is any one selected from aforesaid GLO-1 through GLO-16 and GLS-1 through GLS-16, more preferably, the targeting group is aforesaid GLS-15.
- the dsRNA agent includes a targeting group that is conjugated to the 3'-terminal end of the sense strand.
- the antisense strand includes one inverted abasic residue at 3’-terminal end.
- the sense strand includes one or two inverted abasic residues and/or one or two imann residues at3’ or/and 5’ terminal end.
- each 3’ and 5’ terminal end of the sense strand independently includes an imann residue.
- the sense strand includes two imann residues a t3’ and 5’ terminal end and either residue at 3’ or 5’ terminal end is further conjugated to a targeting group, which preferably is aforesaid GLS-15.
- a double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17 ⁇ -hydroxysteroid dehydrogenase type 13 HSD17B13
- the dsRNA agent including a sense strand and an antisense strand, wherein the sense strand complementary to the antisense strand, wherein the antisense strand comprises a region complementary to part of an mRNA encoding HSD17B13, wherein each strand is about 14 to about 30 nucleotides in length
- the antisense strand sequence may be represented by formula (II) : 3′- (N L ) n N M1 N L N M2 N L N F N L N M3 N L N M4 N L N M5 N M6 N L N M7 N M8 N L N F N L -5′ (II)
- each N F represents a 2'-fluoro-modified nucleotide
- each N M1 , N M2 , N M3 , N M4 , N M5 , N M6 , N M7 and N M8 independently represents a modified or unmodified nucleotide, preferably, N M2 , N M3 and N M6 each independently represents a 2'-fluoro-modified nucleotide
- each N L independently represents a modified or unmodified nucleotide but not a 2'-fluoro-modified nucleotide
- n is an integer of 0 to 7.
- n is 1, or n is 2, or n is 3.
- N M6 , N M3 and N M2 each independently represents a 2'-fluoro-modified nucleotide.
- N M6 , N M3 and N M2 are all 2'-fluoro-modified nucleotides.
- the modified nucleotide is a modified nucleotide defined above.
- the modified nucleotide is a 2’-OMe modified nucleotide or a 2’-F modified nuleotide.
- the antisense strand sequence may be represented by formula (II’) : 3′- (N L ) n N M1 N L N M2 N L N F N L N M3 N L N M4 N L N M5 N M6 N L N M7 N M8 N L N F N Z -5′ (II’)
- each N F represents a 2'-fluoro-modified nucleotide
- each N M1 , N M2 , N M3 , N M4 , N M5 , N M6 , N M7 and N M8 independently represents a modified or unmodified nucleotide, preferably, N M2 , N M3 and N M6 each independently represents a 2'-fluoro-modified nucleotide
- each N L independently represents a modified or unmodified nucleotide but not a 2'-fluoro-modified nucleotide
- N Z represents a nucleotide comprising phosphate mimic, preferably, N Z represents a nucleotide comprising vinyl phosphonate
- n is an integer of 0 to 7.
- n is 1, or n is 2, or n is 3.
- N M6 , N M3 and N M2 each independently represents a 2'-fluoro-modified nucleotide.
- N M6 , N M3 and N M2 are all 2'-fluoro-modified nucleotides.
- the modified nucleotide is a modified nucleotide defined above.
- the modified nucleotide is a 2’-OMe modified nucleotide or a 2’-F modified nuleotide.
- N Z is a vinyl phosphonate modified nucleotide.
- N Z is VPu*, which has the structure
- a double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17 ⁇ -hydroxysteroid dehydrogenase type 13 HSD17B13
- the dsRNA agent including a sense strand and an antisense strand, wherein the sense strand and the antisense strand form a dsRNA duplex, wherein said sense strand complementary to the antisense strand, wherein said antisense strand comprises a region of complementarity to an mRNA encoding HSD17B13, wherein the region of complementarity comprises at least 15 contiguous nucleotides
- the dsRNA duplex may be represented by formula (III) : sense: 5′- (N′ L ) n′ N′ L N′ L N′ L N′ N1 N′ N2 N′ N3 N′ L N′ F N′ L N′ N4 N′ N5 N′ N6 N′ L N′ L N′ L (N′ L )
- each strand is about 17 to about 30 nucleotides in length
- each N F and N′ F independently represents a 2'-fluoro-modified nucleotide
- N M1 , N M2 , N M3 , N M4 , N M5 , N M6 , N M7 , N M8 , N′ N1 , N′ N2 , N′ N3 , N′ N4 , N′ N5 , and N′ N6 each independently represents a modified or unmodified nucleotide
- each N L and N′ L independently represents a modified or unmodified nucleotide but not a 2'-fluoro-modified nucleotide
- m′, n′and n are each independently an integer of 0 to 7.
- the modified nucleotide is a modified nucleotide defined above.
- the modified nucleotide is a 2’-OMe modified nucleotide or a 2’-F modified nuleotide.
- n′ is 1 and m′ is 1, or n′ is 1 and m′ is 2, or n′ is 1 and m′ is 3, or n′ is 1 and m′ is 4, or n′ is 1 and m′ is 5, or n′ is 3 and m′ is 1, or n′ is 3 and m′ is 2, or n′ is 3 and m′ is 3, or n′ is 5 and m′ is 1.
- n is 1, or n is 2, or n is 3.
- N′ N1 N′ N2 N′ N3 and N′ N4 N′ N5 N′ N6 each independently represents one motif comprising at least two differently modified nucleotides
- N M6 , N M3 and N M2 each independently represents a 2'-fluoro-modified nucleotide; in certain embodiment, N M6 , N M3 and N M2 are all2'-fluoro-modified nucleotides.
- the sense strand and the antisense strand form a dsRNA duplex, wherein said sense strand complementary to the antisense strand, wherein said antisense strand comprises a region of complementarity to an mRNA encoding HSD17B13, wherein the region of complementarity comprises at least 15contiguous nucleotides, wherein the dsRNA duplex may be represented by formula (III’) :
- each strand is about 17to about30nucleotides in length
- each N F and N′ F independently represents a 2'-fluoro-modified nucleotide
- N M1 , N M2 , N M3 , N M4 , N M5 , N M6 , N M7 , N M8 , N′ N1 , N′ N2 , N′ N3 , N′ N4 , N′ N5 , and N′ N6 each independently represents a modified or unmodified nucleotide
- each N L and N′ L independently represents a modified or unmodified nucleotide but not a 2'-fluoro-modified nucleotide
- N Z represents a nucleotide comprising phosphate mimic, preferably, N Z represents a nucleotide comprising vinyl phosphonate
- m′, n′ and n are each independently an integer of 0 to 7.
- the modified nucleotide is a modified nucleotide defined above.
- the modified nucleotide is a 2’-OMe modified nucleotide or a 2’-F modified nuleotide.
- n′ is 1 and m′ is 1, or n′ is 1 and m′ is 2, or n′ is 1 and m′ is 3, or n′ is 1 and m′ is 4, or n′ is 1 and m′ is 5, or n′ is 3 and m′ is 1, or n′ is 3 and m′ is 2, or n′ is 3 and m′ is 3, or n′ is 5 and m′ is 1.
- n is 1, or n is 2, or n is 3.
- N′ N1 N′ N2 N′ N3 and N′ N4 N′ N5 N′ N6 each independently represents one motif comprising at least two differently modified nucleotides
- N M6 , N M3 and N M2 each independently represents a 2'-fluoro-modified nucleotide; in certain embodiment, N M6 , N M3 and N M2 are all 2'-fluoro-modified nucleotides.
- N Z is a vinyl phosphonate modified nucleotide.
- N Z is VPu*, which has the structure
- the dsRNA agent includes a targeting group that is conjugated to the 5’-terminal end of the sense strand, preferably, the targeting group is any one selected from aforesaid GLO-1 through GLO-16 and GLS-1 through GLS-16, more preferably, the targeting group is aforesaid GLS-15.
- the dsRNA agent includes a targeting group that is conjugated to the 3'-terminal end of the sense strand.
- the antisense strand includes one inverted abasic residue at 3’-terminal end.
- the sense strand includes one or two inverted abasic residues and/or one or two imann residues at 3’ or/and 5’ terminal end.
- the sense strand includes two imann residues at 3’ and 5’ terminal end. In certain embodiments, each end of the sense strand includes one inverted abasic residue respectively. In certain embodiments, each end of the sense strand includes one imann residue respectively. In certain embodiments, the sense strand includes two imann residues at 3’ and 5’ terminal end and either residue at 3’ or 5’ terminal end is further conjugated to a targeting group, which preferably is GLS-15. In certain embodiments, the dsRNA agent has two blunt ends. In certain embodiments, at least one strand includes a 3’ overhang of at least 1 nucleotide. In certain embodiments, at least one strand includes a 3’ overhang of at least 2 nucleotides.
- At least one linkage of the sense strand and/or the antisense strand is a phosphodiester (PO) linkage. In some embodiments, at least one linkage of the sense strand and/or the antisense strand is a modified linkage. In some embodiments, at least one linkage of the sense strand and/or the antisense strand is a phosphorothioate (PS) linkage. In some embodiments, at least one phosphorothioate (PS) linkage is introduced at the 5’-end, 3’-end or both ends of the sense strand and/or the antisense strand.
- PO phosphodiester
- PS phosphorothioate
- 1, 2, 3, 4, 5, or 6 phosphorothioate (PS) linkages are introduced at the 5’-end, 3’-end or both ends of the sense strand and/or the antisense strand.
- at least the terminal two modified or unmodified nucleotides at one end or both ends of the antisense strand are linked through phosphorothioate linkages.
- the terminal three modified or unmodified nucleotides at one end or both ends of the antisense strand are linked through phosphorothioate linkages.
- at least the terminal two modified or unmodified nucleotides at one end or both ends of the sense strand are linked through phosphorothioate linkages.
- the terminal three modified or unmodified nucleotides at one end or both ends of the sense strand are linked through phosphorothioate linkages. In some embodiments, the terminal three modified or unmodified nucleotides at 5’ end of the sense strand are linked through phosphorothioate linkages and the terminal two modified or unmodified nucleotides at 3’ end of the sense strand are linked through phosphorothioate linkages.
- the sense strand comprises phosphorothioate linkages between the targeting group and the inverted abasic residue or the imann residue, and between the inverted abasic residue or the imann residue and the terminal modified or unmodified nucleotide at 5’ end of the sense strand.
- any one of the sense strands in Table 1 may further be modified in a pattern shown in aforesaid Formula (I) or (III) .
- any one of the antisense strands in Table 1 may further be modified in a pattern shown in aforesaid Formula (II) , (II’) , (III) or (III’) .
- any one of the duplexes in Table 1 may further be modified in a pattern shown in aforesaid Formula (III) or (III’ ) .
- the modified sense strand has a modification pattern set forth in any one of Tables 2-3.
- the modified antisense strand has a modification pattern set forth in any one of Tables 2-3.
- the modified sense strand is a modified sense strand sequence set forth in one of Tables 2-3.
- the modified antisense strand is a modified antisense strand sequence set forth in one of Tables 2-3.
- the dsRNA comprises a duplex selected from the group consisting of AD00462, AD00463, AD00464, AD00465, AD00466, AD00467, AD00468, AD00469, AD00470, AD00471, AD00472, AD00473, AD00675, AD00676, AD00677, AD00678, AD00679, AD00680, AD00681, AD00682, AD00683, AD00684, AD00685, AD00686, AD00687, AD00688, AD00689, AD00690, AD00691, AD00692, AD00693, AD00694, AD00695, AD00696, AD00697, AD00675-1, AD00677-1, AD00678-1, AD00682-1, AD00689-1, AD00675-2, AD00677-2 and AD00678-2.
- a composition that includes any embodiment of the aforementioned dsRNA agent aspect of the invention.
- the composition also includes a pharmaceutically acceptable carrier.
- the composition also includes one or more additional therapeutic agents.
- the composition is packaged in a kit, container, pack, dispenser, pre-filled syringe, or vial.
- the composition is formulated for subcutaneous administration or is formulated for intravenous (IV) administration.
- a cell that includes any embodiment of an aforementioned dsRNA agent aspect of the invention.
- the cell is a mammalian cell, optionally a human cell.
- a method of inhibiting the expression of a HSD17B13 gene in a cell including: (i) preparing a cell including an effective amount of any embodiment of the aforementioned dsRNA agent aspect of the invention or any embodiment of an aforementioned composition of the invention.
- the method also includes: (ii) maintaining the prepared cell for a time sufficient to obtain degradation of the mRNA transcript of a HSD17B13 gene, thereby inhibiting expression of the HSD17B13 gene in the cell.
- the cell is in a subject and the dsRNA agent is administered to the subject subcutaneously.
- the cell is in a subject and the dsRNA agent is administered to the subject by IV administration.
- the method also includes assessing inhibition of the HSD17B13 gene, following the administration of the dsRNA agent to the subject, wherein a means for the assessing comprises: (i) determining one or more physiological characteristics of a HSD17B13-associated disease or condition in the subject and (ii) comparing the determined physiological characteristic (s) to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition and/or to a control physiological characteristic of the HSD17B13-associated disease or condition, wherein the comparison indicates one or more of a presence or absence of inhibition of expression of the HSD17B13 gene in the subject.
- the physiological characteristic is one or more of: the HSD17B13 mRNA level and the HSD17B13 protein level.
- a reduction in the expression of HSD17B13 may also be assessed indirectly by measuring a decrease in biological activity of HSD17B13, e.g., a decrease in the enzymatic activity of HSD17B13 and/or a decrease in one or more of a lipid, a triglyceride, cholesterol (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , or free fatty acids in a plasma, or a tissue sample, and/or a reduction in accumulation of fat and/or expansion of lipid droplets in the liver.
- a method of inhibiting expression of a HSD17B13 gene in a subject including administering to the subject an effective amount of an embodiment of the aforementioned dsRNA agent aspect of the invention or an embodiment of an aforementioned composition of the invention.
- the dsRNA agent is administered to the subject subcutaneously.
- the dsRNA agent is administered to the subject by IV administration.
- the method also includes: assessing inhibition of the HSD17B13 gene, following the administration of the dsRNA agent, wherein a means for the assessing comprises: (i) determining one or more physiological characteristics of a HSD17B13-associated disease or condition in the subject and (ii) comparing the determined physiological characteristic (s) to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition and/or to a control physiological characteristic of the HSD17B13-associated disease or condition, wherein the comparison indicates one or more of a presence or absence of inhibition of expression of the HSD17B13 gene in the subject.
- expression of the HSD17B13 gene can be assessed based on the level or change in level of any variable associated with HSD17B13 gene expression, such as HSD17B13 mRNA level, HSD17B13 protein level.
- a reduction in the expression of HSD17B13 may also be assessed indirectly by measuring a decrease in biological activity of HSD17B13, e.g., a decrease in the enzymatic activity of HSD17B13 and/or a decrease in one or more of a lipid, a triglyceride, cholesterol (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , or free fatty acids in a plasma, or a tissue sample, and/or a reduction in accumulation of fat and/or expansion of lipid droplets in the liver.
- a method of treating a disease or condition associated with the presence of HSD17B13 protein including: administering to a subject an effective amount of an embodiment of any aforementioned dsRNA agent aspect of the invention or an embodiment of any aforementioned composition of the invention, to inhibit HSD17B13 gene expression.
- the disease, disorder or condition associated with HSD17B13 is selected from the group consisting of: hepatitis, liver fibrosis, nonalcoholic steatohepatitis (NASH) , nonalcoholic fatty liver disease (NAFLD) , cirrhosis, Alcoholic Steatohepatitis (ASH) , alcoholic fatty liver disease (ALD) , HCV-related cirrhosis, drug-induced liver injury, hepatocellular necrosis and HSD17B13 related obesity.
- the method also includes: administering an additional therapeutic regimen to the subject.
- the additional therapeutic regimen includes a treatment for the HSD17B13-associated disease or condition.
- the additional therapeutic regimen comprises: administering to the subject one or more HSD17B13 antisense polynucleotides of the invention, administering to the subject a non-HSD17B13 dsRNA therapeutic agent, and a behavioral modification in the subject.
- the non-HSD17B13 dsRNA therapeutic agent is one or more of: pyridoxine, an ACE inhibitor (angiotensin converting enzyme inhibitors) , e.g., benazepril (Lotensin) ; an angiotensin II receptor antagonist (ARB) (e.g., losartan potassium, such as Merck&Co.
- the dsRNA agent is administered to the subject subcutaneously. In certain embodiments, the dsRNA agent is administered to the subject by IV administration. In some embodiments, the method also includes determining an efficacy of the administered double-stranded ribonucleic acid (dsRNA) agent in the subject.
- dsRNA double-stranded ribonucleic acid
- a means of determining an efficacy of the treatment in the subject comprises: (i) determining one or more physiological characteristics of the HSD17B13-associated disease or condition in the subject and (ii) comparing the determined physiological characteristic (s) to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition wherein the comparison indicates one or more of a presence, absence, and level of efficacy of the administration of the double-stranded ribonucleic acid (dsRNA) agent to the subject.
- dsRNA double-stranded ribonucleic acid
- expression of the HSD17B13 gene can be assessed based on the level or change in level of any variable associated with HSD17B13 gene expression, such as HSD17B13 mRNA level, HSD17B13 protein level and/or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver.
- any variable associated with HSD17B13 gene expression such as HSD17B13 mRNA level, HSD17B13 protein level and/or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , the free fatty acids level in the plasma or
- a method of decreasing a level of HSD17B13 protein in a subject compared to a baseline pre-treatment level of HSD17B13 protein in the subject including administering to the subject an effective amount of an embodiment of any aforementioned dsRNA agent of the invention or an embodiment of any aforementioned composition of the invention, to decrease the level of HSD17B13 gene expression.
- the dsRNA agent is administered to the subject subcutaneously or is administered to the subject by IV administration.
- a method of altering a physiological characteristic of a HSD17B13-associated disease or condition in a subject compared to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition in the subject including administering to the subject an effective amount of an embodiment of any aforementioned dsRNA agent of the invention or an embodiment of any aforementioned composition of the invention, to alter the physiological characteristic of the HSD17B13-associated disease or condition in the subject.
- the dsRNA agent is administered to the subject subcutaneously or is administered to the subject by IV administration.
- the physiological characteristic is one or more of: HSD17B13 mRNA level, HSD17B13 protein level and/or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver.
- the aforementioned dsRNA agent for use in a method of treating a disease or condition associated with the presence of HSD17B13 protein.
- the disease or condition is one or more of: hepatitis, liver fibrosis, simple fatty liver (steatosis) , nonalcoholic steatohepatitis (NASH) , nonalcoholic fatty liver disease (NAFLD) , cirrhosis of the liver, Alcoholic Steatohepatitis (ASH) , alcoholic fatty liver disease (ALD) , HCV-related cirrhosis, drug-induced liver injury, hepatocellular necrosis and HSD17B13 related obesity.
- an antisense polynucleotide agent for inhibiting expression of HSD17B13 protein including from 10 to 30 contiguous nucleotides, wherein at least one of the contiguous nucleotides is a modified nucleotide, and wherein the nucleotide sequence of the agent is about80%complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NO: 1.
- the equivalent region is any one of the target regions of SEQ ID NO: 1 and the complementary sequence is one provided in one of Tables 1-3.
- the antisense polynucleotide agent includes one of the antisense sequences provided in one of Tables 1-3.
- compositions including an embodiment of any aforementioned antisense polynucleotide agents is provided.
- the composition also includes a pharmaceutically acceptable carrier.
- the composition also includes one or more additional therapeutic agents for treatment of a HSD17B13-associated disease or condition.
- the composition is packaged in a kit, container, pack, dispenser, pre-filled syringe, or vial.
- the composition is formulated for subcutaneous or IV administration.
- a cell that includes an embodiment of any of the aforementioned antisense polynucleotide agents is provided.
- the cell is a mammalian cell, optionally a human cell.
- a method of inhibiting the expression of a HSD17B13 gene in a cell including: (i) preparing a cell including an effective amount of an embodiment of any aforementioned antisense polynucleotide agents. In some embodiments, the method also includes (ii) maintaining the cell prepared in (i) for a time sufficient to obtain degradation of the mRNA transcript of a HSD17B13 gene, thereby inhibiting expression of the HSD17B13 gene in the cell.
- a method of inhibiting expression of a HSD17B13 gene in a subject including administering to the subject an effective amount of an embodiment of any of the aforementioned antisense polynucleotide agent.
- a method of treating a disease or condition associated with the presence of HSD17B13 protein including administering to a subject an effective amount of an embodiment of any of the aforementioned antisense polynucleotide agents or an embodiment of any aforementioned composition of the invention, to inhibit HSD17B13 gene expression.
- the disease or condition is one or more of: hepatitis, liver fibrosis, nonalcoholic steatohepatitis (NASH) , nonalcoholic fatty liver disease (NAFLD) , cirrhosis, Alcoholic Steatohepatitis (ASH) , alcoholic fatty liver disease (ALD) , HCV-related cirrhosis, drug-induced liver injury, hepatocellular necrosis and HSD17B13 related obesity.
- NASH nonalcoholic steatohepatitis
- NAFLD nonalcoholic fatty liver disease
- ASH Alcoholic Steatohepatitis
- ALD alcoholic fatty liver disease
- HCV-related cirrhosis drug-induced liver injury
- hepatocellular necrosis and HSD17B13 related obesity
- a method of decreasing a level of HSD17B13 protein in a subject compared to a baseline pre-treatment level of HSD17B13 protein in the subject including administering to the subject an effective amount of an embodiment of any of the aforementioned antisense polynucleotide agents or an embodiment of any aforementioned composition of the invention, to decrease the level of HSD17B13 gene expression.
- the antisense polynucleotide agent is administered to the subject subcutaneously or by IV administration.
- an antisense polynucleotide agent for inhibiting expression of HSD17B13 gene including from 10 to 30 contiguous nucleotides, wherein at least one of the contiguous nucleotides is a modified nucleotide, and wherein the nucleotide sequence of the agent is about 80%or about 85%complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NO: 1.
- a method of altering a physiological characteristic of a HSD17B13-associated disease or condition in a subject compared to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition in the subject including administering to the subject an effective amount of an embodiment of any of the aforementioned antisense polynucleotide agents or an embodiment of any aforementioned composition of the invention, to alter the physiological characteristic of the HSD17B13 disease or condition in the subject.
- the antisense polynucleotide agent is administered to the subject subcutaneously or by IV administration.
- the physiological characteristic is one or more of: HSD17B13 mRNA level, HSD17B13 protein level and/or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver.
- SEQ ID NO: 1and SEQ ID NO: 2 are Homo sapiens 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: NM_178135.5] .
- SEQ ID NO: 3 and SEQ ID NO: 4 are Homo sapiens 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence:NM_001136230.3] .
- SEQ ID NO: 5 and SEQ ID NO: 6 are Homo sapiens 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: HGNC Symbol; Acc: HGNC: 18685; Transcript: ENST00000302219.10] .
- SEQ ID NO: 7 and SEQ ID NO: 8 are Predicted Macaca fascicularis 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: XM_005555367.2] .
- SEQ ID NO: 9 and SEQ ID NO: 10 are Predicted Macaca fascicularis 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: HGNC Symbol; Acc: HGNC: 18685; Transcript: ENSMFAT00000009821.2] .
- SEQ ID NO: 11 and SEQ ID NO: 12 are Predicted Macaca fascicularis 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: HGNC Symbol; Acc: HGNC: 18685; Transcript: ENSMFAT00000009826.2] .
- SEQ ID NO: 13 and SEQ ID NO: 14 are Predicted Macaca mulatta 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: XM_015138766.2] .
- SEQ ID NO: 15 and SEQ ID NO: 16 are Predicted Macaca mulatta 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: HGNC Symbol; Acc: VGNC: 73417; Transcript: ENSMMUT00000062701.2] .
- SEQ ID NO: 17 and SEQ ID NO: 18 are Mus musculus 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: NM_001163486.1] .
- SEQ ID NO: 21 and SEQ ID NO: 22 are Mus musculus 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: MGI Symbol; Acc: MGI: 2140804; Transcript: ENSMUST00000048118.15] .
- SEQ ID NO: 27 and SEQ ID NO: 28 are Rattus norvegicus 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: NM_001009684.1] .
- SEQ ID NO: 29 and SEQ ID NO: 30 are Rattus norvegicus 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: XR_005492928.1] .
- SEQ ID NO: 31 and SEQ ID NO: 32 are Rattus norvegicus 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: RGD Symbol; Acc: 1359553; Transcript: ENSRNOT00000038188.2] .
- SEQ ID Nos: 33-288, 837-917 are shown in Table 1 and are sense strand sequences.
- SEQ ID Nos: 289-544, 918-998 are shown in Table 1 and are antisense strand sequences.
- SEQ ID NOs: 751-836, 1179-1188 are shown in Table 3.
- a delivery molecule is indicated as “GLX-__” at the 3’ end or 5’ end of each sense strand.
- the invention in part, includes RNAi agents, for example, though not limited to double stranded (ds) RNAi agents, which are capable of inhibiting 17 ⁇ -hydroxysteroid dehydrogenase type 13 (HSD17B13) gene expression.
- the invention in part also includes compositions comprising HSD17B13 RNAi agents and methods of use of the compositions.
- HSD17B13 RNAi agents disclosed herein may be attached to delivery compounds for delivery to cells, including to hepatocytes.
- Pharmaceutical compositions of the invention may include at least one ds HSD17B13 agent and a delivery compound.
- the delivery compound is a GalNAc-containing delivery compound.
- RNAi agents delivered to cells are capable of inhibiting HSD17B13 gene expression, thereby reducing activity in the cell of the HSD17B13 protein product of the gene.
- dsRNAi agents of the invention can be used to treat HSD17B13-associated diseases and conditions.
- reducing HSD17B13 expression in a cell or subject treats a disease or condition associated with HSD17B13 expression in the cell or subject, respectively.
- diseases and conditions that may be treated by reducing HSD17B13 activity are: hepatitis, liver fibrosis, nonalcoholic steatohepatitis (NASH) , nonalcoholic fatty liver disease (NAFLD) , cirrhosis, Alcoholic Steatohepatitis (ASH) , alcoholic fatty liver disease (ALD) , HCV-related cirrhosis, drug-induced liver injury, hepatocellular necrosis, HSD17B13 related obesity, or other diseases for which reducing a level and activity of HSD17B13 protein is medically beneficial.
- NASH nonalcoholic steatohepatitis
- NAFLD nonalcoholic fatty liver disease
- ASH Alcoholic Steatohepatitis
- ALD alcoholic fatty liver disease
- HCV-related cirrhosis drug-induced liver injury, hepat
- G, " C, “ “A” and “U” each generally stands for a nucleotide that contains guanine, cytosine, adenine, and uracil as a base, respectively.
- ribonucleotide or “nucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety.
- guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety.
- nucleotide comprising inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil.
- nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of the invention by a nucleotide containing, for example, inosine. Sequences comprising such replacement moieties are embodiments of the invention.
- 17 ⁇ -hydroxysteroid dehydrogenase type 13 used interchangeably with the term “HSD17B13” refers to the naturally occurring gene that encodes a 17-hydroxysteroid dehydrogenase type 13 protein from any vertebrate or mammalian source, including, but not limited to, human, bovine, chicken, rodent, mouse, rat, porcine, ovine, primate, monkey, and guinea pig, unless specified otherwise.
- the term also refers to fragments and variants of native HSD17B13 that maintain at least one in vivo or in vitro activity of a native HSD17B13.
- the amino acid and complete coding sequences of the reference sequence of the human HSD17B13 gene may be found in, for example, GenBank Ref Seq Accession No. NM_178135.5 (SEQ ID NO: 1and SEQ ID NO: 2) ; GenBank Ref Seq Accession No. NM_001136230.3 (SEQ ID NO: 3 and SEQ ID NO: 4) ; HGNC Transcript: ENST00000302219.10 (SEQ ID NO: 5 and SEQ ID NO: 6) .
- Mammalian orthologs of the human HSD17B13 gene may be found in, for example, GenBank Ref Seq Accession No.
- XM_005555367.2 cynomolgus monkey (SEQ ID NO: 7 and SEQ ID NO: 8) ; HGNC Transcript: ENSMFAT00000009821.2, cynomolgus monkey (SEQ ID NO: 9 and SEQ ID NO: 10) ; HGNC Transcript: ENSMFAT00000009826.2, cynomolgus monkey (SEQ ID NO: 11and SEQ ID NO: 12) ; GenBank Ref Seq Accession No.
- NM_198030.2 mouse, (SEQ ID NO: 19 and SEQ ID NO: 20) ; MGI Transcript: ENSMUST00000048118.15, mouse, (SEQ ID NO: 21 and SEQ ID NO: 22) ; MGI Transcript: ENSMUST00000120320.8, mouse, (SEQ ID NO: 23 and SEQ ID NO: 24) ; MGI Transcript: ENSMUST00000112803.3, mouse, (SEQ ID NO: 25 and SEQ ID NO: 26) ; GenBank Ref Seq Accession No. NM_001009684.1, rat (SEQ ID NO: 27 and SEQ ID NO: 28) ; GenBank Ref Seq Accession No.
- HSD17B13 mRNA sequences are readily available using publicly available databases, e.g., GenBank, UniProt, Ensembl and OMIM.
- RNAi is also known in the art, and may be referred to as “siRNA” .
- a target sequence may be from 8-30 nucleotides long (inclusive) , from 10 -30 nucleotides long (inclusive) , from 12-25 nucleotides long (inclusive) , from 15-23 nucleotides long (inclusive) , from 16-23 nucleotides long (inclusive) , or from 18–23 nucleotides long (inclusive) , including all shorter lengths within each stated range.
- a target sequence is 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or 26 nucleotides long.
- a target sequence is between 9 and 26 nucleotides long (inclusive) , including all sub-ranges and integers there between.
- a target sequence is 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides long, with the sequence fully or at least substantially complementary to at least part of an RNA transcript of a HSD17B13 gene.
- Some aspects of the invention include pharmaceutical compositions comprising one or more HSD17B13 dsRNA agents and a pharmaceutically acceptable carrier.
- a HSD17B13 RNAi as described herein inhibits expression of HSD17B13 protein.
- a “dsRNA agent” means a composition that contains an RNA or RNA-like (e.g., chemically modified RNA) oligonucleotide molecule that is capable of degrading or inhibiting translation of messenger RNA (mRNA) transcripts of a target mRNA in a sequence specific manner.
- dsRNA agents of the invention may operate through the RNA interference mechanism (i.e., inducing RNA interference through interaction with the RNA interference pathway machinery (RNA-induced silencing complex or RISC) of mammalian cells) , or by any alternative mechanism (s) or pathway (s) .
- DsRNA agents disclosed herein are comprised of a sense strand and an antisense strand, and include, but are not limited to: short interfering RNAs (siRNAs) , RNAi agents, micro RNAs (miRNAs) , short hairpin RNAs (shRNA) , and dicer substrates.
- the antisense strand of the dsRNA agents described herein is at least partially complementary to the mRNA being targeted. It is understood in the art that different lengths of dsRNA duplex structure can be used to inhibit target gene expression.
- HSD17B13 dsRNAs in certain embodiments of the invention can include at least one strand of a length of minimally 21 nt or may have shorter duplexes based on one of the sequences set forth in any one of Tables 1-3, but minus 1, 2, 3, or 4 nucleotides on one or both ends may also be effective as compared to the dsRNAs set forth in Tables 1-3, respectively.
- Sense and antisense strands included in a dsRNA of the invention are independently selected.
- independently selected means each of two or more like elements can be selected independent of the selection of the other elements. For example, though not intended to be limiting, in preparing a dsRNA of the invention, one may select the “elements” of the two strands to include in the duplex.
- the sense sequence may be SEQ ID NO: 546 (shown in Table 2) and the other selected element, the antisense sequence, may be SEQ ID NO: 649, or may be SEQ ID NO: 649that is modified, shortened, lengthened, and/or includes 1, 2, or 3 substitutions as compared to its parent sequence SEQ ID NO: 649. It will be understood that a duplex of the invention need not include both sense and antisense sequences shown as paired in duplexes in Tables 1-3. Each sense and antisense strand sequence in the tables is immediately followed by its SEQ ID NO.
- compositions and methods of the invention comprise a single-strand RNA in a composition and/or administered to a subject.
- an antisense strand such as one listed in any one of Tables 1-3 may be a composition or in a composition administered to a subject to reduce HSD17B13 polypeptide activity and/or expression of HSD17B13 gene in the subject.
- Tables 1-3 show certain HSD17B13 dsRNA agent antisense strand and sense strand core stretch base sequences.
- a single-strand antisense molecule that may be included in certain compositions and/or administered in certain methods of the invention are referred to herein as a “single-strand antisense agent” or an “antisense polynucleotide agent” .
- a single-stranded sense sequence may be identified with a “Sense strand SS#” ; a single stranded antisense sequence may be identified with an “Antisense strand AS#” and a duplex that includes a sense strand and an antisense strand may be identified with a “Duplex AD#/AV#” .
- n can represent a nucleotide comprising any one of nucleobases a, u, c, g, and t and can be independently selected for the sense and antisense strand, and each “n” in the sense strand or the antisense strand can be the same or different.
- nucleobase “n” selected and included in a position in a sense strand is not the same nucleobase as “n” in the antisense strand with which the sense strand pairs, but rather is generally complementary to the nucleobase “n” at the matching position in the opposite strand.
- nucleobase in position 1 of the sense strand and nucleobase 18 in the antisense strand are in matching positions
- nucleobase 4 in the sense strand and nucleobase 15 in the antisense strand are in matching positions.
- an “n” at position 1 of sense strand is generally complementary to (n) at position 21 of antisense strand.
- position 1 of sense strand is “g” then position 21 of antisense strand is “c” ; and (2)if position 1 of sense strand is “a” then position 21 of antisense strand is “u” or “t” .
- This type of complimentary matching pairing applies to (n) at position 2 of sense strand and position 20 of antisense strand; (n) at position 21 of sense strand and position 1 of antisense strand.
- n can be any nucleotide at these positions, the nucleotides of sense and antisense strand are generally still complementary (match) , however, in certain embodiments, they may have mismatch.
- n can be “random” , meaning might but need not be complementary.
- n is complementary.
- “n” in position of 1of antisense is “u” and “n” in position of 21 of sense strand is “a” .
- Askilled artisan will understand how to identify matching positions in sense and antisense strands that are or will be duplexed strands and paired strands.
- an RNAi agent comprising a polynucleotide sequence shown in Table 1 is administered to a subject.
- an RNAi agent administered to a subject comprises is a duplex comprising at least one of the base sequences set forth in Table 1, including 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 sequence modifications.
- an RNAi agent comprising a polynucleotide sequence shown in Table 1 is attached to a delivery molecule, a non-limiting example of which is a delivery compound comprising a GalNAc compound, or a GLS-15 compound.
- Table 2 shows certain chemically modified HSD17B13 RNAi agent antisense strand and sense strand sequences of the invention.
- an RNAi agent with a polynucleotide sequence shown in Table 2 is administered to a cell and/or subject.
- an RNAi agent with a polynucleotide sequence shown in Table 2 is administered to a subject.
- an RNAi agent administered to a subject comprises is a duplex identified in a row in Table 2, column one and includes the sequence modifications show in the sense and antisense strand sequences in the same row in Table 2, columns three and six, respectively.
- Table 1 shows base single-strand sequences SEQ ID NO: 33 (sense) and SEQ ID NO: 289 (antisense) , which together are the double-stranded duplex identified as: Duplex AD#AD00519.
- Table 2 lists Duplex AV#AV00519, which indicates that the duplex of SEQ ID NO: 545 and SEQ ID NO: 648includes base sequences of SEQ ID NO: 33 and SEQ ID NO: 289, respectively, but with the chemical modifications shown in the sense and antisense sequences shown in columns three and six, respectively.
- the “Sense strand SS#” in Table 2 column two is the assigned identifier for the Sense Sequence (including modifications) shown column3 in the same row.
- the “Antisense strand AS#” in Table 2 column five is the assigned identifier for the Antisense sequence (including modifications) shown in column six.
- Table 3 shows certain chemically modified HSD17B13 RNAi agent antisense strand and sense strand sequences of the invention.
- RNAi agents shown in Table 3 are administered to a cell and/or subject.
- an RNAi agent with a polynucleotide sequence shown in Table 3 is administered to a subject.
- an RNAi agent administered to a subject comprises is a duplex identified in a row in Table 3, column one and includes the sequence modifications and/or delivery compound show in the sense and antisense strand sequences in the same row in Table 3, columns three and six, respectively. The sequences were used in certain in vivo testing studies described elsewhere herein.
- a sequence shown in Table 3 may be attached to (also referred to herein as “conjugated to” ) a compound for delivery, a non-limiting example of which is a GalNAc-containing compound, with a delivery compound identified in Table 3 as “GLX-n” on sense strands in column three.
- GLX-n is used to represent either a “GLS-n” or a GLO-n” delivery compound ( “X” can be either “S” or “O” ) and GLX-0can be any of the “GLS-n” and “GLO-n” delivery compounds that can be attached to 3'-end of oligonucleotide during synthesis.
- GLX-n is used to indicate the attached GalNAc-containing compound is any one of compounds GLS-1, GLS-2, GLS-3, GLS-4, GLS-5, GLS-6, GLS-7, GLS-8, GLS-9, GLS-10, GLS-11, GLS-12, GLS-13, GLS-14, GLS-15, GLS-16, GLO-1, GLO-2, GLO-3, GLO-4, GLO-5, GLO-6, GLO-7, GLO-8, GLO-9, GLO-10, GLO-11, GLO-12, GLO-13, GLO-14, GLO-15, and GLO-16, The structure of each of which is provided elsewhere herein.
- dsRNA compound of the invention in which the attached delivery compound is one of GLS-1, GLS-2, GLS-3, GLS-4, GLS-5, GLS-6, GLS-7, GLS-8, GLS-9, GLS-10, GLS-11, GLS-12, GLS-13, GLS-14, GLS-15, GLS-16, GLO-1, GLO-2, GLO-3, GLO-4, GLO-5, GLO-6, GLO-7, GLO-8, GLO-9, GLO-10, GLO-11, GLO-12, GLO-13, GLO-14, GLO-15, and GLO-16.
- Duplex AD#AD00462 is the duplex of sense strand SEQ ID NO: 752 and antisense strand SEQ ID NO: 795.
- Each line in Table 3 provides a sense strand and an antisense strand, and discloses the duplex of the sense and antisense strands shown.
- the “Sense strand SS#” in Table 3 column two is the assigned identifier for the Sense Sequence (including modifications) shown column 3 in the same row.
- The“Antisense strand AS#” in Table 3 column five is the assigned identifier for the Antisense sequence (including modifications) shown in column six.
- GLO-0 is refers to the compound GalNAc3 in Jayaprakash, et al., (2014) J. Am. Chem. Soc., 136, 16958-16961 or compound L96 in WO2015006740.
- a dsRNA (also referred to herein as a “duplex” ) is one disclosed in one of Tables 1-3.
- Tables 1-3 Each row in Tables 1-3 discloses a duplex comprising the sequence of the sense strand and the sequence of the antisense strand in that table row.
- a duplex of the invention may include sense and antisense sequences shown in Tables 1-3, that differ by zero, one, two, or three nucleotides shown in a sequence shown in Tables 1-3.
- an antisense strand in a duplex of the invention may be SEQ ID NO: 808, 809, 810, 811, 815, 816, or 817, with zero, one, two, or three different nucleotides than those in SEQ ID NO: 808, 809, 810, 811, 815, 816, or 817, respectively.
- a dsRNA of the invention may comprise a sense strand and an antisense strand of a duplex disclosed in a row in Tables 1-3.
- one or both of the selected sense and antisense strand in the dsRNA may include sequences shown in Tables 1-3 but with one or both of the sense and antisense sequences including1, 2, 3, or more nucleobase substitutions from the parent sequence.
- the selected sequences may in some embodiments be longer or shorter than their parent sequence.
- dsRNA agents included in the invention can but need not include exact sequences of the sense and antisense pairs disclosed as duplexes in Tables 1-3.
- a dsRNA agent comprises a sense strand and an antisense strand, nucleotide positions 2 to 18 in the antisense strand comprising a region of complementarity to a HSD17B13 RNA transcript, wherein the region of complementarity comprises at least 15 contiguous nucleotides that differ by 0, 1, 2, or 3nucleotides from one of the antisense sequences listed in one of Tables 1-3, and optionally comprising a targeting ligand.
- the region of complementarity to the HSD17B13 RNA transcript comprises at least 15, 16, 17, 18, or 19 contiguous nucleotides that differ by no more than 3 nucleotides from one of the antisense sequences listed in one of Tables 1-3.
- the antisense strand of the dsRNA is at least substantially complementary to any one of a target region of SEQ ID NO: 1 and is provided in any one of Tables 1-3.
- an antisense strand of a dsRNA agent of the invention is fully complementary to any one of a target region of SEQ ID NO: 1 and is provided in any one of Tables 1-3.
- a dsRNA agent includes a sense strand sequence set forth in any one of Tables 1-3, and the sense strand sequence is at least substantially complementary to the antisense strand sequence in the dsRNA agent.
- a dsRNA agent of the invention comprises a sense strand sequence set forth in any one of Tables 1-3, and the sense strand sequence is fully complementary to the antisense strand sequence in the dsRNA agent.
- a dsRNA agent of the invention comprises an antisense strand sequence set forth in any one of Tables 1-3.
- Some embodiments of a dsRNA agent of the invention comprises the sense and antisense sequences disclosed as duplex in any of Tables 1-3. As described herein, it will be understood that the sense and antisense strands in a duplex of the invention may be independently selected.
- HSD17B13 dsRNA agent may contain one or more mismatches to the HSD17B13 target sequence.
- HSD17B13 dsRNA agent of the invention includes no mismatches.
- HSD17B13 dsRNA agent of the invention includes no more than1 mismatch.
- HSD17B13 dsRNA agent of the invention includes no more than2 mismatches.
- HSD17B13 dsRNA agent of the invention includes no more than3 mismatches.
- an antisense strand of a HSD17B13 dsRNA agent contains mismatches to a HSD17B13 target sequence that are not located in the center of the region of complementarity.
- the antisense strand of the HSD17B13 dsRNA agent includes 1, 2, 3, 4, or more mismatches that are within the last 5, 4, 3, 2, or 1 nucleotide from one or both of the 5' or 3' end of the region of complementarity.
- the term “complementary, ” when used to describe a first nucleotide sequence (e.g., HSD17B13 dsRNA agent sense strand or targeted HSD17B13 mRNA) in relation to a second nucleotide sequence (e.g., HSD17B13 dsRNA agent antisense strand or a single-stranded antisense polynucleotide) means the ability of an oligonucleotide or polynucleotide including the first nucleotide sequence to hybridize [form base pair hydrogen bonds under mammalian physiological conditions (or similar conditions in vitro) ] and form a duplex or double helical structure under certain conditions with an oligonucleotide or polynucleotide including the second nucleotide sequence.
- Complementary sequences include Watson-Crick base pairs or non-Watson-Crick base pairs and include natural or modified nucleotides or nucleotide mimics, at least to the extent that the above hybridization requirements are fulfilled. Sequence identity or complementarity is independent of modification.
- Complementary sequences for example, within a HSD17B13 dsRNA as described herein, include base-pairing of the oligonucleotide or polynucleotide comprising a first nucleotide sequence to an oligonucleotide or polynucleotide comprising a second nucleotide sequence over the entire length of one or both nucleotide sequences.
- Such sequences can be referred to as “fully complementary” with respect to each other herein. It will be understood that in embodiments when two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs are not regarded herein as mismatches with regard to the determination of complementarity.
- a HSD17B13 dsRNA agent comprising one oligonucleotide 19 nucleotides in length and another oligonucleotide 20 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 19 nucleotides that is fully complementary to the shorter oligonucleotide, can yet be referred to as “fully complementary” for the purposes described herein.
- “fully complementary” means that all (100%) of the bases in a contiguous sequence of a first polynucleotide will hybridize with the same number of bases in a contiguous sequence of a second polynucleotide.
- the contiguous sequence may comprise all or a part of a first or second nucleotide sequence.
- substantially complementary means that in a hybridized pair of nucleobase sequences, at least about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, but not all, of the bases in a contiguous sequence of a first polynucleotide will hybridize with the same number of bases in a contiguous sequence of a second polynucleotide.
- substantially complementary can be used in reference to a first sequence with respect to a second sequence if the two sequences include one or more, for example at least 1, 2, 3, 4, or 5 mismatched base pairs upon hybridization for a duplex up to 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 base pairs (bp) , while retaining the ability to hybridize under the conditions most relevant to their ultimate application, e.g., inhibition of HSD17B13 gene expression via a RISC pathway.
- partially complementary may be used herein in reference to a hybridized pair of nucleobase sequences, in which at least 75%, but not all, of the bases in a contiguous sequence of a first polynucleotide will hybridize with the same number of bases in a contiguous sequence of a second polynucleotide.
- “partially complementary” means at least 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%of the bases in a contiguous sequence of a first polynucleotide will hybridize with the same number of bases in a contiguous sequence of a second polynucleotide.
- nucleic acid sequence comprising a sequence with at least about85%sequence identity or more, preferably at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, compared to a reference sequence. Percentage of sequence identity is determined by comparing two optimally aligned sequences over a comparison window.
- the percentage is calculated by determining the number of positions at which the identical nucleic acid base occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.
- the inventions disclosed herein encompasses nucleotide sequences substantially identical to those disclosed herein. e.g., in Tables 1-3. In some embodiments, the sequences disclosed herein are exactly identical, or at least about85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%percent identical to those disclosed herein, e.g., in Tables 1-3.
- strand comprising a sequence means an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.
- double-stranded RNA or “dsRNA, ” as used herein, refers to an RNAi that includes an RNA molecule or complex of molecules having a hybridized duplex region comprising two anti-parallel and substantially or fully complementary nucleic acid strands, which are referred to as having “sense” and “antisense” orientations with respect to a target HSD17B13 RNA.
- the duplex region can be of any length that permits specific degradation of a desired target HSD17B13 RNA through a RISC pathway, but will typically range from 9 to 30 base pairs in length, e.g., 15-30 base pairs in length.
- the duplex can be any length in this range, for example, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30, and any sub-range therein between, including, but not limited to 15-30base pairs, 15-26 base pairs, 15-23 base pairs, 15-22 base pairs, 15-21 base pairs, 15-20 base pairs, 15-19 base pairs, 15-18 base pairs, 15-17 base pairs, 18-30 base pairs, 18-26 base pairs, 18-23 base pairs, 18-22 base pairs, 18-21 base pairs, 18-20 base pairs, 19-30 base pairs, 19-26 base pairs, 19-23 base pairs, 19-22 base pairs, 19-21 base pairs, 19-20 base pairs, 20-30 base pairs, 20-26 base pairs, 20-25 base pairs, 20-24 base pairs,
- HSD17B13 dsRNA agents generated in the cell by processing with Dicer and similar enzymes are generally in the range of 19-22 base pairs in length.
- One strand of the duplex region of a HSD17B13 dsDNA agent comprises a sequence that is substantially complementary to a region of a target HSD17B13 RNA.
- the two strands forming the duplex structure can be from a single RNA molecule having at least one self-complementary region, or can be formed from two or more separate RNA molecules.
- the molecule can have a duplex region separated by a single stranded chain of nucleotides (herein referred to as a “hairpin loop” ) between the 3'-end of one strand and the 5'-end of the respective other strand forming the duplex structure.
- a hairpin look comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more unpaired nucleotides.
- RNA is also used herein to refer to a dsRNA agent as described herein.
- a HSD17B13 dsRNA agent may include a sense and antisense sequence that have no-unpaired nucleotides or nucleotide analogs at one or both terminal ends of the dsRNA agent.
- An end with no unpaired nucleotides is referred to as a “blunt end” and as having no nucleotide overhang. If both ends of a dsRNA agent are blunt, the dsRNA is referred to as “blunt ended.
- a first end of a dsRNA agent is blunt, in some embodiments a second end of a dsRNA agent is blunt, and in certain embodiments of the invention, both ends of a HSD17B13 dsRNA agent are blunt.
- the dsRNA does not have one or two blunt ends.
- a dsRNA can comprise an overhang of at least e 1, 2, 3, 4, 5, 6, or more nucleotides.
- a nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside.
- nucleotide overhang is on a sense strand of a dsRNA agent, on an antisense strand of a dsRNA agent, or on both ends of a dsRNA agent and nucleotide (s) of an overhang can be present on the 5' end, 3' end or both ends of either an antisense or sense strand of a dsRNA.
- nucleotides in an overhang is replaced with a nucleoside thiophosphate.
- antisense strand or “guide strand” refers to the strand of a HSD17B13 dsRNA agent that includes a region that is substantially complementary to a HSD17B13 target sequence.
- sense strand, ” or “passenger strand” refers to the strand of a HSD17B13 dsRNA agent that includes a region that is substantially complementary to a region of the antisense strand of the HSD17B13 dsRNA agent.
- the RNA of a HSD17B13 RNAi agent is chemically modified to enhance stability and/or one or more other beneficial characteristics.
- Nucleic acids in certain embodiments of the invention may be synthesized and/or modified by methods well established in the art, for example, those described in “Current protocols in Nucleic Acid Chemistry, " Beaucage, S.L. et al. (Eds. ) , John Wiley&Sons, Inc., New York, N.Y., USA, which is incorporated herein by reference.
- Modifications that can be present in certain embodiments of HSD17B13 dsRNA agents of the invention include, for example, (a) end modifications, e.g., 5' end modifications (phosphorylation, conjugation, inverted linkages, etc. ) 3' end modifications (conjugation, DNA nucleotides, inverted linkages, etc.
- base modifications e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides) , or conjugated bases,
- sugar modifications e.g., at the 2' position or 4' position
- replacement of the sugar as well as backbone modifications, including modification or replacement of the phosphodiester linkages.
- RNA compounds useful in certain embodiments of HSD17B13 dsRNA agents, HSD17B13 antisense polynucleotides, and HSD17B13 sense polynucleotides of the invention include, but are not limited to RNAs comprising modified backbones or non-natural internucleoside linkages.
- an RNA having a modified backbone may not have a phosphorus atom in the backbone.
- RNAs that do not have a phosphorus atom in their internucleoside backbone may be referred to as oligonucleosides.
- a modified RNA has a phosphorus atom in its internucleoside backbone.
- RNA molecule or “RNA” or “ribonucleic acid molecule” encompasses not only RNA molecules as expressed or found in nature, but also analogs and derivatives of RNA comprising one or more ribonucleotide/ribonucleoside analogs or derivatives as described herein or as known in the art.
- ribonucleoside and “ribonucleotide” may be used interchangeably herein.
- An RNA molecule can be modified in the nucleobase structure or in the ribose-phosphate backbone structure, e.g., as described herein below, and molecules comprising ribonucleoside analogs or derivatives must retain the ability to form a duplex.
- an RNA molecule can also include at least one modified ribonucleoside including but not limited to a 2'-O-methyl modified nucleoside, anucleoside comprising a 5' phosphorothioate group, a terminal nucleoside linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group, a locked nucleoside, an abasic nucleoside, a 2'-deoxy-2'-fluoro modified nucleoside, a 2'-amino-modified nucleoside, 2'-alkyl-modified nucleoside, morpholino nucleoside, a phosphoramidate or a non-natural base comprising nucleoside, or any combination thereof.
- a 2'-O-methyl modified nucleoside anucleoside comprising a 5' phosphorothioate group, a terminal nucleoside linked to a cholesteryl derivative or dodecanoic acid bisdecyl
- an RNA molecule comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or up to the full length of the HSD17B13 dsRNA agent molecule’s ribonucleosides that are modified ribonucleosides.
- the modifications need not be the same for each of such a plurality of modified ribonucleosides in an RNA molecule.
- dsRNA agents, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides of the invention may, in some embodiments comprise one or more independently selected modified nucleotide and/or one or more independently selected non- phosphodiester linkage.
- internucleotide linkage As used herein, the terms “internucleotide linkage” , “internucleoside linkage” , “linkage” , and “linker” may be used interchangeably, and refer to the linking groups between unmodified or modified nucleosides, and/or between an unmodified or modified nucleoside and one or more targeting groups in an oligonucleotide strand.
- the linkage may be independently selected from a phosphodiester (PO) linkage, a phosphorothioate (PS) linkage, and/or a phosphorodithioate (PS2) linkage of a dinucleotide at any position of single stranded or double stranded oligonucleotide.
- PO phosphodiester
- PS phosphorothioate
- PS2 phosphorodithioate
- nucleotide base As used herein, a “nucleotide base, ” “nucleotide, ” or “nucleobase” is a heterocyclic pyrimidine or purine compound, which is a standard constituent of all nucleic acids, and includes the bases that form the nucleotides adenine, guanine, cytosine, thymine, and uracil.
- Anucleobase may further be modified to include, though not intended to be limiting: universal bases, hydrophobic bases, promiscuous bases, size-expanded bases, and fluorinated bases.
- ribonucleotide or “nucleotide” may be used herein to refer to an unmodified nucleotide, a modified nucleotide, or a surrogate replacement moiety.
- guanine, cytosine, adenine, and uracil can be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety.
- C1-6 alkyl optionally substituted by halogen or cyano means that halogen or cyano may, but not necessarily, be present, including the case where alkyl is substituted by halogen or cyano and the case where alkyl is not substituted by halogen and cyano.
- the bond represents an unspecified configuration, i.e., if a chiral isomer is present in the chemical structure, the bond can be orboth two configurations.
- the present disclosure may include all isomers, such as tautomers, rotamers, and mixtures thereof.
- Suitable chiral compounds include: geometric isomers, diastereomers, racemates and enantiomers.
- modified RNAs contemplated for use in methods and compositions described herein are peptide nucleic acids (PNAs) that have the ability to form the required duplex structure and that permit or mediate the specific degradation of a target RNA via a RISC pathway.
- PNAs peptide nucleic acids
- a HSD17B13 RNA interference agent includes a single stranded RNA that interacts with a target HSD17B13 RNA sequence to direct the cleavage of the target HSD17B13 RNA.
- Modified RNA backbones can include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5'linkages, 2'-5'linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'.
- Modified RNA backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages.
- morpholino linkages formed in part from the sugar portion of a nucleoside
- siloxane backbones siloxane backbones
- sulfide, sulfoxide and sulfone backbones formacetyl and thioformacetyl backbones
- methylene formacetyl and thioformacetyl backbones alkene containing backbones
- sulfamate backbones methyleneimino and methylenehydrazino backbones
- sulfonate and sulfonamide backbones amide backbones
- others having mixed N, O, S and CH 2 component parts.
- Means of preparing modified RNA backbones that do not include a phosphorus atom are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents, certain modified HSD17B13 antisense polynucleotides, and/or certain modified HSD17B13 sense polynucleotides of the invention.
- RNA mimetics are included in HSD17B13 dsRNAs, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides, such as, but not limited to: replacement of the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units with novel groups.
- base units are maintained for hybridization with an appropriate HSD17B13 nucleic acid target compound.
- a peptide nucleic acid (PNA) is referred to as a peptide nucleic acid (PNA) .
- RNA In PNA compounds, the sugar backbone of an RNA is replaced with an amide containing backbone, in particular an aminoethylglycine backbone.
- the nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone.
- Means of preparing RNA mimetics are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents of the invention.
- RNAs with phosphorothioate backbones and oligonucleosides with heteroatom backbones and in particular-CH 2 -NH-CH 2 -, -CH 2 -N (CH 3 ) -O-CH 2 - [known as a methylene (methylimino) or MMI backbone] , -CH 2 -O-N (CH 3 ) -CH 2 -, -CH 2 -N (CH 3 ) -N (CH 3 ) -CH 2 -and-N (CH 3 ) -CH 2 - [wherein the native phosphodiester backbone is represented as-O-P-O-CH 2 -] .
- RNAs with phosphorothioate backbones and oligonucleosides with heteroatom backbones are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents, certain HSD17B13 antisense polynucleotides, and/or certain HSD17B13 sense polynucleotides of the invention.
- Modified RNAs can also contain one or more substituted sugar moieties.
- HSD17B13 dsRNAs, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides of the invention may comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S-or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C 1 to C 10 alkyl or C 2 to C 10 alkenyl and alkynyl.
- Exemplary suitable modifications include O [ (CH 2 ) n O] m CH 3 , O (CH 2 ) n OCH 3 , O (CH 2 ) n NH 2 , O (CH 2 ) n CH 3 , O (CH 2 ) n ONH 2 , and O (CH 2 ) n ON [ (CH 2 ) n CH 3 ) ] 2 , where n and m are from1 to about 10.
- dsRNAs include one of the following at the 2' position: C 1 to C 10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH 3 , OCN, Cl, Br, CN, CF 3 , OCF 3 , SOCH 3 , SO 2 CH 3 , ONO 2 , NO 2 , N 3 , NH 2 , heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of a HSD17B13 dsRNA agent, or a group for improving the pharmacodynamic properties of a HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide, and
- the modification includes a 2'-methoxyethoxy (2'-O-CH 2 CH 2 OCH 3 , also known as 2'-O- (2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78: 486-504) i.e., an alkoxy-alkoxy group.
- Another exemplary modification is 2'-dimethylaminooxyethoxy, i.e., a O (CH 2 ) 2 ON (CH 3 ) 2 group, also known as 2'-DMAOE, as described in examples herein below, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE) , i.e., 2'-O-CH 2 -O-CH 2 -N (CH 2 ) 2 .
- Means of preparing modified RNAs such as those described are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents of the invention.
- modifications include 2'-methoxy (2'-OCH 3 ) , 2'-aminopropoxy (2'-OCH 2 CH 2 CH 2 NH 2 ) and 2'-fluoro (2'-F) .
- Similar modifications can also be made at other positions on the RNA of a HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide of the invention, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked HSD17B13 dsRNAs, HSD17B13 antisense polynucleotides, or HSD17B13 sense polynucleotides, and the 5' position of 5' terminal nucleotide.
- HSD17B13 dsRNA agents, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar.
- sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar.
- a HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide may, in some embodiments, include nucleobase (often referred to in the art simply as "base” ) modifications or substitutions.
- nucleobase often referred to in the art simply as "base”
- “unmodified” or “natural” nucleobases include the purine bases adenine and guanine, and the pyrimidine bases thymine, cytosine and uracil.
- Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-Me-C) , 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil) , 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl
- nucleobases that may be included in certain embodiments of HSD17B13 dsRNA agents of the invention are known in the art, see for example: Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijn, P. Ed. Wiley-VCH, 2008; The Concise Encyclopedia Of Polymer Science And Engineering, pages858-859, Kroschwitz, J. L, Ed. John Wiley&Sons, 1990, English et al., Angewandte Chemie, International Edition, 1991, 30, 613, Sanghvi, Y S., Chapter 15, dsRNA Research and Applications, pages 289-302, Crooke, S.T. and Lebleu, B., Ed., CRC Press, 1993.
- Means of preparing dsRNAs, HSD17B13 antisense strand polynucleotides and/or HSD17B13 sense strand polynucleotides that comprise nucleobase modifications and/or substitutions such as those described herein are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents, HSD17B13 sense polynucleotides, and/or HSD17B13 antisense polynucleotides of the invention.
- Teachings regarding the synthesis of particular modified oligonucleotides may be found in the following U.S. patents: U.S. Pat. No. 5,218,105, drawn to polyamine conjugated oligonucleotides; U.S.
- 5,578,718, drawn to nucleosides having alkylthio groups, wherein such groups may be used as linkers to other moieties attached at any of a variety of positions of the nucleoside;
- U.S. Pat. No. 5,587,361 drawn to oligonucleotides having phosphorothioate linkages of high chiral purity;
- U.S. Pat. No. 5,506,351 drawn to processes for the preparation of 2'-O-alkyl guanosine and related compounds, including 2, 6-diaminopurine compounds;
- U.S. Pat. No. 5,587,469 drawn to oligonucleotides having N-2 substituted purines;
- HSD17B13 dsRNA agents, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides of the invention include RNA modified to include one or more locked nucleic acids (LNA) .
- LNA locked nucleic acids
- a locked nucleic acid is a nucleotide with a modified ribose moiety comprising an extra bridge connecting the 2' and 4' carbons. This structure effectively “locks” the ribose in the 3'-endo structural conformation.
- HSD17B13 dsRNA agent HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides of the invention may increase stability in serum, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research33 (1) : 439-447; Mook, O R. et al., (2007) Mol Canc Ther 6 (3) : 833-843; Grunweller, A. et al., (2003) Nucleic Acids Research31 (12) : 3185-3193) .
- HSD17B13 antisense polynucleotides and/or HSD17B13 sense polynucleotides that comprise locked nucleic acid (s) are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents of the invention.
- HSD17B13 dsRNA compounds, sense polynucleotides, and/or antisense polynucleotides of the invention include at least one modified nucleotide, wherein the at least one modified nucleotide comprises: 2’-O-methyl nucleotide, 2’-fluoro nucleotide, 2’-deoxy nucleotide, 2’ 3’-seco nucleotide mimic, locked nucleotide, 2’-F-Arabino nucleotide, 2’-methoyxyethyl nucleotide, 2’-amino-modified nucleotide, 2’-alkyl-modified nucleotide, mopholino nucleotide, and3’-OMe nucleotide, a nucleotide comprising a 5’-phosphorothioate group, a nucleotide comprising vinyl phosphonate, a nucleotide comprising
- HSD17B13 dsRNA compounds 3’ and 5’ end of sense polynucleotides, and/or 3’ end of antisense polynucleotides of the invention, include at least one modified nucleotide, wherein the at least one modified nucleotide comprises: abasic nucleotide, ribitol, inverted nucleotide, inverted abasic nucleotide, inverted 2’-OMe nucleotide, inverted 2’-deoxy nucleotide. It is known to skilled in art, including an abasic or inverted abasic nucleotide at the end of oligonucleotide enhances stability (Czauderna et al.
- a HSD17B13 dsRNA compound includes one or more inverted abasic residues (invab) at either 3’-end or 5’-end, or both 3’-end and 5’-end.
- inverted abasic residues include, but are not limited to the following:
- HSD17B13 dsRNA compounds include at least one modified nucleotide, wherein the at least one modified nucleotide comprises: isomannide nucleotide.
- isomannide nucleotides include, but are not limited to:
- isomannide residues include, but are not limited to the following:
- HSD17B13 dsRNA compounds, antisense polynucleotides of the invention include at least one modified nucleotide, wherein the at least one modified nucleotide comprises unlocked nucleic acid nucleotide (UNA) or/and glycol nucleic acid nucleotide (GNA) .
- UNA and GNA are thermally destabilizing chemical modifications, can significantly improves the off-target profile of a siRNA compound (Janas, et al., Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat Commun. 2018; 9 (1) : 723.
- a vinyl phosphonate of the instant disclosure may be attached to either the antisense or the sense strand of a dsRNA of the disclosure.
- a vinyl phosphonate of the instant disclosure is attached to the antisense strand of a dsRNA, optionally at the 5’ end of the antisense strand of the dsRNA.
- a vinyl phosphonate modified nucleotide of the disclosure has the structure of formula (IV) :
- X is O or S
- R is hydrogen, hydroxy, fluoro, or C 1-20 alkoxy (e.g., methoxy or n-hexadecyloxy) ;
- B is a nucleobase or a modified nucleobase, optionally where B is adenine, guanine, cytosine, thymine, or uracil.
- Vinyl phosphonate modifications are also contemplated for the dsRNAs, the compositions and methods of the instant disclosure.
- An exemplary vinyl phosphonate structure is:
- a vinyl phosphonate modified nucleotide is VPu*which has the structure of as follows:
- protecting groups are used during the preparation of the compounds of the invention.
- the term "protected” means that the indicated moiety has a protecting group appended thereon.
- compounds contain one or more protecting groups.
- a wide variety of protecting groups can be employed in the methods of the invention. In general, protecting groups render chemical functionalities inert to specific reaction conditions, and can be appended to and removed from such functionalities in a molecule without substantially damaging the remainder of the molecule.
- Protecting groups in general and hydroxyl protecting groups in particular are well known in the art (Greene and Wuts, Protective Groups in Organic Synthesis, Chapter 2, 2d ed., John Wiley&Sons, New York, 1991) .
- examples of protecting groups include, but are not limited to, methyl, ethyl, benzyl (Bn) , phenyl, isopropyl, tert-butyl, acetyl, chloroacetyl, trichloro acetyl, trifluoroacetyl, pivaloyl, tert-butoxymethyl, methoxymethyl, 1-ethoxyethyl, 1- (2-chloroethoxy) ethyl, allyl, cyclohexyl, 9-fluorenylmethoxycarbonyl (Fmoc) , methanesulfonate, toluenesulfonate, triflate, benzoyl, benzoylformate, p-phenylbenzoyl, 4-methoxybenzyl, monomethoxytrityl, dimethoxytrityl, trimethoxyt
- amino protecting groups include, but are not limited to, carbamate protecting groups, such as 2-trimethylsilylethoxycarbonyl (Teoc) , 1-methyl-1- (4-biphenyl) ethoxycarbonyl (Bpoc) , tert-butyloxycarbonyl (BOC) , allyloxycarbonyl (Alloc) , 9-fluorenyl-methoxycarbonyl (Fmoc) , benzyloxycarbonyl (Cbz) ; amide protecting groups, such as formyl, acetyl, pivaloyl, trihaloacetyl, benzoyl, 2-nitrobenzenesulfonyl; and imine and cyclic imide protecting groups, such as phthalimido and dithiasuccinoyl. Equivalents of these amino-protecting groups are also encompassed by the compounds and methods of the invention.
- Another modification that may be included in the RNA of certain embodiments of HSD17B13 dsRNA agents, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides of the invention comprises chemically linking to the RNA one or more ligands, moieties or conjugates that enhance one or more characteristics of the HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide, respectively.
- HSD17B13 dsRNA agent HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide activity, cellular distribution, delivery of a HSD17B13 dsRNA agent, pharmacokinetic properties of a HSD17B13 dsRNA agent, and cellular uptake of the HSD17B13 dsRNA agent.
- a HSD17B13 dsRNA agent comprises one or more targeting groups or linking groups, which in certain embodiments of HSD17B13 dsRNA agents of the invention are conjugated to the sense strand.
- a non-limiting example of a targeting group is a compound comprising N-acetyl-galactosamine (GalNAc) .
- the terms “targeting group” , “targeting agent” , “linking agent” , “targeting compound” , and “targeting ligand” may be used interchangeably herein.
- a HSD17B13 dsRNA agent comprises a targeting compound that is conjugated to the 5'-terminal end of the sense strand.
- a HSD17B13 dsRNA agent comprises a targeting compound that is conjugated to the 3'-terminal end of the sense strand.
- a HSD17B13 dsRNA agent comprises a targeting group that comprises GalNAc. In certain embodiments of the invention a HSD17B13 dsRNA agent does not include a targeting compound conjugated to one or both of the 3'-terminal end and the 5'-terminal end of the sense strand. In certain embodiments of the invention a HSD17B13 dsRNA agent does not include a GalNAc containing targeting compound conjugated to one or both of the 5'-terminal end and the 3'-terminal end of the sense strand.
- targeting and linking agents include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acid. Sci. USA, 1989, 86: 6553-6556) , cholic acid (Manoharan et al., Biorg. Med. Chem. Let., 1994, 4: 1053-1060) , a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660: 306-309; Manoharan et al., Biorg.
- lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acid. Sci. USA, 1989, 86: 6553-6556) , cholic acid (Manoharan et al., Biorg. Med. Chem. Let., 1994, 4: 1053-1060)
- Acids Res., 1990, 18: 3777-3783) a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides&Nucleotides, 1995, 14: 969-973) , or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36: 3651-3654) , a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264: 229-237) , or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277: 923-937) .
- compositions comprising a HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide may comprise a ligand that alters distribution, targeting, or etc. of the HSD17B13 dsRNA agent.
- the ligand increases affinity for a selected target, e.g., molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand.
- a ligand useful in a composition and/or method of the invention may be a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA) , low-density lipoprotein (LDL) , or globulin) ; a carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid) ; or a lipid.
- a ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid or polyamine.
- polyamino acids examples include a polylysine (PLL) , poly L- aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly (L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N- (2-hydroxypropyl) methacrylamide copolymer (HMPA) , polyethylene glycol (PEG) , polyvinyl alcohol (PVA) , polyurethane, poly (2-ethylacryllic acid) , N-isopropylacrylamide polymers, or polyphosphazine.
- PLL polylysine
- poly L- aspartic acid poly L-glutamic acid
- styrene-maleic acid anhydride copolymer poly (L-lactide-co-glycolied) copolymer
- divinyl ether-maleic anhydride copolymer divinyl
- polyamines include: polyethylenimine, polylysine (PLL) , spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an alpha helical peptide.
- a ligand included in a composition and/or method of the invention may comprise a targeting group, non-limiting examples of which are a cell or tissue targeting agent, e.g., alectin, glycoprotein, lipid or protein, e.g., an antibody that binds to a specified cell type such as a kidney cell or a liver cell.
- a targeting group non-limiting examples of which are a cell or tissue targeting agent, e.g., alectin, glycoprotein, lipid or protein, e.g., an antibody that binds to a specified cell type such as a kidney cell or a liver cell.
- a targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, vitamin A, biotin, or an RGD peptide or RGD peptide mimetic.
- ligands include dyes, intercalating agents (e.g. acridines) , cross-linkers (e.g. psoralene, mitomycin C) , porphyrins (TPPC4, texaphyrin, Sapphyrin) , polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine) , artificial endonucleases (e.g.
- EDTA lipophilic molecules, e.g., cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1, 3-Bis-O (hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1, 3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3- (oleoyl) lithocholic acid, O3- (oleoyl) cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide) , alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K) , MPEG, [MPEG] 2 , polyamin
- a ligand included in a composition and/or method of the invention may be a protein, e.g., glycoprotein, or peptide, for example a molecule with a specific affinity for a co-ligand, or an antibody, for example an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, cardiac cell, or bone cell.
- a ligand useful in an embodiment of a composition and/or method of the invention can be a hormone or hormone receptor.
- a ligand useful in an embodiment of a composition and/or method of the invention can be a lipid, lectin, carbohydrates, vitamin, cofactos, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, or multivalent fucose.
- a ligand useful in an embodiment of a composition and/or method of the invention can be a substance that can increase uptake of the HSD17B13 dsRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments.
- Non-limiting examples of this type of agent are: taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, and myoservin.
- a ligand attached to a HSD17B13 dsRNA agent of the invention functions as a pharmacokinetic (PK) modulator.
- PK modulator that may be used in compositions and methods of the invention includes but is not limited to: a lipophiles, a bile acid, a steroid, a phospholipid analogue, a peptide, a protein binding agent, PEG, a vitamin, cholesterol, a fatty acid, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, a phospholipid, a sphingolipid, naproxen, ibuprofen, vitamin E, biotin, an aptamer that binds a serum protein, etc.
- Oligonucleotides comprising a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g., oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple of phosphorothioate linkages in the backbone may also be used in compositions and/or methods of the invention as ligands.
- a HSD17B13 dsRNA agent is in a composition.
- a composition of the invention may include one or more HSD17B13 dsRNA agent and optionally one or more of a pharmaceutically acceptable carrier, a delivery agent, a targeting agent, detectable label, etc.
- a non-limiting example of a targeting agent that may be useful according to some embodiments of methods of the invention is an agent that directs a HSD17B13 dsRNA agent of the invention to and/or into a cell to be treated.
- a targeting agent of choice will depend upon such elements as: the nature of the HSD17B13-associated disease or condition, and on the cell type being targeted.
- a therapeutic agent comprises a HSD17B13 dsRNA agent with only a delivery agent, such as a delivery agent comprising N-Acetylgalactosamine (GalNAc) , without any additional attached elements.
- a HSD17B13 dsRNA agent may be attached to a delivery compound comprising GalNAc and included in a composition comprising a pharmaceutically acceptable carrier and administered to a cell or subject without any detectable labels, or targeting agents, etc. attached to the HSD17B13 dsRNA agent.
- a HSD17B13 dsRNA agent of the invention is administered with and/or attached to one or more delivery agents, targeting agents, labeling agents, etc.
- Labeling agents may be used in certain methods of the invention to determine the location of a HSD17B13 dsRNA agent in cells and tissues and may be used to determine a cell, tissue, or organ location of a treatment composition comprising a HSD17B13 dsRNA agent that has been administered in methods of the invention.
- Procedures for attaching and utilizing labeling agents such as enzymatic labels, dyes, radiolabels, etc. are well known in the art.
- alabeling agent is attached to one or both of a sense polynucleotide and an antisense polynucleotide included in a HSD17B13 dsRNA agent.
- HSD17B13 dsRNA agents and HSD17B13 antisensepolynucleotide agents Delivery of HSD17B13 dsRNA agents and HSD17B13 antisensepolynucleotide agents
- Certain embodiments of methods of the invention includes delivery of a HSD17B13 dsRNA agent into a cell.
- delivery means facilitating or effecting uptake or absorption into the cell. Absorption or uptake of a HSD17B13 dsRNA agent can occur through unaided diffusive or active cellular processes, or by use of delivery agents, targeting agents, etc. that may be associated with a HSD17B13 dsRNA agent of the invention. Delivery means that are suitable for use in methods of the invention include, but are not limited to: in vivo delivery, in which a HSD17B13 dsRNA agent is in injected into a tissue site or administered systemically. In some embodiments of the invention, a HSD17B13 dsRNA agent is attached to a delivery agent.
- Non-limiting examples of methods that can be used to deliver HSD17B13 dsRNA agents to cells, tissues and/or subjects include: HSD17B13 dsRNA-GalNAc conjugates, SAMiRNA technology, LNP-based delivery methods, and naked RNA delivery. These and other delivery methods have been used successfully in the art to deliver therapeutic RNAi agents for treatment of various diseases and conditions, such as but not limited to: liver diseases, acute intermittent porphyria (AIP) , hemophilia, pulmonary fibrosis, etc. Details of various delivery means are found in publications such as: Nikam, R.R. &K.R. Gore (2016) Nucleic Acid Ther, 28 (4) , 209-224Aug2018; Springer A.D.
- Some embodiments of the invention comprise use of lipid nanoparticles (LNPs) to deliver a HSD17B13 dsRNA agent of the invention to a cell, tissue, and/or subject.
- LNPs are routinely used for in vivo delivery of HSD17B13 dsRNA agents, including therapeutic HSD17B13 dsRNA agents.
- One benefit of using an LNP or other delivery agent is an increased stability of the HSD17B13 RNA agent when it is delivered to a subject using the LNP or other delivery agent.
- an LNP comprises a cationic LNP that is loaded with one or more HSD17B13 RNAi molecules of the invention.
- the LNP comprising the HSD17B13 RNAi molecule (s) is administered to a subject, the LNPs and their attached HSD17B13 RNAi molecules are taken up by cells via endocytosis, their presence results in release of RNAi trigger molecules, which mediate RNAi.
- a delivery agent that may be used in embodiments of the invention to delivery a HSD17B13 dsRNA agent of the invention to a cell, tissue and/or subject is an agent comprising GalNAc that is attached to a HSD17B13 dsRNA agent of the invention and delivers the HSD17B13 dsRNA agent to a cell, tissue, and/or subject.
- agents comprising GalNAc that can be used in certain embodiments of methods and composition of the invention are disclosed in PCT Application: WO2020191183A1 (incorporated herein in its entirety) .
- GalNAc targeting ligand that can be used in compositions and methods of the invention to deliver a HSD17B13 dsRNA agent to a cell is a targeting ligand cluster.
- Examples of targeting ligand clusters that are presented herein are referred to as: GalNAc Ligand with phosphodiester link (GLO) and GalNAc Ligand with phosphorothioate link (GLS) .
- GLX-n may be used herein to indicate the attached GalNAc-containing compound is any one of compounds GLS-1, GLS-2, GLS-3, GLS-4, GLS-5, GLS-6, GLS-7, GLS-8, GLS-9, GLS-10, GLS-11, GLS-12, GLS-13, GLS-14, GLS-15, GLS-16, GLO-1, GLO-2, GLO-3, GLO-4, GLO-5, GLO-6, GLO-7, GLO-8, GLO-9, GLO-10, GLO-11, GLO-12, GLO-13, GLO-14, GLO-15, and GLO-16, the structure of each of which is shown below, with the below with location of attachment of the GalNAc-targeting ligand to an RNAi agent of the invention at far right of each (shown with ) .
- any RNAi and dsRNA molecule of the invention can be attached to the GLS-1, GLS-2, GLS-3, GLS-4, GLS-5, GLS-6, GLS-7, GLS-8, GLS-9, GLS-10, GLS-11, GLS-12, GLS-13, GLS-14, GLS-15, GLS-16, GLO-1, GLO-2, GLO-3, GLO-4, GLO-5, GLO-6, GLO-7, GLO-8, GLO-9, GLO-10, GLO-11, GLO-12, GLO-13, GLO-14, GLO-15, and GLO-16, GLO-1 through GLO-16 and GLS-1 through GLS-16 structures are shown below.
- the aforesaid isomannide nucleotides may further conjugate to one or more GalNAc targeting ligands.
- Specific examples of isomannide nucleotides conjugated to a GalNAc targeting ligand include, but are not limited to:
- olig each independently represents a polynucleotide moiety.
- in vivo delivery can also be by a beta-glucan delivery system, such as those described in U.S. Pat. Nos. 5,032,401 and 5,607,677, and U.S. Publication No. 2005/0281781, which are hereby incorporated by reference in their entirety.
- a HSD17B13 RNAi agent into a cell may also be done using art-known methods such as electroporation and lipofection.
- a HSD17B13 dsRNA is delivered without a targeting agent. These RNAs may be delivered as “naked” RNA molecules.
- a HSD17B13 dsRNA of the invention may be administered to a subject to treat a HSD17B13-associated disease or condition in the subject, such as a liver disease, in a pharmaceutical composition comprising the RNAi agent, but not including a targeting agent such as a GalNAc targeting compound.
- RNAi delivery means such as but not limited to those described herein and those used in the art, can be used in conjunction with embodiments of HSD17B13 RNAi agents and treatment methods described herein.
- HSD17B13 dsRNA agents of the invention may be administered to a subject in an amount and manner effective to reduce a level and activity of HSD17B13 polypeptide in a cell and/or subject.
- one or more HSD17B13 dsRNA agents are administered to a cell and/or subject to treat a disease or condition associated with HSD17B13 expression and activity.
- Methods of the invention include administering one or more HSD17B13 dsRNA agents to a subject in need of such treatment to reduce a disease or condition associated with HSD17B13 expression in the subject.
- HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents of the invention can be administered to reduce HSD17B13 expression and/or activity in one more of in vitro, ex vivo, and in vivo cells.
- a level, and thus an activity, of HSD17B13 polypeptide in a cell is reduced by delivering (e.g. introducing) a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent into a cell.
- a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be used to aid in delivery of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to a specific cell type, cell subtype, organ, spatial region within a subject, and/or to a sub-cellular region within a cell.
- a HSD17B13 dsRNA agent can be administered in certain methods of the invention singly or in combination with one or more additional HSD17B13 dsRNA agents. In some embodiments, 2, 3, 4, or more independently selected HSD17B13 dsRNA agents are administered to a subject.
- a HSD17B13 dsRNA agent is administered to a subject to treat a HSD17B13-associated disease or condition in conjunction with one or more additional therapeutic regimens for treating the HSD17B13-associate disease or condition.
- additional therapeutic regimens are: administering one or more HSD17B13 antisense polynucleotides of the invention, administering a non-HSD17B13 dsRNA therapeutic agent, and a behavioral modification.
- An additional therapeutic regimen may be administered at a time that is one or more of: prior to, simultaneous with, and following administration of a HSD17B13 dsRNA agent of the invention.
- Non-limiting examples of non-HSD17B13 dsRNA therapeutic agents are: pyridoxine, an ACE inhibitor (angiotensin converting enzyme inhibitors) , e.g., benazepril (Lotensin) ; an angiotensin II receptor antagonist (ARB) (e.g., losartan potassium, such as Merck&Co.
- ACE inhibitor angiotensin converting enzyme inhibitors
- ARB an angiotensin II receptor antagonist
- Non-limiting examples of behavioral modifications are: a dietary regimen, counseling, and an exercise regimen. These and other therapeutic agents and behavior modifications are known in the art and used to treat a HSD17B13 disease or condition in a subject and may be administered to a subject in 0combination with the administration of one or more HSD17B133 dsRNA agents of the invention to treat the HSD17B13 disease or condition.
- a HSD17B13 dsRNA agent of the invention administered to a cell or subject to treat a HSD17B13-associated disease or condition may act in a synergistic manner with one or more other therapeutic agents or activities and increase the effectiveness of the one or more therapeutic agents or activities and/or to increase the effectiveness of the HSD17B13 dsRNA agent at treating the HSD17B13-associated disease or condition.
- Treatment methods of the invention that include administration of a HSD17B13 dsRNA agent can be used prior to the onset of a HSD17B13-associated disease or condition and/or when a HSD17B13-associated disease or condition is present, including at an early stage, mid-stage, and late stage of the disease or condition and all times before and after any of these stages.
- Methods of the invention may also be to treat subjects who have previously been treated for a HSD17B13-associated disease or condition with one or more other therapeutic agents and/or therapeutic activities that were not successful, were minimally successful, and/or are no longer successful at treating the HSD17B13-associated disease or condition in the subject.
- a HSD17B13 dsRNA agent can be delivered into a cell using a vector.
- HSD17B13 dsRNA agent transcription units can be included in a DNA or RNA vector.
- Vectors can be used in methods of the invention that result in transient expression of HSD17B13 dsRNA, for example for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more hours, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more weeks.
- the length of the transient expression can be determined using routine methods based on elements such as, but not limited to the specific vector construct selected and the target cell and/or tissue.
- transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be an integrating or non-integrating vector.
- the transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann, et al., Proc. Natl. Acad. Sci. USA (1995) 92: 1292) .
- An individual strand or strands of a HSD17B13 dsRNA agent can be transcribed from a promoter on an expression vector. Where two separate strands are to be expressed to generate, for example, a dsRNA, two separate expression vectors can be co-introduced to a cell using means such as transfection or infection. In certain embodiments each individual strand of a HSD17B13 dsRNA agent of the invention can be transcribed by promoters that are both included on the same expression vector.
- a HSD17B13 dsRNA agent is expressed as inverted repeat polynucleotides joined by a linker polynucleotide sequence such that the HSD17B13 dsRNA agent has a stem and loop structure.
- RNA expression vectors are DNA plasmids or viral vectors.
- Expression vectors useful in embodiments of the invention can be compatible with eukaryotic cells.
- Eukaryotic cell expression vectors are routinely used in the art and are available from a number of commercial sources. Delivery of HSD17B13 dsRNA expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from a subject followed by reintroduction into the subject, or by any other means that allows for introduction into a desired target cell.
- Viral vector systems that may be included in an embodiment of a method of the include, but are not limited to, (a) adenovirus vectors; (b) retrovirus vectors, including but not limited to lentiviral vectors, moloney murine leukemia virus, etc.; (c) adeno-associated virus vectors; (d) herpes simplex virus vectors; (e) SV40vectors; (f) polyoma virus vectors; (g) papilloma virus vectors; (h) picornavirus vectors; (i) pox virus vectors such as an orthopox, e.g., vaccinia virus vectors or avipox, e.g.
- pox virus vectors such as an orthopox, e.g., vaccinia virus vectors or avipox, e.g.
- HSD17B13 dsRNA agent may include regulatory elements, such as promoters, enhancers, etc., which may be selected to provide constitutive or regulated/inducible expression.
- regulatory elements such as promoters, enhancers, etc.
- Viral vector systems, and the use of promoters and enhancers, etc. are routine in the art and can be used in conjunction with methods and compositions described herein.
- Certain embodiments of the invention include use of viral vectors for delivery of HSD17B13 dsRNA agents into cells.
- Numerous adenovirus-based delivery systems are routinely used in the art for deliver to, for example, lung, liver, the central nervous system, endothelial cells, and muscle.
- Non-limiting examples of viral vectors that may be used in methods of the invention are: AAV vectors, a pox virus such as a vaccinia virus, a Modified Virus Ankara (MVA) , NYVAC, an avipox such as fowl pox or canary pox.
- Certain embodiments of the invention include methods of delivering HSD17B13 dsRNA agents into cells using a vector and such vectors may be in a pharmaceutically acceptable carrier that may, but need not, include a slow release matrix in which the gene delivery vehicle is imbedded.
- a vector for delivering a HSD17B13 dsRNA can be produced from a recombinant cell, and a pharmaceutical composition of the invention may include one or more cells that produced the HSD17B13 dsRNA delivery system.
- compositions Containing HSD17B13 dsRNA or ssRNA agents Containing HSD17B13 dsRNA or ssRNA agents
- Certain embodiments of the invention include use of pharmaceutical compositions containing a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent and a pharmaceutically acceptable carrier.
- the pharmaceutical composition containing the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent can be used in methods of the invention to reduce HSD17B13 gene expression and HSD17B13 activity in a cell and is useful to treat a HSD17B13-associated disease or condition.
- Such pharmaceutical compositions can be formulated based on the mode of delivery.
- Non-limiting examples of formulations for modes of delivery are: a composition formulated for subcutaneous delivery, acomposition formulated for systemic administration via parenteral delivery, a composition formulated for intravenous (IV) delivery, a composition formulated for intrathecal delivery, acomposition formulated for direct delivery into brain, etc.
- Administration of a pharmaceutic composition of the invention to deliver a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent into a cell may be done using one or more means such as: topical (e.g., by a transdermal patch) , pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal, oral or parenteral.
- topical e.g., by a transdermal patch
- pulmonary e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer
- intratracheal intranasal, epidermal and transdermal, oral or parenteral.
- Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; subdermal, e.g., via an implanted device; or intracranial, e.g., by intraparenchymal, intrathecal or intraventricular, administration.
- a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent can also be delivered directly to a target tissue, for example directly into the liver, directly into a kidney, etc.
- delivering a HSD17B13 dsRNA agent” or “delivering a HSD17B13 antisense polynucleotide agent” into a cell encompasses delivering a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent, respectively, directly as well as expressing a HSD17B13 dsRNA agent in a cell from an encoding vector that is delivered into a cell, or by any suitable means with which the HSD17B13 dsRNA or HSD17B13 antisense polynucleotide agent becomes present in a cell.
- Preparation and use of formulations and means for delivering inhibitory RNAs are well known and routinely used in the art.
- a “pharmaceutical composition” comprises a pharmacologically effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carrier refers to a carrier for administration of a therapeutic agent. Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The term specifically excludes cell culture medium.
- pharmaceutically acceptable carriers include, but are not limited to pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives.
- suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents.
- Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc.
- the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract. Agents included in drug formulations are described further herein below.
- pharmacologically effective amount refers to that amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention to produce the intended pharmacological, therapeutic or preventive result.
- a therapeutically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to effect at least a 10%reduction in that parameter.
- a therapeutically effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent can reduce HSD17B13 polypeptide levels by at least 10%.
- Methods of the invention in some aspects comprise contacting a cell with a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent in an effective amount to reduce HSD17B13 gene expression in the contacted cell.
- Certain embodiments of methods of the invention comprise administering a HSD17B13 dsRNA agent or a HSD17B13 antisense polynucleotide agent to a subject in an amount effective to reduce HSD17B13 gene expression and treat a HSD17B13-associated disease or condition in the subject.
- An “effective amount” used in terms of reducing expression of HSD17B13 and/or for treating a HSD17B13-associated disease or condition is an amount necessary or sufficient to realize a desired biologic effect.
- an effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to treat a HSD17B13-associated disease or condition could be that amount necessary to (i) slow or halt progression of the disease or condition; or (ii) reverse, reduce, or eliminate one or more symptoms of the disease or condition.
- an effective amount is that amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent that when administered to a subject in need of a treatment of a HSD17B13-associated disease or condition, results in a therapeutic response that prevents and/or treats the disease or condition.
- an effective amount is that amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention that when combined or co-administered with another therapeutic treatment for a HSD17B13-associated disease or condition, results in a therapeutic response that prevents and/or treats the disease or condition.
- a biologic effect of treating a subject with a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention may be the amelioration and or absolute elimination of symptoms resulting from the HSD17B13-associated disease or condition.
- a biologic effect is the complete abrogation of the HSD17B13-associated disease or condition, as evidenced for example, by a diagnostic test that indicates the subject is free of the HSD17B13-associated disease or condition.
- a non-limiting example of a physiological symptom that may be detected includes a reduction in HSD17B13 level in liver of a subject following administration of an agent of the invention. Additional art-known means of assessing the status of a HSD17B13-associated disease or condition can be used to determine an effect of an agent and/or methods of the invention on a HSD17B13-associated disease or condition.
- an effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to decrease HSD17B13 polypeptide activity to a level to treat a HSD17B13-associated disease or condition will be determined in clinical trials, establishing an effective dose for a test population versus a control population in a blind study.
- an effective amount will be that results in a desired response, e.g., an amount that diminishes a HSD17B13-associated disease or condition in cells, tissues, and/or subjects with the disease or condition.
- an effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to treat a HSD17B13-associated disease or condition that can be treated by reducing HSD17B13 polypeptide activity may be the amount that when administered decreases the amount of HSD17B13 polypeptide activity in the subject to an amount that is less than the amount that would be present in the cell, tissue, and/or subject without the administration of the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent.
- control amount for a subject is a pre-treatment amount for the subject, in other words, a level in a subject before administration of a HSD17B13 agent can be a control level for that subject and compared to a level of HSD17B13 polypeptide activity and/or HSD17B13 gene expression in the subject following siRNA administered to the subject.
- the desired response may be reducing or eliminating one or more symptoms of the disease or condition in the cell, tissue, and/or subject.
- the reduction or elimination may be temporary or may be permanent.
- the status of a HSD17B13-associated disease or condition can be monitored using methods of determining HSD17B13 polypeptide activity, HSD17B13 gene expression, symptom evaluation, clinical testing, etc.
- a desired response to treatment of a HSD17B13-associated disease or condition is delaying the onset or even preventing the onset of the disease or condition.
- An effective amount of a compound that decreases HSD17B13 polypeptide activity may also be determined by assessing physiological effects of administration of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent on a cell or subject, such as a decrease of a HSD17B13-associated disease or condition following administration.
- Assays and/or symptomatic monitoring of a subject can be used to determine efficacy of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention, which may be administered in a pharmaceutical compound of the invention, and to determine the presence or absence of a response to the treatment.
- a non-limiting example is that one or more art-known tests of alanine aminotransferase (ALT) or aspartate aminotransferase (AST) profile.
- ALT alanine aminotransferase
- AST aspartate aminotransferase
- liver function can be used to determine the status of the HSD17B13-associated liver disease or condition in a subject before and after treatment of the subject with a HSD17B13 dsRNA agent of the invention.
- Some embodiments of the invention include methods of determining an efficacy of an dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention administered to a subject, to treat a HSD17B13-associated disease or condition by assessing and/or monitoring one or more “physiological characteristics” of the HSD17B13-associated disease or condition in the subject.
- Non-limiting examples of physiological characteristics of a HSD17B13-associated disease or condition are the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver, etc.
- Standard means of determining such physiological characteristic are known in the art and include, but are not limited to, blood tests, imaging studies, physical examination, etc.
- the amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent administered to a subject can be modified based, at least in part, on such determinations of disease and/or condition status and/or physiological characteristics determined for a subject.
- the amount of a treatment may be varied for example by increasing or decreasing the amount of a HSD17B13-dsRNA agent or HSD17B13 antisense polynucleotide agent, by changing the composition in which the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent, respectively, is administered, by changing the route of administration, by changing the dosage timing and so on.
- the effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent will vary with the particular condition being treated, the age and physical condition of the subject being treated; the severity of the condition, the duration of the treatment, the nature of the concurrent therapy (if any) , the specific route of administration, and additional factors within the knowledge and expertise of the health practitioner.
- an effective amount may depend upon the desired level of HSD17B13 polypeptide activity and or HSD17B13 gene expression that is effective to treat the HSD17B13-associated disease or condition.
- an effective prophylactic or therapeutic treatment regimen can be planned that is effective to treat the particular subject.
- an effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention can be that amount that when contacted with a cell results in a desired biological effect in the cell.
- HSD17B13 gene silencing may be determined in any cell expressing HSD17B13, either constitutively or by genomic engineering, and by any appropriate assay.
- HSD17B13 gene expression is reduced by at least5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%by administration of a HSD17B13 dsRNA agent of the invention.
- HSD17B13 gene expression is reduced by at between5%and10%, 5%and 25%, 10%and 50%, 10%and75%, 25%and75%, 25%and100%, or 50%and100%by administration of a HSD17B13 dsRNA agent of the invention.
- HSD17B13 dsRNA agents and HSD17B13 antisense polynucleotide agents are delivered in pharmaceutical compositions in dosages sufficient to inhibit expression of HSD17B13 genes.
- a dose of HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent is in a range of 0.01 to 200.0 milligrams per kilogram body weight of the recipient per day, generally in the range of 1 to 50 mg per kilogram body weight, 5 to 40 mg/kg body weight, 10 to 30 mg/kg body weight, 1 to20 mg/kg body weight, 1 to 10 mg/kg body weight, 4 to 15 mg/kg body weight per day, inclusive.
- the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent can be administered in an amount that is from about 0.01 mg/kg, 0.05 mg/kg, 0.1 mg/kg, 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 1 mg/kg, 1.1 mg/kg, 1.2 mg/kg, 1.3 mg/kg, 1.4 mg/kg, 1.5 mg/kg, 1.6 mg/kg, 1.7 mg/kg, 1.8 mg/kg, 1.9 mg/kg, 2 mg/kg, 2.1 mg/kg, 2.2 mg/kg, 2.3 mg/kg, 2.4 mg/kg, 2.5 mg/kg, 2.6 mg/kg, 2.7 mg/kg, 2.8 mg/kg, 2.9 mg/kg, 3.0 mg/kg, 3.1 mg/kg, 3.2 mg/kg, 3.3 mg/kg, 3.4 mg/kg, 3.5 mg/kg, 3.6 mg/kg, 3.7 mg/kg, 3.8 mg/kg, 3.9
- HSD17B13 dsRNA agent of the invention Various factors may be considered in the determination of dosage and timing of delivery of a HSD17B13 dsRNA agent of the invention.
- the absolute amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent delivered will depend upon a variety of factors including a concurrent treatment, the number of doses and the individual subject parameters including age, physical condition, size and weight. These are factors well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation.
- a maximum dose can be used, that is, the highest safe dose according to sound medical judgment.
- Methods of the invention may in some embodiments include administering to a subject 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more doses of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent.
- a pharmaceutical compound e.g., comprising a HSD17B13 dsRNA agent or comprising a HSD17B13 antisense polynucleotide agent
- Doses may be administered once per day or more than once per day, for example, 2, 3, 4, 5, or more times in one 24hour period.
- a pharmaceutical composition of the invention may be administered once daily, or the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be administered as two, three, or more sub-doses at appropriate intervals throughout the day or even using continuous infusion or delivery through a controlled release formulation.
- a pharmaceutical composition of the invention is administered to a subject one or more times per day, one or more times per week, one or more times per month, or one or more times per year.
- Methods of the invention include administration of a pharmaceutical compound alone, in combination with one or more other HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents, and/or in combination with other drug therapies or treatment activities or regimens that are administered to subjects with a HSD17B13-associated disease or condition.
- Pharmaceutical compounds may be administered in pharmaceutical compositions.
- Pharmaceutical compositions used in methods of the invention may be sterile and contain an amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent that will reduce activity of a HSD17B13 polypeptide to a level sufficient to produce the desired response in a unit of weight or volume suitable for administration to a subject.
- a dose administered to a subject of a pharmaceutical composition that includes a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to reduce HSD17B13 protein activity can be chosen in accordance with different parameters, in particular in accordance with the mode of administration used and the state of the subject. Other factors include the desired period of treatment. In the event that a response in a subject is insufficient at the initial doses applied, higher doses (or effectively higher doses by a different, more localized delivery route) may be employed to the extent that patient tolerance permits.
- HSD17B13-associated diseases and conditions in which a decrease in a level and/or activity of HSD17B13 polypeptide is effective to treat the disease or condition can be treated using methods and HSD17B13 dsRNA agents of the invention to inhibit HSD17B13 expression.
- diseases and conditions that may be treated with a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention and a treatment method of the invention, include, but are not limited to: hepatitis, liver fibrosis, nonalcoholic steatohepatitis (NASH) , nonalcoholic fatty liver disease (NAFLD) , cirrhosis, Alcoholic Steatohepatitis (ASH) , alcoholic fatty liver disease (ALD) , HCV-related cirrhosis, drug-induced liver injury, hepatocellular necrosis and HSD17B13related obesity.
- diseases and conditions may be referred to herein as “HSD17B13-associated diseases and conditions” and “diseases and conditions caused and/or modulated by HSD17B13. ”
- a subject may be administered a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention at a time that is one or more of before or after diagnosis of a HSD17B13-associated disease or condition.
- a subject is at risk of having or developing a HSD17B13-associated disease or condition.
- a subject at risk of developing a HSD17B13-associated disease or condition is one who has an increased probability of developing the HSD17B13-associated disease or condition, compared to a control risk of developing the HSD17B13-associated disease or condition.
- a level of risk may be statistically significant compared to a control level of risk.
- a subject at risk may include, for instance, asubject who is, or will be, a subject who has a preexisting disease and/or a genetic abnormality that makes the subject more susceptible to a HSD17B13-associated disease or condition than a control subject without the preexisting disease or genetic abnormality; a subject having a family and/or personal medical history of the HSD17B13-associated disease or condition; and a subject who has previously been treated for a HSD17B13-associated disease or condition.
- a preexisting disease and/or a genetic abnormality that makes the subject more susceptible to a HSD17B13-associated disease or condition may be a disease or genetic abnormality that when present has been previously identified as having a correlative relation to a higher likelihood of developing a HSD17B13-associated disease or condition.
- a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be administered to a subject based on a medical status of the individual subject.
- a health-care provided for a subject may assess a HSD17B13 level measured in a sample obtained from a subject and determine it is desirable to reduce the subject’s HSD17B13 level, by administration of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention.
- the HSD17B13 level may be considered to be a physiological characteristic of a HSD17B13-associated condition, even if the subject is not diagnosed as having a HSD17B13-assoicated disease such as one disclosed herein.
- a healthcare provider may monitor changes in the subject’s HSD17B13 level, as a measure of efficacy of the administered HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention.
- a biological sample such as a blood or serum sample may be obtained from a subject and a HSD17B13 level for the subject determined in the sample.
- a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent is administered to the subject and a blood or liver sample is obtained from the subject following the administration and the HSD17B13 level determined using the sample and the results compared to the results determined in the subject’s pre-administration (prior) sample.
- a reduction in the subject’s HSD17B13 level in the later sample compared to the pre-administration level indicates the administered HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent efficacy in reducing the lipid level, liver fat or hepatic lipid droplets in the subject.
- Certain embodiments of methods of the invention include adjusting a treatment that includes administering a dsRNA agent or a HSD17B13 antisense polynucleotide agent of the invention to a subject based at least in part on assessment of a change in one or more of the subject’s physiological characteristics of a HSD17B13-associated disease or condition resulting from the treatment.
- an effect of an administered dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention may be determined for a subject and used to assist in adjusting an amount of a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention subsequently administered to the subject.
- a subject is administered a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention, the subject’s HSD17B13 level is determined after the administration, and based at least in part on the determined level, a greater amount of the dsRNA agent or HSD17B13 antisense polynucleotide agent is determined to be desirable in order to increase the physiological effect of the administered agent, for example to reduce or further reduce the subject’s HSD17B13 level.
- a subject is administered a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention, the subject’s HSD17B13 level is determined after the administration and based at least in part on the determined level, a lower amount of the dsRNA agent or HSD17B13 antisense polynucleotide agent is desirable to administer to the subject.
- some embodiments of the invention include assessing a change in one or more physiological characteristics of resulting from a subject’s previous treatment to adjust an amount of a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention subsequently administered to the subject.
- Some embodiments of methods of the invention include 1, 2, 3, 4, 5, 6, or more determinations of a physiological characteristic of a HSD17B13-associated disease or condition to assess and/or monitor the efficacy of an administered HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention, and optionally using the determinations to adjust one or more of: a dose, administration regimen, and or administration frequency of a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention to treat a HSD17B13-associated disease or condition in a subject.
- a desired result of administering an effective amount of a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention to a subject is a reduction of the subject’s the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver, etc., as compared to a prior level determined for the subject, or to a control level.
- the terms “treat” , “treated” , or “treating” when used with respect to a HSD17B13-associated disease or condition may refer to a prophylactic treatment that decreases the likelihood of a subject developing the HSD17B13-associated disease or condition, and also may refer to a treatment after the subject has developed a HSD17B13-associated disease or condition in order to eliminate or reduce the level of the HSD17B13-associated disease or condition, prevent the HSD17B13-associated disease or condition from becoming more advanced (e.g., more severe) , and/or slow the progression of the HSD17B13-associated disease or condition in a subject compared to the subject in the absence of the therapy to reduce activity in the subject of HSD17B13 polypeptide.
- Certain embodiments of agents, compositions, and methods of the invention can be used to inhibit HSD17B13 gene expression.
- the terms “inhibit, ” “silence, ” “reduce, ” “down-regulate, ” and “knockdown” mean the expression of the HSD17B13 gene, as measured by one or more of: a level of RNA transcribed from the gene, a level of activity of HSD17B13 expressed, and a level of HSD17B13 polypeptide, protein or protein subunit translated from the mRNA in a cell, group of cells, tissue, organ, or subject in which the HSD17B13 gene is transcribed, is reduced when the cell, group of cells, tissue, organ, or subject is contacted with (e.g., treated with) a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention, compared to a control level of RNA
- a control level is a level in a cell, tissue, organ or subject that has not been contacted with (e.g. treated with) the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent.
- a variety of administration routes for a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent are available for use in methods of the invention.
- the particular delivery mode selected will depend at least in part, upon the particular condition being treated and the dosage required for therapeutic efficacy. Methods of this invention, generally speaking, may be practiced using any mode of administration that is medically acceptable, meaning any mode that produces effective levels of treatment of a HSD17B13-associated disease or condition without causing clinically unacceptable adverse effects.
- a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be administered via an oral, enteral, mucosal, subcutaneous, and/or parenteral route.
- parenteral includes subcutaneous, intravenous, intrathecal, intramuscular, intraperitoneal, and intrasternal injection, or infusion techniques.
- Other routes include but are not limited to nasal (e.g., via a gastro-nasal tube) , dermal, vaginal, rectal, sublingual, and inhalation.
- Delivery routes of the invention may include intrathecal, intraventricular, or intracranial.
- a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be placed within a slow release matrix and administered by placement of the matrix in the subject.
- a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be delivered to a subject cell using nanoparticles coated with a delivery agent that targets a specific cell or organelle.
- a delivery agent that targets a specific cell or organelle.
- Various delivery means, methods, agents are known in the art. Non-limiting examples of delivery methods and delivery agents are additionally provided elsewhere herein.
- the term “delivering” in reference to a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may mean administration to a cell or subject of one or more “naked” HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent sequences and in certain aspects of the invention “delivering” means administration to a cell or subject via transfection means, delivering a cell comprising a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to a subject, delivering a vector encoding a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent into a cell and/or subject, etc. Delivery of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent using a transfection means may include administration of a vector to a cell and/or subject.
- one or more HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents may be administered in formulations, which may be administered in pharmaceutically acceptable solutions, which may routinely contain pharmaceutically acceptable concentrations of salt, buffering agents, preservatives, compatible carriers, adjuvants, and optionally other therapeutic ingredients.
- a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be formulated with another therapeutic agent for simultaneous administration.
- a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be administered in a pharmaceutical composition.
- a pharmaceutical composition comprises a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent and optionally, a pharmaceutically-acceptable carrier.
- Pharmaceutically-acceptable carriers are well-known to those of ordinary skill in the art.
- apharmaceutically-acceptable carrier means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredients, e.g., the ability of the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to inhibit HSD17B13 gene expression in a cell or subject. Numerous methods to administer and deliver dsRNA agents or HSD17B13 antisense polynucleotide agents for therapeutic use are known in the art and may be utilized in methods of the invention.
- Pharmaceutically acceptable carriers include diluents, fillers, salts, buffers, stabilizers, solubilizers and other materials that are well-known in the art. Exemplary pharmaceutically acceptable carriers are described in U.S. Pat. No. 5,211,657 and others are known by those skilled in the art. Such preparations may routinely contain salt, buffering agents, preservatives, compatible carriers, and optionally other therapeutic agents. When used in medicine, the salts should be pharmaceutically acceptable, but non-pharmaceutically acceptable salts may conveniently be used to prepare pharmaceutically-acceptable salts thereof and are not excluded from the scope of the invention.
- Such pharmacologically and pharmaceutically-acceptable salts include, but are not limited to, those prepared from the following acids: hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, maleic, acetic, salicylic, citric, formic, malonic, succinic, and the like.
- pharmaceutically-acceptable salts can be prepared as alkaline metal or alkaline earth salts, such as sodium, potassium or calcium salts.
- Some embodiments of methods of the invention include administering one or more HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents directly to a tissue.
- the tissue to which the compound is administered is a tissue in which the HSD17B13-associated disease or condition is present or is likely to arise, non-limiting examples of which are the liver or kidney.
- Direct tissue administration may be achieved by direct injection or other means. Many orally delivered compounds naturally travel to and through the liver and kidneys and some embodiments of treatment methods of the invention include oral administration of one or more HSD17B13 dsRNA agents to a subject.
- HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents may be administered once, or alternatively they may be administered in a plurality of administrations. If administered multiple times, the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be administered via different routes. For example, though not intended to be limiting, a first (or first several) administrations may be made via subcutaneous means and one or more additional administrations may be oral and/or systemic administrations.
- the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
- Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with or without an added preservative.
- HSD17B13 dsRNA agent formulations may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions.
- non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
- Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
- Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's , or fixed oils.
- Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose) , and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like. Lower doses will result from other forms of administration, such as intravenous administration. In the event that a response in a subject is insufficient at the initial doses applied, higher doses (or effectively higher doses by a different, more localized delivery route) may be employed to the extent that patient tolerance permits. Multiple doses per day may be used as needed to achieve appropriate systemic or local levels of one or more HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents and to achieve appropriate reduction in HSD17B13 protein activity.
- methods of the invention include use of a delivery vehicle such as biocompatible microparticle, nanoparticle, or implant suitable for implantation into a recipient, e.g., a subject.
- a delivery vehicle such as biocompatible microparticle, nanoparticle, or implant suitable for implantation into a recipient, e.g., a subject.
- exemplary bioerodible implants that may be useful in accordance with this method are described in PCT Publication No. WO95/24929 (incorporated by reference herein) , which describes a biocompatible, biodegradable polymeric matrix for containing a biological macromolecule.
- matrices can be used in methods of the invention to deliver one or more HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents to a subject.
- a matrix may be biodegradable.
- Matrix polymers may be natural or synthetic polymers.
- a polymer can be selected based on the period of time over which release is desired, generally in the order of a few hours to a year or longer. Typically, release over a period ranging from between a few hours and three to twelve months can be used.
- the polymer optionally is in the form of a hydrogel that can absorb up to about 90%of its weight in water and further, optionally is cross-linked with multivalent ions or other polymers.
- HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents may be delivered in some embodiments of the invention using the bioerodible implant by way of diffusion, or by degradation of the polymeric matrix.
- Exemplary synthetic polymers for such use are well known in the art.
- Biodegradable polymers and non-biodegradable polymers can be used for delivery of HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents using art-known methods.
- Bioadhesive polymers such as bioerodible hydrogels (see H. S. Sawhney, C.P. Pathak and J.A.
- Hubell in Macromolecules, 1993, 26, 581-587, the teachings of which are incorporated by reference herein) may also be used to deliver HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents for treatment of a HSD17B13-associated disease or condition.
- Additional suitable delivery systems can include time-release, delayed release or sustained release delivery systems. Such systems can avoid repeated administrations of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent, increasing convenience to the subject and the medical care professional.
- Many types of release delivery systems are available and known to those of ordinary skill in the art. (See for example: U.S. Pat. Nos.
- pump-based hardware delivery systems can be used, some of which are adapted for implantation.
- Long-term sustained release implant may be suitable for prophylactic treatment of subjects and for subjects at risk of developing a recurrent HSD17B13-associated disease or condition.
- Long-term release means that the implant is constructed and arranged to deliver a therapeutic level of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent for at least up to 10days, 20days, 30days, 60days, 90days, six months, a year, or longer.
- Long-term sustained release implants are well-known to those of ordinary skill in the art and include some of the release systems described above.
- Therapeutic formulations of HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents may be prepared for storage by mixing the molecule or compound having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers [Remington's Pharmaceutical Sciences 21 st edition, (2006) ] , in the form of lyophilized formulations or aqueous solutions.
- Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol) ; low molecular weight (less than about 10residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine
- Methods of the invention may be used in conjunction with cells, tissues, organs and/or subjects.
- a subject is a human or vertebrate mammal including but not limited to a dog, cat, horse, cow, goat, mouse, rat, and primate, e.g., monkey.
- the invention can be used to treat HSD17B13-associated diseases or conditions in human and non-human subjects.
- a subject may be a farm animal, azoo animal, a domesticated animal or non-domesticated animal and methods of the invention can be used in veterinary prevention and treatment regimens.
- the subject is a human and methods of the invention can be used in human prevention and treatment regimens.
- Non-limiting examples of subjects to which the present invention can be applied are subjects who are diagnosed with, suspected of having, or at risk of having a disease or condition associated with a higher than desirable HSD17B13 expression and/or activity, also referred to as “elevated levels of HSD17B13 expression” .
- Non-limiting examples of diseases and conditions associated with a higher than desirable levels of HSD17B13 expression and/or activity are described elsewhere herein.
- Methods of the invention may be applied to a subject who, at the time of treatment, has been diagnosed as having the disease or condition associated with a higher than desirable HSD17B13 expression and/or activity, or a subject who is considered to be at risk for having or developing a disease or condition associated with a higher than desirable HSD17B13 expression and/or activity.
- a disease or condition associated with a higher than desirable HSD17B13 level of expression and/or activity is an acute disease or condition, and in certain aspects of the invention a disease or condition associated with a higher than desirable HSD17B13 level of expression and/or activity is a chronic disease or condition.
- a HSD17B13 dsRNA agent of the invention is administered to a subject diagnosed with, suspected of having, or at risk of having, statin resistant hypercholesterolemia, which is a disease in which it is desirable to reduce HSD17B13 expression.
- Methods of the invention may be applied to the subject who, at the time of treatment, has been diagnosed as having the disease or condition, or a subject who is considered to be at risk for having or developing the disease or condition.
- a HSD17B13 dsRNA agent of the invention is administered to a subject diagnosed with, suspected of having, or at risk of having, hyperlipidemia, which is a disease in which it is desirable to reduce HSD17B13 expression.
- Methods of the invention may be applied to the subject who, at the time of treatment, has been diagnosed as having the disease or condition, or a subject who is considered to be at risk for having or developing the disease or condition.
- a cell to which methods of the invention may be applied include cells that are in vitro, in vivo, ex vivo cells. Cells may be in a subject, in culture, and/or in suspension, or in any other suitable state or condition.
- a cell to which a method of the invention may be applied can be a liver cell, a hepatocyte, a cardiac cell, a pancreatic cell, a cardiovascular cell, kidney cell or other type of vertebrate cell, including human and non-human mammalian cells.
- a cell to which methods of the invention may be applied is a healthy, normal cell that is not known to be a disease cell.
- a control cell is a normal cell, but it will be understood that a cell having a disease or condition may also serve as a control cell in particular circumstances for example to compare results in a treated cell having a disease or condition versus an untreated cell having the disease or condition, etc.
- a level of HSD17B13 polypeptide activity can be determined and compared to control level of HSD17B13 polypeptide activity, according to methods of the invention.
- a control may be a predetermined value, which can take a variety of forms. It can be a single cut-off value, such as a median or mean. It can be established based upon comparative groups, such as in groups having normal levels of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity and groups having increased levels of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity.
- comparative groups may be groups having one or more symptoms of or a diagnosis of a HSD17B13-associated disease or condition; groups without having one or more symptoms of or a diagnosis of the disease or condition; groups of subjects to whom an siRNA treatment of the invention has been administered; groups of subjects to whom an siRNA treatment of the invention has not been administered.
- a control may be based on apparently healthy normal individuals in an appropriate age bracket or apparently healthy cells. It will be understood that controls according to the invention may be, in addition to predetermined values, samples of materials tested in parallel with the experimental materials. Examples include samples from control populations or control samples generated through manufacture to be tested in parallel with the experimental samples.
- a control may include a cell or subject not contacted or treated with a HSD17B13 dsRNA agent of the invention and in such instances, a control level of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity can be compared to a level of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity in a cell or subject contacted with a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention.
- a level of HSD17B13 polypeptide determined for a subject can be a control level against which a level of HSD17B13 polypeptide determined for the same subject at a different time is compared.
- a level of HSD17B13 is determined in a biological sample obtained from a subject who has not been administered a HSD17B13 treatment of the invention.
- the biological sample is a serum sample.
- the biological sample is a liver sample.
- the level of HSD17B13 polypeptide determined in the sample obtained from the subject can serve as a baseline or control value for the subject.
- one or more additional serum samples can be obtained from the subject and the level of HSD17B13 polypeptide in the subsequent sample or samples can be compared to the control/baseline level for the subject. Such comparisons can be used to assess onset, progression, or recession of a HSD17B13 associated disease or condition in the subject.
- a level of HSD17B13 polypeptide in the baseline sample obtained from the subject that is higher than a level obtained from the same subject af ter the subject has been administered a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention indicates regression of the HSD17B13-associated disease or condition and indicates efficacy of the administered HSD17B13 dsRNA agent of the invention for treatment of the HSD17B13-associated disease or condition.
- values of one or more of a level of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity determined for a subject may serve as control values for later comparison of levels of HSD17B13 polypeptide and/or HSD17B13 activity, in that same subject, thus permitting assessment of changes from a “baseline” HSD17B13 polypeptide activity in a subject.
- an initial HSD17B13 polypeptide level and/or initial HSD17B13 polypeptide activity level may be present and/or determined in a subject and methods and compounds of the invention may be used to decrease the level of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity in the subject, with the initial level serving as a control level for that subject.
- HSD17B13 dsRNA agents and/or HSD17B13 antisense polynucleotide agents of the invention may be administered to a subject.
- Efficacy of the administration and treatment of the invention can be assessed when a level of HSD17B13 polypeptide in a serum sample obtained from a subject is decreased by at least 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or more compared to a pre-administration level of HSD17B13 polypeptide in a serum sample obtained from the subject at a prior time point, or compared to a non-contacted control level, for example a level of HSD17B13 polypeptide in a control serum sample.
- Certain embodiments of methods of the invention comprise administering a HSD17B13 dsRNA and/or HSD17B13 antisense agent of the invention to a subject in an amount effective to inhibit HSD17B13 gene expression and thereby reduce a level of HSD17B13 polypeptide and reduce a level of HSD17B13 polypeptide activity in the subject.
- Some embodiments of the invention include determining presence, absence, and/or an amount (also referred to herein as a level) of HSD17B13 polypeptide in one or more biological samples obtained from one or more subjects. The determination can be used to assess efficacy of a treatment method of the invention. For example, methods and compositions of the invention can be used to determine a level of HSD17B13 polypeptide in a biological sample obtained from a subject previously treated with administration of a HSD17B13 dsRNA agent and/or a HSD17B13 antisense agent of the invention.
- a level of HSD17B13 polypeptide determined in a serum sample obtained from the treated subject that is lower by at least 0.5%, 1%,5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or more compared to a pretreatment level of HSD17B13 polypeptide determined for the subject, or compared to a non-contacted control biological sample level, indicates a level of efficacy of the treatment administered to the subject.
- a physiological characteristic of a HSD17B13-associated disease or condition determined for a subject can be a control determination against which a determination of the physiological characteristic in the same subject at a different time is compared.
- a physiological characteristic such as the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level, the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver is determined in a biological sample, such as a liver or serum sample, obtained from a subject who has not been administered a HSD17B13 treatment of the invention.
- the HSD17B13 mRNA level (and/or other physiological characteristic of a HSD17B13 disease or condition) determined in the sample obtained from the subject can serve as a baseline or control value for the subject.
- a HSD17B13 dsRNA agent to the subject in a treatment method of the invention
- one or more additional liver or serum samples can be obtained from the subject and HSD17B13 mRNA level and/or HSD17B13 protein level in the subsequent sample or samples are compared to the control/baseline level and/or ratio, respectively, for the subject. Such comparisons can be used to assess onset, progression, or recession of a HSD17B13 associated disease or condition in the subject.
- HSD17B13 mRNA level in the baseline sample obtained from the subject that is higher than HSD17B13 mRNA level determined in a sample obtained from the same subject after the subject has been administered a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention indicates regression of the HSD17B13-associated disease or condition and indicates efficacy of the administered HSD17B13 dsRNA agent of the invention for treatment of the HSD17B13-associated disease or condition.
- values of one or more of a physiological characteristic of a HSD17B13-associcated disease or condition determined for a subject may serve as control values for later comparison of the physiological characteristics in that same subject, thus permitting assessment of changes from a “baseline” physiological characteristic in a subject.
- an initial physiological characteristic may be present and/or determined in a subject and methods and compounds of the invention may be used to decrease the level of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity in the subject, with the initial physiological characteristic determination serving as a control for that subject.
- HSD17B13 dsRNA agents and/or HSD17B13 antisense polynucleotide agents of the invention may be administered to a subject in an effective amount to treat a HSD17B13 disease or condition. Efficacy of the administration and treatment of the invention can be assessed by determining a change in one or more physiological characteristics of the HSD17B13 disease or condition.
- a HSD17B13 mRNA level in a serum sample obtained from a subject is decreased by at least 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or more compared to a pre-administration lipid in a serum sample obtained from the subject at a prior time point, or compared to a non-contacted control level, for example HSD17B13 mRNA level in a control serum sample.
- HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level, the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver each correlates with a level of HSD17B13 gene expression.
- Certain embodiments of methods of the invention comprise administering a HSD17B13 dsRNA and/or HSD17B13 antisense agent of the invention to a subject in an amount effective to inhibit HSD17B13 gene expression and thereby reduce the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or otherwise positively impact a physiological characteristic of a HSD17B13-assocaited disease or condition in the subject.
- Some embodiments of the invention include determining presence, absence, and/or a change in a physiological characteristic of a HSD17B13-associated disease or condition using methods such as but not limited to: (1) assessing one or more biological samples obtained from one or more subjects for the physiological characteristic; (2) imaging a subject (for example but not limited to obtaining a liver image) ; and (3) or physical examination of the subject. The determination can be used to assess efficacy of a treatment method of the invention.
- kits that comprise one or more HSD17B13 dsRNA agents and/or HSD17B13 antisense polynucleotide agents and instructions for its use in methods of the invention.
- Kits of the invention may include one or more of a HSD17B13 dsRNA agent, HSD17B13 sense polynucleotide, and HSD17B13 antisense polynucleotide agent that may be used to treat a HSD17B13-associated disease or condition.
- Kits containing one or more HSD17B13 dsRNA agents, HSD17B13 sense polynucleotides, and HSD17B13 antisense polynucleotide agents can be prepared for use in treatment methods of the invention.
- kits of the invention may be packaged either in aqueous medium or in lyophilized form.
- a kit of the invention may comprise a carrier being compartmentalized to receive in close confinement therein one or more container means or series of container means such as test tubes, vials, flasks, bottles, syringes, or the like.
- a first container means or series of container means may contain one or more compounds such as a HSD17B13 dsRNA agent and/or HSD17B13 sense or antisense polynucleotide agent.
- a second container means or series of container means may contain a targeting agent, a labelling agent, a delivery agent, etc. that may be included as a portion of a HSD17B13 dsRNA agent and/or HSD17B13 antisense polynucleotide to be administered in an embodiment of a treatment method of the invention.
- a kit of the invention may also include instructions. Instructions typically will be in written form and will provide guidance for carrying-out a treatment embodied by the kit and for making a determination based upon that treatment.
- Intermediate-A was synthesized by treating commercially available galactosamine pentaacetate with trimethylsilyl trifluoromethanesulfonate (TMSOTf) in dichloromethane (DCM) . This was followed by glycosylation with Cbz protected 2- (2-aminoethoxy) ethan-1-ol to give Compound II. The Cbz protecting group was removed by hydrogenation to afford Intermediate-A as a trifluoroacetate (TFA) salt.
- Intermediate B was synthesized based on the same scheme except Cbz protected 2- (2- (2-aminoethoxy) ethoxy) ethan-1-ol was used as the starting material.
- Phosphoramidite GLPA1 or GLPA2 was synthesized by phosphitylation of Compound Va or Vb with 2-Cyanoethyl N, N-diisopropylchlorophosphoramidite and a catalytic amount of 1H-tetrazole.
- GalNAc ligand phosphoramidite compound GLPA2 was synthesized using the same procedure except Intermediate-B was used.
- a method used to attach a targeting group comprising GalNAc (also referred to herein as a GalNAc delivery compound) to the 5’-end of a sense strand included use of a GalNAc phosphoramidite (GLPA1) in the last coupling step in the solid phase synthesis, using a synthetic process such as the process used if oligonucleotide chain propagation of adding a nucleotide to the 5’-end of the sense strand is performed.
- GLPA1 GalNAc phosphoramidite
- a method of attaching a targeting group comprising GalNAc to the 3’-end of a sense strand comprised use of a solid support (CPG) that included a GLO-n.
- a method of attaching a targeting group comprising GalNAc to the 3’-end of a sense strand comprises attaching a GalNAc targeting group to CPG solid support through an ester bond and using the resulting CPG with the attached GalNAc targeting group when synthesizing the sense strand, which results in the GalNAc targeting group attached at the 3’-end of the sense strand.
- phosphoramidites may be prepared according to procedures described herein and/or prior arts such as, but are not limited to, US426,220 and WO02/36743.
- Dichloromethane (19.50 kg) was added to the 50 L glass kettle under the protection of nitrogen and started stirring. The temperature was controlled at 20 ⁇ 30 °C, and DMTr imann (1.47 kg) , triethylamine (1.50 kg) , 4-dimethylaminopyridine (0.164 kg) and succinic anhydride (1.34 kg) was added to the glass kettle. The system was kept at 20 ⁇ 30 °C for 18h, samples were taken and the reaction was ended. Saturated sodium bicarbonate solution (22.50 kg) was added into the reaction system, stirred for 10-20 min, and allowed to separate into layers.
- the organic phase was separated, and the aqueous phase was extracted twice with dichloromethane, and the organic phase was combined and dried over anhydrous sodium sulfate, filtered, and concentrated in vacuum to get the residue forming a gray to off-white solid of 1.83 kg.
- N, N-dimethylformamide (23.50 kg) was added into a 100L glass kettle and stirred. The temperature was controlled at 20 ⁇ 30 °C. Under the protection of nitrogen, the products of the previous step, O-benzotriazole tetramethylurea hexafluorophosphate (0.33 kg) and N, N-diisopropylethylamine (0.13 kg) were added into the aforesaid 100L glass kettle through the solid feeding funnel and stirred for 10 ⁇ 30 minutes and were discharged into a 50 L zinc barrel for use.
- Macroporous amine methyl resin (3.25 kg) (purchased from Tianjin Nankai Hecheng Science and Technology Co., Ltd., batch number HA2X1209, load capacity 0.48 mmol/g) were added into the aforesaid 100 L solid phase synthesis reactor through the solid feeding funnel, the temperature was controlled at 20 ⁇ 30 °C, N, N-dimethylformamide (21.00 kg+21.00 kg) and the reaction solution in the zinc barrel of the previous step were add into the solid phase synthesis reactor. The system was subject to thermal insulation reaction, and the solid load was tracked to ⁇ 250umol/g, and the load detection method was UV.
- the system was filtered under the pressure of nitrogen, the filter cake was washed with N, N-dimethylformamide for three times (26.00kg+26.10kg+26.00kg) , and the filter cake was left in the kettle.
- CAP. A (4.40kg+4.42kg+4.30kg) and CAP. B (4.40kg+4.40kg+4.47kg) were added into the 80L glass kettle, and stirred for 3 ⁇ 8min before use. This operation was repeated for three times to cap, and acetonitrile (18.00 kg+18.00 kg+18.00 kg+17.50 kg+17.50 kg) was added into the solid phase synthesis kettle. Filter-pressed after nitrogen bubbling for 10 ⁇ 30 min.
- Sense and antisense strand sequences of siRNA were synthesized on oligonucleotide synthesizers using a well-established solid phase synthesis method based on phosphoramidite chemistry. Oligonucleotide chain propagation is achieved through 4-step cycles: a deprotection, a condensation, a capping and an oxidation or a sulfurization step for addition of each nucleotide. Syntheses were performed on a solid support made of controlled pore glass (CPG, ) . Monomer phosphoramidites may be purchased from commercial sources or may be the phosporamidite compounds in example 3 and in WO2016/028649.
- the phosporamidite compounds herein may be attached to the 3'-end as a monomeric phosphoramidite, and further be attached to the CPG solid support. In the case of attachment at the 5'-end, the phosphoramidite compounds may be used for the final coupling reaction, and can be further conjugated to target ligands if necessary.
- Phosphoramidites with GalNAc ligand cluster (GLPA1, GLPA2 and GLPA15 as non-limiting examples) were synthesized according to the procedures of Examples 1-2 herein.
- siRNAs used for in vitro screening (Table 2) , syntheses were carried out at 2 ⁇ mol scale, and for siRNAs used for in vivo testing (Table 3) , syntheses were carried out at scale of 5 ⁇ mol or larger.
- GalNAc ligand GLO-0as a non-limiting example
- GalNAc ligand attached CPG solid support was used.
- GalNAc ligand (GLS-5 or GLS-15 as non-limiting example) is attached at 5’-end of sense strand
- a GalNAc phosphoramidite (GLPA1, GLPA2 or GLPA15 as a non-limiting example) was used for the last coupling reaction.
- Trichloroacetic acid 3%in dichloromethane or Dichloroacetic acid (DCA) 10%in toluene was used for deprotection of 4, 4′-dimethoxytrityl protecting group (DMT) .
- DMT 4′-dimethoxytrityl protecting group
- 5-Ethylthio-1H-tetrazole was used as an activator in coupling step.
- PADS phenylacetyl disulfide
- DDTT Xanthane Hydride
- solid support bound oligomer was cleaved and protecting groups were removed by treating with a 1: 1 volume solution of 40 wt. %methylamine in water and 28%ammonium hydroxide solution.
- siRNAs used for in vitro screening, crude mixture was concentrated. The remaining solid was dissolved in 1.0 M NaOAc, and ice cold EtOH was added to precipitate out the single strand product as the sodium salt, which was used for annealing without further purification.
- IP-RP-HPLC ion pairing reversed phase HPLC
- Purified single strand oligonucleotide product from IP-RP-HPLC was converted to sodium salt by dissolving in1.0 M NaOAc and precipitation by addition of ice cold EtOH. Annealing of equimolar complementary sense stand and antisense strand oligonucleotide in water was performed to form the double strand siRNA product, which was lyophilized to afford a fluffy white solid.
- Huh7 cells were trypsinized and adjusted to appropriate density, and seeded into 96-well plates.
- Cells were transfected with test siRNAs or a control siRNA using Lipofectamine RNAiMax (Invitrogen-13778-150) at the same time of seeding following the protocol according to manufacturer’s recommendation.
- the siRNAs were tested at different concentrations (5nM, 1nM, 0.05nM and0.005nM) in triplicate.
- RNAiMAX (Opti-MEM) mix into 225 ⁇ l /well DMEM fresh medium, and discard the supernatants in assay plate, add 120 ⁇ l/well compound mix into 96 well plates.
- No compound control well was defined as cells transfected with psiCHECK (TM) -2 Vector and without siRNA treatment; blank control was cell only wells.
- Ratio of sample well (sample Renilla luminescence-background blank) / (sample Fireflyluminescence-background blank)
- Ratio of no compound control well (control Renilla luminescence-background blank) /(control sample Fireflyluminescence-background blank)
- Table 4 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression.
- the duplex sequences used correspond to those shown in Table 2.
- Table 5 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression.
- the duplex sequences used correspond to those shown in Table 2.
- Table 6 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression.
- the duplex sequences used correspond to those shown in Table 2.
- Table 7 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression.
- the duplex sequences used correspond to those shown in Table 2.
- Table 8 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression.
- the duplex sequences used correspond to those shown in Table 2.
- Table 9 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression.
- the duplex sequences used correspond to those shown in Table 2.
- mice Female C57BL/6J mice (4 in each group) were infected by intravenous administration of a solution of adeno-associated virus8 (AAV8) vector encoding human HSD17B13 and luciferase gene.
- AAV8 adeno-associated virus8
- mice were subcutaneously administered a single 4 mg/kg of HSD17B13 siRNA agents or PBS.
- Blood samples were collected at day 8, before dosing of siRNA, at day 15 and at the terminal day 22. Serum samples were isolated and luciferase activity of serum samples was measured per manufacturer’s recommended protocol.
- HSD17B13 level correlates with expression level of luciferase
- percent of remaining HSD17B13 was calculated by comparing luciferase activity in samples from siRNA treated groups before and after treatment, normalized by the change of luciferase activity over the same period of time in samples from the control treated group.
- Table 10 provides experimental results of in vivo studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression.
- the duplex sequences used correspond to those shown in Table 3.
- Table 11 provides experimental results of in vivo studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression.
- the duplex sequences used correspond to those shown in Table 3.
- Table 12 provides experimental results of in vivo studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression.
- the duplex sequences used correspond to those shown in Table 3.
- Table 13 provides experimental results of in vivo studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression.
- the duplex sequences used correspond to those shown in Table 3.
- Table 14 provides experimental results of in vivo studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression.
- the duplex sequences used correspond to those shown in Table 3.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Virology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Compositions and methods useful to reduce expression of 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) gene and for treatment of HSD 17B13-associated diseases and conditions are provided. Provided are HSD17B13 dsRNA agents, HSD17B13 antisense polynucleotide agents, compositions comprising HSD17B13 dsRNA agents, and compositions comprising HSD17B13 antisense polynucleotide agents that can be used to reduce HSD17B13 expression in cells and subjects.
Description
The invention relates, in part, to compositions and methods that can be used to inhibit 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) gene expression.
17-hydroxysteroid dehydrogenase Type 13 (HSD17B13) is a member of the 17β-Hydroxysteroid dehydrogenase (HSD17B or 17β-HSD) family of enzymes whose members have various functions, including, for example, reduction or oxidation of sex hormones, fatty acids, and bile acids in vivo (Moeller and Adam ski (2009) Mol Cell Endocrinol 301: 7) . The HSD17B family consists of 14 enzymes involved in the reduction or oxidation of sex hormones, fatty acids and bile acids. Tissue distribution, subcellular localization, and catalytic preferences vary among the various family members. The HSD17B family exhibits different substrate specificities, including steroids, lipids and retinoids.
It is known that the highest expression level of HSD17B13 is found in hepatocytes of the liver, while lower levels can be detected in ovaries, bone marrow, kidney, brain, lung, skeletal muscle, bladder, and testis. Hepatocytes, which form the parenchymal tissue of the liver, are responsible for mobilizing lipids for energy and storing excess lipids in the form of lipid droplets (LDs) making the liver the primary organ responsible for lipid homeostasis. The function of HSD17B13 is not fully understood, however, some 17β-HSD family members, including 17β-HSD-4, -7, -10 and-12, have been shown to be involved in carbohydrate and fatty acid metabolism. This suggests that HSD17B13 may also play a role in the lipid metabolic pathway. Liver up-regulation of HSD17B13 has been reported to be observed in fatty liver patients, supporting a role for this enzyme in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) .
Accordingly, novel therapeutics targeting HSD17B13 represents a novel approach to reducing HSD17B13 levels and treating hepatologic diseases, such as nonalcoholic fatty liver disease.
In general, the present disclosure features novel HSD17B13 gene-specific RNAi agents, compositions that include HSD17B13 RNAi agents, and methods for inhibiting expression of
an HSD17B13 gene in vitro and/or in vivo using the HSD17B13 RNAi agents and compositions that include HSD17B13 RNAi agents described herein. The HSD17B13 RNAi agents described herein can selectively and efficiently decrease, inhibit, or silence expression of an HSD17B13 gene in a subject, e.g., a human or animal subject.
According to an aspect of the invention, a double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) is provided, wherein the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: l and the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 2. In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region at least 17 nucleotides in length, wherein said sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from any one of nucleotides 45-85, 49-85, 576-606, 651-681, 659-689, 666-696, 760-790, 769-799, 772-802, 817-847, 841-871, 876-906, 959-989, 1000-1030, or 1508-1538of the nucleotide sequence of SEQ ID NO: l and said antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the nucleotide sequence of SEQ ID NO: 2. In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region at least 17 nucleotides in length, wherein said sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from any one of nucleotides 54-72, 56-74, 59-77, 60-78, 581-599, 656-674, 664-682, 671-689, 765-783, 774-792, 777-795, 822-840, 846-864, 881-899, 964-982, 1005-1023, or 1513-1531 of the nucleotide sequence of SEQ ID NO: l and said antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the nucleotide sequence of SEQ ID NO: 2. In some embodiments, the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region at least 15, 16, 17 nucleotides in length, wherein said sense strand comprises at least 15, 16, 17, 18, 19 or 20 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from any one of nucleotides 45-65, 46-66, 47-67, 48-68, 49-69, 50-70, 51-71, 52-72, 53-73, 54-74, 55-75, 56-76, 57-77, 58-78, 59-79, 60-80, 61-81, 62-82, 63-83, 64-84or 65-85 of the nucleotide sequence of SEQ ID NO: l and said antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 2. In some embodiments, the dsRNA agent including a sense strand and an antisense strand, nucleotide positions 2 to 18 in the antisense strand including a region of complementarity to a HSD17B13
RNA transcript, wherein the region of complementarity includes at least 15 contiguous nucleotides that differ by 0, 1, 2, or 3 nucleotides from one of the antisense sequences listed in one of Tables 1-3, and optionally including a targeting ligand. In some embodiments, the region of complementarity to a HSD17B13 RNA transcript includes at least 15, 16, 17, 18, 19 or 20 contiguous nucleotides that differ by no more than 3 nucleotides from one of the antisense sequences listed in one of Tables 1-3. In certain embodiments, the antisense strand of dsRNA is at least substantially complementary to any one of a target region of SEQ ID NO: 1 and is provided in any one of Tables 1-3. In some embodiments, the antisense strand of dsRNA is fully complementary to any one of a target region of SEQ ID NO: 1 and is provided in any one of Tables 1-3. In some embodiments, the dsRNA agent includes a sense strand sequence set forth in any one of Tables 1-3, wherein the sense strand sequence is at least substantially complementary to the antisense strand sequence in the dsRNA agent. In certain embodiments, the dsRNA agent includes a sense strand sequence set forth in any one of Tables 1-3, wherein the sense strand sequence is fully complementary to the antisense strand sequence in the dsRNA agent. In some embodiments, the dsRNA agent includes an antisense strand sequence set forth in any one of Tables 1-3. In some embodiments, the dsRNA agent includes the sequences set forth as a duplex sequence in any of Tables 1-3.
In some embodiments, the antisense strand of dsRNA comprises a nucleotide sequence SI: 5’-z1AGAAGCAGAAGGAUUUz2-3’, wherein z1and z2 each independently represents a nucleotide sequence which is0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length, wherein the nucleotide sequence SI is substantially or fully complementary to part of a HSD17B13 mRNA transcript. In certain embodiments, z1 is selected from C, G, A or U. In certain embodiments, z1 is U. In certain embodiments, z2 is absent. In certain embodiments, z2 is a nucleotide sequence selected from C, CU, CA, CC, CG, CUU, CUA, CUC, CUG, CUAC, CUAU, CUAA, CUAG, CUAGG, CUAGUU, CUAGGA, CUAGGAU, CUAGGAUG, CUAGGAUGA or CUAGGAUGAUGUUCAUGGCUUUG. In some embodiments, the antisense strand of dsRNA consists of the nucleotide sequence SI: 5’-z1AGAAGCAGAAGGAUUUz2-3’, wherein z1 and z2 are each independently as defined above. In certain embodiments, the antisense strand of dsRNA consists of a nucleotide sequence SI’ : 5’-z1AGAAGCAGAAGGAUUUCz2’-3’, wherein z1is selected from C, G, A or U, z2’ is a nucleotide sequence selected from U, A, C, G, UU, UA, UC, UG, UAC, UAU, UAA, UAG, UAGG, UAGUU, UAGGA, UAGGAU, UAGGAUG, AUUUCUAG, UAGGAUGA or UAGGAUGAUGUUCAUGGCUUUG.
In some embodiments, the sense strand of dsRNA comprises a nucleotide sequence SII: 5’-z3AAAUCCUUCUGCUUCUz4-3’, wherein z3 and z4each independently represents a nucleotide sequence which is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length. In certain embodiments, z4 is selected from C, G, A or U. In certain embodiments, z4 is A. In certain embodiments, z3 is absent. In certain embodiments, z3 is a nucleotide sequence selected from G, AG, UG, GG, CG, AAG, UAG, GAG, CAG, CUAG, GUAG, AUAG, UUAG, CCUAG, UCCUAG, AUCCUAG, CAUCCUAG, UCAUCCUAG or CAAAGCCAUGAACAUCAUCCUAG. In some embodiments, the sense strand of dsRNA consists of a nucleotide sequence SII: 5’-z3AAAUCCUUCUGCUUCUz4-3’, wherein z3 and z4 each independently as defined above. In some embodiments, the sense strand of dsRNA consists of a nucleotide sequence SII’: 5’-z3’GAAAUCCUUCUGCUUCUz4-3’, wherein z4is selected from C, G, A or U, z3’ is a nucleotide sequence selected from A, U, G, C, AA, UA, GA, CA, CUA, GUA, AUA, UUA, CCUA, UCCUA, AUCCUA, CAUCCUA, UCAUCCUA or CAAAGCCAUGAACAUCAUCCUA. It can be understood that the sense strand is substantially or fully complementary to the corresponding antisense strand.
In some embodiments, z1 is a nucleotide sequence substantially or fully complementary to z4. In some embodiments, z2 is a nucleotide sequence substantially or fully complementary to z3. In some embodiments, z2’ is a nucleotide sequence substantially or fully complementary to z3’.
In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the antisense strand of dsRNA comprises the nucleotide sequence SI or SI' as described above, wherein the sense strand is substantially or fully complementary to the antisense strand sequence, forming a duplex region of at least 15, 16, 17, 18, or 19 nucleotides with 0, 1, 2 or 3 mismatches.
In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the antisense strand of dsRNA consists of the nucleotide sequence SI or SI' as described above, wherein the sense strand is substantially or fully complementary to the antisense strand sequence, forming a duplex region of at least 15, 16, 17, 18, or 19 nucleotides with0, 1, 2 or 3 mismatches.
In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA comprises the nucleotide sequence SII and the antisense strand of dsRNA comprises the nucleotide sequence SI, wherein the nucleotide sequence SII and SI are as described above. In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA consists of the nucleotide sequence
SII and the antisense strand of dsRNA consists of the nucleotide sequence SI, wherein the nucleotide sequence SII and SI are as described above.
In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA comprises the nucleotide sequence SII’ and the antisense strand of dsRNA comprises the nucleotide sequence SI’, wherein the nucleotide sequence SII’ and SI’ are as described above. In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA consists of the nucleotide sequence SII’ and the antisense strand of dsRNA consists of the nucleotide sequence SI’, wherein the nucleotide sequence SII’ and SI’ are as described above.
In some embodiments, the antisense strand of dsRNA comprises a nucleotide sequence SIII: 5’-z5GUGAUCAGAAGCAGAAz6-3’, wherein z5 and z6each independently represents a nucleotide sequence which is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length, wherein the nucleotide sequence SIII is substantially or fully complementary to part of a HSD17B13 mRNA transcript. In certain embodiments, z5 is selected from C, G, A or U. In certain embodiments, z5 is U. In certain embodiments, z5 is absent. In certain embodiments, z5 is a nucleotide sequence selected from G, GU, GA, GC, GG, GGU, GGA, GGC, GGG, GGAC, GGAU, GGAA, GGAUU, GGAUGA, GGAUUU, GGAUUUC, GGAUUUCU, GGAUUUCUA or GGAUUUCUAGGAUGAUGUUCAUG. In some embodiments, the antisense strand of dsRNA consists of the nucleotide sequence SIII: 5’-z5GUGAUCAGAAGCAGAAz6-3’, wherein z5 and z6 are each independently as defined above. In certain embodiments, the antisense strand of dsRNA consists of a nucleotide sequence SIII’ : 5’-z5GUGAUCAGAAGCAGAAGz6’-3’, wherein z5is selected from C, G, A or U, z6’ is a nucleotide sequence selected from U, A, C, G, GU, GA, GC, GG, GAC, GAU, GAA, GAUU, GAUGA, GAUUU, GAUUUC, GAUUUCU, GAUUUCUA or GAUUUCUAGGAUGAUGUUCAUG.
In some embodiments, the sense strand of dsRNA comprises a nucleotide sequence SIV: 5’-z7UUCUGCUUCUGAUCACz8-3’, wherein z7and z8 each independently represents a nucleotide sequence which is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length. In certain embodiments, z8 is selected from C, G, A or U. In certain embodiments, z8 is A. In certain embodiments, z7is absent. In certain embodiments, z7 is a nucleotide sequence selected from C, AC, UC, GC, CC, ACC, UCC, GCC, CCC, GUCC, AUCC, UUCC, AAUCC, AAAUCC, GAAAUCC, AGAAAUCC, UAGAAAUCC or CAUGAACAUCAUCCUAGAAAUCC. In some embodiments, the sense strand of dsRNA consists of a nucleotide sequence SIV: 5’-z7UUCUGCUUCUGAUCACz8-3’, wherein z7 and
z8 each independently as defined above. In some embodiments, the sense strand of dsRNA consists of a nucleotide sequence SIV’: 5’-z7’CUUCUGCUUCUGAUCACz8-3’, wherein z8 is selected from C, G, A or U, z7’ is a nucleotide sequence selected from A, U, G, C, AC, UC, GC, CC, GUC, AUC, UUC, AAUC, AAAUC, GAAAUC, AGAAAUC, UAGAAAUC or CAUGAACAUCAUCCUAGAAAUC. It can be understood that the sense strand is substantially or fully complementary to the corresponding antisense strand.
In some embodiments, z5 is a nucleotide sequence substantially or fully complementary to z8. In some embodiments, z6 is a nucleotide sequence substantially or fully complementary to z7. In some embodiments, z6’ is a nucleotide sequence substantially or fully complementary to z7’.
In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the antisense strand of dsRNA comprises the nucleotide sequence SIII or SIII' as described above, wherein the sense strand is substantially or fully complementary to the antisense strand sequence, forming a duplex region of at least 15, 16, 17, 18, or 19nucleotides with 0, 1, 2 or 3 mismatches.
In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the antisense strand of dsRNA consists of the nucleotide sequence SIII or SIII' as described above, wherein the sense strand is substantially or fully complementary to the antisense strand sequence, forming a duplex region of at least 15, 16, 17, 18, or 19 nucleotides with 0, 1, 2 or 3 mismatches.
In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA comprises the nucleotide sequence SIV and the antisense strand of dsRNA comprises the nucleotide sequence SIII, wherein the nucleotide sequence SIII and SIV are as described above. In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA consists of the nucleotide sequence SIV and the antisense strand of dsRNA consists of the nucleotide sequence SIII, wherein the nucleotide sequence SIII and SIV are as described above.
In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA comprises the nucleotide sequence SIV’ and the antisense strand of dsRNA comprises the nucleotide sequence SIII’, wherein the nucleotide sequence SIII’ and SIV’ are as described above. In some embodiments, the dsRNA agent includes a sense strand and an antisense strand, wherein the sense strand of dsRNA consists of the nucleotide sequence SIV’ and the antisense strand of dsRNA consists of the nucleotide sequence SIII’, wherein the nucleotide sequence SIII’ and SIV’ are as described above.
In some embodiments, the dsRNA agent includes at least one modified nucleotide. In certain embodiments, all or substantially all of the nucleotides of the antisense strand are modified nucleotides. In certain embodiments, all or substantially all of the nucleotides of the sense strand and the antisense strand are modified nucleotides. In some embodiments, at least one of the modified nucleotides comprises: 2’-O-methyl nucleotide, 2’-Fluoro nucleotide, 2’-deoxy nucleotide, 2’ 3’-seco nucleotide mimic, locked nucleotide, unlocked nucleic acid nucleotide (UNA) , glycol nucleic acid nucleotide (GNA) , 2’-F-Arabino nucleotide, 2’-methoyxyethyl nucleotide, abasic nucleotide, ribitol, inverted nucleotide, inverted abasic nucleotide, inverted 2’-Ome nucleotide, inverted 2’-deoxy nucleotide, isomannide nucleotide, 2’-amino-modified nucleotide, 2’-alkyl-modified nucleotide, mopholino nucleotide, and3’-OMe nucleotide, a nucleotide including a 5’-phosphorothioate group, a 5'-phosphonate modified nucleotide or a terminal nucleotide linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group, a 2’-amino-modified nucleotide, a phosphoramidite, or a non-natural base including nucleotide. In some embodiments, the dsRNA agent includes an E-vinylphosphonate nucleotide at the 5′ end of the guide strand. In certain embodiments, the dsRNA agent includes at least one phosphorothioate internucleoside linkage. In certain embodiments, the sense strand includes at least one phosphorothioate internucleoside linkage. In some embodiments, the antisense strand includes at least one phosphorothioate internucleoside linkage. In some embodiments, the sense strand includes 1, 2, 3, 4, 5, or 6, phosphorothioate internucleoside linkages. In some embodiments, the antisense strand includes 1, 2, 3, 4, 5, or 6, phosphorothioate internucleoside linkages. In some embodiments, the antisense strand comprises 15or more modified nucleotides independently selected from a 2’-O-methyl nucleotide and a 2’-fluoro nucleotide, wherein less than6 modified nucleotides are 2’-fluoro nucleotides. In certain embodiments, the antisense strand comprises 3 or 5 2’-fluoro nucleotides, preferably, the antisense strand comprises 5 2’-fluoro nucleotides. In certain embodiments, the antisense strand comprises 5 2’-fluoro nucleotides and a 5'-phosphonate modified nucleotide, preferably, wherein the 5'-phosphonate modified nucleotide is a nucleotide comprising vinyl phosphonate. In some embodiments, the sense strand comprises 15 or more modified nucleotides independently selected from a 2’-O-methyl nucleotide and a 2’-fluoro nucleotide, wherein less than 4 modified nucleotides are 2’-fluoro nucleotides. In certain embodiments, the sense strand comprises 3 2’-fluoro nucleotides. In some embodiments, the antisense strand comprises 15 or more modified nucleotides independently selected from a 2’-O-methyl nucleotide and a 2’-fluoro nucleotide, wherein at least 16 modified nucleotides are 2’-O-methyl nucleotide and the nucleotides at position 2, 7, 12, 14
and/or 16 counting from the first matching position from the 5’ end of the antisense strand are a 2’-fluoro nucleotide. In certain embodiments, the nucleotides at position 2, 7, 12, 14 and 16 counting from the first matching position from the 5’ end of the antisense strand are 2’-fluoro nucleotides and 5’ terminal nucleotide of the antisense strand is a nucleotide comprising vinyl phosphonate, preferably, wherein said nucleotide comprising vinyl phosphonate is VPu*as defined in this invention. In some embodiments, the sense strand comprises 15or more modified nucleotides independently selected from a 2’-O-methyl nucleotide and a 2’-fluoro nucleotide, preferably, wherein at least 18 modified nucleotides are 2’-O-methyl nucleotide and the nucleotides at position9, 11 and/or 13 counting from the first matching position from the 3’ end of the sense strand are 2’-fluoro nucleotides.
In some embodiments, the sense strand is complementary or substantially complementary to the antisense strand, and the region of complementarity is between 16 and 23 nucleotides in length. In some embodiments, the region of complementarity is 19-21 nucleotides in length. In certain embodiments, the region of complementarity is 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some embodiments, each strand is no more than40nucleotides in length. In some embodiments, each strand is no more than 30 nucleotides in length. In some embodiments, each strand is no more than 25 nucleotides in length. In some embodiments, each strand is no more than 23 nucleotides in length. In some embodiments, each strand is no more than 21 nucleotides in length.
In some embodiments, the dsRNA agent includes at least one modified nucleotide and further includes one or more targeting groups or linking groups. In some embodiments, the one or more targeting groups or linking groups are conjugated to the sense strand. In some embodiments, the targeting group or linking group includes N-acetyl-galactosamine (GalNAc) .
In some embodiments, the targeting group has a structure as Formula (X) :
Each n” is independently selected from 1 or 2.
In some embodiments, the targeting group has a structure:
In certain embodiments, the dsRNA agent includes a targeting group that is conjugated to the 5’-terminal end of the sense strand. In some embodiments, the dsRNA agent includes a targeting group that is conjugated to the 3'-terminal end of the sense strand. In some embodiments, the antisense strand includes one inverted abasic residue at 3’-terminal end. In certain embodiments, the sense strand includes one or two inverted abasic residues and/or one or two imann residues at3’ or/and5’ terminal end. In some embodiments, the dsRNA agent has two blunt ends. In some embodiments, at least one strand includes a 3’ overhang of at least 1 nucleotide. In some embodiments, at least one strand includes a 3’ overhang of at least 2 nucleotides.
In some embodiments, a double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) is provided, wherein the dsRNA agent including a sense strand and an antisense strand, wherein the sense strand complementary to the antisense strand, wherein the antisense strand comprises a region complementary to part of an mRNA encoding HSD17B13, wherein each strand is about 14 to about 30 nucleotides in length, wherein the sense strand sequence may be represented by formula (I) :
5′- (N′L) n′N′LN′LN′LN′N1N′N2N′N3N′LN′FN′LN′N4N′N5N′N6N′LN′LN′L (N′L) m′-3′ (I)
5′- (N′L) n′N′LN′LN′LN′N1N′N2N′N3N′LN′FN′LN′N4N′N5N′N6N′LN′LN′L (N′L) m′-3′ (I)
wherein:
each N′F represents a 2'-fluoro-modified nucleotide; each N′N1, N′N2, N′N3, N′N4, N′N5, and N′N6 independently represents a modified or unmodified nucleotide; N′N1N′N2N′N3 and N′N4N′N5N′N6 each independently represents one motif comprising at least two differently modified nucleotides; each N′L independently represents a modified or unmodified nucleotide but not a 2'-fluoro-modified nucleotide, and m′and n′are each independently an integer of 0 to 7. In some embodiments, n′ is 1 and m′ is 1, or n′ is 1 and m′ is 2, or n′ is 1 and m′ is 3, or n′ is 1 and m′ is 4, or n′ is 1 and m′ is 5, or n′ is 3 and m′ is 1, or n′ is 3 and m′ is 2, or n′ is 3 and m′ is 3, or n′ is 5 and m′ is 1.
In certain embodiments, the dsRNA agent includes a targeting group that is conjugated to the 5’-terminal end of the sense strand, preferably, the targeting group is any one selected from aforesaid GLO-1 through GLO-16 and GLS-1 through GLS-16, more preferably, the targeting group is aforesaid GLS-15. In certain embodiments, the dsRNA agent includes a targeting group that is conjugated to the 3'-terminal end of the sense strand. In certain embodiments, the antisense strand includes one inverted abasic residue at 3’-terminal end. In certain embodiments, the sense strand includes one or two inverted abasic residues and/or one or two imann residues at3’ or/and 5’ terminal end. In certain embodiments, each 3’ and 5’ terminal end of the sense strand independently includes an imann residue. In certain embodiments, the sense strand includes two imann residues a t3’ and 5’ terminal end and either residue at 3’ or 5’ terminal end is further conjugated to a targeting group, which preferably is aforesaid GLS-15.
In some embodiments, a double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) is provided, wherein the dsRNA agent including a sense strand and an antisense strand, wherein the sense strand complementary to the antisense strand, wherein the antisense strand comprises a region complementary to part of an mRNA encoding HSD17B13, wherein each strand is about 14 to about 30 nucleotides in length, wherein the antisense strand sequence may be represented by formula (II) :
3′- (NL) nNM1NLNM2NLNFNLNM3NLNM4NLNM5NM6NLNM7NM8NLNFNL-5′ (II)
3′- (NL) nNM1NLNM2NLNFNLNM3NLNM4NLNM5NM6NLNM7NM8NLNFNL-5′ (II)
wherein:
each NF represents a 2'-fluoro-modified nucleotide; each NM1, NM2, NM3, NM4, NM5, NM6, NM7 and NM8 independently represents a modified or unmodified nucleotide, preferably, NM2, NM3 and NM6 each independently represents a 2'-fluoro-modified nucleotide; each NL independently represents a modified or unmodified nucleotide but not a 2'-fluoro-modified nucleotide, and n is an integer of 0 to 7.
In some embodiments, n is 1, or n is 2, or n is 3.
In some embodiments, NM6, NM3 and NM2 each independently represents a 2'-fluoro-modified nucleotide.
In some embodiments, NM6, NM3 and NM2 are all 2'-fluoro-modified nucleotides.
In some embodiments, the modified nucleotide is a modified nucleotide defined above.
In some embodiments, the modified nucleotide is a 2’-OMe modified nucleotide or a 2’-F modified nuleotide.
In some embodiments, the antisense strand sequence may be represented by formula (II’) :
3′- (NL) nNM1NLNM2NLNFNLNM3NLNM4NLNM5NM6NLNM7NM8NLNFNZ-5′ (II’)
3′- (NL) nNM1NLNM2NLNFNLNM3NLNM4NLNM5NM6NLNM7NM8NLNFNZ-5′ (II’)
wherein:
each NF represents a 2'-fluoro-modified nucleotide; each NM1, NM2, NM3, NM4, NM5, NM6, NM7 and NM8 independently represents a modified or unmodified nucleotide, preferably, NM2, NM3 and NM6 each independently represents a 2'-fluoro-modified nucleotide; each NL independently represents a modified or unmodified nucleotide but not a 2'-fluoro-modified nucleotide; NZ represents a nucleotide comprising phosphate mimic, preferably, NZ represents a nucleotide comprising vinyl phosphonate; and n is an integer of 0 to 7.
In some embodiments, n is 1, or n is 2, or n is 3.
In some embodiments, NM6, NM3 and NM2 each independently represents a 2'-fluoro-modified nucleotide.
In some embodiments, NM6, NM3 and NM2 are all 2'-fluoro-modified nucleotides.
In some embodiments, the modified nucleotide is a modified nucleotide defined above.
In some embodiments, the modified nucleotide is a 2’-OMe modified nucleotide or a 2’-F modified nuleotide.
In some embodiments, NZ is a vinyl phosphonate modified nucleotide.
In some embodiments, NZ is VPu*, which has the structure
In some embodiments, a double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) is provided, wherein the dsRNA agent including a sense strand and an antisense strand, wherein the sense strand and the antisense strand form a dsRNA duplex, wherein said sense strand complementary to the antisense strand, wherein said antisense strand comprises a region of complementarity to an mRNA encoding HSD17B13, wherein the region of complementarity comprises at least 15 contiguous nucleotides, wherein the dsRNA duplex may be represented by formula (III) : sense: 5′- (N′L) n′N′LN′LN′LN′N1N′N2N′N3N′LN′FN′LN′N4N′N5N′N6N′LN′LN′L (N′L) m′-3′ antisense: 3′- (NL) n NM1NL NM2NL NF NL NM3NL NM4NLNM5NM6NLNM7NM8NLNF NL-5′ (III)
wherein:
each strand is about 17 to about 30 nucleotides in length;
each NF and N′F independently represents a 2'-fluoro-modified nucleotide; NM1, NM2, NM3, NM4, NM5, NM6, NM7, NM8, N′N1, N′N2, N′N3, N′N4, N′N5, and N′N6each independently represents a modified or unmodified nucleotide; each NL and N′L independently represents a modified or
unmodified nucleotide but not a 2'-fluoro-modified nucleotide, and m′, n′and n are each independently an integer of 0 to 7.
In some embodiments, the modified nucleotide is a modified nucleotide defined above.
In some embodiments, the modified nucleotide is a 2’-OMe modified nucleotide or a 2’-F modified nuleotide.
In some embodiments, n′ is 1 and m′ is 1, or n′ is 1 and m′ is 2, or n′ is 1 and m′ is 3, or n′ is 1 and m′ is 4, or n′ is 1 and m′ is 5, or n′ is 3 and m′ is 1, or n′ is 3 and m′ is 2, or n′ is 3 and m′ is 3, or n′ is 5 and m′ is 1.
In some embodiments, n is 1, or n is 2, or n is 3.
In some embodiments, N′N1N′N2N′N3 and N′N4N′N5N′N6each independently represents one motif comprising at least two differently modified nucleotides;
In some embodiments, NM6, NM3 and NM2 each independently represents a 2'-fluoro-modified nucleotide; in certain embodiment, NM6, NM3 and NM2 are all2'-fluoro-modified nucleotides.
In some embodiments, the sense strand and the antisense strand form a dsRNA duplex, wherein said sense strand complementary to the antisense strand, wherein said antisense strand comprises a region of complementarity to an mRNA encoding HSD17B13, wherein the region of complementarity comprises at least 15contiguous nucleotides, wherein the dsRNA duplex may be represented by formula (III’) :
sense: 5′- (N′L) n′N′LN′LN′LN′N1N′N2N′N3N′LN′FN′LN′N4N′N5N′N6N′LN′LN′L (N′L) m′-3′ antisense: 3′- (NL) nNM1NLNM2NLNFNLNM3NLNM4NLNM5NM6NLNM7NM8NLNFNZ-5′ (III’)
wherein:
each strand is about 17to about30nucleotides in length;
each NF and N′F independently represents a 2'-fluoro-modified nucleotide; NM1, NM2, NM3, NM4, NM5, NM6, NM7, NM8, N′N1, N′N2, N′N3, N′N4, N′N5, and N′N6 each independently represents a modified or unmodified nucleotide; each NL and N′L independently represents a modified or unmodified nucleotide but not a 2'-fluoro-modified nucleotide; NZ represents a nucleotide comprising phosphate mimic, preferably, NZ represents a nucleotide comprising vinyl phosphonate; and m′, n′ and n are each independently an integer of 0 to 7.
In some embodiments, the modified nucleotide is a modified nucleotide defined above.
In some embodiments, the modified nucleotide is a 2’-OMe modified nucleotide or a 2’-F modified nuleotide.
In some embodiments, n′ is 1 and m′ is 1, or n′ is 1 and m′ is 2, or n′ is 1 and m′ is 3, or n′ is 1 and m′ is 4, or n′ is 1 and m′ is 5, or n′ is 3 and m′ is 1, or n′ is 3 and m′ is 2, or n′ is 3 and m′ is 3, or n′ is 5 and m′ is 1.
In some embodiments, n is 1, or n is 2, or n is 3.
In some embodiments, N′N1N′N2N′N3 and N′N4N′N5N′N6 each independently represents one motif comprising at least two differently modified nucleotides;
In some embodiments, NM6, NM3 and NM2 each independently represents a 2'-fluoro-modified nucleotide; in certain embodiment, NM6, NM3 and NM2 are all 2'-fluoro-modified nucleotides.
In some embodiments, NZ is a vinyl phosphonate modified nucleotide.
In some embodiments, NZ is VPu*, which has the structure
In some embodiments, the dsRNA agent includes a targeting group that is conjugated to the 5’-terminal end of the sense strand, preferably, the targeting group is any one selected from aforesaid GLO-1 through GLO-16 and GLS-1 through GLS-16, more preferably, the targeting group is aforesaid GLS-15. In certain embodiments, the dsRNA agent includes a targeting group that is conjugated to the 3'-terminal end of the sense strand. In certain embodiments, the antisense strand includes one inverted abasic residue at 3’-terminal end. In certain embodiments, the sense strand includes one or two inverted abasic residues and/or one or two imann residues at 3’ or/and 5’ terminal end. In certain embodiments, the sense strand includes two imann residues at 3’ and 5’ terminal end. In certain embodiments, each end of the sense strand includes one inverted abasic residue respectively. In certain embodiments, each end of the sense strand includes one imann residue respectively. In certain embodiments, the sense strand includes two imann residues at 3’ and 5’ terminal end and either residue at 3’ or 5’ terminal end is further conjugated to a targeting group, which preferably is GLS-15. In certain embodiments, the dsRNA agent has two blunt ends. In certain embodiments, at least one strand includes a 3’ overhang of at least 1 nucleotide. In certain embodiments, at least one strand includes a 3’ overhang of at least 2 nucleotides.
In some embodiments, at least one linkage of the sense strand and/or the antisense strand is a phosphodiester (PO) linkage. In some embodiments, at least one linkage of the sense strand and/or the antisense strand is a modified linkage. In some embodiments, at least one linkage of the sense strand and/or the antisense strand is a phosphorothioate (PS) linkage. In some embodiments, at least one phosphorothioate (PS) linkage is introduced at the 5’-end,
3’-end or both ends of the sense strand and/or the antisense strand. In some embodiments, 1, 2, 3, 4, 5, or 6 phosphorothioate (PS) linkages are introduced at the 5’-end, 3’-end or both ends of the sense strand and/or the antisense strand. In some embodiments, at least the terminal two modified or unmodified nucleotides at one end or both ends of the antisense strand are linked through phosphorothioate linkages. In some embodiments, the terminal three modified or unmodified nucleotides at one end or both ends of the antisense strand are linked through phosphorothioate linkages. In some embodiments, at least the terminal two modified or unmodified nucleotides at one end or both ends of the sense strand are linked through phosphorothioate linkages. In some embodiments, the terminal three modified or unmodified nucleotides at one end or both ends of the sense strand are linked through phosphorothioate linkages. In some embodiments, the terminal three modified or unmodified nucleotides at 5’ end of the sense strand are linked through phosphorothioate linkages and the terminal two modified or unmodified nucleotides at 3’ end of the sense strand are linked through phosphorothioate linkages. In some embodiments, the sense strand comprises phosphorothioate linkages between the targeting group and the inverted abasic residue or the imann residue, and between the inverted abasic residue or the imann residue and the terminal modified or unmodified nucleotide at 5’ end of the sense strand.
In some embodiments, any one of the sense strands in Table 1 may further be modified in a pattern shown in aforesaid Formula (I) or (III) . In some embodiments, any one of the antisense strands in Table 1 may further be modified in a pattern shown in aforesaid Formula (II) , (II’) , (III) or (III’) . In some embodiments, any one of the duplexes in Table 1 may further be modified in a pattern shown in aforesaid Formula (III) or (III’ ) . In some embodiments, the modified sense strand has a modification pattern set forth in any one of Tables 2-3. In some embodiments, the modified antisense strand has a modification pattern set forth in any one of Tables 2-3. In some embodiments, the modified sense strand is a modified sense strand sequence set forth in one of Tables 2-3. In some embodiments, the modified antisense strand is a modified antisense strand sequence set forth in one of Tables 2-3. In some embodiments, the dsRNA comprises a duplex selected from the group consisting of AD00462, AD00463, AD00464, AD00465, AD00466, AD00467, AD00468, AD00469, AD00470, AD00471, AD00472, AD00473, AD00675, AD00676, AD00677, AD00678, AD00679, AD00680, AD00681, AD00682, AD00683, AD00684, AD00685, AD00686, AD00687, AD00688, AD00689, AD00690, AD00691, AD00692, AD00693, AD00694, AD00695, AD00696, AD00697, AD00675-1, AD00677-1, AD00678-1, AD00682-1, AD00689-1, AD00675-2, AD00677-2 and AD00678-2.
According to an aspect of the invention, a composition is provided that includes any embodiment of the aforementioned dsRNA agent aspect of the invention. In certain
embodiments, the composition also includes a pharmaceutically acceptable carrier. In some embodiments, the composition also includes one or more additional therapeutic agents. In certain embodiments, the composition is packaged in a kit, container, pack, dispenser, pre-filled syringe, or vial. In some embodiments, the composition is formulated for subcutaneous administration or is formulated for intravenous (IV) administration.
According to another aspect of the invention a cell is provided that includes any embodiment of an aforementioned dsRNA agent aspect of the invention. In some embodiments, the cell is a mammalian cell, optionally a human cell.
According to another aspect of the invention, a method of inhibiting the expression of a HSD17B13 gene in a cell, is provided, the method including: (i) preparing a cell including an effective amount of any embodiment of the aforementioned dsRNA agent aspect of the invention or any embodiment of an aforementioned composition of the invention. In certain embodiments, the method also includes: (ii) maintaining the prepared cell for a time sufficient to obtain degradation of the mRNA transcript of a HSD17B13 gene, thereby inhibiting expression of the HSD17B13 gene in the cell. In some embodiments, the cell is in a subject and the dsRNA agent is administered to the subject subcutaneously. In some embodiments, the cell is in a subject and the dsRNA agent is administered to the subject by IV administration. In certain embodiments, the method also includes assessing inhibition of the HSD17B13 gene, following the administration of the dsRNA agent to the subject, wherein a means for the assessing comprises: (i) determining one or more physiological characteristics of a HSD17B13-associated disease or condition in the subject and (ii) comparing the determined physiological characteristic (s) to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition and/or to a control physiological characteristic of the HSD17B13-associated disease or condition, wherein the comparison indicates one or more of a presence or absence of inhibition of expression of the HSD17B13 gene in the subject. In some embodiments, the physiological characteristic is one or more of: the HSD17B13 mRNA level and the HSD17B13 protein level. A reduction in the expression of HSD17B13 may also be assessed indirectly by measuring a decrease in biological activity of HSD17B13, e.g., a decrease in the enzymatic activity of HSD17B13 and/or a decrease in one or more of a lipid, a triglyceride, cholesterol (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , or free fatty acids in a plasma, or a tissue sample, and/or a reduction in accumulation of fat and/or expansion of lipid droplets in the liver.
According to another aspect of the invention, a method of inhibiting expression of a HSD17B13 gene in a subject, is provided, the method including administering to the subject an
effective amount of an embodiment of the aforementioned dsRNA agent aspect of the invention or an embodiment of an aforementioned composition of the invention. In some embodiments, the dsRNA agent is administered to the subject subcutaneously. In certain embodiments, the dsRNA agent is administered to the subject by IV administration. In some embodiments, the method also includes: assessing inhibition of the HSD17B13 gene, following the administration of the dsRNA agent, wherein a means for the assessing comprises: (i) determining one or more physiological characteristics of a HSD17B13-associated disease or condition in the subject and (ii) comparing the determined physiological characteristic (s) to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition and/or to a control physiological characteristic of the HSD17B13-associated disease or condition, wherein the comparison indicates one or more of a presence or absence of inhibition of expression of the HSD17B13 gene in the subject. In some embodiments, expression of the HSD17B13 gene can be assessed based on the level or change in level of any variable associated with HSD17B13 gene expression, such as HSD17B13 mRNA level, HSD17B13 protein level. A reduction in the expression of HSD17B13 may also be assessed indirectly by measuring a decrease in biological activity of HSD17B13, e.g., a decrease in the enzymatic activity of HSD17B13 and/or a decrease in one or more of a lipid, a triglyceride, cholesterol (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , or free fatty acids in a plasma, or a tissue sample, and/or a reduction in accumulation of fat and/or expansion of lipid droplets in the liver.
According to another aspect of the invention, a method of treating a disease or condition associated with the presence of HSD17B13 protein is provided, the method including: administering to a subject an effective amount of an embodiment of any aforementioned dsRNA agent aspect of the invention or an embodiment of any aforementioned composition of the invention, to inhibit HSD17B13 gene expression. In some embodiments, the disease, disorder or condition associated with HSD17B13 is selected from the group consisting of: hepatitis, liver fibrosis, nonalcoholic steatohepatitis (NASH) , nonalcoholic fatty liver disease (NAFLD) , cirrhosis, Alcoholic Steatohepatitis (ASH) , alcoholic fatty liver disease (ALD) , HCV-related cirrhosis, drug-induced liver injury, hepatocellular necrosis and HSD17B13 related obesity. In some embodiments, the method also includes: administering an additional therapeutic regimen to the subject. In some embodiments, the additional therapeutic regimen includes a treatment for the HSD17B13-associated disease or condition. In certain embodiments, the additional therapeutic regimen comprises: administering to the subject one or more HSD17B13 antisense polynucleotides of the invention, administering to the subject a
non-HSD17B13 dsRNA therapeutic agent, and a behavioral modification in the subject. In some embodiments, the non-HSD17B13 dsRNA therapeutic agent is one or more of: pyridoxine, an ACE inhibitor (angiotensin converting enzyme inhibitors) , e.g., benazepril (Lotensin) ; an angiotensin II receptor antagonist (ARB) (e.g., losartan potassium, such as Merck&Co. 's) , e.g., Candesartan (Atacand) ; an HMG-CoA reductase inhibitor (e.g., a statin) ; calcium binding agents, e.g., Sodium cellulose phosphate (Calcibind) ; diuretics, e.g., thiazide diuretics, such as hydrochlorothiazide (Microzide) ; an insulin sensitizer, such as the PPARy agonist pioglitazone, a glp-1r agonist, such as liraglutatide, vitamin E, an SGLT2 inhibitor, a DPPIV inhibitor, and kidney/liver transplant; or a combination of any of the foregoing. In some embodiments, the dsRNA agent is administered to the subject subcutaneously. In certain embodiments, the dsRNA agent is administered to the subject by IV administration. In some embodiments, the method also includes determining an efficacy of the administered double-stranded ribonucleic acid (dsRNA) agent in the subject. In some embodiments, a means of determining an efficacy of the treatment in the subject comprises: (i) determining one or more physiological characteristics of the HSD17B13-associated disease or condition in the subject and (ii) comparing the determined physiological characteristic (s) to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition wherein the comparison indicates one or more of a presence, absence, and level of efficacy of the administration of the double-stranded ribonucleic acid (dsRNA) agent to the subject. In some embodiments, expression of the HSD17B13 gene can be assessed based on the level or change in level of any variable associated with HSD17B13 gene expression, such as HSD17B13 mRNA level, HSD17B13 protein level and/or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver.
According to another aspect of the invention, a method of decreasing a level of HSD17B13 protein in a subject compared to a baseline pre-treatment level of HSD17B13 protein in the subject, is provided, the method including administering to the subject an effective amount of an embodiment of any aforementioned dsRNA agent of the invention or an embodiment of any aforementioned composition of the invention, to decrease the level of HSD17B13 gene expression. In some embodiments, the dsRNA agent is administered to the subject subcutaneously or is administered to the subject by IV administration.
According to another aspect of the invention, a method of altering a physiological characteristic of a HSD17B13-associated disease or condition in a subject compared to a
baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition in the subject is provided, the method including administering to the subject an effective amount of an embodiment of any aforementioned dsRNA agent of the invention or an embodiment of any aforementioned composition of the invention, to alter the physiological characteristic of the HSD17B13-associated disease or condition in the subject. In some embodiments, the dsRNA agent is administered to the subject subcutaneously or is administered to the subject by IV administration. In certain embodiments, the physiological characteristic is one or more of: HSD17B13 mRNA level, HSD17B13 protein level and/or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver.
According to another aspect of the invention, the aforementioned dsRNA agent for use in a method of treating a disease or condition associated with the presence of HSD17B13 protein is provided. In some embodiments, the disease or condition is one or more of: hepatitis, liver fibrosis, simple fatty liver (steatosis) , nonalcoholic steatohepatitis (NASH) , nonalcoholic fatty liver disease (NAFLD) , cirrhosis of the liver, Alcoholic Steatohepatitis (ASH) , alcoholic fatty liver disease (ALD) , HCV-related cirrhosis, drug-induced liver injury, hepatocellular necrosis and HSD17B13 related obesity.
According to another aspect of the invention, an antisense polynucleotide agent for inhibiting expression of HSD17B13 protein is provided, the agent including from 10 to 30 contiguous nucleotides, wherein at least one of the contiguous nucleotides is a modified nucleotide, and wherein the nucleotide sequence of the agent is about80%complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NO: 1. In some embodiments, the equivalent region is any one of the target regions of SEQ ID NO: 1 and the complementary sequence is one provided in one of Tables 1-3. In certain embodiments, the antisense polynucleotide agent includes one of the antisense sequences provided in one of Tables 1-3.
According to another aspect of the invention, a composition including an embodiment of any aforementioned antisense polynucleotide agents is provided. In some embodiments, the composition also includes a pharmaceutically acceptable carrier. In some embodiments, the composition also includes one or more additional therapeutic agents for treatment of a HSD17B13-associated disease or condition. In certain embodiments, the composition is
packaged in a kit, container, pack, dispenser, pre-filled syringe, or vial. In certain embodiments, the composition is formulated for subcutaneous or IV administration.
According to another aspect of the invention a cell that includes an embodiment of any of the aforementioned antisense polynucleotide agents is provided. In some embodiments, the cell is a mammalian cell, optionally a human cell.
According to another aspect of the invention, a method of inhibiting the expression of a HSD17B13 gene in a cell is provided, the method including: (i) preparing a cell including an effective amount of an embodiment of any aforementioned antisense polynucleotide agents. In some embodiments, the method also includes (ii) maintaining the cell prepared in (i) for a time sufficient to obtain degradation of the mRNA transcript of a HSD17B13 gene, thereby inhibiting expression of the HSD17B13 gene in the cell.
According to another aspect of the invention, a method of inhibiting expression of a HSD17B13 gene in a subject is provided, the method including administering to the subject an effective amount of an embodiment of any of the aforementioned antisense polynucleotide agent.
According to another aspect of the invention, a method of treating a disease or condition associated with the presence of HSD17B13 protein, the method including administering to a subject an effective amount of an embodiment of any of the aforementioned antisense polynucleotide agents or an embodiment of any aforementioned composition of the invention, to inhibit HSD17B13 gene expression. In certain embodiments, the disease or condition is one or more of: hepatitis, liver fibrosis, nonalcoholic steatohepatitis (NASH) , nonalcoholic fatty liver disease (NAFLD) , cirrhosis, Alcoholic Steatohepatitis (ASH) , alcoholic fatty liver disease (ALD) , HCV-related cirrhosis, drug-induced liver injury, hepatocellular necrosis and HSD17B13 related obesity.
According to another aspect of the invention, a method of decreasing a level of HSD17B13 protein in a subject compared to a baseline pre-treatment level of HSD17B13 protein in the subject is provided, the method including administering to the subject an effective amount of an embodiment of any of the aforementioned antisense polynucleotide agents or an embodiment of any aforementioned composition of the invention, to decrease the level of HSD17B13 gene expression. In certain embodiments, the antisense polynucleotide agent is administered to the subject subcutaneously or by IV administration.
According to another aspect of the invention, an antisense polynucleotide agent for inhibiting expression of HSD17B13 gene, is provided, the agent including from 10 to 30 contiguous nucleotides, wherein at least one of the contiguous nucleotides is a modified
nucleotide, and wherein the nucleotide sequence of the agent is about 80%or about 85%complementary over its entire length to the equivalent region of the nucleotide sequence of SEQ ID NO: 1.
According to another aspect of the invention, a method of altering a physiological characteristic of a HSD17B13-associated disease or condition in a subject compared to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition in the subject is provided, the method including administering to the subject an effective amount of an embodiment of any of the aforementioned antisense polynucleotide agents or an embodiment of any aforementioned composition of the invention, to alter the physiological characteristic of the HSD17B13 disease or condition in the subject. In some embodiments, the antisense polynucleotide agent is administered to the subject subcutaneously or by IV administration. In some embodiments, the physiological characteristic is one or more of: HSD17B13 mRNA level, HSD17B13 protein level and/or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver..
Brief Description of the Sequences
SEQ ID NO: 1and SEQ ID NO: 2 (reverse complement) are Homo sapiens 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: NM_178135.5] .
SEQ ID NO: 3 and SEQ ID NO: 4 (reverse complement) are Homo sapiens 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence:NM_001136230.3] .
SEQ ID NO: 5 and SEQ ID NO: 6 (reverse complement) are Homo sapiens 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: HGNC Symbol; Acc: HGNC: 18685; Transcript: ENST00000302219.10] .
SEQ ID NO: 7 and SEQ ID NO: 8 (reverse complement) are Predicted Macaca fascicularis 17 β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: XM_005555367.2] .
SEQ ID NO: 9 and SEQ ID NO: 10 (reverse complement) are Predicted Macaca fascicularis 17 β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: HGNC Symbol; Acc: HGNC: 18685; Transcript: ENSMFAT00000009821.2] .
SEQ ID NO: 11 and SEQ ID NO: 12 (reverse complement) are Predicted Macaca fascicularis 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: HGNC Symbol; Acc: HGNC: 18685; Transcript: ENSMFAT00000009826.2] .
SEQ ID NO: 13 and SEQ ID NO: 14 (reverse complement) are Predicted Macaca mulatta 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: XM_015138766.2] .
SEQ ID NO: 15 and SEQ ID NO: 16 (reverse complement) are Predicted Macaca mulatta 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: HGNC Symbol; Acc: VGNC: 73417; Transcript: ENSMMUT00000062701.2] .
SEQ ID NO: 17 and SEQ ID NO: 18 (reverse complement) are Mus musculus 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: NM_001163486.1] .
SEQ ID NO: 19 and SEQ ID NO: 20 (reverse complement) are Mus musculus 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: NM_198030.2] .
SEQ ID NO: 21 and SEQ ID NO: 22 (reverse complement) are Mus musculus 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: MGI Symbol; Acc: MGI: 2140804; Transcript: ENSMUST00000048118.15] .
SEQ ID NO: 23 and SEQ ID NO: 24 (reverse complement) are Mus musculus 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: MGI Symbol; Acc: MGI: 2140804; Transcript: ENSMUST00000120320.8] .
SEQ ID NO: 25 and SEQ ID NO: 26 (reverse complement) are Mus musculus 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: MGI Symbol; Acc: MGI: 2140804; Transcript: ENSMUST00000112803.3] .
SEQ ID NO: 27 and SEQ ID NO: 28 (reverse complement) are Rattus norvegicus 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: NM_001009684.1] .
SEQ ID NO: 29 and SEQ ID NO: 30 (reverse complement) are Rattus norvegicus 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [NCBI Reference Sequence: XR_005492928.1] .
SEQ ID NO: 31 and SEQ ID NO: 32 (reverse complement) are Rattus norvegicus 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) mRNA [Source: RGD Symbol; Acc: 1359553; Transcript: ENSRNOT00000038188.2] .
SEQ ID NOs: 33-288, 837-917 are shown in Table 1 and are sense strand sequences.
SEQ ID NOs: 289-544, 918-998 are shown in Table 1 and are antisense strand sequences.
SEQ ID NOs: 545-750, 999-1178 are shown in Table 2 with chemical modifications indicated by upper case: 2'-Fluoro; lower case: 2'-OMe; and thiophosphate: *, and it can be understood by person skilled in the art that "*" is a symbol for indication of linkage relationship, wherein the presence of "*" means that monomers are linked to each other via a phosphorothioate diester linkage, wherein the absence of "*" between two monomers indicates that the monomers are linked to each other via a phosphodiester linkage; and invab=inverted abasic.
SEQ ID NOs: 751-836, 1179-1188 are shown in Table 3. A delivery molecule is indicated as “GLX-__” at the 3’ end or 5’ end of each sense strand. Chemical modifications are indicated as: upper case: 2'-Fluoro; lower case: 2'-OMe; and thiophosphate: *, and it can be understood by person skilled in the art that "*" is a symbol for indication of linkage relationship, wherein the presence of "*" means that monomers are linked to each other via a phosphorothioate diester linkage, wherein the absence of "*" between two monomers indicates that the monomers are linked to each other via a phosphodiester linkage; and invab=inverted abasic. imann:
when at the end of each strand orwhen further conjugated to a delivery molecule; VPu*:
The invention in part, includes RNAi agents, for example, though not limited to double stranded (ds) RNAi agents, which are capable of inhibiting 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) gene expression. The invention, in part also includes compositions comprising HSD17B13 RNAi agents and methods of use of the compositions. HSD17B13 RNAi agents disclosed herein may be attached to delivery compounds for delivery to cells, including to hepatocytes. Pharmaceutical compositions of the invention may include at least one ds HSD17B13 agent and a delivery compound. In some embodiments of compositions and methods of the invention, the delivery compound is a GalNAc-containing delivery compound. HSD17B13 RNAi agents delivered to cells are capable of inhibiting HSD17B13 gene expression, thereby reducing activity in the cell of the HSD17B13 protein product of the gene. dsRNAi agents of the invention can be used to treat HSD17B13-associated diseases and conditions.
In some embodiments of the invention reducing HSD17B13 expression in a cell or subject treats a disease or condition associated with HSD17B13 expression in the cell or subject, respectively. Non-limiting examples of diseases and conditions that may be treated by reducing HSD17B13 activity are: hepatitis, liver fibrosis, nonalcoholic steatohepatitis (NASH) , nonalcoholic fatty liver disease (NAFLD) , cirrhosis, Alcoholic Steatohepatitis (ASH) , alcoholic fatty liver disease (ALD) , HCV-related cirrhosis, drug-induced liver injury, hepatocellular necrosis, HSD17B13 related obesity, or other diseases for which reducing a level and activity of HSD17B13 protein is medically beneficial.
As used herein, "G, " "C, " "A" and "U" each generally stands for a nucleotide that contains guanine, cytosine, adenine, and uracil as a base, respectively. However, it will be understood that the term "ribonucleotide" or "nucleotide" can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety. The skilled person
understands that guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of the invention by a nucleotide containing, for example, inosine. Sequences comprising such replacement moieties are embodiments of the invention.
As used herein, "17β-hydroxysteroid dehydrogenase type 13, " used interchangeably with the term "HSD17B13" refers to the naturally occurring gene that encodes a 17-hydroxysteroid dehydrogenase type 13 protein from any vertebrate or mammalian source, including, but not limited to, human, bovine, chicken, rodent, mouse, rat, porcine, ovine, primate, monkey, and guinea pig, unless specified otherwise. The term also refers to fragments and variants of native HSD17B13 that maintain at least one in vivo or in vitro activity of a native HSD17B13. The amino acid and complete coding sequences of the reference sequence of the human HSD17B13 gene may be found in, for example, GenBank Ref Seq Accession No. NM_178135.5 (SEQ ID NO: 1and SEQ ID NO: 2) ; GenBank Ref Seq Accession No. NM_001136230.3 (SEQ ID NO: 3 and SEQ ID NO: 4) ; HGNC Transcript: ENST00000302219.10 (SEQ ID NO: 5 and SEQ ID NO: 6) . Mammalian orthologs of the human HSD17B13 gene may be found in, for example, GenBank Ref Seq Accession No. XM_005555367.2, cynomolgus monkey (SEQ ID NO: 7 and SEQ ID NO: 8) ; HGNC Transcript: ENSMFAT00000009821.2, cynomolgus monkey (SEQ ID NO: 9 and SEQ ID NO: 10) ; HGNC Transcript: ENSMFAT00000009826.2, cynomolgus monkey (SEQ ID NO: 11and SEQ ID NO: 12) ; GenBank Ref Seq Accession No. XM_015138766.2, rhesus monkey (SEQ ID NO: 13 and SEQ ID NO: 14) ; VGNC Transcript: ENSMMUT00000062701.2, rhesus monkey (SEQ ID NO: 15 and SEQ ID NO: 16) ; GenBank Ref Seq Accession No. NM_001163486.1, mouse, (SEQ ID NO:17 and SEQ ID NO: 18) ; GenBank Ref Seq Accession No. NM_198030.2, mouse, (SEQ ID NO: 19 and SEQ ID NO: 20) ; MGI Transcript: ENSMUST00000048118.15, mouse, (SEQ ID NO: 21 and SEQ ID NO: 22) ; MGI Transcript: ENSMUST00000120320.8, mouse, (SEQ ID NO: 23 and SEQ ID NO: 24) ; MGI Transcript: ENSMUST00000112803.3, mouse, (SEQ ID NO: 25 and SEQ ID NO: 26) ; GenBank Ref Seq Accession No. NM_001009684.1, rat (SEQ ID NO: 27 and SEQ ID NO: 28) ; GenBank Ref Seq Accession No. XR_005492928.1, rat (SEQ ID NO: 29 and SEQ ID NO: 30) ; RGD Transcript: ENSRNOT00000038188.2, rat (SEQ ID NO: 31 and SEQ ID NO: 32) . Additional examples of HSD17B13 mRNA sequences are readily available using publicly available databases, e.g., GenBank, UniProt, Ensembl and OMIM.
The following describes how to make and use compositions comprising HSD17B13 single-stranded (ssRNA) and dsRNA agents to inhibit HSD17B13 gene expression, as well as compositions and methods for treating diseases and conditions caused by or modulated by HSD17B13 gene expression. The term “RNAi” is also known in the art, and may be referred to as “siRNA” .
As used herein, the term “RNAi” refers to an agent that comprises RNA and mediates targeted cleavage of an RNA transcript via an RNA-induced silencing complex (RISC) pathway. As is known in the art, an RNAi a target region, which is also defined as “target region” or “target portion” , refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a gene, including messenger RNA (mRNA) that is a product of RNA processing of a primary transcription product. The target portion of the sequence will be at least long enough to serve as a substrate for RNAi-directed cleavage at or near that portion. A target sequence may be from 8-30 nucleotides long (inclusive) , from 10 -30 nucleotides long (inclusive) , from 12-25 nucleotides long (inclusive) , from 15-23 nucleotides long (inclusive) , from 16-23 nucleotides long (inclusive) , or from 18–23 nucleotides long (inclusive) , including all shorter lengths within each stated range. In some embodiments of the invention, a target sequence is 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or 26 nucleotides long. In certain embodiment a target sequence is between 9 and 26 nucleotides long (inclusive) , including all sub-ranges and integers there between. For example, though not intended to be limiting, in certain embodiments of the invention a target sequence is 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides long, with the sequence fully or at least substantially complementary to at least part of an RNA transcript of a HSD17B13 gene. Some aspects of the invention include pharmaceutical compositions comprising one or more HSD17B13 dsRNA agents and a pharmaceutically acceptable carrier. In certain embodiments of the invention, a HSD17B13 RNAi as described herein inhibits expression of HSD17B13 protein.
As used herein, a “dsRNA agent” means a composition that contains an RNA or RNA-like (e.g., chemically modified RNA) oligonucleotide molecule that is capable of degrading or inhibiting translation of messenger RNA (mRNA) transcripts of a target mRNA in a sequence specific manner. Although not wishing to be limited to a particular theory, dsRNA agents of the invention may operate through the RNA interference mechanism (i.e., inducing RNA interference through interaction with the RNA interference pathway machinery (RNA-induced silencing complex or RISC) of mammalian cells) , or by any alternative mechanism (s) or pathway (s) . Methods for silencing genes in plant, invertebrate, and vertebrate cells are well
known in the art [see, for example, (Sharp et al., Genes Dev. 2001, 15: 485; Bernstein, et al., (2001) Nature 409: 363; Nykanen, et al., (2001) Cell 107: 309; and Elbashir, et al., (2001) Genes Dev. 15: 188) ] , the disclosure of each of which is incorporated herein by reference in its entirety. ] . Art-known gene silencing procedures can be used in conjunction with the disclosure provided herein to inhibit expression of HSD17B13.
DsRNA agents disclosed herein are comprised of a sense strand and an antisense strand, and include, but are not limited to: short interfering RNAs (siRNAs) , RNAi agents, micro RNAs (miRNAs) , short hairpin RNAs (shRNA) , and dicer substrates. The antisense strand of the dsRNA agents described herein is at least partially complementary to the mRNA being targeted. It is understood in the art that different lengths of dsRNA duplex structure can be used to inhibit target gene expression. For example, dsRNAs having a duplex structure of 19, 20, 21, 22, and 23 base pairs are known to be effective to induce RNA interference (Elbashir et al., EMBO 2001, 20: 6877-6888) . It is also known in the art that shorter or longer RNA duplex structures are also effective to induce RNA interference. As used herein, the terms “double stranded region” , “duplex region” and “the region of complementarity” can be used interchangeably, and refer to the region that the sense strand is complementary or substantially complementary to the antisense strand as is known in the art. HSD17B13 dsRNAs in certain embodiments of the invention can include at least one strand of a length of minimally 21 nt or may have shorter duplexes based on one of the sequences set forth in any one of Tables 1-3, but minus 1, 2, 3, or 4 nucleotides on one or both ends may also be effective as compared to the dsRNAs set forth in Tables 1-3, respectively. In some embodiments of the invention, HSD17B13 dsRNA agents may have a partial sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from one or more sequences of Tables 1-3, and differ in their ability to inhibit the expression of a HSD17B13 gene by not more than 5%, 10%, 15%, 20%, 25%, or 30%from the level of inhibition resulting from a dsRNA comprising the full sequence. A sense sequence, an antisense sequence and a duplex disclosed in Tables 1-3 may be referred to herein as a “parent” sequence, meaning that the sequences disclosed in Tables 1-3 may be modified, shorten, lengthened, include substitutions, etc. as set forth herein, with the resulting sequences retaining all or at least a portion of the efficacy of their parent sequences in methods and compositions of the invention. Sense and antisense strands included in a dsRNA of the invention are independently selected. As used herein the term “independently selected” means each of two or more like elements can be selected independent of the selection of the other elements. For example, though not intended to be limiting, in preparing a dsRNA of the invention, one may select the “elements” of the two strands to include in the duplex. One
selected element, the sense sequence may be SEQ ID NO: 546 (shown in Table 2) and the other selected element, the antisense sequence, may be SEQ ID NO: 649, or may be SEQ ID NO: 649that is modified, shortened, lengthened, and/or includes 1, 2, or 3 substitutions as compared to its parent sequence SEQ ID NO: 649. It will be understood that a duplex of the invention need not include both sense and antisense sequences shown as paired in duplexes in Tables 1-3. Each sense and antisense strand sequence in the tables is immediately followed by its SEQ ID NO.
Certain embodiments of compositions and methods of the invention comprise a single-strand RNA in a composition and/or administered to a subject. For example, an antisense strand such as one listed in any one of Tables 1-3 may be a composition or in a composition administered to a subject to reduce HSD17B13 polypeptide activity and/or expression of HSD17B13 gene in the subject. Tables 1-3 show certain HSD17B13 dsRNA agent antisense strand and sense strand core stretch base sequences. A single-strand antisense molecule that may be included in certain compositions and/or administered in certain methods of the invention are referred to herein as a “single-strand antisense agent” or an “antisense polynucleotide agent” . A single-strand sense molecule that may be included in certain compositions and/or administered in certain methods of the invention are referred to herein as a “single-strand sense agent” or a “sense polynucleotide agent” . The term “base sequence” is used herein in reference to a polynucleotide sequence without chemical modifications or delivery compounds. For example, the sense strand GAUUGGUUCUGUGGGAUAUUA (SEQ ID NO: 40) shown in Table 1is the base sequence for SEQ ID NO: 552 in Table 2 and for SEQ ID NO: 752 in Table 3, with SEQ ID NO: 552 and SEQ ID NO: 752shown with their chemical modifications and a delivery compound. Sequences disclosed herein may be assigned identifiers. For example, a single-stranded sense sequence may be identified with a “Sense strand SS#” ; a single stranded antisense sequence may be identified with an “Antisense strand AS#” and a duplex that includes a sense strand and an antisense strand may be identified with a “Duplex AD#/AV#” .
Table 1includes sense and antisense strands and provides the identification number of duplexes formed from the sense and antisense strand on the same line in Table 1. The sense strands SEQ ID Nos: 183-288 include a random nucleobase (n) at positions 1, 2, 3 and 21from the 5’ end. The antisense strands SEQ ID Nos: 439-544 include a random nucleobase (n) at positions 1, 19, 20, and 21 from the 5’ end. In certain embodiments of the invention an antisense sequence includes nucleobase u or nucleobase a in position 1 of the antisense sequence. In certain embodiments of the invention an antisense sequence includes nucleobase
u in position 1 of the antisense sequence. In the sequences shown in Table 1 “n” can represent a nucleotide comprising any one of nucleobases a, u, c, g, and t and can be independently selected for the sense and antisense strand, and each “n” in the sense strand or the antisense strand can be the same or different. As used in the context of “n” in sense and antisense strands, it will be understood that the nucleobase “n” selected and included in a position in a sense strand is not the same nucleobase as “n” in the antisense strand with which the sense strand pairs, but rather is generally complementary to the nucleobase “n” at the matching position in the opposite strand. As used herein, the term “matching position” in a sense and an antisense strand are the positions in each strand that “pair” when the two strands are duplexed strands. For example, in a 21 nucleobases sense strand and a 21 nucleobases antisense strand, nucleobase in position 1 of the sense strand and position 21 in the antisense strand are in “matching positions” . In yet another non-limiting example in a 23 nucleobases sense strand and a 23 nucleobases antisense strand, nucleobase 2 of the sense strand and position 22 of the antisense strand are in matching positions. In another non-limiting example, in an 18 nucleobases sense strand and an 18 nucleobases antisense strand, nucleobase in position 1 of the sense strand and nucleobase 18 in the antisense strand are in matching positions, and nucleobase 4 in the sense strand and nucleobase 15 in the antisense strand are in matching positions. A skilled artisan will understand how to identify matching positions in sense and antisense strands that are or will be duplexed strands and paired strands.
Although (n) can be any one of a, u, c, g or t, an “n” at position 1 of sense strand is generally complementary to (n) at position 21 of antisense strand. In two non-limiting examples, (1) if position 1 of sense strand is “g” then position 21 of antisense strand is “c” ; and (2)if position 1 of sense strand is “a” then position 21 of antisense strand is “u” or “t” . This type of complimentary matching pairing applies to (n) at position 2 of sense strand and position 20 of antisense strand; (n) at position 21 of sense strand and position 1 of antisense strand. It will be understood that even though n can be any nucleotide at these positions, the nucleotides of sense and antisense strand are generally still complementary (match) , however, in certain embodiments, they may have mismatch. For example, though not intended to be limiting, in some embodiments “n” can be “random” , meaning might but need not be complementary. In certain embodiments “n” is complementary. As a non-limiting example, “n” in position of 1of antisense is “u” and “n” in position of 21 of sense strand is “a” . Askilled artisan will understand how to identify matching positions in sense and antisense strands that are or will be duplexed strands and paired strands.
The final column in Table 1 indicates a Duplex AD#for a duplex that includes the sense and antisense sequences in the same table row. For example, Table 1 discloses the duplex assigned Duplex AD#AD00519. um, which includes sense strand SEQ ID NO: 33 and antisense strand SEQ ID NO: 289. Thus, each row in Table 1identifies a duplex of the invention, each comprising the sense and antisense sequences shown in the same row, with the assigned identifier for each duplex shown in the final column in the row.
In some embodiments of methods of the invention, an RNAi agent comprising a polynucleotide sequence shown in Table 1is administered to a subject. In some embodiments of the invention an RNAi agent administered to a subject comprises is a duplex comprising at least one of the base sequences set forth in Table 1, including 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 sequence modifications. In some embodiments of methods of the invention an RNAi agent comprising a polynucleotide sequence shown in Table 1 is attached to a delivery molecule, a non-limiting example of which is a delivery compound comprising a GalNAc compound, or a GLS-15 compound.
Table 2 shows certain chemically modified HSD17B13 RNAi agent antisense strand and sense strand sequences of the invention. In some embodiments of methods of the invention, an RNAi agent with a polynucleotide sequence shown in Table 2 is administered to a cell and/or subject. In some embodiments of methods of the invention, an RNAi agent with a polynucleotide sequence shown in Table 2 is administered to a subject. In some embodiments of the invention an RNAi agent administered to a subject comprises is a duplex identified in a row in Table 2, column one and includes the sequence modifications show in the sense and antisense strand sequences in the same row in Table 2, columns three and six, respectively. In some embodiments of methods of the invention, a sequence shown in Table 2 may be attached to(also referred to herein as “conjugated to” ) a compound capable of delivering the RNAi agent to a cell and/or tissue in a subject. A non-limiting example of a delivery compound that may be used in certain embodiments of the invention is a GalNAc-containing compound or a GLS-15-containing compound. In Table 2, the first column indicates the Duplex AV#of the base sequences as shown in Table 1. Table 2 discloses Duplex AV#and also shows chemical modifications included in sense and antisense sequence of the duplexes. For example, Table 1 shows base single-strand sequences SEQ ID NO: 33 (sense) and SEQ ID NO: 289 (antisense) , which together are the double-stranded duplex identified as: Duplex AD#AD00519. um and Table 2 lists Duplex AV#AV00519, which indicates that the duplex of SEQ ID NO: 545 and SEQ ID NO: 648includes base sequences of SEQ ID NO: 33 and SEQ ID NO: 289, respectively, but with the chemical modifications shown in the sense and antisense sequences shown in columns three and six, respectively. The “Sense strand SS#” in Table 2 column two is the assigned identifier for the Sense Sequence (including modifications) shown column3 in the same row. The “Antisense strand AS#” in Table 2 column five is the assigned identifier for the Antisense sequence (including modifications) shown in column six.
Table 3 shows certain chemically modified HSD17B13 RNAi agent antisense strand and sense strand sequences of the invention. In some embodiments of methods of the invention, RNAi agents shown in Table 3 are administered to a cell and/or subject. In some embodiments of methods of the invention, an RNAi agent with a polynucleotide sequence shown in Table 3 is administered to a subject. In some embodiments of the invention an RNAi agent administered to a subject comprises is a duplex identified in a row in Table 3, column one and includes the sequence modifications and/or delivery compound show in the sense and antisense strand sequences in the same row in Table 3, columns three and six, respectively. The sequences were used in certain in vivo testing studies described elsewhere herein. In some embodiments of methods of the invention, a sequence shown in Table 3 may be attached to (also referred to herein as “conjugated to” ) a compound for delivery, a non-limiting example of which is a GalNAc-containing compound, with a delivery compound identified in Table 3 as “GLX-n” on sense strands in column three. As used herein, “GLX-n” is used to represent either a “GLS-n” or a GLO-n” delivery compound ( “X” can be either “S” or “O” ) and GLX-0can be any of the “GLS-n” and “GLO-n” delivery compounds that can be attached to 3'-end of oligonucleotide during synthesis. As used herein and shown in Table 3, “GLX-n” is used to indicate the attached GalNAc-containing compound is any one of compounds GLS-1, GLS-2, GLS-3, GLS-4, GLS-5, GLS-6, GLS-7, GLS-8, GLS-9, GLS-10, GLS-11, GLS-12, GLS-13, GLS-14, GLS-15, GLS-16, GLO-1, GLO-2, GLO-3, GLO-4, GLO-5, GLO-6, GLO-7, GLO-8, GLO-9, GLO-10, GLO-11, GLO-12, GLO-13, GLO-14, GLO-15, and GLO-16, The structure of each of which is provided elsewhere herein. One skilled in the art will be able to prepare and use a dsRNA compound of the invention in which the attached delivery compound is one of GLS-1, GLS-2, GLS-3, GLS-4, GLS-5, GLS-6, GLS-7, GLS-8, GLS-9, GLS-10, GLS-11, GLS-12, GLS-13, GLS-14, GLS-15, GLS-16, GLO-1, GLO-2, GLO-3, GLO-4, GLO-5, GLO-6, GLO-7, GLO-8, GLO-9, GLO-10, GLO-11, GLO-12, GLO-13, GLO-14, GLO-15, and GLO-16. Column one of Table 3 provides a Duplex AD#assigned to the duplex of the sense and antisense sequences in that row of the table. For example, Duplex AD#AD00462 is the duplex of sense strand SEQ ID NO: 752 and antisense strand SEQ ID NO: 795. Each line in Table 3 provides a sense strand and an antisense strand, and discloses the duplex of the sense and antisense strands shown. The “Sense strand SS#” in Table 3 column two is the assigned identifier for the Sense Sequence (including modifications) shown column 3 in the same row. The“Antisense strand AS#” in Table 3 column five is the assigned identifier for the Antisense sequence (including modifications) shown in column six. An identifier for certain attached GalNAc-containing “GLO-n” or “GLS-n” compounds is shown as GLS-5, GLS-15 or GLX-0,
and it will be understood that another of the “GLO-n” or “GLS-n” compounds may be substituted for the compound shown as GLO-0, with the resulting compound included in an embodiment of a method and/or a composition of the invention. GLO-0 is refers to the compound GalNAc3 in Jayaprakash, et al., (2014) J. Am. Chem. Soc., 136, 16958-16961 or compound L96 in WO2015006740.
In certain embodiments of the invention a dsRNA (also referred to herein as a “duplex” ) is one disclosed in one of Tables 1-3. Each row in Tables 1-3 discloses a duplex comprising the sequence of the sense strand and the sequence of the antisense strand in that table row. In addition to the duplexes disclosed in Tables 1-3, it will be understood that in some embodiments, a duplex of the invention may include sense and antisense sequences shown in Tables 1-3, that differ by zero, one, two, or three nucleotides shown in a sequence shown in Tables 1-3. Thus, as non-limiting examples, in some embodiments, an antisense strand in a duplex of the invention may be SEQ ID NO: 808, 809, 810, 811, 815, 816, or 817, with zero, one, two, or three different nucleotides than those in SEQ ID NO: 808, 809, 810, 811, 815, 816, or 817, respectively.
It will be understood that the sequence of the sense strand and the sequence of the antisense strand in a duplex of the invention may be independently selected. Thus, a dsRNA of the invention may comprise a sense strand and an antisense strand of a duplex disclosed in a row in Tables 1-3. Alternatively, in a dsRNA of the invention, one or both of the selected sense and antisense strand in the dsRNA may include sequences shown in Tables 1-3 but with one or both of the sense and antisense sequences including1, 2, 3, or more nucleobase substitutions from the parent sequence. The selected sequences may in some embodiments be longer or shorter than their parent sequence. Thus, dsRNA agents included in the invention can but need not include exact sequences of the sense and antisense pairs disclosed as duplexes in Tables 1-3.
In some embodiments, a dsRNA agent comprises a sense strand and an antisense strand, nucleotide positions 2 to 18 in the antisense strand comprising a region of complementarity to a HSD17B13 RNA transcript, wherein the region of complementarity comprises at least 15 contiguous nucleotides that differ by 0, 1, 2, or 3nucleotides from one of the antisense sequences listed in one of Tables 1-3, and optionally comprising a targeting ligand. In some instances, the region of complementarity to the HSD17B13 RNA transcript comprises at least 15, 16, 17, 18, or 19 contiguous nucleotides that differ by no more than 3 nucleotides from one of the antisense sequences listed in one of Tables 1-3. In some embodiments of a dsRNA agent of the invention, the antisense strand of the dsRNA is at least substantially complementary to any one of a target region of SEQ ID NO: 1 and is provided in any one of Tables 1-3. In some embodiments, an antisense strand of a dsRNA agent of the invention is fully complementary to any one of a target region of SEQ ID NO: 1 and is provided in any one of Tables 1-3. In some embodiments a dsRNA agent includes a sense strand sequence set forth in any one of Tables 1-3, and the sense strand sequence is at least substantially complementary
to the antisense strand sequence in the dsRNA agent. In other embodiments, a dsRNA agent of the invention comprises a sense strand sequence set forth in any one of Tables 1-3, and the sense strand sequence is fully complementary to the antisense strand sequence in the dsRNA agent. In some instances, a dsRNA agent of the invention comprises an antisense strand sequence set forth in any one of Tables 1-3. Some embodiments of a dsRNA agent of the invention comprises the sense and antisense sequences disclosed as duplex in any of Tables 1-3. As described herein, it will be understood that the sense and antisense strands in a duplex of the invention may be independently selected.
Mismatches
It is known to skilled in art, mismatches are tolerated for efficacy in dsRNA, especially the mismatches are within terminal region of dsRNA. Certain mismatches tolerate better, for example mismatches with wobble base pairs G: U and A: C are tolerated better for efficacy (Du et el., A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res. 2005Mar 21; 33 (5) : 1671-7. Doi: 10. 1093/nar/gki312. Nucleic Acids Res. 2005; 33 (11) : 3698) . Some embodiments of methods and compounds of the invention a HSD17B13 dsRNA agent may contain one or more mismatches to the HSD17B13 target sequence. In some embodiments, HSD17B13 dsRNA agent of the invention includes no mismatches. In certain embodiments, HSD17B13 dsRNA agent of the invention includes no more than1 mismatch. In some embodiments, HSD17B13 dsRNA agent of the invention includes no more than2 mismatches. In certain embodiments, HSD17B13 dsRNA agent of the invention includes no more than3 mismatches. In some embodiments of the invention, an antisense strand of a HSD17B13 dsRNA agent contains mismatches to a HSD17B13 target sequence that are not located in the center of the region of complementarity. In some embodiments, the antisense strand of the HSD17B13 dsRNA agent includes 1, 2, 3, 4, or more mismatches that are within the last 5, 4, 3, 2, or 1 nucleotide from one or both of the 5' or 3' end of the region of complementarity. Methods described herein and/or methods known in the art can be used to determine whether a HSD17B13 dsRNA agent containing a mismatch to a HSD17B13 target sequence is effective in inhibiting the expression of the HSD17B13 gene.
Complementarity
As used herein, unless otherwise indicated, the term “complementary, ” when used to describe a first nucleotide sequence (e.g., HSD17B13 dsRNA agent sense strand or targeted
HSD17B13 mRNA) in relation to a second nucleotide sequence (e.g., HSD17B13 dsRNA agent antisense strand or a single-stranded antisense polynucleotide) , means the ability of an oligonucleotide or polynucleotide including the first nucleotide sequence to hybridize [form base pair hydrogen bonds under mammalian physiological conditions (or similar conditions in vitro) ] and form a duplex or double helical structure under certain conditions with an oligonucleotide or polynucleotide including the second nucleotide sequence. Other conditions, such as physiologically relevant conditions as can be encountered inside an organism, can apply. A skilled artisan will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides. Complementary sequences include Watson-Crick base pairs or non-Watson-Crick base pairs and include natural or modified nucleotides or nucleotide mimics, at least to the extent that the above hybridization requirements are fulfilled. Sequence identity or complementarity is independent of modification.
Complementary sequences, for example, within a HSD17B13 dsRNA as described herein, include base-pairing of the oligonucleotide or polynucleotide comprising a first nucleotide sequence to an oligonucleotide or polynucleotide comprising a second nucleotide sequence over the entire length of one or both nucleotide sequences. Such sequences can be referred to as “fully complementary” with respect to each other herein. It will be understood that in embodiments when two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs are not regarded herein as mismatches with regard to the determination of complementarity. For example, a HSD17B13 dsRNA agent comprising one oligonucleotide 19 nucleotides in length and another oligonucleotide 20 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 19 nucleotides that is fully complementary to the shorter oligonucleotide, can yet be referred to as “fully complementary” for the purposes described herein. Thus, as used herein, “fully complementary” means that all (100%) of the bases in a contiguous sequence of a first polynucleotide will hybridize with the same number of bases in a contiguous sequence of a second polynucleotide. The contiguous sequence may comprise all or a part of a first or second nucleotide sequence.
The term “substantially complementary” as used herein means that in a hybridized pair of nucleobase sequences, at least about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, but not all, of the bases in a contiguous sequence of a first polynucleotide will hybridize with the same number of bases in a contiguous sequence of a second polynucleotide. The term “substantially complementary” can be used in reference to
a first sequence with respect to a second sequence if the two sequences include one or more, for example at least 1, 2, 3, 4, or 5 mismatched base pairs upon hybridization for a duplex up to 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 base pairs (bp) , while retaining the ability to hybridize under the conditions most relevant to their ultimate application, e.g., inhibition of HSD17B13 gene expression via a RISC pathway.
The term, “partially complementary” may be used herein in reference to a hybridized pair of nucleobase sequences, in which at least 75%, but not all, of the bases in a contiguous sequence of a first polynucleotide will hybridize with the same number of bases in a contiguous sequence of a second polynucleotide. In some embodiments, “partially complementary” means at least 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%of the bases in a contiguous sequence of a first polynucleotide will hybridize with the same number of bases in a contiguous sequence of a second polynucleotide.
The terms “complementary, ” “fully complementary, ” “substantially complementary, ” and“partially complimentary” are used herein in reference to the base matching between the sense strand and the antisense strand of a HSD17B13 dsRNA agent, between the antisense strand of a HSD17B13 dsRNA agent and a sequence of a target HSD17B13 mRNA, or between a single-stranded antisense oligonucleotide and a sequence of a target HSD17B13 mRNA. It will be understood that the term “antisense strand of a HSD17B13 dsRNA agent” may refer to the same sequence of an “HSD17B13 antisense polynucleotide agent” .
As used herein, the term “substantially identical” or “substantial identity” used in reference to a nucleic acid sequence means a nucleic acid sequence comprising a sequence with at least about85%sequence identity or more, preferably at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, compared to a reference sequence. Percentage of sequence identity is determined by comparing two optimally aligned sequences over a comparison window. The percentage is calculated by determining the number of positions at which the identical nucleic acid base occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. The inventions disclosed herein encompasses nucleotide sequences substantially identical to those disclosed herein. e.g., in Tables 1-3. In some embodiments, the sequences disclosed herein are exactly identical, or at least about85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%percent identical to those disclosed herein, e.g., in Tables 1-3.
As used herein, the term “strand comprising a sequence” means an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature. The term “double-stranded RNA” or “dsRNA, ” as used herein, refers to an RNAi that includes an RNA molecule or complex of molecules having a hybridized duplex region comprising two anti-parallel and substantially or fully complementary nucleic acid strands, which are referred to as having “sense” and “antisense” orientations with respect to a target HSD17B13 RNA. The duplex region can be of any length that permits specific degradation of a desired target HSD17B13 RNA through a RISC pathway, but will typically range from 9 to 30 base pairs in length, e.g., 15-30 base pairs in length. Considering a duplex between 9 and 30 base pairs, the duplex can be any length in this range, for example, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30, and any sub-range therein between, including, but not limited to 15-30base pairs, 15-26 base pairs, 15-23 base pairs, 15-22 base pairs, 15-21 base pairs, 15-20 base pairs, 15-19 base pairs, 15-18 base pairs, 15-17 base pairs, 18-30 base pairs, 18-26 base pairs, 18-23 base pairs, 18-22 base pairs, 18-21 base pairs, 18-20 base pairs, 19-30 base pairs, 19-26 base pairs, 19-23 base pairs, 19-22 base pairs, 19-21 base pairs, 19-20 base pairs, 20-30 base pairs, 20-26 base pairs, 20-25 base pairs, 20-24 base pairs, 20-23 base pairs, 20-22 base pairs, 20-21 base pairs, 21-30 base pairs, 21-26 base pairs, 21-25 base pairs, 21-24 base pairs, 21-23 base pairs, or 21-22 base pairs. HSD17B13 dsRNA agents generated in the cell by processing with Dicer and similar enzymes are generally in the range of 19-22 base pairs in length. One strand of the duplex region of a HSD17B13 dsDNA agent comprises a sequence that is substantially complementary to a region of a target HSD17B13 RNA. The two strands forming the duplex structure can be from a single RNA molecule having at least one self-complementary region, or can be formed from two or more separate RNA molecules. Where the duplex region is formed from two strands of a single molecule, the molecule can have a duplex region separated by a single stranded chain of nucleotides (herein referred to as a “hairpin loop” ) between the 3'-end of one strand and the 5'-end of the respective other strand forming the duplex structure. In some embodiments of the invention, a hairpin look comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more unpaired nucleotides. Where the two substantially complementary strands of a HSD17B13 dsRNA agent are comprised by separate RNA molecules, those molecules need not, but can be covalently connected. Where the two strands are connected covalently by means other than a hairpin loop, the connecting structure is referred to as a “linker. ” The term “siRNA” is also used herein to refer to a dsRNA agent as described herein.
In some embodiments of the invention a HSD17B13 dsRNA agent may include a sense and antisense sequence that have no-unpaired nucleotides or nucleotide analogs at one or both terminal ends of the dsRNA agent. An end with no unpaired nucleotides is referred to as a “blunt end” and as having no nucleotide overhang. If both ends of a dsRNA agent are blunt, the dsRNA is referred to as “blunt ended. ” In some embodiments of the invention, a first end of a dsRNA agent is blunt, in some embodiments a second end of a dsRNA agent is blunt, and in certain embodiments of the invention, both ends of a HSD17B13 dsRNA agent are blunt.
In some embodiments of dsRNA agents of the invention, the dsRNA does not have one or two blunt ends. In such instances there is at least one unpaired nucleotide at the end of a strand of a dsRNA agent. For example, when a 3'-end of one strand of a dsRNA extends beyond the 5'-end of the other strand, or vice versa, there is a nucleotide overhang. A dsRNA can comprise an overhang of at least e 1, 2, 3, 4, 5, 6, or more nucleotides. A nucleotide overhang can comprise or consist of a nucleotide/nucleoside analog, including a deoxynucleotide/nucleoside. It will be understood that in some embodiments a nucleotide overhang is on a sense strand of a dsRNA agent, on an antisense strand of a dsRNA agent, or on both ends of a dsRNA agent and nucleotide (s) of an overhang can be present on the 5' end, 3' end or both ends of either an antisense or sense strand of a dsRNA. In certain embodiments of the invention, one or more of the nucleotides in an overhang is replaced with a nucleoside thiophosphate.
As used herein, the term “antisense strand” or “guide strand” refers to the strand of a HSD17B13 dsRNA agent that includes a region that is substantially complementary to a HSD17B13 target sequence. As used herein the term “sense strand, ” or “passenger strand” refers to the strand of a HSD17B13 dsRNA agent that includes a region that is substantially complementary to a region of the antisense strand of the HSD17B13 dsRNA agent.
Modifications
In some embodiments of the invention the RNA of a HSD17B13 RNAi agent is chemically modified to enhance stability and/or one or more other beneficial characteristics. Nucleic acids in certain embodiments of the invention may be synthesized and/or modified by methods well established in the art, for example, those described in “Current protocols in Nucleic Acid Chemistry, " Beaucage, S.L. et al. (Eds. ) , John Wiley&Sons, Inc., New York, N.Y., USA, which is incorporated herein by reference. Modifications that can be present in certain embodiments of HSD17B13 dsRNA agents of the invention include, for example, (a) end modifications, e.g., 5' end modifications (phosphorylation, conjugation, inverted linkages,
etc. ) 3' end modifications (conjugation, DNA nucleotides, inverted linkages, etc. ) , (b) base modifications, e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides) , or conjugated bases, (c) sugar modifications (e.g., at the 2' position or 4' position) or replacement of the sugar, as well as (d) backbone modifications, including modification or replacement of the phosphodiester linkages. Specific examples of RNA compounds useful in certain embodiments of HSD17B13 dsRNA agents, HSD17B13 antisense polynucleotides, and HSD17B13 sense polynucleotides of the invention include, but are not limited to RNAs comprising modified backbones or non-natural internucleoside linkages. As a non-limiting example, an RNA having a modified backbone may not have a phosphorus atom in the backbone. RNAs that do not have a phosphorus atom in their internucleoside backbone may be referred to as oligonucleosides. In certain embodiments of the invention, a modified RNA has a phosphorus atom in its internucleoside backbone.
It will be understood that the term “RNA molecule” or “RNA” or “ribonucleic acid molecule” encompasses not only RNA molecules as expressed or found in nature, but also analogs and derivatives of RNA comprising one or more ribonucleotide/ribonucleoside analogs or derivatives as described herein or as known in the art. The terms “ribonucleoside” and “ribonucleotide” may be used interchangeably herein. An RNA molecule can be modified in the nucleobase structure or in the ribose-phosphate backbone structure, e.g., as described herein below, and molecules comprising ribonucleoside analogs or derivatives must retain the ability to form a duplex. As non-limiting examples, an RNA molecule can also include at least one modified ribonucleoside including but not limited to a 2'-O-methyl modified nucleoside, anucleoside comprising a 5' phosphorothioate group, a terminal nucleoside linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group, a locked nucleoside, an abasic nucleoside, a 2'-deoxy-2'-fluoro modified nucleoside, a 2'-amino-modified nucleoside, 2'-alkyl-modified nucleoside, morpholino nucleoside, a phosphoramidate or a non-natural base comprising nucleoside, or any combination thereof. In some embodiments of the invention, an RNA molecule comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or up to the full length of the HSD17B13 dsRNA agent molecule’s ribonucleosides that are modified ribonucleosides. The modifications need not be the same for each of such a plurality of modified ribonucleosides in an RNA molecule.
dsRNA agents, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides of the invention may, in some embodiments comprise one or more independently selected modified nucleotide and/or one or more independently selected non-
phosphodiester linkage. As used herein, the terms “internucleotide linkage” , “internucleoside linkage” , “linkage” , and “linker” may be used interchangeably, and refer to the linking groups between unmodified or modified nucleosides, and/or between an unmodified or modified nucleoside and one or more targeting groups in an oligonucleotide strand. In some embodiments, the linkage may be independently selected from a phosphodiester (PO) linkage, a phosphorothioate (PS) linkage, and/or a phosphorodithioate (PS2) linkage of a dinucleotide at any position of single stranded or double stranded oligonucleotide. As used herein the term “independently selected” used in reference to a selected element, such as a modified nucleotide, non-phosphodiester linkage, etc., means that two or more selected elements can but need not be the same as each other.
As used herein, a “nucleotide base, ” “nucleotide, ” or “nucleobase” is a heterocyclic pyrimidine or purine compound, which is a standard constituent of all nucleic acids, and includes the bases that form the nucleotides adenine, guanine, cytosine, thymine, and uracil. Anucleobase may further be modified to include, though not intended to be limiting: universal bases, hydrophobic bases, promiscuous bases, size-expanded bases, and fluorinated bases. The term “ribonucleotide” or “nucleotide” may be used herein to refer to an unmodified nucleotide, a modified nucleotide, or a surrogate replacement moiety. Those in the art will recognize that guanine, cytosine, adenine, and uracil can be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety.
As used herein, "optionally" or "optionally" means that the event or environment described later may, but need not, occur, including where the event or environment occurred or did not occur. For example, "C1-6 alkyl optionally substituted by halogen or cyano" means that halogen or cyano may, but not necessarily, be present, including the case where alkyl is substituted by halogen or cyano and the case where alkyl is not substituted by halogen and cyano.
As used herein, in the chemical structures of the compounds of the present disclosure, the bondrepresents an unspecified configuration, i.e., if a chiral isomer is present in the chemical structure, the bondcan beorbothtwo configurations. Although some of the above structural formulas are depicted as some isomeric forms for simplicity, the present disclosure may include all isomers, such as tautomers, rotamers, and mixtures thereof. Suitable chiral compounds include: geometric isomers, diastereomers, racemates and enantiomers.
As used herein, used in the chemical formulas of the present disclosure may be attached to any one or more groups according to the scope of the invention described herein.
In one embodiment, modified RNAs contemplated for use in methods and compositions described herein are peptide nucleic acids (PNAs) that have the ability to form the required duplex structure and that permit or mediate the specific degradation of a target RNA via a RISC pathway. In certain embodiments of the invention, a HSD17B13 RNA interference agent includes a single stranded RNA that interacts with a target HSD17B13 RNA sequence to direct the cleavage of the target HSD17B13 RNA.
Modified RNA backbones can include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5'linkages, 2'-5'linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included. Means of preparing phosphorus-containing linkages are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents, certain modified HSD17B13 antisense polynucleotides, and/or certain modified HSD17B13 sense polynucleotides of the invention.
Modified RNA backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside) ; siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts. Means of preparing modified RNA backbones that do not include a phosphorus atom are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents, certain modified HSD17B13 antisense polynucleotides, and/or certain modified HSD17B13 sense polynucleotides of the invention.
In certain embodiments of the invention, RNA mimetics are included in HSD17B13 dsRNAs, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides, such as, but not limited to: replacement of the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units with novel groups. In such embodiments, base units are maintained for hybridization with an appropriate HSD17B13 nucleic acid target compound. One such oligomeric compound, an RNA mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA) . In PNA compounds, the sugar backbone of an RNA is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Means of preparing RNA mimetics are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents of the invention.
Some embodiments of the invention include RNAs with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular-CH2-NH-CH2-, -CH2-N (CH3) -O-CH2- [known as a methylene (methylimino) or MMI backbone] , -CH2-O-N (CH3) -CH2-, -CH2-N (CH3) -N (CH3) -CH2-and-N (CH3) -CH2- [wherein the native phosphodiester backbone is represented as-O-P-O-CH2-] . Means of preparing RNAs with phosphorothioate backbones and oligonucleosides with heteroatom backbones are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents, certain HSD17B13 antisense polynucleotides, and/or certain HSD17B13 sense polynucleotides of the invention.
Modified RNAs can also contain one or more substituted sugar moieties. HSD17B13 dsRNAs, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides of the invention may comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S-or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10alkyl or C2 to C10alkenyl and alkynyl. Exemplary suitable modifications include O [ (CH2) nO] mCH3, O (CH2) nOCH3, O (CH2) nNH2, O (CH2) nCH3, O (CH2) nONH2, and O (CH2) nON [ (CH2) nCH3) ] 2, where n and m are from1 to about 10. In other embodiments, dsRNAs include one of the following at the 2' position: C1 to C10lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of a HSD17B13 dsRNA agent, or a group for improving the pharmacodynamic properties of a
HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide, and other substituents having similar properties. In some embodiments, the modification includes a 2'-methoxyethoxy (2'-O-CH2CH2OCH3, also known as 2'-O- (2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78: 486-504) i.e., an alkoxy-alkoxy group. Another exemplary modification is 2'-dimethylaminooxyethoxy, i.e., a O (CH2) 2ON (CH3) 2group, also known as 2'-DMAOE, as described in examples herein below, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE) , i.e., 2'-O-CH2-O-CH2-N (CH2) 2. Means of preparing modified RNAs such as those described are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents of the invention.
Other modifications include 2'-methoxy (2'-OCH3) , 2'-aminopropoxy (2'-OCH2CH2CH2NH2) and 2'-fluoro (2'-F) . Similar modifications can also be made at other positions on the RNA of a HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide of the invention, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked HSD17B13 dsRNAs, HSD17B13 antisense polynucleotides, or HSD17B13 sense polynucleotides, and the 5' position of 5' terminal nucleotide. HSD17B13 dsRNA agents, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Means of preparing modified RNAs such as those described are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides of the invention.
A HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide may, in some embodiments, include nucleobase (often referred to in the art simply as "base" ) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine and guanine, and the pyrimidine bases thymine, cytosine and uracil. Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-Me-C) , 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil) , 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and
8-azaadenine, 7-deazaguanine and 7-daazaadenine and 3-deazaguanine and 3-deazaadenine. Additional nucleobases that may be included in certain embodiments of HSD17B13 dsRNA agents of the invention are known in the art, see for example: Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijn, P. Ed. Wiley-VCH, 2008; The Concise Encyclopedia Of Polymer Science And Engineering, pages858-859, Kroschwitz, J. L, Ed. John Wiley&Sons, 1990, English et al., Angewandte Chemie, International Edition, 1991, 30, 613, Sanghvi, Y S., Chapter 15, dsRNA Research and Applications, pages 289-302, Crooke, S.T. and Lebleu, B., Ed., CRC Press, 1993. Means of preparing dsRNAs, HSD17B13 antisense strand polynucleotides and/or HSD17B13 sense strand polynucleotides that comprise nucleobase modifications and/or substitutions such as those described herein are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents, HSD17B13 sense polynucleotides, and/or HSD17B13 antisense polynucleotides of the invention. Teachings regarding the synthesis of particular modified oligonucleotides may be found in the following U.S. patents: U.S. Pat. No. 5,218,105, drawn to polyamine conjugated oligonucleotides; U.S. Pat. No. 5,541,307, drawn to oligonucleotides having modified backbones; U.S. Pat. No. 5,521,302, drawn to processes for preparing oligonucleotides having chiral phosphorus linkages; U.S. Pat. No. 5,539,082, drawn to peptide nucleic acids; U.S. Pat. No. 5,554,746, drawn to oligonucleotides having (3-lactam backbones; U.S. Pat. No. 5,571,902, drawn to methods and materials for the synthesis of oligonucleotides; U.S. Pat. No. 5,578,718, drawn to nucleosides having alkylthio groups, wherein such groups may be used as linkers to other moieties attached at any of a variety of positions of the nucleoside; U.S. Pat. No. 5,587,361 drawn to oligonucleotides having phosphorothioate linkages of high chiral purity; U.S. Pat. No. 5,506,351, drawn to processes for the preparation of 2'-O-alkyl guanosine and related compounds, including 2, 6-diaminopurine compounds; U.S. Pat. No. 5,587,469, drawn to oligonucleotides having N-2 substituted purines; U.S. Pat. No. 5,587,470, drawn to oligo-nucleotides having 3-deazapurines; U.S. Pat. No. 5,608,046, both drawn to conjugated 4'-desmethyl nucleoside analogs; U.S. Pat. No. 5,610,289, drawn to backbone-modified oligonucleotide analogs; U.S. Pat. No. 6,262,241 drawn to, inter alia, methods of synthesizing 2'-fluoro-oligonucleotides.
Certain embodiments of HSD17B13 dsRNA agents, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides of the invention include RNA modified to include one or more locked nucleic acids (LNA) . A locked nucleic acid is a nucleotide with a modified ribose moiety comprising an extra bridge connecting the 2' and 4' carbons. This structure effectively “locks” the ribose in the 3'-endo structural conformation.
The addition of locked nucleic acids in a HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides of the invention may increase stability in serum, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research33 (1) : 439-447; Mook, O R. et al., (2007) Mol Canc Ther 6 (3) : 833-843; Grunweller, A. et al., (2003) Nucleic Acids Research31 (12) : 3185-3193) . Means of preparing dsRNA agents, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides that comprise locked nucleic acid (s) are routinely practiced in the art and such methods can be used to prepare certain modified HSD17B13 dsRNA agents of the invention.
Certain embodiments of HSD17B13 dsRNA compounds, sense polynucleotides, and/or antisense polynucleotides of the invention, include at least one modified nucleotide, wherein the at least one modified nucleotide comprises: 2’-O-methyl nucleotide, 2’-fluoro nucleotide, 2’-deoxy nucleotide, 2’ 3’-seco nucleotide mimic, locked nucleotide, 2’-F-Arabino nucleotide, 2’-methoyxyethyl nucleotide, 2’-amino-modified nucleotide, 2’-alkyl-modified nucleotide, mopholino nucleotide, and3’-OMe nucleotide, a nucleotide comprising a 5’-phosphorothioate group, a nucleotide comprising vinyl phosphonate, a nucleotide comprising adenosine-glycol nucleic acid (GNA) , a nucleotide comprising thymidine-glycol nucleic acid (GNA) S-Isomer, a nucleotide comprising2’-deoxythymidine-3’phosphate, a nucleotide comprising2’-deoxyguanosine-3’-phosphate, a nucleotide comprising2’-deoxyadenosine-3’-phosphate, a nucleotide comprising2’-deoxycytidine-3’-phosphate, a nucleotide comprising 2’-deoxyuridine-3’-phosphate, or a terminal nucleotide linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group, a 2’-amino-modified nucleotide, a phosphoramidate, or a non-natural base comprising nucleotide. In some embodiments, a HSD17B13 dsRNA compound includes an E-vinylphosphonate nucleotide at the 5′ end of the antisense strand, also referred to herein as the guide strand.
Certain embodiments of HSD17B13 dsRNA compounds, 3’ and 5’ end of sense polynucleotides, and/or 3’ end of antisense polynucleotides of the invention, include at least one modified nucleotide, wherein the at least one modified nucleotide comprises: abasic nucleotide, ribitol, inverted nucleotide, inverted abasic nucleotide, inverted 2’-OMe nucleotide, inverted 2’-deoxy nucleotide. It is known to skilled in art, including an abasic or inverted abasic nucleotide at the end of oligonucleotide enhances stability (Czauderna et al. Structural variations and stabilizing modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003; 31 (11) : 2705-2716. doi: 10.1093/nar/gkg393) . In some embodiments, a HSD17B13 dsRNA compound includes one or more inverted abasic residues (invab) at either
3’-end or 5’-end, or both 3’-end and 5’-end. Exemplified inverted abasic residues (invab) include, but are not limited to the following:
when at the 3′-end:
link to 3′-end of oligonucleotide
Certain embodiments of HSD17B13 dsRNA compounds, 3’ and 5’ end of sense polynucleotides, and/or 3’ end of antisense polynucleotides of the invention, include at least one modified nucleotide, wherein the at least one modified nucleotide comprises: isomannide nucleotide. Specific examples of isomannide nucleotides include, but are not limited to:
wherein the phrase “Olig” each independently represents a polynucleotide moiety. Exemplified isomannide residues (imann) include, but are not limited to the following:
In certain embodiments, the isomannide nucleotides may further conjugate to one or more targeting groups or delivery molecules, such as GalNAc moieties.
Certain embodiments of HSD17B13 dsRNA compounds, antisense polynucleotides of the invention, include at least one modified nucleotide, wherein the at least one modified nucleotide comprises unlocked nucleic acid nucleotide (UNA) or/and glycol nucleic acid nucleotide (GNA) . It is known to skilled in art, UNA and GNA are thermally destabilizing chemical modifications, can significantly improves the off-target profile of a siRNA compound (Janas, et al., Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat Commun. 2018; 9 (1) : 723. doi: 10.1038/s41467-018-02989-4; Laursen et al., Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol BioSyst. 2010; 6: 862–70) .
Certain embodiments of HSD17B13 dsRNA compounds, antisense polynucleotides of the invention further comprise a phosphate moiety. As used herein, a phosphate moiety refers to a phosphate group including phosphates or phosphates mimics that attached to the sugar moiety (e.g., a ribose or deoxyribose or analog thereof) of a nucleotide. A nucleotide comprising a phosphate mimic may also be defined as a phosphonate modified nucleotide.
In some embodiments, the phosphate mimic is a 5’-vinyl phosphonate (VP) . In exemplary embodiments, a vinyl phosphonate of the disclosure has the following structure:
A vinyl phosphonate of the instant disclosure may be attached to either the antisense or the sense strand of a dsRNA of the disclosure. In certain preferred embodiments, a vinyl phosphonate of the instant disclosure is attached to the antisense strand of a dsRNA, optionally at the 5’ end of the antisense strand of the dsRNA.
In certain embodiments, a vinyl phosphonate modified nucleotide of the disclosure has the structure of formula (IV) :
wherein X is O or S;
R is hydrogen, hydroxy, fluoro, or C1-20alkoxy (e.g., methoxy or n-hexadecyloxy) ;
R5' is=C (H) -P (O) (OH) 2 and the double bond between the C5' carbon and R5' is in the E or Z orientation (e.g., E orientation) ; and
B is a nucleobase or a modified nucleobase, optionally where B is adenine, guanine, cytosine, thymine, or uracil.
In certain embodiments, R5' is=C (H) -P (O) (OH) 2 and the double bond between the C5’ carbon and R5’ is in the E orientation. In certain embodiments, R is methoxy and R5' is=C (H) -P (O) (OH) 2 and the double bond between the C5’ carbon and R5’ is in the E orientation. In certain embodiments, X is S, R is methoxy, and R5' is=C (H) -P (O) (OH) 2 and the double bond between the C5’ carbon and R5’ is in the E orientation.
Vinyl phosphonate modifications are also contemplated for the dsRNAs, the compositions and methods of the instant disclosure. An exemplary vinyl phosphonate structure is:
In certain embodiments, a vinyl phosphonate modified nucleotide is VPu*which has the structure of as follows:
In many cases, protecting groups are used during the preparation of the compounds of the invention. As used herein, the term "protected" means that the indicated moiety has a protecting group appended thereon. In some embodiments of the invention, compounds contain one or more protecting groups. A wide variety of protecting groups can be employed in the methods of the invention. In general, protecting groups render chemical functionalities inert to specific reaction conditions, and can be appended to and removed from such functionalities in a molecule without substantially damaging the remainder of the molecule. Protecting groups in general and hydroxyl protecting groups in particular are well known in the art (Greene and Wuts, Protective Groups in Organic Synthesis, Chapter 2, 2d ed., John Wiley&Sons, New York, 1991) .
As used herein, examples of protecting groups (e.g., hydroxyl protecting groups) include, but are not limited to, methyl, ethyl, benzyl (Bn) , phenyl, isopropyl, tert-butyl, acetyl, chloroacetyl, trichloro acetyl, trifluoroacetyl, pivaloyl, tert-butoxymethyl, methoxymethyl, 1-ethoxyethyl, 1- (2-chloroethoxy) ethyl, allyl, cyclohexyl, 9-fluorenylmethoxycarbonyl (Fmoc) , methanesulfonate, toluenesulfonate, triflate, benzoyl, benzoylformate, p-phenylbenzoyl, 4-methoxybenzyl, monomethoxytrityl, dimethoxytrityl, trimethoxytrityl, 4-chlorobenzyl, 4-nitrobenzyl, 2, 4-dinitrophenyl, 4-acyloxybenzyl, 2-methylphenyl, 2, 6-dimethylphenyl, 2-chlorophenyl, 2, 6-dichlorobenzyl, diphenylmethyl, triphenylmethyl, 4-methylthio-1-butyl, S-
acetylthioacetate (SATA) , 2-cyanoethyl, 2-cyanol, 1-dimethylethyl (CDM) , 4-cyano-2-butenyl, 2- (trimethylsilyl) ethyl (TSE) , 2- (phenylthio) ethyl, 2- (triphenylsilyl) ethyl, 2- (benzylsulfonyl) ethyl, 2, 2, 2-trichloroethyl, 2, 2, 2-tribromoethyl, 2, 3-dibromopropyl, 2, 2, 2-trifluoroethyl, phenylthio, 2-chloro-4-tritylphenyl, 2-bromophenyl, 2- [N-isopropyl-N- (4-methoxybenzoyl) amino] ethyl, 4- (N-trifluoroacetylamino) butyl, 4-oxopentyl, 4-tritylaminophenyl, 4-benzyl aminophenyl, tetrahydropyranyl, morpholino, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, triphenyl Silyl, triisopropylsilyl, pivaloyloxymethyl (POM) and9-phenylxanthine-9-yl.
As used herein, examples of amino protecting groups include, but are not limited to, carbamate protecting groups, such as 2-trimethylsilylethoxycarbonyl (Teoc) , 1-methyl-1- (4-biphenyl) ethoxycarbonyl (Bpoc) , tert-butyloxycarbonyl (BOC) , allyloxycarbonyl (Alloc) , 9-fluorenyl-methoxycarbonyl (Fmoc) , benzyloxycarbonyl (Cbz) ; amide protecting groups, such as formyl, acetyl, pivaloyl, trihaloacetyl, benzoyl, 2-nitrobenzenesulfonyl; and imine and cyclic imide protecting groups, such as phthalimido and dithiasuccinoyl. Equivalents of these amino-protecting groups are also encompassed by the compounds and methods of the invention.
Another modification that may be included in the RNA of certain embodiments of HSD17B13 dsRNA agents, HSD17B13 antisense polynucleotides, and/or HSD17B13 sense polynucleotides of the invention, comprises chemically linking to the RNA one or more ligands, moieties or conjugates that enhance one or more characteristics of the HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide, respectively. Non-limiting examples of characteristics that may be enhanced are: HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide activity, cellular distribution, delivery of a HSD17B13 dsRNA agent, pharmacokinetic properties of a HSD17B13 dsRNA agent, and cellular uptake of the HSD17B13 dsRNA agent. In some embodiments of the invention, a HSD17B13 dsRNA agent comprises one or more targeting groups or linking groups, which in certain embodiments of HSD17B13 dsRNA agents of the invention are conjugated to the sense strand. A non-limiting example of a targeting group is a compound comprising N-acetyl-galactosamine (GalNAc) . The terms “targeting group” , “targeting agent” , “linking agent” , “targeting compound” , and “targeting ligand” may be used interchangeably herein. In certain embodiments of the invention a HSD17B13 dsRNA agent comprises a targeting compound that is conjugated to the 5'-terminal end of the sense strand. In certain embodiments of the invention a HSD17B13 dsRNA agent comprises a targeting compound that is conjugated to the 3'-terminal end of the sense strand. In
some embodiments of the invention, a HSD17B13 dsRNA agent comprises a targeting group that comprises GalNAc. In certain embodiments of the invention a HSD17B13 dsRNA agent does not include a targeting compound conjugated to one or both of the 3'-terminal end and the 5'-terminal end of the sense strand. In certain embodiments of the invention a HSD17B13 dsRNA agent does not include a GalNAc containing targeting compound conjugated to one or both of the 5'-terminal end and the 3'-terminal end of the sense strand.
Additional targeting and linking agents are well known in the art, for example, targeting and linking agents that may be used in certain embodiments of the invention include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acid. Sci. USA, 1989, 86: 6553-6556) , cholic acid (Manoharan et al., Biorg. Med. Chem. Let., 1994, 4: 1053-1060) , a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660: 306-309; Manoharan et al., Biorg. Med. Chem. Let., 1993, 3: 2765-2770) , a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20: 533-538) , an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J, 1991, 10: 1111-1118; Kabanov et al., FEBS Lett., 1990, 259: 327-330; Svinarchuk et al., Biochimie, 1993, 75: 49-54) , a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium1, 2-di-O-hexadecyl-rac-glycero-3-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36: 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18: 3777-3783) , a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides&Nucleotides, 1995, 14: 969-973) , or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36: 3651-3654) , a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264: 229-237) , or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277: 923-937) .
Certain embodiments of a composition comprising a HSD17B13 dsRNA agent, HSD17B13 antisense polynucleotide, and/or HSD17B13 sense polynucleotide may comprise a ligand that alters distribution, targeting, or etc. of the HSD17B13 dsRNA agent. In some embodiments of a composition comprising a HSD17B13 dsRNA agent of the invention, the ligand increases affinity for a selected target, e.g., molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand. A ligand useful in a composition and/or method of the invention may be a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA) , low-density lipoprotein (LDL) , or globulin) ; a carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid) ; or a lipid. A ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid or polyamine. Examples of polyamino acids are a polylysine (PLL) , poly L-
aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly (L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N- (2-hydroxypropyl) methacrylamide copolymer (HMPA) , polyethylene glycol (PEG) , polyvinyl alcohol (PVA) , polyurethane, poly (2-ethylacryllic acid) , N-isopropylacrylamide polymers, or polyphosphazine. Example of polyamines include: polyethylenimine, polylysine (PLL) , spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an alpha helical peptide.
A ligand included in a composition and/or method of the invention may comprise a targeting group, non-limiting examples of which are a cell or tissue targeting agent, e.g., alectin, glycoprotein, lipid or protein, e.g., an antibody that binds to a specified cell type such as a kidney cell or a liver cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, vitamin A, biotin, or an RGD peptide or RGD peptide mimetic.
Other examples of ligands include dyes, intercalating agents (e.g. acridines) , cross-linkers (e.g. psoralene, mitomycin C) , porphyrins (TPPC4, texaphyrin, Sapphyrin) , polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine) , artificial endonucleases (e.g. EDTA) , lipophilic molecules, e.g., cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1, 3-Bis-O (hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1, 3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3- (oleoyl) lithocholic acid, O3- (oleoyl) cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide) , alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K) , MPEG, [MPEG] 2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g., biotin) , transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid) , synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+complexes of tetraazamacrocycles) , dinitrophenyl, HRP, or AP.
A ligand included in a composition and/or method of the invention may be a protein, e.g., glycoprotein, or peptide, for example a molecule with a specific affinity for a co-ligand, or an antibody, for example an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, cardiac cell, or bone cell. A ligand useful in an embodiment of a composition
and/or method of the invention can be a hormone or hormone receptor. A ligand useful in an embodiment of a composition and/or method of the invention can be a lipid, lectin, carbohydrates, vitamin, cofactos, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, or multivalent fucose. A ligand useful in an embodiment of a composition and/or method of the invention can be a substance that can increase uptake of the HSD17B13 dsRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. Non-limiting examples of this type of agent are: taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, and myoservin.
In some embodiments, a ligand attached to a HSD17B13 dsRNA agent of the invention functions as a pharmacokinetic (PK) modulator. An example of a PK modulator that may be used in compositions and methods of the invention includes but is not limited to: a lipophiles, a bile acid, a steroid, a phospholipid analogue, a peptide, a protein binding agent, PEG, a vitamin, cholesterol, a fatty acid, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, a phospholipid, a sphingolipid, naproxen, ibuprofen, vitamin E, biotin, an aptamer that binds a serum protein, etc. Oligonucleotides comprising a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g., oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple of phosphorothioate linkages in the backbone may also be used in compositions and/or methods of the invention as ligands.
HSD17B13 dsRNA agent compositions
In some embodiments of the invention, a HSD17B13 dsRNA agent is in a composition. A composition of the invention may include one or more HSD17B13 dsRNA agent and optionally one or more of a pharmaceutically acceptable carrier, a delivery agent, a targeting agent, detectable label, etc. A non-limiting example of a targeting agent that may be useful according to some embodiments of methods of the invention is an agent that directs a HSD17B13 dsRNA agent of the invention to and/or into a cell to be treated. A targeting agent of choice will depend upon such elements as: the nature of the HSD17B13-associated disease or condition, and on the cell type being targeted. In a non-limiting example, in some embodiments of the invention it may be desirable to target a HSD17B13 dsRNA agent to and/or into a liver cell. It will be understood that in some embodiments of methods of the invention, a therapeutic agent comprises a HSD17B13 dsRNA agent with only a delivery agent,
such as a delivery agent comprising N-Acetylgalactosamine (GalNAc) , without any additional attached elements. For example, in some aspects of the invention a HSD17B13 dsRNA agent may be attached to a delivery compound comprising GalNAc and included in a composition comprising a pharmaceutically acceptable carrier and administered to a cell or subject without any detectable labels, or targeting agents, etc. attached to the HSD17B13 dsRNA agent.
In cases where a HSD17B13 dsRNA agent of the invention is administered with and/or attached to one or more delivery agents, targeting agents, labeling agents, etc. a skilled artisan will be aware of and able to select and use suitable agents for use in methods of the invention. Labeling agents may be used in certain methods of the invention to determine the location of a HSD17B13 dsRNA agent in cells and tissues and may be used to determine a cell, tissue, or organ location of a treatment composition comprising a HSD17B13 dsRNA agent that has been administered in methods of the invention. Procedures for attaching and utilizing labeling agents such as enzymatic labels, dyes, radiolabels, etc. are well known in the art. It will be understood that in some embodiments of compositions and methods of the invention, alabeling agent is attached to one or both of a sense polynucleotide and an antisense polynucleotide included in a HSD17B13 dsRNA agent.
Delivery of HSD17B13 dsRNA agents and HSD17B13 antisensepolynucleotide agents
Certain embodiments of methods of the invention, includes delivery of a HSD17B13 dsRNA agent into a cell. As used herein the term, “delivery” means facilitating or effecting uptake or absorption into the cell. Absorption or uptake of a HSD17B13 dsRNA agent can occur through unaided diffusive or active cellular processes, or by use of delivery agents, targeting agents, etc. that may be associated with a HSD17B13 dsRNA agent of the invention. Delivery means that are suitable for use in methods of the invention include, but are not limited to: in vivo delivery, in which a HSD17B13 dsRNA agent is in injected into a tissue site or administered systemically. In some embodiments of the invention, a HSD17B13 dsRNA agent is attached to a delivery agent.
Non-limiting examples of methods that can be used to deliver HSD17B13 dsRNA agents to cells, tissues and/or subjects include: HSD17B13 dsRNA-GalNAc conjugates, SAMiRNA technology, LNP-based delivery methods, and naked RNA delivery. These and other delivery methods have been used successfully in the art to deliver therapeutic RNAi agents for treatment of various diseases and conditions, such as but not limited to: liver diseases, acute intermittent porphyria (AIP) , hemophilia, pulmonary fibrosis, etc. Details of various delivery means are found in publications such as: Nikam, R.R. &K.R. Gore (2018)
Nucleic Acid Ther, 28 (4) , 209-224Aug2018; Springer A.D. &S.F. Dowdy (2018) Nucleic Acid Ther. Jun1; 28 (3) : 109–118; Lee, K. et al., (2018) Arch Pharm Res, 41 (9) , 867-874; and Nair, J.K. et al., (2014) J. Am. Chem. Soc. 136: 16958-16961, the content each of which is incorporated by reference herein.
Some embodiments of the invention comprise use of lipid nanoparticles (LNPs) to deliver a HSD17B13 dsRNA agent of the invention to a cell, tissue, and/or subject. LNPs are routinely used for in vivo delivery of HSD17B13 dsRNA agents, including therapeutic HSD17B13 dsRNA agents. One benefit of using an LNP or other delivery agent is an increased stability of the HSD17B13 RNA agent when it is delivered to a subject using the LNP or other delivery agent. In some embodiments of the invention an LNP comprises a cationic LNP that is loaded with one or more HSD17B13 RNAi molecules of the invention. The LNP comprising the HSD17B13 RNAi molecule (s) is administered to a subject, the LNPs and their attached HSD17B13 RNAi molecules are taken up by cells via endocytosis, their presence results in release of RNAi trigger molecules, which mediate RNAi.
Another non-limiting example of a delivery agent that may be used in embodiments of the invention to delivery a HSD17B13 dsRNA agent of the invention to a cell, tissue and/or subject is an agent comprising GalNAc that is attached to a HSD17B13 dsRNA agent of the invention and delivers the HSD17B13 dsRNA agent to a cell, tissue, and/or subject. Examples of certain additional delivery agents comprising GalNAc that can be used in certain embodiments of methods and composition of the invention are disclosed in PCT Application: WO2020191183A1 (incorporated herein in its entirety) . A non-limiting example of a GalNAc targeting ligand that can be used in compositions and methods of the invention to deliver a HSD17B13 dsRNA agent to a cell is a targeting ligand cluster. Examples of targeting ligand clusters that are presented herein are referred to as: GalNAc Ligand with phosphodiester link (GLO) and GalNAc Ligand with phosphorothioate link (GLS) . The term “GLX-n” may be used herein to indicate the attached GalNAc-containing compound is any one of compounds GLS-1, GLS-2, GLS-3, GLS-4, GLS-5, GLS-6, GLS-7, GLS-8, GLS-9, GLS-10, GLS-11, GLS-12, GLS-13, GLS-14, GLS-15, GLS-16, GLO-1, GLO-2, GLO-3, GLO-4, GLO-5, GLO-6, GLO-7, GLO-8, GLO-9, GLO-10, GLO-11, GLO-12, GLO-13, GLO-14, GLO-15, and GLO-16, the structure of each of which is shown below, with the below with location of attachment of the GalNAc-targeting ligand to an RNAi agent of the invention at far right of each (shown with) . It will be understood that any RNAi and dsRNA molecule of the invention can be attached to the GLS-1, GLS-2, GLS-3, GLS-4, GLS-5, GLS-6, GLS-7, GLS-8, GLS-9, GLS-10, GLS-11, GLS-12, GLS-13, GLS-14, GLS-15, GLS-16, GLO-1, GLO-2,
GLO-3, GLO-4, GLO-5, GLO-6, GLO-7, GLO-8, GLO-9, GLO-10, GLO-11, GLO-12, GLO-13, GLO-14, GLO-15, and GLO-16, GLO-1 through GLO-16 and GLS-1 through GLS-16 structures are shown below.
In certain embodiments, the aforesaid isomannide nucleotides may further conjugate to one or more GalNAc targeting ligands. Specific examples of isomannide nucleotides conjugated to a GalNAc targeting ligand include, but are not limited to:
wherein the phrase "olig" each independently represents a polynucleotide moiety.
In some embodiments of the invention, in vivo delivery can also be by a beta-glucan delivery system, such as those described in U.S. Pat. Nos. 5,032,401 and 5,607,677, and U.S. Publication No. 2005/0281781, which are hereby incorporated by reference in their entirety. In vitro introduction of a HSD17B13 RNAi agent into a cell may also be done using art-known methods such as electroporation and lipofection. In certain embodiments of methods of the invention, a HSD17B13 dsRNA is delivered without a targeting agent. These RNAs may be delivered as “naked” RNA molecules. As a non-limiting example, a HSD17B13 dsRNA of the invention may be administered to a subject to treat a HSD17B13-associated disease or
condition in the subject, such as a liver disease, in a pharmaceutical composition comprising the RNAi agent, but not including a targeting agent such as a GalNAc targeting compound.
In addition to certain delivery means described herein, it will be understood that RNAi delivery means, such as but not limited to those described herein and those used in the art, can be used in conjunction with embodiments of HSD17B13 RNAi agents and treatment methods described herein.
HSD17B13 dsRNA agents of the invention may be administered to a subject in an amount and manner effective to reduce a level and activity of HSD17B13 polypeptide in a cell and/or subject. In some embodiments of methods of the invention one or more HSD17B13 dsRNA agents are administered to a cell and/or subject to treat a disease or condition associated with HSD17B13 expression and activity. Methods of the invention, in some embodiments, include administering one or more HSD17B13 dsRNA agents to a subject in need of such treatment to reduce a disease or condition associated with HSD17B13 expression in the subject. HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents of the invention can be administered to reduce HSD17B13 expression and/or activity in one more of in vitro, ex vivo, and in vivo cells.
In some embodiments of the invention, a level, and thus an activity, of HSD17B13 polypeptide in a cell is reduced by delivering (e.g. introducing) a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent into a cell. Targeting agents and methods may be used to aid in delivery of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to a specific cell type, cell subtype, organ, spatial region within a subject, and/or to a sub-cellular region within a cell. A HSD17B13 dsRNA agent can be administered in certain methods of the invention singly or in combination with one or more additional HSD17B13 dsRNA agents. In some embodiments, 2, 3, 4, or more independently selected HSD17B13 dsRNA agents are administered to a subject.
In certain embodiments of the invention, a HSD17B13 dsRNA agent is administered to a subject to treat a HSD17B13-associated disease or condition in conjunction with one or more additional therapeutic regimens for treating the HSD17B13-associate disease or condition. Non-limiting examples of additional therapeutic regimens are: administering one or more HSD17B13 antisense polynucleotides of the invention, administering a non-HSD17B13 dsRNA therapeutic agent, and a behavioral modification. An additional therapeutic regimen may be administered at a time that is one or more of: prior to, simultaneous with, and following administration of a HSD17B13 dsRNA agent of the invention. It will be understood that simultaneous with as used herein, within five minutes of time zero, within10 minutes of
time zero, within 30 minutes of time zero, within 45 minutes of time zero, and within 60 minutes of time zero, with “time zero” the time of administration of the HSD17B13 dsRNA agent of the invention to the subject. Non-limiting examples of non-HSD17B13 dsRNA therapeutic agents are: pyridoxine, an ACE inhibitor (angiotensin converting enzyme inhibitors) , e.g., benazepril (Lotensin) ; an angiotensin II receptor antagonist (ARB) (e.g., losartan potassium, such as Merck&Co. 's ) , e.g., Candesartan (Atacand) ; an HMG-CoA reductase inhibitor (e.g., a statin) ; calcium binding agents, e.g., Sodium cellulose phosphate (Calcibind) ; diuretics, e.g., thiazide diuretics, such as hydrochlorothiazide (Microzide) ; an insulin sensitizer, such as the PPARy agonist pioglitazone, a glp-1r agonist, such as liraglutatide, vitamin E, an SGLT2 inhibitor, a DPPIV inhibitor, and kidney/liver transplant; or a combination of any of the foregoing. Non-limiting examples of behavioral modifications are: a dietary regimen, counseling, and an exercise regimen. These and other therapeutic agents and behavior modifications are known in the art and used to treat a HSD17B13 disease or condition in a subject and may be administered to a subject in 0combination with the administration of one or more HSD17B133 dsRNA agents of the invention to treat the HSD17B13 disease or condition. A HSD17B13 dsRNA agent of the invention administered to a cell or subject to treat a HSD17B13-associated disease or condition may act in a synergistic manner with one or more other therapeutic agents or activities and increase the effectiveness of the one or more therapeutic agents or activities and/or to increase the effectiveness of the HSD17B13 dsRNA agent at treating the HSD17B13-associated disease or condition.
Treatment methods of the invention that include administration of a HSD17B13 dsRNA agent can be used prior to the onset of a HSD17B13-associated disease or condition and/or when a HSD17B13-associated disease or condition is present, including at an early stage, mid-stage, and late stage of the disease or condition and all times before and after any of these stages. Methods of the invention may also be to treat subjects who have previously been treated for a HSD17B13-associated disease or condition with one or more other therapeutic agents and/or therapeutic activities that were not successful, were minimally successful, and/or are no longer successful at treating the HSD17B13-associated disease or condition in the subject.
Vector Encoded dsRNAs
In certain embodiments of the invention, a HSD17B13 dsRNA agent can be delivered into a cell using a vector. HSD17B13 dsRNA agent transcription units can be included in a
DNA or RNA vector. Prepare and use of such vectors encoding transgenes for delivering sequences into a cell and or subject are well known in the art. Vectors can be used in methods of the invention that result in transient expression of HSD17B13 dsRNA, for example for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more hours, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more weeks. The length of the transient expression can be determined using routine methods based on elements such as, but not limited to the specific vector construct selected and the target cell and/or tissue. Such transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be an integrating or non-integrating vector. The transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann, et al., Proc. Natl. Acad. Sci. USA (1995) 92: 1292) .
An individual strand or strands of a HSD17B13 dsRNA agent can be transcribed from a promoter on an expression vector. Where two separate strands are to be expressed to generate, for example, a dsRNA, two separate expression vectors can be co-introduced to a cell using means such as transfection or infection. In certain embodiments each individual strand of a HSD17B13 dsRNA agent of the invention can be transcribed by promoters that are both included on the same expression vector. In certain embodiments of the invention a HSD17B13 dsRNA agent is expressed as inverted repeat polynucleotides joined by a linker polynucleotide sequence such that the HSD17B13 dsRNA agent has a stem and loop structure.
Non-limiting examples of RNA expression vectors are DNA plasmids or viral vectors. Expression vectors useful in embodiments of the invention can be compatible with eukaryotic cells. Eukaryotic cell expression vectors are routinely used in the art and are available from a number of commercial sources. Delivery of HSD17B13 dsRNA expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from a subject followed by reintroduction into the subject, or by any other means that allows for introduction into a desired target cell.
Viral vector systems that may be included in an embodiment of a method of the include, but are not limited to, (a) adenovirus vectors; (b) retrovirus vectors, including but not limited to lentiviral vectors, moloney murine leukemia virus, etc.; (c) adeno-associated virus vectors; (d) herpes simplex virus vectors; (e) SV40vectors; (f) polyoma virus vectors; (g) papilloma virus vectors; (h) picornavirus vectors; (i) pox virus vectors such as an orthopox, e.g., vaccinia virus vectors or avipox, e.g. canary pox or fowl pox; and (j) a helper-dependent or gutless adenovirus. Constructs for the recombinant expression of a HSD17B13 dsRNA agent may include regulatory elements, such as promoters, enhancers, etc., which may be selected to provide constitutive or regulated/inducible expression. Viral vector systems, and the use of
promoters and enhancers, etc. are routine in the art and can be used in conjunction with methods and compositions described herein.
Certain embodiments of the invention include use of viral vectors for delivery of HSD17B13 dsRNA agents into cells. Numerous adenovirus-based delivery systems are routinely used in the art for deliver to, for example, lung, liver, the central nervous system, endothelial cells, and muscle. Non-limiting examples of viral vectors that may be used in methods of the invention are: AAV vectors, a pox virus such as a vaccinia virus, a Modified Virus Ankara (MVA) , NYVAC, an avipox such as fowl pox or canary pox.
Certain embodiments of the invention include methods of delivering HSD17B13 dsRNA agents into cells using a vector and such vectors may be in a pharmaceutically acceptable carrier that may, but need not, include a slow release matrix in which the gene delivery vehicle is imbedded. In some embodiments, a vector for delivering a HSD17B13 dsRNA can be produced from a recombinant cell, and a pharmaceutical composition of the invention may include one or more cells that produced the HSD17B13 dsRNA delivery system.
Pharmaceutical Compositions Containing HSD17B13 dsRNA or ssRNA agents
Certain embodiments of the invention include use of pharmaceutical compositions containing a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent and a pharmaceutically acceptable carrier. The pharmaceutical composition containing the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent can be used in methods of the invention to reduce HSD17B13 gene expression and HSD17B13 activity in a cell and is useful to treat a HSD17B13-associated disease or condition. Such pharmaceutical compositions can be formulated based on the mode of delivery. Non-limiting examples of formulations for modes of delivery are: a composition formulated for subcutaneous delivery, acomposition formulated for systemic administration via parenteral delivery, a composition formulated for intravenous (IV) delivery, a composition formulated for intrathecal delivery, acomposition formulated for direct delivery into brain, etc. Administration of a pharmaceutic composition of the invention to deliver a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent into a cell may be done using one or more means such as: topical (e.g., by a transdermal patch) , pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal, oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; subdermal, e.g., via an implanted device; or intracranial, e.g., by intraparenchymal, intrathecal or intraventricular, administration. A HSD17B13
dsRNA agent or HSD17B13 antisense polynucleotide agent can also be delivered directly to a target tissue, for example directly into the liver, directly into a kidney, etc. It will be understood that “delivering a HSD17B13 dsRNA agent” or “delivering a HSD17B13 antisense polynucleotide agent” into a cell encompasses delivering a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent, respectively, directly as well as expressing a HSD17B13 dsRNA agent in a cell from an encoding vector that is delivered into a cell, or by any suitable means with which the HSD17B13 dsRNA or HSD17B13 antisense polynucleotide agent becomes present in a cell. Preparation and use of formulations and means for delivering inhibitory RNAs are well known and routinely used in the art.
As used herein, a “pharmaceutical composition” comprises a pharmacologically effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention and a pharmaceutically acceptable carrier. The term “pharmaceutically acceptable carrier” refers to a carrier for administration of a therapeutic agent. Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The term specifically excludes cell culture medium. For drugs administered orally, pharmaceutically acceptable carriers include, but are not limited to pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract. Agents included in drug formulations are described further herein below.
As used herein terms such as: “pharmacologically effective amount, ” “therapeutically effective amount” and “effective amount” refers to that amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention to produce the intended pharmacological, therapeutic or preventive result. For example, if a given clinical treatment is considered effective when there is at least a 10%reduction in a measurable parameter associated with a disease or disorder, a therapeutically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to effect at least a 10%reduction in that parameter. For example, a therapeutically effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent can reduce HSD17B13 polypeptide levels by at least 10%.
Effective amounts
Methods of the invention, in some aspects comprise contacting a cell with a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent in an effective amount to reduce HSD17B13 gene expression in the contacted cell. Certain embodiments of methods of the invention comprise administering a HSD17B13 dsRNA agent or a HSD17B13 antisense polynucleotide agent to a subject in an amount effective to reduce HSD17B13 gene expression and treat a HSD17B13-associated disease or condition in the subject. An “effective amount” used in terms of reducing expression of HSD17B13 and/or for treating a HSD17B13-associated disease or condition, is an amount necessary or sufficient to realize a desired biologic effect. For example, an effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to treat a HSD17B13-associated disease or condition could be that amount necessary to (i) slow or halt progression of the disease or condition; or (ii) reverse, reduce, or eliminate one or more symptoms of the disease or condition. In some aspects of the invention, an effective amount is that amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent that when administered to a subject in need of a treatment of a HSD17B13-associated disease or condition, results in a therapeutic response that prevents and/or treats the disease or condition. According to some aspects of the invention, an effective amount is that amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention that when combined or co-administered with another therapeutic treatment for a HSD17B13-associated disease or condition, results in a therapeutic response that prevents and/or treats the disease or condition. In some embodiments of the invention, a biologic effect of treating a subject with a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention may be the amelioration and or absolute elimination of symptoms resulting from the HSD17B13-associated disease or condition. In some embodiments of the invention, a biologic effect is the complete abrogation of the HSD17B13-associated disease or condition, as evidenced for example, by a diagnostic test that indicates the subject is free of the HSD17B13-associated disease or condition. A non-limiting example of a physiological symptom that may be detected includes a reduction in HSD17B13 level in liver of a subject following administration of an agent of the invention. Additional art-known means of assessing the status of a HSD17B13-associated disease or condition can be used to determine an effect of an agent and/or methods of the invention on a HSD17B13-associated disease or condition.
Typically an effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to decrease HSD17B13 polypeptide activity to a level to treat a HSD17B13-associated disease or condition will be determined in clinical trials, establishing an effective dose for a test population versus a control population in a blind study. In some embodiments, an effective amount will be that results in a desired response, e.g., an amount that diminishes a HSD17B13-associated disease or condition in cells, tissues, and/or subjects with the disease or condition. Thus, an effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to treat a HSD17B13-associated disease or condition that can be treated by reducing HSD17B13 polypeptide activity may be the amount that when administered decreases the amount of HSD17B13 polypeptide activity in the subject to an amount that is less than the amount that would be present in the cell, tissue, and/or subject without the administration of the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent. In certain aspects of the invention the level of HSD17B13 polypeptide activity, and/or HSD17B13 gene expression present in a cell, tissue, and/or subject that has not been contacted with or administered a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention is referred to as a “control” amount. In some embodiments of methods of the invention a control amount for a subject is a pre-treatment amount for the subject, in other words, a level in a subject before administration of a HSD17B13 agent can be a control level for that subject and compared to a level of HSD17B13 polypeptide activity and/or HSD17B13 gene expression in the subject following siRNA administered to the subject. In the case of treating a HSD17B13-associated disease or condition the desired response may be reducing or eliminating one or more symptoms of the disease or condition in the cell, tissue, and/or subject. The reduction or elimination may be temporary or may be permanent. It will be understood that the status of a HSD17B13-associated disease or condition can be monitored using methods of determining HSD17B13 polypeptide activity, HSD17B13 gene expression, symptom evaluation, clinical testing, etc. In some aspects of the invention, a desired response to treatment of a HSD17B13-associated disease or condition is delaying the onset or even preventing the onset of the disease or condition.
An effective amount of a compound that decreases HSD17B13 polypeptide activity may also be determined by assessing physiological effects of administration of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent on a cell or subject, such as a decrease of a HSD17B13-associated disease or condition following administration. Assays and/or symptomatic monitoring of a subject can be used to determine efficacy of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention, which may be
administered in a pharmaceutical compound of the invention, and to determine the presence or absence of a response to the treatment. A non-limiting example, is that one or more art-known tests of alanine aminotransferase (ALT) or aspartate aminotransferase (AST) profile. Another non-limiting example, is that one or more art-known tests of liver function can be used to determine the status of the HSD17B13-associated liver disease or condition in a subject before and after treatment of the subject with a HSD17B13 dsRNA agent of the invention.
Some embodiments of the invention include methods of determining an efficacy of an dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention administered to a subject, to treat a HSD17B13-associated disease or condition by assessing and/or monitoring one or more “physiological characteristics” of the HSD17B13-associated disease or condition in the subject. Non-limiting examples of physiological characteristics of a HSD17B13-associated disease or condition are the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver, etc. Standard means of determining such physiological characteristic are known in the art and include, but are not limited to, blood tests, imaging studies, physical examination, etc.
It will be understood that the amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent administered to a subject can be modified based, at least in part, on such determinations of disease and/or condition status and/or physiological characteristics determined for a subject. The amount of a treatment may be varied for example by increasing or decreasing the amount of a HSD17B13-dsRNA agent or HSD17B13 antisense polynucleotide agent, by changing the composition in which the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent, respectively, is administered, by changing the route of administration, by changing the dosage timing and so on. The effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent will vary with the particular condition being treated, the age and physical condition of the subject being treated; the severity of the condition, the duration of the treatment, the nature of the concurrent therapy (if any) , the specific route of administration, and additional factors within the knowledge and expertise of the health practitioner. For example, an effective amount may depend upon the desired level of HSD17B13 polypeptide activity and or HSD17B13 gene expression that is effective to treat the HSD17B13-associated disease or condition. A skilled artisan can empirically determine an effective amount of a particular HSD17B13 dsRNA agent or
HSD17B13 antisense polynucleotide agent of the invention for use in methods of the invention without necessitating undue experimentation. Combined with the teachings provided herein, by selecting from among various HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents of the invention, and weighing factors such as potency, relative bioavailability, patient body weight, severity of adverse side-effects and preferred mode of administration, an effective prophylactic or therapeutic treatment regimen can be planned that is effective to treat the particular subject. As used in embodiments of the invention, an effective amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention can be that amount that when contacted with a cell results in a desired biological effect in the cell.
It will be recognized that HSD17B13 gene silencing may be determined in any cell expressing HSD17B13, either constitutively or by genomic engineering, and by any appropriate assay. In some embodiments of the invention, HSD17B13 gene expression is reduced by at least5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%by administration of a HSD17B13 dsRNA agent of the invention. In some embodiments of the invention, HSD17B13 gene expression is reduced by at between5%and10%, 5%and 25%, 10%and 50%, 10%and75%, 25%and75%, 25%and100%, or 50%and100%by administration of a HSD17B13 dsRNA agent of the invention.
Dosing
HSD17B13 dsRNA agents and HSD17B13 antisense polynucleotide agents are delivered in pharmaceutical compositions in dosages sufficient to inhibit expression of HSD17B13 genes. In certain embodiments of the invention, a dose of HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent is in a range of 0.01 to 200.0 milligrams per kilogram body weight of the recipient per day, generally in the range of 1 to 50 mg per kilogram body weight, 5 to 40 mg/kg body weight, 10 to 30 mg/kg body weight, 1 to20 mg/kg body weight, 1 to 10 mg/kg body weight, 4 to 15 mg/kg body weight per day, inclusive. For example, the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent can be administered in an amount that is from about 0.01 mg/kg, 0.05 mg/kg, 0.1 mg/kg, 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 1 mg/kg, 1.1 mg/kg, 1.2 mg/kg, 1.3 mg/kg, 1.4 mg/kg, 1.5 mg/kg, 1.6 mg/kg, 1.7 mg/kg, 1.8 mg/kg, 1.9 mg/kg, 2 mg/kg, 2.1 mg/kg, 2.2 mg/kg, 2.3 mg/kg, 2.4 mg/kg, 2.5 mg/kg, 2.6 mg/kg, 2.7 mg/kg, 2.8 mg/kg, 2.9 mg/kg, 3.0 mg/kg, 3.1 mg/kg, 3.2 mg/kg, 3.3 mg/kg, 3.4 mg/kg, 3.5 mg/kg, 3.6 mg/kg, 3.7 mg/kg, 3.8 mg/kg, 3.9
mg/kg, 4 mg/kg, 4.1 mg/kg, 4.2 mg/kg, 4.3 mg/kg, 4.4 mg/kg, 4.5 mg/kg, 4.6 mg/kg, 4.7 mg/kg, 4.8 mg/kg, 4.9 mg/kg, 5 mg/kg, 5.1 mg/kg, 5.2 mg/kg, 5.3 mg/kg, 5.4 mg/kg, 5.5 mg/kg, 5.6 mg/kg, 5.7 mg/kg, 5.8 mg/kg, 5.9 mg/kg, 6 mg/kg, 6.1 mg/kg, 6.2 mg/kg, 6.3 mg/kg, 6.4 mg/kg, 6.5 mg/kg, 6.6 mg/kg, 6.7 mg/kg, 6.8 mg/kg, 6.9 mg/kg, 7 mg/kg, 7.1 mg/kg, 7.2 mg/kg, 7.3 mg/kg, 7.4 mg/kg, 7.5 mg/kg, 7.6 mg/kg, 7.7 mg/kg, 7.8 mg/kg, 7.9 mg/kg, 8 mg/kg, 8.1 mg/kg, 8.2 mg/kg, 8.3 mg/kg, 8.4 mg/kg, 8.5 mg/kg, 8.6 mg/kg, 8.7 mg/kg, 8.8 mg/kg, 8.9 mg/kg, 9 mg/kg, 9.1 mg/kg, 9.2 mg/kg, 9.3 mg/kg, 9.4 mg/kg, 9.5 mg/kg, 9.6 mg/kg, 9.7 mg/kg, 9.8 mg/kg, 9.9 mg/kg, 10 mg/kg, 11 mg/kg, 12 mg/kg, 13 mg/kg, 14 mg/kg, 15 mg/kg, 16 mg/kg, 17 mg/kg, 18 mg/kg, 19 mg/kg, 20 mg/kg, 21 mg/kg, 22 mg/kg, 23 mg/kg, 24 mg/kg, 25 mg/kg, 26 mg/kg, 27 mg/kg, 28 mg/kg, 29 mg/kg, 30 mg/kg, 31 mg/kg, 32 mg/kg, 33 mg/kg, 34 mg/kg, 35 mg/kg, 36 mg/kg, 37 mg/kg, 38 mg/kg, 39 mg/kg, 40 mg/kg, 41 mg/kg, 42 mg/kg, 43 mg/kg, 44 mg/kg, 45 mg/kg, 46 mg/kg, 47 mg/kg, 48 mg/kg, 49 mg/kg, through 50 mg/kg body per single dose.
Various factors may be considered in the determination of dosage and timing of delivery of a HSD17B13 dsRNA agent of the invention. The absolute amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent delivered will depend upon a variety of factors including a concurrent treatment, the number of doses and the individual subject parameters including age, physical condition, size and weight. These are factors well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. In some embodiments, a maximum dose can be used, that is, the highest safe dose according to sound medical judgment.
Methods of the invention may in some embodiments include administering to a subject 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more doses of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent. In some instances, a pharmaceutical compound, (e.g., comprising a HSD17B13 dsRNA agent or comprising a HSD17B13 antisense polynucleotide agent) can be administered to a subject at least daily, every other day, weekly, every other week, monthly, etc. Doses may be administered once per day or more than once per day, for example, 2, 3, 4, 5, or more times in one 24hour period. A pharmaceutical composition of the invention may be administered once daily, or the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be administered as two, three, or more sub-doses at appropriate intervals throughout the day or even using continuous infusion or delivery through a controlled release formulation. In some embodiments of methods of the invention, a pharmaceutical composition of the invention is administered to a subject one or more times per day, one or more times per week, one or more times per month, or one or more times per year.
Methods of the invention, in some aspects, include administration of a pharmaceutical compound alone, in combination with one or more other HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents, and/or in combination with other drug therapies or treatment activities or regimens that are administered to subjects with a HSD17B13-associated disease or condition. Pharmaceutical compounds may be administered in pharmaceutical compositions. Pharmaceutical compositions used in methods of the invention may be sterile and contain an amount of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent that will reduce activity of a HSD17B13 polypeptide to a level sufficient to produce the desired response in a unit of weight or volume suitable for administration to a subject. A dose administered to a subject of a pharmaceutical composition that includes a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to reduce HSD17B13 protein activity can be chosen in accordance with different parameters, in particular in accordance with the mode of administration used and the state of the subject. Other factors include the desired period of treatment. In the event that a response in a subject is insufficient at the initial doses applied, higher doses (or effectively higher doses by a different, more localized delivery route) may be employed to the extent that patient tolerance permits.
Treatment
HSD17B13-associated diseases and conditions in which a decrease in a level and/or activity of HSD17B13 polypeptide is effective to treat the disease or condition, can be treated using methods and HSD17B13 dsRNA agents of the invention to inhibit HSD17B13 expression. Examples of diseases and conditions that may be treated with a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention and a treatment method of the invention, include, but are not limited to: hepatitis, liver fibrosis, nonalcoholic steatohepatitis (NASH) , nonalcoholic fatty liver disease (NAFLD) , cirrhosis, Alcoholic Steatohepatitis (ASH) , alcoholic fatty liver disease (ALD) , HCV-related cirrhosis, drug-induced liver injury, hepatocellular necrosis and HSD17B13related obesity. Such diseases and conditions may be referred to herein as “HSD17B13-associated diseases and conditions” and “diseases and conditions caused and/or modulated by HSD17B13. ”
In certain aspects of the invention, a subject may be administered a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention at a time that is one or more of before or after diagnosis of a HSD17B13-associated disease or condition. In some aspects of the invention, a subject is at risk of having or developing a HSD17B13-associated disease or condition. A subject at risk of developing a HSD17B13-associated disease or
condition is one who has an increased probability of developing the HSD17B13-associated disease or condition, compared to a control risk of developing the HSD17B13-associated disease or condition. In some embodiments of the invention, a level of risk may be statistically significant compared to a control level of risk. A subject at risk may include, for instance, asubject who is, or will be, a subject who has a preexisting disease and/or a genetic abnormality that makes the subject more susceptible to a HSD17B13-associated disease or condition than a control subject without the preexisting disease or genetic abnormality; a subject having a family and/or personal medical history of the HSD17B13-associated disease or condition; and a subject who has previously been treated for a HSD17B13-associated disease or condition. It will be understood that a preexisting disease and/or a genetic abnormality that makes the subject more susceptible to a HSD17B13-associated disease or condition, may be a disease or genetic abnormality that when present has been previously identified as having a correlative relation to a higher likelihood of developing a HSD17B13-associated disease or condition.
It will be understood that a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be administered to a subject based on a medical status of the individual subject. For example, a health-care provided for a subject may assess a HSD17B13 level measured in a sample obtained from a subject and determine it is desirable to reduce the subject’s HSD17B13 level, by administration of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention. In this example, the HSD17B13 level may be considered to be a physiological characteristic of a HSD17B13-associated condition, even if the subject is not diagnosed as having a HSD17B13-assoicated disease such as one disclosed herein. A healthcare provider may monitor changes in the subject’s HSD17B13 level, as a measure of efficacy of the administered HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention. In a non-limiting example, a biological sample, such as a blood or serum sample may be obtained from a subject and a HSD17B13 level for the subject determined in the sample. A HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent is administered to the subject and a blood or liver sample is obtained from the subject following the administration and the HSD17B13 level determined using the sample and the results compared to the results determined in the subject’s pre-administration (prior) sample. A reduction in the subject’s HSD17B13 level in the later sample compared to the pre-administration level indicates the administered HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent efficacy in reducing the lipid level, liver fat or hepatic lipid droplets in the subject.
Certain embodiments of methods of the invention include adjusting a treatment that includes administering a dsRNA agent or a HSD17B13 antisense polynucleotide agent of the invention to a subject based at least in part on assessment of a change in one or more of the subject’s physiological characteristics of a HSD17B13-associated disease or condition resulting from the treatment. For example, in some embodiments of the invention, an effect of an administered dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention may be determined for a subject and used to assist in adjusting an amount of a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention subsequently administered to the subject. In a non-limiting example, a subject is administered a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention, the subject’s HSD17B13 level is determined after the administration, and based at least in part on the determined level, a greater amount of the dsRNA agent or HSD17B13 antisense polynucleotide agent is determined to be desirable in order to increase the physiological effect of the administered agent, for example to reduce or further reduce the subject’s HSD17B13 level. In another non-limiting example, a subject is administered a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention, the subject’s HSD17B13 level is determined after the administration and based at least in part on the determined level, a lower amount of the dsRNA agent or HSD17B13 antisense polynucleotide agent is desirable to administer to the subject.
Thus, some embodiments of the invention include assessing a change in one or more physiological characteristics of resulting from a subject’s previous treatment to adjust an amount of a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention subsequently administered to the subject. Some embodiments of methods of the invention include 1, 2, 3, 4, 5, 6, or more determinations of a physiological characteristic of a HSD17B13-associated disease or condition to assess and/or monitor the efficacy of an administered HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention, and optionally using the determinations to adjust one or more of: a dose, administration regimen, and or administration frequency of a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention to treat a HSD17B13-associated disease or condition in a subject. In some embodiments of methods of the invention, a desired result of administering an effective amount of a dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention to a subject is a reduction of the subject’s the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , the free fatty acids level in the plasma or the tissue sample, or the fat level
and/or the lipid droplets level in the liver, etc., as compared to a prior level determined for the subject, or to a control level.
As used herein, the terms “treat” , “treated” , or “treating” when used with respect to a HSD17B13-associated disease or condition may refer to a prophylactic treatment that decreases the likelihood of a subject developing the HSD17B13-associated disease or condition, and also may refer to a treatment after the subject has developed a HSD17B13-associated disease or condition in order to eliminate or reduce the level of the HSD17B13-associated disease or condition, prevent the HSD17B13-associated disease or condition from becoming more advanced (e.g., more severe) , and/or slow the progression of the HSD17B13-associated disease or condition in a subject compared to the subject in the absence of the therapy to reduce activity in the subject of HSD17B13 polypeptide.
Certain embodiments of agents, compositions, and methods of the invention can be used to inhibit HSD17B13 gene expression. As used herein in reference to expression of a HSD17B13 gene, the terms “inhibit, ” “silence, ” “reduce, ” “down-regulate, ” and “knockdown” mean the expression of the HSD17B13 gene, as measured by one or more of: a level of RNA transcribed from the gene, a level of activity of HSD17B13 expressed, and a level of HSD17B13 polypeptide, protein or protein subunit translated from the mRNA in a cell, group of cells, tissue, organ, or subject in which the HSD17B13 gene is transcribed, is reduced when the cell, group of cells, tissue, organ, or subject is contacted with (e.g., treated with) a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention, compared to a control level of RNA transcribed from the HSD17B13 gene, a level of activity of expressed HSD17B13, or a level of HSD17B13 translated from the mRNA, respectively. In some embodiments, a control level is a level in a cell, tissue, organ or subject that has not been contacted with (e.g. treated with) the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent.
Administration methods
A variety of administration routes for a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent are available for use in methods of the invention. The particular delivery mode selected will depend at least in part, upon the particular condition being treated and the dosage required for therapeutic efficacy. Methods of this invention, generally speaking, may be practiced using any mode of administration that is medically acceptable, meaning any mode that produces effective levels of treatment of a HSD17B13-associated disease or condition without causing clinically unacceptable adverse effects. In
some embodiments of the invention, a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be administered via an oral, enteral, mucosal, subcutaneous, and/or parenteral route. The term “parenteral” includes subcutaneous, intravenous, intrathecal, intramuscular, intraperitoneal, and intrasternal injection, or infusion techniques. Other routes include but are not limited to nasal (e.g., via a gastro-nasal tube) , dermal, vaginal, rectal, sublingual, and inhalation. Delivery routes of the invention may include intrathecal, intraventricular, or intracranial. In some embodiments of the invention, a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be placed within a slow release matrix and administered by placement of the matrix in the subject. In some aspects of the invention, a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be delivered to a subject cell using nanoparticles coated with a delivery agent that targets a specific cell or organelle. Various delivery means, methods, agents are known in the art. Non-limiting examples of delivery methods and delivery agents are additionally provided elsewhere herein. In some aspects of the invention, the term “delivering” in reference to a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may mean administration to a cell or subject of one or more “naked” HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent sequences and in certain aspects of the invention “delivering” means administration to a cell or subject via transfection means, delivering a cell comprising a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to a subject, delivering a vector encoding a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent into a cell and/or subject, etc. Delivery of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent using a transfection means may include administration of a vector to a cell and/or subject.
In some methods of the invention one or more HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents may be administered in formulations, which may be administered in pharmaceutically acceptable solutions, which may routinely contain pharmaceutically acceptable concentrations of salt, buffering agents, preservatives, compatible carriers, adjuvants, and optionally other therapeutic ingredients. In some embodiments of the invention a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be formulated with another therapeutic agent for simultaneous administration. According to methods of the invention, a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be administered in a pharmaceutical composition. In general, a pharmaceutical composition comprises a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent and optionally, a pharmaceutically-acceptable carrier. Pharmaceutically-acceptable
carriers are well-known to those of ordinary skill in the art. As used herein, apharmaceutically-acceptable carrier means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredients, e.g., the ability of the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent to inhibit HSD17B13 gene expression in a cell or subject. Numerous methods to administer and deliver dsRNA agents or HSD17B13 antisense polynucleotide agents for therapeutic use are known in the art and may be utilized in methods of the invention.
Pharmaceutically acceptable carriers include diluents, fillers, salts, buffers, stabilizers, solubilizers and other materials that are well-known in the art. Exemplary pharmaceutically acceptable carriers are described in U.S. Pat. No. 5,211,657 and others are known by those skilled in the art. Such preparations may routinely contain salt, buffering agents, preservatives, compatible carriers, and optionally other therapeutic agents. When used in medicine, the salts should be pharmaceutically acceptable, but non-pharmaceutically acceptable salts may conveniently be used to prepare pharmaceutically-acceptable salts thereof and are not excluded from the scope of the invention. Such pharmacologically and pharmaceutically-acceptable salts include, but are not limited to, those prepared from the following acids: hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, maleic, acetic, salicylic, citric, formic, malonic, succinic, and the like. Also, pharmaceutically-acceptable salts can be prepared as alkaline metal or alkaline earth salts, such as sodium, potassium or calcium salts.
Some embodiments of methods of the invention include administering one or more HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents directly to a tissue. In some embodiments, the tissue to which the compound is administered is a tissue in which the HSD17B13-associated disease or condition is present or is likely to arise, non-limiting examples of which are the liver or kidney. Direct tissue administration may be achieved by direct injection or other means. Many orally delivered compounds naturally travel to and through the liver and kidneys and some embodiments of treatment methods of the invention include oral administration of one or more HSD17B13 dsRNA agents to a subject. HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents, either alone or in conjunction with other therapeutic agents, may be administered once, or alternatively they may be administered in a plurality of administrations. If administered multiple times, the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be administered via different routes. For example, though not intended to be limiting, a first (or first several) administrations may be made via subcutaneous means and one or more additional administrations may be oral and/or systemic administrations.
For embodiments of the invention in which it is desirable to administer a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent systemically, the HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with or without an added preservative. HSD17B13 dsRNA agent formulations (also referred to as pharmaceutical compositions) may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's , or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose) , and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like. Lower doses will result from other forms of administration, such as intravenous administration. In the event that a response in a subject is insufficient at the initial doses applied, higher doses (or effectively higher doses by a different, more localized delivery route) may be employed to the extent that patient tolerance permits. Multiple doses per day may be used as needed to achieve appropriate systemic or local levels of one or more HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents and to achieve appropriate reduction in HSD17B13 protein activity.
In yet other embodiments, methods of the invention include use of a delivery vehicle such as biocompatible microparticle, nanoparticle, or implant suitable for implantation into a recipient, e.g., a subject. Exemplary bioerodible implants that may be useful in accordance with this method are described in PCT Publication No. WO95/24929 (incorporated by reference herein) , which describes a biocompatible, biodegradable polymeric matrix for containing a biological macromolecule.
Both non-biodegradable and biodegradable polymeric matrices can be used in methods of the invention to deliver one or more HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents to a subject. In some embodiments, a matrix may be biodegradable.
Matrix polymers may be natural or synthetic polymers. A polymer can be selected based on the period of time over which release is desired, generally in the order of a few hours to a year or longer. Typically, release over a period ranging from between a few hours and three to twelve months can be used. The polymer optionally is in the form of a hydrogel that can absorb up to about 90%of its weight in water and further, optionally is cross-linked with multivalent ions or other polymers.
In general, HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents may be delivered in some embodiments of the invention using the bioerodible implant by way of diffusion, or by degradation of the polymeric matrix. Exemplary synthetic polymers for such use are well known in the art. Biodegradable polymers and non-biodegradable polymers can be used for delivery of HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents using art-known methods. Bioadhesive polymers such as bioerodible hydrogels (see H. S. Sawhney, C.P. Pathak and J.A. Hubell in Macromolecules, 1993, 26, 581-587, the teachings of which are incorporated by reference herein) may also be used to deliver HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents for treatment of a HSD17B13-associated disease or condition. Additional suitable delivery systems can include time-release, delayed release or sustained release delivery systems. Such systems can avoid repeated administrations of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent, increasing convenience to the subject and the medical care professional. Many types of release delivery systems are available and known to those of ordinary skill in the art. (See for example: U.S. Pat. Nos. 5,075,109; 4,452,775; 4,675,189; 5,736,152; 3,854,480; 5,133,974; and 5,407,686 (the teaching of each of which is incorporated herein by reference) . In addition, pump-based hardware delivery systems can be used, some of which are adapted for implantation.
Use of a long-term sustained release implant may be suitable for prophylactic treatment of subjects and for subjects at risk of developing a recurrent HSD17B13-associated disease or condition. Long-term release, as used herein, means that the implant is constructed and arranged to deliver a therapeutic level of a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent for at least up to 10days, 20days, 30days, 60days, 90days, six months, a year, or longer. Long-term sustained release implants are well-known to those of ordinary skill in the art and include some of the release systems described above.
Therapeutic formulations of HSD17B13 dsRNA agents or HSD17B13 antisense polynucleotide agents may be prepared for storage by mixing the molecule or compound having the desired degree of purity with optional pharmaceutically acceptable carriers,
excipients or stabilizers [Remington's Pharmaceutical Sciences 21st edition, (2006) ] , in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol) ; low molecular weight (less than about 10residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes) ; and/or non-ionic surfactants such as
or polyethylene glycol (PEG) .
Cells, Subjects, and Controls
Methods of the invention may be used in conjunction with cells, tissues, organs and/or subjects. In some aspects of the invention a subject is a human or vertebrate mammal including but not limited to a dog, cat, horse, cow, goat, mouse, rat, and primate, e.g., monkey. Thus, the invention can be used to treat HSD17B13-associated diseases or conditions in human and non-human subjects. In some aspects of the invention a subject may be a farm animal, azoo animal, a domesticated animal or non-domesticated animal and methods of the invention can be used in veterinary prevention and treatment regimens. In some embodiments of the invention, the subject is a human and methods of the invention can be used in human prevention and treatment regimens.
Non-limiting examples of subjects to which the present invention can be applied are subjects who are diagnosed with, suspected of having, or at risk of having a disease or condition associated with a higher than desirable HSD17B13 expression and/or activity, also referred to as “elevated levels of HSD17B13 expression” . Non-limiting examples of diseases and conditions associated with a higher than desirable levels of HSD17B13 expression and/or activity are described elsewhere herein. Methods of the invention may be applied to a subject who, at the time of treatment, has been diagnosed as having the disease or condition associated with a higher than desirable HSD17B13 expression and/or activity, or a subject who is
considered to be at risk for having or developing a disease or condition associated with a higher than desirable HSD17B13 expression and/or activity. In some aspects of the invention a disease or condition associated with a higher than desirable HSD17B13 level of expression and/or activity is an acute disease or condition, and in certain aspects of the invention a disease or condition associated with a higher than desirable HSD17B13 level of expression and/or activity is a chronic disease or condition.
In a non-limiting example, a HSD17B13 dsRNA agent of the invention is administered to a subject diagnosed with, suspected of having, or at risk of having, statin resistant hypercholesterolemia, which is a disease in which it is desirable to reduce HSD17B13 expression. Methods of the invention may be applied to the subject who, at the time of treatment, has been diagnosed as having the disease or condition, or a subject who is considered to be at risk for having or developing the disease or condition.
In another non-limiting example, a HSD17B13 dsRNA agent of the invention is administered to a subject diagnosed with, suspected of having, or at risk of having, hyperlipidemia, which is a disease in which it is desirable to reduce HSD17B13 expression. Methods of the invention may be applied to the subject who, at the time of treatment, has been diagnosed as having the disease or condition, or a subject who is considered to be at risk for having or developing the disease or condition.
A cell to which methods of the invention may be applied include cells that are in vitro, in vivo, ex vivo cells. Cells may be in a subject, in culture, and/or in suspension, or in any other suitable state or condition. A cell to which a method of the invention may be applied can be a liver cell, a hepatocyte, a cardiac cell, a pancreatic cell, a cardiovascular cell, kidney cell or other type of vertebrate cell, including human and non-human mammalian cells. In certain aspects of the invention, a cell to which methods of the invention may be applied is a healthy, normal cell that is not known to be a disease cell. In certain embodiments of the invention a cell to which methods and compositions of the invention are applied to a liver cell, a hepatocyte, a cardiac cell, a pancreatic cell, a cardiovascular cell, and/or a kidney cell. In certain aspects of the invention, a control cell is a normal cell, but it will be understood that a cell having a disease or condition may also serve as a control cell in particular circumstances for example to compare results in a treated cell having a disease or condition versus an untreated cell having the disease or condition, etc.
A level of HSD17B13 polypeptide activity can be determined and compared to control level of HSD17B13 polypeptide activity, according to methods of the invention. A control may be a predetermined value, which can take a variety of forms. It can be a single cut-off
value, such as a median or mean. It can be established based upon comparative groups, such as in groups having normal levels of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity and groups having increased levels of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity. Another non-limiting example of comparative groups may be groups having one or more symptoms of or a diagnosis of a HSD17B13-associated disease or condition; groups without having one or more symptoms of or a diagnosis of the disease or condition; groups of subjects to whom an siRNA treatment of the invention has been administered; groups of subjects to whom an siRNA treatment of the invention has not been administered. Typically, a control may be based on apparently healthy normal individuals in an appropriate age bracket or apparently healthy cells. It will be understood that controls according to the invention may be, in addition to predetermined values, samples of materials tested in parallel with the experimental materials. Examples include samples from control populations or control samples generated through manufacture to be tested in parallel with the experimental samples. In some embodiments of the invention, a control may include a cell or subject not contacted or treated with a HSD17B13 dsRNA agent of the invention and in such instances, a control level of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity can be compared to a level of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity in a cell or subject contacted with a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention.
In some embodiments of the invention a level of HSD17B13 polypeptide determined for a subject can be a control level against which a level of HSD17B13 polypeptide determined for the same subject at a different time is compared. In a non-limiting example, a level of HSD17B13 is determined in a biological sample obtained from a subject who has not been administered a HSD17B13 treatment of the invention. In some embodiments, the biological sample is a serum sample. In some embodiments, the biological sample is a liver sample. The level of HSD17B13 polypeptide determined in the sample obtained from the subject can serve as a baseline or control value for the subject. After one or more administrations of a HSD17B13 dsRNA agent to the subject in a treatment method of the invention, one or more additional serum samples can be obtained from the subject and the level of HSD17B13 polypeptide in the subsequent sample or samples can be compared to the control/baseline level for the subject. Such comparisons can be used to assess onset, progression, or recession of a HSD17B13 associated disease or condition in the subject. For example, a level of HSD17B13 polypeptide in the baseline sample obtained from the subject that is higher than a level obtained from the same subject af ter the subject has been administered a HSD17B13 dsRNA
agent or HSD17B13 antisense polynucleotide agent of the invention indicates regression of the HSD17B13-associated disease or condition and indicates efficacy of the administered HSD17B13 dsRNA agent of the invention for treatment of the HSD17B13-associated disease or condition.
In some aspects of the invention, values of one or more of a level of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity determined for a subject may serve as control values for later comparison of levels of HSD17B13 polypeptide and/or HSD17B13 activity, in that same subject, thus permitting assessment of changes from a “baseline” HSD17B13 polypeptide activity in a subject. Thus, an initial HSD17B13 polypeptide level and/or initial HSD17B13 polypeptide activity level may be present and/or determined in a subject and methods and compounds of the invention may be used to decrease the level of HSD17B13 polypeptide and/or HSD17B13 polypeptide activity in the subject, with the initial level serving as a control level for that subject.
Using methods of the invention, HSD17B13 dsRNA agents and/or HSD17B13 antisense polynucleotide agents of the invention may be administered to a subject. Efficacy of the administration and treatment of the invention can be assessed when a level of HSD17B13 polypeptide in a serum sample obtained from a subject is decreased by at least 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or more compared to a pre-administration level of HSD17B13 polypeptide in a serum sample obtained from the subject at a prior time point, or compared to a non-contacted control level, for example a level of HSD17B13 polypeptide in a control serum sample. It will be understood that a level of HSD17B13 polypeptide and a level of HSD17B13 polypeptide activity both correlate with a level of HSD17B13 gene expression. Certain embodiments of methods of the invention comprise administering a HSD17B13 dsRNA and/or HSD17B13 antisense agent of the invention to a subject in an amount effective to inhibit HSD17B13 gene expression and thereby reduce a level of HSD17B13 polypeptide and reduce a level of HSD17B13 polypeptide activity in the subject.
Some embodiments of the invention, include determining presence, absence, and/or an amount (also referred to herein as a level) of HSD17B13 polypeptide in one or more biological samples obtained from one or more subjects. The determination can be used to assess efficacy of a treatment method of the invention. For example, methods and compositions of the invention can be used to determine a level of HSD17B13 polypeptide in a biological sample obtained from a subject previously treated with administration of a HSD17B13 dsRNA agent and/or a HSD17B13 antisense agent of the invention. A level of HSD17B13 polypeptide
determined in a serum sample obtained from the treated subject that is lower by at least 0.5%, 1%,5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or more compared to a pretreatment level of HSD17B13 polypeptide determined for the subject, or compared to a non-contacted control biological sample level, indicates a level of efficacy of the treatment administered to the subject.
In some embodiments of the invention a physiological characteristic of a HSD17B13-associated disease or condition determined for a subject can be a control determination against which a determination of the physiological characteristic in the same subject at a different time is compared. In a non-limiting example, a physiological characteristic such as the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level, the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver is determined in a biological sample, such as a liver or serum sample, obtained from a subject who has not been administered a HSD17B13 treatment of the invention. The HSD17B13 mRNA level (and/or other physiological characteristic of a HSD17B13 disease or condition) determined in the sample obtained from the subject can serve as a baseline or control value for the subject. After one or more administrations of a HSD17B13 dsRNA agent to the subject in a treatment method of the invention, one or more additional liver or serum samples can be obtained from the subject and HSD17B13 mRNA level and/or HSD17B13 protein level in the subsequent sample or samples are compared to the control/baseline level and/or ratio, respectively, for the subject. Such comparisons can be used to assess onset, progression, or recession of a HSD17B13 associated disease or condition in the subject. For example, HSD17B13 mRNA level in the baseline sample obtained from the subject that is higher than HSD17B13 mRNA level determined in a sample obtained from the same subject after the subject has been administered a HSD17B13 dsRNA agent or HSD17B13 antisense polynucleotide agent of the invention indicates regression of the HSD17B13-associated disease or condition and indicates efficacy of the administered HSD17B13 dsRNA agent of the invention for treatment of the HSD17B13-associated disease or condition.
In some aspects of the invention, values of one or more of a physiological characteristic of a HSD17B13-associcated disease or condition determined for a subject may serve as control values for later comparison of the physiological characteristics in that same subject, thus permitting assessment of changes from a “baseline” physiological characteristic in a subject. Thus, an initial physiological characteristic may be present and/or determined in a subject and methods and compounds of the invention may be used to decrease the level of HSD17B13
polypeptide and/or HSD17B13 polypeptide activity in the subject, with the initial physiological characteristic determination serving as a control for that subject.
Using methods of the invention, HSD17B13 dsRNA agents and/or HSD17B13 antisense polynucleotide agents of the invention may be administered to a subject in an effective amount to treat a HSD17B13 disease or condition. Efficacy of the administration and treatment of the invention can be assessed by determining a change in one or more physiological characteristics of the HSD17B13 disease or condition. In a non-limiting example, a HSD17B13 mRNA level in a serum sample obtained from a subject is decreased by at least 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or more compared to a pre-administration lipid in a serum sample obtained from the subject at a prior time point, or compared to a non-contacted control level, for example HSD17B13 mRNA level in a control serum sample. It will be understood that the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level, the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver each correlates with a level of HSD17B13 gene expression. Certain embodiments of methods of the invention comprise administering a HSD17B13 dsRNA and/or HSD17B13 antisense agent of the invention to a subject in an amount effective to inhibit HSD17B13 gene expression and thereby reduce the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or otherwise positively impact a physiological characteristic of a HSD17B13-assocaited disease or condition in the subject.
Some embodiments of the invention, include determining presence, absence, and/or a change in a physiological characteristic of a HSD17B13-associated disease or condition using methods such as but not limited to: (1) assessing one or more biological samples obtained from one or more subjects for the physiological characteristic; (2) imaging a subject (for example but not limited to obtaining a liver image) ; and (3) or physical examination of the subject. The determination can be used to assess efficacy of a treatment method of the invention.
Kits
Also within the scope of the invention are kits that comprise one or more HSD17B13 dsRNA agents and/or HSD17B13 antisense polynucleotide agents and instructions for its use in methods of the invention. Kits of the invention may include one or more of a HSD17B13 dsRNA agent, HSD17B13 sense polynucleotide, and HSD17B13 antisense polynucleotide agent that may be used to treat a HSD17B13-associated disease or condition. Kits containing
one or more HSD17B13 dsRNA agents, HSD17B13 sense polynucleotides, and HSD17B13 antisense polynucleotide agents can be prepared for use in treatment methods of the invention. Components of kits of the invention may be packaged either in aqueous medium or in lyophilized form. A kit of the invention may comprise a carrier being compartmentalized to receive in close confinement therein one or more container means or series of container means such as test tubes, vials, flasks, bottles, syringes, or the like. A first container means or series of container means may contain one or more compounds such as a HSD17B13 dsRNA agent and/or HSD17B13 sense or antisense polynucleotide agent. A second container means or series of container means may contain a targeting agent, a labelling agent, a delivery agent, etc. that may be included as a portion of a HSD17B13 dsRNA agent and/or HSD17B13 antisense polynucleotide to be administered in an embodiment of a treatment method of the invention.
A kit of the invention may also include instructions. Instructions typically will be in written form and will provide guidance for carrying-out a treatment embodied by the kit and for making a determination based upon that treatment.
The following examples are provided to illustrate specific instances of the practice of the present invention and are not intended to limit the scope of the invention. As will be apparent to one of ordinary skill in the art, the present invention will find application in a variety of compositions and methods.
Examples
Example 1. Preparation of Intermediate-A and Intermediate-B.
As shown in Scheme 1 below, Intermediate-A was synthesized by treating commercially available galactosamine pentaacetate with trimethylsilyl trifluoromethanesulfonate (TMSOTf) in dichloromethane (DCM) . This was followed by glycosylation with Cbz protected 2- (2-aminoethoxy) ethan-1-ol to give Compound II. The Cbz protecting group was removed by hydrogenation to afford Intermediate-A as a trifluoroacetate (TFA) salt. Intermediate B was synthesized based on the same scheme except Cbz protected 2- (2- (2-aminoethoxy) ethoxy) ethan-1-ol was used as the starting material.
Scheme 1
To a solution of Compound I (20.0g, 51.4 mmol) in 100 mL 1, 2-dichloroethane (DCE) was added TMSOTf (17.1 g, 77.2 mmol) . The resulting reaction solution was stirred at 60℃ for 2 hrs, and then at 25℃ for 1 hr. Cbz protected 2- (2-aminoethoxy) ethan-1-ol (13.5 g, 56.5 mmol) in DCE (100 mL) dried overpowder molecular sieves (10 g) was added dropwise to the above mentioned reaction solution at 0℃ under N2 atmosphere. The resulting reaction mixture was stirred at 25℃ for 16 hrs under N2 atmosphere. The reaction mixture was filtered and washed with sat. NaHCO3 (200 mL) , water (200 mL) and sat. brine (200 mL) . The organic layer was dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to give a crude product, which was triturated with 2-Methyltetrahydrofuran/heptane (5/3, v/v, 1.80 L) for 2 hrs. Resulting mixture was filtered and dried to give Compound II (15.0 g, 50.3%yield) as a white solid.
To a dried and argon purged hydrogenation bottle was carefully added 10%Pd/C (1.50 g) , followed by 10 mL tetrahydrofuran (THF) and then a solution of Compound II (15.0 g, 26.4 mmol) in THF (300 mL) and TFA (trifluoroacetic acid, 3.00 g, 26.4 mmol) . The resulting mixture was degassed and purged with H2 three times and stirred at 25℃ for 3 hrs under H2 (45 psi) atmosphere. Thin-layer chromatography (TLC, solvent: DCM: MeOH=10: 1) indicated Compound II was consumed completely. The reaction mixture was filtered and concentrated under reduced pressure. Residue was dissolved in anhydrous DCM (500 mL) and concentrated. This process was repeated 3 times to give Intermediate-A (14.0 g, 96.5%yield)
as a foamy white solid. 1H NMR (400 MHz DMSO-d6) : δ ppm 7.90 (d, J=9.29 Hz, 1H) , 7.78 (br s, 3H) , 5.23 (d, J=3.26 Hz, 1 H) , 4.98 (dd, J=11.29, 3.26 Hz, 1H) , 4.56 (d, J=8.53 Hz, 1 H) , 3.98-4.07 (m, 3 H) , 3.79-3.93 (m, 2 H) , 3.55-3.66 (m, 5 H) , 2.98 (br d, J=4.77 Hz, 2 H) ,2.11 (s, 3 H) , 2.00 (s, 3 H) , 1.90 (s, 3 H) , 1.76 (s, 3 H) .
Intermediate-B was synthesized using similar procedures for synthesis of Intermediate-A. 1H NMR (400 MHz DMSO-d6) : δ ppm 7.90 (br d, J=9.03 Hz, 4 H) , 5.21 (d, J=3.51 Hz, 1 H) , 4.97 (dd, J=11.1 Hz, 1H) , 4.54 (d, J=8.53 Hz, 1 H) , 3.98-4.06 (m, 3 H) , 3.88 (dt, J=10.9 Hz, 1 H) , 3.76-3.83 (m, 1 H) , 3.49-3.61 (m, 9H) , 2.97 (br s, 2 H) , 2.10 (s, 3 H) , 1.99 (s, 3 H) , 1.88 (s, 3 H) , 1.78 (s, 3 H) . Mass calc. for C20H34N2O11: 478.22; found: 479.3 (M+H+) .
Example 2. Synthesis of GalNAc ligand cluster phosphoramidite GLPA1, GLPA2 and GLPA15.
Scheme 2 below was followed to prepare GLPA1 and GLPA2. Starting from benzyl protected propane-1, 3-diamine, it was alkylated with tert-butyl 2-bromoacetate to afford triester Compound I. The benzyl protecting group was removed by hydrogenation to afford secondary amine Compound II. Amide coupling with6-hydroxyhexanoic acid afforded Compound III. tert-Butyl protecting groups were then removed upon treatment of HCl in dioxane to generate triacid Compound IV. Amide coupling between triacid compound IV and Intermediate-A or Intermediate-B was performed to afford Compound Va or Vb. Phosphoramidite GLPA1 or GLPA2 was synthesized by phosphitylation of Compound Va or Vb with 2-Cyanoethyl N, N-diisopropylchlorophosphoramidite and a catalytic amount of 1H-tetrazole.
Scheme 2
To a solution of N-Benzyl-1, 3-propanediamine (5.00 g, 30.4 mmol) in dimethylformamide (DMF, 100 mL) was added tert-butyl2-bromoacetate (23.7 g, 121 mmol) , followed by addition of diisopropylethylamine (DIEA, 23.61 g, 182 mmol) dropwise. The resulting reaction mixture was stirred at 25-30℃ for 16 hrs. LCMS showed N-Benzyl-1, 3-propanediamine was consumed completely. Reaction mixture was diluted with H2O (500 mL) and extracted with EtOAc (500 mL x 2) . The combined organics were washed with sat. brine (1 L) , dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to give crude product, which was purified by silica gel column chromatography (gradient: petroleum ether: ethyl acetate from 20: 1 to 5: 1) . Compound I (12.1 g, 78.4%yield) was obtained as a
colorless oil. 1H NMR (400 MHz, CDCl3) : δ ppm 7.26-7.40 (m, 5 H) , 3.79 (s, 2 H) , 3.43 (s, 4 H) ,3.21 (s, 2 H) , 2.72 (dt, J=16.9, 7.34 Hz, 4H) , 1.70 (quin, J=7.2 Hz, 2H) , 1.44-1.50 (m, 27 H) .
A dried hydrogenation bottle was purged with Argon three times. Pd/C (200 mg, 10%) was added, followed by MeOH (5 mL) and then a solution of Compound I (1.00 g, 1.97 mmol) in MeOH (5 mL) . The reaction mixture was degassed under vacuum and refilled with H2. This process was repeated three times. The mixture was stirred at 25℃ for 12 hrs under H2 (15 psi) atmosphere. LCMS showed Compound I was consumed completely. The reaction mixture was filtered under reduced pressure under N2 atmosphere. Filtrate was concentrated under reduced pressure to give Compound II (655 mg, 79.7%yield) as yellow oil, which was used for the next step without further purification. 1H NMR (400 MHz, CDCl3) : δ ppm 3.44 (s, 4 H) , 3.31 (s, 2 H) , 2.78 (t, J=7.1 Hz, 2H) , 2.68 (t, J=6.9 Hz, 2 H) , 1.88 (br s, 1 H) , 1.69 (quin, J=7.03 Hz, 2 H) , 1.44-1.50 (s, 27 H) .
A mixture of Compound II (655 mg, 1.57 mmol) , 6-hydroxyhexanoic acid (249 mg, 1.89 mmol) , DIEA (1.02 g, 7.86 mmol) , 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDCI, 904 mg, 4.72 mmol) , and1-Hydroxybenzotriazole (HOBt, 637 mg, 4.72 mmol) in DMF (6 mL) was degassed and purged with N2 three times, and then was stirred at 25℃ for 3 hrs under N2 atmosphere. LCMS indicated desired product. The reaction mixture was diluted with H2O (10 mL) and extracted with EtOAc 20 mL (10 mL x 2) . Organics were combined and washed with sat. brine (20 mL) , dried over anhydrous Na2SO4, filtered, and concentrated to give crude product, which was purified by silica gel column chromatography (gradient: petroleum ether: ethyl acetate from 5: 1 to 1: 1) to afford Compound III (650 mg, 77.8%yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) : δ ppm 3.90-3.95 (s, 2 H) , 3.63 (t, J =6.40 Hz, 2 H) , 3.38-3.45 (m, 6 H) , 2.72 (t, J=6.65 Hz, 2 H) , 2.40 (t, J=7.28 Hz, 2 H) , 1.55-1.75 (m, 8 H) , 1.44 (s, 27 H) . Mass calc. for C27H50N2O8: 530.36; found: 531.3 (M+H+) .
A mixture of Compound III (5.5 g, 10.3 mmol) in HCl/dioxane (2M, 55 mL) was stirred at 25℃ for 3 hrs. LCMS showed complete consumption of Compound III. Reaction mixture was filtered, washed with EtOAc (50 mL) , and dried under reduced pressure to give crude product. It was dissolved in CH3CN (50 mL) , volatiles were removed under vacuum. This process was repeated three times to give Compound IV (2.05 g, 54.5%yield) as a white solid. 1H NMR (400 MHz, D2O) : δ ppm 4.21 (s, 1 H) , 4.07 (d, J=4.5 Hz, 4 H) , 3.99 (s, 1 H) , 3.45-3.52 (m, 3 H) , 3.42 (t, J=6.5 Hz, 1 H) , 3.32-3.38 (m, 1 H) , 3.24-3.31 (m, 1 H) , 2.37 (t, J=7.4 Hz, 1 H) , 2.24 (t, J=7.4 Hz, 1 H) , 1.99 (dt, J=15.5, 7.53 Hz, 1H) , 1.85-1.94 (m, 1 H) , 1.85-1.94 (m, 1 H) , 1.39-1.56 (m, 4 H) , 1.19-1.31 (m, 2 H) .
A mixture of Compound IV (500 mg, 1.05 mmol) , Intermediate-A (2.02 g, 3.67 mmol) , DIEA (813 mg, 6.30 mmol) , EDCI (704 mg, 3.67 mmol) and HOBt (496 mg, 3.67 mmol) in DMF (10 mL) was degassed and purged with N2for 3 times, and then the mixture was stirred at 25℃ for 3 hrs under N2 atmosphere. LCMS indicated desired product. The reaction mixture was quenched by addition of H2O (10 mL) , extracted with DCM (10 mL x 2) . The combined organics were extracted with10%citric acid (20 mL) . The aqueous phase was neutralized with saturated NaHCO3 solution and re-extracted with DCM (10 mL x 2) . Organics were dried over sodium sulfate, filtered and concentrated under reduced pressure to give Compound Va (570 mg, 0.281 mmol, 26.8%yield) as a white solid. 1H NMR: (400 MHz, CDCl3) ppm δ 7.84-8.12 (m, 3 H) , 6.85-7.15 (m, 2 H) , 6.66-6.81 (m, 1 H) , 5.36 (br d, J= 2.7Hz, 3 H) , 5.11-5.27 (m, 3 H) , 4.63-4.85 (m, 3 H) , 3.90-4.25 (m, 18 H) , 3.37-3.75 (m, 28 H) , 3.15-3.28 (m, 4 H) , 2.64 (br d, J=6.53Hz, 2 H) , 2.30-2.46 (m, 2 H) , 2.13-2.18 (m, 9 H) , 2.05 (s, 9 H) , 1.94-2.03 (m, 18 H) , 1.68 (br s, 2 H) , 1.45 (br s, 2 H) , 1.12 (br t, J=7.0Hz, 2 H) .
To a solution of Compound Va (260 mg, 0.161 mmol) in anhydrous DCM (5 mL) was added diisopropylammonium tetrazolide (30.3 mg, 0.177 mmol) , followed by dropwise addition of 3-bis (diisopropylamino) phosphanyloxypropanenitrile (194 mg, 0.645 mmol) at ambient temperature under N2. The reaction mixture was stirred at 20~25℃ for 2 hrs. LCMS indicated Compound Va was consumed completely. After cooling to -20℃, the reaction mixture was added to a stirred solution of brine/saturated aq. NaHCO3 (1: 1, 5 mL) at 0℃. After stirring for 1 min, DCM (5 mL) was added. Layers were separated. Organics were washed with brine/saturated aq. NaHCO3 solution (1: 1, 5 mL) , dried over Na2SO4, filtered, and concentrated to~1 mL of volume. The residue solution was added dropwise to20 mL methyl tert-butyl ether (MTBE) with stirring. This resulted in precipitation of white solid. The mixture was centrifuged, and solid was collected. The solid was redissolved in1 mL of DCM and precipitated by addition of MTBE (20 mL) . Solid was again isolated by centrifuge. The solid collected was dissolved in anhydrous CH3CN. Volatiles were removed. This process was repeated two more times to afford GalNAc ligand phosphoramidite compound GLPA1 (153 mg, 84.4 μmol) as a white solid. 1H NMR (400MHz, CDCl3) : ppmδ7.71-8.06 (m, 2 H) , 6.60 -7.06 (m, 3 H) , 5.37 (br d, J=3.0 Hz, 3H) , 5.18-5.32 (m, 3 H) , 4.70-4.86 (m, 3H) , 3.92-4.25 (m, 18 H) , 3.42-3.85 (m, 30 H) , 3.25 (m, 4 H) , 2.59-2.75 (m, 4 H) , 2.27-2.44 (m, 2 H) , 2.15-2.20 (s, 9 H) 2.07 (s, 9 H) , 1.96-2.03 (m, 18 H) , 1.65 (br s, 4 H) , 1.44 (br d, J=7.28 Hz, 2 H) , 1.14-1.24 (m, 12 H) . 31P NMR (CDCl3) : ppm δ 147.15.
GalNAc ligand phosphoramidite compound GLPA2 was synthesized using the same procedure except Intermediate-B was used. 1H NMR (400 MHz, CDCl3) : ppm δ 7.94-8.18 (m, 1 H) , 7.69 (br s, 1 H) , 6.66-7.10 (m, 3 H) , 5.35 (d, J=3.5 Hz, 3 H) , 5.07-5.25 (m, 3 H) , 4.76 -4.86 (m, 3 H) , 4.01-4.31 (m, 10 H) , 3.91-4.01 (m, 8 H) , 3.74-3.86 (m, 4 H) , 3.52-3.71 (m, 30 H) , 3.42-3.50 (m, 6 H) , 3.15-3.25 (m, 4 H) , 2.52-2.70 (m, 4 H) , 2.22-2.45 (m, 2 H) , 2.15-2.22 (s, 9 H) , 2.06 (s, 9 H) , 1.95-2.03 (m, 18 H) , 1.77 (br s, 2 H) , 1.58-1.66 (m, 4 H) , 1.40 (m, 2 H) , 1.08-1.24 (m, 12 H) . 31P NMR (CDCl3) : ppm δ 147.12.
Scheme 3 below was followed to prepare GLPA15.
Scheme 3
Starting from secondary amine Compound I (Compound II in Scheme 2) , Cbz protection was introduced to afford Compound II. The tert-Butyl groups of Compound II were removed by treatment with acid to give triacid Compound III. Amide coupling of Compound III with Intermediate-A afforded Compound IV. The Cbz protecting group of Compound IV was removed by hydrogenation to afford secondary amine Compound V, which was reacted with glutaric anhydride to afford carboxylic Compound VI. Compound VI reacted with piperidin-4-ol under amide coupling reaction condition to affords Compound VII. Phosphoramidite Compound GLPA15 was synthesized by treating Compound VII with 2-Cyanoethyl N, N diisopropylchlorophosphoramidite and a catalytic amount of 1H-tetrazole.
1H NMR (400MHz in DMSO-d6) : δ ppm 8.05 (br d, J=6.50 Hz, 2H) , 7.81 (br d, J=9.01 Hz, 3 H) , 5.22 (d, J=3.25 Hz, 3 H) , 4.98 (dd, J=11.26, 3.25 Hz, 3 H) , 4.55 (br d, J=8.50 Hz, 3 H) , 4.03 (s, 9 H) , 3.64-3.97 (m, 12 H) , 3.55-3.63 (m, 6 H) , 3.50 (br s, 5 H) , 3.40 (br d, J=6.13 Hz, 6 H) , 3.17-3.30 (m, 9 H) , 3.07 (br d, J=14.26 Hz, 4 H) , 2.76 (t, J=5.82 Hz, 2 H) , 2.18-2.47 (m, 6 H) , 2.10 (s, 9 H) , 1.99 (s, 9 H) , 1.89 (s, 9 H) , 1.78 (s, 9 H) , 1.52-1.74 (m, 6 H) , 1.12-1.19 (m, 12 H) . 31P NMR (DMSO-d6) : ppm δ 145.25.
In certain studies, a method used to attach a targeting group comprising GalNAc (also referred to herein as a GalNAc delivery compound) to the 5’-end of a sense strand included use of a GalNAc phosphoramidite (GLPA1) in the last coupling step in the solid phase synthesis, using a synthetic process such as the process used if oligonucleotide chain propagation of adding a nucleotide to the 5’-end of the sense strand is performed.
In some studies a method of attaching a targeting group comprising GalNAc to the 3’-end of a sense strand comprised use of a solid support (CPG) that included a GLO-n. In some studies, a method of attaching a targeting group comprising GalNAc to the 3’-end of a sense strand comprises attaching a GalNAc targeting group to CPG solid support through an ester bond and using the resulting CPG with the attached GalNAc targeting group when synthesizing the sense strand, which results in the GalNAc targeting group attached at the 3’-end of the sense strand.
Example 3.
Phosphoramidite Compound 2
DMTrCl (232 g, 684 mmol, 1.0 eq) in pyridine (400 mL) was added to the solution of isomannide compound A (100g, 684 mmol, 1.0 eq) in pyridine (600 mL) , and the mixture was stirred at 25℃ for 12 hrs. LC-MS showed compound A was consumed completely and one main peak with desired mass was detected. The resulting reaction mixture was diluted with water (500 mL) , extracted with DCM (500 mL*2) , and the combined organic phases were washed with brine (500 mL) , dried over Na2SO4 and concentrated in vacuum to get the residue. The residue was purified by column chromatography (DCM/MeOH=100/1 to 50/1, 0.1%Et3N) to give compound B (150 g, 48.9%yield) a yellow solid.
1H NMR: EC4783-404-P1B1_C (400 MHz, DMSO-d6) δ ppm 7.46 (br d, J=7.63 Hz, 2H) 7.28 -7.37 (m, 6 H) 7.19-7.25 (m, 1 H) 6.90 (br d, J=7.88 Hz, 4 H) 4.70 (d, J=6.50 Hz, 1 H) 3.99-4.09 (m, 6 H) 3.88-3.96 (m, 2 H) 3.83 (br dd, J=7.82, 6.94 Hz, 1H) 3.74 (s, 6 H) 3.41 (br t, J=8.13 Hz, 1 H) 3.05 (t, J=8.44 Hz, 1 H) 2.85 (br t, J=7.50 Hz, 1 H) .
To a solution of compound B (80.0 g, 178 mmol, 1.0 eq) in DCM (800 mL) at 25℃ under N2 atmosphere was added dropwise 2H-tetrazole (0.45 M, 436 mL, 1.1 eq) , then compound C (80.6 g, 267 mmol, 85.0 mL, 1.5 eq) in DCM (200 mL) was added dropwise to the mixture. The reaction mixture was stirred at 25℃ under for 1.0 hr. LC-MS showed compound B was consumed completely and one main peak with desired mass was detected. The resulting reaction mixture was cooled to-20℃ and poured into ice cold sat. NaHCO3 (500 mL) , extracted with DCM (500 mL *3) , the combined organic layers were washed with sat. NaHCO3/brine=1: 1 (3 00 mL/300 mL) , dried over Na2SO4 and concentrated in vacuum (35℃) to get the residue (100 mL) . The residue was purified by column chromatography (Al2O3, DCM/MeOH=100/1 to 50/1, 0.1%Et3N) to give compound2 (77 g, 119 mmol, 66.5%yield) as a white solid.
1H NMR: EC4783-423-P1B1_C (400 MHz, DMSO-d6) δ ppm 7.22 (br d, J=7.50 Hz, 2 H) 7.05-7.14 (m, 6 H) 6.96-7.02 (m, 1 H) 6.67 (br dd, J=8.82, 1.81 Hz, 4 H) 3.95-4.07 (m, 2 H) 3.73-3.83 (m, 1 H) 3.62-3.72 (m, 2 H) 3.48-3.53 (m, 6 H) 3.27-3.37 (m, 3 H) 3.11 (s, 6 H)
2.82 (td, J=8.54, 2.31 Hz, 1H) 2.47-2.63 (m, 3 H) 2.28 (br d, J=1.63 Hz, 3 H) 0.82-1.00 (m, 13 H) .
Phosphoramidite Compound 1
To a solution of compound B (500 mg, 1.11 mmol, 1.0 eq) in DCM (5.0 mL) was added compound D (607 mg, 3.34 mmol, 3.0 eq) and DIEA (432 mg, 3.34 mmol, 582 μL, 3.0 eq) under N2 atmosphere at 0-5℃, the mixture was stirred at 25℃ for 1.0 hrs. LC-MS showed Compound B was consumed completely, several new peaks were shown on LC-MS and ~70.9%of desired compound was detected. The resulting reaction mixture was cooled to-20℃ and poured into cold (0-5℃) sat. NaHCO3 (5.0 mL) solution, extracted with DCM (5.0 mL *2) , the combined organic layers were washed with cold (0-5℃) sat. NaHCO3/brine=1: 1 (5.0 mL/5.0 mL) , dried over Na2SO4and concentrated in vacuum to get the residue (~5 mL) . The residue was purified by column chromatography (alkaline Al2O3, Petroleum ether/Ethyl acetate=10/1 to 5/1, 0.1%Et3N) to give compound 1 (280 mg, 471 μmol, 42.3%yield) was obtained as a white solid.
1H NMR: EC10615-49-P1N (400 MHz, DMSO-d6) δ ppm 7.44 (br d, J=7.63 Hz, 2 H) , 7.31 (br t, J=7.94 Hz, 6 H) , 7.18-7.26 (m, 1 H) , 6.89 (brd, J=8.00 Hz, 4 H) , 4.08-4.13 (m, 1 H) , 3.95-4.03 (m, 1 H) , 3.84-3.93 (m, 1 H) , 3.77-3.83 (m, 1 H) , 3.74 (s, 6 H) , 3.43-3.53 (m, 3 H) , 3.38 (br d, J=6.75 Hz, 1 H) , 2.94-3.04 (m, 1 H) , 2.70 -2.85 (m, 1 H) , 1.09-1.15 (m, 12 H) , 1.07 (br s, 3 H) .
Other phosphoramidites may be prepared according to procedures described herein and/or prior arts such as, but are not limited to, US426,220 and WO02/36743.
Example 4. Preparation of a solid support comprising phosphoramidites monomers of the present invention
reprensents amine methyl polyethylene macroporous resin carrier part
Dichloromethane (19.50 kg) was added to the 50 L glass kettle under the protection of nitrogen and started stirring. The temperature was controlled at 20~30 ℃, and DMTr imann (1.47 kg) , triethylamine (1.50 kg) , 4-dimethylaminopyridine (0.164 kg) and succinic anhydride (1.34 kg) was added to the glass kettle. The system was kept at 20~30 ℃ for 18h, samples were taken and the reaction was ended. Saturated sodium bicarbonate solution (22.50 kg) was added into the reaction system, stirred for 10-20 min, and allowed to separate into layers. The organic phase was separated, and the aqueous phase was extracted twice with dichloromethane, and the organic phase was combined and dried over anhydrous sodium sulfate, filtered, and concentrated in vacuum to get the residue forming a gray to off-white solid of 1.83 kg.
N, N-dimethylformamide (23.50 kg) was added into a 100L glass kettle and stirred. The temperature was controlled at 20~30 ℃. Under the protection of nitrogen, the products of the previous step, O-benzotriazole tetramethylurea hexafluorophosphate (0.33 kg) and N, N-diisopropylethylamine (0.13 kg) were added into the aforesaid 100L glass kettle through the solid feeding funnel and stirred for 10~30 minutes and were discharged into a 50 L zinc barrel for use. Macroporous amine methyl resin (3.25 kg) (purchased from Tianjin Nankai Hecheng Science and Technology Co., Ltd., batch number HA2X1209, load capacity 0.48 mmol/g) were added into the aforesaid 100 L solid phase synthesis reactor through the solid feeding funnel, the temperature was controlled at 20~30 ℃, N, N-dimethylformamide (21.00 kg+21.00 kg) and the reaction solution in the zinc barrel of the previous step were add into the solid phase synthesis reactor. The system was subject to thermal insulation reaction, and the solid load was tracked to≥250umol/g, and the load detection method was UV. The system was filtered under the pressure of nitrogen, the filter cake was washed with N, N-dimethylformamide for three times (26.00kg+26.10kg+26.00kg) , and the filter cake was left in the kettle. CAP. A (4.40kg+4.42kg+4.30kg) and CAP. B (4.40kg+4.40kg+4.47kg) were added into the 80L glass kettle, and stirred for 3~8min before use. This operation was repeated for three times to cap, and acetonitrile (18.00 kg+18.00 kg+18.00 kg+17.50 kg+17.50 kg) was added into the solid phase synthesis kettle. Filter-pressed after nitrogen bubbling for 10~30 min. This operation was repeated for four times, the filter cake was purged in the solid phase synthesis kettle with nitrogen for 2-4 h, and then was transferred to a 50 L filter press tank. The temperature was
controlled at 15~30 ℃, continued drying, and obtained yellow to white solid product after drying, weight: 3.516 kg.
Example 5. Synthesis of HSD17B13 RNAi Agents.
HSD17B13 RNAi agent duplexes shown in Table 2-3, above, were synthesized in accordance with the following general procedures:
Sense and antisense strand sequences of siRNA were synthesized on oligonucleotide synthesizers using a well-established solid phase synthesis method based on phosphoramidite chemistry. Oligonucleotide chain propagation is achieved through 4-step cycles: a deprotection, a condensation, a capping and an oxidation or a sulfurization step for addition of each nucleotide. Syntheses were performed on a solid support made of controlled pore glass (CPG, ) . Monomer phosphoramidites may be purchased from commercial sources or may be the phosporamidite compounds in example 3 and in WO2016/028649. The phosporamidite compounds herein may be attached to the 3'-end as a monomeric phosphoramidite, and further be attached to the CPG solid support. In the case of attachment at the 5'-end, the phosphoramidite compounds may be used for the final coupling reaction, and can be further conjugated to target ligands if necessary.
Phosphoramidites with GalNAc ligand cluster (GLPA1, GLPA2 and GLPA15 as non-limiting examples) were synthesized according to the procedures of Examples 1-2 herein. For siRNAs used for in vitro screening (Table 2) , syntheses were carried out at 2μmol scale, and for siRNAs used for in vivo testing (Table 3) , syntheses were carried out at scale of 5 μmol or larger. In the case where the GalNAc ligand (GLO-0as a non-limiting example) is attached at 3’-end of sense strand, GalNAc ligand attached CPG solid support was used. In the case where the GalNAc ligand (GLS-5 or GLS-15 as non-limiting example) is attached at 5’-end of sense strand, a GalNAc phosphoramidite (GLPA1, GLPA2 or GLPA15 as a non-limiting example) was used for the last coupling reaction.
The sense strands and the antisense strands were synthesis by solid phase synthesis with4-step cycles, which detailed as below: Trichloroacetic acid (TCA) 3%in dichloromethane or Dichloroacetic acid (DCA) 10%in toluene was used for deprotection of 4, 4′-dimethoxytrityl protecting group (DMT) . 5-Ethylthio-1H-tetrazole was used as an activator in coupling step. Capping with CapA (Acetic Anhydride in Acetonitrile) /CapB (Pyridine/NMI/Acetonitrile) (v/v, 1: 1) . I2 in Py/H2O and phenylacetyl disulfide (PADS) in pyridine/MeCN or Xanthane Hydride (DDTT) in pyridine was used for oxidation and sulfurization reactions, respectively.
After the final solid phase synthesis step, solid support bound oligomer was cleaved and protecting groups were removed by treating with a 1: 1 volume solution of 40 wt. %methylamine in water and 28%ammonium hydroxide solution. Solid support bound oligomer containing monomer phosphate mimic was treated with MeCN: TMSI: Pyridine=50: 2: 2 (v/v/v) before C&D (cleave and protecting) if necessary. For the synthesis of siRNAs used for in vitro screening, crude mixture was concentrated. The remaining solid was dissolved in 1.0 M NaOAc, and ice cold EtOH was added to precipitate out the single strand product as the sodium salt, which was used for annealing without further purification. For the synthesis of multi-targeted molecules used for in vivo testing, crude single strand product was further purified by ion pairing reversed phase HPLC (IP-RP-HPLC) . Purified single strand oligonucleotide product from IP-RP-HPLC was converted to sodium salt by dissolving in1.0 M NaOAc and precipitation by addition of ice cold EtOH. Annealing of equimolar complementary sense stand and antisense strand oligonucleotide in water was performed to form the double strand siRNA product, which was lyophilized to afford a fluffy white solid.
Example 6. In Vitro Screening of HSD17B13 siRNA Duplexes
Huh7 cells were trypsinized and adjusted to appropriate density, and seeded into 96-well plates. Cells were transfected with test siRNAs or a control siRNA using Lipofectamine RNAiMax (Invitrogen-13778-150) at the same time of seeding following the protocol according to manufacturer’s recommendation. The siRNAs were tested at different concentrations (5nM, 1nM, 0.05nM and0.005nM) in triplicate.
Day 0, psiCHECK (TM) -2 Vector transfection (one plate)
(1) Transfer 2.5μg psiCHECK (TM) -2 Vector plasmid into an RNASE free Eppendorf tube (solution mix#1)
(2) Add trypsin to disassociate Huh7 cells in one flask, and count cells using Vi-Cell counting machine, adjust the cell density to 1*10^5/ml
(3) Transfer 7.5μL Fugene-HD into solution mix#1 tube, mix.
(4) Add solution in Step 3 into cell suspension, mix, and dispense suspension into the 96 well plate (100 μl/well)
Day 1, siRNAs transfection
(1) DiluteRNAiMAX Reagent withMedium.
(2) Dilute the siRNA with RNA-free water to make 12×stock.
(3) Mix equal volume of diluted RNAiMax and siRNA. Incubate the mixture at RT for 15 min to allow complex formation.
(4) Add 45μl/well compoundRNAiMAX (Opti-MEM) mix into 225μl /well DMEM fresh medium, and discard the supernatants in assay plate, add 120μl/well compound mix into 96 well plates.
(5) No compound control well was defined as cells transfected with psiCHECK (TM) -2 Vector and without siRNA treatment; blank control was cell only wells.
Day 2, Luciferase Assay
(1) Add Reagent to assay plate, wait 10 minutes to allow for cell lysis to occur.
(2) Transfer 100 μl cell lysates into a plate, then measure the firefly luminescence.
(3) Add 50μl ofStop&Reagent to the assay plates and mix, wait 10 minutes, then measure Renilla luminescence.
(4) Calculate the relative expression
Data analysis
Ratio of sample well= (sample Renilla luminescence-background blank) / (sample Fireflyluminescence-background blank)
Ratio of no compound control well= (control Renilla luminescence-background blank) /(control sample Fireflyluminescence-background blank)
%inhibition=100- (Ratio of sample well/the average Ratio of no compound control) ×100%
Table 4 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression. The duplex sequences used correspond to those shown in Table 2.
Table 5 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression. The duplex sequences used correspond to those shown in Table 2.
Table 6 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression. The duplex sequences used correspond to those shown in Table 2.
Table 7 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression. The duplex sequences used correspond to those shown in Table 2.
Table 8 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression. The duplex sequences used correspond to those shown in Table 2.
Table 9 provides experimental results of in vitro studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression. The duplex sequences used correspond to those shown in Table 2.
Example 7 In Vivo testing of HSD17B13 siRNA Duplexes
At day 1, female C57BL/6J mice (4 in each group) were infected by intravenous administration of a solution of adeno-associated virus8 (AAV8) vector encoding human HSD17B13 and luciferase gene. At day 8, mice were subcutaneously administered a single 4 mg/kg of HSD17B13 siRNA agents or PBS. Blood samples were collected at day 8, before dosing of siRNA, at day 15 and at the terminal day 22. Serum samples were isolated and luciferase activity of serum samples was measured per manufacturer’s recommended protocol. Since expression of human HSD17B13 level correlates with expression level of luciferase, percent of remaining HSD17B13 was calculated by comparing luciferase activity in samples from siRNA treated groups before and after treatment, normalized by the change of luciferase activity over the same period of time in samples from the control treated group.
Table 10 provides experimental results of in vivo studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression. The duplex sequences used correspond to those shown in Table 3.
Table 11 provides experimental results of in vivo studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression. The duplex sequences used correspond to those shown in Table 3.
Table 12 provides experimental results of in vivo studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression. The duplex sequences used correspond to those shown in Table 3.
Table 13 provides experimental results of in vivo studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression. The duplex sequences used correspond to those shown in Table 3.
Table 14 provides experimental results of in vivo studies using various HSD17B13 RNAi agents to inhibit HSD17B13 expression. The duplex sequences used correspond to those shown in Table 3.
Equivalents
Although several embodiments of the present invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of the present invention is/are used. Those skilled in the art will recognize, or be
able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto; the invention may be practiced otherwise than as specifically described and claimed. The present invention is directed to each individual feature, system, article, material, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, and/or methods, if such features, systems, articles, materials, and/or methods are not mutually inconsistent, is included within the scope of the present invention.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an, ” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one. ”
The term "or" as used herein means "and/or, " and is used interchangeably with the latter, unless clearly excluded from context. The phrase “and/or, ” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. If there are more than two elements and are separated by commas, the commas before “and/or” have the same meaning as “and/or” , correspondingly representing “and” or “or” . Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified, unless clearly indicated to the contrary.
All references, patents and patent applications and publications that are cited or referred to in this application are incorporated herein in their entirety herein by reference.
Claims (81)
- A double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) , wherein the dsRNA agent including a sense strand and an antisense strand, wherein the sense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: l and the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from the nucleotide sequence of SEQ ID NO: 2.
- The dsRNA agent of claim 1, wherein sense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from any one of nucleotides 45-85, 49-85, 576-606, 651-681, 659-689, 666-696, 760-790, 769-799, 772-802, 817-847, 841-871, 876-906, 959-989, 1000-1030, or 1508-1538 of the nucleotide sequence of SEQ ID NO: l.
- The dsRNA agent of claim 1, wherein the dsRNA agent comprises a sense strand and an antisense strand forming a double stranded region at least 15, 16, 17 nucleotides in length, wherein said sense strand comprises at least 15, 16, 17, 18, 19 or 20 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from any one of nucleotides 45-65, 46-66, 47-67, 48-68, 49-69, 50-70, 51-71, 52-72, 53-73, 54-74, 55-75, 56-76, 57-77, 58-78, 59-79, 60-80, 61-81, 62-82, 63-83, 64-84 or 65-85 of the nucleotide sequence of SEQ ID NO: l and said antisense strand comprises at least 15 contiguous nucleotides differing by 0, 1, 2, or 3 nucleotides from the corresponding nucleotide sequence of SEQ ID NO: 2.
- The dsRNA agent of claim 1, wherein the antisense strand of dsRNA comprises a nucleotide sequence SI: 5’-z1AGAAGCAGAAGGAUUUz2-3’, wherein z1 and z2 each independently represents a nucleotide sequence which is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length, wherein the nucleotide sequence SI is substantially or fully complementary to part of a HSD17B13 mRNA transcript.
- The dsRNA agent of claim 4, wherein the dsRNA further comprises a sense strand comprising a nucleotide sequence SII: 5’-z3AAAUCCUUCUGCUUCUz4-3’, wherein z3 and z4 each independently represents a nucleotide sequence which is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length, wherein the nucleotide sequence SI is substantially or fully complementary to the nucleotide sequence SII.
- The dsRNA agent of claim 1, wherein the antisense strand of dsRNA comprises a nucleotide sequence SIII: 5’-z5GUGAUCAGAAGCAGAAz6-3’, wherein z5 and z6 each independently represents a nucleotide sequence which is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length, wherein the nucleotide sequence SIII is substantially or fully complementary to part of a HSD17B13 mRNA transcript.
- The dsRNA agent of claim 6, wherein the dsRNA further comprises a sense strand comprising a nucleotide sequence SIV: 5’-z7UUCUGCUUCUGAUCACz8-3’, wherein z7 and z8 each independently represents a nucleotide sequence which is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 nucleotides in length, wherein the nucleotide sequence SIII is substantially or fully complementary to the nucleotide sequence SIV.
- A double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) , wherein the dsRNA agent comprises a sense strand and an antisense strand, nucleotide positions 2 to 18 in the antisense strand comprising a region of complementarity to a HSD17B13 RNA transcript, wherein the region of complementarity comprises at least 15 contiguous nucleotides that differ by 0, 1, 2, or 3 nucleotides from one of the antisense sequences listed in one of Tables 1-3, and optionally comprising a targeting ligand.
- The dsRNA agent of claim 8, wherein the region of complementarity to a HSD17B13 RNA transcript comprises at least 15, 16, 17, 18, or 19 contiguous nucleotides that differ by no more than 3 nucleotides from one of the antisense sequences listed in one of Tables 1-3.
- The dsRNA agent of any one of claims 1-9, wherein the antisense strand of dsRNA is at least substantially complementary to or fully complementary to any one of a target region of SEQ ID NO: 1, and preferably the dsRNA agent comprises an antisense strand sequence set forth in any one of Tables 1-3.
- The dsRNA agent of any one of claims 1-10, wherein the sense strand sequence is at least substantially complementary to or fully complementary to the antisense strand sequence in the dsRNA agent, preferably, wherein the dsRNA agent comprises a sense strand sequence set forth in any one of Tables 1-3.
- The dsRNA agent of claim 1, wherein the dsRNA agent comprises the sequences set forth as a duplex sequence in any of Tables 1-3.
- The dsRNA of any one of claims 1-12, wherein the dsRNA agent comprises at least one modified nucleotide.
- The dsRNA agent of any one of claims 1-13, wherein all or substantially all of the nucleotides of the sense strand and/or the antisense strand are modified nucleotides.
- A double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) , wherein the dsRNA agent including a sense strand and an antisense strand, wherein the sense strand complementary to the antisense strand, wherein the antisense strand comprises a region complementary to part of an mRNA encoding HSD17B13, wherein each strand is about 14 to about 30 nucleotides in length, wherein the sense strand sequence may be represented by formula (I) :
5′- (N′L) n′ N′LN′L N′L N′N1 N′N2 N′N3 N′L N′F N′L N′N4N′N5 N′N6 N′L N′L N′L (N′L) m′-3′ (I)wherein:each N′F represents a 2'-fluoro-modified nucleotide;each N′N1, N′N2, N′N3, N′N4, N′N5, and N′N6 independently represents a modified or unmodified nucleotide;N′N1N′N2N′N3 and N′N4N′N5N′N6 each independently represents one motif comprising at least two differently modified nucleotides;each N′L independently represents a modified or unmodified nucleotide but not a 2'-fluoro-modified nucleotide;and m′ and n′ are each independently an integer of 0 to 7. - A double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) , wherein the dsRNA agent including a sense strand and an antisense strand, wherein the sense strand complementary to the antisense strand, wherein the antisense strand comprises a region complementary to part of an mRNA encoding HSD17B13, wherein each strand is about 14 to about 30 nucleotides in length, wherein the antisense strand sequence is represented by formula (II) :
3′- (NL) n NM1 NL NM2 NL NF NL NM3 NL NM4 NL NM5 NM6 NL NM7 NM8 NL NF NL-5′ (II)wherein:each NF represents a 2'-fluoro-modified nucleotide;each NM1, NM2, NM3, NM4, NM5, NM6, NM7 and NM8 independently represents a modified or unmodified nucleotide, preferably, NM2, NM3 and NM6 each independently represents a 2'-fluoro-modified nucleotide;each NL independently represents a modified or unmodified nucleotide but not a 2'-fluoro-modified nucleotide;and n is an integer of 0 to 7. - The dsRNA agent of claim 16, wherein the antisense strand sequence is further represented by formula (II’) :
3′- (NL) n NM1 NL NM2 NL NF NL NM3 NL NM4 NL NM5 NM6 NL NM7 NM8 NL NF NZ-5′ (II’)wherein:NZ is a vinyl phosphonate modified nucleotide, preferably, NZ is VPu*, which has the structure - A double-stranded ribonucleic acid (dsRNA) agent for inhibiting expression of 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13) , wherein the dsRNA agent including a sense strand and an antisense strand, wherein the sense strand and the antisense strand form a dsRNA duplex, wherein said sense strand complementary to the antisense strand, wherein said antisense strand comprises a region of complementarity to an mRNA encoding HSD17B13, wherein the region of complementarity comprises at least 15 contiguous nucleotides, wherein the dsRNA duplex is represented by formula (III) :sense: 5′- (N′L) n′ N′LN′L N′L N′N1 N′N2 N′N3 N′L N′F N′L N′N4N′N5 N′N6 N′L N′L N′L (N′L) m′-3′antisense: 3′- (NL) n NM1 NL NM2 NL NF NL NM3 NL NM4 NL NM5 NM6 NL NM7 NM8 NL NF NL-5′(III)wherein:each strand is about 17 to about 30 nucleotides in length;each NF and N′F independently represents a 2'-fluoro-modified nucleotide;NM1, NM2, NM3, NM4, NM5, NM6, NM7, NM8, N′N1, N′N2, N′N3, N′N4, N′N5, and N′N6 each independently represents a modified or unmodified nucleotide;each NL and N′L independently represents a modified or unmodified nucleotide but not a 2'-fluoro-modified nucleotide;and m′, n′ and n are each independently an integer of 0 to 7.
- The dsRNA agent of claim 18, wherein the dsRNA duplex is further represented by formula (III’) :sense: 5′- (N′L) n′ N′LN′L N′L N′N1 N′N2 N′N3 N′L N′F N′L N′N4N′N5 N′N6 N′L N′L N′L (N′L) m′-3′antisense: 3′- (NL) n NM1 NL NM2 NL NF NL NM3 NL NM4 NL NM5 NM6 NL NM7 NM8 NL NF NZ-5′(III’)wherein:NZ is a vinyl phosphonate modified nucleotide, preferably, NZ is VPu*, which has the structure
- The dsRNA agent of any one of claims 1-19, wherein the one or more modified nucleotides are independently selected from the group consisting of: a 2’-O-methyl nucleotide, a 2’-Fluoro nucleotide, a 2’-deoxy nucleotide, a 2’3’-seco nucleotide mimic, a locked nucleotide, an unlocked nucleic acid nucleotide (UNA) , a glycol nucleic acid nucleotide (GNA) , a 2’-F-Arabino nucleotide, a 2’-methoyxyethyl nucleotide, an abasic nucleotide, an ribitol, inverted nucleotide, an inverted abasic nucleotide, an isomannide nucleotide, an inverted 2’-OMe nucleotide, an inverted 2’-deoxy nucleotide, a 2’-amino-modified nucleotide, a 2’-alkyl-modified nucleotide, a mopholino nucleotide, a 3’-OMe nucleotide, a nucleotide comprising a 5’-phosphorothioate group, a 5'-phosphonate modified nucleotide, a terminal nucleotide linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group, a 2’-amino-modified nucleotide, a phosphoramidate, or a non-natural base comprising nucleotide.
- The dsRNA agent of any one of claims 1-20, comprises an E-vinylphosphonate nucleotide at the 5′ end of the guide strand.
- The dsRNA agent of any one of claims 1-21, wherein the dsRNA agent comprises at least one phosphorothioate internucleoside linkage.
- The dsRNA agent of any one of claims 1-22, wherein the sense strand comprises at least one phosphorothioate internucleoside linkage, preferably, the at least one phosphorothioate (PS) linkage is introduced at the 5’-end, 3’-end or both ends of the sense strand.
- The dsRNA agent of any one of claims 1-22, wherein the antisense strand comprises at least one phosphorothioate internucleoside linkage, preferably, the at least one phosphorothioate (PS) linkage is introduced at the 5’-end, 3’-end or both ends of the antisense strand.
- The dsRNA agent of any one of claims 1-22, wherein the sense strand comprises 1, 2, 3, 4, 5, or 6 phosphorothioate internucleoside linkages, preferably, the 1, 2, 3, 4, 5, or 6 phosphorothioate (PS) linkages are introduced at the 5’-end, 3’-end or both ends of the sense strand.
- The dsRNA agent of any one of claims 1-22, wherein the antisense strand comprises 1, 2, 3, 4, 5, or 6 phosphorothioate internucleoside linkages, preferably, the 1, 2, 3, 4, 5, or 6 phosphorothioate (PS) linkages are introduced at the 5’-end, 3’-end or both ends of the antisense strand.
- The dsRNA agent of any one of claims 1-26, wherein the modified sense strand is modified in a pattern shown in Formula (I) of claim 15.
- The dsRNA agent of any one of claims 1-26, wherein the modified antisense strand is modified in a pattern shown in Formula (II) of claim 16 or in Formula (II’) of claim 17.
- The dsRNA agent of any one of claims 1-26, wherein the modified sense strand is a modified sense strand sequence set forth in one of Tables 2-3.
- The dsRNA agent of any one of claims 1-26, wherein the modified antisense strand is a modified antisense strand sequence set forth in one of Tables 2-3.
- The dsRNA agent of any one of claims 1-30, wherein the sense strand is complementary or substantially complementary to the antisense strand, and the region of complementarity is between 16 and 23 nucleotides in length.
- The dsRNA agent of any one of claims 1-30, wherein the region of complementarity is 19-21 nucleotides in length.
- The dsRNA agent of any one of claims 1-32, wherein each strand is no more than 30 nucleotides in length.
- The dsRNA agent of any one of claims 1-32, wherein each strand is no more than 25 nucleotides in length.
- The dsRNA agent of any one of claims 1-32, wherein each strand is no more than 23 nucleotides in length.
- The dsRNA agent of any one of claims 1-35, wherein the dsRNA agent comprises at least one modified nucleotide and further comprises one or more targeting groups or linking groups.
- The dsRNA agent of claim 36, wherein the one or more targeting groups or linking groups are conjugated to the sense strand.
- The dsRNA agent of claim 36 or 37, wherein the targeting group or linking group comprises N-acetyl-galactosamine (GalNAc) .
- The dsRNA agent of claim 37 or 38, wherein the targeting group has a structure:
- The dsRNA agent of any one of claims 1-39, wherein the dsRNA agent comprises a targeting group that is conjugated to the 5’-terminal end of the sense strand.
- The dsRNA agent of any one of claims 1-39, wherein the dsRNA agent comprises a targeting group that is conjugated to the 3'-terminal end of the sense strand.
- The dsRNA agent of any one of claims 1-39, wherein the antisense strand comprises one inverted abasic residue at 3’-terminal end.
- The dsRNA agent of any one of claims 1-39, wherein the sense strand comprises one or two inverted abasic residues or imann residues at 3’ or/and 5’ terminal end.
- The dsRNA agent of any one of claims 1-43, wherein the dsRNA agent has two blunt ends.
- The dsRNA agent of any one of claims 1-43, wherein at least one strand comprises a 3’ overhang of at least 1 nucleotide.
- The dsRNA agent of any one of claims 1-43, wherein at least one strand comprises a 3’ overhang of at least 2 nucleotides.
- A composition comprising a dsRNA agent of any one of claims 1-46.
- The composition of claim 47, further comprising a pharmaceutically acceptable carrier.
- The composition of claim 48, further comprising one or more additional therapeutic agents.
- The composition of claim 49, wherein the composition is packaged in a kit, container, pack, dispenser, pre-filled syringe, or vial.
- The composition of any one of claims 47-50, wherein the composition is formulated for subcutaneous administration or is formulated for intravenous (IV) administration.
- A cell comprising a dsRNA agent of any one of claims 1-46, optionally, the cell is a mammalian cell, optionally a human cell.
- A method of inhibiting the expression of a HSD17B13 gene in a cell, the method comprising:(i) preparing a cell comprising an effective amount of a double-stranded ribonucleic acid (dsRNA) agent of any one of claims 1-46 or a composition of any one of claims 37-51.
- The method of claim 53, further comprising:(ii) maintaining the cell prepared in claim 53 (i) for a time sufficient to obtain degradation of the mRNA transcript of a HSD17B13 gene, thereby inhibiting expression of the HSD17B13 gene in the cell.
- The method of claim 53, wherein the cell is in a subject and the dsRNA agent is administered to the subject subcutaneously.
- The method of claim 53, wherein the cell is in a subject and the dsRNA agent is administered to the subject by IV administration.
- The method of claim 55 or 56, further comprising assessing inhibition of the HSD17B13 gene, following the administration of the dsRNA agent to the subject, wherein a means for the assessing comprises:(i) determining one or more physiological characteristics of a HSD17B13-associated disease or condition in the subject and(ii) comparing the determined physiological characteristic (s) to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition and/or to a control physiological characteristic of the HSD17B13-associated disease or condition, wherein the comparison indicates one or more of a presence or absence of inhibition of expression of the HSD17B13 gene in the subject.
- The method of claim 57, wherein the determined physiological characteristic is one or more of: the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level, the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver.
- The method of claim 58, wherein a reduction in one or more of the subject’s HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, and/or a decrease in one or more of a lipid, a triglyceride, cholesterol (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , or free fatty acids in a plasma, or a tissue sample, and/or a reduction in accumulation of fat and/or expansion of lipid droplets in the liver indicates reduction of HSD17B13 gene expression in the subject.
- A method of inhibiting expression of a HSD17B13 gene in a subject, the method comprising administering to the subject an effective amount of a double-stranded ribonucleic acid (dsRNA) agent of any one of claims 1-46 or a composition of any one of claims 47-51.
- The method of claim 60, wherein the dsRNA agent is administered to the subject subcutaneously.
- The method of claim 60, wherein the dsRNA agent is administered to the subject by IV administration.
- The method of any one of claims 60-62, further comprising assessing inhibition of the HSD17B13 gene, following the administration of the dsRNA agent, wherein a means for the assessing comprises:(i) determining one or more physiological characteristics of a HSD17B13-associated disease or condition in the subject and(ii) comparing the determined physiological characteristic (s) to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition and/or to a control physiological characteristic of the HSD17B13-associated disease or condition, wherein the comparison indicates one or more of a presence or absence of inhibition of expression of the HSD17B13 gene in the subject.
- The method of claim 63, wherein the determined physiological characteristic is one or more of: the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level, the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver.
- The method of claim 54, wherein a reduction in one or more of the subject’s HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, and/or a decrease in one or more of a lipid, a triglyceride, cholesterol (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , or free fatty acids in a plasma, or a tissue sample, and/or a reduction in accumulation of fat and/or expansion of lipid droplets in the liver indicates reduction of HSD17B13 gene expression in the subject.
- A method of treating a disease or condition associated with the presence of HSD17B13 protein, the method comprising administering to a subject an effective amount of a double-stranded ribonucleic acid (dsRNA) agent of any one of claims 1-46, or a composition of any one of claims 47-51, to inhibit HSD17B13 gene expression.
- The method of claim 66, wherein the disease or condition is one or more of: hepatitis, liver fibrosis, nonalcoholic steatohepatitis (NASH) , nonalcoholic fatty liver disease (NAFLD) , cirrhosis, Alcoholic Steatohepatitis (ASH) , alcoholic fatty liver disease (ALD) , HCV-related cirrhosis, drug-induced liver injury, hepatocellular necrosis and HSD17B13 related obesity.
- The method of claim 66, further comprising administering an additional therapeutic regimen to the subject.
- The method of claim 68, wherein the additional therapeutic regimen comprises: administering to the subject one or more HSD17B13 antisense polynucleotides of the invention, administering to the subject a non-HSD17B13 dsRNA therapeutic agent, and a behavioral modification in the subject.
- The method of claim 69, wherein the non-HSD17B13 dsRNA therapeutic agent is one of more of: pyridoxine, an ACE inhibitor (angiotensin converting enzyme inhibitors) , e.g., benazepril (Lotensin) ; an angiotensin II receptor antagonist (ARB) (e.g., losartan potassium, such as Merck&Co. 's ) , e.g., Candesartan (Atacand) ; an HMG-CoA reductase inhibitor (e.g., a statin) ; calcium binding agents, e.g., Sodium cellulose phosphate (Calcibind) ; diuretics, e.g., thiazide diuretics, such as hydrochlorothiazide (Microzide) ; an insulin sensitizer, such as the PPARy agonist pioglitazone, a glp-1r agonist, such as liraglutatide, vitamin E, an SGLT2 inhibitor, a DPPIV inhibitor, and kidney/liver transplant; or a combination of any of the foregoing.
- The method of any one of claims 66-70, wherein the dsRNA agent is administered to the subject subcutaneously.
- The method of any one of claims 66-70, wherein the dsRNA agent is administered to the subject by IV administration.
- The method of any one of claims 66-70, further comprising determining an efficacy of the administered double-stranded ribonucleic acid (dsRNA) agent in the subject.
- The method of claim 73, wherein a means of determining an efficacy of the treatment in the subject comprises:(i) determining one or more physiological characteristics of the HSD17B13-associated disease or condition in the subject and(ii) comparing the determined physiological characteristic (s) to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition wherein the comparison indicates one or more of a presence, absence, and level of efficacy of the administration of the double-stranded ribonucleic acid (dsRNA) agent to the subject.
- The method of claim 74, wherein the determined physiological characteristic is: the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level, the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver.
- The method of claim 75, wherein a reduction in one or more of the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, and/or a decrease in one or more of a lipid, a triglyceride, cholesterol (including LDL-C, HDL-C, VLDL-C, IDL-C and total cholesterol) , or free fatty acids in a plasma, or a tissue sample, and/or a reduction in accumulation of fat and/or expansion of lipid droplets in the liver indicates the presence of efficacy of the administration of the double-stranded ribonucleic acid (dsRNA) agent to the subject.
- A method of decreasing a level of HSD17B13 protein in a subject compared to a baseline pre-treatment level of HSD17B13 protein in the subject, the method comprising administering to the subject an effective amount of a double-stranded ribonucleic acid (dsRNA) agent of any one of claims 1-46, or a composition of any one of claims 47-51, to decrease the level of HSD17B13 gene expression.
- The method of claim 77, wherein the dsRNA agent is administered to the subject subcutaneously or is administered to the subject by IV administration.
- A method of altering a physiological characteristic of a HSD17B13-associated disease or condition in a subject compared to a baseline pre-treatment physiological characteristic of the HSD17B13-associated disease or condition in the subject, the method comprising administering to the subject an effective amount of a double-stranded ribonucleic acid (dsRNA) agent of any one of claims 1-46, or a composition of any one of claims 47-51, to alter the physiological characteristic of the HSD17B13-associated disease or condition in the subject.
- The method of claim 79, wherein the dsRNA agent is administered to the subject subcutaneously or is administered to the subject by IV administration.
- The method of claim 79, wherein the physiological characteristic is one or more of: the HSD17B13 mRNA level, the HSD17B13 protein level or the enzymatic activity of HSD17B13 in the subject, or the lipid level, the triglyceride, the cholesterol level, the free fatty acids level in the plasma or the tissue sample, or the fat level and/or the lipid droplets level in the liver.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2022/140956 | 2022-12-22 | ||
CN2022140956 | 2022-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024131916A1 true WO2024131916A1 (en) | 2024-06-27 |
Family
ID=91587701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/140803 WO2024131916A1 (en) | 2022-12-22 | 2023-12-22 | Compositions and methods for inhibiting expression of 17beta-hydroxysteroid dehydrogenase type 13 (hsd17b13) |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202440924A (en) |
WO (1) | WO2024131916A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018136758A1 (en) * | 2017-01-23 | 2018-07-26 | Regeneron Pharmaceuticals, Inc. | Hsd17b13 variants and uses thereof |
CN112020556A (en) * | 2018-03-21 | 2020-12-01 | 瑞泽恩制药公司 | 17 beta hydroxysteroid dehydrogenase type 13 (HSD17B13) iRNA compositions and methods of use thereof |
CN113164509A (en) * | 2018-09-19 | 2021-07-23 | 箭头药业股份有限公司 | RNAi agents for inhibiting expression of 17 beta-HSD type 13 (HSD17B13), compositions thereof and methods of use |
WO2021247885A2 (en) * | 2020-06-01 | 2021-12-09 | Amgen Inc. | Rnai constructs for inhibiting hsd17b13 expression and methods of use thereof |
-
2023
- 2023-12-22 WO PCT/CN2023/140803 patent/WO2024131916A1/en unknown
- 2023-12-22 TW TW112150189A patent/TW202440924A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018136758A1 (en) * | 2017-01-23 | 2018-07-26 | Regeneron Pharmaceuticals, Inc. | Hsd17b13 variants and uses thereof |
CN112020556A (en) * | 2018-03-21 | 2020-12-01 | 瑞泽恩制药公司 | 17 beta hydroxysteroid dehydrogenase type 13 (HSD17B13) iRNA compositions and methods of use thereof |
CN113164509A (en) * | 2018-09-19 | 2021-07-23 | 箭头药业股份有限公司 | RNAi agents for inhibiting expression of 17 beta-HSD type 13 (HSD17B13), compositions thereof and methods of use |
WO2021247885A2 (en) * | 2020-06-01 | 2021-12-09 | Amgen Inc. | Rnai constructs for inhibiting hsd17b13 expression and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202440924A (en) | 2024-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240084304A1 (en) | Composition and method for inhibiting angiotensinogen (agt) protein expression | |
WO2023045994A1 (en) | Compositions and methods for inhibiting expression of angiopoietin-like 3 (angptl3) protein | |
EP4442827A1 (en) | Composition and method for inhibiting expression of hepatitis b virus (hbv) protein | |
EP4471144A1 (en) | Composition and method for inhibiting expression of protein lpa(apo(a)) | |
TW202413645A (en) | Specifically modified RNAi reagent and composition | |
WO2024131916A1 (en) | Compositions and methods for inhibiting expression of 17beta-hydroxysteroid dehydrogenase type 13 (hsd17b13) | |
US20230092615A1 (en) | Compositions and methods for inhibiting expressing of methylation-controlled j-protein (mcj) | |
WO2024120412A1 (en) | Compositions and methods for inhibiting expression of patatin-like phospholipase domain-containing 3 (pnpla3) | |
WO2024188164A1 (en) | Compositions and methods for inhibiting expression of cell death inducing dffa like effector b (cideb) | |
WO2023143483A1 (en) | Compositions and methods for inhibiting expression of prekallikrein (pkk) protein | |
WO2025021007A1 (en) | Compositions and methods for inhibiting expression of complement component 3 (c3) | |
WO2025077806A1 (en) | Compositions and methods for inhibiting expression of microtubule associated protein tau (mapt) | |
WO2025016444A1 (en) | Compositions and methods for inhibiting expression of pd-l1 | |
WO2025002299A1 (en) | Compositions and methods for inhibiting expression of complement factor b (cfb) | |
WO2024240058A1 (en) | Compositions and methods for inhibiting expression of coagulation factor xi (fxi) | |
OA21711A (en) | Composition and method for inhibiting expression of hepatitis B virus (HBV) protein. | |
WO2025077711A1 (en) | Compositions and methods for inhibiting expression of amyloid precursor protein (app) | |
TW202504619A (en) | Compositions and methods for inhibiting expression of pd-l1 | |
CN119487190A (en) | Compositions and methods for inhibiting Xanthine Dehydrogenase (XDH) | |
TW202505027A (en) | Compositions and methods for inhibiting expression of complement component 3 (c3) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23906071 Country of ref document: EP Kind code of ref document: A1 |