[go: up one dir, main page]

WO2024128115A1 - オープンラック式気化器部材の製造方法、及び、オープンラック式気化器部材 - Google Patents

オープンラック式気化器部材の製造方法、及び、オープンラック式気化器部材 Download PDF

Info

Publication number
WO2024128115A1
WO2024128115A1 PCT/JP2023/043786 JP2023043786W WO2024128115A1 WO 2024128115 A1 WO2024128115 A1 WO 2024128115A1 JP 2023043786 W JP2023043786 W JP 2023043786W WO 2024128115 A1 WO2024128115 A1 WO 2024128115A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
thermal spray
spray coating
open rack
alloy
Prior art date
Application number
PCT/JP2023/043786
Other languages
English (en)
French (fr)
Inventor
博紀 横田
隼也 上野
海人 高木
陽一郎 土生
将司 京
Original Assignee
トーカロ株式会社
関西電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トーカロ株式会社, 関西電力株式会社 filed Critical トーカロ株式会社
Publication of WO2024128115A1 publication Critical patent/WO2024128115A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Definitions

  • the present invention relates to a method for manufacturing an open rack type carburetor component, and to an open rack type carburetor component.
  • the present invention relates to a method for manufacturing an open rack type carburetor component that uses a refrigerant containing a corrosive component, such as seawater, and to an open rack type carburetor component.
  • An open rack type vaporizer is a device that vaporizes liquefied gas (e.g., LNG) that has been brought to a low-temperature liquid state by heat exchange with a refrigerant (e.g., seawater).
  • Figures 7 and 8 are partial schematic diagrams of an open rack type vaporizer with a portion enlarged, Figure 7 being a perspective view, and Figure 8 being a side view.
  • a lower header tube 102 and an upper header tube 104 are arranged at a distance in the vertical direction. LNG passes through a heat transfer tube 103 that connects the lower header tube 102 and the upper header tube 104.
  • the refrigerant that overflows from the refrigerant spray trough 106 flows along the outside of the heat transfer tube 103. Then, the LNG inside the heat transfer tube 103 and the refrigerant outside the heat transfer tube 103 exchange heat. As a result, the LNG is vaporized into gas.
  • Patent Document 1 describes a method in which an Al-2 mass% Zn alloy is flame-sprayed using a wire method to form a sacrificial anode layer on the outer surface of the Al alloy base material.
  • the manufacturing method of the open rack type carburetor member of the present invention is characterized in that a thermal spray coating is formed on the surface of a substrate made of Al or an Al alloy by feeding Al powder or Al alloy powder and Al 2 O 3 powder into a high-velocity flame.
  • a more preferred feature of the method for manufacturing an open rack type carburetor component of the present invention is that the volume ratio of the Al powder or Al alloy powder (A) to the Al 2 O 3 powder (B) is 0.1 ⁇ (B)/(A) ⁇ 3.5.
  • the open rack type carburetor component of the present invention comprises a substrate made of Al or an Al alloy and a thermal spray coating formed on the substrate surface, and the thermal spray coating includes a main phase made of Al or an Al alloy and Al 2 O 3 particles dispersed in the main phase.
  • the open rack type carburetor member of the present invention has the following three more preferable features.
  • the Al 2 O 3 content of the thermal spray coating is 10% or more and less than 30%.
  • the porosity of the thermal spray coating is less than 4%.
  • the adhesion strength of the thermal spray coating to the substrate is 25 MPa or more.
  • the present invention provides an open rack-type carburetor component equipped with a thermal spray coating that has excellent corrosion resistance and adhesion to the substrate.
  • FIG. 1 is a schematic perspective view showing an example of an open rack type vaporizer.
  • FIG. 2 is a schematic perspective view of an enlarged portion of the open rack vaporizer of FIG. 1.
  • 1 is a graph showing the relationship between the volume ratio (Al 2 O 3 /Al) of the material powder and the Al 2 O 3 content in the coating for the test pieces of Examples 1 to 7.
  • 1 is a graph showing the relationship between the volume ratio (Al 2 O 3 /Al) of the material powders and the porosity in the coating in the test pieces of Examples 1 to 7.
  • FIG. 4 is a partial cross-sectional view of a thermal spray coating formed by the method of Example 3.
  • FIG. 2 is a partial cross-sectional view of a thermal spray coating formed by the method of Comparative Example 1.
  • FIG. 2 is a schematic perspective view showing an enlarged portion of the open rack vaporizer.
  • FIG. 2 is a schematic side view of an open rack-type vaporizer with a portion enlarged.
  • FIG. 1 is a schematic perspective view showing an example of an open rack type vaporizer.
  • FIG. 2 is a schematic perspective view showing an enlarged portion of the open rack type vaporizer of FIG. 1.
  • the open rack type vaporizer 1 includes, for example, a lower header tube 2, a heat transfer tube 3, an upper header tube 4, a refrigerant supply member 5, a refrigerant spray trough 6, and a liquefied gas supply member 7.
  • Liquefied gas flows into the lower header tube 2. Gas obtained by vaporizing the liquefied gas flows out of the upper header tube 4.
  • the heat transfer tube 3 connects the lower header tube 2 and the upper header tube 4.
  • the liquefied gas that flows in from the lower header tube 2 is vaporized by heat from the external refrigerant as it flows upward.
  • the vaporized gas then flows from the heat transfer tube 3 into the upper header tube 4.
  • the refrigerant supply member 5 supplies a refrigerant to be heat exchanged with the liquefied gas to the outside of the heat transfer tube 3 in order to vaporize the liquefied gas.
  • the liquefied gas supply member 7 supplies the liquefied gas to be vaporized.
  • a plurality of lower header tubes 2 and upper header tubes 4 are installed and extend in a direction parallel to the surface on which the open rack type vaporizer 1 is installed.
  • the heat transfer tubes 3 extend in a direction perpendicular to the extension direction of the lower header tubes 2 and upper header tubes 4.
  • a plurality of heat transfer tubes 3 are gathered together to form a panel.
  • the refrigerant supply member 5 includes a portion that extends parallel to the upper header tube 4.
  • the refrigerant sprinkling trough 6 extends parallel to the upper header tube 4 and is bent to have an opening at the top.
  • the refrigerant sprinkling trough 6 is installed near the connection between the upper header tube 4 and the heat transfer tube 3.
  • the refrigerant supply member 5 and the refrigerant sprinkling trough 6 are connected.
  • LNG is used as the liquefied gas
  • seawater is used as the refrigerant.
  • the refrigerant is not limited to seawater, and may be fresh water, for example.
  • the lower header tube 2, the heat transfer tube 3, and the upper header tube 4 are made of Al or an Al alloy, which has high thermal conductivity.
  • an Al alloy refers to an alloy in which the proportion of Al is the highest among the elements constituting the alloy.
  • the Al content in the Al alloy is preferably 80 mass% or more, and more preferably 90 mass% or more.
  • Al alloy is not particularly limited, but examples that can be used include Al-Mn alloys, Al-Si alloys, Al-Mg alloys, Al-Cu alloys, Al-Zn alloys, Al-Mg-Si alloys, Al-Mg-Cu alloys, and Al-Zn-Mg alloys.
  • seawater is supplied to the carburetor components made of Al or Al alloy, such as the lower header tube 2, heat transfer tube 3, and upper header tube 4, so there is a concern that they may corrode. For this reason, a thermal spray coating with anti-corrosion properties is formed on the surface of the carburetor components.
  • the thermal spray coating in this embodiment is a thermal spray coating formed on the substrate surface of an open rack type vaporizer member mainly composed of Al or Al alloy by simultaneously feeding Al powder or Al alloy powder and Al 2 O 3 powder into a high-speed flame.
  • a film formation method is adopted in which Al powder or Al alloy powder and Al 2 O 3 powder are supplied into the same high-speed flame, whereby an Al film or Al alloy film is formed on the substrate surface, and unmelted Al 2 O 3 particles collide at high speed with the Al film or Al alloy film surface immediately after the film formation, so that pores formed during the film formation can be crushed.
  • the entire area of the film becomes dense, and a thermal spray coating with excellent corrosion resistance without through pores is obtained.
  • the thermal spray coating formed in this embodiment is formed in a state that includes a main phase made of Al or an Al alloy and unmelted Al2O3 particles dispersed in the main phase.
  • the main phase refers to a phase in which the area ratio of the component in the thermal spray coating is 50% or more when the cross-section of the thermal spray coating is observed.
  • Al powder or Al alloy powder, and Al 2 O 3 powder are used as the material powder to be fed into the high-speed flame.
  • Al and Al alloys have high thermal conductivity and easily function as a sacrificial anticorrosion layer.
  • the types of Al alloy powders used include, for example, Al-Mn alloys, Al-Si alloys, Al-Mg alloys, Al-Cu alloys, Al-Zn alloys, Al-Mg-Si alloys, Al-Mg-Cu alloys, and Al-Zn-Mg alloys.
  • the average particle size of the Al powder or Al alloy powder is preferably 20 to 100 ⁇ m, and the average particle size of the Al 2 O 3 powder is preferably 8 to 450 ⁇ m.
  • the term "average particle size" is defined as the particle size (median diameter) at which the cumulative value is 50% when the particle size distribution is measured by the laser diffraction/scattering method (microtrack method).
  • the volume ratio of the Al powder or Al alloy powder (A) to the Al 2 O 3 powder (B) is preferably 0.1 ⁇ ((B)/(A)), and more preferably 1.0 ⁇ ((B)/(A)).
  • the volume ratio of the Al powder or Al alloy powder (A) to the Al 2 O 3 powder (B) is preferably ((B)/(A)) ⁇ 3.5.
  • the porosity in the thermal spray coating is preferably less than 4%, and more preferably 2.5% or less.
  • the content of particles in the Al or Al alloy coating is too large, the inherent properties of Al or Al alloy may be impaired, but if the content of Al 2 O 3 in the thermal spray coating is less than 30%, a sufficient anticorrosive effect can be obtained, and from the viewpoint of improving adhesion and reducing porosity, the content of Al 2 O 3 particles is preferably 10% or more.
  • the content of Al 2 O 3 in the thermal spray coating is preferably 10% or more, and preferably less than 30%.
  • the content of Al or Al alloy in the thermal spray coating is preferably 70% or more, and preferably less than 90%.
  • the porosity of the thermal spray coating and the content of the components constituting the thermal spray coating can be obtained by appropriately treating the cut surface of the coating cut out from the carburetor member with mirror polishing or the like and observing it with a microscope, and can be specified, for example, by performing image analysis on a photograph taken at 100 times magnification with a scanning electron microscope and calculating the area ratio of each part.
  • the thermal spray coating in this embodiment is formed by repeatedly colliding unmelted Al 2 O 3 particles at high speed against the surface of the Al coating (Al alloy coating) immediately after coating, so that the coating is dense throughout. In this way, the entire coating is dense, making it possible to form a coating that is less likely to have through-holes, and thus improving corrosion resistance.
  • the contact area between the substrate and the coating is increased near the substrate interface of the thermal spray coating, improving the anchor effect and making it possible to form a coating with high adhesion to the substrate.
  • the adhesion of the thermal spray coating to the substrate is preferably 25 MPa or more.
  • the open rack type vaporizer is a device that exchanges heat between a low-temperature liquefied gas located inside the vaporizer member and a refrigerant located outside the vaporizer member, so the temperature gradient between the inner and outer surfaces of the vaporizer member is very large. Therefore, due to the temperature difference between the substrate located on the inner surface of the vaporizer member and the thermal spray coating located on the outer surface of the vaporizer member, the thermal expansion difference between the substrate and the thermal spray coating becomes large, and as a result, there is a risk of the thermal spray coating peeling off.
  • the components to which the thermal spray coating in this embodiment is applied are not limited to heat transfer tubes, upper header tubes, and lower header tubes, but can also be applied to other components.
  • Example 1 A5052 alloy (Al-Mg alloy) with dimensions of 50 x 50 x 5 mmt was prepared as a substrate. Next, the substrate was roughened by blasting with WA (white alumina) F60 blasting material at a spray pressure of 0.3 MPa. Next, a film was formed on the roughened substrate in the following manner to form a test piece. Coating method: A powder mixture of materials 1 and 2 was added to the high-velocity flame generated by a high-velocity flame spraying device. Material 1: Al powder (average particle size: 38 ⁇ m) Material 2: Al2O3 powder (average particle size: 108 ⁇ m) Volume ratio ( Al2O3 powder /Al powder): 0.18
  • Example 2 A test piece was prepared in the same manner as in Example 1, except that the volume ratio of the material powders (Al 2 O 3 powder/Al powder) was 0.65.
  • Example 3 A test piece was prepared in the same manner as in Example 1, except that the volume ratio of the material powders (Al 2 O 3 powder/Al powder) was 1.05.
  • Example 4 A test piece was prepared in the same manner as in Example 1, except that the volume ratio of the material powders (Al 2 O 3 powder/Al powder) was 1.31.
  • Example 5 A test piece was prepared in the same manner as in Example 1, except that the volume ratio of the material powders (Al 2 O 3 powder/Al powder) was 1.98.
  • Example 6 A test piece was prepared in the same manner as in Example 1, except that the volume ratio of the material powders (Al 2 O 3 powder/Al powder) was 2.52.
  • Example 7 A test piece was prepared in the same manner as in Example 1, except that the volume ratio of the material powders (Al 2 O 3 powder/Al powder) was 3.31.
  • Example 8 A test piece was prepared in the same manner as in Example 1, except that A5083 (Al-Mg alloy) was used as the substrate, Al-3% Zn powder was used as material 1, and the volume ratio (Al 2 O 3 powder/Al powder) was 1.05.
  • Example 9 A test piece was prepared in the same manner as in Example 1, except that A5083 (Al-Mg alloy) was used as the substrate, Al-5% Mg powder was used as material 1, and the volume ratio (Al 2 O 3 powder/Al powder) was 1.05.
  • Test pieces were prepared in the same manner as in Example 1, except that A5083 (Al-Mg alloy) was used as the substrate and the film was formed as follows. Coating method: The following materials are added to the frame generated by the wire flame spraying device. Material: Al wire
  • Test pieces were prepared in the same manner as in Example 1, except that only Al powder was used as the material.
  • Adhesion test The adhesion test was carried out according to a method in accordance with JIS H 8402, and the adhesion between the substrate and the thermal spray coating was evaluated based on the fracture surface pressure (MPa).
  • Salt spray test The salt spray test was performed for 300 hours according to a method conforming to JIS Z2371:2015. After that, the cross section was observed to check for the presence or absence of corrosion products at the interface between the coating and the substrate, thereby evaluating the corrosion resistance.
  • the evaluation indexes for corrosion resistance have the following meanings: ⁇ : No corrosion products were observed after 300 hours. ⁇ : Corrosion products were observed after 300 hours.
  • Table 1 is a table summarizing the results of the above-mentioned measurements and tests performed on each test piece of Examples 1 to 9 and Comparative Examples 1 and 2.
  • Fig. 3 is a graph showing the relationship between the volume ratio (Al 2 O 3 powder/Al powder) and the Al 2 O 3 content in the coating for each test piece of Examples 1 to 7
  • Fig. 4 is a graph showing the relationship between the volume ratio (Al 2 O 3 powder/Al powder) and the porosity in the coating for each test piece of Examples 1 to 7.
  • test pieces of Examples 1 to 9 were found to have better results than Comparative Example 1 in terms of porosity, adhesion, and corrosion resistance.
  • Figure 5 shows a photograph of a partial cross section of the coating formed by the method of Example 3
  • Figure 6 shows a photograph of a partial cross section of the coating formed by the method of Comparative Example 1.
  • the thermal spray coating of Example 3 has a dense structure throughout the entire coating
  • the thermal spray coating of Comparative Example 1 has a structure with many pores.
  • the coatings of Examples 1 to 9 were all dense throughout the entire coating, as shown in Figure 5. From this, it is presumed that the reason why the test pieces of Examples 1 to 9 showed better results in terms of porosity, adhesion, and corrosion resistance than the test piece of Comparative Example 1 is because the coating structure was dense throughout.
  • the open rack type evaporator components of the present invention can be used, for example, as heat transfer tubes, upper header tubes, and lower header tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明は、Al又はAl合金からなる基材の表面に対して、Al粉末又はAl合金粉末と、Al粉末と、を高速フレームに投入することにより溶射皮膜を形成するオープンラック式気化器部材の製造方法である。

Description

オープンラック式気化器部材の製造方法、及び、オープンラック式気化器部材
 本発明は、オープンラック式気化器部材の製造方法、及び、オープンラック式気化器部材に関する。特に、海水等、腐食成分を含むものを冷媒として使用するオープンラック式気化器部材の製造方法、及び、オープンラック式気化器部材に関する。
 オープンラック式気化器は、低温の液体状態にした液化ガス(例えばLNG)を冷媒(例えば海水)により熱交換し、液化ガスを気化させる装置である。図7及び図8はオープンラック式気化器の一部を拡大した部分概略図であり、図7は斜視図であり、図8は側面図である。図7、図8に示すように、オープンラック式気化器では、上下方向に距離を隔てて下部ヘッダ管102及び上部ヘッダ管104が配置される。下部ヘッダ管102と上部ヘッダ管104とを接続する伝熱管103をLNGが通る。冷媒散水トラフ106から溢れる冷媒は伝熱管103の外部を沿うように流れる。そして、伝熱管103内部のLNGと伝熱管103外部の冷媒が熱交換を行う。これにより、LNGがガスへと気化される。
 オープンラック式気化器の熱交換パネルに搭載される伝熱管103、ヘッダ管102、104等の気化器部材は、海水からの熱を吸収しやすくするために、熱伝導性の高いAl合金(3000系、5000系、6000系等)が用いられている。しかしながら、このような気化器部材は、上述のように、海水に晒されるような環境下において使用される場合、腐食の懸念がある。そのため、気化器部材には、防食処理が施されることが望ましい。
 従来、気化器部材への防食処理としては、例えば、特許文献1に、Al-2質量%Zn合金の溶線式フレーム溶射を行い、Al合金基材の外表面に犠牲陽極層を形成する方法が記載されている。
特開2011-112294号公報
 しかしながら、本発明者は、特許文献1に記載の溶射皮膜は、耐食性及びAl合金基材に対する密着性が十分ではなく、改善の余地があることを見出した。
 本発明は、耐食性及び基材への密着性に優れた溶射皮膜を備えるオープンラック式気化器部材の製造方法、並びに、耐食性及び基材への密着性に優れた溶射皮膜を備えるオープンラック式気化器部材を提供することにある。
 本発明のオープンラック式の気化器部材の製造方法は、Al又はAl合金からなる基材の表面に対して、Al粉末又はAl合金粉末と、Al粉末と、を高速フレームに投入することにより溶射皮膜を形成することを特徴とする。
 本発明のオープンラック式の気化器部材の製造方法のより好ましい特徴としては、Al粉末又はAl合金粉末(A)と、Al粉末(B)との体積比が、0.1≦(B)/(A)≦3.5であることが挙げられる。
 また、本発明のオープンラック式の気化器部材は、Al又はAl合金からなる基材と、前記基材表面に形成された溶射皮膜とを備え、前記溶射皮膜は、Al又はAl合金からなる主相と、該主相中に分散したAl粒子と、を含むことを特徴とする。
 本発明のオープンラック式の気化器部材のより好ましい特徴としては、以下の3つが挙げられる。
 (1)溶射皮膜のAl含有率は、10%以上、30%未満である。
 (2)溶射皮膜の気孔率が4%未満である。
 (3)溶射皮膜の基材との密着力が25MPa以上である。
 本発明によれば、耐食性及び基材への密着性に優れた溶射皮膜を備えるオープンラック式気化器部材を提供することができる。
オープンラック式気化器の一例を示す概略斜視図である。 図1のオープンラック式気化器の一部を拡大した概略斜視図である。 実施例1~7の試験片における、材料粉末の体積比(Al/Al)と皮膜中のAl含有率との関係をグラフにしたものである。 実施例1~7の試験片における、材料粉末の体積比(Al/Al)と皮膜中の気孔率との関係をグラフにしたものである。 実施例3の方法により成膜した溶射皮膜の部分断面図である。 比較例1の方法により成膜した溶射皮膜の部分断面図である。 オープンラック式気化器の一部を拡大した概略斜視図である。 オープンラック式気化器の一部を拡大した概略側面図である。
 以下に、本発明に係るオープンラック式気化器部材の一実施形態について、図を参照して説明する。
 図1は、オープンラック式気化器の一例を示す概略斜視図である。また、図2は、図1のオープンラック式気化器の一部を拡大した概略斜視図である。オープンラック式気化器1は、図1、図2に示すように、たとえば、下部ヘッダ管2と、伝熱管3と、上部ヘッダ管4と、冷媒供給部材5と、冷媒散水トラフ6と、液化ガス供給部材7と、を備える。下部ヘッダ管2には、液化ガスが流入する。上部ヘッダ管4からは、液化ガスが気化されたガスが流出する。伝熱管3は、下部ヘッダ管2と上部ヘッダ管4とを接続している。伝熱管3では、下部ヘッダ管2から流入した液化ガスが、上方に流れるにつれて外部の冷媒からの熱で気化する。そして、気化したガスは、伝熱管3から上部ヘッダ管4へと流入する。冷媒供給部材5は、液化ガスを気化させるため、伝熱管3の外部に液化ガスと熱交換させるための冷媒を供給する。液化ガス供給部材7は、気化させる液化ガスを供給する。
 オープンラック式気化器1では、下部ヘッダ管2及び上部ヘッダ管4がそれぞれ複数本設置され、オープンラック式気化器1が設置される面に対して平行な方向に延在されている。伝熱管3は、下部ヘッダ管2及び上部ヘッダ管4の延在方向に対して垂直な方向に延在されている。また、冷媒と液化ガスとが熱交換できる表面積を増やすために、伝熱管3を複数集めてパネルを構成している。冷媒供給部材5は、上部ヘッダ管4と平行に延びる部分を含む。冷媒散水トラフ6は上部ヘッダ管4と平行で、上方に開口部を有するように曲げられて延在される。冷媒散水トラフ6は、上部ヘッダ管4と伝熱管3との接続部分の近傍に設置される。冷媒供給部材5と冷媒散水トラフ6とは接続されている。
 本実施形態では、液化ガスとしてLNGを、冷媒として海水を用いている。なお、冷媒は海水に限定されるものではなく、例えば、淡水であってもよい。下部ヘッダ管2、伝熱管3、及び、上部ヘッダ管4の基材材料は、熱伝導性の高いAl又はAl合金を用いている。ここで、Al合金とは、合金を構成する元素のうち、Alの比率が最も高い合金のことを指す。このとき、Al合金におけるAlの含有率は、80質量%以上が好ましく、90質量%以上がより好ましい。Al合金の種類は特に限定されないが、例えば、Al-Mn系合金、Al-Si系合金、Al-Mg系合金、Al-Cu系合金、Al-Zn系合金、Al-Mg-Si系合金、Al-Mg-Cu系合金、Al-Zn-Mg系合金等が用いられる。
 次に、本発明に係るオープンラック式気化器部材の製造方法の一実施形態について説明する。
 上述の通り、下部ヘッダ管2、伝熱管3、及び、上部ヘッダ管4等のAl又はAl合金からなる気化器部材には、海水が供給されるため、腐食の懸念がある。そのため、気化器部材の表面には、防食効果を備えた溶射皮膜を形成する。
 本実施形態における溶射皮膜は、Al粉末又はAl合金粉末と、Al粉末と、を同時に高速フレーム内に投入することにより、Al又はAl合金を主成分とするオープンラック式気化器部材の基材表面に形成された溶射皮膜である。本実施形態では、Al粉末又はAl合金粉末とAl粉末とを同一の高速フレーム内に供給する成膜方法を採用しており、それにより、基材表面に対してAl皮膜又はAl合金皮膜が成膜するとともに、成膜直後のAl皮膜又はAl合金皮膜表面に対して未溶融のAl粒子が高速で衝突し、成膜中に形成された気孔を潰すことができる。これが繰り返されることにより、皮膜の全域が緻密化し、貫通気孔のない耐食性に優れた溶射皮膜となる。特に、基材界面近傍の皮膜が基材面に押し込まれて塑性変形すると、基材と皮膜との接触面積が増える。その結果、アンカー効果が向上するため、従来の成膜方法に比べて、基材に対する密着性に優れた溶射皮膜を成膜することができる。高速フレームは、市販の高速フレーム溶射装置によって生成することができる。未溶融のAl粒子は、Al合金皮膜表面に対して衝突した際に、その一部がAl合金皮膜に取り込まれる形で成膜される。例えば、図5の断面写真に示されるように、本実施形態において形成された溶射皮膜は、Al又はAl合金からなる主相と、該主相中に分散した未溶融のAl粒子とを含んだ状態で成膜される。なお、本明細書においては、溶射皮膜を断面観察したときに、溶射皮膜に占める成分の面積率が50%以上である相を主相という。
 本実施形態において、高速フレームに投入する材料粉末には、Al粉末又はAl合金粉末、及びAl粉末が使用される。AlやAl合金は、熱伝導性が高く、かつ犠牲防食層として機能しやすい。Al合金粉末の種類は、例えば、Al-Mn系合金、Al-Si系合金、Al-Mg系合金、Al-Cu系合金、Al-Zn系合金、Al-Mg-Si系合金、Al-Mg-Cu系合金、Al-Zn-Mg系合金等が用いられる。また、Al粉末又はAl合金粉末の平均粒径は20~100μmであることが好ましく、Al粉末の平均粒径は8~450μmであることが好ましい。なお、本明細書において「平均粒径」とは、レーザ回析・散乱法(マイクロトラック法)によって粒度分布を測定したときに累積値が50%となる粒径(メジアン径)と定義する。
 本実施形態において、Al粉末又はAl合金粉末(A)とAl粉末(B)との体積比は、0.1≦((B)/(A))であることが好ましく、1.0≦((B)/(A))であることがより好ましい。また、Al粉末又はAl合金粉末(A)とAl粉末(B)との体積比は、((B)/(A))≦3.5であることが好ましい。体積比がこのような関係であると、溶射皮膜の基材に対する密着力がより向上するとともに、気孔率をより低下させることができる。溶射皮膜中の気孔率が高いと、溶射皮膜中に貫通気孔が生じる可能性が高くなる。貫通気孔が存在すると、溶射皮膜の表面から海水が侵入し、基材との界面まで到達する虞がある。海水が溶射皮膜と基材との界面まで侵入すると、腐食が進行する。したがって、腐食の進行を抑制するために、溶射皮膜中の気孔率は、4%未満とすることが好ましく、2.5%以下とすることがより好ましい。また、Al又はAl合金皮膜中の粒子の含有率が大きすぎると、Al又はAl合金の本来の特性が損なわれる可能性があるが、溶射皮膜中のAl含有率が30%未満であれば、十分な防食効果が得られ、むしろ密着力向上や気孔率低減の観点からは、Al粒子の含有率が10%以上であることが好ましい。したがって、溶射皮膜中のAl含有率は、10%以上であることが好ましく、30%未満であることが好ましい。また、溶射皮膜においてAl又はAl合金を主相とする観点から、溶射皮膜中のAl又はAl合金の含有率は70%以上であることが好ましく、90%未満であることが好ましい。溶射皮膜の気孔率や溶射皮膜を構成する成分の含有率は、気化器部材を切り出した皮膜切断面を、鏡面研磨等、適宜処理して顕微鏡にて観察して求めればよく、例えば走査型電子顕微鏡にて100倍で撮影した写真を画像解析し、各部位の面積率を算定することで、特定することができる。
 本実施形態における溶射皮膜は、上述の通り、成膜直後のAl皮膜(Al合金皮膜)表面に対して未溶融のAl粒子が高速で衝突し、それが繰り返し行われることで成膜されるため、皮膜全域において緻密となる。このように、皮膜全域が緻密となることにより、貫通気孔の生じにくい皮膜を形成することが可能となるため、耐食性がより向上する。また、溶射皮膜の基材界面近傍において、基材と皮膜との接触面積が大きくなることによりアンカー効果が向上し、基材に対する密着力の高い皮膜を形成することが可能となる。
 本実施形態において、溶射皮膜の基材との密着力は25MPa以上であることが好ましい。上述の通り、オープンラック式気化器は、気化器部材内部に位置する低温の液化ガスと、気化器部材外部に位置する冷媒とを熱交換する装置であるため、気化器部材の内面と外面との間の温度勾配は非常に大きくなる。そのため、気化器部材の内面に位置する基材と気化器部材の外面に位置する溶射皮膜との間の温度差により、基材と溶射皮膜との熱膨張差が大きくなる結果、溶射皮膜が剥離する虞がある。また、オープンラック式気化器が運転稼働と運転停止を繰り返すことにより、気化器部材が熱サイクルに晒され、溶射皮膜が剥離する虞がある。これに対し、溶射皮膜の基材との密着力を25MPa以上とすることにより、溶射皮膜の剥離を抑制することが可能となる。
 なお、本実施形態における溶射皮膜が適用される部材は、伝熱管、上部ヘッダ管、下部ヘッダ管に限定されるものではなく、他の部材にも適用することができる。
 以下に、本発明を適用した実施例について説明する。本実施例は、本発明について例示するものであり、発明の範囲を限定するものではない。
 [実施例1]
 基材として、寸法が50×50×5mmtのA5052合金(Al-Mg系合金)を用意した。次に、基材に対して、WA(ホワイトアルミナ)F60のブラスト材を噴射圧0.3MPaでブラストし、粗面化処理を行った。次に、粗面化された基材に対して、下記の要領で成膜することにより、試験片を形成した。
  成膜方法:高速フレーム溶射装置によって生成した高速フレームに材料1及び材料2を混合した材料粉末を投入
  材料1:Al粉末(平均粒径:38μm)
  材料2:Al粉末(平均粒径:108μm)
  体積比(Al粉末/Al粉末):0.18
 [実施例2]
 材料粉末の体積比(Al粉末/Al粉末)が0.65であること以外、実施例1と同様の方法により、試験片を作製した。
 [実施例3]
 材料粉末の体積比(Al粉末/Al粉末)が1.05であること以外、実施例1と同様の方法により、試験片を作製した。
 [実施例4]
 材料粉末の体積比(Al粉末/Al粉末)が1.31であること以外、実施例1と同様の方法により、試験片を作製した。
 [実施例5]
 材料粉末の体積比(Al粉末/Al粉末)が1.98であること以外、実施例1と同様の方法により、試験片を作製した。
 [実施例6]
 材料粉末の体積比(Al粉末/Al粉末)が2.52であること以外、実施例1と同様の方法により、試験片を作製した。
 [実施例7]
 材料粉末の体積比(Al粉末/Al粉末)が3.31であること以外、実施例1と同様の方法により、試験片を作製した。
 [実施例8]
 基材にA5083(Al-Mg系合金)を使用し、材料1にAl-3%Zn粉末を使用し、かつ、体積比(Al粉末/Al粉末)が1.05であること以外、実施例1と同様の方法により、試験片を作製した。
 [実施例9]
 基材にA5083(Al-Mg系合金)を使用し、材料1にAl-5%Mg粉末を使用し、かつ、体積比(Al粉末/Al粉末)が1.05であること以外、実施例1と同様の方法により、試験片を作製した。
 [比較例1]
 基材にA5083(Al-Mg系合金)を使用し、かつ、下記の要領で成膜したこと以外は、実施例1と同様の方法で試験片を作製した。
  成膜方法:溶線式フレーム溶射装置によって生成したフレームに以下の材料を投入
  材料:Alワイヤー
 [比較例2]
 材料にAl粉末のみを使用したこと以外、実施例1と同様の方法により、試験片を作製した。
 実施例1~9に係る方法、及び、比較例1、2に係る方法により、試験片を作製した後、各試験片に対して、以下の測定を行った。
 [Al含有率]
 各試験片を皮膜が形成されている面に対して垂直に切断し、この切断物を樹脂に埋めて切断で生じた断面を研磨した後、この皮膜断面の画像を走査型電子顕微鏡(日本電子社製、JSM-IT300LA)により撮影した。次に、この断面画像を画像解析ソフト(三谷商事社製、WinROOF2018)で二値化処理してAl粒子を特定し、Al粒子の面積が溶射皮膜断面に占める割合を算出した。
 [気孔率]
 各試験片を皮膜が形成されている面に対して垂直に切断し、この切断物を樹脂に埋めて切断で生じた断面を研磨した後、この皮膜断面の画像を走査型電子顕微鏡(日本電子社製、JSM-IT300LA)により撮影した。次に、この断面画像を画像解析ソフト(三谷商事社製、WinROOF2018)で二値化処理して気孔を特定し、気孔部分の面積が溶射皮膜断面に占める割合を算出した。
 実施例1~9に係る方法、及び、比較例1、2に係る方法により、試験片を作製した後、各試験片に対して、以下の試験を行った。
 [密着力試験]
 密着力試験は、JIS  H  8402に準拠した方法で行い、破断面圧(MPa)を基準に基材と溶射皮膜との密着力を評価した。
 [塩水噴霧試験]
 塩水噴霧試験は、JIS Z2371:2015に準拠した方法で300時間行った。その後、断面観察を行い、皮膜と基材との界面の腐食生成物の有無を確認することにより、耐食性を評価した。耐食性の評価指標の意味は以下のとおりである。
 〇:300時間経過後において腐食生成物は見られなかった。
 ×:300時間経過後において腐食生成物が見られた。
 表1は、実施例1~9、比較例1、2の各試験片に対して、上述の測定・試験を行った結果をまとめた表である。また、図3は、実施例1~7の各試験片における、体積比(Al粉末/Al粉末)と皮膜中のAl含有率との関係をグラフにしたものであり、図4は、実施例1~7の各試験片における、体積比(Al粉末/Al粉末)と皮膜中の気孔率との関係をグラフにしたものである。
Figure JPOXMLDOC01-appb-T000001
 表1中の密着力の項目において、いずれの試験片も、基材と溶射皮膜との間では破断せず、25MPa未満の応力で溶射皮膜と接着剤層との間で破断が生じたため、表中には、少なくとも確認された最小の大きさの密着力を記載している。実施例1~9の溶射皮膜は、いずれも25MPa以上の密着力を有することが分かった。このことから、密着力においては、従来の溶線式フレーム溶射で成膜した溶射皮膜に比べて、少なくとも3倍以上の向上効果を確認することができた。
 表1に示す通り、実施例1~9の試験片は、気孔率、密着力、耐食性のいずれにおいても比較例1と比べて良好な結果となることが分かった。
 実施例3の方法により成膜した皮膜の部分断面図の写真を図5に示し、比較例1の方法により成膜した皮膜の部分断面図の写真を図6に示す。実施例3の溶射皮膜は皮膜全域において緻密な組織となっているが、比較例1の溶射皮膜は、気孔が多い組織となっている事が分かる。なお、図示していないが、実施例1~9の皮膜は、いずれも図5のように皮膜全域が緻密な皮膜となっていた。このことから、実施例1~9の試験片が、比較例1の試験片に比べて気孔率、密着力、耐食性のいずれにおいても良好な結果となったのは、全域が緻密な皮膜組織であることによるものと推察される。
 また、図3及び図4に示す通り、実施例3~7の試験片のAl含有率は、実施例1,2のAl含有率に比べて大きく、実施例3~7の試験片の気孔率は、実施例1,2の気孔率に比べて小さいことが分かる。すなわち、材料粉末ないし皮膜中のAl含有率が一定以上大きいと、気孔率が大幅に低下することが分かる。
 本発明に係るオープンラック式気化器部材は、例えば、伝熱管、上部ヘッダ管、下部ヘッダ管として使用できる。
1  オープンラック式気化器
2  下部ヘッダ管
3  伝熱管
4  上部ヘッダ管
5  冷媒供給部材
6  冷媒散水トラフ
7  液化ガス供給部材
102  下部ヘッダ管
103  伝熱管
104  上部ヘッダ管
106  冷媒散水トラフ

Claims (6)

  1.  オープンラック式の気化器部材の製造方法であって、
     Al又はAl合金からなる基材の表面に対して、Al粉末又はAl合金粉末と、Al粉末と、を高速フレームに投入することにより溶射皮膜を形成することを特徴とするオープンラック式の気化器部材の製造方法。
  2.  前記Al粉末又はAl合金粉末(A)と、前記Al粉末(B)との体積比は、0.1≦(B)/(A)≦3.5である請求項1に記載の気化器部材の製造方法。
  3.  Al又はAl合金からなる基材と、前記基材表面に形成された溶射皮膜とを備え、
     前記溶射皮膜は、Al又はAl合金からなる主相と、該主相中に分散したAl粒子と、を含むことを特徴とするオープンラック式の気化器部材。
  4.  前記溶射皮膜のAl含有率は、10%以上、30%未満である請求項3に記載のオープンラック式の気化器部材。
  5.  前記溶射皮膜の気孔率が4%未満である請求項3に記載のオープンラック式の気化器部材。
  6.  前記溶射皮膜の前記基材との密着力が25MPa以上である請求項3に記載のオープンラック式の気化器部材。
PCT/JP2023/043786 2022-12-13 2023-12-07 オープンラック式気化器部材の製造方法、及び、オープンラック式気化器部材 WO2024128115A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022198646 2022-12-13
JP2022-198646 2022-12-13

Publications (1)

Publication Number Publication Date
WO2024128115A1 true WO2024128115A1 (ja) 2024-06-20

Family

ID=91484963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043786 WO2024128115A1 (ja) 2022-12-13 2023-12-07 オープンラック式気化器部材の製造方法、及び、オープンラック式気化器部材

Country Status (2)

Country Link
TW (1) TW202430830A (ja)
WO (1) WO2024128115A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364444A (ja) * 1989-08-01 1991-03-19 Kobe Steel Ltd 表面皮膜形成用ワイヤ
JP2000064021A (ja) * 1998-06-12 2000-02-29 Osaka Gas Co Ltd 溶射皮膜、蒸発器、熱交換器、流体加熱器および流体冷却器
JP2003286559A (ja) * 2002-03-28 2003-10-10 Kurimoto Ltd 鉄系基材の防食皮膜および防食方法
JP2011112294A (ja) * 2009-11-27 2011-06-09 Kobe Steel Ltd オープンラック式気化器の伝熱管およびヘッダー管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364444A (ja) * 1989-08-01 1991-03-19 Kobe Steel Ltd 表面皮膜形成用ワイヤ
JP2000064021A (ja) * 1998-06-12 2000-02-29 Osaka Gas Co Ltd 溶射皮膜、蒸発器、熱交換器、流体加熱器および流体冷却器
JP2003286559A (ja) * 2002-03-28 2003-10-10 Kurimoto Ltd 鉄系基材の防食皮膜および防食方法
JP2011112294A (ja) * 2009-11-27 2011-06-09 Kobe Steel Ltd オープンラック式気化器の伝熱管およびヘッダー管

Also Published As

Publication number Publication date
TW202430830A (zh) 2024-08-01

Similar Documents

Publication Publication Date Title
AU769281B2 (en) A method of depositing flux or flux and metal onto a metal brazing substrate
RU2469126C2 (ru) Способ нанесения покрытия на поверхность субстрата и продукт с покрытием
JP5404126B2 (ja) 耐食性に優れたZn−Al系めっき鋼板およびその製造方法
EP1718781A1 (en) Porous coated member and manufacturing method thereof using cold spray
AU2016226812A1 (en) HOT-DIP Al-Zn-Mg-Si COATED STEEL SHEET AND METHOD OF PRODUCING SAME
EP1880035A1 (en) Method for coating a substrate surface and coated product
JP4796362B2 (ja) Lng気化器用伝熱管およびその製造方法
JP2017066523A (ja) Al−Mg系溶融めっき鋼材
JP2011163715A (ja) 熱交換器用アルミニウムフィン材
JP6164391B1 (ja) Mg含有Zn合金被覆鋼材
WO2017159054A1 (ja) アルミニウム合金製部材及びlng気化器
JPH05164496A (ja) オープンラック型気化器用フィンチューブ
WO2024128115A1 (ja) オープンラック式気化器部材の製造方法、及び、オープンラック式気化器部材
WO2017203805A1 (ja) アルミニウム合金製部材及びlng気化器
JP4849639B2 (ja) 耐久性部材、および、これを用いた海水に係るオープンラック式lng気化器
JP2003253419A (ja) 耐食処理方法及び耐食構造
JP3356856B2 (ja) ろう付用防食アルミニウム材料及びその製造方法
KR101676173B1 (ko) 도금 밀착성이 우수한 고내식 도금 강판 및 그 제조방법
JP2002256407A (ja) 黒色を呈する溶融アルミニウムめっき鋼板及びその製造方法
Winnicki et al. Microstructure and corrosion resistance of aluminium and copper composite coatings deposited by LPCS method
JP3160387B2 (ja) 耐溶融金属性に優れる複合溶射材料および複合溶射皮膜
JP5385754B2 (ja) 熱交換部材
Bobzin et al. Corrosion behaviour of thermally sprayed Zn, ZnMgAl and ZnAl15 coatings
JP2001279420A (ja) 外面被覆管
JP4435945B2 (ja) 耐カジリ性及び耐白錆性に優れたアルミニウム系めっき鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23903402

Country of ref document: EP

Kind code of ref document: A1