WO2024127921A1 - Positive electrode for chlorine generation electrolysis - Google Patents
Positive electrode for chlorine generation electrolysis Download PDFInfo
- Publication number
- WO2024127921A1 WO2024127921A1 PCT/JP2023/041642 JP2023041642W WO2024127921A1 WO 2024127921 A1 WO2024127921 A1 WO 2024127921A1 JP 2023041642 W JP2023041642 W JP 2023041642W WO 2024127921 A1 WO2024127921 A1 WO 2024127921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- chlorine
- ruthenium
- mol
- anode
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/052—Electrodes comprising one or more electrocatalytic coatings on a substrate
- C25B11/053—Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
- C25B11/063—Valve metal, e.g. titanium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/081—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/093—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
Definitions
- the present invention relates to an anode for chlorine generating electrolysis.
- chlorine gas, chlorine compounds, etc. have been produced by electrolysis (electrolysis) of salt water.
- electrolysis of salt water has also been used to produce hypochlorous acid, which has been increasingly used for purposes such as sterilization and deodorization.
- hypochlorous acid water
- hypochlorous acid water
- hypochlorous acid water
- H 2 O water
- chloride ions Cl ⁇
- chlorine reacts with water to generate hypochlorous acid (HClO).
- anode for chlorine generating electrolysis an electrode using a precious metal oxide such as iridium oxide (IrO 2 ) as a catalyst is used.
- a precious metal oxide such as iridium oxide (IrO 2 ) as a catalyst.
- Such an electrode using a precious metal oxide as a catalyst has a low overvoltage for chlorine generation and is excellent in chlorine generation efficiency.
- an electrode for efficiently generating chlorine by electrolysis for example, an electrode having a catalytic coating containing oxides of tin (Sn), iridium (Ir), and ruthenium (Ru) in a predetermined ratio has been proposed (Patent Document 1). Also, an electrode having a catalytic coating containing oxides of tin (Sn), iridium (Ir), ruthenium (Ru), and titanium (Ti) in a predetermined ratio has been proposed (Patent Document 2).
- JP 2017-535680 A Specific Publication No. 2021-529251
- the present invention was made in consideration of the problems with the conventional technology, and its objective is to provide an anode for chlorine generating electrolysis that has a low overvoltage for chlorine generation and excellent chlorine generation efficiency, even without using iridium (Ir).
- An anode for chlorine generating electrolysis comprising: a substrate formed of titanium or a titanium alloy; and a catalyst layer having a first layer disposed on the substrate and a second layer disposed on the first layer, wherein the first layer contains oxides of ruthenium (Ru), tin (Sn), and zirconium (Zr), and the second layer contains oxides of ruthenium (Ru) and titanium (Ti).
- the present invention provides an anode for chlorine generating electrolysis that has a low overvoltage for chlorine generation and excellent chlorine generation efficiency, even without using iridium (Ir).
- FIG. 1 is a schematic diagram showing one embodiment of an anode for chlorine generating electrolysis of the present invention.
- 1 is an electron microscope photograph of a cross section of the anode for chlorine generating electrolysis of Example 2.
- 1 is a graph plotting cell voltage (V) against electrolysis time (h).
- the anode for chlorine generating electrolysis of the present invention (hereinafter, also simply referred to as “electrode” or “anode”) comprises a substrate formed of titanium or a titanium alloy, and a catalyst layer having a first layer disposed on the substrate and a second layer disposed on the first layer.
- the first layer contains oxides of ruthenium (Ru), tin (Sn), and zirconium (Zr).
- the second layer contains oxides of ruthenium (Ru) and titanium (Ti).
- Fig. 1 is a schematic diagram showing one embodiment of the anode for chlorine generating electrolysis of the present invention.
- the anode for chlorine generating electrolysis 10 of this embodiment includes a substrate 2 and a catalyst layer 5 disposed on the substrate 2.
- the substrate 2 is formed of titanium or a titanium alloy.
- the overall shape of the substrate 2 is not particularly limited and can be appropriately designed depending on the application. Examples of the overall shape of the substrate include a plate shape, a rod (column) shape, a mesh shape, and the like.
- the catalyst layer 5 disposed on the substrate 2 has a first layer 5a and a second layer 5b.
- the first layer 5a is a layer disposed on the substrate 2.
- the second layer 5b is a layer disposed on the first layer 5a. That is, the catalyst layer 5 has a laminated structure including the first layer 5a and the second layer 5b. It is preferable that the catalyst layer 5 has a two-layer structure substantially composed of only the first layer 5a and the second layer 5b.
- the thickness of the catalyst layer 5 is not particularly limited and can be set arbitrarily.
- the thickness of the catalyst layer 5 may be, for example, 1 to 10 ⁇ m.
- the first layer 5a contains oxides of ruthenium (Ru), tin (Sn), and zirconium (Zr). Specifically, the first layer 5a is made of ruthenium oxide (RuO 2 ), tin oxide (SnO 2 ), and zirconium oxide (ZrO 2 ).
- the second layer 5b contains oxides of ruthenium (Ru) and titanium (Ti). Specifically, the second layer 5b is made of ruthenium oxide (RuO 2 ) and titanium oxide (TiO 2 ).
- the anode 10 for chlorine generation electrolysis of this embodiment has a catalytic layer 5 having a laminated structure in which a first layer 5a (i.e., a lower layer) formed of RuO 2 -SnO 2 -ZrO 2 and a second layer 5b (i.e., an upper layer) formed of RuO 2 -TiO 2 are laminated on the substrate 2.
- a first layer 5a i.e., a lower layer
- a second layer 5b i.e., an upper layer formed of RuO 2 -TiO 2
- the contents of ruthenium (Ru), tin (Sn), and zirconium (Zr) in the first layer are preferably 7 to 40 mol% ruthenium (Ru), 50 to 90 mol% tin (Sn), and 3 to 10 mol% zirconium (Zr) on an elemental basis.
- the sum of Ru, Sn, and Zr is 100 mol%.
- the content of ruthenium (Ru) in the first layer is more preferably 12 to 25 mol% on an elemental basis.
- the content of tin (Sn) in the first layer is more preferably 65 to 80 mol% on an elemental basis.
- the content of zirconium (Zr) in the first layer is more preferably 4 to 8 mol% on an elemental basis.
- an anode for chlorine generating electrolysis can be obtained that has a lower overvoltage for chlorine generation and is more efficient at generating chlorine.
- the type and content of metal elements in each layer can be measured and calculated using analytical methods such as X-ray fluorescence (XRF) analysis.
- the content of ruthenium (Ru) and titanium (Ti) in the second layer is preferably 5 to 40 mol % of ruthenium (Ru) and 60 to 95 mol % of titanium (Ti) on an elemental basis.
- the sum of Ru and Ti is 100 mol %.
- the content of ruthenium (Ru) in the second layer is more preferably 8 to 30 mol % on an elemental basis.
- the content of titanium (Ti) in the second layer is more preferably 70 to 92 mol % on an elemental basis.
- the content of ruthenium (Ru) in the first layer relative to the total content of ruthenium (Ru) in the catalyst layer is preferably 20 to 80 mol %, and more preferably 23 to 77 mol %, on an elemental basis.
- the electrode of this embodiment has a catalyst layer having the above-mentioned laminated structure provided on a substrate, and therefore has a low overvoltage for chlorine generation, excellent chlorine generation efficiency, and can be substantially made of relatively easily available materials, even without using iridium (Ir). For this reason, from the standpoint of ease of manufacture, cost, etc., it is preferable that the catalyst layer constituting the electrode of this embodiment does not substantially contain iridium (Ir). As long as it does not substantially affect ease of manufacture, cost, etc., a trace amount of iridium (Ir) may be contained in the catalyst layer in the form of a metal oxide.
- the electrode of this embodiment can be manufactured by forming a catalyst layer on a substrate.
- a coating liquid for a first layer and a coating liquid for a second layer containing various metals and salts of various metals at a desired ratio are prepared.
- the prepared coating liquid for the first layer is applied to the surface of the substrate, which has been subjected to a surface treatment such as blasting or etching as necessary, to form a coating layer.
- the first layer can be formed on the substrate by baking under appropriate temperature conditions.
- the prepared coating liquid for the second layer is applied to the surface of the formed first layer to form a coating layer.
- the second layer is formed on the first layer, and an electrode having a catalyst layer with a laminated structure provided on a substrate can be obtained. Note that by repeating the application and baking of the coating liquid, the thickness of the catalyst layer formed and the content of metal elements can be controlled.
- the baking temperature is usually 450 to 550°C, preferably 480 to 520°C.
- a titanium mesh substrate measuring 100 mm x 100 mm x 1 mm was prepared.
- Alumina powder having a particle size of 212 to 300 ⁇ m was sprayed onto the prepared mesh substrate at a pressure of 0.3 MPa to perform a blasting treatment.
- the substrate was then immersed in boiling 20% hydrochloric acid for 20 minutes for etching, and then washed with ion-exchanged water.
- the substrate was then placed in a 60°C oven and dried for 1 hour to obtain a pretreated substrate.
- Example 1 [Formation of the first layer] A coating liquid for the first layer containing tin (Sn) hydroxyacetochloride complex (SnHAC), zirconyl chloride complex (ZrOCl 2 ), and ruthenium (Ru) hydroxyacetochloride complex (RuHAC) was prepared. The contents of SnHAC, ZrOCl 2 , and RuHAC in the coating liquid for the first layer were 200 g/L, 130 g/L, and 95 g/L, respectively. The coating liquid for the first layer prepared was applied to the surface of the pretreated substrate, and then dried for 10 minutes under room temperature (25° C.) conditions.
- SnHAC tin hydroxyacetochloride complex
- ZrOCl 2 zirconyl chloride complex
- RuHAC ruthenium hydroxyacetochloride complex
- the substrate was placed in an oven and dried with hot air at 60° C. for 10 minutes, then baked at 480° C. for 10 minutes, and air-cooled to room temperature.
- the above process from application to air-cooling was repeated a predetermined number of times to form a first layer on the substrate.
- a coating liquid for the second layer containing titanium chloride complex (TiCl 4 ) and RuHAC was prepared.
- the contents of TiCl 4 and RuHAC in the coating liquid for the second layer were 260 g/L and 95 g/L, respectively.
- the coating liquid for the second layer prepared was applied to the surface of the formed first layer, and then dried at room temperature for 10 minutes. Then, the coating liquid was placed in an oven and dried with hot air at 60° C. for 10 minutes, then baked at 480° C. for 10 minutes, and air-cooled to room temperature.
- Examples 2 to 6, Comparative Examples 1 to 5 A chlorine generating electrolysis anode (electrode) was obtained in the same manner as in Example 1 described above, except that the composition of the coating solution was appropriately adjusted so that the layer structure, the content (molar ratio and mol%) of the metal elements in the catalyst layer (first layer and second layer), and the ratio (mol%) of ruthenium (Ru) between the layers (first layer and second layer) were as shown in Table 1. Note that iridium (Ir) hydroxyacetochloride complex (IrHAC) was used as the iridium (Ir) source. An electron microscope photograph of the cross section of the chlorine generating electrolysis anode of Example 2 is shown in FIG.
- Electrolysis cells for generating chlorine were assembled using the electrodes of Examples 1 and 4 as anodes. Using the assembled electrolysis cells, electrolysis was performed under the conditions shown below to evaluate the stability of the catalytic layer. A graph plotting the cell voltage (V) against the electrolysis time (h) is shown in FIG. 3. As shown in FIG. 3, for both the electrodes of Examples 1 and 4, the cell voltage did not change steadily even after long-term electrolysis, and it was found that a stable catalytic layer was formed.
- Current density 8 kA / m2
- Electrolyte 200 g/L sodium chloride (NaCl) aqueous solution pH of electrolyte: 3
- Electrolyte temperature 90°C
- the electrode of the present invention has a low overvoltage for chlorine generation and excellent chlorine generation efficiency even without using iridium (Ir), making it useful as an anode for chlorine generation electrolysis.
- Substrate 5a First layer 5b: Second layer 5: Catalyst layer 10: Anode for chlorine generating electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Provided is a positive electrode for chlorine generation electrolysis having a low overvoltage of chlorine generation and having an excellent chlorine generation efficiency, even when iridium (Ir) is not used. This positive electrode for chlorine generation electrolysis 10 comprises: a substrate 2 formed from titanium or a titanium alloy; and catalyst layer 5 having a first layer 5a disposed on the substrate 2 and a second layer 5b disposed on the first layer 5a. The first layer 5a contains respective oxides of ruthenium (Ru), tin (Sn), and zirconium (Zr), and the second layer 5b contains respective oxides of ruthenium (Ru) and titanium (Ti).
Description
本発明は、塩素発生電解用陽極に関する。
The present invention relates to an anode for chlorine generating electrolysis.
従来、塩水の電気分解(電解)によって塩素ガスや塩素化合物等が製造されている。また、近年、除菌や脱臭等の目的での使用機会が増加している次亜塩素酸の製造にも、塩水の電解が利用されている。電解により塩素ガスや塩素化合物を製造する場合、陽極では塩素発生反応が進行する。例えば、次亜塩素酸水を製造する場合、陰極では水(H2O)が還元されて水素(H2)が発生する。一方、陽極では塩化物イオン(Cl-)が酸化されて塩素(Cl2)が発生し、発生した塩素が水と反応して次亜塩素酸(HClO)が生成する。
Conventionally, chlorine gas, chlorine compounds, etc. have been produced by electrolysis (electrolysis) of salt water. In addition, in recent years, electrolysis of salt water has also been used to produce hypochlorous acid, which has been increasingly used for purposes such as sterilization and deodorization. When chlorine gas or chlorine compounds are produced by electrolysis, a chlorine generation reaction proceeds at the anode. For example, when producing hypochlorous acid water, water (H 2 O) is reduced at the cathode to generate hydrogen (H 2 ). Meanwhile, at the anode, chloride ions (Cl − ) are oxidized to generate chlorine (Cl 2 ), and the generated chlorine reacts with water to generate hypochlorous acid (HClO).
但し、陽極では塩素だけでなく、水の酸化によって酸素も同時に発生する。発生する塩素と酸素の比は陽極の種類や性質によって変動するので、塩素の発生を主目的とする場合には、塩素発生効率に優れた電極(塩素発生電解用陽極)を用いる必要がある。塩素発生電解用陽極としては、酸化イリジウム(IrO2)等の貴金属酸化物を触媒とする電極が用いられている。このような貴金属酸化物を触媒とする電極は塩素発生の過電圧が低く、塩素発生効率に優れている。
However, not only chlorine but also oxygen is generated at the anode by oxidation of water. The ratio of chlorine and oxygen generated varies depending on the type and properties of the anode, so if the main purpose is to generate chlorine, it is necessary to use an electrode (anode for chlorine generating electrolysis) with excellent chlorine generation efficiency. As an anode for chlorine generating electrolysis, an electrode using a precious metal oxide such as iridium oxide (IrO 2 ) as a catalyst is used. Such an electrode using a precious metal oxide as a catalyst has a low overvoltage for chlorine generation and is excellent in chlorine generation efficiency.
電解により塩素を効率的に発生させるための電極としては、例えば、スズ(Sn)、イリジウム(Ir)、及びルテニウム(Ru)のそれぞれの酸化物を所定の比率で含有する触媒被覆を有する電極が提案されている(特許文献1)。また、スズ(Sn)、イリジウム(Ir)、ルテニウム(Ru)、及びチタン(Ti)のそれぞれの酸化物を所定の比率で含有する触媒コーティングを有する電極が提案されている(特許文献2)。
As an electrode for efficiently generating chlorine by electrolysis, for example, an electrode having a catalytic coating containing oxides of tin (Sn), iridium (Ir), and ruthenium (Ru) in a predetermined ratio has been proposed (Patent Document 1). Also, an electrode having a catalytic coating containing oxides of tin (Sn), iridium (Ir), ruthenium (Ru), and titanium (Ti) in a predetermined ratio has been proposed (Patent Document 2).
しかし、イリジウム(Ir)等の貴金属は、高価な希少金属である。さらに、近年、イリジウム(Ir)の価格は高騰しており、入手が容易ではないといった課題を有する。このため、イリジウム(Ir)を可能な限り用いずに塩素発生効率に優れた電極を開発することが要望されている。
However, precious metals such as iridium (Ir) are expensive and rare metals. Furthermore, the price of iridium (Ir) has been rising sharply in recent years, and it is difficult to obtain it. For this reason, there is a demand to develop an electrode that has excellent chlorine generation efficiency while using as little iridium (Ir) as possible.
本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、イリジウム(Ir)を用いなくとも、塩素発生の過電圧が低く、塩素発生効率に優れた塩素発生電解用陽極を提供することにある。
The present invention was made in consideration of the problems with the conventional technology, and its objective is to provide an anode for chlorine generating electrolysis that has a low overvoltage for chlorine generation and excellent chlorine generation efficiency, even without using iridium (Ir).
すなわち、本発明によれば、以下に示す塩素発生電解用陽極が提供される。
[1]チタン又はチタン合金で形成された基材と、前記基材上に配置される第1層及び前記第1層上に配置される第2層を有する触媒層と、を備え、前記第1層は、ルテニウム(Ru)、スズ(Sn)、及びジルコニウム(Zr)のそれぞれの酸化物を含有し、前記第2層は、ルテニウム(Ru)及びチタン(Ti)のそれぞれの酸化物を含有する塩素発生電解用陽極。
[2]前記第1層中のルテニウム(Ru)、スズ(Sn)、及びジルコニウム(Zr)の含有量が、元素基準で、ルテニウム(Ru)7~40モル%、スズ(Sn)50~90モル%、及びジルコニウム(Zr)3~10モル%(但し、Ru、Sn、及びZrの合計を100モル%とする)であり、前記第2層中のルテニウム(Ru)及びチタン(Ti)の含有量が、元素基準で、ルテニウム(Ru)5~40モル%及びチタン(Ti)60~95モル%(但し、Ru及びTiの合計を100モル%とする)である前記[1]に記載の塩素発生電解用陽極。
[3]前記触媒層中のルテニウム(Ru)の合計含有量に占める、前記第1層中のルテニウム(Ru)の含有量が、元素基準で、20~80モル%である前記[1]又は[2]に記載の塩素発生電解用陽極。
[4]前記触媒層が、イリジウム(Ir)を実質的に含有しない前記[1]~[3]のいずれかに記載の塩素発生電解用陽極。 That is, according to the present invention, there is provided an anode for chlorine generating electrolysis as shown below.
[1] An anode for chlorine generating electrolysis comprising: a substrate formed of titanium or a titanium alloy; and a catalyst layer having a first layer disposed on the substrate and a second layer disposed on the first layer, wherein the first layer contains oxides of ruthenium (Ru), tin (Sn), and zirconium (Zr), and the second layer contains oxides of ruthenium (Ru) and titanium (Ti).
[2] The anode for chlorine generating electrolysis according to [1], wherein the contents of ruthenium (Ru), tin (Sn), and zirconium (Zr) in the first layer are, on an elemental basis, 7 to 40 mol% of ruthenium (Ru), 50 to 90 mol% of tin (Sn), and 3 to 10 mol% of zirconium (Zr) (where the total of Ru, Sn, and Zr is 100 mol%), and the contents of ruthenium (Ru) and titanium (Ti) in the second layer are, on an elemental basis, 5 to 40 mol% of ruthenium (Ru) and 60 to 95 mol% of titanium (Ti) (where the total of Ru and Ti is 100 mol%).
[3] The anode for chlorine generating electrolysis according to [1] or [2], wherein the content of ruthenium (Ru) in the first layer is 20 to 80 mol% on an elemental basis relative to the total content of ruthenium (Ru) in the catalytic layer.
[4] The anode for chlorine generating electrolysis according to any one of [1] to [3], wherein the catalyst layer does not substantially contain iridium (Ir).
[1]チタン又はチタン合金で形成された基材と、前記基材上に配置される第1層及び前記第1層上に配置される第2層を有する触媒層と、を備え、前記第1層は、ルテニウム(Ru)、スズ(Sn)、及びジルコニウム(Zr)のそれぞれの酸化物を含有し、前記第2層は、ルテニウム(Ru)及びチタン(Ti)のそれぞれの酸化物を含有する塩素発生電解用陽極。
[2]前記第1層中のルテニウム(Ru)、スズ(Sn)、及びジルコニウム(Zr)の含有量が、元素基準で、ルテニウム(Ru)7~40モル%、スズ(Sn)50~90モル%、及びジルコニウム(Zr)3~10モル%(但し、Ru、Sn、及びZrの合計を100モル%とする)であり、前記第2層中のルテニウム(Ru)及びチタン(Ti)の含有量が、元素基準で、ルテニウム(Ru)5~40モル%及びチタン(Ti)60~95モル%(但し、Ru及びTiの合計を100モル%とする)である前記[1]に記載の塩素発生電解用陽極。
[3]前記触媒層中のルテニウム(Ru)の合計含有量に占める、前記第1層中のルテニウム(Ru)の含有量が、元素基準で、20~80モル%である前記[1]又は[2]に記載の塩素発生電解用陽極。
[4]前記触媒層が、イリジウム(Ir)を実質的に含有しない前記[1]~[3]のいずれかに記載の塩素発生電解用陽極。 That is, according to the present invention, there is provided an anode for chlorine generating electrolysis as shown below.
[1] An anode for chlorine generating electrolysis comprising: a substrate formed of titanium or a titanium alloy; and a catalyst layer having a first layer disposed on the substrate and a second layer disposed on the first layer, wherein the first layer contains oxides of ruthenium (Ru), tin (Sn), and zirconium (Zr), and the second layer contains oxides of ruthenium (Ru) and titanium (Ti).
[2] The anode for chlorine generating electrolysis according to [1], wherein the contents of ruthenium (Ru), tin (Sn), and zirconium (Zr) in the first layer are, on an elemental basis, 7 to 40 mol% of ruthenium (Ru), 50 to 90 mol% of tin (Sn), and 3 to 10 mol% of zirconium (Zr) (where the total of Ru, Sn, and Zr is 100 mol%), and the contents of ruthenium (Ru) and titanium (Ti) in the second layer are, on an elemental basis, 5 to 40 mol% of ruthenium (Ru) and 60 to 95 mol% of titanium (Ti) (where the total of Ru and Ti is 100 mol%).
[3] The anode for chlorine generating electrolysis according to [1] or [2], wherein the content of ruthenium (Ru) in the first layer is 20 to 80 mol% on an elemental basis relative to the total content of ruthenium (Ru) in the catalytic layer.
[4] The anode for chlorine generating electrolysis according to any one of [1] to [3], wherein the catalyst layer does not substantially contain iridium (Ir).
本発明によれば、イリジウム(Ir)を用いなくとも、塩素発生の過電圧が低く、塩素発生効率に優れた塩素発生電解用陽極を提供することができる。
The present invention provides an anode for chlorine generating electrolysis that has a low overvoltage for chlorine generation and excellent chlorine generation efficiency, even without using iridium (Ir).
<塩素発生電解用陽極>
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。本発明の塩素発生電解用陽極(以下、単に「電極」又は「陽極」とも記す)は、チタン又はチタン合金で形成された基材と、基材上に配置される第1層及び前記第1層上に配置される第2層を有する触媒層とを備える。第1層は、ルテニウム(Ru)、スズ(Sn)、及びジルコニウム(Zr)のそれぞれの酸化物を含有する。そして、第2層は、ルテニウム(Ru)及びチタン(Ti)のそれぞれの酸化物を含有する。以下、本発明の塩素発生電解用陽極の詳細について説明する。 <Anode for chlorine generating electrolysis>
Hereinafter, the embodiment of the present invention will be described, but the present invention is not limited to the following embodiment. The anode for chlorine generating electrolysis of the present invention (hereinafter, also simply referred to as "electrode" or "anode") comprises a substrate formed of titanium or a titanium alloy, and a catalyst layer having a first layer disposed on the substrate and a second layer disposed on the first layer. The first layer contains oxides of ruthenium (Ru), tin (Sn), and zirconium (Zr). And, the second layer contains oxides of ruthenium (Ru) and titanium (Ti). Hereinafter, the details of the anode for chlorine generating electrolysis of the present invention will be described.
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。本発明の塩素発生電解用陽極(以下、単に「電極」又は「陽極」とも記す)は、チタン又はチタン合金で形成された基材と、基材上に配置される第1層及び前記第1層上に配置される第2層を有する触媒層とを備える。第1層は、ルテニウム(Ru)、スズ(Sn)、及びジルコニウム(Zr)のそれぞれの酸化物を含有する。そして、第2層は、ルテニウム(Ru)及びチタン(Ti)のそれぞれの酸化物を含有する。以下、本発明の塩素発生電解用陽極の詳細について説明する。 <Anode for chlorine generating electrolysis>
Hereinafter, the embodiment of the present invention will be described, but the present invention is not limited to the following embodiment. The anode for chlorine generating electrolysis of the present invention (hereinafter, also simply referred to as "electrode" or "anode") comprises a substrate formed of titanium or a titanium alloy, and a catalyst layer having a first layer disposed on the substrate and a second layer disposed on the first layer. The first layer contains oxides of ruthenium (Ru), tin (Sn), and zirconium (Zr). And, the second layer contains oxides of ruthenium (Ru) and titanium (Ti). Hereinafter, the details of the anode for chlorine generating electrolysis of the present invention will be described.
(基材)
図1は、本発明の塩素発生電解用陽極の一実施形態を示す模式図である。図1に示すように、本実施形態の塩素発生電解用陽極10は、基材2と、基材2上に配置される触媒層5とを備える。基材2は、チタン又はチタン合金で形成されている。基材2の全体形状は特に限定されず、用途に応じて適宜設計することができる。基材の全体形状としては、例えば、板状、棒(柱)状、メッシュ状等を挙げることができる。 (Base material)
Fig. 1 is a schematic diagram showing one embodiment of the anode for chlorine generating electrolysis of the present invention. As shown in Fig. 1, the anode forchlorine generating electrolysis 10 of this embodiment includes a substrate 2 and a catalyst layer 5 disposed on the substrate 2. The substrate 2 is formed of titanium or a titanium alloy. The overall shape of the substrate 2 is not particularly limited and can be appropriately designed depending on the application. Examples of the overall shape of the substrate include a plate shape, a rod (column) shape, a mesh shape, and the like.
図1は、本発明の塩素発生電解用陽極の一実施形態を示す模式図である。図1に示すように、本実施形態の塩素発生電解用陽極10は、基材2と、基材2上に配置される触媒層5とを備える。基材2は、チタン又はチタン合金で形成されている。基材2の全体形状は特に限定されず、用途に応じて適宜設計することができる。基材の全体形状としては、例えば、板状、棒(柱)状、メッシュ状等を挙げることができる。 (Base material)
Fig. 1 is a schematic diagram showing one embodiment of the anode for chlorine generating electrolysis of the present invention. As shown in Fig. 1, the anode for
(触媒層)
基材2上に配置される触媒層5は、第1層5a及び第2層5bを有する。第1層5aは、基材2上に配置される層である。第2層5bは、第1層5a上に配置される層である。すなわち、触媒層5は、第1層5a及び第2層5bを含む積層構造を有する。なお、触媒層5は、第1層5a及び第2層5bのみで実質的に構成される二層構造であることが好ましい。触媒層5の厚さは特に限定されず、任意に設定することができる。触媒層5の厚さは、例えば1~10μmとすればよい。 (Catalyst layer)
Thecatalyst layer 5 disposed on the substrate 2 has a first layer 5a and a second layer 5b. The first layer 5a is a layer disposed on the substrate 2. The second layer 5b is a layer disposed on the first layer 5a. That is, the catalyst layer 5 has a laminated structure including the first layer 5a and the second layer 5b. It is preferable that the catalyst layer 5 has a two-layer structure substantially composed of only the first layer 5a and the second layer 5b. The thickness of the catalyst layer 5 is not particularly limited and can be set arbitrarily. The thickness of the catalyst layer 5 may be, for example, 1 to 10 μm.
基材2上に配置される触媒層5は、第1層5a及び第2層5bを有する。第1層5aは、基材2上に配置される層である。第2層5bは、第1層5a上に配置される層である。すなわち、触媒層5は、第1層5a及び第2層5bを含む積層構造を有する。なお、触媒層5は、第1層5a及び第2層5bのみで実質的に構成される二層構造であることが好ましい。触媒層5の厚さは特に限定されず、任意に設定することができる。触媒層5の厚さは、例えば1~10μmとすればよい。 (Catalyst layer)
The
第1層5aは、ルテニウム(Ru)、スズ(Sn)、及びジルコニウム(Zr)のそれぞれの酸化物を含有する。具体的には、第1層5aは、酸化ルテニウム(RuO2)、酸化スズ(SnO2)、及び酸化ジルコニウム(ZrO2)で形成されている。第2層5bは、ルテニウム(Ru)及びチタン(Ti)のそれぞれの酸化物を含有する。具体的には、第2層5bは、酸化ルテニウム(RuO2)及び酸化チタン(TiO2)で形成されている。
The first layer 5a contains oxides of ruthenium (Ru), tin (Sn), and zirconium (Zr). Specifically, the first layer 5a is made of ruthenium oxide (RuO 2 ), tin oxide (SnO 2 ), and zirconium oxide (ZrO 2 ). The second layer 5b contains oxides of ruthenium (Ru) and titanium (Ti). Specifically, the second layer 5b is made of ruthenium oxide (RuO 2 ) and titanium oxide (TiO 2 ).
RuO2-SnO2-ZrO2で形成された触媒層のみを有する電極の場合、塩素(Cl2)発生の選択性が低く、塩素発生効率を向上させることが困難である。また、RuO2-TiO2で形成された触媒層のみを有する電極の場合、塩素(Cl2)発生の過電圧が低い。これに対して、本実施形態の塩素発生電解用陽極10は、RuO2-SnO2-ZrO2で形成された第1層5a(すなわち下層)と、RuO2-TiO2で形成された第2層5b(すなわち上層)とを積層した積層構造を有する触媒層5を基材2上に設けている。このような積層構造を有する触媒層5を基材2上に設けることで、塩素発生の過電圧が低いとともに、塩素(Cl2)発生の選択性が高い、塩素発生効率に優れた電極とすることができる。
In the case of an electrode having only a catalytic layer formed of RuO 2 -SnO 2 -ZrO 2 , the selectivity of chlorine (Cl 2 ) generation is low, and it is difficult to improve the chlorine generation efficiency. In addition, in the case of an electrode having only a catalytic layer formed of RuO 2 -TiO 2 , the overvoltage of chlorine (Cl 2 ) generation is low. In contrast, the anode 10 for chlorine generation electrolysis of this embodiment has a catalytic layer 5 having a laminated structure in which a first layer 5a (i.e., a lower layer) formed of RuO 2 -SnO 2 -ZrO 2 and a second layer 5b (i.e., an upper layer) formed of RuO 2 -TiO 2 are laminated on the substrate 2. By providing the catalytic layer 5 having such a laminated structure on the substrate 2, it is possible to obtain an electrode having a low overvoltage of chlorine generation, a high selectivity of chlorine (Cl 2 ) generation, and excellent chlorine generation efficiency.
第1層中のルテニウム(Ru)、スズ(Sn)、及びジルコニウム(Zr)の含有量は、元素基準で、ルテニウム(Ru)7~40モル%、スズ(Sn)50~90モル%、及びジルコニウム(Zr)3~10モル%であることが好ましい。なお、Ru、Sn、及びZrの合計を100モル%とする。第1層中のルテニウム(Ru)の含有量は、元素基準で、12~25モル%であることがさらに好ましい。第1層中のスズ(Sn)の含有量は、元素基準で、65~80モル%であることがさらに好ましい。また、第1層中のジルコニウム(Zr)の含有量は、元素基準で、4~8モル%であることがさらに好ましい。第1層中の各金属の元素基準の含有量を上記の範囲内とすることで、塩素発生の過電圧がより低く、さらに塩素発生効率に優れた塩素発生電解用の陽極とすることができる。なお、各層中の金属元素の種類及び含有量は、蛍光X線(XRF)分析法等の分析方法によって測定及び算出することができる。
The contents of ruthenium (Ru), tin (Sn), and zirconium (Zr) in the first layer are preferably 7 to 40 mol% ruthenium (Ru), 50 to 90 mol% tin (Sn), and 3 to 10 mol% zirconium (Zr) on an elemental basis. The sum of Ru, Sn, and Zr is 100 mol%. The content of ruthenium (Ru) in the first layer is more preferably 12 to 25 mol% on an elemental basis. The content of tin (Sn) in the first layer is more preferably 65 to 80 mol% on an elemental basis. The content of zirconium (Zr) in the first layer is more preferably 4 to 8 mol% on an elemental basis. By setting the elemental contents of each metal in the first layer within the above ranges, an anode for chlorine generating electrolysis can be obtained that has a lower overvoltage for chlorine generation and is more efficient at generating chlorine. The type and content of metal elements in each layer can be measured and calculated using analytical methods such as X-ray fluorescence (XRF) analysis.
第2層中のルテニウム(Ru)及びチタン(Ti)の含有量は、元素基準で、ルテニウム(Ru)5~40モル%及びチタン(Ti)60~95モル%であることが好ましい。なお、Ru及びTiの合計を100モル%とする。第2層中のルテニウム(Ru)の含有量は、元素基準で、8~30モル%であることがさらに好ましい。また、第2層中のチタン(Ti)の含有量は、元素基準で、70~92モル%であることがさらに好ましい。第2層中の各金属の元素基準の含有量を上記の範囲内とすることで、塩素発生の過電圧がより低く、さらに塩素発生効率に優れた塩素発生電解用の陽極とすることができる。
The content of ruthenium (Ru) and titanium (Ti) in the second layer is preferably 5 to 40 mol % of ruthenium (Ru) and 60 to 95 mol % of titanium (Ti) on an elemental basis. The sum of Ru and Ti is 100 mol %. The content of ruthenium (Ru) in the second layer is more preferably 8 to 30 mol % on an elemental basis. The content of titanium (Ti) in the second layer is more preferably 70 to 92 mol % on an elemental basis. By setting the elemental content of each metal in the second layer within the above ranges, an anode for chlorine generating electrolysis can be obtained that has a lower overvoltage for chlorine generation and excellent chlorine generation efficiency.
触媒層中のルテニウム(Ru)の合計含有量に占める、第1層中のルテニウム(Ru)の含有量は、元素基準で、20~80モル%であることが好ましく、23~77モル%であることがさらに好ましい。触媒層中のルテニウム(Ru)の合計含有量に占める、第1層中のルテニウム(Ru)の含有量を上記の範囲内とすることで、塩素発生の過電圧がより低下するとともに、塩素発生効率をさらに向上させることができる。
The content of ruthenium (Ru) in the first layer relative to the total content of ruthenium (Ru) in the catalyst layer is preferably 20 to 80 mol %, and more preferably 23 to 77 mol %, on an elemental basis. By setting the content of ruthenium (Ru) in the first layer relative to the total content of ruthenium (Ru) in the catalyst layer within the above range, the overvoltage for chlorine generation can be further reduced and the efficiency of chlorine generation can be further improved.
本実施形態の電極は、上記のような積層構造を有する触媒層を基材上に設けたことで、イリジウム(Ir)を用いなくとも、塩素発生の過電圧が低く、塩素発生効率に優れており、入手が比較的容易な材料で実質的に構成されうる。このため、製造の容易性や価格等の面から、本実施形態の電極を構成する触媒層は、イリジウム(Ir)を実質的に含有しないことが好ましい。製造の容易性や価格等に実質的な影響が及ばない範囲であれば、微量のイリジウム(Ir)が金属酸化物の状態で触媒層に含まれていてもよい。
The electrode of this embodiment has a catalyst layer having the above-mentioned laminated structure provided on a substrate, and therefore has a low overvoltage for chlorine generation, excellent chlorine generation efficiency, and can be substantially made of relatively easily available materials, even without using iridium (Ir). For this reason, from the standpoint of ease of manufacture, cost, etc., it is preferable that the catalyst layer constituting the electrode of this embodiment does not substantially contain iridium (Ir). As long as it does not substantially affect ease of manufacture, cost, etc., a trace amount of iridium (Ir) may be contained in the catalyst layer in the form of a metal oxide.
(塩素発生電解用陽極の製造方法)
本実施形態の電極は、触媒層を基材上に形成することで製造することができる。基材上に触媒層を形成するには、例えば、各種金属や各種金属の塩等を所望とする比率で含有する、第1層用のコーティング液及び第2層用のコーティング液をそれぞれ調製する。そして、必要に応じてブラスト処理やエッチング処理等の表面処理を施した基材の表面に、調製した第1層用のコーティング液を塗布して塗工層を形成する。次いで、適当な温度条件下で焼成することで、基材上に第1層を形成することができる。 (Method for producing an anode for chlorine generating electrolysis)
The electrode of this embodiment can be manufactured by forming a catalyst layer on a substrate. To form a catalyst layer on a substrate, for example, a coating liquid for a first layer and a coating liquid for a second layer containing various metals and salts of various metals at a desired ratio are prepared. Then, the prepared coating liquid for the first layer is applied to the surface of the substrate, which has been subjected to a surface treatment such as blasting or etching as necessary, to form a coating layer. Next, the first layer can be formed on the substrate by baking under appropriate temperature conditions.
本実施形態の電極は、触媒層を基材上に形成することで製造することができる。基材上に触媒層を形成するには、例えば、各種金属や各種金属の塩等を所望とする比率で含有する、第1層用のコーティング液及び第2層用のコーティング液をそれぞれ調製する。そして、必要に応じてブラスト処理やエッチング処理等の表面処理を施した基材の表面に、調製した第1層用のコーティング液を塗布して塗工層を形成する。次いで、適当な温度条件下で焼成することで、基材上に第1層を形成することができる。 (Method for producing an anode for chlorine generating electrolysis)
The electrode of this embodiment can be manufactured by forming a catalyst layer on a substrate. To form a catalyst layer on a substrate, for example, a coating liquid for a first layer and a coating liquid for a second layer containing various metals and salts of various metals at a desired ratio are prepared. Then, the prepared coating liquid for the first layer is applied to the surface of the substrate, which has been subjected to a surface treatment such as blasting or etching as necessary, to form a coating layer. Next, the first layer can be formed on the substrate by baking under appropriate temperature conditions.
その後、形成した第1層の表面に、調製した第2層用のコーティング液を塗布して塗工層を形成する。次いで、適当な温度条件下で焼成することで、第1層上に第2層を形成し、積層構造を有する触媒層を基材上に設けた電極を得ることができる。なお、コーティング液の塗布と焼成を繰り返すことで、形成される触媒層の厚さや金属元素の含有量を制御することができる。焼成温度は、通常、450~550℃、好ましくは480~520℃とすればよい。
Then, the prepared coating liquid for the second layer is applied to the surface of the formed first layer to form a coating layer. Next, by baking under appropriate temperature conditions, the second layer is formed on the first layer, and an electrode having a catalyst layer with a laminated structure provided on a substrate can be obtained. Note that by repeating the application and baking of the coating liquid, the thickness of the catalyst layer formed and the content of metal elements can be controlled. The baking temperature is usually 450 to 550°C, preferably 480 to 520°C.
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。
The present invention will be specifically explained below based on examples, but the present invention is not limited to these examples. Note that "parts" and "%" in the examples and comparative examples are based on mass unless otherwise specified.
<基材の前処理>
100mm×100mm×1mmのチタン製のメッシュ基材を用意した。用意したメッシュ基材に、粒径212~300μmのアルミナ粉末を圧力0.3MPaで吹き付けてブラスト処理した。次いで、沸騰した20%塩酸に浸漬して20分間エッチング処理した後、イオン交換水で洗浄した。さらに、60℃のオーブンに入れて1時間乾燥させて、前処理済みの基材を得た。 <Pretreatment of substrate>
A titanium mesh substrate measuring 100 mm x 100 mm x 1 mm was prepared. Alumina powder having a particle size of 212 to 300 μm was sprayed onto the prepared mesh substrate at a pressure of 0.3 MPa to perform a blasting treatment. The substrate was then immersed in boiling 20% hydrochloric acid for 20 minutes for etching, and then washed with ion-exchanged water. The substrate was then placed in a 60°C oven and dried for 1 hour to obtain a pretreated substrate.
100mm×100mm×1mmのチタン製のメッシュ基材を用意した。用意したメッシュ基材に、粒径212~300μmのアルミナ粉末を圧力0.3MPaで吹き付けてブラスト処理した。次いで、沸騰した20%塩酸に浸漬して20分間エッチング処理した後、イオン交換水で洗浄した。さらに、60℃のオーブンに入れて1時間乾燥させて、前処理済みの基材を得た。 <Pretreatment of substrate>
A titanium mesh substrate measuring 100 mm x 100 mm x 1 mm was prepared. Alumina powder having a particle size of 212 to 300 μm was sprayed onto the prepared mesh substrate at a pressure of 0.3 MPa to perform a blasting treatment. The substrate was then immersed in boiling 20% hydrochloric acid for 20 minutes for etching, and then washed with ion-exchanged water. The substrate was then placed in a 60°C oven and dried for 1 hour to obtain a pretreated substrate.
<塩素発生電解用陽極の製造>
(実施例1)
[第1層の形成]
スズ(Sn)ヒドロキシアセトクロリド錯体(SnHAC)、ジルコニルクロリド錯体(ZrOCl2)、及びルテニウム(Ru)ヒドロキシアセトクロリド錯体(RuHAC)を含有する第1層用のコーティング液を調製した。第1層用のコーティング液中のSnHAC、ZrOCl2、及びRuHACの含有量は、それぞれ、200g/L、130g/L、及び95g/Lとした。前処理済みの基材の表面に調製した第1層用のコーティング液を塗布した後、室温(25℃)条件下で10分間乾燥した。次いで、オーブンに入れて60℃で10分間熱風乾燥した後、480℃で10分間焼成し、室温まで空冷した。上記の塗布から空冷までの工程を所定の回数繰り返して、基材上に第1層を形成した。 <Manufacture of anode for chlorine generating electrolysis>
Example 1
[Formation of the first layer]
A coating liquid for the first layer containing tin (Sn) hydroxyacetochloride complex (SnHAC), zirconyl chloride complex (ZrOCl 2 ), and ruthenium (Ru) hydroxyacetochloride complex (RuHAC) was prepared. The contents of SnHAC, ZrOCl 2 , and RuHAC in the coating liquid for the first layer were 200 g/L, 130 g/L, and 95 g/L, respectively. The coating liquid for the first layer prepared was applied to the surface of the pretreated substrate, and then dried for 10 minutes under room temperature (25° C.) conditions. Then, the substrate was placed in an oven and dried with hot air at 60° C. for 10 minutes, then baked at 480° C. for 10 minutes, and air-cooled to room temperature. The above process from application to air-cooling was repeated a predetermined number of times to form a first layer on the substrate.
(実施例1)
[第1層の形成]
スズ(Sn)ヒドロキシアセトクロリド錯体(SnHAC)、ジルコニルクロリド錯体(ZrOCl2)、及びルテニウム(Ru)ヒドロキシアセトクロリド錯体(RuHAC)を含有する第1層用のコーティング液を調製した。第1層用のコーティング液中のSnHAC、ZrOCl2、及びRuHACの含有量は、それぞれ、200g/L、130g/L、及び95g/Lとした。前処理済みの基材の表面に調製した第1層用のコーティング液を塗布した後、室温(25℃)条件下で10分間乾燥した。次いで、オーブンに入れて60℃で10分間熱風乾燥した後、480℃で10分間焼成し、室温まで空冷した。上記の塗布から空冷までの工程を所定の回数繰り返して、基材上に第1層を形成した。 <Manufacture of anode for chlorine generating electrolysis>
Example 1
[Formation of the first layer]
A coating liquid for the first layer containing tin (Sn) hydroxyacetochloride complex (SnHAC), zirconyl chloride complex (ZrOCl 2 ), and ruthenium (Ru) hydroxyacetochloride complex (RuHAC) was prepared. The contents of SnHAC, ZrOCl 2 , and RuHAC in the coating liquid for the first layer were 200 g/L, 130 g/L, and 95 g/L, respectively. The coating liquid for the first layer prepared was applied to the surface of the pretreated substrate, and then dried for 10 minutes under room temperature (25° C.) conditions. Then, the substrate was placed in an oven and dried with hot air at 60° C. for 10 minutes, then baked at 480° C. for 10 minutes, and air-cooled to room temperature. The above process from application to air-cooling was repeated a predetermined number of times to form a first layer on the substrate.
[第2層の形成]
塩化チタン錯体(TiCl4)、及びRuHACを含有する第2層用のコーティング液を調製した。第2層用のコーティング液中のTiCl4及びRuHACの含有量は、それぞれ、260g/L及び95g/Lとした。形成した第1層の表面に調製した第2層用のコーティング液を塗布した後、室温条件下で10分間乾燥した。次いで、オーブンに入れて60℃で10分間熱風乾燥した後、480℃で10分間焼成し、室温まで空冷した。上記の塗布から空冷までの工程を所定の回数繰り返して第1層上に第2層を形成し、第1層及び第2層からなる触媒層が基材上に配置された塩素発生電解用陽極(電極)を得た。得られた電極の触媒層(第1層及び第2層)中の金属元素の含有量(モル比及びモル%)、並びに層間(第1層及び第2層)のルテニウム(Ru)の比率(モル%)を表1に示す。 [Formation of the second layer]
A coating liquid for the second layer containing titanium chloride complex (TiCl 4 ) and RuHAC was prepared. The contents of TiCl 4 and RuHAC in the coating liquid for the second layer were 260 g/L and 95 g/L, respectively. The coating liquid for the second layer prepared was applied to the surface of the formed first layer, and then dried at room temperature for 10 minutes. Then, the coating liquid was placed in an oven and dried with hot air at 60° C. for 10 minutes, then baked at 480° C. for 10 minutes, and air-cooled to room temperature. The above steps from application to air-cooling were repeated a predetermined number of times to form a second layer on the first layer, and an anode (electrode) for chlorine generation electrolysis was obtained in which a catalyst layer consisting of the first layer and the second layer was disposed on the substrate. The contents (molar ratio and mol%) of metal elements in the catalyst layer (first layer and second layer) of the obtained electrode, and the ratio (mol%) of ruthenium (Ru) between the layers (first layer and second layer) are shown in Table 1.
塩化チタン錯体(TiCl4)、及びRuHACを含有する第2層用のコーティング液を調製した。第2層用のコーティング液中のTiCl4及びRuHACの含有量は、それぞれ、260g/L及び95g/Lとした。形成した第1層の表面に調製した第2層用のコーティング液を塗布した後、室温条件下で10分間乾燥した。次いで、オーブンに入れて60℃で10分間熱風乾燥した後、480℃で10分間焼成し、室温まで空冷した。上記の塗布から空冷までの工程を所定の回数繰り返して第1層上に第2層を形成し、第1層及び第2層からなる触媒層が基材上に配置された塩素発生電解用陽極(電極)を得た。得られた電極の触媒層(第1層及び第2層)中の金属元素の含有量(モル比及びモル%)、並びに層間(第1層及び第2層)のルテニウム(Ru)の比率(モル%)を表1に示す。 [Formation of the second layer]
A coating liquid for the second layer containing titanium chloride complex (TiCl 4 ) and RuHAC was prepared. The contents of TiCl 4 and RuHAC in the coating liquid for the second layer were 260 g/L and 95 g/L, respectively. The coating liquid for the second layer prepared was applied to the surface of the formed first layer, and then dried at room temperature for 10 minutes. Then, the coating liquid was placed in an oven and dried with hot air at 60° C. for 10 minutes, then baked at 480° C. for 10 minutes, and air-cooled to room temperature. The above steps from application to air-cooling were repeated a predetermined number of times to form a second layer on the first layer, and an anode (electrode) for chlorine generation electrolysis was obtained in which a catalyst layer consisting of the first layer and the second layer was disposed on the substrate. The contents (molar ratio and mol%) of metal elements in the catalyst layer (first layer and second layer) of the obtained electrode, and the ratio (mol%) of ruthenium (Ru) between the layers (first layer and second layer) are shown in Table 1.
(実施例2~6、比較例1~5)
表1に示す層構成、触媒層(第1層及び第2層)中の金属元素の含有量(モル比及びモル%)、並びに層間(第1層及び第2層)のルテニウム(Ru)の比率(モル%)となるように、コーティング液の組成等を適宜調整したこと以外は、前述の実施例1と同様にして、塩素発生電解用陽極(電極)を得た。なお、イリジウム(Ir)源としては、イリジウム(Ir)ヒドロキシアセトクロリド錯体(IrHAC)を用いた。実施例2の塩素発生電解用陽極の断面の電子顕微鏡写真を図2に示す。 (Examples 2 to 6, Comparative Examples 1 to 5)
A chlorine generating electrolysis anode (electrode) was obtained in the same manner as in Example 1 described above, except that the composition of the coating solution was appropriately adjusted so that the layer structure, the content (molar ratio and mol%) of the metal elements in the catalyst layer (first layer and second layer), and the ratio (mol%) of ruthenium (Ru) between the layers (first layer and second layer) were as shown in Table 1. Note that iridium (Ir) hydroxyacetochloride complex (IrHAC) was used as the iridium (Ir) source. An electron microscope photograph of the cross section of the chlorine generating electrolysis anode of Example 2 is shown in FIG.
表1に示す層構成、触媒層(第1層及び第2層)中の金属元素の含有量(モル比及びモル%)、並びに層間(第1層及び第2層)のルテニウム(Ru)の比率(モル%)となるように、コーティング液の組成等を適宜調整したこと以外は、前述の実施例1と同様にして、塩素発生電解用陽極(電極)を得た。なお、イリジウム(Ir)源としては、イリジウム(Ir)ヒドロキシアセトクロリド錯体(IrHAC)を用いた。実施例2の塩素発生電解用陽極の断面の電子顕微鏡写真を図2に示す。 (Examples 2 to 6, Comparative Examples 1 to 5)
A chlorine generating electrolysis anode (electrode) was obtained in the same manner as in Example 1 described above, except that the composition of the coating solution was appropriately adjusted so that the layer structure, the content (molar ratio and mol%) of the metal elements in the catalyst layer (first layer and second layer), and the ratio (mol%) of ruthenium (Ru) between the layers (first layer and second layer) were as shown in Table 1. Note that iridium (Ir) hydroxyacetochloride complex (IrHAC) was used as the iridium (Ir) source. An electron microscope photograph of the cross section of the chlorine generating electrolysis anode of Example 2 is shown in FIG.
<評価>
(塩素(Cl2)発生の過電圧、及び塩素(Cl2)発生の選択性)
製造した電極をアノードとして用いた塩素発生用の電解セルを組み立てた。組み立てた電解セルを使用し、以下に示す条件にしたがって、塩素(Cl2)発生の過電圧、及び発生した塩素(Cl2)に対する酸素(O2)の比率(O2/Cl2(体積%))をそれぞれ測定した。結果を表2に示す。
・電流密度:4kA/m2
・電解液:200g/L塩化ナトリウム(NaCl)水溶液
・電解液のpH:3
・電解液の温度:90℃ <Evaluation>
(Overpotential for Chlorine (Cl 2 ) Evolution and Selectivity for Chlorine (Cl 2 ) Evolution)
An electrolytic cell for chlorine generation was assembled using the produced electrode as an anode. Using the assembled electrolytic cell, the overvoltage for chlorine (Cl 2 ) generation and the ratio of oxygen (O 2 ) to the generated chlorine (Cl 2 ) (O 2 /Cl 2 (vol %)) were measured under the conditions shown below. The results are shown in Table 2.
Current density: 4 kA / m2
Electrolyte: 200 g/L sodium chloride (NaCl) aqueous solution pH of electrolyte: 3
Electrolyte temperature: 90°C
(塩素(Cl2)発生の過電圧、及び塩素(Cl2)発生の選択性)
製造した電極をアノードとして用いた塩素発生用の電解セルを組み立てた。組み立てた電解セルを使用し、以下に示す条件にしたがって、塩素(Cl2)発生の過電圧、及び発生した塩素(Cl2)に対する酸素(O2)の比率(O2/Cl2(体積%))をそれぞれ測定した。結果を表2に示す。
・電流密度:4kA/m2
・電解液:200g/L塩化ナトリウム(NaCl)水溶液
・電解液のpH:3
・電解液の温度:90℃ <Evaluation>
(Overpotential for Chlorine (Cl 2 ) Evolution and Selectivity for Chlorine (Cl 2 ) Evolution)
An electrolytic cell for chlorine generation was assembled using the produced electrode as an anode. Using the assembled electrolytic cell, the overvoltage for chlorine (Cl 2 ) generation and the ratio of oxygen (O 2 ) to the generated chlorine (Cl 2 ) (O 2 /Cl 2 (vol %)) were measured under the conditions shown below. The results are shown in Table 2.
Current density: 4 kA / m2
Electrolyte: 200 g/L sodium chloride (NaCl) aqueous solution pH of electrolyte: 3
Electrolyte temperature: 90°C
(触媒層の安定性)
実施例1及び4の電極をアノードとしてそれぞれ用いた塩素発生用の電解セルを組み立てた。組み立てた電解セルを使用し、以下に示す条件にしたがって電解して、触媒層の安定性を評価した。電解時間(h)に対してセル電圧(V)をプロットしたグラフを図3に示す。図3に示すように、実施例1及び4のいずれの電極についても、長期間電解してもセル電圧が堅調に変化することがなく、安定した触媒層が形成されていることがわかる。
・電流密度:8kA/m2
・電解液:200g/L塩化ナトリウム(NaCl)水溶液
・電解液のpH:3
・電解液の温度:90℃ (Stability of the catalyst layer)
Electrolysis cells for generating chlorine were assembled using the electrodes of Examples 1 and 4 as anodes. Using the assembled electrolysis cells, electrolysis was performed under the conditions shown below to evaluate the stability of the catalytic layer. A graph plotting the cell voltage (V) against the electrolysis time (h) is shown in FIG. 3. As shown in FIG. 3, for both the electrodes of Examples 1 and 4, the cell voltage did not change steadily even after long-term electrolysis, and it was found that a stable catalytic layer was formed.
Current density: 8 kA / m2
Electrolyte: 200 g/L sodium chloride (NaCl) aqueous solution pH of electrolyte: 3
Electrolyte temperature: 90°C
実施例1及び4の電極をアノードとしてそれぞれ用いた塩素発生用の電解セルを組み立てた。組み立てた電解セルを使用し、以下に示す条件にしたがって電解して、触媒層の安定性を評価した。電解時間(h)に対してセル電圧(V)をプロットしたグラフを図3に示す。図3に示すように、実施例1及び4のいずれの電極についても、長期間電解してもセル電圧が堅調に変化することがなく、安定した触媒層が形成されていることがわかる。
・電流密度:8kA/m2
・電解液:200g/L塩化ナトリウム(NaCl)水溶液
・電解液のpH:3
・電解液の温度:90℃ (Stability of the catalyst layer)
Electrolysis cells for generating chlorine were assembled using the electrodes of Examples 1 and 4 as anodes. Using the assembled electrolysis cells, electrolysis was performed under the conditions shown below to evaluate the stability of the catalytic layer. A graph plotting the cell voltage (V) against the electrolysis time (h) is shown in FIG. 3. As shown in FIG. 3, for both the electrodes of Examples 1 and 4, the cell voltage did not change steadily even after long-term electrolysis, and it was found that a stable catalytic layer was formed.
Current density: 8 kA / m2
Electrolyte: 200 g/L sodium chloride (NaCl) aqueous solution pH of electrolyte: 3
Electrolyte temperature: 90°C
本発明の電極は、イリジウム(Ir)を用いなくとも、塩素発生の過電圧が低く、塩素発生効率に優れており、塩素発生電解用の陽極(アノード)として有用である。
The electrode of the present invention has a low overvoltage for chlorine generation and excellent chlorine generation efficiency even without using iridium (Ir), making it useful as an anode for chlorine generation electrolysis.
2:基材
5a:第1層
5b:第2層
5:触媒層
10:塩素発生電解用陽極
2:Substrate 5a: First layer 5b: Second layer 5: Catalyst layer 10: Anode for chlorine generating electrolysis
5a:第1層
5b:第2層
5:触媒層
10:塩素発生電解用陽極
2:
Claims (4)
- チタン又はチタン合金で形成された基材と、
前記基材上に配置される第1層及び前記第1層上に配置される第2層を有する触媒層と、を備え、
前記第1層は、ルテニウム(Ru)、スズ(Sn)、及びジルコニウム(Zr)のそれぞれの酸化物を含有し、
前記第2層は、ルテニウム(Ru)及びチタン(Ti)のそれぞれの酸化物を含有する塩素発生電解用陽極。 A substrate formed of titanium or a titanium alloy;
a catalyst layer having a first layer disposed on the substrate and a second layer disposed on the first layer;
The first layer contains oxides of ruthenium (Ru), tin (Sn), and zirconium (Zr),
The second layer is an anode for chlorine generating electrolysis, which contains oxides of ruthenium (Ru) and titanium (Ti). - 前記第1層中のルテニウム(Ru)、スズ(Sn)、及びジルコニウム(Zr)の含有量が、元素基準で、ルテニウム(Ru)7~40モル%、スズ(Sn)50~90モル%、及びジルコニウム(Zr)3~10モル%(但し、Ru、Sn、及びZrの合計を100モル%とする)であり、
前記第2層中のルテニウム(Ru)及びチタン(Ti)の含有量が、元素基準で、ルテニウム(Ru)5~40モル%及びチタン(Ti)60~95モル%(但し、Ru及びTiの合計を100モル%とする)である請求項1に記載の塩素発生電解用陽極。 the first layer contains, on an elemental basis, ruthenium (Ru) at 7 to 40 mol %, tin (Sn) at 50 to 90 mol %, and zirconium (Zr) at 3 to 10 mol % (wherein the total of Ru, Sn, and Zr is 100 mol %);
The anode for chlorine generating electrolysis according to claim 1, wherein the contents of ruthenium (Ru) and titanium (Ti) in the second layer are, on an elemental basis, 5 to 40 mol % for ruthenium (Ru) and 60 to 95 mol % for titanium (Ti) (wherein the total of Ru and Ti is 100 mol %). - 前記触媒層中のルテニウム(Ru)の合計含有量に占める、前記第1層中のルテニウム(Ru)の含有量が、元素基準で、20~80モル%である請求項1又は2に記載の塩素発生電解用陽極。 The anode for chlorine generating electrolysis according to claim 1 or 2, wherein the content of ruthenium (Ru) in the first layer is 20 to 80 mol% on an elemental basis relative to the total content of ruthenium (Ru) in the catalyst layer.
- 前記触媒層が、イリジウム(Ir)を実質的に含有しない請求項1~3のいずれか一項に記載の塩素発生電解用陽極。
The anode for chlorine generating electrolysis according to any one of claims 1 to 3, wherein the catalyst layer is substantially free of iridium (Ir).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022199409 | 2022-12-14 | ||
JP2022-199409 | 2022-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024127921A1 true WO2024127921A1 (en) | 2024-06-20 |
Family
ID=91485633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/041642 WO2024127921A1 (en) | 2022-12-14 | 2023-11-20 | Positive electrode for chlorine generation electrolysis |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202428943A (en) |
WO (1) | WO2024127921A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5178787A (en) * | 1974-12-28 | 1976-07-08 | Tdk Electronics Co Ltd | Denkaiyodenkyoku |
JPH05148676A (en) * | 1990-08-31 | 1993-06-15 | Imperial Chem Ind Plc <Ici> | Electrode, preparation thereof, electrolytic cell having said electrode and method of electrolysis |
KR20050090700A (en) * | 2004-03-09 | 2005-09-14 | (주)에이엠티기술 | Metal mixed oxide electrode and making method of the same |
JP2007507612A (en) * | 2003-10-08 | 2007-03-29 | アクゾ ノーベル エヌ.ブイ. | electrode |
CN103774177A (en) * | 2014-01-26 | 2014-05-07 | 福州大学 | Ruthenium zirconium tin oxide-embedded active coating and preparation method thereof |
JP2020045550A (en) * | 2018-09-21 | 2020-03-26 | 旭化成株式会社 | Method for manufacturing electrode |
-
2023
- 2023-11-20 WO PCT/JP2023/041642 patent/WO2024127921A1/en unknown
- 2023-12-12 TW TW112148182A patent/TW202428943A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5178787A (en) * | 1974-12-28 | 1976-07-08 | Tdk Electronics Co Ltd | Denkaiyodenkyoku |
JPH05148676A (en) * | 1990-08-31 | 1993-06-15 | Imperial Chem Ind Plc <Ici> | Electrode, preparation thereof, electrolytic cell having said electrode and method of electrolysis |
JP2007507612A (en) * | 2003-10-08 | 2007-03-29 | アクゾ ノーベル エヌ.ブイ. | electrode |
KR20050090700A (en) * | 2004-03-09 | 2005-09-14 | (주)에이엠티기술 | Metal mixed oxide electrode and making method of the same |
CN103774177A (en) * | 2014-01-26 | 2014-05-07 | 福州大学 | Ruthenium zirconium tin oxide-embedded active coating and preparation method thereof |
JP2020045550A (en) * | 2018-09-21 | 2020-03-26 | 旭化成株式会社 | Method for manufacturing electrode |
Also Published As
Publication number | Publication date |
---|---|
TW202428943A (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning | |
AU2005325733B2 (en) | High efficiency hypochlorite anode coating | |
US4070504A (en) | Method of producing a valve metal electrode with valve metal oxide semi-conductor face and methods of manufacture and use | |
KR100735588B1 (en) | Electrolytic Cathode of Aqueous Solution | |
WO2018097069A1 (en) | Electrode for electrolysis | |
US7001494B2 (en) | Electrolytic cell and electrodes for use in electrochemical processes | |
US20140224667A1 (en) | Catalyst Coating and Process for Production Thereof | |
US4005004A (en) | Electrode coating consisting of a solid solution of a noble metal oxide, titanium oxide, and zirconium oxide | |
CA2522900C (en) | Smooth surface morphology anode coatings | |
Lindberg et al. | Sources of oxygen produced in the chlorate process utilizing dimensionally stable anode (DSA) electrodes doped by Sn and Sb | |
JP2021529251A (en) | Anode for electrolysis generation of chlorine | |
JP2836840B2 (en) | Electrode for chlorine generation and method for producing the same | |
WO2024127921A1 (en) | Positive electrode for chlorine generation electrolysis | |
WO2022018962A1 (en) | Oxygen-generating electrode | |
JPH0633489B2 (en) | Electrode for dilute salt water electrolysis | |
JPH08199384A (en) | Electrolyzing electrode and its production | |
KR102503040B1 (en) | Anode Comprising Metal Phosphide Complex and Preparation Method thereof | |
KR102576668B1 (en) | Electrode for Electrolysis | |
JPH05255881A (en) | Electrode for generation of oxygen and its production | |
KR100770736B1 (en) | Ceramic electrode for water treatment, manufacturing method and electrode structure using same | |
RU2818275C1 (en) | Oxygen generation electrode | |
JPH0238672B2 (en) | ||
TW202503120A (en) | Electrode for electrolysis and method for manufacturing the same | |
JPH0238671B2 (en) | ||
EP2450475B1 (en) | A method for a metal electrowinning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23903218 Country of ref document: EP Kind code of ref document: A1 |