WO2024124535A1 - 转移载板、转移组件及微器件转移方法 - Google Patents
转移载板、转移组件及微器件转移方法 Download PDFInfo
- Publication number
- WO2024124535A1 WO2024124535A1 PCT/CN2022/139606 CN2022139606W WO2024124535A1 WO 2024124535 A1 WO2024124535 A1 WO 2024124535A1 CN 2022139606 W CN2022139606 W CN 2022139606W WO 2024124535 A1 WO2024124535 A1 WO 2024124535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- response
- micro
- transfer
- accommodating
- adhesive layer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J201/00—Adhesives based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/33—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/52—Mounting semiconductor bodies in containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
Definitions
- the present application relates to the field of display technology, and in particular to a transfer carrier, a transfer component and a micro-device transfer method.
- Micro LED Micro Light Emitting Diode
- Traditional laser-assisted transfer sets a response material on the transfer carrier, and uses laser to irradiate the corresponding position to decompose the response material and produce gas, bubbles, or changes in the surface state to detach the chip attached to the response material.
- some response materials will produce residual glue that is difficult to remove after decomposition and adhere to the surface of the chip, thus affecting subsequent processes and even product quality.
- the embodiments of the present application provide a transfer carrier, a transfer assembly and a micro-device transfer method, which can reduce the residual glue problem in the micro-device transfer process.
- an embodiment of the present application provides a transfer carrier, comprising: a base plate, having a first surface and a second surface opposite to each other in a first direction; a response portion, arranged on a side of the base plate close to the first surface; the response portion has a height dimension along the first direction; an adhesion layer, arranged on the first surface, and enclosed on the base plate to form a receiving cavity for accommodating the response portion, the receiving cavity penetrates the surface of the adhesion layer facing away from the base plate; the receiving cavity has a receiving depth along the first direction; the receiving depth is greater than the height dimension.
- the adhesive layer encloses and forms a plurality of the accommodating cavities that are spaced apart from each other; the plurality of the accommodating cavities accommodate the multiple response parts in a one-to-one correspondence; and the height dimension of each of the response parts is respectively smaller than the accommodating depth of the corresponding accommodating cavity.
- the volume of each of the response parts is greater than or equal to 2% of the volume of the corresponding accommodating cavity.
- the accommodating cavity penetrates the surface of the adhesive layer close to the bottom plate; one end of the responding part is connected to the first surface.
- the response portion is spaced apart from the adhesion layer.
- the response portion includes a plurality of response members spaced apart from each other.
- a cross section of the accommodating cavity parallel to the first surface is a centrally symmetrical figure.
- the response part is any one or a combination of multiple of polyimide, triazene polymer, epoxy resin, polyurethane, fluorocarbon polymer, acrylic polymer, imide polymer and amide polymer.
- An embodiment of the present application provides a transfer component, comprising: a transfer carrier as described in any one of the above; a micro device, arranged on a side of the response portion away from the base plate and spaced apart from the response portion; the micro device is attached to the adhesive layer and covers the accommodating cavity.
- the adhesion layer encloses a plurality of the accommodating cavities that are spaced apart from each other; the plurality of the accommodating cavities accommodate a plurality of the response parts in a one-to-one correspondence; and the height dimension of each of the response parts is smaller than the accommodating depth of the corresponding accommodating cavity; there are a plurality of the microdevices, and the plurality of the microdevices cover at least part of the plurality of the accommodating cavities in a one-to-one correspondence, and the plurality of the microdevices are spaced apart from the corresponding response parts.
- An embodiment of the present application further provides a micro-device transfer method, comprising: a transfer carrier as described in any one of the foregoing items or a micro-device transfer assembly as described in any one of the foregoing items.
- the micro-device transfer method includes irradiating the response portion with a laser to decompose the response portion and generate gas.
- the adhesion layer can be used to adhere the microdevice, and the response layer is irradiated with a laser so that the response layer can be decomposed and generate gas and fill the accommodating cavity.
- the generated gas pressure acts on the microdevice, which can push the microdevice down to the target substrate, and the height dimension of the response layer is smaller than the accommodating depth of the accommodating cavity, so that the surface of the microdevice will not contact the response part during the transfer process, thereby reducing the residual glue problem.
- FIG. 1 is a schematic diagram of the structure of a transfer carrier provided in one embodiment of the present application.
- Fig. 2 is a schematic cross-sectional view of the A-A section of Fig. 1.
- Fig. 3 is a schematic cross-sectional view taken along line A-A in another embodiment.
- FIG. 4 is a schematic structural diagram of a transfer carrier provided in another embodiment.
- Fig. 5 is a schematic cross-sectional view taken along line A-A in another embodiment.
- Fig. 6 is a schematic cross-sectional view taken along line A-A in another embodiment.
- FIG. 7 is a schematic diagram of the structure of a transfer carrier provided in another embodiment of the present application.
- FIG8 is a schematic cross-sectional view of the section taken along line B-B of FIG7 .
- FIG. 9 is a schematic diagram of the structure of a transfer assembly provided in one embodiment of the present application.
- Fig. 10 is a schematic cross-sectional view taken along line C-C of Fig. 9 in one embodiment.
- Fig. 11 is a schematic cross-sectional view taken along line C-C of Fig. 9 in another embodiment.
- FIG. 12 is a schematic diagram showing the principle of a micro-device transfer method provided in one embodiment of the present application.
- 100 transfer carrier; 10: bottom plate; 11: first surface; 12: second surface; 20: response part; 21: response member; 30: adhesive layer; 31: accommodating cavity; 32: adhesive member; 40: light blocking material; 200: micro device; 300: transfer component.
- the principle of laser-assisted transfer technology is to attach one or more layers of response materials to the transfer carrier to adhere micro devices such as Micro LED chips.
- the response material at the location of the chip to be transferred is irradiated with laser.
- the existing materials that are easily decomposed by laser and produce gas have basically no stickiness on the surface after film curing, so micro devices cannot be adhered.
- the first embodiment of the present application provides a transfer carrier to solve at least part of the above problems.
- the first embodiment of the present application provides a transfer carrier 100, as shown in Figures 1 and 2, the transfer carrier 100 includes a base plate 10, a response portion 20 and an adhesive layer 30.
- the base plate 10 has a first surface 11 and a second surface 12 that are opposite to each other in a first direction.
- the response portion 20 is disposed on a side of the base plate 10 close to the first surface 11.
- the response portion 20 has a height dimension H1 along the first direction.
- the adhesive layer 30 is disposed on the first surface 11, and a receiving cavity 31 for accommodating the response portion 20 is enclosed on the base plate 10, and the receiving cavity 31 passes through the surface of the adhesive layer 30 facing away from the base plate 10.
- the receiving cavity 31 has a receiving depth H2 along the first direction.
- the receiving depth H2 is greater than the height dimension H1.
- the transfer carrier 100 provided in this embodiment can be used to transfer micro devices such as Micro LED chips or other devices with similar transfer requirements.
- the substrate 10 can be, for example, a transparent plate such as glass, sapphire, quartz, etc. that can transmit laser light.
- the material of the response part 20 can be a material that is easily decomposed and produces gas under the irradiation of a specific laser wavelength.
- a polymer material that is easily decomposed and easily produces gaseous volatile decomposition products after irradiation with ultraviolet or deep ultraviolet wavelength lasers such as photodegradable triazine polymers (TP), polyimide (PI), epoxy resin, polyurethane, fluorocarbon polymers, acrylic polymers, imide polymers and amide polymers, etc.
- the response part 20 can be a combination of any one or more of the above materials.
- the adhesion layer 30 can be an organic silicone material, or it can be other viscous materials that absorb less or are not easy to decompose under specific wavelength laser irradiation. It can be a combination of one or more materials and can be used to adhere micro devices.
- the adhesive layer 30 can form a receiving cavity 31 corresponding to each response part 20.
- the receiving cavity 31 penetrates the surface of the adhesive layer 30 facing away from the bottom plate 10.
- the receiving cavity 31 penetrates the upper surface of the adhesive layer 30, that is, the receiving cavity 31 is connected to the external environment on the side of the adhesive layer 30 facing away from the bottom plate 10.
- the receiving cavity 31 can also penetrate the surface of the adhesive layer 30 close to the bottom plate 10.
- one end of the response part 20 is connected to the first surface 11.
- the receiving depth H2 of the receiving cavity 31 is also equal to the thickness of the adhesive layer 30.
- the adhesive layer 30 is generally a thin film layer of about 2 microns, and the height of the response part 20 can be about 1.6 microns.
- the micro-device When the transfer carrier 100 provided in this embodiment is used to transfer the micro-device, the micro-device can be adhered by the adhesive layer 30, and the micro-device covers the corresponding accommodating cavity 31, and the micro-device and the adhesive layer 30 (and the bottom plate 10) are enclosed to form a closed chamber.
- the transfer carrier When the transfer carrier is moved to the top of the target carrier, the corresponding response part 20 is irradiated with laser, and the response part 20 is laser decomposed and generates gas to fill the closed chamber, and the generated gas pressure can push the micro-device to fall onto the target substrate.
- the transfer carrier 100 does not require complex modification of the response material, nor does it require complex processes to adhere the chip, which can reduce the process difficulty and reduce the problem of residual glue.
- the adhesion layer 30 may have a cavity structure without a response part 20, or a cavity structure formed after the response part 20 in the accommodating cavity 31 originally provided with the response part 20 is decomposed. These cavity structures may not be counted in the number of accommodating cavities 31.
- the accommodating cavity 31 refers to the part that accommodates the response part 20.
- the number of the response parts 20 is multiple, and the adhesive layer 30 encloses and forms multiple accommodating cavities 31 that are spaced apart from each other.
- the multiple accommodating cavities 31 accommodate the multiple response parts 20 one by one.
- the height dimension H1 of each response part 20 is smaller than the accommodating depth H2 of the corresponding accommodating cavity 31.
- the height dimensions H1 of the multiple response parts 20 can be the same or different, and the accommodating depths H2 of the multiple accommodating cavities 31 can also be the same or different, as long as the height dimension H1 of any response part 20 is smaller than the accommodating depth H2 of the accommodating cavity 31 in which it is located.
- the shapes and sizes of the multiple response parts 20 can be the same or different, and the shapes and sizes of the multiple accommodating cavities 31 can also be the same or different.
- the volume of each response part 20 is greater than or equal to 2% of the volume of the corresponding accommodating cavity 31, that is, the volume of any response part 20 is greater than or equal to 2% of the volume of the accommodating cavity 31 in which it is located, so that after decomposition and generation of gas, it can fill the entire accommodating cavity 31 to generate sufficient thrust to push the micro device down.
- the accommodating cavity 31 may also penetrate the surface of the bottom plate 10 close to the adhesive layer 30, that is, a groove is provided on the bottom plate 10, and part of the accommodating cavity 31 is recessed into the bottom plate 10, and the accommodating depth H2 of the accommodating cavity 31 is greater than the thickness of the adhesive layer 30.
- the adhesive layer 30 needs to provide a certain degree of viscosity, and can be set to be thinner and have a larger adhesive area. Expanding the accommodating depth (volume) of the accommodating cavity 31 to the bottom plate 10 can provide a larger space to meet the requirements of the response part 20 to generate sufficient gas volume.
- the adhesive layer 30 may be a whole patterned adhesive layer as shown in FIG. 1 , and the position corresponding to the accommodating cavity 31 is an opening of the adhesive layer 30 , or the adhesive layer 30 may include a plurality of adhesive members 32 spaced apart from each other, as shown in FIG. 4 , each adhesive member 32 is, for example, in the form of an annular structure, and an accommodating cavity 31 is formed in the middle of each annular structure, and the plurality of annular structures are spaced apart from each other.
- a light blocking material 40 may be disposed on one side of the base plate 10, so that the orthographic projection of the light blocking material 40 on the base plate 10 is located at the gap between the multiple accommodating cavities 31.
- the light blocking material 40 shown in FIG5 may be disposed between the base plate 10 and the adhesive layer 30, or may be disposed on the side of the base plate 10 facing away from the adhesive layer 30 as shown in FIG6.
- the adhesive layer 30 includes multiple adhesive attachments 32, the orthographic projection of the light blocking material 40 on the base plate 10 is located at the gap between the multiple adhesive attachments 32.
- the light blocking material 40 may block the transmission of laser light of a specific wavelength, and may be, for example, a reflective material, specifically, a metal film such as Cr (chromium), Ti (titanium) or Mo (molybdenum) that has good irradiation and can reflect laser light, or may be a DBR (Distributed Bragg Reflection) reflective layer.
- a reflective material specifically, a metal film such as Cr (chromium), Ti (titanium) or Mo (molybdenum) that has good irradiation and can reflect laser light, or may be a DBR (Distributed Bragg Reflection) reflective layer.
- the provision of the light blocking material 40 may reduce the impact on the responding part 20 in the peripheral accommodating cavity 31.
- the response part 20 and the adhesion layer 30 are spaced apart, that is, a certain free space is left around the response part 20 and between the material of the adhesion layer 30, so that the gas decomposed by the response part 20 can quickly fill the cavity, and the gas pressure generated acts evenly on the surface of the micro-device, which makes it easy to push the micro-device to fall vertically, thereby improving the transfer accuracy.
- the response part 20 includes a plurality of response members 21 spaced apart from each other.
- the plurality of response members 21 may be, for example, independent blocks or columns, and the present embodiment does not limit the specific shape, quantity or arrangement of the plurality of response members 21. It can be understood that a response part 20 is divided into a plurality of independent small pieces, which can be decomposed faster when irradiated by laser.
- the cross section of the accommodating cavity 31 parallel to the first surface 11 is a central symmetrical figure. Since the adhesive layer 30 is generally a thin film layer of about 2 microns, the cross section of the accommodating cavity 31 parallel to the first surface 11 or the orthographic projection of the accommodating cavity 31 on the first surface 11 can be regarded as the shape of the accommodating cavity 31, which can be a shape matching the micro device, and can be a central symmetrical figure such as a circle, an ellipse, a square, a rhombus, a regular hexagon, etc. When the gas generated after the response part 20 is decomposed fills the accommodating cavity 31, a uniform thrust can be generated to make the micro device fall vertically.
- a method for manufacturing the transfer carrier 100 provided in this embodiment is as follows: (1) Using a spin coating or a doctor blade coating process, a continuous non-patterned adhesive material film layer is formed on the base plate 10. (2) Using a mold embossing method, a pattern of the accommodating cavity 31 is pressed out. (3) The adhesive material film layer is solidified to form an adhesive layer 30 having an accommodating cavity 31 on the base plate 10. (4) Using an inkjet printing process, a response material is printed in the accommodating cavity 31. (5) The response material solvent is removed and the response material is solidified to form a response portion 20. Finally, the transfer carrier 100 is obtained.
- the height dimension H1 of the response portion 20 formed by solidification can be controlled to be lower than the accommodating depth H2 of the accommodating cavity 31 by controlling the size of the printing nozzle (i.e., the ink droplet size) and the solid content ratio of the response material.
- the above-mentioned manufacturing process can use relatively easy-to-obtain materials and equipment, as well as a relatively simple process to manufacture the transfer carrier 100.
- the transfer carrier 100 manufactured by other methods is also within the scope of protection claimed in this embodiment.
- the second embodiment of the present application provides a transfer assembly 300, which includes the transfer carrier 100 and the micro device 200 provided in the first embodiment.
- the micro device 200 is disposed on a side of the response portion 20 away from the base plate 10 and is spaced apart from the response portion 20.
- the micro device 200 is attached to the adhesive layer 30 and covers the accommodating cavity 31.
- the microdevice 200 may be a Micro LED chip or other device with similar mass transfer requirements. This embodiment does not limit the number of microdevices 200.
- One microdevice 200 may cover one accommodating cavity 31 or multiple accommodating cavities 31.
- the adhesive layer 30 encloses and forms multiple accommodating cavities 31 spaced apart from each other.
- the multiple accommodating cavities 31 accommodate multiple response parts 20 one by one.
- the height dimension of each response part 20 is smaller than the accommodating depth of the corresponding accommodating cavity 31.
- each micro-device 200 covers a receiving cavity 31, so that the bottom plate 10, the adhesive layer 30 and the micro-device 200 enclose a closed space, and when the response part 20 in the closed space is decomposed by laser irradiation and generates gas, it can fill the receiving cavity and push the micro-device 200 to fall.
- each receiving cavity 31 is covered by the micro-device 200, and the receiving cavity 31 covered by the micro-device 200 can be called a target receiving cavity. That is, multiple micro-devices 200 cover multiple target receiving cavities one by one.
- the width of the accommodating cavity 31 is smaller than the width of the corresponding micro device 200.
- the width from the edge of each accommodating cavity 31 to the edge of the micro device 200 covered thereon is greater than 0.5 microns, and can be specifically 1 micron.
- the third embodiment of the present application provides a method for transferring a micro-device, using any one of the transfer carriers 100 in the aforementioned first embodiment or any one of the transfer components 300 provided in the aforementioned second embodiment.
- a laser is used to irradiate the response portion 20 so that the response portion 20 decomposes and generates gas.
- the second one on the left on the transfer carrier 100 is a target transfer micro-device, and a laser is used to irradiate the target response portion 20 corresponding to the target transfer micro-device among the multiple response portions 20, and the target response portion 20 decomposes and generates gas.
- the generated gas fills the accommodating cavity 31 corresponding to the target response portion 20, and the generated gas pressure pushes the target micro-device to fall onto the target substrate, completing the transfer of the target micro-device.
- the method for transferring a micro-device provided in this embodiment has the beneficial effects of the first embodiment or the second embodiment described above, which will not be repeated here.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Die Bonding (AREA)
- Led Device Packages (AREA)
- Adhesive Tapes (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
- Micromachines (AREA)
Abstract
本申请实施例公开了一种转移载板、转移组件及微器件转移方法,本申请一个实施例提供的转移载板包括:底板,具有在第一方向上相对的第一表面和第二表面;响应部,设置在所述底板靠近所述第一表面的一侧;所述响应部具有沿所述第一方向的高度尺寸;粘附层,设置在所述第一表面上,且在所述底板上围合形成容纳所述响应部的容置腔,所述容置腔贯穿所述粘附层背向所述底板的表面;所述容置腔具有沿所述第一方向的容置深度;所述容置深度大于所述高度尺寸。本申请实施例可减少微器件转移工艺中的残胶问题。
Description
本申请涉及显示技术领域,尤其涉及一种转移载板、一种转移组件和一种微器件转移方法。
Micro LED(Micro Light Emitting Diode,微型发光二极管)芯片的巨量转移是Micro
LED显示屏生产过程中的重要步骤,其中激光辅助转移技术是极具潜力的巨量转移解决方法之一。传统的激光辅助转移在转移载板上设置响应材料,采用激光照射对应位置使得响应材料分解并产生气体、鼓泡或者表面状态发生变化使得响应材料上粘附的芯片脱离。在这个过程中有些响应材料分解后会产生不易清除的残胶粘在芯片的表面,从而影响后续工艺甚至产品品质。
因此,亟需提供一种新的转移载板解决上述转移过程中的残胶问题。
因此,为克服现有技术中的至少部分缺陷,本申请实施例提供了一种转移载板、一种转移组件和一种微器件转移方法,可以减少微器件转移工艺中的残胶问题。
一方面,本申请一个实施例提供一种转移载板,包括:底板,具有在第一方向上相对的第一表面和第二表面;响应部,设置在所述底板靠近所述第一表面的一侧;所述响应部具有沿所述第一方向的高度尺寸;粘附层,设置在所述第一表面上,且在所述底板上围合形成容纳所述响应部的容置腔,所述容置腔贯穿所述粘附层背向所述底板的表面;所述容置腔具有沿所述第一方向的容置深度;所述容置深度大于所述高度尺寸。
在一个实施例中,所述响应部的数量为多个,所述粘附层围合形成相互间隔设置的多个所述容置腔;多个所述容置腔一一对应容纳多个所述响应部;且每个所述响应部的所述高度尺寸各自小于与之对应的所述容置腔的所述容置深度。
在一个实施例中,每个所述响应部的体积大于等于与之对应的所述容置腔的容积的2%。
在一个实施例中,所述容置腔贯穿所述粘附层靠近底板的表面;所述响应部的一端连接于所述第一表面。
在一个实施例中,所述响应部与所述粘附层间隔设置。
在一个实施例中,所述响应部包括相互间隔设置的多个响应件。
在一个实施例中,所述容置腔平行于所述第一表面的截面为中心对称图形。
在一个实施例中,所述响应部为聚酰亚胺、三氮烯聚合物、环氧树脂、聚氨脂、氟碳聚合物、丙烯酸系聚合物、酰亚胺系聚合物和酰胺系聚合物中任意一者或多种的组合。
本申请一个实施例提供一种转移组件,包括:前述任意一项所述的转移载板;微器件,设置在所述响应部远离所述底板的一侧,且与所述响应部间隔设置;所述微器件附着于所述粘附层并覆盖所述容置腔。
在一个实施例中,所述响应部的数量为多个,所述粘附层围合形成相互间隔设置的多个所述容置腔;多个所述容置腔一一对应容纳多个所述响应部;且每个所述响应部的所述高度尺寸各自小于与之对应的所述容置腔的所述容置深度;所述微器件的数量为多个,多个所述微器件一一对应覆盖多个所述容置腔中的至少部分容置腔,且多个所述微器件各自与对应的所述响应部相互间隔设置。
本申请一个实施例还提供一种微器件转移方法,包括:前述任意一项所述的转移载板或前述任意一项所述的微器件转移组件。
在一个实施例中,所述微器件转移方法包括采用激光照射所述响应部使所述响应部分解并产生气体。
本申请上述实施例至少具有如下一个或多个有益效果:通过分别设置粘附层和响应层,粘附层可以用于粘附微器件,采用激光照射响应层使得响应层可分解并产生气体并充满容置腔,产生的气体压力作用于微器件,可将微器件推动下落至目标基板并且响应层的高度尺寸小于容置腔的容置深度,使得转移过程中微器件的表面不会与响应部接触,从而减轻残胶问题。
下面将结合附图,对本申请的具体实施方式进行详细的说明。
图1为本申请一个实施例提供的一种转移载板的结构示意图。
图2为图1的A-A剖面示意图。
图3为另一个实施例中的A-A剖面示意图。
图4为另一个实施例提供的转移载板的结构示意图。
图5为另一个实施例中的A-A剖面示意图。
图6为另一个实施例中的A-A剖面示意图。
图7为本申请另一个实施例提供的转移载板的结构示意图。
图8为图7的B-B剖面示意图。
图9为本申请一个实施例提供的一种转移组件的结构示意图。
图10为一个实施例中图9的C-C剖面示意图。
图11为另一个实施例中图9的C-C剖面示意图。
图12为本申请一个实施例提供的微器件转移方法的原理示意图。
【附图标记说明】
100:转移载板;10:底板;11:第一表面;12:第二表面;20:响应部;21:响应件;30:粘附层;31:容置腔;32:粘附件;40:光阻挡材料;200:微器件;300:转移组件。
本申请的实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。
为了使本领域普通技术人员更好地理解本申请的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应当理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或单元。
还需要说明的是,本申请中多个实施例的划分仅是为了描述的方便,不应构成特别的限定,各种实施例中的特征在不矛盾的情况下可以相结合,相互引用。
在相关技术中,激光辅助转移技术的原理为,在转移载板上附着一层或多层响应材料来粘附Micro LED芯片等微型器件,当需要释放芯片至目标基板上时,采用激光照射需要转移的芯片所在位置的响应材料,响应材料受激光照射后例如直接分解、形成鼓泡或者膨胀产生裂纹等表面状态发生变化使得其上附着的器件脱离。但现有易被激光分解并产生气体的材料成膜固化后表面基本没有粘性,因此无法粘附微器件。为了适合微器件的粘附,首先需要对材料改性,例如将这类材料改为热塑性材料,以适应微器件的粘附,与此同时还需要采用复杂的工艺将微器件粘附到涂覆了这类材料的载板上,工艺难度大。并且,有些响应材料分解后会产生不易清除的残胶粘在微器件的表面,从而影响后续工艺甚至产品品质。因此本申请第一实施例提供一种转移载板来解决上述至少部分问题。
【第一实施例】
本申请第一实施例提供一种转移载板100,如图1和图2所示,转移载板100包括底板10、响应部20和粘附层30。其中,底板10具有在第一方向上相对的第一表面11和第二表面12。响应部20设置在底板10靠近第一表面11的一侧。响应部20具有沿第一方向的高度尺寸H1。粘附层30设置在第一表面11上,且在底板10上围合形成容纳响应部20的容置腔31,容置腔31贯穿粘附层30背向底板10的表面。容置腔31具有沿第一方向的容置深度H2。容置深度H2大于高度尺寸H1。
其中,本实施例提供的转移载板100可以用于转移的微器件例如为Micro LED芯片或者其它具有类似转移需求的器件。基板10例如可以是玻璃、蓝宝石、石英等可以透过激光的透明板材。响应部20的材料可以是在特定的激光波长照射下易分解且产生气体的材料。例如紫外或深紫外波长激光照射后易分解且易产生气态挥发性分解产物的聚合物材料,例如光分解三氮烯聚合物(TP)、聚酰亚胺(PI)、环氧树脂、聚氨脂、氟碳聚合物、丙烯酸系聚合物、酰亚胺系聚合物和酰胺系聚合物等,响应部20可以是上述材料的任意一种或多种材料的组合。粘附层30可以是有机硅胶材料,也可以是其它在特定波长激光照射吸收少或不易分解的粘性材料,可以是一种或多种材料的组合,可用于粘附微器件。
本实施例不限制响应部20的数量,粘附层30可以对应每一个响应部20形成一个容置腔31,容置腔31贯穿粘附层30背向底板10的表面,例如参照图2,即容置腔31贯穿粘附层30的上表面,即容置腔31与粘附层30背向底板10一侧的外界环境连通。在一些实施例中,容置腔31也可以贯穿粘附层30靠近底板10的表面,此时响应部20的一端连接于第一表面11,此时容置腔31的容置深度H2也等于粘附层30的厚度。举例而言,粘附层30一般为2微米左右的薄膜层,响应部20的高度可以为1.6微米左右。
当使用本实施例提供的转移载板100转移微器件时,可以通过粘附层30粘附微器件,并使微器件覆盖对应的容置腔31,微器件与粘附层30(和底板10)围合形成一个封闭的腔室。将转移载板移动到目标载板上方时,采用激光照射在对应的响应部20上,响应部20激光分解并产生气体而充满该密闭腔室,产生的气体压力可以推动微器件掉落到目标基板上。在此转移过程中,由于响应部20的高度尺寸H1小于容置腔31的容置深度H2,因此微器件粘附到粘附层30表面时不会接触到响应部20,分解后也不会在微器件表面有残胶。即使分解并产生气体后产生了少量的灰尘也是易于清理的。因此本实施例提供的转移载板100,无需对响应材料进行复杂的改性,也不需要复杂的工艺来粘附芯片,可以降低工艺难度,并减少残胶问题。
当然,在上述实施例中粘附层30上可以具有未设置响应部20的空腔结构,或者是原来设置有响应部20的容置腔31内的响应部20分解后形成的空腔结构,这些空腔结构可不计入容置腔31的数量内,在本实施例中,容置腔31指的是容纳有响应部20的部分。
在本申请的一个实施例中,响应部20的数量为多个,粘附层30围合形成相互间隔设置的多个容置腔31。多个容置腔31一一对应容纳多个响应部20。且每个响应部20的高度尺寸H1各自小于与之对应的容置腔31的容置深度H2。在本实施例中多个响应部20的高度尺寸H1可以相同或不相同,多个容置腔31的容置深度H2也可以相同或不相同,只需满足任意一个响应部20的高度尺寸H1小于其所在的容置腔31的容置深度H2即可。多个响应部20的形状大小均可以相同或不同,多个容置腔31的形状大小也可以相同或不同。在本申请的一个实施例中,每个响应部20的体积大于等于与之对应的容置腔31的容积的2%,即任意一个响应部20的体积大于等于其所在的容置腔31的容积的2%,以在分解并产生气体后能够充满整个容置腔31产生足够的推力推动微器件下落。
在一些实施例中,如图3所示容置腔31还可以贯穿底板10靠近粘附层30的表面,即底板10上设置有凹槽,容置腔31的部分凹陷至底板10,容置腔31的容置深度H2大于粘附层30的厚度。粘附层30需提供一定的粘性,可以设置得较薄而可粘附面积较大,将容置腔31的容置深度(容积)扩充至底板10,可以提供更大的空间满足响应部20产生足够的气量。
在一些实施例中,粘附层30可以是如图1所示的整层图案化的胶层,对应容置腔31的位置为粘附层30的开孔,或者粘附层30可以包括相互间隔设置的多个粘附件32,如图4所示,每个粘附件32例如呈环形结构,每个环形结构中部形成一个容置腔31,多个环形结构相互间隔设置。
在一些实施例中,可以在底板10的一侧设置光阻挡材料40,使得光阻挡材料40在底板10上的正投影位于多个容置腔31之间的间隙处。例如图5所示光阻挡材料40可以设置在底板10和粘附层30之间,也可以如图6所示设置在底板10背向粘附层30的一侧。或者当粘附层30包括多个粘附件32时,光阻挡材料40在底板10上的正投影位于多个粘附件32之间的间隙处。光阻挡材料40可以阻挡特定波长的激光透过,例如可以是反光材料,具体地例如可以是Cr(铬)、Ti(钛)或者Mo(钼)等辐照良好且可以反射激光的金属薄膜,也可以是DBR(Distributed Bragg Reflection,布拉格反射镜)反光层。光阻挡材料40的设置可以减少对周边容置腔31内的响应部20的影响。
在一个实施例中,响应部20与粘附层30间隔设置,即响应部20的四周与粘附层30的材料之间留有一定的自由空间,使得响应部20分解的气体能快速充满空腔,产生的气体压力合力均匀作用在微器件表面,易于推动微器件垂直下落,从而提高转移精度。
在一个实施例中,参照图7和图8,响应部20包括相互间隔设置的多个响应件21。多个响应件21例如可以是独立的块状或柱状等结构,本实施例不限制多个响应件21的具体形状、数量或者排布方式。可以理解为一个响应部20被分成多个独立的小块,当受到激光照射时可以更快的分解。
在一个实施例中,容置腔31平行于第一表面11的截面为中心对称图形。由于粘附层30一般为2微米左右的薄膜层,因此容置腔31平行于第一表面11的截面或者容置腔31在第一表面11的正投影都可以视作是容置腔31的形状,该形状可以是与微器件匹配的形状,可以是圆形、椭圆形、正方形、菱形、正六边形等中心对称图形,当响应部20分解后产生的气体充满容置腔31时可以产生均匀的推力,使微器件垂直下落。
本实施例提供的转移载板100的一种制作方法如下所述:(1)采用旋涂或刮涂工艺,在底板10上形成连续无图形的粘附材料膜层。(2)采用模具压印的方法,压制出容置腔31的图形。(3)固化粘附材料膜层,在底板10上形成具有容置腔31的粘附层30。(4)采用喷墨打印工艺,在容置腔31内打印响应材料。(5)去除响应材料溶剂、固化响应材料,形成响应部20。最终得到转移载板100。其中步骤(4)中可以通过控制打印喷嘴的尺寸(即墨滴大小)和响应材料的固含量比例,来控制固化形成的响应部20的高度尺寸H1低于容置腔31的容置深度H2。上述制作工艺可以采用较为易得的材料和设备,以及较简单的工艺制得转移载板100,当然,采用其它方法制得的转移载板100也在本实施例所要求保护的范围内。
【第二实施例】
参照图9至图11,本申请第二实施例提供了一种转移组件300,其包括前述第一实施例提供的转移载板100和微器件200。其中微器件200设置在响应部20远离底板10的一侧,且与响应部20间隔设置。微器件200附着于粘附层30并覆盖容置腔31。
在本实施例中微器件200可以是Micro LED芯片或者其它具有类似巨量转移需求的器件。本实施例不限制微器件200的数量。一个微器件200可以覆盖一个容置腔31或多个容置腔31。在一个实施例中,当响应部20的数量为多个,粘附层30围合形成相互间隔设置的多个容置腔31时。多个容置腔31一一对应容纳多个响应部20。且每个响应部20的高度尺寸各自小于与之对应的容置腔31的容置深度。微器件200的数量为多个,多个微器件200一一对应覆盖多个容置腔31中的至少部分容置腔31,且多个微器件200各自与对应的响应部20相互间隔设置。即每个微器件200覆盖一个容置腔31,使得底板10、粘附层30和该微器件200围合形成一个密闭的空间,当该密闭空间内的响应部20被激光照射分解并产生气体后可充满容置腔并推动微器件200下落。本实施例中,并不限制每个容置腔31都被微器件200覆盖,可以将被微器件200覆盖的容置腔31称为目标容置腔。即多个微器件200一一对应覆盖多个目标容置腔。
在一些实施例中,为保证粘附层30能够稳定的粘附微器件200,容置腔31的宽度小于对应的微器件200的宽度,例如每个容置腔31的边缘到覆盖在其上的微器件200的边缘的宽度大于0.5微米,具体的可以为1微米。
【第三实施】
本申请第三实施例提供一种微器件转移方法,采用前述第一实施例中的任意一种转移载板100或如前述第二实施例中提供的任意一种转移组件300。具体地,采用激光照射响应部20使响应部20分解并产生气体。如图12所示,转移载板100上左边第二个为目标转移微器件,采用激光照射多个响应部20中对应目标转移微器件的目标响应部20,并使该目标响应部20分解并产生气体,产生的气体充满该目标响应部20对应的容置腔31,产生的气体压力推动该目标微器件下落至目标基板上,完成该目标微器件的转移。本实施例提供的微器件转移方法具有上述第一实施例或第二实施的有益效果,在此不再赘述。
以上,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。
Claims (12)
- 一种转移载板,包括:底板,具有在第一方向上相对的第一表面和第二表面;响应部,设置在所述底板靠近所述第一表面的一侧;所述响应部具有沿所述第一方向的高度尺寸;粘附层,设置在所述第一表面上,且在所述底板上围合形成容纳所述响应部的容置腔,所述容置腔贯穿所述粘附层背向所述底板的表面;所述容置腔具有沿所述第一方向的容置深度;所述容置深度大于所述高度尺寸。
- 如权利要求1所述的转移载板,其中,所述响应部的数量为多个,所述粘附层围合形成相互间隔设置的多个所述容置腔;多个所述容置腔一一对应容纳多个所述响应部;且每个所述响应部的所述高度尺寸各自小于与之对应的所述容置腔的所述容置深度。
- 如权利要求1或2所述的转移载板,其中,每个所述响应部的体积大于等于与之对应的所述容置腔的容积的2%。
- 如权利要求1所述的转移载板,其中,所述容置腔贯穿所述粘附层靠近所述底板的表面;所述响应部的一端连接于所述第一表面。
- 如权利要求4所述的转移载板,其中,所述响应部与所述粘附层间隔设置。
- 如权利要求1所述的转移载板,其中,所述响应部包括相互间隔设置的多个响应件。
- 如权利要求1所述的转移载板,其中,所述容置腔平行于所述第一表面的截面为中心对称图形。
- 如权利要求1所述的转移载板,其中,所述响应部为聚酰亚胺、三氮烯聚合物、环氧树脂、聚氨脂、氟碳聚合物、丙烯酸系聚合物、酰亚胺系聚合物和酰胺系聚合物中任意一者或多种的组合。
- 一种转移组件,包括:如权利要求1、4~8中任意一项所述的转移载板;微器件,设置在所述响应部远离所述底板的一侧,且与所述响应部间隔设置;所述微器件附着于所述粘附层并覆盖所述容置腔。
- 如权利要求9所述的转移组件,其中,所述响应部的数量为多个,所述粘附层围合形成相互间隔设置的多个所述容置腔;多个所述容置腔一一对应容纳多个所述响应部;且每个所述响应部的所述高度尺寸各自小于与之对应的所述容置腔的所述容置深度;所述微器件的数量为多个,多个所述微器件一一对应覆盖多个所述容置腔中的至少部分所述容置腔,且多个所述微器件各自与对应的所述响应部相互间隔设置。
- 一种微器件转移方法,包括:采用如权利要求1~8任意一项所述的转移载板或如权利要求9~10任意一项所述的微器件转移组件。
- 如权利要求11所述的微器件转移方法,包括:采用激光照射所述响应部使所述响应部分解并产生气体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/139606 WO2024124535A1 (zh) | 2022-12-16 | 2022-12-16 | 转移载板、转移组件及微器件转移方法 |
CN202280005123.7A CN118511267A (zh) | 2022-12-16 | 2022-12-16 | 转移载板、转移组件及微器件转移方法 |
JP2023090423A JP7425246B1 (ja) | 2022-12-16 | 2023-05-31 | 移載キャリア、移載アセンブリ及びマイクロデバイスの移載方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/139606 WO2024124535A1 (zh) | 2022-12-16 | 2022-12-16 | 转移载板、转移组件及微器件转移方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024124535A1 true WO2024124535A1 (zh) | 2024-06-20 |
Family
ID=89704291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/139606 WO2024124535A1 (zh) | 2022-12-16 | 2022-12-16 | 转移载板、转移组件及微器件转移方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7425246B1 (zh) |
CN (1) | CN118511267A (zh) |
WO (1) | WO2024124535A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114597291A (zh) * | 2022-03-29 | 2022-06-07 | 上海闻泰电子科技有限公司 | 一种巨量转移方法以及装置 |
CN114914189A (zh) * | 2022-04-29 | 2022-08-16 | 湖北长江新型显示产业创新中心有限公司 | 一种转移基板、转移方法、显示基板和显示装置 |
CN217468343U (zh) * | 2021-10-15 | 2022-09-20 | 重庆康佳光电技术研究院有限公司 | 芯片转移系统 |
US20220336251A1 (en) * | 2019-09-16 | 2022-10-20 | VerLASE TECHNOLOGIES LLC | Differential-Movement Transfer Stamps and Uses for Such Differential-Movement Transfer Stamps |
CN217788431U (zh) * | 2022-07-13 | 2022-11-11 | 厦门市芯颖显示科技有限公司 | 一种微电子器件转移载体 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3696132B2 (ja) | 2001-07-10 | 2005-09-14 | 株式会社東芝 | アクティブマトリクス基板及びその製造方法 |
JP5017689B2 (ja) | 2007-11-13 | 2012-09-05 | コクヨ株式会社 | 接着シート及びその積層体 |
JP5403754B2 (ja) | 2010-01-21 | 2014-01-29 | スタンレー電気株式会社 | 半導体発光装置の製造方法 |
KR101963421B1 (ko) * | 2011-04-11 | 2019-03-28 | 엔디에스유 리서치 파운데이션 | 별개의 구성요소의 선택적인 레이저 보조 전사 |
TWI610392B (zh) | 2016-09-05 | 2018-01-01 | Daxin Mat Corp | 光電元件的製備方法 |
JP2018060993A (ja) | 2016-09-29 | 2018-04-12 | 東レエンジニアリング株式会社 | 転写方法、実装方法、転写装置、及び実装装置 |
CN108962789A (zh) | 2018-06-25 | 2018-12-07 | 开发晶照明(厦门)有限公司 | 微器件转移方法和微器件转移设备 |
JP6932676B2 (ja) | 2018-09-27 | 2021-09-08 | 東レエンジニアリング株式会社 | 転写方法およびこれを用いた画像表示装置の製造方法ならびに転写装置 |
WO2020166301A1 (ja) | 2019-02-14 | 2020-08-20 | 東レエンジニアリング株式会社 | 半導体チップの支持基板、転写装置および転写方法 |
US11387384B2 (en) | 2019-04-16 | 2022-07-12 | Samsung Electronics Co., Ltd. | LED transferring method and display module manufactured by the same |
KR20200128987A (ko) | 2019-05-07 | 2020-11-17 | 삼성전자주식회사 | 마이크로 led 전사 방법 및 이에 의해 제조된 디스플레이 모듈 |
JP7321760B2 (ja) | 2019-05-09 | 2023-08-07 | 三星電子株式会社 | ディスプレイ装置の製造方法、およびソース基板構造体 |
CN111540705B (zh) | 2020-03-06 | 2025-02-18 | 重庆康佳光电科技有限公司 | 一种激光剥离的巨量转移系统及方法 |
CN114698401B (zh) | 2020-10-30 | 2025-03-21 | 京东方科技集团股份有限公司 | 发光二极管基板及其制作方法、显示装置 |
JP2022115803A (ja) | 2021-01-28 | 2022-08-09 | 東レエンジニアリング株式会社 | 転写装置および転写基板 |
EP4316815A4 (en) | 2021-04-01 | 2025-04-02 | Toray Industries, Inc. | Laminate and manufacturing method of semiconductor device |
CN114864474A (zh) | 2022-05-12 | 2022-08-05 | 华中科技大学 | 一种激光投影接近式巨量转移装置、方法及设备 |
CN115295688A (zh) | 2022-07-29 | 2022-11-04 | 佛山市国星光电股份有限公司 | 一种显示模组的制备方法、一种芯片结构及一种显示模组 |
-
2022
- 2022-12-16 WO PCT/CN2022/139606 patent/WO2024124535A1/zh active Application Filing
- 2022-12-16 CN CN202280005123.7A patent/CN118511267A/zh active Pending
-
2023
- 2023-05-31 JP JP2023090423A patent/JP7425246B1/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220336251A1 (en) * | 2019-09-16 | 2022-10-20 | VerLASE TECHNOLOGIES LLC | Differential-Movement Transfer Stamps and Uses for Such Differential-Movement Transfer Stamps |
CN217468343U (zh) * | 2021-10-15 | 2022-09-20 | 重庆康佳光电技术研究院有限公司 | 芯片转移系统 |
CN114597291A (zh) * | 2022-03-29 | 2022-06-07 | 上海闻泰电子科技有限公司 | 一种巨量转移方法以及装置 |
CN114914189A (zh) * | 2022-04-29 | 2022-08-16 | 湖北长江新型显示产业创新中心有限公司 | 一种转移基板、转移方法、显示基板和显示装置 |
CN217788431U (zh) * | 2022-07-13 | 2022-11-11 | 厦门市芯颖显示科技有限公司 | 一种微电子器件转移载体 |
Also Published As
Publication number | Publication date |
---|---|
JP2024086538A (ja) | 2024-06-27 |
JP7425246B1 (ja) | 2024-01-30 |
CN118511267A (zh) | 2024-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5411557B2 (ja) | 微細構造転写装置 | |
JP3978706B2 (ja) | 微細構造体の製造方法 | |
US8192637B2 (en) | Method and apparatus for imprinting microstructure and stamper therefor | |
CN111225780B (zh) | 用于铸造聚合物产品的方法和装置 | |
US7632087B2 (en) | Composite stamper for imprint lithography | |
KR0163369B1 (ko) | 전자장치용 부품 제조 방법 및 전자장치 | |
US20070062639A1 (en) | Method for manufacturing a flexible display | |
CN101573659A (zh) | 排除位于基板和模具之间的气体的方法 | |
CN101131537A (zh) | 一种精密数字化微纳米压印的方法 | |
CN106575605A (zh) | 微细结构体的制造方法 | |
JP2009087959A (ja) | インプリント用転写型、インプリント転写方法、インプリント装置、インプリント用転写型の製造方法およびインプリント転写物 | |
WO2024124535A1 (zh) | 转移载板、转移组件及微器件转移方法 | |
JP2018060878A (ja) | パターン構造体の製造方法およびインプリント用モールドの製造方法 | |
KR100922574B1 (ko) | 박판형 기판 고정 장치 및 이를 이용한 박판형 기판의 나노패턴 제조 방법 | |
KR100537722B1 (ko) | 미세형상 구조물의 연속 성형장치 및 방법 그리고 그 미세형상의 성형을 위한 스탬퍼 제작방법 | |
KR100939491B1 (ko) | 광학부재의 제조방법 | |
KR20000068800A (ko) | 광 기록매체의 제조장치 및 제조방법 | |
CN100395614C (zh) | 导光板制造方法 | |
CN1372161A (zh) | 导光板模仁及其制造方法 | |
CN108957949A (zh) | 一种纳米压印方法 | |
WO2024124540A1 (zh) | 转移载板、转移组件及微器件转移方法 | |
JP3555626B2 (ja) | マイクロレンズの製造方法 | |
JP5499553B2 (ja) | ナノインプリントパターン形成方法およびそれに用いられる基材 | |
TW200933217A (en) | Light guide plate and manufacture method thereof | |
WO2020036173A1 (ja) | 微細構造体製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202280005123.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22968241 Country of ref document: EP Kind code of ref document: A1 |