[go: up one dir, main page]

WO2024122115A1 - Mold for tire molding - Google Patents

Mold for tire molding Download PDF

Info

Publication number
WO2024122115A1
WO2024122115A1 PCT/JP2023/030210 JP2023030210W WO2024122115A1 WO 2024122115 A1 WO2024122115 A1 WO 2024122115A1 JP 2023030210 W JP2023030210 W JP 2023030210W WO 2024122115 A1 WO2024122115 A1 WO 2024122115A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
guide rail
piece
radial direction
tire
Prior art date
Application number
PCT/JP2023/030210
Other languages
French (fr)
Japanese (ja)
Inventor
泰之 石原
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2024122115A1 publication Critical patent/WO2024122115A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2030/00Pneumatic or solid tyres or parts thereof

Definitions

  • This disclosure relates to a tire molding mold.
  • tire molding dies have an opening and closing mechanism that is divided into 7 to 13 divided dies (segments) in the circumferential direction.
  • Some tire molding dies have a finely divided opening and closing die structure, where the design surface within each segment is further divided into finely divided pieces.
  • the advantages of increasing the number of divisions of the mold by further dividing the segments into pieces and opening and closing those pieces in the radial direction include making it easier to make the flow of rubber on the raw tire axially symmetrical and minimized during vulcanization when the mold is pressed against the raw tire and pressure and heat are applied, reducing demolding resistance, and improving tire quality.
  • One example of reducing demolding resistance is minimizing undercuts formed by pattern parts such as the bones and sipes of the mold in the tire demolding direction when the tire is demolded.
  • One example of improving tire quality is minimizing undercut removal resistance and the strain energy applied to the tire during demolding, thereby minimizing permanent deformation and residual strain of the rubber caused by demolding of complex patterns and improving the initial quality of the tire.
  • An example of a mold with a finely divided open-close mold structure is a tire molding mold in which all of the pieces are configured to open and close in the radial direction in order to reduce demolding resistance (see, for example, Patent Document 1).
  • Patent Document 1 describes a tire molding die in which the die for molding the tire tread is composed of segments divided in the tire circumferential direction.
  • the segments have multiple pieces divided in the tire circumferential direction. In this segment, only one of the pieces of the segment is fixed, and all other pieces are movable in the tire circumferential direction.
  • This disclosure was made in consideration of this situation, and its purpose is to provide a tire molding mold with a finely divided open/close mold structure suitable for precision tire molding.
  • the tire molding mold according to the present disclosure comprises: a circular tread molding portion divided into a plurality of segment pieces arranged in a circumferential direction; an outer ring that is disposed axially above the tread molded portion and moves along the axial direction of the tread molded portion to open and close the tread molded portion in a radial direction; the outer ring is engaged with each of the segment pieces; The segment pieces are opened and closed in the radial direction in association with the movement of the outer ring, and are spaced apart from the adjacent segment pieces.
  • This disclosure makes it possible to provide a tire molding mold with a finely divided open/close mold structure suitable for precision tire molding.
  • FIG. 1 is a cross-sectional view of a tire molding mold according to a first embodiment as seen from the front.
  • FIG. 2 is a cross-sectional view in plan view of a tread molding portion of the tire molding die of the first embodiment.
  • FIG. 2 is a view of a portion of the tire molding die of the first embodiment in the circumferential direction as viewed from the inside.
  • FIG. 2 is a view of a portion of the tire molding die of the first embodiment in the circumferential direction as viewed from the outside.
  • FIG. 2 is a view of a portion of the tire molding die of the first embodiment viewed in the circumferential direction when the outer ring is in a retaining position.
  • FIG. 1 is a cross-sectional view of a tire molding mold according to a first embodiment as seen from the front.
  • FIG. 2 is a cross-sectional view in plan view of a tread molding portion of the tire molding die of the first embodiment.
  • FIG. 2 is a view of a portion of the tire molding
  • FIG. 2 is a view of a portion of the tire molding die of the first embodiment viewed in the circumferential direction when the outer ring is in a release position.
  • FIG. 2 is a diagram showing a state in which a tread molding portion of the tire molding die according to the first embodiment is raised together with an upper container.
  • FIG. 2 is a view showing a part in the circumferential direction of a tire molding die according to Modification 1 of the first embodiment, as viewed from the outside.
  • FIG. 11 is a view of a portion of a tire molding die according to Modification 1 of the first embodiment, viewed in the circumferential direction, when the outer ring is in a release position.
  • FIG. 11 is a view of a portion of a tire molding die according to Modification 2 of the first embodiment, viewed in the circumferential direction, when the outer ring is in a release position.
  • FIG. 11 is a view of a portion of a tire molding die according to a second embodiment viewed in the circumferential direction when the outer ring is in a release position.
  • FIG. 11 is a diagram showing a part of a cross section in a plan view of a tread molding portion and an outer ring of a tire molding die according to a second embodiment.
  • FIG. 11 is a view of a portion of a tire molding die according to a second embodiment in a circumferential direction as viewed from the outside.
  • FIG. 1 shows a cross-sectional front view of a tire molding die 100 (hereinafter, sometimes referred to as die 100) according to this embodiment.
  • the mold 100 is used to manufacture a tire 200 by forming a green tire, which is mainly made of unvulcanized (before vulcanization) synthetic rubber, into a predetermined shape while vulcanizing it.
  • the mold 100 includes an annular tread molding section 3 divided into a number of segment pieces 4 arranged in the circumferential direction, and an outer ring 7 that is disposed above the tread molding section 3 in the axial direction (direction along the axis G) and moves along the axial direction of the tread molding section 3 to open and close the tread molding section 3 in the radial direction.
  • the outer ring 7 engages with each of the segment pieces 4.
  • the segment pieces 4 open and close in the radial direction as the outer ring 7 moves, and are separated from adjacent segment pieces 4.
  • the mold 100 has a finely divided open/close mold structure.
  • the mold 100 is suitable for precision tire molding.
  • the mold 100 includes a lower container 1, an upper container 2, a tread molding section 3, and an outer ring 7 (hereinafter referred to as ring 7). As described above, the tread molding section 3 is formed in a circular ring shape.
  • the direction along the axis G of the tread molding portion 3 will be referred to as the axial direction.
  • the circumferential direction of the tread molding portion 3 and the same direction will be simply referred to as the circumferential direction.
  • the radial direction of the tread molding portion 3 and the same direction will be simply referred to as the radial direction, with the outer side in the radial direction simply referred to as the outer side or the radial outer side, and the inner side simply referred to as the inner side or the radial inner side.
  • the direction facing the upper container 2 as viewed from the lower container 1 will be referred to as the upper side, upward, or top
  • the direction facing the lower container 1 as viewed from the upper container 2 will be referred to as the lower side, downward, or bottom.
  • the lower container 1 is the seat of the mold 100, on which the upper container 2 and the tread molding section 3 are placed.
  • the lower container 1 has a plate section 10 and a lower sidewall molding section 11 placed on the upper surface of the plate section 10.
  • the upper container 2 has a plate portion 20 and an upper sidewall molding portion 21 fixed to the underside of the plate portion 20.
  • the upper container 2 supports a ring 7 by suspending it.
  • the ring 7 is suspended from the upper container 2 with its upper end fixed to a position outside the upper sidewall molding portion 21.
  • the upper container 2 can be raised and lowered relative to the lower container 1 along the axial direction.
  • the lower sidewall molding portion 11 and the upper sidewall molding portion 21 are dies that form the side portions (sidewalls) of the tire 200.
  • the lower sidewall molding portion 11 and the upper sidewall molding portion 21 are formed in an annular shape that is coaxial with the tread molding portion 3.
  • the upper surface of the lower sidewall molding portion 11 and the lower surface of the upper sidewall molding portion 21 are design surfaces that form the side surfaces of the tire 200.
  • the tread molding section 3 is a unit that includes a mold that forms the tread surface of the tire 200.
  • the inner surface of the tread molding section 3 is the design surface that forms the tread surface of the tire 200.
  • the tread molding section 3 is placed directly on the upper surface of the plate section 10 of the lower container 1.
  • FIG. 2 shows a cross-sectional view of the tread molding portion in a plan view.
  • FIG. 3 shows a view of the mold 100 from the inside, illustrating a portion of the mold 100 in the circumferential direction.
  • FIG. 4 shows a view of the mold 100 from the outside, illustrating a portion of the mold 100 in the circumferential direction.
  • the tread molding portion 3 has a plurality of segment pieces 4 (hereinafter referred to as pieces 4) arranged in the circumferential direction.
  • the tread molding portion 3 may be divided into, for example, 30 to 90 pieces 4 in the circumferential direction.
  • the pieces 4 are placed directly on the upper surface of the plate portion 10 of the lower container 1.
  • the tread molding portion 3 is divided into 45 pieces 4 each having the same circumferential length.
  • the inner surface of the pieces 4 is the design surface of the tread molding portion 3.
  • the inner surface of the piece 4 may be referred to as the design surface of the segment piece 4.
  • Piece 4 can be moved between a closed position where the design surface of piece 4 is continuous with the design surface of an adjacent piece 4 in the circumferential direction, and an open position where the design surface of piece 4 is discontinuous with the design surface of an adjacent piece 4.
  • the open position of piece 4 is a position outside the closed position of piece 4.
  • Piece 4 can be moved, for example, in the radial direction between the open position and the closed position. Note that FIG. 3 shows the case where piece 4 is in the closed position, and FIG. 4 shows the case where piece 4 is in the open position.
  • Figures 5 and 6 show a circumferential portion of the mold 100 viewed along the circumferential direction.
  • the ring 7 is disposed on the outer side and above the tread molding section 3, and is freely movable between a holding position (see Figure 5) in which the piece 4 of the tread molding section 3 is held in a closed position, and a release position (see Figure 6) in which the piece 4 is moved to an open position.
  • the ring 7 rises and falls as the upper container 2 rises and falls.
  • the specified position is the position at which the ring 7 is lowest.
  • the release position is the position at which the ring 7 is higher than the specified position.
  • the ring 7 has an outer ring periphery 70 on which an outer ring inclined surface 71 faces outward and is inclined so that the diameter gradually decreases in the upward direction, and an inner ring periphery 75 on which an inner ring inclined surface 76 faces inward and is inclined so that the diameter gradually decreases in the upward direction.
  • the ring 7 engages with each of the pieces 4.
  • the ring 7 moves the pieces 4 between the closed position and the open position. The operation of the ring 7 and the pieces 4 will be described later.
  • the piece 4 has a split mold 40 whose inner surface is a design surface that forms the tread surface of the tire 200 (see FIG. 1), a holder 41 that supports the split mold 40, an arm portion 42 that is disposed at the lower end of the holder 41 and engages with the ring outer periphery 70, a biasing portion 46 that biases the lower end of the holder 41 outward, a biasing portion 47 that biases the upper end of the holder 41 outward, and a circumferential biasing portion 48 that biases the holder 41 in a direction away from the adjacent holder 41 in the circumferential direction.
  • a split mold 40 whose inner surface is a design surface that forms the tread surface of the tire 200 (see FIG. 1)
  • a holder 41 that supports the split mold 40
  • an arm portion 42 that is disposed at the lower end of the holder 41 and engages with the ring outer periphery 70
  • a biasing portion 46 that biases the lower end of the holder 41 outward
  • the split mold 40 has protrusions on its design surface that form grooves in the tire tread and protrusions that form sipes.
  • the split mold 40 may be formed, for example, in a wavy shape that travels back and forth in the circumferential direction along the axial direction.
  • the circumferential ends of the split mold 40 are shaped to follow the ends of the adjacent split molds.
  • the holder 41 is disposed adjacent to the outside of the split mold 40 and supports the outer part of the split mold 40.
  • the inner part of the holder 41 is formed, for example, in a concave shape in which the axial inner part is recessed outward more than both axial ends, and the split mold 40 is supported by the holder 41 with its outer part fitted into the recess.
  • the inner surfaces of the upper and lower ends of the holder 41 face the outer surfaces of the upper sidewall molding part 21 and the lower sidewall molding part 11, respectively.
  • the holder 41 moves between an open position and a closed position while placed on the upper surface of the plate part 10 of the lower container 1.
  • the split mold 40 and holder 41 are positioned inside the ring 7.
  • the arm portion 42 may be composed of a base portion 42b extending outward from the lower end of the holder 41, a pillar portion 42c extending in a straight line further upward and inward from the end of the base portion 42b opposite the holder 41, and an abutment portion 42a formed on the end of the pillar portion 42c opposite the base portion 42b.
  • the arm portion 42 may be a part of the holder 41 or may be a separate body. Also, a part of the arm portion 42 (for example, the base portion 42b) may be a part of the holder 41. When the arm portion 42 and the holder 41 are separate bodies, they may be connected by screw fastening or the like.
  • the base 42b extends from the inside of the ring 7 (the lower end of the holder 41) toward the outside, and reaches the outside of the ring 7.
  • the arm portion 42 (pillar portion 42c) has an abutment portion 42a that protrudes inward at the end opposite the bottom end of the holder 41.
  • the arm portion 42 has the abutment portion 42a that can engage with the outer periphery 70 of the ring.
  • the biasing portion 46 includes an elastic member such as a spring.
  • the biasing portion 46 may be housed in a recess 43 formed, for example, at the lower end of the holder 41 from the inner surface of the holder 41 toward the outside.
  • the biasing portion 46 may have its inner end supported by the outer portion of the lower sidewall molding portion 11 to bias the holder 41 toward the outside.
  • the biasing portion 47 includes an elastic member such as a spring.
  • the biasing portion 47 may be housed in a recess 44 formed, for example, in the upper end portion of the holder 41 from the inner surface of the holder 41 toward the outside.
  • the biasing portion 47 may bias the holder 41 toward the outside by supporting the inner end portion against the outer portion of the upper sidewall molding portion 21.
  • the circumferential biasing portion 48 includes an elastic member such as a spring.
  • the circumferential biasing portion 48 may be housed in a recess 45 formed from one end face of the holder 41 in the circumferential direction toward the other end.
  • the circumferential biasing portion 48 may have one end supported by one end face in the circumferential direction of an adjacent piece 4, and bias the holders 41, 41 in a direction that separates the pieces 4, 4 from each other.
  • piece 4 is as follows. When the upper container 2 descends, the ring 7 descends accordingly. This causes the ring inner inclined surface 76 to come into contact with the outer surface of the holder 41, moving piece 4 inward (for example, from the state in FIG. 6 to the state in FIG. 5).
  • the abutment portion 42a of the arm portion 42 abuts and engages with the ring outer inclined surface 71.
  • the abutment portion 42a moves downward and outward relative to the ring outer peripheral portion 70 along the ring outer inclined surface 71 as the ring 7 moves upward (for example, from the state in FIG. 5 to the state in FIG. 6). That is, the abutment portion 42a as the arm portion 42 is biased outward. Accordingly, the piece 4 moves outward and the tread molding portion 3 opens. When the tread molding portion 3 opens, the piece 4 moves away from the adjacent piece 4. In the following, the piece 4 moving outward and the tread molding portion 3 opening, and the piece 4 moving outward, may be described as the piece 4 opening, etc.
  • each piece 4 spreads out radially along the diameter direction.
  • the demolding resistance applied to the tread surface of the tire 200 when the split mold 40 of the pieces 4 is released from the tread surface of the tire 200 can be reduced, and the power required to open the pieces 4 can be reduced.
  • the demolding resistance applied to the tread surface of the tire 200 by reducing the demolding resistance applied to the tread surface of the tire 200, deformation of the tread surface of the tire 200 during demolding can be suppressed, and the initial performance of the tire 200 can be improved.
  • the circumferential biasing portion 48 biases the holders 41, 41 in a direction that separates the adjacent pieces 4, 4, thereby assisting in the separation of the pieces 4, 4. This reduces the force required to open the pieces 4.
  • biasing parts 46 and 47 bias holder 41 outward to assist in the outward movement of piece 4. This reduces the force required to open piece 4.
  • a protrusion 72 extending outward may be formed on the lower end of the ring outer periphery 70.
  • the height at which the abutment portions 42a protrude inward may be different for each arm portion 42 of adjacent pieces 4. This allows the timing at which the split molds 40 of each piece 4 are released from the tire 200 to be staggered when the pieces 4 are opened. By staggering the timing at which the split molds 40 of each piece 4 are released from the tire 200, the maximum power required to open the pieces 4 can be reduced. In addition, by staggering the timing at which the split molds 40 of each piece 4 are released from the tire 200, the maximum release resistance applied to the tread surface of the tire 200 can be reduced, thereby suppressing deformation of the tread surface of the tire 200 during release and improving the initial performance of the tire 200.
  • the piece 4 may be engaged with the lower container 1.
  • an arm portion 42 may be engaged with the lower container 1.
  • a cylindrical wall portion 19 may be provided that is formed in a ring shape along the outer periphery of the plate portion 10 of the lower container 1 and extends upward from the outer periphery of the plate portion 10.
  • the wall portion 19 has locking holes 13 that penetrate the wall portion 19 in the radial direction and are arranged to correspond to the movable range of each piece 4 in the circumferential direction. In other words, the locking holes 13 are formed along the radial direction. An arm portion 42 is inserted into each locking hole 13, thereby locking the piece 4 to the lower container 1.
  • the arm portion 42 may be composed of a base portion 42b extending outward from the lower end of the holder 41, a column portion 42c that is connected to the end of the base portion 42b opposite the holder 41 by screwing or the like and extends in a straight line upward, and an abutment portion 42a formed on the end of the column portion 42c opposite the base portion 42b.
  • the arm portion 42 can be attached to the holder 41 as follows. First, the base portion 42b is fixed to the holder 41, and then the end of the base portion 42b opposite the holder 41 is inserted into the locking hole 13 from the inside of the wall portion 19, so that the base portion 42b penetrates the wall portion 19. Then, from the outside of the wall portion 19, the pillar portion 42c is connected to the base portion 42b by screwing or the like.
  • the biasing portion 46 that biases the lower end portion of the holder 41 outward is housed in the recess 43 that is formed from the inner surface of the holder 41 toward the outside at the lower end portion of the holder 41.
  • the biasing portion 46 is not limited to being housed in the recess 43.
  • the biasing portion 46 may be housed in the plate portion 10 of the lower container 1 as shown in FIG. 10 .
  • a hole 12 extending inward from the outer circumferential surface of the plate portion 10 and having a closed inner end may be formed along the radial direction, and a spring or the like of the biasing portion 46 may be housed in this hole 12.
  • the holder 41 may be biased by the biasing portion 46 via the piston 49.
  • the hole portion 12 may be provided with a first connecting hole 12a that is provided in the middle portion in the radial direction (the radial direction of the tread molding portion 3) and penetrates from the upper inner surface of the hole portion 12 to the upper surface of the plate portion 10, and a second connecting hole 12b that is provided in a position in the radial direction outside the first connecting hole 12a and penetrates from the upper inner surface of the hole portion 12 to the upper surface of the plate portion 10.
  • the first connecting hole 12a and the second connecting hole 12b are formed in a rectangular or elliptical shape along the radial direction so that the radial width is longer than the circumferential width.
  • the piston 49 may have a rod-shaped portion 49a that is housed in the hole 12 and a branch portion 49b that extends upward from the inner end of the rod-shaped portion 49a.
  • a locking protrusion 49c that protrudes outward may be formed on the upper end of the branch portion 49b.
  • the branch portion 49b is engaged with the lower end of the holder 41 via the first connecting hole 12a.
  • a locking hole 41a for locking the upper end of the branch portion 49b may be formed in the lower end of the holder 41.
  • the locking hole 41a may be an L-shaped hole that is recessed upward from the lower surface of the holder 41 and whose upper end (bottom of the hole) is further recessed outward.
  • the branch portion 49b may lock the locking protrusion 49c into the L-shaped locking hole 41a.
  • the biasing portion 46 biases the inner end of the rod-shaped portion 49a outward, thereby biasing the lower end of the holder 41 outward via the branch portion 49b and the locking hole 41a.
  • the base 42b is formed integrally with the holder 41.
  • the base 42b is also formed with a through hole 41b that penetrates along the axial direction.
  • the connecting pin 5 is inserted through the through hole 41b and the second connecting hole 12b, and the lower end of the connecting pin 5 is connected to the rod-shaped portion 49a via the through hole 41b and the second connecting hole 12b.
  • the lower end of the connecting pin 5 is connected to the rod-shaped portion 49a at a position outside the branch portion 49b.
  • An enlarged diameter portion 51 is provided at the upper end of the connecting pin 5.
  • a spring or the like of the biasing portion 52 is arranged between the enlarged diameter portion 51 and the base portion 42b, which biases the base portion 42b downward with the enlarged diameter portion 51 as a fulcrum.
  • Figure 10 shows the case where the biasing portion 52 includes a torsion coil spring, and the connecting pin 5 is inserted into the coil of the biasing portion 52 and is inserted into the through hole 41b and the second connecting hole 12b to be connected to the rod-shaped portion 49a.
  • the abutment portion 42a abuts against the ring outer inclined surface 71 and the piece 4 begins to move from the closed position to the open position, the piece 4 is configured to rotate around the locking hole 41a and the locking protrusion 49c as the rotation axis, and the upper end of the piece 4 is configured to open while tilting outward.
  • the lower part of the piece 4 in the axial direction (axial direction of the tread molding portion 3) is journaled, and the upper part of the piece 4 is allowed to rotate (toward the outside in the radial direction) along the radial direction (radial direction of the tread molding portion 3), and the piece 4 opens while tilting, thereby reducing the demolding resistance when the split mold 40 is demolded from the tread surface of the tire 200 and reducing the power required to open the piece 4.
  • the piece 4 has a split mold 40 whose inner surface is a design surface forming the tread surface of the tire 200 (see FIG. 1), a holder 41 that supports the split mold 40, and an arm portion 42 that is disposed at the lower end of the holder 41 and engages with the ring outer periphery 70 of the ring 7, as shown in FIG. 6, for example.
  • the arm portion 42 abuts against and engages with the ring outer inclined surface 71, and the arm portion 42 is biased outward, causing the piece 4 to move outward and open.
  • the piece 4 is not limited to having the arm portion 42.
  • the second embodiment of the die 100 described below differs from the first embodiment in that, as shown in FIG. 11, the piece 4 has a first guide rail 6 instead of an arm portion 42, and the ring 7 has a second guide rail 8 on the ring inner circumference 75, but is otherwise similar to the first embodiment.
  • the die 100 of this embodiment will be described below. In the following description, descriptions that overlap with the first embodiment will be omitted as appropriate.
  • the piece 4 has a first guide rail 6 that extends along the axial direction on the outer portion 41A of the holder 41, which is the outer periphery of the outer piece in the radial direction, and gradually slopes radially inward as it moves upward in the axial direction.
  • the outer portion 41A is formed with a piece outer inclined surface 41B that extends along the axial direction and gradually slopes radially inward as it moves upward in the axial direction.
  • the first guide rail 6 is arranged along the planar piece outer inclined surface 41B.
  • the first guide rail 6 is fixed to the outer portion 41A by, for example, a male screw member 64.
  • the female threaded portion of the outer portion 41A into which the male screw member 64 screws is shown as a screw hole 41H.
  • the through hole of the first guide rail 6 through which the male screw member 64 is inserted is shown as an insertion hole 65.
  • the male screw member 64 is arranged so that the head is located on the outer side in the radial direction, and the threaded portion is located on the inner side in the radial direction.
  • the first guide rail 6 may be formed so that its cross-sectional shape when viewed along its extension direction is a T-shape.
  • FIG. 12 shows a cross-section of the tread molding portion 3 and ring 7 of the mold 100 in a plan view, and shows a portion of the cross-section of a portion including the circumferential biasing portion 48.
  • the first guide rail 6 may be arranged so that the lower end 61 of the T-shape is located on the inside (the side close to the outer portion 41A) and the upper end side 62 of the T-shape (the horizontal bar part of the T-shape) is located on the outside.
  • the ring 7 has a second guide rail 8 on the inner circumference 75 of the ring that extends along the axial direction and gradually slopes radially inward as it moves axially upward.
  • the second guide rail 8 may be formed, for example, as a groove-shaped space in the ring inner circumference 75. In this embodiment, the second guide rail 8 extends to the upper end of the ring 7 in the ring inner circumference 75.
  • the second guide rail 8 is formed as a groove-like space 80 in the shape of the letter T when viewed in the direction of extension, as shown in FIG. 12.
  • the space 80 may be arranged so that the lower end 85 of the T-shape in its cross-sectional shape is located on the inside (the side closest to the piece 4) and opens onto the ring outer inclined surface 71 of the ring inner circumference 75, and the upper end 86 of the T-shape (the horizontal bar part of the T-shape) is located on the outside.
  • the first guide rail 6 fits into and engages with the groove of the second guide rail 8, and is guided along the second guide rail 8.
  • the first guide rail 6 may fit into and engage with the groove of the second guide rail 8 with the upper end side 62 fitted into the upper end 86 of the second guide rail 8 and the lower end 61 fitted into the lower end 85 of the second guide rail 8.
  • the pieces 4 are opened radially as the first guide rail 6 moves downward relative to the second guide rail 8. As in the first embodiment, the pieces 4 are separated from adjacent pieces 4 when opened.
  • the ring 7 is formed with a through hole 77 for screw tightening that penetrates along the axis of the male screw member 64 and the screw hole 41H (see FIG. 11).
  • the through hole 77 penetrates the ring 7 in the radial direction.
  • the through hole 77 is positioned so as to overlap with the second guide rail 8 when viewed in the radial direction.
  • the through hole 77 is positioned so that, when viewed in the radial direction, the ring 7 and the first guide rail 6 overlap, and the first guide rail 6 is guided by the second guide rail 8, the axis of the through hole 77 can overlap with the axis of the screw of the male screw member 64.
  • the through hole 77 is exemplified as being such that, when the ring 7 is positioned at a specified position, the axis of the through hole 77 overlaps with the axis of the screw of the male screw member 64.
  • FIG. 13 shows a case in which the first guide rail 6 is fixed to the holder 41 by three male screw members 64 arranged along the axial direction. Three through holes 77 are arranged in the ring 7 along the axial direction to correspond to these three male screw members 64. Note that, since the pieces 4 (holders 41) are arranged adjacent to each other in the circumferential direction, the through holes 77 may be arranged to correspond to the male screw members 64 of each holder 41.
  • the first guide rail 6 can be fixed to the holder 41 while engaged with the second guide rail 8 by the following procedure.
  • the ring 7 is removed from the upper container 2. Then, the piece 4 from which the first guide rail 6 has been removed is arranged along the inner peripheral surface of the ring 7. At this time, it is advisable to position the piece 4 so that the axis of the screw hole 41H of the piece 4 overlaps with the axis of the through hole 77 of the ring 7. Then, the first guide rail 6 is inserted from the upper end of the ring 7 into the groove of the second guide rail 8 and fitted in. Then, the first guide rail 6 is positioned along the second guide rail 8 so that the axis of the screw hole 41H, the axis of the insertion hole 65 of the first guide rail 6 (see FIG. 12), and the axis of the through hole 77 of the ring 7 overlap.
  • the male screw member 64 is inserted into the through hole 77 from the outside to the inside of the ring 7.
  • the male screw member 64 that has been inserted into the through hole 77 is inserted into the insertion hole 65 as it is, and further screwed into the screw hole 41H. This allows the first guide rail 6 to be fixed to the holder 41 in a state of being engaged with the second guide rail 8. Then, the ring 7 can be attached to the upper container 2.
  • the first guide rail 6 is disposed along the planar piece outer inclined surface 41B of the outer portion 41A of the holder 41.
  • the piece outer inclined surface 41B is not planar, the first guide rail 6 does not necessarily need to be disposed along the piece outer inclined surface 41B.
  • the first guide rail 6 only needs to be fixed to the outer portion 41A of the holder 41.
  • the piece outer inclined surface 41B is a curved surface that is convex outward, the first guide rail 6 only needs to be fixed to the outer portion 41A at an angle that allows it to engage with the second guide rail 8.
  • the piece 4 has a holder 41 and a split mold 40, and the split mold 40 is supported by the holder 41 with its outer portion fitted into the recess, i.e., the holder 41 is separate from the split mold 40.
  • the holder 41 and the split mold 40 may be formed integrally.
  • This disclosure can be applied to tire molding molds.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

Provided is a mold for tire molding that has a subdivided opening/closing mold structure suited for precision tire molding. The mold for tire molding comprises: an annular tread molding section divided into a plurality of segment pieces aligned in a circumferential direction; and an outer ring that is disposed above the tread molding section in the axial direction and moves along the axial direction of the tread molding section to open and close the tread molding section in the radial direction thereof. The outer ring engages with each of the segment pieces, and the segment pieces open and close in the radial direction in association with movement of the outer ring, each moving toward and away from adjacent segment pieces.

Description

タイヤ成形用金型Tire molding mold
 本開示は、タイヤ成形用金型に関する。 This disclosure relates to a tire molding mold.
 タイヤ成形用金型は、円周方向に7から13分割程度の分割金型(セグメント)に分割された開閉機構を持つものが多い。このタイヤ成形用金型の中には各セグメント内で、意匠面部さらに細かく分割されたピースとされた、細分割開閉金型構造のものが存在している。 Many tire molding dies have an opening and closing mechanism that is divided into 7 to 13 divided dies (segments) in the circumferential direction. Some tire molding dies have a finely divided opening and closing die structure, where the design surface within each segment is further divided into finely divided pieces.
 セグメントを更にピースに分割するなどして金型の分割数を増し、それらピースを半径方向に開閉するようにどうさせることの利点は、生タイヤへの金型押し付け、加圧及び加温を行う加硫時に、生タイヤ上のゴムの流動を軸対称かつ極小化しやすいこと、脱型抵抗を低減できること及びタイヤ品質を向上できることが挙げられる。脱型抵抗の低減としては、例えば、タイヤ脱型時に金型の骨やサイプなどのパターン部がタイヤ脱型方向で形成するアンダーカットを極小化できることが挙げられる。タイヤ品質の向上としては、例えば、アンダーカット抜き抵抗や脱型時にタイヤに与える歪エネルギーを極小化でき、これにより複雑パターン脱型に起因するゴムの永久変形や残留歪を極小化して、タイヤの初期品質を高めることができることが挙げられる。 The advantages of increasing the number of divisions of the mold by further dividing the segments into pieces and opening and closing those pieces in the radial direction include making it easier to make the flow of rubber on the raw tire axially symmetrical and minimized during vulcanization when the mold is pressed against the raw tire and pressure and heat are applied, reducing demolding resistance, and improving tire quality. One example of reducing demolding resistance is minimizing undercuts formed by pattern parts such as the bones and sipes of the mold in the tire demolding direction when the tire is demolded. One example of improving tire quality is minimizing undercut removal resistance and the strain energy applied to the tire during demolding, thereby minimizing permanent deformation and residual strain of the rubber caused by demolding of complex patterns and improving the initial quality of the tire.
 近年はタイヤの溝形状パターンが複雑化してきている。そのため、タイヤをタイヤ成形用金型から脱型する際の脱型抵抗が大きくなる傾向にある。そこで、脱型抵抗の低減が要請されるとともに、細分割開閉金型構造の金型の採用が要請される。 In recent years, tire groove patterns have become more complex. This has resulted in a tendency for the resistance to demolding to increase when a tire is demolded from a tire molding mold. This has created a demand for reducing the resistance to demolding and for molds with a finely divided opening and closing mold structure to be adopted.
 細分割開閉金型構造の金型としては、脱型抵抗の低減のため、ピースのすべてが半径方向に開閉するように構成されたタイヤ成形用金型がある(例えば、特許文献1参照)。 An example of a mold with a finely divided open-close mold structure is a tire molding mold in which all of the pieces are configured to open and close in the radial direction in order to reduce demolding resistance (see, for example, Patent Document 1).
 特許文献1には、タイヤトレッドを成型する金型がタイヤ周方向に分割されたセグメントで構成されたタイヤ成型用金型が記載されている。このタイヤ成型用金型において、セグメントはタイヤ周方向に分割された複数のピースを備えている。このセグメントでは、セグメントのピースの1つのみが固定され、他のすべてのピースがタイヤ周方向に移動可能とされている。 Patent Document 1 describes a tire molding die in which the die for molding the tire tread is composed of segments divided in the tire circumferential direction. In this tire molding die, the segments have multiple pieces divided in the tire circumferential direction. In this segment, only one of the pieces of the segment is fixed, and all other pieces are movable in the tire circumferential direction.
特開2006-21357号公報JP 2006-21357 A
 しかし、従来の細分割開閉金型構造の金型にあっては、個々にピースの動きを制御できない場合があり、より精密なタイヤ成形には十分でない場合があった。 However, with conventional molds that have a finely divided opening and closing mold structure, it was sometimes impossible to control the movement of each piece, and they were not sufficient for more precise tire molding.
 本開示は、かかる実状に鑑みて為されたものであって、その目的は、精密なタイヤ成形に適した細分割開閉金型構造のタイヤ成形用金型を提供することにある。 This disclosure was made in consideration of this situation, and its purpose is to provide a tire molding mold with a finely divided open/close mold structure suitable for precision tire molding.
 上記目的を達成するための本開示に係るタイヤ成形用金型は、
 円周方向に並ぶ複数のセグメントピースに分割された円環状のトレッド成形部と、
 前記トレッド成形部の軸方向における上側に配置され、前記トレッド成形部の軸方向に沿って移動して前記トレッド成形部をその径方向に開閉させるアウターリングと、を備え、
 前記アウターリングは、前記セグメントピースのそれぞれと係合しており、
 前記セグメントピースは、前記アウターリングの移動に伴って前記径方向に開閉され、且つ、隣接する前記セグメントピースと離間する。
In order to achieve the above object, the tire molding mold according to the present disclosure comprises:
a circular tread molding portion divided into a plurality of segment pieces arranged in a circumferential direction;
an outer ring that is disposed axially above the tread molded portion and moves along the axial direction of the tread molded portion to open and close the tread molded portion in a radial direction;
the outer ring is engaged with each of the segment pieces;
The segment pieces are opened and closed in the radial direction in association with the movement of the outer ring, and are spaced apart from the adjacent segment pieces.
 本開示によれば、精密なタイヤ成形に適した細分割開閉金型構造のタイヤ成形用金型を提供することができる。 This disclosure makes it possible to provide a tire molding mold with a finely divided open/close mold structure suitable for precision tire molding.
第一実施形態のタイヤ成形用金型の正面視での断面図である。FIG. 1 is a cross-sectional view of a tire molding mold according to a first embodiment as seen from the front. 第一実施形態のタイヤ成形用金型のトレッド成形部の平面視での断面図である。FIG. 2 is a cross-sectional view in plan view of a tread molding portion of the tire molding die of the first embodiment. 第一実施形態のタイヤ成形用金型の周方向における一部を内側から見た図である。FIG. 2 is a view of a portion of the tire molding die of the first embodiment in the circumferential direction as viewed from the inside. 第一実施形態のタイヤ成形用金型の周方向における一部を外側から見た図である。FIG. 2 is a view of a portion of the tire molding die of the first embodiment in the circumferential direction as viewed from the outside. アウターリングが保持位置である場合の、第一実施形態のタイヤ成形用金型の周方向における一部を周方向に沿って見た図である。FIG. 2 is a view of a portion of the tire molding die of the first embodiment viewed in the circumferential direction when the outer ring is in a retaining position. アウターリングが解放位置である場合の、第一実施形態のタイヤ成形用金型の周方向における一部を周方向に沿って見た図である。FIG. 2 is a view of a portion of the tire molding die of the first embodiment viewed in the circumferential direction when the outer ring is in a release position. 第一実施形態のタイヤ成形用金型のトレッド成形部が上側コンテナと共に上昇している状態を示す図である。FIG. 2 is a diagram showing a state in which a tread molding portion of the tire molding die according to the first embodiment is raised together with an upper container. 第一実施形態の変形例1のタイヤ成形用金型の周方向における一部を外側から見た図である。FIG. 2 is a view showing a part in the circumferential direction of a tire molding die according to Modification 1 of the first embodiment, as viewed from the outside. アウターリングが解放位置である場合の、第一実施形態の変形例1のタイヤ成形用金型の周方向における一部を周方向に沿って見た図である。FIG. 11 is a view of a portion of a tire molding die according to Modification 1 of the first embodiment, viewed in the circumferential direction, when the outer ring is in a release position. アウターリングが解放位置である場合の、第一実施形態の変形例2のタイヤ成形用金型の周方向における一部を周方向に沿って見た図である。FIG. 11 is a view of a portion of a tire molding die according to Modification 2 of the first embodiment, viewed in the circumferential direction, when the outer ring is in a release position. アウターリングが解放位置である場合の、第二実施形態のタイヤ成形用金型の周方向における一部を周方向に沿って見た図である。FIG. 11 is a view of a portion of a tire molding die according to a second embodiment viewed in the circumferential direction when the outer ring is in a release position. 第二実施形態のタイヤ成形用金型のトレッド成形部及びアウターリングの平面視での断面の一部を示す図である。FIG. 11 is a diagram showing a part of a cross section in a plan view of a tread molding portion and an outer ring of a tire molding die according to a second embodiment. 第二実施形態のタイヤ成形用金型の周方向における一部を外側から見た図である。FIG. 11 is a view of a portion of a tire molding die according to a second embodiment in a circumferential direction as viewed from the outside.
 図面に基づいて、本開示の実施形態に係るタイヤ成形用金型について説明する。 The tire molding mold according to the embodiment of the present disclosure will be described with reference to the drawings.
(第一実施形態)
 図1には、本実施形態に係るタイヤ成形用金型100(以下、金型100と称する場合がある)の、正面視における断面図を示している。
First Embodiment
FIG. 1 shows a cross-sectional front view of a tire molding die 100 (hereinafter, sometimes referred to as die 100) according to this embodiment.
(概要の説明)
 金型100は、未加硫(加硫前)の合成ゴムを主体として形成された生タイヤを、加硫しつつ所定の形状に成形してタイヤ200を製造するために用いられるものである。
(Summary)
The mold 100 is used to manufacture a tire 200 by forming a green tire, which is mainly made of unvulcanized (before vulcanization) synthetic rubber, into a predetermined shape while vulcanizing it.
 金型100は、円周方向に並ぶ複数のセグメントピース4に分割された円環状のトレッド成形部3と、トレッド成形部3の軸方向(軸心Gに沿う方向)における上側に配置され、トレッド成形部3の軸方向に沿って移動してトレッド成形部3をその径方向に開閉させるアウターリング7と、を備えている。アウターリング7は、セグメントピース4のそれぞれと係合している。セグメントピース4は、アウターリング7の移動に伴って径方向に開閉され、且つ、隣接するセグメントピース4と離間する。 The mold 100 includes an annular tread molding section 3 divided into a number of segment pieces 4 arranged in the circumferential direction, and an outer ring 7 that is disposed above the tread molding section 3 in the axial direction (direction along the axis G) and moves along the axial direction of the tread molding section 3 to open and close the tread molding section 3 in the radial direction. The outer ring 7 engages with each of the segment pieces 4. The segment pieces 4 open and close in the radial direction as the outer ring 7 moves, and are separated from adjacent segment pieces 4.
 金型100は、細分割開閉金型構造とされている。金型100は、精密なタイヤ成形に適している。 The mold 100 has a finely divided open/close mold structure. The mold 100 is suitable for precision tire molding.
(詳細説明)
 以下、金型100について詳述する。
(Detailed explanation)
The mold 100 will now be described in detail.
 金型100は、下側コンテナ1、上側コンテナ2、トレッド成形部3及びアウターリング7(以下、リング7と称する)を備えている。上述のごとく、トレッド成形部3は、円環状に形成されている。 The mold 100 includes a lower container 1, an upper container 2, a tread molding section 3, and an outer ring 7 (hereinafter referred to as ring 7). As described above, the tread molding section 3 is formed in a circular ring shape.
 以下では、トレッド成形部3の軸心Gに沿う方向を軸方向と称する。また、トレッド成形部3の周方向及びこれと同じ方向は、単に周方向と称する。また、トレッド成形部3の径方向及びこれと同じ方向は、単に径方向と称し、径方向における外側を単に外側又は径方向の外側、内側を単に内側又は径方向の内側と称する。軸方向における、下側コンテナ1から見て上側コンテナ2を向く向きを上側、上方又は上と称し、上側コンテナ2から見て下側コンテナ1の側を向く向きを下側、下方又は下と称する。 Hereinafter, the direction along the axis G of the tread molding portion 3 will be referred to as the axial direction. Furthermore, the circumferential direction of the tread molding portion 3 and the same direction will be simply referred to as the circumferential direction. Furthermore, the radial direction of the tread molding portion 3 and the same direction will be simply referred to as the radial direction, with the outer side in the radial direction simply referred to as the outer side or the radial outer side, and the inner side simply referred to as the inner side or the radial inner side. In the axial direction, the direction facing the upper container 2 as viewed from the lower container 1 will be referred to as the upper side, upward, or top, and the direction facing the lower container 1 as viewed from the upper container 2 will be referred to as the lower side, downward, or bottom.
 下側コンテナ1は、金型100の座部であり、上側コンテナ2及びトレッド成形部3が載置される。下側コンテナ1は、板部10と、板部10の上面に載置された下側サイドウォール成形部11とを有する。 The lower container 1 is the seat of the mold 100, on which the upper container 2 and the tread molding section 3 are placed. The lower container 1 has a plate section 10 and a lower sidewall molding section 11 placed on the upper surface of the plate section 10.
 上側コンテナ2は、板部20と、板部20の下面に固定された上側サイドウォール成形部21とを有する。上側コンテナ2は、リング7を吊下げて支持している。本実施形態でリング7は、上側サイドウォール成形部21の外側位置に、上端部を固定されて、上側コンテナ2に吊下げられている。上側コンテナ2は、軸方向にそって、下側コンテナ1に対して相対的に上下に昇降可能とされている。 The upper container 2 has a plate portion 20 and an upper sidewall molding portion 21 fixed to the underside of the plate portion 20. The upper container 2 supports a ring 7 by suspending it. In this embodiment, the ring 7 is suspended from the upper container 2 with its upper end fixed to a position outside the upper sidewall molding portion 21. The upper container 2 can be raised and lowered relative to the lower container 1 along the axial direction.
 下側サイドウォール成形部11と上側サイドウォール成形部21とは、タイヤ200の側面部(サイドウォール)を形成する金型である。下側サイドウォール成形部11と上側サイドウォール成形部21とは、トレッド成形部3と同軸心の円環状に形成されている。下側サイドウォール成形部11の上面と、上側サイドウォール成形部21の下面とが、タイヤ200の側面を成形する意匠面である。 The lower sidewall molding portion 11 and the upper sidewall molding portion 21 are dies that form the side portions (sidewalls) of the tire 200. The lower sidewall molding portion 11 and the upper sidewall molding portion 21 are formed in an annular shape that is coaxial with the tread molding portion 3. The upper surface of the lower sidewall molding portion 11 and the lower surface of the upper sidewall molding portion 21 are design surfaces that form the side surfaces of the tire 200.
 トレッド成形部3は、タイヤ200のトレッド面を形成する金型を含むユニットである。トレッド成形部3の内側面がタイヤ200のトレッド面を形成する意匠面である。トレッド成形部3は、下側コンテナ1の板部10の上面上に直接載置されている。 The tread molding section 3 is a unit that includes a mold that forms the tread surface of the tire 200. The inner surface of the tread molding section 3 is the design surface that forms the tread surface of the tire 200. The tread molding section 3 is placed directly on the upper surface of the plate section 10 of the lower container 1.
 図2には、トレッド成形部の平面視での断面図を示す。図3には、金型100を内側から見た図であって、金型100の周方向における一部を図示している。図4には、金型100を外側から見た図であって、金型100の周方向における一部を図示している。トレッド成形部3は、図2から図4に示すように、円周方向に並ぶ複数のセグメントピース4(以下、ピース4と称する)を有する。 FIG. 2 shows a cross-sectional view of the tread molding portion in a plan view. FIG. 3 shows a view of the mold 100 from the inside, illustrating a portion of the mold 100 in the circumferential direction. FIG. 4 shows a view of the mold 100 from the outside, illustrating a portion of the mold 100 in the circumferential direction. As shown in FIGS. 2 to 4, the tread molding portion 3 has a plurality of segment pieces 4 (hereinafter referred to as pieces 4) arranged in the circumferential direction.
 トレッド成形部3は、例えば周方向に30から90個のピース4に分割されてよい。ピース4は、下側コンテナ1の板部10の上面上に直接載置されている。本実施形態のトレッド成形部3は、円周方向の長さが互いに同一の45個のピース4に分割された構成とされている。ピース4の内側面が、トレッド成形部3の意匠面である。以下では、ピース4の内側面を、セグメントピース4の意匠面と称する場合がある。 The tread molding portion 3 may be divided into, for example, 30 to 90 pieces 4 in the circumferential direction. The pieces 4 are placed directly on the upper surface of the plate portion 10 of the lower container 1. In this embodiment, the tread molding portion 3 is divided into 45 pieces 4 each having the same circumferential length. The inner surface of the pieces 4 is the design surface of the tread molding portion 3. Hereinafter, the inner surface of the piece 4 may be referred to as the design surface of the segment piece 4.
 ピース4は、ピース4の意匠面が周方向で隣接するピース4の意匠面と連続的に連なる閉位置と、ピース4の意匠面が隣接するピース4の意匠面と不連続になる開位置とに移動可能である。換言すると、ピース4の開位置は、ピース4の閉位置よりも外側の位置である。ピース4は、例えば、開位置と閉位置との間を径方向に沿って移動可能とされている。なお、図3は、ピース4が閉位置である場合を、図4は、ピース4が開位置である場合を示している。 Piece 4 can be moved between a closed position where the design surface of piece 4 is continuous with the design surface of an adjacent piece 4 in the circumferential direction, and an open position where the design surface of piece 4 is discontinuous with the design surface of an adjacent piece 4. In other words, the open position of piece 4 is a position outside the closed position of piece 4. Piece 4 can be moved, for example, in the radial direction between the open position and the closed position. Note that FIG. 3 shows the case where piece 4 is in the closed position, and FIG. 4 shows the case where piece 4 is in the open position.
 図5及び図6には、金型100の周方向における一部を周方向に沿って見た図を示している。リング7は、図5及び図6に示すように、トレッド成形部3の外側且つ上側に配置され、トレッド成形部3のピース4を閉位置に保持する保持位置(図5参照)と、ピース4を開位置へ移動させる解放位置(図6参照)との間で移動自在となっている。本実施形態においてリング7は、上側コンテナ2の昇降に伴って昇降する。本実施形態において、規定位置はリング7が最も下降した位置である。また、解放位置は、リング7が規定位置よりも上昇した位置である。 Figures 5 and 6 show a circumferential portion of the mold 100 viewed along the circumferential direction. As shown in Figures 5 and 6, the ring 7 is disposed on the outer side and above the tread molding section 3, and is freely movable between a holding position (see Figure 5) in which the piece 4 of the tread molding section 3 is held in a closed position, and a release position (see Figure 6) in which the piece 4 is moved to an open position. In this embodiment, the ring 7 rises and falls as the upper container 2 rises and falls. In this embodiment, the specified position is the position at which the ring 7 is lowest. The release position is the position at which the ring 7 is higher than the specified position.
 リング7は、外側を向き、上方に向けて徐々に直径が小さくなるように傾斜するリング外側傾斜面71が形成されたリング外周部70と、内側を向き、上方に向けて徐々に直径が小さくなるように傾斜するリング内側傾斜面76が形成されたリング内周部75とを有する。 The ring 7 has an outer ring periphery 70 on which an outer ring inclined surface 71 faces outward and is inclined so that the diameter gradually decreases in the upward direction, and an inner ring periphery 75 on which an inner ring inclined surface 76 faces inward and is inclined so that the diameter gradually decreases in the upward direction.
 リング7は、ピース4のそれぞれと係合している。リング7は、ピース4を閉位置と開位置とに移動させる。このリング7とピース4との動作については後述する。 The ring 7 engages with each of the pieces 4. The ring 7 moves the pieces 4 between the closed position and the open position. The operation of the ring 7 and the pieces 4 will be described later.
 ピース4は、図6に示すように、内側の面がタイヤ200(図1参照)のトレッド面を形成する意匠面となっている分割金型40と、分割金型40を支持するホルダ41と、ホルダ41の下端部に配置され、リング外周部70に係合するアーム部42と、ホルダ41の下端部を外側に向けて付勢する付勢部46と、ホルダ41の上端部を外側に向けて付勢する付勢部47と、ホルダ41を、周方向において隣接するホルダ41から遠ざける方向に付勢する周方向付勢部48と、を有する。 As shown in FIG. 6, the piece 4 has a split mold 40 whose inner surface is a design surface that forms the tread surface of the tire 200 (see FIG. 1), a holder 41 that supports the split mold 40, an arm portion 42 that is disposed at the lower end of the holder 41 and engages with the ring outer periphery 70, a biasing portion 46 that biases the lower end of the holder 41 outward, a biasing portion 47 that biases the upper end of the holder 41 outward, and a circumferential biasing portion 48 that biases the holder 41 in a direction away from the adjacent holder 41 in the circumferential direction.
 分割金型40は、図3などに示すように、意匠面に、タイヤのトレッドの溝を形成する突起やサイプを形成する突起を有する。分割金型40は、例えば、軸方向にそって周方向に往復する波線形状に形成されてよい。分割金型40の周方向における端部は隣接する分割金型の端部に沿った形状とされている。 As shown in FIG. 3, the split mold 40 has protrusions on its design surface that form grooves in the tire tread and protrusions that form sipes. The split mold 40 may be formed, for example, in a wavy shape that travels back and forth in the circumferential direction along the axial direction. The circumferential ends of the split mold 40 are shaped to follow the ends of the adjacent split molds.
 ホルダ41は、図5などに示すように、分割金型40の外側に隣接して配置され、分割金型40の外側部を支持している。ホルダ41の内側部は、例えば、軸方向の両端部よりも軸方向の内側部が外側に向けて凹む凹面状に形成されており、分割金型40が、その外側部をその凹部に嵌め込まれてホルダ41に支持されている。ホルダ41の上端部と下端部の内側面はそれぞれ、上側サイドウォール成形部21と下側サイドウォール成形部11の外側面に対向している。ホルダ41は、下側コンテナ1の板部10の上面上に載置された状態で開位置と閉位置とを移動する。 As shown in FIG. 5 etc., the holder 41 is disposed adjacent to the outside of the split mold 40 and supports the outer part of the split mold 40. The inner part of the holder 41 is formed, for example, in a concave shape in which the axial inner part is recessed outward more than both axial ends, and the split mold 40 is supported by the holder 41 with its outer part fitted into the recess. The inner surfaces of the upper and lower ends of the holder 41 face the outer surfaces of the upper sidewall molding part 21 and the lower sidewall molding part 11, respectively. The holder 41 moves between an open position and a closed position while placed on the upper surface of the plate part 10 of the lower container 1.
 なお、分割金型40及びホルダ41は、リング7の内側に配置される。 The split mold 40 and holder 41 are positioned inside the ring 7.
 アーム部42は、ホルダ41の下端部から外側に向けて延出する基部42bと、基部42bにおける、ホルダ41とは反対側の端部から更に上方かつ内側の向きに直線状に延出する柱部42cと、柱部42cにおける、基部42bの側とは反対側の端部に形成された当接部42aとで構成されてよい。 The arm portion 42 may be composed of a base portion 42b extending outward from the lower end of the holder 41, a pillar portion 42c extending in a straight line further upward and inward from the end of the base portion 42b opposite the holder 41, and an abutment portion 42a formed on the end of the pillar portion 42c opposite the base portion 42b.
 アーム部42はホルダ41の一部であってもよいし、別体であってもよい。また、アーム部42の一部(例えば、基部42b)がホルダ41の一部であってもよい。アーム部42とホルダ41とを別体とする場合は、ねじ止めなどにより連結してよい。 The arm portion 42 may be a part of the holder 41 or may be a separate body. Also, a part of the arm portion 42 (for example, the base portion 42b) may be a part of the holder 41. When the arm portion 42 and the holder 41 are separate bodies, they may be connected by screw fastening or the like.
 基部42bは、リング7の内側(ホルダ41の下端部)から外側に向けて延出し、リング7の外側まで延出している。 The base 42b extends from the inside of the ring 7 (the lower end of the holder 41) toward the outside, and reaches the outside of the ring 7.
 アーム部42(柱部42c)における、ホルダ41の下端部の側とは反対側の端部には、内側に向けて突起する当接部42aが形成されている。アーム部42では、当接部42aがリング外周部70に係合可能とされている。 The arm portion 42 (pillar portion 42c) has an abutment portion 42a that protrudes inward at the end opposite the bottom end of the holder 41. The arm portion 42 has the abutment portion 42a that can engage with the outer periphery 70 of the ring.
 付勢部46は、例えばばねなどの弾性部材を含む。付勢部46は、例えば、ホルダ41の下端部におけるホルダ41の内側面から外側に向けて形成された凹部43に収容されてよい。付勢部46は、例えば、ピース4が閉状態である場合に、内側の端部を下側サイドウォール成形部11の外側部に支持されて、ホルダ41を外側に向けて付勢してよい。 The biasing portion 46 includes an elastic member such as a spring. The biasing portion 46 may be housed in a recess 43 formed, for example, at the lower end of the holder 41 from the inner surface of the holder 41 toward the outside. When the piece 4 is in a closed state, for example, the biasing portion 46 may have its inner end supported by the outer portion of the lower sidewall molding portion 11 to bias the holder 41 toward the outside.
 付勢部47は、例えばばねなどの弾性部材を含む。付勢部47は、例えば、ホルダ41の上端部におけるホルダ41の内側面から外側に向けて形成された凹部44に収容されてよい。付勢部47は、例えば、ピース4が閉状態である場合に、内側の端部を上側サイドウォール成形部21の外側部に支持されて、ホルダ41を外側に向けて付勢してよい。 The biasing portion 47 includes an elastic member such as a spring. The biasing portion 47 may be housed in a recess 44 formed, for example, in the upper end portion of the holder 41 from the inner surface of the holder 41 toward the outside. When the piece 4 is in a closed state, for example, the biasing portion 47 may bias the holder 41 toward the outside by supporting the inner end portion against the outer portion of the upper sidewall molding portion 21.
 周方向付勢部48は、例えばばねなどの弾性部材を含む。周方向付勢部48は、例えば、ホルダ41の周方向における一方の端面から他方に向けて形成された凹部45に収容されてよい。周方向付勢部48は、例えば、ピース4が閉状態である場合に、一方の端部を隣接するピース4の周方向における一方の端部に支持されて、ピース4,4同士を離間させる方向にホルダ41,41を付勢してよい。 The circumferential biasing portion 48 includes an elastic member such as a spring. The circumferential biasing portion 48 may be housed in a recess 45 formed from one end face of the holder 41 in the circumferential direction toward the other end. When the pieces 4 are in a closed state, for example, the circumferential biasing portion 48 may have one end supported by one end face in the circumferential direction of an adjacent piece 4, and bias the holders 41, 41 in a direction that separates the pieces 4, 4 from each other.
 ピース4の動作は以下のようである。上側コンテナ2が下降すると、これに伴ってリング7が下降する。これにより、リング内側傾斜面76がホルダ41の外側面に当接し、ピース4を内側に移動させる(例えば、図6の状態から図5の状態)。 The operation of piece 4 is as follows. When the upper container 2 descends, the ring 7 descends accordingly. This causes the ring inner inclined surface 76 to come into contact with the outer surface of the holder 41, moving piece 4 inward (for example, from the state in FIG. 6 to the state in FIG. 5).
 上側コンテナ2が上昇すると、これに伴ってリング7が上昇する。これにより、アーム部42の当接部42aがリング外側傾斜面71に当接して係合する。当接部42aがリング外側傾斜面71に当接して係合した状態でリング7が更に上昇すると、当接部42aは、リング7の上方への移動に伴ってリング外側傾斜面71に沿って、リング外周部70に対して相対的に下方かつ外側に移動する(例えば、図5の状態から図6の状態)。すなわち、アーム部42としての当接部42aが外側に向けて付勢される。これに伴って、ピース4は外側に移動してトレッド成形部3が開く。ピース4は、トレッド成形部3が開かれる際に、隣接するピース4と離間する。以下では、ピース4は外側に移動してトレッド成形部3が開くこと、及び、ピース4は外側に移動することを、ピース4が開く、などと記載する場合がある。 When the upper container 2 rises, the ring 7 rises accordingly. As a result, the abutment portion 42a of the arm portion 42 abuts and engages with the ring outer inclined surface 71. When the ring 7 rises further with the abutment portion 42a abutting and engaging with the ring outer inclined surface 71, the abutment portion 42a moves downward and outward relative to the ring outer peripheral portion 70 along the ring outer inclined surface 71 as the ring 7 moves upward (for example, from the state in FIG. 5 to the state in FIG. 6). That is, the abutment portion 42a as the arm portion 42 is biased outward. Accordingly, the piece 4 moves outward and the tread molding portion 3 opens. When the tread molding portion 3 opens, the piece 4 moves away from the adjacent piece 4. In the following, the piece 4 moving outward and the tread molding portion 3 opening, and the piece 4 moving outward, may be described as the piece 4 opening, etc.
 ピース4が開かれる際、それぞれのピース4は、径方向に沿って放射状に広がる。トレッド成形部3が多数のピース4に分割(例えば周方向に30から90個)されることで、ピース4の分割金型40がタイヤ200のトレッド面から離型する際の、タイヤ200のトレッド面に加わる離型抵抗を低減し、ピース4を開く際の動力を軽減させることができる。また、タイヤ200のトレッド面に加わる離型抵抗を低減することで、離型時におけるタイヤ200のトレッド面の変形を抑制し、タイヤ200の初期性能向上を実現することができる。 When the pieces 4 are opened, each piece 4 spreads out radially along the diameter direction. By dividing the tread molding portion 3 into a large number of pieces 4 (for example, 30 to 90 pieces in the circumferential direction), the demolding resistance applied to the tread surface of the tire 200 when the split mold 40 of the pieces 4 is released from the tread surface of the tire 200 can be reduced, and the power required to open the pieces 4 can be reduced. In addition, by reducing the demolding resistance applied to the tread surface of the tire 200, deformation of the tread surface of the tire 200 during demolding can be suppressed, and the initial performance of the tire 200 can be improved.
 ピース4が開かれる際には、周方向付勢部48が隣接するピース4,4同士を離間させる方向にホルダ41,41を付勢して、ピース4,4同士の離間を支援する。これにより、ピース4を開く際の動力が軽減される。 When the pieces 4 are opened, the circumferential biasing portion 48 biases the holders 41, 41 in a direction that separates the adjacent pieces 4, 4, thereby assisting in the separation of the pieces 4, 4. This reduces the force required to open the pieces 4.
 ピース4が開かれる際には、付勢部46,47がホルダ41を外側に向けて付勢して、ピース4の外側への移動を支援する。これにより、ピース4を開く際の動力が軽減される。 When piece 4 is opened, biasing parts 46 and 47 bias holder 41 outward to assist in the outward movement of piece 4. This reduces the force required to open piece 4.
 本実施形態では、リング外周部70の下端部に、外側に向けて延出する突起部72を形成してもよい。これにより、図7に示すように、上側コンテナ2が上昇して当接部42aがリング外周部70に対して相対的に下方かつ外側に移動してリング外周部70の下端部に到達した時、当接部42aが突起部72に係止されるようになる。当接部42aが突起部72に係止された状態では、ピース4の集合体であるトレッド成形部3を上側コンテナ2と共に上昇させることができるようになる。 In this embodiment, a protrusion 72 extending outward may be formed on the lower end of the ring outer periphery 70. As a result, as shown in FIG. 7, when the upper container 2 rises and the abutment portion 42a moves downward and outward relative to the ring outer periphery 70 and reaches the lower end of the ring outer periphery 70, the abutment portion 42a becomes engaged with the protrusion 72. With the abutment portion 42a engaged with the protrusion 72, the tread molding portion 3, which is an assembly of pieces 4, can be raised together with the upper container 2.
 当接部42aが内側に向けて突起する高さは、隣接するピース4のアーム部42毎に違えてもよい。これにより、ピース4を開く際に、それぞれのピース4の分割金型40がタイヤ200から離型するタイミングをずらすことができる。それぞれのピース4の分割金型40がタイヤ200から離型するタイミングをずらすことにより、ピース4を開く際の最大の動力を低減することができる。また、それぞれのピース4の分割金型40がタイヤ200から離型するタイミングをずらすことにより、タイヤ200のトレッド面に加わる最大の離型抵抗を低減することができ、これにより離型時におけるタイヤ200のトレッド面の変形を抑制してタイヤ200の初期性能向上を実現することができる。 The height at which the abutment portions 42a protrude inward may be different for each arm portion 42 of adjacent pieces 4. This allows the timing at which the split molds 40 of each piece 4 are released from the tire 200 to be staggered when the pieces 4 are opened. By staggering the timing at which the split molds 40 of each piece 4 are released from the tire 200, the maximum power required to open the pieces 4 can be reduced. In addition, by staggering the timing at which the split molds 40 of each piece 4 are released from the tire 200, the maximum release resistance applied to the tread surface of the tire 200 can be reduced, thereby suppressing deformation of the tread surface of the tire 200 during release and improving the initial performance of the tire 200.
 (第一実施形態の変形例1)
 ピース4は、下側コンテナ1に係止させてもよい。例えば、図8及び図9に示すように、アーム部42を下側コンテナ1に係止させてもよい。
(First Modification of the First Embodiment)
The piece 4 may be engaged with the lower container 1. For example, as shown in Figs. 8 and 9, an arm portion 42 may be engaged with the lower container 1.
 例えば、下側コンテナ1の板部10の外周部に沿って環状に形成されており、板部10の外周部から上方に向けて延出する筒状の壁部19を設けてよい。 For example, a cylindrical wall portion 19 may be provided that is formed in a ring shape along the outer periphery of the plate portion 10 of the lower container 1 and extends upward from the outer periphery of the plate portion 10.
 壁部19には、壁部19を径方向に沿って貫通する係止孔13が、周方向における各ピース4の可動範囲に対応させて配置されている。換言すると、係止孔13は径方向に沿わせて形成されている。各係止孔13にはアーム部42が挿通されており、これによりピース4が下側コンテナ1に係止される。 The wall portion 19 has locking holes 13 that penetrate the wall portion 19 in the radial direction and are arranged to correspond to the movable range of each piece 4 in the circumferential direction. In other words, the locking holes 13 are formed along the radial direction. An arm portion 42 is inserted into each locking hole 13, thereby locking the piece 4 to the lower container 1.
 この場合、アーム部42は、ホルダ41の下端部から外側に向けて延出する基部42bと、基部42bにおける、ホルダ41とは反対側の端部にねじ止めなどにより連結されており、上方に向けて直線状に延在する柱部42cと、柱部42cにおける、基部42bの側とは反対側の端部に形成された当接部42aとで構成されてよい。 In this case, the arm portion 42 may be composed of a base portion 42b extending outward from the lower end of the holder 41, a column portion 42c that is connected to the end of the base portion 42b opposite the holder 41 by screwing or the like and extends in a straight line upward, and an abutment portion 42a formed on the end of the column portion 42c opposite the base portion 42b.
 アーム部42のホルダ41への取り付けは以下のようにして行うことができる。まず、基部42bをホルダ41に固定した後、基部42bにおけるホルダ41とは反対側の端部を、壁部19の内側から係止孔13に挿通し、基部42bが壁部19を貫通した状態とする。そして、壁部19の外側から、柱部42cを基部42bにねじ止めなどにより連結する。 The arm portion 42 can be attached to the holder 41 as follows. First, the base portion 42b is fixed to the holder 41, and then the end of the base portion 42b opposite the holder 41 is inserted into the locking hole 13 from the inside of the wall portion 19, so that the base portion 42b penetrates the wall portion 19. Then, from the outside of the wall portion 19, the pillar portion 42c is connected to the base portion 42b by screwing or the like.
 (第一実施形態の変形例2)
 上記実施形態では、ホルダ41の下端部を外側に向けて付勢する付勢部46は、ホルダ41の下端部におけるホルダ41の内側面から外側に向けて形成された凹部43に収容される場合を説明した。しかし、付勢部46は凹部43に収容される場合に限られない。付勢部46は、図10に示すように、下側コンテナ1の板部10内に収容されてもよい。
(Modification 2 of the First Embodiment)
In the above embodiment, the biasing portion 46 that biases the lower end portion of the holder 41 outward is housed in the recess 43 that is formed from the inner surface of the holder 41 toward the outside at the lower end portion of the holder 41. However, the biasing portion 46 is not limited to being housed in the recess 43. The biasing portion 46 may be housed in the plate portion 10 of the lower container 1 as shown in FIG. 10 .
 例えば、板部10の外周面から内側に向けて延在し、内側の端部が閉鎖した穴部12を径方向に沿って形成し、この穴部12に付勢部46のばねなどを収容してよい。この場合、ホルダ41は、ピストン49を介して付勢部46により付勢されてよい。 For example, a hole 12 extending inward from the outer circumferential surface of the plate portion 10 and having a closed inner end may be formed along the radial direction, and a spring or the like of the biasing portion 46 may be housed in this hole 12. In this case, the holder 41 may be biased by the biasing portion 46 via the piston 49.
 穴部12には、径方向(トレッド成形部3の径方向)における中間部に設けられ、穴部12の上側の内面から板部10の上面に貫通する第一連結孔12aと、径方向における、第一連結孔12aよりも外側の位置に設けられ、穴部12の上側の内面から板部10の上面まで貫通する第二連結孔12bとが形成されてよい。第一連結孔12a及び第二連結孔12bは、周方向の幅よりも径方向の幅が長くなるように、径方向に沿う長方形状又は長円形状に形成されている。 The hole portion 12 may be provided with a first connecting hole 12a that is provided in the middle portion in the radial direction (the radial direction of the tread molding portion 3) and penetrates from the upper inner surface of the hole portion 12 to the upper surface of the plate portion 10, and a second connecting hole 12b that is provided in a position in the radial direction outside the first connecting hole 12a and penetrates from the upper inner surface of the hole portion 12 to the upper surface of the plate portion 10. The first connecting hole 12a and the second connecting hole 12b are formed in a rectangular or elliptical shape along the radial direction so that the radial width is longer than the circumferential width.
 ピストン49は、穴部12に収容される棒状部49aと、棒状部49aの内側端部から上方に延出する枝部49bとを有してよい。 The piston 49 may have a rod-shaped portion 49a that is housed in the hole 12 and a branch portion 49b that extends upward from the inner end of the rod-shaped portion 49a.
 枝部49bの上端部には、外側に向けて突起する係止突起49cを形成してよい。 A locking protrusion 49c that protrudes outward may be formed on the upper end of the branch portion 49b.
 枝部49bは、第一連結孔12aを介してホルダ41の下端部に係止させる。例えば、ホルダ41の下端部に、枝部49bの上端部を係止させる係止孔41aを形成してよい。係止孔41aは、ホルダ41の下面から上方に向けて凹み、その上端部(孔の底部)が、更に外側に向けて凹むアルファベットのL字形状の穴としてよい。枝部49bは、係止突起49cをL字形状の係止孔41aに係止させてよい。付勢部46は、棒状部49aの内側端部を外側に向けて付勢することで、枝部49b及び係止孔41aを介してホルダ41の下端部を外側に向けて付勢することができる。 The branch portion 49b is engaged with the lower end of the holder 41 via the first connecting hole 12a. For example, a locking hole 41a for locking the upper end of the branch portion 49b may be formed in the lower end of the holder 41. The locking hole 41a may be an L-shaped hole that is recessed upward from the lower surface of the holder 41 and whose upper end (bottom of the hole) is further recessed outward. The branch portion 49b may lock the locking protrusion 49c into the L-shaped locking hole 41a. The biasing portion 46 biases the inner end of the rod-shaped portion 49a outward, thereby biasing the lower end of the holder 41 outward via the branch portion 49b and the locking hole 41a.
 この変形例では、一例として基部42bがホルダ41と一体に形成されている。また、基部42bに、軸方向に沿って貫通する貫通孔41bが形成されている。そして、連結ピン5が貫通孔41b及び第二連結孔12bに挿通されており、貫通孔41b及び第二連結孔12bを介して連結ピン5の下端部が棒状部49aに連結されている。 In this modified example, as an example, the base 42b is formed integrally with the holder 41. The base 42b is also formed with a through hole 41b that penetrates along the axial direction. The connecting pin 5 is inserted through the through hole 41b and the second connecting hole 12b, and the lower end of the connecting pin 5 is connected to the rod-shaped portion 49a via the through hole 41b and the second connecting hole 12b.
 連結ピン5の下端部は、枝部49bよりも外側の位置で棒状部49aに連結されている。連結ピン5の上端部には、拡径部51が設けられている。拡径部51と基部42bとの間には、拡径部51を支点として、基部42bを下方に付勢する、付勢部52のばねなどが配置されている。図10では、付勢部52がねじりコイルばねを含み、連結ピン5が付勢部52のコイル内に挿通された状態で貫通孔41b及び第二連結孔12bに挿通されて棒状部49aに連結されている場合を示している。 The lower end of the connecting pin 5 is connected to the rod-shaped portion 49a at a position outside the branch portion 49b. An enlarged diameter portion 51 is provided at the upper end of the connecting pin 5. A spring or the like of the biasing portion 52 is arranged between the enlarged diameter portion 51 and the base portion 42b, which biases the base portion 42b downward with the enlarged diameter portion 51 as a fulcrum. Figure 10 shows the case where the biasing portion 52 includes a torsion coil spring, and the connecting pin 5 is inserted into the coil of the biasing portion 52 and is inserted into the through hole 41b and the second connecting hole 12b to be connected to the rod-shaped portion 49a.
 この変形例では、上側コンテナ2が上昇してリング7が規定位置から上昇し、当接部42aがリング外側傾斜面71に当接してピース4が閉位置から開位置に移動し始める際に、係止孔41a及び係止突起49cを回動軸としてピース4が回動可能とされ、ピース4の上端部が外側に傾斜しながら開くように構成されている。 In this modified example, when the upper container 2 rises and the ring 7 rises from the specified position, the abutment portion 42a abuts against the ring outer inclined surface 71 and the piece 4 begins to move from the closed position to the open position, the piece 4 is configured to rotate around the locking hole 41a and the locking protrusion 49c as the rotation axis, and the upper end of the piece 4 is configured to open while tilting outward.
 すなわち、上側コンテナ2が上昇してリング7が規定位置から上昇し、当接部42aがリング外側傾斜面71に当接すると、当接部42aは、外側に向けて付勢される。これにより、下端部がアーム部42と連結しているホルダ41(ピース4)は、係止孔41a及び係止突起49cを回動軸として回動し、上端部を外側に傾斜させながら開くのである。 In other words, when the upper container 2 rises and the ring 7 rises from the specified position and the abutment portion 42a abuts against the ring outer inclined surface 71, the abutment portion 42a is biased outward. As a result, the holder 41 (piece 4), whose lower end is connected to the arm portion 42, rotates around the locking hole 41a and the locking protrusion 49c as the rotation axis, and opens while tilting the upper end outward.
 このように、ピース4が軸方向(トレッド成形部3の軸方向)における下部を軸支されており、ピース4の上部が径方向(トレッド成形部3の径方向)に沿って(径方向における外側に向けて)回動可能とされ、傾斜しながらピース4が開くようにすることで、分割金型40がタイヤ200のトレッド面から離型する際の離型抵抗を低減し、ピース4を開く際の動力を軽減させることができる。 In this way, the lower part of the piece 4 in the axial direction (axial direction of the tread molding portion 3) is journaled, and the upper part of the piece 4 is allowed to rotate (toward the outside in the radial direction) along the radial direction (radial direction of the tread molding portion 3), and the piece 4 opens while tilting, thereby reducing the demolding resistance when the split mold 40 is demolded from the tread surface of the tire 200 and reducing the power required to open the piece 4.
(第二実施形態)
 第一実施形態では、ピース4が、例えば図6に示すように、内側の面がタイヤ200(図1参照)のトレッド面を形成する意匠面となっている分割金型40と、分割金型40を支持するホルダ41と、ホルダ41の下端部に配置され、リング7のリング外周部70に係合するアーム部42と、を有する場合を説明した。そして、上側コンテナ2が上昇すると、これに伴ってリング7が上昇し、アーム部42がリング外側傾斜面71に当接して係合し、アーム部42が外側に向けて付勢されてピース4が外側に移動して開く場合を説明した。しかし、ピース4は、アーム部42を有する場合に限られない。
Second Embodiment
In the first embodiment, a case has been described in which the piece 4 has a split mold 40 whose inner surface is a design surface forming the tread surface of the tire 200 (see FIG. 1), a holder 41 that supports the split mold 40, and an arm portion 42 that is disposed at the lower end of the holder 41 and engages with the ring outer periphery 70 of the ring 7, as shown in FIG. 6, for example. Then, a case has been described in which, when the upper container 2 rises, the ring 7 rises accordingly, the arm portion 42 abuts against and engages with the ring outer inclined surface 71, and the arm portion 42 is biased outward, causing the piece 4 to move outward and open. However, the piece 4 is not limited to having the arm portion 42.
 以下で説明する第二実施形態の金型100は、図11に示すように、ピース4がアーム部42を有するのに代えて第一ガイドレール6を有し、リング7が、リング内周部75に、第二ガイドレール8を有している点で第一実施形態と異なり、その他は第一実施形態と同様である。以下、本実施形態の金型100について説明する。以下の説明では、第一実施形態と重複する説明は適宜省略する。 The second embodiment of the die 100 described below differs from the first embodiment in that, as shown in FIG. 11, the piece 4 has a first guide rail 6 instead of an arm portion 42, and the ring 7 has a second guide rail 8 on the ring inner circumference 75, but is otherwise similar to the first embodiment. The die 100 of this embodiment will be described below. In the following description, descriptions that overlap with the first embodiment will be omitted as appropriate.
 ピース4は、径方向における外側のピースの外周部であるホルダ41の外側部41Aに、軸方向に沿って延在し、且つ、軸方向における上方に向けて徐々に径方向における内側に傾斜する第一ガイドレール6を有する。本実施形態において、外側部41Aには、軸方向に沿って延在し、且つ、軸方向における上方に向けて徐々に径方向における内側に傾斜するピース外側傾斜面41Bが形成されている。 The piece 4 has a first guide rail 6 that extends along the axial direction on the outer portion 41A of the holder 41, which is the outer periphery of the outer piece in the radial direction, and gradually slopes radially inward as it moves upward in the axial direction. In this embodiment, the outer portion 41A is formed with a piece outer inclined surface 41B that extends along the axial direction and gradually slopes radially inward as it moves upward in the axial direction.
 第一ガイドレール6は、平面状のピース外側傾斜面41Bに沿わせて配置されている。そして、第一ガイドレール6は、外側部41Aに例えば雄ねじ部材64で固定されている。図11では、雄ねじ部材64が螺合する外側部41Aの雌ねじ部をネジ穴41Hとして示している。また、雄ねじ部材64が挿通される、第一ガイドレール6の貫通孔を挿通穴65として示している。雄ねじ部材64は、頭部が径方向における外側に位置するように配置され、ねじ部が径方向における内側に位置するように配置される。 The first guide rail 6 is arranged along the planar piece outer inclined surface 41B. The first guide rail 6 is fixed to the outer portion 41A by, for example, a male screw member 64. In FIG. 11, the female threaded portion of the outer portion 41A into which the male screw member 64 screws is shown as a screw hole 41H. The through hole of the first guide rail 6 through which the male screw member 64 is inserted is shown as an insertion hole 65. The male screw member 64 is arranged so that the head is located on the outer side in the radial direction, and the threaded portion is located on the inner side in the radial direction.
 第一ガイドレール6は、図12に示すように、その延在方向に沿って見た場合の断面の形状が、アルファベットのT字形状となるように形成されてよい。なお、図12は、金型100のトレッド成形部3及びリング7の平面視での断面であって、周方向付勢部48を含む部分の断面の一部を示している。第一ガイドレール6は、T字形状の下端部61が内側(外側部41Aに近接する側)に位置し、T字形状における上端側62(T字形状における横棒の部分)が、外側に位置するように配置されてよい。 As shown in FIG. 12, the first guide rail 6 may be formed so that its cross-sectional shape when viewed along its extension direction is a T-shape. Note that FIG. 12 shows a cross-section of the tread molding portion 3 and ring 7 of the mold 100 in a plan view, and shows a portion of the cross-section of a portion including the circumferential biasing portion 48. The first guide rail 6 may be arranged so that the lower end 61 of the T-shape is located on the inside (the side close to the outer portion 41A) and the upper end side 62 of the T-shape (the horizontal bar part of the T-shape) is located on the outside.
 リング7は、図11に示すように、リング内周部75に、軸方向に沿って延在し、且つ、軸方向における上方に向けて徐々に径方向における内側に傾斜する第二ガイドレール8を有する。 As shown in FIG. 11, the ring 7 has a second guide rail 8 on the inner circumference 75 of the ring that extends along the axial direction and gradually slopes radially inward as it moves axially upward.
 第二ガイドレール8は、リング内周部75に、例えば溝状の空間として形成されてよい。本実施形態において第二ガイドレール8は、リング内周部75において、リング7の上端部まで延在している。 The second guide rail 8 may be formed, for example, as a groove-shaped space in the ring inner circumference 75. In this embodiment, the second guide rail 8 extends to the upper end of the ring 7 in the ring inner circumference 75.
 本実施形態では、一例として、第二ガイドレール8は、図12に示すように、その延在方向に沿って見た場合の断面が、アルファベットのT字形状に形成された溝状の空間部80として形成されている場合を示している。 In this embodiment, as an example, the second guide rail 8 is formed as a groove-like space 80 in the shape of the letter T when viewed in the direction of extension, as shown in FIG. 12.
 空間部80は、その断面形状におけるT字形状の下端部85が内側(ピース4に近接する側)に位置してリング内周部75のリング外側傾斜面71に開口し、T字形状における上端部86(T字形状における横棒の部分)が、外側に位置するように配置されてよい。 The space 80 may be arranged so that the lower end 85 of the T-shape in its cross-sectional shape is located on the inside (the side closest to the piece 4) and opens onto the ring outer inclined surface 71 of the ring inner circumference 75, and the upper end 86 of the T-shape (the horizontal bar part of the T-shape) is located on the outside.
 第一ガイドレール6は、第二ガイドレール8の溝に嵌り込んで係合し、第二ガイドレール8に沿って案内される。第一ガイドレール6は、上端側62を第二ガイドレール8の上端部86に嵌め込まれ、下端部61を第二ガイドレール8の下端部85に嵌め込まれた状態で、第二ガイドレール8の溝に嵌り込んで係合してよい。 The first guide rail 6 fits into and engages with the groove of the second guide rail 8, and is guided along the second guide rail 8. The first guide rail 6 may fit into and engage with the groove of the second guide rail 8 with the upper end side 62 fitted into the upper end 86 of the second guide rail 8 and the lower end 61 fitted into the lower end 85 of the second guide rail 8.
 第一ガイドレール6は、上側コンテナ2の上昇に伴ってリング7が上昇すると、第二ガイドレール8に対して相対的に下方且つ外側に移動する。 When the ring 7 rises in conjunction with the rise of the upper container 2, the first guide rail 6 moves downward and outward relative to the second guide rail 8.
 ピース4は、第一ガイドレール6の第二ガイドレール8に対する相対的な下方への移動に伴って径方向に開かれる。第一実施形態と同様に、ピース4は、開かれる際に、隣接するピース4と離間する。 The pieces 4 are opened radially as the first guide rail 6 moves downward relative to the second guide rail 8. As in the first embodiment, the pieces 4 are separated from adjacent pieces 4 when opened.
 以下では、第一ガイドレール6のホルダ41への取り付け状態及び取り付け方法の一例を説明する。 Below, an example of the state and method of mounting the first guide rail 6 to the holder 41 is described.
 図13に示すように、リング7には、雄ねじ部材64及びネジ穴41H(図11参照)のねじの軸心に沿って貫通するねじ締め用の貫通孔77が形成されている。貫通孔77は、リング7を径方向に沿って貫通している。 As shown in FIG. 13, the ring 7 is formed with a through hole 77 for screw tightening that penetrates along the axis of the male screw member 64 and the screw hole 41H (see FIG. 11). The through hole 77 penetrates the ring 7 in the radial direction.
 貫通孔77は、径方向に沿って見た場合に第二ガイドレール8と重複して配置される。 The through hole 77 is positioned so as to overlap with the second guide rail 8 when viewed in the radial direction.
 貫通孔77は、径方向に沿って見た場合に、リング7と第一ガイドレール6とが重複し、且つ、第一ガイドレール6が第二ガイドレール8に案内されている状態で、この貫通孔77の軸心が、雄ねじ部材64のねじの軸心と重複することができる位置に配置されている。 The through hole 77 is positioned so that, when viewed in the radial direction, the ring 7 and the first guide rail 6 overlap, and the first guide rail 6 is guided by the second guide rail 8, the axis of the through hole 77 can overlap with the axis of the screw of the male screw member 64.
 本実施形態では、貫通孔77は、リング7が規定位置に位置している場合において、貫通孔77の軸心が、雄ねじ部材64のねじの軸心と重複する場合を例示している。図13では、第一ガイドレール6が、軸方向に沿って配列されて3つの雄ねじ部材64でホルダ41に固定されている場合を示している。そして、これら3つの雄ねじ部材64に対応させて、リング7には、軸方向に沿って、3つの貫通孔77を配置している。なお、ピース4(ホルダ41)は周方向に隣接して配置されているので、それぞれのホルダ41の雄ねじ部材64に対応させて貫通孔77を配置してよい。 In this embodiment, the through hole 77 is exemplified as being such that, when the ring 7 is positioned at a specified position, the axis of the through hole 77 overlaps with the axis of the screw of the male screw member 64. FIG. 13 shows a case in which the first guide rail 6 is fixed to the holder 41 by three male screw members 64 arranged along the axial direction. Three through holes 77 are arranged in the ring 7 along the axial direction to correspond to these three male screw members 64. Note that, since the pieces 4 (holders 41) are arranged adjacent to each other in the circumferential direction, the through holes 77 may be arranged to correspond to the male screw members 64 of each holder 41.
 第一ガイドレール6は、以下の手順で、第二ガイドレール8に係合させた状態でホルダ41に固定することができる。 The first guide rail 6 can be fixed to the holder 41 while engaged with the second guide rail 8 by the following procedure.
 まず、リング7を上側コンテナ2から取り外す。そして、第一ガイドレール6を取り外したピース4をリング7の内周側の面に沿わせて配列する。この際、ピース4のネジ穴41Hの軸心とリング7の貫通孔77の軸心とが重複するように位置決めしておくとよい。そして、第一ガイドレール6をリング7の上端から第二ガイドレール8の溝に挿入して嵌め込む。そして、第二ガイドレール8に沿わせて第一ガイドレール6を位置決めし、ネジ穴41Hの軸心と第一ガイドレール6の挿通穴65(図12参照)の軸心とリング7の貫通孔77の軸心とを重複させる。そして、この重複させた状態で、リング7の外側から内側に向けて貫通孔77に雄ねじ部材64を貫通させる。貫通孔77に貫通させた雄ねじ部材64は、そのまま挿通穴65に挿通させて、更にネジ穴41Hに螺合接続する。これにより、第一ガイドレール6を第二ガイドレール8に係合させた状態でホルダ41に固定することができる。その後、リング7を上側コンテナ2に取り付けるとよい。 First, the ring 7 is removed from the upper container 2. Then, the piece 4 from which the first guide rail 6 has been removed is arranged along the inner peripheral surface of the ring 7. At this time, it is advisable to position the piece 4 so that the axis of the screw hole 41H of the piece 4 overlaps with the axis of the through hole 77 of the ring 7. Then, the first guide rail 6 is inserted from the upper end of the ring 7 into the groove of the second guide rail 8 and fitted in. Then, the first guide rail 6 is positioned along the second guide rail 8 so that the axis of the screw hole 41H, the axis of the insertion hole 65 of the first guide rail 6 (see FIG. 12), and the axis of the through hole 77 of the ring 7 overlap. Then, in this overlapping state, the male screw member 64 is inserted into the through hole 77 from the outside to the inside of the ring 7. The male screw member 64 that has been inserted into the through hole 77 is inserted into the insertion hole 65 as it is, and further screwed into the screw hole 41H. This allows the first guide rail 6 to be fixed to the holder 41 in a state of being engaged with the second guide rail 8. Then, the ring 7 can be attached to the upper container 2.
 以上のようにして、精密なタイヤ成形に適した細分割開閉金型構造のタイヤ成形用金型を提供することができる。 In this way, it is possible to provide a tire molding mold with a finely divided open/close mold structure suitable for precision tire molding.
〔別実施形態〕
(1)上記第二実施形態では、第一ガイドレール6が、ホルダ41の外側部41Aの平面状のピース外側傾斜面41Bに沿わせて配置されている場合を説明した。しかし、ピース外側傾斜面41Bが平面状でない場合、必ずしも第一ガイドレール6をピース外側傾斜面41Bに沿わせる必要は無い。第一ガイドレール6は、ホルダ41の外側部41Aに固定されていればよい。例えば、ピース外側傾斜面41Bが外側向けて凸の曲面状である場合、第二ガイドレール8に係合可能な角度で第一ガイドレール6を外側部41Aに固定すればよい。
[Another embodiment]
(1) In the above second embodiment, the first guide rail 6 is disposed along the planar piece outer inclined surface 41B of the outer portion 41A of the holder 41. However, if the piece outer inclined surface 41B is not planar, the first guide rail 6 does not necessarily need to be disposed along the piece outer inclined surface 41B. The first guide rail 6 only needs to be fixed to the outer portion 41A of the holder 41. For example, if the piece outer inclined surface 41B is a curved surface that is convex outward, the first guide rail 6 only needs to be fixed to the outer portion 41A at an angle that allows it to engage with the second guide rail 8.
(2)上記実施形態では、ピース4がホルダ41と分割金型40とを有し、分割金型40が、その外側部をその凹部に嵌め込まれてホルダ41に支持されている場合、すなわち、ホルダ41が分割金型40と別体である場合を例示して説明した。しかし、ホルダ41と分割金型40とは一体に形成されていてもよい。 (2) In the above embodiment, the piece 4 has a holder 41 and a split mold 40, and the split mold 40 is supported by the holder 41 with its outer portion fitted into the recess, i.e., the holder 41 is separate from the split mold 40. However, the holder 41 and the split mold 40 may be formed integrally.
 なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本開示の実施形態はこれに限定されず、本開示の目的を逸脱しない範囲内で適宜改変することが可能である。 The configurations disclosed in the above embodiments (including other embodiments, the same applies below) can be applied in combination with configurations disclosed in other embodiments, provided no contradictions arise. Furthermore, the embodiments disclosed in this specification are merely examples, and the embodiments of the present disclosure are not limited thereto, and can be modified as appropriate within the scope of the purpose of the present disclosure.
 本開示は、タイヤ成形用金型に適用できる。 This disclosure can be applied to tire molding molds.
1   :下側コンテナ
10  :板部
100 :金型(タイヤ成形用金型)
11  :下側サイドウォール成形部
12  :穴部
12a :第一連結孔
12b :第二連結孔
13  :係止孔
19  :壁部
2   :上側コンテナ
20  :板部
200 :タイヤ
21  :上側サイドウォール成形部
3   :トレッド成形部
4   :ピース(セグメントピース)
40  :分割金型
41  :ホルダ
41A :外側部
41B :ピース外側傾斜面
41H :ネジ穴
41a :係止孔
41b :貫通孔
42  :アーム部
42a :当接部
42b :基部
42c :柱部
43  :凹部
44  :凹部
45  :凹部
46  :付勢部
47  :付勢部
48  :周方向付勢部
49  :ピストン
49a :棒状部
49b :枝部
49c :係止突起
5   :連結ピン
51  :拡径部
52  :付勢部
6   :第一ガイドレール
61  :下端部
62  :上端側
64  :雄ねじ部材
65  :挿通穴
7   :リング(アウターリング)
70  :リング外周部
71  :リング外側傾斜面
72  :突起部
75  :リング内周部
76  :リング内側傾斜面
77  :貫通孔
8   :第二ガイドレール
80  :空間部
85  :下端部
86  :上端部
G   :軸心
1: Lower container 10: Plate portion 100: Mold (mold for forming tires)
11: Lower sidewall molding portion 12: Hole portion 12a: First connecting hole 12b: Second connecting hole 13: Locking hole 19: Wall portion 2: Upper container 20: Plate portion 200: Tire 21: Upper sidewall molding portion 3: Tread molding portion 4: Piece (segment piece)
[0033] 40: Split mold 41: Holder 41A: Outer portion 41B: Piece outer inclined surface 41H: Screw hole 41a: Locking hole 41b: Through hole 42: Arm portion 42a: Contact portion 42b: Base portion 42c: Pillar portion 43: Recess 44: Recess 45: Recess 46: Pressing portion 47: Pressing portion 48: Circumferentially pressing portion 49: Piston 49a: Rod-shaped portion 49b: Branch portion 49c: Pressing projection 5: Connecting pin 51: Enlarged diameter portion 52: Pressing portion 6: First guide rail 61: Lower end portion 62: Upper end side 64: Male screw member 65: Insertion hole 7: Ring (outer ring)
70: Ring outer periphery 71: Ring outer inclined surface 72: Projection 75: Ring inner periphery 76: Ring inner inclined surface 77: Through hole 8: Second guide rail 80: Space 85: Lower end 86: Upper end G: Axis

Claims (6)

  1.  円周方向に並ぶ複数のセグメントピースに分割された円環状のトレッド成形部と、
     前記トレッド成形部の軸方向における上側に配置され、前記トレッド成形部の軸方向に沿って移動して前記トレッド成形部をその径方向に開閉させるアウターリングと、を備え、
     前記アウターリングは、前記セグメントピースのそれぞれと係合しており、
     前記セグメントピースは、前記アウターリングの移動に伴って前記径方向に開閉され、且つ、隣接する前記セグメントピースと離間及び近接するタイヤ成形用金型。
    a circular tread molding portion divided into a plurality of segment pieces arranged in a circumferential direction;
    an outer ring that is disposed axially above the tread molded portion and moves along the axial direction of the tread molded portion to open and close the tread molded portion in a radial direction;
    the outer ring is engaged with each of the segment pieces;
    The segment pieces are opened and closed in the radial direction in accordance with the movement of the outer ring, and are moved away from and close to adjacent segment pieces.
  2.  前記アウターリングは、前記径方向における外側を向き、前記軸方向における上方に向けて徐々に直径が小さくなるように傾斜するリング外側傾斜面が形成されたリング外周部を有し、
     前記セグメントピースは、前記リング外周部に係合するアーム部を有し、
     前記アーム部は、前記リング外側傾斜面に当接する当接部を有し、
     前記当接部は、前記アウターリングの上方への移動に伴って前記リング外側傾斜面に沿って、前記リング外周部に対して相対的に下方に移動し、
     前記セグメントピースは、
      前記当接部の前記リング外周部に対する相対的な下方への移動に伴って前記径方向に開き、
      開かれる際に、隣接する前記セグメントピースと離間する請求項1に記載のタイヤ成形用金型。
    the outer ring has a ring outer peripheral portion formed with a ring outer inclined surface that faces outward in the radial direction and is inclined so that the diameter gradually decreases upward in the axial direction,
    The segment piece has an arm portion that engages with an outer circumferential portion of the ring,
    The arm portion has an abutment portion that abuts against the ring outer inclined surface,
    the abutment portion moves downward relative to the ring outer peripheral portion along the ring outer inclined surface as the outer ring moves upward,
    The segment piece is
    the abutting portion moves downward relative to the outer circumferential portion of the ring, and the abutting portion opens in the radial direction;
    2. The tire mold according to claim 1, wherein adjacent segment pieces are spaced apart when opened.
  3.  前記セグメントピースに配置され、前記セグメントピースを前記径方向における外側に向けて付勢する付勢部を更に備えた請求項2に記載のタイヤ成形用金型。 The tire molding mold according to claim 2, further comprising a biasing portion disposed on the segment piece and biasing the segment piece outward in the radial direction.
  4.  前記セグメントピースは、前記軸方向における下部を軸支されており、上部が、前記径方向に沿って回動可能とされている請求項3に記載のタイヤ成形用金型。 The tire molding mold according to claim 3, wherein the segment piece is journaled at its lower portion in the axial direction and is capable of rotating at its upper portion along the radial direction.
  5.  前記セグメントピースは、前記径方向における外側のピース外周部に、前記軸方向に沿って延在し、且つ、前記軸方向における上方に向けて徐々に前記径方向における内側に傾斜する第一ガイドレールを有し、
     前記アウターリングは、前記径方向における内側を向くリング内周部に、前記軸方向に沿って延在し、且つ、前記軸方向における上方に向けて徐々に前記径方向における内側に傾斜する第二ガイドレールを有し、
     前記第一ガイドレールは、
      前記第二ガイドレールに係合して案内され、
      前記アウターリングの上方への移動に伴って、前記第二ガイドレールに対して相対的に下方に移動し、
     前記セグメントピースは、
      前記第一ガイドレールの前記第二ガイドレールに対する相対的な下方への移動に伴って径方向に開かれ、
      開かれる際に、隣接する前記セグメントピースと離間する請求項1に記載のタイヤ成形用金型。
    the segment piece has a first guide rail extending along the axial direction on an outer periphery of an outer piece in the radial direction and gradually inclining inward in the radial direction as it moves upward in the axial direction,
    the outer ring has a second guide rail extending along the axial direction on an inner peripheral portion of the ring facing inward in the radial direction and gradually inclining inward in the radial direction as it moves upward in the axial direction,
    The first guide rail is
    The second guide rail is engaged with and guided by the second guide rail.
    As the outer ring moves upward, the second guide rail moves downward relative to the outer ring.
    The segment piece is
    The first guide rail is opened radially in response to a downward movement of the first guide rail relative to the second guide rail,
    2. The tire mold according to claim 1, wherein adjacent segment pieces are spaced apart when opened.
  6.  前記ピース外周部には、前記軸方向に沿って延在し、且つ、前記軸方向における上方に向けて徐々に前記径方向における内側に傾斜するピース外側傾斜面が形成されており、
     前記第一ガイドレールは、
      前記ピース外側傾斜面に沿わせて配置され、
      前記ピース外周部に雄ねじ部材で固定されており、
     前記アウターリングには、前記雄ねじ部材のねじの軸心に沿って貫通するねじ締め用貫通孔が形成されており、
     前記雄ねじ部材は、頭部が前記径方向における外側に配置され、ねじ部が前記径方向における内側に配置され
     前記ねじ締め用貫通孔は、前記径方向に沿って見た場合に前記第二ガイドレールと重複して配置され、
     前記径方向に沿って見た場合に前記アウターリングと前記第一ガイドレールとが重複し、且つ、前記第一ガイドレールが前記第二ガイドレールに案内されている状態で、前記ねじ締め用貫通孔の軸心が、前記雄ねじ部材のねじの軸心と重複する請求項5に記載のタイヤ成形用金型。
    a piece outer circumferential portion is formed with a piece outer inclined surface that extends along the axial direction and is gradually inclined inward in the radial direction as it extends upward in the axial direction,
    The first guide rail is
    The piece is arranged along the outer inclined surface,
    The piece is fixed to the outer periphery thereof by a male screw member,
    The outer ring is formed with a screw-tightening through hole that penetrates along the axis of the thread of the male screw member,
    The male screw member has a head disposed on the outer side in the radial direction and a threaded portion disposed on the inner side in the radial direction, and the screw fastening through hole is disposed so as to overlap with the second guide rail when viewed along the radial direction,
    6. The tire molding mold according to claim 5, wherein the outer ring and the first guide rail overlap when viewed along the radial direction, and the first guide rail is guided by the second guide rail, and an axis of the screw-tightening through hole overlaps with an axis of a screw of the male threaded member.
PCT/JP2023/030210 2022-12-06 2023-08-22 Mold for tire molding WO2024122115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022195137A JP2024081484A (en) 2022-12-06 2022-12-06 Mold for molding tire
JP2022-195137 2022-12-06

Publications (1)

Publication Number Publication Date
WO2024122115A1 true WO2024122115A1 (en) 2024-06-13

Family

ID=91379163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030210 WO2024122115A1 (en) 2022-12-06 2023-08-22 Mold for tire molding

Country Status (2)

Country Link
JP (1) JP2024081484A (en)
WO (1) WO2024122115A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157478A (en) * 1973-07-12 1975-12-19
JP2018202787A (en) * 2017-06-07 2018-12-27 株式会社ブリヂストン Tire vulcanization device
WO2019224969A1 (en) * 2018-05-24 2019-11-28 ISHIKO Seiji Tire vulcanization molding device
JP2020062787A (en) * 2018-10-16 2020-04-23 株式会社ブリヂストン Tire vulcanizing device
JP2021037664A (en) * 2019-09-02 2021-03-11 株式会社ブリヂストン Mold for tire molding
WO2021045038A1 (en) * 2019-09-02 2021-03-11 株式会社ブリヂストン Tire forming mold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157478A (en) * 1973-07-12 1975-12-19
JP2018202787A (en) * 2017-06-07 2018-12-27 株式会社ブリヂストン Tire vulcanization device
WO2019224969A1 (en) * 2018-05-24 2019-11-28 ISHIKO Seiji Tire vulcanization molding device
JP2020062787A (en) * 2018-10-16 2020-04-23 株式会社ブリヂストン Tire vulcanizing device
JP2021037664A (en) * 2019-09-02 2021-03-11 株式会社ブリヂストン Mold for tire molding
WO2021045038A1 (en) * 2019-09-02 2021-03-11 株式会社ブリヂストン Tire forming mold

Also Published As

Publication number Publication date
JP2024081484A (en) 2024-06-18

Similar Documents

Publication Publication Date Title
US8801996B2 (en) Air venting valve of vulcanising mould
JPS5842824B2 (en) Curing mold for automobile pneumatic tires
WO1990009268A1 (en) Mold for molding vulcanization
US20240246306A1 (en) Mold for forming a tire and tire production method
WO2024122115A1 (en) Mold for tire molding
EP1749632B1 (en) Tire vulcanizing mold
EP1647383B1 (en) Split type vulcanizing mold
US20030141627A1 (en) Radially expandable bead molding ring for a tire mold
US6702977B2 (en) Expandable bead molding ring for a tire mold
WO2009158076A1 (en) Mold for tire with floating mold back ring
WO2022269940A1 (en) Tire molding die and tire production method
JP7649206B2 (en) Tire molding mold and tire manufacturing method
US10315373B2 (en) Self-locking mold comprising a shoulder spacer for molding and vulcanization of tires
JP5026094B2 (en) Tire vulcanization mold
JP3937038B2 (en) Tire vulcanizer
JP2025054804A (en) Tire molding die
KR20050044414A (en) Tyre mould
WO2025069588A1 (en) Tire molding mold
JP7577616B2 (en) Tire molding mold and tire manufacturing method
JPH02214620A (en) Split mold for molding vulcanization
JP7288386B2 (en) Tire manufacturing equipment and bead ring
WO2024247302A1 (en) Mold for tire molding
WO2024247301A1 (en) Mold for tire molding
JP2025089129A (en) Tire molding mold
EP4090525A1 (en) Venting valve and method of mounting valve stem of venting valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23900242

Country of ref document: EP

Kind code of ref document: A1