[go: up one dir, main page]

WO2024117258A1 - Blood sugar level model creating method and predicting method for blood sugar level transition - Google Patents

Blood sugar level model creating method and predicting method for blood sugar level transition Download PDF

Info

Publication number
WO2024117258A1
WO2024117258A1 PCT/JP2023/043140 JP2023043140W WO2024117258A1 WO 2024117258 A1 WO2024117258 A1 WO 2024117258A1 JP 2023043140 W JP2023043140 W JP 2023043140W WO 2024117258 A1 WO2024117258 A1 WO 2024117258A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood glucose
meal
subject
information
value
Prior art date
Application number
PCT/JP2023/043140
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 徳永
俊哉 山岸
敦 増山
博彦 志連
耕太郎 藤野
良洋 蛯名
Original Assignee
株式会社ザ・ファージ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ザ・ファージ filed Critical 株式会社ザ・ファージ
Publication of WO2024117258A1 publication Critical patent/WO2024117258A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • This invention relates to a method for creating a blood glucose model and a method for predicting blood glucose trends using the blood glucose model.
  • Patent No. 6659049 describes a blood glucose prediction method.
  • This method includes an acquisition step in which a computer acquires the measured blood glucose level of a user, the measured HbA1c level of the user, and the results of the user's health check; a classification step in which the computer determines whether the user is normal, borderline, or diabetic based on the measured blood glucose level, HbA1c level, and the results of the health check; a prediction step in which the computer uses the result of the classification and the measured fasting blood glucose level of the user at a past time to predict the user's future fasting blood glucose level; and a risk determination step in which the computer generates a standard normal distribution using the variability in the change in fasting blood glucose level within a specified period of time, divides the confidence interval of the generated standard normal distribution by a division line set at the fasting blood glucose level, which is the threshold value for determining diabetes, calculates an area ratio using the area of the confidence interval divided by the division line and the area of the confidence interval, and multiplies the
  • the above method cannot predict blood glucose levels without information such as the user's health check results and fasting blood glucose measurements, and therefore cannot properly evaluate the food consumed.
  • This invention provides a method for appropriately obtaining an evaluation of meals that are planned to be consumed or meals that have been consumed, even if the user does not have health check results, etc.
  • An invention relates to a computer-based method for obtaining a meal score, which is a score for evaluating a meal.
  • the method evaluates the meal using images of the meal.
  • the first method for obtaining a meal score includes a step of inputting blood glucose information of a subject and a step of obtaining a meal score.
  • the meal score is an evaluation value for evaluating a certain meal.
  • the meal score may be an evaluation value for evaluating a certain meal from the perspective of diabetes treatment or prevention.
  • the subject's blood glucose information input step is a step of inputting subject's blood glucose information, which is the blood glucose or glucose value of a subject who has taken a certain meal, or transition information of the subject's blood glucose information, into the computer.
  • the transition information of the subject's blood glucose information may be time-series transition information of the subject's blood glucose level, or time-series transition information of the subject's glucose level.
  • This step may include a step of inputting the subject's real-time blood glucose or glucose value measured using a sensor into the computer. Examples of the sensor may be a low-invasive blood glucose sensor, a non-invasive blood glucose sensor, a low-invasive glucose measurement sensor, and a non-invasive glucose measurement sensor.
  • the sensor may be a sensor partly embedded in the body, a wristwatch type sensor, or a type attached to the body surface.
  • the blood glucose or glucose value may not be the blood glucose value or the glucose value itself, but may be a value related to the blood glucose or glucose value. In this specification, the glucose value may also be simply expressed as the blood glucose value.
  • subject blood glucose information which is the blood glucose level or glucose level of a subject who has consumed a certain meal
  • the computer may further include a blood glucose level etc. transition information acquisition step of obtaining transition information of the subject's blood glucose level after consuming a certain meal using the input subject blood glucose information.
  • the transition information of the subject's blood glucose level (estimated value) can be obtained by inputting the subject's blood glucose information into a trained model (transition pattern model) described later, for example.
  • the transition pattern model may be obtained by a process including a blood glucose level input process and a blood glucose level transition pattern model acquisition process.
  • the blood glucose level input process is a process in which a computer receives multiple blood glucose or glucose values after a subject has eaten a meal. These blood glucose levels, etc. are preferably input to the computer at a predetermined timing for a predetermined period after eating a meal. When these values are input for a predetermined period, one transition information is obtained. By inputting multiple such data as teacher data and performing machine learning (deep learning), a transition model of the subject's blood glucose level, etc. can be obtained.
  • the blood glucose level trend pattern model acquisition process is a process in which a computer obtains a blood glucose level trend pattern model of the subject through machine learning using the subject's postprandial blood glucose level or glucose value inputted in the blood glucose level input process.
  • the meal score acquisition process is a process in which a computer uses the subject's blood glucose information or information on trends in the subject's blood glucose information to obtain a meal score, which is an evaluation value for evaluating a certain meal.
  • the meal score acquisition process may include a process of obtaining a meal score by inputting the subject's blood glucose information, or information on trends in the subject's blood glucose information, into a trained model for obtaining a meal score.
  • a trained model may be constructed by machine learning or deep learning using, for example, information about a plurality of individuals (age, sex, medical history, diabetic state), meals, blood glucose levels, etc., transition information on blood glucose levels, etc., and meal scores as teacher data.
  • the transition of blood glucose levels can be obtained by inputting blood glucose levels, etc., and meal scores can be obtained.
  • this trained model may be constructed by machine learning or deep learning using one or more of past meals, past blood glucose levels, etc., and transitions of blood glucose levels, etc., and meal scores as teacher data for the subject.
  • the transition of blood glucose levels can be obtained by inputting blood glucose levels, etc., and transition information on blood glucose levels, etc., and meal scores can be obtained.
  • the meal score acquisition process may obtain a meal score using either or both of the sum of the changes in the subject's blood glucose information in the transition information of the subject's blood glucose information.
  • the computer may create a graph of the transition information of blood glucose levels and glucose levels over time (the horizontal axis is time and the vertical axis is these values), and calculate the area (sum) of the part of the graph where the vertical axis is equal to or greater than the reference value.
  • the computer may then store a meal score corresponding to the sum in the memory unit, and use the obtained sum to read out the meal score and calculate the meal score.
  • the sum may be an integral value or an approximate value.
  • An example of the approximate value may be the area of a triangle with the blood glucose level, etc.
  • the amount of change may also be, for example, the difference between the blood glucose level, etc. of the reference value (when fasting or when a meal is started) and the maximum value.
  • the computer may then store a meal score in association with the difference between the reference value and the maximum value in the memory unit, and read out the meal score from the memory unit using the difference between the reference value and the maximum value.
  • the above describes a case where the difference between a reference value and a maximum value is used as the amount of change.
  • the amount of change is not limited to this example, and various change values can be used. Examples of such amounts of change include the reference value and the maximum value, as well as the time at which the maximum value is reached and a local maximum value.
  • the above describes a case where the subject's blood glucose level, etc. is input to a computer.
  • the subject's blood glucose level, etc. may or may not be input to a computer.
  • the second meal score acquisition method includes an image input process, a meal analysis process, and a meal score acquisition process. This method may further include a blood glucose level and other trend information acquisition process. This method may further include the subject's blood glucose information input process described above.
  • the image input step is a step in which an image relating to a certain meal is input to a computer.
  • the diet analysis step is a step in which a computer analyzes the image and obtains diet analysis information.
  • the meal score acquisition process is a process of obtaining a meal score based on the meal analysis information. This process may obtain a meal score by constructing a trained model using the meal analysis information and the meal score as teacher data and inputting the meal analysis information into the trained model. The blood glucose level, etc.
  • transition information acquisition process is a process in which a computer uses a transition pattern model of the subject's blood glucose level or glucose level and the meal analysis information to obtain transition information of the subject's blood glucose information, which is transition information of the subject's blood glucose information, which is the blood glucose level or glucose level of the subject after ingesting a certain meal.
  • the meal score acquisition process may be a process of obtaining a meal score based on the transition information of the subject's blood glucose information obtained in the blood glucose level, etc. transition information acquisition process.
  • the next invention relates to a method for outputting a meal score.
  • An example of this output method is to output an image related to a certain meal and a meal score so that the image related to the certain meal and the meal score are displayed on a single screen.
  • this output method can be achieved by having a computer read out an image related to a certain meal and a meal score stored in a memory unit and outputting them to an output unit.
  • the third invention relates to a method for displaying transition information of a subject's blood glucose level, etc.
  • This invention may be combined with the first or second invention.
  • This invention provides a method for obtaining a representative value line indicating a representative value, a first area band indicating an area included with a first probability, a second area band indicating an area included with a second probability that is higher than the first probability, and a target value line indicating a target blood glucose value or target glucose value, for a blood glucose value or glucose value at a predetermined time after a meal, using a plurality of subject blood glucose information obtained on different days;
  • the method includes a step of outputting the median line, the first area band, the second area band and the target value line so that the representative value line, the first area band, the second area band and the target value line are displayed on a single screen.
  • the median line is output in white or gray, the first range band in a blue color, the second range band in a lighter blue color than the first range band, and the target value line in a yellow or red color.
  • the fourth invention relates to a method for calculating an insulin dosage using a computer.
  • the method includes a differential blood glucose calculation step and an insulin dosage calculation step.
  • the differential blood glucose value calculation step is a step in which a computer calculates a differential blood glucose value between a subject's predicted blood glucose value, which is the blood glucose value or glucose value of the subject calculated using a transition pattern model of the subject's blood glucose value or glucose value, and a target blood glucose value, which is a target blood glucose value or glucose value.
  • the insulin dosage calculation step is a step in which a computer calculates an insulin dosage for the subject using the differential blood glucose value calculated in the differential blood glucose value calculation step.
  • An example of an insulin dosage calculation process is a process in which information about the insulin preparation to be administered to the subject and the differential blood glucose level are input into a blood glucose or glucose level transition pattern model for each insulin preparation, and the insulin dosage for the subject is calculated.
  • This specification also describes programs for causing a computer to execute the various methods described above, as well as non-transitory information recording media that store such programs and can be read by a computer.
  • the above-mentioned invention allows the user to appropriately evaluate meals that are planned to be consumed or have been consumed without using the user's health check results, etc.
  • FIG. 1 is a flowchart illustrating a method for obtaining a meal score.
  • FIG. 2 is a conceptual diagram showing an example of blood glucose levels measured in real time over a certain period of time and the resulting transition pattern of blood glucose levels.
  • FIG. 3 is a conceptual diagram showing an example of transition information of a subject's blood glucose level.
  • FIG. 4 is a conceptual diagram showing an example of determining the insulin dosage.
  • FIG. 5 shows an example of displaying a date, an image of a meal, and a meal score.
  • FIG. 6 is a conceptual diagram for explaining meals, blood glucose level trends, and meal scores.
  • FIG. 7 shows an example of a graph showing changes in estimated blood glucose levels on a given day together with meal scores.
  • FIG. 8 is a diagram showing an example of displaying transition information of the subject blood glucose level and the like.
  • FIG. 9 shows a sample example of a display screen.
  • FIG. 10 shows an example of a weekly menu along with the meal score for each menu.
  • blood glucose level will be used as an example.
  • meal scores and insulin dosages can be estimated using not only blood glucose levels, but also values related to blood glucose levels, such as blood glucose levels and glucose values. For this reason, this specification also discloses cases where blood glucose level is interpreted as glucose value or a value related to blood glucose levels other than glucose value.
  • a computer performs various processes.
  • the computer has an input unit, an output unit, a control unit, a calculation unit, and a storage unit, and each element is connected by a bus or the like so as to be able to send and receive information.
  • the storage unit may store a program or various information.
  • the control unit reads out a control program stored in the storage unit.
  • the control unit then reads out the information stored in the storage unit as appropriate and transmits it to the calculation unit.
  • the control unit also transmits the input information as appropriate to the calculation unit.
  • the calculation unit performs calculation processing using the various information received and stores it in the storage unit.
  • the control unit reads out the calculation results stored in the storage unit and outputs them from the output unit.
  • the computer may have a processor, and the processor may realize various functions and steps.
  • the computer may have a memory for storing information and a circuit for performing processing.
  • the computer may be standalone.
  • the computer may have some of its functions distributed to a server and a terminal. In this case, it is preferable that the server and terminals are able to send and receive information via a network such as the Internet or an intranet.
  • a computer can convert various information into digital information and perform various calculation processes using the digital information. For example, various calculation processes can be performed by converting numerical information or image information into binary data, storing it in a memory unit, reading out the binary data, and having the calculation unit calculate it.
  • Machine learning can improve the accuracy of a trained model by inputting a large amount of training data, inputting a large amount of training data with correct answers, or providing feedback. An example of feedback is when an obtained result is an abnormal value, and inputting that fact into the trained model.
  • An invention relates to a method using a computer for obtaining a meal score.
  • the meal score is a score for evaluating a certain meal.
  • the meal score may be an index that evaluates the fluctuation in blood glucose level within a certain time (e.g., 3 hours) after ingesting a certain meal. In this case, the smaller the fluctuation in blood glucose level, the higher the evaluation.
  • the meal score may be an evaluation value that evaluates a certain meal from the viewpoint of diabetes treatment or prevention.
  • the evaluation value may be a numerical value, or may be a shade or a type of color.
  • the meal score may be such that the redder the meal, the worse the meal score.
  • Specific values may be displayed, for example, from 1 to 10 points, and the standard score may be a Meal Score of 6 points. In this case, the meal score is intended to change the patient's behavior.
  • Such a meal score may be displayed on a display unit or may be printed, etc., as appropriate. The better the meal score, the higher the value, or vice versa. In this specification, an example will be explained in which a higher meal score is given to a more favorable blood glucose level, etc.
  • FIG. 1 is a flow chart for explaining a method for obtaining a meal score.
  • the first method for obtaining a meal score that will be explained involves evaluating a meal using an image of the meal. As shown in FIG. 1, this method includes an image input process (S101), a meal analysis process (S102), a blood glucose level transition information acquisition process (S103), and a meal score acquisition process (S104).
  • S101 image input process
  • S102 meal analysis process
  • S103 blood glucose level transition information acquisition process
  • S104 meal score acquisition process
  • each process in this specification may be performed by the corresponding parts or means that are elements of a computer.
  • the image input process (S101) is a process in which an image of a certain meal is input to a computer.
  • the image of a certain meal may be, for example, a photograph or video of the meal taken by the subject using a mobile terminal.
  • the subject transmits the captured image to a system having the above-mentioned computer.
  • the system (for example, an image input unit or image input means of the system) then receives the captured image and stores it in memory. In this way, the image of the meal in the system is input.
  • various information about the subject (user) may be input to the system.
  • the image of a certain meal may be an image selected by the subject from images related to a meal menu stored in the memory unit.
  • a meal image e.g., an image of a steak
  • various information about the user is stored in the user information management section of the user's mobile terminal or server.
  • information about the user include the user's identification number, name, age, sex, allergies, medication information (particularly information about insulin medications), and disease information.
  • a model of the user's blood glucose level transition pattern may be stored as information about the user.
  • the user information may be stored in association with the user's identification number (user ID).
  • the meal analysis process (S102) is a process in which a computer analyzes an image and obtains meal analysis information.
  • the meal analysis information is information about a meal based on an image of a certain meal.
  • the meal information may include information about the dish, ingredients, calories (energy), and sugar content.
  • the meal information may also include information about whether the meal is a staple food, main dish, side dish, or main soup.
  • the meal information may also include the time when the image of the meal was taken, or the time when the meal was consumed.
  • the system may read an image stored in a dish storage section of the memory, and perform pattern matching between the read image and an image of a certain meal, thereby analyzing the dish and ingredients and obtaining various information.
  • Obtaining dietary analysis information without performing the image input step (S101) is a different invention from the above described in this specification. For example, a user reads out a menu item they plan to eat (e.g., steak) from the memory unit. Then, dietary analysis information is stored in the memory unit in association with the menu item. In this case, dietary analysis information may be obtained by reading it out from the memory unit.
  • a user reads out a menu item they plan to eat (e.g., steak) from the memory unit.
  • dietary analysis information is stored in the memory unit in association with the menu item.
  • dietary analysis information may be obtained by reading it out from the memory unit.
  • the dish storage unit is an element for storing a plurality of dishes and images of the plurality of dishes.
  • the storage unit of a computer functions as the dish storage unit.
  • the information on the plurality of dishes may include, for example, the names of the staple food, main dish, side dish, and main soup (and also drinks, desserts, and fruits), their respective nutrients, sugar content, and energy. This information may be stored, for example, in association with the identification number (ID) of each dish. Then, by specifying the identification number, the above-mentioned information on the name, nutrients, sugar content, and energy of the dish can be read out.
  • ID identification number
  • fruits and drinks are not cooked, they may be included as one of the "dishes" if they form part of a meal.
  • this system stores images of each dish in association with the above-mentioned dish identification number in the storage unit. Then, the image of the dish can be read out using the dish identification number.
  • the dish storage unit 3 may store information other than the above (for example, information on food classification) in association with the above-mentioned identification number. Examples of food categories are fruits, meat, fish, green vegetables, root vegetables, dairy products, seaweed, legumes, grains, and alcohol. Allergy-related information may also be stored in association with the above identification number. For example, for a dish that contains sesame, information about sesame allergies may be stored in the memory unit in association with the identification number.
  • the blood glucose level trend information acquisition process (S103) is a process in which the computer uses the blood glucose level trend pattern model of the subject and the meal analysis information to obtain information on the trend of the subject's blood glucose level after the subject has eaten a certain meal. At this time, information on the subject's intake of insulin, the time of insulin intake, the insulin dose, and/or the type of insulin may also be input to the computer.
  • a model of the transition pattern of a subject's blood glucose level can be obtained, for example, as follows. That is, an example of a method for obtaining a blood glucose level transition pattern model of a subject includes a blood glucose level input step and a blood glucose level transition pattern model acquisition step.
  • the blood glucose input process is a process in which a computer receives multiple blood glucose values after a subject has eaten a meal.
  • the subject wears a sensor for measuring blood glucose levels.
  • the subject's mobile device linked to the sensor or the system that receives the sensing information determines that the subject has eaten a meal from the change in the subject's blood glucose level.
  • the measured blood glucose level is stored in the memory of the mobile device or the memory of the system at predetermined intervals (for example, every minute). In this way, the computer can receive and store multiple blood glucose values after the subject has eaten a meal.
  • the system can store the change in blood glucose level along with the meal analysis information. Note that even if an image of the meal they have eaten is not sent to the system, if the subject's blood glucose level data over a long period of time (for example, 12 hours or more) is used, it can be determined that the subject ate a meal (including snacks) during a time period when blood glucose levels fluctuate greatly. For example, blood glucose levels measured in real time for a certain period of time or more are stored in memory. Then, the system reads out the blood glucose level and analyzes the fluctuations in blood glucose level. By analyzing the fluctuations in blood glucose level, the system can determine the time when blood glucose levels become high. The system then analyzes the time periods when blood glucose fluctuations were above a certain level as the time when a meal was consumed and the time after the meal. The system can then store the pattern of blood glucose fluctuations after a meal in memory.
  • a long period of time for example, 12 hours or more
  • the glucose level trend pattern model is a model that shows the pattern of changes in blood glucose levels after a meal or the ingestion of sugar, or after the administration of insulin.
  • the glucose level trend pattern model there are no particular limitations on the glucose level trend pattern model, so long as it is capable of analyzing blood glucose level fluctuation data and obtaining a blood glucose level trend pattern model.
  • An example of a glucose level trend pattern model acquisition process is a process in which a computer obtains a blood glucose level trend pattern model of a subject through machine learning using the subject's postprandial blood glucose level input in the blood glucose level input process.
  • blood glucose level fluctuation patterns for a certain subject may be stored in multiple memories, and the blood glucose level fluctuation patterns may be read out as appropriate to obtain a glucose level trend pattern model using artificial intelligence or machine learning.
  • Figure 2 is a conceptual diagram showing an example of blood glucose level (blood glucose level transition) measured in real time for a certain period of time or more, and the blood glucose level transition pattern obtained from it.
  • An example of the unit of blood glucose level is mg/dl.
  • FIG. 2 when the blood glucose level of a subject is measured for a certain period of time or more, information (graph) showing the transition of blood glucose level can be obtained.
  • blood glucose level transition patterns such as blood glucose level transition information when insulin is taken, blood glucose level transition information when a meal is taken after insulin is taken, blood glucose level transition information after a meal, blood glucose level transition information after breakfast, blood glucose level transition information after lunch, blood glucose level transition information after a snack, and blood glucose level transition information after dinner.
  • the center of Figure 2 is an example of a blood glucose level transition pattern obtained in this way.
  • the obtained blood glucose level transition pattern is appropriately stored in memory.
  • a blood glucose level transition pattern model can be obtained by collecting a large number of blood glucose level transition patterns.
  • a blood glucose level transition pattern model corresponding to meals and medication can be obtained.
  • the obtained glucose level trend pattern model can be stored in memory as appropriate.
  • the right part of Figure 2 shows an example of predicting the glucose level trend of a subject using the glucose level trend pattern model.
  • Figure 3 is a conceptual diagram showing an example of the blood glucose level trend information (graph) of a subject.
  • the blood glucose level trend information acquisition process is a process in which a computer uses a blood glucose level trend pattern model of the subject and dietary analysis information to obtain blood glucose level trend information of the subject after the subject ingests a certain meal.
  • Dietary analysis information includes, for example, information on the sugar content of a meal that a certain subject has eaten.
  • the computer reads the information on the sugar content from memory and has the processor perform a calculation using the information on the sugar content to apply it to the blood glucose level trend pattern model of the subject, thereby obtaining blood glucose level trend information of the subject after the subject ingests a certain meal.
  • the computer appropriately stores the blood glucose level trend information of the subject after the subject ingests a certain meal obtained in this way in memory.
  • the meal score acquisition process (S104) is a meal score acquisition process for obtaining a meal score, which is an evaluation value for evaluating a certain meal, based on the blood glucose level trend information of the subject obtained in the blood glucose level trend information acquisition process.
  • the meal score acquisition process may be capable of obtaining a meal score based on the blood glucose level trend information of the subject.
  • the computer may read the blood glucose level trend information of the subject from memory, obtain a meal score by pattern matching the read blood glucose level trend information of the subject, and store it in memory.
  • the computer may obtain the area enclosed by the blood glucose level trend graph (blood glucose level fluctuation area) from the blood glucose level trend information of the subject (blood glucose level trend graph with the horizontal axis being elapsed time and the vertical axis being blood glucose level), and obtain a meal score from the obtained blood glucose level fluctuation area using the range of the blood glucose level fluctuation area stored in the memory unit and information regarding the value of the meal score.
  • blood glucose level trend graph blood glucose level fluctuation area
  • the blood glucose level trend information of the subject blood glucose level trend graph with the horizontal axis being elapsed time and the vertical axis being blood glucose level
  • the computer may obtain the maximum change in blood glucose level before and after a meal from the subject's blood glucose level transition information (reading the maximum blood glucose level after the meal from the memory, reading the blood glucose level before the meal from the memory, and having the processor perform a calculation to subtract the blood glucose level before the meal from the maximum blood glucose level after the meal to obtain the maximum change in blood glucose level), and store it in the memory as appropriate.
  • the computer may then obtain a meal score from the obtained maximum change in blood glucose level using information about the range of the maximum change in blood glucose level and the meal score value stored in the storage unit.
  • Table 1 is a table showing the relationship between the meal score value and the range of the blood glucose fluctuation area or the maximum blood fluctuation value associated therewith.
  • the meal score can be obtained using either the sum or the amount of change in blood glucose level or both in the subject's blood glucose level transition information.
  • the meal score may be obtained using the range of the blood glucose fluctuation area and the maximum blood fluctuation value.
  • a score may be given for each range of the blood glucose fluctuation area and the range of the maximum blood fluctuation value, and the scores multiplied by a predetermined coefficient may be added together to obtain an evaluation score, and the meal score may be obtained according to the range of the evaluation score. This calculation may be performed using a computer.
  • An invention relates to a computer-based method for obtaining a meal score, which is different from the above method.
  • This method includes a blood glucose level input step, a blood glucose level transition information acquisition step, and a meal score acquisition step.
  • the blood glucose input step is a step in which a computer receives a plurality of blood glucose levels of a subject after ingesting a meal.
  • An example of a blood glucose input step is a step in which a real-time blood glucose level of a subject measured using a sensor is input into the computer.
  • the blood glucose level trend information acquisition process is a process in which a computer obtains blood glucose level trend information of a subject after ingesting a certain meal based on the subject's multiple blood glucose levels.
  • An example of the blood glucose level trend information is the graph shown in FIG. 3.
  • the blood glucose level trend information is preferably information on blood glucose levels measured in real time. However, the blood glucose level trend information may also be information including blood glucose levels at 12 or more points within 3 hours after the meal.
  • the meal score acquisition process is a process for obtaining a meal score for evaluating a certain meal based on the blood glucose level trend information of the subject obtained in the blood glucose level trend information acquisition process. This meal score acquisition process may be performed in the
  • One invention relates to a method for calculating insulin dosage using a computer. This method includes a step of calculating a blood glucose difference and a step of calculating an insulin dosage.
  • the blood glucose difference calculation step is a step in which a computer calculates a blood glucose difference, which is the difference between an estimated blood glucose level, which is a blood glucose level calculated using a blood glucose level transition pattern model, and a target blood glucose level, which is a target blood glucose level.
  • the memory stores a target blood glucose level in association with the subject.
  • An example of the target blood glucose level is a blood glucose level in a fasting state.
  • the computer stores a blood glucose level transition pattern model of the subject in association with the subject.
  • the blood glucose level transition pattern model may be obtained, for example, from multiple blood glucose level transition patterns for the amount of sugar ingested by the subject using artificial intelligence or machine learning. Information about the subject and information about meals are input to the computer.
  • the computer reads out the blood glucose level transition pattern model of the subject from the memory, and obtains an estimated blood glucose level using information about meals (information for obtaining a blood glucose level included in the information).
  • An example of the estimated blood glucose level is an estimated blood glucose level that is an estimated value of the subject's blood glucose level in a fasting state.
  • the estimated blood glucose level obtained by the computer is appropriately stored in the memory.
  • the computer reads out the target blood glucose level of the subject from the memory using the information about the subject.
  • the computer reads out the estimated blood glucose level and the target blood glucose level from the memory, and has the processor obtain the difference between them to obtain the differential blood glucose level.
  • the computer appropriately stores the obtained differential blood glucose level in the memory. In this way, the computer can obtain the differential blood glucose level.
  • the insulin dosage calculation process is a process in which the computer calculates the insulin dosage for the subject using the differential blood glucose value obtained in the differential blood glucose value calculation process.
  • the insulin dosage calculation process may perform any processing as long as the computer can calculate the insulin dosage for the subject using the differential blood glucose value obtained in the differential blood glucose value calculation process.
  • An example of an insulin dosage calculation process uses a blood glucose level transition pattern model of a subject when insulin is administered to the subject.
  • the blood glucose level transition pattern model of a subject when insulin is administered can be obtained in the same manner as the blood glucose level transition pattern model of a subject after eating a meal.
  • a computer obtains multiple blood glucose level transition patterns when a subject administers a predetermined unit of insulin and eats a meal, and stores them in memory. The computer can then use artificial intelligence or machine learning to obtain a blood glucose level transition pattern model of the subject when insulin is administered.
  • the blood glucose difference value is the blood glucose level value that should be lowered for the subject.
  • the computer can then read out the blood glucose difference value from the memory and use the blood glucose level transition pattern model of the subject and the read out blood glucose difference value to calculate the amount of insulin to be administered to the subject.
  • the computer stores the blood glucose level transition pattern model of the subject when insulin is administered, the blood glucose level change amount per unit of insulin can be visualized.
  • blood glucose level transition information when insulin is not administered can be obtained.
  • the optimal insulin dosage for that meal can be determined.
  • Figure 4 is a conceptual diagram showing an example of determining an insulin dosage.
  • the maximum blood glucose level will be 150 mg/dl if the meal is consumed.
  • the estimated maximum blood glucose level is stored in memory.
  • There is a blood glucose level trend pattern model that matches the blood glucose level trend pattern when the meal is consumed, and the maximum blood glucose level was 130 mg/dl when the meal was consumed after 2 units of insulin were administered.
  • the subject's target blood glucose level is 90 mg/dl.
  • the computer reads this information from memory, calculates 6 units as the amount of insulin required to consume a certain meal, stores this in memory, and outputs it to the subject's mobile device. The subject then knows that the amount of insulin is 6 units, and is able to consume the required amount of insulin.
  • the insulin dosage calculation step may calculate the insulin dosage for the subject by applying information about the insulin preparation administered to the subject and the differential blood glucose value to a blood glucose level trend pattern model for each insulin preparation.
  • the memory stores the blood glucose level trend pattern model for each insulin preparation for the subject.
  • Information about the subject as well as information about the insulin preparation is input to the system.
  • the system then reads out the blood glucose level trend pattern model for each insulin preparation using the input information about the subject and information about the insulin preparation.
  • the system can calculate the insulin dosage for the subject using the differential blood glucose value and the read blood glucose level trend pattern model.
  • One invention relates to a program for causing a computer to execute any of the above-mentioned methods.
  • Another invention relates to a non-transitory information recording medium that can be read by a computer that stores the above-mentioned program. Examples of non-transitory information recording media are CD-ROMs, DVDs, and USB memories.
  • a diabetes treatment application was created and installed on a user's mobile device.
  • the user's HbA1c value was measured.
  • the obtained HbA1c measurement value was input to the system and stored in memory.
  • a doctor set a target HbA1c value for three months from now.
  • the doctor input the target HbA1c value to the system.
  • the system's memory stored the HbA1c measurement value and the target HbA1c value in association with the user's ID.
  • the system has a blood glucose level transition pattern model, and the insulin dosage was calculated using the HbA1c measurement value, the target HbA1c value, and the blood glucose level transition pattern model.
  • the blood glucose level transition pattern model may be, for example, a blood glucose level transition pattern model of the user stored in association with the user ID, or may be a general one. However, the insulin dosage may be calculated using the differential blood glucose value.
  • the user Before injecting insulin before a meal, the user takes a photo of the meal. The photo of the meal is then sent to the system. The system analyzes the meal based on the photo of the meal and obtains information on the user's blood glucose level trends over the three hours after the meal. The system then calculates a meal score based on this information on blood glucose levels.
  • the system stores the calculated meal score in memory along with the date and time of the meal (or the date and whether it was breakfast, lunch, snack, or dinner). At this time, the system may store this information along with a photo (image) of the meal. The system can then output the daily change in meal score.
  • Figure 5 shows an example of displaying a date, meal images, and meal score.
  • the date, and images of breakfast, lunch, and dinner are displayed on the mobile device of a user who has installed the application.
  • the meal score is displayed on top of the images of breakfast, lunch, and dinner. In this way, displaying breakfast, lunch, and dinner together with the meal score has the effect of discouraging the consumption of meals other than breakfast, lunch, and dinner (e.g. snacks).
  • the meal score is displayed as a numerical value.
  • the meal score may be expressed using the color of the frame showing the meal. For example, the more red the color, the worse the meal score may be, and the more blue the color, the better (healthier) the meal score may be. It is preferable that the meal score obtained in this manner is output as appropriate.
  • the computer may output an image of a certain meal and the meal score so that the image of the certain meal and the meal score are displayed on a single screen. For example, this output method can be achieved by the computer reading out the image of a certain meal and the meal score stored in the memory unit and outputting them to the output unit.
  • Figure 6 is a conceptual diagram for explaining meals, blood glucose level trends, and meal scores.
  • the user launches the application and takes a picture of the meal they plan to eat using their mobile device.
  • the application then sends the photo of the planned meal to the server.
  • the server receives information about the user along with the photo of the meal.
  • the server analyzes the received image of the meal and reads out a trend pattern model based on the received information about the user.
  • the server uses this information to predict the trend of the user's blood glucose level.
  • the center diagram in Figure 6 is a graph showing the predicted trend of blood glucose level.
  • the server calculates a meal score from the calculated blood glucose level trend.
  • the server stores the calculated meal score in memory and sends it to the user's terminal.
  • the user's terminal can then obtain the meal score along with the photo image. If the user does not like the meal score, he or she can modify the meal content and send a revised photo of the planned meal to the server. The user can then obtain a meal score for the revised meal. In this way, the user can eat an appropriate meal.
  • Figure 7 shows an example of a graph showing changes in estimated blood glucose levels for a given day along with meal scores.
  • the server estimates the trends in a user's blood glucose levels based on the received meal photos.
  • the server can then estimate the trends in a user's blood glucose levels over the course of a day.
  • the server stores a program for calculating a daily evaluation value based on the trends in blood glucose levels, and based on that program, obtains a daily evaluation value using the trends in blood glucose levels.
  • Figure 7 by displaying the daily trends in blood glucose levels, meal score, and daily evaluation value on the user's device, it is possible to increase the user's motivation to control their blood glucose levels.
  • the application By looking at their daily meal score and images of the associated meals, users can visually understand what meals are good for their blood sugar levels and what meals are not. They can also graph the changes in their daily meal score. In this way, by recording daily blood sugar level trends and meals, users can select meals that will keep their post-meal blood sugar levels within the target range, enabling stable blood sugar control.
  • the application also provides motivation to control blood sugar levels by visualizing blood sugar level progress information.
  • FIG. 8 is a diagram showing an example of displaying trend information of a target blood glucose level, etc.
  • the vertical axis shows blood glucose level
  • the horizontal axis shows time.
  • the meal score is not shown, but the meal score may be displayed together.
  • the range of blood glucose or glucose levels after ingesting breakfast, lunch, or dinner may be graphed.
  • the trend of blood glucose levels at night may be displayed.
  • a computer uses multiple subject blood glucose information acquired on different days to obtain a representative value line indicating a representative value (e.g., a median value), a first area band indicating an area included with a first probability, a second area band indicating an area included with a second probability that is a wider probability than the first probability, and a target value line indicating a target blood glucose level or target glucose value for the blood glucose level or glucose value at a predetermined time after ingesting a meal. Then, the computer outputs the median line, the first area band, the second area band, and the target value line so that the representative value line, the first area band, the second area band, and the target value line are displayed on one screen.
  • a representative value line indicating a representative value (e.g., a median value)
  • a first area band indicating an area included with a first probability
  • a second area band indicating an area included with a second probability that is a wider probability than the first probability
  • a target value line indicating a target
  • a representative value line showing a representative value e.g., a median value
  • a first area band showing an area included with a first probability e.g., a first area band showing an area included with a second probability that is a higher probability than the first probability
  • a target value line showing a target blood glucose value or target glucose value e.g., a target blood glucose value or target glucose value
  • Each output may be output on the screen of a terminal (client) held by the user (subject), may be output on a medium such as paper, or may be output on the screen of a terminal (client) held by a medical institution such as a doctor or a supporter such as a nutritionist.
  • a graph is drawn with a yellow line.
  • the target blood glucose transition is calculated, for example, as follows, but may be obtained by machine learning.
  • the set value may be input into the computer as appropriate. The following processes may be performed automatically by the computer.
  • the estimated HbA1c (I) is calculated.
  • This value can be obtained, for example, by substituting the average value of the blood glucose level (A) from the start of the test (day 1) to two weeks later (day 14) into a linear equation and calculating. Using this value, the target HbA1c (J) and the target average blood glucose level (C) are calculated. Next, the target fasting blood glucose level (K) is set. This value is set by the doctor as a constant, which is the ideal fasting blood glucose level in clinical practice, and may be input into the computer as appropriate. Then, the computer may read the value stored in the memory unit and use it for various calculations. It is specified with reference to the standard fasting blood glucose level (H1) from the start of the test (day 1) to two weeks later (day 14) and the target HbA1c.
  • the doctor specifies the approximate target fasting blood glucose level for each HbA1c. This often complies with the guidelines for diabetes treatment, so it is sufficient to select these values stored in the computer. Then, these values are input into the computer. Next, the computer calculates the target blood glucose level (G) using the target average blood glucose level (C) and the target fasting blood glucose level (K). The target blood glucose transition is plotted in a graph. In this way, a graph like that shown in FIG. 8 can be obtained.
  • the example in Figure 8 shows a graph that makes it easy to see the patient's actual blood glucose trend, based on three hours of blood glucose data from the timestamp of the patient app recording. For example, it is displayed with the median (white line), 25-75% band (blue), 10-90% band (light blue), less than 10% and over 90% (dotted line), hypoglycemia reference line (red line), and target blood glucose trend (yellow line).
  • the median line (white line) (M) is a line that connects the median values of blood glucose trends from the start of a meal (0 minutes) to 180 minutes later. For example, it can be expressed from the day the insulin dosage is changed to the day before the next insulin dosage change.
  • the 25-75% band (blue line) (N) connects the lines that represent the 25% and 75% bands of blood glucose trends from the start of the meal (0 minutes) to 180 minutes later.
  • the 10-90% band (light blue line) (O) connects the lines that represent the 10% and 90% bands of blood sugar trends from the start of the meal (0 minutes) to 180 minutes later.
  • the median line is output in white or gray, the first range in a bluish color (e.g., blue, navy blue, purple), the second range in a lighter bluish color than the first range (e.g., light blue, light purple), and the target value line in a yellowish or reddish color (e.g., yellow or red).
  • a bluish color e.g., blue, navy blue, purple
  • the second range in a lighter bluish color than the first range
  • the target value line in a yellowish or reddish color (e.g., yellow or red).
  • Figure 9 shows a sample example of the display screen.
  • blood glucose level transition information is estimated from the meal image using a transition model and drawn in blue.
  • the input meal image is also displayed together with the meal score.
  • the blood glucose level transition is displayed as a blue curve.
  • Survey results showed that displaying the blood glucose level transition curve in blue makes it easier to recognize diabetes.
  • FIG. 10 shows an example of a display of a week's menus along with the meal scores for each menu.
  • meal images corresponding to the week's menus are read from the menus stored in the memory unit, and the meal score for when the subject eats meals based on each menu is calculated and displayed on the screen.
  • a variety of meals can be covered.
  • a nutritionist is deciding on a meal menu for a subject (e.g. a patient)
  • they select a menu for each subject they can obtain a meal score for each meal for that subject, making it easier to give dietary advice to each subject.
  • an overview of the week can be made.
  • the present invention can be used in the fields of information-related industries and medical equipment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

[Problem] To provide a method for appropriately obtaining evaluation for a meal to be taken or for a taken meal, even without health examination results of a user. [Solution] The present invention involves a meal score acquisition method including: an image input step for inputting, to a computer, an image relating to a meal; a meal analysis step in which the computer analyzes the image and obtains meal analysis information; a blood sugar level transition information acquisition step in which the computer obtains, by using a transition pattern model of blood sugar level of a subject and the meal analysis information, transition information of blood sugar level of the subject after the subject has taken the meal; and a meal score acquisition step for obtaining a meal score for evaluating the meal on the basis of the transition information of the blood sugar level of the subject, which was obtained in the blood sugar level transition information acquisition step.

Description

血糖値モデルの作成方法,血糖値推移の予測方法How to create a blood glucose model and how to predict blood glucose trends

 この発明は,血糖値モデルの作成方法や,その血糖値モデルを用いた血糖値推移の予測方法などに関する。 This invention relates to a method for creating a blood glucose model and a method for predicting blood glucose trends using the blood glucose model.

 特許6659049号公報には,血糖値予測方法が記載されている。この方法は,コンピュータが,ユーザの血糖値の測定値,ユーザのHbA1cの測定値及びユーザの健康診断結果を取得する取得ステップと,血糖値の測定値,HbA1cの測定値及び健康診断結果に基づいて,ユーザが正常型,境界型及び糖尿病型のうちいずれであるかを判別する層判別ステップと,判別の結果とユーザの過去の時点における空腹時血糖値の測定値とを用いて,ユーザの今後の空腹時血糖値を予測する予測ステップと,所定期間内の空腹時血糖値の変化のばらつきを用いて標準正規分布を生成し,生成した標準正規分布の信頼区間を,糖尿病と判定される閾値である空腹時血糖値に設定した分割線により分割し,分割線により分割された信頼区間の領域と信頼区間の面積とを用いて面積比率を求め,面積比率に信頼区間の信頼度を乗算して糖尿病の罹病リスクを算出するリスク判定ステップと,を実行する。  Patent No. 6659049 describes a blood glucose prediction method. This method includes an acquisition step in which a computer acquires the measured blood glucose level of a user, the measured HbA1c level of the user, and the results of the user's health check; a classification step in which the computer determines whether the user is normal, borderline, or diabetic based on the measured blood glucose level, HbA1c level, and the results of the health check; a prediction step in which the computer uses the result of the classification and the measured fasting blood glucose level of the user at a past time to predict the user's future fasting blood glucose level; and a risk determination step in which the computer generates a standard normal distribution using the variability in the change in fasting blood glucose level within a specified period of time, divides the confidence interval of the generated standard normal distribution by a division line set at the fasting blood glucose level, which is the threshold value for determining diabetes, calculates an area ratio using the area of the confidence interval divided by the division line and the area of the confidence interval, and multiplies the area ratio by the reliability of the confidence interval to calculate the risk of developing diabetes.

 上記の方法では,ユーザの健康診断結果や,空腹時血糖値の測定値などの情報がなければ血糖値を予測できず,摂取した食事の評価を適切に得ることができない。 The above method cannot predict blood glucose levels without information such as the user's health check results and fasting blood glucose measurements, and therefore cannot properly evaluate the food consumed.

特許6659049号公報Patent No. 6659049

 この発明は,ユーザの健康診断結果などがなくても,摂取する予定の食事や摂取した食事の評価を適切に得ることができる方法を提供する。 This invention provides a method for appropriately obtaining an evaluation of meals that are planned to be consumed or meals that have been consumed, even if the user does not have health check results, etc.

 ある発明は,ミールスコアを取得するためのコンピュータを用いた方法に関する。ミールスコアは,ある食事を評価するためのスコアである。この方法は,食事に関する画像により,その食事を評価するものである。 An invention relates to a computer-based method for obtaining a meal score, which is a score for evaluating a meal. The method evaluates the meal using images of the meal.

 第1のミールスコアの取得方法は、対象者血糖情報入力工程と、ミールスコア取得工程とを含む。ミールスコアは、ある食事を評価するための評価値である。ミールスコアは、ある食事を糖尿病治療または予防の観点から評価する評価値であってもよい。 The first method for obtaining a meal score includes a step of inputting blood glucose information of a subject and a step of obtaining a meal score. The meal score is an evaluation value for evaluating a certain meal. The meal score may be an evaluation value for evaluating a certain meal from the perspective of diabetes treatment or prevention.

 対象者血糖情報入力工程は、コンピュータに、ある食事を摂取した対象者の血糖値又はグルコース値である対象者血糖情報、又は対象者血糖情報の推移情報が入力される工程である。対象者血糖情報の推移情報は、対象者の血糖値の時系列の推移情報であってもよいし、対象者のグルコース値の時系列の推移情報であってもよい。この工程は、センサを用いて測定された対象者のリアルタイムの血糖値又はグルコース値が、コンピュータに入力される工程を含んでもよい。センサの例は、低侵襲血糖値センサ、無侵襲血糖値センサ、低侵襲グルコース値測定センサ、及び無侵襲グルコース値測定センサのいずれであってもよい。センサは、体内にその一部が埋め込まれている物のほか、腕時計型のセンサや、体表に貼付するタイプのものであってもよい。血糖値やグルコース値は、血糖値そのものやグルコース値そのものでなくても、血糖値やグルコース値に関連する値であればよい。この明細書では、グルコース値も併せて単に血糖値と表現する場合もある。
 コンピュータに、ある食事を摂取した対象者の血糖値又はグルコース値である対象者血糖情報が入力される場合、コンピュータが、入力された対象者血糖情報を用いて、ある食事を摂取した後の対象者血糖値の推移情報を得る血糖値等推移情報取得工程をさらに含んでもよい。対象者血糖値の推移情報は、例えば、後述する学習済みモデル(推移パターンモデル)に、対象者血糖情報を入力することで、対象者血糖値の推移情報(の推測値)を得ることができる。
The subject's blood glucose information input step is a step of inputting subject's blood glucose information, which is the blood glucose or glucose value of a subject who has taken a certain meal, or transition information of the subject's blood glucose information, into the computer. The transition information of the subject's blood glucose information may be time-series transition information of the subject's blood glucose level, or time-series transition information of the subject's glucose level. This step may include a step of inputting the subject's real-time blood glucose or glucose value measured using a sensor into the computer. Examples of the sensor may be a low-invasive blood glucose sensor, a non-invasive blood glucose sensor, a low-invasive glucose measurement sensor, and a non-invasive glucose measurement sensor. The sensor may be a sensor partly embedded in the body, a wristwatch type sensor, or a type attached to the body surface. The blood glucose or glucose value may not be the blood glucose value or the glucose value itself, but may be a value related to the blood glucose or glucose value. In this specification, the glucose value may also be simply expressed as the blood glucose value.
When subject blood glucose information, which is the blood glucose level or glucose level of a subject who has consumed a certain meal, is input to the computer, the computer may further include a blood glucose level etc. transition information acquisition step of obtaining transition information of the subject's blood glucose level after consuming a certain meal using the input subject blood glucose information. The transition information of the subject's blood glucose level (estimated value) can be obtained by inputting the subject's blood glucose information into a trained model (transition pattern model) described later, for example.

 推移パターンモデルは、血糖値等入力工程と血糖値推移パターンモデル取得工程を含む工程により得てもよい。血糖値等入力工程は、コンピュータが、対象者が食事を摂取した後の血糖値又はグルコース値を複数受け取る工程である。この血糖値等は、食事を摂取した後の所定タイミング毎に所定期間、コンピュータに入力されるものが好ましい。所定期間これらの値が入力されると、1回の推移情報が得られる。このようなデータを教師データとして複数入力し、機械学習(深層学習)することで、対象者の血糖値等の推移モデルを得ることができる。
 血糖値推移パターンモデル取得工程は、コンピュータが、血糖値等入力工程により入力された対象者の食後の血糖値又はグルコース値を用いて、機械学習により、対象者の血糖値の推移パターンモデルを得る工程である。
The transition pattern model may be obtained by a process including a blood glucose level input process and a blood glucose level transition pattern model acquisition process. The blood glucose level input process is a process in which a computer receives multiple blood glucose or glucose values after a subject has eaten a meal. These blood glucose levels, etc. are preferably input to the computer at a predetermined timing for a predetermined period after eating a meal. When these values are input for a predetermined period, one transition information is obtained. By inputting multiple such data as teacher data and performing machine learning (deep learning), a transition model of the subject's blood glucose level, etc. can be obtained.
The blood glucose level trend pattern model acquisition process is a process in which a computer obtains a blood glucose level trend pattern model of the subject through machine learning using the subject's postprandial blood glucose level or glucose value inputted in the blood glucose level input process.

 ミールスコア取得工程は、コンピュータが、対象者血糖情報、又は対象者血糖情報の推移情報を用いて、ある食事を評価するための評価値であるミールスコアを得るための工程である。
 ミールスコア取得工程は、対象者血糖情報、又は対象者血糖情報の推移情報を、ミールスコアを得るための学習済みモデルに入力することにより、ミールスコアを得る工程を含んでもよい。
 このような学習済みモデルは、例えば、複数の者についての情報(年齢、性別、既往症、糖尿病の状態)と、食事、血糖値等、血糖値等の推移情報やミールスコアを教師データとして機械学習や深層学習により、学習済みモデルを構築してもよい。このような学習済みモデルを用いれば、血糖値等を入力することで、血糖値の推移を求めることができ、ミールスコアを求めることができる。また、この学習済みモデルは、対象者について、過去の食事、過去の血糖値等、及び血糖値等の推移のいずれか1種以上と、ミールスコアとを教師データとして、機械学習や深層学習により、学習済みモデルを構築してもよい。このような学習済みモデルを用いれば、血糖値等や血糖値等の推移情報を入力することで、血糖値の推移を求めることができ、ミールスコアを求めることができる。
The meal score acquisition process is a process in which a computer uses the subject's blood glucose information or information on trends in the subject's blood glucose information to obtain a meal score, which is an evaluation value for evaluating a certain meal.
The meal score acquisition process may include a process of obtaining a meal score by inputting the subject's blood glucose information, or information on trends in the subject's blood glucose information, into a trained model for obtaining a meal score.
Such a trained model may be constructed by machine learning or deep learning using, for example, information about a plurality of individuals (age, sex, medical history, diabetic state), meals, blood glucose levels, etc., transition information on blood glucose levels, etc., and meal scores as teacher data. By using such a trained model, the transition of blood glucose levels can be obtained by inputting blood glucose levels, etc., and meal scores can be obtained. In addition, this trained model may be constructed by machine learning or deep learning using one or more of past meals, past blood glucose levels, etc., and transitions of blood glucose levels, etc., and meal scores as teacher data for the subject. By using such a trained model, the transition of blood glucose levels can be obtained by inputting blood glucose levels, etc., and transition information on blood glucose levels, etc., and meal scores can be obtained.

 ミールスコア取得工程は、対象者血糖情報の推移情報における対象者血糖情報の変化量の総和もしくは対象者血糖情報の変化量のいずれか又は両方を用いて、ミールスコアを得てもよい。例えば、コンピュータは、血糖値やグルコース値の時系列による推移情報のグラフ(横軸が時間で縦軸がこれらの値)を作成し、グラフにおける縦軸が基準値以上の部分に含まれる面積(総和)を求めてもよい。そして、コンピュータは、記憶部に、総和に応じたミールスコアを記憶しておき、得られた総和を用いて、ミールスコアを読み出して、ミールスコアを求めてもよい。総和は、積分値であってもよいし、近似値であってもよい。近似値の例は、基準値(空腹時や食事開示時)の血糖値等の値と最大値を頂点とし、基準値や閾値を与えたグラフ領域を底辺とした三角形の面積であってもよい。また、変化量は、例えば基準値(空腹時や食事開示時)の血糖値等の値と最大値との差であってもよい。そして、コンピュータは、記憶部に基準値と最大値との差と関連し、ミールスコアを記憶しておき、基準値と最大値との差を用いて、記憶部からミールスコアを読み出してもよい。上記は変化量として基準値と最大値との差を用いた場合について説明した。変化量は、この例に限定されず、様々な変化値を採用できる。そのような変化量の例は、基準値と最大値の他、最大値を与える時間や、極大値が挙げられる。 The meal score acquisition process may obtain a meal score using either or both of the sum of the changes in the subject's blood glucose information in the transition information of the subject's blood glucose information. For example, the computer may create a graph of the transition information of blood glucose levels and glucose levels over time (the horizontal axis is time and the vertical axis is these values), and calculate the area (sum) of the part of the graph where the vertical axis is equal to or greater than the reference value. The computer may then store a meal score corresponding to the sum in the memory unit, and use the obtained sum to read out the meal score and calculate the meal score. The sum may be an integral value or an approximate value. An example of the approximate value may be the area of a triangle with the blood glucose level, etc. of the reference value (when fasting or when a meal is started) and the maximum value as vertices, and the graph area to which the reference value or threshold value is assigned as the base. The amount of change may also be, for example, the difference between the blood glucose level, etc. of the reference value (when fasting or when a meal is started) and the maximum value. The computer may then store a meal score in association with the difference between the reference value and the maximum value in the memory unit, and read out the meal score from the memory unit using the difference between the reference value and the maximum value. The above describes a case where the difference between a reference value and a maximum value is used as the amount of change. The amount of change is not limited to this example, and various change values can be used. Examples of such amounts of change include the reference value and the maximum value, as well as the time at which the maximum value is reached and a local maximum value.

 上記は、対象者の血糖値等がコンピュータに入力される場合について説明した。コンピュータに対象者の血糖値等が入力されてもよいし、入力されなくてもよい。 The above describes a case where the subject's blood glucose level, etc. is input to a computer. The subject's blood glucose level, etc. may or may not be input to a computer.

 第2のミールスコア取得方法は、画像入力工程と、食事解析工程と、ミールスコア取得工程とを含む。この方法は、血糖値等推移情報取得工程をさらに含んでもよい。また、この方法は、上記した対象者血糖情報入力工程をさらに含んでもよい。 The second meal score acquisition method includes an image input process, a meal analysis process, and a meal score acquisition process. This method may further include a blood glucose level and other trend information acquisition process. This method may further include the subject's blood glucose information input process described above.

 画像入力工程は、コンピュータに、ある食事に関する画像が入力される工程である。
 食事解析工程は、コンピュータが、画像を解析し、食事解析情報を得る工程である。
 ミールスコア取得工程は、食事解析情報に基づいて、ミールスコアを得る工程である。この工程は、食事解析情報とミールスコアとを教師データとして学習済みモデルを構築し、食事解析情報を学習済みモデルに入力することで、ミールスコアを得てもよい。また、血糖値等推移情報取得工程は、コンピュータが、対象者の血糖値又はグルコース値の推移パターンモデルと、食事解析情報とを用いて、ある食事を摂取した後の対象者の血糖値又はグルコース値である対象者血糖情報の推移情報である対象者血糖情報の推移情報を得る工程である。この場合のミールスコア取得工程は、血糖値等推移情報取得工程で得られた対象者の血糖情報の推移情報に基づいて、ミールスコアを得る工程であってもよい。
The image input step is a step in which an image relating to a certain meal is input to a computer.
The diet analysis step is a step in which a computer analyzes the image and obtains diet analysis information.
The meal score acquisition process is a process of obtaining a meal score based on the meal analysis information. This process may obtain a meal score by constructing a trained model using the meal analysis information and the meal score as teacher data and inputting the meal analysis information into the trained model. The blood glucose level, etc. transition information acquisition process is a process in which a computer uses a transition pattern model of the subject's blood glucose level or glucose level and the meal analysis information to obtain transition information of the subject's blood glucose information, which is transition information of the subject's blood glucose information, which is the blood glucose level or glucose level of the subject after ingesting a certain meal. In this case, the meal score acquisition process may be a process of obtaining a meal score based on the transition information of the subject's blood glucose information obtained in the blood glucose level, etc. transition information acquisition process.

 上記のようにして得られたミールスコアは、適宜出力されることが好ましい。次の発明は、ミールスコアの出力方法に関する。この出力方法の例は、ある食事に関する画像とミールスコアとが一つの画面に表示されるように、ある食事に関する画像とミールスコアと出力すればよい。例えば、コンピュータが、記憶部に記憶されたある食事に関する画像とミールスコアとを読み出して、出力部に出力することで、この出力方法を達成できる。 It is preferable that the meal score obtained as described above is output as appropriate. The next invention relates to a method for outputting a meal score. An example of this output method is to output an image related to a certain meal and a meal score so that the image related to the certain meal and the meal score are displayed on a single screen. For example, this output method can be achieved by having a computer read out an image related to a certain meal and a meal score stored in a memory unit and outputting them to an output unit.

 第3の発明は、対象血糖値等の推移情報を表示する方法に関する。この発明は、第1又は第2の発明と組み合わせてもよい。
 この発明は、コンピュータが、異なる日に取得した対象者血糖情報を複数用いて、食事を摂取した後の所定時間における血糖値又はグルコース値について、代表値を示す代表値線、第1の確率で含まれる領域を示す第1の領域帯、第1の確率よりも広い確率である第2の確率で含まれる領域を示す第2の領域帯、目標血糖値又は目標グルコース値を示す目標値線を得る工程と、
 代表値線、第1の領域帯、第2の領域帯及び目標値線が一つの画面に表示されるように、中央値線、第1の領域帯、第2の領域帯及び目標値線を出力する工程を含む。
The third invention relates to a method for displaying transition information of a subject's blood glucose level, etc. This invention may be combined with the first or second invention.
This invention provides a method for obtaining a representative value line indicating a representative value, a first area band indicating an area included with a first probability, a second area band indicating an area included with a second probability that is higher than the first probability, and a target value line indicating a target blood glucose value or target glucose value, for a blood glucose value or glucose value at a predetermined time after a meal, using a plurality of subject blood glucose information obtained on different days;
The method includes a step of outputting the median line, the first area band, the second area band and the target value line so that the representative value line, the first area band, the second area band and the target value line are displayed on a single screen.

 中央値線は、白色又は灰色、第1の領域帯は、青系の色、第2の領域帯は、第1の領域帯より薄い青系の色、目標値線は、黄系又は赤系の色として出力されることが好ましい。 It is preferable that the median line is output in white or gray, the first range band in a blue color, the second range band in a lighter blue color than the first range band, and the target value line in a yellow or red color.

 第4の発明は、コンピュータを用いたインスリンの投与量の算定方法に関する。
 この方法は、差分血糖値算出工程と、インスリン投与量算定工程とを含む。
 差分血糖値算出工程は、コンピュータが、対象者の血糖値又はグルコース値の推移パターンモデルを用いて求めた対象者の血糖値又はグルコース値である対象者推測血糖値と、目標とする血糖値又はグルコース値である目標血糖値との差分である差分血糖値を求める工程である。インスリン投与量算定工程は、コンピュータが、差分血糖値算出工程で求めた差分血糖値を用いて、対象者に対するインスリン投与量を算定する工程である。
The fourth invention relates to a method for calculating an insulin dosage using a computer.
The method includes a differential blood glucose calculation step and an insulin dosage calculation step.
The differential blood glucose value calculation step is a step in which a computer calculates a differential blood glucose value between a subject's predicted blood glucose value, which is the blood glucose value or glucose value of the subject calculated using a transition pattern model of the subject's blood glucose value or glucose value, and a target blood glucose value, which is a target blood glucose value or glucose value. The insulin dosage calculation step is a step in which a computer calculates an insulin dosage for the subject using the differential blood glucose value calculated in the differential blood glucose value calculation step.

 インスリン投与量算定工程の例は、インスリン製剤ごとの血糖値又はグルコース値の推移パターンモデルに、対象者に投与されるインスリン製剤に関する情報と、差分血糖値とを入力し、対象者に対するインスリン投与量を算定する工程である。 An example of an insulin dosage calculation process is a process in which information about the insulin preparation to be administered to the subject and the differential blood glucose level are input into a blood glucose or glucose level transition pattern model for each insulin preparation, and the insulin dosage for the subject is calculated.

 この明細書は、コンピュータに上記した各種方法を実行させるためのプログラムや、そのようなプログラムを記憶したコンピュータが読み取ることができる非一時的情報記録媒体をも記載する。 This specification also describes programs for causing a computer to execute the various methods described above, as well as non-transitory information recording media that store such programs and can be read by a computer.

 上記した発明によれば,ユーザの健康診断結果などを用いなくても,摂取する予定の食事や摂取した食事を適切に評価できる。 The above-mentioned invention allows the user to appropriately evaluate meals that are planned to be consumed or have been consumed without using the user's health check results, etc.

図1は,ミールスコアを取得するための方法を説明するためのフローチャートである。FIG. 1 is a flowchart illustrating a method for obtaining a meal score. 図2は,一定時間以上のリアルタイムに測定した血糖値と,それより得られた,血糖値の推移パターンの例を示す概念図である。FIG. 2 is a conceptual diagram showing an example of blood glucose levels measured in real time over a certain period of time and the resulting transition pattern of blood glucose levels. 図3は,対象者の血糖値の推移情報の例を示す概念図である。FIG. 3 is a conceptual diagram showing an example of transition information of a subject's blood glucose level. 図4は,インスリン投与量を決定した例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of determining the insulin dosage. 図5は,日にちと,食事の画像,及びミールスコアを表示した例を示す。FIG. 5 shows an example of displaying a date, an image of a meal, and a meal score. 図6は,食事と,血糖値推移と,ミールスコアを説明するための概念図である。FIG. 6 is a conceptual diagram for explaining meals, blood glucose level trends, and meal scores. 図7は,ある日の推測血糖値の変化をミールスコアとともにグラフ化したものの例を示す。FIG. 7 shows an example of a graph showing changes in estimated blood glucose levels on a given day together with meal scores. 図8は、対象血糖値等の推移情報を表示した例を示す図である。FIG. 8 is a diagram showing an example of displaying transition information of the subject blood glucose level and the like. 図9は、表示画面のサンプル例を示す。FIG. 9 shows a sample example of a display screen. 図10は、一週間のメニューと、それぞれのメニューに関するミールスコアを合わせて表示したものの例を示す。FIG. 10 shows an example of a weekly menu along with the meal score for each menu.

 以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。 Below, the embodiments for carrying out the present invention will be explained with reference to the drawings. The present invention is not limited to the embodiments described below, but also includes appropriate modifications of the embodiments below within the scope that would be obvious to a person skilled in the art.

 以下の説明では、血糖値を例にして説明する。しかしながら、ミールスコアやインシュリン投与量などは、血糖値のみならず、血糖値やグルコース値など、血糖値に関連する数値を用いて推測できる。このため、血糖値を、グルコース値やグルコース値以外の血糖値に関連する数値と読み替えたものも、この明細書は開示する。 In the following explanation, blood glucose level will be used as an example. However, meal scores and insulin dosages can be estimated using not only blood glucose levels, but also values related to blood glucose levels, such as blood glucose levels and glucose values. For this reason, this specification also discloses cases where blood glucose level is interpreted as glucose value or a value related to blood glucose levels other than glucose value.

 この発明は,基本的には,コンピュータが各種処理を行う。コンピュータは,入力部,出力部,制御部,演算部及び記憶部を有しており,各要素は,バスなどによって接続され,情報の授受を行うことができるようにされている。例えば,記憶部には,プログラムが記憶されていてもよいし,各種情報が記憶されていてもよい。入力部から所定の情報が入力された場合,制御部は,記憶部に記憶される制御プログラムを読み出す。そして,制御部は,適宜記憶部に記憶された情報を読み出し,演算部へ伝える。また,制御部は,適宜入力された情報を演算部へ伝える。演算部は,受け取った各種情報を用いて演算処理を行い,記憶部に記憶する。制御部は,記憶部に記憶された演算結果を読み出して,出力部から出力する。このようにして,各種処理や各工程が実行される。この各種処理を実行するものが,各部や各手段である。コンピュータは,プロセッサを有し,プロセッサが各種機能や各種工程を実現するものであってもよい。コンピュータは,情報を記憶するためのメモリや処理を行うための回路を有していてもよい。コンピュータは,スタンドアロンであってもよい。コンピュータは,機能の一部がサーバと端末に分散されていてもよい。その場合サーバと端末とは,インターネットやイントラネットなどのネットワークにより,情報の授受を行うことができるようにされていることが好ましい。 In this invention, basically, a computer performs various processes. The computer has an input unit, an output unit, a control unit, a calculation unit, and a storage unit, and each element is connected by a bus or the like so as to be able to send and receive information. For example, the storage unit may store a program or various information. When specific information is input from the input unit, the control unit reads out a control program stored in the storage unit. The control unit then reads out the information stored in the storage unit as appropriate and transmits it to the calculation unit. The control unit also transmits the input information as appropriate to the calculation unit. The calculation unit performs calculation processing using the various information received and stores it in the storage unit. The control unit reads out the calculation results stored in the storage unit and outputs them from the output unit. In this way, various processes and each step are performed. The various parts and means perform these various processes. The computer may have a processor, and the processor may realize various functions and steps. The computer may have a memory for storing information and a circuit for performing processing. The computer may be standalone. The computer may have some of its functions distributed to a server and a terminal. In this case, it is preferable that the server and terminals are able to send and receive information via a network such as the Internet or an intranet.

 以下説明する各工程を実装するコンピュータの要素は、各部や各手段であり、各工程を実装する要素は各工程を各部や各手段のように読み替えればよい。コンピュータは、各種情報をデジタル情報に変換し、デジタル情報を用いて各種演算処理を行うことができる。例えば、数値情報や画像情報を、2値データに変換し、記憶部に記憶しておき、2値データを読み出して、演算部に演算させることで、各種演算処理を行うことができる。機械学習は、教師データを多数入力したり、正答あり教師データを多数入力することや、フィードバックを行うことで、学習済みモデルの精度を向上させることができる。フィードバックの例は、得られた結果が異常値であった場合、その旨を学習済みモデルに入力するといったものである。 The elements of the computer that implement each process described below are the individual parts and means, and the elements that implement each process can be read as individual parts or means. A computer can convert various information into digital information and perform various calculation processes using the digital information. For example, various calculation processes can be performed by converting numerical information or image information into binary data, storing it in a memory unit, reading out the binary data, and having the calculation unit calculate it. Machine learning can improve the accuracy of a trained model by inputting a large amount of training data, inputting a large amount of training data with correct answers, or providing feedback. An example of feedback is when an obtained result is an abnormal value, and inputting that fact into the trained model.

 ある発明は,ミールスコアを取得するためのコンピュータを用いた方法に関する。ミールスコアは,ある食事を評価するためのスコアである。ミールスコアは,ある食事を摂取した後所定時間(例えば3時間)以内における血糖値の変動を評価した指標であってもよい。この場合,血糖値の変動が小さいほど,評価が高くなる。 An invention relates to a method using a computer for obtaining a meal score. The meal score is a score for evaluating a certain meal. The meal score may be an index that evaluates the fluctuation in blood glucose level within a certain time (e.g., 3 hours) after ingesting a certain meal. In this case, the smaller the fluctuation in blood glucose level, the higher the evaluation.

 ミールスコアは、ある食事を糖尿病治療または予防の観点から評価する評価値であってもよい。評価値は、数値であってもよいし、濃淡や色の種類であってもよい。例えば、赤みが強いほど、良くないというミールスコアであってもよい。ミールスコアの例は、医師が目標とする治療指標(=治療目標, ΔHbA1c)を設定すると、治療目標に応じた食事毎の血糖推移を得点として表現したものである。具体的な値は、例えば、1点から10点で表示され、得点の基準となるのはMeal Score6点であってもよい。この場合のミールスコアは患者の行動変容を意図している。患者に対し、6点以上を達成すればゴールとなる治療指標を達成することができるという意識づけを行うことで患者は治療に対し前向きに取り組みやすくなる。このようなミールスコアは、適宜表示部に表示されてもよいし、印刷等されてもよい。ミールスコアは、良いものほど高い値をとるようにしてもよいし、その逆でもよい。この明細書では、血糖値等が好ましいほど高いミールスコアを与えるものを例として説明する。 The meal score may be an evaluation value that evaluates a certain meal from the viewpoint of diabetes treatment or prevention. The evaluation value may be a numerical value, or may be a shade or a type of color. For example, the meal score may be such that the redder the meal, the worse the meal score. In an example of a meal score, when a doctor sets a treatment index (= treatment goal, ΔHbA1c) to be targeted, the blood glucose transition for each meal according to the treatment goal is expressed as a score. Specific values may be displayed, for example, from 1 to 10 points, and the standard score may be a Meal Score of 6 points. In this case, the meal score is intended to change the patient's behavior. By making the patient aware that if they achieve 6 points or more, they can achieve the goal treatment index, the patient will be more likely to take a positive approach to treatment. Such a meal score may be displayed on a display unit or may be printed, etc., as appropriate. The better the meal score, the higher the value, or vice versa. In this specification, an example will be explained in which a higher meal score is given to a more favorable blood glucose level, etc.

 図1は,ミールスコアを取得するための方法を説明するためのフローチャートである。 最初に説明するミールスコアを取得するための方法は,食事に関する画像により,その食事を評価するものである。図1に示される通り,この方法は,画像入力工程(S101)と,食事解析工程(S102)と,血糖値推移情報取得工程(S103)と,ミールスコア取得工程(S104)とを含む。以下,本明細書の各工程は,コンピュータの要素である対応する各部や各手段が行ってもよい。 FIG. 1 is a flow chart for explaining a method for obtaining a meal score. The first method for obtaining a meal score that will be explained involves evaluating a meal using an image of the meal. As shown in FIG. 1, this method includes an image input process (S101), a meal analysis process (S102), a blood glucose level transition information acquisition process (S103), and a meal score acquisition process (S104). Hereinafter, each process in this specification may be performed by the corresponding parts or means that are elements of a computer.

 画像入力工程(S101)は,コンピュータに,ある食事に関する画像が入力される工程である。ある食事に関する画像は,例えば,対象者が携帯端末を用いて,食事を撮影した写真や動画であってもよい。対象者は,上記のコンピュータを有するシステムに向けて,撮影した画像を送信する。すると,システム(例えばシステムの画像入力部や画像入力手段)は,撮影された画像を受け取り,メモリに記憶する。このようにして,システムにある食事に関する画像が入力される。この際に,対象者(ユーザ)に関する各種情報がシステムに入力されてもよい。 The image input process (S101) is a process in which an image of a certain meal is input to a computer. The image of a certain meal may be, for example, a photograph or video of the meal taken by the subject using a mobile terminal. The subject transmits the captured image to a system having the above-mentioned computer. The system (for example, an image input unit or image input means of the system) then receives the captured image and stores it in memory. In this way, the image of the meal in the system is input. At this time, various information about the subject (user) may be input to the system.

 ある食事に関する画像は、対象者が記憶部に記憶されている食事メニューに関する画像選択した画像であってもよい。この場合、対象者が実際に食事を摂取する予定であるか、実際に摂取した食事のみならず、摂取対象となる食事についてミールスコアを予測できることとなる。例えば、朝食、昼食、又は夕食に何を食べようか検討している際に、記憶部から、メニューとともに食事画像(例えば、ステーキの画像)を選択すると、コンピュータの処理部に、ステーキに関する画像が入力されることとなる。すると、対象者は、ステーキを摂取した場合の、ミールスコアの予測値を得ることができることとなる。 The image of a certain meal may be an image selected by the subject from images related to a meal menu stored in the memory unit. In this case, it is possible to predict the meal score not only for meals that the subject plans to eat or has actually eaten, but also for meals to be eaten. For example, when considering what to eat for breakfast, lunch, or dinner, if a meal image (e.g., an image of a steak) is selected from the memory unit along with a menu, the image of the steak will be input to the computer's processing unit. The subject will then be able to obtain a predicted meal score if he or she eats the steak.

 例えば,ユーザの携帯端末又はサーバのユーザ情報管理部には,ユーザに関する各種情報が記憶されている。ユーザに関する情報の例は,ユーザの識別番号,氏名,年齢,性別,アレルギー,薬剤情報(特にインシュリンの薬剤に関する情報)及び疾患情報である。ユーザに関する情報として,このユーザの血糖値の推移パターンモデルが記憶されてもよい。ユーザ情報がシステムによって管理される場合,ユーザ情報は,ユーザの識別番号(ユーザID)と関連して記憶させればよい。 For example, various information about the user is stored in the user information management section of the user's mobile terminal or server. Examples of information about the user include the user's identification number, name, age, sex, allergies, medication information (particularly information about insulin medications), and disease information. A model of the user's blood glucose level transition pattern may be stored as information about the user. When user information is managed by the system, the user information may be stored in association with the user's identification number (user ID).

 食事解析工程(S102)は,コンピュータが,画像を解析し,食事解析情報を得るための工程である。食事解析情報は,ある食事に関する画像に基づいた食事に関する情報である。食事に関する情報には,料理,素材,カロリー(エネルギー),及び糖分に関する情報が含まれていてもよい。また,食事に関する情報には,主食,主菜,副菜,及び主汁の別に関する情報が含まれてもよい。さらに,食事に関する情報には,食事に関する画像が撮影された時間,又は食事を摂取した時間が含まれてもよい。この工程は,例えば,システムが,メモリのうち料理記憶部に記憶される画像を読み出し,読み出した画像と,ある食事に関する画像とをパターンマッチングすることで,料理や素材を分析するとともに,各種情報を得るようにしてもよい。 The meal analysis process (S102) is a process in which a computer analyzes an image and obtains meal analysis information. The meal analysis information is information about a meal based on an image of a certain meal. The meal information may include information about the dish, ingredients, calories (energy), and sugar content. The meal information may also include information about whether the meal is a staple food, main dish, side dish, or main soup. The meal information may also include the time when the image of the meal was taken, or the time when the meal was consumed. In this process, for example, the system may read an image stored in a dish storage section of the memory, and perform pattern matching between the read image and an image of a certain meal, thereby analyzing the dish and ingredients and obtaining various information.

 画像入力工程(S101)を行わず、食事解析情報を得るものは、この明細書に記載される上記とは別の発明である。例えば、ユーザが、食事する予定のメニュー(例えばステーキ)を記憶部から読み出す。すると、記憶部には、メニューと関連して、食事解析情報が記憶されている。この場合、記憶部から食事解析情報を読み出すことで、食事解析情報を得てもよい。  Obtaining dietary analysis information without performing the image input step (S101) is a different invention from the above described in this specification. For example, a user reads out a menu item they plan to eat (e.g., steak) from the memory unit. Then, dietary analysis information is stored in the memory unit in association with the menu item. In this case, dietary analysis information may be obtained by reading it out from the memory unit.

 料理記憶部は,複数の料理と,複数の料理の画像とを記憶するための要素である。コンピュータの記憶部が,料理記憶部として機能する。複数の料理に関する情報は,例えば,主食,主菜,副菜,及び主汁(さらには,飲み物,デザート,果物)の名称,それぞれの栄養素,糖分,及びそれぞれのエネルギーを含む情報であってもよい。これらの情報は,例えば,それぞれの料理の識別番号(ID)と関連付けて記憶されていてもよい。すると,識別番号を指定することで,上記した料理の名称,栄養素,糖分,及びエネルギーに関する情報を読み出すことができる。なお,果物や飲み物は,調理したものではないものの,食事の一部を構成する場合,「料理」のひとつに含めてもよい。このシステムは,例えば,上記の料理の識別番号と関連して,それぞれの料理の画像を記憶部に記憶する。すると,料理の識別番号を用いて,料理の画像を読み出すことができることとなる。料理記憶部3には,例えば,上記の識別番号と関連して,上記以外の情報(例えば,食品分類に関する情報)が記憶されていてもよい。食品分類の例は,果物,肉,魚,青物野菜,根菜,乳製品,海藻類,豆類,穀物,及びアルコール類である。また,上記の識別番号と関連して,アレルギー関連情報をも記憶してもよい。例えば,ゴマを含む料理については,ゴマアレルギーに関する情報を識別番号と関連させて記憶部に記憶させればよい。 The dish storage unit is an element for storing a plurality of dishes and images of the plurality of dishes. The storage unit of a computer functions as the dish storage unit. The information on the plurality of dishes may include, for example, the names of the staple food, main dish, side dish, and main soup (and also drinks, desserts, and fruits), their respective nutrients, sugar content, and energy. This information may be stored, for example, in association with the identification number (ID) of each dish. Then, by specifying the identification number, the above-mentioned information on the name, nutrients, sugar content, and energy of the dish can be read out. Note that, although fruits and drinks are not cooked, they may be included as one of the "dishes" if they form part of a meal. For example, this system stores images of each dish in association with the above-mentioned dish identification number in the storage unit. Then, the image of the dish can be read out using the dish identification number. The dish storage unit 3 may store information other than the above (for example, information on food classification) in association with the above-mentioned identification number. Examples of food categories are fruits, meat, fish, green vegetables, root vegetables, dairy products, seaweed, legumes, grains, and alcohol. Allergy-related information may also be stored in association with the above identification number. For example, for a dish that contains sesame, information about sesame allergies may be stored in the memory unit in association with the identification number.

 血糖値推移情報取得工程(S103)は,コンピュータが,対象者の血糖値の推移パターンモデルと,食事解析情報とを用いて,対象者がある食事を摂取した後の対象者の血糖値の推移情報を得る工程である。この際,コンピュータに,対象者がインスリンを摂取した情報や,インスリンを摂取した時間,インスリンの投与量,及びインスリンの種類のうちいずれか一つ以上の情報が合わせて入力されてもよい。 The blood glucose level trend information acquisition process (S103) is a process in which the computer uses the blood glucose level trend pattern model of the subject and the meal analysis information to obtain information on the trend of the subject's blood glucose level after the subject has eaten a certain meal. At this time, information on the subject's intake of insulin, the time of insulin intake, the insulin dose, and/or the type of insulin may also be input to the computer.

 対象者の血糖値の推移パターンモデルは,例えば以下の様にして得ることができる。
つまり,対象者の血糖値の推移パターンモデルを得る方法の例は,血糖値入力工程と,血糖値推移パターンモデル取得工程とを含む。
A model of the transition pattern of a subject's blood glucose level can be obtained, for example, as follows.
That is, an example of a method for obtaining a blood glucose level transition pattern model of a subject includes a blood glucose level input step and a blood glucose level transition pattern model acquisition step.

 血糖値入力工程は,コンピュータが,対象者が食事を摂取した後の血糖値を複数受け取る工程である。例えば,対象者は,血糖値を測定するためのセンサを装着している。対象者が食事を摂取すると,センサと連携した対象者の携帯端末やセンシング情報を受け取ったシステムは,対象者の血糖値の変化から,対象者が食事を摂取したことを把握する。その後,所定時間ごと(例えば1分毎)に,測定された血糖値を携帯端末のメモリや,システムのメモリが記憶する。このようにして,コンピュータが,対象者が食事を摂取した後の血糖値を複数受け取り,記憶することができる。この際,対象者が,摂取した食事に関する画像をシステムに送信すれば,システムは,食事解析情報と併せて,血糖値の変化を記憶できる。なお,摂取した食事に関する画像をシステムに送信しなくても,対象者の長時間(例えば12時間以上)の血糖値データを用いれば,血糖値の変動が大きい時間帯に食事(間食を含む)を摂取したことがわかる。例えば,一定時間以上のリアルタイムに測定した血糖値をメモリに記憶する。そして,システムが,血糖値を読み出して,血糖値の変動を解析する。システムは,血糖値の変動を解析することにより,血糖値が高くなる時間を把握できる。すると,システムは,血糖値の変動が一定以上であった時間帯を,食事を摂取した時間及び食事後の時間であると解析する。そして,システムは,食事後の血糖値変動のパターンをメモリに記憶できる。 The blood glucose input process is a process in which a computer receives multiple blood glucose values after a subject has eaten a meal. For example, the subject wears a sensor for measuring blood glucose levels. When the subject eats a meal, the subject's mobile device linked to the sensor or the system that receives the sensing information determines that the subject has eaten a meal from the change in the subject's blood glucose level. After that, the measured blood glucose level is stored in the memory of the mobile device or the memory of the system at predetermined intervals (for example, every minute). In this way, the computer can receive and store multiple blood glucose values after the subject has eaten a meal. At this time, if the subject sends an image of the meal they have eaten to the system, the system can store the change in blood glucose level along with the meal analysis information. Note that even if an image of the meal they have eaten is not sent to the system, if the subject's blood glucose level data over a long period of time (for example, 12 hours or more) is used, it can be determined that the subject ate a meal (including snacks) during a time period when blood glucose levels fluctuate greatly. For example, blood glucose levels measured in real time for a certain period of time or more are stored in memory. Then, the system reads out the blood glucose level and analyzes the fluctuations in blood glucose level. By analyzing the fluctuations in blood glucose level, the system can determine the time when blood glucose levels become high. The system then analyzes the time periods when blood glucose fluctuations were above a certain level as the time when a meal was consumed and the time after the meal. The system can then store the pattern of blood glucose fluctuations after a meal in memory.

 糖値推移パターンモデルは,食事や糖分を摂取した後やインスリンを投与した後に血糖値が推移するパターンを示すモデルである。糖値推移パターンモデルは,血糖値の変動データを解析し,血糖値の推移パターンモデルを得ることができるものであれば,特に限定されない。糖値推移パターンモデル取得工程の例は,コンピュータが,血糖値入力工程により入力された対象者の食後の血糖値を用いて,機械学習により,対象者の血糖値の推移パターンモデルを得る工程である。また,先に説明したとおり,ある対象者について,血糖値の変動パターンを複数メモリに記憶し,適宜,血糖値の変動パターンを読み出して,人工知能や機械学習を用いて,糖値推移パターンモデルを得てもよい。 The glucose level trend pattern model is a model that shows the pattern of changes in blood glucose levels after a meal or the ingestion of sugar, or after the administration of insulin. There are no particular limitations on the glucose level trend pattern model, so long as it is capable of analyzing blood glucose level fluctuation data and obtaining a blood glucose level trend pattern model. An example of a glucose level trend pattern model acquisition process is a process in which a computer obtains a blood glucose level trend pattern model of a subject through machine learning using the subject's postprandial blood glucose level input in the blood glucose level input process. Also, as explained above, blood glucose level fluctuation patterns for a certain subject may be stored in multiple memories, and the blood glucose level fluctuation patterns may be read out as appropriate to obtain a glucose level trend pattern model using artificial intelligence or machine learning.

 図2は,一定時間以上のリアルタイムに測定した血糖値(血糖値の推移)と,それより得られた,血糖値の推移パターンの例を示す概念図である。血糖値の単位の例はmg/dlである。図2左図に示される通り,対象者の血糖値を一定時間以上測定すると,血糖値の推移を示す情報(グラフ)を得ることができる。このグラフや,対象者のインスリン摂取情報などを合わせると,インスリンを摂取した際の血糖値の推移情報や,インスリンを摂取した後に食事を摂取した場合の血糖値の推移情報や,食事を摂取した後の血糖値の推移情報,朝食を摂取した後の血糖値の推移情報,昼食を摂取した後の血糖値の推移情報,間食を摂取した後の血糖値の推移情報,夕食を摂取した後の血糖値の推移情報などの血糖値の推移パターンを得ることができる。図2の中央は,このようにして得られた血糖値の推移パターンの例である。得られた血糖値の推移パターンは適宜メモリに記憶される。血糖値の推移パターンを多数集めることで,血糖値の推移パターンモデルを得ることができる。この際,血糖値の推移パターンを与える食事や投薬に関する情報を合わせて記憶すると,食事や投薬に応じた,糖値推移パターンモデルを得ることができる。得られた糖値推移パターンモデルは,適宜メモリに記憶すればよい。図2の右部分は,血糖値の推移パターンモデルを用いて対象者の血糖値の推移を予測した例である。 Figure 2 is a conceptual diagram showing an example of blood glucose level (blood glucose level transition) measured in real time for a certain period of time or more, and the blood glucose level transition pattern obtained from it. An example of the unit of blood glucose level is mg/dl. As shown in the left diagram of Figure 2, when the blood glucose level of a subject is measured for a certain period of time or more, information (graph) showing the transition of blood glucose level can be obtained. By combining this graph and the insulin intake information of the subject, it is possible to obtain blood glucose level transition patterns such as blood glucose level transition information when insulin is taken, blood glucose level transition information when a meal is taken after insulin is taken, blood glucose level transition information after a meal, blood glucose level transition information after breakfast, blood glucose level transition information after lunch, blood glucose level transition information after a snack, and blood glucose level transition information after dinner. The center of Figure 2 is an example of a blood glucose level transition pattern obtained in this way. The obtained blood glucose level transition pattern is appropriately stored in memory. A blood glucose level transition pattern model can be obtained by collecting a large number of blood glucose level transition patterns. At this time, if information on meals and medication that give blood glucose level transition patterns is also stored, a blood glucose level transition pattern model corresponding to meals and medication can be obtained. The obtained glucose level trend pattern model can be stored in memory as appropriate. The right part of Figure 2 shows an example of predicting the glucose level trend of a subject using the glucose level trend pattern model.

 図3は,対象者の血糖値の推移情報(グラフ)の例を示す概念図である。先に説明した通り,血糖値推移情報取得工程は,コンピュータが,対象者の血糖値の推移パターンモデルと,食事解析情報とを用いて,対象者がある食事を摂取した後の対象者の血糖値の推移情報を得る工程である。食事解析情報には,例えば,ある対象者が接した食事に含まれる糖分量に関する情報が含まれる。コンピュータは,その糖分量に関する情報をメモリから読み出して,プロセッサに,糖分量に関する情報を用いて,対象者の血糖値の推移パターンモデルに当てはめる演算を行わせることで,対象者がある食事を摂取した後の対象者の血糖値の推移情報を得ることができる。コンピュータは,このようにして求めた対象者がある食事を摂取した後の対象者の血糖値の推移情報を適宜メモリに記憶する。 Figure 3 is a conceptual diagram showing an example of the blood glucose level trend information (graph) of a subject. As explained above, the blood glucose level trend information acquisition process is a process in which a computer uses a blood glucose level trend pattern model of the subject and dietary analysis information to obtain blood glucose level trend information of the subject after the subject ingests a certain meal. Dietary analysis information includes, for example, information on the sugar content of a meal that a certain subject has eaten. The computer reads the information on the sugar content from memory and has the processor perform a calculation using the information on the sugar content to apply it to the blood glucose level trend pattern model of the subject, thereby obtaining blood glucose level trend information of the subject after the subject ingests a certain meal. The computer appropriately stores the blood glucose level trend information of the subject after the subject ingests a certain meal obtained in this way in memory.

 ミールスコア取得工程(S104)は,血糖値推移情報取得工程で得られた対象者の血糖値の推移情報に基づいて,ある食事を評価するための評価値であるミールスコアを得るためのミールスコア取得工程である。ミールスコア取得工程は,対象者の血糖値の推移情報に基づいて,ミールスコアを得ることができるものであればよい。例えば,コンピュータは,対象者の血糖値の推移情報をメモリから読み出し,読み出した対象者の血糖値の推移情報をパターンマッチングすることで,ミールスコアを求めて,メモリに記憶してもよい。また,例えば,コンピュータは,対象者の血糖値の推移情報(横軸が経過時間,縦軸が血糖値である血糖値の推移グラフ)から血糖値の推移グラフにより囲まれる面積(血糖値変動面積)を求め,記憶部に記憶される血糖値変動面積の範囲とミールスコアの値に関する情報を用いて,求めた血糖値変動面積からミールスコアを得てもよい。また,例えば,コンピュータは,対象者の血糖値の推移情報から,食事前後の血糖値の最大変化量を求め(食事後の最大血糖値をメモリから読み出すとともに,食事前の血糖値をメモリから読み出し,プロセッサに食事後の最大血糖値から食事前の血糖値を減算する演算を行わせ,血糖値の最大変化量を求めることができる),適宜メモリに記憶すればよい。そのうえで,コンピュータは,記憶部に記憶される血糖値の最大変化量の範囲とミールスコアの値に関する情報を用いて,求めた血糖値の最大変化量からミールスコアを得てもよい。表1は,ミールスコアの値と,それに関する血糖値変動面積の範囲又は血液変動値の最大値の関係を示す表である。このように対象者の血糖値の推移情報における血糖値の変化量の総和もしくは変化量のいずれか又は両方を用いて,ミールスコアを得ることができる。血糖値変動面積の範囲及び血液変動値の最大値を用いてミールスコアを得てもよい。この場合,血糖値変動面積の範囲及び血液変動値の最大値の範囲毎に得点を与え,それぞれ所定の係数をかけたものを足し合わせることで,評価点を得て,評価点の範囲に応じてミールスコアを得てもよい。この演算は,コンピュータを用いることで行うことができる。 The meal score acquisition process (S104) is a meal score acquisition process for obtaining a meal score, which is an evaluation value for evaluating a certain meal, based on the blood glucose level trend information of the subject obtained in the blood glucose level trend information acquisition process. The meal score acquisition process may be capable of obtaining a meal score based on the blood glucose level trend information of the subject. For example, the computer may read the blood glucose level trend information of the subject from memory, obtain a meal score by pattern matching the read blood glucose level trend information of the subject, and store it in memory. Also, for example, the computer may obtain the area enclosed by the blood glucose level trend graph (blood glucose level fluctuation area) from the blood glucose level trend information of the subject (blood glucose level trend graph with the horizontal axis being elapsed time and the vertical axis being blood glucose level), and obtain a meal score from the obtained blood glucose level fluctuation area using the range of the blood glucose level fluctuation area stored in the memory unit and information regarding the value of the meal score. Also, for example, the computer may obtain the maximum change in blood glucose level before and after a meal from the subject's blood glucose level transition information (reading the maximum blood glucose level after the meal from the memory, reading the blood glucose level before the meal from the memory, and having the processor perform a calculation to subtract the blood glucose level before the meal from the maximum blood glucose level after the meal to obtain the maximum change in blood glucose level), and store it in the memory as appropriate. The computer may then obtain a meal score from the obtained maximum change in blood glucose level using information about the range of the maximum change in blood glucose level and the meal score value stored in the storage unit. Table 1 is a table showing the relationship between the meal score value and the range of the blood glucose fluctuation area or the maximum blood fluctuation value associated therewith. In this way, the meal score can be obtained using either the sum or the amount of change in blood glucose level or both in the subject's blood glucose level transition information. The meal score may be obtained using the range of the blood glucose fluctuation area and the maximum blood fluctuation value. In this case, a score may be given for each range of the blood glucose fluctuation area and the range of the maximum blood fluctuation value, and the scores multiplied by a predetermined coefficient may be added together to obtain an evaluation score, and the meal score may be obtained according to the range of the evaluation score. This calculation may be performed using a computer.

Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 

 ある発明は,上記とは異なる方法で,ミールスコアを取得するためのコンピュータを用いた方法に関する。この方法は,血糖値入力工程と,血糖値推移情報取得工程と,ミールスコア取得工程とを含む。 An invention relates to a computer-based method for obtaining a meal score, which is different from the above method. This method includes a blood glucose level input step, a blood glucose level transition information acquisition step, and a meal score acquisition step.

 血糖値入力工程は,コンピュータが,対象者のある食事を摂取した後の血糖値を複数受け取る工程である。血糖値入力工程の例は,センサを用いて測定された対象者のリアルタイムの血糖値が,コンピュータに入力される工程である。
 血糖値推移情報取得工程は,コンピュータが,対象者の複数の血糖値に基づいて,ある食事を摂取した後の対象者の血糖値の推移情報を得る工程である。血糖値の推移情報の例は,図3に示されるグラフである。血糖値の推移情報は,リアルタイムに測定された血糖値に関する情報であることが好ましい。もっとも,血糖値の推移情報は,食事から3時間以内における,12時点以上の時点にける血糖値を含む情報であってもよい。ミールスコア取得工程は,血糖値推移情報取得工程で得られた対象者の血糖値の推移情報に基づいて,ある食事を評価するためのミールスコアを得るための工程である。このミールスコア取得工程は,先に説明したと同様の工程を行えばよい。
The blood glucose input step is a step in which a computer receives a plurality of blood glucose levels of a subject after ingesting a meal. An example of a blood glucose input step is a step in which a real-time blood glucose level of a subject measured using a sensor is input into the computer.
The blood glucose level trend information acquisition process is a process in which a computer obtains blood glucose level trend information of a subject after ingesting a certain meal based on the subject's multiple blood glucose levels. An example of the blood glucose level trend information is the graph shown in FIG. 3. The blood glucose level trend information is preferably information on blood glucose levels measured in real time. However, the blood glucose level trend information may also be information including blood glucose levels at 12 or more points within 3 hours after the meal. The meal score acquisition process is a process for obtaining a meal score for evaluating a certain meal based on the blood glucose level trend information of the subject obtained in the blood glucose level trend information acquisition process. This meal score acquisition process may be performed in the same manner as described above.

 ある発明は,コンピュータを用いたインスリンの投与量の算定方法に関する。この方法は,差分血糖値算出工程とインスリン投与量算定工程とを含む。 One invention relates to a method for calculating insulin dosage using a computer. This method includes a step of calculating a blood glucose difference and a step of calculating an insulin dosage.

 差分血糖値算出工程は,コンピュータが,差分血糖値を求める工程である。差分血糖値は,血糖値の推移パターンモデルを用いて求めた血糖値の値である推測血糖値と,目標とする血糖値である目標血糖値との差分である。
 メモリは,対象者と関連して,目標血糖値を記憶する。目標血糖値の例は,空腹時の血糖値である。コンピュータは,対象者と関連して,対象者の血糖値の推移パターンモデルを記憶する。血糖値の推移パターンモデルは,例えば,対象者が摂取した糖分量に対して,複数の血糖値の推移パターンから,人工知能や機械学習などを用いて求められたものであってもよい。コンピュータに,対象者に関する情報と,食事に関する情報が入力される。すると,コンピュータは,入力された対象者に関する情報に基づいて,メモリから,対象者の血糖値の推移パターンモデルを読み出し,食事に関する情報(に含まれる血糖値を求めるための情報)を用いて,推測血糖値を求める。推測血糖値の例は,対象者の空腹時の血糖値の推測値である推測血糖値である。コンピュータが求めた推測血糖値は適宜メモリに記憶される。コンピュータは,対象者に関する情報を用いて,メモリから対象者の目標血糖値を読み出す。コンピュータは,メモリから,推測血糖値及び目標血糖値を読み出し,プロセッサにこれらの差分を求めさせ,差分血糖値を求める。コンピュータは,求めた差分血糖値を適宜メモリに記憶する。このようにして,コンピュータが,差分血糖値を求めることができる。
The blood glucose difference calculation step is a step in which a computer calculates a blood glucose difference, which is the difference between an estimated blood glucose level, which is a blood glucose level calculated using a blood glucose level transition pattern model, and a target blood glucose level, which is a target blood glucose level.
The memory stores a target blood glucose level in association with the subject. An example of the target blood glucose level is a blood glucose level in a fasting state. The computer stores a blood glucose level transition pattern model of the subject in association with the subject. The blood glucose level transition pattern model may be obtained, for example, from multiple blood glucose level transition patterns for the amount of sugar ingested by the subject using artificial intelligence or machine learning. Information about the subject and information about meals are input to the computer. Then, based on the input information about the subject, the computer reads out the blood glucose level transition pattern model of the subject from the memory, and obtains an estimated blood glucose level using information about meals (information for obtaining a blood glucose level included in the information). An example of the estimated blood glucose level is an estimated blood glucose level that is an estimated value of the subject's blood glucose level in a fasting state. The estimated blood glucose level obtained by the computer is appropriately stored in the memory. The computer reads out the target blood glucose level of the subject from the memory using the information about the subject. The computer reads out the estimated blood glucose level and the target blood glucose level from the memory, and has the processor obtain the difference between them to obtain the differential blood glucose level. The computer appropriately stores the obtained differential blood glucose level in the memory. In this way, the computer can obtain the differential blood glucose level.

 インスリン投与量算定工程は,コンピュータが,差分血糖値算出工程で求めた差分血糖値を用いて,対象者に対するインスリン投与量を算定する工程である。インスリン投与量算定工程は,コンピュータが,差分血糖値算出工程で求めた差分血糖値を用いて,対象者に対するインスリン投与量を算定することができれば,どのような処理を行ってもよい。 The insulin dosage calculation process is a process in which the computer calculates the insulin dosage for the subject using the differential blood glucose value obtained in the differential blood glucose value calculation process. The insulin dosage calculation process may perform any processing as long as the computer can calculate the insulin dosage for the subject using the differential blood glucose value obtained in the differential blood glucose value calculation process.

 インスリン投与量算定工程の例は,対象者について,インスリンを投与した場合の対象者の血糖値の推移パターンモデルを用いるものである。インスリンを投与した場合の対象者の血糖値の推移パターンモデルは,食事を摂取した後の対象者の血糖値の推移パターンモデルと同様にして得ることができる。例えば,コンピュータは,対象者が,インスリン所定単位投与するとともに食事を摂取した際の血糖値の推移パターンを複数取得し,メモリに記憶する。すると,コンピュータは,人工知能や機械学習を用いて,インスリンを投与した場合の対象者の血糖値の推移パターンモデルを得ることができる。差分血糖値は,対象者に関して,下げるべき血糖値の値である。すると,コンピュータは,メモリから差分血糖値を読み出して,対象者の血糖値の推移パターンモデルと読み出した差分血糖値を用いて,対象者に投与するインスリン量を算定できる。インスリンを投与した場合の対象者の血糖値の推移パターンモデルをコンピュータが記憶すると,インスリン1単位当たりの血糖値変化量を可視化できる。すると,食事を摂取する前に,食事に関する画像をシステムに入力すれば,インスリンを投与しない場合の血糖値の推移情報を求めることができる。そして,インスリンを所定量投与した場合の血糖値の推移情報と,インスリンを投与しない場合の血糖値の推移情報を合わせることで,その食事を摂取した際の最適なインスリン投与量を求めることができる。 An example of an insulin dosage calculation process uses a blood glucose level transition pattern model of a subject when insulin is administered to the subject. The blood glucose level transition pattern model of a subject when insulin is administered can be obtained in the same manner as the blood glucose level transition pattern model of a subject after eating a meal. For example, a computer obtains multiple blood glucose level transition patterns when a subject administers a predetermined unit of insulin and eats a meal, and stores them in memory. The computer can then use artificial intelligence or machine learning to obtain a blood glucose level transition pattern model of the subject when insulin is administered. The blood glucose difference value is the blood glucose level value that should be lowered for the subject. The computer can then read out the blood glucose difference value from the memory and use the blood glucose level transition pattern model of the subject and the read out blood glucose difference value to calculate the amount of insulin to be administered to the subject. When the computer stores the blood glucose level transition pattern model of the subject when insulin is administered, the blood glucose level change amount per unit of insulin can be visualized. Then, by inputting an image of the meal into the system before eating, blood glucose level transition information when insulin is not administered can be obtained. Then, by combining the information on blood glucose level trends when a given amount of insulin is administered with the information on blood glucose level trends when no insulin is administered, the optimal insulin dosage for that meal can be determined.

 図4は,インスリン投与量を決定した例を示す概念図である。図4に示す例では,食事画像に基づいて,その食事を摂取すると最大血糖値が150mg/dlとなると推測される。推測された最大血糖値はメモリに記憶される。その食事を摂取した際の血糖値の推移パターンとマッチした血糖値の推移パターンモデルがあり,インスリンを2単位投与した後に食事を摂取した際には最大血糖値が130mg/dlであった。対象者の目標となる血糖値は90mg/dlである。コンピュータは,これらの情報をメモリから読み出して,ある食事を摂取する場合に必要なインスリン量として6単位を求め,メモリに記憶するとともに,対象者の携帯端末に出力する。すると,対象者は,インスリン量が6単位であることを把握して,必要なインスリン量を摂取できることとなる。 Figure 4 is a conceptual diagram showing an example of determining an insulin dosage. In the example shown in Figure 4, based on a meal image, it is estimated that the maximum blood glucose level will be 150 mg/dl if the meal is consumed. The estimated maximum blood glucose level is stored in memory. There is a blood glucose level trend pattern model that matches the blood glucose level trend pattern when the meal is consumed, and the maximum blood glucose level was 130 mg/dl when the meal was consumed after 2 units of insulin were administered. The subject's target blood glucose level is 90 mg/dl. The computer reads this information from memory, calculates 6 units as the amount of insulin required to consume a certain meal, stores this in memory, and outputs it to the subject's mobile device. The subject then knows that the amount of insulin is 6 units, and is able to consume the required amount of insulin.

 インスリン投与量算定工程は,インスリン製剤ごとの血糖値の推移パターンモデルに,対象者に投与されるインスリン製剤に関する情報と,差分血糖値とをあてはめ,対象者に対するインスリン投与量を算定してもよい。この場合,メモリは,対象者に関して,インスリン製剤ごとの血糖値の推移パターンモデルを記憶する。システムには,対象者に関する情報のほか,インスリン製剤に関する情報が入力される。すると,システムは,入力された対象者に関する情報とインスリン製剤に関する情報を用いて,インスリン製剤ごとの血糖値の推移パターンモデルを読み出す。システムは,差分血糖値と読み出した血糖値の推移パターンモデルとを用いて,対象者に対するインスリン投与量を算定できる。 The insulin dosage calculation step may calculate the insulin dosage for the subject by applying information about the insulin preparation administered to the subject and the differential blood glucose value to a blood glucose level trend pattern model for each insulin preparation. In this case, the memory stores the blood glucose level trend pattern model for each insulin preparation for the subject. Information about the subject as well as information about the insulin preparation is input to the system. The system then reads out the blood glucose level trend pattern model for each insulin preparation using the input information about the subject and information about the insulin preparation. The system can calculate the insulin dosage for the subject using the differential blood glucose value and the read blood glucose level trend pattern model.

 ある発明は,コンピュータに上記したいずれかの方法を実行させるためのプログラムに関する。またある発明は,上記したプログラムを記憶したコンピュータが読み取ることができる非一時的情報記録媒体に関する。非一時的情報記録媒体の例は,CD-ROM,DVD及びUSBメモリである。  One invention relates to a program for causing a computer to execute any of the above-mentioned methods. Another invention relates to a non-transitory information recording medium that can be read by a computer that stores the above-mentioned program. Examples of non-transitory information recording media are CD-ROMs, DVDs, and USB memories.

 糖尿病治療用アプリケーション
 糖尿病治療用アプリケーションを作成し,ユーザの携帯端末にインストールした。まず,ユーザのHbA1cの値を測定した。得られたHbA1cの測定値はシステムに入力され,メモリに記憶された。医師が,3か月後の目標HbA1cを設定した。医師は,システムに目標HbA1cを入力した。システムのメモリは,ユーザのIDと関連して,HbA1cの測定値と,目標HbA1cを記憶した。システムは,血糖値の推移パターンモデルを有しており,HbA1cの測定値と,目標HbA1cと,血糖値の推移パターンモデルとを用いて,インスリンの投与量を求めた。血糖値の推移パターンモデルは,例えば,ユーザIDと関連して記憶されたユーザの血糖値の推移パターンモデルであってもよいし,一般的なものであってもよい。もっとも,インスリンの投与量は,差分血糖値を用いて求めてもよい。
Diabetes Treatment Application A diabetes treatment application was created and installed on a user's mobile device. First, the user's HbA1c value was measured. The obtained HbA1c measurement value was input to the system and stored in memory. A doctor set a target HbA1c value for three months from now. The doctor input the target HbA1c value to the system. The system's memory stored the HbA1c measurement value and the target HbA1c value in association with the user's ID. The system has a blood glucose level transition pattern model, and the insulin dosage was calculated using the HbA1c measurement value, the target HbA1c value, and the blood glucose level transition pattern model. The blood glucose level transition pattern model may be, for example, a blood glucose level transition pattern model of the user stored in association with the user ID, or may be a general one. However, the insulin dosage may be calculated using the differential blood glucose value.

 ユーザは,食前にインスリン注射を打つ前に,食事の写真を撮影する。すると,食事の写真が,システムに送信される。システムは,食事の写真に基づいて,食事を解析し,食後3時間にわたるユーザの血糖値の推移情報を得る。そして,システムは,血糖値の推移情報に基づいて,ミールスコアを算出する。  Before injecting insulin before a meal, the user takes a photo of the meal. The photo of the meal is then sent to the system. The system analyzes the meal based on the photo of the meal and obtains information on the user's blood glucose level trends over the three hours after the meal. The system then calculates a meal score based on this information on blood glucose levels.

 システムは,食事の日時(又は日にちと朝食,昼食,間食,夕食の別)とともに,算出されたミールスコアをメモリに記憶する。この際,システムは,食事の写真(画像)とともに,これらの情報を記憶してもよい。すると,システムは,日々のミールスコアの変化出力することができる。 The system stores the calculated meal score in memory along with the date and time of the meal (or the date and whether it was breakfast, lunch, snack, or dinner). At this time, the system may store this information along with a photo (image) of the meal. The system can then output the daily change in meal score.

 図5は,日にちと,食事の画像,及びミールスコアを表示した例を示す。図5に示すように,この例では,アプリケーションをインストールしたユーザの携帯端末に,日付,朝食,昼食及び夕食の画像が表示されている。さらにこの例では,朝食,昼食及び夕食の画像上にミールスコアが表示されている。このように,朝食,昼食及び夕食とミールスコアとを一体に表示することで,朝食,昼食及び夕食以外の食事(例えば間食)を摂取することを防ぐ効果がある。 Figure 5 shows an example of displaying a date, meal images, and meal score. As shown in Figure 5, in this example, the date, and images of breakfast, lunch, and dinner are displayed on the mobile device of a user who has installed the application. Furthermore, in this example, the meal score is displayed on top of the images of breakfast, lunch, and dinner. In this way, displaying breakfast, lunch, and dinner together with the meal score has the effect of discouraging the consumption of meals other than breakfast, lunch, and dinner (e.g. snacks).

 図5の例では、ミールスコアは数値として表示されている。例えば、食事を示す枠の色を用いて、ミールスコアを表現してもよい。例えば、赤みが強くなるほど、ミールスコアが良くない値を示すようにしてもよく、青みが強いほどミールスコアが良い(健全である)値を示すようにしてもよい。このように得られたミールスコアは、適宜出力されることが好ましい。コンピュータは、ある食事に関する画像とミールスコアとが一つの画面に表示されるように、ある食事に関する画像とミールスコアと出力すればよい。例えば、コンピュータが、記憶部に記憶されたある食事に関する画像とミールスコアとを読み出して、出力部に出力することで、この出力方法を達成できる。 In the example of FIG. 5, the meal score is displayed as a numerical value. For example, the meal score may be expressed using the color of the frame showing the meal. For example, the more red the color, the worse the meal score may be, and the more blue the color, the better (healthier) the meal score may be. It is preferable that the meal score obtained in this manner is output as appropriate. The computer may output an image of a certain meal and the meal score so that the image of the certain meal and the meal score are displayed on a single screen. For example, this output method can be achieved by the computer reading out the image of a certain meal and the meal score stored in the memory unit and outputting them to the output unit.

 図6は,食事と,血糖値推移と,ミールスコアを説明するための概念図である。図6に示されるように,ユーザがアプリケーションを立ち上げ,携帯端末を用いて摂取する予定の食事を撮影する。するとアプリケーションは,撮影された食事予定の写真をサーバに送信する。サーバは,食事の写真とともにユーザに関する情報を受け取る。サーバは,受け取った食事の画像を解析するとともに,受け取ったユーザに関する情報に基づいて,推移パターンモデルを読み出す。サーバは,これらの情報を用いて,ユーザの血糖値の推移を予測する。図6の中図は予測された血糖値の推移を示すグラフである。サーバは,求めた血糖値の推移から,ミールスコアを求める。サーバは求めたミールスコアをメモリに記憶するとともに,ユーザの端末に送信する。すると,ユーザの端末は,写真画像とともに,ミールスコアを得ることができる。ユーザは,ミールスコアが好ましくない場合は,食事内容を修正して,改めて,修正後の予定食事の写真をサーバに送信する。するとユーザは,修正後の食事に関するミールスコアを得ることができる。このようにすれば,ユーザは,適切な食事を摂取できることとなる。 Figure 6 is a conceptual diagram for explaining meals, blood glucose level trends, and meal scores. As shown in Figure 6, the user launches the application and takes a picture of the meal they plan to eat using their mobile device. The application then sends the photo of the planned meal to the server. The server receives information about the user along with the photo of the meal. The server analyzes the received image of the meal and reads out a trend pattern model based on the received information about the user. The server uses this information to predict the trend of the user's blood glucose level. The center diagram in Figure 6 is a graph showing the predicted trend of blood glucose level. The server calculates a meal score from the calculated blood glucose level trend. The server stores the calculated meal score in memory and sends it to the user's terminal. The user's terminal can then obtain the meal score along with the photo image. If the user does not like the meal score, he or she can modify the meal content and send a revised photo of the planned meal to the server. The user can then obtain a meal score for the revised meal. In this way, the user can eat an appropriate meal.

 図7は,ある日の推測血糖値の変化をミールスコアとともにグラフ化したものの例を示す。サーバは,受け取った食事に関する写真に基づいて,あるユーザの血糖値の推移を推測する。するとサーバは,あるユーザの一日の血糖値の推移を推測できることとなる。サーバは,血糖値の推移に基づく一日の評価値を求めるためのプログラムを記憶し,そのプログラムに基づいて,血糖値の推移を用いて一日の評価値を得る。図7のように,一日の血糖値の推移と,ミールスコア,一日の評価値をユーザの端末に表示することで,ユーザの血糖値制御の動機付けを高めることができる。 Figure 7 shows an example of a graph showing changes in estimated blood glucose levels for a given day along with meal scores. The server estimates the trends in a user's blood glucose levels based on the received meal photos. The server can then estimate the trends in a user's blood glucose levels over the course of a day. The server stores a program for calculating a daily evaluation value based on the trends in blood glucose levels, and based on that program, obtains a daily evaluation value using the trends in blood glucose levels. As shown in Figure 7, by displaying the daily trends in blood glucose levels, meal score, and daily evaluation value on the user's device, it is possible to increase the user's motivation to control their blood glucose levels.

 ユーザは,日々のミールスコアと,それに関連した食事の画像を見ることで,どのような食事が自分の血糖値に良いのか,どのような食事が自分の血糖値に良くないのか,視覚により把握できることとなる。また,日々のミールスコアの変化をグラフ化することができる。このように,日々の血糖値推移と食事を記録することにより,食後血糖値が目標範囲内に収まる食事を選択できるようになり,安定した血糖値コントロールが可能となる。また,アプリケーションにより,血糖値の進捗情報を可視化することで,血糖値を制御する動機付けとなる。 By looking at their daily meal score and images of the associated meals, users can visually understand what meals are good for their blood sugar levels and what meals are not. They can also graph the changes in their daily meal score. In this way, by recording daily blood sugar level trends and meals, users can select meals that will keep their post-meal blood sugar levels within the target range, enabling stable blood sugar control. The application also provides motivation to control blood sugar levels by visualizing blood sugar level progress information.

 図8は、対象血糖値等の推移情報を表示した例を示す図である。縦軸は血糖値を示し横軸は時間を示す。この例ではミールスコアを図示していないが、ミールスコアを合わせて表示してもよい。朝食、昼食、又は夕食を摂取した後の血糖値もしくはグルコース値の幅をグラフ化してもよい。また、夜間の血糖値の推移を表示するものであってもよい。この発明は、コンピュータが、異なる日に取得した対象者血糖情報を複数用いて、食事を摂取した後の所定時間における血糖値又はグルコース値について、代表値(例えば中央値)を示す代表値線、第1の確率で含まれる領域を示す第1の領域帯、第1の確率よりも広い確率である第2の確率で含まれる領域を示す第2の領域帯、目標血糖値又は目標グルコース値を示す目標値線を得る。そして、コンピュータが、代表値線、第1の領域帯、第2の領域帯及び目標値線が一つの画面に表示されるように、中央値線、第1の領域帯、第2の領域帯及び目標値線を出力する。このようにして、例えば図8に示すような対象血糖値等の推移情報を表示できる。上記の例では、代表値(例えば中央値)を示す代表値線、第1の確率で含まれる領域を示す第1の領域帯、第1の確率よりも広い確率である第2の確率で含まれる領域を示す第2の領域帯、目標血糖値又は目標グルコース値を示す目標値線を得るものについて説明した。この明細書は、これらのいずれか1種又は2種以上を取得して、表示するものも記載する。 FIG. 8 is a diagram showing an example of displaying trend information of a target blood glucose level, etc. The vertical axis shows blood glucose level, and the horizontal axis shows time. In this example, the meal score is not shown, but the meal score may be displayed together. The range of blood glucose or glucose levels after ingesting breakfast, lunch, or dinner may be graphed. Also, the trend of blood glucose levels at night may be displayed. In this invention, a computer uses multiple subject blood glucose information acquired on different days to obtain a representative value line indicating a representative value (e.g., a median value), a first area band indicating an area included with a first probability, a second area band indicating an area included with a second probability that is a wider probability than the first probability, and a target value line indicating a target blood glucose level or target glucose value for the blood glucose level or glucose value at a predetermined time after ingesting a meal. Then, the computer outputs the median line, the first area band, the second area band, and the target value line so that the representative value line, the first area band, the second area band, and the target value line are displayed on one screen. In this way, trend information of a target blood glucose level, etc., such as that shown in FIG. 8, for example, can be displayed. In the above example, a representative value line showing a representative value (e.g., a median value), a first area band showing an area included with a first probability, a second area band showing an area included with a second probability that is a higher probability than the first probability, and a target value line showing a target blood glucose value or target glucose value are obtained. This specification also describes obtaining and displaying one or more of these.

 各出力は、ユーザ(対象者)が有する端末(クライアント)の画面に出力されてもよいし、紙などの媒体に出力されてもよいし、医師などの医療機関や栄養士などのサポーターが有する端末(クライアント)の画面に出力されてもよい。 Each output may be output on the screen of a terminal (client) held by the user (subject), may be output on a medium such as paper, or may be output on the screen of a terminal (client) held by a medical institution such as a doctor or a supporter such as a nutritionist.

 目標血糖推移は、例えば医師が目標とする治療指標(=治療目標, ΔHbA1c)を設定すると、治療目標に応じた食事毎の血糖推移を曲線で表現したものである。医師向け画面/対象者向け画面において、例えば黄色線でグラフ描画される。目標血糖推移は、例えば以下の様にして計算されるが、機械学習により得られてもよい。基準空腹時血糖値(H1)を計算する。この値は、例えば、試験開始時点(1日目)から2週間後(14日目)までの空腹時血糖値(H)の中央値として求めることができる。設定等した値は適宜コンピュータに入力すればよい。以下の各処理はコンピュータが自動的に行えばよい。
 次に、推定HbA1c(I)を計算する。この値は、例えば、試験開始時点(1日目)から2週間後(14日目)までの血糖値(A)の平均値を1次方程式に代入して計算することにより求めることができる。この値を用いて目標HbA1c(J)と目標平均血糖値(C)を計算する。次に、目標空腹時血糖値(K)を設定する。この値は、医師が臨床上、理想とする空腹時血糖値を定数として設定したものであり、適宜コンピュータに入力されればよい。そして、コンピュータは記憶部に記憶された値を読み出して各種演算に用いればよい。試験開始時点(1日目)から2週間後(14日目)までの基準空腹時血糖値(H1)と、目標HbA1cを参考にして規定する。医師はHbA1c毎に凡そ目標とする空腹時血糖値を規定している。これは糖尿病治療のガイドラインに準拠していることが多いため、コンピュータに記憶されているこれらの値を選択すればよい。すると、コンピュータにこれらの値が入力される。次に、コンピュータが、目標平均血糖値(C)及び目標空腹時血糖値(K)を用いて、目標血糖値(G)を計算する。目標血糖推移をグラフ描画する。このようにして、図8のようなグラフを得ることができる。
The target blood glucose transition is, for example, a curve that represents the blood glucose transition for each meal according to the treatment goal when the doctor sets the treatment index (= treatment goal, ΔHbA1c). On the doctor screen/subject screen, for example, a graph is drawn with a yellow line. The target blood glucose transition is calculated, for example, as follows, but may be obtained by machine learning. Calculate the reference fasting blood glucose level (H1). This value can be obtained, for example, as the median value of the fasting blood glucose level (H) from the start of the test (day 1) to two weeks later (day 14). The set value may be input into the computer as appropriate. The following processes may be performed automatically by the computer.
Next, the estimated HbA1c (I) is calculated. This value can be obtained, for example, by substituting the average value of the blood glucose level (A) from the start of the test (day 1) to two weeks later (day 14) into a linear equation and calculating. Using this value, the target HbA1c (J) and the target average blood glucose level (C) are calculated. Next, the target fasting blood glucose level (K) is set. This value is set by the doctor as a constant, which is the ideal fasting blood glucose level in clinical practice, and may be input into the computer as appropriate. Then, the computer may read the value stored in the memory unit and use it for various calculations. It is specified with reference to the standard fasting blood glucose level (H1) from the start of the test (day 1) to two weeks later (day 14) and the target HbA1c. The doctor specifies the approximate target fasting blood glucose level for each HbA1c. This often complies with the guidelines for diabetes treatment, so it is sufficient to select these values stored in the computer. Then, these values are input into the computer. Next, the computer calculates the target blood glucose level (G) using the target average blood glucose level (C) and the target fasting blood glucose level (K). The target blood glucose transition is plotted in a graph. In this way, a graph like that shown in FIG. 8 can be obtained.

 図8の例は、患者向けアプリ記録時点のタイムスタンプから3時間分の血糖値データから、患者の実際の血糖推移を目視しやすいよう、グラフで表現したものである。例えば、中央値(白線)、25-75%帯(青色)、10-90%帯(水色)、10%未満と90%以降(点描画)、低血糖基準線(赤線)と目標血糖推移(黄色線)で表示される。 The example in Figure 8 shows a graph that makes it easy to see the patient's actual blood glucose trend, based on three hours of blood glucose data from the timestamp of the patient app recording. For example, it is displayed with the median (white line), 25-75% band (blue), 10-90% band (light blue), less than 10% and over 90% (dotted line), hypoglycemia reference line (red line), and target blood glucose trend (yellow line).

 中央値線(白線)(M)は、食事開始時点(0分)から180分後までの血糖推移の内、中央値となる線を結んだものである。例えば、インスリン投与量変更日から、次回インスリン投与量変更日の前日までで表現すればよい。 The median line (white line) (M) is a line that connects the median values of blood glucose trends from the start of a meal (0 minutes) to 180 minutes later. For example, it can be expressed from the day the insulin dosage is changed to the day before the next insulin dosage change.

 25-75%帯(青線)(N)は、食事開始時点(0分)から180分後までの血糖推移の内、25%帯、75%帯となる線を結んだものである。 The 25-75% band (blue line) (N) connects the lines that represent the 25% and 75% bands of blood glucose trends from the start of the meal (0 minutes) to 180 minutes later.

 10-90%帯(水色線)(O)は、食事開始時点(0分)から180分後までの血糖推移の内、10%帯、90%帯となる線を結んだものである。  The 10-90% band (light blue line) (O) connects the lines that represent the 10% and 90% bands of blood sugar trends from the start of the meal (0 minutes) to 180 minutes later.

 中央値線は、白色又は灰色、第1の領域帯は、青系の色(例えば、青、紺、紫)、第2の領域帯は、第1の領域帯より薄い青系の色(例えば、水色、薄紫色)、目標値線は、黄系又は赤系の色(例えば黄色又は赤色)として出力されることが好ましい。複数の色を用いて実験を行った結果、糖尿病患者など血糖値に関心を有する者は、青系の色の領域が多いほど、精神的に安定することが分かった。このため、上記の配色とすることで、より高い評価を得ることができた。 It is preferable that the median line is output in white or gray, the first range in a bluish color (e.g., blue, navy blue, purple), the second range in a lighter bluish color than the first range (e.g., light blue, light purple), and the target value line in a yellowish or reddish color (e.g., yellow or red). As a result of experiments using multiple colors, it was found that people who are interested in blood sugar levels, such as diabetics, tend to feel more mentally stable the more bluish areas there are. For this reason, the above color scheme was able to obtain a higher evaluation.

 図9は、表示画面のサンプル例を示す。この例では、食事画像から推移モデルを用いて血糖値推移情報を推測し、青で描画した。また、入力された食事の画像と、ミールスコアとが合わせて表示されている。この例では、血糖値の推移を青の曲線で表示している。血糖値の推移を示す曲線を青で表示すると、糖尿病を認識しやすいというアンケート結果を得ることができた。 Figure 9 shows a sample example of the display screen. In this example, blood glucose level transition information is estimated from the meal image using a transition model and drawn in blue. The input meal image is also displayed together with the meal score. In this example, the blood glucose level transition is displayed as a blue curve. Survey results showed that displaying the blood glucose level transition curve in blue makes it easier to recognize diabetes.

 図10は、一週間のメニューと、それぞれのメニューに関するミールスコアを合わせて表示したものの例を示す。この例では、記憶部に記憶されたメニューから、1週間分のメニューに対応した食事画像を読出し、対象者が、それぞれのメニューに基づいて食事を摂取した場合のミールスコアを求めて、画面に表示している。7日分のデータを表示させる事で食事のバリエーションをカバーすることができる。また、例えば、栄養士が、対象者(例えば患者)の食事メニューを決める際に、対象者毎に、メニューを選択すれば、その対象者の食事毎のミールスコアを得ることができるので、対象者毎に食事をアドバイスしやすくなる。また、過去一週間に摂取した食事について、各食事の画像とミールスコアを表示することで、一週間の総括を行うことができる。 FIG. 10 shows an example of a display of a week's menus along with the meal scores for each menu. In this example, meal images corresponding to the week's menus are read from the menus stored in the memory unit, and the meal score for when the subject eats meals based on each menu is calculated and displayed on the screen. By displaying seven days' worth of data, a variety of meals can be covered. Also, for example, when a nutritionist is deciding on a meal menu for a subject (e.g. a patient), if they select a menu for each subject, they can obtain a meal score for each meal for that subject, making it easier to give dietary advice to each subject. Also, by displaying images and meal scores for each meal eaten in the past week, an overview of the week can be made.

 この発明は,情報関連産業や医療機器の分野で利用されうる。
 
 
The present invention can be used in the fields of information-related industries and medical equipment.

Claims (14)

 コンピュータに、ある食事を摂取した対象者の血糖値又はグルコース値である対象者血糖情報、又は前記対象者血糖情報の推移情報が入力される対象者血糖情報入力工程と、
 前記コンピュータが、前記対象者血糖情報、又は前記対象者血糖情報の推移情報を用いて、前記ある食事を評価するための評価値であるミールスコアを得るためのミールスコア取得工程と、
 を含むミールスコアの取得方法。
a subject's blood glucose information input step of inputting subject's blood glucose information, which is a blood glucose level or glucose value of a subject who has taken a certain meal, or time-varying information of the subject's blood glucose information into a computer;
A meal score acquisition step in which the computer obtains a meal score, which is an evaluation value for evaluating the certain meal, using the subject's blood glucose information or the transition information of the subject's blood glucose information;
How to obtain Meal Score including:
 請求項1に記載のミールスコアの取得方法であって、
 前記対象者血糖情報入力工程は、センサを用いて測定された前記対象者のリアルタイムの血糖値又はグルコース値が、前記コンピュータに入力される工程である、方法。
The method for obtaining a meal score according to claim 1,
The method, wherein the subject's blood glucose information input step is a step in which the subject's real-time blood glucose or glucose value measured using a sensor is input into the computer.
 請求項1に記載の方法であって、
 前記ミールスコア取得工程は、前記対象者血糖情報、又は前記対象者血糖情報の推移情報を、ミールスコアを得るための学習済みモデルに入力することにより、前記ミールスコアを得る工程を含む、方法。
2. The method of claim 1 ,
The method includes a step of obtaining the meal score by inputting the subject's blood glucose information or information on trends in the subject's blood glucose information into a trained model for obtaining a meal score.
 請求項1に記載の方法であって、
 前記コンピュータが、前記対象者血糖情報を用いて、前記ある食事を摂取した後の前記対象者血糖値の推移情報を得る血糖値等推移情報取得工程をさらに含み、
 前記ミールスコア取得工程は、前記血糖情報の推移情報に基づいて、前記ミールスコアを得る工程である、方法。
2. The method of claim 1 ,
The method further includes a blood glucose level transition information acquisition step in which the computer uses the subject's blood glucose information to obtain transition information of the subject's blood glucose level after ingesting the certain meal,
The method, wherein the meal score acquisition process is a process for obtaining the meal score based on the transition information of the blood glucose information.
 請求項4に記載のミールスコアの取得方法であって、
 前記ミールスコア取得工程は、
 前記対象者血糖情報の推移情報における前記対象者血糖情報の変化量の総和もしくは前記対象者血糖情報の変化量のいずれか又は両方を用いて、前記ミールスコアを得る工程である、方法。
The method for obtaining a meal score according to claim 4,
The meal score acquisition step includes:
A method comprising the step of obtaining the meal score using either the sum of the changes in the subject's blood glucose information in the transition information of the subject's blood glucose information or the changes in the subject's blood glucose information, or both.
 請求項1に記載の方法であって、
 前記コンピュータに、ある食事に関する画像が入力される画像入力工程と、
 前記コンピュータが、前記画像を解析し、食事解析情報を得る食事解析工程と、
 前記コンピュータが、対象者の血糖値又はグルコース値の推移パターンモデルと、前記食事解析情報とを用いて、前記ある食事を摂取した後の前記対象者の血糖値又はグルコース値である対象者血糖情報の推移情報である対象者血糖情報の推移情報を得る血糖値等推移情報取得工程をさらに含み、
 前記ミールスコア取得工程は、前記血糖値等推移情報取得工程で得られた前記対象者の血糖情報の推移情報に基づいて、前記ミールスコアを得る工程である、方法。
2. The method of claim 1 ,
an image input step of inputting an image relating to a certain meal into the computer;
a diet analysis step in which the computer analyzes the image and obtains diet analysis information;
The computer further includes a blood glucose level transition information acquisition step of acquiring transition information of the subject's blood glucose information, which is transition information of the subject's blood glucose level or glucose level after ingesting the certain meal, using a transition pattern model of the subject's blood glucose level or glucose level and the meal analysis information,
The meal score acquisition process is a process of obtaining the meal score based on the trend information of the subject's blood glucose information obtained in the blood glucose level trend information acquisition process.
 請求項6に記載のミールスコアの取得方法であって、
 前記推移パターンモデルは、
 前記コンピュータが、前記対象者が食事を摂取した後の血糖値又はグルコース値を複数受け取る血糖値等入力工程と、
 前記コンピュータが、前記血糖値等入力工程により入力された前記対象者の食後の血糖値又はグルコース値を用いて、機械学習により、前記対象者の血糖値の推移パターンモデルを得る血糖値推移パターンモデル取得工程を含む工程により得られたものである、方法。
The method for obtaining a meal score according to claim 6,
The transition pattern model is
A blood glucose level input process in which the computer receives a plurality of blood glucose levels or glucose levels after the subject has eaten a meal;
The method is obtained by a process including a blood glucose level trend pattern model acquisition process in which the computer obtains a blood glucose level trend pattern model of the subject through machine learning using the subject's postprandial blood glucose level or glucose value inputted in the blood glucose level etc. input process.
 請求項6に記載のミールスコアの取得方法を用いてミールスコアを得る工程と、
 前記ある食事に関する画像と前記ミールスコアとが一つの画面に表示されるように、前記ある食事に関する画像と前記ミールスコアと出力する工程とを含む、
 ミールスコアの出力方法。
Obtaining a meal score using the meal score acquisition method according to claim 6;
The method includes a step of outputting the image of the certain meal and the meal score so that the image of the certain meal and the meal score are displayed on one screen.
How to output meal score.
 請求項1に記載の方法であって、
 前記コンピュータが、異なる日に取得した前記対象者血糖情報を複数用いて、食事を摂取した後の所定時間における血糖値又はグルコース値について、代表値を示す代表値線、第1の確率で含まれる領域を示す第1の領域帯、第1の確率よりも広い確率である第2の確率で含まれる領域を示す第2の領域帯、目標血糖値又は目標グルコース値を示す目標値線を得る工程と、
 前記代表値線、第1の領域帯、第2の領域帯及び前記目標値線が一つの画面に表示されるように、前記中央値線、第1の領域帯、第2の領域帯及び前記目標値線を出力する工程と、をさらに含む、方法。
2. The method of claim 1 ,
The computer obtains, using a plurality of the subject's blood glucose information obtained on different days, a representative value line indicating a representative value, a first area band indicating an area included with a first probability, a second area band indicating an area included with a second probability that is a higher probability than the first probability, and a target value line indicating a target blood glucose value or target glucose value, for the blood glucose value or glucose value at a predetermined time after ingestion of a meal;
outputting the median line, the first area band, the second area band and the target value line so that the representative value line, the first area band, the second area band and the target value line are displayed on a single screen.
 請求項9に記載の方法であって、
 前記中央値線は、白色又は灰色、
 第1の領域帯は、青系の色、
第2の領域帯は、第1の領域帯より薄い青系の色、
前記目標値線は、黄系又は赤系の色として出力される、方法。
10. The method of claim 9,
The median line is white or gray,
The first zone is blue-based colors,
The second zone is a lighter blue color than the first zone.
The method wherein the target line is output as a yellowish or reddish color.
 コンピュータを用いたインスリンの投与量の算定方法であって、
 前記コンピュータが、
 対象者の血糖値又はグルコース値の推移パターンモデルを用いて求めた前記対象者の血糖値又はグルコース値である対象者推測血糖値と、目標とする血糖値又はグルコース値である目標血糖値との差分である差分血糖値を求める差分血糖値算出工程と、
 前記コンピュータが、前記差分血糖値算出工程で求めた差分血糖値を用いて、前記対象者に対するインスリン投与量を算定するインスリン投与量算定工程と、を含む、方法。
1. A method for calculating an insulin dosage using a computer, comprising:
The computer,
A differential blood glucose value calculation step of calculating a differential blood glucose value between a subject's predicted blood glucose value, which is a blood glucose value or glucose value of the subject calculated using a transition pattern model of the blood glucose value or glucose value of the subject, and a target blood glucose value, which is a target blood glucose value or glucose value;
an insulin dosage calculation step in which the computer calculates an insulin dosage for the subject using the differential blood glucose value obtained in the differential blood glucose value calculation step.
 請求項11に記載の方法であって、
 前記インスリン投与量算定工程は、インスリン製剤ごとの血糖値又はグルコース値の推移パターンモデルに、前記対象者に投与されるインスリン製剤に関する情報と、前記差分血糖値とを入力し、前記対象者に対するインスリン投与量を算定する工程である、方法。
12. The method of claim 11,
The insulin dosage calculation step is a step of inputting information about the insulin preparation to be administered to the subject and the differential blood glucose value into a blood glucose or glucose value trend pattern model for each insulin preparation, and calculating the insulin dosage for the subject.
 コンピュータに、ある食事を摂取した対象者の血糖値又はグルコース値である対象者血糖情報、又は前記対象者血糖情報の推移情報が入力される対象者血糖情報入力工程と、
 前記コンピュータが、前記対象者血糖情報、又は前記対象者血糖情報の推移情報を用いて、前記ある食事を評価するための評価値であるミールスコアを得るためのミールスコア取得工程と、
 を含むミールスコアの取得方法を実行させるためのプログラム。
a subject's blood glucose information input step of inputting subject's blood glucose information, which is a blood glucose level or glucose value of a subject who has taken a certain meal, or time-varying information of the subject's blood glucose information into a computer;
A meal score acquisition step in which the computer obtains a meal score, which is an evaluation value for evaluating the certain meal, using the subject's blood glucose information or the transition information of the subject's blood glucose information;
A program for carrying out a method for obtaining a meal score, including:
 請求項13に記載のプログラムを記憶したコンピュータが読み取ることができる非一時的情報記録媒体。
 
A non-transitory information recording medium that can be read by a computer and stores the program according to claim 13.
PCT/JP2023/043140 2022-12-01 2023-12-01 Blood sugar level model creating method and predicting method for blood sugar level transition WO2024117258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022192599 2022-12-01
JP2022-192599 2022-12-01

Publications (1)

Publication Number Publication Date
WO2024117258A1 true WO2024117258A1 (en) 2024-06-06

Family

ID=91324031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043140 WO2024117258A1 (en) 2022-12-01 2023-12-01 Blood sugar level model creating method and predicting method for blood sugar level transition

Country Status (1)

Country Link
WO (1) WO2024117258A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019509074A (en) * 2016-01-14 2019-04-04 ビッグフット バイオメディカル インコーポレイテッドBigfoot Biomedical, Inc. Adjustment of insulin delivery amount
JP6948095B1 (en) * 2021-07-30 2021-10-13 株式会社LaViena Programs, methods, and systems
US20210401330A1 (en) * 2020-06-30 2021-12-30 Dexcom, Inc. Diabetes prediction using glucose measurements and machine learning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019509074A (en) * 2016-01-14 2019-04-04 ビッグフット バイオメディカル インコーポレイテッドBigfoot Biomedical, Inc. Adjustment of insulin delivery amount
US20210401330A1 (en) * 2020-06-30 2021-12-30 Dexcom, Inc. Diabetes prediction using glucose measurements and machine learning
JP6948095B1 (en) * 2021-07-30 2021-10-13 株式会社LaViena Programs, methods, and systems

Similar Documents

Publication Publication Date Title
JP7384362B2 (en) Information processing method and information processing device
US12106841B2 (en) System and methods for calculating, displaying, modifying, and using single dietary intake score reflective of optimal quantity and quality of consumables
Picciano et al. Dietary supplement use among infants, children, and adolescents in the United States, 1999-2002
Domhardt et al. Training of carbohydrate estimation for people with diabetes using mobile augmented reality
WO2020069500A1 (en) Smart health expert and manager
US20090275002A1 (en) Nutrition informatics method
JP7032072B2 (en) Information processing equipment, information processing methods, and programs
Mauldin et al. Performing nutrition assessment remotely via telehealth
CN114067940A (en) Health management method and storage medium
JP5853348B2 (en) Lifestyle analysis system and lifestyle analysis method
Orlemann et al. A novel mobile phone app (OncoFood) to record and optimize the dietary behavior of oncologic patients: pilot study
WO2021044696A1 (en) Device for estimating nutritional intake amount, health management assistance device, method for estimating nutritional intake amount, health management assistance method, program, and system for estimating nutritional intake amount
US20220262495A1 (en) User auxiliary information output device, user auxiliary information output system, and user auxiliary information output method
US20250046423A1 (en) Systems and methods for providing individualized nutritional recommendations for intermittent fasting
Deol et al. Managing type 2 diabetes: Beliefs and daily practices in first generation Asian Indians in the United States
McLaren et al. Nutritional screening and assessment
WO2024117258A1 (en) Blood sugar level model creating method and predicting method for blood sugar level transition
Hashim et al. Diabetes Score questionnaire for lifestyle change in patients with type 2 diabetes
WO2021044695A1 (en) Health management assistance device, health management assistance method, program, and health management assistance system
Gracia et al. Structured SMBG in early management of T2DM: Contributions from the St Carlos study
WO2020235028A1 (en) Health information management system, mobile terminal device, health information management method, and health information management program for mobile terminal device
JP7692158B2 (en) Dietary guidance system, control method and program
WO2025120400A1 (en) Ai-based curedietary application for designing personal diets and routines according to each individual's life to improve health and prevent diseases
JP7078277B2 (en) Advice devices, advice methods, and programs
Dalling Decreasing the Glycated Hemoglobin Levels in Diabetic Patients with Levels of Eight or Greater Through Lifestyle Modification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024561721

Country of ref document: JP