[go: up one dir, main page]

WO2024117193A1 - Display device, method for manufacturing display device, and electronic apparatus - Google Patents

Display device, method for manufacturing display device, and electronic apparatus Download PDF

Info

Publication number
WO2024117193A1
WO2024117193A1 PCT/JP2023/042774 JP2023042774W WO2024117193A1 WO 2024117193 A1 WO2024117193 A1 WO 2024117193A1 JP 2023042774 W JP2023042774 W JP 2023042774W WO 2024117193 A1 WO2024117193 A1 WO 2024117193A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display device
light
layer
pixel
Prior art date
Application number
PCT/JP2023/042774
Other languages
French (fr)
Japanese (ja)
Inventor
昌也 小倉
智明 澤部
直也 笠原
利章 白岩
健一 青柳
健矢 米原
孝義 加藤
雅貴 杉安
勇 小堀
朋和 大地
大輔 濱下
達也 加納
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202380074106.3A priority Critical patent/CN120092518A/en
Publication of WO2024117193A1 publication Critical patent/WO2024117193A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/20Metallic electrodes, e.g. using a stack of layers

Definitions

  • This disclosure relates to a display device, a method for manufacturing a display device, and an electronic device.
  • Patent Document 1 describes an organic EL (Electro Luminescence) display device in which a waveguide structure is formed on the pixel electrodes.
  • Patent Document 1 was unable to extract the light emitted from the light-emitting element that travels in the lateral direction, and was insufficient as a technology for efficiently extracting the light emitted by the light-emitting element to the outside.
  • One of the objectives of this disclosure is to provide a display device, a manufacturing method for a display device, and an electronic device that can efficiently extract light emitted by a light-emitting element to the outside.
  • Each pixel has a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer provided between the first electrode and the second electrode and including a light-emitting layer;
  • a refractive layer that refracts light emitted from the organic layer is formed in an intrapixel region of the pixel and an interpixel region that is a region between the pixels. It is a display device.
  • the present disclosure relates to, for example, a first pixel having a first emission wavelength ⁇ 1; a second pixel having a second emission wavelength ⁇ 2; and a third pixel having a third emission wavelength ⁇ 3; and having Each of the first pixel, the second pixel, and the third pixel has an electrode portion, A color filter is provided for each pixel in the direction in which light is emitted.
  • the emission wavelengths have a relationship of ⁇ 1 ⁇ 2 ⁇ 3, a first angle is an angle formed by a line connecting a center of gravity of an electrode portion of the first pixel and a center of gravity of a region of the color filter that is not covered by the light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter; a second angle is an angle formed by a line connecting a center of gravity of the electrode portion of the second pixel and a center of gravity of a region of the color filter that is not covered by the light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter;
  • a third angle This is a display device in which the relationship: third angle>second angle
  • the present disclosure relates to, for example, forming a light-emitting element including a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer including a light-emitting layer provided between the first electrode and the second electrode; A protective layer is formed on the light emitting element, Placing a resist against the protective layer; a portion of the protective layer is thinned toward the second electrode to partially form an opening in the portion of the protective layer; forming an opening and connecting the opening to a second electrode to form a contact hole;
  • This is a manufacturing method for a display device, in which the protective layer and resist around the opening are thinned.
  • FIG. 1 is a diagram for explaining a schematic configuration example of a display device according to a first embodiment
  • FIG. 2 is a diagram for explaining a cross-sectional configuration example of the display device according to the first embodiment.
  • 1A and 1B are diagrams illustrating specific examples of an organic layer.
  • FIG. 2 is a diagram referred to when explaining the operation of the display device according to the first embodiment.
  • 1A, 1B, and 1C are views referred to when explaining an example of a manufacturing method for the display device according to the first embodiment.
  • 1A, 1B, and 1C are views referred to when explaining an example of a manufacturing method for the display device according to the first embodiment.
  • 1A and 1B are diagrams referred to when explaining an example of a manufacturing method for the display device according to the first embodiment.
  • 3A to 3C are diagrams for explaining examples of arrangement of organic layers according to the first embodiment.
  • 5A to 5C are diagrams for explaining another example of the arrangement of the organic layer according to the first embodiment.
  • 5A to 5C are diagrams for explaining another example of the arrangement of the organic layer according to the first embodiment.
  • 5A to 5C are diagrams for explaining another example of the arrangement of the organic layer according to the first embodiment.
  • 5A to 5C are diagrams for explaining examples of the shape of a first electrode according to the first embodiment.
  • 6A to 6C are diagrams illustrating examples of other shapes of the first electrode according to the first embodiment.
  • 6A to 6C are diagrams illustrating examples of other shapes of the first electrode according to the first embodiment.
  • FIG. 6A to 6C are diagrams illustrating examples of other shapes of the first electrode according to the first embodiment.
  • FIG. 11 is a diagram for explaining a modified example of the first embodiment.
  • FIG. 11 is a diagram for explaining a modified example of the first embodiment.
  • FIG. 11 is a diagram for explaining a modified example of the first embodiment.
  • FIG. 11 is a diagram for explaining a modified example of the first embodiment.
  • FIG. 11 is a diagram for explaining a modified example of the first embodiment.
  • FIG. 11 is a diagram for explaining a modified example of the first embodiment.
  • FIG. 11 is a diagram for explaining an example of a cross-sectional configuration of a display device according to a second embodiment.
  • 13A and 13B are diagrams illustrating examples of shapes of recesses according to the second embodiment.
  • FIG. 13 is a diagram for explaining an example of a cross-sectional configuration of a display device according to a third embodiment.
  • 13A and 13B are diagrams illustrating examples of emission directions of light emitted from a light-emitting element according to a third embodiment.
  • 13A to 13H are diagrams for explaining an example in which the center of a groove according to the third embodiment is not shifted from the center of a sub-pixel.
  • 13A to 13H are diagrams for explaining an example in which the center of a groove according to the third embodiment is misaligned with the center of a sub-pixel.
  • FIG. 13 is a diagram for explaining an example of a cross-sectional configuration of a display device according to a fourth embodiment.
  • FIG. 13A and 13B are diagrams for explaining the operation of the display device according to the fourth embodiment.
  • 13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a fourth embodiment.
  • 13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a fourth embodiment.
  • 13A and 13B are diagrams for explaining a modified example of the display device according to the fourth embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the fourth embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the fourth embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the fourth embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the fourth embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the fourth embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the fourth embodiment.
  • FIG. 13 is a diagram for explaining a modified example of
  • FIG. 13 is a diagram for explaining a modified example of the fourth embodiment.
  • 13A and 13B are diagrams illustrating an example of the arrangement of reflective partition portions according to the fourth embodiment.
  • FIG. 13 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a fifth embodiment.
  • FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment.
  • FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment.
  • FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment.
  • FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment.
  • FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment.
  • FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment.
  • FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment.
  • 13A to 13C are diagrams for explaining the operation of the display device according to the fifth embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the fifth embodiment.
  • FIG. 13 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a sixth embodiment.
  • FIG. 13 is a partial cross-sectional view for explaining the operation of the display device according to the sixth embodiment.
  • FIG. 13A and 13B are diagrams for explaining the positional relationship between the first contact portion CT1 and the second contact portion CT2 according to the sixth embodiment.
  • FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a modified example of the sixth embodiment.
  • FIG. 13 is a partial cross-sectional view for explaining the operation of the display device according to the modified example of the sixth embodiment.
  • 13 is a diagram for explaining the positional relationship between the first contact portion CT1 and the second contact portion CT2 according to a modification of the sixth embodiment.
  • FIG. FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to another modified example of the sixth embodiment.
  • FIG. 23 is a partial cross-sectional view for explaining the operation of a display device according to another modified example of the sixth embodiment.
  • FIG. 23 is a diagram for explaining the positional relationship between the first contact portion CT1 and the second contact portion CT2 according to another modified example of the sixth embodiment.
  • 1A to 1E are diagrams for explaining a number of examples of arrangements of the first contact portion and the second contact portion.
  • FIG. 13 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a seventh embodiment.
  • 13A and 13B are partial cross-sectional views for explaining the operation of the display device according to the seventh embodiment.
  • 13A to 13D are diagrams to be referred to when explaining an example of a manufacturing method for a display device according to a seventh embodiment.
  • 13A and 13B are views referred to when explaining an example of a manufacturing method for a display device according to a seventh embodiment.
  • 13A and 13B are views referred to when explaining an example of a manufacturing method for a display device according to a seventh embodiment.
  • 13A to 13C are views referred to when explaining another example of a manufacturing method for the display device according to the seventh embodiment.
  • 13A to 13C are diagrams to be referred to when explaining another example of a manufacturing method for the display device according to the seventh embodiment.
  • 13 is a diagram for explaining an example of a light-emitting region of a display device according to a seventh embodiment.
  • FIG. FIG. 13 is a diagram for explaining the effect obtained in the seventh embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the seventh embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the seventh embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the seventh embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the seventh embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the seventh embodiment.
  • 13A to 13F are diagrams for explaining a modification of the seventh embodiment.
  • FIG. 13 is a diagram for explaining a modified example of the seventh embodiment.
  • 13A to 13C are diagrams for explaining a modified example of the seventh embodiment.
  • 13A and 13B are diagrams for explaining a modified example of the seventh embodiment.
  • FIG. 23 is a diagram for explaining an example of the configuration of a pixel unit according to an eighth embodiment.
  • 11 is a diagram for explaining another configuration example of the pixel portion.
  • FIG. 23 is a diagram for explaining an example of the configuration of a pixel unit according to an eighth embodiment.
  • 11 is a diagram for explaining another configuration example of the pixel portion.
  • FIG. 13 is a diagram for explaining an example of a cross-sectional configuration of another pixel unit.
  • FIG. FIG. 13 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a ninth embodiment.
  • 13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a ninth embodiment.
  • 13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a ninth embodiment.
  • 13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a ninth embodiment.
  • 13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a ninth embodiment.
  • 13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a ninth embodiment.
  • 13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a ninth embodiment.
  • 13A and 13B are diagrams for explaining a modified example of the ninth embodiment.
  • 13A and 13B are diagrams for explaining a modified example of the ninth embodiment.
  • 13A and 13B are diagrams for explaining a modified example of the ninth embodiment.
  • 13A to 13C are views referred to when explaining an example of a manufacturing method for a display device according to a modified example of the ninth embodiment.
  • 13A to 13C are views referred to when explaining an example of a manufacturing method for a display device according to a modified example of the ninth embodiment.
  • FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a tenth embodiment.
  • 23A to 23D are diagrams for explaining an example of the function of the display device according to the tenth embodiment.
  • 23A to 23D are diagrams for explaining an example of the function of the display device according to the tenth embodiment.
  • 11A and 11B are diagrams for explaining examples of arrangement of insulating layers according to positions of sub-pixels.
  • 13A and 13B are diagrams for explaining another example of the arrangement of the insulating layer.
  • FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to an eleventh embodiment.
  • 19A to 19C are diagrams for explaining an example of the operation of the display device according to the eleventh embodiment.
  • FIG. 23 is a diagram for explaining a modified example of the eleventh embodiment.
  • FIG. 23 is a diagram for explaining a modified example of the eleventh embodiment.
  • FIG. 23 is a diagram for explaining a modified example of the eleventh embodiment.
  • 23A to 23C are diagrams illustrating an example of a manufacturing method for a display device according to a modified example of the eleventh embodiment.
  • 23A to 23C are diagrams illustrating an example of a manufacturing method for a display device according to a modified example of the eleventh embodiment.
  • 23A and 23B are diagrams for explaining an example of a manufacturing method for a display device according to a modified example of the eleventh embodiment.
  • 12A and 12B are diagrams for explaining examples of shapes of openings formed by a light reflecting layer according to an eleventh embodiment.
  • 12A and 12B are diagrams for explaining examples of shapes of openings formed by a light reflecting layer according to an eleventh embodiment.
  • 12A to 12C are diagrams for explaining examples of shapes of openings formed by a light reflecting layer according to an eleventh embodiment.
  • 12A and 12B are diagrams for explaining examples of shapes of openings formed by a light reflecting layer according to an eleventh embodiment.
  • 1A and 1B are diagrams for explaining an example of an arrangement of sub-pixels.
  • 13A and 13B are diagrams for explaining other examples of arrangement of sub-pixels.
  • 13A and 13B are diagrams for explaining other examples of arrangement of sub-pixels.
  • 1A and 1B are diagrams for explaining examples of cathode contact arrangements.
  • FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a twelfth embodiment.
  • 1A and 1B are diagrams for explaining a configuration example of a display device according to a reference example.
  • 12A and 12B are diagrams for explaining a configuration example of a display device according to a twelfth embodiment.
  • FIG. 23 is a diagram for explaining the effects obtained in the twelfth embodiment.
  • 23A and 23B are diagrams for explaining a modified example of the twelfth embodiment.
  • 23A and 23B are diagrams for explaining a modified example of the twelfth embodiment.
  • 23A and 23B are diagrams for explaining a modified example of the twelfth embodiment.
  • 23A to 23C are diagrams illustrating an example of a manufacturing method for a display device according to a twelfth embodiment.
  • 23A to 23C are diagrams illustrating an example of a manufacturing method for a display device according to a twelfth embodiment.
  • 23A to 23C are diagrams illustrating an example of a manufacturing method for a display device according to a twelfth embodiment.
  • 23A and 23B are diagrams for explaining an example of a manufacturing method for a display device according to a twelfth embodiment.
  • FIG. 23 is a diagram for explaining points to be considered in the thirteenth embodiment.
  • FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a thirteenth embodiment.
  • 23A and 23B are diagrams illustrating a first example of a manufacturing method for a display device according to a thirteenth embodiment.
  • 23A to 23C are diagrams illustrating a first example of a manufacturing method for a display device according to a thirteenth embodiment.
  • 23A and 23B are diagrams for explaining a second example of a manufacturing method for the display device according to the thirteenth embodiment.
  • 23A to 23C are diagrams illustrating a second example of a manufacturing method for the display device according to the thirteenth embodiment.
  • 23A and 23B are diagrams for explaining a third example of a manufacturing method for the display device according to the thirteenth embodiment.
  • 23A to 23C are diagrams illustrating a third example of a manufacturing method for the display device according to the thirteenth embodiment.
  • 26A and 26B are diagrams for explaining an example of a manufacturing method for a display device according to a modified example of the thirteenth embodiment.
  • 26A to 26C are diagrams illustrating an example of a manufacturing method for a display device according to a modified example of the thirteenth embodiment.
  • FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a modified example of the thirteenth embodiment.
  • FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a fourteenth embodiment. This figure is referred to when explaining points to be considered in the fourteenth embodiment. This figure is referred to when explaining points to be considered in the fourteenth embodiment.
  • 1A and 1B are diagrams illustrating an example of characteristics of a diffraction grating.
  • 23A to 23C are diagrams for explaining a first angle, a second angle, and a third angle according to the fourteenth embodiment; FIG.
  • FIG. 23 is a diagram for explaining an example of the interrelationship between the first angle, the second angle, and the third angle according to the fourteenth embodiment.
  • FIG. 23 is a diagram for explaining another example of the interrelationship between the first angle, the second angle, and the third angle according to the fourteenth embodiment.
  • FIG. 23 is a diagram for explaining another example of the interrelationship between the first angle, the second angle, and the third angle according to the fourteenth embodiment.
  • FIG. 23 is a diagram for explaining another example of the interrelationship between the first angle, the second angle, and the third angle according to the fourteenth embodiment.
  • FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment.
  • FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment.
  • FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment.
  • FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment.
  • FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment.
  • FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment.
  • 1A is a schematic cross-sectional view for explaining a first example of a resonator structure
  • FIG. 1B is a schematic cross-sectional view for explaining a second example of a resonator structure
  • 1A is a schematic cross-sectional view for explaining a third example of a resonator structure
  • FIG. 1B is a schematic cross-sectional view for explaining a fourth example of a resonator structure.
  • FIG. 13A is a schematic cross-sectional view for explaining a fifth example of a resonator structure
  • FIG. 13B is a schematic cross-sectional view for explaining a sixth example of a resonator structure.
  • FIG. 13 is a schematic cross-sectional view for explaining a seventh example of a resonator structure.
  • 1A, 1B, and 1C are conceptual diagrams for explaining the relationship between a normal line LN passing through the center of the light-emitting portion, a normal line LN' passing through the center of the lens member, and a normal line LN" passing through the center of the wavelength selection portion, respectively.
  • FIG. 1 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of a light-emitting portion, a normal line LN' passing through the center of a lens member, and a normal line LN" passing through the center of a wavelength selection portion.
  • FIG. 1A and 1B are conceptual diagrams for explaining the relationship between a normal line LN passing through the center of the light-emitting portion, a normal line LN' passing through the center of the lens member, and a normal line LN" passing through the center of the wavelength selection portion, respectively.
  • FIG. 1 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of a light-emitting portion, a normal line LN' passing through the center of a lens member, and a normal line LN" passing through the center of a wavelength selection portion.
  • FIG. FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage.
  • 1A is a front view showing an example of the external appearance of a digital still camera
  • FIG. 1 is a perspective view showing an example of the appearance of a head mounted display.
  • FIG. 1 is a perspective view showing an example of the appearance of a television device.
  • 1 is a perspective view showing an example of the appearance of a see-through head mounted display.
  • FIG. 1 is a perspective view showing an example of the appearance of a smartphone.
  • FIG. 1A is a diagram showing an example of the interior of a vehicle from the rear to the front of the vehicle
  • FIG. 1B is a diagram showing an example of the interior of a vehicle from the diagonally rear to the diagonally front of the vehicle.
  • FIG. 13 is a diagram for explaining a modified example.
  • An example of the display device according to the embodiment of the present disclosure is an organic EL display device.
  • the display device according to the first embodiment has a plurality of luminescent colors.
  • the display device 10A has a plurality of pixels, and each pixel is formed by a combination of a plurality of sub-pixels (sub-pixels 101) corresponding to a plurality of color types (luminescent colors).
  • the display device 10A has a plurality of sub-pixels 101 arranged two-dimensionally.
  • the display device 10A may be a micro display.
  • the display device 10A may be provided in a VR device, a mixed reality (MR) device, an AR device, an electronic view finder (EVF), a small projector, or the like.
  • MR mixed reality
  • EMF electronic view finder
  • the display device 10A has a drive substrate 11.
  • the drive substrate 11 has an effective pixel area AR1 and a peripheral area AR2 surrounding the effective pixel area AR1.
  • the effective pixel area AR1 is an area that is defined as an area for emitting light generated by a plurality of light-emitting elements.
  • a plurality of pixels are provided in the effective pixel area AR1.
  • a plurality of sub-pixels 101 are two-dimensionally arranged in a prescribed arrangement pattern, such as a matrix, within the effective pixel area AR1.
  • Subpixel 101 includes subpixels 101R, 101G, and 101B.
  • Subpixel 101R displays red
  • subpixel 101G displays green
  • subpixel 101B displays blue.
  • subpixel 101 when subpixels 101R, 101G, and 101B are referred to collectively without distinction, they are referred to as subpixel 101.
  • R, G, and B are added to the reference numerals for the components of subpixels 101R, 101G, and 101B as appropriate.
  • the combination of adjacent subpixels 101R, 101G, and 101B constitutes one pixel.
  • a control circuit 2 an H driver 3A, and a V driver 3B are provided in the peripheral area AR2 of the display device 10A.
  • the control circuit 2 controls the driving of the H driver 3A and the V driver 3B.
  • the H driver 3A and the V driver 3B control the driving of the sub-pixels 101 by a known method.
  • the top emission method refers to a method in which the light emitting element is disposed closer to the effective pixel area AR1 side than the drive substrate 11. Therefore, in the display device 10A, the light generated from the light emitting element is directed in the +Z direction and emitted to the outside.
  • the surface that is the display surface side in the effective pixel area AR1 of the display device 10A (the area hatched in FIG. 1) is referred to as the first surface (upper surface), and the surface that is the back surface side of the display device 10 is referred to as the second surface (lower surface).
  • the display device according to the present disclosure may use a bottom emission method. In the bottom emission method, the light generated from the light emitting element is directed in the -Z direction and emitted to the outside.
  • FIG. 2 is an enlarged view showing a cross-sectional configuration example of a region XS surrounded by a dashed line in Fig. 1 .
  • sub-pixels 101R, 101B, and 101G are arranged in a predetermined array along the X direction on the drive substrate 11.
  • the sub-pixels 101R, 101B, and 101G are described as having the same configuration, but there may be differences in configuration between the sub-pixels 101.
  • the display device 10A includes a plurality of light-emitting elements 20.
  • the plurality of light-emitting elements 20 are composed of a first electrode 12, an organic layer 13 including a light-emitting layer, and a second electrode 14.
  • the light-emitting elements 20 are, for example, white light-emitting elements such as white OLEDs or white Micro-OLEDs (MOLEDs).
  • the colorization method used in the display device 10A is a method that uses white light-emitting elements and color filters, which will be described later.
  • the display device 10A has a drive substrate 11.
  • the drive substrate 11 is a so-called backplane, and drives a plurality of light-emitting elements 20.
  • the drive substrate 11 has, for example, a base material 11A and an interlayer insulating layer 11B laminated on the base material 11A.
  • the interlayer insulating layer 11B may be formed by being laminated on the base material 11A, or a part of it may be formed directly on the base material 11A by a semiconductor process.
  • the substrate 11A may be a semiconductor substrate such as a silicon substrate, or an insulating substrate such as a glass substrate, quartz, or resin substrate with low moisture and oxygen permeability.
  • Semiconductor substrates include, for example, amorphous silicon, polycrystalline silicon, or single crystal silicon.
  • glass substrates include, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, or quartz glass.
  • resin substrates include, for example, at least one selected from the group consisting of polymethyl methacrylate, polyvinyl alcohol, polyvinyl phenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, and polyethylene naphthalate.
  • the substrate 11A has, for example, a thin plate shape.
  • the substrate 11A may be flexible.
  • the interlayer insulating layer 11B is made of, for example, an organic material or an inorganic material.
  • the organic material includes, for example, at least one of polyimide and acrylic resin.
  • the inorganic material includes, for example, at least one of silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxide.
  • Various circuits that drive the multiple light-emitting elements 20 are provided within the interlayer insulating layer 11B.
  • Examples of the various circuits include a drive circuit that controls the driving of the light-emitting elements 20 and a power supply circuit that supplies power to the multiple light-emitting elements 20 (neither of which are shown).
  • the various circuits are restricted from exposure to the outside by the interlayer insulating layer 11B.
  • These drive circuits (not shown) are connected to appropriate locations such as the first electrode 12.
  • a plurality of light-emitting elements 20 are provided on the first surface of the interlayer insulating layer 11B.
  • the light-emitting elements 20 are, for example, organic electroluminescence elements (organic EL elements).
  • the plurality of light-emitting elements 20 each emit light of a color corresponding to the color type of the sub-pixel 101 from the light-emitting surface.
  • light-emitting elements 20R, 20G, and 20B are formed in the sub-pixels 101R, 101G, and 101B, respectively.
  • the plurality of light-emitting elements 20 are laid out in a manner corresponding to the arrangement of the sub-pixels 101 of the respective color types. In this specification, when the types of the light-emitting elements 20R, 20G, and 20B are not particularly distinguished from one another, the term "light-emitting element 20" is used.
  • the light-emitting element 20 has a laminated structure in which a first electrode 12, an organic layer 13, and a second electrode 14 are laminated in this order from the drive substrate 11 side in the direction from the second surface to the first surface (+Z direction).
  • a plurality of first electrodes 12 are provided on the first surface side of the driving substrate 11.
  • the first electrodes 12 are, for example, anode electrodes.
  • the first electrodes 12 may be transparent electrodes having optical transparency.
  • the first electrode 12 is composed of at least one of a metal layer and a metal oxide layer.
  • the first electrode 12 may be composed of a single layer of a metal layer or a metal oxide layer, or a laminated layer of a metal layer and a metal oxide layer.
  • the metal layer contains at least one metal element selected from the group consisting of, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al), magnesium (Mg), iron (Fe), tungsten (W) and silver (Ag).
  • the metal layer may contain at least one metal element as a constituent element of an alloy.
  • alloys include aluminum alloys and silver alloys.
  • Specific examples of aluminum alloys include, for example, AlNd and AlCu.
  • the metal oxide layer includes, for example, at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), and titanium oxide (TiO).
  • ITO indium oxide and tin oxide
  • IZO indium oxide and zinc oxide
  • TiO titanium oxide
  • the first electrodes 12 are electrically separated for each subpixel 101. That is, a plurality of first electrodes 12 are provided on the first surface side of the drive substrate 11, and each first electrode 12 is provided for each subpixel 101.
  • the organic layer 13 is an organic light-emitting layer provided between the first electrode 12 and the second electrode 14.
  • the organic layer 13 is provided separately for each sub-pixel 101.
  • the organic layer 13 may be configured to be provided in common to the sub-pixels 101.
  • the organic layer 13 is configured to be capable of emitting white light. However, this does not prohibit the emission color of the organic layer 13 from being other than white, and colors such as red, blue, and green may be adopted. In other words, the emission color of the organic layer 13 may be, for example, any one of white, red, blue, and green.
  • the organic layer 13 has a structure in which, for example, a hole injection layer, a hole transport layer, a light-emitting layer, and an electron transport layer are stacked in this order from the first electrode 12 toward the second electrode 14.
  • An electron injection layer may be provided between the electron transport layer and the second electrode 14.
  • the electron injection layer is intended to increase the efficiency of electron injection. Note that the structure of the organic layer 13 is not limited to this, and layers other than the light-emitting layer are provided as necessary.
  • the hole injection layer is intended to increase the efficiency of hole injection into the light-emitting layer, and is also a buffer layer to suppress leakage.
  • the hole transport layer is intended to increase the efficiency of hole transport to the light-emitting layer.
  • the electron transport layer is intended to increase the efficiency of electron transport to the light-emitting layer.
  • the light-emitting layer generates light when an electric field is applied, causing electrons and holes to recombine.
  • the light-emitting layer is an organic compound layer that contains an organic light-emitting material.
  • the organic layer 13 may be composed of a laminate including an organic light-emitting layer, and in that case, some layers of the laminate (e.g., an electron injection layer) may be an inorganic layer.
  • the organic layer 13 may be an OLED layer having a single light-emitting unit U as shown in Figure 3A, an OLED layer having two light-emitting units U1 and U2 (tandem structure) as shown in Figure 3B, or an OLED layer having a structure other than these.
  • the organic layer 13 having a single light-emitting unit U has a structure in which, for example, a hole injection layer 131, a hole transport layer 132, a red light-emitting layer 130R, a light-emitting separation layer 133, a blue light-emitting layer 130B, a green light-emitting layer 130G, an electron transport layer 134, and an electron injection layer 135 are laminated in this order from the first electrode 12 to the second electrode 14.
  • the OLED layer having two light-emitting units U1 and U2 has a structure in which, for example, from the first electrode 12 toward the second electrode 14, a hole injection layer 131, a hole transport layer 132, a blue light-emitting layer 130B, an electron transport layer 136, a charge generation layer 137, a hole transport layer 138, a yellow light-emitting layer 130Y, an electron transport layer 134, and an electron injection layer 135 are laminated in this order.
  • a second electrode 14 is provided on the upper side of the organic layer 13.
  • the second electrode 14 is, for example, a cathode.
  • the second electrode 14 is connected to a cathode contact (not shown) by a predetermined wiring structure.
  • a portion of the second electrode 14 corresponding to the sub-pixel 101 (a portion corresponding to the light-emitting element 20) is provided so as to face the first electrode 12.
  • the second electrode 14 is provided separately for each of the plurality of sub-pixels 101.
  • the second electrode 14 may be provided as a common electrode for the plurality of sub-pixels 101.
  • the second electrode 14 is preferably a transparent electrode that is transparent to the light generated in the organic layer 13.
  • the transparent electrode referred to here includes an electrode formed of a transparent conductive layer and an electrode formed of a laminated structure having a transparent conductive layer and a semi-transmissive reflective layer.
  • the transparent conductive layer is preferably made of a transparent conductive material with good light transmission and a small work function.
  • the transparent conductive layer can be made of, for example, a metal oxide.
  • examples of the material for the transparent conductive layer include a material containing at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), and zinc oxide (ZnO).
  • the semi-transmissive reflective layer can be formed, for example, from a metal layer.
  • the material of the semi-transmissive reflective layer can be, for example, one containing at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), gold (Au) and copper (Cu).
  • the metal layer may contain at least one of the above metal elements as a constituent element of an alloy. Specific examples of the alloy include an MgAg alloy and an AgPdCu alloy.
  • the first electrode 12 may be a cathode and the second electrode 14 may be an anode.
  • an insulating layer is formed between adjacent first electrodes 12.
  • an interpixel insulating layer 16 is formed between adjacent first electrodes 12.
  • the interpixel insulating layer 16 may be an organic insulating layer, an inorganic insulating layer, or a laminate of these.
  • the organic insulating layer includes at least one selected from the group consisting of, for example, polyimide resin, acrylic resin, novolac resin, and the like.
  • the inorganic insulating layer includes at least one selected from the group consisting of, for example, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the like.
  • the interpixel insulating layer 16 has an opening 16A, and the first electrode 12 is exposed through this opening 16A.
  • a first protective layer 18 is formed so as to partially cover a first surface side (a first surface side of the second electrode 14) of the light-emitting element 20.
  • the first protective layer 18 makes the first surface of the light-emitting element 20 less likely to be exposed to the outside air, and suppresses the intrusion of moisture from the external environment into the light-emitting element 20.
  • the first protective layer 18 is formed of an insulating material.
  • a thermosetting resin can be used as the insulating material.
  • Other insulating materials may be SiO, SiON, AlO, TiO, SiN, etc.
  • examples of the first protective layer 18 include a CVD film containing SiO, SiON, etc., and an ALD film containing AlO, TiO, SiO, etc.
  • the CVD film refers to a film formed using chemical vapor deposition.
  • the ALD film refers to a film formed using atomic layer deposition.
  • the first protective layer 18 may be formed as a single layer, or may have a structure in which multiple layers are stacked.
  • an isolation protective layer 19 is formed as an inter-element isolation wall so as to cover the side end faces of the light-emitting elements 20, the side end faces of the first protective layer 18, and the upper end face of the first protective layer 18.
  • the isolation protective layer 19 is disposed between adjacent light-emitting elements 20, and separates the first electrode 12, the organic layer 13, and the second electrode 14 for each sub-pixel 101.
  • the isolation protective layer 19 is made of an insulator.
  • Examples of the isolation protective layer 19 include an inorganic insulating film and an organic insulating film.
  • Examples of the inorganic insulating film include SiO 2 , SiN, and SiON.
  • Examples of the organic insulating film include polyimide.
  • a second protective layer 21 is formed over the entire first surface side of the separation protective layer 19.
  • the second protective layer 21 may be omitted.
  • the same material as that of the first protective layer 18 may be used as the material of the second protective layer 21.
  • a refractive layer 22 is formed on the first surface of the second protective layer 21.
  • the material of the refractive layer 22 may be an insulating material or a resin material similar to that of the first protective layer 18.
  • the refractive layer 22 may be an air layer.
  • the refractive index of the refractive layer 22 is smaller than the refractive index of the protective layer in contact with the refractive layer 22 (in this embodiment, the second protective layer 21).
  • a color filter section and a lens may be further disposed on the first surface of the refractive layer 22.
  • the refractive layer 22 functions, for example, as a planarizing layer for obtaining flatness of the surface for forming the color filter section.
  • a planarizing layer may be provided separately from the refractive layer 22.
  • the refractive layer 22 also functions as a protective layer for preventing foreign matter such as moisture from entering the light-emitting element 20, etc.
  • the display device 10A may be configured without some of the above-mentioned components.
  • the display device 10A may be configured to have known components other than the above-mentioned components.
  • an intra-pixel area ARA which is an area within the sub-pixel 101
  • an inter-pixel area ARB which is an area between the sub-pixels 101
  • the intra-pixel area ARA is, for example, an area including the light-emitting element 20, and is set as an area inside the outer edge of the first protective layer 18, for example.
  • the area inside the outer edge of the separation protective layer 19 may be set as the intra-pixel area ARA.
  • the inter-pixel area ARB is an area other than the intra-pixel area ARA, and is set as an area between the outer edges of the first protective layer 18 in the sub-pixels 101, for example.
  • a groove portion 23 is formed in the intra-pixel area ARA.
  • the groove portion 23 is formed near the center of the intra-pixel area ARA.
  • the groove portion 23 is obtained by partially removing the first protective layer 18 and the isolation protective layer 19 in the intra-pixel area ARA and disposing the second protective layer 21 in that location.
  • the second protective layer 21, the second electrode 14, the organic layer 13, and the first electrode 12 are interposed between the end face 23A of the groove portion 23 (the lower surface of the groove portion 23) and the first surface of the drive substrate 11.
  • a groove portion 24 is also formed in the inter-pixel region ARB.
  • the groove portion 24 is a step formed in the inter-pixel region ARB.
  • the refractive layer 22 is disposed (filled) in the grooves 23 and 24.
  • the operation of the display device 10A according to this embodiment will be described with reference to FIG. 4.
  • the light L1 directed toward the center of the pixel area ARA is refracted in the front direction (upward) due to the difference in the refractive index between the second protective layer 21 and the refractive layer 22 in the pixel area ARA.
  • the light L2 directed toward the center of the inter-pixel area ARB is refracted in the front direction (upward) due to the difference in the refractive index between the second protective layer 21 and the refractive layer 22 in the inter-pixel area ARB.
  • the light (light L1, L2) emitted from the end of the sub-pixel 101 (for example, the sub-pixel 101G) and directed in the horizontal direction (diagonal horizontal direction) can be directed in the front direction, thereby improving the light extraction efficiency.
  • the refractive index of the refractive layer 22 is described as being smaller than the refractive index of the second protective layer 21, but the refractive index of the refractive layer 22 may be larger than the refractive index of the second protective layer 21 as long as the above-mentioned effect can be achieved.
  • the interlayer insulating layer 11B is formed.
  • a metal layer and a metal oxide layer are sequentially formed on the first surface of the drive substrate 11 by, for example, a sputtering method, and then the metal layer and the metal oxide layer are patterned by, for example, a photolithography technique and an etching technique.
  • an interpixel insulating layer 16 is formed on the first surface of the drive substrate 11 so as to cover the multiple first electrodes 12 by, for example, a CVD (Chemical Vapor Deposition) method.
  • openings 16A are formed in the interpixel insulating layer 16 in the portions located on the first surfaces of the first electrodes 12 by, for example, a photolithography technique and a dry etching technique.
  • an organic layer 13 is formed on the first surface of the first electrode 12 and on the first surface of the interpixel insulating layer 16, for example, by vapor deposition.
  • a second electrode 14 is formed over the entire first surface side of the drive substrate 11, for example, by vapor deposition or sputtering.
  • a first protective layer 18 is formed over the entire first surface side of the drive substrate 11, for example, by CVD or vapor deposition.
  • a resist 31 is placed on the first surface of the first protective layer 18. Then, an etching process is performed to remove unnecessary parts of the first protective layer 18, the second electrode 14, and the organic layer 13, as shown in FIG. 5C.
  • the isolation protective layer 19 is formed over the entire surface by vapor deposition or sputtering. Then, as shown in FIG. 6B, after resist 31 is placed, unnecessary portions of the isolation protective layer 19 and the first protective layer 18 are removed, forming a groove 38A in the intra-pixel area ARA as shown in FIG. 6C. Furthermore, as the resist 31 is removed, a groove portion 38B is formed in the inter-pixel area ARB.
  • a second protective layer 21 is formed over the entire surface by, for example, vapor deposition or sputtering, to form grooves 23 in the intra-pixel area ARA and grooves 24 in the inter-pixel area ARB.
  • a refractive layer 22 is formed on the first surface of the second protective layer 21. Note that, although not explained or illustrated, subsequent steps include providing a color filter, an opposing substrate opposing the drive substrate 11, and the like.
  • Fig. 8 to Fig. 11 are plan views of the drive substrate 11 from the +Z direction. Note that in Fig. 8 to Fig. 11, the location indicated by reference numeral 32 is a laminate (laminate 32) including the organic layer 13, the second electrode 14, and the first protective layer 18.
  • the laminate 32 including the organic layer 13 may be formed independently between each subpixel 101. Also, as shown in FIG. 9, the laminate 32 including the organic layer 13 may be formed independently between each subpixel 101. In the example shown in FIG. 9, the first electrode 12 is shared between subpixels of the same color (subpixel 101B in the illustrated example). This is not limited to this example, and as shown in FIGS. 10 and 11, the laminate 32 including the organic layer 13 may be shared between subpixels 101.
  • Figs. 12 to 15 are plan views of the driving substrate 11 from the +Z direction.
  • the shape of the first electrode 12 in the sub-pixel 101 may be asymmetric (for example, a cross shape).
  • the first electrode 12 may be isolated in the sub-pixel 101.
  • the first electrode 12 may be composed of a plurality of electrodes formed at a distance from each other.
  • the shape or size of the first electrode 12 may be different in the driving substrate 11 or for each sub-pixel 101.
  • FIG. 16 is a diagram showing a cross-sectional configuration example of a display device (display device 10B) according to a first modified example.
  • the display device 10B has an auxiliary electrode 27.
  • the auxiliary electrode 27 is formed, for example, between the separation protective layer 19 and the second protective layer 21, and is connected to the second electrode 14 of each subpixel 101.
  • the second protective layer 21 is formed for the auxiliary electrode 27, and also functions as an auxiliary electrode protective layer that protects the auxiliary electrode 27.
  • the auxiliary electrode 27 electrically connects adjacent second electrodes 14 to each other.
  • the auxiliary electrode 27 connected to each second electrode 14 is connected to a cathode contact (not shown) in the peripheral region AR2.
  • the second protective layer 21, the auxiliary electrode 27, the second electrode 14, the organic layer 13, and the first electrode 12 are interposed between the end surface 23A of the groove portion 23 and the drive substrate 11.
  • the auxiliary electrode 27 is a transparent electrode that is transparent to light generated in the organic layer 13.
  • the transparent electrode also includes a semi-transparent reflective layer.
  • FIG. 17 is a diagram showing a cross-sectional configuration example of a display device (display device 10C) according to a second modified example.
  • the second electrode 14 and the organic layer 13 located below the end face 23A of the groove portion 23 are removed.
  • the second protective layer 21 and the first electrode 12 are interposed.
  • the groove portion 23 is provided, the extraction efficiency of the light emitted below the end face 23A is poor, and in some cases, the area may become black dot-like or color mixing may occur. Therefore, in this modified example, the second electrode 14 and the organic layer 13 at the area below the end face 23A of the groove portion 23 are removed.
  • the first electrode 12 is interposed between the end face 23A of the groove portion 23 and the drive substrate 11, and the second electrode 14 and the organic layer 13 are not interposed.
  • the area below the end face 23A of the groove portion 23 can be made a non-light-emitting area, and the above-mentioned inconvenience can be avoided.
  • the first electrode 12 located below the end surface 23A of the groove 23 may also be removed. With this configuration, the area below the end surface 23A of the groove 23 can be made a non-light-emitting area, and the above-mentioned inconvenience can be avoided.
  • (Third Modification) 19 is a diagram showing an example of a cross-sectional configuration of a display device (display device 10D) according to a third modified example.
  • a cathode contact 28 is formed on the interlayer insulating layer 11B located below the end face 23A of the groove portion 23.
  • the above-mentioned auxiliary electrode 27 may be connected to the cathode contact 28 formed on the interlayer insulating layer 11B. This eliminates the need to provide a cathode contact in the peripheral region AR2, allowing the entire display device to be miniaturized.
  • An insulating layer may be provided between the auxiliary electrode 27 and the first electrode 12.
  • FIG. 20 is a diagram showing a cross-sectional configuration example of a display device (display device 10E) according to a fourth modified example.
  • the basic configuration of the display device 10E is the same as that of the display device 10B described above. The difference is that the first electrode 12 located below the end face 23A of the groove portion 23 is removed, and an insulating layer 29 is formed in the removed area. In other words, the first electrode 12 is not interposed between the end face 23A of the groove portion 23 and the driving substrate 11, but the second electrode 14, the organic layer 13, and the insulating layer 29 are interposed.
  • This modified example also allows the area below the end face 23A to be a non-light-emitting area.
  • (Fifth Modification) 21 is a diagram showing an example of a cross-sectional configuration of a display device (display device 10F) according to a fifth modified example.
  • the display device 10F has all of the configurations of the display devices 10B, 10C, 10D, and 10E according to the modified examples. This makes it possible to achieve the effects described in each modified example.
  • the display device may have a sidewall protective film (also referred to as a sidewall, etc.) interposed between the side end surface of the organic layer 13, the second electrode 14, and the lower side surface of the first protective layer 18, and the separation protective layer 19. It is preferable that the sidewall protective film contacts the side end surface of the organic layer 13 and covers the entire side end area of the organic layer 13.
  • a sidewall protective film also referred to as a sidewall, etc.
  • the sidewall protective film is an insulating film, and is a processing by-product film that contains by-products (deposits) generated by the etching process.
  • the sidewall protective film assists in the formation of the isolation protective layer 19 while preventing the organic layer 13 from being exposed to the external environment. Note that, although either dry etching or wet etching can be used as the etching process, from the viewpoint of more reliably realizing the deposits, it is preferable that the etching process be a dry etching process.
  • a groove 23 is provided in the intra-pixel area ARA, and a refractive layer 22 is disposed in the groove 23, thereby enabling the light emitted by the light-emitting element 20 (particularly the light emitted near the outer periphery of the light-emitting element 20) to be effectively extracted to the outside.
  • the emission intensity in the intra-pixel area ARA is made non-uniform.
  • the display device is configured so that a first emission intensity in a first region between the end face 23A of the groove 23 in the intra-pixel area ARA and the drive substrate 11 is smaller than a second emission intensity in a second region other than the first region in the intra-pixel area ARA.
  • FIG. 22 is a partial cross-sectional view (an enlarged cross-sectional view of the peripheral area of the light-emitting element 20G) for explaining an example of the cross-sectional configuration of a display device (display device 10G) according to the second embodiment.
  • a first area ARC is set between the end face 23A of the groove portion 23 and the drive substrate 11, and a second area ARD other than the first area ARC in the intra-pixel area ARA is set.
  • a recess is formed at a predetermined location of the first electrode 12 located in the second region ARD.
  • a V-shaped recess 12A in cross section is formed on the first surface of the first electrode 12.
  • An organic layer 13, a second electrode 14, and a first protective layer 18 are laminated on the first surface side of the recess 12A.
  • the concave portion 12A has an inclined surface, so that the organic layer 13 is applied thinner to the concave portion 12A than to a flat portion.
  • the thickness of the organic layer 13 formed on the concave portion 12A is smaller than the thickness of the organic layer 13 formed on the flat portion.
  • the thickness of the organic layer 13 formed on the concave portion 12A is 60% to 70% of the thickness of the organic layer 13 formed on the flat portion.
  • the shape of the recess 12A is not limited to a V-shape.
  • the shape of the recess 12A may be semicircular (cone-shaped overall) in cross section.
  • the recess 12A may be formed by processing the first electrode 12, or may be formed by processing a layer in contact with the second surface of the first electrode 12.
  • a V-shaped recess may be formed in the interlayer insulating layer 11B, and the first electrode 12 may be formed on the first surface of the interlayer insulating layer 11B including the recess, thereby forming the recess 12A. Note that in FIGS. 23A and 23B, illustration of a contact connected to the first electrode 12 is omitted.
  • the display device 10G can be manufactured, for example, as follows. Here, the differences from the example manufacturing method of the display device 10A described in the first embodiment will be mainly described. After the first electrode 12 is formed on the interlayer insulating layer 11B, a resist is placed at an appropriate location on the first surface of the first electrode 12. Then, for example, the first electrode 12 is partially removed by wet etching to form a recess 12A, and the resist is then removed. The manufacturing method described in the first embodiment can be applied to the subsequent steps.
  • a recess is formed on the first surface of the interlayer insulating layer 11B by applying a photolithography technique. Then, the first electrode 12 is formed on the first surface of the interlayer insulating layer 11B to form the recess 12A.
  • the display device 10G may be configured to have an auxiliary electrode 27.
  • the principal ray of light emitted by the light emitting element 20 is tilted in an arbitrary direction.
  • a method of tilting the principal ray in an arbitrary direction can be to shift a color filter or an on-chip lens disposed above the light source. In this method, a part of the light that reaches the color filter from the light source is blocked, causing light attenuation.
  • the above-mentioned Patent Document 1 does not describe a method of controlling the light ray in an arbitrary direction.
  • FIG. 24 is a diagram showing an example of the cross-sectional configuration of a display device (display device 10H) according to the third embodiment.
  • Grooves 23R, 23G, and 23B are formed in the intra-pixel areas ARA of sub-pixels 101R, 101G, and 101B, respectively.
  • the center CE2 of the groove portion 23R in the sub-pixel 101R is offset to the left with respect to the center CE1 of the intra-pixel area ARA, and the groove portion 23R is generally inclined to the upper left with respect to the light emission direction.
  • the center CE2 of the groove portion 23G in the sub-pixel 101G is approximately coincident with the center CE1 of the intra-pixel area ARA.
  • the center CE2 of the groove portion 23B in the sub-pixel 101B is offset to the right with respect to the center CE1 of the intra-pixel area ARA, and the groove portion 23B is generally inclined to the upper right with respect to the light emission direction.
  • the center CE2 of the groove portion 23 means the center of the shape of the groove portion 23 when viewed in a plane, or the center of the shape formed by the outer edge of the groove portion 23.
  • a waveguide is formed along the inclination of the groove 23R and the groove 23B. That is, the light emitted by the light-emitting element 20R is emitted in the upper left direction along the waveguide corresponding to the inclination of the groove 23R, as shown in FIG. 25. Also, the light emitted by the light-emitting element 20G is emitted in the front direction along the waveguide corresponding to the inclination of the groove 23G, as shown in FIG. 25. Also, the light emitted by the light-emitting element 20B is emitted in the upper right direction along the waveguide corresponding to the inclination of the groove 23B, as shown in FIG. 25. Of course, the light emission direction shown in FIG. 25 is one example.
  • the groove 23G may have an inclination, and the light emitted by the light-emitting element 20G may be emitted in any direction along the waveguide corresponding to the inclination of the groove 23G.
  • the inclination of the groove 23 allows the main ray of the light emitted by the light-emitting element 20 to be tilted in any direction.
  • the display device 10H can be manufactured, for example, by the following method.
  • the following mainly describes the differences from the example of the manufacturing method of the display device described in the first embodiment.
  • the center CE2 of the end face of the groove 38A (the tip in the -Z direction, which faces the second electrode 14) is shifted from the center CE1.
  • the throw of the second protective layer 21 becomes asymmetric, and as a result, the inclination of the groove portion 23 becomes asymmetric between the left and right.
  • the groove portion 23 as a whole is inclined in a predetermined direction.
  • the inclination direction and inclination angle of the groove portion 23 can be formed to obtain the desired emission direction of light.
  • Fig. 26 and Fig. 27 are plan views of the drive substrate 11 from the +Z direction.
  • Fig. 26A to Fig. 26H show examples in which the center CE2 of the groove portion 23 is not misaligned with the center CE1 of the sub-pixel 101 in the intra-pixel area ARA.
  • Fig. 26A to Fig. 26D show examples in which the sub-pixels 101 are arranged in a delta arrangement
  • Fig. 26E to Fig. 26H show examples in which the sub-pixels 101 are arranged in a square arrangement.
  • FIGS. 27A to 27H show an example in which the center CE2 of the groove 23 is offset from the center CE1 of the subpixel 101 in the pixel area ARA.
  • FIGS. 27A to 27H corresponds to each of FIGS. 26A to 26H.
  • FIGS. 27A to 27H shows an example in which the center CE2 of the groove 23 in each of FIGS. 26A to 26H is offset to the lower right as one faces the drawing.
  • FIGS. 27A to 27D show an example in which the subpixels 101 are arranged in a delta arrangement
  • FIGS. 27E to 27H show an example in which the subpixels 101 are arranged in a square arrangement. Note that the direction of offset of the center CE2 shown in FIGS. 27A to 27H is just an example, and the center CE2 may be offset to the upper left or the like, for example.
  • the display device 10G may have an auxiliary electrode 27.
  • a space (gap) rather than a refractive layer 22 may be formed in the groove 24 in the inter-pixel region ARB.
  • the organic layer 13 may be a common configuration for the sub-pixels 101.
  • a groove portion 23 is provided in the intra-pixel area ARA, and a refractive layer 22 is disposed in the groove portion 23, so that light emitted by the light-emitting element 20 (particularly light emitted near the outer periphery of the light-emitting element 20) can be effectively extracted to the outside.
  • a color filter is disposed in the emission direction of the refracted light, the light passing between the color filters of different colors is attenuated. In other words, the light extraction efficiency in the display device is reduced.
  • This embodiment is an embodiment that addresses such a problem.
  • [Example of the configuration of a display device] 28 shows an example of a cross-sectional configuration of a display device (display device 10I) according to a fourth embodiment.
  • the display device 10I has a color filter unit 41.
  • the color filter unit 41 is formed on, for example, a first surface of the refractive layer 22.
  • a planarization layer or the like may be interposed between the color filter unit 41 and the refractive layer 22.
  • An example of the color filter unit 41 is an on-chip color filter (OCCF).
  • the color filter section 41 has a plurality of color filters 42 that are provided according to the color type of the sub-pixel 101.
  • the color filters 42 that the color filter section 41 has include a red color filter (red filter 42R), a green color filter (green filter 42G), and a blue color filter (blue filter 42B).
  • the red filter 42R, the green filter 42G, and the blue filter 42B are provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively.
  • By providing the color filter section 41 in the display device 10I light corresponding to the color types of the sub-pixels 101R, 101G, and 101B can be effectively extracted to the outside. Note that when there is no need to distinguish between the individual color filters, they are collectively referred to as color filters 42 as appropriate.
  • an organic material can be used as the material of the color filters 42.
  • a reflective partition section 43 is provided between adjacent color filters 42.
  • the reflective partition section 43 is made of a material with a lower refractive index (e.g., 1.6 or less) than the refractive index of the material constituting the color filters 42.
  • the material of the reflective partition section 43 may be, for example, an insulating material or a resin material similar to that of the refractive layer 22. Note that the material of the reflective partition section 43 does not necessarily have to be the same material as that of the refractive layer 22, and the reflective partition section 43 may be formed of a material different from that of the refractive layer 22.
  • the reflective partition section 43 may also be an air layer.
  • FIG. 29 is a diagram for explaining the operation of the display device 10I according to this embodiment.
  • the light emitted near the outer periphery of the light-emitting element 20 (indicated by an arrow in FIG. 29) is refracted at the interface with different refractive indexes and heads toward the color filter section 41, as in the first embodiment. Some of the light heads toward the gap between the color filters 42.
  • a reflective partition section 43 is formed between the color filters 42.
  • the light is refracted at the reflective partition section 43, in other words, at the interface with different refractive indexes, and the light heads toward the front direction. This makes it possible to suppress the attenuation of the light emitted by the light-emitting element 20 between the color filters as in the conventional case, and to further improve the light extraction efficiency.
  • the material of the reflective partition section 43 is uniformly applied onto the first surface of the refractive layer 22 to form the reflective partition layer 43A.
  • unnecessary portions of the reflective partition layer 43A are removed by photolithography or dry etching to form the reflective partition section 43.
  • color filters 42 are formed in the portions from which the reflective partition layer 43A has been removed, and the color filters 42 corresponding to all the colors are formed to form the color filter section 41.
  • the color filters 42 are formed, for example, sequentially for each color filter of a different color.
  • the height (length in the Z direction) of the reflective partition wall portion 43 and the height of the color filter 42 are described as being substantially the same height, but as shown in FIG. 32A, the height of the reflective partition wall portion 43 may be greater than the height of the color filter 42. Also, as shown in FIG. 32B, the height of the reflective partition wall portion 43 may be smaller than the height of the color filter 42. Also, as shown in FIG. 33, the shape of the color filter 42 may be a mountain shape (a mountain shape that becomes wider toward the first surface side). And, the reflective partition wall portion 43 may be formed between the adjacent color filters 42.
  • the material of the reflective partition wall portion 43 may be the same as or different from the material of the refractive layer 22.
  • the reflective partition wall portion 43 may be an air layer.
  • the reflective partition wall portion 43 may be extended to such an extent that the side end surface of the reflective partition wall portion 43 and the outer side end surface of the second protective layer 21 are in contact with each other.
  • the reflective partition portion 43 may have the function of the refractive layer 22 disposed in the inter-pixel region ARB.
  • a lens 45 may be formed on the first surface of the color filter 42.
  • the lens 45 is provided, for example, in a layout corresponding to each sub-pixel 101.
  • the lens 45 is preferably an on-chip lens (OCL).
  • the shape of the lens 45 is not particularly limited.
  • An example of the lens 45 is a lens formed in a convex shape having a curved surface that is convexly curved on the first surface side (a so-called convex lens).
  • the material of the reflective partition 43 may be the same as that of the lens 45, or may be a different material. As shown in FIG. 36, the reflective partition 43 may extend to the lower side of the lens 45, or may extend to approximately the same height as the lens 45, or may extend to the upper side of the lens 45, as shown in FIG. 37.
  • Figures 38A and 38B are plan views of the arrangement of color filters 42.
  • color filters 42 have a hexagonal shape as shown in Figure 38A
  • the acute angles of color filters 42 may be eliminated as shown in Figure 38B
  • reflective partitions 43 may be formed in the resulting space (areas surrounded by dotted lines in Figure 38B).
  • a fifth embodiment will be described.
  • the display device has an auxiliary electrode (for example, the auxiliary electrode 27, see FIG. 16)
  • the light emitted from the light emitting element 20 is absorbed by the auxiliary electrode 27, and the light emitting efficiency is reduced.
  • a method of reducing the thickness of the auxiliary electrode 27 is considered.
  • the auxiliary electrode 27 is made thin, there is a high possibility that a step will be disconnected at the step, and there is also a possibility that the auxiliary electrode 27 will have a high resistance, which will cause an increase in the driving voltage and shading.
  • This embodiment is an embodiment that addresses such a problem.
  • the auxiliary electrode 27 while ensuring electrical connection between the auxiliary electrode 27 and the second electrode 14 of each subpixel 101, the auxiliary electrode 27 is partially removed compared to the conventional configuration, thereby reducing the area of the auxiliary electrode 27 arranged in the light emission direction (e.g., the upward direction (+Z direction) of the light-emitting element 20). This suppresses light absorption in the auxiliary electrode 27 and suppresses a decrease in light emission efficiency. Since there is no need to reduce the thickness of the auxiliary electrode 27, the resistance of the auxiliary electrode 27 does not increase, and the above-mentioned inconveniences caused by high resistance can be avoided.
  • FIG. 39 is a partial cross-sectional view (enlarged view of the peripheral cross-section of the light-emitting element 20G) for explaining a cross-sectional configuration example of the display device according to this embodiment.
  • the auxiliary electrode 27 is connected near the outer periphery of the first surface of the second electrode 14. This makes it possible to reduce the area of the auxiliary electrode 27 arranged in the upward direction of the light emitted by the light-emitting element 20, thereby suppressing the absorption of light by the auxiliary electrode 27.
  • the end surface 23A of the groove portion 23 is in contact with the first surface of the second electrode 14.
  • the refractive layer 22 is in partial contact with the first surface of the second electrode 14. This configuration is not limited to this, and as shown in FIG. 40, the second electrode 14 located below the refractive layer 22 may be partially removed by etching or the like.
  • FIG. 41 is a partial cross-sectional view for explaining a cross-sectional configuration example of the display device according to this embodiment.
  • This example is an example in which the second protective layer 21 is left on the first surface of the second electrode 14 in the configuration shown in FIG. 40.
  • This example also provides the same effect as that obtained by the configuration shown in FIG. 40.
  • the shape of the second protective layer 21 in contact with the first surface of the second electrode 14 can be changed as appropriate.
  • the shape of the second protective layer 21 in contact with the first surface of the second electrode 14 was a layer, but it may be an independent columnar shape (square prism shape) as shown in FIG. 42, or two columnar shapes (square prism shapes) arranged at a distance as shown in FIG.
  • the refractive layer 22 is disposed in the comb-tooth groove portion 23 in the same manner as in the first embodiment. As shown in Figure 45, the refractive layer 22 may be a void portion 22A.
  • the display device according to this embodiment can be manufactured by forming the auxiliary electrode 27 and the second protective layer 21, and then etching away unnecessary areas.
  • the other steps can be the same as those described in the first embodiment.
  • the area of the auxiliary electrode 27 arranged in the emission direction of the light emitted by the light-emitting element 20 can be made smaller.
  • the auxiliary electrode 27 serves as a wall portion for the optical path of the light emitted in a diagonal horizontal direction. There is little need to transmit the light emitted in a diagonal horizontal direction. In other words, there is less need to use a material with high transmittance for the auxiliary electrode 27 so that light can easily pass through.
  • the auxiliary electrode 27 can be made of, for example, a conductive material with low transmittance (e.g., aluminum, copper, silver, magnesium, or an alloy mainly composed of these metals).
  • the auxiliary electrode 27 can function as a reflective wall.
  • the light emitted by the light-emitting element 20 (indicated by the arrow) that travels diagonally horizontally can be reflected by the auxiliary electrode 27.
  • the reflected light may travel directly to the outside, or may be refracted by the refractive layer 22 in the groove 23 before traveling to the outside. This can improve the light extraction efficiency.
  • a contact between the second electrode 14 and the auxiliary electrode 27 is provided on the first surface of the second electrode 14, but the position of the contact can be changed as appropriate.
  • the second electrode 14 and the auxiliary electrode 27 may be electrically connected via a contact formed in the interlayer insulating layer 11B in the subpixel 101.
  • the auxiliary electrode 27 may be connected to the sidewall of the second electrode 14 (the surface connecting the first surface and second surface of the second electrode 14).
  • Fig. 48 is a diagram showing an example of a cross-sectional configuration of a display device (a display device 10J) according to the sixth embodiment.
  • the display device 10J is substantially the same as the example configuration of the display device 10B (see FIG. 16). The following will focus on the differences.
  • the drive substrate 11 has a connection terminal 151 (power supply terminal) inside the outer periphery (near the outer edge).
  • the connection terminal 151 is formed, for example, inside the interlayer insulating layer 11B along the Z direction, and its end face is exposed on the first surface of the interlayer insulating layer 11B.
  • the auxiliary electrode 27 is connected to the end face (exposed portion) of the connection terminal 151. Note that, compared to FIG. 16, the corners of some of the components are rounded in FIG. 48, but they may be corners rather than rounded.
  • the driving substrate 11 further has a reflective layer and a pixel connection terminal connected to the first electrode 12. Specifically, the reflective layer and the pixel connection terminal are provided inside the interlayer insulating layer 11B of the driving substrate 11.
  • a reflective layer is provided for each pixel, for example.
  • a reflective layer 152R is provided for the sub-pixel 101R
  • a reflective layer 152G is provided for the sub-pixel 101G
  • a reflective layer 152B is provided for the sub-pixel 101B.
  • the reflective layers are arranged, for example, so that their heights (positions in the Z direction) are different. When it is not necessary to distinguish between the individual reflective layers, they are collectively referred to as reflective layer 152 as appropriate.
  • the width (length in the X direction) of the reflective layer 152 is set to be at least greater than the width of the light-emitting element 20.
  • the reflective layer 152 is not limited to a specific material as long as it can reflect the light emitted by the light emitting element 20, but an example is one that contains at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), gold (Au) and copper (Cu).
  • the metal layer may contain at least one of the above metal elements as a constituent element of an alloy. Specific examples of alloys include an MgAg alloy and an AgPdCu alloy.
  • a pixel connection terminal is provided for each pixel, for example.
  • pixel connection terminal 153R is provided for sub-pixel 101R
  • pixel connection terminal 153G is provided for sub-pixel 101G
  • pixel connection terminal 153B is provided for sub-pixel 101B. Note that when there is no need to distinguish between the individual pixel connection terminals, they are collectively referred to as pixel connection terminals 153 as appropriate.
  • the pixel connection terminal 153 is formed, for example, inside the interlayer insulating layer 11B along the Z direction and is connected to the first electrode 12.
  • the pixel connection terminal 153 is formed of a conductive material such as metal, and supplies a current to the first electrode 12. Note that the pixel connection terminal 153 may or may not be electrically connected to the reflective layer 152.
  • a first contact portion CT1 is formed, which is the connection point between the pixel connection terminal 153 and the first electrode 12.
  • a second contact portion CT2 is formed, which is the connection point between the auxiliary electrode 27 and the second electrode 14.
  • the first contact portion CT1 and the second contact portion CT2 are formed for the other sub-pixels 101R and 101G.
  • a resonator structure (microcavity) can be formed, and the light emitted to the outside can be enhanced. That is, as shown diagrammatically by the arrows in FIG. 49, the light emitted by the light-emitting element 20 can be made to travel back and forth through the reflective layer 152 and resonated, thereby enhancing the light emitted to the outside. Note that the resonator structure described below can also be applied to this embodiment.
  • the pixel connection terminal 153 is provided, so the microcavity effect due to the resonator structure decreases, and the light intensity decreases.
  • the light emitted from the light-emitting element 20 is absorbed by the auxiliary electrode 27, and the light intensity decreases.
  • the area where light intensity is reduced when the display device 10J is viewed in a plan view, if the area of the first contact portion CT1 and the area of the second contact portion CT2 are arranged so that they do not overlap, the area where light intensity is reduced will be large. Therefore, in this embodiment, when the first contact portion CT1 and the second contact portion CT2 of the display device 10J are viewed in a plan view, the area where light intensity is reduced is reduced as much as possible by arranging the area where the first contact portion CT1 and the area where the second contact portion CT2 overlap so that the area of one contact portion is encompassed by the other contact portion. This makes it possible to minimize the reduction in light intensity.
  • Figure 50 is a plan view of a specific subpixel from the +Z direction.
  • the organic layer 13, the first contact portion CT1, and the second contact portion CT2 are shown, with each region indicated by a different type of dot.
  • the organic layer 13, the first contact portion CT1, and the second contact portion CT2 have, for example, a circular shape.
  • the area of the first contact portion CT1 overlaps with the area of the second contact portion CT2. More specifically, the area of the first contact portion CT1 is contained within the area of the second contact portion CT2. Note that the area of the second contact portion CT2 exists above the first contact portion CT1 shown in FIG. 50.
  • FIG. 51 is a cross-sectional view for explaining a modified example of the display device 10J.
  • the second contact portion CT2 has an annular (ring-shaped) shape.
  • the first contact portion CT1 is formed at a plurality of locations discretely with respect to the shape of the second contact portion CT2.
  • four pixel connection terminals 153 are connected to the first electrode 12 of one subpixel, thereby forming four first contact portions CT1.
  • the four first contact portions CT1 are arranged at intervals of approximately 90 degrees with respect to the annular second contact portion CT2.
  • the pixel connection terminal 153 on the back side which is not actually shown in the cross section, is also illustrated.
  • the configuration of the display device according to this modified example can also form a resonator structure, so that the light intensity of the light emitted to the outside can be increased.
  • FIG. 53 is a plan view of a specific subpixel from the +Z direction.
  • the second contact portion CT2 has an annular (ring-shaped) shape that surrounds the vicinity of the outer edge of the circular organic layer 13.
  • the four first contact portions CT1 are arranged at intervals of approximately 90 degrees, and each is contained within the region of the second contact portion CT2. Note that the region of the second contact portion CT2 exists above the first contact portion CT1 shown in FIG. 53.
  • This modified example also makes it possible to minimize the decrease in the light intensity of the emitted light.
  • FIG. 54 is a cross-sectional view for explaining another modified example of the display device 10J.
  • the second contact portion CT2 has an annular (ring-shaped) shape.
  • the first contact portion CT1 has an annular (ring-shaped) shape similar to the shape of the second contact portion CT2.
  • the configuration of the display device according to this modified example also makes it possible to form a resonator structure as shown in FIG. 55, so that the light intensity of the light emitted to the outside can be increased.
  • the 56 is a plan view of a specific subpixel from the +Z direction.
  • the first contact portion CT1 and the second contact portion CT2 have an annular (ring-shaped) shape that surrounds the vicinity of the outer edge of the circular organic layer 13. That is, the shape of the first contact portion CT1 is concentric with the shape of the second contact portion CT2.
  • the region of the first contact portion CT1 is included within the region of the second contact portion CT2. Note that the region of the second contact portion CT2 exists above the first contact portion CT1 shown in FIG. 56. This modified example can also minimize the decrease in the light intensity of the emitted light.
  • the area of the first contact portion CT1 is contained within the area of the second contact portion CT2, but the area of the second contact portion CT2 may be contained within the area of the first contact portion CT1. Also, the area of the first contact portion CT1 and the area of the second contact portion CT2 may be of equal size and completely overlap each other. This also applies to the modified example of this embodiment.
  • Fig. 57A to Fig. 57E are plan views of each component viewed from the +Z direction.
  • Fig. 57A shows an example in which the region of the first contact portion CT1 is included in the region of the second contact portion CT2, and both overlap near the center of the organic layer 13.
  • Fig. 57B shows an example in which the region of the second contact portion CT2 is included in the region of the first contact portion CT1, and both overlap near the center of the organic layer 13.
  • the region of the first contact portion CT1 may be larger than the region of the second contact portion CT2, and the region of the second contact portion CT2 may be included in the region of the first contact portion CT1.
  • the size of the region of the first contact portion CT1 and the size of the region of the second contact portion CT2 may be equal, and the two may completely overlap. This case is also included in the inclusion referred to in this specification.
  • a lens 45 (an example of a light collecting section) may be provided.
  • the lens 45 has the property of efficiently collecting light emitted near its center. Therefore, it is preferable that the overlapping portion of the first contact portion CT1 and the second contact portion CT2, in other words, the portion where the light intensity of the light emitted to the outside is reduced, is offset (displaced) from the center of the lens 45. For example, as shown in FIG. 57C, the overlapping portion of the first contact portion CT1 and the second contact portion CT2 is offset from the center of the lens 45.
  • the overlapping portion of the first contact portion CT1 and the second contact portion CT2 is offset from the center of the lens 45.
  • Fig. 58 is a diagram showing an example of a cross-sectional configuration of a display device (display device 10K) according to the seventh embodiment.
  • the display device 10K is substantially the same as the configuration example of the display device 10A (see FIG. 2).
  • FIG. 58 also illustrates the configuration related to the color filter 42 and the lens 45.
  • the configuration example of the display device 10K will be described, focusing on the differences from the display device 10A.
  • the display device 10K has a planarization layer 155 between the refractive layer 22 and the color filter 42. However, the planarization layer 155 may not be present. A planarization layer may be present between the color filter 42 and the lens 45.
  • the first protective layer 18 is formed from the intra-pixel area ARA to the inter-pixel area ARB, and the separation protective layer 19 and the second protective layer 21 are formed for each pixel. In this embodiment, the first protective layer 18 is formed between the end face 23A of the groove portion 23 and the first surface of the second electrode 14, but the first protective layer 18 in this location may not be present.
  • a multilayer structure in which two or more layers are stacked is formed inside the groove portion 23 in the intra-pixel area ARA.
  • a multilayer structure in which an intra-groove refractive layer 22B, an isolation protective layer 19, and a refractive layer 22 are stacked from the end face 23A side of the groove portion 23 is formed inside the groove portion 23.
  • the intra-groove refractive layer 22B is formed, for example, from the same material as the refractive layer 22.
  • the isolation protective layer 19 is formed so as to straddle the groove portion 23.
  • the multilayer structure according to this embodiment is a three-layer structure from the viewpoint of the layer boundaries, and a two-layer structure from the viewpoint of the materials of each layer.
  • the refractive index of each layer forming the multilayer structure is different from one another.
  • the refractive layer 22 in the groove portion 23 and the in-groove refractive layer 22B are formed from a material with the same refractive index
  • the separation protective layer 19 is formed from a material with a refractive index higher than the refractive index of the refractive layer 22 and the in-groove refractive layer 22B.
  • Figure 59A shows an example of the cross-sectional configuration of a display device according to a comparative example
  • Figure 59B shows an example of the cross-sectional configuration of the display device K according to this embodiment.
  • the inside of the groove portion 23 of the display device according to the comparative example has a single-layer structure consisting of only the refractive layer 22.
  • the arrows in Figures 59A and 59B also show schematic representations of light emitted from the light-emitting element 20 (e.g., light-emitting element 20G).
  • the efficiency of extracting light to the outside is improved.
  • light emitted particularly outside the end face 23A of the groove 23 tends to spread outward due to the refraction action of the refractive layer 22 that constitutes the single-layer structure. This may result in a decrease in the intensity of light emitted in the front direction of the light-emitting element 20 (for example, the upper part (+Z direction) of the light-emitting element 20G in FIG. 59A).
  • the refraction effect in the multi-layer structure can be slightly reduced, and the light can be prevented from spreading outward. Therefore, as shown in FIG. 59B, it is possible to emit light emitted by the light-emitting element 20 (particularly light emitted near the end of the light-emitting element 20) in the front direction without diffusing it outward as much as possible. This makes it possible to prevent a decrease in light intensity in the front direction. Furthermore, because light diffusion can be suppressed, the occurrence of color mixing can be suppressed, and color purity can be improved.
  • the light-emitting element 20 is formed by stacking the first electrode 12, the organic layer 13, and the second electrode 14 on the first surface of the interlayer insulating layer 11B.
  • a first protective layer 18 is formed over the entire first surface side of the drive substrate 11 by an appropriate method such as CVD or vapor deposition.
  • an opening 18A is formed in the first protective layer 18 by an appropriate method such as dry etching.
  • a groove refractive layer 22B is formed within the opening 18A.
  • a separation protective layer 19 and a second protective layer 21 are formed over the entire surface by an appropriate method such as vapor deposition or sputtering.
  • an opening 21A is formed in the second protective layer 21 by, for example, dry etching.
  • the opening 18A and the opening 21A in the intra-pixel area ARA form part of the groove portion 23.
  • the display device 10K according to this embodiment is formed as shown in FIG. 62B. Note that, depending on the steps of the manufacturing method, the corners of each layer constituting the display device 10K may be rounded (curved).
  • a light-emitting element 20 is formed by stacking a first electrode 12, an organic layer 13, and a second electrode 14 on a first surface of an interlayer insulating layer 11B.
  • the groove refractive layer 22B, the separation protective layer 19, and the refractive layer 22 are laminated near the center of the second surface of the second electrode 14 to form a laminate.
  • columnar refraction layers 22 are further formed at intervals on both sides of the laminate.
  • a first protective layer 18, a separation protective layer 19, and a second protective layer 21 are sequentially laminated in the gap (between the laminate and the refractive layers on both sides of it) formed in the process shown in FIG. 63C, thereby forming the display device 10K according to this embodiment.
  • the width of the light-emitting region of the subpixel is greater than the width of the end face 23A of the groove portion 23 and the width of the boundary portion of the layer that is first present in the +Z direction from the end face 23A of the groove portion 23.
  • the width of the light-emitting region is determined, for example, by the width of the organic layer 13.
  • the width of the light-emitting region may be determined by the distance between the right end of the interpixel insulating layer 16 arranged on the left side of the light-emitting element 20 and the left end of the interpixel insulating layer 16 arranged on the right side of the light-emitting element 20.
  • a carrier injection layer 156 may be provided between the first electrode 12 and the second electrode 14. Examples of the carrier injection layer 156 include an electron injection layer that promotes the injection of electrons and a hole injection layer that promotes the injection of holes. In this case, the width of the light-emitting region may be determined by the width (length in the X direction) of the carrier injection layer 156.
  • FIG. 66 is a diagram for explaining the effect (simulation results) obtained in this embodiment.
  • FIG. 66 is a graph showing the stimulus values (relative values) of the pixels of each color in the structure of display device 10K in the case of a conventional structure, i.e., a single-layer structure inside groove portion 23, and a stimulus value of the pixel of each color (RGB) being 1.
  • the stimulus value of each color can be made larger than that of the conventional structure.
  • the location of the inner groove refraction layer 22B may be the first protective layer 18.
  • a bridge structure may be formed in which the first protective layer 18 and the separate protective layer 19 straddle the inside of the groove 23.
  • the second protective layer 21 may be formed to straddle the inside of the groove 23.
  • an in-groove refraction layer (in-groove refraction layer 157), may be configured to span the inside of the groove 23.
  • the in-groove refraction layer 22B may not be present, and the in-groove refraction layer 157 may be formed across the area where the in-groove refraction layer 22B is disposed.
  • the material of the in-groove refraction layer 157 is not particularly limited, but it is preferable that the material has a lower refractive index than the in-groove refraction layer 19 and the second protective layer 21.
  • the first protective layer 18 located on the end surface 23A of the groove portion 23 may have a metamaterial structure. Furthermore, if the first protective layer 18 is not present on the end surface 23A of the groove portion 23, the first surface of the second electrode 14 may have a metamaterial structure as shown in FIG. 71.
  • An example of a metamaterial structure is a concave-convex shape, but this is not limited to this and any known shape can be applied.
  • bridge structure BR The component (e.g., isolation protective layer 19) that spans groove portion 23 is referred to as bridge structure BR.
  • Figures 72A to 72F are plan views of such bridge structure BR.
  • the bridge structure BR when the sub-pixels are arranged in a square, the bridge structure BR may be independent for each sub-pixel.
  • the bridge structure BR when the sub-pixels are arranged in a square, the bridge structure BR may be common to sub-pixels adjacent in the X direction, for example.
  • Figure 72C when the sub-pixels are arranged in a square, the bridge structure BR may be common to sub-pixels adjacent in the X and Y directions, for example.
  • the bridge structure BR when the sub-pixels are arranged in a delta configuration, the bridge structure BR may be independent for each sub-pixel. As shown in FIG. 72E, when the sub-pixels are arranged in a delta configuration, the bridge structure BR may be common to sub-pixels adjacent in the X direction, for example. As shown in FIG. 72F, when the sub-pixels are arranged in a delta configuration, the bridge structure BR may be common to sub-pixels adjacent in the X and Y directions, for example.
  • FIG. 73 lines A-A, B-B, and C-C are defined to define a specific layer of the display device 10K.
  • FIG. 74A is a plan view of the A-A line.
  • FIG. 74B is a plan view of the B-B line.
  • the refractive layer 22 may be illustrated.
  • FIG. 74C is a plan view of the C-C line.
  • the shape of the groove inner refractive layer 22B when viewed in plan may be, for example, a shape that combines a circle and a cross shape. As shown in FIG.
  • the shape of the refractive layer 22 in the groove 23 when viewed in plan may be, for example, a shape that combines a circle and a cross shape. This increases the surface area of the groove inner refractive layer 22B and the refractive layer 22, making it possible to efficiently guide the light emitted from the light emitting element 20 in the forward direction.
  • the second electrode 14 of the display device 10K may be common between the subpixels.
  • the display device 10K may have an auxiliary electrode 27.
  • a protective layer may be provided on the upper part of the lens 45, or a protective layer and an adhesive layer may be provided on the upper part of the lens 45, and a substrate may be provided on the upper part of the protective layer and an adhesive layer.
  • a pixel unit is made up of a predetermined number of sub-pixels. At least one pixel constituting the pixel unit has a shape different from the other pixels.
  • FIG. 76 is a plan view of a pixel unit (pixel unit 165) according to this embodiment.
  • pixel unit 165 is made up of three sub-pixels (sub-pixels 101R, 101G, and 101B). Note that pixel unit 165 may include sub-pixels of colors different from RGB, or may include multiple (e.g., two) sub-pixels of the same color (e.g., blue sub-pixels).
  • the first electrode 12 is provided for each subpixel, and the laminate of the organic layer 13 and the second electrode 14 is connected between the subpixels.
  • the subpixel 101R has a groove 23.
  • An auxiliary electrode 27 is connected to the second electrode 14 of the subpixel 101R.
  • the subpixels 101G and 101B do not have a groove 23.
  • This structure makes it possible to suppress the decrease in light intensity and the decrease in light extraction efficiency that may occur at the end surface 23A of the groove 23 within one pixel unit, and to improve the light extraction efficiency of the entire one pixel unit.
  • the subpixel in which the groove 23 is provided is the subpixel 101R, but it may be the subpixel 101G or the subpixel 101G.
  • Figure 77 is a plan view of another pixel unit (pixel unit 165A).
  • subpixel 101R has a configuration in which an auxiliary electrode 27 is connected to the second electrode 14.
  • subpixels 101G and 101B have a configuration in which an auxiliary electrode 27 is connected to the second electrode 14, and the auxiliary electrode 27 is further connected to a cathode contact 28 within the subpixel.
  • Figure 78 is a partial cross-sectional view of pixel portion 165A taken along cutting line XA-XA shown in Figure 77.
  • Subpixel 101R has a configuration in which an auxiliary electrode 27 is connected to the second electrode 14. This shape has already been described with reference to Figure 16, so a duplicated description will be omitted.
  • Subpixel 101G (similar to subpixel 101B) has a configuration in which an auxiliary electrode 27 is connected to a cathode contact 28. This shape has already been described with reference to Figure 19, so a duplicated description will be omitted.
  • sub-pixels 101R and 101G have grooves 23. However, no light is emitted from end faces 23A, which are the bottoms of grooves 23. Therefore, there is no risk of the above-mentioned reduction in light intensity or reduction in light extraction efficiency occurring. This makes it possible to achieve the effects obtained by the shapes of sub-pixels 101R and 101G in the overall display.
  • a subpixel in one pixel portion has a groove portion 23
  • the shape of the other subpixels does not have a groove portion 23 or does not emit light near the end surface 23A of the groove portion 23.
  • Fig. 79 is a diagram showing an example of a cross-sectional configuration of a display device (display device 10L) according to the ninth embodiment.
  • display device 10L has a configuration that is substantially the same as that of display device 10B. Below, we will focus on the differences in configuration from display device 10B.
  • the display device 10L has a color filter section 41 arranged in the emission direction of light emitted from the sub-pixel.
  • the color filter section 41 has a plurality of color filters 42.
  • the sub-pixel 101R has a red filter 42R.
  • the sub-pixel 101G has a green filter 42G.
  • the sub-pixel 101B has a blue filter 42B.
  • the second surface which is the lower surface of the color filter 42, is in contact with the first surface, which is the upper surface of the second protective layer 21.
  • the second surface of the color filter 42 and the first surface of the second protective layer 21 do not necessarily need to be in contact with each other.
  • the display device 10A see FIG.
  • a refractive layer 22 may be formed over the entire first surface side of the second protective layer 21.
  • the second surface of the color filter 42 and the first surface of the second protective layer 21 may be in contact with each other via a planarization layer (not shown).
  • a refractive layer 22 is also provided in the intra-pixel area ARA and the inter-pixel area ARB.
  • the color filter 42 has a through portion 167A where the refractive layer 22 penetrates at least a part of the height direction of the color filter 42 (the Z direction in FIG. 79, which corresponds to the thickness of the color filter 42), and a non-through portion 167B where the refractive layer 22 does not penetrate the height direction of the color filter.
  • “through” does not necessarily have to penetrate the entire height direction of the color filter 42, but can also penetrate partway through the height direction.
  • the function of the display device 10L is substantially the same as that of the display device 10A (see FIG. 4).
  • the refractive layer 22 penetrates part of the height of the color filter 42, in other words, the refractive layer 22 extends further upward (in the +Z direction), so that the refractive layer 22 can refract light even in the upper part of the display device 10L. This can further improve the efficiency of light extraction to the outside. In addition, light leakage to adjacent pixels can be suppressed, improving color purity.
  • a refractive layer 22 is formed throughout the groove portion 23 and on the first surface side of the second protective layer 21.
  • unnecessary portions of the refractive layer 22 are removed by an appropriate method such as etching.
  • the second protective layer 21 is also removed at the same time to a predetermined thickness, thereby forming multiple columnar refractive layers 22 as shown in FIG. 82.
  • the color filters 42 are formed.
  • the color filters 42 are formed, for example, sequentially for each color filter of a different color.
  • the color filter portion 41 is formed by forming color filters 42 corresponding to all the color types. Through this process, the through portion 167A and the non-through portion 167B are formed, as shown in FIG. 83.
  • a lens 45 is formed on the first surface of the color filter portion 41, thereby completing the display device 10L.
  • Fig. 85A shows an example of the cross-sectional configuration of the display device 10L described above.
  • the columnar refractive layer 22 may penetrate the entire height of the color filter 42.
  • the first surface which is the upper surface of the refractive layer 22, may reach the boundary between the color filter 42 and the lens 45.
  • This example also provides the same effect as the display device 10L.
  • the upper end of the refractive layer 22 may extend to the lens 45.
  • the upper end of the refractive layer 22 may extend to approximately the same height as the vicinity of the top of the lens 45. This example also provides the same effect as the display device 10L.
  • the refractive layer 22 formed in the inter-pixel region ARB may penetrate at least a portion of the height of the color filter 42, and the refractive layer 22 formed in the intra-pixel region ARA may not penetrate the color filter 42.
  • This configuration example can be manufactured, for example, by forming a columnar refractive layer 22, then first removing the refractive layer 22 formed in the intra-pixel region ARA, and then forming the color filter 42.
  • the configuration example shown in FIG. 87B is obtained by adding an insulating layer 168 to the configuration example shown in FIG. 85A.
  • the insulating layer 168 is disposed, for example, below the end face 23A of the groove 23.
  • the lower side of the end face 23A of the groove 23 can be made into a non-light-emitting region. Light emitted near the end face 23A of the groove 23 is not easily refracted by the refractive layer 22, and there is a risk of light leaking to adjacent pixels.
  • the lower side of the end face 23A of the groove 23 can be made into a non-light-emitting region, so that the occurrence of such light leakage can be suppressed.
  • the configuration example shown in FIG. 87B can be manufactured by forming the insulating layer 168 first and then forming the organic layer 13 in the process of forming the light-emitting element 20.
  • subpixel 101R has a configuration in which a first subpixel element 101Ra and a second subpixel element 101Rb are arranged on the left and right.
  • Each subpixel element has a light-emitting element 20R and a first protective layer 18 laminated on the first surface of the second electrode 14.
  • a separation protective layer 19 is formed between the subpixel elements.
  • a columnar refractive layer 22 is provided between these subpixel elements.
  • a red filter 42R, a planarization layer 169, and a lens 45 are laminated in this order.
  • the auxiliary electrode 27 is routed around the periphery of the red filter 42R and branches halfway. One of the branched electrodes is connected to the second electrode 14. In addition, the other branched electrode is routed to an adjacent subpixel element along the upper part of the separation protective layer 19 and the refractive layer 22, and is connected to the second electrode 14 of the adjacent subpixel element.
  • the refractive layer 22 penetrates the entire height of the red filter 42R, more specifically, up to the planarization layer 169, but it may also penetrate only a portion of it. This example makes it possible to further improve the light extraction efficiency.
  • the refractive layer 22 formed in the intrapixel area ARA may have a tapered shape toward the -Z direction
  • the refractive layer 22 formed in the interpixel area ARB may have a reverse tapered shape toward the -Z direction.
  • a first electrode 12, an organic layer 13, a second electrode 14, and a first protective layer 18 are formed on a first surface of the interlayer insulating layer 11B.
  • a resist 171 is placed on the first surface of the first protective layer 18.
  • an auxiliary electrode 27 is formed on the sidewall of the first protective layer 18 by an appropriate method such as vapor deposition or CVD.
  • the isolation protective layer 19 is formed by an appropriate method such as vapor deposition or sputtering.
  • the refractive layer 22 is formed. Then, as shown in FIG. 91A, openings are formed in the refractive layer 22 by photolithography or the like. Through this process, columnar refractive layers 22 are formed between the openings.
  • an auxiliary electrode 27 is formed by an appropriate method such as dry etching over the first surface side of the first protective layer 18 and the first surface side of the refractive layer 22, and so as to connect to the auxiliary electrode 27 formed on the side wall of the first protective layer 18.
  • a red filter 42R is formed in the opening of the refractive layer 22.
  • a planarization layer 169 is formed.
  • a lens 45 is formed on the first surface of the planarization layer 169.
  • a first subpixel element 101Ra and a second subpixel element 101Rb are formed, as shown in FIG. 94A.
  • a protective layer 173 may be formed on top of the lens 45, as shown in FIG. 94B.
  • a glass substrate may be formed on top of the protective layer 173.
  • Fig. 95 is a diagram showing an example of a cross-sectional configuration of a display device (a display device 10M) according to the tenth embodiment.
  • the display device 10M has substantially the same configuration as the display device 10L.
  • the display device 10M does not have the through-hole 167A described in the ninth embodiment, but the display device 10M may have the through-hole 167A.
  • the display device 10M has a light emission limiting layer between the first electrode 12 and the second electrode 14.
  • the light emission limiting layer is, for example, an insulating layer 180.
  • the insulating layer 180 is formed on the first surface of the first electrode 12, and then the organic layer 13 and the second electrode 14 are formed to form the light emitting element 20.
  • the area where the insulating layer 180 is formed is a non-light emitting region.
  • each insulating layer 180 is formed so that the position of the insulating layer 180 is asymmetric. Specifically, the position of the insulating layer 180 differs depending on the arrangement position of the subpixel. Note that this does not mean that the positions of the insulating layer 180 of all subpixels need to be different, and the positions of the insulating layer 180 of some subpixels may be the same.
  • the refractive index of the refractive layer 22 in the groove 23 may be low or high.
  • the refractive index of the refractive layer 22 in the groove 23 (the refractive layer 22 in the intra-pixel area ARA) and the refractive index of the refractive layer 22 in the inter-pixel area ARB are low to medium (as an example, a case where the refractive index n is about 1.7).
  • the refractive index n is about 1.7
  • the refractive index of the refractive layer 22 in the groove portion 23 is high (for example, the refractive index n is about 1.9), and the refractive index of the refractive layer 22 in the inter-pixel area ARB is low to medium (for example, the refractive index n is about 1.7).
  • the refractive index n is about 1.7
  • light emitted in a location where there is no insulating layer 180 is mainly emitted toward the left side due to the refraction action of the refractive layer 22 in the inter-pixel area ARB, for example.
  • FIG. 98 is a plan view of the effective pixel region AR1 of the display device 10M. This example corresponds to the case where the refractive index of the refractive layer 22 in the groove portion 23 is high.
  • the sub-pixel arranged on the left side of the drawing has the insulating layer 180 arranged on the left side when the light-emitting element 20 of the pixel is viewed in a plan view. This makes it possible to direct the main light beam to the left side.
  • the sub-pixel arranged near the center of the drawing has the insulating layer 180 arranged near the center when the light-emitting element 20 of the pixel is viewed in a plan view. This makes it possible to direct the main light beam to the center.
  • the sub-pixel arranged on the right side of the drawing has the insulating layer 180 arranged on the right side when the light-emitting element 20 of the pixel is viewed in a plan view. This makes it possible to direct the main light beam to the right side.
  • the display device 10M can emit light in almost all directions of 180 degrees.
  • the insulating layer 180 may be appropriately arranged so that the main light beam is directed in a specific direction rather than in all directions.
  • the insulating layer 180 is arranged so that approximately half of the light-emitting region of the subpixel is a non-light-emitting region.
  • the ratio of the non-light-emitting region to the light-emitting region can be changed as appropriate, and the insulating layer 180 is arranged to achieve this ratio.
  • the light-emitting region of the subpixel is divided into approximately six equal parts, and the insulating layer 180 may be formed so that two of these (approximately 1/3 in terms of ratio) are non-light-emitting regions.
  • Fig. 100 is a diagram showing an example of a cross-sectional configuration of a display device (a display device 10N) according to an eleventh embodiment.
  • display device 10N has a configuration that is substantially the same as that of display device 10B (see FIG. 16). Below, an example of the configuration of display device 10N will be described, focusing on the differences from display device 10B.
  • a second protective layer 21 is formed on the first surface of the auxiliary electrode 27.
  • a light reflecting layer 185 which is a light reflecting film, is formed on a part of the second surface of the auxiliary electrode 27, which is the other surface of the first surface.
  • the light reflecting layer 185 is formed on the second surface of the auxiliary electrode 27, except for the surface facing the periphery of the groove portion 23.
  • the periphery of the groove portion 23 means the end surface 23A of the groove portion 23 and the peripheral surface 23C of the groove portion 23.
  • the light reflecting layer 185 is formed on the second surface of the auxiliary electrode 27, except for the surface facing the end surface 23A of the groove portion 23 and the surface facing the peripheral surface 23C of the groove portion 23.
  • the light reflecting layer 185 is made of, for example, a metal such as aluminum (Al), silver (Ag), or copper (Cu), or an alloy containing these as the main component (for example, magnesium silver alloy (MgAg)).
  • a metal such as aluminum (Al), silver (Ag), or copper (Cu)
  • an alloy containing these as the main component for example, magnesium silver alloy (MgAg)
  • the refraction effect of the refractive layer 22 in the groove portion 23 can improve the light extraction efficiency, as shown diagrammatically by the arrows in FIG. 101. Furthermore, light traveling to the outside of the subpixel (left and right directions in the drawing) is reflected by the light reflecting layer 185, thereby preventing it from being emitted to the outside of the display device 10N. This prevents light from leaking to adjacent subpixels, thereby preventing color mixing and improving color purity.
  • the light reflecting layer 185 may not be present in the front direction (+Z direction side) of the light emitting element 20. Also, as shown in FIG. 103, the light reflecting layer 185 may be formed only on a portion of the front direction (+Z direction side) of the light emitting element 20. However, the configuration example shown in FIG. 100 can be said to be a preferred form because it can efficiently suppress light leakage.
  • a light reflecting layer 185 may be formed on a portion of the first surface of the auxiliary electrode 27.
  • the display device 10N may have a configuration in which the light reflecting layer 185 is interposed between the auxiliary electrode 27 and the second protective layer 21.
  • an anti-reflection layer 186 which is an anti-reflection film, may be laminated on the light-reflection layer 185.
  • the lamination order is preferably the light-reflection layer 185 and the anti-reflection layer 186 from the bottom. This is because the anti-reflection layer 186 can prevent the light reflected outward by the light-reflection layer 185 from heading toward the adjacent sub-pixel.
  • the anti-reflection layer 186 contains at least one metal element selected from the group consisting of titanium (Ti), tantalum (Ta), and tungsten (W).
  • the anti-reflection layer 186 may contain at least one of the metal elements as a constituent element of an alloy.
  • the anti-reflection layer 186 may be titanium nitride (TiN) or tantalum nitride (TaN).
  • the light reflecting layer 185 and the light anti-reflection layer 186 are laminated over the entire surface, but they may be laminated only partially.
  • FIG. 105A An example of a manufacturing method for a display device having the configuration example shown in FIG. 104 will be described with reference to FIG. 105 to FIG. 107.
  • a light emitting element 20 and a first protective layer 18 are formed on the first surface of the interlayer insulating layer 11B, and an isolation protective layer 19 is uniformly formed.
  • a light reflecting layer 185 and a light anti-reflection layer 186 are formed in this order on the first surface of the separation protective layer 19 by an appropriate method such as vapor deposition or sputtering.
  • an opening is formed by an appropriate method such as photolithography or etching.
  • an auxiliary electrode 27 is formed, and then, as shown in FIG. 106B, a second protective layer 21 is formed on the first surface of the auxiliary electrode 27. This forms a groove portion 23.
  • a refractive layer 22 is formed.
  • a color filter 42 is formed on the first surface of the refractive layer 22, and then, as shown in FIG. 107B, a lens 45 is formed on the first surface of the color filter 42, thereby completing a display device having the example configuration shown in FIG. 104.
  • the shape of the opening formed by the light reflecting layer 185 is, for example, circular.
  • the area of the opening formed by the light reflecting layer 185 may be the same for all sub-pixels as shown in FIG. 108A, or may be different for each sub-pixel as shown in FIG. 108B.
  • the shape of the opening formed by the light reflecting layer 185 may be circular as shown in FIG. 109A, polygonal (e.g. rectangular) as shown in FIG. 109B, or elliptical.
  • the center position of the opening formed by the light reflecting layer 185 may be offset to the left with respect to the center of the subpixel as shown in FIG. 110A, may be near the center of the subpixel as shown in FIG. 110B, or may be offset to the right with respect to the center of the subpixel as shown in FIG. 110C.
  • the number of openings formed by the light reflecting layer 185 may be one for each subpixel as shown in FIG. 111A, or multiple (e.g., two) for each subpixel as shown in FIG. 111B.
  • each sub-pixel may be a square arrangement.
  • RGBBB sub-pixels in the illustrated example may be a square arrangement.
  • FIG. 112B an example of an arrangement in which RGBW (white) sub-pixels are arranged in a square arrangement may also be used.
  • each sub-pixel may be a delta arrangement.
  • an example arrangement in which RGBW (white) sub-pixels are arranged in a delta arrangement may also be used.
  • the sub-pixels may be arranged in a stripe pattern.
  • the sub-pixels of RGBW (white) may be arranged in a stripe pattern.
  • a cathode contact may be formed within a pixel.
  • a cathode contact CTA may be formed, for example, in the center of the square array, as shown in Figures 115A and 115B.
  • a cathode contact CTA may be formed between the sub-pixels, as shown in Figures 116A and 116B.
  • a cathode contact CTA common to the sub-pixels may be formed, as shown in Figures 117A and 117B.
  • the twelfth embodiment will be described.
  • problems to be considered in this embodiment will be described.
  • the display device 10A described in the first embodiment the light emitted by the light emitting element 20 can be efficiently extracted (see FIG. 4).
  • the high-angle light HLA can be efficiently extracted to the outside.
  • the light may not be extracted well near the boundary between the refractive layer 22 in the groove 23 and the peripheral surface 23C of the groove 23.
  • the low-angle light LLA passes through the refractive layer 22 with a low refractive index several times from the second protective layer 21 (a portion with a relatively high refractive index) at the end surface 23A of the groove 23, and the light is scattered or vignetted.
  • the auxiliary electrode 27 there is also a problem of light absorption by the auxiliary electrode 27 near the end surface 23A.
  • the opening of the groove portion 23 (the opening located on the opposite side to the end face 23A) becomes smaller, which may reduce the adhesion of the auxiliary electrode 27 during sputtering, etc., and may result in poor contact properties.
  • This embodiment is an embodiment that addresses the above-mentioned problem.
  • the 119 is a diagram showing an example of a cross-sectional configuration of a display device (display device 10P) according to this embodiment.
  • the display device 10P has a terrace portion 190 on the peripheral surface of the groove portion 23.
  • the terrace portion 190 is a flat portion formed on the upper side (+Z direction side) of the end face 23A of the groove portion 23.
  • the terrace portion 190 makes the groove portion 23 below the terrace portion 190 smaller. This shape makes it possible to reduce the area of the second protective layer 21 at the contact portion of the auxiliary electrode 27. This makes it possible for even low-angle light LLA to pass through the vicinity of the end face 23A of the groove portion 23 as much as possible, and to head, for example, toward the refractive layer 22 in the inter-pixel region ARB.
  • the low-angle light LLA then heads toward the front direction due to the refraction action of the refractive layer 22 in the inter-pixel region ARB.
  • even low-angle light LLA can be controlled to head, for example, toward the front direction, so that the reduction in light extraction efficiency caused by the provision of the groove portion 23 can be minimized.
  • deterioration of the adhesion of the auxiliary electrode 27 can be suppressed.
  • Fig. 120A shows a cross-sectional configuration example of a display device (e.g., display device 10A) as a reference example.
  • Fig. 120B is a plan view of the display device as a reference example, aligned to correspond to the cross-sectional configuration example. In the plan view, only the parts necessary for explanation are shown. The same applies to Figs. 121B, 123B, 124B, and 125B.
  • FIG. 121A shows an example of a cross-sectional configuration of a display device 10P according to this embodiment.
  • FIG. 121B is a plan view of the display device 10P.
  • a terrace portion 190 is provided on the peripheral surface 23C of the groove portion 23.
  • the groove portion 23 below the terrace portion 190 can be made smaller. This makes it possible to reduce the contact portion CTP formed when the auxiliary electrode 27 is formed in the groove portion 23. This makes it possible to minimize the decrease in light extraction efficiency.
  • FIG. 122 is a diagram for explaining the effect obtained with the display device 10P according to this embodiment.
  • the horizontal axis of the graph shown in FIG. 122 indicates the viewing angle, and the vertical axis indicates the amount of light.
  • line LNP1 in the figure corresponds to the measurement results (simulation results) of the display device according to the reference example
  • line LNP2 corresponds to the measurement results (simulation results) of the display device 10P.
  • the display device 10P has an increased amount of light, particularly in oblique directions where the viewing angle is large, compared to the display device according to the reference example. In other words, it can be seen that the light extraction efficiency of the display device 10P as a whole is improved.
  • Figures 123A and 123B are diagrams for explaining one modified example of the display device 10P.
  • a step portion 191 tapered in the -Z direction may be formed on the peripheral surface 23C of the groove portion 23.
  • the shape of the step portion 191 is not limited to a specific shape as long as the contact portion CTP can be made smaller than in the reference example.
  • the step portion 191 has a shape that protrudes slightly from the middle of the peripheral surface 23C toward the inside of the groove portion 23 and slopes downward from there.
  • the terrace portion 190 may have a shape that allows the formation of contact portions CTP1 and CTP2 at multiple locations.
  • the terrace portion 190 may have a shape that has two circular openings in a plan view. This configuration can improve the contact property of the auxiliary electrode 27.
  • the terrace portion 190 may have a shape that allows the formation of contact portions at three or more locations.
  • the display device 10P may have multiple terrace portions.
  • terrace portion 190A may be formed further above (in the +Z direction) terrace portion 190 on the peripheral surface 23C.
  • Figures 126 to 129 as shown in Figure 126A, the first electrode 12, the organic layer 13, the second electrode 14, and the first protective layer 18 are formed on the first surface of the interlayer insulating layer 11B.
  • a resist 193 is placed on the first surface of the first protective layer 18.
  • an isolation protection layer 19 is formed by an appropriate method such as CVD.
  • a resist 194 is placed on the first surface of the isolation protection layer 19.
  • resist 195 is placed. At this time, resist 195 is placed so that a portion of the bottom surface of groove portion 23 that has been formed halfway, in other words, the area near the center of the first surface of first protective layer 18, is exposed.
  • the first protective layer 18 is removed by an appropriate method such as photolithography or dry etching so as to reach the first surface of the second electrode 14. Then, the resist 195 is removed. This process forms the terrace portion 190.
  • an auxiliary electrode 27 is formed by an appropriate method such as PVD (Physical Vapor Deposition) or CVD.
  • a second protective layer 21 is formed by an appropriate method such as PVD or CVD. This process forms the entire groove portion 23.
  • the refractive layer 22 is formed to complete the display device 10P.
  • the thirteenth embodiment will be described.
  • the thickness of the protective layer specifically the first protective layer 18 or the separation protective layer 19
  • the distance between the light emitting element 20 and the color filter 42 will be large.
  • This embodiment is an embodiment related to a manufacturing method of a display device that corresponds to the above points. Specifically, as shown in FIG. 131, this embodiment relates to a manufacturing method for manufacturing a display device (display device 10Q) in which the distance between the light emitting element 20 and the color filter 42 is as short as possible.
  • a light-emitting element 20 is formed on a first surface of the interlayer insulating layer 11B, the light-emitting element 20 including a first electrode 12, a second electrode 14 disposed opposite the first electrode 12, and an organic layer 13 including a light-emitting layer provided between the first electrode 12 and the second electrode 14.
  • a first protective layer 18 is formed on the first surface of the light-emitting element 20, and a separation protective layer 19 is further formed uniformly.
  • the first protective layer 18 and the separation protective layer 19 correspond to an example of a protective layer, but the protective layer may be one layer rather than two layers.
  • resist 201 is placed at an appropriate location on the first surface of isolation protective layer 19.
  • a portion of the first protective layer 18 and the isolation protective layer 19 is removed by etching or the like to form an opening 202.
  • the resist 201 is removed. For example, by setting the selection ratio between the resist 201 and the first protective layer 18 and the isolation protective layer 19 to 1, the opening 202 can be formed while removing the resist 201.
  • an opening 202 is further formed in the -Z direction, and the opening 202 is spatially connected to the second electrode 14 to form a contact hole CH.
  • the protective layer and resist 201 around the opening 202 are thinned while the contact hole CH is being formed.
  • the remaining unnecessary resist 201 is then removed. Since part of the resist 201 is also removed when the contact hole CH is formed, the remaining film of the resist 201 can be made thinner. This makes it possible to reduce the amount of ashing of the resist 201.
  • the auxiliary electrode 27 and the second protective layer 21 are formed as shown in FIG. 133C. This connects the auxiliary electrode 27 and the second electrode 14. Although not shown, the refraction layer 22, the color filter 42, etc. are formed to complete the display device 10Q shown in FIG. 131.
  • the protective layer is thinned, so that the light emitting elements 20 and the color filters 42 can be brought closer together. This makes it possible to suppress a decrease in light extraction efficiency and to suppress the occurrence of color mixing. Furthermore, by making the protective layer thin, the aspect ratio of the contact holes CH (height of the contact hole CH/width of the contact hole CH (length in the X direction)) can be reduced. This makes it possible to make the film of the second protective layer 21 in the bottom portion BT closer to flat, and ensures the film thickness of the second protective layer 21 in the bottom portion BT. This makes it possible to improve the resistance of the bottom portion BT to moisture, etc.
  • an etching stop layer 203 is provided on the first protective layer 18.
  • the etching stop layer 203 is, for example, an AlO layer, but is not limited to this.
  • a resist 201 is disposed in the same manner as in the first example.
  • the opening 202 is formed in the same manner as in the first example. At this time, the opening 202 is formed up to the etching stop layer 203, and processing is stopped once.
  • the opening 202 is further formed in the -Z direction, and the opening 202 is spatially connected to the second electrode 14 to form the contact hole CH.
  • the protective layer and the resist 201 around the opening 202 are thinned. In this process, a part of the etching stop layer 203 is removed. Then, the remaining unnecessary resist 201 and the etching stop layer 203 are removed. In this example, too, the remaining film of the resist 201 can be thinned because a part of the resist 201 is also removed when the contact hole CH is formed. This makes it possible to reduce the amount of ashing of the resist 201.
  • the auxiliary electrode 27 and the second protective layer 21 are formed as shown in FIG. 135C. This connects the auxiliary electrode 27 and the second electrode 14.
  • the display device 10Q shown in FIG. 131 is completed by forming the refractive layer 22, the color filter 42, etc. According to this example, the provision of the etching stop layer 203 can suppress variation in the height direction of the contact hole CH.
  • the opening 202 is formed so as to reach the second electrode 14, thereby forming the contact hole CH first.
  • the contact hole CH is formed, as shown in FIG. 137B, the periphery of the opening 202 (contact hole CH in this example) and the resist 201 are thinned.
  • the auxiliary electrode 27 and the second protective layer 21 are formed as shown in FIG. 137C. This connects the auxiliary electrode 27 and the second electrode 14.
  • the refraction layer 22, the color filter 42, etc. are formed to complete the display device 10Q shown in FIG. 131.
  • the light emitting element 20, the first protective layer 18, and the separation protective layer 19 are formed in the same manner as in the first example.
  • the refraction layer 22 is formed on the first surface of the separation protective layer 19, and then the resist 201 is disposed.
  • a portion of the first protective layer 18 and the separation protective layer 19 is removed by etching or the like to form an opening 202.
  • the resist 201 is removed.
  • an opening 202 is further formed in the -Z direction, and the opening 202 is spatially connected to the second electrode 14 to form a contact hole CH.
  • the protective layer and resist 201 around the opening 202 are thinned. In this process, all of the resist 201 is removed.
  • the auxiliary electrode 27 and the second protective layer 21 are formed. This connects the auxiliary electrode 27 and the second electrode 14. Thereafter, the refractive layer 22 is formed in the groove portion 23 and the like, and then the color filter 42 and the lens 45 are formed. This completes the display device according to the modified example of this embodiment, as shown in FIG. 140.
  • the display device according to the modified example has an example cross-sectional configuration in which the auxiliary electrode 27 and the second protective layer 21 are stacked on the refractive layer 22 in the inter-pixel region ARB.
  • FIG. 141 is a partial cross-sectional view showing a cross-sectional configuration example of a display device (display device 10R) according to the fourteenth embodiment.
  • the display device 10R has a light-emitting element 20 on a first surface of an interlayer insulating layer 11B.
  • the first electrode 12 is separated for each subpixel, and the organic layer 13 and the second electrode 14 are configured to be common to the subpixels.
  • a protective layer 210 is uniformly formed on the first surface of the second electrode 14. Examples of the material of the protective layer 210 include the same material as the material of the first protective layer 18 and the separated protective layer 19.
  • a color filter 42 is formed on the first surface of the protective layer 210.
  • a black matrix BM is provided between the color filters 42 as a light-shielding film.
  • the black matrix BM improves color purity by absorbing (blocking) external light reflected by the light emitting elements 20R, 20G, and 20B and the wiring between them.
  • the black matrix BM is made of, for example, a black resin film with an optical density of 1 or more that contains a black colorant, or a thin film filter that uses thin film interference. Of these, the black resin film is preferable because it is inexpensive and easy to form.
  • the thin film filter is, for example, made of one or more layers of thin films made of metal, metal nitride, or metal oxide, and attenuates light by utilizing thin film interference.
  • a specific example of a thin film filter is one in which chromium and chromium (III) oxide (Cr2O3) are alternately stacked.
  • the cross-sectional configuration example of the display device 10R is not limited to the configuration example shown in FIG. 141.
  • the display device 10R may have a groove portion 23 like the display device 10A.
  • the organic layer 13 and the second electrode 14 may be separated between the subpixels, and the display device 10R may have an auxiliary electrode 27, etc. like the display device 10B.
  • optical members may be arranged in the direction of light emission of the display device 10R.
  • a light guide plate 211 may be arranged in the direction of light emission of the display device 10R.
  • the light guide plate 211 is a so-called three-plate type light guide plate having light guide plate 211R corresponding to red, light guide plate 211G corresponding to green, and light guide plate 211B corresponding to blue as light guide plates corresponding to each color.
  • the light guide efficiency may be improved by dividing the direction of the main light rays of the display device 10R by color.
  • a diffraction grating 212 may be arranged in the direction of emission of light from the display device 10R.
  • the diffraction grating 212 is, for example, a laminate of a high refractive index member 212A with a large refractive index and a low refractive index member 212B with a smaller refractive index than the high refractive index member 212A.
  • FIG. 143 a diffraction grating 212 may be arranged in the direction of emission of light from the display device 10R.
  • the diffraction grating 212 is, for example, a laminate of a high refractive index member 212A with a large refractive index and a low refractive index member 212B with a smaller refractive index than the high refractive index member 212A.
  • the periodic length of the diffraction grating 212 is d (nm)
  • light is refracted at the boundary between the high refractive index member 212A and the low refractive index member 212B, and is further refracted before being emitted into the air.
  • the radiation angle into the air is also denoted as ⁇ air.
  • the radiation angle ⁇ air has a dependency on the wavelength of light.
  • the periodic length d is 800 nm
  • the radiation angle ⁇ air of blue light (wavelength, for example, 450 nm) is the smallest, followed by the radiation angle ⁇ air of green light (wavelength, for example, 500 nm), and the radiation angle ⁇ air of red light (wavelength, for example, 600 nm).
  • Such wavelength dependency of the radiation angle ⁇ air causes chromatic aberration, which appears as color bleeding when viewed through the diffraction grating 212, leading to a decrease in image quality.
  • it is preferable that the wavelength dependency of the radiation angle ⁇ air can be corrected on the display device 10R side. Taking the above points into consideration, the present embodiment will be described in detail.
  • the light-emitting element 20B corresponds to an example of a first pixel having a first emission wavelength ⁇ 1.
  • the light-emitting element 20G corresponds to an example of a second pixel having a second emission wavelength ⁇ 2.
  • the light-emitting element 20R corresponds to an example of a third pixel having a third emission wavelength ⁇ 3.
  • the first emission wavelength ⁇ 1, the second emission wavelength ⁇ 2, and the third emission wavelength ⁇ 3 have a relationship of ⁇ 1 ⁇ 2 ⁇ 3.
  • Each of the light-emitting elements 20B, 20G, and 20R has an electrode portion.
  • the first electrode 12 corresponds to an example of the electrode portion.
  • the electrode portion may be the second electrode 14.
  • a blue filter 42B is provided in the light emission direction of the light-emitting element 20B.
  • a green filter 42G is provided in the light emission direction of the light-emitting element 20G.
  • a red filter 42R is provided in the light emission direction of the light-emitting element 20R.
  • the first angle ⁇ B, the second angle ⁇ G, and the third angle ⁇ R are set.
  • the center of gravity of the first electrode 12 of the subpixel 101B is defined as point CGB1.
  • the center of gravity of the first electrode 12 of the subpixel 101B is the center of gravity (center of gravity of the opening) when the first electrode 12 is viewed in a plan view.
  • the center of gravity of the area of the blue filter 42B that is not covered by the black matrix BM is defined as point CGB2.
  • a normal NOB is set from point CGB1 to the blue filter 42B.
  • the angle between the line connecting points CGB1 and CGB2 and the normal NOB corresponds to the first angle ⁇ B.
  • the center of gravity of the first electrode 12 of the subpixel 101G is defined as point CGG1.
  • the center of gravity of the first electrode 12 of the subpixel 101G is the center of gravity (center of gravity of the opening) when the first electrode 12 is viewed in a planar view.
  • the center of gravity of the area of the green filter 42G that is not covered by the black matrix BM is defined as point CGG2.
  • a normal NOG to the green filter 42G is set from point CGB1.
  • the angle between the line connecting points CGG1 and CGG2 and the normal NOG corresponds to the second angle ⁇ G.
  • the center of gravity of the first electrode 12 of the subpixel 101R is defined as point CGR1.
  • the center of gravity of the first electrode 12 of the subpixel 101R is the center of gravity (center of gravity of the opening) when the first electrode 12 is viewed in a planar view.
  • the center of gravity of the area of the red filter 42R that is not covered by the black matrix BM is defined as point CGR2.
  • a normal NOR to the red filter 42R is set from point CGR1.
  • the angle between the line connecting points CGR1 and CGR2 and the normal NOR corresponds to the third angle ⁇ R.
  • Figure 146 is a plan view of a portion of display device 10R (one pixel consisting of three sub-pixels).
  • normal lines NOB, NOG, and NOR are set that extend toward the viewer on the drawing from points CGB1, CGG1, and CGR1, respectively.
  • Point CGB2 is also located closer to the viewer on the drawing than point CGB1. The same is true for points CGG2 and CGR2.
  • a frame-shaped dotted line is drawn around the color filters of each color.
  • the dotted lines correspond to the areas of the first electrodes 12 of each subpixel when viewed in a plan view.
  • the center of gravity of the area indicated by the dotted line in the blue filter 42B corresponds to point CGB1.
  • the center of gravity of the area indicated by the dotted line in the green filter 42G corresponds to point CGG1.
  • the center of gravity of the area indicated by the dotted line in the red filter 42R corresponds to point CGR1.
  • Points CGB1, CGG1, and CGR1 are each indicated by a white circle.
  • dots are applied to the color filters of each color.
  • the areas with dots correspond to the areas where the black matrix BM is arranged.
  • the areas without dots are black matrix non-arrangement areas where the black matrix BM is not arranged.
  • the blue filter 42B has a black matrix non-arrangement area NAB.
  • the center of gravity of the black matrix non-arrangement area NAB corresponds to the above-mentioned point CGB2.
  • the green filter 42G has a black matrix non-arrangement area NAG.
  • the center of gravity of the black matrix non-arrangement area NAG corresponds to the above-mentioned point CGG2.
  • the red filter 42R has a black matrix non-arrangement area NAR.
  • the center of gravity of the black matrix non-arrangement area NAR corresponds to the above-mentioned point CGR2.
  • the points CGB2, CGG2, and CGR2 are each indicated by a black circle.
  • the direction toward the outer periphery is the + direction
  • the opposite direction is the - direction.
  • the first angle ⁇ B, the second angle ⁇ G, and the third angle ⁇ R can take not only positive values, but also negative values. The above also applies to Figures 147 to 152, which will be described later.
  • point CGB2 is displaced in the + direction relative to point CGB1
  • point CGG2 is displaced in the + direction relative to point CGG1
  • point CGR2 is shifted in the + direction relative to point CGR1
  • the first angle ⁇ B, second angle ⁇ G, and third angle ⁇ R are positive values.
  • the shift amount shortest distance between the white circle and the black circle
  • the first angle ⁇ B is the largest, followed by the second angle ⁇ G, and the third angle ⁇ R is the smallest. In other words, the above-mentioned relationship is satisfied.
  • the opening of the black matrix BM is shifted relative to the light-emitting position of the subpixel (for example, the location defined by the center of gravity of the first electrode 12), i.e., the center of gravity of the black matrix-free area is shifted, thereby making it possible to control the chief ray for each subpixel.
  • the center of gravity of the black matrix-free area is shifted, thereby making it possible to control the chief ray for each subpixel.
  • the wavelength dependency of the diffraction grating 212 described above can be corrected on the panel side by making the first angle ⁇ B the largest, the second angle ⁇ G the next largest, and the third angle ⁇ R the smallest.
  • the third angle ⁇ R it may be preferable for the third angle ⁇ R to be the largest, the second angle ⁇ G the next largest, and the first angle ⁇ B the smallest, so the shift amount is set appropriately depending on the optical member.
  • the shift amount is set so that the second angle ⁇ G is intermediate in the magnitude relationship.
  • the black matrix BM is provided such that the black matrix non-application area NAR is shifted downward compared to the example shown in Figure 146.
  • point CGR2 is displaced in the - direction relative to point CGR1.
  • the third angle ⁇ R becomes a negative value.
  • the black matrix non-application areas NAB and NAG are the same as in the example shown in Figure 146. Due to the above relationships, in this example as well, the first angle ⁇ B is the largest, the second angle ⁇ G is the next largest, and the third angle ⁇ R is the smallest. In other words, the above-mentioned relationships are satisfied.
  • the black matrix BM is provided so that the black matrix non-application area NAB is larger than the example shown in FIG. 146. This reduces the shift amount between points CGB1 and CGB2.
  • the black matrix BM is provided so that the black matrix non-application area NAR is shifted upward. This makes the shift amount between points CGR1 and CGR2 larger than the shift amounts in other sub-pixels.
  • the third angle ⁇ R is the largest, the second angle ⁇ G is the next largest, and the first angle ⁇ B is the smallest. In other words, the above-mentioned relationship is satisfied.
  • the black matrix BM in each subpixel does not necessarily need to be arranged on the periphery (e.g., on the four sides) of each color filter 42.
  • the example shown in FIG. 149 is an example in which the black matrix BM is arranged on the lower side of each subpixel when viewed in a plan view.
  • the shift amount in the subpixel 101B is the largest
  • the shift amount in the subpixel 101G is the next largest
  • the shift amount in the subpixel 101R is the next smallest. Therefore, the first angle ⁇ B is the largest
  • the second angle ⁇ G is the next largest
  • the third angle ⁇ R is the smallest. Note that there may be a subpixel that does not have an area of the black matrix BM.
  • the arrangement of the sub-pixels may be a stripe arrangement.
  • the arrangement of the sub-pixels may be a delta arrangement.
  • the arrangement of the sub-pixels may be an arrangement in which some pixels (for example, two sub-pixels 101B) are connected (also called a new square arrangement). In either arrangement, the shift amount is set so as to satisfy the above-mentioned relationship.
  • the shift amount in the sub-pixel 101B is the largest
  • the shift amount in the sub-pixel 101G is the next largest
  • the shift amount in the sub-pixel 101R is the smallest. Therefore, the relationship of first angle ⁇ B ⁇ second angle ⁇ G ⁇ third angle ⁇ R is satisfied.
  • the shift amounts in the two sub-pixels 101B are set to be approximately equal.
  • the display device 10R may have a lens 45 on the first surface of the color filter 42.
  • the color filter 42 and the black matrix BM may be arranged above the lens 45.
  • a planarization layer 215 may be provided between the lens 45 and the color filter 42.
  • the planarization layer 215 may function as a protective layer that protects the lens 45.
  • the black matrix BM may be arranged above the color filter 42.
  • a light guide plate 211 and a diffraction grating 212 may be arranged in the light emission direction of the display device 10R.
  • the pixels used in the display device according to the present disclosure described above may be configured to include a resonator structure that resonates light generated by a light-emitting element.
  • the resonator structure will be described below with reference to the drawings.
  • (Resonator structure: first example) 156A is a schematic cross-sectional view for explaining a first example of the resonator structure.
  • the light-emitting elements 20 provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively may be referred to as light-emitting elements 20R , 20G , and 20B .
  • the portions of the organic layer 13 corresponding to the sub-pixels 101R, 101G, and 101B, respectively, may be referred to as organic layers 13R , 13AG , and 13AB .
  • the first electrode 12 is formed with a common film thickness in each light-emitting element 20.
  • the second electrode 14 is formed with a common film thickness in each light-emitting element 20. The same is true for the second electrode 14.
  • a reflector 70 is disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched therebetween.
  • a resonator structure that resonates light generated by the organic layer 13 is formed between the reflector 70 and the second electrode 14.
  • the optical adjustment layers 71 provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively, may be referred to as optical adjustment layers 71R , 71G , and 71B .
  • the reflector 70 is formed to have a common thickness for each light-emitting element 20.
  • the thickness of the optical adjustment layer 71 varies depending on the color to be displayed by the pixel. By having the optical adjustment layers 71R , 71G , and 71B have different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
  • the upper surfaces of the reflectors 70 in the light-emitting elements 20R , 20G , and 20B are arranged to be aligned.
  • the film thickness of the optical adjustment layer 71 differs depending on the color to be displayed by the pixel, and therefore the position of the upper surface of the second electrode 14 differs depending on the type of the light-emitting element 20R , 20G , and 20B .
  • the reflector 70 can be formed using metals such as aluminum (Al), silver (Ag), copper (Cu), etc., or alloys containing these as main components.
  • the optical adjustment layer 71 can be made of inorganic insulating materials such as silicon nitride (SiN x ), silicon oxide (SiO x ), silicon oxynitride (SiO x N y ), or organic resin materials such as acrylic resins and polyimide resins.
  • the optical adjustment layer 71 may be a single layer or a laminated film of a plurality of these materials. The number of layers may vary depending on the type of the light-emitting element 20.
  • the first electrode 12 can be formed using a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), or zinc oxide (ZnO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • the second electrode 14 must function as a semi-transmissive reflective film.
  • the second electrode 14 can be formed using magnesium (Mg) or silver (Ag), or a magnesium-silver alloy (MgAg) that contains these as its main components, or an alloy that contains an alkali metal or an alkaline earth metal.
  • FIG. 156B is a schematic cross-sectional view for explaining a second example of the resonator structure.
  • the first electrode 12 and the second electrode 14 are also formed with a common film thickness in each light-emitting element 20.
  • a reflector 70 is also disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched between them.
  • a resonator structure that resonates the light generated by the organic layer 13 is formed between the reflector 70 and the second electrode 14.
  • the reflector 70 is formed with a common thickness for each light-emitting element 20, and the thickness of the optical adjustment layer 71 differs depending on the color that the pixel is to display.
  • the upper surfaces of the reflectors 70 in the light-emitting elements 20R , 20G , and 20B are arranged so as to be aligned, and the position of the upper surface of the second electrode 14 differs depending on the type of the light-emitting element 20R , 20G , and 20B .
  • the upper surfaces of the second electrodes 14 are arranged to be aligned in the light-emitting elements 20R , 20G , and 20B .
  • the upper surfaces of the reflectors 70 in the light-emitting elements 20R , 20G , and 20B are arranged to be different depending on the type of the light-emitting element 20R , 20G , and 20B .
  • the lower surface of the reflector 70 (in other words, the surface of the base 73 indicated by reference numeral 73 in the figure) has a stepped shape depending on the type of the light-emitting element 20.
  • the materials constituting the reflector 70, the optical adjustment layer 71, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.
  • (Resonator structure: third example) 157A is a schematic cross-sectional view for explaining a third example of the resonator structure.
  • the reflectors 70 provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively, may be referred to as reflectors 70R , 70G , and 70B .
  • the first electrode 12 and the second electrode 14 are also formed with a common film thickness in each light-emitting element 20.
  • a reflector 70 is disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched therebetween.
  • a resonator structure that resonates the light generated by the organic layer 13 is formed between the reflector 70 and the second electrode 14.
  • the film thickness of the optical adjustment layer 71 varies depending on the color to be displayed by the pixel.
  • the upper surface of the second electrode 14 is disposed so as to be aligned with the light-emitting elements 20R , 20G , and 20B .
  • the bottom surface of the reflector 70 has a stepped shape according to the type of light-emitting element 20 in order to align the top surface of the second electrode 14.
  • the film thickness of the reflector 70 is set to be different depending on the types of the light-emitting elements 20R , 20G , and 20B . More specifically, the film thickness is set so that the bottom surfaces of the reflectors 70R , 70G , and 70B are aligned.
  • the materials constituting the reflector 70, the optical adjustment layer 71, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.
  • (Resonator structure: fourth example) 157B is a schematic cross-sectional view for explaining a fourth example of the resonator structure.
  • the first electrodes 12 provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively, may be referred to as first electrodes 12R , 12G , and 12B .
  • the first electrodes 12 and second electrodes 14 of each light-emitting element 20 are formed to a common thickness.
  • a reflector 70 is disposed under the first electrodes 12 of the light-emitting elements 20 with an optical adjustment layer 71 sandwiched therebetween.
  • the optical adjustment layer 71 is omitted, and the film thickness of the first electrode 12 is set to differ depending on the type of the light emitting elements 20R , 20G , and 20B .
  • the reflector 70 is formed to have a common thickness for each light-emitting element 20.
  • the thickness of the first electrode 12 varies depending on the color to be displayed by the pixel.
  • the materials constituting the reflector 70, the optical adjustment layer 71, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.
  • FIG. 158A is a schematic cross-sectional view for explaining a fifth example of the resonator structure.
  • the first electrode 12 and the second electrode 14 are formed with a common film thickness in each light-emitting element 20.
  • a reflector 70 is disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched therebetween.
  • the optical adjustment layer 71 is omitted, and instead, an oxide film 74 is formed on the surface of the reflector 70.
  • the thickness of the oxide film 74 is set to be different depending on the types of the light-emitting elements 20R , 20G , and 20B .
  • the oxide films 74 provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively, may be referred to as oxide films 74R , 74G , and 74B .
  • the thickness of the oxide film 74 varies depending on the color to be displayed by the pixel.
  • the oxide films 74R , 74G , and 74B have different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
  • the oxide film 74 is a film formed by oxidizing the surface of the reflector 70, and is made of, for example, aluminum oxide, tantalum oxide, titanium oxide, magnesium oxide, zirconium oxide, etc.
  • the oxide film 74 functions as an insulating film for adjusting the optical path length (optical distance) between the reflector 70 and the second electrode 14.
  • the oxide film 74 having a thickness that varies depending on the type of the light emitting elements 20 R , 20 G , and 20 B can be formed, for example, as follows.
  • a positive voltage is then applied to the reflector 70 with the electrode as a reference, and the reflector 70 is anodized.
  • the thickness of the oxide film formed by anodization is proportional to the voltage value to the electrode. Therefore, anodization is performed while a voltage according to the type of light-emitting element 20 is applied to each of the reflectors 70R , 70G , and 70B . This allows oxide films 74 with different thicknesses to be formed all at once.
  • the materials constituting the reflector 70, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.
  • FIG. 158B is a schematic cross-sectional view for explaining the sixth example of the resonator structure.
  • the light-emitting element 20 is configured by laminating a first electrode 12, an organic layer 13, and a second electrode 14.
  • the first electrode 12 is formed so as to function both as an electrode and a reflector.
  • the first electrode 12 (doubles as a reflector) is formed of a material having an optical constant selected according to the type of the light-emitting elements 20R , 20G , and 20B .
  • By varying the phase shift caused by the first electrode 12 doubles as a reflector, it is possible to set an optical distance that generates an optimal resonance for the wavelength of light according to the color to be displayed.
  • the first electrode 12 can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), or an alloy mainly composed of these metals.
  • the first electrode 12R (double-reflector) of the light-emitting element 20R can be made of copper (Cu)
  • the first electrode 12G (double-reflector) of the light-emitting element 20G and the first electrode 12B (double-reflector) of the light-emitting element 20B can be made of aluminum.
  • the materials constituting the second electrode 14 are the same as those described in the first example, so the description will be omitted.
  • FIG. 159 is a schematic cross-sectional view for explaining the seventh example of the resonator structure.
  • the seventh example is basically a configuration in which the sixth example is applied to the light emitting elements 20 R and 20 G , and the first example is applied to the light emitting element 20 B. Even in this configuration, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
  • the first electrodes 12R , 12G (which also serve as reflectors) used in the light-emitting elements 20R , 20G can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), or an alloy containing these as its main component.
  • the materials constituting the reflector 70B , the optical adjustment layer 71B and the first electrode 12B used in the light emitting element 20B are similar to those described in the first example, and therefore description thereof will be omitted.
  • the above-described display device may have a lens array (not shown) between the refractive layer 22 and the color filter unit 41.
  • the display device may further include a planarization layer (not shown) between the color filter unit 41 and the lens array.
  • the lens array includes a plurality of lenses.
  • the lenses may be on-chip microlenses.
  • the lenses are two-dimensionally arranged on the color filter 42 or the first surface of the planarization layer in a specified arrangement pattern.
  • One subpixel includes one or two lenses.
  • the lenses focus the light emitted upward in the front direction.
  • the lenses have, for example, a convex curved surface that protrudes in the front direction.
  • the convex curved surface is, for example, dome-shaped.
  • the dome shape includes shapes such as an approximately parabolic shape, an approximately hemispherical shape, and an approximately hemi-elliptical shape.
  • the lens includes, for example, an inorganic material or a polymer resin that is transparent to visible light.
  • the inorganic material includes, for example, silicon oxide (SiO x ).
  • the polymer resin includes, for example, an ultraviolet curing resin.
  • the light-emitting section 81 described below is, for example, the light-emitting element 20 described above.
  • the lens member 83 described below is, for example, the lens of the lens array described above.
  • the wavelength selection section 82 described below is, for example, the color filter section 41.
  • the size of the wavelength selection section may be changed as appropriate in response to the light emitted by the light emitting section, or in the case where a light absorbing section (e.g., a black matrix section) is provided between the wavelength selection sections of adjacent light emitting sections, the size of the light absorbing section may be changed as appropriate in response to the light emitted by the light emitting section.
  • the size of the wavelength selection section may be changed as appropriate in response to the distance (offset amount) d 0 between the normal line passing through the center of the light emitting section and the normal line passing through the center of the wavelength selection section.
  • the planar shape of the wavelength selection section may be the same as, similar to, or different from the planar shape of the lens member.
  • the normal line LN passing through the center of the light-emitting section 81 and the normal line LN" passing through the center of the wavelength selection section 82 are coincident, but the normal line LN passing through the center of the light-emitting section 81 and the normal line LN" passing through the center of the wavelength selection section 82 may not be coincident with the normal line LN' passing through the center of the lens member 83.
  • D 0 >0 and d 0 0 may be satisfied.
  • a configuration may be adopted in which the normal line LN passing through the center of the light-emitting section 81, the normal line LN" passing through the center of the wavelength selecting section 82, and the normal line LN' passing through the center of the lens member 83 do not all coincide. That is, D 0 >0, d 0 >0, and D 0 ⁇ d 0 may be satisfied.
  • the center of the wavelength selecting section 82 (the position indicated by the black square in FIG. 161) is located on a straight line LL connecting the center of the light-emitting section 81 and the center of the lens member 83 (the position indicated by the black circle in FIG. 161).
  • the thickness direction refers to the thickness direction of the light emitting section 81 , the wavelength selecting section 82 , and the lens member 83 .
  • a configuration may be adopted in which the normal line LN passing through the center of the light-emitting section 81, the normal line LN" passing through the center of the wavelength selecting section 82, and the normal line LN' passing through the center of the lens member 83 do not all coincide.
  • the center of the lens member 83 (the position indicated by a black circle in FIG. 163) is located on a straight line LL connecting the center of the light-emitting section 81 and the center of the wavelength selecting section 82 (the position indicated by a black square in FIG. 163).
  • the distance in the thickness direction vertical direction in FIG.
  • the thickness direction refers to the thickness direction of the light emitting section 81 , the wavelength selecting section 82 , and the lens member 83 .
  • the organic layer 13 of the display device described below is connected between adjacent light-emitting elements 20 in the in-plane direction of the first surface of the drive substrate 11, and is a layer common to the multiple light-emitting elements 20. For this reason, in the display device described below, there is a risk of current leakage occurring between adjacent light-emitting elements 20.
  • a leakage suppression structure for suppressing current leakage between such light-emitting elements 20 will be described. Note that in the following first to seventh examples, examples will be described in which the organic layer 13 has two layers of light-emitting units U1 and U2.
  • Fig. 164 is a cross-sectional view of a first example of the leakage suppression structure. Note that in Fig. 164, layers above the second electrode 14 are omitted. Similarly, in the cross-sectional views for explaining the leakage suppression structures of the second to ninth examples, layers above the second electrode 14 are omitted.
  • the insulating layer 1330 has an opening 1330a on each first electrode 12, and covers the periphery of the first surface of the first electrode 12 to the side surface (end surface) of the first electrode 12.
  • the insulating layer 1330 has a side wall portion 1330b and an extension portion 1330c.
  • the side wall portion 1330b is erected perpendicular to the first surface of the drive substrate 11 and covers the side surface of the first electrode 12.
  • the extension portion 1330c extends from the upper end of the inner circumferential surface of the side wall portion 1330b toward the center of the first surface of the first electrode 12, and covers the periphery of the first surface of the first electrode 12.
  • the inner periphery of the opening 1330a of the insulating layer 1330 has a eaves-like protruding portion 1328b that protrudes toward the center of the opening 1330a.
  • the protruding portion 1328b is spaced apart from the first surface of the first electrode 12.
  • the protruding portion 1328b is preferably provided around the entire periphery of the opening 1330a, but may be provided on a portion of the entire periphery of the opening 1330a.
  • the light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the overhang 1328b (area A shown in FIG. 164). This makes it possible to suppress current leakage between adjacent light-emitting elements 20.
  • the high resistance refers to the light-emitting unit U1 and the charge generating layer 1227 becoming highly resistant due to the extremely thin film thickness at the overhang 1328b.
  • the cut or high resistance of the light-emitting unit U1 and the charge generating layer 1227 caused by the overhang 1328b can occur due to the shadowing effect of the overhang 1328b when the organic layer 13 is formed.
  • a gap 1328c may be formed between the overhang 1328b and the first electrode 12.
  • the insulating layer 1330 has a first insulating layer 1318 and a second insulating layer 1328, in that order, on the first surface of the drive substrate 11 and on the first surface of the first electrode 12.
  • the first insulating layer 1318 has a plurality of first openings 1331a.
  • the second insulating layer 1328 has a plurality of second openings 1332a.
  • the opening 1330a is composed of overlapping first openings 1331a and second openings 1332a.
  • the inner periphery of the second opening 1332a of the second insulating layer 1328 protrudes further inwardly of the opening 1330a than the inner periphery of the first opening 1331a of the first insulating layer 1318, forming a protruding portion 1328b.
  • (Leak suppression structure: second example) 165 is a cross-sectional view of a second example of a leakage suppression structure.
  • the second example differs from the first example in that an insulating layer 1330 has a third insulating layer 1338 in addition to a first insulating layer 1318 and a second insulating layer 1328.
  • the third insulating layer 1338 is provided between the drive substrate 11 and the first insulating layer 1318, and between the first electrode 12 and the first insulating layer 1318.
  • the third insulating layer 1338 has a third opening 1333a on the first surface of the first electrode 12.
  • the opening 1330a is composed of the overlapping first opening 1331a, second opening 1332a, and third opening 1333a.
  • the inner periphery of the third opening 1333a protrudes further toward the inside of the opening 1330a than the inner periphery of the first opening 1331a.
  • a gap 1328c may be formed between the protruding portion 1328b and the third insulating layer 1338.
  • Figure 166 is a cross-sectional view of a third example of a leak suppression structure.
  • the third example differs from the second example in that the insulating layer 1330 has a fourth insulating layer 1348 and a fifth insulating layer 1358, in that order, on the first surface of the second insulating layer 1328, and the inner periphery of the opening 1330a of the insulating layer 1330 has two eaves-like protrusions 1328b, 1358b.
  • the light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the overhanging portion 1328b and the overhanging portion 1358b.
  • the overhanging portion 1358b is provided at a higher position than the overhanging portion 1328b with respect to the first surface of the first electrode 12 as a reference, and is separated from the first surface of the second insulating layer 1328.
  • the overhanging portion 1358b is recessed in a direction away from the center of the opening 1330a from the overhanging portion 1328b.
  • the fourth insulating layer 1348 has a fourth opening 1348a.
  • the fifth insulating layer 1358 has a fifth opening 1358a.
  • the opening 1330a is composed of a first opening 1331a, a second opening 1332a, a third opening 1333a, a fourth opening 1348a, and a fifth opening 1358a, which are overlapped with each other.
  • the inner periphery of the fourth opening 1348a is set back in a direction away from the center of the opening 1330a from the inner periphery of the second opening 1332a and the inner periphery of the fifth opening 1358a.
  • the inner periphery of the fifth opening 1358a protrudes toward the inside of the opening 1330a more than the fourth opening 1348a, forming a protruding portion 1358b.
  • Figure 167 is a cross-sectional view of a fourth example of a leak suppression structure.
  • the fourth example differs from the third example in that the insulating layer 1330 has a sixth insulating layer 1368 and a seventh insulating layer 1378 in that order on the first surface of the fifth insulating layer 1358, and the inner periphery of the opening 1330a of the insulating layer 1330 has three eaves-like protrusions 1328b, 1358b, and 1378b.
  • the light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the overhanging portion 1328b, the overhanging portion 1358b, and the overhanging portion 1378b.
  • the overhanging portion 1378b is provided at a higher position than the overhanging portion 1358b with respect to the first surface of the first electrode 12 as a reference, and is separated from the first surface of the fifth insulating layer 1358.
  • the overhanging portion 1378b is recessed in a direction away from the center of the opening 1330a than the overhanging portion 1358b.
  • the sixth insulating layer 1368 has a sixth opening 1368a.
  • the seventh insulating layer 1378 has a seventh opening 1378a.
  • the opening 1330a is composed of the overlapping first opening 1331a, second opening 1332a, third opening 1333a, fourth opening 1348a, fifth opening 1358a, sixth opening 1368a, and seventh opening 1378a.
  • the inner periphery of the sixth opening 1368a is set back in a direction away from the center of the opening 1330a from the inner periphery of the fifth opening 1358a and the inner periphery of the seventh opening 1378a.
  • the inner periphery of the seventh opening 1378a protrudes toward the inside of the opening 1330a from the sixth opening 1368a, forming a protruding portion 1378b.
  • (Leak suppression structure: 5th example) 168 is a cross-sectional view of a fifth example of the leak suppression structure.
  • the fifth example is different from the second example in that the insulating layer 1330 has an eighth insulating layer 1388 in addition to the first insulating layer 1318, the second insulating layer 1328, and the third insulating layer 1338, and the inner periphery of the opening 1330a of the insulating layer 1330 has two eaves-like protruding portions 1328b and 1338b.
  • the light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the overhanging portion 1328b and the overhanging portion 1338b.
  • the overhanging portion 1338b overhangs toward the inside of the opening 1330a more than the overhanging portion 1328b.
  • the overhanging portion 1338b is located at a lower position than the overhanging portion 1328b with respect to the first surface of the first electrode 12.
  • the overhanging portion 1338b is spaced apart from the first surface of the first electrode 12.
  • the eighth insulating layer 1388 is provided between the drive substrate 11 and the third insulating layer 1338, and between the first electrode 12 and the third insulating layer 1338.
  • the eighth insulating layer 1388 has an eighth opening 1388a.
  • the opening 1330a is composed of the overlapping first opening 1331a, second opening 1332a, third opening 1333a, and eighth opening 1388a.
  • the inner periphery of the third opening 1333a of the third insulating layer 1338 protrudes further toward the inside of the opening 1330a than the inner periphery of the eighth opening 1388a of the eighth insulating layer 1388, forming a protruding portion 1338b.
  • Fig. 169 is a cross-sectional view of a sixth example of the leak suppression structure.
  • the sixth example is different from the first example in that the insulating layer 1330 has a protruding portion 1332b1 on the outer periphery of the side wall portion 1330b instead of the protruding portion 1328b on the inner periphery of the opening 1330a.
  • Fig. 169 shows an example in which the insulating layer 1330 has a single layer structure, but it may have a laminated structure of two or more layers.
  • the overhang 1332b1 overhangs outward from the outer periphery of the side wall 1330b.
  • a recess 1332b2 is provided at a position a predetermined distance below the upper end of the outer periphery of the side wall 1330b.
  • the overhang 1332b1 is configured at the upper end of the outer periphery of the side wall 1330b.
  • the overhang 1332b1 and the recess 1332b2 are preferably provided around the entire circumference of the outer periphery of the side wall 1330b, but may be provided on a portion of the entire circumference of the outer periphery of the side wall 1330b.
  • the light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the protruding portion 1332b (area A shown in FIG. 169). This makes it possible to suppress current leakage between adjacent light-emitting elements 20.
  • the outer periphery of the side wall portion 1330b has one protrusion 1332b1 and one recess 1332b2.
  • the number of protrusions 1332b1 and recesses 1332b2 on the outer periphery of the side wall portion 1330b is not limited to this example, and the outer periphery of the side wall portion 1330b may have two or more protrusions 1332b1 and two or more recesses 1332b2.
  • the two or more recesses 1332b2 may be provided in sequence at a predetermined distance from the upper end to the lower end of the outer periphery of the side wall portion 1330b.
  • Fig. 170 is a cross-sectional view of a seventh example of the leakage suppression structure.
  • a groove 1330Gv is provided between adjacent light emitting elements 20.
  • the groove 1330Gv may be provided between light emitting elements 20 adjacent in a predetermined direction (e.g., the Y-axis direction) or may be provided so as to surround the light emitting element 20.
  • the groove 1330Gv is formed across the insulating layer 1330 and the insulating layer 1121.
  • reference numeral 1440 denotes a protective layer
  • reference numeral 1550 denotes a protective layer or a planarizing layer.
  • the light-emitting unit U1 and the charge generation layer 1227 included in the organic layer 13 are cut or made highly resistive by the groove 1330Gv. This makes it possible to suppress current leakage between adjacent light-emitting elements 20.
  • the high resistance refers to the light-emitting unit U1 and the charge generation layer 1227 being made highly resistive by becoming extremely thin in thickness within the groove 1330Gv, as shown in FIG. 171.
  • the light-emitting unit U2 located above the charge generation layer 1227 straddles the groove 1330Gv.
  • FIG. 8 is a cross-sectional view of an eighth example of the leakage suppression structure.
  • a plurality of wirings 1121a, a plurality of contact plugs 1121b, and a plurality of contact electrodes 1121c are provided in the insulating layer 1121. Each contact plug 1121b electrically connects the first electrode 12 and the wiring 1121a.
  • a groove 1330Gv is provided between adjacent light-emitting elements 20. The bottom surface of the groove 1330Gv is formed by the first surface of the contact electrode 1121c.
  • An auxiliary electrode 112d is provided on the side surface of each groove 1330Gv. The auxiliary electrode 112d is in contact with the first surface of the contact electrode 1121c.
  • the organic layer 13 is cut by the groove 1330Gv.
  • FIG. 172 shows an example in which the second electrode 14 is also cut by the groove 1330Gv, the second electrode 14 may not be cut by the groove 1330Gv and may be connected between adjacent light-emitting elements 20.
  • the second electrode 14 is in contact with the auxiliary electrode 112d on the side surface of the groove 1330Gv.
  • the second electrode 14 is in contact with the contact electrode 1121c on the bottom surface of the groove 1330Gv.
  • a protective layer 1440 may be provided on the first surface of the second electrode 14 so as to imitate the second electrode 14.
  • the leakage current between adjacent light-emitting elements 20 can be drawn into the auxiliary electrode 112d and the contact electrode 1121c. Therefore, current leakage between adjacent light-emitting elements 20 can be suppressed.
  • the display device includes a plurality of third electrodes 1240.
  • the plurality of third electrodes 1240 are provided on the second surface side of the organic layer 13, similar to the plurality of first electrodes 12.
  • Each third electrode 1240 is disposed between adjacent first electrodes 12.
  • FIG. 174 is a plan view for explaining the arrangement of the first electrodes 12 and the third electrodes 1240.
  • the multiple third electrodes 1240 are an island-shaped group of electrodes having a smaller area compared to the first electrodes 12.
  • the multiple third electrodes 1240 are regularly arranged so as to be equally spaced from adjacent first electrodes 12 in a plan view. From another perspective, the multiple third electrodes 1240 are arranged at a predetermined distance from each first electrode 12 and surrounding it in a plan view.
  • a plurality of wirings 1121a, a plurality of wirings 1121e, a plurality of contact plugs 1121b, and a plurality of contact plugs 1121f are provided in the insulating layer 1121.
  • Each contact plug 1121b electrically connects the first electrode 12 and the wiring 1121a.
  • Each contact plug 1121f electrically connects the third electrode 1240 and the wiring 1121e.
  • the multiple third electrodes 1240 are connected to the internal circuitry of the display device via contact plugs 1121f and wiring 1121e, etc., and are commonly set to a constant potential. Specifically, when a voltage is applied to the organic layer 13, the potential of the third electrodes 1240 is set to be smaller than the potential of the second electrode 14 plus the threshold voltage for the organic layer 13. As a result, even if a voltage is applied to the organic layer 13 by the first electrode 12 and the second electrode 14, causing a leak current to occur from the first electrode 12, the leak current will preferentially flow to the third electrode 1240. This prevents the leak current from flowing from the first electrode 12 to the adjacent first electrode 12.
  • the organic layer 13 has two layers of light-emitting units U1 and U2.
  • the configuration of the organic layer 13 is not limited to these examples, and the organic layer 13 may have a single layer of light-emitting unit U, or may have three or more layers of light-emitting units U.
  • the light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the overhanging portions 1328b, 1338b, 1358b, 1378b, 1332b1 and the grooves 1330Gv (hereinafter referred to as "overhanging portions 1328b and grooves 1330Gv, etc.”).
  • the layers cut or made highly resistant by the overhanging portions 1328b and grooves 1330Gv, etc. are not limited to this example.
  • the hole injection layer 1221 or the hole transport layer 1222 included in the organic layer 13 may be cut or made highly resistant by the overhanging portions 1328b and grooves 1330Gv, etc., or both the hole injection layer 1221 and the hole transport layer 1222 included in the organic layer 13 may be cut or made highly resistant by the overhanging portions 1328b and grooves 1330Gv, etc.
  • the organic layer 13 has three or more light-emitting units U, two or more light-emitting units U and two or more charge generating layers 1227 included in the organic layer 13 may be cut or made highly resistant by the protruding portion 1328b and the groove 1330Gv, etc.
  • the display device may be provided in various electronic devices.
  • the display device is particularly suitable for electronic viewfinders of video cameras or single-lens reflex cameras, head-mounted displays, and other devices that require high resolution and are used in a magnified state near the eyes.
  • 175A and 175B show an example of the external appearance of a digital still camera 310.
  • This digital still camera 310 is a lens-interchangeable single-lens reflex type, and has an interchangeable photographing lens unit (interchangeable lens) 312 approximately in the center of the front of a camera main body (camera body) 311, and a grip part 313 for the photographer to hold on the left side of the front.
  • interchangeable photographing lens unit interchangeable lens
  • a monitor 314 is provided at a position shifted to the left from the center of the back of the camera body 311.
  • An electronic viewfinder (eyepiece window) 315 is provided at the top of the monitor 314. By looking through the electronic viewfinder 315, the photographer can visually confirm the optical image of the subject guided by the photographing lens unit 312 and determine the composition.
  • the electronic viewfinder 315 is equipped with the display device according to the embodiment described above.
  • Fig. 176 shows an example of the appearance of the head mounted display 320.
  • the head mounted display 320 has, for example, ear hooks 322 for wearing on the user's head on both sides of a glasses-shaped display unit 321.
  • the display unit 321 includes the display device according to the above embodiment.
  • This television device 330 has an image display screen unit 331 including, for example, a front panel 332 and a filter glass 333, and this image display screen unit 331 is equipped with the display device according to the embodiment described above.
  • the see-through head mounted display 340 includes a main body 341, an arm 342, and a lens barrel 343.
  • the main body 341 is connected to the arm 342 and the glasses 350. Specifically, the end of the long side of the main body 341 is connected to the arm 342, and one side of the main body 341 is connected to the glasses 350 via a connecting member. The main body 341 may also be worn directly on the head of the human body.
  • Main body 341 incorporates a control board for controlling the operation of see-through head mounted display 340, and a display unit.
  • Arm 342 connects main body 341 to barrel 343 and supports barrel 343. Specifically, arm 342 is coupled to an end of main body 341 and an end of barrel 343, respectively, and fixes barrel 343.
  • Arm 342 also incorporates a signal line for communicating data related to images provided from main body 341 to barrel 343.
  • the telescope tube 343 projects image light provided from the main body 341 via the arm 342 through the eyepiece 351 toward the eye of the user wearing the see-through head mounted display 340.
  • the display unit of the main body 341 is equipped with the display device according to the embodiment described above.
  • the smartphone 360 includes a display unit 361 that displays various information, and an operation unit 362 that includes buttons and the like that accept operation input by a user.
  • the display unit 361 includes the display device according to the embodiment described above.
  • the display device 10A and the like described above may be provided in a vehicle or in various displays.
  • FIGS. 180A and 180B are diagrams showing an example of the internal configuration of a vehicle 500 equipped with various displays. Specifically, FIG. 180A is a diagram showing an example of the interior of the vehicle 500 from the rear to the front, and FIG. 180B is a diagram showing an example of the interior of the vehicle 500 from diagonally rear to diagonally front.
  • the vehicle 500 includes a center display 501, a console display 502, a head-up display 503, a digital rear mirror 504, a steering wheel display 505, and a rear entertainment display 506. At least one of these displays includes a display device according to the embodiment described above. For example, all of these displays may include a display device according to the embodiment described above.
  • the center display 501 is disposed in a portion of the dashboard facing the driver's seat 508 and the passenger seat 509.
  • Fig. 180A and Fig. 180B show an example of a horizontally elongated center display 501 extending from the driver's seat 508 side to the passenger seat 509 side
  • the screen size and location of the center display 501 are arbitrary.
  • the center display 501 can display information detected by various sensors.
  • the center display 501 can display an image captured by an image sensor, an image showing the distance to obstacles in front of or to the side of the vehicle 500 measured by a ToF sensor, and the body temperature of a passenger detected by an infrared sensor.
  • the center display 501 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information.
  • the safety-related information includes information such as detection of dozing, looking away, mischief by children in the vehicle, whether or not a seat belt is fastened, and detection of an occupant being left behind, and is information detected, for example, by a sensor arranged on the back side of the center display 501.
  • the operation-related information is obtained by detecting gestures related to the operation of the occupant using a sensor.
  • the detected gestures may include operations of various facilities in the vehicle 500. For example, operations of air conditioning equipment, navigation equipment, AV equipment, lighting equipment, etc. are detected.
  • the life log includes the life log of all occupants. For example, the life log includes a record of the actions of each occupant while on board.
  • the health-related information is obtained by detecting the body temperature of the occupant using a sensor such as a temperature sensor, and inferring the health condition of the occupant based on the detected body temperature.
  • a sensor such as a temperature sensor
  • the face of the occupant may be captured using an image sensor, and the health condition of the occupant may be inferred from the facial expression captured in the image.
  • the occupant may be spoken to by an automated voice, and the health condition of the occupant may be inferred based on the content of the occupant's response.
  • Authentication/identification-related information includes a keyless entry function that uses a sensor to perform facial authentication, a function that automatically adjusts the seat height and position using facial recognition, etc.
  • Entertainment-related information includes a function that uses a sensor to detect information about the operation of an AV device by an occupant, and a function that uses a sensor to recognize the occupant's face and provides content appropriate for the occupant via the AV device.
  • the console display 502 can be used, for example, to display life log information.
  • the console display 502 is disposed near the shift lever 511 on the center console 510 between the driver's seat 508 and the passenger seat 509.
  • the console display 502 can also display information detected by various sensors.
  • the console display 502 may also display an image of the surroundings of the vehicle captured by an image sensor, or an image showing the distance to obstacles around the vehicle.
  • the head-up display 503 is virtually displayed behind the windshield 512 in front of the driver's seat 508.
  • the head-up display 503 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information. Since the head-up display 503 is often virtually positioned in front of the driver's seat 508, it is suitable for displaying information directly related to the operation of the vehicle 500, such as the speed of the vehicle 500 and the remaining fuel (battery) level.
  • the digital rear-view mirror 504 can not only display the rear of the vehicle 500, but can also display the state of passengers in the back seats, so by placing a sensor on the back side of the digital rear-view mirror 504, it can be used to display life log information, for example.
  • the steering wheel display 505 is disposed near the center of the steering wheel 513 of the vehicle 500.
  • the steering wheel display 505 can be used to display, for example, at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information.
  • the steering wheel display 505 since the steering wheel display 505 is located near the driver's hands, it is suitable for displaying life log information such as the driver's body temperature, and for displaying information regarding the operation of AV equipment, air conditioning equipment, etc.
  • the rear entertainment display 506 is attached to the back side of the driver's seat 508 and passenger seat 509, and is intended for viewing by rear seat passengers.
  • the rear entertainment display 506 can be used to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information, for example.
  • information related to the rear seat passengers is displayed on the rear entertainment display 506.
  • the rear entertainment display 506 may display information related to the operation of AV equipment or air conditioning equipment, or may display the results of measuring the body temperature of the rear seat passengers using a temperature sensor.
  • a sensor may be arranged on the back side of the display device to measure the distance to surrounding objects.
  • Optical distance measurement methods are broadly divided into passive and active types.
  • Passive types measure distance by receiving light from an object without projecting light from the sensor onto the object.
  • Passive types include the lens focusing method, the stereo method, and the monocular vision method.
  • Active types measure distance by projecting light onto an object and receiving reflected light from the object with a sensor.
  • Active types include the optical radar method, the active stereo method, the photometric stereo method, the moire topography method, and the interference method.
  • the display device 10A1 and the like described above can be applied to any of these distance measurement methods.
  • the inter-pixel insulating layer 16 may be omitted.
  • the inter-pixel insulating layer 16 may not be present from the beginning, or may be formed and then removed by etching or the like.
  • the present disclosure may also employ the following configuration.
  • a plurality of pixels are included.
  • the pixel includes a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer provided between the first electrode and the second electrode and including a light-emitting layer; a refractive layer that refracts light emitted from the organic layer is formed in an intra-pixel region of the pixel and an inter-pixel region that is a region between the pixels; Display device.
  • the refractive index of the refractive layer is smaller than the refractive index of the protective layer in contact with the refractive layer.
  • a groove is formed in the intra-pixel region, At least the refractive layer is disposed in the groove portion.
  • an auxiliary electrode connected to the second electrode and an auxiliary electrode protection layer formed on the auxiliary electrode are interposed between an end surface of the groove portion and the drive substrate;
  • a driving substrate on which the pixels are formed the first electrode is interposed between an end surface of the groove portion and the driving substrate, and the second electrode and the organic layer are not interposed between the end surface of the groove portion and the driving substrate;
  • the display device according to (6) a driving substrate on which the pixels are formed, the first electrode is not interposed between an end surface of the groove portion and the driving substrate, but the second electrode and the organic layer are interposed between the end surface of the groove portion and the driving substrate;
  • the display device according to (6). (9) The emission intensity in the pixel region is non-uniform.
  • a driving substrate on which the pixels are formed a first emission intensity in a first region between an end face of the groove portion in the intra-pixel region and the driving substrate is smaller than a second emission intensity in a second region other than the first region in the intra-pixel region;
  • the display device according to (9). (11) a part of a thickness of the organic layer in the second region is smaller than a thickness of the organic layer in the first region;
  • (12) a recess is formed on the first surface of the first electrode in the second region;
  • the center of the groove is disposed at a position shifted from the center of the intra-pixel region.
  • the display device according to (3) The display device according to (3).
  • the inclination of the groove portion in a cross-sectional view is asymmetric between the left and right.
  • a display device according to (13). a color filter portion disposed in a direction in which light is emitted from the pixel; the color filter portion has a plurality of color filters, A reflective partition portion is provided between the color filters.
  • the reflective partition portion is formed of the same material as the refractive layer.
  • the height of the reflective partition wall is approximately the same as the height of the color filter.
  • the display device according to (15) or (16). an auxiliary electrode connected to the second electrode; The auxiliary electrode is connected to an end of the second electrode.
  • a display device according to any one of (1) to (17).
  • the auxiliary electrode is made of a conductive metal.
  • the driving substrate includes a reflective layer provided for each of the pixels and a pixel connection terminal connected to the first electrode; moreover, a first contact portion which is a connection portion between the pixel connection terminal and the first electrode; a second contact portion which is a connection portion between the auxiliary electrode and the second electrode; having When the first contact portion and the second contact portion are viewed from a predetermined direction, one of the region of the first contact portion and the region of the second contact portion includes the other.
  • the display device according to (5).
  • the second contact portion has an annular shape, and the first contact portion has a concentric circular shape with the second contact portion or a cylindrical shape that is discretely arranged.
  • (22) a light collecting section disposed in a direction in which light emitted from the organic layer is emitted; In a plan view, the first contact portion and the second contact portion are disposed to be offset with respect to a center of the light collecting portion.
  • a display device according to (20) A display device according to (20).
  • a multilayer structure in which two or more layers including the refractive layer are stacked is formed inside the groove portion. The display device according to (3).
  • the refractive indexes of the layers forming the multilayer structure are different from each other.
  • a display device according to (23).
  • (23) A display device (36) A pixel unit is configured by a predetermined number of the pixels, At least one pixel constituting the pixel unit has a different shape from the other pixels.
  • a color filter portion disposed in a direction in which light is emitted from the pixel; the color filter portion has a plurality of color filters, the color filter has a through portion in which the refractive layer passes through at least a part of the color filter in a height direction, and a non-through portion in which the refractive layer does not pass through the color filter in a height direction;
  • a light emission limiting layer is provided between the first electrode and the second electrode, and the position of the light emission limiting layer varies depending on the arrangement position of the pixel;
  • a light reflecting layer is formed on a part of one surface of the auxiliary electrode; The display device according to (5).
  • An anti-reflection layer is further laminated on the light-reflecting layer.
  • a display device according to (29). (31) the light reflecting layer is formed on one surface of the auxiliary electrode excluding a surface substantially facing the periphery of the groove portion; (29) A display device according to (29). (32) At least one terrace portion is formed on the peripheral surface of the groove portion. The display device according to (3). (33) A step portion is formed on the peripheral surface of the groove portion, the step portion being tapered toward the end surface of the groove portion. The display device according to (3).
  • a color filter is provided for each pixel in the direction in which light is emitted.
  • the emission wavelengths have a relationship of ⁇ 1 ⁇ 2 ⁇ 3, a first angle is an angle formed by a line connecting a center of gravity of the electrode portion of the first pixel and a center of gravity of a region of the color filter that is not covered by a light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter; a second angle is an angle formed by a line connecting a center of gravity of the electrode portion of the second pixel and a center of gravity of a region of the color filter that is not covered by a light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter;
  • a third angle A display device in which the relationship: third angle>
  • a light-emitting element including a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer including a light-emitting layer provided between the first electrode and the second electrode; forming a protective layer for the light emitting element; placing a resist on the protective layer; a portion of the protective layer is thinned toward the second electrode to partially form an opening in the portion of the protective layer; forming a contact hole by further forming the opening and connecting the opening to the second electrode; the protective layer and the resist around the opening are thinned.
  • the method for manufacturing a display device according to (35) further comprising thinning the protective layer and the resist around the opening while forming the contact hole.
  • the method for manufacturing a display device according to (35) further comprising the steps of: forming a contact hole, and thinning the protective layer around the opening and the resist.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided are a display device and an electronic apparatus which are capable of efficiently extracting light emitted by a light-emitting element, for example. The display device comprises a plurality of pixels, the pixels including a first electrode, a second electrode disposed opposite the first electrode, and an organic layer provided between the first electrode and the second electrode and including a light-emitting layer, wherein a refraction layer for refracting the light emitted in the organic layer is formed in an intra-pixel region of the pixels and in an inter-pixel region which is a region between the pixels.

Description

表示装置、表示装置の製造方法及び電子機器Display device, display device manufacturing method, and electronic device

 本開示は、表示装置、表示装置の製造方法及び電子機器に関する。 This disclosure relates to a display device, a method for manufacturing a display device, and an electronic device.

 OLED(Organic Light Emitting Diode)デバイス等の表示装置の分野では、発光素子が発光した光を効率よく外部に取り出すことが求められている。例えば、下記の特許文献1には、画素の電極上に導波路構造を形成した有機EL(Electro Luminescence)表示装置が記載されている。 In the field of display devices such as OLED (Organic Light Emitting Diode) devices, there is a demand for efficient extraction of light emitted by light-emitting elements to the outside. For example, the following Patent Document 1 describes an organic EL (Electro Luminescence) display device in which a waveguide structure is formed on the pixel electrodes.

特開2009-238517号公報JP 2009-238517 A

 しかしながら、特許文献1の技術では、発光素子から出射された光のうち、横方向へ向かう光を取り出すことができず、発光素子が発光した光を効率よく外部に取り出す技術としては不十分であった。 However, the technology in Patent Document 1 was unable to extract the light emitted from the light-emitting element that travels in the lateral direction, and was insufficient as a technology for efficiently extracting the light emitted by the light-emitting element to the outside.

 本開示は、発光素子が発光した光を効率よく外部に取り出すことができる表示装置、表示装置の製造方法及び電子機器を提供することを目的の一つとする。 One of the objectives of this disclosure is to provide a display device, a manufacturing method for a display device, and an electronic device that can efficiently extract light emitted by a light-emitting element to the outside.

 本開示は、例えば、
 複数の画素を有し、
 画素は、第1電極と、第1電極に対して対向して配置される第2電極と、第1電極と第2電極との間に設けられ、発光層を含む有機層と、を有し、
 画素の画素内領域及び画素間の領域である画素間領域に、有機層で発光した光を屈折させる屈折層が形成されている、
 表示装置である。
The present disclosure relates to, for example,
A plurality of pixels are included.
Each pixel has a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer provided between the first electrode and the second electrode and including a light-emitting layer;
A refractive layer that refracts light emitted from the organic layer is formed in an intrapixel region of the pixel and an interpixel region that is a region between the pixels.
It is a display device.

 本開示は、例えば、
 第1発光波長λ1を有する第1画素と、
 第2発光波長λ2を有する第2画素と、
 第3発光波長λ3を有する第3画素と、
 を有し、
 第1画素、第2画素、及び、第3画素のそれぞれは電極部を有し、
 それぞれの画素に対して、光の出射方向にカラーフィルタが設けられており、
 発光波長がλ1<λ2<λ3の関係を有し、
 第1画素が有する電極部の重心と、遮光部が被っていないカラーフィルタの領域における重心とを結んだ線と、電極部の重心からカラーフィルタに対する法線とが成す角度を第1角度とし、
 第2画素が有する電極部の重心と、遮光部が被っていないカラーフィルタの領域における重心とを結んだ線と、電極部の重心からカラーフィルタに対する法線とが成す角度を第2角度とし、
 第3画素が有する電極部の重心と、遮光部が被っていないカラーフィルタの領域における重心とを結んだ線と、電極部の重心からカラーフィルタに対する法線とが成す角度を第3角度とした場合に、
 第3角度>第2角度>第1角度、又は、第1角度>第2角度>第3角度、が成り立つ
 表示装置である。
 本開示は、本開示に係る表示装置を有する電子機器であってもよい。
The present disclosure relates to, for example,
a first pixel having a first emission wavelength λ1;
a second pixel having a second emission wavelength λ2; and
a third pixel having a third emission wavelength λ3; and
having
Each of the first pixel, the second pixel, and the third pixel has an electrode portion,
A color filter is provided for each pixel in the direction in which light is emitted.
The emission wavelengths have a relationship of λ1<λ2<λ3,
a first angle is an angle formed by a line connecting a center of gravity of an electrode portion of the first pixel and a center of gravity of a region of the color filter that is not covered by the light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter;
a second angle is an angle formed by a line connecting a center of gravity of the electrode portion of the second pixel and a center of gravity of a region of the color filter that is not covered by the light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter;
When the angle formed by a line connecting the center of gravity of the electrode portion of the third pixel and the center of gravity of a region of the color filter that is not covered by the light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter is defined as a third angle,
This is a display device in which the relationship: third angle>second angle>first angle, or first angle>second angle>third angle is satisfied.
The present disclosure may also be an electronic device having a display device according to the present disclosure.

 本開示は、例えば、
 第1電極と、第1電極に対して対向して配置される第2電極と、第1電極と第2電極との間に設けられ、発光層を含む有機層と、を含む発光素子を形成し、
 発光素子に対して、保護層を形成し、
 保護層に対してレジストを配置し、
 保護層の一部を第2電極に向かって薄膜化することで、保護層の一部に開口部を部分的に形成し、
 開口部をさらに形成して当該開口部を第2電極と接続することでコンタクトホールを形成し、
 開口部の周囲の保護層とレジストを薄膜化する
 表示装置の製造方法である。
The present disclosure relates to, for example,
forming a light-emitting element including a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer including a light-emitting layer provided between the first electrode and the second electrode;
A protective layer is formed on the light emitting element,
Placing a resist against the protective layer;
a portion of the protective layer is thinned toward the second electrode to partially form an opening in the portion of the protective layer;
forming an opening and connecting the opening to a second electrode to form a contact hole;
This is a manufacturing method for a display device, in which the protective layer and resist around the opening are thinned.

第1の実施形態に係る表示装置の概略構成例を説明するための図である。1 is a diagram for explaining a schematic configuration example of a display device according to a first embodiment; 第1の実施形態に係る表示装置の断面構成例を説明するための図である。FIG. 2 is a diagram for explaining a cross-sectional configuration example of the display device according to the first embodiment. A及びBは、有機層の具体例を説明するための図である。1A and 1B are diagrams illustrating specific examples of an organic layer. 第1の実施形態に係る表示装置の作用を説明する際に参照される図である。FIG. 2 is a diagram referred to when explaining the operation of the display device according to the first embodiment. A、B、Cは、第1の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。1A, 1B, and 1C are views referred to when explaining an example of a manufacturing method for the display device according to the first embodiment. A、B、Cは、第1の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。1A, 1B, and 1C are views referred to when explaining an example of a manufacturing method for the display device according to the first embodiment. A及びBは、第1の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。1A and 1B are diagrams referred to when explaining an example of a manufacturing method for the display device according to the first embodiment. 第1の実施形態に係る有機層の配置例を説明するための図である。3A to 3C are diagrams for explaining examples of arrangement of organic layers according to the first embodiment. 第1の実施形態に係る有機層の別の配置例を説明するための図である。5A to 5C are diagrams for explaining another example of the arrangement of the organic layer according to the first embodiment. 第1の実施形態に係る有機層の別の配置例を説明するための図である。5A to 5C are diagrams for explaining another example of the arrangement of the organic layer according to the first embodiment. 第1の実施形態に係る有機層の別の配置例を説明するための図である。5A to 5C are diagrams for explaining another example of the arrangement of the organic layer according to the first embodiment. 第1の実施形態に係る第1電極の形状例を説明するための図である。5A to 5C are diagrams for explaining examples of the shape of a first electrode according to the first embodiment. 第1の実施形態に係る第1電極の別の形状例を説明するための図である。6A to 6C are diagrams illustrating examples of other shapes of the first electrode according to the first embodiment. 第1の実施形態に係る第1電極の別の形状例を説明するための図である。6A to 6C are diagrams illustrating examples of other shapes of the first electrode according to the first embodiment. 第1の実施形態に係る第1電極の別の形状例を説明するための図である。6A to 6C are diagrams illustrating examples of other shapes of the first electrode according to the first embodiment. 第1の実施形態の変形例を説明するための図である。FIG. 11 is a diagram for explaining a modified example of the first embodiment. 第1の実施形態の変形例を説明するための図である。FIG. 11 is a diagram for explaining a modified example of the first embodiment. 第1の実施形態の変形例を説明するための図である。FIG. 11 is a diagram for explaining a modified example of the first embodiment. 第1の実施形態の変形例を説明するための図である。FIG. 11 is a diagram for explaining a modified example of the first embodiment. 第1の実施形態の変形例を説明するための図である。FIG. 11 is a diagram for explaining a modified example of the first embodiment. 第1の実施形態の変形例を説明するための図である。FIG. 11 is a diagram for explaining a modified example of the first embodiment. 第2の実施形態に係る表示装置の断面構成例を説明するための図である。FIG. 11 is a diagram for explaining an example of a cross-sectional configuration of a display device according to a second embodiment. A及びBは、第2の実施形態に係る凹部の形状例を説明するための図である。13A and 13B are diagrams illustrating examples of shapes of recesses according to the second embodiment. 第3の実施形態に係る表示装置の断面構成例を説明するための図である。FIG. 13 is a diagram for explaining an example of a cross-sectional configuration of a display device according to a third embodiment. 第3の実施形態に係る発光素子から出射された光の出射方向例を示す図である。13A and 13B are diagrams illustrating examples of emission directions of light emitted from a light-emitting element according to a third embodiment. AからHは、第3の実施形態に係る溝部の中心が、サブ画素の中心とずれていない例を説明するための図である。13A to 13H are diagrams for explaining an example in which the center of a groove according to the third embodiment is not shifted from the center of a sub-pixel. AからHは、第3の実施形態に係る溝部の中心が、サブ画素の中心とずれている例を説明するための図である。13A to 13H are diagrams for explaining an example in which the center of a groove according to the third embodiment is misaligned with the center of a sub-pixel. 第4の実施形態に係る表示装置の断面構成例を説明するための図である。FIG. 13 is a diagram for explaining an example of a cross-sectional configuration of a display device according to a fourth embodiment. 第4の実施形態に係る表示装置の作用を説明するための図である。13A and 13B are diagrams for explaining the operation of the display device according to the fourth embodiment. 第4の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a fourth embodiment. 第4の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a fourth embodiment. A及びBは、第4の実施形態に係る表示装置の変形例を説明するための図である。13A and 13B are diagrams for explaining a modified example of the display device according to the fourth embodiment. 第4の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the fourth embodiment. 第4の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the fourth embodiment. 第4の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the fourth embodiment. 第4の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the fourth embodiment. 第4の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the fourth embodiment. A及びBは、第4の実施形態に係る反射隔壁部の配置例を説明するための図である。13A and 13B are diagrams illustrating an example of the arrangement of reflective partition portions according to the fourth embodiment. 第5の実施形態に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a fifth embodiment. 第5の実施形態に係る表示装置の別の断面構成例を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment. 第5の実施形態に係る表示装置の別の断面構成例を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment. 第5の実施形態に係る表示装置の別の断面構成例を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment. 第5の実施形態に係る表示装置の別の断面構成例を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment. 第5の実施形態に係る表示装置の別の断面構成例を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment. 第5の実施形態に係る表示装置の別の断面構成例を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining another cross-sectional configuration example of the display device according to the fifth embodiment. 第5の実施形態に係る表示装置の作用を説明するための図である。13A to 13C are diagrams for explaining the operation of the display device according to the fifth embodiment. 第5の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the fifth embodiment. 第6の実施形態に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a sixth embodiment. 第6の実施形態に係る表示装置の作用を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining the operation of the display device according to the sixth embodiment. 第6の実施形態に係る第1コンタクト部CT1及び第2コンタクト部CT2の位置関係を説明するための図である。13A and 13B are diagrams for explaining the positional relationship between the first contact portion CT1 and the second contact portion CT2 according to the sixth embodiment. 第6の実施形態の変形例に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a modified example of the sixth embodiment. 第6の実施形態の変形例に係る表示装置の作用を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining the operation of the display device according to the modified example of the sixth embodiment. 第6の実施形態の変形例に係る第1コンタクト部CT1及び第2コンタクト部CT2の位置関係を説明するための図である。13 is a diagram for explaining the positional relationship between the first contact portion CT1 and the second contact portion CT2 according to a modification of the sixth embodiment. FIG. 第6の実施形態の別の変形例に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to another modified example of the sixth embodiment. 第6の実施形態の別の変形例に係る表示装置の作用を説明するための部分断面図である。FIG. 23 is a partial cross-sectional view for explaining the operation of a display device according to another modified example of the sixth embodiment. 第6の実施形態の別の変形例に係る第1コンタクト部CT1及び第2コンタクト部CT2の位置関係を説明するための図である。FIG. 23 is a diagram for explaining the positional relationship between the first contact portion CT1 and the second contact portion CT2 according to another modified example of the sixth embodiment. AからEは、第1コンタクト部と第2コンタクト部の複数の配置態様例を説明するための図である。1A to 1E are diagrams for explaining a number of examples of arrangements of the first contact portion and the second contact portion. 第7の実施形態に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a seventh embodiment. A及びBは、第7の実施形態に係る表示装置の作用を説明するための部分断面図である。13A and 13B are partial cross-sectional views for explaining the operation of the display device according to the seventh embodiment. AからDは、第7の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。13A to 13D are diagrams to be referred to when explaining an example of a manufacturing method for a display device according to a seventh embodiment. A及びBは、第7の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。13A and 13B are views referred to when explaining an example of a manufacturing method for a display device according to a seventh embodiment. A及びBは、第7の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。13A and 13B are views referred to when explaining an example of a manufacturing method for a display device according to a seventh embodiment. AからCは、第7の実施形態に係る表示装置の別の製造方法例を説明する際に参照される図である。13A to 13C are views referred to when explaining another example of a manufacturing method for the display device according to the seventh embodiment. 第7の実施形態に係る表示装置の別の製造方法例を説明する際に参照される図である。13A to 13C are diagrams to be referred to when explaining another example of a manufacturing method for the display device according to the seventh embodiment. 第7の実施形態に係る表示装置の発光領域の一例を説明するための図である。13 is a diagram for explaining an example of a light-emitting region of a display device according to a seventh embodiment. FIG. 第7の実施形態で得られる効果を説明するための図である。FIG. 13 is a diagram for explaining the effect obtained in the seventh embodiment. 第7の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the seventh embodiment. 第7の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the seventh embodiment. 第7の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the seventh embodiment. 第7の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the seventh embodiment. 第7の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the seventh embodiment. AからFは、第7の実施形態の変形例を説明するための図である。13A to 13F are diagrams for explaining a modification of the seventh embodiment. 第7の実施形態の変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example of the seventh embodiment. AからCは、第7の実施形態の変形例を説明するための図である。13A to 13C are diagrams for explaining a modified example of the seventh embodiment. A及びBは、第7の実施形態の変形例を説明するための図である。13A and 13B are diagrams for explaining a modified example of the seventh embodiment. 第8の実施形態に係る画素部の構成例を説明するための図である。FIG. 23 is a diagram for explaining an example of the configuration of a pixel unit according to an eighth embodiment. 画素部の別の構成例を説明するための図である。11 is a diagram for explaining another configuration example of the pixel portion. FIG. 別の画素部の断面構成例を説明するための図である。13 is a diagram for explaining an example of a cross-sectional configuration of another pixel unit. FIG. 第9の実施形態に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 13 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a ninth embodiment. 第9の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a ninth embodiment. 第9の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a ninth embodiment. 第9の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a ninth embodiment. 第9の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a ninth embodiment. 第9の実施形態に係る表示装置の製造方法例を説明する際に参照される図である。13A to 13C are diagrams referred to when explaining an example of a manufacturing method for a display device according to a ninth embodiment. A及びBは、第9の実施形態の変形例等を説明するための図である。13A and 13B are diagrams for explaining a modified example of the ninth embodiment. A及びBは、第9の実施形態の変形例を説明するための図である。13A and 13B are diagrams for explaining a modified example of the ninth embodiment. A及びBは、第9の実施形態の変形例を説明するための図である。13A and 13B are diagrams for explaining a modified example of the ninth embodiment. A及びBは、第9の実施形態の変形例を説明するための図である。13A and 13B are diagrams for explaining a modified example of the ninth embodiment. AからCは、第9の実施形態の変形例に係る表示装置の製造方法例を説明する際に参照される図である。13A to 13C are views referred to when explaining an example of a manufacturing method for a display device according to a modified example of the ninth embodiment. AからCは、第9の実施形態の変形例に係る表示装置の製造方法例を説明する際に参照される図である。13A to 13C are views referred to when explaining an example of a manufacturing method for a display device according to a modified example of the ninth embodiment. A及びBは、第9の実施形態の変形例に係る表示装置の製造方法例を説明する際に参照される図である。13A and 13B are views referred to when explaining an example of a manufacturing method for a display device according to a modified example of the ninth embodiment. A及びBは、第9の実施形態の変形例に係る表示装置の製造方法例を説明する際に参照される図である。13A and 13B are views referred to when explaining an example of a manufacturing method for a display device according to a modified example of the ninth embodiment. A及びBは、第9の実施形態の変形例に係る表示装置の製造方法例を説明する際に参照される図である。13A and 13B are views referred to when explaining an example of a manufacturing method for a display device according to a modified example of the ninth embodiment. A及びBは、第9の実施形態の変形例に係る表示装置の製造方法例を説明する際に参照される図である。13A and 13B are views referred to when explaining an example of a manufacturing method for a display device according to a modified example of the ninth embodiment. 第10の実施形態に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a tenth embodiment. 第10の実施形態に係る表示装置の作用の一例を説明するための図である。23A to 23D are diagrams for explaining an example of the function of the display device according to the tenth embodiment. 第10の実施形態に係る表示装置の作用の一例を説明するための図である。23A to 23D are diagrams for explaining an example of the function of the display device according to the tenth embodiment. サブ画素の位置に応じた絶縁層の配置例を説明するための図である。11A and 11B are diagrams for explaining examples of arrangement of insulating layers according to positions of sub-pixels. A及びBは、絶縁層の別の配置例を説明するための図である。13A and 13B are diagrams for explaining another example of the arrangement of the insulating layer. 第11の実施形態に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to an eleventh embodiment. 第11の実施形態に係る表示装置の作用例を説明するための図である。19A to 19C are diagrams for explaining an example of the operation of the display device according to the eleventh embodiment. 第11の実施形態の変形例を説明するための図である。FIG. 23 is a diagram for explaining a modified example of the eleventh embodiment. 第11の実施形態の変形例を説明するための図である。FIG. 23 is a diagram for explaining a modified example of the eleventh embodiment. 第11の実施形態の変形例を説明するための図である。FIG. 23 is a diagram for explaining a modified example of the eleventh embodiment. AからCは、第11の実施形態の変形例に係る表示装置の製造方法例を説明するための図である。23A to 23C are diagrams illustrating an example of a manufacturing method for a display device according to a modified example of the eleventh embodiment. AからCは、第11の実施形態の変形例に係る表示装置の製造方法例を説明するための図である。23A to 23C are diagrams illustrating an example of a manufacturing method for a display device according to a modified example of the eleventh embodiment. A及びBは、第11の実施形態の変形例に係る表示装置の製造方法例を説明するための図である。23A and 23B are diagrams for explaining an example of a manufacturing method for a display device according to a modified example of the eleventh embodiment. A及びBは、第11の実施形態に係る光反射層によって形成される開口の形状例等を説明するための図である。12A and 12B are diagrams for explaining examples of shapes of openings formed by a light reflecting layer according to an eleventh embodiment. A及びBは、第11の実施形態に係る光反射層によって形成される開口の形状例等を説明するための図である。12A and 12B are diagrams for explaining examples of shapes of openings formed by a light reflecting layer according to an eleventh embodiment. AからCは、第11の実施形態に係る光反射層によって形成される開口の形状例等を説明するための図である。12A to 12C are diagrams for explaining examples of shapes of openings formed by a light reflecting layer according to an eleventh embodiment. A及びBは、第11の実施形態に係る光反射層によって形成される開口の形状例等を説明するための図である。12A and 12B are diagrams for explaining examples of shapes of openings formed by a light reflecting layer according to an eleventh embodiment. A及びBは、サブ画素の配列例を説明するための図である。1A and 1B are diagrams for explaining an example of an arrangement of sub-pixels. A及びBは、サブ画素の別の配列例を説明するための図である。13A and 13B are diagrams for explaining other examples of arrangement of sub-pixels. A及びBは、サブ画素の別の配列例を説明するための図である。13A and 13B are diagrams for explaining other examples of arrangement of sub-pixels. A及びBは、カソードコンタクトの配置例を説明するための図である。1A and 1B are diagrams for explaining examples of cathode contact arrangements. A及びBは、カソードコンタクトの別の配置例を説明するための図である。13A and 13B are diagrams for explaining another example of the arrangement of the cathode contacts. A及びBは、カソードコンタクトの別の配置例を説明するための図である。13A and 13B are diagrams for explaining another example of the arrangement of the cathode contacts. 第12の実施形態で考慮すべき問題についての説明がなされる際に参照される図である。This is a diagram to which reference is made when explaining issues to be considered in the twelfth embodiment. 第12の実施形態に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a twelfth embodiment. A及びBは、参考例に係る表示装置の構成例を説明するための図である。1A and 1B are diagrams for explaining a configuration example of a display device according to a reference example. A及びBは、第12の実施形態に係る表示装置の構成例を説明するための図である。12A and 12B are diagrams for explaining a configuration example of a display device according to a twelfth embodiment. 第12の実施形態で得られる効果を説明するための図である。FIG. 23 is a diagram for explaining the effects obtained in the twelfth embodiment. A及びBは、第12の実施形態の変形例を説明するための図である。23A and 23B are diagrams for explaining a modified example of the twelfth embodiment. A及びBは、第12の実施形態の変形例を説明するための図である。23A and 23B are diagrams for explaining a modified example of the twelfth embodiment. A及びBは、第12の実施形態の変形例を説明するための図である。23A and 23B are diagrams for explaining a modified example of the twelfth embodiment. AからCは、第12の実施形態に係る表示装置の製造方法例を説明するための図である。23A to 23C are diagrams illustrating an example of a manufacturing method for a display device according to a twelfth embodiment. AからCは、第12の実施形態に係る表示装置の製造方法例を説明するための図である。23A to 23C are diagrams illustrating an example of a manufacturing method for a display device according to a twelfth embodiment. AからCは、第12の実施形態に係る表示装置の製造方法例を説明するための図である。23A to 23C are diagrams illustrating an example of a manufacturing method for a display device according to a twelfth embodiment. A及びBは、第12の実施形態に係る表示装置の製造方法例を説明するための図である。23A and 23B are diagrams for explaining an example of a manufacturing method for a display device according to a twelfth embodiment. 第13の実施形態で考慮すべき点を説明するための図である。FIG. 23 is a diagram for explaining points to be considered in the thirteenth embodiment. 第13の実施形態に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a thirteenth embodiment. A及びBは、第13の実施形態に係る表示装置の第1の製造方法例を説明するための図である。23A and 23B are diagrams illustrating a first example of a manufacturing method for a display device according to a thirteenth embodiment. AからCは、第13の実施形態に係る表示装置の第1の製造方法例を説明するための図である。23A to 23C are diagrams illustrating a first example of a manufacturing method for a display device according to a thirteenth embodiment. A及びBは、第13の実施形態に係る表示装置の第2の製造方法例を説明するための図である。23A and 23B are diagrams for explaining a second example of a manufacturing method for the display device according to the thirteenth embodiment. AからCは、第13の実施形態に係る表示装置の第2の製造方法例を説明するための図である。23A to 23C are diagrams illustrating a second example of a manufacturing method for the display device according to the thirteenth embodiment. A及びBは、第13の実施形態に係る表示装置の第3の製造方法例を説明するための図である。23A and 23B are diagrams for explaining a third example of a manufacturing method for the display device according to the thirteenth embodiment. AからCは、第13の実施形態に係る表示装置の第3の製造方法例を説明するための図である。23A to 23C are diagrams illustrating a third example of a manufacturing method for the display device according to the thirteenth embodiment. A及びBは、第13の実施形態の変形例に係る表示装置の製造方法例を説明するための図である。26A and 26B are diagrams for explaining an example of a manufacturing method for a display device according to a modified example of the thirteenth embodiment. AからCは、第13の実施形態の変形例に係る表示装置の製造方法例を説明するための図である。26A to 26C are diagrams illustrating an example of a manufacturing method for a display device according to a modified example of the thirteenth embodiment. 第13の実施形態の変形例に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a modified example of the thirteenth embodiment. 第14の実施形態に係る表示装置の断面構成例を説明するための部分断面図である。FIG. 23 is a partial cross-sectional view for explaining a cross-sectional configuration example of a display device according to a fourteenth embodiment. 第14の実施形態で考慮すべき点についての説明がなされる際に参照される図である。This figure is referred to when explaining points to be considered in the fourteenth embodiment. 第14の実施形態で考慮すべき点についての説明がなされる際に参照される図である。This figure is referred to when explaining points to be considered in the fourteenth embodiment. A及びBは、回折格子の特性例を説明するための図である。1A and 1B are diagrams illustrating an example of characteristics of a diffraction grating. 第14の実施形態に係る第1角度、第2角度、及び、第3角度を説明するための図である。23A to 23C are diagrams for explaining a first angle, a second angle, and a third angle according to the fourteenth embodiment; 第14の実施形態に係る第1角度、第2角度、及び、第3角度の相互関係の一例について説明するための図である。FIG. 23 is a diagram for explaining an example of the interrelationship between the first angle, the second angle, and the third angle according to the fourteenth embodiment. 第14の実施形態に係る第1角度、第2角度、及び、第3角度の相互関係の別の例について説明するための図である。FIG. 23 is a diagram for explaining another example of the interrelationship between the first angle, the second angle, and the third angle according to the fourteenth embodiment. 第14の実施形態に係る第1角度、第2角度、及び、第3角度の相互関係の別の例について説明するための図である。FIG. 23 is a diagram for explaining another example of the interrelationship between the first angle, the second angle, and the third angle according to the fourteenth embodiment. 第14の実施形態に係る第1角度、第2角度、及び、第3角度の相互関係の別の例について説明するための図である。FIG. 23 is a diagram for explaining another example of the interrelationship between the first angle, the second angle, and the third angle according to the fourteenth embodiment. 第14の実施形態の変形例を説明するための図である。FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment. 第14の実施形態の変形例を説明するための図である。FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment. 第14の実施形態の変形例を説明するための図である。FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment. 第14の実施形態の変形例を説明するための図である。FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment. 第14の実施形態の変形例を説明するための図である。FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment. 第14の実施形態の変形例を説明するための図である。FIG. 23 is a diagram for explaining a modified example of the fourteenth embodiment. Aは、共振器構造の第1例を説明するための模式的な断面図である。Bは、共振器構造の第2例を説明するための模式的な断面図である。1A is a schematic cross-sectional view for explaining a first example of a resonator structure, and FIG. 1B is a schematic cross-sectional view for explaining a second example of a resonator structure. Aは、共振器構造の第3例を説明するための模式的な断面図である。Bは、共振器構造の第4例を説明するための模式的な断面図である。1A is a schematic cross-sectional view for explaining a third example of a resonator structure, and FIG. 1B is a schematic cross-sectional view for explaining a fourth example of a resonator structure. Aは、共振器構造の第5例を説明するための模式的な断面図である。Bは、共振器構造の第6例を説明するための模式的な断面図である。13A is a schematic cross-sectional view for explaining a fifth example of a resonator structure, and FIG. 13B is a schematic cross-sectional view for explaining a sixth example of a resonator structure. 共振器構造の第7例を説明するための模式的な断面図である。FIG. 13 is a schematic cross-sectional view for explaining a seventh example of a resonator structure. A、B、Cはそれぞれ、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。1A, 1B, and 1C are conceptual diagrams for explaining the relationship between a normal line LN passing through the center of the light-emitting portion, a normal line LN' passing through the center of the lens member, and a normal line LN" passing through the center of the wavelength selection portion, respectively. 発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。1 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of a light-emitting portion, a normal line LN' passing through the center of a lens member, and a normal line LN" passing through the center of a wavelength selection portion. FIG. A、Bはそれぞれ、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。1A and 1B are conceptual diagrams for explaining the relationship between a normal line LN passing through the center of the light-emitting portion, a normal line LN' passing through the center of the lens member, and a normal line LN" passing through the center of the wavelength selection portion, respectively. 発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。1 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of a light-emitting portion, a normal line LN' passing through the center of a lens member, and a normal line LN" passing through the center of a wavelength selection portion. FIG. 画素間リーク対策のための画素間構造の例についての説明がなされる際に参照される図である。FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage. 画素間リーク対策のための画素間構造の例についての説明がなされる際に参照される図である。FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage. 画素間リーク対策のための画素間構造の例についての説明がなされる際に参照される図である。FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage. 画素間リーク対策のための画素間構造の例についての説明がなされる際に参照される図である。FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage. 画素間リーク対策のための画素間構造の例についての説明がなされる際に参照される図である。FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage. 画素間リーク対策のための画素間構造の例についての説明がなされる際に参照される図である。FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage. 画素間リーク対策のための画素間構造の例についての説明がなされる際に参照される図である。FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage. 画素間リーク対策のための画素間構造の例についての説明がなされる際に参照される図である。FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage. 画素間リーク対策のための画素間構造の例についての説明がなされる際に参照される図である。FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage. 画素間リーク対策のための画素間構造の例についての説明がなされる際に参照される図である。FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage. 画素間リーク対策のための画素間構造の例についての説明がなされる際に参照される図である。FIG. 1 is a diagram to be referred to when explaining an example of an inter-pixel structure for preventing inter-pixel leakage. Aは、デジタルスチルカメラの外観の一例を示す正面図である。Bは、デジタルスチルカメラの外観の一例を示す背面図である。1A is a front view showing an example of the external appearance of a digital still camera, and FIG. ヘッドマウントディスプレイの外観の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of the appearance of a head mounted display. テレビジョン装置の外観の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of the appearance of a television device. シースルーヘッドマウントディスプレイの外観の一例を示す斜視図である。1 is a perspective view showing an example of the appearance of a see-through head mounted display. スマートフォンの外観の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of the appearance of a smartphone. Aは、乗物の後方から前方にかけての乗物の内部の様子の一例を示す図である。Bは、乗物の斜め後方から斜め前方にかけての乗物の内部の様子の一例を示す図である。1A is a diagram showing an example of the interior of a vehicle from the rear to the front of the vehicle, and FIG. 1B is a diagram showing an example of the interior of a vehicle from the diagonally rear to the diagonally front of the vehicle. 変形例を説明するための図である。FIG. 13 is a diagram for explaining a modified example.

 以下、本開示の実施形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<第1の実施形態>
<第2の実施形態>
<第3の実施形態>
<第4の実施形態>
<第5の実施形態>
<第6の実施形態>
<第7の実施形態>
<第8の実施形態>
<第9の実施形態>
<第10の実施形態>
<第11の実施形態>
<第12の実施形態>
<第13の実施形態>
<第14の実施形態>
<実施形態に適用される共振器構造の例>
<発光部、レンズ部材、波長選択部のそれぞれの中心を通る法線の関係>
<画素間リーク対策のための画素間構造の例>
<応用例>
<変形例>
 以下に説明する実施形態等は本開示の好適な具体例であり、本開示の内容がこれらの実施形態等に限定されるものではない。なお、以下の説明において、実質的に同一の機能構成を有するものについては同一の符号を付し、重複説明を適宜省略する。また、図示が煩雑になることを防止するために、一部の構成のみに参照符号を付す場合や、図示を簡略化したり、拡大/縮小する場合もある。また、説明の便宜上、左右上下等の方向を規定するが、本開示の内容が係る方向に限定されるものではない。
 なお、以下に説明する表示装置の各構成要素は、TEM(Transmission Electron Microscope)やSEM(Scanning Electron Microscope)、その他の公知の方法によって観察することができる。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The description will be made in the following order.
First Embodiment
Second Embodiment
Third Embodiment
Fourth Embodiment
Fifth embodiment
Sixth embodiment
Seventh embodiment
Eighth embodiment
Ninth embodiment
Tenth embodiment
Eleventh embodiment
Twelfth embodiment
Thirteenth embodiment
<Fourteenth embodiment>
<Examples of Resonator Structures Applied to the Embodiments>
<Relationship between normals passing through the centers of the light emitting unit, lens member, and wavelength selecting unit>
<Example of inter-pixel structure to prevent inter-pixel leakage>
<Application Examples>
<Modification>
The embodiments and the like described below are preferred specific examples of the present disclosure, and the contents of the present disclosure are not limited to these embodiments and the like. In the following description, the same reference numerals are used for components having substantially the same functional configurations, and duplicated descriptions are omitted as appropriate. In addition, in order to prevent the illustrations from becoming complicated, reference numerals may be used only for some components, the illustrations may be simplified, or the illustrations may be enlarged or reduced. In addition, for the convenience of explanation, directions such as left, right, up, down, etc. are specified, but the contents of the present disclosure are not limited to these directions.
Each of the components of the display device described below can be observed by a transmission electron microscope (TEM), a scanning electron microscope (SEM), or other known methods.

<第1の実施形態>
[表示装置の構成例]
(概略構成例)
 本開示の実施形態に係る表示装置としては、有機EL表示装置を例示することができる。第1実施形態に係る表示装置(表示装置10A)は、複数の発光色を有する。また、表示装置10Aは、複数の画素を有し、1つの画素が、複数の色種(発光色)それぞれに対応した複数のサブ画素(サブ画素101)の組み合わせで形成されている。表示装置10Aは、これらの複数のサブ画素101を二次元的に配置している。なお、表示装置10Aは、マイクロディスプレイであってもよい。表示装置10Aは、VR装置、MR(Mixed Reality)装置、AR装置、電子ビューファインダ(Electronic View Finder:EVF)又は小型プロジェクタ等に備えられてもよい。
First Embodiment
[Example of the configuration of a display device]
(Example of schematic configuration)
An example of the display device according to the embodiment of the present disclosure is an organic EL display device. The display device according to the first embodiment (display device 10A) has a plurality of luminescent colors. The display device 10A has a plurality of pixels, and each pixel is formed by a combination of a plurality of sub-pixels (sub-pixels 101) corresponding to a plurality of color types (luminescent colors). The display device 10A has a plurality of sub-pixels 101 arranged two-dimensionally. The display device 10A may be a micro display. The display device 10A may be provided in a VR device, a mixed reality (MR) device, an AR device, an electronic view finder (EVF), a small projector, or the like.

 図1に示すように、表示装置10Aは、駆動基板11を有する。駆動基板11は、有効画素領域AR1と、その周辺である周辺領域AR2とを有する。有効画素領域AR1は、複数の発光素子で生じた光を出射させる領域として定められた領域である。有効画素領域AR1には複数の画素が設けられている。具体的には、有効画素領域AR1内には、複数のサブ画素101がマトリクス状等の規定の配置パターンで2次元配置されている。 As shown in FIG. 1, the display device 10A has a drive substrate 11. The drive substrate 11 has an effective pixel area AR1 and a peripheral area AR2 surrounding the effective pixel area AR1. The effective pixel area AR1 is an area that is defined as an area for emitting light generated by a plurality of light-emitting elements. A plurality of pixels are provided in the effective pixel area AR1. Specifically, a plurality of sub-pixels 101 are two-dimensionally arranged in a prescribed arrangement pattern, such as a matrix, within the effective pixel area AR1.

 サブ画素101は、サブ画素101R、101G、及び、101Bを含む。サブ画素101Rは赤色を表示し、サブ画素101Gは緑色を表示し、サブ画素101Bは青色を表示する。なお、以下の説明において、サブ画素101R、101G、101Bを特に区別せず総称する場合には、サブ画素101という。また、サブ画素101R、101G、及び、101Bが有する構成要素については、適宜、参照符号にR、G、Bを付加する。隣接するサブ画素101R、101G、101Bの組み合わせが一つの画素を構成している。 Subpixel 101 includes subpixels 101R, 101G, and 101B. Subpixel 101R displays red, subpixel 101G displays green, and subpixel 101B displays blue. In the following description, when subpixels 101R, 101G, and 101B are referred to collectively without distinction, they are referred to as subpixel 101. Furthermore, R, G, and B are added to the reference numerals for the components of subpixels 101R, 101G, and 101B as appropriate. The combination of adjacent subpixels 101R, 101G, and 101B constitutes one pixel.

 図1に示すように、表示装置10Aの周辺領域AR2には、例えば、制御回路2、Hドライバ3A、及び、Vドライバ3Bが設けられている。制御回路2は、Hドライバ3AやVドライバ3Bの駆動を制御する。Hドライバ3A及びVドライバ3Bは、サブ画素101の駆動を公知の方法によって制御する。 As shown in FIG. 1, for example, a control circuit 2, an H driver 3A, and a V driver 3B are provided in the peripheral area AR2 of the display device 10A. The control circuit 2 controls the driving of the H driver 3A and the V driver 3B. The H driver 3A and the V driver 3B control the driving of the sub-pixels 101 by a known method.

 以下では表示装置10Aがトップエミッション方式で表示する場合を例として説明する。トップエミッション方式は、駆動基板11よりも発光素子が有効画素領域AR1側に配置される方式を示すものとする。従って、表示装置10Aでは、発光素子から生じた光は、+Z方向に向けられ、外部に出射される。以下の説明において、表示装置10Aを構成する各層(各構成要素)において、表示装置10Aの有効画素領域AR1(図1でハッチングを付した領域)での表示面側となる面を第1の面(上面)といい、表示装置10の裏面側となる面を第2の面(下面)という。このことは他の実施形態や変形例についても同様である。なお、本開示に係る表示装置が、ボトムエミッション方式でもよい。ボトムエミッション方式では、発光素子から生じた光が-Z方向に向けられ外部に出射される。 Below, an example will be described in which the display device 10A uses a top emission method. The top emission method refers to a method in which the light emitting element is disposed closer to the effective pixel area AR1 side than the drive substrate 11. Therefore, in the display device 10A, the light generated from the light emitting element is directed in the +Z direction and emitted to the outside. In the following description, in each layer (each component) constituting the display device 10A, the surface that is the display surface side in the effective pixel area AR1 of the display device 10A (the area hatched in FIG. 1) is referred to as the first surface (upper surface), and the surface that is the back surface side of the display device 10 is referred to as the second surface (lower surface). This also applies to other embodiments and modified examples. Note that the display device according to the present disclosure may use a bottom emission method. In the bottom emission method, the light generated from the light emitting element is directed in the -Z direction and emitted to the outside.

(表示装置の断面構成例)
 次に、本実施形態に係る表示装置10Aの断面構成例について説明する。図2は、図1の破線で囲まれた領域XSにおける断面構成例を拡大して示した図である。
(Example of a cross-sectional configuration of a display device)
Next, a cross-sectional configuration example of the display device 10A according to the present embodiment will be described below with reference to Fig. 2. Fig. 2 is an enlarged view showing a cross-sectional configuration example of a region XS surrounded by a dashed line in Fig. 1 .

 図2に示すように、駆動基板11には、X方向に沿って、サブ画素101R、101B、101Gが所定の配列で設けられている。サブ画素101R、101B、101Gは、同様の構成を有するものとして説明するが、各サブ画素101の間に構成上の差異があっても構わない。 As shown in FIG. 2, sub-pixels 101R, 101B, and 101G are arranged in a predetermined array along the X direction on the drive substrate 11. The sub-pixels 101R, 101B, and 101G are described as having the same configuration, but there may be differences in configuration between the sub-pixels 101.

 表示装置10Aは、複数の発光素子20を備えている。複数の発光素子20は、第1電極12と、発光層を含む有機層13と、第2電極14とにより構成されている。発光素子20は、例えば、白色OLEDまたは白色Micro-OLED(MOLED)等の白色発光素子である。表示装置10Aにおけるカラー化の方式としては、白色発光素子と後述するカラーフィルタとを用いる方式が用いられる。 The display device 10A includes a plurality of light-emitting elements 20. The plurality of light-emitting elements 20 are composed of a first electrode 12, an organic layer 13 including a light-emitting layer, and a second electrode 14. The light-emitting elements 20 are, for example, white light-emitting elements such as white OLEDs or white Micro-OLEDs (MOLEDs). The colorization method used in the display device 10A is a method that uses white light-emitting elements and color filters, which will be described later.

 図2に示すように表示装置10Aは、駆動基板11を有する。駆動基板11は、いわゆるバックプレーンであり、複数の発光素子20を駆動する。駆動基板11は、例えば、基材11Aと、基材11A上に積層される層間絶縁層11Bとを有する。層間絶縁層11Bは基材11A上に積層されて形成されていてもよいし、半導体プロセスによってその一部が基材11Aに直接形成されていてもよい。 As shown in FIG. 2, the display device 10A has a drive substrate 11. The drive substrate 11 is a so-called backplane, and drives a plurality of light-emitting elements 20. The drive substrate 11 has, for example, a base material 11A and an interlayer insulating layer 11B laminated on the base material 11A. The interlayer insulating layer 11B may be formed by being laminated on the base material 11A, or a part of it may be formed directly on the base material 11A by a semiconductor process.

 基材11Aは、シリコン基板等の半導体基板であってもよいし、水分及び酸素の透過性が低いガラス基板や石英、樹脂などの絶縁体基板であってもよい。半導体基板は、例えば、アモルファスシリコン、多結晶シリコンまたは単結晶シリコン等を含む。具体例として、ガラス基板は、例えば、高歪点ガラス、ソーダガラス、ホウケイ酸ガラス、フォルステライト、鉛ガラスまたは石英ガラス等を含む。また、樹脂基板の具体例としては、例えば、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルフェノール、ポリエーテルスルホン、ポリイミド、ポリカーボネート、ポリエチレンテレフタラート及びポリエチレンナフタレート等からなる群より選ばれた少なくとも1種を含む。基材11Aは、例えば、薄板状の形状を有する。基材11Aが可撓性を有していてもよい。 The substrate 11A may be a semiconductor substrate such as a silicon substrate, or an insulating substrate such as a glass substrate, quartz, or resin substrate with low moisture and oxygen permeability. Semiconductor substrates include, for example, amorphous silicon, polycrystalline silicon, or single crystal silicon. Specific examples of glass substrates include, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, or quartz glass. Specific examples of resin substrates include, for example, at least one selected from the group consisting of polymethyl methacrylate, polyvinyl alcohol, polyvinyl phenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, and polyethylene naphthalate. The substrate 11A has, for example, a thin plate shape. The substrate 11A may be flexible.

 層間絶縁層11Bは、例えば有機材料または無機材料により構成される。有機材料は、例えば、ポリイミドおよびアクリル樹脂のうちの少なくとも1種を含む。無機材料は、例えば、酸化シリコン、窒化シリコン、酸窒化シリコンおよび酸化アルミニウムのうちの少なくとも1種を含む。 The interlayer insulating layer 11B is made of, for example, an organic material or an inorganic material. The organic material includes, for example, at least one of polyimide and acrylic resin. The inorganic material includes, for example, at least one of silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxide.

 層間絶縁層11B内には複数の発光素子20を駆動する各種回路が設けられている。各種回路としては、発光素子20の駆動を制御する駆動回路、複数の発光素子20に電力を供給する電源回路(いずれも図示せず)を例示することができる。各種回路は、層間絶縁層11Bにより、外部への露出を規制されている。これらの不図示の駆動回路は第1電極12等の適宜な箇所に接続される。 Various circuits that drive the multiple light-emitting elements 20 are provided within the interlayer insulating layer 11B. Examples of the various circuits include a drive circuit that controls the driving of the light-emitting elements 20 and a power supply circuit that supplies power to the multiple light-emitting elements 20 (neither of which are shown). The various circuits are restricted from exposure to the outside by the interlayer insulating layer 11B. These drive circuits (not shown) are connected to appropriate locations such as the first electrode 12.

(発光素子)
 層間絶縁層11Bの第1の面上に、複数の発光素子20が設けられている。発光素子20は、例えば、有機エレクトロルミネッセンス素子(有機EL素子)である。複数の発光素子20は、それぞれ、サブ画素101の色種に対応する色を発光面からの出射光する。例えば、サブ画素101R、101G、101Bには、それぞれ発光素子20R、20G、20Bが形成されている。また、複数の発光素子20は、それぞれの色種のサブ画素101の配置に対応したレイアウトとなっている。なお、本明細書において、発光素子20R、20G、20Bといった種類が特に区別されない場合、発光素子20という語が使用される。
(Light Emitting Element)
A plurality of light-emitting elements 20 are provided on the first surface of the interlayer insulating layer 11B. The light-emitting elements 20 are, for example, organic electroluminescence elements (organic EL elements). The plurality of light-emitting elements 20 each emit light of a color corresponding to the color type of the sub-pixel 101 from the light-emitting surface. For example, light-emitting elements 20R, 20G, and 20B are formed in the sub-pixels 101R, 101G, and 101B, respectively. The plurality of light-emitting elements 20 are laid out in a manner corresponding to the arrangement of the sub-pixels 101 of the respective color types. In this specification, when the types of the light-emitting elements 20R, 20G, and 20B are not particularly distinguished from one another, the term "light-emitting element 20" is used.

 発光素子20は、順に、第1電極12と、有機層13と、第2電極14と積層した積層構造を備える。第1電極12、有機層13及び第2電極14は、駆動基板11側からこの順序で、第2の面から第1の面に向かう方向(+Z方向)に積層されている。 The light-emitting element 20 has a laminated structure in which a first electrode 12, an organic layer 13, and a second electrode 14 are laminated in this order from the drive substrate 11 side in the direction from the second surface to the first surface (+Z direction).

(第1電極)
 第1電極12は、駆動基板11の第1の面側に複数設けられる。第1電極12は、例えば、アノード電極である。第1電極12は、光透過性を有する透明電極であってもよい。
(First electrode)
A plurality of first electrodes 12 are provided on the first surface side of the driving substrate 11. The first electrodes 12 are, for example, anode electrodes. The first electrodes 12 may be transparent electrodes having optical transparency.

 第1電極12は、金属層および金属酸化物層のうちの少なくとも一層により構成されている。第1電極12は、金属層もしくは金属酸化物層の単層膜、または金属層と金属酸化物層の積層膜により構成されていてもよい。 The first electrode 12 is composed of at least one of a metal layer and a metal oxide layer. The first electrode 12 may be composed of a single layer of a metal layer or a metal oxide layer, or a laminated layer of a metal layer and a metal oxide layer.

 金属層は、例えば、クロム(Cr)、金(Au)、白金(Pt)、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、タングステン(W)および銀(Ag)からなる群より選ばれる少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、アルミニウム合金または銀合金が挙げられる。アルミニウム合金の具体例としては、例えば、AlNdまたはAlCuが挙げられる。 The metal layer contains at least one metal element selected from the group consisting of, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al), magnesium (Mg), iron (Fe), tungsten (W) and silver (Ag). The metal layer may contain at least one metal element as a constituent element of an alloy. Specific examples of alloys include aluminum alloys and silver alloys. Specific examples of aluminum alloys include, for example, AlNd and AlCu.

 金属酸化物層は、例えば、インジウム酸化物と錫酸化物の混合体(ITO)、インジウム酸化物と亜鉛酸化物の混合体(IZO)および酸化チタン(TiO)のうちの少なくとも1種を含む。 The metal oxide layer includes, for example, at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), and titanium oxide (TiO).

 第1電極12は、サブ画素101毎に、電気的に分離されている。すなわち、第1電極12は、駆動基板11の第1の面側に複数設けられ、且つ、サブ画素101毎に設けられている。 The first electrodes 12 are electrically separated for each subpixel 101. That is, a plurality of first electrodes 12 are provided on the first surface side of the drive substrate 11, and each first electrode 12 is provided for each subpixel 101.

(有機層)
 有機層13は、第1電極12と第2電極14の間に設けられている有機発光層である。有機層13は、サブ画素101毎に分離して設けられている。但し、有機層13がサブ画素101に対して共通して設けられる構成であってもよい。有機層13は、白色光を発光可能に構成されている。但し、このことは、有機層13の発光色が白色以外であることを禁止するものではなく、赤色、青色、緑色などの色が採用されてもよい。すなわち、有機層13の発光色は、例えば白色、赤色、青色及び緑色のいずれか1種類であってよい。
(Organic Layer)
The organic layer 13 is an organic light-emitting layer provided between the first electrode 12 and the second electrode 14. The organic layer 13 is provided separately for each sub-pixel 101. However, the organic layer 13 may be configured to be provided in common to the sub-pixels 101. The organic layer 13 is configured to be capable of emitting white light. However, this does not prohibit the emission color of the organic layer 13 from being other than white, and colors such as red, blue, and green may be adopted. In other words, the emission color of the organic layer 13 may be, for example, any one of white, red, blue, and green.

 有機層13は、例えば、第1電極12から第2電極14に向かって正孔注入層、正孔輸送層、発光層、電子輸送層がこの順序で積層された構成を有する。電子輸送層と第2電極14との間には、電子注入層を設けてもよい。電子注入層は、電子注入効率を高めるためのものである。なお、有機層13の構成はこれに限定されるものではなく、発光層以外の層は必要に応じて設けられるものである。 The organic layer 13 has a structure in which, for example, a hole injection layer, a hole transport layer, a light-emitting layer, and an electron transport layer are stacked in this order from the first electrode 12 toward the second electrode 14. An electron injection layer may be provided between the electron transport layer and the second electrode 14. The electron injection layer is intended to increase the efficiency of electron injection. Note that the structure of the organic layer 13 is not limited to this, and layers other than the light-emitting layer are provided as necessary.

 正孔注入層は、発光層への正孔注入効率を高めるためのものであると共に、リークを抑制するためのバッファ層である。正孔輸送層は、発光層への正孔輸送効率を高めるためのものである。電子輸送層は、発光層への電子輸送効率を高めるためのものである。 The hole injection layer is intended to increase the efficiency of hole injection into the light-emitting layer, and is also a buffer layer to suppress leakage. The hole transport layer is intended to increase the efficiency of hole transport to the light-emitting layer. The electron transport layer is intended to increase the efficiency of electron transport to the light-emitting layer.

 発光層は、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものである。発光層は、有機発光材料を含む有機化合物層である。 The light-emitting layer generates light when an electric field is applied, causing electrons and holes to recombine. The light-emitting layer is an organic compound layer that contains an organic light-emitting material.

 図3A及び図3Bを参照して、有機層13の具体例について説明する。有機層13は、有機発光層を含む積層体により構成されてもよく、その場合、積層体のうちの一部の層(例えば電子注入層)は無機層であってもよい。有機層13は、図3Aに示されるように、単層の発光ユニットUを有するOLED層であってもよいし、図3Bに示されるように、2層の発光ユニットU1、U2を有するOLED層(タンデム構造)であってもよいし、これら以外の構造のOLED層であってもよい。単層の発光ユニットUを有する有機層13は、例えば、第1電極12から第2電極14に向かって、正孔注入層131、正孔輸送層132、赤色発光層130R、発光分離層133、青色発光層130B、緑色発光層130G、電子輸送層134、電子注入層135がこの順序で積層された構成を有する。2層の発光ユニットU1、U2を有するOLED層は、例えば、第1電極12から第2電極14に向かって、正孔注入層131、正孔輸送層132、青色発光層130B、電子輸送層136、電荷発生層137、正孔輸送層138、黄色発光層130Y、電子輸送層134、電子注入層135がこの順序で積層された構成を有する。 Specific examples of the organic layer 13 will be described with reference to Figures 3A and 3B. The organic layer 13 may be composed of a laminate including an organic light-emitting layer, and in that case, some layers of the laminate (e.g., an electron injection layer) may be an inorganic layer. The organic layer 13 may be an OLED layer having a single light-emitting unit U as shown in Figure 3A, an OLED layer having two light-emitting units U1 and U2 (tandem structure) as shown in Figure 3B, or an OLED layer having a structure other than these. The organic layer 13 having a single light-emitting unit U has a structure in which, for example, a hole injection layer 131, a hole transport layer 132, a red light-emitting layer 130R, a light-emitting separation layer 133, a blue light-emitting layer 130B, a green light-emitting layer 130G, an electron transport layer 134, and an electron injection layer 135 are laminated in this order from the first electrode 12 to the second electrode 14. The OLED layer having two light-emitting units U1 and U2 has a structure in which, for example, from the first electrode 12 toward the second electrode 14, a hole injection layer 131, a hole transport layer 132, a blue light-emitting layer 130B, an electron transport layer 136, a charge generation layer 137, a hole transport layer 138, a yellow light-emitting layer 130Y, an electron transport layer 134, and an electron injection layer 135 are laminated in this order.

(第2電極)
 有機層13の上側には、第2電極14が設けられる。第2電極14は、例えば、カソードである。第2電極14は、不図示のカソードコンタクトに対して、所定の配線構造によって接続されている。第2電極14のうち、サブ画素101に対応する部分(発光素子20に対応する部分)では、第1電極12と対向するように設けられている。第2電極14は、複数のサブ画素101毎に分離して設けられている。第2電極14が複数のサブ画素101に共通の電極として設けられる構成でもよい。第2電極14は、有機層13で発生した光に対して透過性を有する透明電極であることが好適である。ここでいう透明電極は、透明導電層で形成されたもの、及び、透明導電層と半透過反射層とを有する積層構造で形成されたものを含む。
(Second electrode)
A second electrode 14 is provided on the upper side of the organic layer 13. The second electrode 14 is, for example, a cathode. The second electrode 14 is connected to a cathode contact (not shown) by a predetermined wiring structure. A portion of the second electrode 14 corresponding to the sub-pixel 101 (a portion corresponding to the light-emitting element 20) is provided so as to face the first electrode 12. The second electrode 14 is provided separately for each of the plurality of sub-pixels 101. The second electrode 14 may be provided as a common electrode for the plurality of sub-pixels 101. The second electrode 14 is preferably a transparent electrode that is transparent to the light generated in the organic layer 13. The transparent electrode referred to here includes an electrode formed of a transparent conductive layer and an electrode formed of a laminated structure having a transparent conductive layer and a semi-transmissive reflective layer.

 透明導電層は、光透過性が良好で仕事関数が小さい透明導電材料が好適に用いられる。透明導電層は、例えば、金属酸化物で形成することができる。具体的に、透明導電層の材料としては、インジウム酸化物と錫酸化物の混合体(ITO)、インジウム酸化物と亜鉛酸化物の混合体(IZO)および酸化亜鉛(ZnO)のうちの少なくとも1種を含むものを例示することができる。 The transparent conductive layer is preferably made of a transparent conductive material with good light transmission and a small work function. The transparent conductive layer can be made of, for example, a metal oxide. Specifically, examples of the material for the transparent conductive layer include a material containing at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), and zinc oxide (ZnO).

 半透過反射層は、例えば金属層で形成することができる。具体的には、半透過反射層の材料は、マグネシウム(Mg)、アルミニウム(Al)、銀(Ag)、金(Au)および銅(Cu)からなる群より選ばれる少なくとも1種の金属元素を含むものを例示することができる。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、MgAg合金、AgPdCu合金等が挙げられる。なお、第1電極12がカソードであり、第2電極14がアノードでもよい。 The semi-transmissive reflective layer can be formed, for example, from a metal layer. Specifically, the material of the semi-transmissive reflective layer can be, for example, one containing at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), gold (Au) and copper (Cu). The metal layer may contain at least one of the above metal elements as a constituent element of an alloy. Specific examples of the alloy include an MgAg alloy and an AgPdCu alloy. The first electrode 12 may be a cathode and the second electrode 14 may be an anode.

(画素間絶縁層)
 隣り合う第1電極12の間には、絶縁性を有する層が形成されていることが好ましい。図2の例では、画素間絶縁層16が、隣り合う第1電極12の間に形成されている。画素間絶縁層16は、有機絶縁層であってもよいし、無機絶縁層であってもよいし、これらの積層体であってもよい。有機絶縁層は、例えば、ポリイミド系樹脂、アクリル系樹脂及びノボラック系樹脂等からなる群より選ばれた少なくとも1種を含む。無機絶縁層は、例えば、酸化シリコン(SiOx)、窒化シリコン(SiNx)及び酸窒化シリコン(SiOxNy)等からなる群より選ばれた少なくとも1種を含む。画素間絶縁層16は開口部16Aを有し、この開口部16Aを介して第1電極12が露出する。
(Inter-pixel insulating layer)
It is preferable that an insulating layer is formed between adjacent first electrodes 12. In the example of FIG. 2, an interpixel insulating layer 16 is formed between adjacent first electrodes 12. The interpixel insulating layer 16 may be an organic insulating layer, an inorganic insulating layer, or a laminate of these. The organic insulating layer includes at least one selected from the group consisting of, for example, polyimide resin, acrylic resin, novolac resin, and the like. The inorganic insulating layer includes at least one selected from the group consisting of, for example, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the like. The interpixel insulating layer 16 has an opening 16A, and the first electrode 12 is exposed through this opening 16A.

(第1保護層)
 表示装置10Aでは、発光素子20の第1の面側(第2電極14の第1の面側)を部分的に覆うように、第1保護層18が形成されている。第1保護層18は、発光素子20の第1の面を外気に触れにくくし、外部環境から発光素子20への水分侵入を抑制する。
(First Protective Layer)
In the display device 10A, a first protective layer 18 is formed so as to partially cover a first surface side (a first surface side of the second electrode 14) of the light-emitting element 20. The first protective layer 18 makes the first surface of the light-emitting element 20 less likely to be exposed to the outside air, and suppresses the intrusion of moisture from the external environment into the light-emitting element 20.

 第1保護層18は、絶縁材料で形成される。絶縁材料としては、例えば、熱硬化性樹脂などを用いることができる。そのほかにも、絶縁材料としては、SiO、SiON、AlO、TiO、SiN等でもよい。この場合、第1保護層18として、SiO、SiON等を含むCVD膜や、AlO、TiO、SiO等を含むALD膜等を例示することができる。なお、CVD膜は、化学気相成長法(chemical vapor deposition)を用いて形成された膜を示す。ALD膜は、原子層堆積法(Atomic layer deposition)を用いて形成された膜を示す。第1保護層18は、単層で形成されてもよいし、複数の層を積層した構造を有してもよい。 The first protective layer 18 is formed of an insulating material. For example, a thermosetting resin can be used as the insulating material. Other insulating materials may be SiO, SiON, AlO, TiO, SiN, etc. In this case, examples of the first protective layer 18 include a CVD film containing SiO, SiON, etc., and an ALD film containing AlO, TiO, SiO, etc. Note that the CVD film refers to a film formed using chemical vapor deposition. The ALD film refers to a film formed using atomic layer deposition. The first protective layer 18 may be formed as a single layer, or may have a structure in which multiple layers are stacked.

(分離保護層)
 表示装置10Aには、素子間分離壁として、発光素子20の側端面、第1保護層18の側端面、及び、第1保護層18の上端面を覆うように分離保護層19が形成されている。分離保護層19は、隣り合う発光素子20の間に配置されており、第1電極12、有機層13、及び、第2電極14をサブ画素101毎に分離する。
(Separation Protective Layer)
In the display device 10A, an isolation protective layer 19 is formed as an inter-element isolation wall so as to cover the side end faces of the light-emitting elements 20, the side end faces of the first protective layer 18, and the upper end face of the first protective layer 18. The isolation protective layer 19 is disposed between adjacent light-emitting elements 20, and separates the first electrode 12, the organic layer 13, and the second electrode 14 for each sub-pixel 101.

 分離保護層19は、絶縁体で形成されている。分離保護層19としては、無機絶縁膜や有機絶縁膜を挙げることができる。無機絶縁膜としては、例えば、SiO、SiN、SiON等を挙げることができる。有機絶縁膜としては、ポリイミド等を挙げることができる。 The isolation protective layer 19 is made of an insulator. Examples of the isolation protective layer 19 include an inorganic insulating film and an organic insulating film. Examples of the inorganic insulating film include SiO 2 , SiN, and SiON. Examples of the organic insulating film include polyimide.

(第2保護層)
 分離保護層19の第1の面側には、全体にわたって第2保護層21が形成されている。なお、第2保護層21はなくてもよい。第2保護層21の材料としては、第1保護層18と同様の材料を適用することができる。
(Second Protective Layer)
A second protective layer 21 is formed over the entire first surface side of the separation protective layer 19. The second protective layer 21 may be omitted. The same material as that of the first protective layer 18 may be used as the material of the second protective layer 21.

(屈折層)
 第2保護層21の第1の面上には、屈折層22が形成される。屈折層22の材料としては、第1保護層18と同様の絶縁材料や樹脂材料を用いることができる。屈折層22は、空気層であってもよい。屈折層22の屈折率は、屈折層22と接する保護層(本実施形態では、第2保護層21)の屈折率よりも小さい。
(Refractive Layer)
A refractive layer 22 is formed on the first surface of the second protective layer 21. The material of the refractive layer 22 may be an insulating material or a resin material similar to that of the first protective layer 18. The refractive layer 22 may be an air layer. The refractive index of the refractive layer 22 is smaller than the refractive index of the protective layer in contact with the refractive layer 22 (in this embodiment, the second protective layer 21).

 なお、図示は省略しているが、屈折層22の第1の面上に、さらに、カラーフィルタ部やレンズが配置されてもよい。この場合、屈折層22は、例えば、カラーフィルタ部を形成するための面の平坦性を得るための平坦化層として機能する。勿論、屈折層22とは別に平坦化層が設けられていてもよい。また、屈折層22は、発光素子20等に水分等の異物が侵入することを防止する保護層としても機能する。また、表示装置10Aは、上述した構成要素の一部がない構成であってもよい。また、表示装置10Aは、上述した構成要素以外の公知の構成要素を有する構成であってもよい。 Although not shown, a color filter section and a lens may be further disposed on the first surface of the refractive layer 22. In this case, the refractive layer 22 functions, for example, as a planarizing layer for obtaining flatness of the surface for forming the color filter section. Of course, a planarizing layer may be provided separately from the refractive layer 22. The refractive layer 22 also functions as a protective layer for preventing foreign matter such as moisture from entering the light-emitting element 20, etc. The display device 10A may be configured without some of the above-mentioned components. The display device 10A may be configured to have known components other than the above-mentioned components.

 表示装置10Aでは、サブ画素101内の領域である画素内領域ARAと、サブ画素101間の領域である画素間領域ARBと、が規定される。図2に示すように、画素内領域ARAは、例えば、発光素子20を含む領域であり、一例として、第1保護層18の外縁よりも内側の領域として設定される。分離保護層19の外縁よりも内側の領域が画素内領域ARAとして設定されてもよい。また、図2に示すように、画素間領域ARBは画素内領域ARA以外の領域であり、一例として、サブ画素101における第1保護層18の外縁間の領域として設定される。 In the display device 10A, an intra-pixel area ARA, which is an area within the sub-pixel 101, and an inter-pixel area ARB, which is an area between the sub-pixels 101, are defined. As shown in FIG. 2, the intra-pixel area ARA is, for example, an area including the light-emitting element 20, and is set as an area inside the outer edge of the first protective layer 18, for example. The area inside the outer edge of the separation protective layer 19 may be set as the intra-pixel area ARA. Also, as shown in FIG. 2, the inter-pixel area ARB is an area other than the intra-pixel area ARA, and is set as an area between the outer edges of the first protective layer 18 in the sub-pixels 101, for example.

 画素内領域ARAには、溝部23が形成されている。例えば、画素内領域ARAの中央付近に溝部23が形成されている。溝部23は、画素内領域ARAにおいて、第1保護層18、分離保護層19を部分的に除去し、その箇所に第2保護層21を配置することで得られる。本実施形態では、溝部23の端面(溝部23の下側の面)23Aと駆動基板11の第1の面との間には、第2保護層21、第2電極14、有機層13、及び、第1電極12が介在する。 A groove portion 23 is formed in the intra-pixel area ARA. For example, the groove portion 23 is formed near the center of the intra-pixel area ARA. The groove portion 23 is obtained by partially removing the first protective layer 18 and the isolation protective layer 19 in the intra-pixel area ARA and disposing the second protective layer 21 in that location. In this embodiment, the second protective layer 21, the second electrode 14, the organic layer 13, and the first electrode 12 are interposed between the end face 23A of the groove portion 23 (the lower surface of the groove portion 23) and the first surface of the drive substrate 11.

 また、画素間領域ARBにも溝部24が形成されている。溝部24は、画素間領域ARBに形成される段差である。 In addition, a groove portion 24 is also formed in the inter-pixel region ARB. The groove portion 24 is a step formed in the inter-pixel region ARB.

 図2に示すように、溝部23及び溝部24に屈折層22が配置(充填)されている。 As shown in FIG. 2, the refractive layer 22 is disposed (filled) in the grooves 23 and 24.

(作用)
 図4を参照しつつ、本実施形態に係る表示装置10Aの作用について説明する。図4に示すように、サブ画素101(例えば、サブ画素101G)の端部から出射し、横方向(斜め横方向)に向かう光のうち、画素内領域ARAの中央に向かう光L1は、画素内領域ARAにおける第2保護層21と屈折層22との屈折率の違いによって、正面方向(上側)に屈折する。また、画素間領域ARBの中央に向かう光L2は、画素間領域ARBにおける第2保護層21と屈折層22との屈折率の違いによって、正面方向(上側)に屈折する。これにより、例えば、サブ画素101(例えば、サブ画素101G)の端部から出射し、横方向(斜め横方向)に向かう光(光L1、L2)を正面方向に向かわせることができ、光の取り出し効率を向上させることができる。
(Action)
The operation of the display device 10A according to this embodiment will be described with reference to FIG. 4. As shown in FIG. 4, among the light emitted from the end of the sub-pixel 101 (for example, the sub-pixel 101G) and directed in the horizontal direction (diagonal horizontal direction), the light L1 directed toward the center of the pixel area ARA is refracted in the front direction (upward) due to the difference in the refractive index between the second protective layer 21 and the refractive layer 22 in the pixel area ARA. In addition, the light L2 directed toward the center of the inter-pixel area ARB is refracted in the front direction (upward) due to the difference in the refractive index between the second protective layer 21 and the refractive layer 22 in the inter-pixel area ARB. As a result, for example, the light (light L1, L2) emitted from the end of the sub-pixel 101 (for example, the sub-pixel 101G) and directed in the horizontal direction (diagonal horizontal direction) can be directed in the front direction, thereby improving the light extraction efficiency.

 なお、本実施形態では、屈折層22の屈折率が第2保護層21の屈折率よりも小さいものとして説明したが、上述した作用を奏することができるのではあれば、屈折層22の屈折率が第2保護層21の屈折率よりも大きくてもよい。 In this embodiment, the refractive index of the refractive layer 22 is described as being smaller than the refractive index of the second protective layer 21, but the refractive index of the refractive layer 22 may be larger than the refractive index of the second protective layer 21 as long as the above-mentioned effect can be achieved.

[表示装置の製造方法]
 次に、第1の実施形態に係る表示装置10Aの製造方法の一例について説明する。まず、基材11Aに回路等を搭載した後、層間絶縁層11Bを形成する。次に、例えばスパッタリング法により、金属層、金属酸化物層を駆動基板11の第1の面上に順次形成したのち、例えばフォトリソグラフィ技術及びエッチング技術を用いて金属層及び金属酸化物層をパターニングする。これにより、第1電極12が形成される。次に、例えばCVD(Chemical Vapor Deposition)法により、複数の第1電極12を覆うように駆動基板11の第1の面上に画素間絶縁層16を形成する。次に、例えばフォトリソグラフィ技術及びドライエッチング技術により、画素間絶縁層16のうち、各第1電極12の第1の面上に位置する部分に開口部16Aをそれぞれ形成する。
[Display Device Manufacturing Method]
Next, an example of a manufacturing method of the display device 10A according to the first embodiment will be described. First, after mounting a circuit or the like on the base material 11A, the interlayer insulating layer 11B is formed. Next, a metal layer and a metal oxide layer are sequentially formed on the first surface of the drive substrate 11 by, for example, a sputtering method, and then the metal layer and the metal oxide layer are patterned by, for example, a photolithography technique and an etching technique. This forms the first electrode 12. Next, an interpixel insulating layer 16 is formed on the first surface of the drive substrate 11 so as to cover the multiple first electrodes 12 by, for example, a CVD (Chemical Vapor Deposition) method. Next, openings 16A are formed in the interpixel insulating layer 16 in the portions located on the first surfaces of the first electrodes 12 by, for example, a photolithography technique and a dry etching technique.

 次に、例えば蒸着法により、第1電極12の第1の面上及び画素間絶縁層16の第1の面上に有機層13を形成する。次に、例えば蒸着法またはスパッタリング法により、第2電極14を駆動基板11の第1の面側全体にわたって形成する。次に、例えばCVD法または蒸着法により、第1保護層18を駆動基板11の第1の面側全体にわたって形成する。ここまでの工程で、図5Aに示す構成が得られる。 Next, an organic layer 13 is formed on the first surface of the first electrode 12 and on the first surface of the interpixel insulating layer 16, for example, by vapor deposition. Next, a second electrode 14 is formed over the entire first surface side of the drive substrate 11, for example, by vapor deposition or sputtering. Next, a first protective layer 18 is formed over the entire first surface side of the drive substrate 11, for example, by CVD or vapor deposition. Through these steps, the configuration shown in FIG. 5A is obtained.

 次に、図5Bに示すように、第1保護層18の第1の面上にレジスト31を配置する。そして、エッチング処理が行われることで、図5Cに示すように、不要な第1保護層18、第2電極14、及び、有機層13が除去される。 Next, as shown in FIG. 5B, a resist 31 is placed on the first surface of the first protective layer 18. Then, an etching process is performed to remove unnecessary parts of the first protective layer 18, the second electrode 14, and the organic layer 13, as shown in FIG. 5C.

 次に、図6Aに示すように、蒸着法やスパッタリング法によって分離保護層19が全面にわたって形成される。そして、図6Bに示すように、レジスト31が配置された後に、分離保護層19及び第1保護層18の不要な箇所が除去されることで、図6Cに示すように、画素内領域ARAに溝38Aが形成される。また、レジスト31が除去されることで、画素間領域ARBには溝部38Bが形成される。 Next, as shown in FIG. 6A, the isolation protective layer 19 is formed over the entire surface by vapor deposition or sputtering. Then, as shown in FIG. 6B, after resist 31 is placed, unnecessary portions of the isolation protective layer 19 and the first protective layer 18 are removed, forming a groove 38A in the intra-pixel area ARA as shown in FIG. 6C. Furthermore, as the resist 31 is removed, a groove portion 38B is formed in the inter-pixel area ARB.

 次に、図7Aに示すように、例えば蒸着法またはスパッタリング法により、第2保護層21が全面にわたって形成されることで、画素内領域ARAに溝部23が形成され、画素間領域ARBに溝部24が形成される。そして、図7Bに示すように、第2保護層21の第1の面に屈折層22が形成される。なお、説明や図示は省略しているが、この後の工程で、カラーフィルタや駆動基板11と対向する対向基板等を設ける工程等が行われる。 Next, as shown in FIG. 7A, a second protective layer 21 is formed over the entire surface by, for example, vapor deposition or sputtering, to form grooves 23 in the intra-pixel area ARA and grooves 24 in the inter-pixel area ARB. Then, as shown in FIG. 7B, a refractive layer 22 is formed on the first surface of the second protective layer 21. Note that, although not explained or illustrated, subsequent steps include providing a color filter, an opposing substrate opposing the drive substrate 11, and the like.

[有機層のレイアウト例]
 次に、図8から図11までを参照して有機層13の配置例について説明する。図8から図11までは、駆動基板11を+Z方向から平面視した図である。なお、図8から図11で、参照符号32で示している箇所は、有機層13、第2電極14、第1保護層18を含む積層体(積層体32)である。
[Organic layer layout example]
Next, an example of the arrangement of the organic layer 13 will be described with reference to Fig. 8 to Fig. 11. Fig. 8 to Fig. 11 are plan views of the drive substrate 11 from the +Z direction. Note that in Fig. 8 to Fig. 11, the location indicated by reference numeral 32 is a laminate (laminate 32) including the organic layer 13, the second electrode 14, and the first protective layer 18.

 図8に示すように、有機層13を含む積層体32は、各サブ画素101間で独立して形成されていてもよい。また、図9に示すように、有機層13を含む積層体32は、各サブ画素101間で独立して形成されていてもよい。図9に示す例では、同じ色のサブ画素(図示の例は、サブ画素101B)の第1電極12が共通となっている。本例に限らず、図10、図11に示すように、有機層13を含む積層体32は、サブ画素101間で共通となっていてもよい。 As shown in FIG. 8, the laminate 32 including the organic layer 13 may be formed independently between each subpixel 101. Also, as shown in FIG. 9, the laminate 32 including the organic layer 13 may be formed independently between each subpixel 101. In the example shown in FIG. 9, the first electrode 12 is shared between subpixels of the same color (subpixel 101B in the illustrated example). This is not limited to this example, and as shown in FIGS. 10 and 11, the laminate 32 including the organic layer 13 may be shared between subpixels 101.

[第1電極の形状例]
 次に、図12から図15までを参照して第1電極12の形状例について説明する。図12から図15までは、駆動基板11を+Z方向から平面視した図である。図12に示すように、サブ画素101内における第1電極12の形状は、非対称形状(例えば、十字状の形状)であってもよい。また、図13に示すように、第1電極12は、サブ画素101内で孤立していてもよい。また、図14に示すように、第1電極12は、離間して形成された複数の電極から構成されていてもよい。また、図15に示すように、駆動基板11内、若しくは、サブ画素101毎に第1電極12の形状やサイズが異なっていてもよい。
[Examples of shapes of the first electrode]
Next, examples of the shape of the first electrode 12 will be described with reference to Figs. 12 to 15. Figs. 12 to 15 are plan views of the driving substrate 11 from the +Z direction. As shown in Fig. 12, the shape of the first electrode 12 in the sub-pixel 101 may be asymmetric (for example, a cross shape). As shown in Fig. 13, the first electrode 12 may be isolated in the sub-pixel 101. As shown in Fig. 14, the first electrode 12 may be composed of a plurality of electrodes formed at a distance from each other. As shown in Fig. 15, the shape or size of the first electrode 12 may be different in the driving substrate 11 or for each sub-pixel 101.

[第1の実施形態の変形例]
 次に、第1の実施形態の変形例について説明する。なお、上述した説明における構成要素と同一又は同質の構成要素については同一の参照符号を付し、重複した説明を適宜、省略する。
[Modification of the first embodiment]
Next, a modified example of the first embodiment will be described. Note that components that are the same as or have the same quality as those in the above description will be given the same reference numerals, and duplicated descriptions will be omitted as appropriate.

(第1の変形例)
 図16は、第1の変形例に係る表示装置(表示装置10B)の断面構成例を示す図である。表示装置10Bは、補助電極27を有する。補助電極27は、例えば、分離保護層19と第2保護層21との間に形成されており、各サブ画素101の第2電極14に接続されている。第2保護層21は、補助電極27に対して形成され、補助電極27を保護する補助電極保護層としても機能する。補助電極27は、隣接する第2電極14間を互いに電気的に繋ぐ。各第2電極14に接続された補助電極27は、周辺領域AR2においてカソードコンタクト(不図示)に接続される。本変形例に係る構成では、溝部23の端面23Aと駆動基板11との間には第2保護層21、補助電極27、第2電極14、有機層13、及び、第1電極12が介在する。補助電極27は、有機層13で発生した光に対して透過性を有する透明電極である。ここで、透明電極には、半透過性反射層も含まれるものとする。本変形例によっても第1の実施形態と同様の作用効果を得ることができる。
(First Modification)
FIG. 16 is a diagram showing a cross-sectional configuration example of a display device (display device 10B) according to a first modified example. The display device 10B has an auxiliary electrode 27. The auxiliary electrode 27 is formed, for example, between the separation protective layer 19 and the second protective layer 21, and is connected to the second electrode 14 of each subpixel 101. The second protective layer 21 is formed for the auxiliary electrode 27, and also functions as an auxiliary electrode protective layer that protects the auxiliary electrode 27. The auxiliary electrode 27 electrically connects adjacent second electrodes 14 to each other. The auxiliary electrode 27 connected to each second electrode 14 is connected to a cathode contact (not shown) in the peripheral region AR2. In the configuration according to this modified example, the second protective layer 21, the auxiliary electrode 27, the second electrode 14, the organic layer 13, and the first electrode 12 are interposed between the end surface 23A of the groove portion 23 and the drive substrate 11. The auxiliary electrode 27 is a transparent electrode that is transparent to light generated in the organic layer 13. Here, the transparent electrode also includes a semi-transparent reflective layer. This modified example can also provide the same effects as those of the first embodiment.

(第2の変形例)
 図17は、第2の変形例に係る表示装置(表示装置10C)の断面構成例を示す図である。本変形例では、溝部23の端面23Aの下側に位置する第2電極14及び有機層13が除去されている例である。溝部23の端面23Aと駆動基板11との間には、第2保護層21及び第1電極12が介在する。溝部23を設けた場合、端面23Aの下側で発光した光の取り出し効率が悪くなり、場合によっては、その箇所が黒点状になってしまったり、混色が発生する虞がある。そこで、本変形例では、溝部23の端面23Aの下側の箇所における第2電極14及び有機層13を除去する。換言すれば、溝部23の端面23Aと駆動基板11との間に、第1電極12のみが介在し、第2電極14及び有機層13が介在しないようにする。係る構成により、溝部23の端面23Aの下側の箇所を非発光領域とすることができ、上記の不都合を回避できる。なお、図18に示すように、溝部23の端面23Aの下側に位置する第1電極12も除去してもよい。係る構成によっても、溝部23の端面23Aの下側の箇所を非発光領域とすることができ、上記の不都合を回避できる。
(Second Modification)
FIG. 17 is a diagram showing a cross-sectional configuration example of a display device (display device 10C) according to a second modified example. In this modified example, the second electrode 14 and the organic layer 13 located below the end face 23A of the groove portion 23 are removed. Between the end face 23A of the groove portion 23 and the drive substrate 11, the second protective layer 21 and the first electrode 12 are interposed. When the groove portion 23 is provided, the extraction efficiency of the light emitted below the end face 23A is poor, and in some cases, the area may become black dot-like or color mixing may occur. Therefore, in this modified example, the second electrode 14 and the organic layer 13 at the area below the end face 23A of the groove portion 23 are removed. In other words, only the first electrode 12 is interposed between the end face 23A of the groove portion 23 and the drive substrate 11, and the second electrode 14 and the organic layer 13 are not interposed. With this configuration, the area below the end face 23A of the groove portion 23 can be made a non-light-emitting area, and the above-mentioned inconvenience can be avoided. 18, the first electrode 12 located below the end surface 23A of the groove 23 may also be removed. With this configuration, the area below the end surface 23A of the groove 23 can be made a non-light-emitting area, and the above-mentioned inconvenience can be avoided.

(第3の変形例)
 図19は、第3の変形例に係る表示装置(表示装置10D)の断面構成例を示す図である。溝部23の端面23Aの下側に位置する層間絶縁層11Bにカソードコンタクト28が形成される。層間絶縁層11Bに形成されたカソードコンタクト28に、上述した補助電極27が接続されてもよい。これにより、周辺領域AR2にカソードコンタクトを設ける必要がなくなるので、表示装置全体を小型化できる。なお、補助電極27と第1電極12との間に絶縁層が設けられてもよい。
(Third Modification)
19 is a diagram showing an example of a cross-sectional configuration of a display device (display device 10D) according to a third modified example. A cathode contact 28 is formed on the interlayer insulating layer 11B located below the end face 23A of the groove portion 23. The above-mentioned auxiliary electrode 27 may be connected to the cathode contact 28 formed on the interlayer insulating layer 11B. This eliminates the need to provide a cathode contact in the peripheral region AR2, allowing the entire display device to be miniaturized. An insulating layer may be provided between the auxiliary electrode 27 and the first electrode 12.

(第4の変形例)
 図20は、第4の変形例に係る表示装置(表示装置10E)の断面構成例を示す図である。表示装置10Eの基本的な構成は、上述した表示装置10Bと同じである。異なる点は、溝部23の端面23Aの下側に位置する第1電極12が除去され、除去された箇所に絶縁層29が形成されている点である。換言すれば、溝部23の端面23Aと駆動基板11との間には、第1電極12が介在せず、第2電極14、有機層13、及び、絶縁層29が介在する。本変形例によっても、端面23Aの下側の箇所を非発光領域とすることができる。
(Fourth Modification)
20 is a diagram showing a cross-sectional configuration example of a display device (display device 10E) according to a fourth modified example. The basic configuration of the display device 10E is the same as that of the display device 10B described above. The difference is that the first electrode 12 located below the end face 23A of the groove portion 23 is removed, and an insulating layer 29 is formed in the removed area. In other words, the first electrode 12 is not interposed between the end face 23A of the groove portion 23 and the driving substrate 11, but the second electrode 14, the organic layer 13, and the insulating layer 29 are interposed. This modified example also allows the area below the end face 23A to be a non-light-emitting area.

(第5の変形例)
 図21は、第5の変形例に係る表示装置(表示装置10F)の断面構成例を示す図である。表示装置10Fは、変形例に係る表示装置10B、10C、10D、10Eに係る構成を全て有する。これにより、各変形例で説明した効果を奏することが可能となる。
(Fifth Modification)
21 is a diagram showing an example of a cross-sectional configuration of a display device (display device 10F) according to a fifth modified example. The display device 10F has all of the configurations of the display devices 10B, 10C, 10D, and 10E according to the modified examples. This makes it possible to achieve the effects described in each modified example.

(第6の変形例)
 本実施形態に係る表示装置は、有機層13の側端面、第2電極14、及び、第1保護層18の下側側面と、分離保護層19との間に介在する側壁保護膜(サイドウォール等とも称される)を有していてもよい。側壁保護膜は、有機層13の側端面に接しつつ、有機層13の側端全域を被覆していることが好ましい。
(Sixth Modification)
The display device according to this embodiment may have a sidewall protective film (also referred to as a sidewall, etc.) interposed between the side end surface of the organic layer 13, the second electrode 14, and the lower side surface of the first protective layer 18, and the separation protective layer 19. It is preferable that the sidewall protective film contacts the side end surface of the organic layer 13 and covers the entire side end area of the organic layer 13.

 側壁保護膜は、絶縁性の膜であり、エッチング加工で生じる副生成物(デポ)を含む加工副生成物膜である。側壁保護膜は、有機層13を外部環境下に露出することを規制しつつ分離保護層19の形成を行うことを補助する。なお、エッチング加工としては、ドライエッチング法とウェットエッチング法のいずれも実施可能であるが、デポをより確実に実現する観点からは、エッチング加工は、ドライエッチング法であることが好ましい。 The sidewall protective film is an insulating film, and is a processing by-product film that contains by-products (deposits) generated by the etching process. The sidewall protective film assists in the formation of the isolation protective layer 19 while preventing the organic layer 13 from being exposed to the external environment. Note that, although either dry etching or wet etching can be used as the etching process, from the viewpoint of more reliably realizing the deposits, it is preferable that the etching process be a dry etching process.

<第2の実施形態>
 次に、第2の実施形態について説明する。なお、第2の実施形態の説明において、上述した説明における同一または同質の構成については同一の参照符号を付し、重複した説明を適宜、省略する。また、特に断らない限り、第1の実施形態で説明した事項は第2の実施形態に対して適用することができる。第3の実施形態以降の実施形態についても同様である。
Second Embodiment
Next, a second embodiment will be described. In the description of the second embodiment, the same or similar components in the above description will be given the same reference numerals, and duplicated descriptions will be omitted as appropriate. Furthermore, unless otherwise specified, the matters described in the first embodiment can be applied to the second embodiment. The same applies to the third and subsequent embodiments.

 第1の実施形態では、画素内領域ARAに溝部23を設け、溝部23内に屈折層22を配置することで、発光素子20で発光した光(特に、発光素子20の外周縁付近で発光した光)を外部に効果的に取り出すことができる点について説明した。本実施形態では、画素内領域ARAにおける発光強度を不均一にする。具体的には、画素内領域ARAにおける溝部23の端面23Aと駆動基板11との間に第1領域における第1発光強度が、画素内領域ARAにおける第1領域以外の第2領域における第2発光強度よりも小さくなるように、表示装置が構成される。 In the first embodiment, a groove 23 is provided in the intra-pixel area ARA, and a refractive layer 22 is disposed in the groove 23, thereby enabling the light emitted by the light-emitting element 20 (particularly the light emitted near the outer periphery of the light-emitting element 20) to be effectively extracted to the outside. In this embodiment, the emission intensity in the intra-pixel area ARA is made non-uniform. Specifically, the display device is configured so that a first emission intensity in a first region between the end face 23A of the groove 23 in the intra-pixel area ARA and the drive substrate 11 is smaller than a second emission intensity in a second region other than the first region in the intra-pixel area ARA.

 図22は、第2の実施形態に係る表示装置(表示装置10G)の断面構成例を説明するための部分断面図(発光素子20Gの周辺領域を拡大した断面図)である。図22に示すように、画素内領域ARAでは、溝部23の端面23Aと駆動基板11との間に第1領域ARCと、画素内領域ARAにおける第1領域ARC以外の第2領域ARDが設定される。 FIG. 22 is a partial cross-sectional view (an enlarged cross-sectional view of the peripheral area of the light-emitting element 20G) for explaining an example of the cross-sectional configuration of a display device (display device 10G) according to the second embodiment. As shown in FIG. 22, in the intra-pixel area ARA, a first area ARC is set between the end face 23A of the groove portion 23 and the drive substrate 11, and a second area ARD other than the first area ARC in the intra-pixel area ARA is set.

 第2領域ARDに位置する第1電極12の所定箇所には凹部が形成されている。例えば、凹部の一例として、第1電極12の第1の面に、断面視V字状の凹部12Aが形成されている。そして、凹部12Aの第1の面側に、有機層13、第2電極14、及び、第1保護層18が積層されている。 A recess is formed at a predetermined location of the first electrode 12 located in the second region ARD. For example, as an example of a recess, a V-shaped recess 12A in cross section is formed on the first surface of the first electrode 12. An organic layer 13, a second electrode 14, and a first protective layer 18 are laminated on the first surface side of the recess 12A.

 例えば、有機層13が真空蒸着法等により成膜される際に、凹部12Aが傾斜面を有するため、凹部12Aに対する有機層13のつきまわりが平坦な箇所に比べて薄くなる。すなわち、凹部12A上に形成された有機層13の膜厚が平坦な箇所に形成された有機層13の膜厚に比べて小さくなる。凹部12Aの傾斜角度等にもよるが、傾斜角度が45°から60°程度の場合は、凹部12Aに形成される有機層13の膜厚は、平坦な箇所に形成される有機層13の膜厚に比べて60%から70%となる。 For example, when the organic layer 13 is formed by a vacuum deposition method or the like, the concave portion 12A has an inclined surface, so that the organic layer 13 is applied thinner to the concave portion 12A than to a flat portion. In other words, the thickness of the organic layer 13 formed on the concave portion 12A is smaller than the thickness of the organic layer 13 formed on the flat portion. Depending on the inclination angle of the concave portion 12A, when the inclination angle is about 45° to 60°, the thickness of the organic layer 13 formed on the concave portion 12A is 60% to 70% of the thickness of the organic layer 13 formed on the flat portion.

 有機層13の膜厚が部分的に小さくなる箇所(凹部12Aの箇所)は、膜厚が大きくなる箇所(例えば、第1領域ARCや第2領域ARDにおける平坦な箇所)よりも多く電流が流れる。すなわち、凹部12Aに形成された箇所の発光強度(第2発光強度)が、第1領域ARCで発光する光の発光強度(第1発光強度)よりも大きくなる。そして、第1の実施形態で説明した表示装置の作用と相まって、集光効率だけでなく輝度も向上させることができる。 A larger current flows through the portions where the thickness of the organic layer 13 is partially smaller (the portions of the recesses 12A) than through the portions where the thickness is larger (for example, the flat portions in the first region ARC or the second region ARD). That is, the emission intensity (second emission intensity) of the portions formed in the recesses 12A is greater than the emission intensity (first emission intensity) of the light emitted in the first region ARC. Combined with the action of the display device described in the first embodiment, this can improve not only the light collection efficiency but also the brightness.

 なお、凹部12Aの形状はV字形状に限定されることはない。例えば、図23Aに示すように、凹部12Aの形状は、断面視半円状(全体としてはすり鉢状)であってもよい。また、第1電極12に対する加工が施されることで凹部12Aが形成されてもよいし、第1電極12の第2の面と接する層に加工が施されることで凹部12Aが形成されてもよい。例えば、図23Bに示すように、層間絶縁層11Bに例えばV字形状の凹部が形成され、当該凹部を含む層間絶縁層11Bの第1の面上に第1電極12が形成されることで、凹部12Aが形成されてもよい。なお、図23A及び図23Bでは、第1電極12に接続されるコンタクトに関する図示を省略している。 The shape of the recess 12A is not limited to a V-shape. For example, as shown in FIG. 23A, the shape of the recess 12A may be semicircular (cone-shaped overall) in cross section. The recess 12A may be formed by processing the first electrode 12, or may be formed by processing a layer in contact with the second surface of the first electrode 12. For example, as shown in FIG. 23B, a V-shaped recess may be formed in the interlayer insulating layer 11B, and the first electrode 12 may be formed on the first surface of the interlayer insulating layer 11B including the recess, thereby forming the recess 12A. Note that in FIGS. 23A and 23B, illustration of a contact connected to the first electrode 12 is omitted.

[表示装置の製造方法例]
 表示装置10Gは、例えば、以下のように製造することができる。ここでは、第1の実施形態で説明した表示装置10Aの製造方法例と異なる点を中心に説明する。層間絶縁層11Bに第1電極12を形成した後、第1電極12の第1の面上の適宜な箇所にレジストを配置する。そして、例えば、ウェットエッチングによって第1電極12を部分的に除去することで凹部12Aを形成した後、レジストを除去する。その後の工程は、第1の実施形態で説明した製造方法を適用することができる。
[Example of a manufacturing method for a display device]
The display device 10G can be manufactured, for example, as follows. Here, the differences from the example manufacturing method of the display device 10A described in the first embodiment will be mainly described. After the first electrode 12 is formed on the interlayer insulating layer 11B, a resist is placed at an appropriate location on the first surface of the first electrode 12. Then, for example, the first electrode 12 is partially removed by wet etching to form a recess 12A, and the resist is then removed. The manufacturing method described in the first embodiment can be applied to the subsequent steps.

 図23Bに示す構成の場合は、層間絶縁層11Bを形成した後、フォトリソグラフィ技術を適用することで、層間絶縁層11Bの第1の面上に凹部を形成する。そして、層間絶縁層11Bの第1の面上に第1電極12を形成することで凹部12Aを形成する。 In the case of the configuration shown in FIG. 23B, after forming the interlayer insulating layer 11B, a recess is formed on the first surface of the interlayer insulating layer 11B by applying a photolithography technique. Then, the first electrode 12 is formed on the first surface of the interlayer insulating layer 11B to form the recess 12A.

 第1の実施形態の変形例で説明した事項は、本実施形態に対しても適用可能である。例えば、表示装置10Gが補助電極27を有する構成であってもよい。 The matters described in the modified example of the first embodiment can also be applied to this embodiment. For example, the display device 10G may be configured to have an auxiliary electrode 27.

<第3の実施形態>
 次に、第3の実施形態について説明する。本実施形態は、発光素子20で発光した光の主光線を任意の方向に傾ける実施形態である。主光線を任意の方向に傾ける方法としては光源の上に配置するカラーフィルタやオンチップレンズをずらして配置する方法が考えられる。この方法では、光源からカラーフィルタまでに届いた光を一部遮光することとなり光の減衰が発生してしまう。また、上述した特許文献1にも、光線を任意の方向に制御する方法については記載されていない。
Third Embodiment
Next, a third embodiment will be described. In this embodiment, the principal ray of light emitted by the light emitting element 20 is tilted in an arbitrary direction. A method of tilting the principal ray in an arbitrary direction can be to shift a color filter or an on-chip lens disposed above the light source. In this method, a part of the light that reaches the color filter from the light source is blocked, causing light attenuation. Furthermore, the above-mentioned Patent Document 1 does not describe a method of controlling the light ray in an arbitrary direction.

 図24は、第3の実施形態に係る表示装置(表示装置10H)の断面構成例を示す図である。サブ画素101R、サブ画素101G、及び、サブ画素101Bのそれぞれの画素内領域ARAには、溝部23R、23G、23Bがそれぞれ形成されている。 FIG. 24 is a diagram showing an example of the cross-sectional configuration of a display device (display device 10H) according to the third embodiment. Grooves 23R, 23G, and 23B are formed in the intra-pixel areas ARA of sub-pixels 101R, 101G, and 101B, respectively.

 本実施形態では、溝部23の中心が画素内領域ARAの中心からずれている溝部23が存在する。例えば、図24に示すように、サブ画素101Rにおける溝部23Rの中心CE2は、画素内領域ARAの中心CE1に対して左方向にずれており、溝部23Rは、光の射出方向に対して全体として左上方向に傾斜している。また、サブ画素101Gにおける溝部23Gの中心CE2は、画素内領域ARAの中心CE1と略一致している。また、サブ画素101Bにおける溝部23Bの中心CE2は、画素内領域ARAの中心CE1に対して右方向にずれており、溝部23Bは、光の射出方向に対して全体として右上方向に傾斜している。なお、溝部23の中心CE2とは、溝部23の形状を平面視した場合にその形状の中央、又は、溝部23の外縁によって形成される形状の中央を意味する。 In this embodiment, there is a groove portion 23 whose center is offset from the center of the intra-pixel area ARA. For example, as shown in FIG. 24, the center CE2 of the groove portion 23R in the sub-pixel 101R is offset to the left with respect to the center CE1 of the intra-pixel area ARA, and the groove portion 23R is generally inclined to the upper left with respect to the light emission direction. The center CE2 of the groove portion 23G in the sub-pixel 101G is approximately coincident with the center CE1 of the intra-pixel area ARA. The center CE2 of the groove portion 23B in the sub-pixel 101B is offset to the right with respect to the center CE1 of the intra-pixel area ARA, and the groove portion 23B is generally inclined to the upper right with respect to the light emission direction. The center CE2 of the groove portion 23 means the center of the shape of the groove portion 23 when viewed in a plane, or the center of the shape formed by the outer edge of the groove portion 23.

 溝部23Rや溝部23Bの傾斜に沿った導波路が形成される。すなわち、発光素子20Rで発光した光は、図25に示すように、溝部23Rの傾斜に対応する導波路に沿って左上方向に出射される。また、発光素子20Gで発光した光は、図25に示すように、溝部23Gの傾斜に対応する導波路に沿って正面方向に出射される。また、発光素子20Bで発光した光は、図25に示すように、溝部23Bの傾斜に対応する導波路に沿って右上方向に出射される。勿論、図25に示した光の出射方向は一例である。例えば、溝部23Gが傾斜を有し、発光素子20Gで発光した光が溝部23Gの傾斜に対応する導波路に沿って、任意の方向に出射されてもよい。このように、溝部23が有する傾斜によって、発光素子20が発光した光の主光線を任意の方向に傾けることができる。 A waveguide is formed along the inclination of the groove 23R and the groove 23B. That is, the light emitted by the light-emitting element 20R is emitted in the upper left direction along the waveguide corresponding to the inclination of the groove 23R, as shown in FIG. 25. Also, the light emitted by the light-emitting element 20G is emitted in the front direction along the waveguide corresponding to the inclination of the groove 23G, as shown in FIG. 25. Also, the light emitted by the light-emitting element 20B is emitted in the upper right direction along the waveguide corresponding to the inclination of the groove 23B, as shown in FIG. 25. Of course, the light emission direction shown in FIG. 25 is one example. For example, the groove 23G may have an inclination, and the light emitted by the light-emitting element 20G may be emitted in any direction along the waveguide corresponding to the inclination of the groove 23G. In this way, the inclination of the groove 23 allows the main ray of the light emitted by the light-emitting element 20 to be tilted in any direction.

[表示装置の製造方法例]
 表示装置10Hは、例えば、以下の方法によって製造できる。ここでは、第1の実施形態で説明した表示装置の製造方法例と異なる点を中心に説明する。フォトリソグラフィ技術によって溝38Aを形成する工程(図6B及び図6C参照)で、溝38Aの端面(-Z方向の先端であり、第2電極14と対向する箇所)の中心CE2を中心CE1に対してずらすようにする。
[Example of a manufacturing method for a display device]
The display device 10H can be manufactured, for example, by the following method. Here, the following mainly describes the differences from the example of the manufacturing method of the display device described in the first embodiment. In the step of forming the groove 38A by photolithography (see FIGS. 6B and 6C), the center CE2 of the end face of the groove 38A (the tip in the -Z direction, which faces the second electrode 14) is shifted from the center CE1.

 このようにしておくことで、第2保護層21を形成する際に、第2保護層21のつきまわりが非対称となり、結果的に、溝部23の傾斜が左右で非対称となる。これにより、溝部23が全体として所定方向に傾斜する。中心位置のずれの大きさや、第2保護層21の成膜条件を適宜、調整することにより第2保護層21のつきまわりを制御でき、これによって溝部23の傾斜の向きや傾斜角度を調整できる。つまり、発光素子20の光が所望の出射方向となるように、中心位置のずれの大きさや、第2保護層21の成膜条件を適宜、調整することで、光の所望の出射方向が得られる溝部23の傾斜の向きや傾斜角度を形成できる。 By doing this, when the second protective layer 21 is formed, the throw of the second protective layer 21 becomes asymmetric, and as a result, the inclination of the groove portion 23 becomes asymmetric between the left and right. As a result, the groove portion 23 as a whole is inclined in a predetermined direction. By appropriately adjusting the magnitude of the deviation of the center position and the deposition conditions of the second protective layer 21, the throw of the second protective layer 21 can be controlled, and the inclination direction and inclination angle of the groove portion 23 can be adjusted. In other words, by appropriately adjusting the magnitude of the deviation of the center position and the deposition conditions of the second protective layer 21 so that the light of the light emitting element 20 is emitted in the desired direction, the inclination direction and inclination angle of the groove portion 23 can be formed to obtain the desired emission direction of light.

[溝部のずれ方の例]
 次に、図26及び図27を参照しつつ、溝部23のずれ方の例について説明する。図26及び図27は、駆動基板11を+Z方向から平面視した図である。図26Aから図26Hまでは、溝部23の中心CE2がサブ画素101の画素内領域ARAにおける中心CE1とずれていない例を示す。図26Aから図26Dまでは、サブ画素101の配列がデルタ配列である例を示し、図26Eから図26Hまでは、サブ画素101の配列が正方配列である例を示す。
[Example of groove misalignment]
Next, examples of how the groove portion 23 is misaligned will be described with reference to Fig. 26 and Fig. 27. Fig. 26 and Fig. 27 are plan views of the drive substrate 11 from the +Z direction. Fig. 26A to Fig. 26H show examples in which the center CE2 of the groove portion 23 is not misaligned with the center CE1 of the sub-pixel 101 in the intra-pixel area ARA. Fig. 26A to Fig. 26D show examples in which the sub-pixels 101 are arranged in a delta arrangement, and Fig. 26E to Fig. 26H show examples in which the sub-pixels 101 are arranged in a square arrangement.

 図27Aから図27Hまでは、溝部23の中心CE2がサブ画素101の画素内領域ARAにおける中心CE1とずれている例を示す。図27Aから図27Hのそれぞれは、図26Aから図26Hのそれぞれに対応している。図27Aから図27Hの各図は、図26Aから図26Hの各図における溝部23の中心CE2が図面に向かって右下方向にずれた例である。図27Aから図27Dまでは、サブ画素101の配列がデルタ配列である例を示し、図27Eから図27Hまでは、サブ画素101の配列が正方配列である例を示す。なお、図27Aから図27Hに例示した中心CE2のずれの方向は一例であり、例えば、中心CE2が左上方向等にずれていてもよい。 27A to 27H show an example in which the center CE2 of the groove 23 is offset from the center CE1 of the subpixel 101 in the pixel area ARA. Each of FIGS. 27A to 27H corresponds to each of FIGS. 26A to 26H. Each of FIGS. 27A to 27H shows an example in which the center CE2 of the groove 23 in each of FIGS. 26A to 26H is offset to the lower right as one faces the drawing. FIGS. 27A to 27D show an example in which the subpixels 101 are arranged in a delta arrangement, and FIGS. 27E to 27H show an example in which the subpixels 101 are arranged in a square arrangement. Note that the direction of offset of the center CE2 shown in FIGS. 27A to 27H is just an example, and the center CE2 may be offset to the upper left or the like, for example.

 第1の実施形態の変形例で説明した事項は、本実施形態に対しても適用可能である。例えば、表示装置10Gが補助電極27を有する構成であってもよい。また、画素間領域ARBにおける溝部24には屈折層22ではなく空間部(空隙)が形成されてもよい。溝部24の幅(X方向の長さ)を小さくすることで、屈折層22を形成する際に溝部24の上部を閉塞し、溝部24の内側に空間部を形成することができる。また、有機層13は、サブ画素101で共通の構成とされてもよい。 The matters described in the modified example of the first embodiment are also applicable to this embodiment. For example, the display device 10G may have an auxiliary electrode 27. Furthermore, a space (gap) rather than a refractive layer 22 may be formed in the groove 24 in the inter-pixel region ARB. By reducing the width (length in the X direction) of the groove 24, the upper part of the groove 24 can be blocked when forming the refractive layer 22, and a space can be formed inside the groove 24. Furthermore, the organic layer 13 may be a common configuration for the sub-pixels 101.

<第4の実施形態>
 次に、第4の実施形態について説明する。第1の実施形態では、画素内領域ARAに溝部23を設け、溝部23内に屈折層22を配置することで、発光素子20で発光した光(特に、発光素子20の外周縁付近で発光した光)を外部に効果的に取り出すことができる点について説明した。ところで、屈折した光の出射方向に、カラーフィルタが配置される場合、異なる色のカラーフィルタ間を通過する光は減衰してしまう。すなわち、表示装置における光の取り出し効率が低下する。本実施形態は係る問題点に対応する実施形態である。
Fourth Embodiment
Next, a fourth embodiment will be described. In the first embodiment, a groove portion 23 is provided in the intra-pixel area ARA, and a refractive layer 22 is disposed in the groove portion 23, so that light emitted by the light-emitting element 20 (particularly light emitted near the outer periphery of the light-emitting element 20) can be effectively extracted to the outside. However, when a color filter is disposed in the emission direction of the refracted light, the light passing between the color filters of different colors is attenuated. In other words, the light extraction efficiency in the display device is reduced. This embodiment is an embodiment that addresses such a problem.

[表示装置の構成例]
 図28は、第4の実施形態に係る表示装置(表示装置10I)の断面構成例を示す。表示装置10Iは、カラーフィルタ部41を有する。カラーフィルタ部41は、例えば、屈折層22の第1の面に形成される。カラーフィルタ部41と屈折層22との間に平坦化層等が介在していてもよい。カラーフィルタ部41としては、オンチップカラーフィルタ(On Chip Color Filter:OCCF)を例示することができる。
[Example of the configuration of a display device]
28 shows an example of a cross-sectional configuration of a display device (display device 10I) according to a fourth embodiment. The display device 10I has a color filter unit 41. The color filter unit 41 is formed on, for example, a first surface of the refractive layer 22. A planarization layer or the like may be interposed between the color filter unit 41 and the refractive layer 22. An example of the color filter unit 41 is an on-chip color filter (OCCF).

 カラーフィルタ部41は、サブ画素101の色種に応じて設けられる、複数のカラーフィルタ42を有する。カラーフィルタ部41が有する複数のカラーフィルタ42としては、例えば、赤色のカラーフィルタ(赤色フィルタ42R)、緑色のカラーフィルタ(緑色フィルタ42G)及び青色のカラーフィルタ(青色フィルタ42B)を挙げることができる。赤色フィルタ42R、緑色フィルタ42G、青色フィルタ42Bはそれぞれ、サブ画素101R、101G、101Bに対応して設けられる。表示装置10Iにカラーフィルタ部41が設けられていることで、サブ画素101R、101G、101Bの色種に対応した光を効果的に外部に取り出すことができる。なお、個々のカラーフィルタを区別する必要がない場合は、カラーフィルタ42と適宜、総称する。カラーフィルタ42の材料としては、例えば、有機材料を用いることができる。 The color filter section 41 has a plurality of color filters 42 that are provided according to the color type of the sub-pixel 101. Examples of the color filters 42 that the color filter section 41 has include a red color filter (red filter 42R), a green color filter (green filter 42G), and a blue color filter (blue filter 42B). The red filter 42R, the green filter 42G, and the blue filter 42B are provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively. By providing the color filter section 41 in the display device 10I, light corresponding to the color types of the sub-pixels 101R, 101G, and 101B can be effectively extracted to the outside. Note that when there is no need to distinguish between the individual color filters, they are collectively referred to as color filters 42 as appropriate. For example, an organic material can be used as the material of the color filters 42.

 隣接するカラーフィルタ42間には、反射隔壁部43が設けられている。反射隔壁部43は、カラーフィルタ42を構成する材料の屈折率よりも低い屈折率(例えば1.6以下)の材料により構成される。反射隔壁部43の材料としては、例えば、屈折層22と同様の絶縁材料や樹脂材料を用いることができる。なお、反射隔壁部43の材料は必ずしも屈折層22と同じ材料である必要は無く、反射隔壁部43が屈折層22と異なる材料で形成されてもよい。また、反射隔壁部43は、空気層であってもよい。 A reflective partition section 43 is provided between adjacent color filters 42. The reflective partition section 43 is made of a material with a lower refractive index (e.g., 1.6 or less) than the refractive index of the material constituting the color filters 42. The material of the reflective partition section 43 may be, for example, an insulating material or a resin material similar to that of the refractive layer 22. Note that the material of the reflective partition section 43 does not necessarily have to be the same material as that of the refractive layer 22, and the reflective partition section 43 may be formed of a material different from that of the refractive layer 22. The reflective partition section 43 may also be an air layer.

[表示装置の作用]
 図29は、本実施形態に係る表示装置10Iの作用を説明するための図である。発光素子20の外周縁付近で発光した光(図29では矢印で示す)は、第1の実施形態と同様、屈折率の異なる界面で屈折し、カラーフィルタ部41の方向に向かう。一部の光は、カラーフィルタ42間に向かう。本実施形態では、カラーフィルタ42間に反射隔壁部43が形成されている。図29に示すように、反射隔壁部43、換言すれば、屈折率の異なる界面で光が屈折し、光が正面方向に向かう。これによって、従来のように、発光素子20が発光した光が、カラーフィルタ間で減衰してしまうことを抑制でき、光の取り出し効率をより向上させることができる。
[Function of the Display Device]
FIG. 29 is a diagram for explaining the operation of the display device 10I according to this embodiment. The light emitted near the outer periphery of the light-emitting element 20 (indicated by an arrow in FIG. 29) is refracted at the interface with different refractive indexes and heads toward the color filter section 41, as in the first embodiment. Some of the light heads toward the gap between the color filters 42. In this embodiment, a reflective partition section 43 is formed between the color filters 42. As shown in FIG. 29, the light is refracted at the reflective partition section 43, in other words, at the interface with different refractive indexes, and the light heads toward the front direction. This makes it possible to suppress the attenuation of the light emitted by the light-emitting element 20 between the color filters as in the conventional case, and to further improve the light extraction efficiency.

[表示装置の製造方法例]
 図30及び図31を参照しつつ、本実施形態に係る表示装置10Iの製造方法例について説明する。なお、屈折層22を形成するまでの工程は、第1の実施形態で説明した工程を適用することができる。
[Example of a manufacturing method for a display device]
An example of a manufacturing method for the display device 10I according to this embodiment will be described with reference to Fig. 30 and Fig. 31. Note that the steps up to the step of forming the refractive layer 22 can be the same as those described in the first embodiment.

 屈折層22が形成された後、図30に示すように、屈折層22の第1の面上に反射隔壁部43の材料が一様に塗布されることで、反射隔壁層43Aが形成される。そして、図31に示すように、フォトリソグラフィ技術やドライエッチング技術によって、反射隔壁層43Aの不要な箇所が除去されることで、反射隔壁部43が形成される。そして、反射隔壁層43Aが除去された箇所に対してカラーフィルタ42が形成され、全ての色種に対応するカラーフィルタ42が形成されることでカラーフィルタ部41が形成される。なお、カラーフィルタ42は、例えば、色が異なるカラーフィルタ毎に、順次、形成される。以上の工程により、図28に示す表示装置10Iが完成する。 After the refractive layer 22 is formed, as shown in FIG. 30, the material of the reflective partition section 43 is uniformly applied onto the first surface of the refractive layer 22 to form the reflective partition layer 43A. Then, as shown in FIG. 31, unnecessary portions of the reflective partition layer 43A are removed by photolithography or dry etching to form the reflective partition section 43. Then, color filters 42 are formed in the portions from which the reflective partition layer 43A has been removed, and the color filters 42 corresponding to all the colors are formed to form the color filter section 41. The color filters 42 are formed, for example, sequentially for each color filter of a different color. Through the above steps, the display device 10I shown in FIG. 28 is completed.

[第4の実施形態の変形例]
 次に、第4の実施形態の変形例について説明する。上述した説明では、反射隔壁部43の高さ(Z方向の長さ)とカラーフィルタ42の高さが略同一の高さとして説明したが、図32Aに示すように、反射隔壁部43の高さがカラーフィルタ42の高さより大きくてもよい。また、図32Bに示すように、反射隔壁部43の高さがカラーフィルタ42の高さより小さくてもよい。また、カラーフィルタ42の形状は、図33に示すように、山型(第1の面側に向かって幅広となる山型)でもよい。そして、隣接するカラーフィルタ42間上に、反射隔壁部43が形成されてもよい。上述したように、反射隔壁部43の材料は屈折層22の材料と同じでもよいし、異なっていてもよい。反射隔壁部43は、空気層でもよい。また、図34に示すように、反射隔壁部43を、反射隔壁部43の側端面と第2保護層21の外側の側端面とが接する程度に延在させてもよい。そして、反射隔壁部43に、画素間領域ARBに配置される屈折層22の機能をもたせてもよい。
[Modification of the fourth embodiment]
Next, a modified example of the fourth embodiment will be described. In the above description, the height (length in the Z direction) of the reflective partition wall portion 43 and the height of the color filter 42 are described as being substantially the same height, but as shown in FIG. 32A, the height of the reflective partition wall portion 43 may be greater than the height of the color filter 42. Also, as shown in FIG. 32B, the height of the reflective partition wall portion 43 may be smaller than the height of the color filter 42. Also, as shown in FIG. 33, the shape of the color filter 42 may be a mountain shape (a mountain shape that becomes wider toward the first surface side). And, the reflective partition wall portion 43 may be formed between the adjacent color filters 42. As described above, the material of the reflective partition wall portion 43 may be the same as or different from the material of the refractive layer 22. The reflective partition wall portion 43 may be an air layer. Also, as shown in FIG. 34, the reflective partition wall portion 43 may be extended to such an extent that the side end surface of the reflective partition wall portion 43 and the outer side end surface of the second protective layer 21 are in contact with each other. The reflective partition portion 43 may have the function of the refractive layer 22 disposed in the inter-pixel region ARB.

 図35に示すように、カラーフィルタ42の第1の面上には、レンズ45が形成されていてもよい。レンズ45は、例えば、それぞれのサブ画素101に応じたレイアウトで設けられている。レンズ45は、オンチップレンズ(On Chip Lends:OCL)であることが好適である。 As shown in FIG. 35, a lens 45 may be formed on the first surface of the color filter 42. The lens 45 is provided, for example, in a layout corresponding to each sub-pixel 101. The lens 45 is preferably an on-chip lens (OCL).

 レンズ45の形状は特に限定されない。レンズ45としては、第1の面側に凸型に湾曲した湾曲面を有する凸状形状に形成されたレンズ(いわゆる凸レンズ)を例示することができる。レンズ45が設けられていることで、発光素子20から生じた光を有効画素領域AR1から出射するように調整することが一層容易となり、光の利用効率を向上させることができる。 The shape of the lens 45 is not particularly limited. An example of the lens 45 is a lens formed in a convex shape having a curved surface that is convexly curved on the first surface side (a so-called convex lens). By providing the lens 45, it becomes easier to adjust the light generated by the light-emitting element 20 so that it is emitted from the effective pixel area AR1, and the light utilization efficiency can be improved.

 反射隔壁部43の材料は、レンズ45と同一の材料でもよいし、異なる材料でもよい。また、図36に示すように、反射隔壁部43は、レンズ45の下側まで延在してもよいし、レンズ45と略同じ高さまで延在していてもよいし、図37に示すように、レンズ45の上側まで延在してもよい。 The material of the reflective partition 43 may be the same as that of the lens 45, or may be a different material. As shown in FIG. 36, the reflective partition 43 may extend to the lower side of the lens 45, or may extend to approximately the same height as the lens 45, or may extend to the upper side of the lens 45, as shown in FIG. 37.

 図38A及び図38Bは、カラーフィルタ42の配置を平面視した図である。図38Aに示すようにカラーフィルタ42が六角形状の形状を有する場合、図38Bに示すようにカラーフィルタ42の鋭角の部分を無くし、これにより生じたスペース(図38Bで点線で囲まれる箇所)に反射隔壁部43を形成してもよい。 Figures 38A and 38B are plan views of the arrangement of color filters 42. When color filters 42 have a hexagonal shape as shown in Figure 38A, the acute angles of color filters 42 may be eliminated as shown in Figure 38B, and reflective partitions 43 may be formed in the resulting space (areas surrounded by dotted lines in Figure 38B).

<第5の実施形態>
 次に、第5の実施形態について説明する。表示装置が補助電極(例えば、補助電極27、図16参照)を有する構成の場合、発光素子20から出射された光が、補助電極27によって吸収されてしまい、発光効率が低下する。係る問題を回避するために、補助電極27の厚みを小さくする方法が考えられる。しかしながら、補助電極27を薄くすると段差での段切れが生じる虞が高くなり、また、補助電極27が高抵抗化し駆動電圧の上昇やシェーディングを引き起こす虞がある。本実施形態は、係る問題点に対応する実施形態である。
Fifth embodiment
Next, a fifth embodiment will be described. In the case where the display device has an auxiliary electrode (for example, the auxiliary electrode 27, see FIG. 16), the light emitted from the light emitting element 20 is absorbed by the auxiliary electrode 27, and the light emitting efficiency is reduced. In order to avoid such a problem, a method of reducing the thickness of the auxiliary electrode 27 is considered. However, if the auxiliary electrode 27 is made thin, there is a high possibility that a step will be disconnected at the step, and there is also a possibility that the auxiliary electrode 27 will have a high resistance, which will cause an increase in the driving voltage and shading. This embodiment is an embodiment that addresses such a problem.

 本実施形態では、補助電極27と各サブ画素101の第2電極14との電気的接続を確保しつつ、従来の構成に対して補助電極27を部分的に除去することにより、光の出射方向(例えば、発光素子20の上部方向(+Z方向))に配置される補助電極27の領域を小さくする。これにより、補助電極27での光の吸収を抑制し、発光効率の低下を抑制する。補助電極27の厚みを小さくする必要がないため、補助電極27の高抵抗化を招くことなく、高抵抗化に起因する上述した不都合を回避することができる。 In this embodiment, while ensuring electrical connection between the auxiliary electrode 27 and the second electrode 14 of each subpixel 101, the auxiliary electrode 27 is partially removed compared to the conventional configuration, thereby reducing the area of the auxiliary electrode 27 arranged in the light emission direction (e.g., the upward direction (+Z direction) of the light-emitting element 20). This suppresses light absorption in the auxiliary electrode 27 and suppresses a decrease in light emission efficiency. Since there is no need to reduce the thickness of the auxiliary electrode 27, the resistance of the auxiliary electrode 27 does not increase, and the above-mentioned inconveniences caused by high resistance can be avoided.

 図39は、本実施形態に係る表示装置の断面構成例を説明するための部分断面図(発光素子20Gの周辺断面を拡大した図)である。本例では、補助電極27を、第2電極14の第1の面における外周縁付近に接続する。これにより、発光素子20が発光した光の上部方向に配置される補助電極27の領域を小さくすることができ、補助電極27での光の吸収を抑制できる。なお、本例では、溝部23の端面23Aが第2電極14の第1の面と接触している。すなわち、屈折層22が第2電極14の第1の面と部分的に接触している。係る構成に限定されることはなく、図40に示すように、屈折層22の下側に位置する第2電極14がエッチング等によって部分的に除去されていてもよい。 FIG. 39 is a partial cross-sectional view (enlarged view of the peripheral cross-section of the light-emitting element 20G) for explaining a cross-sectional configuration example of the display device according to this embodiment. In this example, the auxiliary electrode 27 is connected near the outer periphery of the first surface of the second electrode 14. This makes it possible to reduce the area of the auxiliary electrode 27 arranged in the upward direction of the light emitted by the light-emitting element 20, thereby suppressing the absorption of light by the auxiliary electrode 27. Note that in this example, the end surface 23A of the groove portion 23 is in contact with the first surface of the second electrode 14. In other words, the refractive layer 22 is in partial contact with the first surface of the second electrode 14. This configuration is not limited to this, and as shown in FIG. 40, the second electrode 14 located below the refractive layer 22 may be partially removed by etching or the like.

 図41は、本実施形態に係る表示装置の断面構成例を説明するための部分断面図である。本例は、図40に示した構成に対して、第2電極14の第1の面上に、第2保護層21を残した例である。本例によっても図40に示す構成で得られる効果と同様の効果が得られる。第2電極14の第1の面と接する第2保護層21の形状は、適宜、変更できる。図41に示した例では、第2電極14の第1の面と接する第2保護層21の形状が層状であったが、図42に示すように独立した1個の柱状形状(四角柱状)でもよいし、図43に示すように離隔して配置される2個の柱状形状(四角柱状)でもよいし、図44に示すようにテーパーを有する形状(例えば、三角柱状)であってもよい。第2電極14の第1の面と接する第2保護層21の形状が、図42や図43に示す形状の場合は、溝部23を断面視した形状が櫛歯状になる。図41から図44に示すように、第1の実施形態と同様にして、櫛歯状の溝部23に屈折層22が配置される。図45に示すように、屈折層22は、空隙部22Aであってもよい。 41 is a partial cross-sectional view for explaining a cross-sectional configuration example of the display device according to this embodiment. This example is an example in which the second protective layer 21 is left on the first surface of the second electrode 14 in the configuration shown in FIG. 40. This example also provides the same effect as that obtained by the configuration shown in FIG. 40. The shape of the second protective layer 21 in contact with the first surface of the second electrode 14 can be changed as appropriate. In the example shown in FIG. 41, the shape of the second protective layer 21 in contact with the first surface of the second electrode 14 was a layer, but it may be an independent columnar shape (square prism shape) as shown in FIG. 42, or two columnar shapes (square prism shapes) arranged at a distance as shown in FIG. 43, or a tapered shape (for example, triangular prism shape) as shown in FIG. 44. When the shape of the second protective layer 21 in contact with the first surface of the second electrode 14 is the shape shown in FIG. 42 or FIG. 43, the cross-sectional shape of the groove portion 23 becomes comb-like. As shown in Figures 41 to 44, the refractive layer 22 is disposed in the comb-tooth groove portion 23 in the same manner as in the first embodiment. As shown in Figure 45, the refractive layer 22 may be a void portion 22A.

 なお、本実施形態に係る表示装置は、補助電極27や第2保護層21を形成した後、不要な箇所をエッチングすることで製造できる。その他の工程は、第1の実施形態で説明した工程を適用することができる。 The display device according to this embodiment can be manufactured by forming the auxiliary electrode 27 and the second protective layer 21, and then etching away unnecessary areas. The other steps can be the same as those described in the first embodiment.

 本実施形態に係る構成によれば、発光素子20が発光した光の出射方向(例えば、発光素子20の上部方向)に配置される補助電極27の領域を小さくすることができる。ここで、図39や図40で示した構成例では、補助電極27が、斜め横方向に出射する光の光路に対する壁部となっている。斜め横方向に出射する光を透過させる必要性は少ない。すなわち、補助電極27の材料として、光を透過させやすいように透過率の高い材料を用いる要求は小さくなる。つまり、補助電極27の材料として、例えば、透過率が低い導電性のある材料(例えば、アルミニウム、銅、銀、マグネシウムやこれらの金属を主成分とする合金)を用いることができる。 According to the configuration of this embodiment, the area of the auxiliary electrode 27 arranged in the emission direction of the light emitted by the light-emitting element 20 (e.g., toward the top of the light-emitting element 20) can be made smaller. Here, in the configuration examples shown in Figures 39 and 40, the auxiliary electrode 27 serves as a wall portion for the optical path of the light emitted in a diagonal horizontal direction. There is little need to transmit the light emitted in a diagonal horizontal direction. In other words, there is less need to use a material with high transmittance for the auxiliary electrode 27 so that light can easily pass through. In other words, the auxiliary electrode 27 can be made of, for example, a conductive material with low transmittance (e.g., aluminum, copper, silver, magnesium, or an alloy mainly composed of these metals).

 補助電極27の材料として導電性のある材料を用いることで、補助電極27を反射壁として機能させることができる。例えば、図46に模式的に示すように、発光素子20が発光した光(矢印で示す)のうち、斜め横方向に向かう光を補助電極27で反射することができる。反射された光は、そのまま外部に向かう場合もあれば、溝部23内の屈折層22で屈折された後、外部に向かう場合もある。これにより、光の取り出し効率を向上させることができる。 By using a conductive material as the material for the auxiliary electrode 27, the auxiliary electrode 27 can function as a reflective wall. For example, as shown diagrammatically in FIG. 46, the light emitted by the light-emitting element 20 (indicated by the arrow) that travels diagonally horizontally can be reflected by the auxiliary electrode 27. The reflected light may travel directly to the outside, or may be refracted by the refractive layer 22 in the groove 23 before traveling to the outside. This can improve the light extraction efficiency.

 なお、本実施形態では、第2電極14の第1の面上に、当該第2電極14と補助電極27とのコンタクトを設けたが、コンタクトの位置は適宜、変更可能である。例えば、サブ画素101内の層間絶縁層11Bに形成されたコンタクトを介して、第2電極14と補助電極27とが電気的に接続されていてもよい。また、図47に示すように、第2電極14の側壁(第2電極14の第1の面と第2の面とを連結する面)に対して補助電極27を接続してもよい。 In this embodiment, a contact between the second electrode 14 and the auxiliary electrode 27 is provided on the first surface of the second electrode 14, but the position of the contact can be changed as appropriate. For example, the second electrode 14 and the auxiliary electrode 27 may be electrically connected via a contact formed in the interlayer insulating layer 11B in the subpixel 101. Also, as shown in FIG. 47, the auxiliary electrode 27 may be connected to the sidewall of the second electrode 14 (the surface connecting the first surface and second surface of the second electrode 14).

<第6の実施形態>
 次に、第6の実施形態について説明する。図48は、第6の実施形態に係る表示装置(表示装置10J)の断面構成例を示す図である。
Sixth embodiment
Next, a sixth embodiment will be described. Fig. 48 is a diagram showing an example of a cross-sectional configuration of a display device (a display device 10J) according to the sixth embodiment.

 表示装置10Jは、概略的には、表示装置10B(図16参照)の構成例と略同じである。以下では、異なる点を中心にする。駆動基板11は、外周部(外縁付近)の内部に接続端子151(電力供給端子)を有する。接続端子151は、例えば層間絶縁層11Bの内部にZ方向に沿って形成されており、その端面が層間絶縁層11Bの第1の面に露出している。接続端子151の端面(露出箇所)に対して補助電極27が接続されている。なお、図16と比べて図48では一部の構成要素の角部が丸みを帯びているが、丸みではなく角部であってもよい。 In general, the display device 10J is substantially the same as the example configuration of the display device 10B (see FIG. 16). The following will focus on the differences. The drive substrate 11 has a connection terminal 151 (power supply terminal) inside the outer periphery (near the outer edge). The connection terminal 151 is formed, for example, inside the interlayer insulating layer 11B along the Z direction, and its end face is exposed on the first surface of the interlayer insulating layer 11B. The auxiliary electrode 27 is connected to the end face (exposed portion) of the connection terminal 151. Note that, compared to FIG. 16, the corners of some of the components are rounded in FIG. 48, but they may be corners rather than rounded.

 さらに駆動基板11は、反射層と、第1電極12に接続される画素接続端子と、を有する。具体的には、駆動基板11の層間絶縁層11Bの内部に、反射層と画素接続端子とが設けられている。 The driving substrate 11 further has a reflective layer and a pixel connection terminal connected to the first electrode 12. Specifically, the reflective layer and the pixel connection terminal are provided inside the interlayer insulating layer 11B of the driving substrate 11.

 反射層は、例えば画素毎に設けられる。図48に示すように、例えば、サブ画素101Rに対して反射層152Rが設けられ、サブ画素101Gに対して反射層152Gが設けられ、サブ画素101Bに対して反射層152Bが設けられている。それぞれの反射層は、例えば、高さ(Z方向の位置)が異なるように配置される。なお、個々の反射層を区別する必要がない場合は、反射層152と適宜総称する。反射層152の幅(X方向の長さ)は、少なくとも発光素子20の幅よりも大きく設定される。 A reflective layer is provided for each pixel, for example. As shown in FIG. 48, for example, a reflective layer 152R is provided for the sub-pixel 101R, a reflective layer 152G is provided for the sub-pixel 101G, and a reflective layer 152B is provided for the sub-pixel 101B. The reflective layers are arranged, for example, so that their heights (positions in the Z direction) are different. When it is not necessary to distinguish between the individual reflective layers, they are collectively referred to as reflective layer 152 as appropriate. The width (length in the X direction) of the reflective layer 152 is set to be at least greater than the width of the light-emitting element 20.

 反射層152は、発光素子20で発光した光を反射することができれば特定の材料に限定されるものではないが、一例として、マグネシウム(Mg)、アルミニウム(Al)、銀(Ag)、金(Au)および銅(Cu)からなる群より選ばれる少なくとも1種の金属元素を含むものを例示することができる。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、MgAg合金、AgPdCu合金等が挙げられる。 The reflective layer 152 is not limited to a specific material as long as it can reflect the light emitted by the light emitting element 20, but an example is one that contains at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), gold (Au) and copper (Cu). The metal layer may contain at least one of the above metal elements as a constituent element of an alloy. Specific examples of alloys include an MgAg alloy and an AgPdCu alloy.

 画素接続端子は、例えば画素毎に設けられる。図48に示すように、例えば、サブ画素101Rに対して画素接続端子153Rが設けられ、サブ画素101Gに対して画素接続端子153Gが設けられ、サブ画素101Bに対して画素接続端子153Bが設けられている。なお、個々の画素接続端子を区別する必要がない場合は、画素接続端子153と適宜総称する。 A pixel connection terminal is provided for each pixel, for example. As shown in FIG. 48, for example, pixel connection terminal 153R is provided for sub-pixel 101R, pixel connection terminal 153G is provided for sub-pixel 101G, and pixel connection terminal 153B is provided for sub-pixel 101B. Note that when there is no need to distinguish between the individual pixel connection terminals, they are collectively referred to as pixel connection terminals 153 as appropriate.

 画素接続端子153は、例えば、例えば層間絶縁層11Bの内部にZ方向に沿って形成されており、第1電極12に接続されている。画素接続端子153は、金属等の導電性の材料により形成されており、第1電極12に電流を供給する。なお、画素接続端子153は、反射層152と電気的に接続されていてもよいし、接続されていなくてもよい。 The pixel connection terminal 153 is formed, for example, inside the interlayer insulating layer 11B along the Z direction and is connected to the first electrode 12. The pixel connection terminal 153 is formed of a conductive material such as metal, and supplies a current to the first electrode 12. Note that the pixel connection terminal 153 may or may not be electrically connected to the reflective layer 152.

 サブ画素101Bについて、画素接続端子153と第1電極12との接続箇所である第1コンタクト部CT1が形成されている。また、補助電極27と第2電極14との接続箇所である第2コンタクト部CT2が形成されている。他のサブ画素101R、101Gについても同様に、第1コンタクト部CT1及び第2コンタクト部CT2が形成されている。 For the sub-pixel 101B, a first contact portion CT1 is formed, which is the connection point between the pixel connection terminal 153 and the first electrode 12. Also, a second contact portion CT2 is formed, which is the connection point between the auxiliary electrode 27 and the second electrode 14. Similarly, the first contact portion CT1 and the second contact portion CT2 are formed for the other sub-pixels 101R and 101G.

 以上説明した表示装置10Jによれば、共振器構造(マイクロキャビティ)を形成でき外部に放出される光を増強することができる。すなわち、図49の矢印で模式的に示すように、発光素子20で発光した光を反射層152で往復させて共振させることで外部に放出される光を増強することができる。なお、本実施形態に対しては、後述する共振器構造も適用可能である。 According to the display device 10J described above, a resonator structure (microcavity) can be formed, and the light emitted to the outside can be enhanced. That is, as shown diagrammatically by the arrows in FIG. 49, the light emitted by the light-emitting element 20 can be made to travel back and forth through the reflective layer 152 and resonated, thereby enhancing the light emitted to the outside. Note that the resonator structure described below can also be applied to this embodiment.

 ここで、第1コンタクト部CT1及び第2コンタクト部CT2の箇所は、光強度が低下する点について考慮する必要がある。まず、第1コンタクト部CT1の箇所は、画素接続端子153が設けられるため、共振器構造によるマイクロキャビティ効果が低下し、光強度が低下する。また、第2コンタクト部CT2の箇所は、第5の実施形態で説明したように、発光素子20から出射した光が補助電極27によって吸収されてしまうため光強度が低下する。本実施形態は以上の点に対応する実施形態である。 Here, it is necessary to take into consideration that the light intensity decreases at the locations of the first contact portion CT1 and the second contact portion CT2. First, at the location of the first contact portion CT1, the pixel connection terminal 153 is provided, so the microcavity effect due to the resonator structure decreases, and the light intensity decreases. Furthermore, at the location of the second contact portion CT2, as explained in the fifth embodiment, the light emitted from the light-emitting element 20 is absorbed by the auxiliary electrode 27, and the light intensity decreases. This embodiment is an embodiment that addresses the above points.

 例えば、表示装置10Jを平面視した場合に、第1コンタクト部CT1の領域と第2コンタクト部CT2の領域とが重ならないような配置態様にしてしまうと光強度が低下する領域が大きくなってしまう。そこで、本実施形態では、表示装置10Jの第1コンタクト部CT1と第2コンタクト部CT2とを平面視した場合に、第1コンタクト部CT1の領域と第2コンタクト部CT2の領域とをオーバーラップさせて何れか一方のコンタクト部の領域が他方のコンタクト部によって包含された配置態様をすることで、光強度が低下する領域を極力小さくする。これにより、光強度の低下を極力抑制することができる。 For example, when the display device 10J is viewed in a plan view, if the area of the first contact portion CT1 and the area of the second contact portion CT2 are arranged so that they do not overlap, the area where light intensity is reduced will be large. Therefore, in this embodiment, when the first contact portion CT1 and the second contact portion CT2 of the display device 10J are viewed in a plan view, the area where light intensity is reduced is reduced as much as possible by arranging the area where the first contact portion CT1 and the area where the second contact portion CT2 overlap so that the area of one contact portion is encompassed by the other contact portion. This makes it possible to minimize the reduction in light intensity.

 図50は、所定のサブ画素を+Z方向から平面視した図である。図50では、有機層13、第1コンタクト部CT1、及び、第2コンタクト部CT2のみを図示しており、それぞれの領域を異なる種類のドットで示している。平面視した場合に、有機層13、第1コンタクト部CT1、及び、第2コンタクト部CT2は、例えば、円形状の形状を有する。 Figure 50 is a plan view of a specific subpixel from the +Z direction. In Figure 50, only the organic layer 13, the first contact portion CT1, and the second contact portion CT2 are shown, with each region indicated by a different type of dot. When viewed in plan, the organic layer 13, the first contact portion CT1, and the second contact portion CT2 have, for example, a circular shape.

 本実施形態では、第1コンタクト部CT1及び第2コンタクト部CT2を平面視した場合に、第1コンタクト部CT1の領域と第2コンタクト部CT2の領域とがオーバーラップしている。より具体的には、第1コンタクト部CT1の領域が第2コンタクト部CT2の領域内に包含されている。なお、図50に示す第1コンタクト部CT1の上側には、第2コンタクト部CT2の領域が存在している。 In this embodiment, when the first contact portion CT1 and the second contact portion CT2 are viewed in a plan view, the area of the first contact portion CT1 overlaps with the area of the second contact portion CT2. More specifically, the area of the first contact portion CT1 is contained within the area of the second contact portion CT2. Note that the area of the second contact portion CT2 exists above the first contact portion CT1 shown in FIG. 50.

 図51は、表示装置10Jの変形例を説明するための断面図である。本変形例では、第2コンタクト部CT2の形状が環状(リング状)となっている。第1コンタクト部CT1は、第2コンタクト部CT2の形状に対して離散的に複数箇所形成されている。例えば、1個のサブ画素の第1電極12に対して4個の画素接続端子153が接続されており、これにより4個の第1コンタクト部CT1が形成される。4個の第1コンタクト部CT1は、環状の第2コンタクト部CT2に対して、略90度の間隔でもって配置されている。なお、図51(後述する図52についても同様)では、理解を容易とするために、本来、断面では表れない奥側の画素接続端子153についても図示している。本変形例に係る表示装置の構成によっても図52に示すように、共振器構造を形成できるので、外部に出射される光の光強度を増強できる。 FIG. 51 is a cross-sectional view for explaining a modified example of the display device 10J. In this modified example, the second contact portion CT2 has an annular (ring-shaped) shape. The first contact portion CT1 is formed at a plurality of locations discretely with respect to the shape of the second contact portion CT2. For example, four pixel connection terminals 153 are connected to the first electrode 12 of one subpixel, thereby forming four first contact portions CT1. The four first contact portions CT1 are arranged at intervals of approximately 90 degrees with respect to the annular second contact portion CT2. Note that in FIG. 51 (as well as FIG. 52 described later), in order to facilitate understanding, the pixel connection terminal 153 on the back side, which is not actually shown in the cross section, is also illustrated. As shown in FIG. 52, the configuration of the display device according to this modified example can also form a resonator structure, so that the light intensity of the light emitted to the outside can be increased.

 図53は、所定のサブ画素を+Z方向から平面視した図である。図53では、有機層13、第1コンタクト部CT1、及び、第2コンタクト部CT2のみを図示しており、それぞれの領域を異なる種類のドットで示している。第2コンタクト部CT2は、円形状の有機層13の外縁付近を取り囲むような環状(リング状)の形状を有する。4個の第1コンタクト部CT1は、上記の通り略90度の間隔でもって配置されており、それぞれが第2コンタクト部CT2の領域内に包含されている。なお、図53に示す第1コンタクト部CT1の上側には、第2コンタクト部CT2の領域が存在している。本変形例によっても出射される光の光強度の低下を極力抑制することができる。 FIG. 53 is a plan view of a specific subpixel from the +Z direction. In FIG. 53, only the organic layer 13, the first contact portion CT1, and the second contact portion CT2 are shown, with each region being indicated by a different type of dot. The second contact portion CT2 has an annular (ring-shaped) shape that surrounds the vicinity of the outer edge of the circular organic layer 13. As described above, the four first contact portions CT1 are arranged at intervals of approximately 90 degrees, and each is contained within the region of the second contact portion CT2. Note that the region of the second contact portion CT2 exists above the first contact portion CT1 shown in FIG. 53. This modified example also makes it possible to minimize the decrease in the light intensity of the emitted light.

 図54は、表示装置10Jの別の変形例を説明するための断面図である。本変形例では、第2コンタクト部CT2が環状(リング状)の形状を有している。さらに、第1コンタクト部CT1は、第2コンタクト部CT2の形状と同様に、環状(リング状)の形状を有している。本変形例に係る表示装置の構成によっても図55に示すように、共振器構造を形成できるので、外部に出射される光の光強度を増強できる。 FIG. 54 is a cross-sectional view for explaining another modified example of the display device 10J. In this modified example, the second contact portion CT2 has an annular (ring-shaped) shape. Furthermore, the first contact portion CT1 has an annular (ring-shaped) shape similar to the shape of the second contact portion CT2. The configuration of the display device according to this modified example also makes it possible to form a resonator structure as shown in FIG. 55, so that the light intensity of the light emitted to the outside can be increased.

 図56は、所定のサブ画素を+Z方向から平面視した図である。図56では、有機層13、第1コンタクト部CT1、及び、第2コンタクト部CT2のみを図示しており、それぞれの領域を異なる種類のドットで示している。第1コンタクト部CT1及び第2コンタクト部CT2は、円形状の有機層13の外縁付近を取り囲むような環状(リング状)の形状を有する。すなわち、第1コンタクト部CT1の形状が第2コンタクト部CT2の形状と同心円状の形状となっている。そして、第1コンタクト部CT1の領域が第2コンタクト部CT2の領域内に包含されている。なお、図56に示す第1コンタクト部CT1の上側には、第2コンタクト部CT2の領域が存在している。本変形例によっても出射される光の光強度の低下を極力抑制することができる。 56 is a plan view of a specific subpixel from the +Z direction. In FIG. 56, only the organic layer 13, the first contact portion CT1, and the second contact portion CT2 are illustrated, and each region is indicated by a different type of dot. The first contact portion CT1 and the second contact portion CT2 have an annular (ring-shaped) shape that surrounds the vicinity of the outer edge of the circular organic layer 13. That is, the shape of the first contact portion CT1 is concentric with the shape of the second contact portion CT2. The region of the first contact portion CT1 is included within the region of the second contact portion CT2. Note that the region of the second contact portion CT2 exists above the first contact portion CT1 shown in FIG. 56. This modified example can also minimize the decrease in the light intensity of the emitted light.

 なお、本実施形態では、第1コンタクト部CT1の領域が第2コンタクト部CT2の領域内に包含されているが、第2コンタクト部CT2の領域が第1コンタクト部CT1の領域内に包含されてもよい。また、第1コンタクト部CT1の領域と第2コンタクト部CT2の領域とが等しい大きさであって、完全にオーバーラップしていてもよい。このことは、本実施形態の変形例についても同様である。 In this embodiment, the area of the first contact portion CT1 is contained within the area of the second contact portion CT2, but the area of the second contact portion CT2 may be contained within the area of the first contact portion CT1. Also, the area of the first contact portion CT1 and the area of the second contact portion CT2 may be of equal size and completely overlap each other. This also applies to the modified example of this embodiment.

 次に、図57A乃至図57Eを参照して、第1コンタクト部CT1及び第2コンタクト部CT2の複数の配置態様例について説明する。図57A乃至図57Eは、各構成要素を+Z方向から平面視した図である。図57Aは、第1コンタクト部CT1の領域が第2コンタクト部CT2の領域に包含されており、両者が有機層13の中央付近でオーバーラップしている例である。図57Bは、第2コンタクト部CT2の領域が第1コンタクト部CT1の領域に包含されており、両者が有機層13の中央付近でオーバーラップしている例である。このように、第1コンタクト部CT1の領域が第2コンタクト部CT2の領域よりも大きく、第2コンタクト部CT2の領域が第1コンタクト部CT1の領域に包含されていてもよい。なお、図示はしていないが、第1コンタクト部CT1の領域の大きさと第2コンタクト部CT2の領域の大きさとが等しく、両者が完全にオーバーラップしていてもよい。この場合も本明細書で言う包含に含まれる。 Next, referring to Fig. 57A to Fig. 57E, a description will be given of a number of examples of the arrangement of the first contact portion CT1 and the second contact portion CT2. Fig. 57A to Fig. 57E are plan views of each component viewed from the +Z direction. Fig. 57A shows an example in which the region of the first contact portion CT1 is included in the region of the second contact portion CT2, and both overlap near the center of the organic layer 13. Fig. 57B shows an example in which the region of the second contact portion CT2 is included in the region of the first contact portion CT1, and both overlap near the center of the organic layer 13. In this way, the region of the first contact portion CT1 may be larger than the region of the second contact portion CT2, and the region of the second contact portion CT2 may be included in the region of the first contact portion CT1. Although not shown, the size of the region of the first contact portion CT1 and the size of the region of the second contact portion CT2 may be equal, and the two may completely overlap. This case is also included in the inclusion referred to in this specification.

 表示装置の構成によっては、第4の実施形態等で説明したように、レンズ45(集光部の一例)が設けられる場合がある。レンズ45は、その中央付近に近い箇所で発光した光を効率的に集光する特性がある。そこで、第1コンタクト部CT1及び第2コンタクト部CT2がオーバーラップする箇所、換言すれば、外部に出射される光の光強度が低下する箇所が、レンズ45の中心に対してオフセットされて(ずれるように)配置されることが好ましい。例えば、図57Cに示すように、第1コンタクト部CT1及び第2コンタクト部CT2がオーバーラップする箇所が、レンズ45の中心に対してオフセットされて配置される。 Depending on the configuration of the display device, as described in the fourth embodiment, etc., a lens 45 (an example of a light collecting section) may be provided. The lens 45 has the property of efficiently collecting light emitted near its center. Therefore, it is preferable that the overlapping portion of the first contact portion CT1 and the second contact portion CT2, in other words, the portion where the light intensity of the light emitted to the outside is reduced, is offset (displaced) from the center of the lens 45. For example, as shown in FIG. 57C, the overlapping portion of the first contact portion CT1 and the second contact portion CT2 is offset from the center of the lens 45.

 なお、図57D及び図57Eのそれぞれに示すように、本実施形態の変形例で説明した第1コンタクト部CT1及び第2コンタクト部CT2の配置態様によれば、両者がオーバーラップする箇所が、レンズ45の中心に対してオフセットされて配置される。 As shown in Figures 57D and 57E, according to the arrangement of the first contact portion CT1 and the second contact portion CT2 described in the modified example of this embodiment, the overlapping portion of the first contact portion CT1 and the second contact portion CT2 is offset from the center of the lens 45.

<第7の実施形態>
 次に、第7の実施形態について説明する。図58は、第7の実施形態に係る表示装置(表示装置10K)の断面構成例を示す図である。
Seventh embodiment
Next, a seventh embodiment will be described. Fig. 58 is a diagram showing an example of a cross-sectional configuration of a display device (display device 10K) according to the seventh embodiment.

 表示装置10Kは、概略的には、表示装置10A(図2参照)の構成例と略同じである。なお、図58ではカラーフィルタ42及びレンズ45に係る構成に関しても図示している。以下では、表示装置10Kの構成例について、表示装置10Aと異なる点を中心に説明する。 In general, the display device 10K is substantially the same as the configuration example of the display device 10A (see FIG. 2). Note that FIG. 58 also illustrates the configuration related to the color filter 42 and the lens 45. Below, the configuration example of the display device 10K will be described, focusing on the differences from the display device 10A.

 表示装置10Kは、屈折層22とカラーフィルタ42との間に平坦化層155を有する。但し、平坦化層155はなくてもよい。また、カラーフィルタ42とレンズ45の間に平坦化層があってもよい。また、第1保護層18は画素内領域ARAから画素間領域ARBにかけて形成されており、分離保護層19及び第2保護層21は、画素毎に形成されている。なお、本実施形態では、溝部23の端面23Aと第2電極14の第1の面との間に第1保護層18が形成されているが、この箇所の第1保護層18はなくてもよい。 The display device 10K has a planarization layer 155 between the refractive layer 22 and the color filter 42. However, the planarization layer 155 may not be present. A planarization layer may be present between the color filter 42 and the lens 45. The first protective layer 18 is formed from the intra-pixel area ARA to the inter-pixel area ARB, and the separation protective layer 19 and the second protective layer 21 are formed for each pixel. In this embodiment, the first protective layer 18 is formed between the end face 23A of the groove portion 23 and the first surface of the second electrode 14, but the first protective layer 18 in this location may not be present.

 本実施形態は、画素内領域ARAにおける溝部23の内側に、2層以上の層が積層された多層構造が形成されていることを特徴の一つとする。図58に示す例では、溝部23の端面23A側から、溝部内屈折層22B、分離保護層19及び屈折層22が積層された多層構造が、溝部23の内側に形成されている。溝部内屈折層22Bは、例えば、屈折層22と同じ材料により形成される。分離保護層19は、溝部23を跨ぐように形成されている。本実施形態に係る多層構造は、層の境界の観点によれば3層構造となり、各層の材料の観点によれば2層構造となる。 One of the features of this embodiment is that a multilayer structure in which two or more layers are stacked is formed inside the groove portion 23 in the intra-pixel area ARA. In the example shown in FIG. 58, a multilayer structure in which an intra-groove refractive layer 22B, an isolation protective layer 19, and a refractive layer 22 are stacked from the end face 23A side of the groove portion 23 is formed inside the groove portion 23. The intra-groove refractive layer 22B is formed, for example, from the same material as the refractive layer 22. The isolation protective layer 19 is formed so as to straddle the groove portion 23. The multilayer structure according to this embodiment is a three-layer structure from the viewpoint of the layer boundaries, and a two-layer structure from the viewpoint of the materials of each layer.

 多層構造を形成する各層の屈折率は、互いに異なることが好ましい。本実施形態では、溝部23内の屈折層22と溝部内屈折層22Bとが同一の屈折率の材料で形成されており、分離保護層19は、屈折層22及び溝部内屈折層22Bの屈折率よりも大きい屈折率の材料で形成される。このように、多層構造を形成する各層の屈折率のうち、全ての層の屈折率が異なっている必要はなく、同一の屈折率があってもよい。 It is preferable that the refractive index of each layer forming the multilayer structure is different from one another. In this embodiment, the refractive layer 22 in the groove portion 23 and the in-groove refractive layer 22B are formed from a material with the same refractive index, and the separation protective layer 19 is formed from a material with a refractive index higher than the refractive index of the refractive layer 22 and the in-groove refractive layer 22B. In this way, it is not necessary for all layers to have different refractive indices among the layers forming the multilayer structure, and they may have the same refractive index.

 図59A及び図59Bを参照して、表示装置10Kの作用について説明する。図59Aは、比較例に係る表示装置の断面構成例を示し、図59Bは、本実施形態に係る表示装置Kの断面構成例を示す。比較例に係る表示装置の溝部23内は、屈折層22のみの単層構造となっている。また、図59A及び図59Bにおける矢印は、発光素子20(例えば、発光素子20G)から出射された光を模式的に示したものである。 The function of the display device 10K will be described with reference to Figures 59A and 59B. Figure 59A shows an example of the cross-sectional configuration of a display device according to a comparative example, and Figure 59B shows an example of the cross-sectional configuration of the display device K according to this embodiment. The inside of the groove portion 23 of the display device according to the comparative example has a single-layer structure consisting of only the refractive layer 22. The arrows in Figures 59A and 59B also show schematic representations of light emitted from the light-emitting element 20 (e.g., light-emitting element 20G).

 図59Aに示すように、溝部23内が単層構造であっても、外部への光取り出し効率は向上する。しかしながら、特に溝部23の端面23Aよりも外側(発光素子20の端部付近)で発光した光は、単層構造を構成する屈折層22の屈折作用によって外側に広がりやすくなる。これにより、発光素子20の正面方向(例えば図59Aの発光素子20Gの上部(+Z方向))に出射される光の光強度が低下する虞がある。また、外側に広がった光が隣接画素に入り込むことで、混色が発生する虞がある。 As shown in FIG. 59A, even if the inside of the groove 23 has a single-layer structure, the efficiency of extracting light to the outside is improved. However, light emitted particularly outside the end face 23A of the groove 23 (near the end of the light-emitting element 20) tends to spread outward due to the refraction action of the refractive layer 22 that constitutes the single-layer structure. This may result in a decrease in the intensity of light emitted in the front direction of the light-emitting element 20 (for example, the upper part (+Z direction) of the light-emitting element 20G in FIG. 59A). In addition, there is a risk of color mixing occurring as the light that spreads outward enters adjacent pixels.

 しかしながら、本実施形態によれば、溝部23内を多層構造とすることにより、多層構造での屈折作用をやや小さくすることができ、光が外側に広がってしまうことを抑制できる。このため、図59Bに示すように、発光素子20で発光した光(特に、発光素子20の端部付近で発光した光)を外側に極力拡散することなく、正面方向に出射することが可能となる。これにより、正面方向の光強度の低下を抑制できる。また、光の拡散を抑制できるので混色の発生を抑制でき、色純度を向上させることができる。 However, according to this embodiment, by forming a multi-layer structure inside the groove portion 23, the refraction effect in the multi-layer structure can be slightly reduced, and the light can be prevented from spreading outward. Therefore, as shown in FIG. 59B, it is possible to emit light emitted by the light-emitting element 20 (particularly light emitted near the end of the light-emitting element 20) in the front direction without diffusing it outward as much as possible. This makes it possible to prevent a decrease in light intensity in the front direction. Furthermore, because light diffusion can be suppressed, the occurrence of color mixing can be suppressed, and color purity can be improved.

 次に、図60乃至図62を参照して、本実施形態に係る表示装置10Kの製造方法例について説明する。図60Aに示すように、層間絶縁層11Bの第1の面上に、第1電極12、有機層13、及び、第2電極14を積層することで、発光素子20を形成する。 Next, an example of a manufacturing method for the display device 10K according to this embodiment will be described with reference to Figures 60 to 62. As shown in Figure 60A, the light-emitting element 20 is formed by stacking the first electrode 12, the organic layer 13, and the second electrode 14 on the first surface of the interlayer insulating layer 11B.

 次に、図60Bに示すように、例えばCVD法または蒸着法等の適宜な方法により、第1保護層18を駆動基板11の第1の面側全体にわたって形成する。 Next, as shown in FIG. 60B, a first protective layer 18 is formed over the entire first surface side of the drive substrate 11 by an appropriate method such as CVD or vapor deposition.

 次に、図60Cに示すように、例えばドライエッチング法等の適宜な方法により、第1保護層18に開口部18Aを形成する。 Next, as shown in FIG. 60C, an opening 18A is formed in the first protective layer 18 by an appropriate method such as dry etching.

 次に、図60Dに示すように、開口部18A内に溝部内屈折層22Bを形成する。 Next, as shown in Figure 60D, a groove refractive layer 22B is formed within the opening 18A.

 次に、図61Aに示すように、蒸着法やスパッタリング法等の適宜な方法によって分離保護層19及び第2保護層21を全面に渡って形成する。 Next, as shown in FIG. 61A, a separation protective layer 19 and a second protective layer 21 are formed over the entire surface by an appropriate method such as vapor deposition or sputtering.

 次に、図61Bに示すように、例えばドライエッチング法等により、第2保護層21に開口部21Aを形成する。画素内領域ARAにおける開口部18A及び開口部21Aは、溝部23の一部を構成するものである。 Next, as shown in FIG. 61B, an opening 21A is formed in the second protective layer 21 by, for example, dry etching. The opening 18A and the opening 21A in the intra-pixel area ARA form part of the groove portion 23.

 次に、図62Aに示すように、例えばドライエッチング法等により、分離保護層19の不要な箇所を除去する。 Next, as shown in FIG. 62A, unnecessary portions of the isolation protection layer 19 are removed, for example, by dry etching.

 そして、屈折層22を形成することで、図62Bに示すように、本実施形態に係る表示装置10Kを形成する。なお、製造方法の工程によっては、表示装置10Kを構成する各層の角部が丸み(曲面)を有する場合もある。 Then, by forming the refractive layer 22, the display device 10K according to this embodiment is formed as shown in FIG. 62B. Note that, depending on the steps of the manufacturing method, the corners of each layer constituting the display device 10K may be rounded (curved).

 次に、図63及び図64を参照して、本実施形態に係る表示装置10Kの別の製造方法例について説明する。図63Aに示すように、層間絶縁層11Bの第1の面上に、第1電極12、有機層13、及び、第2電極14を積層することで、発光素子20を形成する。 Next, with reference to Figures 63 and 64, another example of a manufacturing method for the display device 10K according to this embodiment will be described. As shown in Figure 63A, a light-emitting element 20 is formed by stacking a first electrode 12, an organic layer 13, and a second electrode 14 on a first surface of an interlayer insulating layer 11B.

 次に、図63Bに示すように、第2電極14の第2の面の中央付近に溝部内屈折層22B、分離保護層19、屈折層22を積層して積層体を形成する。 Next, as shown in FIG. 63B, the groove refractive layer 22B, the separation protective layer 19, and the refractive layer 22 are laminated near the center of the second surface of the second electrode 14 to form a laminate.

 次に、図63Cに示すように、積層体の両側に、間隔を空けて柱状の屈折層22をさらに形成する。 Next, as shown in Figure 63C, columnar refraction layers 22 are further formed at intervals on both sides of the laminate.

 次に、図64に示すように、図63Cに示す工程で形成した空隙(積層体とその両側の屈折層との間)に、第1保護層18、分離保護層19、及び、第2保護層21を順次、積層することで、本実施形態に係る表示装置10Kを形成する。 Next, as shown in FIG. 64, a first protective layer 18, a separation protective layer 19, and a second protective layer 21 are sequentially laminated in the gap (between the laminate and the refractive layers on both sides of it) formed in the process shown in FIG. 63C, thereby forming the display device 10K according to this embodiment.

 なお、上述した表示装置10Kの作用及び効果を得る観点からは、表示装置10Kを断面視した場合に、サブ画素の発光領域の幅が、溝部23の端面23Aの幅や、溝部23の端面23Aから+Z方向に向かって最初に存在する層の境界部の幅より大きいことが好ましい。 In addition, from the viewpoint of obtaining the above-mentioned functions and effects of the display device 10K, when the display device 10K is viewed in cross section, it is preferable that the width of the light-emitting region of the subpixel is greater than the width of the end face 23A of the groove portion 23 and the width of the boundary portion of the layer that is first present in the +Z direction from the end face 23A of the groove portion 23.

 発光領域の幅は、例えば有機層13の幅によって規定される。本実施形態のように、サブ画素間に画素間絶縁層16が存在する場合には、発光素子20の左側に配置される画素間絶縁層16の右側端部と、発光素子20の右側に配置される画素間絶縁層16の左側端部との間の距離によって、発光領域の幅が規定されてもよい。また、図65に示すように、第1電極12と第2電極14との間にキャリア注入層156が設けられる場合がある。キャリア注入層156としては、電子の注入を促進する電子注入層(Electron Injection Layer)や、正孔の注入を促進する正孔注入層(Hole Injection Layer)が挙げられる。この場合、キャリア注入層156の幅(X方向の長さ)によって、発光領域の幅が規定されてもよい。 The width of the light-emitting region is determined, for example, by the width of the organic layer 13. When an interpixel insulating layer 16 is present between subpixels as in this embodiment, the width of the light-emitting region may be determined by the distance between the right end of the interpixel insulating layer 16 arranged on the left side of the light-emitting element 20 and the left end of the interpixel insulating layer 16 arranged on the right side of the light-emitting element 20. Also, as shown in FIG. 65, a carrier injection layer 156 may be provided between the first electrode 12 and the second electrode 14. Examples of the carrier injection layer 156 include an electron injection layer that promotes the injection of electrons and a hole injection layer that promotes the injection of holes. In this case, the width of the light-emitting region may be determined by the width (length in the X direction) of the carrier injection layer 156.

 図66は、本実施形態で得られる効果(シミュレーション結果)を説明するための図である。図66は、従来構造、すなわち、溝部23内を単層構造とし、各色(RGB)の画素の刺激値を1とした場合に、表示装置10Kの構造における各色の画素の刺激値(相対値)を示したグラフである。図66に示すように、本実施形態によれば、何れの色の刺激値も従来構造より大きくすることができる。 FIG. 66 is a diagram for explaining the effect (simulation results) obtained in this embodiment. FIG. 66 is a graph showing the stimulus values (relative values) of the pixels of each color in the structure of display device 10K in the case of a conventional structure, i.e., a single-layer structure inside groove portion 23, and a stimulus value of the pixel of each color (RGB) being 1. As shown in FIG. 66, according to this embodiment, the stimulus value of each color can be made larger than that of the conventional structure.

 次に、本実施形態の種々の変形例について説明する。図67に示すように、溝部内屈折層22Bの箇所は、第1保護層18であってもよい。すなわち、溝部23の内側を第1保護層18及び分離保護層19が跨ぐブリッジ構造であってもよい。また、図68に示すように、分離保護層19だけでなく、第2保護層21が溝部23内を跨ぐように形成されていてもよい。 Next, various modified examples of this embodiment will be described. As shown in FIG. 67, the location of the inner groove refraction layer 22B may be the first protective layer 18. In other words, a bridge structure may be formed in which the first protective layer 18 and the separate protective layer 19 straddle the inside of the groove 23. Also, as shown in FIG. 68, not only the separate protective layer 19 but also the second protective layer 21 may be formed to straddle the inside of the groove 23.

 また、図69に示すように、分離保護層19ではなく、別の構成要素である溝部内屈折層(溝部内屈折層157)が、溝部23内を跨ぐ構成であってもよい。溝部内屈折層22Bがなく、溝部内屈折層22Bが配置される領域にわたって溝部内屈折層157が形成されていてもよい。溝部内屈折層157の材料は特に限定されるものではないが、分離保護層19や第2保護層21の屈折率よりも低い屈折率を有する材料であることが好ましい。 Also, as shown in FIG. 69, instead of the separate protective layer 19, a separate component, an in-groove refraction layer (in-groove refraction layer 157), may be configured to span the inside of the groove 23. The in-groove refraction layer 22B may not be present, and the in-groove refraction layer 157 may be formed across the area where the in-groove refraction layer 22B is disposed. The material of the in-groove refraction layer 157 is not particularly limited, but it is preferable that the material has a lower refractive index than the in-groove refraction layer 19 and the second protective layer 21.

 また、図70に示すように、溝部23の端面23Aに位置する第1保護層18がメタマテリアル構造を有していてもよい。また、溝部23の端面23Aに第1保護層18がない場合には、図71に示すように、第2電極14の第1の面がメタマテリアル構造を有するようにしてもよい。メタマテリアル構造としては凹凸状の形状が挙げられるが、これに限定されることはなく公知のものを適用できる。 Also, as shown in FIG. 70, the first protective layer 18 located on the end surface 23A of the groove portion 23 may have a metamaterial structure. Furthermore, if the first protective layer 18 is not present on the end surface 23A of the groove portion 23, the first surface of the second electrode 14 may have a metamaterial structure as shown in FIG. 71. An example of a metamaterial structure is a concave-convex shape, but this is not limited to this and any known shape can be applied.

 溝部23を跨ぐ構成要素(例えば、分離保護層19)をブリッジ構造BRと称する。図72A乃至図72Fは、係るブリッジ構造BRを平面視した図である。ブリッジ構造BRは、図72Aに示すように、各サブ画素が正方配列される場合において、ブリッジ構造BRはサブ画素毎に独立していてもよい。また、図72Bに示すように、各サブ画素が正方配列される場合において、例えばX方向で隣接するサブ画素のブリッジ構造BRが共通であってもよい。また、図72Cに示すように、各サブ画素が正方配列される場合において、例えばX方向及びY方向で隣接するサブ画素のブリッジ構造BRが共通であってもよい。 The component (e.g., isolation protective layer 19) that spans groove portion 23 is referred to as bridge structure BR. Figures 72A to 72F are plan views of such bridge structure BR. As shown in Figure 72A, when the sub-pixels are arranged in a square, the bridge structure BR may be independent for each sub-pixel. Also, as shown in Figure 72B, when the sub-pixels are arranged in a square, the bridge structure BR may be common to sub-pixels adjacent in the X direction, for example. Also, as shown in Figure 72C, when the sub-pixels are arranged in a square, the bridge structure BR may be common to sub-pixels adjacent in the X and Y directions, for example.

 また、図72Dに示すように、各サブ画素がデルタ配列される場合において、ブリッジ構造BRはサブ画素毎に独立していてもよい。図72Eに示すように、各サブ画素がデルタ配列される場合において、例えばX方向で隣接するサブ画素のブリッジ構造BRが共通であってもよい。また、図72Fに示すように、各サブ画素がデルタ配列される場合において、例えばX方向及びY方向で隣接するサブ画素のブリッジ構造BRが共通であってもよい。 Also, as shown in FIG. 72D, when the sub-pixels are arranged in a delta configuration, the bridge structure BR may be independent for each sub-pixel. As shown in FIG. 72E, when the sub-pixels are arranged in a delta configuration, the bridge structure BR may be common to sub-pixels adjacent in the X direction, for example. As shown in FIG. 72F, when the sub-pixels are arranged in a delta configuration, the bridge structure BR may be common to sub-pixels adjacent in the X and Y directions, for example.

 図73に示すように、表示装置10Kの所定の層を規定するA-A線、B-B線、及び、C-C線を規定する。図74Aは、A-A線の箇所を平面視した図である。図74Bは、B-B線の箇所を平面視した図である。第1保護層18の厚みによっては屈折層22が図示される場合もある。図74Cは、C-C線の箇所を平面視した図である。なお、図75Aに示すように、溝部内屈折層22Bを平面視した場合の形状が、例えば円形と十字形状とが合わさった形状でもよい。図75Bに示すように、溝部23内の屈折層22を平面視した場合の形状が例えば円形と十字形状とが合わさった形状でもよい。これにより、溝部内屈折層22B及び屈折層22の表面積を増やすことができるので、発光素子20から出射した光を正面方向に対して効率的に導くことが可能となる。 As shown in FIG. 73, lines A-A, B-B, and C-C are defined to define a specific layer of the display device 10K. FIG. 74A is a plan view of the A-A line. FIG. 74B is a plan view of the B-B line. Depending on the thickness of the first protective layer 18, the refractive layer 22 may be illustrated. FIG. 74C is a plan view of the C-C line. As shown in FIG. 75A, the shape of the groove inner refractive layer 22B when viewed in plan may be, for example, a shape that combines a circle and a cross shape. As shown in FIG. 75B, the shape of the refractive layer 22 in the groove 23 when viewed in plan may be, for example, a shape that combines a circle and a cross shape. This increases the surface area of the groove inner refractive layer 22B and the refractive layer 22, making it possible to efficiently guide the light emitted from the light emitting element 20 in the forward direction.

 本実施形態において、表示装置10Kの第2電極14は、サブ画素間で共通化されたものでもよい。また、本実施形態において、表示装置10Kが、補助電極27を有する構成であってもよい。また、レンズ45の上部に保護層が設けられてもよいし、レンズ45の上部に保護層及び接着層が設けられ、その上部に基板が設けられてもよい。 In this embodiment, the second electrode 14 of the display device 10K may be common between the subpixels. Also, in this embodiment, the display device 10K may have an auxiliary electrode 27. Also, a protective layer may be provided on the upper part of the lens 45, or a protective layer and an adhesive layer may be provided on the upper part of the lens 45, and a substrate may be provided on the upper part of the protective layer and an adhesive layer.

<第8の実施形態>
 次に、第8の実施形態について説明する。始めに、本実施形態において考慮すべき問題について説明する。第1の実施形態等で説明したように、サブ画素が溝部23を有する構成とすることで、集光効率が向上する(図4等参照)。しかしながら、この場合、溝部23の端面23Aでは補助電極27によって光が吸収され、この箇所の光強度が低下する虞がある。本実施形態は、係る点に対応する実施形態である。
Eighth embodiment
Next, an eighth embodiment will be described. First, problems to be considered in this embodiment will be described. As described in the first embodiment and the like, the light collection efficiency is improved by configuring the sub-pixel to have a groove portion 23 (see FIG. 4 and the like). However, in this case, light is absorbed by the auxiliary electrode 27 at the end surface 23A of the groove portion 23, and there is a risk that the light intensity at this location will decrease. This embodiment is an embodiment that addresses this issue.

 本実施形態では、所定の個数のサブ画素により画素部が構成される。そして、当該画素部を構成する少なくとも一つの画素の形状が、他の画素の形状と異なっている。図76は、本実施形態に係る画素部(画素部165)を平面視した図である。例えば、3個のサブ画素(サブ画素101R、101G、101B)により、画素部165が構成される。なお、画素部165は、RGBとは異なる色のサブ画素を含んでもよいし、同色のサブ画素(例えば青色のサブ画素)を複数個(例えば2個)含んでいてもよい。 In this embodiment, a pixel unit is made up of a predetermined number of sub-pixels. At least one pixel constituting the pixel unit has a shape different from the other pixels. FIG. 76 is a plan view of a pixel unit (pixel unit 165) according to this embodiment. For example, pixel unit 165 is made up of three sub-pixels (sub-pixels 101R, 101G, and 101B). Note that pixel unit 165 may include sub-pixels of colors different from RGB, or may include multiple (e.g., two) sub-pixels of the same color (e.g., blue sub-pixels).

 第1電極12は、サブ画素毎に設けられており、有機層13及び第2電極14の積層体は、各サブ画素間で繋がっている。例えば、サブ画素101Rは、溝部23を有する。そして、サブ画素101Rの第2電極14に対しては、補助電極27が接続されている。一方、サブ画素101G、101Bは、溝部23を有していない。係る構造によって、溝部23の端面23Aで生じ得る光強度の低下や光取り出し効率の低下を1画素部内で抑制することができ、1画素部全体として光取り出し効率を向上させることができる。なお、本実施形態では、溝部23が設けられるサブ画素をサブ画素101Rとしたが、サブ画素101Gやサブ画素101Gであってもよい。 The first electrode 12 is provided for each subpixel, and the laminate of the organic layer 13 and the second electrode 14 is connected between the subpixels. For example, the subpixel 101R has a groove 23. An auxiliary electrode 27 is connected to the second electrode 14 of the subpixel 101R. On the other hand, the subpixels 101G and 101B do not have a groove 23. This structure makes it possible to suppress the decrease in light intensity and the decrease in light extraction efficiency that may occur at the end surface 23A of the groove 23 within one pixel unit, and to improve the light extraction efficiency of the entire one pixel unit. Note that in this embodiment, the subpixel in which the groove 23 is provided is the subpixel 101R, but it may be the subpixel 101G or the subpixel 101G.

 図77は、別の画素部(画素部165A)の平面視した図である。本例におけるサブ画素101Rは、第2電極14に補助電極27が接続された構成を有する。また、本例におけるサブ画素101G、101Bは、第2電極14に補助電極27が接続されており、さらに、補助電極27がサブ画素内のカソードコンタクト28に接続された構成を有する。 Figure 77 is a plan view of another pixel unit (pixel unit 165A). In this example, subpixel 101R has a configuration in which an auxiliary electrode 27 is connected to the second electrode 14. In this example, subpixels 101G and 101B have a configuration in which an auxiliary electrode 27 is connected to the second electrode 14, and the auxiliary electrode 27 is further connected to a cathode contact 28 within the subpixel.

 図78は、図77に示す切断線XA-XA線で画素部165Aを切断した場合の部分断面図である。サブ画素101Rは、第2電極14に補助電極27が接続された構成を有する。この形状については図16を参照して既に説明しているため、重複した説明を省略する。サブ画素101G(サブ画素101Bも同様)は、補助電極27がカソードコンタクト28に接続された構成を有する。この形状については図19を参照して既に説明しているため、重複した説明を省略する。 Figure 78 is a partial cross-sectional view of pixel portion 165A taken along cutting line XA-XA shown in Figure 77. Subpixel 101R has a configuration in which an auxiliary electrode 27 is connected to the second electrode 14. This shape has already been described with reference to Figure 16, so a duplicated description will be omitted. Subpixel 101G (similar to subpixel 101B) has a configuration in which an auxiliary electrode 27 is connected to a cathode contact 28. This shape has already been described with reference to Figure 19, so a duplicated description will be omitted.

 図77及び図78に示す形状の場合、サブ画素101R、サブ画素101Gは溝部23を有する。しかしながら溝部23の底部である端面23Aでは発光しない。このため、上述した光強度の低下や光取り出し効率の低下が生じる虞がない。このため、表示全体として、サブ画素101R、サブ画素101Gの形状により得られる効果を奏することが可能となる。 In the case of the shapes shown in Figures 77 and 78, sub-pixels 101R and 101G have grooves 23. However, no light is emitted from end faces 23A, which are the bottoms of grooves 23. Therefore, there is no risk of the above-mentioned reduction in light intensity or reduction in light extraction efficiency occurring. This makes it possible to achieve the effects obtained by the shapes of sub-pixels 101R and 101G in the overall display.

 以上のように、1画素部内であるサブ画素が溝部23を有する場合には、他のサブ画素の形状は、溝部23を有さない形状若しくは溝部23の端面23A付近で発光しない形状であることが好ましい。 As described above, when a subpixel in one pixel portion has a groove portion 23, it is preferable that the shape of the other subpixels does not have a groove portion 23 or does not emit light near the end surface 23A of the groove portion 23.

<第9の実施形態>
 次に、第9の実施形態について説明する。図79は、第9の実施形態に係る表示装置(表示装置10L)の断面構成例を示す図である。
Ninth embodiment
Next, a ninth embodiment will be described. Fig. 79 is a diagram showing an example of a cross-sectional configuration of a display device (display device 10L) according to the ninth embodiment.

 表示装置10Lは、概略的には、表示装置10Bの構成と略同じである。以下、表示装置10Bと構成的に異なる点を中心に説明する。 In general, display device 10L has a configuration that is substantially the same as that of display device 10B. Below, we will focus on the differences in configuration from display device 10B.

 表示装置10Lは、サブ画素から出射される光の出射方向に配置されるカラーフィルタ部41を有する。カラーフィルタ部41は、複数のカラーフィルタ42を有する。サブ画素101Rは、赤色フィルタ42Rを有する。サブ画素101Gは、緑色フィルタ42Gを有する。サブ画素101Bは、青色フィルタ42Bを有する。本実施形態では、カラーフィルタ42の下側の面である第2の面と、第2保護層21の上面である第1の面とが接触している。但し、カラーフィルタ42の第2の面と、第2保護層21の第1の面とは、必ずしも接触している必要は無い。表示装置10A(図2参照)のように、第2保護層21の第1の面側全体にわたって屈折層22が形成されていてもよい。また、カラーフィルタ42の第2の面と、第2保護層21の第1の面とが、平坦化層(不図示)を介して接触していてもよい。本実施形態でも、画素内領域ARA及び画素間領域ARBに屈折層22が設けられている。 The display device 10L has a color filter section 41 arranged in the emission direction of light emitted from the sub-pixel. The color filter section 41 has a plurality of color filters 42. The sub-pixel 101R has a red filter 42R. The sub-pixel 101G has a green filter 42G. The sub-pixel 101B has a blue filter 42B. In this embodiment, the second surface, which is the lower surface of the color filter 42, is in contact with the first surface, which is the upper surface of the second protective layer 21. However, the second surface of the color filter 42 and the first surface of the second protective layer 21 do not necessarily need to be in contact with each other. As in the display device 10A (see FIG. 2), a refractive layer 22 may be formed over the entire first surface side of the second protective layer 21. In addition, the second surface of the color filter 42 and the first surface of the second protective layer 21 may be in contact with each other via a planarization layer (not shown). In this embodiment, a refractive layer 22 is also provided in the intra-pixel area ARA and the inter-pixel area ARB.

 カラーフィルタ42は、屈折層22がカラーフィルタ42の高さ方向(図79におけるZ方向でありカラーフィルタ42の厚みに対応する)の少なくとも一部を貫いている貫通部167Aと、屈折層22がカラーフィルタの高さ方向を貫いていない非貫通部167Bと、を有する。ここで、貫いているとは、必ずしもカラーフィルタ42の高さ方向の全てを貫いている必要は無く、高さ方向の途中までを貫いていることを含む。 The color filter 42 has a through portion 167A where the refractive layer 22 penetrates at least a part of the height direction of the color filter 42 (the Z direction in FIG. 79, which corresponds to the thickness of the color filter 42), and a non-through portion 167B where the refractive layer 22 does not penetrate the height direction of the color filter. Here, "through" does not necessarily have to penetrate the entire height direction of the color filter 42, but can also penetrate partway through the height direction.

 表示装置10Lの作用は、表示装置10Aの作用(図4参照)と略同じである。本実施形態では、屈折層22がカラーフィルタ42の高さ方向の一部を貫いている、換言すれば、屈折層22がより上側(+Z方向)に延在しているため、表示装置10Lの上部でも屈折層22による光の屈折作用を奏することが可能となる。これにより、外部への光取り出し効率を一層向上させることができる。また、隣接画素への漏れ光を抑制できるので色純度を向上させることができる。 The function of the display device 10L is substantially the same as that of the display device 10A (see FIG. 4). In this embodiment, the refractive layer 22 penetrates part of the height of the color filter 42, in other words, the refractive layer 22 extends further upward (in the +Z direction), so that the refractive layer 22 can refract light even in the upper part of the display device 10L. This can further improve the efficiency of light extraction to the outside. In addition, light leakage to adjacent pixels can be suppressed, improving color purity.

 次に、図80乃至図84を参照して表示装置10Lの製造方法例について説明する。図80に示すように、層間絶縁層11Bの第1の面に発光素子20を形成した後、第1保護層18、分離保護層19、補助電極27、及び、第2保護層21を形成する。このとき、第2保護層21の膜厚を比較的、大きく設定する。 Next, an example of a manufacturing method for the display device 10L will be described with reference to Figures 80 to 84. As shown in Figure 80, after the light emitting element 20 is formed on the first surface of the interlayer insulating layer 11B, the first protective layer 18, the separation protective layer 19, the auxiliary electrode 27, and the second protective layer 21 are formed. At this time, the film thickness of the second protective layer 21 is set to be relatively large.

 次に、図81に示すように、溝部23内や、第2保護層21の第1の面側に屈折層22を全体にわたって形成する。 Next, as shown in FIG. 81, a refractive layer 22 is formed throughout the groove portion 23 and on the first surface side of the second protective layer 21.

 次に、屈折層22の不要な箇所(例えば第2保護層21の上部の箇所)をエッチング法等の適宜な方法によって除去する。このとき、第2保護層21も所定の膜厚になるように同時に除去することで、図82に示すように、柱状の屈折層22が複数、形成される。 Next, unnecessary portions of the refractive layer 22 (for example, the portions above the second protective layer 21) are removed by an appropriate method such as etching. At this time, the second protective layer 21 is also removed at the same time to a predetermined thickness, thereby forming multiple columnar refractive layers 22 as shown in FIG. 82.

 次に、カラーフィルタ42が形成される。カラーフィルタ42は、例えば、色が異なるカラーフィルタ毎に、順次、形成される。全ての色種に対応するカラーフィルタ42が形成されることでカラーフィルタ部41が形成される。本工程により、図83に示すように、貫通部167A及び非貫通部167Bが形成される。 Next, the color filters 42 are formed. The color filters 42 are formed, for example, sequentially for each color filter of a different color. The color filter portion 41 is formed by forming color filters 42 corresponding to all the color types. Through this process, the through portion 167A and the non-through portion 167B are formed, as shown in FIG. 83.

 次に、図84に示すように、カラーフィルタ部41の第1の面にレンズ45が形成されることで、表示装置10Lが完成する。 Next, as shown in FIG. 84, a lens 45 is formed on the first surface of the color filter portion 41, thereby completing the display device 10L.

 以下、第9の実施形態に係る表示装置10Lの変形例について説明する。図85Aは、上述した表示装置10Lの断面構成例を示す。図85Bに示すように、柱状の屈折層22は、カラーフィルタ42の高さ方向の全てを貫いていてもよい。すなわち、屈折層22の上面である第1の面が、カラーフィルタ42とレンズ45の境界まで達していてもよい。本例によっても表示装置10Lと同様の効果が得られる。 Below, a modified example of the display device 10L according to the ninth embodiment will be described. Fig. 85A shows an example of the cross-sectional configuration of the display device 10L described above. As shown in Fig. 85B, the columnar refractive layer 22 may penetrate the entire height of the color filter 42. In other words, the first surface, which is the upper surface of the refractive layer 22, may reach the boundary between the color filter 42 and the lens 45. This example also provides the same effect as the display device 10L.

 また、図86Aに示すように、屈折層22の上側の端部(貫通部167Aの上側の端部)がレンズ45まで延在していてもよい。また、図86Bに示すように、屈折層22の上側の端部(貫通部167Aの上側の端部)が、レンズ45の上部付近と略同じ高さとなるまで延在していてもよい。本例によっても表示装置10Lと同様の効果が得られる。 Also, as shown in FIG. 86A, the upper end of the refractive layer 22 (the upper end of the through-hole 167A) may extend to the lens 45.Also, as shown in FIG. 86B, the upper end of the refractive layer 22 (the upper end of the through-hole 167A) may extend to approximately the same height as the vicinity of the top of the lens 45. This example also provides the same effect as the display device 10L.

 図87Aに示すように、画素間領域ARBに形成される屈折層22がカラーフィルタ42の高さ方向の少なくとも一部を貫通し、画素内領域ARAに形成される屈折層22がカラーフィルタ42を貫通しないようにしてもよい。この構成例は、例えば、柱状の屈折層22を形成した後、画素内領域ARAに形成される屈折層22を先に除去してからカラーフィルタ42を形成することで製造できる。 As shown in FIG. 87A, the refractive layer 22 formed in the inter-pixel region ARB may penetrate at least a portion of the height of the color filter 42, and the refractive layer 22 formed in the intra-pixel region ARA may not penetrate the color filter 42. This configuration example can be manufactured, for example, by forming a columnar refractive layer 22, then first removing the refractive layer 22 formed in the intra-pixel region ARA, and then forming the color filter 42.

 図87Bに示す構成例は、図85Aに示す構成例に対して絶縁層168が追加されたものである。絶縁層168は、例えば溝部23の端面23Aの下側に配置される。絶縁層168を設けることで、溝部23の端面23Aの下側を非発光領域とすることができる。溝部23の端面23A付近で発光した光は、屈折層22による屈折作用を受けづらく、隣接画素への漏れ光となる虞がある。本例によれば、溝部23の端面23Aの下側を非発光領域とすることができるので、係る漏れ光の発生を抑制できる。図87Bに示す構成例は、発光素子20を形成する工程で、先に絶縁層168を形成してから有機層13を形成することで製造できる。 The configuration example shown in FIG. 87B is obtained by adding an insulating layer 168 to the configuration example shown in FIG. 85A. The insulating layer 168 is disposed, for example, below the end face 23A of the groove 23. By providing the insulating layer 168, the lower side of the end face 23A of the groove 23 can be made into a non-light-emitting region. Light emitted near the end face 23A of the groove 23 is not easily refracted by the refractive layer 22, and there is a risk of light leaking to adjacent pixels. According to this example, the lower side of the end face 23A of the groove 23 can be made into a non-light-emitting region, so that the occurrence of such light leakage can be suppressed. The configuration example shown in FIG. 87B can be manufactured by forming the insulating layer 168 first and then forming the organic layer 13 in the process of forming the light-emitting element 20.

 図88Aは、1個のサブ画素が一対のサブ画素要素によって構成される例である。図88Aに示すように、例えばサブ画素101Rは、第1サブ画素要素101Raと第2サブ画素要素101Rbとが左右に配置された構成を有する。それぞれのサブ画素要素は、発光素子20Rと、第2電極14の第1の面上に積層された第1保護層18を有する。また、サブ画素要素間には、分離保護層19が形成されている。このサブ画素要素の間に、柱状の屈折層22が設けられている。それぞれのサブ画素要素の第1保護層18の上側には、赤色フィルタ42R、平坦化層169、及び、レンズ45がこの順で積層されている。また、補助電極27は、赤色フィルタ42Rの周囲に沿って引き回され、途中から分岐している。分岐した電極の一方が第2電極14に接続されている。また、分岐した他方の電極が分離保護層19、屈折層22の上部に沿って隣接するサブ画素要素に引き回され、隣接するサブ画素要素の第2電極14に接続される。本例では、屈折層22が赤色フィルタ42Rの高さ方向の全て、より具体的には平坦化層169までを貫通しているが、一部を貫通するものであってもよい。本例によれば、光取り出し効率をより向上させることができる。 88A shows an example in which one subpixel is composed of a pair of subpixel elements. As shown in FIG. 88A, for example, subpixel 101R has a configuration in which a first subpixel element 101Ra and a second subpixel element 101Rb are arranged on the left and right. Each subpixel element has a light-emitting element 20R and a first protective layer 18 laminated on the first surface of the second electrode 14. In addition, a separation protective layer 19 is formed between the subpixel elements. A columnar refractive layer 22 is provided between these subpixel elements. On the upper side of the first protective layer 18 of each subpixel element, a red filter 42R, a planarization layer 169, and a lens 45 are laminated in this order. In addition, the auxiliary electrode 27 is routed around the periphery of the red filter 42R and branches halfway. One of the branched electrodes is connected to the second electrode 14. In addition, the other branched electrode is routed to an adjacent subpixel element along the upper part of the separation protective layer 19 and the refractive layer 22, and is connected to the second electrode 14 of the adjacent subpixel element. In this example, the refractive layer 22 penetrates the entire height of the red filter 42R, more specifically, up to the planarization layer 169, but it may also penetrate only a portion of it. This example makes it possible to further improve the light extraction efficiency.

 図88Bに示すように、画素内領域ARAに形成される屈折層22は-Z方向に向かってテーパー状となる形状を有し、画素間領域ARBに形成される屈折層22は-Z方向に向かって逆テーパー状となる形状を有していてもよい。 As shown in FIG. 88B, the refractive layer 22 formed in the intrapixel area ARA may have a tapered shape toward the -Z direction, and the refractive layer 22 formed in the interpixel area ARB may have a reverse tapered shape toward the -Z direction.

 次に、図88Aに示したサブ画素101Rを含む表示装置の製造方法例について説明する。図89Aに示すように、層間絶縁層11Bの第1の面上に、第1電極12、有機層13、第2電極14、及び、第1保護層18を形成する。 Next, an example of a manufacturing method for a display device including the sub-pixel 101R shown in FIG. 88A will be described. As shown in FIG. 89A, a first electrode 12, an organic layer 13, a second electrode 14, and a first protective layer 18 are formed on a first surface of the interlayer insulating layer 11B.

 次に、図89Bに示すように、第1保護層18の第1の面上にレジスト171を配置する。 Next, as shown in FIG. 89B, a resist 171 is placed on the first surface of the first protective layer 18.

 次に、図89Cに示すように、エッチング処理等によって第1保護層18の不要な箇所を除去する。 Next, as shown in FIG. 89C, unnecessary portions of the first protective layer 18 are removed by etching or the like.

 次に、図90Aに示すように、蒸着法やCVD法等の適宜な方法よって第1保護層18の側壁に補助電極27を形成する。 Next, as shown in FIG. 90A, an auxiliary electrode 27 is formed on the sidewall of the first protective layer 18 by an appropriate method such as vapor deposition or CVD.

 次に、図90Bに示すように、エッチング処理等によって第1電極12、有機層13、及び、第2電極14のそれぞれの不要な箇所を除去する。 Next, as shown in FIG. 90B, unnecessary portions of the first electrode 12, the organic layer 13, and the second electrode 14 are removed by etching or the like.

 次に、図90Cに示すように、蒸着法やスパッタリング法等の適宜な方法によって、分離保護層19を形成する。 Next, as shown in Figure 90C, the isolation protective layer 19 is formed by an appropriate method such as vapor deposition or sputtering.

 次に、図91Aに示すように、屈折層22を形成する。そして、図91Bに示すように、フォトリソグラフィ法等によって、屈折層22に開口部を形成する。この工程により、開口部間に柱状の屈折層22を形成する。 Next, as shown in FIG. 91A, the refractive layer 22 is formed. Then, as shown in FIG. 91B, openings are formed in the refractive layer 22 by photolithography or the like. Through this process, columnar refractive layers 22 are formed between the openings.

 次に、図92Aに示すように、ドライエッチング法等の適宜な方法よって、第1保護層18の第1の面側及び屈折層22の第1の面側にかけて、且つ、第1保護層18の側壁に形成された補助電極27と接続するようにして、補助電極27を形成する。 Next, as shown in FIG. 92A, an auxiliary electrode 27 is formed by an appropriate method such as dry etching over the first surface side of the first protective layer 18 and the first surface side of the refractive layer 22, and so as to connect to the auxiliary electrode 27 formed on the side wall of the first protective layer 18.

 次に、図92Bに示すように、屈折層22の開口部に対して赤色フィルタ42Rを形成する。 Next, as shown in Figure 92B, a red filter 42R is formed in the opening of the refractive layer 22.

 次に、図93Aに示すように、平坦化層169を形成する。そして、図93Bに示すように、平坦化層169の第1の面上にレンズ45を形成する。 Next, as shown in FIG. 93A, a planarization layer 169 is formed. Then, as shown in FIG. 93B, a lens 45 is formed on the first surface of the planarization layer 169.

 これにより、図94Aに示すように、第1サブ画素要素101Ra及び第2サブ画素要素101Rbが形成される。さらに、図94Bに示すように、レンズ45の上部に保護層173が形成されてもよい。さらに、保護層173の上部にガラス基板が形成されてもよい。 As a result, a first subpixel element 101Ra and a second subpixel element 101Rb are formed, as shown in FIG. 94A. Furthermore, a protective layer 173 may be formed on top of the lens 45, as shown in FIG. 94B. Furthermore, a glass substrate may be formed on top of the protective layer 173.

<第10の実施形態>
 次に、第10の実施形態について説明する。図95は、第10の実施形態に係る表示装置(表示装置10M)の断面構成例を示す図である。
Tenth embodiment
Next, a tenth embodiment will be described. Fig. 95 is a diagram showing an example of a cross-sectional configuration of a display device (a display device 10M) according to the tenth embodiment.

 表示装置10Mは、概略的には、表示装置10Lと略同じ構成を有する。本実施形態では、表示装置10Mが、第9の実施形態で説明した貫通部167Aを有していないが、表示装置10Mが貫通部167Aを有していてもよい。 In general, the display device 10M has substantially the same configuration as the display device 10L. In this embodiment, the display device 10M does not have the through-hole 167A described in the ninth embodiment, but the display device 10M may have the through-hole 167A.

 表示装置10Mは、第1電極12と第2電極14との間に発光制限層を有する。発光制限層は、例えば絶縁層180である。例えば、第1電極12の第1の面上に絶縁層180を形成した後に、有機層13及び第2電極14を形成することで、発光素子20が形成される。絶縁層180が形成される箇所は非発光領域となっている。 The display device 10M has a light emission limiting layer between the first electrode 12 and the second electrode 14. The light emission limiting layer is, for example, an insulating layer 180. For example, the insulating layer 180 is formed on the first surface of the first electrode 12, and then the organic layer 13 and the second electrode 14 are formed to form the light emitting element 20. The area where the insulating layer 180 is formed is a non-light emitting region.

 本実施形態では、絶縁層180の位置が非対称となるように各絶縁層180が形成される。具体的には、サブ画素の配置位置に応じて絶縁層180の位置が異なっている。なお、このことは全てのサブ画素の絶縁層180の位置が異なっている必要は無く、一部のサブ画素の絶縁層180の位置が同じであってもよい。 In this embodiment, each insulating layer 180 is formed so that the position of the insulating layer 180 is asymmetric. Specifically, the position of the insulating layer 180 differs depending on the arrangement position of the subpixel. Note that this does not mean that the positions of the insulating layer 180 of all subpixels need to be different, and the positions of the insulating layer 180 of some subpixels may be the same.

 本実施形態の場合、絶縁層180の位置を適切に設定することによって、カラーフィルタ42に入射する光の配向を制御することが可能となり、表示装置10Mの主光線制御を行うことができる。 In this embodiment, by appropriately setting the position of the insulating layer 180, it is possible to control the orientation of the light incident on the color filter 42, thereby controlling the chief light beam of the display device 10M.

 なお、溝部23内の屈折層22の屈折率は、低くてもよいし高くてもよい。例えば、溝部23内の屈折層22(画素内領域ARAの屈折層22)の屈折率、及び、画素間領域ARBの屈折層22の屈折率が低屈折率から中屈折率の場合(一例として屈折率n=1.7程度の場合)を考える。この場合、図96に示すように、絶縁層180がない箇所で発光した光は、例えば溝部23の屈折層22の屈折作用によって主に右側に向けて出射される。 The refractive index of the refractive layer 22 in the groove 23 may be low or high. For example, consider a case where the refractive index of the refractive layer 22 in the groove 23 (the refractive layer 22 in the intra-pixel area ARA) and the refractive index of the refractive layer 22 in the inter-pixel area ARB are low to medium (as an example, a case where the refractive index n is about 1.7). In this case, as shown in FIG. 96, light emitted in a location where there is no insulating layer 180 is mainly emitted toward the right due to the refraction action of the refractive layer 22 in the groove 23, for example.

 また、溝部23内の屈折層22(画素内領域ARAの屈折層22)の屈折率が高屈折率、(一例として屈折率n=1.9程度の場合)及び、画素間領域ARBの屈折層22の屈折率が低屈折率から中屈折率の場合(一例として屈折率n=1.7程度の場合)を考える。この場合、図97に示すように、絶縁層180がない箇所で発光した光は、例えば画素間領域ARBの屈折層22の屈折作用によって主に左側に向けて出射される。 Furthermore, consider the case where the refractive index of the refractive layer 22 in the groove portion 23 (refractive layer 22 in the intra-pixel area ARA) is high (for example, the refractive index n is about 1.9), and the refractive index of the refractive layer 22 in the inter-pixel area ARB is low to medium (for example, the refractive index n is about 1.7). In this case, as shown in FIG. 97, light emitted in a location where there is no insulating layer 180 is mainly emitted toward the left side due to the refraction action of the refractive layer 22 in the inter-pixel area ARB, for example.

 図98を参照して、サブ画素の位置に応じた絶縁層180の配置例について説明する。図98は、表示装置10Mの有効画素領域AR1を平面視した図である。本例は、溝部23内の屈折層22の屈折率が高屈折率の場合に対応する例である。例えば、図面に向かって左側に配置されるサブ画素は、当該画素の発光素子20を平面視した場合に左側に配置された絶縁層180を有する。これにより、主光線を左側に向けることが可能となる。また、図面に向かって中央付近に配置されるサブ画素は、当該画素の発光素子20を平面視した場合に中央付近に配置される絶縁層180を有する。これにより、主光線を中央に向けることが可能となる。また、図面に向かって右側に配置されるサブ画素は、当該画素の発光素子20を平面視した場合に右側に配置される絶縁層180を有する。これにより、主光線を右側に向けることが可能となる。本例の場合には、表示装置10Mは、180度の略全方向に対して光を出射できる。勿論、全方向ではなく特定の方向に対して主光線が向くように絶縁層180が適切に配置されてもよい。 With reference to FIG. 98, an example of the arrangement of the insulating layer 180 according to the position of the sub-pixel will be described. FIG. 98 is a plan view of the effective pixel region AR1 of the display device 10M. This example corresponds to the case where the refractive index of the refractive layer 22 in the groove portion 23 is high. For example, the sub-pixel arranged on the left side of the drawing has the insulating layer 180 arranged on the left side when the light-emitting element 20 of the pixel is viewed in a plan view. This makes it possible to direct the main light beam to the left side. Furthermore, the sub-pixel arranged near the center of the drawing has the insulating layer 180 arranged near the center when the light-emitting element 20 of the pixel is viewed in a plan view. This makes it possible to direct the main light beam to the center. Furthermore, the sub-pixel arranged on the right side of the drawing has the insulating layer 180 arranged on the right side when the light-emitting element 20 of the pixel is viewed in a plan view. This makes it possible to direct the main light beam to the right side. In this example, the display device 10M can emit light in almost all directions of 180 degrees. Of course, the insulating layer 180 may be appropriately arranged so that the main light beam is directed in a specific direction rather than in all directions.

 なお、図99Aに示すように、本実施形態では、サブ画素の発光領域のうち、略半分程度が非発光領域となるように絶縁層180を配置した。但し、発光領域に対する非発光領域の割合は適宜変更することができ、この割合を実現するように絶縁層180が配置される。例えば、図99Bに示すように、サブ画素の発光領域が6等分程度され、そのうちの2箇所(割合で言うと1/3程度)が非発光領域となるように絶縁層180が形成されてもよい。 As shown in FIG. 99A, in this embodiment, the insulating layer 180 is arranged so that approximately half of the light-emitting region of the subpixel is a non-light-emitting region. However, the ratio of the non-light-emitting region to the light-emitting region can be changed as appropriate, and the insulating layer 180 is arranged to achieve this ratio. For example, as shown in FIG. 99B, the light-emitting region of the subpixel is divided into approximately six equal parts, and the insulating layer 180 may be formed so that two of these (approximately 1/3 in terms of ratio) are non-light-emitting regions.

<第11の実施形態>
 次に、第11の実施形態について説明する。図100は、第11の実施形態に係る表示装置(表示装置10N)の断面構成例を示す図である。
Eleventh embodiment
Next, an eleventh embodiment will be described. Fig. 100 is a diagram showing an example of a cross-sectional configuration of a display device (a display device 10N) according to an eleventh embodiment.

 表示装置10Nは、概略的には、表示装置10B(図16参照)の構成と略同じ構成を有する。以下、表示装置10Nの構成例について、表示装置10Bと異なる点を中心に説明する。 In general, display device 10N has a configuration that is substantially the same as that of display device 10B (see FIG. 16). Below, an example of the configuration of display device 10N will be described, focusing on the differences from display device 10B.

 図100に示すように、補助電極27の第1の面上には。第2保護層21が形成されている。本実施形態では、第1の面に対して他方の面となる補助電極27の第2の面の一部に、光反射膜である光反射層185が形成されている。具体的には、補助電極27の第2の面のうち、溝部23の周囲と対向する面を除く面に光反射層185が形成されている。ここで、溝部23の周囲とは、溝部23の端面23A及び溝部23の周面23Cを意味する。すなわち、補助電極27の第2の面のうち、溝部23の端面23Aと対向する面と、溝部23の周面23Cと対向する面とを除く箇所に光反射層185が形成されている。 As shown in FIG. 100, a second protective layer 21 is formed on the first surface of the auxiliary electrode 27. In this embodiment, a light reflecting layer 185, which is a light reflecting film, is formed on a part of the second surface of the auxiliary electrode 27, which is the other surface of the first surface. Specifically, the light reflecting layer 185 is formed on the second surface of the auxiliary electrode 27, except for the surface facing the periphery of the groove portion 23. Here, the periphery of the groove portion 23 means the end surface 23A of the groove portion 23 and the peripheral surface 23C of the groove portion 23. In other words, the light reflecting layer 185 is formed on the second surface of the auxiliary electrode 27, except for the surface facing the end surface 23A of the groove portion 23 and the surface facing the peripheral surface 23C of the groove portion 23.

 光反射層185は、例えば、アルミニウム(Al)、銀(Ag)、銅(Cu)等の金属、あるいは、これらを主成分とする合金(例えば、マグネシウム銀合金(MgAg))により構成される。 The light reflecting layer 185 is made of, for example, a metal such as aluminum (Al), silver (Ag), or copper (Cu), or an alloy containing these as the main component (for example, magnesium silver alloy (MgAg)).

 第1の実施形態等で説明したように、溝部23内の屈折層22による屈折作用により、図101の矢印で模式的に示すように、光取り出し効率を向上させることができる。また、サブ画素の外側(図面に向かって左右方向)に向かう光は、光反射層185によって反射されることで表示装置10N外部への放出が抑制される。これにより、隣接するサブ画素への光漏れが抑制されるので混色を抑制でき、色純度を向上させることができる。 As explained in the first embodiment, the refraction effect of the refractive layer 22 in the groove portion 23 can improve the light extraction efficiency, as shown diagrammatically by the arrows in FIG. 101. Furthermore, light traveling to the outside of the subpixel (left and right directions in the drawing) is reflected by the light reflecting layer 185, thereby preventing it from being emitted to the outside of the display device 10N. This prevents light from leaking to adjacent subpixels, thereby preventing color mixing and improving color purity.

 以下、本実施形態の変形例について説明する。図102に示すように、発光素子20の正面方向(+Z方向側)に対して光反射層185がなくてもよい。また、図103に示すように、発光素子20の正面方向(+Z方向側)の一部のみに光反射層185が形成されていてもよい。但し、図100に示した構成例が、光漏れを効率的に抑制できることから好ましい形態であると言える。 Below, modified examples of this embodiment are described. As shown in FIG. 102, the light reflecting layer 185 may not be present in the front direction (+Z direction side) of the light emitting element 20. Also, as shown in FIG. 103, the light reflecting layer 185 may be formed only on a portion of the front direction (+Z direction side) of the light emitting element 20. However, the configuration example shown in FIG. 100 can be said to be a preferred form because it can efficiently suppress light leakage.

 なお、補助電極27の第1の面の一部に、光反射層185が形成されてもよい。すなわち、表示装置10Nが、補助電極27と第2保護層21との間の一部に光反射層185が介在する構成を有していてもよい。 In addition, a light reflecting layer 185 may be formed on a portion of the first surface of the auxiliary electrode 27. In other words, the display device 10N may have a configuration in which the light reflecting layer 185 is interposed between the auxiliary electrode 27 and the second protective layer 21.

 図104に示すように、光反射層185に対してさらに光反射防止膜である光反射防止層186が積層されていてもよい。積層順序は、下側から光反射層185及び光反射防止層186であることが好ましい。光反射層185によって外側に反射した光が隣接するサブ画素に向かってしまうことを光反射防止層186で抑制できるからである。 As shown in FIG. 104, an anti-reflection layer 186, which is an anti-reflection film, may be laminated on the light-reflection layer 185. The lamination order is preferably the light-reflection layer 185 and the anti-reflection layer 186 from the bottom. This is because the anti-reflection layer 186 can prevent the light reflected outward by the light-reflection layer 185 from heading toward the adjacent sub-pixel.

 光反射防止層186は、例えば、チタン(Ti)、タンタル(Ta)、タングステン(W)からなる群より選ばれる少なくとも1種の金属元素を含む。光反射防止層186は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。光反射防止層186は、窒化チタン(TiN)や窒化タンタル(TaN)であってもよい。 The anti-reflection layer 186 contains at least one metal element selected from the group consisting of titanium (Ti), tantalum (Ta), and tungsten (W). The anti-reflection layer 186 may contain at least one of the metal elements as a constituent element of an alloy. The anti-reflection layer 186 may be titanium nitride (TiN) or tantalum nitride (TaN).

 なお、光反射層185及び光反射防止層186は、全ての面にわたって積層していることが好ましいが、部分的に積層していてもよい。 It is preferable that the light reflecting layer 185 and the light anti-reflection layer 186 are laminated over the entire surface, but they may be laminated only partially.

 図104に示した構成例を有する表示装置の製造方法例について、図105乃至図107を参照して説明する。図105Aに示すように、層間絶縁層11Bの第1の面上に発光素子20及び第1保護層18を形成し、分離保護層19を一様に成膜する。 An example of a manufacturing method for a display device having the configuration example shown in FIG. 104 will be described with reference to FIG. 105 to FIG. 107. As shown in FIG. 105A, a light emitting element 20 and a first protective layer 18 are formed on the first surface of the interlayer insulating layer 11B, and an isolation protective layer 19 is uniformly formed.

 次に、図105Bに示すように、蒸着法やスパッタリング法等の適宜な方法によって、分離保護層19の第1の面上に、光反射層185及び光反射防止層186を順に形成する。 Next, as shown in FIG. 105B, a light reflecting layer 185 and a light anti-reflection layer 186 are formed in this order on the first surface of the separation protective layer 19 by an appropriate method such as vapor deposition or sputtering.

 次に、図105Cに示すように、フォトリソグラフィ技術やエッチング法等の適宜な方法によって、開口部(凹部)を形成する。 Next, as shown in FIG. 105C, an opening (recess) is formed by an appropriate method such as photolithography or etching.

 次に、図106Aに示すように、補助電極27を形成した後、図106Bに示すように、補助電極27の第1の面に第2保護層21を形成する。これにより溝部23が形成される。 Next, as shown in FIG. 106A, an auxiliary electrode 27 is formed, and then, as shown in FIG. 106B, a second protective layer 21 is formed on the first surface of the auxiliary electrode 27. This forms a groove portion 23.

 次に、図106Cに示すように、屈折層22を形成する。そして、図107Aに示すように、屈折層22の第1の面上にカラーフィルタ42を形成した後、図107Bに示すように、カラーフィルタ42の第1の面上にレンズ45を形成することで、図104に示した構成例を有する表示装置が完成する。 Next, as shown in FIG. 106C, a refractive layer 22 is formed. Then, as shown in FIG. 107A, a color filter 42 is formed on the first surface of the refractive layer 22, and then, as shown in FIG. 107B, a lens 45 is formed on the first surface of the color filter 42, thereby completing a display device having the example configuration shown in FIG. 104.

 次に、図100に示した表示装置10Nを平面視した場合に、光反射層185によって形成される開口の形状例等について説明する。 Next, examples of the shapes of the openings formed by the light reflecting layer 185 when the display device 10N shown in FIG. 100 is viewed in plan will be described.

 光反射層185よって形成される開口の形状は、例えば、円形状である。この場合、光反射層185よって形成される開口の面積は、図108Aに示すように全てのサブ画素で同一であってもよいし、図108Bに示すように各サブ画素で異なっていてもよい。 The shape of the opening formed by the light reflecting layer 185 is, for example, circular. In this case, the area of the opening formed by the light reflecting layer 185 may be the same for all sub-pixels as shown in FIG. 108A, or may be different for each sub-pixel as shown in FIG. 108B.

 また、光反射層185よって形成される開口の形状は、図109Aに示すように円形状であってもよいし、図109Bに示すように多角形状(例えば矩形状)であってもよいし、楕円形状であってもよい。 The shape of the opening formed by the light reflecting layer 185 may be circular as shown in FIG. 109A, polygonal (e.g. rectangular) as shown in FIG. 109B, or elliptical.

 また、光反射層185よって形成される開口の中心位置は、図110Aに示すようにサブ画素の中心に対して左側にオフセットしていてもよいし、図110Bに示すようにサブ画素の中心付近であってもよいし、図110Cに示すようにサブ画素の中心に対して右側にオフセットしていてもよい。 The center position of the opening formed by the light reflecting layer 185 may be offset to the left with respect to the center of the subpixel as shown in FIG. 110A, may be near the center of the subpixel as shown in FIG. 110B, or may be offset to the right with respect to the center of the subpixel as shown in FIG. 110C.

 また、光反射層185よって形成される開口の数は、図111Aに示すように1個のサブ画素に対して1個であってもよいし、図111Bに示すように1個のサブ画素に対して複数個(例えば2個)であってもよい。 The number of openings formed by the light reflecting layer 185 may be one for each subpixel as shown in FIG. 111A, or multiple (e.g., two) for each subpixel as shown in FIG. 111B.

 次に、サブ画素の配列例について説明する。例えば、図112Aに示すように、各サブ画素(図示の例はRGBBのサブ画素)の配列は正方配列であってもよい。図112Bに示すように、RGBW(白色)各色のサブ画素が正方配列した配列例でもよい。 Next, an example of the arrangement of sub-pixels will be described. For example, as shown in FIG. 112A, the arrangement of each sub-pixel (RGBB sub-pixels in the illustrated example) may be a square arrangement. As shown in FIG. 112B, an example of an arrangement in which RGBW (white) sub-pixels are arranged in a square arrangement may also be used.

 図113Aに示すように、各サブ画素(図示の例はRGBBのサブ画素)の配列はデルタ配列であってもよい。図113Bに示すように、RGBW(白色)各色のサブ画素がデルタ配列された配列例でもよい。 As shown in FIG. 113A, the arrangement of each sub-pixel (RGBB sub-pixels in the illustrated example) may be a delta arrangement. As shown in FIG. 113B, an example arrangement in which RGBW (white) sub-pixels are arranged in a delta arrangement may also be used.

 図114Aに示すように、各サブ画素(図示の例はRGBBのサブ画素)の配列はストライプ状に配列された配列例であってもよい。図114Bに示すように、RGBW(白色)各色のサブ画素がストライプ状に配列された配列例であってもよい。 As shown in FIG. 114A, the sub-pixels (RGBB sub-pixels are shown in the illustrated example) may be arranged in a stripe pattern. As shown in FIG. 114B, the sub-pixels of RGBW (white) may be arranged in a stripe pattern.

 画素内にカソードコンタクトが形成されていてもよい。例えば、図112A及び図112Bに示した配列例において、図115A及び図115Bに示すように、例えば正方配列の中央にカソードコンタクトCTAが形成されていてもよい。 A cathode contact may be formed within a pixel. For example, in the example array shown in Figures 112A and 112B, a cathode contact CTA may be formed, for example, in the center of the square array, as shown in Figures 115A and 115B.

 また、図113A及び図113Bに示した配列例において、図116A及び図116Bに示すように、例えばサブ画素間にカソードコンタクトCTAが形成されていてもよい。また、図114A及び図114Bに示した配列例において、図117A及び図117Bに示すように、例えばサブ画素に共通するカソードコンタクトCTAが形成されていてもよい。 In the example arrangement shown in Figures 113A and 113B, a cathode contact CTA may be formed between the sub-pixels, as shown in Figures 116A and 116B. In the example arrangement shown in Figures 114A and 114B, a cathode contact CTA common to the sub-pixels may be formed, as shown in Figures 117A and 117B.

<第12の実施形態>
 次に、第12の実施形態について説明する。まず始めに、図118を参照して、本実施形態で考慮すべき問題について説明する。第1の実施形態で説明した表示装置10Aによれば、発光素子20で発光した光を効率よく取り出すことができる(図4参照)。具体的には、図118に示すように、光路と発光素子20とが成す角度が大きい高角度光HLAの場合は、当該高角度光HLAを外部に効率よく取り出すことができる。一方で、光路と発光素子20とが成す角度が小さい低角度光LLAの場合は、溝部23内の屈折層22と溝部23の周面23Cとの境界付近で光をうまく取り出せないことがある。これは、低角度光LLAは、溝部23の端面23Aにおける第2保護層21(比較的、屈折率が高い箇所)から低屈折率の屈折層22を何度か経由するため、光が散乱したりけられたりしてしまうからである。また、端面23A付近の補助電極27による光吸収の問題もある。
Twelfth embodiment
Next, the twelfth embodiment will be described. First, referring to FIG. 118, problems to be considered in this embodiment will be described. According to the display device 10A described in the first embodiment, the light emitted by the light emitting element 20 can be efficiently extracted (see FIG. 4). Specifically, as shown in FIG. 118, in the case of high-angle light HLA in which the angle between the light path and the light emitting element 20 is large, the high-angle light HLA can be efficiently extracted to the outside. On the other hand, in the case of low-angle light LLA in which the angle between the light path and the light emitting element 20 is small, the light may not be extracted well near the boundary between the refractive layer 22 in the groove 23 and the peripheral surface 23C of the groove 23. This is because the low-angle light LLA passes through the refractive layer 22 with a low refractive index several times from the second protective layer 21 (a portion with a relatively high refractive index) at the end surface 23A of the groove 23, and the light is scattered or vignetted. There is also a problem of light absorption by the auxiliary electrode 27 near the end surface 23A.

 上述した問題に対して、溝部23の大きさ自体を小さくし、端面23Aにおける第2保護層21の領域を小さくしたり、補助電極27のコンタクト部分を小さく方法が考えられる。しかしながらこの方法では、溝部23の開口(端面23Aとは反対側に位置する開口)が小さくなるためスパッタリング等の際に補助電極27の付き回りが低下し、コンタクト性が低下してしまう虞がある。本実施形態は、上述した問題に対応する実施形態である。 In order to address the above-mentioned problem, it is possible to reduce the size of the groove portion 23 itself, reduce the area of the second protective layer 21 on the end face 23A, or reduce the contact portion of the auxiliary electrode 27. However, with this method, the opening of the groove portion 23 (the opening located on the opposite side to the end face 23A) becomes smaller, which may reduce the adhesion of the auxiliary electrode 27 during sputtering, etc., and may result in poor contact properties. This embodiment is an embodiment that addresses the above-mentioned problem.

 図119は、本実施形態に係る表示装置(表示装置10P)の断面構成例を示す図である。表示装置10Pは、溝部23の周面にテラス部190を有する。テラス部190は、溝部23の端面23Aに対して上方側(+Z方向側)に形成される平坦部である。テラス部190によって、テラス部190の下側の溝部23はより小さくなる。係る形状により、補助電極27のコンタクト部分における第2保護層21の領域を小さくできる。これにより、低角度光LLAであっても溝部23の端面23A付近を極力通過することなく、例えば、画素間領域ARBにおける屈折層22に向かうことが可能となる。そして、低角度光LLAは、画素間領域ARBにおける屈折層22の屈折作用によって正面方向に向かう。以上のように、本実施形態によれば、低角度光LLAであっても例えば正面方向に向かうように制御できるので、溝部23を設けたことによる光取り出し効率の低下を極力抑制できる。また、溝部23の開口の大きさを小さくする必要がないので、補助電極27の付き回りが悪化してしまうことを抑制できる。 119 is a diagram showing an example of a cross-sectional configuration of a display device (display device 10P) according to this embodiment. The display device 10P has a terrace portion 190 on the peripheral surface of the groove portion 23. The terrace portion 190 is a flat portion formed on the upper side (+Z direction side) of the end face 23A of the groove portion 23. The terrace portion 190 makes the groove portion 23 below the terrace portion 190 smaller. This shape makes it possible to reduce the area of the second protective layer 21 at the contact portion of the auxiliary electrode 27. This makes it possible for even low-angle light LLA to pass through the vicinity of the end face 23A of the groove portion 23 as much as possible, and to head, for example, toward the refractive layer 22 in the inter-pixel region ARB. The low-angle light LLA then heads toward the front direction due to the refraction action of the refractive layer 22 in the inter-pixel region ARB. As described above, according to this embodiment, even low-angle light LLA can be controlled to head, for example, toward the front direction, so that the reduction in light extraction efficiency caused by the provision of the groove portion 23 can be minimized. In addition, since there is no need to reduce the size of the opening of the groove 23, deterioration of the adhesion of the auxiliary electrode 27 can be suppressed.

 以下、表示装置10Pの複数の具体例について説明する。図120Aは、参考例としての表示装置(例えば、表示装置10A)の断面構成例を示す。図120Bは、参考例としての表示装置を平面視した図であり、断面構成例と対応するように位置合わせして示したものである。平面視した図では説明に必要な箇所のみを図示している。このことは、図121B、図123B、図124B、及び、図125Bについても同様である。 Below, several specific examples of the display device 10P will be described. Fig. 120A shows a cross-sectional configuration example of a display device (e.g., display device 10A) as a reference example. Fig. 120B is a plan view of the display device as a reference example, aligned to correspond to the cross-sectional configuration example. In the plan view, only the parts necessary for explanation are shown. The same applies to Figs. 121B, 123B, 124B, and 125B.

 図120Aに示す断面構成例の場合には、図120Bに示すように、補助電極27と第2電極14とのコンタクト部CTPが大きくなってしまう。上述したように、コンタクト部CTPや、コンタクト部CTPにおける第2保護層21に起因して、光取り出し効率の低下が生じる虞がある。 In the case of the cross-sectional configuration example shown in FIG. 120A, as shown in FIG. 120B, the contact portion CTP between the auxiliary electrode 27 and the second electrode 14 becomes large. As described above, there is a risk that the light extraction efficiency will decrease due to the contact portion CTP and the second protective layer 21 at the contact portion CTP.

 図121Aは、本実施形態に係る表示装置10Pの断面構成例を示す。図121Bは、表示装置10Pを平面視した図である。上述したように、溝部23の周面23Cにテラス部190が設けている。テラス部190を設けることで、テラス部190より下側の溝部23を小さくすることができる。これにより、溝部23に補助電極27を成膜した際に形成されるコンタクト部CTPを小さくすることができる。これにより光取り出し効率の低下を極力抑制できる。また、溝部23の開口の大きさを小さくする必要がないので、補助電極27の付き回りが悪化してしまうことを抑制でき、生産性を向上させることができる。 FIG. 121A shows an example of a cross-sectional configuration of a display device 10P according to this embodiment. FIG. 121B is a plan view of the display device 10P. As described above, a terrace portion 190 is provided on the peripheral surface 23C of the groove portion 23. By providing the terrace portion 190, the groove portion 23 below the terrace portion 190 can be made smaller. This makes it possible to reduce the contact portion CTP formed when the auxiliary electrode 27 is formed in the groove portion 23. This makes it possible to minimize the decrease in light extraction efficiency. In addition, since there is no need to reduce the size of the opening of the groove portion 23, it is possible to prevent the auxiliary electrode 27 from becoming less adherent, thereby improving productivity.

 図122は、本実施形態に係る表示装置10Pで得られる効果を説明するための図である。図122に示すグラフの横軸は視野角を示し、縦軸は光の量を示す。また、図中のラインLNP1は参考例に係る表示装置の測定結果(シミュレーション結果)に対応しており、ラインLNP2は表示装置10Pの測定結果(シミュレーション結果)に対応している。図122に示すように、表示装置10Pは参考例に係る表示装置に比べて、特に視野角が大きくなる斜め方向の光の量が増加している。すなわち、表示装置10P全体として光取り出し効率が向上していることがわかる。 FIG. 122 is a diagram for explaining the effect obtained with the display device 10P according to this embodiment. The horizontal axis of the graph shown in FIG. 122 indicates the viewing angle, and the vertical axis indicates the amount of light. Furthermore, line LNP1 in the figure corresponds to the measurement results (simulation results) of the display device according to the reference example, and line LNP2 corresponds to the measurement results (simulation results) of the display device 10P. As shown in FIG. 122, the display device 10P has an increased amount of light, particularly in oblique directions where the viewing angle is large, compared to the display device according to the reference example. In other words, it can be seen that the light extraction efficiency of the display device 10P as a whole is improved.

 以下、表示装置10Pの変形例について説明する。図123A及び図123Bは、表示装置10Pの一変形例を説明するための図である。溝部23の周面23Cには、テラス部190ではなく、-Z方向にテーパー状となる段差部191が形成されてもよい。段差部191の形状は、コンタクト部CTPを参考例よりも小さくすることができれば特定の形状に限定されることはない。一例として、段差部191は、周面23Cの途中から溝部23の内側にやや突出しそこから下側に傾斜した形状を有する。 Below, modified examples of the display device 10P are described. Figures 123A and 123B are diagrams for explaining one modified example of the display device 10P. Instead of a terrace portion 190, a step portion 191 tapered in the -Z direction may be formed on the peripheral surface 23C of the groove portion 23. The shape of the step portion 191 is not limited to a specific shape as long as the contact portion CTP can be made smaller than in the reference example. As one example, the step portion 191 has a shape that protrudes slightly from the middle of the peripheral surface 23C toward the inside of the groove portion 23 and slopes downward from there.

 また、テラス部190は、図124A及び図124Bに示すように、複数箇所のコンタクト部CTP1及びCTP2を形成できる形状であってもよい。例えば、テラス部190は、平面視において円状の2個の開口を有する形状であってもよい。係る構成によれば、補助電極27のコンタクト性を向上させることができる。なお、テラス部190は、3箇所以上のコンタクト部を形成できるような形状であってもよい。 Furthermore, as shown in FIG. 124A and FIG. 124B, the terrace portion 190 may have a shape that allows the formation of contact portions CTP1 and CTP2 at multiple locations. For example, the terrace portion 190 may have a shape that has two circular openings in a plan view. This configuration can improve the contact property of the auxiliary electrode 27. Furthermore, the terrace portion 190 may have a shape that allows the formation of contact portions at three or more locations.

 また、図125A及び図125Bに示すように、表示装置10Pが複数のテラス部を有しいてもよい。例えば、テラス部190に対して、周面23Cにおけるさらに上方(+Z方向側)にテラス部190Aが形成されていてもよい。 Also, as shown in Figures 125A and 125B, the display device 10P may have multiple terrace portions. For example, terrace portion 190A may be formed further above (in the +Z direction) terrace portion 190 on the peripheral surface 23C.

 次に、図126乃至図129を参照して、表示装置10Pの製造方法例について説明する。なお、図126乃至図129では、図126Aに示すように、層間絶縁層11Bの第1の面上に第1電極12、有機層13、第2電極14、及び、第1保護層18を形成する。 Next, an example of a manufacturing method for the display device 10P will be described with reference to Figures 126 to 129. In Figures 126 to 129, as shown in Figure 126A, the first electrode 12, the organic layer 13, the second electrode 14, and the first protective layer 18 are formed on the first surface of the interlayer insulating layer 11B.

 次に、図126Bに示すように、第1保護層18の第1の面上にレジスト193を配置する。 Next, as shown in FIG. 126B, a resist 193 is placed on the first surface of the first protective layer 18.

 次に、図126Cに示すように、ドライエッチング処理等を用いて、第1電極12、有機層13、第2電極14、及び、第1保護層18の不要な箇所を除去する。 Next, as shown in FIG. 126C, unnecessary portions of the first electrode 12, the organic layer 13, the second electrode 14, and the first protective layer 18 are removed using a dry etching process or the like.

 次に、図127Aに示すように、CVD等の適宜な方法によって分離保護層19を形成する。 Next, as shown in FIG. 127A, an isolation protection layer 19 is formed by an appropriate method such as CVD.

 次に、図127Bに示すように、分離保護層19の第1の面上にレジスト194を配置する。 Next, as shown in FIG. 127B, a resist 194 is placed on the first surface of the isolation protection layer 19.

 次に、図127Cに示すように、フォトリソグラフィ法等によって、第1保護層18及び分離保護層19の不要な箇所を除去する。この工程により、溝部23が途中段階まで形成される。 Next, as shown in FIG. 127C, unnecessary portions of the first protective layer 18 and the separation protective layer 19 are removed by photolithography or the like. This process forms the groove portion 23 partially.

 次に、図128Aに示すように、レジスト195を配置する。このとき、途中まで形成された溝部23の底面の一部、換言すれば、第1保護層18の第1の面の中央付近が露出するようにレジスト195を配置する。 Next, as shown in FIG. 128A, resist 195 is placed. At this time, resist 195 is placed so that a portion of the bottom surface of groove portion 23 that has been formed halfway, in other words, the area near the center of the first surface of first protective layer 18, is exposed.

 次に、図128Bに示すように、フォトリソグラフィ法やドライエッチング法等の適宜な方法によって、第1保護層18を第2電極14の第1の面まで達するように除去する。そして、レジスト195を除去する。この工程により、テラス部190が形成される。 Next, as shown in FIG. 128B, the first protective layer 18 is removed by an appropriate method such as photolithography or dry etching so as to reach the first surface of the second electrode 14. Then, the resist 195 is removed. This process forms the terrace portion 190.

 次に、図128Cに示すように、PVD(Physical Vapor Deposition)法やCVD法等の適宜な方法によって補助電極27を形成する。次に、図129Aに示すように、PVD法やCVD法等の適宜な方法によって及び第2保護層21を形成する。この工程により溝部23全体が形成される。 Next, as shown in FIG. 128C, an auxiliary electrode 27 is formed by an appropriate method such as PVD (Physical Vapor Deposition) or CVD. Next, as shown in FIG. 129A, a second protective layer 21 is formed by an appropriate method such as PVD or CVD. This process forms the entire groove portion 23.

 次に、図129Bに示すように、屈折層22が形成されることで表示装置10Pが完成する。 Next, as shown in FIG. 129B, the refractive layer 22 is formed to complete the display device 10P.

<第13の実施形態>
 次に、第13の実施形態について説明する。始めに、図130を参照して、第13の実施形態で考慮すべき点について説明する。図130に示すように、保護層、具体的には第1保護層18や分離保護層19の厚みが大きいと発光素子20とカラーフィルタ42との間の距離が大きくなる。これにより、発光素子20で発光した光がレンズ45に入射せず光取り出し効率の低下を招来する虞がある。また、発光素子20で発光した光が隣接画素に入り込み、混色を招く虞もある。一方で、補助電極27が第2電極14に接続されるコンタクト部分(以下、ボトム部BTとも適宜称する)では、水分等の侵入への耐性を向上させるため、ボトム部BTにおける第2保護層21の膜厚を厚くしたい要請がある。また、溝部23の形成する際に用いたレジストをできるだけ少なくすれば、レジストのアッシング量が少なくなり、生産性の高い高速加工が可能となる。本実施形態は、以上の点に対応した表示装置の製造方法に係る実施形態である。具体的には、図131に示すように、発光素子20とカラーフィルタ42との間の距離をできるだけ近づけた表示装置(表示装置10Q)を製造するための製造方法に係る実施形態である。
Thirteenth embodiment
Next, the thirteenth embodiment will be described. First, referring to FIG. 130, points to be considered in the thirteenth embodiment will be described. As shown in FIG. 130, if the thickness of the protective layer, specifically the first protective layer 18 or the separation protective layer 19, is large, the distance between the light emitting element 20 and the color filter 42 will be large. As a result, there is a risk that the light emitted by the light emitting element 20 will not enter the lens 45, resulting in a decrease in light extraction efficiency. In addition, there is a risk that the light emitted by the light emitting element 20 will enter an adjacent pixel, resulting in color mixing. On the other hand, in the contact portion (hereinafter also referred to as the bottom portion BT) where the auxiliary electrode 27 is connected to the second electrode 14, there is a demand to increase the film thickness of the second protective layer 21 in the bottom portion BT in order to improve resistance to the intrusion of moisture and the like. In addition, if the amount of resist used in forming the groove portion 23 is reduced as much as possible, the amount of ashing of the resist will be reduced, and high-speed processing with high productivity will be possible. This embodiment is an embodiment related to a manufacturing method of a display device that corresponds to the above points. Specifically, as shown in FIG. 131, this embodiment relates to a manufacturing method for manufacturing a display device (display device 10Q) in which the distance between the light emitting element 20 and the color filter 42 is as short as possible.

 表示装置10Qの製造方法の第1の例について説明する。図132Aに示すように、層間絶縁層11Bの第1の面上に、第1電極12と、第1電極12に対して対向して配置される第2電極14と、第1電極12と第2電極14との間に設けられ、発光層を含む有機層13と、を含む発光素子20を形成する。そして、発光素子20の第1の面に第1保護層18を形成し、さらに分離保護層19を一様に形成する。本実施形態では、第1保護層18及び分離保護層19が保護層の一例に対応しているが、保護層は2層ではなく1層であってもよい。 A first example of a manufacturing method for the display device 10Q will be described. As shown in FIG. 132A, a light-emitting element 20 is formed on a first surface of the interlayer insulating layer 11B, the light-emitting element 20 including a first electrode 12, a second electrode 14 disposed opposite the first electrode 12, and an organic layer 13 including a light-emitting layer provided between the first electrode 12 and the second electrode 14. Then, a first protective layer 18 is formed on the first surface of the light-emitting element 20, and a separation protective layer 19 is further formed uniformly. In this embodiment, the first protective layer 18 and the separation protective layer 19 correspond to an example of a protective layer, but the protective layer may be one layer rather than two layers.

 次に、図132Bに示すように、分離保護層19の第1の面の適宜な箇所にレジスト201を配置する。 Next, as shown in FIG. 132B, resist 201 is placed at an appropriate location on the first surface of isolation protective layer 19.

 次に、図133Aに示すようにエッチング処理等によって、第1保護層18及び分離保護層19の一部を除去して開口部202を形成する。開口部202の形成の際に、レジスト201を除去する。例えば、レジスト201と第1保護層18及び分離保護層19との選択比を1等にすることで、レジスト201を除去しつつ開口部202を形成することができる。 Next, as shown in FIG. 133A, a portion of the first protective layer 18 and the isolation protective layer 19 is removed by etching or the like to form an opening 202. When the opening 202 is formed, the resist 201 is removed. For example, by setting the selection ratio between the resist 201 and the first protective layer 18 and the isolation protective layer 19 to 1, the opening 202 can be formed while removing the resist 201.

 次に、図133Bに示すように、開口部202をさらに-Z方向に形成して、開口部202を第2電極14と空間的に接続することで、コンタクトホールCHを形成する。本例では、コンタクトホールCHを形成しつつ、開口部202の周囲の保護層とレジスト201とを薄膜化する。そして、残った不要なレジスト201が除去される。コンタクトホールCHを形成する際にレジスト201の一部も除去しているのでレジスト201の残膜を薄くすることができる。これにより、レジスト201のアッシング量を小さくすることができる。 Next, as shown in FIG. 133B, an opening 202 is further formed in the -Z direction, and the opening 202 is spatially connected to the second electrode 14 to form a contact hole CH. In this example, the protective layer and resist 201 around the opening 202 are thinned while the contact hole CH is being formed. The remaining unnecessary resist 201 is then removed. Since part of the resist 201 is also removed when the contact hole CH is formed, the remaining film of the resist 201 can be made thinner. This makes it possible to reduce the amount of ashing of the resist 201.

 レジスト201を除去した後、図133Cに示すように、補助電極27及び第2保護層21を形成する。これにより、補助電極27と第2電極14とが接続される。図示はしていないが、屈折層22、カラーフィルタ42等を形成することで、図131に示す表示装置10Qが完成する。 After removing the resist 201, the auxiliary electrode 27 and the second protective layer 21 are formed as shown in FIG. 133C. This connects the auxiliary electrode 27 and the second electrode 14. Although not shown, the refraction layer 22, the color filter 42, etc. are formed to complete the display device 10Q shown in FIG. 131.

 コンタクトホールCHを形成する際に、保護層を薄くしているので、発光素子20とカラーフィルタ42とを近づけることができる。これにより、光取り出し効率の低下を抑制でき、且つ、混色の発生を抑制できる。さらに、保護層を薄くすることでコンタクトホールCHのアスペクト比(コンタクトホールCHの高さ/コンタクトホールCHの幅(X方向の長さ)を小さくすることができる。これにより、ボトム部BTにおける第2保護層21の膜を平坦に近づけることができ、ボトム部BTにおける第2保護層21の膜厚を確保できる。これにより、ボトム部BTにおける水分等の耐性を向上させることができる。 When the contact holes CH are formed, the protective layer is thinned, so that the light emitting elements 20 and the color filters 42 can be brought closer together. This makes it possible to suppress a decrease in light extraction efficiency and to suppress the occurrence of color mixing. Furthermore, by making the protective layer thin, the aspect ratio of the contact holes CH (height of the contact hole CH/width of the contact hole CH (length in the X direction)) can be reduced. This makes it possible to make the film of the second protective layer 21 in the bottom portion BT closer to flat, and ensures the film thickness of the second protective layer 21 in the bottom portion BT. This makes it possible to improve the resistance of the bottom portion BT to moisture, etc.

 次に、表示装置10Qの製造方法の第2の例について説明する。本例は、図134Aに示すように、例えば第1保護層18にエッチング停止層203が設けられている。エッチング停止層203は、例えばAlO層であるがこれに限定されることはない。図134Bに示すように、第1の例と同様にレジスト201が配置される。 Next, a second example of a manufacturing method for the display device 10Q will be described. In this example, as shown in FIG. 134A, for example, an etching stop layer 203 is provided on the first protective layer 18. The etching stop layer 203 is, for example, an AlO layer, but is not limited to this. As shown in FIG. 134B, a resist 201 is disposed in the same manner as in the first example.

 次に、図135Aに示すように、第1の例と同様にして開口部202を形成する。このとき、エッチング停止層203まで開口部202を形成して、一旦、加工をストップする。次に、図135Bに示すように、開口部202をさらに-Z方向に形成して、開口部202を第2電極14と空間的に接続することで、コンタクトホールCHを形成する。本例では、コンタクトホールCHを形成しつつ、開口部202の周囲の保護層とレジスト201とを薄膜化する。この工程でエッチング停止層203の一部が除去される。そして、残った不要なレジスト201及びエッチング停止層203が除去される。本例によっても、コンタクトホールCHを形成する際にレジスト201の一部も除去しているのでレジスト201の残膜を薄くすることができる。これにより、レジスト201のアッシング量を小さくすることができる。 Next, as shown in FIG. 135A, the opening 202 is formed in the same manner as in the first example. At this time, the opening 202 is formed up to the etching stop layer 203, and processing is stopped once. Next, as shown in FIG. 135B, the opening 202 is further formed in the -Z direction, and the opening 202 is spatially connected to the second electrode 14 to form the contact hole CH. In this example, while forming the contact hole CH, the protective layer and the resist 201 around the opening 202 are thinned. In this process, a part of the etching stop layer 203 is removed. Then, the remaining unnecessary resist 201 and the etching stop layer 203 are removed. In this example, too, the remaining film of the resist 201 can be thinned because a part of the resist 201 is also removed when the contact hole CH is formed. This makes it possible to reduce the amount of ashing of the resist 201.

 レジスト201を除去した後、図135Cに示すように、補助電極27及び第2保護層21を形成する。これにより、補助電極27と第2電極14とが接続される。図示はしていないが、屈折層22、カラーフィルタ42等を形成することで、図131に示す表示装置10Qが完成する。本例によれば、エッチング停止層203を設けることで、コンタクトホールCHの高さ方向のばらつきを抑制できる。 After removing the resist 201, the auxiliary electrode 27 and the second protective layer 21 are formed as shown in FIG. 135C. This connects the auxiliary electrode 27 and the second electrode 14. Although not shown, the display device 10Q shown in FIG. 131 is completed by forming the refractive layer 22, the color filter 42, etc. According to this example, the provision of the etching stop layer 203 can suppress variation in the height direction of the contact hole CH.

 次に、表示装置10Qの製造方法の第3の例について説明する。図136A及び図136Bに示すように、第1の例と同様にして発光素子20、第1保護層18、及び分離保護層19を形成した後、レジスト201を配置する。 Next, a third example of a method for manufacturing the display device 10Q will be described. As shown in Figures 136A and 136B, after the light emitting element 20, the first protective layer 18, and the separation protective layer 19 are formed in the same manner as in the first example, a resist 201 is disposed.

 次に、図137Aに示すように、本例では、開口部202を第2電極14まで達するように形成することで先にコンタクトホールCHを形成する。コンタクトホールCHを形成した後に、図137Bに示すように、開口部202(本例ではコンタクトホールCH)の周囲とレジスト201を薄膜化する。 Next, as shown in FIG. 137A, in this example, the opening 202 is formed so as to reach the second electrode 14, thereby forming the contact hole CH first. After the contact hole CH is formed, as shown in FIG. 137B, the periphery of the opening 202 (contact hole CH in this example) and the resist 201 are thinned.

 そして、レジスト201を除去した後、図137Cに示すように、補助電極27及び第2保護層21を形成する。これにより、補助電極27と第2電極14とが接続される。図示はしていないが、屈折層22、カラーフィルタ42等を形成することで、図131に示す表示装置10Qが完成する。 Then, after removing the resist 201, the auxiliary electrode 27 and the second protective layer 21 are formed as shown in FIG. 137C. This connects the auxiliary electrode 27 and the second electrode 14. Although not shown, the refraction layer 22, the color filter 42, etc. are formed to complete the display device 10Q shown in FIG. 131.

 次に、本実施形態の変形例に係る表示装置の製造方法の第4の例について説明する。本例に係る表示装置の断面構成例は、表示装置10Qと若干、異なる。この点については後述する。 Next, a fourth example of a manufacturing method for a display device according to a modified example of this embodiment will be described. The cross-sectional configuration of the display device according to this example is slightly different from that of display device 10Q. This will be described later.

 図138Aに示すように、第1の例と同様にして発光素子20、第1保護層18、及び分離保護層19を形成する。次に、図138Bに示すように、分離保護層19の第1の面上に屈折層22を形成した後、レジスト201を配置する。 As shown in FIG. 138A, the light emitting element 20, the first protective layer 18, and the separation protective layer 19 are formed in the same manner as in the first example. Next, as shown in FIG. 138B, the refraction layer 22 is formed on the first surface of the separation protective layer 19, and then the resist 201 is disposed.

 次に、図139Aに示すようにエッチング処理等によって、第1保護層18及び分離保護層19の一部を除去して開口部202を形成する。開口部202の形成の際に、レジスト201を除去する。 Next, as shown in FIG. 139A, a portion of the first protective layer 18 and the separation protective layer 19 is removed by etching or the like to form an opening 202. When the opening 202 is formed, the resist 201 is removed.

 次に、図139Bに示すように、開口部202をさらに-Z方向に形成して、開口部202を第2電極14と空間的に接続することで、コンタクトホールCHを形成する。本例では、コンタクトホールCHを形成しつつ、開口部202の周囲の保護層とレジスト201とを薄膜化する。この工程でレジスト201は全て除去される。 Next, as shown in FIG. 139B, an opening 202 is further formed in the -Z direction, and the opening 202 is spatially connected to the second electrode 14 to form a contact hole CH. In this example, while the contact hole CH is being formed, the protective layer and resist 201 around the opening 202 are thinned. In this process, all of the resist 201 is removed.

 次に、図139Cに示すように、補助電極27及び第2保護層21を形成する。これにより、補助電極27と第2電極14とが接続される。この後、溝部23等に対して屈折層22を形成した後、カラーフィルタ42やレンズ45を形成する。これにより、図140に示すように、本実施形態の変形例に係る表示装置が完成する。変形例に係る表示装置は、画素間領域ARBにおける屈折層22に補助電極27及び第2保護層21が積層された断面構成例を有する。 Next, as shown in FIG. 139C, the auxiliary electrode 27 and the second protective layer 21 are formed. This connects the auxiliary electrode 27 and the second electrode 14. Thereafter, the refractive layer 22 is formed in the groove portion 23 and the like, and then the color filter 42 and the lens 45 are formed. This completes the display device according to the modified example of this embodiment, as shown in FIG. 140. The display device according to the modified example has an example cross-sectional configuration in which the auxiliary electrode 27 and the second protective layer 21 are stacked on the refractive layer 22 in the inter-pixel region ARB.

<第14の実施形態>
 次に、第14の実施形態について説明する。図141は、第14の実施形態に係る表示装置(表示装置10R)の断面構成例を示す部分断面図である。表示装置10Rは、層間絶縁層11Bの第1の面に発光素子20を有する。本実施形態では、第1電極12がサブ画素毎に分離されており、有機層13及び第2電極14がサブ画素で共通の構成となっている。第2電極14の第1の面上に保護層210が一様に形成されている。保護層210の材料としては、第1保護層18や分離保護層19の材料と同じ材料を例示することができる。保護層210の第1の面上にカラーフィルタ42が形成されている。カラーフィルタ42間に、遮光膜としてのブラックマトリクスBMが設けられている。
<Fourteenth embodiment>
Next, a fourteenth embodiment will be described. FIG. 141 is a partial cross-sectional view showing a cross-sectional configuration example of a display device (display device 10R) according to the fourteenth embodiment. The display device 10R has a light-emitting element 20 on a first surface of an interlayer insulating layer 11B. In this embodiment, the first electrode 12 is separated for each subpixel, and the organic layer 13 and the second electrode 14 are configured to be common to the subpixels. A protective layer 210 is uniformly formed on the first surface of the second electrode 14. Examples of the material of the protective layer 210 include the same material as the material of the first protective layer 18 and the separated protective layer 19. A color filter 42 is formed on the first surface of the protective layer 210. A black matrix BM is provided between the color filters 42 as a light-shielding film.

 ブラックマトリクスBMは、発光素子20R、20G、20B並びにその間の配線において反射された外光を吸収(遮光)して色純度を改善するものである。ブラックマトリクスBMは、例えば黒色の着色剤を混入した光学濃度が1以上の黒色の樹脂膜、または薄膜の干渉を利用した薄膜フィルタにより構成されている。このうち黒色の樹脂膜により構成するようにすれば、安価で容易に形成することができるので好ましい。薄膜フィルタは、例えば、金属,金属窒化物あるいは金属酸化物よりなる薄膜を1層以上積層し、薄膜の干渉を利用して光を減衰させるものである。薄膜フィルタとしては、具体的には、クロムと酸化クロム(III)(Cr2O3)とを交互に積層したものが挙げられる。 The black matrix BM improves color purity by absorbing (blocking) external light reflected by the light emitting elements 20R, 20G, and 20B and the wiring between them. The black matrix BM is made of, for example, a black resin film with an optical density of 1 or more that contains a black colorant, or a thin film filter that uses thin film interference. Of these, the black resin film is preferable because it is inexpensive and easy to form. The thin film filter is, for example, made of one or more layers of thin films made of metal, metal nitride, or metal oxide, and attenuates light by utilizing thin film interference. A specific example of a thin film filter is one in which chromium and chromium (III) oxide (Cr2O3) are alternately stacked.

 なお、表示装置10Rの断面構成例は、図141に示す構成例に限定されることはない。表示装置10Rが、表示装置10Aのように溝部23を有していてもよい。また、有機層13や第2電極14がサブ画素間で分離されていてもよいし、表示装置10Rが表示装置10Bのように補助電極27等を有していてもよい。 The cross-sectional configuration example of the display device 10R is not limited to the configuration example shown in FIG. 141. The display device 10R may have a groove portion 23 like the display device 10A. In addition, the organic layer 13 and the second electrode 14 may be separated between the subpixels, and the display device 10R may have an auxiliary electrode 27, etc. like the display device 10B.

 ここで、本実施形態で考慮すべき問題について説明する。アプリケーションの適用例によっては、表示装置10Rの光の出射方向に対して、光学部材が配置される場合がある。例えば、図142に模式的に示すように、表示装置10Rの光の出射方向に対して導光板211が配置される場合がある。導光板211は、色毎に対応した導光板として、赤色に対応する導光板211R、緑色に対応する導光板211G、青色に対応する導光板211Bを有する、所謂、3板方式の導光板である。この場合、表示装置10Rの主光線の方向を各色で分けることで導光効率が上がる場合がある。 Here, problems to be considered in this embodiment will be described. Depending on the application example, optical members may be arranged in the direction of light emission of the display device 10R. For example, as shown typically in FIG. 142, a light guide plate 211 may be arranged in the direction of light emission of the display device 10R. The light guide plate 211 is a so-called three-plate type light guide plate having light guide plate 211R corresponding to red, light guide plate 211G corresponding to green, and light guide plate 211B corresponding to blue as light guide plates corresponding to each color. In this case, the light guide efficiency may be improved by dividing the direction of the main light rays of the display device 10R by color.

 また、図143に模式的に示すように、表示装置10Rの光の出射方向に対して回折格子212が配置される場合がある。回折格子212は、例えば、屈折率が大きい高屈折部材212Aと、高屈折部材212Aよりも屈折率が小さい低屈折部材212Bとを積層したものである。ここで、図144Aに示すように、回折格子212の周期長をd(nm)とし、光が高屈折部材212Aと低屈折部材212Bとの境界で屈折して、さらに屈折して空気中に出射する場合を考える。また、空気への放射角度をθairとする。 Also, as shown in FIG. 143, a diffraction grating 212 may be arranged in the direction of emission of light from the display device 10R. The diffraction grating 212 is, for example, a laminate of a high refractive index member 212A with a large refractive index and a low refractive index member 212B with a smaller refractive index than the high refractive index member 212A. Here, as shown in FIG. 144A, consider a case in which the periodic length of the diffraction grating 212 is d (nm), and light is refracted at the boundary between the high refractive index member 212A and the low refractive index member 212B, and is further refracted before being emitted into the air. The radiation angle into the air is also denoted as θair.

 この場合、図144Bに示すように、放射角度θairは、光の波長依存性を有する。例えば、周期長dが800nmの場合、青色の光(波長が例えば450nm)の放射角度θairが最も小さく、次いで、緑色の光(波長が例えば500nm)の放射角度θairが大きく、赤色の光(波長が例えば600nm)の放射角度θairが最も大きくなる。係る放射角度θairの波長依存性は、色収差の要因となり、回折格子212を介して視た場合に色の滲み等として表れ画質の低下を招く。すなわち、この放射角度θairの波長依存性を表示装置10R側で補正できることが好ましい。以上の点を踏まえつつ、本実施形態について詳細に説明する。 In this case, as shown in FIG. 144B, the radiation angle θair has a dependency on the wavelength of light. For example, when the periodic length d is 800 nm, the radiation angle θair of blue light (wavelength, for example, 450 nm) is the smallest, followed by the radiation angle θair of green light (wavelength, for example, 500 nm), and the radiation angle θair of red light (wavelength, for example, 600 nm). Such wavelength dependency of the radiation angle θair causes chromatic aberration, which appears as color bleeding when viewed through the diffraction grating 212, leading to a decrease in image quality. In other words, it is preferable that the wavelength dependency of the radiation angle θair can be corrected on the display device 10R side. Taking the above points into consideration, the present embodiment will be described in detail.

 本実施形態では、発光素子20Bが第1発光波長λ1を有する第1画素の一例に対応する。また、発光素子20Gが第2発光波長λ2を有する第2画素の一例に対応する。また、発光素子20Rが第3発光波長λ3を有する第3画素の一例に対応する。第1発光波長λ1、第2発光波長λ2、及び、第3発光波長λ3は、λ1<λ2<λ3の関係を有する。 In this embodiment, the light-emitting element 20B corresponds to an example of a first pixel having a first emission wavelength λ1. The light-emitting element 20G corresponds to an example of a second pixel having a second emission wavelength λ2. The light-emitting element 20R corresponds to an example of a third pixel having a third emission wavelength λ3. The first emission wavelength λ1, the second emission wavelength λ2, and the third emission wavelength λ3 have a relationship of λ1<λ2<λ3.

 発光素子20B、発光素子20G、及び、発光素子20Rのそれぞれは電極部を有する。本実施形態では、第1電極12が電極部の一例に対応している。但し、電極部は、第2電極14であってもよい。発光素子20Bの光の出射方向に青色フィルタ42Bが設けられている。発光素子20Gの光の出射方向に緑色フィルタ42Gが設けられている。発光素子20Rの光の出射方向に赤色フィルタ42Rが設けられている。 Each of the light-emitting elements 20B, 20G, and 20R has an electrode portion. In this embodiment, the first electrode 12 corresponds to an example of the electrode portion. However, the electrode portion may be the second electrode 14. A blue filter 42B is provided in the light emission direction of the light-emitting element 20B. A green filter 42G is provided in the light emission direction of the light-emitting element 20G. A red filter 42R is provided in the light emission direction of the light-emitting element 20R.

 図145に示すようにして、第1角度θB、第2角度θG、及び、第3角度θRが設定される。例えば、サブ画素101Bが有する第1電極12の重心をポイントCGB1とする。サブ画素101Bが有する第1電極12の重心とは、第1電極12を平面視した場合の重心(開口の重心)である。また、青色フィルタ42BにおいてブラックマトリクスBMが被っていない青色フィルタ42Bの領域の重心をポイントCGB2とする。ポイントCGB1から青色フィルタ42Bに対して法線NOBが設定される。ポイントCGB1及びポイントCGB2を結んだ線と、法線NOB(青色フィルタ42Bに対する法線方向)との成す角度が第1角度θBに対応している。 As shown in FIG. 145, the first angle θB, the second angle θG, and the third angle θR are set. For example, the center of gravity of the first electrode 12 of the subpixel 101B is defined as point CGB1. The center of gravity of the first electrode 12 of the subpixel 101B is the center of gravity (center of gravity of the opening) when the first electrode 12 is viewed in a plan view. The center of gravity of the area of the blue filter 42B that is not covered by the black matrix BM is defined as point CGB2. A normal NOB is set from point CGB1 to the blue filter 42B. The angle between the line connecting points CGB1 and CGB2 and the normal NOB (the normal direction to the blue filter 42B) corresponds to the first angle θB.

 また、例えば、サブ画素101Gが有する第1電極12の重心をポイントCGG1とする。サブ画素101Gが有する第1電極12の重心とは、第1電極12を平面視した場合の重心(開口の重心)である。また、緑色フィルタ42GにおいてブラックマトリクスBMが被っていない緑色フィルタ42Gの領域の重心をポイントCGG2とする。ポイントCGB1から緑色フィルタ42Gに対する法線NOGが設定される。ポイントCGG1及びポイントCGG2を結んだ線と、法線NOG(緑色フィルタ42Gに対する法線方向)との成す角度が第2角度θGに対応している。 Furthermore, for example, the center of gravity of the first electrode 12 of the subpixel 101G is defined as point CGG1. The center of gravity of the first electrode 12 of the subpixel 101G is the center of gravity (center of gravity of the opening) when the first electrode 12 is viewed in a planar view. Furthermore, the center of gravity of the area of the green filter 42G that is not covered by the black matrix BM is defined as point CGG2. A normal NOG to the green filter 42G is set from point CGB1. The angle between the line connecting points CGG1 and CGG2 and the normal NOG (the normal direction to the green filter 42G) corresponds to the second angle θG.

 また、例えば、サブ画素101Rが有する第1電極12の重心をポイントCGR1とする。サブ画素101Rが有する第1電極12の重心とは、第1電極12を平面視した場合の重心(開口の重心)である。また、赤色フィルタ42RにおいてブラックマトリクスBMが被っていない赤色フィルタ42Rの領域の重心をポイントCGR2とする。ポイントCGR1から赤色フィルタ42Rに対する法線NORが設定される。ポイントCGR1及びポイントCGR2を結んだ線と、法線NOR(赤色フィルタ42Rに対する法線方向)との成す角度が第3角度θRに対応している。 Furthermore, for example, the center of gravity of the first electrode 12 of the subpixel 101R is defined as point CGR1. The center of gravity of the first electrode 12 of the subpixel 101R is the center of gravity (center of gravity of the opening) when the first electrode 12 is viewed in a planar view. Furthermore, the center of gravity of the area of the red filter 42R that is not covered by the black matrix BM is defined as point CGR2. A normal NOR to the red filter 42R is set from point CGR1. The angle between the line connecting points CGR1 and CGR2 and the normal NOR (the normal direction to the red filter 42R) corresponds to the third angle θR.

 本実施形態では、第3角度θR>第2角度θG>第1角度θB、又は、第1角度θB>第2角度θG>第3角度θR、が成り立つ。 In this embodiment, the third angle θR > the second angle θG > the first angle θB, or the first angle θB > the second angle θG > the third angle θR, holds true.

 図146を参照して、第1角度θB、第2角度θG、及び、第3角度θRの相互関係の一例について説明する。図146は、表示装置10Rの一部(3個のサブ画素からなる1画素)を平面視した図である。平面視した場合に、ポイントCGB1、ポイントCGG1、及び、ポイントCGR1のそれぞれから図面に向かって手前方向に延在する法線NOB、NOG、及び、NORが設定される。また、ポイントCGB2はポイントCGB1よりも図面に向かって手前方向に位置している。このことは、ポイントCGG2及びポイントCGR2についても同様である。 With reference to Figure 146, an example of the relationship between the first angle θB, the second angle θG, and the third angle θR will be described. Figure 146 is a plan view of a portion of display device 10R (one pixel consisting of three sub-pixels). When viewed in plan, normal lines NOB, NOG, and NOR are set that extend toward the viewer on the drawing from points CGB1, CGG1, and CGR1, respectively. Point CGB2 is also located closer to the viewer on the drawing than point CGB1. The same is true for points CGG2 and CGR2.

 図146では、各色のカラーフィルタに対して、枠状の点線が付されている。係る点線は、各サブ画素が有する第1電極12を平面視した領域に対応している。例えば、青色フィルタ42Bの点線で示された領域の重心がポイントCGB1に対応している。緑色フィルタ42Gの点線で示された領域の重心がポイントCGG1に対応している。赤色フィルタ42Rの点線で示された領域の重心がポイントCGR1に対応している。ポイントCGB1、ポイントCGG1、及び、ポイントCGR1は、それぞれ白丸で示されている。 In FIG. 146, a frame-shaped dotted line is drawn around the color filters of each color. The dotted lines correspond to the areas of the first electrodes 12 of each subpixel when viewed in a plan view. For example, the center of gravity of the area indicated by the dotted line in the blue filter 42B corresponds to point CGB1. The center of gravity of the area indicated by the dotted line in the green filter 42G corresponds to point CGG1. The center of gravity of the area indicated by the dotted line in the red filter 42R corresponds to point CGR1. Points CGB1, CGG1, and CGR1 are each indicated by a white circle.

 また、図146では、各色のカラーフィルタに対して、ドットが付されている。ドットが付された領域は、ブラックマトリクスBMが配置される領域に対応している。反対に、ドットが付されていない領域が、ブラックマトリクスBMが配置されていないブラックマトリクス非配置領域となっている。例えば、青色フィルタ42Bは、ブラックマトリクス非配置領域NABを有する。ブラックマトリクス非配置領域NABの重心が上述したポイントCGB2に対応している。緑色フィルタ42Gは、ブラックマトリクス非配置領域NAGを有する。ブラックマトリクス非配置領域NAGの重心が上述したポイントCGG2に対応している。赤色フィルタ42Rは、ブラックマトリクス非配置領域NARを有する。ブラックマトリクス非配置領域NARの重心が上述したポイントCGR2に対応している。ポイントCGB2、ポイントCGG2、及び、ポイントCGR2は、それぞれ黒丸で示されている。 In addition, in FIG. 146, dots are applied to the color filters of each color. The areas with dots correspond to the areas where the black matrix BM is arranged. Conversely, the areas without dots are black matrix non-arrangement areas where the black matrix BM is not arranged. For example, the blue filter 42B has a black matrix non-arrangement area NAB. The center of gravity of the black matrix non-arrangement area NAB corresponds to the above-mentioned point CGB2. The green filter 42G has a black matrix non-arrangement area NAG. The center of gravity of the black matrix non-arrangement area NAG corresponds to the above-mentioned point CGG2. The red filter 42R has a black matrix non-arrangement area NAR. The center of gravity of the black matrix non-arrangement area NAR corresponds to the above-mentioned point CGR2. The points CGB2, CGG2, and CGR2 are each indicated by a black circle.

 また、1画素を平面視した場合に、外周方向に向かう方向を+方向とし、反対側を-方向とする。すなわち、第1角度θB、第2角度θG、及び、第3角度θRは、正の値だけでなく、負の値も取り得る。なお、以上のことは、後述する図147乃至図152についでもあてはまる。 Furthermore, when one pixel is viewed in a plan view, the direction toward the outer periphery is the + direction, and the opposite direction is the - direction. In other words, the first angle θB, the second angle θG, and the third angle θR can take not only positive values, but also negative values. The above also applies to Figures 147 to 152, which will be described later.

 図146に示す例では、ポイントCGB1に対してポイントCGB2が+方向に変位しており、ポイントCGG1に対してポイントCGG2が+方向に変位しており、ポイントCGR1に対してポイントCGR2が+方向にシフトしていることから、第1角度θB、第2角度θG、及び、第3角度θRは正の値となる。また、シフト量(白丸と黒丸との最短距離)の関係から、第1角度θBが最も大きく、次いで第2角度θGが大きく、第3角度θRが最も小さくなる。すなわち、上述した関係を満たすことになる。 In the example shown in Figure 146, point CGB2 is displaced in the + direction relative to point CGB1, point CGG2 is displaced in the + direction relative to point CGG1, and point CGR2 is shifted in the + direction relative to point CGR1, so the first angle θB, second angle θG, and third angle θR are positive values. Also, due to the relationship of the shift amount (shortest distance between the white circle and the black circle), the first angle θB is the largest, followed by the second angle θG, and the third angle θR is the smallest. In other words, the above-mentioned relationship is satisfied.

 本実施形態によれは、サブ画素の発光位置(例えば、第1電極12の重心で規定される箇所)に対して、ブラックマトリクスBMの開口をずらす、すなわち、ブラックマトリクス非配置領域の重心をずらすことでサブ画素ごとに主光線制御が可能となる。これにより、表示装置10Rで発光した光の出射方向に導光板が配置される場合に、表示装置10R側で各色の光の主光線制御が可能となるので、導光板による導光効率を向上させることができる。 In this embodiment, the opening of the black matrix BM is shifted relative to the light-emitting position of the subpixel (for example, the location defined by the center of gravity of the first electrode 12), i.e., the center of gravity of the black matrix-free area is shifted, thereby making it possible to control the chief ray for each subpixel. As a result, when a light guide plate is placed in the emission direction of light emitted by the display device 10R, it becomes possible to control the chief ray of light of each color on the display device 10R side, thereby improving the light guide efficiency by the light guide plate.

 また、表示装置10Rに対して回折格子が配置される場合には、第1角度θBを最も大きくし、第2角度θGを次に大きくし、第3角度θRを最も小さくすることで、上述した回折格子212の波長依存性をパネル側で補正できる。なお、表示装置10Rに対して配置される光学部材によっては、第3角度θRを最も大きく、第2角度θGが次に大きく、第1角度θBが最も小さいことが好ましい場合もあるので、シフト量は、光学部材に応じて適切に設定される。但し、何れの場合も第2角度θGが大小関係における中間となるように、シフト量が設定される。 In addition, when a diffraction grating is arranged for the display device 10R, the wavelength dependency of the diffraction grating 212 described above can be corrected on the panel side by making the first angle θB the largest, the second angle θG the next largest, and the third angle θR the smallest. Note that, depending on the optical member arranged for the display device 10R, it may be preferable for the third angle θR to be the largest, the second angle θG the next largest, and the first angle θB the smallest, so the shift amount is set appropriately depending on the optical member. However, in any case, the shift amount is set so that the second angle θG is intermediate in the magnitude relationship.

 図147を参照して、第1角度θB、第2角度θG、及び、第3角度θRの相互関係の別の例について説明する。図147に示す例では、図146に示す例に比べて、ブラックマトリクス非配置領域NARが下側にずれるように、ブラックマトリクスBMが設けられている。これによりポイントCGR1に対してポイントCGR2が-方向に変位している。これにより、第3角度θRは負の値となる。ブラックマトリクス非配置領域NAB、NAGについては、図146に示す例と同じである。以上の関係から、本例でも、第1角度θBが最も大きく、次いで第2角度θGが大きく、第3角度θRが最も小さくなる。すなわち、上述した関係を満たすことになる。 With reference to Figure 147, another example of the interrelationship between the first angle θB, the second angle θG, and the third angle θR will be described. In the example shown in Figure 147, the black matrix BM is provided such that the black matrix non-application area NAR is shifted downward compared to the example shown in Figure 146. As a result, point CGR2 is displaced in the - direction relative to point CGR1. As a result, the third angle θR becomes a negative value. The black matrix non-application areas NAB and NAG are the same as in the example shown in Figure 146. Due to the above relationships, in this example as well, the first angle θB is the largest, the second angle θG is the next largest, and the third angle θR is the smallest. In other words, the above-mentioned relationships are satisfied.

 図148を参照して、第1角度θB、第2角度θG、及び、第3角度θRの相互関係の別の例について説明する。図148に示す例では、図146に示す例に比べて、ブラックマトリクス非配置領域NABが大きくなるように、ブラックマトリクスBMが設けられている。これにより、ポイントCGB1とCGB2との間のシフト量が小さくなる。また、ブラックマトリクス非配置領域NARが上側にずれるように、ブラックマトリクスBMが設けられている。これにより、ポイントCGR1とCGR2との間のシフト量が、他のサブ画素におけるシフト量に比べて大きくなる。以上の関係から、本例では、第3角度θRが最も大きく、次いで第2角度θGが大きく、第1角度θBが最も小さくなる。すなわち、上述した関係を満たすことになる。 With reference to FIG. 148, another example of the relationship between the first angle θB, the second angle θG, and the third angle θR will be described. In the example shown in FIG. 148, the black matrix BM is provided so that the black matrix non-application area NAB is larger than the example shown in FIG. 146. This reduces the shift amount between points CGB1 and CGB2. In addition, the black matrix BM is provided so that the black matrix non-application area NAR is shifted upward. This makes the shift amount between points CGR1 and CGR2 larger than the shift amounts in other sub-pixels. From the above relationship, in this example, the third angle θR is the largest, the second angle θG is the next largest, and the first angle θB is the smallest. In other words, the above-mentioned relationship is satisfied.

 図149を参照して、第1角度θB、第2角度θG、及び、第3角度θRの相互関係の別の例について説明する。図149に示すように、各サブ画素におけるブラックマトリクスBMは、必ずしも各カラーフィルタ42の周縁(例えば、4辺)に配置されている必要は無い。図149に示す例は、平面視した場合に、各サブ画素の下側にブラックマトリクスBMが配置される例である。本例では、サブ画素101Bにおけるシフト量が最も大きく、次にサブ画素101Gにおけるシフト量が大きく、次にサブ画素101Rにおけるシフト量が最も小さい。従って、第1角度θBが最も大きく、次いで第2角度θGが大きく、第3角度θRが最も小さくなる。なお、ブラックマトリクスBMの領域がないサブ画素があってもよい。 With reference to FIG. 149, another example of the relationship between the first angle θB, the second angle θG, and the third angle θR will be described. As shown in FIG. 149, the black matrix BM in each subpixel does not necessarily need to be arranged on the periphery (e.g., on the four sides) of each color filter 42. The example shown in FIG. 149 is an example in which the black matrix BM is arranged on the lower side of each subpixel when viewed in a plan view. In this example, the shift amount in the subpixel 101B is the largest, the shift amount in the subpixel 101G is the next largest, and the shift amount in the subpixel 101R is the next smallest. Therefore, the first angle θB is the largest, the second angle θG is the next largest, and the third angle θR is the smallest. Note that there may be a subpixel that does not have an area of the black matrix BM.

 図150に示すように、各サブ画素の配列はストライプ配列でもよい。また、図151に示すように、各サブ画素の配列はデルタ配列でもよい。図152に示すように、各サブ画素の配列は一部の画素(例えば2個のサブ画素101B)が接続された配列(新正方配列とも称される)でもよい。何れの配列の場合も上述した関係を満たすようにシフト量が設定される。図150乃至図152の場合には、サブ画素101Bにおけるシフト量が最も大きく、次にサブ画素101Gにおけるシフト量が大きく、サブ画素101Rにおけるシフト量が最も小さい。従って、第1角度θB<第2角度θG<第3角度θRの角度を満たす。なお、図152の画素配列の場合には、2個のサブ画素101Bにおけるシフト量は、略等しくなるように設定される。 As shown in FIG. 150, the arrangement of the sub-pixels may be a stripe arrangement. As shown in FIG. 151, the arrangement of the sub-pixels may be a delta arrangement. As shown in FIG. 152, the arrangement of the sub-pixels may be an arrangement in which some pixels (for example, two sub-pixels 101B) are connected (also called a new square arrangement). In either arrangement, the shift amount is set so as to satisfy the above-mentioned relationship. In the cases of FIG. 150 to FIG. 152, the shift amount in the sub-pixel 101B is the largest, the shift amount in the sub-pixel 101G is the next largest, and the shift amount in the sub-pixel 101R is the smallest. Therefore, the relationship of first angle θB<second angle θG<third angle θR is satisfied. In the case of the pixel arrangement in FIG. 152, the shift amounts in the two sub-pixels 101B are set to be approximately equal.

 図153に示すように、表示装置10Rは、カラーフィルタ42の第1の面上にレンズ45を有していてもよい。また、図154に示すように、レンズ45の上方にカラーフィルタ42及びブラックマトリクスBMが配置されていてもよい。この場合、レンズ45とカラーフィルタ42との間に、平坦化層215が設けられていてもよい。平坦化層215は、レンズ45を保護する保護層として機能してもよい。また、図155に示すように、カラーフィルタ42の上側にブラックマトリクスBMが配置されてもよい。また、上述した図142及び図143に示すように、表示装置10Rの光の出射方向に導光板211や回折格子212が配置されてもよい。 As shown in FIG. 153, the display device 10R may have a lens 45 on the first surface of the color filter 42. Also, as shown in FIG. 154, the color filter 42 and the black matrix BM may be arranged above the lens 45. In this case, a planarization layer 215 may be provided between the lens 45 and the color filter 42. The planarization layer 215 may function as a protective layer that protects the lens 45. Also, as shown in FIG. 155, the black matrix BM may be arranged above the color filter 42. Also, as shown in the above-mentioned FIG. 142 and FIG. 143, a light guide plate 211 and a diffraction grating 212 may be arranged in the light emission direction of the display device 10R.

<実施形態に適用される共振器構造の例>
 上述した本開示に係る表示装置に用いられる画素は、発光素子で発生した光を共振させる共振器構造を備えている構成とすることができる。以下、図を参照して、共振器構造について説明する。
<Examples of resonator structures applied to embodiments>
The pixels used in the display device according to the present disclosure described above may be configured to include a resonator structure that resonates light generated by a light-emitting element. The resonator structure will be described below with reference to the drawings.

(共振器構造:第1例)
 図156Aは、共振器構造の第1例を説明するための模式的な断面図である。以下の説明において、サブ画素101R、101G、101Bにそれぞれに対応して設けられた発光素子20を、発光素子20、20、20ということがある。また、有機層13のうちサブ画素101R、101G、101Bにそれぞれに対応する部分を、有機層13、13A、13Aということがある。
(Resonator structure: first example)
156A is a schematic cross-sectional view for explaining a first example of the resonator structure. In the following description, the light-emitting elements 20 provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively, may be referred to as light-emitting elements 20R , 20G , and 20B . Also, the portions of the organic layer 13 corresponding to the sub-pixels 101R, 101G, and 101B, respectively, may be referred to as organic layers 13R , 13AG , and 13AB .

 第1例において、第1電極12は各発光素子20において共通の膜厚で形成されている。第2電極14においても同様である。 In the first example, the first electrode 12 is formed with a common film thickness in each light-emitting element 20. The same is true for the second electrode 14.

 発光素子20の第1電極12の下に、光学調整層71を挟んだ状態で、反射板70が配されている。反射板70と第2電極14との間に有機層13が発生する光を共振させる共振器構造が形成される。以下の説明において、サブ画素101R、101G、101Bにそれぞれに対応して設けられた光学調整層71を、光学調整層71、71、71ということがある。 A reflector 70 is disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched therebetween. A resonator structure that resonates light generated by the organic layer 13 is formed between the reflector 70 and the second electrode 14. In the following description, the optical adjustment layers 71 provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively, may be referred to as optical adjustment layers 71R , 71G , and 71B .

 反射板70は各発光素子20において共通の膜厚で形成されている。光学調整層71の膜厚は、画素が表示すべき色に応じて異なっている。光学調整層71、71、71が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The reflector 70 is formed to have a common thickness for each light-emitting element 20. The thickness of the optical adjustment layer 71 varies depending on the color to be displayed by the pixel. By having the optical adjustment layers 71R , 71G , and 71B have different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.

 図に示す例では、発光素子20、20、20における反射板70の上面は揃うように配置されている。上述したように、光学調整層71の膜厚は、画素が表示すべき色に応じて異なっているので、第2電極14の上面の位置は、発光素子20、20、20の種類に応じて相違する。 In the example shown in the figure, the upper surfaces of the reflectors 70 in the light-emitting elements 20R , 20G , and 20B are arranged to be aligned. As described above, the film thickness of the optical adjustment layer 71 differs depending on the color to be displayed by the pixel, and therefore the position of the upper surface of the second electrode 14 differs depending on the type of the light-emitting element 20R , 20G , and 20B .

 反射板70は、例えば、アルミニウム(Al)、銀(Ag)、銅(Cu)等の金属、あるいは、これらを主成分とする合金を用いて形成することができる。 The reflector 70 can be formed using metals such as aluminum (Al), silver (Ag), copper (Cu), etc., or alloys containing these as main components.

 光学調整層71は、シリコン窒化物(SiN)、シリコン酸化物(SiO)、シリコン酸窒化物(SiO)などの無機絶縁材料や、アクリル系樹脂やポリイミド系樹脂などといった有機樹脂材料を用いてから構成することができる。光学調整層71は単層でも良いし、これら複数の材料の積層膜であってもよい。また、発光素子20の種類に応じて積層数が異なっても良い。 The optical adjustment layer 71 can be made of inorganic insulating materials such as silicon nitride (SiN x ), silicon oxide (SiO x ), silicon oxynitride (SiO x N y ), or organic resin materials such as acrylic resins and polyimide resins. The optical adjustment layer 71 may be a single layer or a laminated film of a plurality of these materials. The number of layers may vary depending on the type of the light-emitting element 20.

 第1電極12は、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)などの透明導電材料を用いて形成することができる。 The first electrode 12 can be formed using a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), or zinc oxide (ZnO).

 第2電極14は、半透過反射膜として機能する必要がある。第2電極14は、マグネシウム(Mg)や銀(Ag)、またはこれらを主成分とするマグネシウム銀合金(MgAg)、さらには、アルカリ金属やアルカリ土類金属を含んだ合金などを用いて形成することができる。 The second electrode 14 must function as a semi-transmissive reflective film. The second electrode 14 can be formed using magnesium (Mg) or silver (Ag), or a magnesium-silver alloy (MgAg) that contains these as its main components, or an alloy that contains an alkali metal or an alkaline earth metal.

(共振器構造:第2例)
 図156Bは、共振器構造の第2例を説明するための模式的な断面図である。
(Resonator structure: second example)
FIG. 156B is a schematic cross-sectional view for explaining a second example of the resonator structure.

 第2例においても、第1電極12や第2電極14は各発光素子20において共通の膜厚で形成されている。 In the second example, the first electrode 12 and the second electrode 14 are also formed with a common film thickness in each light-emitting element 20.

 そして、第2例においても、発光素子20の第1電極12の下に、光学調整層71を挟んだ状態で、反射板70が配される。反射板70と第2電極14との間に有機層13が発生する光を共振させる共振器構造が形成される。第1例と同様に、反射板70は各発光素子20において共通の膜厚で形成されており、光学調整層71の膜厚は、画素が表示すべき色に応じて異なっている。 In the second example, a reflector 70 is also disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched between them. A resonator structure that resonates the light generated by the organic layer 13 is formed between the reflector 70 and the second electrode 14. As in the first example, the reflector 70 is formed with a common thickness for each light-emitting element 20, and the thickness of the optical adjustment layer 71 differs depending on the color that the pixel is to display.

 図156Aに示す第1例においては、発光素子20、20、20における反射板70の上面は揃うように配置され、第2電極14の上面の位置は、発光素子20、20、20の種類に応じて相違していた。 In the first example shown in FIG. 156A, the upper surfaces of the reflectors 70 in the light-emitting elements 20R , 20G , and 20B are arranged so as to be aligned, and the position of the upper surface of the second electrode 14 differs depending on the type of the light-emitting element 20R , 20G , and 20B .

 これに対し、図156Bに示す第2例において、第2電極14の上面は、発光素子20、20、20で揃うように配置されている。第2電極14の上面を揃えるために、発光素子20、20、20において反射板70の上面は、発光素子20、20、20の種類に応じて異なるように配置されている。このため、反射板70の下面(換言すれば、図に符号73に示す下地73の面)は、発光素子20の種類に応じた階段形状となる。 156B, the upper surfaces of the second electrodes 14 are arranged to be aligned in the light-emitting elements 20R , 20G , and 20B . In order to align the upper surfaces of the second electrodes 14, the upper surfaces of the reflectors 70 in the light-emitting elements 20R , 20G , and 20B are arranged to be different depending on the type of the light-emitting element 20R , 20G , and 20B . For this reason, the lower surface of the reflector 70 (in other words, the surface of the base 73 indicated by reference numeral 73 in the figure) has a stepped shape depending on the type of the light-emitting element 20.

 反射板70、光学調整層71、第1電極12及び第2電極14を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflector 70, the optical adjustment layer 71, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.

(共振器構造:第3例)
 図157Aは、共振器構造の第3例を説明するための模式的な断面図である。以下の説明において、サブ画素101R、101G、101Bにそれぞれに対応して設けられた反射板70を、反射板70、70、70ということがある。
(Resonator structure: third example)
157A is a schematic cross-sectional view for explaining a third example of the resonator structure. In the following description, the reflectors 70 provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively, may be referred to as reflectors 70R , 70G , and 70B .

 第3例においても、第1電極12や第2電極14は各発光素子20において共通の膜厚で形成されている。 In the third example, the first electrode 12 and the second electrode 14 are also formed with a common film thickness in each light-emitting element 20.

 そして、第3例においても、発光素子20の第1電極12の下に、光学調整層71を挟んだ状態で、反射板70が配される。反射板70と第2電極14との間に、有機層13が発生する光を共振させる共振器構造が形成される。第1例や第2例と同様に、光学調整層71の膜厚は、画素が表示すべき色に応じて異なっている。そして、第2例と同様に、第2電極14の上面の位置は、発光素子20、20、20で揃うように配置されている。 Also in the third example, a reflector 70 is disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched therebetween. A resonator structure that resonates the light generated by the organic layer 13 is formed between the reflector 70 and the second electrode 14. As in the first and second examples, the film thickness of the optical adjustment layer 71 varies depending on the color to be displayed by the pixel. As in the second example, the upper surface of the second electrode 14 is disposed so as to be aligned with the light-emitting elements 20R , 20G , and 20B .

 図156Bに示す第2例にあっては、第2電極14の上面を揃えるために、反射板70の下面は、発光素子20の種類に応じた階段形状であった。 In the second example shown in FIG. 156B, the bottom surface of the reflector 70 has a stepped shape according to the type of light-emitting element 20 in order to align the top surface of the second electrode 14.

 これに対し、図157Aに示す第3例において、反射板70の膜厚は、発光素子20、20、20の種類に応じて異なるように設定されている。より具体的には、反射板70、70、70の下面が揃うように膜厚が設定されている。 157A, the film thickness of the reflector 70 is set to be different depending on the types of the light-emitting elements 20R , 20G , and 20B . More specifically, the film thickness is set so that the bottom surfaces of the reflectors 70R , 70G , and 70B are aligned.

 反射板70、光学調整層71、第1電極12及び第2電極14を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflector 70, the optical adjustment layer 71, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.

(共振器構造:第4例)
 図157Bは、共振器構造の第4例を説明するための模式的な断面図である。以下の説明において、サブ画素101R、101G、101Bにそれぞれに対応して設けられた第1電極12を、第1電極12、12、12ということがある。
(Resonator structure: fourth example)
157B is a schematic cross-sectional view for explaining a fourth example of the resonator structure. In the following description, the first electrodes 12 provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively, may be referred to as first electrodes 12R , 12G , and 12B .

 図156Aに示す第1例において、各発光素子20の第1電極12や第2電極14は、共通の膜厚で形成されている。そして、発光素子20の第1電極12の下に、光学調整層71を挟んだ状態で、反射板70が配されている。 In the first example shown in FIG. 156A, the first electrodes 12 and second electrodes 14 of each light-emitting element 20 are formed to a common thickness. A reflector 70 is disposed under the first electrodes 12 of the light-emitting elements 20 with an optical adjustment layer 71 sandwiched therebetween.

 これに対し、図157Bに示す第4例では、光学調整層71を省略し、第1電極12の膜厚を、発光素子20、20、20の種類に応じて異なるように設定した。 In contrast, in a fourth example shown in FIG. 157B, the optical adjustment layer 71 is omitted, and the film thickness of the first electrode 12 is set to differ depending on the type of the light emitting elements 20R , 20G , and 20B .

 反射板70は各発光素子20において共通の膜厚で形成されている。第1電極12の膜厚は、画素が表示すべき色に応じて異なっている。第1電極12、12、12が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The reflector 70 is formed to have a common thickness for each light-emitting element 20. The thickness of the first electrode 12 varies depending on the color to be displayed by the pixel. By having the first electrodes 12R , 12G , and 12B have different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.

 反射板70、光学調整層71、第1電極12及び第2電極14を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflector 70, the optical adjustment layer 71, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.

(共振器構造:第5例)
 図158Aは、共振器構造の第5例を説明するための模式的な断面図である。
(Resonator structure: 5th example)
FIG. 158A is a schematic cross-sectional view for explaining a fifth example of the resonator structure.

 図156Aに示す第1例において、第1電極12や第2電極14は各発光素子20において共通の膜厚で形成されている。そして、発光素子20の第1電極12の下に、光学調整層71を挟んだ状態で、反射板70が配されている。 In the first example shown in FIG. 156A, the first electrode 12 and the second electrode 14 are formed with a common film thickness in each light-emitting element 20. A reflector 70 is disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched therebetween.

 これに対し、図158Aに示す第5例にあっては、光学調整層71を省略し、代わりに、反射板70の表面に酸化膜74を形成した。酸化膜74の膜厚は、発光素子20、20、20の種類に応じて異なるように設定した。以下の説明において、サブ画素101R、101G、101Bにそれぞれに対応して設けられた酸化膜74を、酸化膜74、74、74ということがある。 158A , the optical adjustment layer 71 is omitted, and instead, an oxide film 74 is formed on the surface of the reflector 70. The thickness of the oxide film 74 is set to be different depending on the types of the light-emitting elements 20R , 20G , and 20B . In the following description, the oxide films 74 provided corresponding to the sub-pixels 101R, 101G, and 101B, respectively, may be referred to as oxide films 74R , 74G , and 74B .

 酸化膜74の膜厚は、画素が表示すべき色に応じて異なっている。酸化膜74、74、74が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The thickness of the oxide film 74 varies depending on the color to be displayed by the pixel. By having the oxide films 74R , 74G , and 74B have different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.

 酸化膜74は、反射板70の表面を酸化した膜であって、例えば、アルミニウム酸化物、タンタル酸化物、チタン酸化物、マグネシウム酸化物、ジルコニウム酸化物などから構成される。酸化膜74は、反射板70と第2電極14との間の光路長(光学的距離)を調整するための絶縁膜として機能する。 The oxide film 74 is a film formed by oxidizing the surface of the reflector 70, and is made of, for example, aluminum oxide, tantalum oxide, titanium oxide, magnesium oxide, zirconium oxide, etc. The oxide film 74 functions as an insulating film for adjusting the optical path length (optical distance) between the reflector 70 and the second electrode 14.

 発光素子20、20、20の種類に応じて膜厚が異なる酸化膜74は、例えば、以下のようにして形成することができる。 The oxide film 74 having a thickness that varies depending on the type of the light emitting elements 20 R , 20 G , and 20 B can be formed, for example, as follows.

 先ず、容器の中に電解液を充填し、反射板70が形成された基板を電解液の中に浸漬する。また、反射板70と対向するように電極を配置する。 First, fill the container with an electrolyte, and immerse the substrate on which the reflector 70 is formed into the electrolyte. An electrode is then placed so that it faces the reflector 70.

 そして、電極を基準として正電圧を反射板70に印加して、反射板70を陽極酸化する。陽極酸化による酸化膜の膜厚は、電極に対する電圧値に比例する。そこで、反射板70、70、70のそれぞれに発光素子20の種類に応じた電圧を印加した状態で陽極酸化を行う。これによって、膜厚の異なる酸化膜74を一括して形成することができる。 A positive voltage is then applied to the reflector 70 with the electrode as a reference, and the reflector 70 is anodized. The thickness of the oxide film formed by anodization is proportional to the voltage value to the electrode. Therefore, anodization is performed while a voltage according to the type of light-emitting element 20 is applied to each of the reflectors 70R , 70G , and 70B . This allows oxide films 74 with different thicknesses to be formed all at once.

 反射板70、第1電極12及び第2電極14を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflector 70, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.

(共振器構造:第6例)
 図158Bは、共振器構造の第6例を説明するための模式的な断面図である。
(Resonator structure: 6th example)
FIG. 158B is a schematic cross-sectional view for explaining the sixth example of the resonator structure.

 第6例において、発光素子20は、第1電極12と有機層13と第2電極14とが積層されて構成されている。但し、第6例において、第1電極12は、電極と反射板の機能を兼ねるように形成されている。第1電極12(兼反射板)は、発光素子20、20、20の種類に応じて選択された光学定数を有する材料によって形成されている。第1電極12(兼反射板)による位相シフトが異なることによって、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 In the sixth example, the light-emitting element 20 is configured by laminating a first electrode 12, an organic layer 13, and a second electrode 14. However, in the sixth example, the first electrode 12 is formed so as to function both as an electrode and a reflector. The first electrode 12 (doubles as a reflector) is formed of a material having an optical constant selected according to the type of the light-emitting elements 20R , 20G , and 20B . By varying the phase shift caused by the first electrode 12 (doubles as a reflector), it is possible to set an optical distance that generates an optimal resonance for the wavelength of light according to the color to be displayed.

 第1電極12(兼反射板)は、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)などの単体金属や、これらを主成分とする合金から構成することができる。例えば、発光素子20の第1電極12(兼反射板)を銅(Cu)で形成し、発光素子20の第1電極12(兼反射板)と発光素子20の第1電極12(兼反射板)とをアルミニウムで形成するといった構成とすることができる。 The first electrode 12 (double-reflector) can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), or an alloy mainly composed of these metals. For example, the first electrode 12R (double-reflector) of the light-emitting element 20R can be made of copper (Cu), and the first electrode 12G (double-reflector) of the light-emitting element 20G and the first electrode 12B (double-reflector) of the light-emitting element 20B can be made of aluminum.

 第2電極14を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the second electrode 14 are the same as those described in the first example, so the description will be omitted.

(共振器構造:第7例)
 図159は、共振器構造の第7例を説明するための模式的な断面図である。
(Resonator structure: 7th example)
FIG. 159 is a schematic cross-sectional view for explaining the seventh example of the resonator structure.

 第7例は、基本的には、発光素子20、20については第6例を適用し、発光素子20については第1例を適用したといった構成である。この構成においても、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。 The seventh example is basically a configuration in which the sixth example is applied to the light emitting elements 20 R and 20 G , and the first example is applied to the light emitting element 20 B. Even in this configuration, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.

 発光素子20、20に用いられる第1電極12、12(兼反射板)は、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)などの単体金属や、これらを主成分とする合金から構成することができる。 The first electrodes 12R , 12G (which also serve as reflectors) used in the light-emitting elements 20R , 20G can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), or an alloy containing these as its main component.

 発光素子20に用いられる、反射板70、光学調整層71及び第1電極12を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。 The materials constituting the reflector 70B , the optical adjustment layer 71B and the first electrode 12B used in the light emitting element 20B are similar to those described in the first example, and therefore description thereof will be omitted.

<発光部、レンズ部材、波長選択部のそれぞれの中心を通る法線の関係>
 上述した表示装置は、屈折層22とカラーフィルタ部41との間に、レンズアレイ(不図示)を有していてもよい。表示装置は、カラーフィルタ部41とレンズアレイとの間に平坦化層(不図示)をさらに備えていてもよい。
<Relationship between normals passing through the centers of the light emitting unit, lens member, and wavelength selecting unit>
The above-described display device may have a lens array (not shown) between the refractive layer 22 and the color filter unit 41. The display device may further include a planarization layer (not shown) between the color filter unit 41 and the lens array.

 レンズアレイは、複数のレンズを含む。レンズは、オンチップマイクロレンズであってもよい。複数のレンズは、規定の配置パターンでカラーフィルタ42または平坦化層の第1の面上に2次元配置されている。1つのサブ画素が、1つ又は2つのレンズを含む。レンズは、上方に出射された光を正面方向に集光する。レンズは、例えば、正面方向に突出した凸状湾曲面を有している。凸状湾曲面は、例えば、ドーム状である。ここで、ドーム状は、略放物面状、略半球状及び略半楕円球等の形状を含むものとする。 The lens array includes a plurality of lenses. The lenses may be on-chip microlenses. The lenses are two-dimensionally arranged on the color filter 42 or the first surface of the planarization layer in a specified arrangement pattern. One subpixel includes one or two lenses. The lenses focus the light emitted upward in the front direction. The lenses have, for example, a convex curved surface that protrudes in the front direction. The convex curved surface is, for example, dome-shaped. Here, the dome shape includes shapes such as an approximately parabolic shape, an approximately hemispherical shape, and an approximately hemi-elliptical shape.

 レンズは、例えば、可視光に対して透明な無機材料または高分子樹脂を含む。無機材料は、例えば、酸化シリコン(SiO)を含む。高分子樹脂は、例えば、紫外線硬化樹脂を含む。 The lens includes, for example, an inorganic material or a polymer resin that is transparent to visible light. The inorganic material includes, for example, silicon oxide (SiO x ). The polymer resin includes, for example, an ultraviolet curing resin.

 以下、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明する。ここで、以下に説明する発光部81は、例えば、上述した発光素子20である。また、以下に説明するレンズ部材83は、例えば、上述したレンズアレイのレンズである。また、以下に説明する波長選択部82は、例えば、カラーフィルタ部41である。 Below, the relationship between the normal line LN passing through the center of the light-emitting section, the normal line LN' passing through the center of the lens member, and the normal line LN" passing through the center of the wavelength selection section will be described. Here, the light-emitting section 81 described below is, for example, the light-emitting element 20 described above. The lens member 83 described below is, for example, the lens of the lens array described above. The wavelength selection section 82 described below is, for example, the color filter section 41.

 なお、発光部が出射する光に対応して、波長選択部の大きさを、適宜、変えてもよいし、隣接する発光部の波長選択部の間に光吸収部(例えば、ブラックマトリクス部)が設けられている場合、発光部が出射する光に対応して、光吸収部の大きさを、適宜、変えてもよい。また、波長選択部の大きさを、発光部の中心を通る法線と波長選択部の中心を通る法線との間の距離(オフセット量)dに応じて、適宜、変えてもよい。波長選択部の平面形状は、レンズ部材の平面形状と同じであってもよいし、相似であってもよいし、異なっていてもよい。 The size of the wavelength selection section may be changed as appropriate in response to the light emitted by the light emitting section, or in the case where a light absorbing section (e.g., a black matrix section) is provided between the wavelength selection sections of adjacent light emitting sections, the size of the light absorbing section may be changed as appropriate in response to the light emitted by the light emitting section. The size of the wavelength selection section may be changed as appropriate in response to the distance (offset amount) d 0 between the normal line passing through the center of the light emitting section and the normal line passing through the center of the wavelength selection section. The planar shape of the wavelength selection section may be the same as, similar to, or different from the planar shape of the lens member.

 以下、図160A、図160B、図160C、図161を参照して、発光部81と、波長選択部82、レンズ部材83が、この順序で配置されている場合の各部の中心を通る法線の関係について説明する。 Below, with reference to Figures 160A, 160B, 160C, and 161, we will explain the relationship between the normals passing through the centers of the light-emitting unit 81, wavelength selection unit 82, and lens member 83 when they are arranged in this order.

 図160Aに示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とは、一致していてもよい。すなわち、D=0、d=0であってもよい。但し、Dは、発光部81の中心を通る法線LNとレンズ部材83の中心を通る法線LN’との間の距離(オフセット量)を表し、dは、発光部81の中心を通る法線LNと波長選択部82の中心を通る法線LN”との間の距離(オフセット量)を表す。 As shown in FIG. 160A, the normal LN passing through the center of the light-emitting section 81, the normal LN" passing through the center of the wavelength selection section 82, and the normal LN' passing through the center of the lens member 83 may be coincident. That is, D 0 = 0 and d 0 = 0. However, D 0 represents the distance (offset amount) between the normal LN passing through the center of the light-emitting section 81 and the normal LN' passing through the center of the lens member 83, and d 0 represents the distance (offset amount) between the normal LN passing through the center of the light-emitting section 81 and the normal LN" passing through the center of the wavelength selection section 82.

 図160Bに示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”とは、一致しているが、発光部81の中心を通る法線LN及び波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とは、一致していない構成としてもよい。すなわち、D>0、d=0であってもよい。 As shown in FIG. 160B, the normal line LN passing through the center of the light-emitting section 81 and the normal line LN" passing through the center of the wavelength selection section 82 are coincident, but the normal line LN passing through the center of the light-emitting section 81 and the normal line LN" passing through the center of the wavelength selection section 82 may not be coincident with the normal line LN' passing through the center of the lens member 83. In other words, D 0 >0 and d 0 =0 may be satisfied.

 図160Cに示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”及びレンズ部材83の中心を通る法線LN’とは、一致しておらず、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d>0、D=dであってもよい。 As shown in FIG. 160C , the normal line LN passing through the center of the light emitting section 81, the normal line LN" passing through the center of the wavelength selecting section 82, and the normal line LN' passing through the center of the lens member 83 do not coincide with each other, and the normal line LN" passing through the center of the wavelength selecting section 82 and the normal line LN' passing through the center of the lens member 83 may coincide with each other. That is, D 0 >0, d 0 >0, and D 0 =d 0 may be satisfied.

 図161に示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とがいずれも、一致していない構成としてもよい。すなわち、D>0、d>0、D≠dであってもよい。ここで、発光部81の中心とレンズ部材83の中心(図161において黒丸で示される位置)とを結ぶ直線LL上に、波長選択部82の中心(図161において黒四角で示される位置)が位置することが好ましい。具体的には、発光部81の中心と波長選択部82の中心との間の、厚さ方向(図161中、垂直方向)における距離をLL、波長選択部82の中心とレンズ部材83の中心との間の、厚さ方向における距離をLLとしたとき、
  D>d>0
であり、製造上のバラツキを考慮した上で、
  d:D=LL:(LL+LL
を満足することが好ましい。
 ここで、厚さ方向とは、発光部81、波長選択部82、レンズ部材83の厚さ方向を表す。
As shown in FIG. 161, a configuration may be adopted in which the normal line LN passing through the center of the light-emitting section 81, the normal line LN" passing through the center of the wavelength selecting section 82, and the normal line LN' passing through the center of the lens member 83 do not all coincide. That is, D 0 >0, d 0 >0, and D 0 ≠ d 0 may be satisfied. Here, it is preferable that the center of the wavelength selecting section 82 (the position indicated by the black square in FIG. 161) is located on a straight line LL connecting the center of the light-emitting section 81 and the center of the lens member 83 (the position indicated by the black circle in FIG. 161). Specifically, when the distance in the thickness direction (vertical direction in FIG. 161) between the center of the light-emitting section 81 and the center of the wavelength selecting section 82 is LL 1 and the distance in the thickness direction between the center of the wavelength selecting section 82 and the center of the lens member 83 is LL 2 , then,
D 0 >d 0 >0
Taking into account manufacturing variations,
d0 : D0 = LL1 :( LL1 + LL2 )
It is preferable to satisfy the following:
Here, the thickness direction refers to the thickness direction of the light emitting section 81 , the wavelength selecting section 82 , and the lens member 83 .

 以下、図162A、図162B、図163を参照して、発光部81と、レンズ部材83、波長選択部82が、この順序で配置されている場合の各部の中心を通る法線の関係について説明する。 Below, with reference to Figures 162A, 162B, and 163, we will explain the relationship between the normals passing through the centers of the light-emitting unit 81, lens member 83, and wavelength selection unit 82 when they are arranged in this order.

 図162Aに示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d=0であってもよい。 As shown in FIG. 162A , a normal line LN passing through the center of the light emitting section 81, a normal line LN″ passing through the center of the wavelength selecting section 82, and a normal line LN′ passing through the center of the lens member 83 may be configured to coincide with each other. That is, D 0 >0, d 0 =0 may be satisfied.

 図162Bに示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”及びレンズ部材83の中心を通る法線LN’とは、一致しておらず、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d>0、D=dであってもよい。 As shown in FIG. 162B , the normal line LN passing through the center of the light-emitting section 81, the normal line LN" passing through the center of the wavelength selection section 82, and the normal line LN' passing through the center of the lens member 83 do not coincide with each other, and the normal line LN" passing through the center of the wavelength selection section 82 and the normal line LN' passing through the center of the lens member 83 may coincide with each other. That is, D 0 >0, d 0 >0, and D 0 =d 0 may be satisfied.

 図163に示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とがいずれも、一致していない構成としてもよい。ここで、発光部81の中心と波長選択部82の中心(図163において黒四角で示される位置)とを結ぶ直線LL上に、レンズ部材83の中心(図163において黒丸で示される位置)が位置することが好ましい。具体的には、発光部81の中心とレンズ部材83の中心との間の、厚さ方向(図163中、垂直方向)における距離をLL、レンズ部材83の中心と波長選択部82の中心との間の、厚さ方向における距離をLLとしたとき、
  d>D>0
であり、製造上のバラツキを考慮した上で、
  D:d=LL:(LL+LL
を満足することが好ましい。
 ここで、厚さ方向とは、発光部81、波長選択部82、レンズ部材83の厚さ方向を表す。
As shown in FIG. 163, a configuration may be adopted in which the normal line LN passing through the center of the light-emitting section 81, the normal line LN" passing through the center of the wavelength selecting section 82, and the normal line LN' passing through the center of the lens member 83 do not all coincide. Here, it is preferable that the center of the lens member 83 (the position indicated by a black circle in FIG. 163) is located on a straight line LL connecting the center of the light-emitting section 81 and the center of the wavelength selecting section 82 (the position indicated by a black square in FIG. 163). Specifically, when the distance in the thickness direction (vertical direction in FIG. 163) between the center of the light-emitting section 81 and the center of the lens member 83 is LL 2 and the distance in the thickness direction between the center of the lens member 83 and the center of the wavelength selecting section 82 is LL 1 , then,
d0 > D0 >0
Taking into account manufacturing variations,
D0 : d0 = LL2 :( LL1 + LL2 )
It is preferable to satisfy the following:
Here, the thickness direction refers to the thickness direction of the light emitting section 81 , the wavelength selecting section 82 , and the lens member 83 .

<画素間リーク対策のための画素間構造の例>
 次に、画素間リーク対策のための画素間構造の例について説明する、以下に説明する表示装置の有機層13は、駆動基板11の第1面の面内方向に隣接する発光素子20間で繋がり、複数の発光素子20で共通の層となっている。このため、以下に説明する表示装置では、隣接する発光素子20間において電流リークが発生する虞がある。以下では、このような発光素子20間における電流リークを抑制するためのリーク抑制構造の例について説明する。なお、以下の第1例から第7例では、有機層13が2層の発光ユニットU1、U2を有する例について説明する。
<Example of inter-pixel structure to prevent inter-pixel leakage>
Next, an example of an inter-pixel structure for preventing leakage between pixels will be described. The organic layer 13 of the display device described below is connected between adjacent light-emitting elements 20 in the in-plane direction of the first surface of the drive substrate 11, and is a layer common to the multiple light-emitting elements 20. For this reason, in the display device described below, there is a risk of current leakage occurring between adjacent light-emitting elements 20. Below, an example of a leakage suppression structure for suppressing current leakage between such light-emitting elements 20 will be described. Note that in the following first to seventh examples, examples will be described in which the organic layer 13 has two layers of light-emitting units U1 and U2.

(リーク抑制構造:第1例)
 図164は、リーク抑制構造の第1例の断面図である。なお、図164では、第2電極14よりも上側の層の図示は省略されている。第2例から第9例のリーク抑制構造を説明するための断面図においても同様に、第2電極14よりも上側の層の図示は省略される。
(Leak prevention structure: 1st example)
Fig. 164 is a cross-sectional view of a first example of the leakage suppression structure. Note that in Fig. 164, layers above the second electrode 14 are omitted. Similarly, in the cross-sectional views for explaining the leakage suppression structures of the second to ninth examples, layers above the second electrode 14 are omitted.

 絶縁層1330は、各第1電極12上に開口1330aを有しており、第1電極12の第1面の周縁部から第1電極12の側面(端面)にかけて覆っている。具体的には、絶縁層1330は、側壁部1330bと、延設部1330cとを有する。側壁部1330bは、駆動基板11の第1面に垂直に立てられ、第1電極12の側面を覆う。延設部1330cは、側壁部1330bの内周面の上端から第1電極12の第1面の中心に向かって延設され、第1電極12の第1面の周縁部を覆っている。 The insulating layer 1330 has an opening 1330a on each first electrode 12, and covers the periphery of the first surface of the first electrode 12 to the side surface (end surface) of the first electrode 12. Specifically, the insulating layer 1330 has a side wall portion 1330b and an extension portion 1330c. The side wall portion 1330b is erected perpendicular to the first surface of the drive substrate 11 and covers the side surface of the first electrode 12. The extension portion 1330c extends from the upper end of the inner circumferential surface of the side wall portion 1330b toward the center of the first surface of the first electrode 12, and covers the periphery of the first surface of the first electrode 12.

 絶縁層1330の開口1330aの内周部は、開口1330aの中心に向かって張り出した庇状の張出部1328bを有する。張出部1328bは、第1電極12の第1面から離隔している。張出部1328bは、開口1330aの周縁部の全周に亘って設けられていることが好ましいが、開口1330aの周縁部の全周のうちの一部に設けられていてもよい。 The inner periphery of the opening 1330a of the insulating layer 1330 has a eaves-like protruding portion 1328b that protrudes toward the center of the opening 1330a. The protruding portion 1328b is spaced apart from the first surface of the first electrode 12. The protruding portion 1328b is preferably provided around the entire periphery of the opening 1330a, but may be provided on a portion of the entire periphery of the opening 1330a.

 有機層13に含まれる発光ユニットU1および電荷発生層1227が、張出部1328bにより切断または高抵抗化されている(図164中に示した領域A)。これにより、隣接する発光素子20間における電流リークを抑制することができる。ここで、高抵抗化とは、発光ユニットU1および電荷発生層1227が張出部1328bにて極薄い膜厚となることにより高抵抗化することを表す。張出部1328bによる発光ユニットU1および電荷発生層1227の切断または高抵抗化は、有機層13の成膜時における張出部1328bのシャドーイング効果により起こりうる。空隙1328cが、張出部1328bと第1電極12の間に形成されていてもよい。 The light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the overhang 1328b (area A shown in FIG. 164). This makes it possible to suppress current leakage between adjacent light-emitting elements 20. Here, the high resistance refers to the light-emitting unit U1 and the charge generating layer 1227 becoming highly resistant due to the extremely thin film thickness at the overhang 1328b. The cut or high resistance of the light-emitting unit U1 and the charge generating layer 1227 caused by the overhang 1328b can occur due to the shadowing effect of the overhang 1328b when the organic layer 13 is formed. A gap 1328c may be formed between the overhang 1328b and the first electrode 12.

 絶縁層1330は、第1絶縁層1318および第2絶縁層1328を駆動基板11の第1面上および第1電極12の第1面上に順に有する。第1絶縁層1318は、複数の第1開口1331aを有する。第2絶縁層1328は、複数の第2開口1332aを有する。開口1330aは、重なり合った第1開口1331aおよび第2開口1332aにより構成されている。第2絶縁層1328の第2開口1332aの内周部が、第1絶縁層1318の第1開口1331aの内周部よりも開口1330aの内側に向かって張り出し、張出部1328bを構成している。 The insulating layer 1330 has a first insulating layer 1318 and a second insulating layer 1328, in that order, on the first surface of the drive substrate 11 and on the first surface of the first electrode 12. The first insulating layer 1318 has a plurality of first openings 1331a. The second insulating layer 1328 has a plurality of second openings 1332a. The opening 1330a is composed of overlapping first openings 1331a and second openings 1332a. The inner periphery of the second opening 1332a of the second insulating layer 1328 protrudes further inwardly of the opening 1330a than the inner periphery of the first opening 1331a of the first insulating layer 1318, forming a protruding portion 1328b.

(リーク抑制構造:第2例)
 図165は、リーク抑制構造の第2例の断面図である。第2例は、絶縁層1330が第1絶縁層1318および第2絶縁層1328に加えて第3絶縁層1338を有する点において、第1例とは異なっている。
(Leak suppression structure: second example)
165 is a cross-sectional view of a second example of a leakage suppression structure. The second example differs from the first example in that an insulating layer 1330 has a third insulating layer 1338 in addition to a first insulating layer 1318 and a second insulating layer 1328.

 第3絶縁層1338は、駆動基板11と第1絶縁層1318の間、および第1電極12と第1絶縁層1318の間に設けられている。第3絶縁層1338は、第1電極12の第1面上に第3開口1333aを有する。第2例では、開口1330aは、重なり合った第1開口1331a、第2開口1332aおよび第3開口1333aにより構成されている。第3開口1333aの内周部は、第1開口1331aの内周部よりも開口1330aの内側に向かって張り出している。空隙1328cが、張出部1328bと第3絶縁層1338の間に形成されていてもよい。 The third insulating layer 1338 is provided between the drive substrate 11 and the first insulating layer 1318, and between the first electrode 12 and the first insulating layer 1318. The third insulating layer 1338 has a third opening 1333a on the first surface of the first electrode 12. In the second example, the opening 1330a is composed of the overlapping first opening 1331a, second opening 1332a, and third opening 1333a. The inner periphery of the third opening 1333a protrudes further toward the inside of the opening 1330a than the inner periphery of the first opening 1331a. A gap 1328c may be formed between the protruding portion 1328b and the third insulating layer 1338.

(リーク抑制構造:第3例、第4例)
 第1例および第2例では、絶縁層1330の開口1330aの内周部が1つの張出部1328bを有する例について説明した。しかしながら、絶縁層1330の開口1330aの内周部が有する張出部の数はこれらの例に限定されず、絶縁層1330の開口1330aの内周部が2以上の張出部を有していてもよい。以下では、絶縁層1330の開口1330aの内周部が2つの張出部を有する例(第3例)、および絶縁層1330の開口1330aの内周部が3つの張出部を有する例(第4例)について説明する。
(Leak suppression structure: 3rd example, 4th example)
In the first and second examples, the example in which the inner periphery of the opening 1330a of the insulating layer 1330 has one protruding portion 1328b has been described. However, the number of protruding portions of the inner periphery of the opening 1330a of the insulating layer 1330 is not limited to these examples, and the inner periphery of the opening 1330a of the insulating layer 1330 may have two or more protruding portions. In the following, an example in which the inner periphery of the opening 1330a of the insulating layer 1330 has two protruding portions (third example) and an example in which the inner periphery of the opening 1330a of the insulating layer 1330 has three protruding portions (fourth example) will be described.

 図166は、リーク抑制構造の第3例の断面図である。第3例は、絶縁層1330が第2絶縁層1328の第1面上に第4絶縁層1348および第5絶縁層1358を順に有し、かつ、絶縁層1330の開口1330aの内周部が2つの庇状の張出部1328b、1358bを有する点において、第2例とは異なっている。 Figure 166 is a cross-sectional view of a third example of a leak suppression structure. The third example differs from the second example in that the insulating layer 1330 has a fourth insulating layer 1348 and a fifth insulating layer 1358, in that order, on the first surface of the second insulating layer 1328, and the inner periphery of the opening 1330a of the insulating layer 1330 has two eaves-like protrusions 1328b, 1358b.

 有機層13に含まれる発光ユニットU1および電荷発生層1227が、張出部1328bおよび張出部1358bにより切断または高抵抗化されている。張出部1358bは、第1電極12の第1面を基準にして張出部1328bよりも高い位置に設けられ、第2絶縁層1328の第1面から離隔している。張出部1358bは、張出部1328bよりも開口1330aの中心から離れる方向に後退している。 The light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the overhanging portion 1328b and the overhanging portion 1358b. The overhanging portion 1358b is provided at a higher position than the overhanging portion 1328b with respect to the first surface of the first electrode 12 as a reference, and is separated from the first surface of the second insulating layer 1328. The overhanging portion 1358b is recessed in a direction away from the center of the opening 1330a from the overhanging portion 1328b.

 第4絶縁層1348は、第4開口1348aを有する。第5絶縁層1358は、第5開口1358aを有する。第3例では、開口1330aは、重なり合った第1開口1331a、第2開口1332a、第3開口1333a、第4開口1348aおよび第5開口1358aにより構成されている。第4開口1348aの内周部は、第2開口1332aの内周部および第5開口1358aの内周部よりも開口1330aの中心から離れる方向に後退している。第5開口1358aの内周部は、第4開口1348aよりも開口1330aの内側に向かって張り出し、張出部1358bを構成している。 The fourth insulating layer 1348 has a fourth opening 1348a. The fifth insulating layer 1358 has a fifth opening 1358a. In the third example, the opening 1330a is composed of a first opening 1331a, a second opening 1332a, a third opening 1333a, a fourth opening 1348a, and a fifth opening 1358a, which are overlapped with each other. The inner periphery of the fourth opening 1348a is set back in a direction away from the center of the opening 1330a from the inner periphery of the second opening 1332a and the inner periphery of the fifth opening 1358a. The inner periphery of the fifth opening 1358a protrudes toward the inside of the opening 1330a more than the fourth opening 1348a, forming a protruding portion 1358b.

 図167は、リーク抑制構造の第4例の断面図である。第4例は、絶縁層1330が第5絶縁層1358の第1面上に第6絶縁層1368および第7絶縁層1378を順に有し、かつ、絶縁層1330の開口1330aの内周部が3つの庇状の張出部1328b、1358b、1378bを有する点において、第3例とは異なっている。 Figure 167 is a cross-sectional view of a fourth example of a leak suppression structure. The fourth example differs from the third example in that the insulating layer 1330 has a sixth insulating layer 1368 and a seventh insulating layer 1378 in that order on the first surface of the fifth insulating layer 1358, and the inner periphery of the opening 1330a of the insulating layer 1330 has three eaves-like protrusions 1328b, 1358b, and 1378b.

 有機層13に含まれる発光ユニットU1および電荷発生層1227が、張出部1328b、張出部1358bおよび張出部1378bにより切断または高抵抗化されている。張出部1378bは、第1電極12の第1面を基準にして張出部1358bよりも高い位置に設けられ、第5絶縁層1358の第1面から離隔している。張出部1378bは、張出部1358bよりも開口1330aの中心から離れる方向に後退している。 The light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the overhanging portion 1328b, the overhanging portion 1358b, and the overhanging portion 1378b. The overhanging portion 1378b is provided at a higher position than the overhanging portion 1358b with respect to the first surface of the first electrode 12 as a reference, and is separated from the first surface of the fifth insulating layer 1358. The overhanging portion 1378b is recessed in a direction away from the center of the opening 1330a than the overhanging portion 1358b.

 第6絶縁層1368は、第6開口1368aを有する。第7絶縁層1378は、第7開口1378aを有する。第4例では、開口1330aは、重なり合った第1開口1331a、第2開口1332a、第3開口1333a、第4開口1348a、第5開口1358a、第6開口1368aおよび第7開口1378aにより構成されている。第6開口1368aの内周部は、第5開口1358aの内周部および第7開口1378aの内周部よりも開口1330aの中心から離れる方向に後退している。第7開口1378aの内周部は、第6開口1368aより開口1330aの内側に向かって張り出し、張出部1378bを構成している。 The sixth insulating layer 1368 has a sixth opening 1368a. The seventh insulating layer 1378 has a seventh opening 1378a. In the fourth example, the opening 1330a is composed of the overlapping first opening 1331a, second opening 1332a, third opening 1333a, fourth opening 1348a, fifth opening 1358a, sixth opening 1368a, and seventh opening 1378a. The inner periphery of the sixth opening 1368a is set back in a direction away from the center of the opening 1330a from the inner periphery of the fifth opening 1358a and the inner periphery of the seventh opening 1378a. The inner periphery of the seventh opening 1378a protrudes toward the inside of the opening 1330a from the sixth opening 1368a, forming a protruding portion 1378b.

(リーク抑制構造:第5例)
 図168は、リーク抑制構造の第5例の断面図である。第5例は、絶縁層1330が第1絶縁層1318、第2絶縁層1328および第3絶縁層1338に加えて第8絶縁層1388を有し、かつ、絶縁層1330の開口1330aの内周部が2つの庇状の張出部1328b、1338b有する点において、第2例とは異なっている。
(Leak suppression structure: 5th example)
168 is a cross-sectional view of a fifth example of the leak suppression structure. The fifth example is different from the second example in that the insulating layer 1330 has an eighth insulating layer 1388 in addition to the first insulating layer 1318, the second insulating layer 1328, and the third insulating layer 1338, and the inner periphery of the opening 1330a of the insulating layer 1330 has two eaves-like protruding portions 1328b and 1338b.

 有機層13に含まれる発光ユニットU1および電荷発生層1227が、張出部1328bおよび張出部1338bにより切断または高抵抗化されている。張出部1338bは、張出部1328bよりも開口1330aの内側に向かって張り出している。張出部1338bは、第1電極12の第1面を基準にして張出部1328bよりも低い位置に設けられている。張出部1338bは、第1電極12の第1面から離隔している。 The light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the overhanging portion 1328b and the overhanging portion 1338b. The overhanging portion 1338b overhangs toward the inside of the opening 1330a more than the overhanging portion 1328b. The overhanging portion 1338b is located at a lower position than the overhanging portion 1328b with respect to the first surface of the first electrode 12. The overhanging portion 1338b is spaced apart from the first surface of the first electrode 12.

 第8絶縁層1388は、駆動基板11と第3絶縁層1338の間、および第1電極12と第3絶縁層1338の間に設けられている。第8絶縁層1388は、第8開口1388aを有する。第5例では、開口1330aは、重なり合った第1開口1331a、第2開口1332a、第3開口1333aおよび第8開口1388aにより構成されている。第3絶縁層1338の第3開口1333aの内周部が、第8絶縁層1388の第8開口1388aの内周部よりも開口1330aの内側に向かって張り出し、張出部1338bを構成している。 The eighth insulating layer 1388 is provided between the drive substrate 11 and the third insulating layer 1338, and between the first electrode 12 and the third insulating layer 1338. The eighth insulating layer 1388 has an eighth opening 1388a. In the fifth example, the opening 1330a is composed of the overlapping first opening 1331a, second opening 1332a, third opening 1333a, and eighth opening 1388a. The inner periphery of the third opening 1333a of the third insulating layer 1338 protrudes further toward the inside of the opening 1330a than the inner periphery of the eighth opening 1388a of the eighth insulating layer 1388, forming a protruding portion 1338b.

(リーク抑制構造:第6例)
 図169は、リーク抑制構造の第6例の断面図である。第6例は、絶縁層1330が開口1330aの内周部に張出部1328bを有する代わりに、側壁部1330bの外周部に張出部1332b1を有する点において、第1例とは異なっている。図169では、絶縁層1330が単層構造を有する例が示されているが、2層以上の積層構造を有していてもよい。
(Leak suppression structure: 6th example)
Fig. 169 is a cross-sectional view of a sixth example of the leak suppression structure. The sixth example is different from the first example in that the insulating layer 1330 has a protruding portion 1332b1 on the outer periphery of the side wall portion 1330b instead of the protruding portion 1328b on the inner periphery of the opening 1330a. Fig. 169 shows an example in which the insulating layer 1330 has a single layer structure, but it may have a laminated structure of two or more layers.

 張出部1332b1は、側壁部1330bの外周部から外側に向かって張り出している。側壁部1330bの外周部の上端から下方に所定距離離れた位置に凹部1332b2が設けられている。このように側壁部1330bの外周部に凹部1332b2が設けられることで、張出部1332b1が側壁部1330bの外周部の上端部に構成されている。張出部1332b1および凹部1332b2は、側壁部1330bの外周部の全周に亘って設けられていることが好ましいが、側壁部1330bの外周部の全周のうちの一部に設けられていてもよい。 The overhang 1332b1 overhangs outward from the outer periphery of the side wall 1330b. A recess 1332b2 is provided at a position a predetermined distance below the upper end of the outer periphery of the side wall 1330b. By providing the recess 1332b2 on the outer periphery of the side wall 1330b in this manner, the overhang 1332b1 is configured at the upper end of the outer periphery of the side wall 1330b. The overhang 1332b1 and the recess 1332b2 are preferably provided around the entire circumference of the outer periphery of the side wall 1330b, but may be provided on a portion of the entire circumference of the outer periphery of the side wall 1330b.

 有機層13に含まれる発光ユニットU1および電荷発生層1227が、張出部1332bにより切断または高抵抗化されている(図169中に示した領域A)。これにより、隣接する発光素子20間における電流リークを抑制することができる。 The light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the protruding portion 1332b (area A shown in FIG. 169). This makes it possible to suppress current leakage between adjacent light-emitting elements 20.

 第6例では、側壁部1330bの外周部が1つの張出部1332b1および1つの凹部1332b2を有する例について説明した。しかしながら、側壁部1330bの外周部が有する張出部1332b1および凹部1332b2の個数はこの例に限定されず、側壁部1330bの外周部が2以上の張出部1332b1および2以上の凹部1332b2を有していてもよい。この場合、2以上の凹部1332b2は、側壁部1330bの外周部の上端から下端に向かって所定間隔離して順に設けられていてもよい。 In the sixth example, an example was described in which the outer periphery of the side wall portion 1330b has one protrusion 1332b1 and one recess 1332b2. However, the number of protrusions 1332b1 and recesses 1332b2 on the outer periphery of the side wall portion 1330b is not limited to this example, and the outer periphery of the side wall portion 1330b may have two or more protrusions 1332b1 and two or more recesses 1332b2. In this case, the two or more recesses 1332b2 may be provided in sequence at a predetermined distance from the upper end to the lower end of the outer periphery of the side wall portion 1330b.

(リーク抑制構造:第7例)
 図170は、リーク抑制構造の第7例の断面図である。溝1330Gvが、隣り合う発光素子20の間に設けられている。溝1330Gvは、所定方向(例えばY軸方向)に隣接する発光素子20の間に設けられていてもよいし、発光素子20を囲むように設けられていてもよい。溝1330Gvは、絶縁層1330および絶縁層1121に亘って形成されている。なお、図170における参照符号1440は保護層、参照符号1550は保護層若しくは平坦化層を示す。
(Leak suppression structure: 7th example)
Fig. 170 is a cross-sectional view of a seventh example of the leakage suppression structure. A groove 1330Gv is provided between adjacent light emitting elements 20. The groove 1330Gv may be provided between light emitting elements 20 adjacent in a predetermined direction (e.g., the Y-axis direction) or may be provided so as to surround the light emitting element 20. The groove 1330Gv is formed across the insulating layer 1330 and the insulating layer 1121. In Fig. 170, reference numeral 1440 denotes a protective layer, and reference numeral 1550 denotes a protective layer or a planarizing layer.

 有機層13に含まれる発光ユニットU1および電荷発生層1227が、溝1330Gvにより切断または高抵抗化されている。これにより、隣接する発光素子20間における電流リークを抑制することができる。ここで、高抵抗化とは、図171に示されように、発光ユニットU1および電荷発生層1227が溝1330Gv内にて極薄い膜厚となることにより高抵抗化されることを表す。有機層13に含まれる層のうち、電荷発生層1227よりも上側に位置する発光ユニットU2は、溝1330Gvを跨いでいる。 The light-emitting unit U1 and the charge generation layer 1227 included in the organic layer 13 are cut or made highly resistive by the groove 1330Gv. This makes it possible to suppress current leakage between adjacent light-emitting elements 20. Here, the high resistance refers to the light-emitting unit U1 and the charge generation layer 1227 being made highly resistive by becoming extremely thin in thickness within the groove 1330Gv, as shown in FIG. 171. Of the layers included in the organic layer 13, the light-emitting unit U2 located above the charge generation layer 1227 straddles the groove 1330Gv.

(リーク抑制構造:第8例)
 図172は、リーク抑制構造の第8例の断面図である。複数の配線1121a、複数のコンタクトプラグ1121bおよび複数のコンタクト電極1121cが、絶縁層1121内に設けられている。各コンタクトプラグ1121bは、第1電極12と配線1121aとを電気的に接続する。溝1330Gvが、隣り合う発光素子20の間に設けられている。溝1330Gvの底面は、コンタクト電極1121cの第1面により構成されている。補助電極112dが、各溝1330Gvの側面に設けられている。補助電極112dは、コンタクト電極1121cの第1面に接触している。
(Leak suppression structure: Example 8)
172 is a cross-sectional view of an eighth example of the leakage suppression structure. A plurality of wirings 1121a, a plurality of contact plugs 1121b, and a plurality of contact electrodes 1121c are provided in the insulating layer 1121. Each contact plug 1121b electrically connects the first electrode 12 and the wiring 1121a. A groove 1330Gv is provided between adjacent light-emitting elements 20. The bottom surface of the groove 1330Gv is formed by the first surface of the contact electrode 1121c. An auxiliary electrode 112d is provided on the side surface of each groove 1330Gv. The auxiliary electrode 112d is in contact with the first surface of the contact electrode 1121c.

 有機層13が、溝1330Gvにより切断されている。図172では、第2電極14も溝1330Gvにより切断されている例が示されているが、第2電極14が溝1330Gvにより切断されず、隣接する発光素子20間において繋がっていてもよい。第2電極14は、溝1330Gvの側面において補助電極112dに接触している。また、第2電極14は、溝1330Gvの底面においてコンタクト電極1121cに接触している。保護層1440が、第2電極14に倣うように第2電極14の第1面上に設けられていてもよい。 The organic layer 13 is cut by the groove 1330Gv. Although FIG. 172 shows an example in which the second electrode 14 is also cut by the groove 1330Gv, the second electrode 14 may not be cut by the groove 1330Gv and may be connected between adjacent light-emitting elements 20. The second electrode 14 is in contact with the auxiliary electrode 112d on the side surface of the groove 1330Gv. The second electrode 14 is in contact with the contact electrode 1121c on the bottom surface of the groove 1330Gv. A protective layer 1440 may be provided on the first surface of the second electrode 14 so as to imitate the second electrode 14.

 第8例では、隣接する発光素子20間において、リーク電流を補助電極112dおよびコンタクト電極1121cへ引き込むことができる。したがって、隣接する発光素子20間における電流リークを抑制することができる。 In the eighth example, the leakage current between adjacent light-emitting elements 20 can be drawn into the auxiliary electrode 112d and the contact electrode 1121c. Therefore, current leakage between adjacent light-emitting elements 20 can be suppressed.

(リーク抑制構造:第9例)
 図173は、リーク抑制構造の第9例の断面図である。第9例では、表示装置は、複数の第3電極1240を備えている。複数の第3電極1240は、複数の第1電極12と同様に、有機層13の第2面側に設けられている。各第3電極1240は、隣接する第1電極12の間に配置されている。
(Leak suppression structure: 9th example)
173 is a cross-sectional view of a ninth example of the leakage suppression structure. In the ninth example, the display device includes a plurality of third electrodes 1240. The plurality of third electrodes 1240 are provided on the second surface side of the organic layer 13, similar to the plurality of first electrodes 12. Each third electrode 1240 is disposed between adjacent first electrodes 12.

 図174は、第1電極12および第3電極1240の配置を説明するための平面図である。複数の第3電極1240は、第1電極12と比較して小さな面積を有する、島状の電極群である。複数の第3電極1240は、平面視において、互いに隣接する第1電極12から等間隔となるように、規則的に配置されている。別の観点からは、複数の第3電極1240は、平面視において、各第1電極12から所定の距離離れるとともに、これを囲むようにして配置されている。 FIG. 174 is a plan view for explaining the arrangement of the first electrodes 12 and the third electrodes 1240. The multiple third electrodes 1240 are an island-shaped group of electrodes having a smaller area compared to the first electrodes 12. The multiple third electrodes 1240 are regularly arranged so as to be equally spaced from adjacent first electrodes 12 in a plan view. From another perspective, the multiple third electrodes 1240 are arranged at a predetermined distance from each first electrode 12 and surrounding it in a plan view.

 複数の配線1121a、複数の配線1121e、複数のコンタクトプラグ1121bおよび複数のコンタクトプラグ1121fが、絶縁層1121内に設けられている。各コンタクトプラグ1121bは、第1電極12と配線1121aとを電気的に接続する。各コンタクトプラグ1121fは、第3電極1240と配線1121eとを電気的に接続する。 A plurality of wirings 1121a, a plurality of wirings 1121e, a plurality of contact plugs 1121b, and a plurality of contact plugs 1121f are provided in the insulating layer 1121. Each contact plug 1121b electrically connects the first electrode 12 and the wiring 1121a. Each contact plug 1121f electrically connects the third electrode 1240 and the wiring 1121e.

 複数の第3電極1240は、コンタクトプラグ1121fおよび配線1121e等を介して表示装置の内部回路と接続されており、共通して一定の電位に設定されている。具体的には、有機層13に対し電圧が印加される際に、第3電極1240の電位は、第2電極14の電位に有機層13についての閾値電圧を加えた値よりも小さくなるように、設定されている。これにより、第1電極12と第2電極14とにより有機層13に対し電圧を印加し、これに起因して第1電極12からリーク電流が発生した場合であっても、第3電極1240にリーク電流が優先的に流れる。このため、第1電極12から隣接する第1電極12へリーク電流が流れることが抑制される。 The multiple third electrodes 1240 are connected to the internal circuitry of the display device via contact plugs 1121f and wiring 1121e, etc., and are commonly set to a constant potential. Specifically, when a voltage is applied to the organic layer 13, the potential of the third electrodes 1240 is set to be smaller than the potential of the second electrode 14 plus the threshold voltage for the organic layer 13. As a result, even if a voltage is applied to the organic layer 13 by the first electrode 12 and the second electrode 14, causing a leak current to occur from the first electrode 12, the leak current will preferentially flow to the third electrode 1240. This prevents the leak current from flowing from the first electrode 12 to the adjacent first electrode 12.

(リーク抑制構造:その他の例)
 第1例から第7例では、有機層13が2層の発光ユニットU1、U2を有する例について説明した。しかしながら、有機層13の構成はこの例に限定されるものではなく、有機層13が単層の発光ユニットUを有していてもよいし、3層以上の発光ユニットUを有していてもよい。
(Leak suppression structures: other examples)
In the first to seventh examples, the organic layer 13 has two layers of light-emitting units U1 and U2. However, the configuration of the organic layer 13 is not limited to these examples, and the organic layer 13 may have a single layer of light-emitting unit U, or may have three or more layers of light-emitting units U.

 第1例から第7例では、有機層13に含まれる発光ユニットU1および電荷発生層1227が、張出部1328b、1338b、1358b、1378b、1332b1および溝1330Gv(以下、「張出部1328bおよび溝1330Gv等」という。)により切断または高抵抗化される例について説明した。しかしながら、張出部1328bおよび溝1330Gv等により切断または高抵抗化される層はこの例に限定されない。例えば、有機層13に含まれる正孔注入層1221または正孔輸送層1222が張出部1328bおよび溝1330Gv等により切断または高抵抗化されてもよし、有機層13に含まれる正孔注入層1221および正孔輸送層1222の両方が張出部1328bおよび溝1330Gv等により切断または高抵抗化されてもよい。有機層13が3層以上の発光ユニットUを備える場合には、有機層13に含まれる2層以上の発光ユニットUおよび2層以上の電荷発生層1227が、張出部1328bおよび溝1330Gv等により切断または高抵抗化されてもよい。 In the first to seventh examples, the light-emitting unit U1 and the charge generating layer 1227 included in the organic layer 13 are cut or made highly resistant by the overhanging portions 1328b, 1338b, 1358b, 1378b, 1332b1 and the grooves 1330Gv (hereinafter referred to as "overhanging portions 1328b and grooves 1330Gv, etc."). However, the layers cut or made highly resistant by the overhanging portions 1328b and grooves 1330Gv, etc. are not limited to this example. For example, the hole injection layer 1221 or the hole transport layer 1222 included in the organic layer 13 may be cut or made highly resistant by the overhanging portions 1328b and grooves 1330Gv, etc., or both the hole injection layer 1221 and the hole transport layer 1222 included in the organic layer 13 may be cut or made highly resistant by the overhanging portions 1328b and grooves 1330Gv, etc. When the organic layer 13 has three or more light-emitting units U, two or more light-emitting units U and two or more charge generating layers 1227 included in the organic layer 13 may be cut or made highly resistant by the protruding portion 1328b and the groove 1330Gv, etc.

<応用例>
(電子機器)
 上記の実施形態に係る表示装置は、各種の電子機器に備えられてもよい。表示装置は、特にビデオカメラまたは一眼レフカメラの電子ビューファインダ、もしくはヘッドマウント型ディスプレイ等の高解像度が要求され、目の近くで拡大して使用されるものに適する。
<Application Examples>
(Electronics)
The display device according to the above embodiment may be provided in various electronic devices. The display device is particularly suitable for electronic viewfinders of video cameras or single-lens reflex cameras, head-mounted displays, and other devices that require high resolution and are used in a magnified state near the eyes.

(具体例1)
 図175A、図175Bは、デジタルスチルカメラ310の外観の一例を示す。このデジタルスチルカメラ310は、レンズ交換式一眼レフレックスタイプのものであり、カメラ本体部(カメラボディ)311の正面略中央に交換式の撮影レンズユニット(交換レンズ)312を有し、正面左側に撮影者が把持するためのグリップ部313を有している。
(Specific Example 1)
175A and 175B show an example of the external appearance of a digital still camera 310. This digital still camera 310 is a lens-interchangeable single-lens reflex type, and has an interchangeable photographing lens unit (interchangeable lens) 312 approximately in the center of the front of a camera main body (camera body) 311, and a grip part 313 for the photographer to hold on the left side of the front.

 カメラ本体部311の背面中央から左側にずれた位置には、モニタ314が設けられている。モニタ314の上部には、電子ビューファインダ(接眼窓)315が設けられている。撮影者は、電子ビューファインダ315を覗くことによって、撮影レンズユニット312から導かれた被写体の光像を視認して構図決定を行うことが可能である。電子ビューファインダ315は、上記の実施形態に係る表示装置を備える。 A monitor 314 is provided at a position shifted to the left from the center of the back of the camera body 311. An electronic viewfinder (eyepiece window) 315 is provided at the top of the monitor 314. By looking through the electronic viewfinder 315, the photographer can visually confirm the optical image of the subject guided by the photographing lens unit 312 and determine the composition. The electronic viewfinder 315 is equipped with the display device according to the embodiment described above.

(具体例2)
 図176は、ヘッドマウントディスプレイ320の外観の一例を示す。ヘッドマウントディスプレイ320は、例えば、眼鏡形の表示部321の両側に、使用者の頭部に装着するための耳掛け部322を有している。表示部321は、上記の実施形態に係る表示装置を備える。
(Specific Example 2)
Fig. 176 shows an example of the appearance of the head mounted display 320. The head mounted display 320 has, for example, ear hooks 322 for wearing on the user's head on both sides of a glasses-shaped display unit 321. The display unit 321 includes the display device according to the above embodiment.

(具体例3)
 図177は、テレビジョン装置330の外観の一例を示す。このテレビジョン装置330は、例えば、フロントパネル332及びフィルターガラス333を含む映像表示画面部331を有しており、この映像表示画面部331は、上記の実施形態に係る表示装置を備える。
(Specific Example 3)
177 shows an example of the appearance of a television device 330. This television device 330 has an image display screen unit 331 including, for example, a front panel 332 and a filter glass 333, and this image display screen unit 331 is equipped with the display device according to the embodiment described above.

(具体例4)
 図178は、シースルーヘッドマウントディスプレイ340の外観の一例を示す。シースルーヘッドマウントディスプレイ340は、本体部341と、アーム342と、鏡筒343とを備える。
(Specific Example 4)
178 shows an example of the appearance of the see-through head mounted display 340. The see-through head mounted display 340 includes a main body 341, an arm 342, and a lens barrel 343.

 本体部341は、アーム342及び眼鏡350と接続される。具体的には、本体部341の長辺方向の端部はアーム342と結合され、本体部341の側面の一側は接続部材を介して眼鏡350と連結される。なお、本体部341は、直接的に人体の頭部に装着されてもよい。 The main body 341 is connected to the arm 342 and the glasses 350. Specifically, the end of the long side of the main body 341 is connected to the arm 342, and one side of the main body 341 is connected to the glasses 350 via a connecting member. The main body 341 may also be worn directly on the head of the human body.

 本体部341は、シースルーヘッドマウントディスプレイ340の動作を制御するための制御基板や、表示部を内蔵する。アーム342は、本体部341と鏡筒343とを接続させ、鏡筒343を支える。具体的には、アーム342は、本体部341の端部及び鏡筒343の端部とそれぞれ結合され、鏡筒343を固定する。また、アーム342は、本体部341から鏡筒343に提供される画像に係るデータを通信するための信号線を内蔵する。 Main body 341 incorporates a control board for controlling the operation of see-through head mounted display 340, and a display unit. Arm 342 connects main body 341 to barrel 343 and supports barrel 343. Specifically, arm 342 is coupled to an end of main body 341 and an end of barrel 343, respectively, and fixes barrel 343. Arm 342 also incorporates a signal line for communicating data related to images provided from main body 341 to barrel 343.

 鏡筒343は、本体部341からアーム342を経由して提供される画像光を、接眼レンズ351を通じて、シースルーヘッドマウントディスプレイ340を装着するユーザの目に向かって投射する。このシースルーヘッドマウントディスプレイ340において、本体部341の表示部は、上記の実施形態に係る表示装置を備える。 The telescope tube 343 projects image light provided from the main body 341 via the arm 342 through the eyepiece 351 toward the eye of the user wearing the see-through head mounted display 340. In this see-through head mounted display 340, the display unit of the main body 341 is equipped with the display device according to the embodiment described above.

(具体例5)
 図179は、スマートフォン360の外観の一例を示す。スマートフォン360は、各種情報を表示する表示部361、及びユーザによる操作入力を受け付けるボタン等から構成される操作部362等を備える。表示部361は、上記の実施形態に係る表示装置を備える。
(Specific Example 5)
179 shows an example of the appearance of a smartphone 360. The smartphone 360 includes a display unit 361 that displays various information, and an operation unit 362 that includes buttons and the like that accept operation input by a user. The display unit 361 includes the display device according to the embodiment described above.

(具体例6)
 上記の表示装置10A等は、乗物に備えられるか各種のディスプレイに備えられてもよい。
(Specific Example 6)
The display device 10A and the like described above may be provided in a vehicle or in various displays.

 図180A及び図180Bは、各種のディスプレイが備えられた乗物500の内部の構成の一例を示す図である。具体的には、図180Aは、乗物500の後方から前方にかけての乗物500の内部の様子の一例を示す図、図180Bは、乗物500の斜め後方から斜め前方にかけての乗物500の内部の様子の一例を示す図である。 FIGS. 180A and 180B are diagrams showing an example of the internal configuration of a vehicle 500 equipped with various displays. Specifically, FIG. 180A is a diagram showing an example of the interior of the vehicle 500 from the rear to the front, and FIG. 180B is a diagram showing an example of the interior of the vehicle 500 from diagonally rear to diagonally front.

 乗物500は、センターディスプレイ501と、コンソールディスプレイ502と、ヘッドアップディスプレイ503と、デジタルリアミラー504と、ステアリングホイールディスプレイ505と、リアエンタテイメントディスプレイ506とを備える。これらのディスプレイの少なくとも1つが、上記の実施形態に係る表示装置を備える。例えば、これらのディスプレイのすべてが、上記の実施形態に係る表示装置を備えてもよい。 The vehicle 500 includes a center display 501, a console display 502, a head-up display 503, a digital rear mirror 504, a steering wheel display 505, and a rear entertainment display 506. At least one of these displays includes a display device according to the embodiment described above. For example, all of these displays may include a display device according to the embodiment described above.

 センターディスプレイ501は、運転席508及び助手席509に対向するダッシュボードの部分に配置されている。図180A及び図180Bでは、運転席508側から助手席509側まで延びる横長形状のセンターディスプレイ501の例を示すが、センターディスプレイ501の画面サイズや配置場所は任意である。センターディスプレイ501には、種々のセンサで検知された情報を表示可能である。具体的な一例として、センターディスプレイ501には、イメージセンサで撮影した撮影画像、ToFセンサで計測された乗物500の前方や側方の障害物までの距離画像、赤外線センサで検出された乗客の体温などを表示可能である。センターディスプレイ501は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。 The center display 501 is disposed in a portion of the dashboard facing the driver's seat 508 and the passenger seat 509. Although Fig. 180A and Fig. 180B show an example of a horizontally elongated center display 501 extending from the driver's seat 508 side to the passenger seat 509 side, the screen size and location of the center display 501 are arbitrary. The center display 501 can display information detected by various sensors. As a specific example, the center display 501 can display an image captured by an image sensor, an image showing the distance to obstacles in front of or to the side of the vehicle 500 measured by a ToF sensor, and the body temperature of a passenger detected by an infrared sensor. The center display 501 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information.

 安全関連情報は、居眠り検知、よそ見検知、同乗している子供のいたずら検知、シートベルト装着有無、乗員の置き去り検知などの情報であり、例えばセンターディスプレイ501の裏面側に重ねて配置されたセンサにて検知される情報である。操作関連情報は、センサを用いて乗員の操作に関するジェスチャを検知する。検知されるジェスチャは、乗物500内の種々の設備の操作を含んでいてもよい。例えば、空調設備、ナビゲーション装置、AV装置、照明装置等の操作を検知する。ライフログは、乗員全員のライフログを含む。例えば、ライフログは、乗車中の各乗員の行動記録を含む。ライフログを取得及び保存することで、事故時に乗員がどのような状態であったかを確認できる。健康関連情報は、温度センサなどのセンサを用いて乗員の体温を検知し、検知した体温に基づいて乗員の健康状態を推測する。あるいは、イメージセンサを用いて乗員の顔を撮像し、撮像した顔の表情から乗員の健康状態を推測してもよい。さらに、乗員に対して自動音声で会話を行って、乗員の回答内容に基づいて乗員の健康状態を推測してもよい。認証/識別関連情報は、センサを用いて顔認証を行うキーレスエントリ機能や、顔識別でシート高さや位置の自動調整機能などを含む。エンタテイメント関連情報は、センサを用いて乗員によるAV装置の操作情報を検出する機能や、センサで乗員の顔を認識して、乗員に適したコンテンツをAV装置にて提供する機能などを含む。 The safety-related information includes information such as detection of dozing, looking away, mischief by children in the vehicle, whether or not a seat belt is fastened, and detection of an occupant being left behind, and is information detected, for example, by a sensor arranged on the back side of the center display 501. The operation-related information is obtained by detecting gestures related to the operation of the occupant using a sensor. The detected gestures may include operations of various facilities in the vehicle 500. For example, operations of air conditioning equipment, navigation equipment, AV equipment, lighting equipment, etc. are detected. The life log includes the life log of all occupants. For example, the life log includes a record of the actions of each occupant while on board. By acquiring and storing the life log, it is possible to confirm the condition of the occupant at the time of the accident. The health-related information is obtained by detecting the body temperature of the occupant using a sensor such as a temperature sensor, and inferring the health condition of the occupant based on the detected body temperature. Alternatively, the face of the occupant may be captured using an image sensor, and the health condition of the occupant may be inferred from the facial expression captured in the image. Furthermore, the occupant may be spoken to by an automated voice, and the health condition of the occupant may be inferred based on the content of the occupant's response. Authentication/identification-related information includes a keyless entry function that uses a sensor to perform facial authentication, a function that automatically adjusts the seat height and position using facial recognition, etc. Entertainment-related information includes a function that uses a sensor to detect information about the operation of an AV device by an occupant, and a function that uses a sensor to recognize the occupant's face and provides content appropriate for the occupant via the AV device.

 コンソールディスプレイ502は、例えば、ライフログ情報の表示に用いることができる。コンソールディスプレイ502は、運転席508と助手席509の間のセンターコンソール510のシフトレバー511の近くに配置されている。コンソールディスプレイ502にも、種々のセンサで検知された情報を表示可能である。また、コンソールディスプレイ502には、イメージセンサで撮像された車両周辺の画像を表示してもよいし、車両周辺の障害物までの距離画像を表示してもよい。 The console display 502 can be used, for example, to display life log information. The console display 502 is disposed near the shift lever 511 on the center console 510 between the driver's seat 508 and the passenger seat 509. The console display 502 can also display information detected by various sensors. The console display 502 may also display an image of the surroundings of the vehicle captured by an image sensor, or an image showing the distance to obstacles around the vehicle.

 ヘッドアップディスプレイ503は、運転席508の前方のフロントガラス512の奥に仮想的に表示される。ヘッドアップディスプレイ503は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。ヘッドアップディスプレイ503は、運転席508の正面に仮想的に配置されることが多いため、乗物500の速度や燃料(バッテリ)残量などの乗物500の操作に直接関連する情報を表示するのに適している。 The head-up display 503 is virtually displayed behind the windshield 512 in front of the driver's seat 508. The head-up display 503 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information. Since the head-up display 503 is often virtually positioned in front of the driver's seat 508, it is suitable for displaying information directly related to the operation of the vehicle 500, such as the speed of the vehicle 500 and the remaining fuel (battery) level.

 デジタルリアミラー504は、乗物500の後方を表示できるだけでなく、後部座席の乗員の様子も表示できるため、デジタルリアミラー504の裏面側に重ねてセンサを配置することで、例えばライフログ情報の表示に用いることができる。 The digital rear-view mirror 504 can not only display the rear of the vehicle 500, but can also display the state of passengers in the back seats, so by placing a sensor on the back side of the digital rear-view mirror 504, it can be used to display life log information, for example.

 ステアリングホイールディスプレイ505は、乗物500のハンドル513の中心付近に配置されている。ステアリングホイールディスプレイ505は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、ステアリングホイールディスプレイ505は、運転者の手の近くにあるため、運転者の体温等のライフログ情報を表示したり、AV装置や空調設備等の操作に関する情報などを表示するのに適している。 The steering wheel display 505 is disposed near the center of the steering wheel 513 of the vehicle 500. The steering wheel display 505 can be used to display, for example, at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information. In particular, since the steering wheel display 505 is located near the driver's hands, it is suitable for displaying life log information such as the driver's body temperature, and for displaying information regarding the operation of AV equipment, air conditioning equipment, etc.

 リアエンタテイメントディスプレイ506は、運転席508や助手席509の背面側に取り付けられており、後部座席の乗員が視聴するためのものである。リアエンタテイメントディスプレイ506は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、リアエンタテイメントディスプレイ506は、後部座席の乗員の目の前にあるため、後部座席の乗員に関連する情報が表示される。例えば、AV装置や空調設備の操作に関する情報を表示したり、後部座席の乗員の体温等を温度センサで計測した結果を表示してもよい。 The rear entertainment display 506 is attached to the back side of the driver's seat 508 and passenger seat 509, and is intended for viewing by rear seat passengers. The rear entertainment display 506 can be used to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information, for example. In particular, since the rear entertainment display 506 is located in front of the rear seat passengers, information related to the rear seat passengers is displayed on the rear entertainment display 506. For example, the rear entertainment display 506 may display information related to the operation of AV equipment or air conditioning equipment, or may display the results of measuring the body temperature of the rear seat passengers using a temperature sensor.

 表示装置の裏面側に重ねてセンサを配置し、周囲に存在する物体までの距離を計測することができる構成としてもよい。光学的な距離計測の手法には、大きく分けて、受動型と能動型がある。受動型は、センサから物体に光を投光せずに、物体からの光を受光して距離計測を行うものである。受動型には、レンズ焦点法、ステレオ法、及び単眼視法などがある。能動型は、物体に光を投光して、物体からの反射光をセンサで受光して距離計測を行うものである。能動型には、光レーダ方式、アクティブステレオ方式、照度差ステレオ法、モアレトポグラフィ法、干渉法などがある。上記の表示装置10A1等は、これらのどの方式の距離計測にも適用可能である。上記の実施形態に係る表示装置の裏面側に重ねて配置されるセンサを用いることで、上述した受動型又は能動型の距離計測を行うことができる。 A sensor may be arranged on the back side of the display device to measure the distance to surrounding objects. Optical distance measurement methods are broadly divided into passive and active types. Passive types measure distance by receiving light from an object without projecting light from the sensor onto the object. Passive types include the lens focusing method, the stereo method, and the monocular vision method. Active types measure distance by projecting light onto an object and receiving reflected light from the object with a sensor. Active types include the optical radar method, the active stereo method, the photometric stereo method, the moire topography method, and the interference method. The display device 10A1 and the like described above can be applied to any of these distance measurement methods. By using a sensor arranged on the back side of the display device according to the above embodiment, the above-mentioned passive or active distance measurement can be performed.

<変形例>
 以上、本開示の実施形態について具体的に説明したが、本開示の内容は上述した実施形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
<Modification>
Although the embodiments of the present disclosure have been specifically described above, the contents of the present disclosure are not limited to the above-described embodiments, and various modifications based on the technical ideas of the present disclosure are possible.

 実施形態及び変形例において挙げた構成、方法、工程、形状、材料及び数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料及び数値等を用いてもよい。また、実施形態及び変形例に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。また、実施形態及び変形例に例示した構成要素は、特に断らない限り、適宜組み合わせたり、別の実施形態に適用することができ、図示した構成要素の形状や厚みが適宜変更することもできる。 The configurations, methods, steps, shapes, materials, and values given in the embodiments and modifications are merely examples, and different configurations, methods, steps, shapes, materials, and values may be used as necessary. Furthermore, unless otherwise specified, the materials given as examples in the embodiments and modifications may be used alone or in combination of two or more types. Furthermore, unless otherwise specified, the components given as examples in the embodiments and modifications may be combined as appropriate or applied to other embodiments, and the shapes and thicknesses of the components shown in the drawings may be changed as appropriate.

 例えば、図181に示すように、画素間絶縁層16はなくてもよい。画素間絶縁層16は最初からなくてもよいし、一旦形成した後、エッチング等によって除去されてもよい。 For example, as shown in FIG. 181, the inter-pixel insulating layer 16 may be omitted. The inter-pixel insulating layer 16 may not be present from the beginning, or may be formed and then removed by etching or the like.

 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limiting, and other effects may also be present.

 また、本開示は以下の構成を採用することもできる。
(1)
 複数の画素を有し、
 前記画素は、第1電極と、前記第1電極に対して対向して配置される第2電極と、前記第1電極と前記第2電極との間に設けられ、発光層を含む有機層と、を有し、
 前記画素の画素内領域及び前記画素間の領域である画素間領域に、前記有機層で発光した光を屈折させる屈折層が形成されている、
 表示装置。
(2)
 前記屈折層の屈折率は、当該屈折層と接する保護層の屈折率よりも小さい、
 (1)に記載の表示装置。
(3)
 前記画素内領域に溝部が形成されており、
 少なくとも、前記溝部に前記屈折層が配置される、
 (1)又は(2)に記載の表示装置。
(4)
 前記画素が形成される駆動基板を有し、
 前記溝部の端面と前記駆動基板との間に、少なくとも、前記第1電極、前記第2電極、前記有機層が介在する、
 (3)に記載の表示装置。
(5)
 前記溝部の端面と前記駆動基板との間に、前記第2電極に接続される補助電極、及び、前記補助電極に対して形成される補助電極保護層が介在する、
 (4)に記載の表示装置。
(6)
 前記画素が形成される駆動基板を有し、
 前記溝部の端面と前記駆動基板との間が、非発光領域とされている、
 (4)又は(5)に記載の表示装置。
(7)
 前記画素が形成される駆動基板を有し、
 前記溝部の端面と前記駆動基板との間に、前記第1電極が介在し、前記第2電極及び前記有機層が介在しない、
 (6)に記載の表示装置。
(8)
 前記画素が形成される駆動基板を有し、
 前記溝部の端面と前記駆動基板との間に、前記第1電極が介在せず、前記第2電極及び前記有機層が介在する、
 (6)に記載の表示装置。
(9)
 前記画素内領域における発光強度が不均一である、
 (2)に記載の表示装置。
(10)
 前記画素が形成される駆動基板を有し、
 前記画素内領域における前記溝部の端面と前記駆動基板との間の第1領域における第1発光強度が、前記画素内領域における前記第1領域以外の第2領域における第2発光強度よりも小さい、
 (9)に記載の表示装置。
(11)
 前記第2領域における前記有機層の厚みの一部が、前記第1領域における前記有機層の厚みより小さい、
 (10)に記載の表示装置。
(12)
 前記第2領域における前記第1電極の第1の面に凹部が形成されている、
 (10)又は(11)に記載の表示装置。
(13)
 前記溝部の中心が前記画素内領域の中心からずれた位置に配置される、
 (3)に記載の表示装置。
(14)
 断面視における前記溝部の傾斜が左右で非対称である、
 (13)に記載の表示装置。
(15)
 前記画素から出射される光の出射方向に配置されるカラーフィルタ部を有し、
 前記カラーフィルタ部は、複数のカラーフィルタを有し、
 前記カラーフィルタ間に、反射隔壁部が設けられている、
 (1)から(14)の何れかに記載の表示装置。
(16)
 前記反射隔壁部は、前記屈折層と同じ材料により形成されたものである、
 (15)に記載の表示装置。
(17)
 前記反射隔壁部の高さが前記カラーフィルタの高さと略同一である、
 (15)又は(16)に記載の表示装置。
(18)
 前記第2電極に接続される補助電極を有し、
 前記補助電極が前記第2電極の端部に接続されている、
 (1)から(17)までの何れかに記載の表示装置。
(19)
 前記補助電極が導電性を有する金属により構成されている、
 (18)に記載の表示装置。
(20)
 前記駆動基板は、前記画素毎に設けられた反射層と、前記第1電極に接続される画素接続端子とを有し、
 さらに、
 前記画素接続端子と前記第1電極との接続箇所である第1コンタクト部と、
 前記補助電極と前記第2電極との接続箇所である第2コンタクト部と、
 を有し、
 所定方向から前記第1コンタクト部及び前記第2コンタクト部を視た場合に、前記第1コンタクト部の領域及び前記第2コンタクト部の領域の一方が他方を包含している、
 (5)に記載の表示装置。
(21)
 平面視において、前記第2コンタクト部の形状が環状であり、前記第1コンタクト部の形状が前記第2コンタクト部の形状と同心円状の形状、又は、離散的に配置される筒状の形状である、
 (20)に記載の表示装置。
(22)
 前記有機層から発光される光の出射方向に配置される集光部を有し、
 平面視において、前記第1コンタクト部及び前記第2コンタクト部が、前記集光部の中心に対してオフセットして配置される、
 (20)に記載の表示装置。
(23)
 前記溝部の内側に、前記屈折層を含む2以上の層が積層された多層構造が形成されている、
 (3)に記載の表示装置。
(24)
 前記多層構造を形成する各層の屈折率が互いに異なる、
 (23)に記載の表示装置。
(25)
 断面視において、前記画素の発光領域の幅が前記溝部の底部の幅より大きい、
 (23)に記載の表示装置。
(26)
 所定の個数の前記画素により画素部が構成され、
 前記画素部を構成する少なくとも一つの画素の形状が、他の画素の形状と異なっている、
 (1)に記載の表示装置。
(27)
 前記画素から出射される光の出射方向に配置されるカラーフィルタ部を有し、
 前記カラーフィルタ部は、複数のカラーフィルタを有し、
 前記カラーフィルタは、前記屈折層が前記カラーフィルタの高さ方向の少なくとも一部を貫いている貫通部と、前記屈折層が前記カラーフィルタの高さ方向を貫いていない非貫通部と、を有する、
 (1)に記載の表示装置。
(28)
 前記第1電極と前記第2電極との間に発光制限層が設けられ、画素の配置位置に応じて前記発光制限層の位置が異なっている、
 (1)に記載の表示装置。
(29)
 前記補助電極の一方の面の一部に光反射層が形成されている、
 (5)に記載の表示装置。
(30)
 前記光反射層に対してさらに光反射防止層が積層されている、
 (29)に記載の表示装置。
(31)
 前記補助電極の一方の面のうち、前記溝部の周囲と略対向する面を除く面に前記光反射層が形成されている、
 (29)に記載の表示装置。
(32)
 前記溝部の周面に、少なくとも一つのテラス部が形成されている、
 (3)に記載の表示装置。
(33)
 前記溝部の周面に、当該溝部の端面に向かってテーパー状となる段差部が形成されている、
 (3)に記載の表示装置。
(34)
 第1発光波長λ1を有する第1画素と、
 第2発光波長λ2を有する第2画素と、
 第3発光波長λ3を有する第3画素と、
 を有し、
 前記第1画素、前記第2画素、及び、前記第3画素のそれぞれは電極部を有し、
 それぞれの画素に対して、光の出射方向にカラーフィルタが設けられており、
 前記発光波長がλ1<λ2<λ3の関係を有し、
 前記第1画素が有する前記電極部の重心と、遮光部が被っていない前記カラーフィルタの領域における重心とを結んだ線と、前記電極部の重心から前記カラーフィルタに対する法線とが成す角度を第1角度とし、
 前記第2画素が有する前記電極部の重心と、遮光部が被っていない前記カラーフィルタの領域における重心とを結んだ線と、前記電極部の重心から前記カラーフィルタに対する法線とが成す角度を第2角度とし、
 前記第3画素が有する前記電極部の重心と、遮光部が被っていない前記カラーフィルタの領域における重心とを結んだ線と、前記電極部の重心から前記カラーフィルタに対する法線とが成す角度を第3角度とした場合に、
 第3角度>第2角度>第1角度、又は、第1角度>第2角度>第3角度、が成り立つ
 表示装置。
(35)
 第1電極と、前記第1電極に対して対向して配置される第2電極と、前記第1電極と前記第2電極との間に設けられ、発光層を含む有機層と、を含む発光素子を形成し、
 前記発光素子に対して、保護層を形成し、
 前記保護層に対してレジストを配置し、
 前記保護層の一部を前記第2電極に向かって薄膜化することで、前記保護層の一部に開口部を部分的に形成し、
 前記開口部をさらに形成して当該開口部を前記第2電極と接続することでコンタクトホールを形成し、
 前記開口部の周囲の前記保護層と前記レジストを薄膜化する
 表示装置の製造方法。
(36)
 前記コンタクトホールを形成しつつ、前記開口部の周囲の保護層と前記レジストを薄膜化する
 (35)に記載の表示装置の製造方法。
(37)
 前記コンタクトホールを形成した後に、前記開口部の周囲の保護層と前記レジストを薄膜化する
 (35)に記載の表示装置の製造方法。
(38)
 (1)から(34)までの何れかに記載の表示装置を有する、
 電子機器。
The present disclosure may also employ the following configuration.
(1)
A plurality of pixels are included.
The pixel includes a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer provided between the first electrode and the second electrode and including a light-emitting layer;
a refractive layer that refracts light emitted from the organic layer is formed in an intra-pixel region of the pixel and an inter-pixel region that is a region between the pixels;
Display device.
(2)
The refractive index of the refractive layer is smaller than the refractive index of the protective layer in contact with the refractive layer.
A display device according to (1).
(3)
A groove is formed in the intra-pixel region,
At least the refractive layer is disposed in the groove portion.
The display device according to (1) or (2).
(4)
a driving substrate on which the pixels are formed,
At least the first electrode, the second electrode, and the organic layer are interposed between an end surface of the groove portion and the driving substrate.
The display device according to (3).
(5)
an auxiliary electrode connected to the second electrode and an auxiliary electrode protection layer formed on the auxiliary electrode are interposed between an end surface of the groove portion and the drive substrate;
The display device according to (4).
(6)
a driving substrate on which the pixels are formed,
A non-light emitting region is defined between an end surface of the groove portion and the driving substrate.
The display device according to (4) or (5).
(7)
a driving substrate on which the pixels are formed,
the first electrode is interposed between an end surface of the groove portion and the driving substrate, and the second electrode and the organic layer are not interposed between the end surface of the groove portion and the driving substrate;
The display device according to (6).
(8)
a driving substrate on which the pixels are formed,
the first electrode is not interposed between an end surface of the groove portion and the driving substrate, but the second electrode and the organic layer are interposed between the end surface of the groove portion and the driving substrate;
The display device according to (6).
(9)
The emission intensity in the pixel region is non-uniform.
The display device according to (2).
(10)
a driving substrate on which the pixels are formed,
a first emission intensity in a first region between an end face of the groove portion in the intra-pixel region and the driving substrate is smaller than a second emission intensity in a second region other than the first region in the intra-pixel region;
The display device according to (9).
(11)
a part of a thickness of the organic layer in the second region is smaller than a thickness of the organic layer in the first region;
The display device according to (10).
(12)
a recess is formed on the first surface of the first electrode in the second region;
The display device according to (10) or (11).
(13)
The center of the groove is disposed at a position shifted from the center of the intra-pixel region.
The display device according to (3).
(14)
The inclination of the groove portion in a cross-sectional view is asymmetric between the left and right.
(13) A display device according to (13).
(15)
a color filter portion disposed in a direction in which light is emitted from the pixel;
the color filter portion has a plurality of color filters,
A reflective partition portion is provided between the color filters.
A display device according to any one of (1) to (14).
(16)
The reflective partition portion is formed of the same material as the refractive layer.
(15) A display device according to (15).
(17)
The height of the reflective partition wall is approximately the same as the height of the color filter.
The display device according to (15) or (16).
(18)
an auxiliary electrode connected to the second electrode;
The auxiliary electrode is connected to an end of the second electrode.
A display device according to any one of (1) to (17).
(19)
The auxiliary electrode is made of a conductive metal.
(18) A display device according to (18).
(20)
the driving substrate includes a reflective layer provided for each of the pixels and a pixel connection terminal connected to the first electrode;
moreover,
a first contact portion which is a connection portion between the pixel connection terminal and the first electrode;
a second contact portion which is a connection portion between the auxiliary electrode and the second electrode;
having
When the first contact portion and the second contact portion are viewed from a predetermined direction, one of the region of the first contact portion and the region of the second contact portion includes the other.
The display device according to (5).
(21)
In a plan view, the second contact portion has an annular shape, and the first contact portion has a concentric circular shape with the second contact portion or a cylindrical shape that is discretely arranged.
(20) A display device according to (20).
(22)
a light collecting section disposed in a direction in which light emitted from the organic layer is emitted;
In a plan view, the first contact portion and the second contact portion are disposed to be offset with respect to a center of the light collecting portion.
(20) A display device according to (20).
(23)
A multilayer structure in which two or more layers including the refractive layer are stacked is formed inside the groove portion.
The display device according to (3).
(24)
The refractive indexes of the layers forming the multilayer structure are different from each other.
(23) A display device according to (23).
(25)
In a cross-sectional view, the width of the light-emitting region of the pixel is larger than the width of the bottom of the groove.
(23) A display device according to (23).
(26)
A pixel unit is configured by a predetermined number of the pixels,
At least one pixel constituting the pixel unit has a different shape from the other pixels.
A display device according to (1).
(27)
a color filter portion disposed in a direction in which light is emitted from the pixel;
the color filter portion has a plurality of color filters,
the color filter has a through portion in which the refractive layer passes through at least a part of the color filter in a height direction, and a non-through portion in which the refractive layer does not pass through the color filter in a height direction;
A display device according to (1).
(28)
a light emission limiting layer is provided between the first electrode and the second electrode, and the position of the light emission limiting layer varies depending on the arrangement position of the pixel;
A display device according to (1).
(29)
a light reflecting layer is formed on a part of one surface of the auxiliary electrode;
The display device according to (5).
(30)
An anti-reflection layer is further laminated on the light-reflecting layer.
(29) A display device according to (29).
(31)
the light reflecting layer is formed on one surface of the auxiliary electrode excluding a surface substantially facing the periphery of the groove portion;
(29) A display device according to (29).
(32)
At least one terrace portion is formed on the peripheral surface of the groove portion.
The display device according to (3).
(33)
A step portion is formed on the peripheral surface of the groove portion, the step portion being tapered toward the end surface of the groove portion.
The display device according to (3).
(34)
a first pixel having a first emission wavelength λ1;
a second pixel having a second emission wavelength λ2; and
a third pixel having a third emission wavelength λ3; and
having
each of the first pixel, the second pixel, and the third pixel has an electrode portion;
A color filter is provided for each pixel in the direction in which light is emitted.
The emission wavelengths have a relationship of λ1<λ2<λ3,
a first angle is an angle formed by a line connecting a center of gravity of the electrode portion of the first pixel and a center of gravity of a region of the color filter that is not covered by a light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter;
a second angle is an angle formed by a line connecting a center of gravity of the electrode portion of the second pixel and a center of gravity of a region of the color filter that is not covered by a light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter;
When an angle formed by a line connecting a center of gravity of the electrode portion of the third pixel and a center of gravity of a region of the color filter that is not covered by a light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter is defined as a third angle,
A display device in which the relationship: third angle>second angle>first angle, or first angle>second angle>third angle is satisfied.
(35)
forming a light-emitting element including a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer including a light-emitting layer provided between the first electrode and the second electrode;
forming a protective layer for the light emitting element;
placing a resist on the protective layer;
a portion of the protective layer is thinned toward the second electrode to partially form an opening in the portion of the protective layer;
forming a contact hole by further forming the opening and connecting the opening to the second electrode;
the protective layer and the resist around the opening are thinned.
(36)
The method for manufacturing a display device according to (35), further comprising thinning the protective layer and the resist around the opening while forming the contact hole.
(37)
The method for manufacturing a display device according to (35), further comprising the steps of: forming a contact hole, and thinning the protective layer around the opening and the resist.
(38)
A display device according to any one of (1) to (34),
Electronics.

10A~10I・・・表示装置
11・・・駆動基板
12・・・第1電極
13・・・有機層
14・・・第2電極
21・・・第2保護層
22・・・屈折層
23・・・溝部
23A・・・溝部の端面
27・・・補助電極
101R、101G,101B・・・サブ画素
ARA・・・画素内領域
ARB・・・画素間領域
ARC・・・第1領域
ARD・・・第2領域
10A to 10I: Display device 11: Drive substrate 12: First electrode 13: Organic layer 14: Second electrode 21: Second protective layer 22: Refraction layer 23: Groove portion 23A: End surface 27 of groove portion: Auxiliary electrode 101R, 101G, 101B: Sub-pixel ARA: Intra-pixel region ARB: Inter-pixel region ARC: First region ARD: Second region

Claims (38)

 複数の画素を有し、
 前記画素は、第1電極と、前記第1電極に対して対向して配置される第2電極と、前記第1電極と前記第2電極との間に設けられ、発光層を含む有機層と、を有し、
 前記画素の画素内領域及び前記画素間の領域である画素間領域に、前記有機層で発光した光を屈折させる屈折層が形成されている、
 表示装置。
A plurality of pixels are included.
The pixel includes a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer provided between the first electrode and the second electrode and including a light-emitting layer;
a refractive layer that refracts light emitted from the organic layer is formed in an intra-pixel region of the pixel and an inter-pixel region that is a region between the pixels;
Display device.
 前記屈折層の屈折率は、当該屈折層と接する保護層の屈折率よりも小さい、
 請求項1に記載の表示装置。
The refractive index of the refractive layer is smaller than the refractive index of the protective layer in contact with the refractive layer.
The display device according to claim 1 .
 前記画素内領域に溝部が形成されており、
 少なくとも、前記溝部に前記屈折層が配置される、
 請求項1に記載の表示装置。
A groove is formed in the intra-pixel region,
At least the refractive layer is disposed in the groove portion.
The display device according to claim 1 .
 前記画素が形成される駆動基板を有し、
 前記溝部の端面と前記駆動基板との間に、少なくとも、前記第1電極、前記第2電極、前記有機層が介在する、
 請求項3に記載の表示装置。
a driving substrate on which the pixels are formed,
At least the first electrode, the second electrode, and the organic layer are interposed between an end surface of the groove portion and the driving substrate.
The display device according to claim 3 .
 前記溝部の端面と前記駆動基板との間に、前記第2電極に接続される補助電極、及び、前記補助電極に対して形成される補助電極保護層が介在する、
 請求項4に記載の表示装置。
an auxiliary electrode connected to the second electrode and an auxiliary electrode protection layer formed on the auxiliary electrode are interposed between an end surface of the groove portion and the drive substrate;
The display device according to claim 4.
 前記画素が形成される駆動基板を有し、
 前記溝部の端面と前記駆動基板との間が、非発光領域とされている、
 請求項3に記載の表示装置。
a driving substrate on which the pixels are formed,
A non-light emitting region is defined between an end surface of the groove portion and the driving substrate.
The display device according to claim 3 .
 前記画素が形成される駆動基板を有し、
 前記溝部の端面と前記駆動基板との間に、前記第1電極が介在し、前記第2電極及び前記有機層が介在しない、
 請求項6に記載の表示装置。
a driving substrate on which the pixels are formed,
the first electrode is interposed between an end surface of the groove portion and the driving substrate, and the second electrode and the organic layer are not interposed between the end surface of the groove portion and the driving substrate;
The display device according to claim 6.
 前記画素が形成される駆動基板を有し、
 前記溝部の端面と前記駆動基板との間に、前記第1電極が介在せず、前記第2電極及び前記有機層が介在する、
 請求項6に記載の表示装置。
a driving substrate on which the pixels are formed,
the first electrode is not interposed between an end surface of the groove portion and the driving substrate, but the second electrode and the organic layer are interposed between the end surface of the groove portion and the driving substrate;
The display device according to claim 6.
 前記画素内領域における発光強度が不均一である、
 請求項2に記載の表示装置。
The emission intensity in the pixel region is non-uniform.
The display device according to claim 2 .
 前記画素が形成される駆動基板を有し、
 前記画素内領域における前記溝部の端面と前記駆動基板との間の第1領域における第1発光強度が、前記画素内領域における前記第1領域以外の第2領域における第2発光強度よりも小さい、
 請求項9に記載の表示装置。
a driving substrate on which the pixels are formed,
a first emission intensity in a first region between an end face of the groove portion in the intra-pixel region and the driving substrate is smaller than a second emission intensity in a second region other than the first region in the intra-pixel region;
The display device according to claim 9.
 前記第2領域における前記有機層の一部の厚みが、前記第1領域における前記有機層の厚みより小さい、
 請求項10に記載の表示装置。
a thickness of a portion of the organic layer in the second region is smaller than a thickness of the organic layer in the first region;
The display device according to claim 10.
 前記第2領域における前記第1電極の第1の面に凹部が形成されている、
 請求項10に記載の表示装置。
a recess is formed on the first surface of the first electrode in the second region;
The display device according to claim 10.
 前記溝部の中心が前記画素内領域の中心からずれた位置に配置される、
 請求項3に記載の表示装置。
The center of the groove is disposed at a position shifted from the center of the pixel region.
The display device according to claim 3 .
 断面視における前記溝部の傾斜が左右で非対称である、
 請求項13に記載の表示装置。
The inclination of the groove portion in a cross-sectional view is asymmetric between the left and right.
The display device according to claim 13.
 前記画素から出射される光の出射方向に配置されるカラーフィルタ部を有し、
 前記カラーフィルタ部は、複数のカラーフィルタを有し、
 前記カラーフィルタ間に、反射隔壁部が設けられている、
 請求項1に記載の表示装置。
a color filter portion disposed in a direction in which light is emitted from the pixel;
the color filter portion has a plurality of color filters,
A reflective partition portion is provided between the color filters.
The display device according to claim 1 .
 前記反射隔壁部は、前記屈折層と同じ材料により形成されたものである、
 請求項15に記載の表示装置。
The reflective partition portion is formed of the same material as the refractive layer.
The display device according to claim 15.
 前記反射隔壁部の高さが前記カラーフィルタの高さと略同一である、
 請求項15に記載の表示装置。
The height of the reflective partition wall is approximately the same as the height of the color filter.
The display device according to claim 15.
 前記第2電極に接続される補助電極を有し、
 前記補助電極が前記第2電極の端部に接続されている、
 請求項1に記載の表示装置。
an auxiliary electrode connected to the second electrode;
The auxiliary electrode is connected to an end of the second electrode.
The display device according to claim 1 .
 前記補助電極が導電性を有する金属により構成されている、
 請求項18に記載の表示装置。
The auxiliary electrode is made of a conductive metal.
The display device according to claim 18.
 前記駆動基板は、前記画素毎に設けられた反射層と、前記第1電極に接続される画素接続端子とを有し、
 さらに、
 前記画素接続端子と前記第1電極との接続箇所である第1コンタクト部と、
 前記補助電極と前記第2電極との接続箇所である第2コンタクト部と、
 を有し、
 所定方向から前記第1コンタクト部及び前記第2コンタクト部を視た場合に、前記第1コンタクト部の領域及び前記第2コンタクト部の領域の一方が他方を包含している、
 請求項5に記載の表示装置。
the driving substrate includes a reflective layer provided for each of the pixels and a pixel connection terminal connected to the first electrode;
moreover,
a first contact portion which is a connection portion between the pixel connection terminal and the first electrode;
a second contact portion which is a connection portion between the auxiliary electrode and the second electrode;
having
When the first contact portion and the second contact portion are viewed from a predetermined direction, one of the region of the first contact portion and the region of the second contact portion includes the other.
The display device according to claim 5 .
 平面視において、前記第2コンタクト部の形状が環状であり、前記第1コンタクト部の形状が前記第2コンタクト部の形状と同心円状の形状、又は、離散的に配置される筒状の形状である、
 請求項20に記載の表示装置。
In a plan view, the second contact portion has an annular shape, and the first contact portion has a concentric circular shape with the second contact portion or a cylindrical shape that is discretely arranged.
The display device according to claim 20.
 前記有機層から発光される光の出射方向に配置される集光部を有し、
 平面視において、前記第1コンタクト部及び前記第2コンタクト部が、前記集光部の中心に対してオフセットして配置される、
 請求項20に記載の表示装置。
a light collecting section disposed in a direction in which light emitted from the organic layer is emitted;
In a plan view, the first contact portion and the second contact portion are disposed to be offset with respect to a center of the light collecting portion.
The display device according to claim 20.
 前記溝部の内側に、前記屈折層を含む2以上の層が積層された多層構造が形成されている、
 請求項3に記載の表示装置。
A multilayer structure in which two or more layers including the refractive layer are stacked is formed inside the groove portion.
The display device according to claim 3 .
 前記多層構造を形成する各層の屈折率が互いに異なる、
 請求項23に記載の表示装置。
The refractive indexes of the layers forming the multilayer structure are different from each other.
The display device according to claim 23.
 断面視において、前記画素の発光領域の幅が前記溝部の底部の幅より大きい、
 請求項23に記載の表示装置。
In a cross-sectional view, the width of the light-emitting region of the pixel is larger than the width of the bottom of the groove.
The display device according to claim 23.
 所定の個数の前記画素により画素部が構成され、
 前記画素部を構成する少なくとも一つの画素の形状が、他の画素の形状と異なっている、
 請求項1に記載の表示装置。
A pixel portion is configured by a predetermined number of the pixels,
At least one pixel constituting the pixel unit has a different shape from the other pixels.
The display device according to claim 1 .
 前記画素から出射される光の出射方向に配置されるカラーフィルタ部を有し、
 前記カラーフィルタ部は、複数のカラーフィルタを有し、
 前記カラーフィルタは、前記屈折層が前記カラーフィルタの高さ方向の少なくとも一部を貫いている貫通部と、前記屈折層が前記カラーフィルタの高さ方向を貫いていない非貫通部と、を有する、
 請求項1に記載の表示装置。
a color filter portion disposed in a direction in which light is emitted from the pixel;
the color filter portion has a plurality of color filters,
the color filter has a through portion in which the refractive layer passes through at least a part of the color filter in a height direction, and a non-through portion in which the refractive layer does not pass through the color filter in a height direction;
The display device according to claim 1 .
 前記第1電極と前記第2電極との間に発光制限層が設けられ、画素の配置位置に応じて前記発光制限層の位置が異なっている、
 請求項1に記載の表示装置。
a light emission limiting layer is provided between the first electrode and the second electrode, and the position of the light emission limiting layer varies depending on the arrangement position of the pixel;
The display device according to claim 1 .
 前記補助電極の一方の面の一部に光反射層が形成されている、
 請求項5に記載の表示装置。
a light reflecting layer is formed on a part of one surface of the auxiliary electrode;
The display device according to claim 5 .
 前記光反射層に対してさらに光反射防止層が積層されている、
 請求項29に記載の表示装置。
An anti-reflection layer is further laminated on the light-reflection layer.
30. The display device of claim 29.
 前記補助電極の一方の面のうち、前記溝部の周囲と略対向する面を除く面に前記光反射層が形成されている、
 請求項29に記載の表示装置。
the light reflecting layer is formed on one surface of the auxiliary electrode excluding a surface substantially facing the periphery of the groove portion;
30. The display device of claim 29.
 前記溝部の周面に、少なくとも一つのテラス部が形成されている、
 請求項3に記載の表示装置。
At least one terrace portion is formed on the peripheral surface of the groove portion.
The display device according to claim 3 .
 前記溝部の周面に、当該溝部の端面に向かってテーパー状となる段差部が形成されている、
 請求項3に記載の表示装置。
A step portion is formed on the peripheral surface of the groove portion, the step portion being tapered toward the end surface of the groove portion.
The display device according to claim 3 .
 第1発光波長λ1を有する第1画素と、
 第2発光波長λ2を有する第2画素と、
 第3発光波長λ3を有する第3画素と、
 を有し、
 前記第1画素、前記第2画素、及び、前記第3画素のそれぞれは電極部を有し、
 それぞれの画素に対して、光の出射方向にカラーフィルタが設けられており、
 前記発光波長がλ1<λ2<λ3の関係を有し、
 前記第1画素が有する前記電極部の重心と、遮光部が被っていない前記カラーフィルタの領域における重心とを結んだ線と、前記電極部の重心から前記カラーフィルタに対する法線とが成す角度を第1角度とし、
 前記第2画素が有する前記電極部の重心と、遮光部が被っていない前記カラーフィルタの領域における重心とを結んだ線と、前記電極部の重心から前記カラーフィルタに対する法線とが成す角度を第2角度とし、
 前記第3画素が有する前記電極部の重心と、遮光部が被っていない前記カラーフィルタの領域における重心とを結んだ線と、前記電極部の重心から前記カラーフィルタに対する法線とが成す角度を第3角度とした場合に、
 第3角度>第2角度>第1角度、又は、第1角度>第2角度>第3角度、が成り立つ
 表示装置。
a first pixel having a first emission wavelength λ1;
a second pixel having a second emission wavelength λ2; and
a third pixel having a third emission wavelength λ3; and
having
each of the first pixel, the second pixel, and the third pixel has an electrode portion;
A color filter is provided for each pixel in the direction in which light is emitted.
The emission wavelengths have a relationship of λ1<λ2<λ3,
a first angle is an angle formed by a line connecting a center of gravity of the electrode portion of the first pixel and a center of gravity of a region of the color filter that is not covered by a light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter;
a second angle is an angle formed by a line connecting a center of gravity of the electrode portion of the second pixel and a center of gravity of a region of the color filter that is not covered by a light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter;
When an angle formed by a line connecting a center of gravity of the electrode portion of the third pixel and a center of gravity of a region of the color filter that is not covered by a light-shielding portion, and a normal line from the center of gravity of the electrode portion to the color filter is defined as a third angle,
A display device in which the relationship: third angle>second angle>first angle, or first angle>second angle>third angle is satisfied.
 第1電極と、前記第1電極に対して対向して配置される第2電極と、前記第1電極と前記第2電極との間に設けられ、発光層を含む有機層と、を含む発光素子を形成し、
 前記発光素子に対して、保護層を形成し、
 前記保護層に対してレジストを配置し、
 前記保護層の一部を前記第2電極に向かって薄膜化することで、前記保護層の一部に開口部を部分的に形成し、
 前記開口部をさらに形成して当該開口部を前記第2電極と接続することでコンタクトホールを形成し、
 前記開口部の周囲の前記保護層と前記レジストを薄膜化する
 表示装置の製造方法。
forming a light-emitting element including a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer including a light-emitting layer provided between the first electrode and the second electrode;
forming a protective layer for the light emitting element;
placing a resist on the protective layer;
a portion of the protective layer is thinned toward the second electrode to partially form an opening in the portion of the protective layer;
forming a contact hole by further forming the opening and connecting the opening to the second electrode;
the protective layer and the resist around the opening are thinned.
 前記コンタクトホールを形成しつつ、前記開口部の周囲の保護層と前記レジストを薄膜化する
 請求項35に記載の表示装置の製造方法。
The method for manufacturing a display device according to claim 35 , further comprising the step of thinning the protective layer and the resist around the opening while forming the contact hole.
 前記コンタクトホールを形成した後に、前記開口部の周囲の保護層と前記レジストを薄膜化する
 請求項35に記載の表示装置の製造方法。
The method for manufacturing a display device according to claim 35 , further comprising the steps of: thinning the protective layer around the opening and the resist after the contact hole is formed.
 請求項1に記載の表示装置を有する、
 電子機器。
A display device comprising the display device according to claim 1.
Electronics.
PCT/JP2023/042774 2022-11-30 2023-11-29 Display device, method for manufacturing display device, and electronic apparatus WO2024117193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380074106.3A CN120092518A (en) 2022-11-30 2023-11-29 Display device, manufacturing method for display device, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-192289 2022-11-30
JP2022192289 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024117193A1 true WO2024117193A1 (en) 2024-06-06

Family

ID=91323910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042774 WO2024117193A1 (en) 2022-11-30 2023-11-29 Display device, method for manufacturing display device, and electronic apparatus

Country Status (3)

Country Link
CN (1) CN120092518A (en)
TW (1) TW202430007A (en)
WO (1) WO2024117193A1 (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203770A (en) * 2002-01-08 2003-07-18 Toshiba Corp Image display device
JP2004252406A (en) * 2002-10-03 2004-09-09 Seiko Epson Corp DISPLAY PANEL, ELECTRONIC DEVICE HAVING THE DISPLAY PANEL, AND METHOD OF MANUFACTURING DISPLAY PANEL
JP2007157404A (en) * 2005-12-01 2007-06-21 Seiko Epson Corp Display device and electronic device
JP2007188653A (en) * 2006-01-11 2007-07-26 Seiko Epson Corp LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP2013016466A (en) * 2011-06-30 2013-01-24 Samsung Display Co Ltd Organic light emitting display device
JP2013114772A (en) * 2011-11-25 2013-06-10 Canon Inc Display device
JP2015144087A (en) * 2014-01-31 2015-08-06 ソニー株式会社 Organic electroluminescent device and electronic device
JP2016075868A (en) * 2014-10-09 2016-05-12 Nltテクノロジー株式会社 Pixel array, electro-optical device, electric apparatus, and pixel rendering method
JP2019133816A (en) * 2018-01-31 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Light-emitting device and display device
JP2019186011A (en) * 2018-04-09 2019-10-24 株式会社Joled Electroluminescent element, organic electroluminescent panel, and electronic device
JP2019204664A (en) * 2018-05-23 2019-11-28 株式会社Joled Organic el display panel and method for manufacturing organic el display panel
CN110718579A (en) * 2019-11-18 2020-01-21 昆山梦显电子科技有限公司 Silicon-based micro display screen and preparation method thereof
WO2020162355A1 (en) * 2019-02-08 2020-08-13 ソニー株式会社 Light emitting element and display device
JP2021005083A (en) * 2019-06-25 2021-01-14 東レ株式会社 Yellow color filter and substrate with the same
JP2021125451A (en) * 2020-02-10 2021-08-30 キヤノン株式会社 Light-emitting device, display imaging device, and electronic apparatus
WO2021201144A1 (en) * 2020-03-31 2021-10-07 ソニーグループ株式会社 Display device and electronic apparatus
US20210336224A1 (en) * 2020-04-27 2021-10-28 Samsung Display Co., Ltd. Display device and method of manufacturing the same
WO2022034862A1 (en) * 2020-08-12 2022-02-17 ソニーセミコンダクタソリューションズ株式会社 Display device, manufacturing method of display device, and electronic apparatus using display device
JP2022063741A (en) * 2020-10-12 2022-04-22 キヤノン株式会社 Display device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203770A (en) * 2002-01-08 2003-07-18 Toshiba Corp Image display device
JP2004252406A (en) * 2002-10-03 2004-09-09 Seiko Epson Corp DISPLAY PANEL, ELECTRONIC DEVICE HAVING THE DISPLAY PANEL, AND METHOD OF MANUFACTURING DISPLAY PANEL
JP2007157404A (en) * 2005-12-01 2007-06-21 Seiko Epson Corp Display device and electronic device
JP2007188653A (en) * 2006-01-11 2007-07-26 Seiko Epson Corp LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP2013016466A (en) * 2011-06-30 2013-01-24 Samsung Display Co Ltd Organic light emitting display device
JP2013114772A (en) * 2011-11-25 2013-06-10 Canon Inc Display device
JP2015144087A (en) * 2014-01-31 2015-08-06 ソニー株式会社 Organic electroluminescent device and electronic device
JP2016075868A (en) * 2014-10-09 2016-05-12 Nltテクノロジー株式会社 Pixel array, electro-optical device, electric apparatus, and pixel rendering method
JP2019133816A (en) * 2018-01-31 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Light-emitting device and display device
JP2019186011A (en) * 2018-04-09 2019-10-24 株式会社Joled Electroluminescent element, organic electroluminescent panel, and electronic device
JP2019204664A (en) * 2018-05-23 2019-11-28 株式会社Joled Organic el display panel and method for manufacturing organic el display panel
WO2020162355A1 (en) * 2019-02-08 2020-08-13 ソニー株式会社 Light emitting element and display device
JP2021005083A (en) * 2019-06-25 2021-01-14 東レ株式会社 Yellow color filter and substrate with the same
CN110718579A (en) * 2019-11-18 2020-01-21 昆山梦显电子科技有限公司 Silicon-based micro display screen and preparation method thereof
JP2021125451A (en) * 2020-02-10 2021-08-30 キヤノン株式会社 Light-emitting device, display imaging device, and electronic apparatus
WO2021201144A1 (en) * 2020-03-31 2021-10-07 ソニーグループ株式会社 Display device and electronic apparatus
US20210336224A1 (en) * 2020-04-27 2021-10-28 Samsung Display Co., Ltd. Display device and method of manufacturing the same
WO2022034862A1 (en) * 2020-08-12 2022-02-17 ソニーセミコンダクタソリューションズ株式会社 Display device, manufacturing method of display device, and electronic apparatus using display device
JP2022063741A (en) * 2020-10-12 2022-04-22 キヤノン株式会社 Display device

Also Published As

Publication number Publication date
CN120092518A (en) 2025-06-03
TW202430007A (en) 2024-07-16

Similar Documents

Publication Publication Date Title
US12075657B2 (en) Apparatus, display apparatus, photoelectric conversion apparatus, electronic equipment, illumination apparatus, and moving object
EP4276804A1 (en) Display device and electronic apparatus
JP2022063741A (en) Display device
JP2022080974A (en) Display, photoelectric conversion device, and electronic apparatus
US20240032401A1 (en) Display device and electronic equipment
US20250160132A1 (en) Display device
WO2024117193A1 (en) Display device, method for manufacturing display device, and electronic apparatus
US20240423071A1 (en) Display device and electronic apparatus
KR102733316B1 (en) Organic light emitting display device
KR20250113462A (en) Display device, method for manufacturing display device and electronic device
JP2022069134A (en) Electronic device, display apparatus, photoelectric conversion apparatus, electronic equipment, illumination apparatus, and moving object
WO2024185733A1 (en) Display device and electronic device
WO2025070503A1 (en) Display device and electronic device
WO2024237201A1 (en) Display device and electronic apparatus
WO2025018077A1 (en) Display apparatus and electronic device
WO2025023242A1 (en) Display device and electronic apparatus
WO2024090153A1 (en) Display device, electronic device, and method for manufacturing display device
WO2024080039A1 (en) Display device, electronic apparatus, and method for manufacturing display device
WO2024117219A1 (en) Light-emitting device and electronic equipment
WO2024053611A1 (en) Light-emitting device and electronic equipment
KR20250034959A (en) Display devices and electronic devices
CN119732216A (en) Light emitting device and electronic apparatus
WO2025094849A1 (en) Display device, optical system, and electronic apparatus
WO2025028395A1 (en) Light-emitting device and electronic equipment
WO2025057618A1 (en) Display device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897839

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024561546

Country of ref document: JP