[go: up one dir, main page]

WO2024117133A1 - Vitals measurement device, vitals measurement method, and vitals measurement system - Google Patents

Vitals measurement device, vitals measurement method, and vitals measurement system Download PDF

Info

Publication number
WO2024117133A1
WO2024117133A1 PCT/JP2023/042571 JP2023042571W WO2024117133A1 WO 2024117133 A1 WO2024117133 A1 WO 2024117133A1 JP 2023042571 W JP2023042571 W JP 2023042571W WO 2024117133 A1 WO2024117133 A1 WO 2024117133A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
user
blood pressure
vital sign
chest
Prior art date
Application number
PCT/JP2023/042571
Other languages
French (fr)
Japanese (ja)
Inventor
知紀 八田
貴之 内田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2024117133A1 publication Critical patent/WO2024117133A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Measuring devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing

Definitions

  • This disclosure relates to a vital sign measuring device, a vital sign measuring method, and a vital sign measuring system.
  • Patent Document 1 discloses a vital sign measuring device that can simultaneously measure the subject's heart sounds and/or respiratory sounds in addition to blood pressure, electrocardiogram, blood oxygen saturation, and pulse rate.
  • Patent Document 2 discloses a measuring device that can calculate the pressure value of the respiratory variation of the subject's systolic blood pressure by measuring the subject's pulse pressure and pulse wave.
  • Patent Document 3 describes acquiring physiological information including a respiratory waveform, and activating a blood pressure measuring means to measure blood pressure when this physiological information meets a predetermined condition.
  • the purpose of this disclosure is to improve the accuracy of blood pressure measurements using a vital sign measurement device that is worn on the user's finger or wrist to measure blood pressure.
  • a vital sign measuring device is (1) a vital sign measuring device that includes a measuring unit that has a cuff that is attached to the wrist or finger of a user and that integrally includes a blood pressure measuring unit that measures the blood pressure value of the user, and a vibration information detecting unit that is placed on the chest of the user and obtains vibration information from the surface of the user's chest.
  • the vital sign measuring device of (1) above it is preferable to include a determination unit that determines whether the measuring unit is placed on the body surface near the user's heart based on the vibration information.
  • the vibration information includes at least one of heart sounds, apical pulsation, and lung sounds.
  • the blood pressure measuring unit is configured to start measuring the blood pressure value after the determining unit determines that the measuring unit has been placed on the body surface of the user near the heart.
  • the vibration information detection unit includes a motion sensor that detects chest movement associated with breathing, and further includes a correction unit that corrects the blood pressure value based on the user's respiratory cycle detected by the motion sensor.
  • the motion sensor has an outer periphery that contacts the chest surface when detecting chest movement and a detection unit that is positioned back from the outer periphery, and detects chest movement based on at least one change in the pressure between the chest surface and the detection unit, the contact area between the chest surface and the detection unit, the distance between the chest surface and the detection unit, and the strain applied to the detection unit.
  • the motion sensor detects the depth of breathing of the user, and the correction unit corrects the blood pressure value based on the depth of breathing in addition to the breathing cycle.
  • the blood pressure measuring unit is configured to measure the blood pressure value of the user in accordance with the breathing cycle of the user detected by the motion sensor.
  • a contact means for contacting the vibration information detection unit with the chest surface of the user As an embodiment of the present disclosure, (10) in any of the vital sign measuring devices (1) to (9) above, it is preferable to include a contact means for contacting the vibration information detection unit with the chest surface of the user.
  • (11) in any of the vital sign measuring devices (1) to (10) above it is preferable to include a pressing pressure unit for pressing the vibration information detection unit against the chest surface of the user.
  • a cardiac function parameter acquiring unit that acquires parameters related to the cardiac function of the user.
  • the cardiac function parameter acquisition unit includes a pulse wave sensor provided in the cuff to detect the pulse wave of the user.
  • the cardiac function parameter acquisition unit includes an acoustic sensor that detects at least one of heart sounds and apical pulsation on the chest surface of the user.
  • the cardiac function parameter acquisition unit includes an electrocardiograph that measures the electrocardiogram waveform of the user.
  • the cardiac function parameter acquisition unit includes a first pulse wave sensor attached to the user's finger and a second pulse wave sensor attached to the user's wrist, either the first pulse wave sensor or the second pulse wave sensor is included in the blood pressure measurement unit, and the pulse wave propagation velocity is calculated based on the time difference between the detection of the pulse waves acquired from the first pulse wave sensor and the second pulse wave sensor.
  • the cardiac function parameter acquisition unit identifies the cardiac ejection timing and estimates a part of the arterial pressure waveform based on the ejection timing and the corrected blood pressure value.
  • a vital sign measurement system is (18) a vital sign measurement system including a blood pressure measurement unit having a cuff attached to a user's wrist or finger and measuring the blood pressure value of the user, a measurement unit that is disposed on the user's chest and integrally includes a vibration information detection unit that acquires vibration information on the user's chest body surface, and a determination unit that determines whether the measurement unit is disposed on the body surface near the user's heart based on the vibration information.
  • the measurement unit includes a cardiac function parameter acquisition unit that acquires parameters related to the cardiac function of the user, the cardiac function parameter acquisition unit identifies the cardiac ejection timing, and the control device estimates a portion of the arterial pressure waveform based on the ejection timing and the corrected blood pressure value.
  • the control device estimates the intracardiac pressure based on a portion of the estimated arterial pressure waveform.
  • a vital sign measurement method is a method for simultaneously measuring the user's blood pressure by attaching a cuff on the wrist or finger of a user to a blood pressure measurement unit provided in a measurement unit, and measuring the blood pressure of the user, and placing a vibration information detection unit provided integrally with the blood pressure measurement unit in the measurement unit on the user's chest, and acquiring vibration information from the surface of the user's chest.
  • the present disclosure makes it possible to improve the accuracy of blood pressure measurements using a vital sign measuring device that is worn on a user's finger or wrist to measure blood pressure.
  • FIG. 1 is a block diagram showing the configuration of a vital sign measuring device according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of a control device including the control unit shown in FIG.
  • FIG. 3 is a perspective view showing an example of the measurement unit of FIG.
  • FIG. 4 is a diagram for explaining a measurement method using the vital sign measuring device of FIG.
  • FIG. 5 is a flow chart showing a measurement procedure using the vital sign measuring device of FIG.
  • FIG. 6 is a block diagram showing the configuration of a vital sign measuring device according to the second embodiment.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a first example of the measurement unit in FIG.
  • FIG. 8 is a bottom view of the detection section of the second example of the measurement section of FIG.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a first example of the measurement unit in FIG.
  • FIG. 8 is a bottom view of the detection section of the second example of the measurement section of FIG
  • FIG. 9 is a cross-sectional view showing a schematic configuration of a third example of the measuring unit of FIG.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a fourth example of the measuring unit of FIG.
  • FIG. 11 is a graph showing an example of respiratory variation in blood pressure.
  • FIG. 12 is a diagram showing an example of a respiratory cycle, a cuff pressure, a blood pressure waveform, a K sound waveform, and an electrocardiogram waveform.
  • FIG. 13 is a flowchart showing a measurement procedure using the vital sign measuring device of FIG.
  • FIG. 14 is a block diagram showing the configuration of a vital sign measuring device according to the third embodiment.
  • FIG. 15 shows a portion of a plotted point and estimated arterial pressure waveform using the vital sign measuring device of FIG.
  • FIG. 16 is a flowchart showing a measurement procedure using the vital sign measuring device of FIG.
  • FIG. 17 is a cross-sectional view showing a modified example of the measuring section.
  • FIG. 18 is a cross-sectional view showing the measurement portion of FIG. 17 during blood pressure measurement.
  • FIG. 19 is a cross-sectional view showing a modified example of the measuring unit.
  • FIG. 20 is a diagram for explaining a measurement method of a vital sign promotion device having a measurement unit equipped with another pulse wave sensor to be worn on the wrist.
  • the vital sign measuring device 1 is a device that allows a user to measure vital sign information including blood pressure by himself/herself.
  • the user is, for example, a patient undergoing home treatment.
  • the vital sign measuring device 1 includes a measuring unit 10 and a control unit 21.
  • the measuring unit 10 and the control unit 21 may be provided in the same housing.
  • the control unit 21 may be provided in a control device 20 (see FIG. 2) that is different from the measuring unit 10.
  • a system including the measuring unit 10 and the control device 20 is called a vital sign measuring system.
  • the vital sign measuring device 1 measures blood pressure at the measuring site on the finger or wrist by adjusting the height of the measuring unit 10 to the height of the heart by acquiring vibration information from the chest 11.
  • the accuracy of blood pressure measurement is improved.
  • Blood pressure refers to the pressure that the blood flow exerts on the inside (vascular wall) of the blood vessel 12 (artery) as blood moves through the blood vessel 12.
  • Blood pressure value refers to the specific blood pressure value obtained by measurement.
  • Arterial pressure refers to the pressure that the blood flow pumped out of the heart exerts on the arterial wall.
  • the measurement unit 10 comprises a blood pressure measurement unit 30 that measures the user's blood pressure, and a vibration information detection unit 31 that acquires vibration information from the chest surface 11a, which is the surface of the user's chest 11.
  • the blood pressure measurement unit 30 and the vibration information detection unit 31 are integrally arranged in the same measurement unit 10.
  • "integrally" means that the blood pressure measurement unit 30 and the vibration information detection unit 31 are integrated in terms of hardware in the normal usage state.
  • the blood pressure measurement unit 30 and the vibration information detection unit 31 are arranged in the same housing.
  • the blood pressure measurement unit 30 includes a cuff control unit 32, a cuff 33, a cuff pressure measurement unit 34, and a blood flow detection unit 35.
  • the cuff control unit 32 is a processor that controls the cuff 33.
  • the cuff control unit 32 is configured to be able to send and receive data with the control unit 21.
  • the control unit 21 and the cuff control unit 32 may be the same component configured by the same processor.
  • the cuff control unit 32 and the control unit 21 can send and receive information via a network such as a LAN (local area network) or the Internet.
  • the cuff 33 is attached to the measurement site on the finger 13 or the wrist, and presses against one point of the blood vessel 12.
  • the measurement site is hereinafter described as the finger 13.
  • the term "cuff" refers to an inflatable body that inflates and contracts under external control to press against the measurement site where blood pressure is measured.
  • the cuff 33 can be referred to as an inflatable part.
  • the pressure applied inside the cuff 33 is called the cuff pressure.
  • the cuff 33 may be configured to include a rubber bag into which air can be injected and discharged.
  • the cuff 33 can be positioned to at least partially surround the measurement site when measuring blood pressure.
  • the user can measure blood pressure by inserting the finger 13 into the cuff 33.
  • the accuracy of blood pressure measurement is further improved by adjusting the height of the cuff 33 to the height of the user's heart, which is the subject of blood pressure measurement.
  • the cuff pressure measurement unit 34 includes a sensor that detects the cuff pressure.
  • the cuff pressure measurement unit 34 is configured to be able to send and receive information to and from the control unit 21.
  • the cuff pressure measurement unit 34 may be integrated with the cuff 33.
  • the cuff pressure measurement unit 34 may include a pressure sensor provided inside the cuff 33.
  • the blood flow detection unit 35 includes a blood flow sensor that detects blood flow occurring at a location of the blood vessel 12 compressed by the cuff 33.
  • the blood flow detection unit 35 is attached to the finger 13 downstream of the cuff 33.
  • the blood flow detection unit 35 may include a pressure sensor that detects fluctuations in cuff pressure (pressure pulse wave) reflecting the vibration of the blood vessel wall, an acoustic sensor that detects the sound generated by blood flowing downstream of the cuff 33, a PPG sensor that detects volume changes in the blood vessel 12 by an optical method, or an ultrasonic sensor that measures blood flow by an ultrasonic Doppler method.
  • PPG is an abbreviation of photoplethysmogram, which means a photoelectric volume pulse wave.
  • the blood flow detection unit 35 can detect waveforms corresponding to pressure pulse waves and K sounds (Korotkoff sounds).
  • a sensor that detects the vibration of the blood vessel 12 caused by the heart pumping blood, the volume change of the blood vessel 12, or the change in the speed of the blood flow through the blood vessel 12 is called a pulse wave sensor.
  • the blood flow detection unit 35 is configured to be able to send and receive information to and from the control unit 21.
  • the blood flow detection unit 35 may be integrated with the cuff 33.
  • the blood flow detection unit 35 may be disposed in the main body of the measurement unit 10 as shown in FIG. 3.
  • the vibration information detection unit 31 includes a sensor that detects vibration information acquired on the user's chest surface 11a.
  • the vibration information includes at least one of heart sounds, apical pulsation, lung sounds, and information on the movement of the chest 11 accompanying the user's breathing.
  • Lung sounds include respiratory sounds and adventitious sounds.
  • the vibration information is information acquired near the position of the user's heart.
  • An acoustic sensor can be used to detect heart sounds, apical pulsation, and lung sounds.
  • the data storage unit 36 includes at least one of a semiconductor memory, a magnetic memory, and an optical memory.
  • the data storage unit 36 can sequentially store data detected by the cuff pressure measurement unit 34, the blood flow detection unit 35, and the vibration information detection unit 31.
  • the data stored in the data storage unit 36 is used for processing by the control unit 21.
  • the control unit 21 controls the entire vital sign measuring device 1.
  • the control unit 21 is configured to be able to send and receive information to and from each component of the measuring unit 10.
  • the control unit 21 may perform various information processing based on the data stored in the data storage unit 36.
  • the control unit 21 includes a determination unit 21a that determines whether the measuring unit 10 is placed on the body surface near the user's heart based on the vibration information detected by the vibration information detection unit 31.
  • the vicinity of the heart is a position that contacts the user's chest body surface 11a and is, for example, within 7 cm from the position where the user's heart is located (within 7 cm around the user's heart). Within this range, the error of the measured blood pressure value is within a relatively small range of 5 mmHg.
  • the determination unit 21a may be a module included in the program executed by the control unit 21.
  • the control unit 21 causes the measuring unit 10 to start measuring the blood pressure value.
  • control device 20 can be a computer.
  • the control device 20 can be, for example, a dedicated device, a general-purpose device such as a PC, or a server device belonging to a cloud computing system or other computing system. "PC" is an abbreviation for personal computer.
  • control device 20 can be a smartphone equipped with a specified application.
  • the measurement unit 10 and the control device 20 can be capable of communicating with each other via wireless or wired communication means.
  • the control device 20 includes a control unit 21, a memory unit 22, a communication unit 23, an input unit 24, and an output unit 25.
  • the control unit 21 includes at least one processor, at least one programmable circuit, at least one dedicated circuit, or any combination of these.
  • the processor is a general-purpose processor such as a CPU or GPU, or a dedicated processor specialized for a specific process.
  • CPU is an abbreviation for central processing unit.
  • GPU is an abbreviation for graphics processing unit.
  • An example of the programmable circuit is an FPGA.
  • FPGA is an abbreviation for field-programmable gate array.
  • An example of the dedicated circuit is an ASIC.
  • ASIC is an abbreviation for application specific integrated circuit.
  • the control unit 21 executes processes related to the operation of the control unit 20 while controlling each part of the control unit 20.
  • the memory unit 22 includes at least one semiconductor memory, at least one magnetic memory, at least one optical memory, or any combination thereof.
  • the semiconductor memory is, for example, a RAM or a ROM.
  • RAM is an abbreviation for random access memory.
  • ROM is an abbreviation for read only memory.
  • the RAM is, for example, an SRAM or a DRAM.
  • SRAM is an abbreviation for static random access memory.
  • DRAM is an abbreviation for dynamic random access memory.
  • the ROM is, for example, an EEPROM.
  • EEPROM is an abbreviation for electrically erasable programmable read only memory.
  • the memory unit 22 functions, for example, as a main memory device, an auxiliary memory device, or a cache memory.
  • the memory unit 22 stores data used in the operation of the control device 20 and data obtained by the operation of the control device 20.
  • the communication unit 23 includes at least one communication interface.
  • the communication interface is, for example, a LAN interface, an interface compatible with a mobile communication standard such as LTE, the 4G standard, or the 5G standard, or an interface compatible with a short-range wireless communication standard such as Bluetooth (registered trademark).
  • LTE is an abbreviation for Long Term Evolution.
  • 4G is an abbreviation for 4th generation.
  • 5G is an abbreviation for 5th generation.
  • the communication unit 23 receives data used in the operation of the control device 20, and transmits data obtained by the operation of the control device 20.
  • the input unit 24 includes at least one input interface.
  • the input interface is, for example, a physical key, a capacitive key, a pointing device, a touch screen integrated with a display, an imaging device such as a camera, or a microphone.
  • the input unit 24 accepts an operation to input data used in the operation of the control device 20.
  • the input unit 24 may be connected to the control device 20 as an external input device.
  • a connection interface for example, an interface compatible with standards such as USB, HDMI (registered trademark), or Bluetooth (registered trademark) can be used.
  • USB is an abbreviation for Universal Serial Bus.
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • the output unit 25 includes at least one output interface.
  • the output interface is, for example, a display or a speaker.
  • the display is, for example, an LCD or an organic EL display.
  • LCD is an abbreviation for liquid crystal display.
  • EL is an abbreviation for electro luminescence.
  • the output unit 25 outputs data obtained by the operation of the control device 20.
  • the output unit 25 may be connected to the control device 20 as an external output device instead of being provided in the control device 20.
  • As the connection interface for example, an interface compatible with standards such as USB, HDMI (registered trademark), or Bluetooth (registered trademark) can be used.
  • the functions of the control device 20 are realized by executing the program according to this embodiment in a processor serving as the control unit 21. That is, the functions of the control device 20 are realized by software.
  • the program causes a computer to execute the operations of the control device 20, thereby causing the computer to function as the control device 20. That is, the computer functions as the control device 20 by executing the operations of the control device 20 in accordance with the program.
  • the program may be stored on a non-transitory computer-readable medium.
  • non-transitory computer-readable media include flash memory, magnetic recording devices, optical disks, magneto-optical recording media, and ROMs.
  • the program may be distributed, for example, by selling, transferring, or lending portable media such as SD cards, DVDs, or CD-ROMs on which the program is stored.
  • SD is an abbreviation for Secure Digital.
  • DVD is an abbreviation for digital versatile disc.
  • CD-ROM is an abbreviation for compact disc read only memory.
  • the program may be distributed by storing it in the storage of a server and transferring it from the server to other computers.
  • the program may be provided as a program product.
  • the computer temporarily stores in its main storage device, for example, a program stored in a portable medium or a program transferred from a server.
  • the computer then reads the program stored in the main storage device with a processor, and executes processing in accordance with the read program with the processor.
  • the computer may read the program directly from the portable medium and execute processing in accordance with the program.
  • the computer may execute processing in accordance with the received program each time a program is transferred to the computer from the server. Processing may be executed by a so-called ASP-type service that does not transfer a program from the server to the computer, but instead realizes functions only by issuing execution instructions and obtaining results.
  • "ASP" is an abbreviation for application service provider.
  • a program is information used for processing by a computer, and includes those equivalent to a program. For example, data that is not a direct command to a computer but has properties that define computer processing falls under "those equivalent to a program.”
  • control device 20 may be realized by a programmable circuit or a dedicated circuit as the control unit 21. In other words, some or all of the functions of the control device 20 may be realized by hardware.
  • the measurement unit 10 has a cuff 33 provided on one side surface of the main body 37 (hereinafter referred to as the "first surface S1"), and a vibration information detection unit 31 provided on the other side surface (hereinafter referred to as the "second surface S2").
  • the main body 37 is a housing that houses the circuitry related to the measurement of the measurement unit 10, a small pump that sends air into the cuff 33, and, if the control unit 21 is in the same hardware as the measurement unit 10, the processor of the control unit 21.
  • the main body 37 may be a rectangular parallelepiped as shown in FIG. 3, but is not limited to this.
  • the cuff 33 is a rectangular or strip-shaped component having a bag made of an elastic material such as rubber, with both ends fixable to the first surface S1 of the main body 37, into which air is injected.
  • a space is formed between the cuff 33 and the main body 37 into which the user can insert and remove his/her finger 13.
  • the user inserts his/her finger 13 between the cuff 33 and the main body 37, and then air is injected into the cuff 33 to pressurize it, and the pressure is then gradually reduced, allowing the user's blood pressure to be measured.
  • the cuff 33 may include a cuff pressure measuring unit 34 and a blood flow detection unit 35.
  • the blood flow detection unit 35 may be disposed on a main body 37, the upper part of which is covered by the cuff 33.
  • the vibration information detection unit 31 is an acoustic sensor (piezoelectric sensor or microphone) that detects at least one of heart sounds, apical pulsation, and lung sounds.
  • the vibration information detection unit 31 may be a heart sound sensor. In that case, the vibration information detection unit 31 detects heart sounds including mitral valve closure sounds. The ejection timing may be determined based on the timing at which the mitral valve closure sound is detected.
  • the determination unit 21a of the control unit 21 can determine whether the measurement unit 10 is placed on the body surface near the user's heart based on at least one of heart sounds, apical pulsation, and lung sounds detected by the vibration information detection unit 31.
  • the determination unit 21a may estimate the distance between the heart and the measurement unit 10 from the amplitude (size) of the detected vibration (sound) and the vibration pattern (waveform).
  • the vibration information detection unit 31 may acquire the third sound, etc., which is used in the diagnosis of heart disease.
  • the main body 37 may be provided with a guidance section 37a.
  • the guidance section 37a guides the user to move the measurement section 10 to a position where the vibration information can be obtained, that is, to the chest body surface 11a near the user's heart, under the control of the control section 21.
  • the guidance section 37a may include, for example, multiple LEDs. "LED" is an abbreviation for light-emitting diode.
  • the guidance section 37a may display differently when the measurement section 10 is located near the heart and when it is not located near the heart. For example, a blue LED is lit in the former case, and a red LED is lit in the latter case.
  • a yellow LED may be lit.
  • the guidance section 37a may display differently when the amplitude of the detected vibration is increasing and decreasing. While watching the induction section 37a, the user can move the measurement section 10 in the direction that increases the amplitude of the vibration.
  • the guidance unit 37a is not limited to an LED, and may be a small display. Instead of or in addition to an LED or a small display, the guidance unit 37a may be equipped with a speaker that gives voice guidance instructions. Furthermore, the guidance unit 37a may utilize a display that is the output unit 25 of the control device 20, rather than the main body 37.
  • the measurement unit 10 may further include a cardiac function parameter acquisition unit 38 on the second surface S2 of the main body 37, the cardiac function parameter acquisition unit 38 including a sensor that acquires parameters related to the user's cardiac function.
  • the cardiac function parameter acquisition unit 38 is a detection unit of a different type from the vibration information detection unit 31, and includes an electrocardiograph that acquires an electrocardiogram waveform, and an acoustic sensor that acquires heart sounds and/or apical beats.
  • the cardiac function parameter acquisition unit 38 is not an essential component.
  • the cardiac function parameter acquisition unit 38 is an electrocardiograph
  • two electrodes of the electrocardiograph may be arranged on the second surface S2 of the main body 37, sandwiching the vibration information detection unit 31.
  • one electrode may be arranged on the second surface S2 of the main body 37, and another electrode may be arranged on the first surface S1 of the main body 37 or at a location that contacts the finger 13 or hand.
  • the electrocardiogram waveform is used to measure parameters related to cardiac function, such as the pre-ejection period.
  • the pre-ejection period is also abbreviated as "PEP.”
  • the electrocardiogram waveform is also used to estimate intracardiac pressure.
  • intracardiac pressure means the pressure applied to blood vessels inside the heart or near the heart.
  • Intracardiac pressure is the systolic pressure, diastolic pressure, or mean pressure in each part of the heart.
  • Intracardiac pressure includes, for example, pulmonary artery pressure (systolic pressure, diastolic pressure, mean pressure), right atrial pressure (systolic pressure, diastolic pressure, mean pressure), right ventricular pressure (systolic pressure, diastolic pressure, end-diastolic pressure), left atrial pressure (systolic pressure, diastolic pressure, mean pressure), left ventricular pressure (systolic pressure, diastolic pressure, end-diastolic pressure), and femoral artery pressure.
  • Pulmonary artery pressure is also abbreviated as "PAP.”
  • the cardiac function parameter acquisition unit 38 may acquire the third sound, etc., which is used to diagnose cardiac disease.
  • Step 101 is a step executed by the user.
  • Steps S102 to S108 are steps executed by each part of the vital sign measuring device 1 in response to instructions from the control unit 21.
  • step S101 a user who is measuring their own blood pressure places the measurement unit 10 of the vital sign measuring device 1 on the chest 11. With the finger 13 inserted into the cuff 33, the user faces the second surface S2 of the main body 37 toward the chest surface 11a and presses the vibration information detection unit 31 against the chest surface 11a.
  • step S102 the vital sign measuring device 1 detects that the measuring unit 10 has been placed on the chest 11. Specifically, the vibration information detecting unit 31 detects vibration information from the user's chest surface 11a.
  • step S103 the determination unit 21a of the control unit 21 determines whether or not the measurement unit 10 is placed on the chest surface 11a near the user's heart based on the detected vibration information. If it is determined that the measurement unit 10 is not located on the chest surface 11a near the heart (step S103: NO), the control unit 21 may prompt the user to move the position of the measurement unit 10 by displaying or sounding the guidance unit 37a. In this case, the procedure in FIG. 5 returns to step S101. In step S103, if the determination unit 21a determines that the measurement unit 10 is placed on the chest surface 11a in the vicinity of the user's heart, the process proceeds to the next step S104.
  • step S104 the cuff control unit 32 pressurizes the cuff 33 to an initial pressure.
  • the initial pressure may be approximately the same as the initial pressure in typical non-invasive blood pressure measurements.
  • the initial pressure may be approximately 30 to 40 mmHg added to the systolic blood pressure obtained by a normal measurement of the user.
  • the process of step S104 may be executed using a command from the control unit 21 to the cuff control unit 32 as a trigger.
  • step S105 the cuff control unit 32 starts depressurizing the cuff 33.
  • the cuff control unit 32 may gradually reduce the cuff pressure at a constant depressurization speed V, or may gradually slow down the depressurization speed V.
  • the depressurization speed V may be any speed.
  • the depressurization speed is 3 mmHg/sec.
  • the process of step S105 may be executed with a command from the control unit 21 to the cuff control unit 32 as a trigger.
  • the blood flow detection unit 35 detects blood flow occurring at the location of the blood vessel 12 that is compressed by the cuff 33. Specifically, the blood flow detection unit 35 detects the fluctuation in cuff pressure and the K sound that occurs when blood flow breaks through the cuff 33. The blood flow detection unit 35 outputs signals indicating the waveforms of the pressure pulse wave and the K sound.
  • step S107 the cuff pressure measurement unit 34 detects the cuff pressure.
  • the cuff pressure when blood flow is first detected is the systolic blood pressure.
  • the cuff pressure measurement unit 34 outputs a signal indicating the pressure to the data storage unit 36.
  • step S108 if blood flow was detected in the previous step S106 (step S108: NO), the control unit 21 returns to step S106 and repeats the procedure of steps S106 to S108. As a result, acquisition of the cuff pressure is repeated while blood flow is detected.
  • the cuff pressure gradually decreases, the pressure pulse wave suddenly decreases in step S106, or the K sound is no longer detected.
  • the cuff pressure when blood flow can no longer be detected is the minimum blood pressure.
  • step S108 if blood flow is no longer detected in the previous step S106 (step S108: YES), the control unit 21 stops reducing the cuff pressure and detecting blood flow, and ends the process. This causes the user's blood pressure data, including the systolic blood pressure and diastolic blood pressure, to be stored in the data storage unit 36.
  • the control unit 21 can display the systolic blood pressure and diastolic blood pressure stored in the data storage unit 36 to the user via the output unit 25.
  • the vital sign measuring device 1 can determine whether or not the measuring unit 10 is placed on the body surface near the user's heart using the vibration information obtained from the vibration information detection unit 31.
  • the vital sign measuring device 1 measures blood pressure when the measuring unit 10 is placed on the body surface near the user's heart, and therefore can reduce measurement errors caused by the difference between the height of the blood pressure measuring unit 30 and the height of the heart.
  • the vital sign measuring device 1 has a guidance section 37a that guides the user to move the measuring section 10 closer to the position of the user's heart, making it possible to perform measurements with little error.
  • the vital sign measuring device 1 has the cardiac function parameter acquisition unit 38 shown in FIG. 3, in addition to measuring blood pressure, it can measure cardiac function parameters other than blood pressure, such as electrocardiogram waveforms, either simultaneously with blood pressure measurement or in parallel with a short time lag.
  • the vital sign measuring device 1A not only guides the position of the measuring unit 10A to be close to the user's heart, but also corrects respiratory fluctuations in the measured blood pressure value.
  • Respiratory fluctuations refer to changes in blood pressure that accompany breathing. It is known that human blood pressure decreases when inhaling and increases when exhaling. The range of fluctuations varies depending on the depth of breathing. The depth of breathing refers to the ventilation volume in one breath.
  • the vital sign measuring device 1A has a measuring unit 10A with a different configuration from the measuring unit 10 of the vital sign measuring device 1 according to the first embodiment. Furthermore, the vital sign measuring device 1A includes a motion sensor 51 that detects the movement of the chest 11 accompanying breathing, as one aspect of the vibration information detection unit 31. The motion sensor 51 can detect the depth of breathing (tidal volume). Furthermore, the vital sign measuring device 1A includes a respiratory cycle calculation unit 21b and a blood pressure value correction calculation unit 21c as functional blocks of the control unit 21. The respiratory cycle calculation unit 21b detects the respiratory cycle based on the movement of the user's chest 11 detected by the motion sensor 51. The blood pressure value correction calculation unit 21c corrects the blood pressure value based on the user's respiratory cycle. The blood pressure value correction calculation unit 21c is a correction unit.
  • the measuring unit 10A of the vital sign measuring device 1A can have various configurations. Configuration examples of the measuring unit 10A will be described with reference to Figs. 7 to 13.
  • the measurement unit 10A has a cuff 33 provided on a first surface of the main body 37.
  • a holding portion 52 of a motion sensor 51 is fixed to a second surface of the main body 37.
  • the holding portion 52 has an outer periphery 52a that protrudes toward the chest surface 11a and contacts the chest surface 11a during measurement, and an inner surface of the outer periphery 52a that recedes from the outer periphery 52a toward the blood pressure measurement unit 30.
  • a detection unit 53 is disposed on this inner surface. The detection surface of the detection unit 53 is positioned receding (setbacked) from the surface of the outer periphery 52a that contacts the chest surface 11a.
  • the detection unit 53 is a pressure sensor that measures the contact pressure on the chest surface 11a.
  • the pressure sensor may be a sensor using a piezoelectric element, but is not limited to this.
  • the detection unit 53 measures the change in pressure sequentially in a time series.
  • the detection unit 53 stores the time series data of pressure in the data storage unit 36 and/or transmits it to the control unit 21.
  • the user When performing a measurement using the vital sign measuring device 1A, the user inserts a finger 13 into the cuff 33 and places the bottom surface of the outer periphery 52a of the holding unit 52 in contact with the chest surface 11a.
  • the chest 11 expands when inhaling and contracts when exhaling due to the movement of the skeleton and muscles surrounding the lungs.
  • the curvature of the chest surface 11a increases, and the chest surface 11a protrudes from the position where it contacts the outer periphery 52a toward the detecting unit 53 and comes into contact with the detecting unit 53.
  • the chest 11 contracts the opposite occurs.
  • the respiratory cycle information includes the length of time it takes for one breath, information on the timing of changes in the respiratory cycle, and the ventilation volume per breath, i.e., cycle information, phase information, and respiratory depth information.
  • Fig. 8 is a bottom view of a detection unit 53 of the measurement unit 10A having a similar configuration to the measurement unit 10A shown in Fig. 7.
  • the detection unit 53 is configured to include a large number of detection elements 53a arranged in an array.
  • Each detection element 53a is a sensor that detects contact with the chest surface 11a. By counting the number of detection elements 53a in contact with the chest surface 11a, the contact area between the chest surface 11a and the detection unit 53 can be calculated.
  • Each detection element 53a may be a piezoelectric element, or may be a sensor that detects other types of contact.
  • the user when a user performs a measurement using the vital sign measuring device 1A, the user inserts a finger 13 into the cuff 33 in the same manner as the measuring unit 10A of the first example, and contacts the bottom of the outer periphery 52a of the holding unit 52 with the chest surface 11a.
  • the chest surface 11a juts out towards the detection unit 53, increasing the contact area between the chest surface 11a and the detection unit 53, and conversely, when exhaling, the contact area decreases. Therefore, from the time series change in the contact area acquired by the detection unit 53, information on the user's respiratory cycle can be obtained, in the same manner as with the detection unit of the first example.
  • FIG. 9 (Third example of the measuring section) A schematic configuration of a third example of the measurement unit 10A will be described with reference to Fig. 9.
  • Fig. 9 employs a detection unit 54 different from the detection unit 53 of the first example in the measurement unit 10A shown in Fig. 7.
  • the detection unit 54 is a distance sensor built into the center of the holding unit 52.
  • the detection unit 54 is positioned retracted toward the blood pressure measurement unit 30 from the position where the outer circumferential portion 52a contacts the chest surface 11a.
  • the detection unit 54 can measure the distance between the detection unit 54 and the user's chest surface 11a.
  • the detection unit 54 includes, for example, an infrared distance sensor, a camera, and an ultrasonic sensor.
  • the user when a user performs a measurement using the vital sign measuring device 1A, the user inserts a finger 13 into the cuff 33 in the same manner as the measuring unit 10A of the first example, and contacts the bottom of the outer periphery 52a of the holding unit 52 with the chest surface 11a.
  • the chest surface 11a juts out towards the detection unit 53, so the distance between the chest surface 11a and the detection unit 54 becomes smaller, and conversely, when exhaling, the distance becomes larger. Therefore, information about the user's respiratory cycle can be obtained from the time series change in the distance between the chest surface 11a and the detection unit 54 acquired by the detection unit 54.
  • FIG. 10 (Fourth Example of Measuring Unit) A schematic configuration of a fourth example of the measurement unit 10A will be described with reference to Fig. 10.
  • Fig. 10 employs a holding unit 52 and a detection unit 55 different from the detection unit 53 of the first example in the measurement unit 10A shown in Fig. 7.
  • the holding unit 52 is made of a material that is stretchable and elastic.
  • the detection unit 55 can be a strain sensor embedded in the holding unit 52 in a direction along the chest surface 11a during measurement.
  • the detection unit 55 outputs deformations such as expansion and contraction applied to the holding unit 52 as electrical signals to the data storage unit 36 and/or the control unit 21.
  • the control unit 21 can obtain information about the user's respiratory cycle from the time-series changes in the strain detected by the detection unit 55.
  • the human breathing cycle includes an inhalation period and an exhalation period.
  • human blood pressure is lower during the inhalation period.
  • the blood pressure value measured during the inhalation period is lower than the blood pressure value that would have been obtained during the exhalation period. If the timing of detecting the systolic or diastolic blood pressure is during the inhalation period, the blood pressure value is measured as being lower.
  • the respiratory cycle calculation unit 21b and the blood pressure value correction calculation unit 21c of this embodiment correct the blood pressure value during the inhalation period to the blood pressure value that would have been obtained during the exhalation period.
  • the method of correcting the blood pressure value is not limited to this, and a method of correcting the blood pressure value during the exhalation period to the blood pressure value during the inhalation period, or a method of correcting both the blood pressure values during the inhalation period and the exhalation period may also be adopted.
  • ECG in FIG. 12 is an abbreviation of electrocardiogram, which means an electrocardiogram measured by an electrocardiograph.
  • An electrocardiograph is also called an ECG sensor.
  • the cardiac output timing is obtained from the signal of the electrocardiograph.
  • the output timing is treated as the reference timing of the heart.
  • the reference timing is a timing that can be identified for each heartbeat.
  • an electrocardiograph is not an essential component.
  • the measurement unit 10A detects the movement of the chest 11 based on at least one change in the pressure between the chest surface 11a and the detection unit 53, the contact area between the chest surface 11a and the detection unit 53, the distance between the chest surface 11a and the detection unit 54, and the strain applied to the detection unit 55.
  • the respiratory cycle calculation unit 21b is configured to determine the respiratory cycle, the timing (phase) of breathing, and the depth of breathing based on time-series data indicating the movement of the chest 11 obtained from the motion sensor 51.
  • the amplitude A corresponds to the correction value range.
  • the amplitude A is determined based on the depth of breathing. For example, the amplitude A is set to 10 mmHg.
  • the blood pressure value correction calculation unit 21c may set the amplitude A based on waveform data showing the blood pressure waveform obtained by performing an invasive blood test. In other words, the correction value range may be determined based on the blood pressure waveform obtained by an invasive blood test.
  • the input unit 24 of the control device 20 may be used as an interface for inputting the blood pressure waveform.
  • the frequency f corresponds to the reciprocal of the respiratory cycle.
  • the time t is the elapsed time from the start of inspiration to the blood flow timing.
  • the blood pressure value correction calculation unit 21c can calculate the corrected systolic and diastolic blood pressures.
  • Steps S201 to S205 are the same as steps S101 to S105 in FIG. 5.
  • step S206 the motion sensor 51 starts detecting the movement of the user's chest. Step S206 may be performed before step S205.
  • steps S207 to S209 are basically the same as steps S106 to S108 in FIG. 5, but during steps S207 to S209, the motion sensor 51 continuously detects the motion of the user's chest 11. The motion sensor 51 outputs time-series data on the motion of the chest 11 to the data storage unit 36 and/or the control unit 21. After blood flow is no longer detected in step S209 (step S209: YES), the control unit 21 proceeds to the processing of step S210.
  • the respiratory cycle calculation unit 21b of the control unit 21 estimates a respiratory waveform based on data indicating chest movement detected by the movement sensor 51.
  • the respiratory waveform includes information on the respiratory cycle, the timing (phase) at which inspiration and expiration begin, and the depth (amplitude) of breathing.
  • the blood pressure value corrected by the blood pressure value correction calculation unit 21c is not influenced by the breathing state of the user, i.e., both or either of the time of inhalation and exhalation, and a consistent blood pressure value can be calculated.
  • the vital sign measuring device 1A in addition to the effects of the vital sign measuring device 1 according to the first embodiment, eliminates fluctuations in the measurement results caused by respiratory fluctuations in blood pressure measurement, enabling consistent measurements. This increases the reliability of the measured blood pressure values, including the systolic and diastolic blood pressures.
  • the motion sensor 51 may detect the motion of the chest 11 of the user, and the control unit 21 may estimate the respiratory cycle before starting to inflate the cuff 33.
  • the control unit 21 may measure the blood pressure value in accordance with the detected respiratory cycle of the user. For example, the control unit 21 may synchronize the start of depressurization of the cuff 33 with a predetermined timing of the respiratory cycle. For example, the control unit 21 may match the start of depressurization of the cuff 33 with the start of the expiratory period of the user. This allows the tendency of fluctuations in the systolic and diastolic blood pressures caused by respiratory fluctuations to be similar between measurements when the user performs multiple measurements.
  • control unit 21 may adjust the timing of starting depressurization of the cuff 33 so that the time when the systolic and/or diastolic blood pressure of the user is obtained is the expiratory period (or the inhalation period). This allows blood pressure measurement to be performed in a manner that is less susceptible to the influence of respiratory fluctuations that differ from measurement to measurement.
  • FIG. 14 An overview of a vital sign measuring device 1B according to the third embodiment will be described with reference to Fig. 14.
  • the vital sign measuring device 1B guides the position of a measuring unit 10B to be close to the user's heart and corrects respiratory variation in the measured blood pressure value, and also estimates an arterial pressure waveform from the blood pressure value corrected for respiratory variation.
  • FIG. 14 components that are the same as or similar to the vital sign measuring device 1 according to the first embodiment shown in FIG. 1 and the vital sign measuring device 1A shown in FIG. 6 are given the same reference numerals as the vital sign measuring devices 1 and 1A. Furthermore, for components that are the same as or similar to the vital sign measuring devices 1 and 1A, descriptions that overlap with the first and second embodiments will be omitted.
  • the vital sign measuring device 1B includes a cardiac function parameter acquiring unit 38 as an essential component of the measuring unit 10B.
  • the cardiac function parameter acquiring unit 38 is an electrocardiograph or a cardiac sound sensor capable of identifying the cardiac pumping timing for each heartbeat.
  • the pumping timing is the timing at which the Q wave is detected by the electrocardiograph.
  • the timing at which blood flow is detected at the user's measurement site by the blood flow detecting unit 35 is called the blood flow timing.
  • the blood flow timing can be identified from the waveform of the K sound detected by the blood flow detecting unit 35.
  • the time interval from when the Q wave is detected by the electrocardiograph to when the K sound is detected by the blood flow detecting unit 35 is displayed as a time difference in FIG. 12.
  • the cardiac function parameter acquiring unit 38 may be a cardiac sound sensor. In that case, the cardiac function parameter acquiring unit 38 detects heart sounds including the mitral valve closure sound.
  • the pumping timing may be determined based on the timing at which the mitral valve closure sound is detected.
  • the arterial pressure waveform estimation unit 21d of the control unit 21 acquires the ejection timing and blood flow timing stored for each heartbeat from the measurement unit 1B, and calculates the time difference between the ejection timing and blood flow timing.
  • the arterial pressure waveform estimation unit 21d generates plot data by associating the time difference for each heartbeat with the blood pressure value corrected by the blood pressure value correction calculation unit 21c.
  • the control unit 21 estimates a part of the arterial pressure waveform indicating the change in arterial pressure over time based on the generated plot data.
  • the arterial pressure waveform estimation unit 21d estimates a part of the arterial pressure waveform based on the time difference between the ejection timing acquired by the cardiac function parameter acquisition unit 38 and the blood flow timing acquired by the blood flow detection unit 35, and the blood pressure value measured by the cuff pressure measurement unit 34 and corrected for respiratory fluctuations. Specifically, the arterial pressure waveform estimation unit 21d performs spline interpolation on the plotted points to estimate the arterial pressure waveform curve.
  • the arterial pressure waveform estimation unit 21d can estimate the arterial pressure waveform near the aortic valve from the arterial pressure waveform at the measurement site.
  • FIG. 15 shows an example of a portion of the arterial pressure waveform estimated by the arterial pressure waveform estimation unit 21d.
  • the data shown by the open circles corresponds to the data shown by the open circles in FIG. 12. These data are shifted to the higher pressure side by correction.
  • Steps S301 to S306 are the same as steps S201 to S206 in FIG. 13.
  • step S307 the cardiac function parameter acquisition unit 38 starts detecting cardiac output, and thereafter repeatedly detects cardiac output.
  • the cardiac function parameter acquisition unit 38 is an electrocardiograph, and repeatedly measures the user's electrocardiogram waveform.
  • the cardiac function parameter acquisition unit 38 outputs the cardiac output timing each time it measures an electrocardiogram waveform.
  • Steps S308 to S312 are the same as steps S206 to S211 in FIG. 13, respectively.
  • step S313 the arterial pressure waveform estimation unit 21d estimates the arterial pressure waveform based on the time difference between the cardiac pumping timing detected by the cardiac function parameter acquisition unit 38 and the blood flow timing acquired by the blood flow detection unit 35, and the blood pressure value corrected in step S312.
  • the arterial pressure waveform which indicates the change in arterial pressure over time, can be estimated non-invasively and with high accuracy.
  • the arterial pressure waveform can be used to estimate intracardiac pressures, including the pulmonary artery pressure waveform, the left ventricular pressure waveform, and LVEDP.
  • LVEDP is an abbreviation for left ventricular end-diastolic pressure.
  • the measurement unit 10C in FIG. 17 includes a blood pressure measurement unit 30 and a vibration information detection unit 31.
  • the blood pressure measurement unit 30 includes a cuff 61 through which the user passes the finger 13 during measurement, and a housing 62 that covers the periphery of the cuff 61 when the user passes the finger 13 and has an opening at a lower part 62a of the cuff 61.
  • the vibration information detection unit 31 includes an elastic body 63 and a detection unit 64 provided at the opening part of the housing 62.
  • the elastic body 63 is a membrane-like or thin plate-like member made of an elastic material such as rubber, which is provided so as to cover the opening part of the housing 62.
  • the cuff 61 and the elastic body 63 constitute a pressing pressure unit for pressing the detection unit 64 against the chest surface 11a of the user.
  • the detection unit 64 is, for example, a piezoelectric sensor for detecting heart sounds.
  • the detection unit 64 corresponds to the vibration information detection unit 31 in FIG. 1.
  • electrode pads 65 of an electrocardiograph which is the cardiac function parameter acquisition unit 38, are provided on the underside of the lower portion 62a of the housing 62.
  • the underside of the electrode pads 65 which faces the user's chest body surface 11a, is located closer to the user's chest body surface 11a than the underside of the detection unit 64.
  • the electrode pads 65 are not an essential component when this measurement unit 10C is used in the first and second embodiments.
  • the measurement of blood pressure values using the measurement unit 10C of FIG. 17 will be described.
  • the cuff 61 When the cuff 61 is pressurized with the finger 13 inserted during measurement, the cuff 61 expands and pushes down the elastic body 63. This causes the detection unit 64 to be pressed against the chest surface 11a of the user. This allows the detection unit 64 to be pressed against the chest surface 11a with a stable pressure, making it possible to accurately acquire heart sounds.
  • the measurement unit 10C has a blood pressure measurement unit 30, a vibration information detection unit 31, and a cardiac function parameter acquisition unit 38, it is possible to measure a large amount of vital information with a single measurement unit 10C.
  • the measurement unit 10C can be used in any of the first to third embodiments.
  • the measurement unit 10C may be configured to place suction cups on the electrode pads 65 and to bring the vibration information detection unit 31 and the electrode pads 65 into close contact with the user's chest surface 11a.
  • the suction cups are a means for bringing the vibration information detection unit 31 into close contact with the user's chest surface 11a.
  • the measurement unit 10D in Fig. 19 has a cuff 71 arranged on a housing 72 as the blood pressure measurement unit 30.
  • the cuff 71 has a configuration similar to that of the cuff 33 of the first embodiment shown in Fig. 3.
  • the housing 72 has a hat-like shape with a recessed central portion 72a of a flat plate-like member.
  • the upper surface of the central portion 72a of the housing 72 is a flat plane, and the cuff 71 is arranged on this central portion 72a.
  • a balloon 73 that can be expanded and contracted by injecting and expelling air from an external pump is placed in the recess in the central portion 72a of the housing 72 when viewed from below.
  • a membrane-like or thin-plate-like elastic body 74 made of rubber or the like is placed on the opening side of the recess in the housing 72, which is the side of the balloon 73 facing the chest body surface 11a during measurement.
  • a detection unit 75 is placed on the side of the elastic body 74 facing the chest body surface 11a.
  • the detection unit 75 is, for example, a piezoelectric sensor for detecting heart sounds.
  • the detection unit 75 corresponds to the vibration information detection unit 31 in FIG. 1.
  • the balloon 73 and elastic body 74 are included in a pressing pressure unit for pressing the detection unit 75 against the chest body surface 11a of the user.
  • electrode pads 76 of an electrocardiograph constituting the cardiac function parameter acquisition unit 38 are provided on the outer peripheral portion 72b, which is the outer peripheral side of the recess of the housing 72 and faces the chest body surface 11a.
  • the underside of the electrode pads 76 which faces the user's chest body surface 11a, is located closer to the user's chest body surface 11a than the underside of the detection unit 75.
  • the electrode pads 76 are not an essential component when this measurement unit 10D is used in the first and second embodiments.
  • the measuring unit 10D pressurizes the cuff 71 with the finger 13 inserted, and at the same time, air is injected into the balloon 73.
  • the balloon 73 expands as a result of the air being injected, and presses down on the elastic body 74.
  • This causes the detection unit 75 to be pressed against the user's chest surface 11a. Therefore, the detection unit 75 is pressed against the chest surface 11a with a stable pressure.
  • the measuring unit 10D has a detection unit 75 that detects vibration information and electrode pads 76, it is possible to measure a variety of vital information including blood pressure, vibration information, and electrocardiogram waveforms with a single measuring unit 10D.
  • the measurement unit 10D makes it possible to press the detection unit 75 against the user's chest surface 11a using a pressing pressure unit provided separately from the cuff 71. Therefore, when using the measurement unit 10D, the pressure applied to the detection unit 75 can be controlled independently of the pressure applied to the cuff 71. This allows the detection unit 75 to be pressed against the user's chest surface 11a with a more stable pressure, making it possible to perform more stable measurements and obtain heart sounds with high accuracy.
  • the measurement unit 10D in FIG. 19 may be configured to place suction cups on the electrode pads 76 and bring the detection unit 75 into close contact with the user's chest surface 11a.
  • the suction cups are a means for bringing the detection unit 75, which is the vibration information detection unit 31, into close contact with the user's chest surface 11a.
  • a measurement unit 10E shown in Fig. 20 further includes a pulse wave sensor 81 (second pulse wave sensor) that is attached to the wrist of the user and detects pulse waves in the measurement unit 10 of the first embodiment.
  • This measurement unit 10E includes a pulse wave sensor (first pulse wave sensor) that is attached to a finger 13 as a blood flow detection unit 35 included in a blood pressure measurement unit 30.
  • the control unit 21 can calculate the pulse wave velocity of the user based on the time difference between the pulse wave detected by the blood flow detection unit 35 and the pulse wave detected by the pulse wave sensor 81.
  • the pulse wave velocity is used as an index for measuring blood vessel blockage and arteriosclerosis.
  • blood pressure is measured on a finger
  • the vital sign measuring device of the present disclosure also includes a device that measures blood pressure on the wrist.
  • blood pressure measurement and arterial pressure waveform estimation are performed by the same control unit, but these may be performed by separate hardware.
  • a computer located in a remote location such as a hospital may acquire the measurement data stored in the memory unit 22 of the control device 20 and estimate the arterial pressure waveform.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Vascular Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pulmonology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

This vitals measurement device is provided with: a blood pressure measurement unit that has a cuff to be worn around a wrist or a finger of a user and measures a blood pressure value of the user; and a measurement unit that is placed on a breast area of the user and integrally includes a vibration information detection unit for acquiring vibration information on the breast area body surface of the user.

Description

バイタル測定装置、バイタル測定方法、及びバイタル測定システムVital Sign Measuring Device, Vital Sign Measuring Method, and Vital Sign Measuring System
 本開示は、バイタル測定装置、バイタル測定方法、及びバイタル測定システムに関する。 This disclosure relates to a vital sign measuring device, a vital sign measuring method, and a vital sign measuring system.
 使用者が指又は手首に装着して血圧測定を行う装置が開発されている。また、血圧測定に加え、他のバイタル情報を測定する機能を備えた装置が提案されている。例えば、特許文献1には、血圧、心電図、血中酸素飽和度、及び脈拍に加えて、被験者の心音及び/又は呼吸音を同時に測定できるバイタルサイン測定装置が開示されている。特許文献2には、被験者の脈圧と、脈波とを測定することにより、被験者の収縮期血圧の呼吸性変動の圧力値を算出することができる測定装置が開示されている。特許文献3には、呼吸波形を含む生理情報を取得し、この生理情報が所定の条件を満たしたときに血圧測定手段を起動して血圧を測定することが記載されている。 Devices that a user wears on a finger or wrist to measure blood pressure have been developed. Devices have also been proposed that have the function of measuring other vital information in addition to blood pressure measurement. For example, Patent Document 1 discloses a vital sign measuring device that can simultaneously measure the subject's heart sounds and/or respiratory sounds in addition to blood pressure, electrocardiogram, blood oxygen saturation, and pulse rate. Patent Document 2 discloses a measuring device that can calculate the pressure value of the respiratory variation of the subject's systolic blood pressure by measuring the subject's pulse pressure and pulse wave. Patent Document 3 describes acquiring physiological information including a respiratory waveform, and activating a blood pressure measuring means to measure blood pressure when this physiological information meets a predetermined condition.
特開2019-037686号公報JP 2019-037686 A 特開2016-137087号公報JP 2016-137087 A 特開2009-039352号公報JP 2009-039352 A
 従来の電子血圧計ではオシロメトリック法が主に用いられている。オシロメトリック法では上腕、手首もしくは指先等の測部位に巻いたカフに空気を加圧して血管を圧迫し、徐々に空気を排気して減圧する際に、動脈圧に依存する血管壁の振動をカフに生じる振動として検知することにより、血圧値を求めている。しかし、カフの減圧過程において測定される血圧値は、測定部位の高さによる変動の影響を受けることが知られている。そのため、測定部位の高さが一定でなければ、正確な血圧測定を行う阻害要因となる。正確な測定のため、血圧測定では、測定部位を心臓の高さに合わせて測定を行う。上述の引用文献1~3に開示される技術では、血圧測定をする際に測定部位の高さが使用者の使用方法の正否に依存することなく必然的に心臓の高さとなるための機構は設けられていなかった。  Conventional electronic blood pressure monitors mainly use the oscillometric method. In the oscillometric method, air is pressurized into a cuff wrapped around a measurement site such as the upper arm, wrist, or fingertip to compress the blood vessels, and the air is gradually released to reduce the pressure, and the blood pressure value is obtained by detecting the vibrations of the blood vessel walls, which depend on the arterial pressure, as vibrations generated in the cuff. However, it is known that the blood pressure value measured during the cuff decompression process is affected by fluctuations due to the height of the measurement site. Therefore, if the height of the measurement site is not constant, it becomes an obstacle to accurate blood pressure measurement. For accurate measurement, the measurement site is aligned with the height of the heart. The technologies disclosed in the above-mentioned cited documents 1 to 3 do not have a mechanism for ensuring that the height of the measurement site is necessarily at the height of the heart when measuring blood pressure, regardless of whether the user is using the device correctly or not.
 したがって、これらの点に着目してなされた本開示の目的は、使用者の指または手首に装着して血圧測定を行うバイタル測定装置による血圧測定の正確性を向上させることにある。 Therefore, the purpose of this disclosure, which has been made with these points in mind, is to improve the accuracy of blood pressure measurements using a vital sign measurement device that is worn on the user's finger or wrist to measure blood pressure.
 本開示の一態様としてのバイタル測定装置は、(1)使用者の手首又は指に装着されるカフを有し、前記使用者の血圧値を測定する血圧測定部と、前記使用者の胸部に配置され、前記使用者の胸部体表で振動情報を取得する振動情報検出部とを一体的に含む測定部を備えるバイタル測定装置である。 A vital sign measuring device according to one aspect of the present disclosure is (1) a vital sign measuring device that includes a measuring unit that has a cuff that is attached to the wrist or finger of a user and that integrally includes a blood pressure measuring unit that measures the blood pressure value of the user, and a vibration information detecting unit that is placed on the chest of the user and obtains vibration information from the surface of the user's chest.
 本開示の一実施形態として、(2)上記(1)のバイタル測定装置において、前記振動情報に基づいて、前記測定部が前記使用者の心臓近傍の体表に配置されているか否かを判定する判定部を備えることが好ましい。 As an embodiment of the present disclosure, (2) in the vital sign measuring device of (1) above, it is preferable to include a determination unit that determines whether the measuring unit is placed on the body surface near the user's heart based on the vibration information.
 本開示の一実施形態として、(3)上記(2)のバイタル測定装置において、前記振動情報は、心音、心尖拍動及び肺音の少なくとも何れかを含むことが好ましい。 As an embodiment of the present disclosure, (3) in the vital sign measuring device of (2) above, it is preferable that the vibration information includes at least one of heart sounds, apical pulsation, and lung sounds.
 本開示の一実施形態として、(4)上記(2)又は(3)のバイタル測定装置において、前記血圧測定部は、前記判定部により前記測定部が前記使用者の前記心臓近傍の体表に配置されたことが判定された後、前記血圧値の測定を開始するように構成されることが好ましい。 As an embodiment of the present disclosure, (4) in the vital sign measuring device of (2) or (3) above, it is preferable that the blood pressure measuring unit is configured to start measuring the blood pressure value after the determining unit determines that the measuring unit has been placed on the body surface of the user near the heart.
 本開示の一実施形態として、(5)上記(2)から(4)の何れかのバイタル測定装置において、前記測定部が前記使用者の心臓近傍の体表に配置されていないと判定されたとき、前記測定部を振動情報の振動の振幅が大きくなる方向に誘導する誘導部を備えることが好ましい。 As an embodiment of the present disclosure, (5) in any of the vital sign measuring devices (2) to (4) above, it is preferable to provide a guidance unit that guides the measuring unit in a direction that increases the amplitude of vibration of the vibration information when it is determined that the measuring unit is not positioned on the body surface near the user's heart.
 本開示の一実施形態として、(6)上記(1)から(5)の何れかのバイタル測定装置において、前記振動情報検出部は、呼吸に伴う胸部の動きを検出する動きセンサを含み、前記動きセンサにより検出される前記使用者の呼吸周期に基づいて前記血圧値を補正する補正部をさらに備えることが好ましい。 As an embodiment of the present disclosure, (6) in any of the vital sign measuring devices (1) to (5) above, it is preferable that the vibration information detection unit includes a motion sensor that detects chest movement associated with breathing, and further includes a correction unit that corrects the blood pressure value based on the user's respiratory cycle detected by the motion sensor.
 本開示の一実施形態として、(7)上記(6)のバイタル測定装置において、前記動きセンサは、前記胸部の動きを検出するとき前記胸部体表に接触する外周部と該外周部に対して後退して位置する検出部とを有し、前記胸部体表と前記検出部との間の圧力、前記胸部体表と前記検出部との間の接触面積、前記胸部体表と前記検出部との距離、及び、前記検出部に加わる歪みの少なくとも何れかの変化に基づいて、前記胸部の動きを検出することが好ましい。 As an embodiment of the present disclosure, (7) in the vital sign measuring device of (6) above, it is preferable that the motion sensor has an outer periphery that contacts the chest surface when detecting chest movement and a detection unit that is positioned back from the outer periphery, and detects chest movement based on at least one change in the pressure between the chest surface and the detection unit, the contact area between the chest surface and the detection unit, the distance between the chest surface and the detection unit, and the strain applied to the detection unit.
 本開示の一実施形態として、(8)上記(6)又は(7)のバイタル測定装置において、前記動きセンサは、前記使用者の呼吸の深さを検知し、前記補正部は、前記呼吸の周期に加え前記呼吸の深さに基づいて、前記血圧値を補正することが好ましい。 As an embodiment of the present disclosure, (8) in the vital sign measuring device of (6) or (7) above, it is preferable that the motion sensor detects the depth of breathing of the user, and the correction unit corrects the blood pressure value based on the depth of breathing in addition to the breathing cycle.
 本開示の一実施形態として、(9)上記(6)から(8)の何れかのバイタル測定装置において、前記血圧測定部は、前記動きセンサにより検出される前記使用者の呼吸周期に合わせて、前記使用者の血圧値を測定するように構成されることが好ましい。 As an embodiment of the present disclosure, (9) in any of the vital sign measuring devices (6) to (8) above, it is preferable that the blood pressure measuring unit is configured to measure the blood pressure value of the user in accordance with the breathing cycle of the user detected by the motion sensor.
 本開示の一実施形態として、(10)上記(1)から(9)の何れかのバイタル測定装置において、前記振動情報検出部を前記使用者の前記胸部体表に対して密着させる密着手段を備えることが好ましい。 As an embodiment of the present disclosure, (10) in any of the vital sign measuring devices (1) to (9) above, it is preferable to include a contact means for contacting the vibration information detection unit with the chest surface of the user.
 本開示の一実施形態として、(11)上記(1)から(10)の何れかのバイタル測定装置において、前記振動情報検出部を前記使用者の前記胸部体表に対して押し付けるための押付用加圧部を備えることが好ましい。 As an embodiment of the present disclosure, (11) in any of the vital sign measuring devices (1) to (10) above, it is preferable to include a pressing pressure unit for pressing the vibration information detection unit against the chest surface of the user.
 本開示の一実施形態として、(12)上記(1)から(11)の何れかのバイタル測定装置において、前記使用者の心機能に関するパラメータを取得する心機能パラメータ取得部を備えることが好ましい。 As an embodiment of the present disclosure, (12) in any of the vital sign measuring devices (1) to (11) above, it is preferable to include a cardiac function parameter acquiring unit that acquires parameters related to the cardiac function of the user.
 本開示の一実施形態として、(13)上記(12)のバイタル測定装置において、前記心機能パラメータ取得部は、前記カフに設けられ前記使用者の脈波を検知する脈波センサを含むことが好ましい。 As an embodiment of the present disclosure, (13) in the vital sign measuring device of (12) above, it is preferable that the cardiac function parameter acquisition unit includes a pulse wave sensor provided in the cuff to detect the pulse wave of the user.
 本開示の一実施形態として、(14)上記(12)又は(13)のバイタル測定装置において、前記心機能パラメータ取得部は、前記使用者の前記胸部体表で、心音及び心尖拍動の少なくとも何れかを検知する音響センサを含むことが好ましい。 As an embodiment of the present disclosure, (14) in the vital sign measuring device of (12) or (13) above, it is preferable that the cardiac function parameter acquisition unit includes an acoustic sensor that detects at least one of heart sounds and apical pulsation on the chest surface of the user.
 本開示の一実施形態として、(15)上記(12)から(14)の何れかのバイタル測定装置において、前記心機能パラメータ取得部は、前記使用者の心電波形を測定する心電計を含むことが好ましい。 As an embodiment of the present disclosure, (15) in any of the vital sign measuring devices (12) to (14) above, it is preferable that the cardiac function parameter acquisition unit includes an electrocardiograph that measures the electrocardiogram waveform of the user.
 本開示の一実施形態として、(16)上記(12)から(15)の何れかのバイタル測定装置において、前記心機能パラメータ取得部は、前記使用者の指に装着される第1の脈波センサと、前記使用者の手首に装着される第2の脈波センサとを含み、前記第1の脈波センサ及び前記第2の脈波センサの何れかは前記血圧測定部に含まれ、前記第1の脈波センサ及び前記第2の脈波センサから取得される脈波の検出の時間差に基づいて、脈波伝播速度を算出することが好ましい。 As an embodiment of the present disclosure, (16) in any of the vital sign measuring devices (12) to (15) above, it is preferable that the cardiac function parameter acquisition unit includes a first pulse wave sensor attached to the user's finger and a second pulse wave sensor attached to the user's wrist, either the first pulse wave sensor or the second pulse wave sensor is included in the blood pressure measurement unit, and the pulse wave propagation velocity is calculated based on the time difference between the detection of the pulse waves acquired from the first pulse wave sensor and the second pulse wave sensor.
 本開示の一実施形態として、(17)上記(12)から(16)の何れかのバイタル測定装置において、前記心機能パラメータ取得部は、心臓の拍出タイミングを特定し、該拍出タイミングと補正された前記血圧値に基づいて、動脈圧波形の一部を推定することが好ましい。 As an embodiment of the present disclosure, (17) in any of the vital sign measuring devices (12) to (16) above, it is preferable that the cardiac function parameter acquisition unit identifies the cardiac ejection timing and estimates a part of the arterial pressure waveform based on the ejection timing and the corrected blood pressure value.
 本開示の一態様としてのバイタル測定システムは、(18)使用者の手首又は指に装着されるカフを有し、前記使用者の血圧値を測定する血圧測定部、及び、前記使用者の胸部に配置され、前記使用者の胸部体表で振動情報を取得する振動情報検出部を一体的に含む測定部と、前記振動情報に基づいて、前記測定部が前記使用者の心臓近傍の体表に配置されているか否かを判定する判定部を含むバイタル測定システムである。 A vital sign measurement system according to one aspect of the present disclosure is (18) a vital sign measurement system including a blood pressure measurement unit having a cuff attached to a user's wrist or finger and measuring the blood pressure value of the user, a measurement unit that is disposed on the user's chest and integrally includes a vibration information detection unit that acquires vibration information on the user's chest body surface, and a determination unit that determines whether the measurement unit is disposed on the body surface near the user's heart based on the vibration information.
 本開示の一実施形態として、(19)上記(18)のバイタル測定システムにおいて、前記測定部は、前記使用者の心機能に関するパラメータを取得する心機能パラメータ取得部を備え、前記心機能パラメータ取得部は、心臓の拍出タイミングを特定し、前記制御装置は、前記拍出タイミングと補正された前記血圧値に基づいて、動脈圧波形の一部を推定することが好ましい。 As an embodiment of the present disclosure, (19) in the vital sign measurement system of (18) above, it is preferable that the measurement unit includes a cardiac function parameter acquisition unit that acquires parameters related to the cardiac function of the user, the cardiac function parameter acquisition unit identifies the cardiac ejection timing, and the control device estimates a portion of the arterial pressure waveform based on the ejection timing and the corrected blood pressure value.
 本開示の一実施形態として、(20)上記(19)のバイタル測定システムにおいて、前記制御装置は、推定された前記動脈圧波形の一部に基づいて心内圧を推定することが好ましい。 As an embodiment of the present disclosure, (20) in the vital sign measurement system of (19) above, it is preferable that the control device estimates the intracardiac pressure based on a portion of the estimated arterial pressure waveform.
 本開示の一態様としてのバイタル測定方法は、(21)測定部に設けられた血圧測定部の有するカフに使用者の手首又は指を装着し、前記使用者の血圧値を測定することと、前記測定部に前記血圧測定部と一体的に設けられた振動情報検出部を前記使用者の胸部に配置し、前記使用者の胸部体表で振動情報を取得することとを、同時に実行するバイタル測定方法である。 A vital sign measurement method according to one aspect of the present disclosure (21) is a method for simultaneously measuring the user's blood pressure by attaching a cuff on the wrist or finger of a user to a blood pressure measurement unit provided in a measurement unit, and measuring the blood pressure of the user, and placing a vibration information detection unit provided integrally with the blood pressure measurement unit in the measurement unit on the user's chest, and acquiring vibration information from the surface of the user's chest.
 本開示によれば、使用者の指または手首に装着して血圧測定を行うバイタル測定装置による血圧測定の正確性を向上させることができる。 The present disclosure makes it possible to improve the accuracy of blood pressure measurements using a vital sign measuring device that is worn on a user's finger or wrist to measure blood pressure.
図1は、第1実施形態に係るバイタル測定装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a vital sign measuring device according to the first embodiment. 図2は、図1の制御部を含む制御装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a control device including the control unit shown in FIG. 図3は、図1の測定部の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of the measurement unit of FIG. 図4は、図1のバイタル測定装置を用いた測定方法を説明する図である。FIG. 4 is a diagram for explaining a measurement method using the vital sign measuring device of FIG. 図5は、図1のバイタル測定装置を用いた測定手順を示すフローチャートである。FIG. 5 is a flow chart showing a measurement procedure using the vital sign measuring device of FIG. 図6は、第2実施形態に係るバイタル測定装置の構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of a vital sign measuring device according to the second embodiment. 図7は、図6の測定部の第1例の概略構成を示す断面図である。FIG. 7 is a cross-sectional view showing a schematic configuration of a first example of the measurement unit in FIG. 図8は、図6の測定部の第2例の検出部を底面側から見た図である。FIG. 8 is a bottom view of the detection section of the second example of the measurement section of FIG. 図9は、図6の測定部の第3例の概略構成を示す断面図である。FIG. 9 is a cross-sectional view showing a schematic configuration of a third example of the measuring unit of FIG. 図10は、図6の測定部の第4例の概略構成を示す断面図である。FIG. 10 is a cross-sectional view showing a schematic configuration of a fourth example of the measuring unit of FIG. 図11は、血圧の呼吸性変動の例を示すグラフである。FIG. 11 is a graph showing an example of respiratory variation in blood pressure. 図12は、呼吸周期、カフ圧、血圧波形、K音波形、及び心電波形の例を示す図である。FIG. 12 is a diagram showing an example of a respiratory cycle, a cuff pressure, a blood pressure waveform, a K sound waveform, and an electrocardiogram waveform. 図13は、図6のバイタル測定装置を用いた測定手順を示すフローチャートである。FIG. 13 is a flowchart showing a measurement procedure using the vital sign measuring device of FIG. 図14は、第3実施形態に係るバイタル測定装置の構成を示すブロック図である。FIG. 14 is a block diagram showing the configuration of a vital sign measuring device according to the third embodiment. 図15は、図14のバイタル測定装置を用いてプロットされた点及び推定された動脈圧波形の一部を示す図である。FIG. 15 shows a portion of a plotted point and estimated arterial pressure waveform using the vital sign measuring device of FIG. 図16は、図14のバイタル測定装置を用いた測定手順を示すフローチャートである。FIG. 16 is a flowchart showing a measurement procedure using the vital sign measuring device of FIG. 図17は、測定部の変形例を示す断面図である。FIG. 17 is a cross-sectional view showing a modified example of the measuring section. 図18は、血圧測定時の図17の測定部を示す断面図である。FIG. 18 is a cross-sectional view showing the measurement portion of FIG. 17 during blood pressure measurement. 図19は、測定部の変形例を示す断面図であるFIG. 19 is a cross-sectional view showing a modified example of the measuring unit. 図20は、手首に装着する他の脈波センサを備えた測定部を有するバイタル促成装置の測定方法を説明する図である。FIG. 20 is a diagram for explaining a measurement method of a vital sign promotion device having a measurement unit equipped with another pulse wave sensor to be worn on the wrist.
 以下、本開示の実施形態について、図面を参照して説明する。 Embodiments of the present disclosure are described below with reference to the drawings.
 各図中、同一又は類似の構成要素には、同一符号を付す場合がある。各実施形態の説明において、既に説明した実施形態と同一又は類似する部分については、説明を適宜省略又は簡略化する場合がある。 In each figure, identical or similar components may be given the same reference numerals. In the description of each embodiment, the description of parts that are identical or similar to those in the embodiments already described may be omitted or simplified as appropriate.
 [第1実施形態]
 図1から図3を参照して、第1実施形態に係るバイタル測定装置1の概要を説明する。バイタル測定装置1は、使用者が血圧を含むバイタル情報を、自分で測定するための装置である。使用者は、例えば、在宅治療を行っている患者である。
[First embodiment]
An overview of a vital sign measuring device 1 according to a first embodiment will be described with reference to Figures 1 to 3. The vital sign measuring device 1 is a device that allows a user to measure vital sign information including blood pressure by himself/herself. The user is, for example, a patient undergoing home treatment.
 本実施形態に係るバイタル測定装置1は、測定部10と制御部21とを含んでいる。測定部10と制御部21とは、同一の筺体内に設けられてよい。また、制御部21は、測定部10とは異なる制御装置20(図2参照)内に設けられてよい。測定部10と制御装置20とを含むシステムは、バイタル測定システムと呼ぶ。 The vital sign measuring device 1 according to this embodiment includes a measuring unit 10 and a control unit 21. The measuring unit 10 and the control unit 21 may be provided in the same housing. The control unit 21 may be provided in a control device 20 (see FIG. 2) that is different from the measuring unit 10. A system including the measuring unit 10 and the control device 20 is called a vital sign measuring system.
 バイタル測定装置1は、使用者が、胸部11から振動情報を取得することにより、測定部10の高さを心臓の高さに合わせ、指又は手首の測定部位により血圧測定をする。測定部10の高さを、血圧測定を行う対象である使用者の心臓の高さに合わせることにより、血圧測定の正確性が向上される。「血圧」とは血液が血管12内を移動する際に、血流が血管12(動脈)の内側(血管壁)に与える圧力を意味する。「血圧値」は、測定により得られる具体的な血圧の値を意味する。また、「動脈圧」は、心臓から拍出された血流が動脈壁に与える圧力を意味する。 The vital sign measuring device 1 measures blood pressure at the measuring site on the finger or wrist by adjusting the height of the measuring unit 10 to the height of the heart by acquiring vibration information from the chest 11. By adjusting the height of the measuring unit 10 to the height of the heart of the user, who is the subject of blood pressure measurement, the accuracy of blood pressure measurement is improved. "Blood pressure" refers to the pressure that the blood flow exerts on the inside (vascular wall) of the blood vessel 12 (artery) as blood moves through the blood vessel 12. "Blood pressure value" refers to the specific blood pressure value obtained by measurement. "Arterial pressure" refers to the pressure that the blood flow pumped out of the heart exerts on the arterial wall.
 測定部10は、使用者の血圧の測定を行う血圧測定部30と、使用者の胸部11の表面である胸部体表11aから振動情報を取得する振動情報検出部31とを備える。血圧測定部30と振動情報検出部31とは、同一の測定部10に一体的に配置される。本開示において、「一体的に」とは、血圧測定部30と振動情報検出部31とが、通常の使用状態でハードウェア的に一体となっていることを意味する。例えば、血圧測定部30と振動情報検出部31とは、同一の筐体に配置される。 The measurement unit 10 comprises a blood pressure measurement unit 30 that measures the user's blood pressure, and a vibration information detection unit 31 that acquires vibration information from the chest surface 11a, which is the surface of the user's chest 11. The blood pressure measurement unit 30 and the vibration information detection unit 31 are integrally arranged in the same measurement unit 10. In this disclosure, "integrally" means that the blood pressure measurement unit 30 and the vibration information detection unit 31 are integrated in terms of hardware in the normal usage state. For example, the blood pressure measurement unit 30 and the vibration information detection unit 31 are arranged in the same housing.
 血圧測定部30は、カフ制御部32、カフ33、カフ圧測定部34、及び、血流検出部35を含む。 The blood pressure measurement unit 30 includes a cuff control unit 32, a cuff 33, a cuff pressure measurement unit 34, and a blood flow detection unit 35.
 カフ制御部32は、カフ33を制御するプロセッサである。カフ制御部32は、制御部21とデータの送受信が可能に構成される。制御部21が測定部10と同一筐体内に存在する場合、制御部21とカフ制御部32とは、同一のプロセッサにより構成される同一の構成要素であってよい。測定部10と制御部21とが異なるハードウェア内に存在する場合、カフ制御部32と制御部21とは、LAN(local area network)、又は、インターネットなどのネットワークを介して情報の送受信が可能である。 The cuff control unit 32 is a processor that controls the cuff 33. The cuff control unit 32 is configured to be able to send and receive data with the control unit 21. When the control unit 21 exists in the same housing as the measurement unit 10, the control unit 21 and the cuff control unit 32 may be the same component configured by the same processor. When the measurement unit 10 and the control unit 21 exist in different hardware, the cuff control unit 32 and the control unit 21 can send and receive information via a network such as a LAN (local area network) or the Internet.
 カフ33は、指13又は手首の測定部位に取り付けられ、血管12の1箇所を圧迫する。本実施形態では、以下において測定部位は指13として説明する。本願では、「カフ」とは、外部からの制御により膨張及び収縮することにより血圧を測定する測定部位を圧迫する膨張体を意味する。カフ33は膨張部と言い換えることができる。カフ33の内部に加わる圧力をカフ圧と呼ぶ。カフ33は、空気を注入及び排出可能なゴム製の袋を含んで構成されてよい。カフ33は、血圧の測定時、測定部位を少なくとも部分的に取り囲むように配置することができる。使用者は、カフ33内に指13を挿入することにより、血圧を測定することができる。カフ33の高さを、血圧測定を行う対象である使用者の心臓の高さに合わせることにより、血圧測定の正確性がさらに向上される。 The cuff 33 is attached to the measurement site on the finger 13 or the wrist, and presses against one point of the blood vessel 12. In the present embodiment, the measurement site is hereinafter described as the finger 13. In the present application, the term "cuff" refers to an inflatable body that inflates and contracts under external control to press against the measurement site where blood pressure is measured. The cuff 33 can be referred to as an inflatable part. The pressure applied inside the cuff 33 is called the cuff pressure. The cuff 33 may be configured to include a rubber bag into which air can be injected and discharged. The cuff 33 can be positioned to at least partially surround the measurement site when measuring blood pressure. The user can measure blood pressure by inserting the finger 13 into the cuff 33. The accuracy of blood pressure measurement is further improved by adjusting the height of the cuff 33 to the height of the user's heart, which is the subject of blood pressure measurement.
 カフ圧測定部34は、カフ圧を検知するセンサを含む。カフ圧測定部34は、制御部21と情報の送受信が可能に構成される。カフ圧測定部34は、カフ33と一体化されてよい。例えば、カフ圧測定部34は、カフ33の内部に設けられた圧力センサを含んでよい。 The cuff pressure measurement unit 34 includes a sensor that detects the cuff pressure. The cuff pressure measurement unit 34 is configured to be able to send and receive information to and from the control unit 21. The cuff pressure measurement unit 34 may be integrated with the cuff 33. For example, the cuff pressure measurement unit 34 may include a pressure sensor provided inside the cuff 33.
 血流検出部35は、血管12のカフ33により圧迫されている箇所に生じた血流を検知する血流センサを含む。血流検出部35は、カフ33の下流側で指13に取り付けられる。血流検出部35は、血管壁の振動を反映したカフ圧の変動(圧脈波)を検知する圧力センサ、カフ33の下流側に血液が流れることで生じる音を検知する音響センサ、光学的方法により血管12の容積変化を検出するPPGセンサ、又は血流を超音波ドップラ法で計測する超音波センサを含んでよい。「PPG」は、光電容積脈波を意味するphotoplethysmogramの略語である。血流検出部35は、圧脈波およびK音(コロトコフ音)に対応する波形を検出することができる。本願において、心臓が血液を送り出すことにより生じる血管12の振動、血管12の容積変化、又は、血管12を流れる血流の速度の変化を検出するセンサを、脈波センサと呼ぶ。血流検出部35は、制御部21と情報の送受信が可能に構成される。本実施形態の一変形例として、血流検出部35は、カフ33と一体化されていてよい。また、それとは異なり、血流検出部35は、図3に示すように測定部10の本体に配置されてよい。 The blood flow detection unit 35 includes a blood flow sensor that detects blood flow occurring at a location of the blood vessel 12 compressed by the cuff 33. The blood flow detection unit 35 is attached to the finger 13 downstream of the cuff 33. The blood flow detection unit 35 may include a pressure sensor that detects fluctuations in cuff pressure (pressure pulse wave) reflecting the vibration of the blood vessel wall, an acoustic sensor that detects the sound generated by blood flowing downstream of the cuff 33, a PPG sensor that detects volume changes in the blood vessel 12 by an optical method, or an ultrasonic sensor that measures blood flow by an ultrasonic Doppler method. "PPG" is an abbreviation of photoplethysmogram, which means a photoelectric volume pulse wave. The blood flow detection unit 35 can detect waveforms corresponding to pressure pulse waves and K sounds (Korotkoff sounds). In this application, a sensor that detects the vibration of the blood vessel 12 caused by the heart pumping blood, the volume change of the blood vessel 12, or the change in the speed of the blood flow through the blood vessel 12 is called a pulse wave sensor. The blood flow detection unit 35 is configured to be able to send and receive information to and from the control unit 21. As a modification of this embodiment, the blood flow detection unit 35 may be integrated with the cuff 33. Alternatively, the blood flow detection unit 35 may be disposed in the main body of the measurement unit 10 as shown in FIG. 3.
 振動情報検出部31は、使用者の胸部体表11aで取得される振動情報を検出するセンサを含む。振動情報は、心音、心尖拍動、肺音、及び、使用者の呼吸に伴う胸部11の動きの情報の少なくとも何れかを含む。肺音には、呼吸音及び副雑音が含まれる。振動情報は、使用者の心臓の位置近傍で取得される情報である。心音、心尖拍動、及び、肺音の検出には、音響センサを用いることができる。 The vibration information detection unit 31 includes a sensor that detects vibration information acquired on the user's chest surface 11a. The vibration information includes at least one of heart sounds, apical pulsation, lung sounds, and information on the movement of the chest 11 accompanying the user's breathing. Lung sounds include respiratory sounds and adventitious sounds. The vibration information is information acquired near the position of the user's heart. An acoustic sensor can be used to detect heart sounds, apical pulsation, and lung sounds.
 データ格納部36は、半導体メモリ、磁気メモリ及び光メモリの少なくとも何れかを含む。データ格納部36は、カフ圧測定部34、血流検出部35、及び、振動情報検出部31で検出されたデータを順次記憶することができる。データ格納部36に記憶されたデータは、制御部21による処理のために使用される。 The data storage unit 36 includes at least one of a semiconductor memory, a magnetic memory, and an optical memory. The data storage unit 36 can sequentially store data detected by the cuff pressure measurement unit 34, the blood flow detection unit 35, and the vibration information detection unit 31. The data stored in the data storage unit 36 is used for processing by the control unit 21.
 制御部21は、バイタル測定装置1全体を制御する。制御部21は、測定部10の各構成要素と情報の送受信が可能に構成される。制御部21は、データ格納部36に格納されたデータに基づいて、種々の情報処理を行ってよい。制御部21は、振動情報検出部31で検出された振動情報に基づいて、測定部10が使用者の心臓近傍の体表に配置されているか否かを判定する判定部21aを含む。心臓の近傍は、使用者の胸部体表11aに接する位置であって、使用者の心臓の存在する位置から、例えば、7cm以内の位置(使用者の心臓の周囲7cm以内の位置)である。この範囲であれば、測定される血圧値の誤差は5mmHg以内の比較的小さい範囲に収まる。判定部21aは、制御部21の実行するプログラムに含まれるモジュールであってよい。判定部21aにより測定部10が使用者の心臓近傍の体表に配置されたことが判定されたとき、制御部21は、測定部10に血圧値の測定を開始させる。 The control unit 21 controls the entire vital sign measuring device 1. The control unit 21 is configured to be able to send and receive information to and from each component of the measuring unit 10. The control unit 21 may perform various information processing based on the data stored in the data storage unit 36. The control unit 21 includes a determination unit 21a that determines whether the measuring unit 10 is placed on the body surface near the user's heart based on the vibration information detected by the vibration information detection unit 31. The vicinity of the heart is a position that contacts the user's chest body surface 11a and is, for example, within 7 cm from the position where the user's heart is located (within 7 cm around the user's heart). Within this range, the error of the measured blood pressure value is within a relatively small range of 5 mmHg. The determination unit 21a may be a module included in the program executed by the control unit 21. When the determination unit 21a determines that the measuring unit 10 is placed on the body surface near the user's heart, the control unit 21 causes the measuring unit 10 to start measuring the blood pressure value.
 制御部21が、測定部10とは別体の制御装置20に含まれる場合、制御装置20は、コンピュータとすることができる。制御装置20は、例えば、専用機器、PCなどの汎用機器、又はクラウドコンピューティングシステム若しくはその他のコンピューティングシステムに属するサーバ機器である。「PC」は、personal computerの略語である。さらに、制御装置20は、所定のアプリケーションを搭載したスマートフォンを用いることができる。測定部10と制御装置20とは、無線又は有線の通信手段で通信可能とすることができる。 When the control unit 21 is included in a control device 20 separate from the measurement unit 10, the control device 20 can be a computer. The control device 20 can be, for example, a dedicated device, a general-purpose device such as a PC, or a server device belonging to a cloud computing system or other computing system. "PC" is an abbreviation for personal computer. Furthermore, the control device 20 can be a smartphone equipped with a specified application. The measurement unit 10 and the control device 20 can be capable of communicating with each other via wireless or wired communication means.
 図2に示すように、制御装置20は、制御部21と、記憶部22と、通信部23と、入力部24と、出力部25とを備える。 As shown in FIG. 2, the control device 20 includes a control unit 21, a memory unit 22, a communication unit 23, an input unit 24, and an output unit 25.
 制御部21は、少なくとも1つのプロセッサ、少なくとも1つのプログラマブル回路、少なくとも1つの専用回路、又はこれらの任意の組合せを含む。プロセッサは、CPU若しくはGPUなどの汎用プロセッサ、又は特定の処理に特化した専用プロセッサである。「CPU」は、central processing unitの略語である。「GPU」は、graphics processing unitの略語である。プログラマブル回路は、例えば、FPGAである。「FPGA」は、field-programmable gate arrayの略語である。専用回路は、例えば、ASICである。「ASIC」は、application specific integrated circuitの略語である。制御部21は、制御装置20の各部を制御しながら、制御装置20の動作に関わる処理を実行する。 The control unit 21 includes at least one processor, at least one programmable circuit, at least one dedicated circuit, or any combination of these. The processor is a general-purpose processor such as a CPU or GPU, or a dedicated processor specialized for a specific process. "CPU" is an abbreviation for central processing unit. "GPU" is an abbreviation for graphics processing unit. An example of the programmable circuit is an FPGA. "FPGA" is an abbreviation for field-programmable gate array. An example of the dedicated circuit is an ASIC. "ASIC" is an abbreviation for application specific integrated circuit. The control unit 21 executes processes related to the operation of the control unit 20 while controlling each part of the control unit 20.
 記憶部22は、少なくとも1つの半導体メモリ、少なくとも1つの磁気メモリ、少なくとも1つの光メモリ、又はこれらの任意の組合せを含む。半導体メモリは、例えば、RAM又はROMである。「RAM」は、random access memoryの略語である。「ROM」は、read only memoryの略語である。RAMは、例えば、SRAM又はDRAMである。「SRAM」は、static random access memoryの略語である。「DRAM」は、dynamic random access memoryの略語である。ROMは、例えば、EEPROMである。「EEPROM」は、electrically erasable programmable read only memoryの略語である。記憶部22は、例えば、主記憶装置、補助記憶装置、又はキャッシュメモリとして機能する。記憶部22には、制御装置20の動作に用いられるデータと、制御装置20の動作によって得られたデータとが記憶される。 The memory unit 22 includes at least one semiconductor memory, at least one magnetic memory, at least one optical memory, or any combination thereof. The semiconductor memory is, for example, a RAM or a ROM. "RAM" is an abbreviation for random access memory. "ROM" is an abbreviation for read only memory. The RAM is, for example, an SRAM or a DRAM. "SRAM" is an abbreviation for static random access memory. "DRAM" is an abbreviation for dynamic random access memory. The ROM is, for example, an EEPROM. "EEPROM" is an abbreviation for electrically erasable programmable read only memory. The memory unit 22 functions, for example, as a main memory device, an auxiliary memory device, or a cache memory. The memory unit 22 stores data used in the operation of the control device 20 and data obtained by the operation of the control device 20.
 通信部23は、少なくとも1つの通信用インタフェースを含む。通信用インタフェースは、例えば、LANインタフェース、LTE、4G規格、若しくは5G規格などの移動通信規格に対応したインタフェース、又はBluetooth(登録商標)などの近距離無線通信規格に対応したインタフェースである。「LTE」は、Long Term Evolutionの略語である。「4G」は、4th generationの略語である。「5G」は、5th generationの略語である。通信部23は、制御装置20の動作に用いられるデータを受信し、また制御装置20の動作によって得られるデータを送信する。 The communication unit 23 includes at least one communication interface. The communication interface is, for example, a LAN interface, an interface compatible with a mobile communication standard such as LTE, the 4G standard, or the 5G standard, or an interface compatible with a short-range wireless communication standard such as Bluetooth (registered trademark). "LTE" is an abbreviation for Long Term Evolution. "4G" is an abbreviation for 4th generation. "5G" is an abbreviation for 5th generation. The communication unit 23 receives data used in the operation of the control device 20, and transmits data obtained by the operation of the control device 20.
 入力部24は、少なくとも1つの入力用インタフェースを含む。入力用インタフェースは、例えば、物理キー、静電容量キー、ポインティングデバイス、ディスプレイと一体的に設けられたタッチスクリーン、カメラなどの撮像機器、又はマイクロフォンである。入力部24は、制御装置20の動作に用いられるデータを入力する操作を受け付ける。入力部24は、制御装置20に備えられる代わりに、外部の入力機器として制御装置20に接続されてもよい。接続用インタフェースとしては、例えば、USB、HDMI(登録商標)、又はBluetooth(登録商標)などの規格に対応したインタフェースを用いることができる。「USB」は、Universal Serial Busの略語である。「HDMI(登録商標)」は、High-Definition Multimedia Interfaceの略語である。 The input unit 24 includes at least one input interface. The input interface is, for example, a physical key, a capacitive key, a pointing device, a touch screen integrated with a display, an imaging device such as a camera, or a microphone. The input unit 24 accepts an operation to input data used in the operation of the control device 20. Instead of being provided in the control device 20, the input unit 24 may be connected to the control device 20 as an external input device. As a connection interface, for example, an interface compatible with standards such as USB, HDMI (registered trademark), or Bluetooth (registered trademark) can be used. "USB" is an abbreviation for Universal Serial Bus. "HDMI (registered trademark)" is an abbreviation for High-Definition Multimedia Interface.
 出力部25は、少なくとも1つの出力用インタフェースを含む。出力用インタフェースは、例えば、ディスプレイ又はスピーカである。ディスプレイは、例えば、LCD又は有機ELディスプレイである。「LCD」は、liquid crystal displayの略語である。「EL」は、electro luminescenceの略語である。出力部25は、制御装置20の動作によって得られるデータを出力する。出力部25は、制御装置20に備えられる代わりに、外部の出力機器として制御装置20に接続されてもよい。接続用インタフェースとしては、例えば、USB、HDMI(登録商標)、又はBluetooth(登録商標)などの規格に対応したインタフェースを用いることができる。 The output unit 25 includes at least one output interface. The output interface is, for example, a display or a speaker. The display is, for example, an LCD or an organic EL display. "LCD" is an abbreviation for liquid crystal display. "EL" is an abbreviation for electro luminescence. The output unit 25 outputs data obtained by the operation of the control device 20. The output unit 25 may be connected to the control device 20 as an external output device instead of being provided in the control device 20. As the connection interface, for example, an interface compatible with standards such as USB, HDMI (registered trademark), or Bluetooth (registered trademark) can be used.
 制御装置20の機能は、本実施形態に係るプログラムを、制御部21としてのプロセッサで実行することにより実現される。すなわち、制御装置20の機能は、ソフトウェアにより実現される。プログラムは、制御装置20の動作をコンピュータに実行させることで、コンピュータを制御装置20として機能させる。すなわち、コンピュータは、プログラムに従って制御装置20の動作を実行することにより制御装置20として機能する。 The functions of the control device 20 are realized by executing the program according to this embodiment in a processor serving as the control unit 21. That is, the functions of the control device 20 are realized by software. The program causes a computer to execute the operations of the control device 20, thereby causing the computer to function as the control device 20. That is, the computer functions as the control device 20 by executing the operations of the control device 20 in accordance with the program.
 プログラムは、非一時的なコンピュータ読取り可能な媒体に記憶しておくことができる。非一時的なコンピュータ読取り可能な媒体は、例えば、フラッシュメモリ、磁気記録装置、光ディスク、光磁気記録媒体、又はROMである。プログラムの流通は、例えば、プログラムを記憶したSDカード、DVD、又はCD-ROMなどの可搬型媒体を販売、譲渡、又は貸与することによって行う。「SD」は、Secure Digitalの略語である。「DVD」は、digital versatile discの略語である。「CD-ROM」は、compact disc read only memoryの略語である。プログラムをサーバのストレージに格納しておき、サーバから他のコンピュータにプログラムを転送することにより、プログラムを流通させてもよい。プログラムをプログラムプロダクトとして提供してもよい。 The program may be stored on a non-transitory computer-readable medium. Examples of non-transitory computer-readable media include flash memory, magnetic recording devices, optical disks, magneto-optical recording media, and ROMs. The program may be distributed, for example, by selling, transferring, or lending portable media such as SD cards, DVDs, or CD-ROMs on which the program is stored. "SD" is an abbreviation for Secure Digital. "DVD" is an abbreviation for digital versatile disc. "CD-ROM" is an abbreviation for compact disc read only memory. The program may be distributed by storing it in the storage of a server and transferring it from the server to other computers. The program may be provided as a program product.
 コンピュータは、例えば、可搬型媒体に記憶されたプログラム又はサーバから転送されたプログラムを、一旦、主記憶装置に格納する。そして、コンピュータは、主記憶装置に格納されたプログラムをプロセッサで読み取り、読み取ったプログラムに従った処理をプロセッサで実行する。コンピュータは、可搬型媒体から直接プログラムを読み取り、プログラムに従った処理を実行してもよい。コンピュータは、コンピュータにサーバからプログラムが転送される度に、逐次、受け取ったプログラムに従った処理を実行してもよい。サーバからコンピュータへのプログラムの転送は行わず、実行指示及び結果取得のみによって機能を実現する、いわゆるASP型のサービスによって処理を実行してもよい。「ASP」は、application service providerの略語である。プログラムは、電子計算機による処理の用に供する情報であってプログラムに準ずるものを含む。例えば、コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータは、「プログラムに準ずるもの」に該当する。 The computer temporarily stores in its main storage device, for example, a program stored in a portable medium or a program transferred from a server. The computer then reads the program stored in the main storage device with a processor, and executes processing in accordance with the read program with the processor. The computer may read the program directly from the portable medium and execute processing in accordance with the program. The computer may execute processing in accordance with the received program each time a program is transferred to the computer from the server. Processing may be executed by a so-called ASP-type service that does not transfer a program from the server to the computer, but instead realizes functions only by issuing execution instructions and obtaining results. "ASP" is an abbreviation for application service provider. A program is information used for processing by a computer, and includes those equivalent to a program. For example, data that is not a direct command to a computer but has properties that define computer processing falls under "those equivalent to a program."
 制御装置20の一部又は全ての機能が、制御部21としてのプログラマブル回路又は専用回路により実現されてもよい。すなわち、制御装置20の一部又は全ての機能が、ハードウェアにより実現されてもよい。 Some or all of the functions of the control device 20 may be realized by a programmable circuit or a dedicated circuit as the control unit 21. In other words, some or all of the functions of the control device 20 may be realized by hardware.
 次に、図3を参照して、測定部10の構成についてさらに説明する。測定部10は、本体37の一方の側の面(以下、「第1面S1」とする)にカフ33が設けられ、他方の側の面(以下、「第2面S2」とする)に振動情報検出部31が設けられている。 Next, the configuration of the measurement unit 10 will be further described with reference to Figure 3. The measurement unit 10 has a cuff 33 provided on one side surface of the main body 37 (hereinafter referred to as the "first surface S1"), and a vibration information detection unit 31 provided on the other side surface (hereinafter referred to as the "second surface S2").
 本体37は、測定部10の測定に関連した回路、カフ33の内部に空気を送り込む小型のポンプ、及び、制御部21が測定部10と同一のハードウェア内に有る場合、制御部21のプロセッサ等が収容される筐体である。本体37は、図3に示されるような直方体であってよいが、これに限られない。 The main body 37 is a housing that houses the circuitry related to the measurement of the measurement unit 10, a small pump that sends air into the cuff 33, and, if the control unit 21 is in the same hardware as the measurement unit 10, the processor of the control unit 21. The main body 37 may be a rectangular parallelepiped as shown in FIG. 3, but is not limited to this.
 カフ33は、両端が本体37の第1面S1に固定可能で、内部に空気が注入されるゴム等の弾性材料からなる袋を有する長方形又は帯状の構成要素である。カフ33及び本体37の間には、使用者が指13を出し入れ可能な空間が形成される。血圧の測定時、使用者がカフ33と本体37との間に指13を挿入した状態で、カフ33に空気を注入して加圧し、その後徐々に減圧しながら使用者の血圧を測定することができる。 The cuff 33 is a rectangular or strip-shaped component having a bag made of an elastic material such as rubber, with both ends fixable to the first surface S1 of the main body 37, into which air is injected. A space is formed between the cuff 33 and the main body 37 into which the user can insert and remove his/her finger 13. When measuring blood pressure, the user inserts his/her finger 13 between the cuff 33 and the main body 37, and then air is injected into the cuff 33 to pressurize it, and the pressure is then gradually reduced, allowing the user's blood pressure to be measured.
 カフ33の内部には、カフ圧測定部34と血流検出部35とが内蔵されていてよい。血流検出部35は、上部をカフ33で覆われた本体37上に配置されてもよい。 The cuff 33 may include a cuff pressure measuring unit 34 and a blood flow detection unit 35. The blood flow detection unit 35 may be disposed on a main body 37, the upper part of which is covered by the cuff 33.
 使用者は、バイタル測定装置1による測定時において、図4に示すように、指13をカフ33に挿入した状態で、振動情報検出部31が設けられた本体37の第2面S2を、使用者の胸部11の表面である胸部体表11aに押し当てる。例えば、振動情報検出部31は、心音、心尖拍動及び肺音の少なくとも何れかを検出する音響センサ(圧電センサまたはマイクロフォン)である。振動情報検出部31は、心音センサであってもよい。その場合、振動情報検出部31は、僧帽弁の閉塞音を含む心音を検知する。拍出タイミングは、僧帽弁の閉塞音を検出したタイミングに基づいて決定されてよい。制御部21の判定部21aは、振動情報検出部31により検出された心音、心尖拍動及び肺音の少なくとも何れかに基づき、測定部10が使用者の心臓近傍の体表に配置されているか否かを判定することができる。判定部21aは、検出された振動(音)の振幅(大きさ)、及び、振動のパターン(波形)から、心臓と測定部10との距離を推定してよい。また、振動情報検出部31は、心疾患に関する診断に使用されるIII音等を取得してよい。 During measurement using the vital sign measuring device 1, as shown in FIG. 4, the user inserts the finger 13 into the cuff 33 and presses the second surface S2 of the main body 37, on which the vibration information detection unit 31 is provided, against the chest body surface 11a, which is the surface of the user's chest 11. For example, the vibration information detection unit 31 is an acoustic sensor (piezoelectric sensor or microphone) that detects at least one of heart sounds, apical pulsation, and lung sounds. The vibration information detection unit 31 may be a heart sound sensor. In that case, the vibration information detection unit 31 detects heart sounds including mitral valve closure sounds. The ejection timing may be determined based on the timing at which the mitral valve closure sound is detected. The determination unit 21a of the control unit 21 can determine whether the measurement unit 10 is placed on the body surface near the user's heart based on at least one of heart sounds, apical pulsation, and lung sounds detected by the vibration information detection unit 31. The determination unit 21a may estimate the distance between the heart and the measurement unit 10 from the amplitude (size) of the detected vibration (sound) and the vibration pattern (waveform). In addition, the vibration information detection unit 31 may acquire the third sound, etc., which is used in the diagnosis of heart disease.
 本体37には、誘導部37aが設けられてよい。誘導部37aは、判定部21aにより測定部10が使用者の心臓近傍の胸部体表11aに配置されていないと判定されたとき、制御部21からの制御により、使用者が測定部10を振動情報を取得できる位置、すなわち、使用者の心臓近傍の胸部体表11aへ移動させるように誘導する。誘導部37aは、例えば、複数のLEDを含んでよい。「LED」は、light-emitting diodeの略語である。測定部10が、心臓の近傍に位置する場合と、位置しない場合とでは、誘導部37aは異なる表示をしてよい。例えば、前者では青いLEDが点灯し、後者では赤いLEDが点灯する。また、例えば、心臓の近傍に位置しつつあるが、振動情報を取得するには誘導部37aによる誘導が必要である状態の場合、黄色のLEDが点灯してよい。誘導部37aは、検出される振動の振幅が大きくなりつつある場合と、小さくなりつつある場合とで、異なる表示をしてよい。使用者は、誘導部37aを見ながら、振動の振幅が大きくなる方向に測定部10を移動させることができる。 The main body 37 may be provided with a guidance section 37a. When the determination section 21a determines that the measurement section 10 is not positioned on the chest body surface 11a near the user's heart, the guidance section 37a guides the user to move the measurement section 10 to a position where the vibration information can be obtained, that is, to the chest body surface 11a near the user's heart, under the control of the control section 21. The guidance section 37a may include, for example, multiple LEDs. "LED" is an abbreviation for light-emitting diode. The guidance section 37a may display differently when the measurement section 10 is located near the heart and when it is not located near the heart. For example, a blue LED is lit in the former case, and a red LED is lit in the latter case. Also, for example, when the measurement section 10 is being positioned near the heart but guidance by the guidance section 37a is necessary to obtain vibration information, a yellow LED may be lit. The guidance section 37a may display differently when the amplitude of the detected vibration is increasing and decreasing. While watching the induction section 37a, the user can move the measurement section 10 in the direction that increases the amplitude of the vibration.
 誘導部37aは、LEDに限られず、小型のディスプレイであってもよい。誘導部37aは、LED又は小型のディスプレイに代えて、又は、加えて、音声で誘導を指示するスピーカを備えてよい。また、誘導部37aは、本体37ではなく、制御装置20の出力部25であるディスプレイを利用してもよい。 The guidance unit 37a is not limited to an LED, and may be a small display. Instead of or in addition to an LED or a small display, the guidance unit 37a may be equipped with a speaker that gives voice guidance instructions. Furthermore, the guidance unit 37a may utilize a display that is the output unit 25 of the control device 20, rather than the main body 37.
 測定部10は、さらに、本体37の第2面S2に、使用者の心機能に関するパラメータを取得するセンサを含む、心機能パラメータ取得部38を含んでよい。心機能パラメータ取得部38は、振動情報検出部31とは異なる種類の検出部であって、心電波形を取得する心電計、並びに、心音及び/又は心尖拍動を取得する音響センサを含む。第1実施形態において、心機能パラメータ取得部38は、必須の構成要素ではない。 The measurement unit 10 may further include a cardiac function parameter acquisition unit 38 on the second surface S2 of the main body 37, the cardiac function parameter acquisition unit 38 including a sensor that acquires parameters related to the user's cardiac function. The cardiac function parameter acquisition unit 38 is a detection unit of a different type from the vibration information detection unit 31, and includes an electrocardiograph that acquires an electrocardiogram waveform, and an acoustic sensor that acquires heart sounds and/or apical beats. In the first embodiment, the cardiac function parameter acquisition unit 38 is not an essential component.
 心機能パラメータ取得部38が心電計の場合、本体37の第2面S2には振動情報検出部31を挟んで、心電計の2つの電極が配置されてよい。あるいは、本体37の第2面S2に一つの電極を配置し、本体37の第1面S1又は指13若しくは手に接する場所に他の一つの電極を配置してもよい。心電波形は、例えば、前駆出期(preejection period)等の心機能に関するパラメータの測定に用いられる。前駆出期は、略して「PEP」とも称される。また、心電波形は、心内圧の推定に用いられる。本開示において、「心内圧」は、心臓の内部又は心臓の近傍の血管にかかる圧を意味する。心内圧は、より具体的には、心臓の各部の収縮期圧又は拡張期圧又は平均圧である。心内圧は、例えば、肺動脈圧(pulmonary artery pressure)(収縮期圧、拡張期圧、平均圧)を含み、右心房圧(収縮期圧,拡張期圧,平均圧)、右心室圧(収縮期圧、拡張期圧、拡張末期圧)、左心房圧(収縮期圧、拡張期圧、平均圧)、左心室圧(収縮期圧、拡張期圧、拡張末期圧)および大腿動脈圧等を含む。肺動脈圧は、略して「PAP」とも称される。 When the cardiac function parameter acquisition unit 38 is an electrocardiograph, two electrodes of the electrocardiograph may be arranged on the second surface S2 of the main body 37, sandwiching the vibration information detection unit 31. Alternatively, one electrode may be arranged on the second surface S2 of the main body 37, and another electrode may be arranged on the first surface S1 of the main body 37 or at a location that contacts the finger 13 or hand. The electrocardiogram waveform is used to measure parameters related to cardiac function, such as the pre-ejection period. The pre-ejection period is also abbreviated as "PEP." The electrocardiogram waveform is also used to estimate intracardiac pressure. In this disclosure, "intracardiac pressure" means the pressure applied to blood vessels inside the heart or near the heart. More specifically, the intracardiac pressure is the systolic pressure, diastolic pressure, or mean pressure in each part of the heart. Intracardiac pressure includes, for example, pulmonary artery pressure (systolic pressure, diastolic pressure, mean pressure), right atrial pressure (systolic pressure, diastolic pressure, mean pressure), right ventricular pressure (systolic pressure, diastolic pressure, end-diastolic pressure), left atrial pressure (systolic pressure, diastolic pressure, mean pressure), left ventricular pressure (systolic pressure, diastolic pressure, end-diastolic pressure), and femoral artery pressure. Pulmonary artery pressure is also abbreviated as "PAP."
 心機能パラメータ取得部38が、心音及び/又は心尖拍動を取得する場合、心機能パラメータ取得部38は、心疾患に関する診断に使用されるIII音等を取得してよい。 When the cardiac function parameter acquisition unit 38 acquires heart sounds and/or apical beats, the cardiac function parameter acquisition unit 38 may acquire the third sound, etc., which is used to diagnose cardiac disease.
(血圧測定の手順)
 図5を参照して、本実施形態に係るバイタル測定装置1を用いた血圧測定の手順を説明する。図5のフローチャートに示される手順は、本実施形態に係るバイタル測定方法に相当する。ステップ101は、使用者が実行する手順である。ステップS102~S108は、制御部21の指示によりバイタル測定装置1の各部が実行する手順である。
(Blood pressure measurement procedure)
The steps of blood pressure measurement using the vital sign measuring device 1 according to this embodiment will be described with reference to Fig. 5. The steps shown in the flowchart of Fig. 5 correspond to the vital sign measuring method according to this embodiment. Step 101 is a step executed by the user. Steps S102 to S108 are steps executed by each part of the vital sign measuring device 1 in response to instructions from the control unit 21.
 ステップS101において、自己の血圧を測定する使用者は、バイタル測定装置1の測定部10を胸部11に配置する。使用者は、指13をカフ33に挿入した状態で、本体37の第2面S2を胸部体表11a側に向けて、振動情報検出部31を胸部体表11aに押し当てる。 In step S101, a user who is measuring their own blood pressure places the measurement unit 10 of the vital sign measuring device 1 on the chest 11. With the finger 13 inserted into the cuff 33, the user faces the second surface S2 of the main body 37 toward the chest surface 11a and presses the vibration information detection unit 31 against the chest surface 11a.
 ステップS102において、バイタル測定装置1は測定部10が胸部11へ配置されたことを検出する。具体的には、振動情報検出部31が、使用者の胸部体表11aから振動情報を検出する。 In step S102, the vital sign measuring device 1 detects that the measuring unit 10 has been placed on the chest 11. Specifically, the vibration information detecting unit 31 detects vibration information from the user's chest surface 11a.
 ステップS103において、制御部21の判定部21aは、検出された振動情報に基づいて、測定部10が使用者の心臓近傍の胸部体表11aに配置されているか否かを判定する。測定部10が心臓近傍の胸部体表11aに位置していないと判断した場合(ステップS103:NO)、制御部21は、誘導部37aの表示又は音声により、使用者に対して測定部10の位置を移動させることを促してよい。この場合、図5の手順はステップS101に戻る。
 ステップS103において、判定部21aは、測定部10が使用者の心臓近傍の胸部体表11aに配置されていると判断した場合、次のステップS104に進む。
In step S103, the determination unit 21a of the control unit 21 determines whether or not the measurement unit 10 is placed on the chest surface 11a near the user's heart based on the detected vibration information. If it is determined that the measurement unit 10 is not located on the chest surface 11a near the heart (step S103: NO), the control unit 21 may prompt the user to move the position of the measurement unit 10 by displaying or sounding the guidance unit 37a. In this case, the procedure in FIG. 5 returns to step S101.
In step S103, if the determination unit 21a determines that the measurement unit 10 is placed on the chest surface 11a in the vicinity of the user's heart, the process proceeds to the next step S104.
 ステップS104において、カフ制御部32は、カフ33を初期圧力まで加圧する。初期圧力は、一般的な非観血的血圧測定における初期圧力と同程度でよい。初期圧力は、使用者の通常測定して得られる最高血圧に、30~40mmHg程度を加算した圧力とすることができる。ステップS104の処理は、制御部21からカフ制御部32への指令をトリガとして実行されてよい。 In step S104, the cuff control unit 32 pressurizes the cuff 33 to an initial pressure. The initial pressure may be approximately the same as the initial pressure in typical non-invasive blood pressure measurements. The initial pressure may be approximately 30 to 40 mmHg added to the systolic blood pressure obtained by a normal measurement of the user. The process of step S104 may be executed using a command from the control unit 21 to the cuff control unit 32 as a trigger.
 ステップS105において、カフ制御部32は、カフ33の減圧を開始する。カフ制御部32は、一定の減圧速度Vでカフ圧を次第に下げてよく、又は、徐々に減圧速度Vを遅くしてもよい。減圧速度Vが一定の場合、減圧速度Vは、任意の速度でよい。一例として、減圧速度は、3mmHg/秒である。ステップS105の処理は、制御部21からカフ制御部32への指令をトリガとして実行されてよい。 In step S105, the cuff control unit 32 starts depressurizing the cuff 33. The cuff control unit 32 may gradually reduce the cuff pressure at a constant depressurization speed V, or may gradually slow down the depressurization speed V. When the depressurization speed V is constant, the depressurization speed V may be any speed. As an example, the depressurization speed is 3 mmHg/sec. The process of step S105 may be executed with a command from the control unit 21 to the cuff control unit 32 as a trigger.
 ステップS106において、血流検出部35は、血管12のカフ33により圧迫されている箇所に生じた血流を検知する。具体的には、血流検出部35は、血流がカフ33を突破して生じたカフ圧の変動およびK音を検知する。血流検出部35は、圧脈波およびK音の波形を示す信号を出力する。 In step S106, the blood flow detection unit 35 detects blood flow occurring at the location of the blood vessel 12 that is compressed by the cuff 33. Specifically, the blood flow detection unit 35 detects the fluctuation in cuff pressure and the K sound that occurs when blood flow breaks through the cuff 33. The blood flow detection unit 35 outputs signals indicating the waveforms of the pressure pulse wave and the K sound.
 ステップS107において、カフ圧測定部34はカフ圧を検知する。ステップS105のカフ330の減圧開始後、血流が最初に検知されたとき(圧脈波が急激に大きくなったとき、または、K音発生開始時)のカフ圧は、最高血圧である。カフ圧測定部34は、圧力を示す信号をデータ格納部36に出力する。 In step S107, the cuff pressure measurement unit 34 detects the cuff pressure. After depressurization of the cuff 330 begins in step S105, the cuff pressure when blood flow is first detected (when the pressure pulse wave suddenly increases, or when the K sound begins to be generated) is the systolic blood pressure. The cuff pressure measurement unit 34 outputs a signal indicating the pressure to the data storage unit 36.
 ステップS108において、直前のステップS106で血流が検知されている場合(ステップS108:NO)、制御部21は、ステップS106に戻りステップS106~S108の手順を繰り返す。これにより、血流が検知されている間、カフ圧の取得が繰り返される。カフ圧が徐々に低下していくと、ステップS106で圧脈波が急激に小さくなる、または、K音が検知されなくなる。血流が検知できなくなったとき(脈圧波形が急激に小さくなったとき、または、K音が検知されなくなったとき)のカフ圧は、最低血圧である。 In step S108, if blood flow was detected in the previous step S106 (step S108: NO), the control unit 21 returns to step S106 and repeats the procedure of steps S106 to S108. As a result, acquisition of the cuff pressure is repeated while blood flow is detected. When the cuff pressure gradually decreases, the pressure pulse wave suddenly decreases in step S106, or the K sound is no longer detected. The cuff pressure when blood flow can no longer be detected (when the pulse pressure waveform suddenly decreases, or when the K sound is no longer detected) is the minimum blood pressure.
 ステップS108において、直前のステップS106で血流が検知されなくなった場合(ステップS108:YES)、制御部21は、カフ圧の減圧及び血流の検出を停止し処理を終了する。これにより、最高血圧及び最低血圧を含む使用者の血圧のデータが、データ格納部36に格納される。制御部21は、データ格納部36に格納されている最高血圧及び最低血圧を、出力部25を介して使用者に表示することができる。 In step S108, if blood flow is no longer detected in the previous step S106 (step S108: YES), the control unit 21 stops reducing the cuff pressure and detecting blood flow, and ends the process. This causes the user's blood pressure data, including the systolic blood pressure and diastolic blood pressure, to be stored in the data storage unit 36. The control unit 21 can display the systolic blood pressure and diastolic blood pressure stored in the data storage unit 36 to the user via the output unit 25.
 以上説明したように、本実施形態によれば、バイタル測定装置1は、振動情報検出部31から得られる振動情報を用いて測定部10が使用者の心臓近傍の体表に配置されているか否かを判定することができる。バイタル測定装置1は、測定部10が使用者の心臓近傍の体表に配置されている場合に血圧測定を行うので、血圧測定部30の高さの心臓の高さとの差異に起因する測定誤差を低減することができる。 As described above, according to this embodiment, the vital sign measuring device 1 can determine whether or not the measuring unit 10 is placed on the body surface near the user's heart using the vibration information obtained from the vibration information detection unit 31. The vital sign measuring device 1 measures blood pressure when the measuring unit 10 is placed on the body surface near the user's heart, and therefore can reduce measurement errors caused by the difference between the height of the blood pressure measuring unit 30 and the height of the heart.
 また、バイタル測定装置1は、測定部10を使用者の心臓の位置に近づけるように使用者を誘導する誘導部37aを有しているので、誤差の小さい測定を行うことができる。 In addition, the vital sign measuring device 1 has a guidance section 37a that guides the user to move the measuring section 10 closer to the position of the user's heart, making it possible to perform measurements with little error.
 さらに、バイタル測定装置1は、図3に示した心機能パラメータ取得部38を有する場合、血圧測定に加え、心電波形等の血圧とは異なる心機能パラメータの測定を、血圧測定と同時に、又は、短い時間差で並行して行うことができる。 Furthermore, if the vital sign measuring device 1 has the cardiac function parameter acquisition unit 38 shown in FIG. 3, in addition to measuring blood pressure, it can measure cardiac function parameters other than blood pressure, such as electrocardiogram waveforms, either simultaneously with blood pressure measurement or in parallel with a short time lag.
[第2実施形態]
 図6を参照して、第2実施形態に係るバイタル測定装置1Aの概要を説明する。バイタル測定装置1Aは、測定部10Aの位置を使用者の心臓近傍となるように誘導することに加え、測定した血圧値の呼吸性変動を補正する。呼吸性変動とは、呼吸に伴う血圧の変化を意味する。人間の血圧は、吸気時に低下し、呼気時に上昇することが知られている。変動の幅は、呼吸の深さにより異なる。呼吸の深さは、1回の呼吸での換気量を意味する。
[Second embodiment]
An overview of a vital sign measuring device 1A according to the second embodiment will be described with reference to Fig. 6. The vital sign measuring device 1A not only guides the position of the measuring unit 10A to be close to the user's heart, but also corrects respiratory fluctuations in the measured blood pressure value. Respiratory fluctuations refer to changes in blood pressure that accompany breathing. It is known that human blood pressure decreases when inhaling and increases when exhaling. The range of fluctuations varies depending on the depth of breathing. The depth of breathing refers to the ventilation volume in one breath.
 バイタル測定装置1Aは、測定部10Aの構成が、第1実施形態に係るバイタル測定装置1の測定部10とは異なっている。また、バイタル測定装置1Aは、振動情報検出部31の一態様として、呼吸に伴う胸部11の動きを検出する動きセンサ51を備える。動きセンサ51は、呼吸の深さ(1回換気量)を検知することができる。さらに、バイタル測定装置1Aは、制御部21の機能ブロックとして、呼吸周期演算部21bと血圧値補正演算部21cとを備える。呼吸周期演算部21bは、動きセンサ51の検出する使用者の胸部11の動きに基づいて、呼吸周期を検出する。血圧値補正演算部21cは、使用者の呼吸周期に基づいて血圧値を補正する。血圧値補正演算部21cは、補正部である。 The vital sign measuring device 1A has a measuring unit 10A with a different configuration from the measuring unit 10 of the vital sign measuring device 1 according to the first embodiment. Furthermore, the vital sign measuring device 1A includes a motion sensor 51 that detects the movement of the chest 11 accompanying breathing, as one aspect of the vibration information detection unit 31. The motion sensor 51 can detect the depth of breathing (tidal volume). Furthermore, the vital sign measuring device 1A includes a respiratory cycle calculation unit 21b and a blood pressure value correction calculation unit 21c as functional blocks of the control unit 21. The respiratory cycle calculation unit 21b detects the respiratory cycle based on the movement of the user's chest 11 detected by the motion sensor 51. The blood pressure value correction calculation unit 21c corrects the blood pressure value based on the user's respiratory cycle. The blood pressure value correction calculation unit 21c is a correction unit.
 第2実施形態に係るバイタル測定装置1Aの測定部10Aは、種々の構成をとることが可能である。測定部10Aの構成例を、図7から図13を参照して説明する。 The measuring unit 10A of the vital sign measuring device 1A according to the second embodiment can have various configurations. Configuration examples of the measuring unit 10A will be described with reference to Figs. 7 to 13.
(測定部の第1例)
 測定部10Aの第1例の概略構成を、図7を参照して説明する。
(First example of the measuring section)
A schematic configuration of a first example of the measurement unit 10A will be described with reference to FIG.
 測定部10Aは、図3を用いて説明した測定部10と同様に、本体37の第1面にカフ33が設けられている。本体37の第2面には、動きセンサ51の保持部52が固定される。保持部52は、測定時に胸部体表11aに接触する胸部体表11a側に突出した外周部52aと、外周部52aから血圧測定部30側に後退した外周部52aの内側の面とを有する。この内側の面には、検出部53が配置される。検出部53の検出面は、外周部52aの胸部体表11aに接する面に対して後退して(引っ込んで)位置する。 As with the measurement unit 10 described with reference to FIG. 3, the measurement unit 10A has a cuff 33 provided on a first surface of the main body 37. A holding portion 52 of a motion sensor 51 is fixed to a second surface of the main body 37. The holding portion 52 has an outer periphery 52a that protrudes toward the chest surface 11a and contacts the chest surface 11a during measurement, and an inner surface of the outer periphery 52a that recedes from the outer periphery 52a toward the blood pressure measurement unit 30. A detection unit 53 is disposed on this inner surface. The detection surface of the detection unit 53 is positioned receding (setbacked) from the surface of the outer periphery 52a that contacts the chest surface 11a.
 検出部53は、胸部体表11aに対する接触圧力を測定する圧力センサである。圧力センサとしては、圧電素子を用いたセンサを採用することができるが、これに限られない。検出部53は、時系列で順次圧力の変化を測定する。検出部53は、圧力の時系列データをデータ格納部36に記憶し、及び/又は、制御部21に送信する。 The detection unit 53 is a pressure sensor that measures the contact pressure on the chest surface 11a. The pressure sensor may be a sensor using a piezoelectric element, but is not limited to this. The detection unit 53 measures the change in pressure sequentially in a time series. The detection unit 53 stores the time series data of pressure in the data storage unit 36 and/or transmits it to the control unit 21.
 使用者は、バイタル測定装置1Aによる測定を行う際、カフ33に指13を挿入した状態で、胸部体表11aに保持部52の外周部52aの底面を接触させる。人体は、肺を取り囲む骨格及び筋肉の動きにより、吸気のとき胸部11が広がり、呼気のとき胸部11が縮む。測定部10Aを用いた測定時に、胸部11が広がると、胸部体表11aの湾曲が大きくなり、胸部体表11aが外周部52aに接する位置から検出部53側に張り出して、検出部53に接触する。胸部11が縮んだ場合は、その逆となる。このため、使用者が同じ姿勢で測定部10Aを胸部体表11aに押し当てていると、吸気のとき接触圧力は高くなり、呼気のとき接触圧力は低くなる。したがって、検出部53で取得された接触圧の時系列の変化から、使用者の呼吸周期の情報を得ることができる。ここで呼吸周期の情報には、1回の呼吸にかかる時間の長さ、及び、呼吸周期の変動するタイミングの情報、及び、1回の呼吸での換気量、すなわち、周期情報及び位相情報及び呼吸の深さ情報を含む。 When performing a measurement using the vital sign measuring device 1A, the user inserts a finger 13 into the cuff 33 and places the bottom surface of the outer periphery 52a of the holding unit 52 in contact with the chest surface 11a. In the human body, the chest 11 expands when inhaling and contracts when exhaling due to the movement of the skeleton and muscles surrounding the lungs. When the chest 11 expands during measurement using the measuring unit 10A, the curvature of the chest surface 11a increases, and the chest surface 11a protrudes from the position where it contacts the outer periphery 52a toward the detecting unit 53 and comes into contact with the detecting unit 53. When the chest 11 contracts, the opposite occurs. Therefore, if the user presses the measuring unit 10A against the chest surface 11a in the same posture, the contact pressure increases when inhaling and decreases when exhaling. Therefore, information about the user's breathing cycle can be obtained from the time-series changes in the contact pressure acquired by the detecting unit 53. Here, the respiratory cycle information includes the length of time it takes for one breath, information on the timing of changes in the respiratory cycle, and the ventilation volume per breath, i.e., cycle information, phase information, and respiratory depth information.
 なお、図7に図示はしていないが、保持部52の外周部52aの胸部体表11aに接する部分には、図3に示した心機能パラメータ取得部38として示した、心電計の電極又は音響センサ等の他のセンサを設けてよい。以下の測定部10Aの第2例~第4例においても同様である。第2実施形態では、心機能パラメータ取得部38を設けることは必須ではない。 Note that, although not shown in FIG. 7, other sensors such as electrocardiograph electrodes or acoustic sensors shown as the cardiac function parameter acquisition unit 38 in FIG. 3 may be provided on the portion of the outer periphery 52a of the holding unit 52 that contacts the chest surface 11a. The same applies to the second to fourth examples of the measurement unit 10A described below. In the second embodiment, it is not essential to provide a cardiac function parameter acquisition unit 38.
 (測定部の第2例)
 測定部10Aの第2例の概略構成を、図8を参照して説明する。図8は、図7に示した測定部10Aと類似の構成を有する測定部10Aの検出部53を底面側から見た図である。
(Second Example of Measuring Unit)
The schematic configuration of a second example of the measurement unit 10A will be described with reference to Fig. 8. Fig. 8 is a bottom view of a detection unit 53 of the measurement unit 10A having a similar configuration to the measurement unit 10A shown in Fig. 7.
 第2例において、第1例の検出部53とは異なり、検出部53は、アレー状に配列された多数の検出素子53aを含んで構成されている。それぞれの検出素子53aは、胸部体表11aとの接触を検知するセンサである。胸部体表11aと接触する検出素子53aの数をカウントすることにより、胸部体表11aと検出部53との接触面積を算出することができる。検出素子53aは、それぞれが圧電素子であってよく、他の種類の接触を検知するセンサであってもよい。 In the second example, unlike the detection unit 53 in the first example, the detection unit 53 is configured to include a large number of detection elements 53a arranged in an array. Each detection element 53a is a sensor that detects contact with the chest surface 11a. By counting the number of detection elements 53a in contact with the chest surface 11a, the contact area between the chest surface 11a and the detection unit 53 can be calculated. Each detection element 53a may be a piezoelectric element, or may be a sensor that detects other types of contact.
 これにより、使用者は、バイタル測定装置1Aによる測定を行う際、第1例の測定部10Aと同様にカフ33に指13を挿入した状態で、胸部体表11aに保持部52の外周部52aの底部を接触させる。吸気のとき胸部体表11aが検出部53側に張り出すので、胸部体表11aと検出部53との接触面積が大きくなり、呼気のときは逆に接触面積が小さくなる。したがって、検出部53で取得される接触面積の時系列の変化から、第1例の検出部と同様に使用者の呼吸周期の情報を得ることができる。 As a result, when a user performs a measurement using the vital sign measuring device 1A, the user inserts a finger 13 into the cuff 33 in the same manner as the measuring unit 10A of the first example, and contacts the bottom of the outer periphery 52a of the holding unit 52 with the chest surface 11a. When inhaling, the chest surface 11a juts out towards the detection unit 53, increasing the contact area between the chest surface 11a and the detection unit 53, and conversely, when exhaling, the contact area decreases. Therefore, from the time series change in the contact area acquired by the detection unit 53, information on the user's respiratory cycle can be obtained, in the same manner as with the detection unit of the first example.
 (測定部の第3例)
 測定部10Aの第3例の概略構成を、図9を参照して説明する。図9は、図7に示した測定部10Aにおいて、第1例の検出部53とは異なる検出部54を採用する。
(Third example of the measuring section)
A schematic configuration of a third example of the measurement unit 10A will be described with reference to Fig. 9. Fig. 9 employs a detection unit 54 different from the detection unit 53 of the first example in the measurement unit 10A shown in Fig. 7.
 第3例の測定部10Aにおいて、検出部54は、保持部52の中央部分に組み込まれた測距センサである。検出部54は、外周部52aの胸部体表11aに接触する位置から血圧測定部30側に後退して位置する。検出部54は、検出部54と使用者の胸部体表11aとの間の距離を測定することができる。検出部54には、例えば、赤外線を用いた測距センサ、カメラ、及び、超音波センサが含まれる。 In the third example of the measurement unit 10A, the detection unit 54 is a distance sensor built into the center of the holding unit 52. The detection unit 54 is positioned retracted toward the blood pressure measurement unit 30 from the position where the outer circumferential portion 52a contacts the chest surface 11a. The detection unit 54 can measure the distance between the detection unit 54 and the user's chest surface 11a. The detection unit 54 includes, for example, an infrared distance sensor, a camera, and an ultrasonic sensor.
 これにより、使用者は、バイタル測定装置1Aによる測定を行う際、第1例の測定部10Aと同様にカフ33に指13を挿入した状態で、胸部体表11aに保持部52の外周部52aの底部を接触させる。吸気のとき胸部体表11aが検出部53側に張り出すので、胸部体表11aと検出部54との間の距離が小さくなり、呼気のときは逆に距離が大きくなる。したがって、検出部54で取得される胸部体表11aと検出部54との間の距離の時系列の変化から、使用者の呼吸周期の情報を得ることができる。 As a result, when a user performs a measurement using the vital sign measuring device 1A, the user inserts a finger 13 into the cuff 33 in the same manner as the measuring unit 10A of the first example, and contacts the bottom of the outer periphery 52a of the holding unit 52 with the chest surface 11a. When inhaling, the chest surface 11a juts out towards the detection unit 53, so the distance between the chest surface 11a and the detection unit 54 becomes smaller, and conversely, when exhaling, the distance becomes larger. Therefore, information about the user's respiratory cycle can be obtained from the time series change in the distance between the chest surface 11a and the detection unit 54 acquired by the detection unit 54.
 (測定部の第4例)
 測定部10Aの第4例の概略構成を、図10を参照して説明する。図10は、図7に示した測定部10Aにおいて、第1例の検出部53とは異なる保持部52及び検出部55を採用する。
(Fourth Example of Measuring Unit)
A schematic configuration of a fourth example of the measurement unit 10A will be described with reference to Fig. 10. Fig. 10 employs a holding unit 52 and a detection unit 55 different from the detection unit 53 of the first example in the measurement unit 10A shown in Fig. 7.
 第4例の測定部10Aにおいて、保持部52は伸縮性及び弾力性を有する材料で構成される。また、検出部55は、測定時において保持部52の胸部体表11aに沿う方向に埋設された歪センサとすることができる。検出部55は、保持部52に加わる伸び及び縮み等の変形を電気信号として、データ格納部36及び/又は制御部21に出力する。 In the fourth example of the measuring unit 10A, the holding unit 52 is made of a material that is stretchable and elastic. The detection unit 55 can be a strain sensor embedded in the holding unit 52 in a direction along the chest surface 11a during measurement. The detection unit 55 outputs deformations such as expansion and contraction applied to the holding unit 52 as electrical signals to the data storage unit 36 and/or the control unit 21.
 これにより、使用者は、バイタル測定装置1Aによる測定を行う際、第1例の測定部10Aと同様にカフ33に指13を挿入した状態で、胸部体表11aに保持部52の外周部52aを接触させる。吸気及び呼気のとき、使用者の胸部が拡張及び縮小することにより、胸部体表11aに押し付けられた外周部52aを介して保持部52に埋設された検出部55に対して、伸び、縮み等の変形が加わる。したがって、制御部21は、検出部55で検出される歪の時系列の変化から、使用者の呼吸周期の情報を得ることができる。 As a result, when a user performs a measurement using the vital sign measuring device 1A, the user inserts a finger 13 into the cuff 33 in the same manner as the measuring unit 10A of the first example, and contacts the outer periphery 52a of the holding unit 52 with the chest surface 11a. When inhaling and exhaling, the user's chest expands and contracts, causing deformations such as stretching and contraction to be applied to the detection unit 55 embedded in the holding unit 52 via the outer periphery 52a pressed against the chest surface 11a. Therefore, the control unit 21 can obtain information about the user's respiratory cycle from the time-series changes in the strain detected by the detection unit 55.
 人間の呼吸のサイクルは、吸気期間と呼気期間とを含む。図11に示すように、人間の血圧は吸気期間に低くなる。このため、例えば、図12中に白抜きの丸で示されるように、吸気期間に測定される血圧値は、呼気期間であれば得られたであろう血圧値よりも低くなる。最高血圧又は最低血圧を検出したタイミングが吸気期間の場合、血圧値が低く測定される。本実施形態の呼吸周期演算部21b及び血圧値補正演算部21cは、吸気期間の血圧値を呼気期間であったら得られたであろう血圧値に補正する。なお、血圧値の補正の方法はこれに限られず、呼気期間の血圧値を吸気期間の血圧値に補正する方法、又は、吸気期間及び呼気期間の血圧値の双方を補正する方法も採用し得る。 The human breathing cycle includes an inhalation period and an exhalation period. As shown in FIG. 11, human blood pressure is lower during the inhalation period. For this reason, for example, as shown by the open circle in FIG. 12, the blood pressure value measured during the inhalation period is lower than the blood pressure value that would have been obtained during the exhalation period. If the timing of detecting the systolic or diastolic blood pressure is during the inhalation period, the blood pressure value is measured as being lower. The respiratory cycle calculation unit 21b and the blood pressure value correction calculation unit 21c of this embodiment correct the blood pressure value during the inhalation period to the blood pressure value that would have been obtained during the exhalation period. Note that the method of correcting the blood pressure value is not limited to this, and a method of correcting the blood pressure value during the exhalation period to the blood pressure value during the inhalation period, or a method of correcting both the blood pressure values during the inhalation period and the exhalation period may also be adopted.
 なお、図12のECGは、心電計により測定される心電図を意味するelectrocardiogramの略語である。心電計は、ECGセンサとも称される。心電計の信号から、心臓の拍出タイミングが得られる。拍出タイミングは、心臓の基準タイミングとして扱われる。基準タイミングとは、心拍ごとに特定可能なタイミングのことである。本実施形態では心電計は必須の構成要素ではない。 Note that ECG in FIG. 12 is an abbreviation of electrocardiogram, which means an electrocardiogram measured by an electrocardiograph. An electrocardiograph is also called an ECG sensor. The cardiac output timing is obtained from the signal of the electrocardiograph. The output timing is treated as the reference timing of the heart. The reference timing is a timing that can be identified for each heartbeat. In this embodiment, an electrocardiograph is not an essential component.
 測定部10Aは、胸部体表11aと検出部53との間の圧力、胸部体表11aと検出部53との間の接触面積、胸部体表11aと検出部54との間の距離、及び、検出部55に加わる歪みの少なくとも何れかの変化に基づいて、胸部11の動きを検出する。呼吸周期演算部21bは、動きセンサ51から取得した胸部11の動きを示す時系列のデータに基づいて、呼吸周期、呼吸のタイミング(位相)、及び、呼吸の深さを決定するように構成される。 The measurement unit 10A detects the movement of the chest 11 based on at least one change in the pressure between the chest surface 11a and the detection unit 53, the contact area between the chest surface 11a and the detection unit 53, the distance between the chest surface 11a and the detection unit 54, and the strain applied to the detection unit 55. The respiratory cycle calculation unit 21b is configured to determine the respiratory cycle, the timing (phase) of breathing, and the depth of breathing based on time-series data indicating the movement of the chest 11 obtained from the motion sensor 51.
 血圧値補正演算部21cは、血圧測定部30で測定した血圧値、特に最高血圧及び最低血圧について、呼吸周期演算部21bで決定した呼吸周期、呼吸のタイミング(位相)、及び、呼吸の深さに基づいて、補正を行う。具体的には、血圧値補正演算部21cは、吸気期間に測定された血圧値を、吸気期間における経過時間に応じて補正する。例えば、血圧値補正演算部21cは、次式により求められる補正値yを吸気時のカフ圧の値に加算することで、カフ圧の値を補正する。
 y=A・sin(2πft)
なお、この数式は一例である。血圧の呼吸変動を補正する補正式はこれに限られない。
The blood pressure value correction calculation unit 21c corrects the blood pressure values measured by the blood pressure measurement unit 30, particularly the systolic and diastolic blood pressures, based on the respiratory cycle, breathing timing (phase), and breathing depth determined by the respiratory cycle calculation unit 21b. Specifically, the blood pressure value correction calculation unit 21c corrects the blood pressure values measured during the inspiration period according to the elapsed time during the inspiration period. For example, the blood pressure value correction calculation unit 21c corrects the cuff pressure value during inspiration by adding a correction value y calculated by the following formula:
y = A sin(2πft)
Note that this formula is just an example, and the correction formula for correcting respiratory variation in blood pressure is not limited to this.
 上記数式において、振幅Aは、補正値幅に相当する。振幅Aは、呼吸の深さに基づいて決定される。振幅Aは、例えば、10mmHgに設定される。血圧値補正演算部21cは、観血検査を行って得られた血圧波形を示す波形データに基づいて、振幅Aを設定してもよい。すなわち、補正値幅は、観血的な検査で得られた血圧波形を基に決められてもよい。その場合、制御装置20の入力部24が、血圧波形を入力するためのインタフェースとして利用されてもよい。周波数fは、呼吸周期の逆数に相当する。時間tは、吸気の始まりから血流タイミングまでの経過時間である。例えば、A=10mmHg、f=0.2Hz、及びt=0.5秒とすると、y=10sin(2π×0.2×0.5)≒5.9mmHgとなる。血圧値補正演算部21cは、補正された最高血圧及び最低血圧を算出することができる。 In the above formula, the amplitude A corresponds to the correction value range. The amplitude A is determined based on the depth of breathing. For example, the amplitude A is set to 10 mmHg. The blood pressure value correction calculation unit 21c may set the amplitude A based on waveform data showing the blood pressure waveform obtained by performing an invasive blood test. In other words, the correction value range may be determined based on the blood pressure waveform obtained by an invasive blood test. In that case, the input unit 24 of the control device 20 may be used as an interface for inputting the blood pressure waveform. The frequency f corresponds to the reciprocal of the respiratory cycle. The time t is the elapsed time from the start of inspiration to the blood flow timing. For example, if A = 10 mmHg, f = 0.2 Hz, and t = 0.5 seconds, then y = 10 sin (2π × 0.2 × 0.5) ≒ 5.9 mmHg. The blood pressure value correction calculation unit 21c can calculate the corrected systolic and diastolic blood pressures.
(呼吸変動を補正する血圧測定の手順)
 図13を参照して、本実施形態に係るバイタル測定装置1Aを用いた血圧測定の手順を説明する。図13に示される手順は、第1実施形態の図5に示される手順と共通する部分が多いので、図5のフローチャートと共通する部分の説明を省略し、異なる部分についてのみ説明する。
(Procedure for measuring blood pressure with compensation for respiratory variation)
The procedure for blood pressure measurement using the vital sign measuring device 1A according to this embodiment will be described with reference to Fig. 13. The procedure shown in Fig. 13 has many parts in common with the procedure shown in Fig. 5 of the first embodiment, so a description of the parts in common with the flowchart in Fig. 5 will be omitted and only the differences will be described.
 ステップS201からステップS205は、図5のステップS101からS105と同じである。 Steps S201 to S205 are the same as steps S101 to S105 in FIG. 5.
 ステップS206において、動きセンサ51は、使用者の胸部の動きの検出を開始する。ステップS206は、ステップS205よりも前に実行されてもよい。 In step S206, the motion sensor 51 starts detecting the movement of the user's chest. Step S206 may be performed before step S205.
 続くステップS207からS209は、図5のステップS106からS108と基本的に同じであるが、ステップS207からS209の間、動きセンサ51は使用者の胸部11の動きの検出を継続的に行う。動きセンサ51は、時系列の胸部11の動きのデータをデータ格納部36及び/又は制御部21に出力する。ステップS209で血流が検出されなくなった後(ステップS209:YES)、制御部21は、ステップS210の処理に進む。 Subsequent steps S207 to S209 are basically the same as steps S106 to S108 in FIG. 5, but during steps S207 to S209, the motion sensor 51 continuously detects the motion of the user's chest 11. The motion sensor 51 outputs time-series data on the motion of the chest 11 to the data storage unit 36 and/or the control unit 21. After blood flow is no longer detected in step S209 (step S209: YES), the control unit 21 proceeds to the processing of step S210.
 ステップS210において、制御部21の呼吸周期演算部21bは、動きセンサ51により検出された胸部の動きを示すデータに基づいて、呼吸波形を推定する。呼吸波形は、呼吸周期、吸気及び呼気の始まるタイミング(位相)、呼吸の深さ(振幅)の情報を含む。 In step S210, the respiratory cycle calculation unit 21b of the control unit 21 estimates a respiratory waveform based on data indicating chest movement detected by the movement sensor 51. The respiratory waveform includes information on the respiratory cycle, the timing (phase) at which inspiration and expiration begin, and the depth (amplitude) of breathing.
 ステップS211において、制御部21の血圧値補正演算部21cは、ステップS210で推定した呼吸波形に応じた周期及び振幅を有する補正用の前述の式
y=A・sin(2πft)
を決定し、カフ圧測定部34で測定したカフ圧に基づく血圧値を補正する。血圧値補正演算部21cで補正された血圧値は、使用者の呼吸状態、すなわち吸気時及び呼気時の双方又は何れかに影響されず、一貫した血圧値を算出することができる。
In step S211, the blood pressure value correction calculation unit 21c of the control unit 21 calculates a blood pressure value based on the above-mentioned correction equation y=A sin(2πft) having a period and amplitude corresponding to the respiratory waveform estimated in step S210.
and corrects the blood pressure value based on the cuff pressure measured by the cuff pressure measurement unit 34. The blood pressure value corrected by the blood pressure value correction calculation unit 21c is not influenced by the breathing state of the user, i.e., both or either of the time of inhalation and exhalation, and a consistent blood pressure value can be calculated.
 以上説明したように、本実施形態に係るバイタル測定装置1Aによれば、第1実施形態に係るバイタル測定装置1の効果に加え、血圧測定の呼吸性変動に起因する測定結果の揺らぎを排除し、一貫した測定が可能になる。これにより、最高血圧及び最低血圧を含む測定した血圧値の信頼性が高まる。 As described above, the vital sign measuring device 1A according to this embodiment, in addition to the effects of the vital sign measuring device 1 according to the first embodiment, eliminates fluctuations in the measurement results caused by respiratory fluctuations in blood pressure measurement, enabling consistent measurements. This increases the reliability of the measured blood pressure values, including the systolic and diastolic blood pressures.
 なお、上記図13に示した手順とは異なり、動きセンサ51が使用者の胸部11の動きを検出し、制御部21が呼吸周期を推定する処理を、カフ33の加圧を開始する前に行ってもよい。制御部21は、検出した使用者の呼吸周期に合わせて、血圧値の測定を行ってよい。例えば、制御部21は、カフ33の減圧の開始を呼吸周期の所定のタイミングに合わせてよい。例えば、制御部21は、カフ33の減圧の開始を、使用者の呼気期間の開始時点に一致させてよい。これによって、使用者が複数回の測定を行った場合に、呼吸性変動に起因する最高血圧及び最低血圧の変動の傾向が、測定間で同様の傾向となる。また、制御部21は、使用者の最高血圧及び/又は最低血圧が取得される時点が、呼気期間(又は、吸気期間)となるように、カフ33の減圧を開始するタイミングを調整してもよい。これにより、測定ごとに異なる呼吸性変動の影響を受けにくいように、血圧測定を行うことができる。 Note that, unlike the procedure shown in FIG. 13, the motion sensor 51 may detect the motion of the chest 11 of the user, and the control unit 21 may estimate the respiratory cycle before starting to inflate the cuff 33. The control unit 21 may measure the blood pressure value in accordance with the detected respiratory cycle of the user. For example, the control unit 21 may synchronize the start of depressurization of the cuff 33 with a predetermined timing of the respiratory cycle. For example, the control unit 21 may match the start of depressurization of the cuff 33 with the start of the expiratory period of the user. This allows the tendency of fluctuations in the systolic and diastolic blood pressures caused by respiratory fluctuations to be similar between measurements when the user performs multiple measurements. In addition, the control unit 21 may adjust the timing of starting depressurization of the cuff 33 so that the time when the systolic and/or diastolic blood pressure of the user is obtained is the expiratory period (or the inhalation period). This allows blood pressure measurement to be performed in a manner that is less susceptible to the influence of respiratory fluctuations that differ from measurement to measurement.
[第3実施形態]
 図14を参照して、第3実施形態に係るバイタル測定装置1Bの概要を説明する。バイタル測定装置1Bは、測定部10Bの位置を使用者の心臓近傍となるように誘導すること、及び、測定した血圧値の呼吸性変動を補正することに加え、呼吸性変動を補正した血圧値から動脈圧波形の推定を行う。
[Third embodiment]
An overview of a vital sign measuring device 1B according to the third embodiment will be described with reference to Fig. 14. The vital sign measuring device 1B guides the position of a measuring unit 10B to be close to the user's heart and corrects respiratory variation in the measured blood pressure value, and also estimates an arterial pressure waveform from the blood pressure value corrected for respiratory variation.
 図14では、図1に示した第1実施形態に係るバイタル測定装置1、及び、図6に示したバイタル測定装置1Aと同一又は類似する構成要素には、バイタル測定装置1、1Aと同一の符号を付している。また、バイタル測定装置1、1Aと同一又は類似の構成要素について、第1実施形態及び第2実施形態と重複する説明は省略する。 In FIG. 14, components that are the same as or similar to the vital sign measuring device 1 according to the first embodiment shown in FIG. 1 and the vital sign measuring device 1A shown in FIG. 6 are given the same reference numerals as the vital sign measuring devices 1 and 1A. Furthermore, for components that are the same as or similar to the vital sign measuring devices 1 and 1A, descriptions that overlap with the first and second embodiments will be omitted.
 バイタル測定装置1Bは、測定部10Bに必須の構成要素として、心機能パラメータ取得部38を含む。本実形態において、心機能パラメータ取得部38は、心臓の拍出タイミングを心拍ごとに特定することが可能な心電計又は心音センサである。例えば、拍出タイミングは、心電計によりQ波が検出されるタイミングである。これに対し、血流検出部35により使用者の測定部位で血流を検知したタイミングを血流タイミングと呼ぶ。例えば、血流検出部35により検知されるK音の波形から血流タイミングを特定できる。心電計によりQ波が検出されてから、血流検出部35でK音が検出されるまでの時間間隔が、図12に時間差として表示されている。心機能パラメータ取得部38は、心音センサであってもよい。その場合、心機能パラメータ取得部38は、僧帽弁の閉塞音を含む心音を検知する。拍出タイミングは、僧帽弁の閉塞音を検出したタイミングに基づいて決定されてよい。 The vital sign measuring device 1B includes a cardiac function parameter acquiring unit 38 as an essential component of the measuring unit 10B. In this embodiment, the cardiac function parameter acquiring unit 38 is an electrocardiograph or a cardiac sound sensor capable of identifying the cardiac pumping timing for each heartbeat. For example, the pumping timing is the timing at which the Q wave is detected by the electrocardiograph. In contrast, the timing at which blood flow is detected at the user's measurement site by the blood flow detecting unit 35 is called the blood flow timing. For example, the blood flow timing can be identified from the waveform of the K sound detected by the blood flow detecting unit 35. The time interval from when the Q wave is detected by the electrocardiograph to when the K sound is detected by the blood flow detecting unit 35 is displayed as a time difference in FIG. 12. The cardiac function parameter acquiring unit 38 may be a cardiac sound sensor. In that case, the cardiac function parameter acquiring unit 38 detects heart sounds including the mitral valve closure sound. The pumping timing may be determined based on the timing at which the mitral valve closure sound is detected.
 制御部21の動脈圧波形推定部21dは、心拍ごとに記憶された拍出タイミングと血流タイミングとを測定部1Bから取得し、それら拍出タイミングと血流タイミングとの時間差を算出する。動脈圧波形推定部21dは、心拍ごとの時間差と、血圧値補正演算部21cで補正された血圧値とを関連付けて、プロットデータを生成する。制御部21は、生成したプロットデータに基づいて、動脈圧の経時変化を示す動脈圧波形の一部を推定する。すなわち、動脈圧波形推定部21dは、心機能パラメータ取得部38で取得した拍出タイミングと血流検出部35で取得した血流タイミングとの時間差、及び、カフ圧測定部34で測定され、呼吸変動が補正された血圧値に基づいて、動脈圧波形の一部を推定する。具体的には、動脈圧波形推定部21dは、プロットした点に対するスプライン補間を行って、動脈圧波形曲線を推定する。 The arterial pressure waveform estimation unit 21d of the control unit 21 acquires the ejection timing and blood flow timing stored for each heartbeat from the measurement unit 1B, and calculates the time difference between the ejection timing and blood flow timing. The arterial pressure waveform estimation unit 21d generates plot data by associating the time difference for each heartbeat with the blood pressure value corrected by the blood pressure value correction calculation unit 21c. The control unit 21 estimates a part of the arterial pressure waveform indicating the change in arterial pressure over time based on the generated plot data. That is, the arterial pressure waveform estimation unit 21d estimates a part of the arterial pressure waveform based on the time difference between the ejection timing acquired by the cardiac function parameter acquisition unit 38 and the blood flow timing acquired by the blood flow detection unit 35, and the blood pressure value measured by the cuff pressure measurement unit 34 and corrected for respiratory fluctuations. Specifically, the arterial pressure waveform estimation unit 21d performs spline interpolation on the plotted points to estimate the arterial pressure waveform curve.
 人体の心臓の拍動において、心臓の左室内の圧が上昇し大動脈弁が開くと、大動脈に血流が流れ込む。大動脈弁を通過した血流は、大動脈弁の開放から遅れて手首及び指先の動脈へ到達する。このため、手首及び指の動脈圧波形は、大動脈弁近傍の動脈圧波形を遅延分シフトした曲線となっている。したがって、動脈圧波形推定部21dは、測定部位の動脈圧波形から、大動脈弁近傍の動脈圧波形を推定することができる。 When the human heart beats, the pressure in the left ventricle of the heart rises and the aortic valve opens, causing blood to flow into the aorta. The blood that passes through the aortic valve reaches the arteries in the wrist and fingertips with a delay from the opening of the aortic valve. For this reason, the arterial pressure waveforms in the wrist and fingers are curves that are the arterial pressure waveform near the aortic valve shifted by the amount of delay. Therefore, the arterial pressure waveform estimation unit 21d can estimate the arterial pressure waveform near the aortic valve from the arterial pressure waveform at the measurement site.
 図15は、動脈圧波形推定部21dにより推定される動脈圧波形の一部の一例を示す。図15において、白抜きの丸で示されるデータは、図12において白抜きの丸で示されたデータに相当する。これらのデータは補正により圧力の高い側に移動される。 FIG. 15 shows an example of a portion of the arterial pressure waveform estimated by the arterial pressure waveform estimation unit 21d. In FIG. 15, the data shown by the open circles corresponds to the data shown by the open circles in FIG. 12. These data are shifted to the higher pressure side by correction.
(血圧測定から動脈圧波形推定の手順)
 図16を参照して、本実施形態に係るバイタル測定装置1Bを用いた血圧測定及び動脈圧波形推定の手順を説明する。図16に示される手順は、第2実施形態の図13に示される手順と共通する部分が多いので、図13のフローチャートと共通する部分の説明を省略し、異なる部分についてのみ説明する。
(Procedure for estimating arterial pressure waveform from blood pressure measurement)
The procedure for blood pressure measurement and arterial pressure waveform estimation using the vital sign measuring device 1B according to this embodiment will be described with reference to Fig. 16. The procedure shown in Fig. 16 has many parts in common with the procedure shown in Fig. 13 of the second embodiment, so a description of the parts in common with the flowchart in Fig. 13 will be omitted and only the differences will be described.
 ステップS301からステップS306は、図13のステップS201からステップS206と同じである。 Steps S301 to S306 are the same as steps S201 to S206 in FIG. 13.
 ステップS307において、心機能パラメータ取得部38が心臓の拍出の検知を開始し始め、これ以降、繰り返し心臓の拍出を検知する。具体的には、心機能パラメータ取得部38は心電計であり、使用者の心電波形を繰り返し計測する。心機能パラメータ取得部38は、心電波形を計測する度に心臓の拍出タイミングを出力する。 In step S307, the cardiac function parameter acquisition unit 38 starts detecting cardiac output, and thereafter repeatedly detects cardiac output. Specifically, the cardiac function parameter acquisition unit 38 is an electrocardiograph, and repeatedly measures the user's electrocardiogram waveform. The cardiac function parameter acquisition unit 38 outputs the cardiac output timing each time it measures an electrocardiogram waveform.
 ステップS308からS312は、それぞれ、図13のステップS206からS211と同じである。 Steps S308 to S312 are the same as steps S206 to S211 in FIG. 13, respectively.
 ステップS313において、動脈圧波形推定部21dは、心機能パラメータ取得部38により検出された心臓の拍出タイミングと血流検出部35で取得した血流タイミングとの時間差、及び、ステップS312で補正された血圧値とに基づいて、動脈圧波形を推定する。 In step S313, the arterial pressure waveform estimation unit 21d estimates the arterial pressure waveform based on the time difference between the cardiac pumping timing detected by the cardiac function parameter acquisition unit 38 and the blood flow timing acquired by the blood flow detection unit 35, and the blood pressure value corrected in step S312.
 以上説明したように、本実施形態によれば、動脈圧の経時変化を示す動脈圧波形を非侵襲且つ高精度に推定することができる。動脈圧波形は、肺動脈圧波形、左室圧波形及びLVEDP等を含む心内圧の推定に用いることができる。「LVEDP」は、left ventricular end-diastolic pressureの略語である。 As described above, according to this embodiment, the arterial pressure waveform, which indicates the change in arterial pressure over time, can be estimated non-invasively and with high accuracy. The arterial pressure waveform can be used to estimate intracardiac pressures, including the pulmonary artery pressure waveform, the left ventricular pressure waveform, and LVEDP. "LVEDP" is an abbreviation for left ventricular end-diastolic pressure.
 以下に、第1実施形態から第3実施形態において適用可能な、測定部10、10A、10Bの変形例について説明する。 Below, we will explain modified examples of the measurement units 10, 10A, and 10B that can be applied to the first to third embodiments.
(測定部の変形例1)
 図17の測定部10Cは、血圧測定部30と振動情報検出部31とを含む。血圧測定部30は、測定時使用者が指13を通すカフ61と、使用者が指13を通した状態でカフ61の周囲を覆い、且つ、カフ61の下側部分62aに開口部分を有する筐体62とを含む。振動情報検出部31は、筐体62の開口部分に設けられた弾性体63と検出部64とを含む。弾性体63は、筐体62の開口部分を塞ぐように設けられた、ゴム等の弾性を有する材料からなる膜状又は薄板状の部材である。カフ61及び弾性体63は、検出部64を使用者の胸部体表11aに対して押し付けるための押付用加圧部を構成する。検出部64は、例えば心音を検出するための圧電センサである。検出部64は、図1の振動情報検出部31に相当する。また、筐体62の下側部分62aの下面には、心機能パラメータ取得部38である心電計の電極パッド65が設けられている。カフ61が加圧されて膨張していない状態では、使用者の胸部体表11aに向く面である電極パッド65の下面は、検出部64の下面よりも、使用者の胸部体表11a側に位置する。電極パッド65は、この測定部10Cが第1実施形態及び第2実施形態で使用される場合、必須の構成要素ではない。
(Modification 1 of the measurement unit)
The measurement unit 10C in FIG. 17 includes a blood pressure measurement unit 30 and a vibration information detection unit 31. The blood pressure measurement unit 30 includes a cuff 61 through which the user passes the finger 13 during measurement, and a housing 62 that covers the periphery of the cuff 61 when the user passes the finger 13 and has an opening at a lower part 62a of the cuff 61. The vibration information detection unit 31 includes an elastic body 63 and a detection unit 64 provided at the opening part of the housing 62. The elastic body 63 is a membrane-like or thin plate-like member made of an elastic material such as rubber, which is provided so as to cover the opening part of the housing 62. The cuff 61 and the elastic body 63 constitute a pressing pressure unit for pressing the detection unit 64 against the chest surface 11a of the user. The detection unit 64 is, for example, a piezoelectric sensor for detecting heart sounds. The detection unit 64 corresponds to the vibration information detection unit 31 in FIG. 1. Further, electrode pads 65 of an electrocardiograph, which is the cardiac function parameter acquisition unit 38, are provided on the underside of the lower portion 62a of the housing 62. When the cuff 61 is not pressurized and inflated, the underside of the electrode pads 65, which faces the user's chest body surface 11a, is located closer to the user's chest body surface 11a than the underside of the detection unit 64. The electrode pads 65 are not an essential component when this measurement unit 10C is used in the first and second embodiments.
 図18を参照して、図17の測定部10Cを用いた血圧値の測定について説明する。測定時において、指13を挿入した状態でカフ61が加圧されると、カフ61は膨張して弾性体63を押し下げる。これにより、検出部64は使用者の胸部体表11aに押し付けられる。これによって、検出部64は、安定した押圧で胸部体表11aに押し当てられ、心音を精度よく取得することができる。また、この測定部10Cは、血圧測定部30及び振動情報検出部31とともに心機能パラメータ取得部38を有するので、多くのバイタル情報を単一の測定部10Cで測定することができる。測定部10Cは、第1実施形態から第3実施形態までの何れの実施形態での利用も可能である。 With reference to FIG. 18, the measurement of blood pressure values using the measurement unit 10C of FIG. 17 will be described. When the cuff 61 is pressurized with the finger 13 inserted during measurement, the cuff 61 expands and pushes down the elastic body 63. This causes the detection unit 64 to be pressed against the chest surface 11a of the user. This allows the detection unit 64 to be pressed against the chest surface 11a with a stable pressure, making it possible to accurately acquire heart sounds. Furthermore, since the measurement unit 10C has a blood pressure measurement unit 30, a vibration information detection unit 31, and a cardiac function parameter acquisition unit 38, it is possible to measure a large amount of vital information with a single measurement unit 10C. The measurement unit 10C can be used in any of the first to third embodiments.
 さらに、別の形態として、測定部10Cは、電極パッド65に吸盤を配置し、振動情報検出部31及び電極パッド65を使用者の胸部体表11aに密着させるように構成されてよい。吸盤は、振動情報検出部31を使用者の胸部体表11aに対して密着させる密着手段である。吸盤を設けることにより、測定部10Cを胸部体表11a上に安定して位置決めすることができるので、血圧値及び心音及び他のバイタル情報のさらに安定した測定が可能になる。 Furthermore, as another embodiment, the measurement unit 10C may be configured to place suction cups on the electrode pads 65 and to bring the vibration information detection unit 31 and the electrode pads 65 into close contact with the user's chest surface 11a. The suction cups are a means for bringing the vibration information detection unit 31 into close contact with the user's chest surface 11a. By providing the suction cups, the measurement unit 10C can be stably positioned on the chest surface 11a, enabling even more stable measurement of blood pressure values, heart sounds, and other vital information.
(測定部の変形例2)
 図19を参照して測定部の他の変形例について説明する。図19の測定部10Dは、血圧測定部30として筐体72の上に配置されたカフ71を有する。カフ71は、図3に示した第1実施形態のカフ33と同様の構成を有する。筐体72は、平坦な板状の部材の中央部分72aを凹ませたハット形の形状を有する。筐体72の中央部分72aの上面は、平坦な平面となっており、この中央部分72aの上にカフ71が配置されている。
(Modification 2 of the measurement unit)
Another modified example of the measurement unit will be described with reference to Fig. 19. The measurement unit 10D in Fig. 19 has a cuff 71 arranged on a housing 72 as the blood pressure measurement unit 30. The cuff 71 has a configuration similar to that of the cuff 33 of the first embodiment shown in Fig. 3. The housing 72 has a hat-like shape with a recessed central portion 72a of a flat plate-like member. The upper surface of the central portion 72a of the housing 72 is a flat plane, and the cuff 71 is arranged on this central portion 72a.
 筐体72の中央部分72aを下側から見たときの凹みには、外部のポンプからのエアの注入及び排出により拡張及び収縮可能なバルーン73が配置される。また、筐体72の凹みの開口側であって、測定時にバルーン73の胸部体表11a側となる側には、ゴムなどでできた膜状又は薄板状の弾性体74が配置される。さらに、弾性体74の胸部体表11aに向く側には、検出部75が配置される。検出部75は、例えば、心音を検出するための圧電センサである。検出部75は、図1の振動情報検出部31に相当する。バルーン73及び弾性体74は、検出部75を使用者の胸部体表11aに対して押し付けるための押付用加圧部に含まれる。 A balloon 73 that can be expanded and contracted by injecting and expelling air from an external pump is placed in the recess in the central portion 72a of the housing 72 when viewed from below. A membrane-like or thin-plate-like elastic body 74 made of rubber or the like is placed on the opening side of the recess in the housing 72, which is the side of the balloon 73 facing the chest body surface 11a during measurement. Furthermore, a detection unit 75 is placed on the side of the elastic body 74 facing the chest body surface 11a. The detection unit 75 is, for example, a piezoelectric sensor for detecting heart sounds. The detection unit 75 corresponds to the vibration information detection unit 31 in FIG. 1. The balloon 73 and elastic body 74 are included in a pressing pressure unit for pressing the detection unit 75 against the chest body surface 11a of the user.
 さらに、筐体72の凹みの外周側であって胸部体表11aに対向する部分である外周部72bには、心機能パラメータ取得部38を構成する心電計の電極パッド76が設けられている。バルーン73が加圧されて膨張していない状態では、使用者の胸部体表11aに向く面である電極パッド76の下面は、検出部75の下面よりも、使用者の胸部体表11a側に位置する。電極パッド76は、この測定部10Dが第1実施形態及び第2実施形態で使用される場合、必須の構成要素ではない。 Furthermore, electrode pads 76 of an electrocardiograph constituting the cardiac function parameter acquisition unit 38 are provided on the outer peripheral portion 72b, which is the outer peripheral side of the recess of the housing 72 and faces the chest body surface 11a. When the balloon 73 is not pressurized and expanded, the underside of the electrode pads 76, which faces the user's chest body surface 11a, is located closer to the user's chest body surface 11a than the underside of the detection unit 75. The electrode pads 76 are not an essential component when this measurement unit 10D is used in the first and second embodiments.
 測定時において、測定部10Dは、指13を挿入した状態でカフ71が加圧されると同時に、バルーン73に空気が注入される。空気が注入されることにより膨張したバルーン73は、弾性体74を押し下げる。これにより、検出部75は使用者の胸部体表11aに押し付けられる。よって、検出部75は、安定した押圧で胸部体表11aに押し当てられる。また、この測定部10Dは、振動情報を検出する検出部75と電極パッド76とを有するので、血圧、振動情報、及び、心電波形を含む多くのバイタル情報を単一の測定部10Dで測定することができる。 When measuring, the measuring unit 10D pressurizes the cuff 71 with the finger 13 inserted, and at the same time, air is injected into the balloon 73. The balloon 73 expands as a result of the air being injected, and presses down on the elastic body 74. This causes the detection unit 75 to be pressed against the user's chest surface 11a. Therefore, the detection unit 75 is pressed against the chest surface 11a with a stable pressure. In addition, since the measuring unit 10D has a detection unit 75 that detects vibration information and electrode pads 76, it is possible to measure a variety of vital information including blood pressure, vibration information, and electrocardiogram waveforms with a single measuring unit 10D.
 測定部10Dによれば、検出部75をカフ71とは別に設けられた押付用加圧部により使用者の胸部体表11aに押し付けることが可能になる。したがって、測定部10Dを用いる場合、カフ71に対する加圧とは独立して、検出部75に加える圧を制御できる。これにより、より安定した押圧で、検出部75を使用者の胸部体表11aに押圧することができるので、より安定した測定が可能になり、心音を精度よく取得することができる。 The measurement unit 10D makes it possible to press the detection unit 75 against the user's chest surface 11a using a pressing pressure unit provided separately from the cuff 71. Therefore, when using the measurement unit 10D, the pressure applied to the detection unit 75 can be controlled independently of the pressure applied to the cuff 71. This allows the detection unit 75 to be pressed against the user's chest surface 11a with a more stable pressure, making it possible to perform more stable measurements and obtain heart sounds with high accuracy.
 さらに、別の形態として、図19の測定部10Dは、電極パッド76に吸盤を配置し、検出部75を使用者の胸部体表11aに密着させるように構成されてよい。吸盤は、振動情報検出部31である検出部75を使用者の胸部体表11aに対して密着させる密着手段である。 Furthermore, as another embodiment, the measurement unit 10D in FIG. 19 may be configured to place suction cups on the electrode pads 76 and bring the detection unit 75 into close contact with the user's chest surface 11a. The suction cups are a means for bringing the detection unit 75, which is the vibration information detection unit 31, into close contact with the user's chest surface 11a.
(測定部の変形例3)
 図20に示す測定部10Eは、第1実施形態の測定部10において、使用者の手首に装着され脈波を検出する脈波センサ81(第2の脈波センサ)をさらに有する。この測定部10Eは、血圧測定部30に含まれる血流検出部35として指13に装着される脈波センサ(第1の脈波センサ)を有する。制御部21は、血流検出部35で検出される脈波と、脈波センサ81で検出される脈波の検出の時間差に基づいて、使用者の脈波伝播速度を算出することができる。脈波伝播速度は、血管の詰まりや動脈硬化を測る指標として使用される。
(Modification 3 of the measurement unit)
A measurement unit 10E shown in Fig. 20 further includes a pulse wave sensor 81 (second pulse wave sensor) that is attached to the wrist of the user and detects pulse waves in the measurement unit 10 of the first embodiment. This measurement unit 10E includes a pulse wave sensor (first pulse wave sensor) that is attached to a finger 13 as a blood flow detection unit 35 included in a blood pressure measurement unit 30. The control unit 21 can calculate the pulse wave velocity of the user based on the time difference between the pulse wave detected by the blood flow detection unit 35 and the pulse wave detected by the pulse wave sensor 81. The pulse wave velocity is used as an index for measuring blood vessel blockage and arteriosclerosis.
 本開示に係る実施形態について、諸図面および実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形または変更を行うことが容易であることに注意されたい。従って、これらの変形または修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部または各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部またはステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。本開示に係る実施形態について装置を中心に説明してきたが、本開示に係る実施形態は装置の各構成部が実行するステップを含む方法としても実現し得るものである。本開示に係る実施形態は装置が備えるプロセッサにより実行される方法、プログラム、またはプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。 Although the embodiments of the present disclosure have been described based on the drawings and examples, it should be noted that those skilled in the art would easily be able to make various modifications or changes based on the present disclosure. Therefore, it should be noted that these modifications or changes are included in the scope of the present disclosure. For example, the functions included in each component or step can be rearranged so as not to cause logical inconsistencies, and multiple components or steps can be combined into one or divided. Although the embodiments of the present disclosure have been described mainly in terms of the device, the embodiments of the present disclosure can also be realized as a method including steps executed by each component of the device. The embodiments of the present disclosure can also be realized as a method, a program executed by a processor provided in the device, or a storage medium having a program recorded thereon. It should be understood that these are also included in the scope of the present disclosure.
 上記実施形態は、何れも指で血圧を測定したが、本開示のバイタル測定装置は、手首で血圧を測定するものも含まれる。また、上記第3実施形態で、同一の制御部により血圧の測定及び動脈圧波形の推定を行っていたが、これらは別のハードウェアで行ってもよい。例えば、病院等の遠隔地に配置されたコンピュータが、制御装置20の記憶部22に記憶された測定データを取得して、動脈圧波形の推定を実行してよい。 In all of the above embodiments, blood pressure is measured on a finger, but the vital sign measuring device of the present disclosure also includes a device that measures blood pressure on the wrist. Also, in the above third embodiment, blood pressure measurement and arterial pressure waveform estimation are performed by the same control unit, but these may be performed by separate hardware. For example, a computer located in a remote location such as a hospital may acquire the measurement data stored in the memory unit 22 of the control device 20 and estimate the arterial pressure waveform.
 1、1A、1B   バイタル測定装置
 10、10A、10B、10C、10D、10E  測定部
 11  胸部
 11a 胸部体表
 12  血流
 13  指
 20  制御装置
 21  制御部
 21a 判定部
 21b 呼吸周期演算部
 21c 血圧値補正演算部(補正部)
 21d 動脈圧波形推定部
 22  記憶部
 23  通信部
 24  入力部
 25  出力部
 30  血圧測定部
 31  振動情報検出部
 32  カフ制御部
 33  カフ
 34  カフ圧測定部
 35  血流検出部
 36  データ格納部
 37  本体
 37a 誘導部
 38  心機能パラメータ取得部
 51  動きセンサ(振動情報検出部)
 52  保持部
 52a 外周部
 53  検出部
 53a 検出素子
 54  検出部
 55  検出部
 61  カフ(押付用加圧部)
 62  筐体
 62a 外周底部
 63  弾性体(押付用加圧部)
 64  検出部(振動情報検出部)
 65  電極パッド(心機能パラメータ取得部)
 71  カフ
 72  筺体
 72a 中央部分
 72b 外周部
 73  バルーン(押付用加圧部)
 74  弾性体(押付用加圧部)
 75  検出部(振動情報検出部)
 76  電極パッド(心機能パラメータ取得部)
 81  脈波センサ(第2の脈波センサ)
REFERENCE SIGNS LIST 1, 1A, 1B Vital sign measuring device 10, 10A, 10B, 10C, 10D, 10E Measuring unit 11 Chest 11a Chest surface 12 Blood flow 13 Finger 20 Control device 21 Control unit 21a Determination unit 21b Respiratory cycle calculation unit 21c Blood pressure value correction calculation unit (correction unit)
21d Arterial pressure waveform estimation unit 22 Memory unit 23 Communication unit 24 Input unit 25 Output unit 30 Blood pressure measurement unit 31 Vibration information detection unit 32 Cuff control unit 33 Cuff 34 Cuff pressure measurement unit 35 Blood flow detection unit 36 Data storage unit 37 Main unit 37a Lead unit 38 Cardiac function parameter acquisition unit 51 Motion sensor (vibration information detection unit)
52 Holding portion 52a Outer periphery 53 Detection portion 53a Detection element 54 Detection portion 55 Detection portion 61 Cuff (pressing portion)
62 Housing 62a Outer periphery bottom 63 Elastic body (pressing pressure part)
64 Detection unit (vibration information detection unit)
65 Electrode pad (cardiac function parameter acquisition unit)
71 Cuff 72 Housing 72a Central portion 72b Outer periphery 73 Balloon (pressing portion)
74 Elastic body (pressing part)
75 Detection unit (vibration information detection unit)
76 Electrode pad (cardiac function parameter acquisition unit)
81 Pulse wave sensor (second pulse wave sensor)

Claims (21)

  1.  使用者の手首又は指に装着されるカフを有し、前記使用者の血圧値を測定する血圧測定部と、
     前記使用者の胸部に配置され、前記使用者の胸部体表で振動情報を取得する振動情報検出部と
    を一体的に含む測定部を備えるバイタル測定装置。
    A blood pressure measurement unit having a cuff attached to a wrist or a finger of a user and measuring a blood pressure value of the user;
    A vital sign measuring device comprising a measuring unit that is integrally formed with a vibration information detecting unit that is placed on the chest of the user and obtains vibration information from the chest surface of the user.
  2.  前記振動情報に基づいて、前記測定部が前記使用者の心臓近傍の体表に配置されているか否かを判定する判定部を備える、請求項1に記載のバイタル測定装置。 The vital sign measuring device according to claim 1, further comprising a determination unit that determines whether the measuring unit is placed on the body surface near the user's heart based on the vibration information.
  3.  前記振動情報は、心音、心尖拍動及び肺音の少なくとも何れかを含む、請求項2に記載のバイタル測定装置。 The vital sign measuring device according to claim 2, wherein the vibration information includes at least one of heart sounds, apical pulsation, and lung sounds.
  4.  前記血圧測定部は、前記判定部により前記測定部が前記使用者の前記心臓近傍の体表に配置されたことが判定された後、前記血圧値の測定を開始するように構成される、請求項2に記載のバイタル測定装置。 The vital sign measuring device according to claim 2, wherein the blood pressure measuring unit is configured to start measuring the blood pressure value after the determining unit determines that the measuring unit is placed on the body surface of the user near the heart.
  5.  前記測定部が前記使用者の心臓近傍の体表に配置されていないと判定されたとき、前記測定部を振動情報の振動の振幅が大きくなる方向に誘導する誘導部を備える請求項2に記載のバイタル測定装置。 The vital sign measuring device according to claim 2, further comprising a guidance unit that guides the measuring unit in a direction that increases the amplitude of vibration in the vibration information when it is determined that the measuring unit is not placed on the body surface near the user's heart.
  6.  前記振動情報検出部は、呼吸に伴う胸部の動きを検出する動きセンサを含み、
     前記動きセンサにより検出される前記使用者の呼吸周期に基づいて前記血圧値を補正する補正部をさらに備える、請求項1に記載のバイタル測定装置。
    the vibration information detection unit includes a movement sensor that detects chest movement associated with breathing;
    The vital sign measuring device according to claim 1 , further comprising a correction unit that corrects the blood pressure value based on a respiratory cycle of the user detected by the motion sensor.
  7.  前記動きセンサは、前記胸部の動きを検出するとき前記胸部体表に接触する外周部と該外周部に対して後退して位置する検出部とを有し、前記胸部体表と前記検出部との間の圧力、前記胸部体表と前記検出部との間の接触面積、前記胸部体表と前記検出部との距離、及び、前記検出部に加わる歪みの少なくとも何れかの変化に基づいて、前記胸部の動きを検出する、請求項6に記載のバイタル測定装置。 The vital sign measuring device according to claim 6, wherein the motion sensor has an outer periphery that contacts the chest surface when detecting the movement of the chest and a detection unit that is positioned back from the outer periphery, and detects the movement of the chest based on at least one change in the pressure between the chest surface and the detection unit, the contact area between the chest surface and the detection unit, the distance between the chest surface and the detection unit, and the strain applied to the detection unit.
  8.  前記動きセンサは、前記使用者の呼吸の深さを検知し、前記補正部は、前記呼吸の周期に加え前記呼吸の深さに基づいて、前記血圧値を補正する、請求項6に記載のバイタル測定装置。 The vital sign measuring device according to claim 6, wherein the motion sensor detects the depth of breathing of the user, and the correction unit corrects the blood pressure value based on the depth of breathing in addition to the breathing cycle.
  9.  前記血圧測定部は、前記動きセンサにより検出される前記使用者の呼吸周期に合わせて、前記使用者の血圧値を測定するように構成される、請求項6に記載のバイタル測定装置。 The vital sign measuring device according to claim 6, wherein the blood pressure measuring unit is configured to measure the blood pressure value of the user in accordance with the breathing cycle of the user detected by the motion sensor.
  10.  前記振動情報検出部を前記使用者の前記胸部体表に対して密着させる密着手段を備える、請求項1に記載のバイタル測定装置。 The vital sign measuring device according to claim 1, further comprising a contact means for contacting the vibration information detection unit with the chest surface of the user.
  11.  前記振動情報検出部を前記使用者の前記胸部体表に対して押し付けるための押付用加圧部を備える、請求項1に記載のバイタル測定装置。 The vital sign measuring device according to claim 1, further comprising a pressing unit for pressing the vibration information detection unit against the chest surface of the user.
  12.  前記使用者の心機能に関するパラメータを取得する心機能パラメータ取得部を備える、請求項1に記載のバイタル測定装置。 The vital sign measuring device according to claim 1, further comprising a cardiac function parameter acquisition unit that acquires parameters related to the cardiac function of the user.
  13.  前記心機能パラメータ取得部は、前記カフに設けられ前記使用者の脈波を検知する脈波センサを含む、請求項12に記載のバイタル測定装置。 The vital sign measuring device according to claim 12, wherein the cardiac function parameter acquisition unit includes a pulse wave sensor provided in the cuff to detect the pulse wave of the user.
  14.  前記心機能パラメータ取得部は、前記使用者の前記胸部体表で、心音及び心尖拍動の少なくとも何れかを検知する音響センサを含む、請求項12に記載のバイタル測定装置。 The vital sign measuring device according to claim 12, wherein the cardiac function parameter acquisition unit includes an acoustic sensor that detects at least one of heart sounds and apical pulsation on the chest surface of the user.
  15.  前記心機能パラメータ取得部は、前記使用者の心電波形を測定する心電計を含む、請求項12に記載のバイタル測定装置。 The vital sign measuring device according to claim 12, wherein the cardiac function parameter acquiring unit includes an electrocardiograph that measures the user's electrocardiogram waveform.
  16.  前記心機能パラメータ取得部は、前記使用者の指に装着される第1の脈波センサと、前記使用者の手首に装着される第2の脈波センサとを含み、前記第1の脈波センサ及び前記第2の脈波センサの何れかは前記血圧測定部に含まれ、前記第1の脈波センサ及び前記第2の脈波センサから取得される脈波の検出の時間差に基づいて、脈波伝播速度を算出する、請求項12に記載のバイタル測定装置。 The vital sign measuring device according to claim 12, wherein the cardiac function parameter acquiring unit includes a first pulse wave sensor attached to the user's finger and a second pulse wave sensor attached to the user's wrist, either the first pulse wave sensor or the second pulse wave sensor is included in the blood pressure measuring unit, and calculates the pulse wave velocity based on the time difference between the detection of the pulse waves acquired from the first pulse wave sensor and the second pulse wave sensor.
  17.  前記心機能パラメータ取得部は、心臓の拍出タイミングを特定し、該拍出タイミングと補正された前記血圧値に基づいて、動脈圧波形の一部を推定する、請求項12に記載のバイタル測定装置。 The vital sign measuring device according to claim 12, wherein the cardiac function parameter acquiring unit identifies the cardiac ejection timing and estimates a part of the arterial pressure waveform based on the ejection timing and the corrected blood pressure value.
  18.  使用者の手首又は指に装着されるカフを有し、前記使用者の血圧値を測定する血圧測定部、及び、前記使用者の胸部に配置され、前記使用者の胸部体表で振動情報を取得する振動情報検出部を一体的に含む測定部と、
     前記振動情報に基づいて、前記測定部が前記使用者の心臓近傍の体表に配置されているか否かを判定する判定部を含む制御装置と
    を備えるバイタル測定システム。
    a blood pressure measuring unit having a cuff attached to a wrist or a finger of a user and measuring a blood pressure value of the user, and a measuring unit integrally including a vibration information detecting unit disposed on the chest of the user and acquiring vibration information on a chest surface of the user;
    and a control device including a determination unit that determines whether the measurement unit is placed on the body surface near the user's heart based on the vibration information.
  19.  前記測定部は、前記使用者の心機能に関するパラメータを取得する心機能パラメータ取得部を備え、前記心機能パラメータ取得部は、心臓の拍出タイミングを特定し、
     前記制御装置は、前記拍出タイミングと補正された前記血圧値に基づいて、動脈圧波形の一部を推定する、請求項18に記載のバイタル測定システム。
    The measurement unit includes a cardiac function parameter acquisition unit that acquires parameters related to cardiac function of the user, and the cardiac function parameter acquisition unit identifies a timing of cardiac ejection;
    The vital sign measurement system according to claim 18 , wherein the control device estimates a part of an arterial pressure waveform based on the ejection timing and the corrected blood pressure value.
  20.  前記制御装置は、推定された前記動脈圧波形の一部に基づいて心内圧を推定する、請求項19に記載のバイタル測定システム。 The vital sign measurement system of claim 19, wherein the control device estimates intracardiac pressure based on a portion of the estimated arterial pressure waveform.
  21.  測定部に設けられた血圧測定部の有するカフに使用者の手首又は指を装着し、前記使用者の血圧値を測定することと、
     前記測定部に前記血圧測定部と一体的に設けられた振動情報検出部を前記使用者の胸部に配置し、前記使用者の胸部体表で振動情報を取得することとを、同時に実行するバイタル測定方法。
     
    Attaching a cuff to a wrist or finger of a user in a blood pressure measurement unit provided in a measurement unit, and measuring a blood pressure value of the user;
    A vital sign measurement method in which a vibration information detection unit, which is integrally provided with the blood pressure measurement unit, is placed on the chest of the user and vibration information is acquired from the chest surface of the user at the same time.
PCT/JP2023/042571 2022-12-01 2023-11-28 Vitals measurement device, vitals measurement method, and vitals measurement system WO2024117133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-193025 2022-12-01
JP2022193025 2022-12-01

Publications (1)

Publication Number Publication Date
WO2024117133A1 true WO2024117133A1 (en) 2024-06-06

Family

ID=91324134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042571 WO2024117133A1 (en) 2022-12-01 2023-11-28 Vitals measurement device, vitals measurement method, and vitals measurement system

Country Status (1)

Country Link
WO (1) WO2024117133A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215162A (en) * 1995-02-16 1996-08-27 Omron Corp Electron hemodynamometer
JP2004321253A (en) * 2003-04-21 2004-11-18 Colin Medical Technology Corp Pulse wave propagation velocity information measuring device
JP2010158289A (en) * 2009-01-06 2010-07-22 Showa Denko Kk Blood pressure measuring instrument having rest induction
JP2014233529A (en) * 2013-06-04 2014-12-15 株式会社村田製作所 Blood pressure manometer
JP2015009044A (en) * 2013-07-01 2015-01-19 オムロンヘルスケア株式会社 Electronic sphygmomanometer
WO2019044876A1 (en) * 2017-08-29 2019-03-07 Ami株式会社 Vital sign measurement device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215162A (en) * 1995-02-16 1996-08-27 Omron Corp Electron hemodynamometer
JP2004321253A (en) * 2003-04-21 2004-11-18 Colin Medical Technology Corp Pulse wave propagation velocity information measuring device
JP2010158289A (en) * 2009-01-06 2010-07-22 Showa Denko Kk Blood pressure measuring instrument having rest induction
JP2014233529A (en) * 2013-06-04 2014-12-15 株式会社村田製作所 Blood pressure manometer
JP2015009044A (en) * 2013-07-01 2015-01-19 オムロンヘルスケア株式会社 Electronic sphygmomanometer
WO2019044876A1 (en) * 2017-08-29 2019-03-07 Ami株式会社 Vital sign measurement device

Similar Documents

Publication Publication Date Title
EP2191771B1 (en) Portable device for measuring blood pressure and method therefor
Panula et al. Advances in non-invasive blood pressure measurement techniques
US12048566B2 (en) Self-calibrating systems and methods for blood pressure wave form analysis and diagnostic support
WO2018113442A1 (en) Continuous ambulatory blood pressure monitoring device and method based on pulse wave transit
JP5471337B2 (en) Blood pressure measuring device and blood pressure measuring method
JP6969561B2 (en) Blood pressure measuring device, blood pressure measuring method and blood pressure measuring program
TWI258359B (en) Apparatus for evaluating cardiovascular functions
WO2018099427A1 (en) Dynamic measurement device having function for determining blood pressure
JP6508065B2 (en) Blood pressure estimation device, blood pressure estimation method, blood pressure measurement device, and blood pressure estimation program
US20060224070A1 (en) System and method for non-invasive cardiovascular assessment from supra-systolic signals obtained with a wideband external pulse transducer in a blood pressure cuff
KR101764527B1 (en) Portable device for measuring blood pressure and method thereof
WO2016031196A1 (en) Blood pressure determination device, blood pressure determination method, recording medium for recording blood pressure determination program, and blood pressure measurement device
JP5277374B2 (en) In vivo lumen body evaluation device
US10165952B2 (en) Biological information measuring apparatus and biological information measuring method
US20180125377A1 (en) Blood pressure measurement device, blood pressure measurement method, and recording medium
JP2020018542A (en) Blood pressure measurement device, method and program
US10758131B2 (en) Non-invasive measurement of ambulatory blood pressure
JP2010194108A (en) Blood pressure information measuring device and calculation program for arteriosclerosis degree index
WO2022196144A1 (en) Arterial pressure estimation device, arterial pressure estimation system, and arterial pressure estimation method
WO2024117133A1 (en) Vitals measurement device, vitals measurement method, and vitals measurement system
Kizilova Review of emerging methods and techniques for arterial pressure and flow waves acquisition and analyses
JP2008307307A (en) Evaluation method and apparatus for vascular function
JP2019037686A (en) Vital sign measuring device
WO2024070507A1 (en) Medical monitoring device
JP2020018558A (en) Blood pressure measurement device, method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897781

Country of ref document: EP

Kind code of ref document: A1