[go: up one dir, main page]

WO2024116410A1 - Current detection device and power conversion device - Google Patents

Current detection device and power conversion device Download PDF

Info

Publication number
WO2024116410A1
WO2024116410A1 PCT/JP2022/044604 JP2022044604W WO2024116410A1 WO 2024116410 A1 WO2024116410 A1 WO 2024116410A1 JP 2022044604 W JP2022044604 W JP 2022044604W WO 2024116410 A1 WO2024116410 A1 WO 2024116410A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
current detection
power conversion
shield member
members
Prior art date
Application number
PCT/JP2022/044604
Other languages
French (fr)
Japanese (ja)
Inventor
剛 加藤
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/044604 priority Critical patent/WO2024116410A1/en
Publication of WO2024116410A1 publication Critical patent/WO2024116410A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present invention relates to a current detection device and a power conversion device.
  • a conductor is connected to a power conversion circuit that converts between direct current and alternating current, and a detector is provided that detects the current flowing through the conductor. The detector detects the current based on the magnetic flux generated by the current flowing through the conductor.
  • a current detection device is provided that includes a detector for each system corresponding to each power conversion circuit. For example, two power conversion circuits are provided to control two motors, and two detectors for each system are provided corresponding to the conductors connected to each power conversion circuit. In this case, it is necessary to ensure that the magnetic flux generated in the conductor due to the operation of one power conversion circuit does not affect the detector corresponding to the other power conversion circuit. In particular, in a power conversion device for a vehicle that requires high reliability, high detection accuracy is required for the current detection device.
  • Patent Document 1 discloses a sensor unit (current detection device) that has multiple bus bars (conductors) connected to multiple switch modules (power conversion circuits), a terminal block that integrally connects these, and multiple magnetoelectric conversion units (detectors) that detect the current flowing through the bus bars.
  • the magnetic flux generated in the conductor by the operation of one power conversion circuit affects the detector corresponding to the other power conversion circuit, reducing the detection accuracy of the current detection device.
  • a current detection device comprises a plurality of conductors connected to a plurality of power conversion circuits, a plurality of detectors that detect a current flowing in the conductors based on a magnetic flux generated by a current flowing in the conductors, a plurality of first shielding members that surround the detectors and at least a portion of the conductors and magnetically shield the detectors and the conductors, and a second shielding member that is arranged opposite the plurality of first shielding members and covers the entire area of the projection areas of the plurality of first shielding members in a direction perpendicular to the arrangement direction of the plurality of first shielding members.
  • a power conversion device includes a current detection device and a housing that houses the plurality of power conversion circuits, one surface of the housing forming the second shield member.
  • the present invention reduces the effect of magnetic flux generated in a conductor due to the operation of one power conversion circuit on a detector corresponding to the other power conversion circuit, improving the detection accuracy of the current detection device.
  • FIG. 1 is a circuit configuration diagram of a power conversion device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the appearance of the current detection device according to the present embodiment.
  • FIG. 3A is a cross-sectional view of the current detection device according to this embodiment, and
  • FIG. 3B is a top view of the current detection device according to this embodiment.
  • FIG. 4 is a diagram showing the flow of magnetic flux in the current detection device according to the present embodiment.
  • FIG. 5 is a diagram showing the flow of magnetic flux in a current detection device in a comparative example.
  • FIG. 6 is a cross-sectional view showing a first modified example of the current detection device according to the present embodiment.
  • FIG. 7 is a cross-sectional view showing a second modified example of the current detection device according to the present embodiment.
  • FIG. 8 is a diagram showing a third modified example of the current detection device according to the present embodiment.
  • FIG. 1 is a circuit configuration diagram of a power conversion device 1000 according to an embodiment of the present invention.
  • the power conversion device 1000 includes a power conversion circuit 100 and a current detection device 200. DC power is applied to the power conversion circuit 100 from a DC power source (not shown) to a positive terminal P-T and a negative terminal N-T.
  • the power conversion circuit 100 includes two power conversion circuits. Specifically, the power conversion circuit 100 includes a smoothing capacitor 103 connected between a positive line P from the positive terminal P-T and a negative line N from the negative terminal N-T, and a first power conversion circuit 101 and a second power conversion circuit 102 connected in parallel to the positive line P and the negative line N.
  • the first power conversion circuit 101 and the second power conversion circuit 102 are each composed of an inverter, and convert DC current into AC current and vice versa.
  • Conductors 1BU, 1BV, and 1BW are connected to the output side of the first power conversion circuit 101.
  • Conductors 2BU, 2BV, and 2BW are connected to the output side of the second power conversion circuit 102.
  • the three-phase AC current converted by the first power conversion circuit 101 is output via conductors 1BU, 1BV, and 1BW to the windings of a three-phase first motor (not shown) connected to terminals 1U, 1V, and 1W, driving the first motor.
  • the three-phase AC current converted by the second power conversion circuit 102 is output via conductors 2BU, 2BV, and 2BW to the windings of a three-phase second motor (not shown) connected to terminals 2U, 2V, and 2W, driving the second motor.
  • the first motor and the second motor function as generators during regeneration, and the AC current generated during regeneration is converted to DC current by the first power conversion circuit 101 and the second power conversion circuit 102, which charges the DC power source consisting of a secondary battery.
  • the current detection device 200 includes a first current detection device 201 and a second current detection device 202 corresponding to two systems of power conversion circuits, that is, the first power conversion circuit 101 and the second power conversion circuit 102, respectively.
  • the first current detection device 201 includes detectors 1DU, 1DV, 1DW that detect the respective currents based on the magnetic flux generated by the currents flowing through the conductors 1BU, 1BV, 1BW, and outputs the detected currents 1IU, 1IV, 1IW to a control unit not shown.
  • the second current detection device 202 is equipped with detectors 2DU, 2DV, 2DW that detect each current based on the magnetic flux generated by the current flowing in each of the conductors 2BU, 2BV, 2BW, and outputs the detected currents 2IU, 2IV, 2IW to a control unit not shown.
  • the current detection device 200 is configured by incorporating detectors 1DU, 1DV, 1DW and detectors 2DU, 2DV, 2DW, the details of which will be described later.
  • the power conversion device 1000 includes a control unit (not shown) that controls the inverters of the first power conversion circuit 101 and the second power conversion circuit 102.
  • This control unit refers to the currents 1IU, 1IV, 1IW, 2IU, 2IV, and 2IW detected by the first current detection device 201 and the second current detection device 202 and the rotational positions of the first and second motors to calculate a voltage command value according to a torque command from a higher-level control device (not shown). Then, the inverters of the first power conversion circuit 101 and the second power conversion circuit 102 are controlled by a gate signal generated from the voltage command value and a carrier wave.
  • control unit controls the inverters by referring to the currents flowing through the conductors 1BU, 1BV, and 1BW and the conductors 2BU, 2BV, and 2BW, respectively. Therefore, in order to perform this control accurately, the current detection device 200 is required to have high detection accuracy.
  • FIG. 2 is a perspective view showing the appearance of a current detection device 200 according to the present embodiment.
  • the current detection device 200 includes two systems: a first current detection device 201 corresponding to the first power conversion circuit 101 and a second current detection device 202 corresponding to the second power conversion circuit 102 .
  • Detectors 1DU, 1DV, 1DW and detectors 2DU, 2DV, 2DW are arranged on substrate 211 corresponding to conductors 1BU, 1BV, 1BW and conductors 2BU, 2BV, 2BW.
  • Detectors 1DU, 1DV, 1DW and detectors 2DU, 2DV, 2DW are, for example, coreless current sensors.
  • a coreless current sensor is a device without a magnetic core that uses a magnetic sensor to detect the current flowing through conductors 1BU, 1BV, 1BW and conductors 2BU, 2BV, 2BW and generates a signal proportional to the amount of current using the output of the magnetic sensor.
  • the substrate 211 has the detectors 1DU, 1DV, 1DW, and 2DU, 2DV, and 2DW, as well as the peripheral circuit components, and a wiring pattern that electrically connects these. It also fixes the detectors 1DU, 1DV, 1DW, and 2DU, 2DV, and 2DW, and the first shield member 210 in specified positions.
  • the first shield member 210 is a plate-shaped magnetic material formed in a U-shape surrounding each of the detectors 1DU, 1DV, 1DW, 2DU, 2DV, 2DW and the corresponding conductors 1BU, 1BV, 1BW, 2BU, 2BV, 2BW.
  • the first shield member 210 surrounding the detector 1DU and the conductor 1BU surrounds at least a portion of the detector 1DU and the conductor 1BU, and magnetically shields the detector 1DU and the conductor 1BU.
  • the first shield member 210 surrounding other detectors and corresponding conductors has a similar configuration.
  • the first shield member 210 confines the magnetic flux generated around the conductor due to the current flowing through the conductor in the portion surrounded by the first shield member 210 in the inner space of the first shield member 210. It also shields magnetic flux (magnetic field disturbance) from adjacent detectors and their corresponding conductors.
  • the first shield member 210 is not limited to a U-shape, and may be configured to surround at least a portion of the detector and the corresponding conductor. Each first shield member 210 is arranged linearly in a direction perpendicular to the direction in which each conductor extends.
  • the second shielding members 220 are arranged opposite each of the first shielding members 210 and are plate-shaped magnetic bodies arranged along the arrangement direction of the first shielding members 210.
  • the second shielding members 220 are arranged with a predetermined gap between them and the first shielding members 210, and magnetically shield magnetic flux leaking from the first shielding members 210. Details of the second shielding members 220 will be described later.
  • FIG. 3(A) is a cross-sectional view of the current detection device 200 in this embodiment
  • FIG. 3(B) is a top view of the current detection device 200 in this embodiment.
  • the cross-sectional view shown in FIG. 3(A) is a cross-section taken along line X-X in FIG. 2.
  • the top view shown in FIG. 3(B) shows the top surface of the second shield member 220, with conductors 1BU, 1BV, 1BW, 2BU, 2BV, and 2BW omitted.
  • the second shielding member 220 is formed with a protrusion 220X that protrudes by a length L from the first shielding members 210 located at both ends of the arrangement direction of the multiple first shielding members 210.
  • the width of the second shielding member 220 is greater at both ends by the length N than the width of the first shielding member in a direction perpendicular to the arrangement direction of the multiple first shielding members 210.
  • 3(A) and 3(B) show an example in which the second shield member 220 is longer and wider than the entire area 210Z including the projection area of each of the first shield members 210 in a direction perpendicular to the arrangement direction of the first shield members 210.
  • either the length or the width may be larger, or may be the same as the entire area 210Z including the projection area of each of the first shield members 210.
  • the second shield member 220 may be arranged opposite the first shield members 210 and may be large enough to cover the entire area 210Z of the projection area of the first shield members 210 in a direction perpendicular to the arrangement direction of the first shield members 210.
  • the current detection device 200 is not limited to cases in which it corresponds to two power conversion circuits 100, but is also similar when the current detection device 200 corresponds to three or more power conversion circuits 100. This can reduce the influence of the magnetic flux generated in the conductor due to the operation of one power conversion circuit on the detector corresponding to the other power conversion circuit, as described later.
  • FIG. 4 is a diagram showing the flow of magnetic flux in the current detection device 200 according to this embodiment, in which a magnetic flux flow M is additionally shown in a cross-sectional view similar to that of FIG.
  • the following describes the effect that the magnetic flux has on detectors 1DU, 1DV, and 1DW when the second power conversion circuit 102 is operating and a large current flows through the conductors 2BU, 2BV, and 2BW.
  • the magnetic flux caused by the current flowing through the conductors 2BU, 2BV, and 2BW is detected by the detectors 2DU, 2DV, and 2DW, respectively.
  • the magnetic flux M that passes through the first shield member 210 is collected in the second shield member 220, which has a low magnetic resistance, as shown by the black arrow in FIG. 4. Then, it passes through the protrusions 220X at both ends of the length of the second shield member 220 and is released into the air from the ends.
  • the effect of the magnetic flux M on the detectors 1DU, 1DV, and 1DW can be further reduced, but even if the protrusions 220X are not provided, the effect can be reduced by releasing the magnetic flux M into the air from the ends of the second shield member 220.
  • the current detection accuracy can be improved even when using a coreless current sensor that does not require a core as a detector and can be made smaller. This improvement makes it possible to control the inverter more accurately, and when the inverter and motor are used to drive a vehicle, it is expected that the vehicle's driving range will be improved and energy savings will be achieved.
  • FIG. 5 is a diagram showing the flow of magnetic flux in a current detection device 200' in a comparative example.
  • This comparative example is an example to which this embodiment is not applied, and is intended to deepen understanding of this embodiment by comparing it with this embodiment.
  • the second shielding member 220 shown in FIG. 4 is divided into two, a third shielding member 223 and a fourth shielding member 224.
  • the third shielding member 223 corresponds to the detectors 1DU, 1DV, 1DW and the conductors 1BU, 1BV, 1BW
  • the fourth shielding member 224 corresponds to the detectors 2DU, 2DV, 2DW and the conductors 2BU, 2BV, 2BW.
  • the second power conversion circuit 102 is operating, a large current flows through the conductors 2BU, 2BV, and 2BW, and the effect of this magnetic flux on the detectors 1DU, 1DV, and 1DW is described below.
  • the magnetic flux due to the current flowing through the conductors 2BU, 2BV, and 2BW is detected by the detectors 2DU, 2DV, and 2DW, respectively.
  • the magnetic flux M that passes through the first shield member 210 is collected in the fourth shield member 224, which has a small magnetic resistance, as shown by the black arrow in FIG. 5. Then, it is released into the air from both ends of the fourth shield member 224 in the length direction.
  • the magnetic flux M released into the air from the end of the fourth shield member 224 located between the third shield member 223 reaches the detector 1DW, partly through the third shield member 223 and partly through the first shield member 210.
  • the detector 1DW cannot accurately detect the current flowing through the conductor 1BW because the magnetic flux M released into the air from the end of the fourth shield member 224 is added to the magnetic flux due to the current flowing through the conductor 1BW.
  • this comparative example an example in which the second shield member 220 shown in FIG. 4 is divided into two is shown. Not limited to this comparative example, if the second shield member 220 shown in FIG. 4 is not large enough to cover the entire area 210Z of the projection area of the multiple first shield members 210, the magnetic flux M emitted from its end into the air will affect the detector.
  • FIG. 6 is a cross-sectional view showing modified example 1 of the current detection device 200 in this embodiment. This cross-sectional view corresponds to the cross-section of line X-X in FIG. 2.
  • the same reference numerals are used to designate the same parts as in the cross-sectional view shown in FIG. 3(A) and their explanation will be simplified.
  • the second shielding member 220 is formed to protrude longer than the first shielding members 210 located at both ends of the arrangement direction of the multiple first shielding members 210.
  • the second shielding member 220 protrudes in the direction Y away from the first shielding member 210 located at the end of the arrangement direction.
  • the magnetic flux emitted into the air from the end of the second shielding member 220 is directed away from the first shielding member 210, so its influence can be further reduced.
  • FIG. 7 is a cross-sectional view showing modified example 2 of the current detection device 200 in this embodiment. This cross-sectional view corresponds to the cross-section of line X-X in FIG. 2.
  • the same reference numerals are used to designate the same parts as in the cross-sectional view shown in FIG. 3(A) and their explanation will be simplified.
  • the second shield member 220 is formed by connecting two separate members 225 and 226.
  • the two members 225 and 226 are connected by gluing, screws, or the like, as long as the magnetic resistance is low so that magnetic flux can flow between the connected members 225 and 226.
  • each member is small, so the mold can also be made smaller, reducing costs.
  • FIG. 8 is a diagram showing a third modified example of the current detection device 200 in this embodiment.
  • the power conversion device 1000 is also shown as a cross-sectional view. This cross-sectional view corresponds to the cross-section of line X-X in FIG. 2.
  • the same reference numerals are used to designate the same parts as in the cross-sectional view shown in FIG. 3(A), and their explanation will be simplified.
  • the power conversion device 1000 houses the current detection device 200 and the power conversion circuit 100 in its housing 1100.
  • the power conversion circuit 100 includes a first power conversion circuit 101 and a second power conversion circuit 102 (see FIG. 1), each of which is composed of an inverter (not shown), and is housed in a housing 110.
  • One surface of the housing 110 housing the first power conversion circuit 101 and the second power conversion circuit 102 i.e., the surface facing the current detection device 200, is formed of a plate-shaped magnetic material and constitutes the second shielding member 220.
  • the second shielding member 220 is large enough to cover the entire area 210Z (see FIG. 3(B)) of the projection area of the multiple first shielding members 210 in a direction perpendicular to the arrangement direction of the multiple first shielding members 210.
  • the current detection device 200 includes a plurality of conductors 1BU-1BW, 2BU-2BW connected to a plurality of power conversion circuits 100, a plurality of detectors 1DU-1DW, 2DU-2DW that detect a current flowing in the conductors 1BU-1BW, 2BU-2BW based on a magnetic flux generated by a current flowing in the conductors 1BU-1BW, 2BU-2BW, a plurality of first shield members 210 that surround at least a portion of the detectors 1DU-1DW, 2DU-2DW and the conductors 1BU-1BW, 2BU-2BW and magnetically shield the detectors 1DU-1DW, 2DU-2DW and the conductors 1BU-1BW, 2BU-2BW, and a second shield member 220 that is arranged opposite the plurality of first shield members 210 and covers an entire area 210Z of a projection area of the plurality of first shield members 210 in a direction perpendicular to
  • the present invention is not limited to the above-described embodiment, and other forms that are conceivable within the scope of the technical concept of the present invention are also included within the scope of the present invention, so long as they do not impair the characteristics of the present invention.
  • a configuration that combines the above-described embodiment with multiple modified examples may also be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Provided is a current detection device comprising: a plurality of conductors connected to a plurality of power conversion circuits; a plurality of detectors that detect currents flowing through the respective conductors on the basis of magnetic fluxes generated by the currents flowing through the respective conductors; a plurality of first shield members that surround at least a part of the detectors and conductors for magnetic shielding thereof; and a second shield member that is placed opposite to the plurality of first shield members and covers the entire region of projection of the plurality of first shield members in a direction orthogonal to the direction of arrangement of the plurality of first shield members.

Description

電流検出装置および電力変換装置Current detection device and power conversion device
 本発明は、電流検出装置および電力変換装置に関する。 The present invention relates to a current detection device and a power conversion device.
 直流電流と交流電流とを相互に変換する電力変換回路には導体が接続され、導体に流れる電流を検出する検出器が備えられている。検出器は、導体に流れる電流により生じる磁束に基づいて電流を検出する。電力変換回路を複数備えた構成では、夫々の電力変換回路に対応して夫々の系統の検出器を備えた電流検出装置が設けられている。例えば、2つのモータを制御するために2つの電力変換回路を備え、各電力変換回路に接続される導体に対応して2つの系統の検出器が設けられている。この場合に、一方の電力変換回路の動作により導体に生じる磁束が他方の電力変換回路に対応する検出器に影響を及ぼさないようにする必要がある。特に、高い信頼性が必要な車両用の電力変換装置では、電流検出装置に高い検出精度が要求される。 A conductor is connected to a power conversion circuit that converts between direct current and alternating current, and a detector is provided that detects the current flowing through the conductor. The detector detects the current based on the magnetic flux generated by the current flowing through the conductor. In a configuration that includes multiple power conversion circuits, a current detection device is provided that includes a detector for each system corresponding to each power conversion circuit. For example, two power conversion circuits are provided to control two motors, and two detectors for each system are provided corresponding to the conductors connected to each power conversion circuit. In this case, it is necessary to ensure that the magnetic flux generated in the conductor due to the operation of one power conversion circuit does not affect the detector corresponding to the other power conversion circuit. In particular, in a power conversion device for a vehicle that requires high reliability, high detection accuracy is required for the current detection device.
 特許文献1には、複数のスイッチモジュール(電力変換回路)に接続される複数のバスバ(導体)と、これらを一体的に連結する端子台と、バスバに流れる電流を検出する複数の磁電変換部(検出器)と、を有するセンサユニット(電流検出装置)が開示されている。 Patent Document 1 discloses a sensor unit (current detection device) that has multiple bus bars (conductors) connected to multiple switch modules (power conversion circuits), a terminal block that integrally connects these, and multiple magnetoelectric conversion units (detectors) that detect the current flowing through the bus bars.
日本国特開2021-2903号公報Japanese Patent Publication No. 2021-2903
 特許文献1に記載の装置では、一方の電力変換回路の動作により導体に生じる磁束が他方の電力変換回路に対応する検出器に影響を及ぼし、電流検出装置の検出精度が低下する。 In the device described in Patent Document 1, the magnetic flux generated in the conductor by the operation of one power conversion circuit affects the detector corresponding to the other power conversion circuit, reducing the detection accuracy of the current detection device.
 本発明の第1の態様による電流検出装置は、複数の電力変換回路に接続される複数の導体と、前記導体に流れる電流により生じる磁束に基づいて前記導体に流れる電流を検出する複数の検出器と、前記検出器および前記導体の少なくとも一部を囲い、前記検出器および前記導体を磁気遮蔽する複数の第1シールド部材と、前記複数の第1シールド部材に対向して配置され、前記複数の第1シールド部材の配列方向と直交する方向における前記複数の第1シールド部材の投影領域の全体領域を覆う第2シールド部材とを備える。
 本発明の第2の態様による電力変換装置は、電流検出装置と、前記複数の電力変換回路を収容する筐体とを備え、前記筐体の一面は、前記第2シールド部材を構成する。
A current detection device according to a first aspect of the present invention comprises a plurality of conductors connected to a plurality of power conversion circuits, a plurality of detectors that detect a current flowing in the conductors based on a magnetic flux generated by a current flowing in the conductors, a plurality of first shielding members that surround the detectors and at least a portion of the conductors and magnetically shield the detectors and the conductors, and a second shielding member that is arranged opposite the plurality of first shielding members and covers the entire area of the projection areas of the plurality of first shielding members in a direction perpendicular to the arrangement direction of the plurality of first shielding members.
A power conversion device according to a second aspect of the present invention includes a current detection device and a housing that houses the plurality of power conversion circuits, one surface of the housing forming the second shield member.
 本発明によれば、一方の電力変換回路の動作により導体に生じる磁束が他方の電力変換回路に対応する検出器に影響を及ぼすことを低減し、電流検出装置の検出精度が向上する。 The present invention reduces the effect of magnetic flux generated in a conductor due to the operation of one power conversion circuit on a detector corresponding to the other power conversion circuit, improving the detection accuracy of the current detection device.
図1は、本発明の実施形態に係わる電力変換装置の回路構成図である。FIG. 1 is a circuit configuration diagram of a power conversion device according to an embodiment of the present invention. 図2は、本実施形態における電流検出装置の外観斜視図である。FIG. 2 is a perspective view showing the appearance of the current detection device according to the present embodiment. 図3(A)は、本実施形態における電流検出装置の断面図、図3(B)は、本実施形態における電流検出装置の上面図である。FIG. 3A is a cross-sectional view of the current detection device according to this embodiment, and FIG. 3B is a top view of the current detection device according to this embodiment. 図4は、本実施形態における電流検出装置の磁束の流れを示す図である。FIG. 4 is a diagram showing the flow of magnetic flux in the current detection device according to the present embodiment. 図5は、比較例における電流検出装置の磁束の流れを示す図である。FIG. 5 is a diagram showing the flow of magnetic flux in a current detection device in a comparative example. 図6は、本実施形態における電流検出装置の変形例1を示す断面図である。FIG. 6 is a cross-sectional view showing a first modified example of the current detection device according to the present embodiment. 図7は、本実施形態における電流検出装置の変形例2を示す断面図である。FIG. 7 is a cross-sectional view showing a second modified example of the current detection device according to the present embodiment. 図8は、本実施形態における電流検出装置の変形例3を示す図である。FIG. 8 is a diagram showing a third modified example of the current detection device according to the present embodiment.
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Below, an embodiment of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and some parts have been omitted or simplified as appropriate for clarity of explanation. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc., in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range, etc. disclosed in the drawings.
 図1は、本発明の実施形態に係わる電力変換装置1000の回路構成図である。
 電力変換装置1000は、電力変換回路100と、電流検出装置200を備える。電力変換回路100には図示省略した直流電源より直流電力が正極端子P-Tおよび負極端子N-Tへ印加される。電力変換回路100は、実施形態では、2系統の電力変換回路を備える。具体的には、正極端子P-Tからの正極線Pおよび負極端子N-Tからの負極線Nの間に接続される平滑コンデンサ103と、正極線Pおよび負極線Nに並列に接続される第1電力変換回路101と第2電力変換回路102とを備える。
FIG. 1 is a circuit configuration diagram of a power conversion device 1000 according to an embodiment of the present invention.
The power conversion device 1000 includes a power conversion circuit 100 and a current detection device 200. DC power is applied to the power conversion circuit 100 from a DC power source (not shown) to a positive terminal P-T and a negative terminal N-T. In this embodiment, the power conversion circuit 100 includes two power conversion circuits. Specifically, the power conversion circuit 100 includes a smoothing capacitor 103 connected between a positive line P from the positive terminal P-T and a negative line N from the negative terminal N-T, and a first power conversion circuit 101 and a second power conversion circuit 102 connected in parallel to the positive line P and the negative line N.
 第1電力変換回路101、第2電力変換回路102は、それぞれインバータにより構成され、直流電流と交流電流とを相互に変換する。第1電力変換回路101の出力側には導体1BU、1BV、1BWが接続される。第2電力変換回路102の出力側には導体2BU、2BV、2BWが接続される。第1電力変換回路101で変換された3相の交流電流は、導体1BU、1BV、1BWを介して、端子1U、1V、1Wに接続された、図示省略した3相の第1モータの巻き線へ出力され、第1モータを駆動する。第2電力変換回路102で変換された3相の交流電流は、導体2BU、2BV、2BWを介して、端子2U、2V、2Wに接続された、図示省略した3相の第2モータの巻き線へ出力され、第2モータを駆動する。第1モータ、第2モータは、回生時には発電機として機能し、回生時に生じた交流電流は第1電力変換回路101、第2電力変換回路102で直流電流に変換され、二次電池で構成される直流電源を充電する。 The first power conversion circuit 101 and the second power conversion circuit 102 are each composed of an inverter, and convert DC current into AC current and vice versa. Conductors 1BU, 1BV, and 1BW are connected to the output side of the first power conversion circuit 101. Conductors 2BU, 2BV, and 2BW are connected to the output side of the second power conversion circuit 102. The three-phase AC current converted by the first power conversion circuit 101 is output via conductors 1BU, 1BV, and 1BW to the windings of a three-phase first motor (not shown) connected to terminals 1U, 1V, and 1W, driving the first motor. The three-phase AC current converted by the second power conversion circuit 102 is output via conductors 2BU, 2BV, and 2BW to the windings of a three-phase second motor (not shown) connected to terminals 2U, 2V, and 2W, driving the second motor. The first motor and the second motor function as generators during regeneration, and the AC current generated during regeneration is converted to DC current by the first power conversion circuit 101 and the second power conversion circuit 102, which charges the DC power source consisting of a secondary battery.
 電流検出装置200は、2系統の電力変換回路、すなわち、第1電力変換回路101、第2電力変換回路102に対応して、それぞれ第1電流検出装置201、第2電流検出装置202を備える。
 第1電流検出装置201は、導体1BU、1BV、1BWのそれぞれに流れる電流により生じる磁束に基づいてそれぞれの電流を検出する検出器1DU、1DV、1DWを備え、検出した電流1IU、1IV、1IWを図示省略した制御部へ出力する。
The current detection device 200 includes a first current detection device 201 and a second current detection device 202 corresponding to two systems of power conversion circuits, that is, the first power conversion circuit 101 and the second power conversion circuit 102, respectively.
The first current detection device 201 includes detectors 1DU, 1DV, 1DW that detect the respective currents based on the magnetic flux generated by the currents flowing through the conductors 1BU, 1BV, 1BW, and outputs the detected currents 1IU, 1IV, 1IW to a control unit not shown.
 第2電流検出装置202は、導体2BU、2BV、2BWのそれぞれに流れる電流により生じる磁束に基づいてそれぞれの電流を検出する検出器2DU、2DV、2DWを備え、検出した電流2IU、2IV、2IWを図示省略した制御部へ出力する。
 電流検出装置200は、検出器1DU、1DV、1DW、および検出器2DU、2DV、2DWを組み込んで構成されるがその詳細は後述する。
The second current detection device 202 is equipped with detectors 2DU, 2DV, 2DW that detect each current based on the magnetic flux generated by the current flowing in each of the conductors 2BU, 2BV, 2BW, and outputs the detected currents 2IU, 2IV, 2IW to a control unit not shown.
The current detection device 200 is configured by incorporating detectors 1DU, 1DV, 1DW and detectors 2DU, 2DV, 2DW, the details of which will be described later.
 なお、電力変換装置1000は、図示を省略したが、第1電力変換回路101、第2電力変換回路102のインバータを制御する制御部を備えている。この制御部は、第1電流検出装置201、第2電流検出装置202で検出された電流1IU、1IV、1IW、2IU、2IV、2IWと第1モータ、第2モータの回転位置とを参照して、図示省略した上位の制御装置からのトルク指令に応じた電圧指令値を演算する。そして、電圧指令値と搬送波により生成したゲート信号で第1電力変換回路101、第2電力変換回路102のインバータを制御する。このように、制御部は、導体1BU、1BV、1BWおよび導体2BU、2BV、2BWのそれぞれに流れる電流を参照して制御しているので、その制御を適確に行うためには、電流検出装置200には高い検出精度が要求される。 The power conversion device 1000 includes a control unit (not shown) that controls the inverters of the first power conversion circuit 101 and the second power conversion circuit 102. This control unit refers to the currents 1IU, 1IV, 1IW, 2IU, 2IV, and 2IW detected by the first current detection device 201 and the second current detection device 202 and the rotational positions of the first and second motors to calculate a voltage command value according to a torque command from a higher-level control device (not shown). Then, the inverters of the first power conversion circuit 101 and the second power conversion circuit 102 are controlled by a gate signal generated from the voltage command value and a carrier wave. In this way, the control unit controls the inverters by referring to the currents flowing through the conductors 1BU, 1BV, and 1BW and the conductors 2BU, 2BV, and 2BW, respectively. Therefore, in order to perform this control accurately, the current detection device 200 is required to have high detection accuracy.
 図2は、本実施形態における電流検出装置200の外観斜視図である。
 電流検出装置200は、第1電力変換回路101に対応する第1電流検出装置201と、第2電力変換回路102に対応する第2電流検出装置202との2系統を備える。
FIG. 2 is a perspective view showing the appearance of a current detection device 200 according to the present embodiment.
The current detection device 200 includes two systems: a first current detection device 201 corresponding to the first power conversion circuit 101 and a second current detection device 202 corresponding to the second power conversion circuit 102 .
 検出器1DU、1DV、1DW、および検出器2DU、2DV、2DWは、基板211上に、導体1BU、1BV、1BW、および導体2BU、2BV、2BWに対応して配置されている。検出器1DU、1DV、1DW、および検出器2DU、2DV、2DWは、例えば、コアレス電流センサである。コアレス電流センサは、導体1BU、1BV、1BW、および導体2BU、2BV、2BWに流れる電流を磁気センサで検出し、その磁気センサの出力を用いて電流量に比例した信号を生成する磁気コアがないデバイスである。 Detectors 1DU, 1DV, 1DW and detectors 2DU, 2DV, 2DW are arranged on substrate 211 corresponding to conductors 1BU, 1BV, 1BW and conductors 2BU, 2BV, 2BW. Detectors 1DU, 1DV, 1DW and detectors 2DU, 2DV, 2DW are, for example, coreless current sensors. A coreless current sensor is a device without a magnetic core that uses a magnetic sensor to detect the current flowing through conductors 1BU, 1BV, 1BW and conductors 2BU, 2BV, 2BW and generates a signal proportional to the amount of current using the output of the magnetic sensor.
 基板211は、検出器1DU、1DV、1DW、および検出器2DU、2DV、2DWおよびこの周辺の回路部品、これらを電気的に接続する配線パターンを有する。また、検出器1DU、1DV、1DW、および検出器2DU、2DV、2DWと第1シールド部材210とを規定の位置に固定している。 The substrate 211 has the detectors 1DU, 1DV, 1DW, and 2DU, 2DV, and 2DW, as well as the peripheral circuit components, and a wiring pattern that electrically connects these. It also fixes the detectors 1DU, 1DV, 1DW, and 2DU, 2DV, and 2DW, and the first shield member 210 in specified positions.
 第1シールド部材210は、各検出器1DU、1DV、1DW、2DU、2DV、2DWおよび対応する各導体1BU、1BV、1BW、2BU、2BV、2BWをそれぞれ囲うU字状に形成された板状の磁性体である。例えば、検出器1DUおよび導体1BUを囲う第1シールド部材210は、検出器1DUおよび導体1BUの少なくとも一部を囲い、検出器1DUおよび導体1BUを磁気遮蔽する。他の検出器および対応する導体を囲う第1シールド部材210も同様の構成である。第1シールド部材210は、第1シールド部材210に囲われた部分の導体に流れる電流により導体の周囲に発生する磁束を、第1シールド部材210の内側空間に閉じ込める。また、隣接する検出器やその対応する導体からの磁束(外乱の磁界)をシールドする。第1シールド部材210は、U字状に限らず、検出器および対応する導体の少なくとも一部を囲う構成であればよい。各第1シールド部材210は、各導体が延在する方向と直交する方向に直線状に配列されている。 The first shield member 210 is a plate-shaped magnetic material formed in a U-shape surrounding each of the detectors 1DU, 1DV, 1DW, 2DU, 2DV, 2DW and the corresponding conductors 1BU, 1BV, 1BW, 2BU, 2BV, 2BW. For example, the first shield member 210 surrounding the detector 1DU and the conductor 1BU surrounds at least a portion of the detector 1DU and the conductor 1BU, and magnetically shields the detector 1DU and the conductor 1BU. The first shield member 210 surrounding other detectors and corresponding conductors has a similar configuration. The first shield member 210 confines the magnetic flux generated around the conductor due to the current flowing through the conductor in the portion surrounded by the first shield member 210 in the inner space of the first shield member 210. It also shields magnetic flux (magnetic field disturbance) from adjacent detectors and their corresponding conductors. The first shield member 210 is not limited to a U-shape, and may be configured to surround at least a portion of the detector and the corresponding conductor. Each first shield member 210 is arranged linearly in a direction perpendicular to the direction in which each conductor extends.
 第2シールド部材220は、各第1シールド部材210に対向して配置され、これらの第1シールド部材210の配列方向に沿って設けられた板状の磁性体である。第2シールド部材220は、第1シールド部材210と所定の間隙を保って設けられ、第1シールド部材210より漏洩した磁束を磁気遮蔽する。第2シールド部材220の詳細は後述する。 The second shielding members 220 are arranged opposite each of the first shielding members 210 and are plate-shaped magnetic bodies arranged along the arrangement direction of the first shielding members 210. The second shielding members 220 are arranged with a predetermined gap between them and the first shielding members 210, and magnetically shield magnetic flux leaking from the first shielding members 210. Details of the second shielding members 220 will be described later.
 図3(A)は、本実施形態における電流検出装置200の断面図、図3(B)は、本実施形態における電流検出装置200の上面図である。図3(A)に示す断面図は、図2のX-X線の断面である。図3(B)に示す上面図は、第2シールド部材220の上面を示し、導体1BU、1BV、1BW、2BU、2BV、2BWを省略した図である。 FIG. 3(A) is a cross-sectional view of the current detection device 200 in this embodiment, and FIG. 3(B) is a top view of the current detection device 200 in this embodiment. The cross-sectional view shown in FIG. 3(A) is a cross-section taken along line X-X in FIG. 2. The top view shown in FIG. 3(B) shows the top surface of the second shield member 220, with conductors 1BU, 1BV, 1BW, 2BU, 2BV, and 2BW omitted.
 図3(A)に示すように、第2シールド部材220は、複数の第1シールド部材210の配列方向の両端の最端に位置する第1シールド部材210より長さLの分だけ突出する突出部220Xが形成されている。 As shown in FIG. 3A, the second shielding member 220 is formed with a protrusion 220X that protrudes by a length L from the first shielding members 210 located at both ends of the arrangement direction of the multiple first shielding members 210.
 図3(B)に示すように、第2シールド部材220は、複数の第1シールド部材210の配列方向と直交する方向における第1シールド部材の幅よりも両幅端においてそれぞれ長さNの分だけ大きい幅である。 As shown in FIG. 3B, the width of the second shielding member 220 is greater at both ends by the length N than the width of the first shielding member in a direction perpendicular to the arrangement direction of the multiple first shielding members 210.
 図3(A)、図3(B)では、第2シールド部材220が、複数の第1シールド部材210の配列方向と直交する方向における各第1シールド部材210の投影領域を含む全体領域210Zより長さおよび幅が大きい例を示した。しかし、長さおよび幅のいずれかが大きくてもよく、各第1シールド部材210の投影領域を含む全体領域210Zと同じであってもよい。換言すれば、第2シールド部材220は、複数の第1シールド部材210に対向して配置され、複数の第1シールド部材210の配列方向と直交する方向における複数の第1シールド部材210の投影領域の全体領域210Zを覆う大きさであればよい。電流検出装置200は、2系統の電力変換回路100に対応している場合に限らず、電流検出装置200が、3系統以上の電力変換回路100に対応している場合も同様である。これにより、後述するように、一方の電力変換回路の動作により導体に生じる磁束が他方の電力変換回路に対応する検出器に影響を及ぼすことを低減できる。 3(A) and 3(B) show an example in which the second shield member 220 is longer and wider than the entire area 210Z including the projection area of each of the first shield members 210 in a direction perpendicular to the arrangement direction of the first shield members 210. However, either the length or the width may be larger, or may be the same as the entire area 210Z including the projection area of each of the first shield members 210. In other words, the second shield member 220 may be arranged opposite the first shield members 210 and may be large enough to cover the entire area 210Z of the projection area of the first shield members 210 in a direction perpendicular to the arrangement direction of the first shield members 210. The current detection device 200 is not limited to cases in which it corresponds to two power conversion circuits 100, but is also similar when the current detection device 200 corresponds to three or more power conversion circuits 100. This can reduce the influence of the magnetic flux generated in the conductor due to the operation of one power conversion circuit on the detector corresponding to the other power conversion circuit, as described later.
 図4は、本実施形態における電流検出装置200の磁束の流れを示す図である。図3(A)と同様の断面図に磁束の流れMを追加して示す。
 一例として、第2電力変換回路102が動作しており、導体2BU、2BV、2BWに大きな電流が流れ、その磁束が検出器1DU、1DV、1DWに及ぼす影響について以下に述べる。
4 is a diagram showing the flow of magnetic flux in the current detection device 200 according to this embodiment, in which a magnetic flux flow M is additionally shown in a cross-sectional view similar to that of FIG.
As an example, the following describes the effect that the magnetic flux has on detectors 1DU, 1DV, and 1DW when the second power conversion circuit 102 is operating and a large current flows through the conductors 2BU, 2BV, and 2BW.
 導体2BU、2BV、2BWに流れる電流による磁束は、それぞれ検出器2DU、2DV、2DWにより検出されるが、第1シールド部材210を通過した磁束Mは、図4中の黒矢印で示すように、磁気抵抗が少ない第2シールド部材220へ集められる。そして、第2シールド部材220の長さ方向の両端の突出部220Xを経て、端部から空中へ放出される。第2シールド部材220に突出部220Xを設けている場合は、磁束Mが検出器1DU、1DV、1DWに及ぼす影響をより低減できるが、突出部220Xを設けていない場合であっても、磁束Mを第2シールド部材220の端部から空中へ放出することによりその影響を低減できる。第2シールド部材220の幅方向についても同様である。すなわち、第2シールド部材220が、複数の第1シールド部材210の投影領域の全体領域210Zを覆う大きさであるので、導体2BU、2BV、2BWに流れる電流による第1シールド部材210を通過した磁束Mが検出器1DU、1DV、1DWに及ぼす影響を低減できる。 The magnetic flux caused by the current flowing through the conductors 2BU, 2BV, and 2BW is detected by the detectors 2DU, 2DV, and 2DW, respectively. The magnetic flux M that passes through the first shield member 210 is collected in the second shield member 220, which has a low magnetic resistance, as shown by the black arrow in FIG. 4. Then, it passes through the protrusions 220X at both ends of the length of the second shield member 220 and is released into the air from the ends. If the protrusions 220X are provided on the second shield member 220, the effect of the magnetic flux M on the detectors 1DU, 1DV, and 1DW can be further reduced, but even if the protrusions 220X are not provided, the effect can be reduced by releasing the magnetic flux M into the air from the ends of the second shield member 220. The same applies to the width direction of the second shield member 220. That is, since the second shield member 220 is large enough to cover the entire area 210Z of the projection area of the multiple first shield members 210, the effect of the magnetic flux M that passes through the first shield member 210 due to the current flowing through the conductors 2BU, 2BV, and 2BW on the detectors 1DU, 1DV, and 1DW can be reduced.
 本実施形態によれば、検出器としてコアが不要で、小型化が可能なコアレス電流センサを用いた場合でも、電流の検出精度を改善できる。この改善により、インバータの制御を適確に行うことが可能になり、インバータおよびモータを車両の駆動に用いた場合には、車両の航続距離を向上し、省エネルギー化を期待できる。 According to this embodiment, the current detection accuracy can be improved even when using a coreless current sensor that does not require a core as a detector and can be made smaller. This improvement makes it possible to control the inverter more accurately, and when the inverter and motor are used to drive a vehicle, it is expected that the vehicle's driving range will be improved and energy savings will be achieved.
 図5は、比較例における電流検出装置200'の磁束の流れを示す図である。この比較例は、本実施形態を適用しない例であり、本実施形態と比較することにより本実施形態の理解を深めるためのものである。 FIG. 5 is a diagram showing the flow of magnetic flux in a current detection device 200' in a comparative example. This comparative example is an example to which this embodiment is not applied, and is intended to deepen understanding of this embodiment by comparing it with this embodiment.
 この比較例では、図4で示した第2シールド部材220を2つに分割して、第3シールド部材223、第4シールド部材224とした場合を示す。第3シールド部材223は、検出器1DU、1DV、1DWおよび導体1BU、1BV、1BWと対応して、第4シールド部材224は、検出器2DU、2DV、2DWおよび導体2BU、2BV、2BWと対応して設けられている。 In this comparative example, the second shielding member 220 shown in FIG. 4 is divided into two, a third shielding member 223 and a fourth shielding member 224. The third shielding member 223 corresponds to the detectors 1DU, 1DV, 1DW and the conductors 1BU, 1BV, 1BW, and the fourth shielding member 224 corresponds to the detectors 2DU, 2DV, 2DW and the conductors 2BU, 2BV, 2BW.
 一例として、第2電力変換回路102が動作しており、導体2BU、2BV、2BWに大きな電流が流れ、その磁束が検出器1DU、1DV、1DWに及ぼす影響について以下に述べる。 As an example, the second power conversion circuit 102 is operating, a large current flows through the conductors 2BU, 2BV, and 2BW, and the effect of this magnetic flux on the detectors 1DU, 1DV, and 1DW is described below.
 導体2BU、2BV、2BWに流れる電流による磁束は、それぞれ検出器2DU、2DV、2DWにより検出されるが、第1シールド部材210を通過した磁束Mは、図5中の黒矢印で示すように、磁気抵抗が少ない、第4シールド部材224へ集められる。そして、第4シールド部材224の長さ方向の両端の端部から空中へ放出される。第3シールド部材223との間に位置する第4シールド部材224の端部から空中へ放出された磁束Mは、その一部が第3シールド部材223へ、また一部が第1シールド部材210を経て検出器1DWへ到達する。このため、検出器1DWは、導体1BWに流れる電流による磁束に、第4シールド部材224の端部から空中へ放出された磁束Mが加わって、導体1BWに流れる電流を正確に検出できない。この比較例では、図4で示した第2シールド部材220を2つに分割した例を示した。この比較例に限らず、図4で示した第2シールド部材220が、複数の第1シールド部材210の投影領域の全体領域210Zを覆う大きさでない場合には、その端部から空中へ放出された磁束Mが検出器に影響を及ぼす。 The magnetic flux due to the current flowing through the conductors 2BU, 2BV, and 2BW is detected by the detectors 2DU, 2DV, and 2DW, respectively. The magnetic flux M that passes through the first shield member 210 is collected in the fourth shield member 224, which has a small magnetic resistance, as shown by the black arrow in FIG. 5. Then, it is released into the air from both ends of the fourth shield member 224 in the length direction. The magnetic flux M released into the air from the end of the fourth shield member 224 located between the third shield member 223 reaches the detector 1DW, partly through the third shield member 223 and partly through the first shield member 210. Therefore, the detector 1DW cannot accurately detect the current flowing through the conductor 1BW because the magnetic flux M released into the air from the end of the fourth shield member 224 is added to the magnetic flux due to the current flowing through the conductor 1BW. In this comparative example, an example in which the second shield member 220 shown in FIG. 4 is divided into two is shown. Not limited to this comparative example, if the second shield member 220 shown in FIG. 4 is not large enough to cover the entire area 210Z of the projection area of the multiple first shield members 210, the magnetic flux M emitted from its end into the air will affect the detector.
 図6は、本実施形態における電流検出装置200の変形例1を示す断面図である。この断面図は、図2のX-X線の断面に相当する。図3(A)に示した断面図と同一箇所には同一の符号を付してその説明を簡略に行う。 FIG. 6 is a cross-sectional view showing modified example 1 of the current detection device 200 in this embodiment. This cross-sectional view corresponds to the cross-section of line X-X in FIG. 2. The same reference numerals are used to designate the same parts as in the cross-sectional view shown in FIG. 3(A) and their explanation will be simplified.
 図6に示すように、第2シールド部材220は、複数の第1シールド部材210の配列方向の両端の最端に位置する第1シールド部材210より突出して長く形成されている。そして、第2シールド部材220は、配列方向の最端に位置する第1シールド部材210より離間する方向Yに突出している。第2シールド部材220の端部から空中へ放出する磁束は、第1シールド部材210から離れる方向であるので、その影響をより低減できる。 As shown in FIG. 6, the second shielding member 220 is formed to protrude longer than the first shielding members 210 located at both ends of the arrangement direction of the multiple first shielding members 210. The second shielding member 220 protrudes in the direction Y away from the first shielding member 210 located at the end of the arrangement direction. The magnetic flux emitted into the air from the end of the second shielding member 220 is directed away from the first shielding member 210, so its influence can be further reduced.
 図7は、本実施形態における電流検出装置200の変形例2を示す断面図である。この断面図は、図2のX-X線の断面に相当する。図3(A)に示した断面図と同一箇所には同一の符号を付してその説明を簡略に行う。 FIG. 7 is a cross-sectional view showing modified example 2 of the current detection device 200 in this embodiment. This cross-sectional view corresponds to the cross-section of line X-X in FIG. 2. The same reference numerals are used to designate the same parts as in the cross-sectional view shown in FIG. 3(A) and their explanation will be simplified.
 図7に示すように、第2シールド部材220は、2つの部材225、226に分割された部材を連結して形成される。2つの部材225、226の連結は、接着、ビス止めなどにより行うが、連結した部材225、226の間で相互に磁束が流れるように磁気抵抗が低いものであればよい。第2シールド部材220を、2つなど複数の部材を連結して形成した場合には、各部材は小型であるので、その金型も小型化でき、コストを低減できる。 As shown in FIG. 7, the second shield member 220 is formed by connecting two separate members 225 and 226. The two members 225 and 226 are connected by gluing, screws, or the like, as long as the magnetic resistance is low so that magnetic flux can flow between the connected members 225 and 226. When the second shield member 220 is formed by connecting two or more members, each member is small, so the mold can also be made smaller, reducing costs.
 図8は、本実施形態における電流検出装置200の変形例3を示す図である。図8では、電力変換装置1000を含めて、断面図として示している。この断面図は、図2のX-X線の断面に相当する。図3(A)に示した断面図と同一箇所には同一の符号を付してその説明を簡略に行う。 FIG. 8 is a diagram showing a third modified example of the current detection device 200 in this embodiment. In FIG. 8, the power conversion device 1000 is also shown as a cross-sectional view. This cross-sectional view corresponds to the cross-section of line X-X in FIG. 2. The same reference numerals are used to designate the same parts as in the cross-sectional view shown in FIG. 3(A), and their explanation will be simplified.
 電力変換装置1000は、その筐体1100内に、電流検出装置200と電力変換回路100を収容する。電力変換回路100は、第1電力変換回路101、第2電力変換回路102を備え(図1参照)、それぞれ図示省略したインバータにより構成されるが、筐体110に収容されている。 The power conversion device 1000 houses the current detection device 200 and the power conversion circuit 100 in its housing 1100. The power conversion circuit 100 includes a first power conversion circuit 101 and a second power conversion circuit 102 (see FIG. 1), each of which is composed of an inverter (not shown), and is housed in a housing 110.
 第1電力変換回路101、第2電力変換回路102を収容する筐体110の一面、すなわち、電流検出装置200と対向する面は、板状の磁性体により形成され、第2シールド部材220を構成する。この場合も、既に述べたように、第2シールド部材220は、複数の第1シールド部材210の配列方向と直交する方向における複数の第1シールド部材210の投影領域の全体領域210Z(図3(B)参照)を覆う大きさである。第2シールド部材220を筐体110の一面として用いる構成により、電力変換装置1000を小型化し、コストを削減できる。 One surface of the housing 110 housing the first power conversion circuit 101 and the second power conversion circuit 102, i.e., the surface facing the current detection device 200, is formed of a plate-shaped magnetic material and constitutes the second shielding member 220. As already mentioned, in this case, the second shielding member 220 is large enough to cover the entire area 210Z (see FIG. 3(B)) of the projection area of the multiple first shielding members 210 in a direction perpendicular to the arrangement direction of the multiple first shielding members 210. By using the second shielding member 220 as one surface of the housing 110, the power conversion device 1000 can be made smaller and costs can be reduced.
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)電流検出装置200は、複数の電力変換回路100に接続される複数の導体1BU~1BW、2BU~2BWと、導体1BU~1BW、2BU~2BWに流れる電流により生じる磁束に基づいて導体1BU~1BW、2BU~2BWに流れる電流を検出する複数の検出器1DU~1DW、2DU~2DWと、検出器1DU~1DW、2DU~2DWおよび導体1BU~1BW、2BU~2BWの少なくとも一部を囲い、検出器1DU~1DW、2DU~2DWおよび導体1BU~1BW、2BU~2BWを磁気遮蔽する複数の第1シールド部材210と、複数の第1シールド部材210に対向して配置され、複数の第1シールド部材210の配列方向と直交する方向における複数の第1シールド部材210の投影領域の全体領域210Zを覆う第2シールド部材220とを備える。これにより、一方の電力変換回路の動作により導体に生じる磁束が他方の電力変換回路に対応する検出器に影響を及ぼすことを低減し、電流検出装置の検出精度が向上する。
According to the embodiment described above, the following advantageous effects can be obtained.
(1) The current detection device 200 includes a plurality of conductors 1BU-1BW, 2BU-2BW connected to a plurality of power conversion circuits 100, a plurality of detectors 1DU-1DW, 2DU-2DW that detect a current flowing in the conductors 1BU-1BW, 2BU-2BW based on a magnetic flux generated by a current flowing in the conductors 1BU-1BW, 2BU-2BW, a plurality of first shield members 210 that surround at least a portion of the detectors 1DU-1DW, 2DU-2DW and the conductors 1BU-1BW, 2BU-2BW and magnetically shield the detectors 1DU-1DW, 2DU-2DW and the conductors 1BU-1BW, 2BU-2BW, and a second shield member 220 that is arranged opposite the plurality of first shield members 210 and covers an entire area 210Z of a projection area of the plurality of first shield members 210 in a direction perpendicular to the arrangement direction of the plurality of first shield members 210. This reduces the influence of magnetic flux generated in a conductor due to the operation of one power conversion circuit on the detector corresponding to the other power conversion circuit, improving the detection accuracy of the current detection device.
 本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiment, and other forms that are conceivable within the scope of the technical concept of the present invention are also included within the scope of the present invention, so long as they do not impair the characteristics of the present invention. In addition, a configuration that combines the above-described embodiment with multiple modified examples may also be used.
 100・・・電力変換回路、101・・・第1電力変換回路、102・・・第2電力変換回路、103・・・平滑コンデンサ、110・・・電力変換回路の筐体、200・・・電流検出装置、201・・・第1電流検出装置、202・・・第2電流検出装置、210・・・第1シールド部材、210Z・・・複数の第1シールド部材の投影領域の全体領域、211・・・基板、220・・・第2シールド部材、220X・・・突出部、223・・・第3シールド部材、224・・・第4シールド部材、1000・・・電力変換装置、1100・・・電力変換装置の筐体、1BU、1BV、1BW、2BU、2BV、2BW・・・導体、1DU、1DV、1DW、2DU、2DV、2DW・・・検出器、Y・・・離間する方向、M・・・磁束。 100: power conversion circuit, 101: first power conversion circuit, 102: second power conversion circuit, 103: smoothing capacitor, 110: housing of power conversion circuit, 200: current detection device, 201: first current detection device, 202: second current detection device, 210: first shielding member, 210Z: entire area of the projection area of the first shielding members, 211: substrate, 220: second shielding member, 220X: protrusion, 223: third shielding member, 224: fourth shielding member, 1000: power conversion device, 1100: housing of power conversion device, 1BU, 1BV, 1BW, 2BU, 2BV, 2BW: conductor, 1DU, 1DV, 1DW, 2DU, 2DV, 2DW: detector, Y: separation direction, M: magnetic flux.

Claims (8)

  1.  複数の電力変換回路に接続される複数の導体と、
     前記導体に流れる電流により生じる磁束に基づいて前記導体に流れる電流を検出する複数の検出器と、
     前記検出器および前記導体の少なくとも一部を囲い、前記検出器および前記導体を磁気遮蔽する複数の第1シールド部材と、
     前記複数の第1シールド部材に対向して配置され、前記複数の第1シールド部材の配列方向と直交する方向における前記複数の第1シールド部材の投影領域の全体領域を覆う第2シールド部材とを備える電流検出装置。
    A plurality of conductors connected to a plurality of power conversion circuits;
    a plurality of detectors for detecting a current flowing through the conductor based on a magnetic flux generated by the current flowing through the conductor;
    a plurality of first shield members surrounding at least a portion of the detector and the conductor and magnetically shielding the detector and the conductor;
    A current detection device comprising a second shielding member arranged opposite the multiple first shielding members and covering the entire area of the projection areas of the multiple first shielding members in a direction perpendicular to the arrangement direction of the multiple first shielding members.
  2.  請求項1に記載の電流検出装置において、
     前記第2シールド部材は、前記複数の第1シールド部材の前記配列方向の最端に位置する第1シールド部材より突出する突出部が形成される電流検出装置。
    2. The current detection device according to claim 1,
    The second shield member is formed with a protrusion that protrudes from a first shield member that is located at an end of the plurality of first shield members in the arrangement direction.
  3.  請求項1に記載の電流検出装置において、
     前記第2シールド部材は、前記配列方向の最端に位置する第1シールド部材より離間する方向に突出する電流検出装置。
    2. The current detection device according to claim 1,
    The second shield member protrudes away from the first shield member located at the end of the arrangement direction.
  4.  請求項1に記載の電流検出装置において、
     前記第2シールド部材は、複数の部材に分割された部材を連結して形成される電流検出装置。
    2. The current detection device according to claim 1,
    The second shield member is a current detection device formed by connecting a plurality of divided members.
  5.  請求項1から請求項4までのいずれか一項に記載の電流検出装置において、
     前記検出器は、コアレス電流センサである電流検出装置。
    The current detection device according to any one of claims 1 to 4,
    The detector is a coreless current sensor.
  6.  請求項1から請求項4までのいずれか一項に記載の電流検出装置において、
     前記第2シールド部材は、前記複数の第1シールド部材の前記配列方向と直交する方向における前記第1シールド部材の幅より大きい幅である電流検出装置。
    The current detection device according to any one of claims 1 to 4,
    A current detection device in which the second shield member has a width greater than a width of the first shield member in a direction perpendicular to the arrangement direction of the plurality of first shield members.
  7.  請求項1から請求項4までのいずれか一項に記載の電流検出装置において、
     前記第2シールド部材は、板状の磁性体により形成される電流検出装置。
    The current detection device according to any one of claims 1 to 4,
    The second shield member of the current detection device is formed of a plate-shaped magnetic material.
  8.  請求項1から請求項4までのいずれか一項に記載の電流検出装置と、
     前記複数の電力変換回路を収容する筐体とを備え、
     前記筐体の一面は、前記第2シールド部材を構成する電力変換装置。
     
    A current detection device according to any one of claims 1 to 4,
    a housing that houses the plurality of power conversion circuits,
    One surface of the housing is a power conversion device that constitutes the second shield member.
PCT/JP2022/044604 2022-12-02 2022-12-02 Current detection device and power conversion device WO2024116410A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044604 WO2024116410A1 (en) 2022-12-02 2022-12-02 Current detection device and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044604 WO2024116410A1 (en) 2022-12-02 2022-12-02 Current detection device and power conversion device

Publications (1)

Publication Number Publication Date
WO2024116410A1 true WO2024116410A1 (en) 2024-06-06

Family

ID=91323184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044604 WO2024116410A1 (en) 2022-12-02 2022-12-02 Current detection device and power conversion device

Country Status (1)

Country Link
WO (1) WO2024116410A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155801A (en) * 2014-02-19 2015-08-27 オムロン株式会社 Voltage measurement device and voltage measurement method
JP2016200436A (en) * 2015-04-08 2016-12-01 トヨタ自動車株式会社 Current sensor
JP2017227617A (en) * 2016-06-15 2017-12-28 株式会社デンソー Electric current sensor
JP2018096794A (en) * 2016-12-12 2018-06-21 株式会社デンソー Current sensor
JP2021039030A (en) * 2019-09-04 2021-03-11 株式会社デンソー Current sensor
WO2021070834A1 (en) * 2019-10-08 2021-04-15 アルプスアルパイン株式会社 Current detection device
JP2021076468A (en) * 2019-11-08 2021-05-20 Tdk株式会社 Current sensor
JP2021162416A (en) * 2020-03-31 2021-10-11 株式会社デンソー Current detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155801A (en) * 2014-02-19 2015-08-27 オムロン株式会社 Voltage measurement device and voltage measurement method
JP2016200436A (en) * 2015-04-08 2016-12-01 トヨタ自動車株式会社 Current sensor
JP2017227617A (en) * 2016-06-15 2017-12-28 株式会社デンソー Electric current sensor
JP2018096794A (en) * 2016-12-12 2018-06-21 株式会社デンソー Current sensor
JP2021039030A (en) * 2019-09-04 2021-03-11 株式会社デンソー Current sensor
WO2021070834A1 (en) * 2019-10-08 2021-04-15 アルプスアルパイン株式会社 Current detection device
JP2021076468A (en) * 2019-11-08 2021-05-20 Tdk株式会社 Current sensor
JP2021162416A (en) * 2020-03-31 2021-10-11 株式会社デンソー Current detector

Similar Documents

Publication Publication Date Title
JP6350785B2 (en) Inverter device
US6252389B1 (en) Current detector having magnetic core for concentrating a magnetic flux near a hall-effect sensor, and power switch apparatus incorporating same
US10763729B2 (en) Electronic control unit, and electric power steering device using the same
US9577388B2 (en) Connector for power-supply unit with a signal line
WO2015178478A1 (en) Current-sensor-equipped busbar module
US20110285336A1 (en) Semiconductor module device and driving apparatus having the same
WO2016002184A1 (en) Semiconductor device
JP5153491B2 (en) Current detector
JP2007274831A (en) Power converter
EP2808892B1 (en) Inverter unit
WO2018110108A1 (en) Electric current sensor
KR100992795B1 (en) Current measuring device of hybrid vehicle inverter
CN104979715A (en) Connector
WO2021199804A1 (en) Power conversion device
WO2024116410A1 (en) Current detection device and power conversion device
JPH11127583A (en) Three-phase inverter circuit module
US11515801B2 (en) Shield in a power conversion device
JP6407798B2 (en) Power semiconductor device
JP7030947B1 (en) Power converter
JP7334658B2 (en) power converter
CN112368929A (en) Circuit arrangement
WO2019069763A1 (en) Electric current sensor
JP6808989B2 (en) Inverter module
JP6241098B2 (en) In-vehicle motor controller
JP2019184355A (en) Coreless current measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22967240

Country of ref document: EP

Kind code of ref document: A1