WO2024106508A1 - Metal-coated fiber-reinforced plastic and method for producing same - Google Patents
Metal-coated fiber-reinforced plastic and method for producing same Download PDFInfo
- Publication number
- WO2024106508A1 WO2024106508A1 PCT/JP2023/041268 JP2023041268W WO2024106508A1 WO 2024106508 A1 WO2024106508 A1 WO 2024106508A1 JP 2023041268 W JP2023041268 W JP 2023041268W WO 2024106508 A1 WO2024106508 A1 WO 2024106508A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- reinforced plastic
- fiber
- metal
- cfrp
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/10—Removing layers, or parts of layers, mechanically or chemically
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
Definitions
- the present invention relates to a metal-coated fiber-reinforced plastic and a method for producing the same.
- CFRP Carbon fiber reinforced plastics
- the cold spray method which allows for the formation of a metal coating in a solid state, is a promising method for improving the lightning resistance of CFRP because it causes minimal thermal damage to the plastic that constitutes the CFRP.
- metallization of CFRP with metals such as tin, zinc, copper, and aluminum has been considered.
- tin has excellent film-forming properties due to its low melting point and softness.
- the adhesive strength between tin and thermosetting CFRP is known to be 2.8 MPa (see, for example, Non-Patent Document 3).
- the challenge in CFRP metallization has been to improve the adhesive strength between metal and CFRP.
- the present invention was made in consideration of the above circumstances, and aims to provide a metal-coated fiber-reinforced plastic that has excellent adhesion between the fiber-reinforced plastic and the metal coating, and a method for producing the same.
- a first step of spraying metal particles onto one side of a fiber-reinforced plastic with compressed gas by a cold spray method in which the temperature of the compressed gas is set to at least one of a temperature higher than the melting point of the metal particles and a temperature higher than the decomposition temperature of the fiber-reinforced plastic, thereby raising the temperature of one side of the fiber-reinforced plastic to at least one of a temperature higher than the melting point of the metal particles and a temperature higher than the decomposition temperature of the fiber-reinforced plastic, thereby exposing a portion of the reinforcing fibers contained in the fiber-reinforced plastic to one side of the fiber-reinforced plastic; a second step of spraying metal particles using a compressed gas by a cold spray method onto one side of the fiber-reinforced plastic where the reinforcing fibers are exposed, wherein the temperature of the compressed gas is set to a temperature lower than the melting point of the metal particles and lower than the decom
- a metal-coated fiber-reinforced plastic comprising a fiber-reinforced plastic containing reinforcing fibers and a metal coating formed on one surface of the fiber-reinforced plastic, A metal-coated fiber-reinforced plastic, wherein the reinforcing fibers protrude toward the metal coating at the interface between the fiber-reinforced plastic and the metal coating.
- the present invention provides a metal-coated fiber-reinforced plastic that has excellent adhesion between the fiber-reinforced plastic and the metal coating, and a method for producing the same.
- FIG. 1 is a cross-sectional view in the thickness direction of a metal-coated fiber-reinforced plastic showing a schematic configuration of the metal-coated fiber-reinforced plastic according to one embodiment of the present invention.
- FIG. 1 is a digital microscope image showing the observation result of the surface of a test piece in Comparative Example 1, in which a tin coating was produced on a CFRP substrate in a single-step process with the temperature of compressed air in a gas chamber set to 473 K.
- 1 is a digital microscope image showing the observation result of the surface of a test piece in Comparative Example 1, in which a tin coating was produced on a CFRP substrate in a single-step process with the temperature of compressed air in a gas chamber set to 523 K.
- FIG. 1 is a digital microscope image showing the observation result of the surface of a test piece in Comparative Example 1, in which a tin coating was produced on a CFRP substrate in a single-step process with the temperature of compressed air in a gas chamber set to
- FIG. 13 is a field emission scanning electron microscope image showing the observation result of a cross section in the thickness direction of a test piece in Comparative Example 1, in which a tin coating was produced on a CFRP substrate in a single-step process with the temperature of compressed air in a gas chamber set to 473 K.
- FIG. 13 is a field emission scanning electron microscope image showing the observation result of a cross section in the thickness direction of a test piece in Comparative Example 1, in which a tin coating was produced on a CFRP substrate in a single-step process with the temperature of compressed air in a gas chamber set to 523 K.
- 1 is a digital microscope image showing the observation result of the surface of a test piece in Example 1, in which a tin coating was produced on a CFRP substrate by performing one pass in the first step of the two-step process.
- 1 is a digital microscope image showing the observation result of the surface of a test piece in Example 1, in which a tin coating was produced on a CFRP substrate by performing two passes in the first step of the two-step process.
- 1 is a digital microscope image showing the observation result of the surface of a test piece in Example 1, in which a tin coating was produced on a CFRP substrate by performing three passes in the first step of the two-step process.
- 1 is a digital microscope image showing the observation result of the surface of a test piece in Example 1, in which a tin coating was produced on a CFRP substrate by performing four passes in the first step of the two-stage process.
- 1 is a digital microscope image showing the surface morphology of a CFRP substrate after the first step of a two-step process in Example 1, where the number of passes in the first step is one.
- 1 is a digital microscope image showing the surface morphology of a CFRP substrate after the first step of a two-step process in Example 1, where the number of passes in the first step is three.
- FIG. 1 is a diagram showing the relationship between the number of passes in the first step of the two-step process and the arithmetic mean height (Sa) of the surface of the CFRP substrate in Example 1.
- Example 1 is a digital microscope image showing a tin/CFRP interface in Example 1.
- 1 is a scanning electron microscope image showing the surface of the tin coating after a pull-off test in Example 1.
- 1 is a scanning electron microscope image showing the surface of the tin coating after a pull-off test in Example 1.
- 1 is a scanning electron microscope image showing the surface of the tin coating after a pull-off test in Example 1.
- FIG. 1 is a diagram showing the evaluation results of adhesive strength by a pull-off test for the test pieces of Example 1 and Comparative Example 1.
- 1 is a scanning electron microscope image of the water-atomized tin powder raw material in Experimental Example 1.
- FIG. 1 is a graph showing the particle size distribution of water-atomized tin powder raw material in Experimental Example 2.
- FIG. 1 is a scanning electron microscope image of a cross section of a CFRP substrate in Experimental Example 3.
- 13 is a scanning electron microscope image of the surface of a CFRP substrate observed in Experimental Example 4 when the temperature of compressed air in the gas chamber was set to 473 K.
- FIG. 22 is an enlarged view of FIG. 21.
- 13 is a scanning electron microscope image of the surface of a CFRP substrate observed in Experimental Example 4 when the temperature of compressed air in the gas chamber was set to 523 K.
- FIG. 25 is an enlarged view of FIG.
- 13 is a scanning electron microscope image of the surface of a CFRP substrate observed in Experimental Example 4 when the temperature of compressed air in the gas chamber was set to 623 K.
- FIG. 27 is an enlarged view of FIG.
- FIG. 13 is a diagram showing the measurement results of the surface roughness of a CFRP substrate in Experimental Example 5.
- 13 is a scanning electron microscope image of a cross section of a CFRP substrate on which a tin coating was formed in Experimental Example 6, where the temperature of compressed air in the gas chamber was set to 473 K.
- 13 is a scanning electron microscope image of a cross section of a CFRP substrate on which a tin coating was formed in Experimental Example 6, where the temperature of compressed air in the gas chamber was set to 523 K.
- FIG. 13 is a scanning electron microscope image of a cross section of a CFRP substrate on which a tin coating was formed in Experimental Example 6, where the temperature of compressed air in the gas chamber was set to 573 K.
- 13 is a scanning electron microscope image of a cross section of a CFRP substrate on which a tin coating was formed in Experimental Example 6, where the temperature of compressed air in the gas chamber was set to 623 K.
- FIG. 13 is a diagram showing the results of measuring the thickness of a tin coating on a CFRP substrate in Experimental Example 7.
- FIG. 13 is a diagram showing the results of measuring the erosion depth of a CFRP substrate in Experimental Example 7.
- FIG. 13 is a schematic diagram showing a method for analyzing a region on the surface of a CFRP substrate that is affected by heat in Experimental Example 8.
- FIG. 13 is a diagram showing the results of measuring the surface temperature of a CFRP substrate when a tin coating is formed by a low-pressure cold spray method in Experimental Example 8.
- FIG. 13 is a diagram showing the transition of the maximum surface temperature of the CFRP substrate from the start to the end (about 80 seconds) of formation of a tin coating at each compressed air temperature in the gas chamber in Experimental Example 9.
- FIG. 13 is a diagram showing the transition of the maximum temperature change rate on the surface of the CFRP substrate from the start to the end (approximately 80 seconds) of formation of a tin coating at each compressed air temperature in the gas chamber in Experimental Example 9.
- 13 is a graph showing the film-forming efficiency of tin particles on the surface of a CFRP substrate and the adhesion strength of a tin coating on the surface of a CFRP substrate in Experimental Example 10.
- FIG. 1 shows a schematic configuration of a metal-coated fiber-reinforced plastic according to one embodiment of the present invention, and is a cross-sectional view in the thickness direction of the metal-coated fiber-reinforced plastic.
- a metal-coated fiber-reinforced plastic 1 includes a fiber-reinforced plastic 10 and a metal coating 20 formed on one surface 10 a of the fiber-reinforced plastic 10 .
- the thickness of the metal-coated fiber reinforced plastic 1 may be set to an appropriate value depending on the application, etc., but is usually 30 ⁇ m or more and 200 ⁇ m or less, and preferably 50 ⁇ m or more and 100 ⁇ m or less.
- Fiber reinforced plastic (hereinafter sometimes abbreviated as “FRP”) 10 includes a matrix resin 11 and reinforcing fibers 12 contained within the matrix resin 11 .
- the reinforcing fibers 12 protrude toward the metal coating 20 at the interface between the fiber-reinforced plastic 10 and the metal coating 20 , in other words, at one surface 10 a of the fiber-reinforced plastic 10 .
- the amount of fibers contained in the fiber reinforced plastic 10 is not particularly limited, but the fiber volume content is preferably 30 volume % or more and 70 volume % or less.
- the arithmetic mean height (Sa) of one surface 10a of the fiber reinforced plastic 10 is preferably 20 ⁇ m or more and 40 ⁇ m or less. If the arithmetic mean height (Sa) of one surface 10a of the fiber reinforced plastic 10 is equal to or more than the lower limit, the adhesive strength at the interface between the fiber reinforced plastic 10 and the metal coating 20 is improved due to the anchor effect of the reinforcing fibers 12. If the arithmetic mean height (Sa) of one surface 10a of the fiber reinforced plastic 10 is equal to or less than the upper limit, the metal coating 20 adheres to the reinforcing fibers 12 protruding toward the metal coating 20.
- the arithmetic mean height (Sa) of one surface 10a of the fiber-reinforced plastic 10 can be measured using a method that complies with ISO 25178.
- the exposure rate of the reinforcing fibers 12 is preferably 90% or more, more preferably 95% or more, and particularly preferably 100%.
- the exposure rate of the reinforcing fibers 12 is equal to or greater than the lower limit, the anchor effect of the reinforcing fibers 12 improves the adhesion strength at the interface between the fiber-reinforced plastic 10 and the metal coating 20.
- the exposure rate of the reinforcing fibers 12 at the interface between the fiber-reinforced plastic 10 and the metal coating 20 refers to the area of the reinforcing fibers 12 that are not covered by the matrix resin 11 and are exposed relative to the total area of the surface (excluding the area of the portion not forming the metal coating 20) when the interface is viewed in a plan view from the metal coating 20 side.
- the matrix resin 11 is not particularly limited as long as it is a resin generally used in fiber-reinforced plastics, and examples thereof include epoxy resin, unsaturated polyester, vinyl ester, phenol, cyanate ester, polyimide, polyamide, polycarbonate, polyphenylene sulfide, polyether ether ketone, etc.
- the reinforcing fibers 12 are not particularly limited as long as they are fibers generally used in fiber-reinforced plastics, and examples thereof include carbon fibers and glass fibers.
- the thickness (outer diameter) of the reinforcing fiber 12 is not particularly limited, but for example, if the reinforcing fiber 12 is carbon fiber, it is 5 ⁇ m to 10 ⁇ m, and if the reinforcing fiber 12 is glass fiber, it is 5 ⁇ m to 35 ⁇ m.
- Metal coating The metal constituting the metal coating 20 is not particularly limited as long as it can improve the electrical conductivity and lightning resistance of the fiber reinforced plastic 10, and examples of the metal include tin (Sn), zinc (Zn), copper (Cu), aluminum (Al), etc. Among these, tin is preferable from the viewpoint of film-forming properties and thermal effects on the fiber reinforced plastic 10.
- the thickness of the metal coating 20 is not particularly limited, and can be thicker than 3 mm, but is preferably 10 ⁇ m to 3000 ⁇ m, and more preferably 10 ⁇ m to 300 ⁇ m.
- the thickness of the metal coating 20 is equal to or greater than the lower limit, the metal coating 20 becomes a uniform and dense film.
- the thickness of the metal coating 20 is less than the lower limit, the metal coating 20 becomes non-uniform, making it difficult to completely cover one surface 10a of the fiber reinforced plastic 10 with the metal coating 20.
- the thickness of the metal coating 20 is equal to or less than the upper limit, no residual stress (internal stress) is generated in the metal coating 20, and peeling of the metal coating 20 from the fiber reinforced plastic 10 can be suppressed.
- the metal coating 20 does not have to be provided continuously over the entire surface of one surface 10a of the fiber reinforced plastic 10, and may be provided intermittently.
- the coverage of the metal coating 20 on the surface 10a is preferably 90% or more, and more preferably 100%.
- the coverage rate of the metal coating 20 refers to the area that the metal coating 20 occupies on one surface 10a of the fiber reinforced plastic 10 relative to the total area of the outermost surface 1a of the metal coated fiber reinforced plastic 1 when the metal coated fiber reinforced plastic 1 is viewed in plan from the metal coating 20 side.
- the coverage of the metal coating 20 can be measured by image analysis using a microscope.
- the metal-coated fiber-reinforced plastic 1 of this embodiment has excellent adhesion between the fiber-reinforced plastic 10 and the metal coating 20.
- the metal-coated fiber-reinforced plastic 1 of this embodiment has excellent electrical conductivity and lightning resistance.
- a manufacturing method of a metal-coated fiber reinforced plastic includes a first step of spraying metal particles with compressed gas by a cold spray method onto one side of a fiber reinforced plastic, wherein the temperature of the compressed gas is set to at least one of a temperature higher than the melting point of the metal particles and a temperature higher than the decomposition temperature of the fiber reinforced plastic, thereby setting the temperature of one side of the fiber reinforced plastic to at least one of a temperature higher than the melting point of the metal particles and a temperature higher than the decomposition temperature of the fiber reinforced plastic, thereby exposing a portion of the reinforcing fibers contained in the fiber reinforced plastic to one side of the fiber reinforced plastic; and a second step of spraying metal particles with compressed gas by a cold spray method onto one side of the fiber reinforced plastic from which the reinforcing fibers are exposed, wherein the temperature of the compressed gas is set to a temperature lower than the melting point of the metal particles and a temperature lower than
- the decomposition temperature of a fiber-reinforced plastic refers to the temperature at which the molecular structure of the resin contained in the fiber-reinforced plastic is destroyed and decomposition occurs when the resin is heated to a temperature higher than this temperature.
- the cold spray method is a method in which powder is sprayed in a solid state using a supersonic flow to collide with an object to be coated, forming a coating.
- First step In the first step, metal particles are sprayed with compressed gas by a cold spray method onto one surface 10a of the fiber-reinforced plastic 10. As a result, a part of the reinforcing fibers 12 contained in the fiber-reinforced plastic 10 is exposed on the one surface 10a of the fiber-reinforced plastic 10.
- the temperature of the compressed gas is set to a temperature higher than the melting point of the metal particles to be sprayed onto the fiber reinforced plastic 10 and a temperature higher than the decomposition temperature of the fiber reinforced plastic 10.
- the temperature of the compressed gas is at least one of the temperatures higher than the melting point of the metal particles and the decomposition temperature of the fiber reinforced plastic 10
- the temperature of the one surface 10a of the fiber reinforced plastic 10 becomes equal to or lower than the temperature of the compressed gas, and the one surface 10a of the fiber reinforced plastic 10 is scraped (erosion), and the reinforcing fibers 12 can be exposed from the matrix resin 11.
- erosion refers to the scraping and disappearance of the matrix resin 11 due to the temperature of the fiber reinforced plastic 10 becoming higher than the decomposition temperature.
- the matrix resin 11 may or may not be melted.
- the higher the temperature the faster the processing by erosion.
- the temperature of the compressed gas is either or both of a temperature higher than the melting point of the metal particles sprayed onto the fiber reinforced plastic 10 and a temperature higher than the decomposition temperature of the fiber reinforced plastic 10. Thereby, the temperature of the one surface 10a of the fiber reinforced plastic 10 is made equal to or lower than the temperature of the compressed gas.
- the temperature of the compressed gas being either or both of a temperature higher than the melting point of the metal particles sprayed onto fiber reinforced plastic 10 and a temperature higher than the decomposition temperature of fiber reinforced plastic 10 specifically means that the temperature of the compressed gas is either or both of a temperature that is 10°C or more and 100°C or less higher than the melting point of the metal particles and a temperature that is 10°C or more and 200°C or less higher than the decomposition temperature of fiber reinforced plastic 10.
- the temperature of one side 10a of fiber reinforced plastic 10 being equal to or higher than either one or both of a temperature higher than the melting point of the metal particles and a temperature higher than the decomposition temperature of the fiber reinforced plastic specifically means that the temperature of one side 10a of fiber reinforced plastic 10 is equal to or higher than either one or both of a temperature that is 10°C to 200°C higher than the melting point of the metal particles and a temperature that is 10°C to 150°C higher than the decomposition temperature of the fiber reinforced plastic.
- the pressure of the compressed gas in the first step is not particularly limited, but is preferably 0.2 MPa or more and 1.0 MPa or less, and more preferably 0.2 MPa or more and 0.6 MPa or less. If the pressure of the compressed gas is equal to or more than the lower limit, the surface 10a of the fiber reinforced plastic 10 will be scraped when the metal particles are sprayed onto the surface 10a of the fiber reinforced plastic 10. If the pressure of the compressed gas is equal to or less than the upper limit, damage to the reinforcing fibers 12 can be suppressed when the metal particles are sprayed onto the surface 10a of the fiber reinforced plastic 10.
- Compressed gases include, for example, compressed air, nitrogen, helium, etc.
- the metal particles are particles of metal that make up the metal coating 20.
- the average particle size of the metal particles is not particularly limited, but is, for example, 1 ⁇ m or more and 100 ⁇ m or less. If the average particle size of the metal particles is within the above range, a dense metal coating 20 can be formed. Note that in the first step, a small amount of metal particles may accumulate on one surface 10a of the fiber reinforced plastic 10, but this does not result in the formation of a uniform metal coating 20.
- the arithmetic mean height (Sa) of one surface 10a of the fiber reinforced plastic 10 is set to 20 ⁇ m or more and 40 ⁇ m or less by exposing the reinforcing fibers 12 from the matrix resin 11.
- the arithmetic mean height (Sa) of one surface 10a of the fiber reinforced plastic 10 is equal to or more than the lower limit, the adhesive strength at the interface between the fiber reinforced plastic 10 and the metal coating 20 is improved due to the anchor effect of the reinforcing fibers 12.
- the metal coating 20 adheres to the reinforcing fibers 12 protruding toward the metal coating 20 side.
- the arithmetic mean height (Sa) can be adjusted by the conditions of the first step, for example, by adjusting the number of passes in the cold spray method.
- the "number of passes” refers to the number of times that the fiber reinforced plastic 10 passes through a nozzle that sprays compressed gas in the cold spray method.
- the optimal number of passes also depends on various conditions such as the pressure of the compressed gas.
- the Second Step In the second step, metal particles are sprayed by a cold spray method using compressed gas onto one surface 11a of the matrix resin 11 where the reinforcing fibers 12 are exposed, in other words, onto one surface 10a of the fiber reinforced plastic 10. As a result, a metal coating 20 made of the metal particles is formed on one surface 10a of the fiber reinforced plastic 10.
- the temperature of the compressed gas is set to a temperature lower than the melting point of the metal particles and lower than the decomposition temperature of the fiber reinforced plastic 10, so that the temperature of one side 10a of the fiber reinforced plastic 10 is lower than the melting point of the metal particles and lower than the decomposition temperature of the fiber reinforced plastic 10, and the metal particles can be deposited on one side 10a of the fiber reinforced plastic 10 to form a uniform metal coating 20.
- the temperature of the compressed gas being lower than the melting point of the metal particles and lower than the decomposition temperature of fiber reinforced plastic 10 specifically means that the temperature of the compressed gas is 10°C to 150°C lower than the melting point of the metal particles and 50°C to 400°C lower than the decomposition temperature of fiber reinforced plastic 10.
- the temperature of one side 10a of fiber reinforced plastic 10 being lower than the melting point of the metal particles and lower than the decomposition temperature of fiber reinforced plastic 10 specifically means that the temperature of one side 10a of fiber reinforced plastic 10 is a temperature that is 10°C or more and 150°C or less lower than the melting point of the metal particles and a temperature that is 10°C or more and 400°C or less lower than the decomposition temperature of fiber reinforced plastic 10.
- the pressure of the compressed gas in the second step is not particularly limited, but is preferably 0.2 MPa or more and 1.0 MPa or less, and more preferably 0.2 MPa or more and 0.6 MPa or less. If the pressure of the compressed gas is equal to or more than the lower limit, when the metal particles are sprayed onto one surface 10a of the fiber reinforced plastic 10, the metal particles can be deposited on the one surface 10a of the fiber reinforced plastic 10 to form a uniform metal coating 20. If the pressure of the compressed gas is equal to or less than the upper limit, damage to the reinforcing fibers 12 can be suppressed when the metal particles are sprayed onto one surface 10a of the fiber reinforced plastic 10.
- the deposition efficiency (DE) of the metal particles on one surface 10a of the fiber reinforced plastic 10 is preferably 60% or more, and more preferably 80% or more.
- the deposition efficiency of the metal particles is the ratio of the mass of tin particles attached to one surface 10a of the fiber reinforced plastic 10 to the mass of tin particles sprayed onto one surface 10a of the fiber reinforced plastic 10.
- a higher deposition efficiency of the metal particles is industrially preferable, and the adhesion strength at the interface between the fiber reinforced plastic 10 and the metal coating 20 can be further improved.
- the manufacturing method for metal-coated fiber-reinforced plastic of this embodiment produces a metal-coated fiber-reinforced plastic 1 that has excellent adhesion between the fiber-reinforced plastic 10 and the metal coating 20. Furthermore, the manufacturing method for metal-coated fiber-reinforced plastic of this embodiment produces a metal-coated fiber-reinforced plastic 1 that has excellent electrical conductivity and lightning resistance.
- Example 1 "Preparation of test specimens" Water-atomized Sn powder (Sn-AtW-250) manufactured by Fukuda Metal Foil and Powder Co., Ltd. was used as the raw material. The average diameter (median diameter, D50) of the raw material powder measured using a laser light scattering diffraction particle size distribution analyzer (LS230, Beckman Coulter) was 24.28 ⁇ m.
- the CFRP substrate used was manufactured by JAMCO Corporation, and contains carbon fiber and an epoxy resin, which is a thermosetting resin, as the matrix.
- the CFRP substrate (30 mm x 30 mm x 2 mm) was cured and was made by stacking a total of 52 layers of CF laminates, each layer rotated 90 degrees. Each CFRP substrate was degreased with acetone before the cold spray experiment described below.
- the decomposition temperature of the CFRP substrate is 553 K.
- Cold spray experiments were performed using a low-pressure cold spray device (Dymet 423J) manufactured by Obninsk Center for Powder Spraying.
- compressed air was heated in a chamber and water-atomized Sn powder was sprayed onto the CFRP substrate through a Laval nozzle.
- the temperature of the compressed air was set to 623 K in order to modify one side of the CFRP substrate.
- the temperature of the compressed air was set to 523 K to obtain a test piece having a uniform metal coating (tin coating) made of tin formed on one side of the CFRP substrate.
- the temperature of the compressed air in this example and the following examples, comparative examples, and experimental examples is the temperature of the compressed air in the chamber.
- Cross-sectional observation of test piece Cross-sectional observation of the test piece was carried out using a field emission scanning electron microscope (S-3400N) manufactured by Hitachi High-Tech Corp.
- S-3400N field emission scanning electron microscope
- the cross-sectional observation sample was polished with emery paper (#200-2000) and then mirror-finished with a colloidal silica suspension (OP-U) manufactured by Struers.
- OP-U colloidal silica suspension
- a sample polished to a thickness of about 4 mm including the CFRP substrate and the tin coating was used, and polishing was performed so that the surface roughness (Sa) of the tin coating was 20 ⁇ 2.5 ⁇ m.
- the surface morphology of the tin coating and the CFRP substrate side after the pull-off test was observed using a field emission scanning electron microscope (S-3400N) manufactured by Hitachi High-Tech Corporation.
- FIG. 2 shows the observation result of the surface of a test piece when a tin coating is formed on a CFRP substrate by a single-step process with a compressed air temperature of 473K.
- FIG. 3 shows the observation result of the surface of a test piece when a tin coating is formed on a CFRP substrate by a single-step process with a compressed air temperature of 523K.
- FIG. 4 shows the observation result of a cross section in the thickness direction of a test piece when a tin coating is formed on a CFRP substrate by a single-step process with a compressed air temperature of 473K.
- FIG. 5 shows the observation result of a cross section in the thickness direction of a test piece when a tin coating is formed on a CFRP substrate by a single-step process with a compressed air temperature of 523K.
- CF refers to carbon fiber. The same applies to the following figures.
- Figure 6 shows the observation results of the surface of a test piece when a tin coating was produced on a CFRP substrate with one pass in the first step of the two-step process.
- Figure 7 shows the observation results of the surface of a test piece when a tin coating was produced on a CFRP substrate with two passes in the first step of the two-step process.
- Figure 8 shows the observation results of the surface of a test piece when a tin coating was produced on a CFRP substrate with three passes in the first step of the two-step process.
- Figure 9 shows the observation results of the surface of a test piece when a tin coating was produced on a CFRP substrate with four passes in the first step of the two-step process.
- Figure 10 shows the surface morphology of the CFRP substrate after the first step of the two-step process when the number of passes for the first step is one.
- Figure 11 shows the surface morphology of the CFRP substrate after the first step of the two-step process when the number of passes for the first step is three.
- the compressed air temperature was set to 623K
- erosion occurred removing the epoxy resin on the surface of the CFRP substrate and exposing the carbon fibers.
- Figure 12 shows the arithmetic mean height (Sa) of the surface of the CFRP substrate after the first step.
- Figure 13 shows a digital microscope image of the tin/CFRP interface. From the results shown in Figure 13, it was observed that the carbon fibers are present protruding from inside the tin coating. The carbon fibers thus present inside the tin coating function as anchors that suppress delamination.
- Figures 14 to 16 show scanning electron microscope images of the surface of the tin coating after the pull-off test for the test piece of Example 1.
- the results shown in Figures 14 and 15 suggest that the tin coating on the surface was deformed when the carbon fibers present inside the tin coating were pulled out by external force.
- Extracted CF refers to the carbon fibers pulled out in this manner.
- the results shown in Figure 16 show that some of the carbon fibers remain on the surface of the tin coating.
- “Lifted Sn” refers to the tin coating being lifted and deformed when the carbon fibers present inside the tin coating were pulled out by external force.
- Figure 17 shows the results of the evaluation of adhesion strength by pull-off test for the test pieces of Example 1 and Comparative Example 1. From the results shown in Figure 17, it can be seen that in the test pieces produced by the single-step process, the adhesion strength increased as the temperature of the compressed air increased from 473 K to 523 K, but the adhesion strength was still around 2 MPa.
- the test pieces produced by the two-step process had significantly improved adhesion strength compared to the test pieces produced by the single-step process.
- the number of passes in the first step increased, the final adhesion strength gradually increased, and the adhesion strength of the test piece with three passes in the first step was 6.25 MPa, more than twice the adhesion strength of the test piece produced by the single-step process.
- the adhesion strength of the test piece with four passes in the first step was equivalent to that of the three passes.
- the surface roughness of the CFRP substrate after the first step increases with the number of passes in the first step, as erosion becomes more severe, and the arithmetic mean height (Sa) increases.
- the optimal condition for the first step is three passes, with the threshold arithmetic mean height (Sa) being approximately 40 ⁇ m.
- the first step When the first step was performed three times, two carbon fibers with different fiber directions were exposed. Therefore, when improving adhesion using a two-step process, the first step only exposes the carbon fibers, making it possible to improve adhesion strength while minimizing damage to the CFRP substrate.
- the reason for this is thought to be that when the arithmetic mean height (Sa) of the surface of the CFRP substrate exceeds 40 ⁇ m, the tin sprayed together with the compressed air cannot adhere sufficiently to the complex shape of the surface of the CFRP substrate.
- Example 1 A water atomized tin powder raw material (Sn-AtW-250, manufactured by Fukuda Metal Foil and Powder Co., Ltd.) was prepared. The water atomized tin powder raw material was observed with a scanning electron microscope (JCM-6000, manufactured by JEOL Ltd.). The scanning electron microscope image is shown in FIG. 18. From the results shown in FIG. 18, it was found that the shape of the water atomized tin powder raw material was irregular.
- Example 2 The particle size distribution of the water atomized tin powder raw material was measured using a laser light scattering diffraction particle size distribution analyzer (LS230, manufactured by Beckman Coulter, Inc.). The results are shown in Figure 19. From the results shown in Figure 19, it was found that the average particle size of the water atomized tin powder raw material was 24.28 ⁇ m.
- Example 3 A CFRP substrate (manufactured by JAMCO Corporation) measuring 30 mm x 30 mm x 2 mm was prepared. 52 CFRP substrates were stacked, and the stack was surrounded by a prepreg thermosetting epoxy resin composed of carbon fiber laminate, and thermally cured. The obtained cured product was pressurized in the thickness direction at a pressure of 0.3 MPa and a temperature of 423 K for 1 hour. The cured product was then cooled to room temperature (299.15 K). The cross section of the obtained cured product (CFRP substrate) was observed with a scanning electron microscope (JCM-6000, manufactured by JEOL Ltd.). The scanning electron microscope image is shown in FIG. 20. As shown in FIG. 20, the obtained CFRP substrates were adjacent to each other, and the direction of the carbon fibers of one CFRP substrate was almost perpendicular to the direction of the carbon fibers (CF direction) of the other CFRP substrate.
- JCM-6000 scanning electron microscope
- the temperature of the compressed air was changed to 473K, 523K, 573K, and 623K.
- Table 3 shows the conditions for forming the tin coating by the low pressure cold spray method. The formation of the tin coating was repeated three times at the same temperature.
- the surface temperature of the CFRP substrate during the formation of the tin coating by the low-pressure cold spray method was measured using an infrared thermography camera (InfReC R300, manufactured by Nippon Avionics Co., Ltd.). Thermal images were taken at one second intervals to measure the surface temperature of the CFRP substrate. The measurable temperature range is 273K to 773K. The atmospheric temperature in the place where the surface temperature of the CFRP substrate was measured was set to 298 K, and the atmospheric humidity was set to 46%. The thermal images were obtained by detecting infrared radiation emitted from the CFRP substrate.
- the amount of infrared energy emitted from the CFRP substrate is displayed as a pixel-by-pixel colored image.
- the temperature data was analyzed using an InfReC Analyzer NS9500 Professional (manufactured by Nippon Avionics Co., Ltd.).
- a tin coating was formed on the surface of the CFRP substrate at each temperature, the surface of the CFRP substrate was observed with a scanning electron microscope (SU-70 and S-3400N, manufactured by Hitachi High-Technologies Corporation). The results are shown in Figures 21 to 28.
- FIG. 21 is a scanning electron microscope image of the surface of a CFRP substrate when the temperature of compressed air is set to 473K. "Deposition Area” in FIG. 21 indicates the tin coating formed by cold spray.
- FIG. 22 is an enlarged view of FIG. 21.
- FIG. 23 is a scanning electron microscope image of the surface of a CFRP substrate when the temperature of compressed air is set to 523K. "Spray path” in FIG. 23 indicates the center line of the nozzle position moving relatively to the CFRP substrate.
- FIG. 24 is an enlarged view of FIG. 23.
- FIG. 25 is a scanning electron microscope image of the surface of a CFRP substrate when the temperature of compressed air is set to 573K.
- FIG. 26 is an enlarged view of FIG. 25.
- FIG. 27 is a scanning electron microscope image of the surface of a CFRP substrate when the temperature of compressed air is set to 623K.
- FIG. 28 is an enlarged view of FIG. 27.
- the carbon fibers were slightly exposed on the surface of the CFRP substrate.
- the temperature of the compressed air was 623K, the carbon fibers were exposed on the surface of the CFRP substrate. That is, when the temperature of the compressed air was 573K or more, the temperature of the surface of the CFRP substrate could be made higher than the melting point of the tin particles and higher than the decomposition temperature of the CFRP substrate, and erosion occurred, exposing the carbon fibers on the surface of the CFRP substrate. Also, from FIG.
- the surface temperature of the CFRP substrate could be made higher than the melting point of the tin particles and higher than the decomposition temperature of the CFRP substrate, causing erosion and exposing carbon fiber on the surface of the CFRP substrate.
- the surface of the CFRP substrate after the formation of the tin coating was observed with a scanning electron microscope (SU-70 and S-3400N, manufactured by Hitachi High-Technologies Corporation). The results showed that when the temperature of the compressed air was between 473K and 573K, region a was covered with a tin film, which was then replaced by the eroded CFRP, and when the temperature of the compressed air stream was higher, molten tin clusters were attached to the surface of the CFRP substrate.
- epoxy resin was mainly present on the surface of region b when the compressed air temperature was 473 K to 523 K. When the compressed air temperature was 473 K to 523 K, uneven deposits of tin were present on the surface of the portion of region b adjacent to region a.
- the surface temperature of the CFRP substrate was measured during the formation of the tin coating by the low-pressure cold spray method.
- the results are shown in Figure 37.
- the surface temperature of the CFRP substrate was about 308 K.
- the emissivity of the surface of the CFRP substrate was assumed to be 0.4, which is the emissivity of carbon fiber (CF). From the results shown in Figure 37, when the temperature of the compressed air was set to 473K or higher (523, 573, 623K), the surface temperatures of region a and region b were lower than the temperature of the compressed air, except when the temperature of the compressed air was 623K.
- the surface temperature of region a was almost the same as or higher than the surface temperature of region b.
- the difference between the surface temperatures of region a and region b gradually increased with the increase in the temperature of the compressed air.
- the temperature of the compressed air was 623K
- the surface temperature of the CFRP substrate finally reached about 658K.
- Example 9 "Measurement of maximum surface temperature of CFRP substrate"
- a tin coating made of tin particles was formed on a CFRP substrate.
- the temperature of the compressed air was changed to 473K, 523K, 573K, and 623K.
- the surface temperature of the CFRP substrate was measured during the formation of a tin coating by the low-pressure cold spray method. The results are shown in Figures 38 and 39.
- FIG. 38 is a diagram showing the transition of the maximum value of the surface temperature of the CFRP substrate from the start to the end (about 80 seconds) of the formation of the tin film at each compressed air temperature.
- the fluctuation of the surface temperature of the CFRP substrate was caused by the thermal cycle during the formation of the tin film. It was found that the higher the temperature of the compressed air, the higher the maximum value of the surface temperature of the CFRP substrate. In addition, when the temperature of the compressed air was 473K, the surface temperature of the CFRP substrate did not change significantly from the start of the formation of the tin film until 50 seconds, and was about 308K, which is the surface temperature of the CFRP substrate before the formation of the tin film.
- FIG. 39 is a diagram showing the transition of the maximum value of the temperature change rate on the surface of the CFRP substrate from the start to the end (about 80 seconds) of the formation of a tin coating at each compressed air temperature.
- the temperature change rate is defined as the temperature change per second and is calculated directly from FIG. From the results shown in Fig. 39, it was found that the higher the temperature of the compressed air, the greater the temperature change rate. When the temperature of the compressed air was 573 K or higher, the temperature change rate became greater. This indicates that a significant thermal gradient was generated on the surface of the CFRP substrate due to the temperature change.
- the maximum surface temperature of the CFRP substrate was about 377 K. This temperature is lower than the glass transition temperature (Tg, about 420 K) of the epoxy resin. When the glass transition temperature is exceeded, the cured epoxy resin softens and cannot withstand the impact of the tin particles sprayed by the cold spray method. When the temperature of the compressed air was 523 K, the maximum value of the surface temperature of the CFRP substrate was about 464 K. Therefore, the epoxy resin in the top layer of the CFRP substrate was eroded by the impact of the tin particles sprayed by the cold spray method. When the compressed air temperature was 573K, the maximum surface temperature of the CFRP substrate was about 538K.
- the maximum surface temperature of the CFRP substrate was about 658K.
- the maximum surface temperature of the CFRP substrate was much higher than the glass transition temperature of the epoxy resin. Therefore, erosion of the CFRP substrate progressed at these temperatures. In particular, when the compressed air temperature was 623K, erosion occurred continuously in multiple layers of the CFRP substrate.
- the deposition efficiency of the tin particles is the ratio of the mass of the tin particles attached to the surface of the CFRP substrate to the mass of the tin particles sprayed onto the surface of the CFRP substrate.
- the adhesion strength of the tin coating to the surface of the CFRP substrate was measured by a pull-off test. The results are shown in Figure 40.
- Example 2 The formation of the tin coating according to the present invention was designated “Example 2"
- the formation of the tin coating by the method described in Non-Patent Document 7 was designated “Comparative Example 2”
- the formation of the tin coating by the method described in Non-Patent Document 8 was designated “Comparative Example 3”
- the formation of the tin coating by the method described in Non-Patent Document 9 was designated “Comparative Example 4”.
- the deposition efficiency (DE) of the tin particles on the surface of the CFRP substrate was 80% in Example 2.
- the adhesion strength of the tin coating was 4.8 MPa to 6.5 MPa.
- Comparative Example 2 the efficiency of film formation of tin particles on the surface of the CFRP substrate was 10% to 20%, and the adhesion strength of the tin film was 2.5 MPa to 7.7 MPa. In Comparative Example 3, the adhesion strength of the tin coating was 1 MPa to 1.5 MPa. In Comparative Example 4, the adhesion strength of the tin coating was 1 MPa to 2.5 MPa.
- the present invention provides a metal-coated fiber-reinforced plastic that has excellent adhesion between the fiber-reinforced plastic and the metal coating.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、金属被覆繊維強化プラスチックおよびその製造方法に関する。
本願は、2022年11月16日に日本に出願された特願2022-183535号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a metal-coated fiber-reinforced plastic and a method for producing the same.
This application claims priority based on Japanese Patent Application No. 2022-183535, filed in Japan on November 16, 2022, the contents of which are incorporated herein by reference.
炭素繊維強化プラスチック(CFRP)は、高強度、耐食性に優れ、軽量であることから、航空宇宙分野や自動車等の様々な産業用途で広く採用されている。しかしながら、CFRPは、電気伝導率と熱抵抗が低いことが課題となっている。例えば、航空機のコンポーネントや胴体では、導電性が低いと落雷による損傷が生じ、飛行中の乗客や乗務員に脅威をもたらす。同様の事例は自動車等においても指摘されている。したがって、CFRPの耐雷性を改善するための方法として、CFRPの表面を金属で被覆する「メタライゼーション」が検討されてきた。 Carbon fiber reinforced plastics (CFRP) are widely used in various industrial applications, such as in the aerospace and automotive fields, due to their high strength, excellent corrosion resistance, and light weight. However, CFRP has issues with low electrical conductivity and thermal resistance. For example, low electrical conductivity in aircraft components and fuselages can cause damage from lightning strikes, posing a threat to passengers and crew during flight. Similar cases have also been reported in automobiles, etc. Therefore, "metallization," in which the surface of CFRP is coated with metal, has been considered as a method to improve the lightning resistance of CFRP.
固相状態で金属被膜の形成が可能なコールドスプレー法は、CFRPを構成するプラスチックへの熱損傷が最小限であるため、CFRPの耐雷性を改善する方法として有望である。これまで、スズ、亜鉛、銅、アルミニウム等の金属によるCFRPのメタライゼーションが検討されてきた。中でもスズは、融点が低く、軟質であるため成膜性に優れる。 The cold spray method, which allows for the formation of a metal coating in a solid state, is a promising method for improving the lightning resistance of CFRP because it causes minimal thermal damage to the plastic that constitutes the CFRP. To date, metallization of CFRP with metals such as tin, zinc, copper, and aluminum has been considered. Among these, tin has excellent film-forming properties due to its low melting point and softness.
熱硬化性樹脂であるエポキシ樹脂をマトリックスとしたCFRP基板上に、コールドスプレー法によりスズからなる金属被膜を形成する際に、スズ粒子を吹き付けるための圧縮ガスの温度を473Kから523Kに上昇すると、スズ/CFRP界面の付着強度が増加することが知られている(例えば、非特許文献1、2参照)。しかしながら、プルオフ法により評価したスズとCFRPの界面の付着強度は2.5MPaと低いことが課題であった。
When forming a metal coating made of tin by cold spraying on a CFRP substrate with a matrix of epoxy resin, a thermosetting resin, it is known that increasing the temperature of the compressed gas used to spray the tin particles from 473 K to 523 K increases the adhesive strength of the tin/CFRP interface (see, for example, Non-Patent
スズと熱硬化性CFRPの付着強度は、2.8MPaであることが知られている(例えば、非特許文献3参照)。すなわち、CFRPのメタライゼーションにおいては、金属とCFRPの付着強度の向上が課題であった。 The adhesive strength between tin and thermosetting CFRP is known to be 2.8 MPa (see, for example, Non-Patent Document 3). In other words, the challenge in CFRP metallization has been to improve the adhesive strength between metal and CFRP.
これまでにも、コールドスプレー法を用いて作製した金属/CFRP界面の付着強度を高めるための方法が提案されている。
例えば、CFRPに、カーボンナノチューブを添加して、CFRPと鋼の界面の強度を改善することが知られている。CFRPと鋼の界面に存在するカーボンナノチューブは、CFRPと鋼の荷重伝達を改善し、せん断接着応力が21.8MPaから23.8MPaに増加することが知られている(例えば、非特許文献4参照)。
Methods have been proposed to increase the adhesive strength of a metal/CFRP interface produced by cold spraying.
For example, it is known that carbon nanotubes are added to CFRP to improve the strength of the interface between the CFRP and steel. It is known that carbon nanotubes present at the interface between the CFRP and steel improve the load transfer between the CFRP and steel, and increase the shear bond stress from 21.8 MPa to 23.8 MPa (see, for example, Non-Patent Document 4).
多層カーボンナノチューブを樹脂に添加することにより、Ti/CFRP界面の密着強度が改善することが知られている(例えば、非特許文献5参照)。 It is known that adding multi-walled carbon nanotubes to resin improves the adhesion strength of the Ti/CFRP interface (see, for example, Non-Patent Document 5).
Ti表面にシランカップリング処理を行うことにより、縮合反応におけるヒドロキシル基との化学結合の生成を介して、摩擦攪拌接合におけるTi/CFRP界面の密着性が向上することが知られている(例えば、非特許文献6参照)。しかしながら、添加剤や表面処理の利用には、追加でコストが掛かるため、工業的には望ましくない。 It is known that silane coupling treatment of the Ti surface improves the adhesion of the Ti/CFRP interface in friction stir welding through the formation of chemical bonds with hydroxyl groups in a condensation reaction (see, for example, Non-Patent Document 6). However, the use of additives and surface treatments incurs additional costs, making them undesirable from an industrial perspective.
本発明は、上記事情に鑑みてなされたものであって、繊維強化プラスチックと金属被膜の密着性に優れる金属被覆繊維強化プラスチック、およびその製造方法を提供することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to provide a metal-coated fiber-reinforced plastic that has excellent adhesion between the fiber-reinforced plastic and the metal coating, and a method for producing the same.
本発明は、以下の態様を有する。
[1]繊維強化プラスチックの一面に、コールドスプレー法により圧縮ガスで金属粒子を吹き付け、この際、前記圧縮ガスの温度を、前記金属粒子の融点より高い温度、および前記繊維強化プラスチックの分解温度より高い温度の少なくとも一方の温度とし、それにより前記繊維強化プラスチックの一面の温度を、前記金属粒子の融点より高い温度、および前記繊維強化プラスチックの分解温度より高い温度の少なくとも一方の温度以上として、前記繊維強化プラスチックの一面に前記繊維強化プラスチックに含まれる強化繊維の一部を露出する第1のステップと、
前記強化繊維が露出した前記繊維強化プラスチックの一面に、コールドスプレー法により圧縮ガスで金属粒子を吹き付け、この際、圧縮ガスの温度を前記金属粒子の融点よりも低い温度、および前記繊維強化プラスチックの分解温度よりも低い温度とし、それにより前記繊維強化プラスチックの一面の温度を、前記金属粒子の融点よりも低い温度、および前記繊維強化プラスチックの分解温度よりも低い温度として、前記繊維強化プラスチックの一面に、前記金属粒子からなる金属被膜を形成する第2のステップと、を有する、金属被覆繊維強化プラスチックの製造方法。
[2]前記第1のステップにて、前記繊維強化プラスチックの一面の算術平均高さ(Sa)を20μm以上40μm以下とする、[1]に記載の金属被覆繊維強化プラスチックの製造方法。
[3]強化繊維を含む繊維強化プラスチックと、前記繊維強化プラスチックの一面に形成された金属被膜と、を備える、金属被覆繊維強化プラスチックであって、
前記繊維強化プラスチックと前記金属被膜の界面において、前記強化繊維が前記金属被膜側に突出している、金属被覆繊維強化プラスチック。
[4]前記繊維強化プラスチックの一面の算術平均高さ(Sa)が20μm以上40μm以下である、[3]に記載の金属被覆繊維強化プラスチック。
The present invention has the following aspects.
[1] A first step of spraying metal particles onto one side of a fiber-reinforced plastic with compressed gas by a cold spray method, in which the temperature of the compressed gas is set to at least one of a temperature higher than the melting point of the metal particles and a temperature higher than the decomposition temperature of the fiber-reinforced plastic, thereby raising the temperature of one side of the fiber-reinforced plastic to at least one of a temperature higher than the melting point of the metal particles and a temperature higher than the decomposition temperature of the fiber-reinforced plastic, thereby exposing a portion of the reinforcing fibers contained in the fiber-reinforced plastic to one side of the fiber-reinforced plastic;
a second step of spraying metal particles using a compressed gas by a cold spray method onto one side of the fiber-reinforced plastic where the reinforcing fibers are exposed, wherein the temperature of the compressed gas is set to a temperature lower than the melting point of the metal particles and lower than the decomposition temperature of the fiber-reinforced plastic, thereby setting the temperature of one side of the fiber-reinforced plastic to a temperature lower than the melting point of the metal particles and lower than the decomposition temperature of the fiber-reinforced plastic, thereby forming a metal coating made of the metal particles on one side of the fiber-reinforced plastic.
[2] The method for producing a metal-coated fiber-reinforced plastic according to [1], wherein in the first step, the arithmetic mean height (Sa) of one surface of the fiber-reinforced plastic is set to 20 μm or more and 40 μm or less.
[3] A metal-coated fiber-reinforced plastic comprising a fiber-reinforced plastic containing reinforcing fibers and a metal coating formed on one surface of the fiber-reinforced plastic,
A metal-coated fiber-reinforced plastic, wherein the reinforcing fibers protrude toward the metal coating at the interface between the fiber-reinforced plastic and the metal coating.
[4] The metal-coated fiber-reinforced plastic according to [3], wherein the arithmetic mean height (Sa) of one surface of the fiber-reinforced plastic is 20 μm or more and 40 μm or less.
本発明によれば、繊維強化プラスチックと金属被膜の密着性に優れる金属被覆繊維強化プラスチック、およびその製造方法を提供することができる。 The present invention provides a metal-coated fiber-reinforced plastic that has excellent adhesion between the fiber-reinforced plastic and the metal coating, and a method for producing the same.
以下、図面を参照して、本発明の実施の形態による金属被覆繊維強化プラスチックおよびその製造方法について説明する。なお、以下の説明で用いる図面は、便宜上、特徴となる部分を拡大して示しており、各構成要素の寸法比率等は、実際とは異なる場合がある。
また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更できる。
Hereinafter, a metal-coated fiber-reinforced plastic and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings. Note that the drawings used in the following description show characteristic parts in an enlarged scale for convenience, and the dimensional ratios of each component may differ from the actual ones.
Furthermore, the materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited to them, and can be modified as appropriate within the scope that does not change the gist of the invention.
[金属被覆繊維強化プラスチック]
図1は、本発明の一実施形態に係る金属被覆繊維強化プラスチックの概略構成を示し、金属被覆繊維強化プラスチックの厚さ方向の断面図である。
図1に示すように、金属被覆繊維強化プラスチック1は、繊維強化プラスチック10と、繊維強化プラスチック10の一面10aに形成された金属被膜20と、を備える。
なお、金属被覆繊維強化プラスチック1の厚さは、用途などに応じて適切な値を設定すればよいが、通常、30μm以上200μm以下であり、好ましくは50μm以上100μm以下である。
[Metal-coated fiber-reinforced plastic]
FIG. 1 shows a schematic configuration of a metal-coated fiber-reinforced plastic according to one embodiment of the present invention, and is a cross-sectional view in the thickness direction of the metal-coated fiber-reinforced plastic.
As shown in FIG. 1 , a metal-coated fiber-reinforced
The thickness of the metal-coated fiber reinforced
繊維強化プラスチック(以下、「FRP」と略すこともある。)10は、マトリックス樹脂11と、マトリックス樹脂11内に含有された強化繊維12とを含む。
本実施形態の金属被覆繊維強化プラスチック1では、繊維強化プラスチック10と金属被膜20の界面、言い換えれば、繊維強化プラスチック10の一面10aにおいて、強化繊維12が金属被膜20側に突出している。
繊維強化プラスチック10に含まれる繊維の量は特に制限されないが、繊維体積含有率が30体積%以上70体積%以下であることが好ましい。
Fiber reinforced plastic (hereinafter sometimes abbreviated as “FRP”) 10 includes a
In the metal-coated fiber-reinforced
The amount of fibers contained in the fiber reinforced
繊維強化プラスチック10の一面10aの算術平均高さ(Sa)は、20μm以上40μm以下が好ましい。繊維強化プラスチック10の一面10aの算術平均高さ(Sa)が前記下限値以上であると、強化繊維12によるアンカー効果により、繊維強化プラスチック10と金属被膜20の界面における密着強度が向上する。繊維強化プラスチック10の一面10aの算術平均高さ(Sa)が前記上限値以下であると、金属被膜20側に突出した強化繊維12に金属被膜20が密着する。
The arithmetic mean height (Sa) of one
繊維強化プラスチック10の一面10aの算術平均高さ(Sa)は、ISO25178に準拠した方法で測定することができる。
The arithmetic mean height (Sa) of one
繊維強化プラスチック10と金属被膜20の界面において、強化繊維12の露出率は90%以上が好ましく、95%以上がより好ましく、100%が特に好ましい。強化繊維12の露出率が前記下限値以上であると、強化繊維12によるアンカー効果により、繊維強化プラスチック10と金属被膜20の界面における密着強度が向上する。
At the interface between the fiber-reinforced
繊維強化プラスチック10と金属被膜20の界面における、強化繊維12の露出率とは、前記界面を金属被膜20側から平面視した場合に、前記一面の総面積(金属被膜20を形成しない部分の面積は除く)に対して、マトリックス樹脂11に被覆されておらず露出している強化繊維12が占める面積のことである。
The exposure rate of the reinforcing
「マトリックス樹脂」
マトリックス樹脂11としては、一般的に繊維強化プラスチックに用いられる樹脂であれば特に限定されないが、例えば、エポキシ樹脂、不飽和ポリエステル、ビニルエステル、フェノール、シアネートエステル、ポリイミド、ポリアミド、ポリカーボネート、ポリフェニレンスルフィド、ポリエーテルエーテルケトン等が挙げられる。
"Matrix resin"
The
「強化繊維」
強化繊維12としては、一般的に繊維強化プラスチックに用いられる繊維であれば特に限定されないが、例えば、炭素繊維、ガラス繊維等が挙げられる。
"Reinforced fiber"
The reinforcing
強化繊維12の太さ(外径)は、特に限定されないが、例えば、強化繊維12が炭素繊維の場合には5μm~10μm、強化繊維12がガラス繊維の場合には5μm~35μmである。
The thickness (outer diameter) of the reinforcing
「金属被膜」
金属被膜20を構成する金属は、繊維強化プラスチック10の導電性や耐雷性を向上することができるものであれば、特に限定されないが、例えば、スズ(Sn)、亜鉛(Zn)、銅(Cu)、アルミニウム(Al)等が挙げられる。これらの中でも、成膜性や繊維強化プラスチック10への熱影響の観点から、スズが好ましい。
"Metal coating"
The metal constituting the
金属被膜20の厚さは、特に限定されず、3mmを超える厚膜化も可能であるが、10μm以上3000μm以下が好ましく、10μm以上300μm以下がより好ましい。金属被膜20の厚さが前記下限値以上であると、金属被膜20が均一かつ緻密な膜になる。金属被膜20の厚さが前記下限値未満では、金属被膜20が不均一となり、繊維強化プラスチック10の一面10aを金属被膜20で完全に覆うことが難しくなる。金属被膜20の厚さが前記上限値以下であると、金属被膜20に残留応力(内部応力)が生じることがなく、繊維強化プラスチック10から金属被膜20が剥離することを抑制できる。
The thickness of the
金属被膜20は、繊維強化プラスチック10の一面10aの全面に連続的に設けられていなくてもよく、間欠的に設けられていてもよい。
前記一面10aにおける金属被膜20の被覆率は、90%以上であることが好ましく、100%であることがより好ましい。
The
The coverage of the
金属被膜20の被覆率とは、金属被覆繊維強化プラスチック1を金属被膜20側から平面視した場合に、金属被覆繊維強化プラスチック1の最表面1aの総面積に対して、繊維強化プラスチック10の一面10aを覆っている金属被膜20が占める面積のことである。
The coverage rate of the
金属被膜20の被覆率は、顕微鏡を用いた画像解析で測定することができる。
The coverage of the
本実施形態の金属被覆繊維強化プラスチック1は、繊維強化プラスチック10と金属被膜20の密着性に優れる。また、本実施形態の金属被覆繊維強化プラスチック1は、導電性や耐雷性に優れる。
The metal-coated fiber-reinforced
[金属被覆繊維強化プラスチックの製造方法]
本発明の一実施形態に係る金属被覆繊維強化プラスチックの製造方法は、繊維強化プラスチックの一面に、コールドスプレー法により圧縮ガスで金属粒子を吹き付け、この際、前記圧縮ガスの温度を前記金属粒子の融点より高い温度、および前記繊維強化プラスチックの分解温度より高い温度の少なくとも一方の温度とし、それにより前記繊維強化プラスチックの一面の温度を、前記金属粒子の融点より高い温度、および前記繊維強化プラスチックの分解温度より高い温度の少なくとも一方の温度以上として、前記繊維強化プラスチックの一面に前記繊維強化プラスチックに含まれる強化繊維の一部を露出する第1のステップと、前記強化繊維が露出した前記繊維強化プラスチックの一面に、コールドスプレー法により圧縮ガスで金属粒子を吹き付け、この際、圧縮ガスの温度を前記金属粒子の融点よりも低い温度、および前記繊維強化プラスチックの分解温度よりも低い温度とし、それにより前記繊維強化プラスチックの一面の温度を、前記金属粒子の融点よりも低い温度、および前記繊維強化プラスチックの分解温度よりも低い温度として、前記繊維強化プラスチックの一面に、前記金属粒子からなる金属被膜を形成する第2のステップと、を有する。但し、第2のステップの圧縮ガスの温度は、第1のステップの圧縮ガスの温度より低い。繊維強化プラスチックの分解温度とは、繊維強化プラスチックに含まれる樹脂がこれ以上の温度に加熱された場合に分子構造が破壊され、分解が起こる温度を指す。
コールドスプレー法とは、超音速流を用いて粉末を固相状態のまま被覆対象物に衝突させ、被膜を形成する方法である。
[Metal-coated fiber-reinforced plastic manufacturing method]
A manufacturing method of a metal-coated fiber reinforced plastic according to one embodiment of the present invention includes a first step of spraying metal particles with compressed gas by a cold spray method onto one side of a fiber reinforced plastic, wherein the temperature of the compressed gas is set to at least one of a temperature higher than the melting point of the metal particles and a temperature higher than the decomposition temperature of the fiber reinforced plastic, thereby setting the temperature of one side of the fiber reinforced plastic to at least one of a temperature higher than the melting point of the metal particles and a temperature higher than the decomposition temperature of the fiber reinforced plastic, thereby exposing a portion of the reinforcing fibers contained in the fiber reinforced plastic to one side of the fiber reinforced plastic; and a second step of spraying metal particles with compressed gas by a cold spray method onto one side of the fiber reinforced plastic from which the reinforcing fibers are exposed, wherein the temperature of the compressed gas is set to a temperature lower than the melting point of the metal particles and a temperature lower than the decomposition temperature of the fiber reinforced plastic, thereby setting the temperature of one side of the fiber reinforced plastic to a temperature lower than the melting point of the metal particles and a temperature lower than the decomposition temperature of the fiber reinforced plastic, thereby forming a metal coating composed of the metal particles on one side of the fiber reinforced plastic. However, the temperature of the compressed gas in the second step is lower than the temperature of the compressed gas in the first step. The decomposition temperature of a fiber-reinforced plastic refers to the temperature at which the molecular structure of the resin contained in the fiber-reinforced plastic is destroyed and decomposition occurs when the resin is heated to a temperature higher than this temperature.
The cold spray method is a method in which powder is sprayed in a solid state using a supersonic flow to collide with an object to be coated, forming a coating.
図1を用いて、本実施形態に係る金属被覆繊維強化プラスチックの製造方法を説明する。 The manufacturing method for metal-coated fiber-reinforced plastic according to this embodiment will be explained using FIG. 1.
「第1のステップ」
第1のステップでは、繊維強化プラスチック10の一面10aに、コールドスプレー法により、圧縮ガスで金属粒子を吹き付ける。これにより、繊維強化プラスチック10の一面10aに繊維強化プラスチック10に含まれる強化繊維12の一部を露出する。
"First step"
In the first step, metal particles are sprayed with compressed gas by a cold spray method onto one
第1のステップでは、圧縮ガスの温度を、繊維強化プラスチック10に吹き付ける金属粒子の融点より高い温度、および繊維強化プラスチック10の分解温度より高い温度とする。圧縮ガスの温度が、金属粒子の融点より高い温度、かつ繊維強化プラスチック10の分解温度より高い温度の少なくとも一方の温度であると、繊維強化プラスチック10の一面10aに金属粒子を吹き付けた際に、繊維強化プラスチック10の一面10aの温度が、圧縮ガスの温度以下となり、繊維強化プラスチック10の一面10aが削れて(エロージョン)、マトリックス樹脂11から強化繊維12を露出することができる。なお、繊維強化プラスチック10の温度が分解温度よりも高くなることにより、マトリックス樹脂11が削れて消失することをエロージョンと言う。また、第1のステップでは、マトリックス樹脂11が融けている場合も、マトリックス樹脂11が融けていない場合もある。さらに、第1のステップでは、温度が高い程、エロージョンによる処理が速くなる。
また、圧縮ガスの温度は、繊維強化プラスチック10に吹き付ける金属粒子の融点より高い温度、および繊維強化プラスチック10の分解温度より高い温度のうち、いずれか一方の温度、または両方の温度である。それにより、繊維強化プラスチック10の一面10aの温度を、圧縮ガスの温度以下とする。
圧縮ガスの温度が、繊維強化プラスチック10に吹き付ける金属粒子の融点より高い温度、および繊維強化プラスチック10の分解温度より高い温度のうち、いずれか一方の温度、または両方の温度であるとは、具体的に、圧縮ガスの温度が、金属粒子の融点より10℃以上100℃以下高い温度、および繊維強化プラスチック10の分解温度より10℃以上200℃以下高い温度のうち、いずれか一方の温度、または両方の温度であることを意味する。
繊維強化プラスチック10の一面10aの温度が、金属粒子の融点より高い温度、および繊維強化プラスチックの分解温度より高い温度のうち、いずれか一方の温度以上、または両方の温度以上であるとは、具体的に、繊維強化プラスチック10の一面10aの温度が、金属粒子の融点より10℃以上200℃以下高い温度、および繊維強化プラスチックの分解温度より10℃以上150℃以下高い温度のうち、いずれか一方の温度以上、または両方の温度以上であることを意味する。
In the first step, the temperature of the compressed gas is set to a temperature higher than the melting point of the metal particles to be sprayed onto the fiber reinforced
The temperature of the compressed gas is either or both of a temperature higher than the melting point of the metal particles sprayed onto the fiber reinforced
The temperature of the compressed gas being either or both of a temperature higher than the melting point of the metal particles sprayed onto fiber reinforced
The temperature of one
第1のステップにおける圧縮ガスの圧力は、特に限定されないが、例えば、0.2MPa以上1.0MPa以下が好ましく、0.2MPa以上0.6MPa以下がより好ましい。圧縮ガスの圧力が前記下限値以上であると、繊維強化プラスチック10の一面10aに金属粒子を吹き付けた際に、繊維強化プラスチック10の一面10aが削れる。圧縮ガスの圧力が前記上限値以下であると、繊維強化プラスチック10の一面10aに金属粒子を吹き付けた際に、強化繊維12が損傷することを抑制できる。
The pressure of the compressed gas in the first step is not particularly limited, but is preferably 0.2 MPa or more and 1.0 MPa or less, and more preferably 0.2 MPa or more and 0.6 MPa or less. If the pressure of the compressed gas is equal to or more than the lower limit, the
圧縮ガスとしては、例えば、圧縮空気、窒素、ヘリウム等が挙げられる。 Compressed gases include, for example, compressed air, nitrogen, helium, etc.
金属粒子は、金属被膜20を構成する金属の粒子である。金属粒子の平均粒子径は、特に限定されないが、例えば、1μm以上100μm以下である。金属粒子の平均粒子径が前記範囲内であると、緻密な金属被膜20を形成することができる。なお、第1のステップでは、繊維強化プラスチック10の一面10aに金属粒子が僅かに堆積することはあるが、均一な金属被膜20を形成するには至らない。
The metal particles are particles of metal that make up the
第1のステップにて、マトリックス樹脂11から強化繊維12を露出することにより、繊維強化プラスチック10の一面10aの算術平均高さ(Sa)を20μm以上40μm以下とすることが好ましい。繊維強化プラスチック10の一面10aの算術平均高さ(Sa)が前記下限値以上であると、強化繊維12によるアンカー効果により、繊維強化プラスチック10と金属被膜20の界面における密着強度が向上する。繊維強化プラスチック10の一面10aの算術平均高さ(Sa)が前記上限値以下であると、金属被膜20側に突出した強化繊維12に金属被膜20が密着する。
なお、前記算術平均高さ(Sa)は第1のステップの条件により調整することができ、例えば、コールドスプレー法におけるパス数を調整することにより調整することができる。ここで「パス数」とは、コールドスプレー法において、繊維強化プラスチック10が圧縮ガスを噴射するノズルを通過する回数である。最適なパス数は、圧縮ガスの圧力などの諸条件にも依存する。
In the first step, it is preferable that the arithmetic mean height (Sa) of one
The arithmetic mean height (Sa) can be adjusted by the conditions of the first step, for example, by adjusting the number of passes in the cold spray method. Here, the "number of passes" refers to the number of times that the fiber reinforced plastic 10 passes through a nozzle that sprays compressed gas in the cold spray method. The optimal number of passes also depends on various conditions such as the pressure of the compressed gas.
「第2のステップ」
第2のステップでは、強化繊維12が露出したマトリックス樹脂11の一面11a、言い換えれば、繊維強化プラスチック10の一面10aに、コールドスプレー法により、圧縮ガスで金属粒子を吹き付けける。これにより、繊維強化プラスチック10の一面10aに、上記金属粒子からなる金属被膜20を形成する。
"The Second Step"
In the second step, metal particles are sprayed by a cold spray method using compressed gas onto one
第2のステップでは、圧縮ガスの温度を、金属粒子の融点よりも低い温度、および繊維強化プラスチック10の分解温度よりも低い温度とし、それにより、繊維強化プラスチック10の一面10aの温度が、金属粒子の融点よりも低い温度、および繊維強化プラスチック10の分解温度よりも低い温度となり、繊維強化プラスチック10の一面10aに金属粒子を堆積して、均一な金属被膜20を形成することができる。
圧縮ガスの温度が、金属粒子の融点よりも低い温度、および繊維強化プラスチック10の分解温度よりも低い温度であるとは、具体的に、圧縮ガスの温度が、金属粒子の融点よりも10℃以上150℃以下低い温度、および繊維強化プラスチック10の分解温度よりも50℃以上400℃以下低い温度であることであることを意味する。
繊維強化プラスチック10の一面10aの温度が、金属粒子の融点よりも低い温度、および繊維強化プラスチック10の分解温度よりも低い温度であるとは、具体的に、繊維強化プラスチック10の一面10aの温度が、金属粒子の融点よりも10℃以上150℃以下低い温度、および繊維強化プラスチック10の分解温度よりも10℃以上400℃以下低い温度であることであることを意味する。
In the second step, the temperature of the compressed gas is set to a temperature lower than the melting point of the metal particles and lower than the decomposition temperature of the fiber reinforced
The temperature of the compressed gas being lower than the melting point of the metal particles and lower than the decomposition temperature of fiber reinforced
The temperature of one
第2のステップにおける圧縮ガスの圧力は、特に限定されないが、例えば、0.2MPa以上1.0MPa以下が好ましく、0.2MPa以上0.6MPa以下がより好ましい。圧縮ガスの圧力が前記下限値以上であると、繊維強化プラスチック10の一面10aに金属粒子を吹き付けた際に、繊維強化プラスチック10の一面10aに金属粒子を堆積して、均一な金属被膜20を形成することができる。圧縮ガスの圧力が前記上限値以下であると、繊維強化プラスチック10の一面10aに金属粒子を吹き付けた際に、強化繊維12が損傷することを抑制できる。
The pressure of the compressed gas in the second step is not particularly limited, but is preferably 0.2 MPa or more and 1.0 MPa or less, and more preferably 0.2 MPa or more and 0.6 MPa or less. If the pressure of the compressed gas is equal to or more than the lower limit, when the metal particles are sprayed onto one
また、繊維強化プラスチック10の一面10aに対する金属粒子の成膜効率(deposition efficiency、DE)が60%以上であることが好ましく、80%以上であることがより好ましい。金属粒子の成膜効率とは、繊維強化プラスチック10の一面10aに吹き付けたスズ粒子の質量に対する、繊維強化プラスチック10の一面10aに付着したスズ粒子の質量の割合である。金属粒子の成膜効率が高いほど工業的に好ましく、繊維強化プラスチック10と金属被膜20の界面における密着強度をさらに向上させることができる。
In addition, the deposition efficiency (DE) of the metal particles on one
本実施形態の金属被覆繊維強化プラスチックの製造方法によれば、繊維強化プラスチック10と金属被膜20の密着性に優れる金属被覆繊維強化プラスチック1が得られる。また、本実施形態の金属被覆繊維強化プラスチックの製造方法によれば、導電性や耐雷性に優れる金属被覆繊維強化プラスチック1が得られる。
The manufacturing method for metal-coated fiber-reinforced plastic of this embodiment produces a metal-coated fiber-reinforced
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to the following examples.
[実施例1]
「試験片の作製」
福田金属箔粉工業株式会社製の水アトマイズSn粉末(Sn-AtW-250)を原料として使用した。レーザー光散乱回折粒度分布分析装置(LS230、Beckman Coulter)を使用して測定した原料粉末の平均直径(メジアン径、D50)は24.28μmであった。CFRP基板としては、熱硬化性樹脂であるエポキシ樹脂をマトリックスとし、炭素繊維を含む、株式会社ジャムコ製のものを用いた。CFRP基板(30mm×30mm×2mm)は硬化処理されたもので、計52層のCFラミネートを1層ごとに90度回転させて積層したものである。各CFRP基板は、以下に示すコールドスプレー実験の前にアセトンを用いて脱脂した。CFRP基板の分解温度は553Kである。
[Example 1]
"Preparation of test specimens"
Water-atomized Sn powder (Sn-AtW-250) manufactured by Fukuda Metal Foil and Powder Co., Ltd. was used as the raw material. The average diameter (median diameter, D50) of the raw material powder measured using a laser light scattering diffraction particle size distribution analyzer (LS230, Beckman Coulter) was 24.28 μm. The CFRP substrate used was manufactured by JAMCO Corporation, and contains carbon fiber and an epoxy resin, which is a thermosetting resin, as the matrix. The CFRP substrate (30 mm x 30 mm x 2 mm) was cured and was made by stacking a total of 52 layers of CF laminates, each layer rotated 90 degrees. Each CFRP substrate was degreased with acetone before the cold spray experiment described below. The decomposition temperature of the CFRP substrate is 553 K.
コールドスプレー実験は、Obninsk Center for Powder Spraying製の低圧コールドスプレー装置(Dymet423J)を使用して行った。コールドスプレー実験では、圧縮空気をチャンバー内で加熱し、ラバール・ノズルを介してCFRP基板に、水アトマイズSn粉末を吹き付けた。
上述の金属被覆繊維強化プラスチックの製造方法において、第1のステップでは、CFRP基板の一方の面の改質を目的として、圧縮空気の温度を623Kとした。また、第2のステップでは、圧縮空気の温度を523Kとして、CFRP基板の一方の面に、スズからなる均一な金属被膜(スズ被膜)を形成した試験片を得た。なお、本実施例、並びに、以下に示す、実施例、比較例、および実験例における圧縮空気の温度は、チャンバーでの圧縮空気の温度である。
Cold spray experiments were performed using a low-pressure cold spray device (Dymet 423J) manufactured by Obninsk Center for Powder Spraying. In the cold spray experiments, compressed air was heated in a chamber and water-atomized Sn powder was sprayed onto the CFRP substrate through a Laval nozzle.
In the above-mentioned method for manufacturing metal-coated fiber reinforced plastic, in the first step, the temperature of the compressed air was set to 623 K in order to modify one side of the CFRP substrate. In the second step, the temperature of the compressed air was set to 523 K to obtain a test piece having a uniform metal coating (tin coating) made of tin formed on one side of the CFRP substrate. Note that the temperature of the compressed air in this example and the following examples, comparative examples, and experimental examples is the temperature of the compressed air in the chamber.
また、プロセスの最適化を目的として、第1のステップの回数(パス数)を変え、CFRP表面のエロージョンの程度と、第2のステップ後のSn/CFRP界面の密着強度の影響を評価した。表1および表2にプロセス条件を示す。表1および表2に、検討した処理条件をまとめて示す。また、比較のために、単一ステップにおける試験片の作製も行った。 In order to optimize the process, the number of passes in the first step was changed to evaluate the effect of the degree of erosion on the CFRP surface and the adhesion strength of the Sn/CFRP interface after the second step. The process conditions are shown in Tables 1 and 2. The processing conditions investigated are summarized in Tables 1 and 2. For comparison, test specimens were also prepared in a single step.
「スズ被膜の表面プロファイルの評価」
スズ被膜の表面プロファイルを、株式会社キーエンス製のデジタル顕微鏡(VHX-5000)を用いて評価した。
"Evaluation of the surface profile of tin coatings"
The surface profile of the tin coating was evaluated using a digital microscope (VHX-5000) manufactured by Keyence Corporation.
「試験片の断面観察」
試験片の断面観察は、株式会社日立ハイテク製の電界放射型走査型電子顕微鏡(S-3400N)を用いて実施した。断面観察用試料はエメリー紙(#200~2000)を用いて研磨後、Struers社製のコロイダルシリカ懸濁液(OP-U)を用いて鏡面に仕上げた。
"Cross-sectional observation of test piece"
Cross-sectional observation of the test piece was carried out using a field emission scanning electron microscope (S-3400N) manufactured by Hitachi High-Tech Corp. The cross-sectional observation sample was polished with emery paper (#200-2000) and then mirror-finished with a colloidal silica suspension (OP-U) manufactured by Struers.
「試験片の表面粗さの測定」
第1のステップ後のCFRP基板の表面粗さを株式会社キーエンス製のデジタル顕微鏡(VHX-5000)を用いて評価し、試験片の表面の算術平均高さ(Sa)を算出した。
"Measurement of surface roughness of test piece"
The surface roughness of the CFRP substrate after the first step was evaluated using a digital microscope (VHX-5000) manufactured by Keyence Corporation, and the arithmetic mean height (Sa) of the surface of the test piece was calculated.
「スズ被膜とCFRP基板の付着強度の測定」
スズ被膜とCFRP基板の付着強度を、ASTM D4541 規格に基づくプルオフ試験により評価した。本実施例1では、Elcometer Instruments社製のプルオフ接着試験機(Elcometer 106)を用いた。まず、直径20mmのドリーをスズ被膜の表面に接着剤で貼り付けた後、スズ被膜を垂直に引き抜き、密着強度を測定した。プルオフ試験にはCFRP基板とスズ被膜を含めて約4mmの厚さに研磨した試料を用い、スズ被膜の表面粗さ(Sa)が20±2.5μmとなるように研磨を行った。プルオフ試験後のスズ被膜とCFRP基板側の表面形態を、株式会社日立ハイテク製の電界放射型走査型電子顕微鏡(S-3400N)を用いて観察した。
"Measurement of adhesion strength between tin film and CFRP substrate"
The adhesion strength between the tin coating and the CFRP substrate was evaluated by a pull-off test based on the ASTM D4541 standard. In this Example 1, a pull-off adhesion tester (Elcometer 106) manufactured by Elcometer Instruments was used. First, a dolly with a diameter of 20 mm was attached to the surface of the tin coating with an adhesive, and then the tin coating was pulled out vertically to measure the adhesion strength. For the pull-off test, a sample polished to a thickness of about 4 mm including the CFRP substrate and the tin coating was used, and polishing was performed so that the surface roughness (Sa) of the tin coating was 20±2.5 μm. The surface morphology of the tin coating and the CFRP substrate side after the pull-off test was observed using a field emission scanning electron microscope (S-3400N) manufactured by Hitachi High-Tech Corporation.
「評価結果」
図2に、単一ステッププロセスにて、圧縮空気の温度を473Kとして、CFRP基板上にスズ被膜を作製した場合の試験片の表面の観察結果を示す。図3に、単一ステッププロセスにて、圧縮空気の温度を523Kとして、CFRP基板上にスズ被膜を作製した場合の試験片の表面の観察結果を示す。図4に、単一ステッププロセスにて、圧縮空気の温度を473Kとして、CFRP基板上にスズ被膜を作製した場合の試験片の厚さ方向の断面の観察結果を示す。図5に、単一ステッププロセスにて、圧縮空気の温度を523Kとして、CFRP基板上にスズ被膜を作製した場合の試験片の厚さ方向の断面の観察結果を示す。なお、図4および図5において、「CF」は炭素繊維を指す。以降の図においても同様である。
"Evaluation results"
FIG. 2 shows the observation result of the surface of a test piece when a tin coating is formed on a CFRP substrate by a single-step process with a compressed air temperature of 473K. FIG. 3 shows the observation result of the surface of a test piece when a tin coating is formed on a CFRP substrate by a single-step process with a compressed air temperature of 523K. FIG. 4 shows the observation result of a cross section in the thickness direction of a test piece when a tin coating is formed on a CFRP substrate by a single-step process with a compressed air temperature of 473K. FIG. 5 shows the observation result of a cross section in the thickness direction of a test piece when a tin coating is formed on a CFRP substrate by a single-step process with a compressed air temperature of 523K. In FIG. 4 and FIG. 5, "CF" refers to carbon fiber. The same applies to the following figures.
図2~図5に示す結果から、圧縮空気の温度が473K、523Kのいずれの場合であっても、CFRP基板上に均一なスズ被膜が形成されていることが確認された。また、圧縮空気の温度が473Kの場合には、明確なスズ/CFRP基板界面が観察された。一方、圧縮空気の温度が523Kの場合には、CFRP基板がわずかに侵食され、その結果、炭素繊維(CF)とスズの直接接触を伴う、より複雑なスズ/CFRP基板界面の形態が観察された。 The results shown in Figures 2 to 5 confirm that a uniform tin coating was formed on the CFRP substrate regardless of whether the compressed air temperature was 473K or 523K. Furthermore, when the compressed air temperature was 473K, a clear tin/CFRP substrate interface was observed. On the other hand, when the compressed air temperature was 523K, the CFRP substrate was slightly eroded, resulting in a more complex tin/CFRP substrate interface morphology involving direct contact between the carbon fiber (CF) and the tin.
図6に、2段階プロセスの第1のステップのパス数を1回として、CFRP基板上にスズ被膜を作製した場合の試験片の表面の観察結果を示す。図7に、2段階プロセスの第1のステップのパス数を2回として、CFRP基板上にスズ被膜を作製した場合の試験片の表面の観察結果を示す。図8に、2段階プロセスの第1のステップのパス数を3回として、CFRP基板上にスズ被膜を作製した場合の試験片の表面の観察結果を示す。図9に、2段階プロセスの第1のステップのパス数を4回として、CFRP基板上にスズ被膜を作製した場合の試験片の表面の観察結果を示す。 Figure 6 shows the observation results of the surface of a test piece when a tin coating was produced on a CFRP substrate with one pass in the first step of the two-step process. Figure 7 shows the observation results of the surface of a test piece when a tin coating was produced on a CFRP substrate with two passes in the first step of the two-step process. Figure 8 shows the observation results of the surface of a test piece when a tin coating was produced on a CFRP substrate with three passes in the first step of the two-step process. Figure 9 shows the observation results of the surface of a test piece when a tin coating was produced on a CFRP substrate with four passes in the first step of the two-step process.
図6~図9に示す結果から、2段階プロセスで作製した試験片では、単一ステッププロセスで作製した試験片と同様に、CFRP基板上に均一なスズ被膜が形成されていることが確認された。なお、第1のステップのパス数を3回および4回として作製した試験片のスズ被膜の端部においてされる堆積物は第1のステップにおいて形成されたものである。これらは、後述するプルオフ試験の前に研磨により除去した。 The results shown in Figures 6 to 9 confirm that, in the test specimens produced by the two-step process, a uniform tin coating was formed on the CFRP substrate, similar to the test specimens produced by the single-step process. Note that the deposits on the edges of the tin coating of the test specimens produced with three and four passes of the first step were formed in the first step. These were removed by polishing before the pull-off test described below.
図10に、2段階プロセスの第1のステップのパス数を1回とした場合、第1のステップ後のCFRP基板の表面形態を示す。図11に、2段階プロセスの第1のステップのパス数を3回とした場合、第1のステップ後のCFRP基板の表面形態を示す。 Figure 10 shows the surface morphology of the CFRP substrate after the first step of the two-step process when the number of passes for the first step is one. Figure 11 shows the surface morphology of the CFRP substrate after the first step of the two-step process when the number of passes for the first step is three.
圧縮空気の温度を623Kとした第1のステップでは、エロージョンが発生し、CFRP基板の表面のエポキシ樹脂が除去され、炭素繊維が露出していることが観察された。エロージョンは、第1のステップのパス数の増加に伴ってより顕著に観察され、第1のステップを3回行った後には、炭素繊維の露出率が高くなった。また、露出した炭素繊維には溶融したスズが部分的に付着している様子が観察された。 In the first step, where the compressed air temperature was set to 623K, erosion occurred, removing the epoxy resin on the surface of the CFRP substrate and exposing the carbon fibers. Erosion was observed to become more pronounced as the number of passes in the first step increased, and after the first step was performed three times, the carbon fiber exposure rate increased. It was also observed that molten tin was partially attached to the exposed carbon fibers.
図12に、第1のステップ後のCFRP基板の表面の算術平均高さ(Sa)を示す。図12に示す結果から、コールドスプレー実験前のCFRP基板の表面の算術平均高さ(Sa=17.9±1.2μm)と比較して、第1のステップ後のCFRP基板の表面の算術平均高さ(Sa)は増加しており、算術平均高さ(Sa)はパス数の増加に伴って増加することが分かった。 Figure 12 shows the arithmetic mean height (Sa) of the surface of the CFRP substrate after the first step. The results shown in Figure 12 show that compared to the arithmetic mean height (Sa = 17.9 ± 1.2 μm) of the surface of the CFRP substrate before the cold spray experiment, the arithmetic mean height (Sa) of the surface of the CFRP substrate after the first step has increased, and that the arithmetic mean height (Sa) increases with an increase in the number of passes.
図13に、スズ/CFRP界面のデジタル顕微鏡像を示す。図13に示す結果から、炭素繊維がスズ被膜の内部に突出するように存在していることが観察された。このようにスズ被膜の内部に炭素繊維が存在することにより、炭素繊維が層間剥離を抑制するアンカーとして機能する。 Figure 13 shows a digital microscope image of the tin/CFRP interface. From the results shown in Figure 13, it was observed that the carbon fibers are present protruding from inside the tin coating. The carbon fibers thus present inside the tin coating function as anchors that suppress delamination.
図14~図16に、実施例1の試験片について、プルオフ試験後のスズ被膜の表面の走査型電子顕微鏡像を示す。図14および図15に示す結果から、スズ被膜の内部に存在する炭素繊維が外力によって引き抜かれる際に、表面のスズ被膜を変形させたことを示唆している。図15において「Extracted CF」は、このようにして引き抜かれた炭素繊維を指している。また、図16に示す結果から、スズ被膜の表面には炭素繊維の一部が残存していることが観察された。図16における「Lifted Sn」はスズ被膜内部に存在する炭素繊維が外力によって引き抜かれる際にスズ被膜が持ち上げられ、変形したことを指している。 Figures 14 to 16 show scanning electron microscope images of the surface of the tin coating after the pull-off test for the test piece of Example 1. The results shown in Figures 14 and 15 suggest that the tin coating on the surface was deformed when the carbon fibers present inside the tin coating were pulled out by external force. In Figure 15, "Extracted CF" refers to the carbon fibers pulled out in this manner. Furthermore, the results shown in Figure 16 show that some of the carbon fibers remain on the surface of the tin coating. In Figure 16, "Lifted Sn" refers to the tin coating being lifted and deformed when the carbon fibers present inside the tin coating were pulled out by external force.
このような炭素繊維の引き抜きプロセスでは、スズ/CFRP界面において摩擦抵抗が発生する。さらに、外力下において、炭素繊維により持ち上げられたスズはスズ被膜の塑性変形を示している。以上は、プルオフ試験にて起こる界面剥離の抵抗となることから、スズ/CFRP界面における炭素繊維を介したアンカー効果を示している。 In this carbon fiber pulling process, frictional resistance occurs at the tin/CFRP interface. Furthermore, under external force, the tin lifted by the carbon fiber exhibits plastic deformation of the tin coating. This provides resistance to the interfacial peeling that occurs during the pull-off test, demonstrating an anchor effect via the carbon fiber at the tin/CFRP interface.
図17に、実施例1および比較例1の試験片について、プルオフ試験による付着強度の評価結果を示す。図17に示す結果から、単一ステッププロセスで作製した試験片では、圧縮空気の温度が473Kから523Kに上昇することにより付着強度が増加したものの、付着強度は2MPa程度であった。 Figure 17 shows the results of the evaluation of adhesion strength by pull-off test for the test pieces of Example 1 and Comparative Example 1. From the results shown in Figure 17, it can be seen that in the test pieces produced by the single-step process, the adhesion strength increased as the temperature of the compressed air increased from 473 K to 523 K, but the adhesion strength was still around 2 MPa.
一方、2段階プロセスで作製した試験片では、単一ステッププロセスで作製した試験片よりも、付着強度が大幅に向上した。第1のステップのパス数の増加に伴って、最終的に得られる付着強度は徐々に増加し、第1のステップのパス数を3回とした試験片の付着強度は、単一ステッププロセスで作製した試験片の付着強度の2倍以上となる6.25MPaとなった。また、第1のステップのパス数を4回とした試験片の付着強度は3パスの場合と同等であった。 On the other hand, the test pieces produced by the two-step process had significantly improved adhesion strength compared to the test pieces produced by the single-step process. As the number of passes in the first step increased, the final adhesion strength gradually increased, and the adhesion strength of the test piece with three passes in the first step was 6.25 MPa, more than twice the adhesion strength of the test piece produced by the single-step process. Furthermore, the adhesion strength of the test piece with four passes in the first step was equivalent to that of the three passes.
第1のステップ後のCFRP基板の表面粗さは、第1のステップのパス数の増加に伴って、エロージョンが激しくなるため、算術平均高さ(Sa)は増加するが、第1のステップの最適条件はパス数が3回であり、閾値となる算術平均高さ(Sa)は40μm程度であることが特定された。 The surface roughness of the CFRP substrate after the first step increases with the number of passes in the first step, as erosion becomes more severe, and the arithmetic mean height (Sa) increases. However, it was determined that the optimal condition for the first step is three passes, with the threshold arithmetic mean height (Sa) being approximately 40 μm.
なお、第1のステップのパス数を3回とした場合、繊維方向の異なる2つの炭素繊維が露出していた。従って、2段階プロセスを用いた密着性の改善では、第1のステップでは、炭素繊維を露出するのみであり、CFRP基板へのダメージを最小限として付着強度の改善が可能である。また、この理由としては、CFRP基板の表面の算術平均高さ(Sa)が40μmを超えると、CFRP基板の表面における複雑な形状に対して、圧縮空気と共に吹き付けられたスズが十分に接着できないことが考えられる。 When the first step was performed three times, two carbon fibers with different fiber directions were exposed. Therefore, when improving adhesion using a two-step process, the first step only exposes the carbon fibers, making it possible to improve adhesion strength while minimizing damage to the CFRP substrate. The reason for this is thought to be that when the arithmetic mean height (Sa) of the surface of the CFRP substrate exceeds 40 μm, the tin sprayed together with the compressed air cannot adhere sufficiently to the complex shape of the surface of the CFRP substrate.
[実験例1]
水アトマイズスズ粉末原料(Sn-AtW-250、福田金属箔粉株式会社製)を用意した。水アトマイズスズ粉末原料を走査型電子顕微鏡(JCM-6000、日本電子株式会社製)で観察した。走査型電子顕微鏡像を図18に示す。図18に示す結果から、水アトマイズスズ粉末原料は形状が不揃いであることが分かった。
[Experimental Example 1]
A water atomized tin powder raw material (Sn-AtW-250, manufactured by Fukuda Metal Foil and Powder Co., Ltd.) was prepared. The water atomized tin powder raw material was observed with a scanning electron microscope (JCM-6000, manufactured by JEOL Ltd.). The scanning electron microscope image is shown in FIG. 18. From the results shown in FIG. 18, it was found that the shape of the water atomized tin powder raw material was irregular.
[実験例2]
水アトマイズスズ粉末原料の粒度分布を、レーザー光散乱回折粒度分布計(LS230、ベックマン・コールター株式会社製)で測定した。結果を図19に示す。図19に示す結果から、水アトマイズスズ粉末原料の平均粒径は、24.28μmであることが分かった。
[Experimental Example 2]
The particle size distribution of the water atomized tin powder raw material was measured using a laser light scattering diffraction particle size distribution analyzer (LS230, manufactured by Beckman Coulter, Inc.). The results are shown in Figure 19. From the results shown in Figure 19, it was found that the average particle size of the water atomized tin powder raw material was 24.28 μm.
[実験例3]
30mm×30mm×2mmのCFRP基板(ジャムコ株式会社製)を用意した。
52枚のCFRP基板を積層し、その積層体を炭素繊維ラミネートで構成されるプリプレグ熱硬化性エポキシ樹脂を包囲して、熱硬化させた。得られた硬化物を、厚み方向に、圧力0.3MPa、温度423Kで1時間加圧した。その後、硬化物を室温(299.15K)まで冷却した。得られた硬化物(CFRP基板)の断面を走査型電子顕微鏡(JCM-6000、日本電子株式会社製)で観察した。走査型電子顕微鏡像を図20に示す。図20に示す通り、得られたCFRP基板は、隣接する2つのCFRP基板において、一方のCFRP基板の炭素繊維の方向と、他方のCFRP基板の炭素繊維の方向(CF direction)とがほぼ直交していた。
[Experimental Example 3]
A CFRP substrate (manufactured by JAMCO Corporation) measuring 30 mm x 30 mm x 2 mm was prepared.
52 CFRP substrates were stacked, and the stack was surrounded by a prepreg thermosetting epoxy resin composed of carbon fiber laminate, and thermally cured. The obtained cured product was pressurized in the thickness direction at a pressure of 0.3 MPa and a temperature of 423 K for 1 hour. The cured product was then cooled to room temperature (299.15 K). The cross section of the obtained cured product (CFRP substrate) was observed with a scanning electron microscope (JCM-6000, manufactured by JEOL Ltd.). The scanning electron microscope image is shown in FIG. 20. As shown in FIG. 20, the obtained CFRP substrates were adjacent to each other, and the direction of the carbon fibers of one CFRP substrate was almost perpendicular to the direction of the carbon fibers (CF direction) of the other CFRP substrate.
[実験例4]
「スズ被膜の形成」
以下の方法により、CFRP基板上に、スズ粒子からなるスズ被膜を形成した。
スズ被膜の形成には、低圧コールドスプレーシステム(Dymet 423J、Obninsk Centre for Powder Spraying、Russia)を用いた。
CFRP基板に対して、デ・ラバル・ノズルを介して、圧縮空気を供給した。
CFRP基板を、ステージ上に設置し、スズ被膜の形成の開始から終了まで、CFRP基板を移動させながら、CFRP基板上にスズ被膜を形成した。
CFRP基板の中心線に沿って、一方向に位置決めした。
スズ被膜の形成において、圧縮空気の温度を、473K、523K、573K、623Kに変化させた。
低圧コールドスプレー法によるスズ被膜の形成における条件を表3に示す。
同一の温度でスズ被膜の形成を3回繰り返した。
[Experimental Example 4]
"Formation of tin film"
A tin coating made of tin particles was formed on a CFRP substrate by the following method.
The tin coating was formed using a low pressure cold spray system (Dymet 423J, Obninsk Centre for Powder Spraying, Russia).
Compressed air was supplied to the CFRP substrate via a De Laval nozzle.
The CFRP substrate was placed on a stage, and a tin coating was formed on the CFRP substrate while the CFRP substrate was moved from the start to the end of the formation of the tin coating.
It was positioned in one direction along the center line of the CFRP substrate.
In forming the tin coating, the temperature of the compressed air was changed to 473K, 523K, 573K, and 623K.
Table 3 shows the conditions for forming the tin coating by the low pressure cold spray method.
The formation of the tin coating was repeated three times at the same temperature.
「スズ被膜の形成時におけるCFRP基板の表面温度の測定」
赤外線サーモグラフィカメラ(InfReC R300、日本アビオニクス株式会社製)を用いて、低圧コールドスプレー法によるスズ被膜の形成におけるCFRP基板の表面温度を測定した。
1秒間隔で、熱画像を撮影して、CFRP基板の表面温度を測定した。
測定可能な温度範囲は273K~773Kである。
CFRP基板の表面温度を測定する場所における雰囲気の温度を298K、雰囲気の湿度を46%に設定した。
熱画像は、CFRP基板から放出された赤外線を検出することによって得られた。
CFRP基板から放出された赤外線のエネルギー量は、ピクセルごとに色付けされた画像として表示される。温度データを、InfReC Analyzer NS9500 Professional(日本アビオニクス株式会社製)を用いて分析した。
それぞれの温度でCFRP基板の表面にスズ被膜を形成した場合に、CFRP基板の表面を走査型電子顕微鏡(SU-70及びS-3400N、株式会社日立ハイテク製)で観察した。
結果を図21~図28に示す。
"Measurement of surface temperature of CFRP substrate during formation of tin coating"
The surface temperature of the CFRP substrate during the formation of the tin coating by the low-pressure cold spray method was measured using an infrared thermography camera (InfReC R300, manufactured by Nippon Avionics Co., Ltd.).
Thermal images were taken at one second intervals to measure the surface temperature of the CFRP substrate.
The measurable temperature range is 273K to 773K.
The atmospheric temperature in the place where the surface temperature of the CFRP substrate was measured was set to 298 K, and the atmospheric humidity was set to 46%.
The thermal images were obtained by detecting infrared radiation emitted from the CFRP substrate.
The amount of infrared energy emitted from the CFRP substrate is displayed as a pixel-by-pixel colored image.The temperature data was analyzed using an InfReC Analyzer NS9500 Professional (manufactured by Nippon Avionics Co., Ltd.).
When a tin coating was formed on the surface of the CFRP substrate at each temperature, the surface of the CFRP substrate was observed with a scanning electron microscope (SU-70 and S-3400N, manufactured by Hitachi High-Technologies Corporation).
The results are shown in Figures 21 to 28.
図21は、圧縮空気の温度を473Kとした場合に、CFRP基板の表面を観察した走査型電子顕微鏡像である。図21における「Deposition Area」は、コールドスプレーにより形成したスズ被膜を指す。図22は、図21を拡大した図である。図23は、圧縮空気の温度を523Kとした場合に、CFRP基板の表面を観察した走査型電子顕微鏡像である。図23における「Spray path」は、CFRP基板に対して相対的に移動するノズル位置の中心線を指す。図24は、図23を拡大した図である。図25は、圧縮空気の温度を573Kとした場合に、CFRP基板の表面を観察した走査型電子顕微鏡像である。図26は、図25を拡大した図である。図27は、圧縮空気の温度を623Kとした場合に、CFRP基板の表面を観察した走査型電子顕微鏡像である。図28は、図27を拡大した図である。
図26に示すように、圧縮空気の温度が573Kの場合、CFRP基板の表面に炭素繊維がわずかに露出していた。また、図28に示すように、圧縮空気の温度が623Kの場合、CFRP基板の表面に炭素繊維が露出していた。すなわち、圧縮空気の温度が573K以上であると、CFRP基板の表面の温度を、スズ粒子の融点より高く、かつCFRP基板の分解温度より高くすることができ、エロージョン(Erosion)が発生して、CFRP基板の表面に炭素繊維が露出することが分かった。また、図25および図27から、CFRP基板から跳ね返ったスズ粉末がスプレー位置の両脇に堆積した状態(Bumpy deposit)となっているのが分かる。図26および図28において「Fractured CF」は、第1のステップの結果、炭素繊維が破断している状態を示す。
FIG. 21 is a scanning electron microscope image of the surface of a CFRP substrate when the temperature of compressed air is set to 473K. "Deposition Area" in FIG. 21 indicates the tin coating formed by cold spray. FIG. 22 is an enlarged view of FIG. 21. FIG. 23 is a scanning electron microscope image of the surface of a CFRP substrate when the temperature of compressed air is set to 523K. "Spray path" in FIG. 23 indicates the center line of the nozzle position moving relatively to the CFRP substrate. FIG. 24 is an enlarged view of FIG. 23. FIG. 25 is a scanning electron microscope image of the surface of a CFRP substrate when the temperature of compressed air is set to 573K. FIG. 26 is an enlarged view of FIG. 25. FIG. 27 is a scanning electron microscope image of the surface of a CFRP substrate when the temperature of compressed air is set to 623K. FIG. 28 is an enlarged view of FIG. 27.
As shown in FIG. 26, when the temperature of the compressed air was 573K, the carbon fibers were slightly exposed on the surface of the CFRP substrate. Also, as shown in FIG. 28, when the temperature of the compressed air was 623K, the carbon fibers were exposed on the surface of the CFRP substrate. That is, when the temperature of the compressed air was 573K or more, the temperature of the surface of the CFRP substrate could be made higher than the melting point of the tin particles and higher than the decomposition temperature of the CFRP substrate, and erosion occurred, exposing the carbon fibers on the surface of the CFRP substrate. Also, from FIG. 25 and FIG. 27, it can be seen that the tin powder that bounced off the CFRP substrate was piled up on both sides of the spray position (Bumpy deposit). In FIG. 26 and FIG. 28, "Fractured CF" indicates a state in which the carbon fibers are broken as a result of the first step.
[実験例5]
「CFRP基板の表面粗さの測定」
実験例4において、スズ被膜を形成したCFRP基板の表面粗さを測定した。
CFRP基板の表面粗さを、デジタル顕微鏡(VHX-5000、株式会社キーエンス製)を用いて測定した。
結果を図29に示す。
図29に示す結果から、圧縮空気の温度が623Kの場合、CFRP基板の表面粗さが大きくなり、エロージョンが発生して、CFRP基板の表面に露出する炭素繊維の量が多くなることが分かった。
[Experimental Example 5]
"Measurement of surface roughness of CFRP substrate"
In Experimental Example 4, the surface roughness of the CFRP substrate on which the tin coating was formed was measured.
The surface roughness of the CFRP substrate was measured using a digital microscope (VHX-5000, manufactured by Keyence Corporation).
The results are shown in Figure 29.
From the results shown in Figure 29, it was found that when the compressed air temperature was 623 K, the surface roughness of the CFRP substrate increased, erosion occurred, and the amount of carbon fiber exposed on the surface of the CFRP substrate increased.
[実験例6]
「CFRP基板の断面の観察」
実験例4において、スズ被膜を形成したCFRP基板の断面を走査型電子顕微鏡(SU-70及びS-3400N、株式会社日立ハイテク製)で観察した。
結果を図30~図33に示す。
図32に示すように、圧縮空気の温度が573Kの場合、CFRP基板の表面に炭素繊維がわずかに露出していた。また、図33に示すように、圧縮空気の温度が623Kの場合、CFRP基板の表面に炭素繊維が露出していた。すなわち、圧縮空気の温度が573K以上であると、CFRP基板の表面の温度を、スズ粒子の融点より高く、かつCFRP基板の分解温度より高くすることができ、エロージョンが発生して、CFRP基板の表面に炭素繊維が露出することが分かった。
[Experimental Example 6]
"Observation of the cross section of a CFRP substrate"
In Experimental Example 4, the cross section of the CFRP substrate on which the tin coating was formed was observed with a scanning electron microscope (SU-70 and S-3400N, manufactured by Hitachi High-Technologies Corporation).
The results are shown in Figures 30 to 33.
As shown in Fig. 32, when the temperature of the compressed air was 573 K, a small amount of carbon fiber was exposed on the surface of the CFRP substrate. Also, as shown in Fig. 33, when the temperature of the compressed air was 623 K, carbon fiber was exposed on the surface of the CFRP substrate. In other words, it was found that when the temperature of the compressed air was 573 K or higher, the surface temperature of the CFRP substrate could be made higher than the melting point of the tin particles and higher than the decomposition temperature of the CFRP substrate, causing erosion and exposing carbon fiber on the surface of the CFRP substrate.
[実験例7]
「CFRP基板のスズ被膜の厚さの測定、CFRP基板の浸食深さの測定」
実験例4において、スズ被膜を形成したCFRP基板におけるスズ被膜の厚さ、およびCFRP基板の浸食深さを測定した。なお、スズ被膜の厚さはCFRP基板の表面を基準とした厚さである。また、スズ被膜の浸食深さはCFRP基板の表面を基準とした深さである。
実験例6で得られた図30~図33から直接、スズ被膜の厚さ、およびCFRP基板の浸食深さを測定した。
結果を図34、図35に示す。
図34に示す結果から、圧縮空気の温度が573K以上の場合、スズ被膜が消失することが分かった。圧縮空気の温度が623Kの場合、スズ被膜がほとんど消失することが分かった。
図35に示す結果から、圧縮空気の温度が573K以上の場合、CFRP基板の浸食深さが大きくなることが分かった。
[Experimental Example 7]
"Measurement of thickness of tin coating on CFRP substrate, measurement of erosion depth on CFRP substrate"
In Experimental Example 4, the thickness of the tin coating on the CFRP substrate on which the tin coating was formed and the erosion depth of the CFRP substrate were measured. The thickness of the tin coating was measured based on the surface of the CFRP substrate. The erosion depth of the tin coating was measured based on the surface of the CFRP substrate.
The thickness of the tin coating and the erosion depth of the CFRP substrate were measured directly from FIGS. 30 to 33 obtained in Experimental Example 6.
The results are shown in Figures 34 and 35.
From the results shown in Fig. 34, it was found that the tin film disappears when the temperature of the compressed air is 573 K or higher. It was found that when the temperature of the compressed air is 623 K, the tin film almost disappears.
From the results shown in FIG. 35, it was found that when the temperature of the compressed air was 573 K or higher, the erosion depth of the CFRP substrate increased.
[実験例8]
「表面温度分布の測定」
図36に示すように、CFRP基板をステージに固定した。CFRP基板の表面において、熱の影響を受ける領域を明らかにするために、2つの領域(領域a(積層板の表面の一方向に沿って、積層板の表面の中央部に位置する帯状の領域)と領域b(積層板の表面の一方向に沿って、領域aを挟んで位置する2つの帯状の領域)を特定した。
実験例4と同様にして、CFRP基板上に、スズ粒子からなるスズ被膜を形成した。
スズ被膜の形成において、圧縮空気の温度を、473K、523K、573K、623Kに変化させた。
スズ被膜の形成後のCFRP基板の表面を、走査型電子顕微鏡(SU-70及びS-3400N、株式会社日立ハイテク製)で観察した。
その結果、圧縮空気の温度が473K~573Kでは、領域aがスズ被膜で覆われ、その後、侵食されたCPRPに置き換わり、圧縮空気条の温度がより高い場合、CFRP基板の表面に溶融したスズクラスターが付着することが分かった。
一方、圧縮空気の温度が473K~523Kでは、領域bの表面には主にエポキシ樹脂が存在していた。圧縮空気の温度が473K~523Kでは、領域bにおける領域aに隣接する部分の表面において、スズの凹凸状の析出物が存在していた。
また、実験例4と同様にして、低圧コールドスプレー法によるスズ被膜の形成におけるCFRP基板の表面温度を測定した。
結果を図37に示す。
低圧コールドスプレー法によるスズ被膜の形成前のCFRP基板の表面温度は約308Kであった。ここで、CFRP基板の表面の放射率を0.4と仮定した。この値は、炭素繊維(CF)の放射率である。
図37に示す結果から、圧縮空気の温度を、473K以上(523、573、623K)に設定した場合、領域aの表面温度と領域bの表面温度は、圧縮空気の温度が623Kの場合を除いて、圧縮空気の温度よりも低かった。また、領域aの表面温度は、領域bの表面温度とほぼ同じか、それより高くなった。また、領域aの表面温度と領域bの表面温度の差は、圧縮空気の温度の上昇とともに徐々に増加した。圧縮空気の温度が623Kの場合、最終的にCFRP基板の表面温度が約658Kに達しました。これらの挙動は、スズ被膜の温度がCFRP基板の表面温度よりも高いことと一致していた。
[Experimental Example 8]
"Measurement of surface temperature distribution"
The CFRP substrate was fixed to a stage as shown in Fig. 36. In order to clarify the area on the surface of the CFRP substrate that would be affected by heat, two areas were identified: area a (a band-shaped area located in the center of the surface of the laminate along one direction of the surface of the laminate) and area b (two band-shaped areas located on either side of area a along one direction of the surface of the laminate).
In the same manner as in Experimental Example 4, a tin coating made of tin particles was formed on a CFRP substrate.
In forming the tin coating, the temperature of the compressed air was changed to 473K, 523K, 573K, and 623K.
The surface of the CFRP substrate after the formation of the tin coating was observed with a scanning electron microscope (SU-70 and S-3400N, manufactured by Hitachi High-Technologies Corporation).
The results showed that when the temperature of the compressed air was between 473K and 573K, region a was covered with a tin film, which was then replaced by the eroded CFRP, and when the temperature of the compressed air stream was higher, molten tin clusters were attached to the surface of the CFRP substrate.
On the other hand, epoxy resin was mainly present on the surface of region b when the compressed air temperature was 473 K to 523 K. When the compressed air temperature was 473 K to 523 K, uneven deposits of tin were present on the surface of the portion of region b adjacent to region a.
In addition, similarly to Experimental Example 4, the surface temperature of the CFRP substrate was measured during the formation of the tin coating by the low-pressure cold spray method.
The results are shown in Figure 37.
Before forming the tin coating by the low pressure cold spray method, the surface temperature of the CFRP substrate was about 308 K. Here, the emissivity of the surface of the CFRP substrate was assumed to be 0.4, which is the emissivity of carbon fiber (CF).
From the results shown in Figure 37, when the temperature of the compressed air was set to 473K or higher (523, 573, 623K), the surface temperatures of region a and region b were lower than the temperature of the compressed air, except when the temperature of the compressed air was 623K. In addition, the surface temperature of region a was almost the same as or higher than the surface temperature of region b. In addition, the difference between the surface temperatures of region a and region b gradually increased with the increase in the temperature of the compressed air. When the temperature of the compressed air was 623K, the surface temperature of the CFRP substrate finally reached about 658K. These behaviors were consistent with the temperature of the tin coating being higher than the surface temperature of the CFRP substrate.
[実験例9]
「CFRP基板の表面温度の最大値の測定」
実験例8と同様にして、CFRP基板上に、スズ粒子からなるスズ被膜を形成した。
スズ被膜の形成において、圧縮空気の温度を、473K、523K、573K、623Kに変化させた。
実験例4と同様にして、低圧コールドスプレー法によるスズ被膜の形成におけるCFRP基板の表面温度を測定した。
結果を図38、図39に示す。
図38は、それぞれの圧縮空気の温度におけるスズ被膜の形成の開始から終了まで(約80秒)のCFRP基板の表面温度の最大値の推移を示す図である。CFRP基板の表面温度の変動は、スズ被膜の形成中の熱サイクルによって生じたと考えられる。圧縮空気の温度が高いほど、CFRP基板の表面温度の最大値が大きくなることが分かった。また、圧縮空気の温度が473Kの場合、CFRP基板の表面温度は、スズ被膜の形成の開始から50秒まで大きく変化せず、スズ被膜の形成前のCFRP基板の表面温度である約308Kであった。スズ被膜の形成の開始から50秒までは、スズ被膜の形成中に蓄積された熱は無視できるほどであるのに対して、スズ被膜の形成の開始から50秒を超えると、CFRP基板の表面温度が僅かに上昇して350Kになった。これに対して、圧縮空気の温度が523Kの場合、スズ被膜の形成の開始から10秒以内に、CFRP基板の表面温度が急速に上昇し、スズ被膜の形成が終了するまでほぼ一定の範囲内で推移した。また、圧縮空気の温度が573K以上の場合、CFRP基板の表面温度はスズの融点(505K)以上となることが分かった。従って、圧縮空気の温度が573Kの場合にも、エロージョンが生じていることが分かった。
[Experimental Example 9]
"Measurement of maximum surface temperature of CFRP substrate"
In the same manner as in Experimental Example 8, a tin coating made of tin particles was formed on a CFRP substrate.
In forming the tin coating, the temperature of the compressed air was changed to 473K, 523K, 573K, and 623K.
In the same manner as in Experimental Example 4, the surface temperature of the CFRP substrate was measured during the formation of a tin coating by the low-pressure cold spray method.
The results are shown in Figures 38 and 39.
FIG. 38 is a diagram showing the transition of the maximum value of the surface temperature of the CFRP substrate from the start to the end (about 80 seconds) of the formation of the tin film at each compressed air temperature. It is considered that the fluctuation of the surface temperature of the CFRP substrate was caused by the thermal cycle during the formation of the tin film. It was found that the higher the temperature of the compressed air, the higher the maximum value of the surface temperature of the CFRP substrate. In addition, when the temperature of the compressed air was 473K, the surface temperature of the CFRP substrate did not change significantly from the start of the formation of the tin film until 50 seconds, and was about 308K, which is the surface temperature of the CFRP substrate before the formation of the tin film. From the start of the formation of the tin film until 50 seconds, the heat accumulated during the formation of the tin film was negligible, whereas after 50 seconds from the start of the formation of the tin film, the surface temperature of the CFRP substrate rose slightly to 350K. In contrast, when the temperature of the compressed air was 523K, within 10 seconds from the start of the formation of the tin film, the surface temperature of the CFRP substrate rose rapidly and remained within a substantially constant range until the formation of the tin film was completed. It was also found that when the temperature of the compressed air was 573 K or higher, the surface temperature of the CFRP substrate was equal to or higher than the melting point of tin (505 K). Therefore, it was found that erosion occurred even when the temperature of the compressed air was 573 K.
図39は、それぞれの圧縮空気の温度におけるスズ被膜の形成の開始から終了まで(約80秒)のCFRP基板の表面における温度変化率の最大値の推移を示す図である。
温度変化率は、1秒当たりの温度変化として定義され、図38から直接計算される。
図39に示す結果から、圧縮空気の温度が高いほど、温度変化率が大きくなることが分かった。圧縮空気の温度が573K以上の場合、温度変化率がより大きくなる。これは、温度変化により、CFRP基板の表面において、顕著な熱勾配が生じていることを示す。
FIG. 39 is a diagram showing the transition of the maximum value of the temperature change rate on the surface of the CFRP substrate from the start to the end (about 80 seconds) of the formation of a tin coating at each compressed air temperature.
The temperature change rate is defined as the temperature change per second and is calculated directly from FIG.
From the results shown in Fig. 39, it was found that the higher the temperature of the compressed air, the greater the temperature change rate. When the temperature of the compressed air was 573 K or higher, the temperature change rate became greater. This indicates that a significant thermal gradient was generated on the surface of the CFRP substrate due to the temperature change.
圧縮空気の温度が473Kの場合、CFRP基板の表面温度の最大値は、約377Kであった。この温度は、エポキシ樹脂のガラス転位温度(Tg、約420K)よりも低い。ガラス転位温度を超えると、硬化したエポキシ樹脂が軟化して、コールドスプレー法により吹き付けられたスズ粒子の衝撃に耐えられなくなる。
圧縮空気の温度が523Kの場合、CFRP基板の表面温度の最大値は、約464Kであった。従って、コールドスプレー法により吹き付けられたスズ粒子の衝撃により、CFRP基板の最上層のエポキシ樹脂が侵食された。
圧縮空気の温度が573Kの場合、CFRP基板の表面温度の最大値は、約538Kであった。圧縮空気の温度が623Kの場合、CFRP基板の表面温度の最大値は、約658Kであった。圧縮空気の温度が573K以上の場合、CFRP基板の表面温度の最大値は、エポキシ樹脂のガラス転位温度よりもはるかに高くなった。従って、これらの温度ではCFRP基板の侵食が進行した。特に圧縮空気の温度が623Kの場合、連続的にCFRP基板の複数の層において侵食が発生した。
When the temperature of the compressed air was 473 K, the maximum surface temperature of the CFRP substrate was about 377 K. This temperature is lower than the glass transition temperature (Tg, about 420 K) of the epoxy resin. When the glass transition temperature is exceeded, the cured epoxy resin softens and cannot withstand the impact of the tin particles sprayed by the cold spray method.
When the temperature of the compressed air was 523 K, the maximum value of the surface temperature of the CFRP substrate was about 464 K. Therefore, the epoxy resin in the top layer of the CFRP substrate was eroded by the impact of the tin particles sprayed by the cold spray method.
When the compressed air temperature was 573K, the maximum surface temperature of the CFRP substrate was about 538K. When the compressed air temperature was 623K, the maximum surface temperature of the CFRP substrate was about 658K. When the compressed air temperature was 573K or higher, the maximum surface temperature of the CFRP substrate was much higher than the glass transition temperature of the epoxy resin. Therefore, erosion of the CFRP substrate progressed at these temperatures. In particular, when the compressed air temperature was 623K, erosion occurred continuously in multiple layers of the CFRP substrate.
[実験例10]
「CFRP基板の表面に対するスズ粒子の成膜効率の測定」
実験例4と同様にして、CFRP基板上に、スズ粒子からなるスズ被膜を形成した。
スズ被膜の形成において、圧縮空気の温度を、523Kとした。
比較として、非特許文献7(H.Che,P.Vo,S.Yue,Metallization of carbon fibre reinforced polymers by cold spray,Surf.Coat.Technol.313(2017)236-247.)に記載の方法、非特許文献8(G.Archambault,B.Jodoin,S.Gaydos,M.Yandouzi,Metallization of carbon fiber reinforced polymer composite by cold spray and lay-up molding processes,Surf.Coat.Technol.300(2016)78-86.)に記載の方法、非特許文献9(G.Archambault,B.Jodoin,S.Gaydos,M.Yandouzi,Metallization of carbon fiber reinforced polymer composite by cold spray and lay-up molding processes,Surf.Coat.Technol.300(2016)78-86.)に記載の方法によりCFRP基板上に、スズ粒子からなるスズ被膜を形成した。
それぞれの例において、CFRP基板の表面に対するスズ粒子の成膜効率(deposition efficiency、DE)を測定した。スズ粒子の成膜効率とは、CFRP基板の表面に吹き付けたスズ粒子の質量に対する、CFRP基板の表面に付着したスズ粒子の質量の割合である。
また、CFRP基板の表面に対するスズ被膜の密着強度を測定した。スズ被膜の密着強度の測定方法は、プルオフ試験とした。
結果を図40に示す。なお、本発明によるスズ被膜の形成を「実施例2」、非特許文献7に記載の方法によるスズ被膜の形成を「比較例2」、非特許文献8に記載の方法によるスズ被膜の形成を「比較例3」、非特許文献9に記載の方法によるスズ被膜の形成を「比較例4」とした。
図40に示す結果から、実施例2では、CFRP基板の表面に対するスズ粒子の成膜効率(DE)が80%であった。また、スズ被膜の密着強度は、4.8MPa~6.5MPaであった。
比較例2では、CFRP基板の表面に対するスズ粒子の成膜効率が10%~20%であった。また、スズ被膜の密着強度は、2.5MPa~7.7MPaであった。
比較例3では、スズ被膜の密着強度は、1MPa~1.5MPaであった。
比較例4では、スズ被膜の接着力は、1MPa~2.5MPaであった。
[Experimental Example 10]
"Measurement of the film formation efficiency of tin particles on the surface of a CFRP substrate"
In the same manner as in Experimental Example 4, a tin coating made of tin particles was formed on a CFRP substrate.
In forming the tin coating, the temperature of the compressed air was set to 523K.
For comparison, the method described in Non-Patent Document 7 (H. Che, P. Vo, S. Yue, Metallization of carbon fiber reinforced polymers by cold spray, Surf. Coat. Technol. 313 (2017) 236-247.) and the method described in Non-Patent Document 8 (G. Archambault, B. Jodoin, S. Gaydos, M. Yandouzi, Metallization of carbon fiber reinforced polymer composite by cold spray and lay-up molding A tin coating made of tin particles was formed on a CFRP substrate by the method described in Non-Patent Document 9 (G. Archambault, B. Jodoin, S. Gaydos, M. Yandouzi, Metallization of carbon fiber reinforced polymer composite by cold spray and lay-up molding processes, Surf. Coat. Technol. 300 (2016) 78-86.).
In each example, the deposition efficiency (DE) of the tin particles on the surface of the CFRP substrate was measured. The deposition efficiency of the tin particles is the ratio of the mass of the tin particles attached to the surface of the CFRP substrate to the mass of the tin particles sprayed onto the surface of the CFRP substrate.
The adhesion strength of the tin coating to the surface of the CFRP substrate was measured by a pull-off test.
The results are shown in Figure 40. The formation of the tin coating according to the present invention was designated "Example 2", the formation of the tin coating by the method described in
40, the deposition efficiency (DE) of the tin particles on the surface of the CFRP substrate was 80% in Example 2. The adhesion strength of the tin coating was 4.8 MPa to 6.5 MPa.
In Comparative Example 2, the efficiency of film formation of tin particles on the surface of the CFRP substrate was 10% to 20%, and the adhesion strength of the tin film was 2.5 MPa to 7.7 MPa.
In Comparative Example 3, the adhesion strength of the tin coating was 1 MPa to 1.5 MPa.
In Comparative Example 4, the adhesion strength of the tin coating was 1 MPa to 2.5 MPa.
本発明によれば、繊維強化プラスチックと金属被膜の密着性に優れる金属被覆繊維強化プラスチックが得られる。 The present invention provides a metal-coated fiber-reinforced plastic that has excellent adhesion between the fiber-reinforced plastic and the metal coating.
1 金属被覆繊維強化プラスチック
10 繊維強化プラスチック
11 マトリックス樹脂
12 強化繊維
20 金属被膜
1 Metal-coated fiber-reinforced
Claims (4)
前記強化繊維が露出した前記繊維強化プラスチックの一面に、コールドスプレー法により圧縮ガスで金属粒子を吹き付け、この際、圧縮ガスの温度を前記金属粒子の融点よりも低い温度、および前記繊維強化プラスチックの分解温度よりも低い温度とし、それにより前記繊維強化プラスチックの一面の温度を、前記金属粒子の融点よりも低い温度、および前記繊維強化プラスチックの分解温度よりも低い温度として、前記繊維強化プラスチックの一面に、前記金属粒子からなる金属被膜を形成する第2のステップと、を有する、金属被覆繊維強化プラスチックの製造方法。 a first step of spraying metal particles onto one surface of a fiber-reinforced plastic with a compressed gas by a cold spray method, in which the temperature of the compressed gas is set to at least one of a temperature higher than the melting point of the metal particles and a temperature higher than the decomposition temperature of the fiber-reinforced plastic, thereby raising the temperature of one surface of the fiber-reinforced plastic to at least one of a temperature higher than the melting point of the metal particles and a temperature higher than the decomposition temperature of the fiber-reinforced plastic, thereby exposing a portion of the reinforcing fibers contained in the fiber-reinforced plastic to one surface of the fiber-reinforced plastic;
a second step of spraying metal particles using a compressed gas by a cold spray method onto one side of the fiber-reinforced plastic where the reinforcing fibers are exposed, wherein the temperature of the compressed gas is set to a temperature lower than the melting point of the metal particles and lower than the decomposition temperature of the fiber-reinforced plastic, thereby setting the temperature of one side of the fiber-reinforced plastic to a temperature lower than the melting point of the metal particles and lower than the decomposition temperature of the fiber-reinforced plastic, thereby forming a metal coating made of the metal particles on one side of the fiber-reinforced plastic.
前記繊維強化プラスチックと前記金属被膜の界面において、前記強化繊維が前記金属被膜側に突出している、金属被覆繊維強化プラスチック。 A metal-coated fiber-reinforced plastic comprising a fiber-reinforced plastic containing reinforcing fibers and a metal coating formed on one surface of the fiber-reinforced plastic,
A metal-coated fiber-reinforced plastic, wherein the reinforcing fibers protrude toward the metal coating at the interface between the fiber-reinforced plastic and the metal coating.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380075904.8A CN120129770A (en) | 2022-11-16 | 2023-11-16 | Metal-coated fiber-reinforced plastic and method for producing the same |
JP2024558939A JPWO2024106508A1 (en) | 2022-11-16 | 2023-11-16 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-183535 | 2022-11-16 | ||
JP2022183535 | 2022-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024106508A1 true WO2024106508A1 (en) | 2024-05-23 |
Family
ID=91084528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/041268 WO2024106508A1 (en) | 2022-11-16 | 2023-11-16 | Metal-coated fiber-reinforced plastic and method for producing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2024106508A1 (en) |
CN (1) | CN120129770A (en) |
WO (1) | WO2024106508A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6292831A (en) * | 1985-10-04 | 1987-04-28 | ピ−ピ−ジ−・インダストリ−ズ・インコ−ポレ−テツド | Manufacture of stamping moldable laminate of glass fiber reinforced poly(ethylene terephthalate) and stamping molded shape |
JP2007246967A (en) * | 2006-03-15 | 2007-09-27 | Mitsubishi Heavy Ind Ltd | Method for imparting electric conductivity to surface of molding and molding having electrically conductive surface |
US20100119707A1 (en) * | 2006-02-28 | 2010-05-13 | Honeywell International, Inc. | Protective coatings and coating methods for polymeric materials and composites |
US20130129976A1 (en) * | 2009-11-12 | 2013-05-23 | Mtu Aero Engines Gmbh | Coating plastic components by means of kinetic cold gas spraying |
JP2014221526A (en) * | 2013-05-13 | 2014-11-27 | 株式会社デンソー | Electronic device and production method of the same |
JP2018141490A (en) * | 2017-02-27 | 2018-09-13 | 住友ケミカルエンジニアリング株式会社 | Bolt and nut |
JP2020149770A (en) * | 2019-03-11 | 2020-09-17 | 矢崎総業株式会社 | Metal-plated terminals and their manufacturing methods |
WO2022190736A1 (en) * | 2021-03-08 | 2022-09-15 | 国立大学法人東北大学 | Carbon fiber reinforced plastic molded article having metal film |
-
2023
- 2023-11-16 WO PCT/JP2023/041268 patent/WO2024106508A1/en active Application Filing
- 2023-11-16 CN CN202380075904.8A patent/CN120129770A/en active Pending
- 2023-11-16 JP JP2024558939A patent/JPWO2024106508A1/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6292831A (en) * | 1985-10-04 | 1987-04-28 | ピ−ピ−ジ−・インダストリ−ズ・インコ−ポレ−テツド | Manufacture of stamping moldable laminate of glass fiber reinforced poly(ethylene terephthalate) and stamping molded shape |
US20100119707A1 (en) * | 2006-02-28 | 2010-05-13 | Honeywell International, Inc. | Protective coatings and coating methods for polymeric materials and composites |
JP2007246967A (en) * | 2006-03-15 | 2007-09-27 | Mitsubishi Heavy Ind Ltd | Method for imparting electric conductivity to surface of molding and molding having electrically conductive surface |
US20130129976A1 (en) * | 2009-11-12 | 2013-05-23 | Mtu Aero Engines Gmbh | Coating plastic components by means of kinetic cold gas spraying |
JP2014221526A (en) * | 2013-05-13 | 2014-11-27 | 株式会社デンソー | Electronic device and production method of the same |
JP2018141490A (en) * | 2017-02-27 | 2018-09-13 | 住友ケミカルエンジニアリング株式会社 | Bolt and nut |
JP2020149770A (en) * | 2019-03-11 | 2020-09-17 | 矢崎総業株式会社 | Metal-plated terminals and their manufacturing methods |
WO2022190736A1 (en) * | 2021-03-08 | 2022-09-15 | 国立大学法人東北大学 | Carbon fiber reinforced plastic molded article having metal film |
Also Published As
Publication number | Publication date |
---|---|
CN120129770A (en) | 2025-06-10 |
JPWO2024106508A1 (en) | 2024-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12221704B2 (en) | Cold spray metallic coating and methods | |
Archambault et al. | Metallization of carbon fiber reinforced polymer composite by cold spray and lay-up molding processes | |
RU2477339C2 (en) | Metal coating application method, and structural element of airborne vehicle | |
EP3753704B1 (en) | Molding composite part with metal layer | |
JP4908884B2 (en) | Method for making conductive surface of molded body and surface conductive molded body | |
Sun et al. | Thermal effects in Sn coating on a carbon fiber reinforced plastic by cold spraying | |
US20110091709A1 (en) | Method for coating a fiber composite component for an aircraft or spacecraft and fiber composite component produced by said method | |
US7820283B2 (en) | Metallized skin panels and methods of making | |
Donner et al. | Metallization of thin Al2O3 layers in power electronics using cold gas spraying | |
EP4238753A1 (en) | Composite laminates with metal layers and methods thereof | |
Hajipour et al. | Effect of feedstock powder morphology on cold-sprayed titanium dioxide coatings | |
Zhang et al. | Metallization of carbon-fibre reinforced composites via a metal-epoxy biphasic sublayer and low-pressure cold spraying | |
Sun et al. | A novel two-step process for enhancing adhesion strength of cold-spray metallization of carbon fiber-reinforced plastics | |
Parmar et al. | Manufacturing and cold spraying of hybrid composites—A path for metallizing thermoset matrix composites | |
Cui et al. | Adhesion enhancement of a metallic al coating fabricated by detonation gun spray on a modified polymer matrix composite | |
WO2024106508A1 (en) | Metal-coated fiber-reinforced plastic and method for producing same | |
Sun et al. | Adhesion mechanism of temperature effects on Sn coating on the carbon fiber reinforced polymer substrate by cold spray | |
Zhang et al. | Sublayer-assisted cold spray metallization of carbon fiber reinforced composites | |
Azarmi et al. | Cold Spraying of Metallic Powders onto Polymeric Substrates: Influence of Gas Preheating Temperature on the Coating Deposition | |
Zhou et al. | Development of Gallium Nitride Coating via Aerosol Deposition | |
Saito et al. | Evaluation of Lightning Resistance Property of Thermoplastic CFRP Metallized by Low-Pressure Cold Spray | |
CA3202386A1 (en) | Cold spray process | |
KR20150073530A (en) | Coating Method For Nano-structured Metallic Thin Films Using Supersonic Vacuum-Flow Deposition | |
Champagne et al. | Novel cold spray nanostructured aluminum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23891655 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024558939 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |