[go: up one dir, main page]

WO2024101411A1 - Curable composition for organic el elements, cured product for organic el elements and method for producing same, organic el element, and polymer - Google Patents

Curable composition for organic el elements, cured product for organic el elements and method for producing same, organic el element, and polymer Download PDF

Info

Publication number
WO2024101411A1
WO2024101411A1 PCT/JP2023/040331 JP2023040331W WO2024101411A1 WO 2024101411 A1 WO2024101411 A1 WO 2024101411A1 JP 2023040331 W JP2023040331 W JP 2023040331W WO 2024101411 A1 WO2024101411 A1 WO 2024101411A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
structural unit
organic
polymer
Prior art date
Application number
PCT/JP2023/040331
Other languages
French (fr)
Japanese (ja)
Inventor
嘉崇 村上
育代 神谷
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN202380073901.0A priority Critical patent/CN120077771A/en
Priority to JP2024557840A priority patent/JPWO2024101411A1/ja
Priority to KR1020257014152A priority patent/KR20250107165A/en
Publication of WO2024101411A1 publication Critical patent/WO2024101411A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers

Definitions

  • organic electroluminescence element is a light-emitting element that has a layered structure including an anode, an organic light-emitting layer, and a cathode.
  • Organic EL elements are widely used in a variety of applications, such as display devices and lighting devices.
  • Organic EL elements are provided with insulating cured products such as planarizing films, partition walls, and interlayer insulating films.
  • these cured products have been formed using curable compositions containing a polymer component and a photosensitive compound (see, for example, Patent Document 1).
  • a coating film formed from the curable composition is irradiated with radiation through a mask having a pattern, and then developed, and then heat-cured by heating to obtain a patterned cured film.
  • the organic light-emitting layer in an organic EL element is prone to deterioration when it comes into contact with moisture or oxygen.
  • moisture may seep into the element over a long period of operation, resulting in the formation of areas that do not emit light (dark spots), and that contact with moisture or oxygen may cause a deterioration in the light-emitting characteristics.
  • the cured material provided in an organic EL element is required to be resistant to the passage of moisture (hereinafter referred to as "low water permeability").
  • the use of flexible displays that can be deformed into various shapes, such as by bending or folding, using flexible substrates such as resin films has been considered for devices such as smartphones equipped with organic light-emitting diode (OLED). Therefore, the cured film for the organic EL element in an organic EL display may be required to have bending resistance (hereinafter also referred to as "bending resistance”) that can be used with flexible displays.
  • bending resistance bending resistance
  • the present disclosure has been made in consideration of the above problems, and has as its main object to provide a curable composition for organic EL elements that can form a cured product that has high sensitivity, low dielectric constant, high transmittance, and excellent heat resistance, low water permeability, and bending resistance, and can provide a highly reliable organic EL element.
  • the present inventors have focused on using a copolymer of an aromatic vinyl compound and a maleimide compound as the polymer component constituting the cured material of an organic EL element, and have found that the above-mentioned problems can be solved by forming a curable composition containing a specific polymer. That is, according to the present disclosure, the following curable composition for an organic EL element, a cured material for an organic EL element and a method for producing the same, an organic EL element, and a polymer are provided.
  • a curable composition for organic EL devices comprising [A] a polymer containing a structural unit derived from a compound having an acidic group, and [B] a photosensitive compound, the [A] polymer containing a structural unit (I) derived from an aromatic vinyl compound and a structural unit (II) derived from a maleimide compound, the compound having an acidic group containing at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds, and the total proportion of the structural unit (I) and the structural unit (II) in the [A] polymer is 70 mol % or more relative to the total structural units of the [A] polymer.
  • a method for producing a cured material for an organic electroluminescence device comprising the steps of forming a coating film using the curable composition of [1] above, irradiating at least a portion of the coating film with radiation, developing the coating film after irradiation with radiation, and heating the developed coating film.
  • a polymer comprising a structural unit derived from an aromatic vinyl compound and a structural unit derived from a maleimide compound, wherein the total ratio of the structural units derived from the aromatic vinyl compound and the structural units derived from the maleimide compound is 70 mol % or more based on all structural units of the polymer, the polymer comprises a structural unit derived from a compound having an acidic group and a structural unit derived from a compound having a crosslinkable functional group, and the compound having the acidic group and the compound having the crosslinkable functional group are at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds, and the compound having the acidic group is at least one selected from the group consisting of a compound having a phenolic hydroxyl group, a compound having a group "* 1 -C( R1 )( R2 )-OH" (wherein R1 and R2 are each independently a cyano group or a fluoroalkyl group having 1 to 3 carbon atoms, and "
  • the disclosed curable composition for organic EL devices can form a cured product that has high sensitivity, low dielectric constant, high transmittance, and excellent heat resistance, low water permeability, and bending resistance.
  • the disclosed curable composition for organic EL devices can provide a highly reliable organic EL device.
  • a “structural unit” refers to a unit that mainly constitutes the main chain structure, and is a unit that is contained in at least two units in the main chain structure.
  • hydrocarbon group includes chain-shaped hydrocarbon groups, alicyclic hydrocarbon groups, and aromatic hydrocarbon groups.
  • chain-shaped hydrocarbon group means a straight-chain hydrocarbon group and a branched hydrocarbon group that do not include a cyclic structure in the main chain and are composed only of a chain structure. However, the chain-shaped hydrocarbon group may be saturated or unsaturated.
  • alicyclic hydrocarbon group means a hydrocarbon group that includes only an alicyclic hydrocarbon structure as a ring structure and does not include an aromatic ring structure. However, the alicyclic hydrocarbon group does not have to be composed only of an alicyclic hydrocarbon structure, and also includes those that have a chain structure as a part of it.
  • aromatic hydrocarbon group means a hydrocarbon group that includes an aromatic ring structure as a ring structure.
  • the aromatic hydrocarbon group does not have to be composed only of an aromatic ring structure, and may include a chain structure or an alicyclic hydrocarbon structure as a part of it.
  • the ring structure of the alicyclic hydrocarbon group and the aromatic hydrocarbon group may have a substituent composed of a hydrocarbon structure.
  • cyclic hydrocarbon group includes alicyclic hydrocarbon groups and aromatic hydrocarbon groups.
  • substituted or unsubstituted p-valent hydrocarbon group (where p is an integer of 1 or more) includes p-valent hydrocarbon groups (i.e., unsubstituted p-valent hydrocarbon groups) and groups in which p hydrogen atoms have been removed from the hydrocarbon structural portion of a substituted hydrocarbon group.
  • fluoroalkyl groups are "substituted monovalent hydrocarbon groups" and fluoroalkanediyl groups are “substituted divalent hydrocarbon groups.” The same applies to other groups to which "substituted or unsubstituted” is added.
  • (meth)acrylic includes “acrylic” and “methacrylic”.
  • (meth)acryloyl includes “acryloyl” and “methacryloyl”.
  • epoxy group to include oxiranyl group and oxetanyl group.
  • the curable composition for organic EL devices of the present disclosure (hereinafter also referred to as “the composition”) is used to form an insulating cured product to be provided in an organic EL device.
  • the composition contains a polymer (hereinafter also referred to as "polymer [A]”) containing a structural unit derived from a compound having an acidic group [A], and a photosensitive compound [B].
  • polymer [A] a polymer
  • A a structural unit derived from a compound having an acidic group [A]
  • B photosensitive compound
  • the polymer [A] is a copolymer containing a structural unit (I) derived from an aromatic vinyl compound and a structural unit (II) derived from a maleimide compound.
  • the total ratio of the structural unit (I) and the structural unit (II) is 70 mol% or more based on the total structural units of the polymer [A]. If the total ratio of the structural unit (I) and the structural unit (II) is less than 70 mol% based on the total structural units of the polymer, the heat resistance and water impermeability of the cured product obtained from the curable composition are insufficient, and the dielectric constant of the cured product tends to be too high.
  • the total ratio of the structural unit (I) and the structural unit (II) in the polymer [A] is preferably 75 mol% or more, more preferably 80 mol% or more, even more preferably 85 mol% or more, and even more preferably 90 mol% or more based on the total structural units of the polymer [A].
  • the aromatic vinyl compound and the maleimide compound may be arranged randomly or alternately.
  • the polymer [A] may further contain a structural unit (III) derived from a monomer (e.g., a (meth)acrylic compound, a vinyl compound, a vinyl ether compound, a conjugated diene compound, a cycloolefin) different from the aromatic vinyl compound and the maleimide compound.
  • the proportion of the structural unit (III) in the polymer [A] is 30 mol % or less, preferably 25 mol % or less, more preferably 20 mol % or less, even more preferably 15 mol % or less, and even more preferably 10 mol % or less, based on the total structural units of the polymer [A].
  • the polymer [A] contains a structural unit derived from a compound having an acidic group (hereinafter, also referred to as “structural unit (A1)").
  • structural unit (A1) a structural unit derived from a compound having an acidic group
  • alkali solubility an alkaline developer
  • curing reactivity an alkaline reactivity
  • the structural unit (A1) is not particularly limited as long as it has an acidic group.
  • Preferred examples of the structural unit (A1) include a structural unit having a phenolic hydroxyl group, a compound having a group "* 1 -C(R 1 )(R 2 )-OH" (wherein R 1 and R 2 are each independently a cyano group or a fluoroalkyl group having 1 to 3 carbon atoms. "* 1 " represents a bond to an aromatic ring.
  • the structural unit (A1) is preferably a structural unit derived from at least one selected from the group consisting of a compound having a phenolic hydroxyl group, a compound having a group "* 1 -C(R 1 )(R 2 )-OH", and maleimide.
  • phenolic hydroxyl group refers to a hydroxy group directly bonded to an aromatic ring (for example, a benzene ring, a naphthalene ring, an anthracene ring, etc.).
  • the polymer [A] contains, as the structural unit (A1), a structural unit derived from at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds (hereinafter also referred to as "structural unit (A1-1)").
  • structural unit (A1-1) include structural units represented by the following formula (a-1), formula (a-2), or formula (a-3).
  • R 3 , R 4 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a methyl group, a hydroxymethyl group, a cyano group or a trifluoromethyl group.
  • R 5 is a substituted or unsubstituted (r1+1)-valent hydrocarbon group having 1 to 20 carbon atoms, or a (r1+1)-valent group containing -O-, -CO-, -COO-, -NH-, -CONH- or -S- between the carbon-carbon bonds in a substituted or unsubstituted hydrocarbon group having 2 to 20 carbon atoms.
  • a 1 is a substituted or unsubstituted (r2+1)-valent aromatic ring group having 6 to 20 carbon atoms.
  • X 1 and X 2 are each independently a phenolic hydroxyl group, a group "* 1 -C(R 1 )(R 2 ) -OH", a carboxy group, a sulfonic acid group, a sulfonamide group or a phosphonic acid group.
  • r1 and r2 are each independently 1 or 2.
  • R 3 , R 4 , R 6 , R 7 and R 8 are preferably a hydrogen atom or a methyl group from the viewpoint of copolymerizability.
  • R5 is a (r1+1)-valent hydrocarbon group
  • examples of the (r1+1)-valent hydrocarbon group include a chain hydrocarbon group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Examples of the (r1+1)-valent chain hydrocarbon group having 1 to 10 carbon atoms represented by R5 include linear or branched saturated hydrocarbon groups having 1 to 10 carbon atoms and linear or branched unsaturated hydrocarbon groups having 1 to 10 carbon atoms. Of these, linear or branched saturated hydrocarbon groups having 1 to 10 carbon atoms are preferred.
  • Examples of the (r1+1)-valent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R5 include groups in which (r1+1) hydrogen atoms have been removed from a monocyclic saturated alicyclic hydrocarbon, a monocyclic unsaturated alicyclic hydrocarbon, or an alicyclic polycyclic hydrocarbon having 3 to 20 carbon atoms.
  • these alicyclic hydrocarbons include monocyclic saturated alicyclic hydrocarbons such as cyclobutane, cyclopentane, cyclohexane, cycloheptane, and cyclooctane; monocyclic unsaturated alicyclic hydrocarbons such as cyclopentene, cyclohexene, cycloheptene, cyclooctene, and cyclodecene; and alicyclic polycyclic hydrocarbons such as bicyclo[2.2.1]heptane (norbornane), bicyclo[2.2.2]octane, tricyclo[3.3.1.1 3,7 ]decane (adamantane), and tetracyclo[6.2.1.1 3,6 .0 2,7 ]dodecane.
  • monocyclic saturated alicyclic hydrocarbons such as cyclobutane, cyclopentane, cyclohexane, cycloheptane, and
  • Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms and a valence of (r1+1) represented by R5 include groups in which (r1+1) hydrogen atoms have been removed from an aromatic ring such as benzene, naphthalene, anthracene, indene, and fluorene.
  • the group represented by R 5 is preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 20 carbon atoms and having a valence of (r1+1), and more preferably a (r1+1)-valent group (aromatic ring group) having 6 to 20 carbon atoms obtained by removing (r1+1) hydrogen atoms from the ring portion of a substituted or unsubstituted aromatic hydrocarbon.
  • the group represented by R 5 is preferably a group obtained by removing (r1+1) hydrogen atoms from the ring portion of a substituted or unsubstituted benzene ring or naphthalene ring.
  • the aromatic ring group represented by A 1 is a group in which (r2+1) hydrogen atoms have been removed from the ring portion of a substituted or unsubstituted aromatic ring.
  • the aromatic ring is preferably a benzene ring or a naphthalene ring, and more preferably a benzene ring.
  • examples of the substituent include an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an acyl group, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a hydroxyl group, a carboxy group, a cyano group, a nitro group, etc.
  • X1 and X2 are preferably a phenolic hydroxyl group, a group "* 1 -C( R1 )( R2 )-OH" or a carboxy group, and from the viewpoint of obtaining a cured product with a lower dielectric constant, a phenolic hydroxyl group or a group "* 1 -C( R1 )( R2 )-OH" is more preferable.
  • R 41 , R 42 and R 43 are each independently a hydrogen atom, a methyl group, a hydroxymethyl group, a cyano group or a trifluoromethyl group.
  • the polymer [A] may further contain a structural unit (A1) different from the structural unit (A1-1) (hereinafter also referred to as "structural unit (A1-2)").
  • the monomer that gives the structural unit (A1-2) is not particularly limited as long as it is a compound that has an acidic group as well as a polymerizable group that is copolymerizable with the monomer that gives the structural unit (A1-1).
  • Examples of the monomer that gives the structural unit (A1-2) include vinyl compounds and (meth)acrylic compounds.
  • monomers that give the structural unit (A1-2) include unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, and 4-vinylbenzoic acid that give structural units having a carboxy group; unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, and itaconic acid that give structural units having a sulfonic acid group; vinyl sulfonic acid, (meth)allylsulfonic acid, and (meth)acryloyloxyethylsulfonic acid that give structural units having a phenolic hydroxyl group; and hydroxyphenyl (meth)acrylate that gives structural units having a phenolic hydroxyl group.
  • unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, and 4-vinylbenzoic acid that give structural units having a carboxy group
  • unsaturated dicarboxylic acids such as maleic acid,
  • the content of the structural unit (A1) in the polymer [A] is preferably 12 mol% or more, more preferably 15 mol% or more, and even more preferably 20 mol% or more, based on all structural units constituting the polymer [A], from the viewpoint of imparting good solubility in an alkaline developer.
  • the content of the structural unit (A1) is preferably 80 mol% or less, more preferably 75 mol% or less, and even more preferably 70 mol% or less, based on all structural units constituting the polymer [A].
  • the content of the structural unit (A1-1) in the polymer [A] is preferably 10 mol % or more, more preferably 15 mol % or more, and even more preferably 20 mol % or more, based on the total structural units constituting the polymer [A], from the viewpoint of imparting good solubility in an alkaline developer to the polymer and of obtaining a curable composition capable of obtaining a cured product that is heat resistant, has a low dielectric constant, has high transmittance, and is poorly water permeable, while maintaining high sensitivity.
  • the content of the structural unit (A1-1) is preferably 80 mol % or less, more preferably 75 mol % or less, and even more preferably 70 mol % or less, based on the total structural units constituting the polymer [A].
  • the content of the structural unit (A1-2) is preferably 10 mol % or less, more preferably 5 mol % or less, even more preferably 1 mol % or less, and even more preferably 0.5 mol % or less, based on the total structural units constituting the polymer [A], from the viewpoint of obtaining a cured product that is heat resistant, has a low dielectric constant, has high transmittance, and is poorly water permeable, while maintaining high sensitivity of the composition.
  • the polymer [A] may further contain structural units other than the structural unit (A1) (hereinafter also referred to as "other structural units").
  • other structural units include structural units having a crosslinkable functional group, structural units having an acid-dissociable group, etc.
  • the polymer [A] further contains a structural unit having a crosslinkable functional group (excluding "structural unit (A1)"; hereinafter, also referred to as “structural unit (A2)”).
  • structural unit (A1) structural unit
  • structural unit (A2) structural unit
  • a structural unit that exhibits crosslinkability but has a functional group that dissociates under the action of an acid to generate an acidic group is classified as a "structural unit having an acid-dissociable group” as described below.
  • the crosslinkable functional group of the structural unit (A2) is preferably a group that undergoes a crosslinking reaction by light or heat.
  • Specific examples of the crosslinkable functional group include a cyclic ether group, a cyclic thioether group, a carboxy group, a cyclic carbonate group, an alcoholic hydroxyl group, an amino group, a protected amino group, a protected isocyanate group, a polymerizable unsaturated bond group, and a hydroxyalkylamide group.
  • the crosslinkable functional group of the structural unit (A2) is preferably at least one selected from the group consisting of an oxiranyl group, an oxetanyl group, a thiirane group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and a protected isocyanate group, and more preferably at least one selected from the group consisting of an oxiranyl group, an oxetanyl group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and an alkoxysilyl group, in order to achieve both reactivity and storage stability.
  • the polymer [A] contains, as structural unit (A2), at least one structural unit selected from the group consisting of aromatic vinyl compounds and maleimide compounds, which is derived from a compound having a crosslinkable functional group (hereinafter also referred to as "structural unit (A2-1)").
  • structural unit (A2-1) include structural units represented by the following formula (b-1) or formula (b-2).
  • R 13 , R 14 , and R 16 are each independently a hydrogen atom, a methyl group, a hydroxymethyl group, a cyano group, or a trifluoromethyl group.
  • R 15 is a substituted or unsubstituted (r3+1)-valent hydrocarbon group having 1 to 20 carbon atoms, or a (r3+1)-valent group containing -O-, -CO-, -COO-, -NH-, -CONH-, or -S- between the carbon-carbon bonds in a substituted or unsubstituted hydrocarbon group having 2 to 20 carbon atoms.
  • a 11 is a substituted or unsubstituted divalent aromatic ring group having 6 to 20 carbon atoms.
  • R X17 is a single bond, a substituted or unsubstituted (r4+1)-valent hydrocarbon group having 1 to 20 carbon atoms, or a substituted or unsubstituted (r4+1)-valent group containing -O-, -CO-, -COO-, -NH-, -CONH- or -S- between the carbon-carbon bonds in a substituted or unsubstituted hydrocarbon group having 2 to 20 carbon atoms.
  • X11 and X12 are each independently a crosslinkable functional group.
  • r3 and r4 are each independently 1 or 2.
  • R 13 , R 14 and R 16 are preferably a hydrogen atom or a methyl group from the viewpoint of copolymerizability.
  • R 15 include the same groups as those exemplified in the explanation of R 5 in the above formula (a-1).
  • Specific examples of R 17 include the same groups as those exemplified in the description of R 5 in the above formula (a-1).
  • R 17 is preferably a single bond, a substituted or unsubstituted (r4+1)-valent chain hydrocarbon group having 1 to 20 carbon atoms, or a (r4+1)-valent group containing -O-, -CO-, -COO-, -NH-, -CONH- or -S- between the carbon-carbon bonds in a substituted or unsubstituted chain hydrocarbon group having 2 to 20 carbon atoms.
  • Specific and preferred examples of A 11 include the same groups as those exemplified in the description of A 1 in the above formula (a-2).
  • Specific and preferred examples of X 11 and X 12 include the same groups as those explained above as specific and preferred examples of the crosslinkable functional group.
  • R 61 , R 62 and R 63 are each independently a hydrogen atom, a methyl group, a hydroxymethyl group, a cyano group or a trifluoromethyl group.
  • the polymer [A] may further contain, as the structural unit (A2), a structural unit different from the structural unit (A2-1) (hereinafter also referred to as "structural unit (A2-2)").
  • the monomer that gives the structural unit (A2-2) is not particularly limited as long as it is a compound that has a crosslinkable functional group as well as a polymerizable group copolymerizable with the monomer that gives the structural unit (A1) and the structural unit (A2-1), and examples thereof include (meth)acrylic compounds and vinyl compounds.
  • monomers that provide the structural unit (A2-2) include glycidyl (meth)acrylate, 3,4-epoxycyclohexyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, 2-(3,4-epoxycyclohexyl)ethyl (meth)acrylate, 3,4-epoxytricyclo[5.2.1.0 2,6 ]decyl (meth)acrylate, (3-methyloxetan-3-yl)methyl (meth)acrylate, (3-ethyloxetan-3-yl)(meth)acrylate, (oxetan-3-yl)methyl (meth)acrylate, (3-ethyloxetan-3-yl)methyl (meth)acrylate, and the like.
  • the content of the structural unit (A2) in the polymer [A] is preferably 5 mol% or more, more preferably 10 mol% or more, and even more preferably 15 mol% or more, based on all structural units constituting the polymer [A], from the viewpoint of imparting good heat resistance and bending resistance to the cured product. Also, from the viewpoint of obtaining a good pattern shape, the content of the structural unit (A2) is preferably 70 mol% or less, more preferably 65 mol% or less, and even more preferably 60 mol% or less, based on all structural units constituting the polymer [A].
  • the content of the structural unit (A2-1) in the polymer [A] is preferably 2 mol % or more, more preferably 7 mol % or more, and even more preferably 15 mol % or more, based on the total structural units constituting the polymer [A], from the viewpoint of obtaining a curable composition capable of obtaining a cured product with low dielectric constant, high transmittance, and low water permeability while maintaining high sensitivity, in addition to improving the heat resistance and bending resistance of the resulting cured product.
  • the content of the structural unit (A2-1) is preferably 70 mol % or less, more preferably 65 mol % or less, and even more preferably 60 mol % or less, based on the total structural units constituting the polymer [A].
  • the content of the structural unit (A2-2) is preferably 30 mol % or less, more preferably 15 mol % or less, even more preferably 5 mol % or less, and even more preferably 1 mol % or less, based on the total structural units constituting the polymer [A], from the viewpoint of obtaining a cured product that exhibits good heat resistance, low dielectric constant, high transmittance, poor water permeability, and bending resistance while maintaining high sensitivity of the composition.
  • the acid dissociable group is a group that replaces a hydrogen atom of an acidic group such as a carboxy group, a phenolic hydroxyl group, an alcoholic hydroxyl group, a silanol group, or a sulfo group, and is a group that dissociates under the action of an acid.
  • an acidic group such as a carboxy group, a phenolic hydroxyl group, an alcoholic hydroxyl group, a silanol group, or a sulfo group
  • the composition can be made into a chemically amplified curable composition.
  • the acid dissociable group is eliminated by the acid generated by the irradiation of radiation in the exposed part to generate an acidic group, while the hydrogen atom of the acidic group remains substituted by the acid dissociable group in the unexposed part.
  • structural units having an acid-dissociable group include a structural unit in which an acid-dissociable group is eliminated by the action of an acid to generate a carboxyl group (hereinafter also referred to as “structural unit (A3-1)”), a structural unit in which an acid-dissociable group is eliminated by the action of an acid to generate a phenolic hydroxyl group (hereinafter also referred to as “structural unit (A3-2)”), and a structural unit in which an acid-dissociable group is eliminated by the action of an acid to generate a hydroxyl group bonded to a silicon atom (hereinafter also referred to as “structural unit (A3-3)").
  • the structural unit (A3-1) may be a structural unit derived from a protected unsaturated carboxylic acid.
  • the unsaturated carboxylic acid to be used is not particularly limited, but examples thereof include unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated acid anhydrides, and unsaturated polycarboxylic acids.
  • Examples of the acid-dissociable group contained in the structural unit (A3-1) include a tertiary carbon-containing hydrocarbon group, an acetal-based functional group, a tertiary alkyl carbonate group, and an alkyl group-containing silyl group. Of these, a tertiary carbon-containing hydrocarbon group or an acetal-based functional group is preferred because it is easily dissociated by an acid.
  • the structural unit (A3-1) preferably has a group represented by the following formula (X-1) as the protected carboxy group.
  • R 34 , R 35 and R 36 are the following (1) or (2).
  • R 34 , R 35 and R 36 are each independently an alkyl group having 1 to 12 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • R 34 and R 35 taken together, represent an alicyclic hydrocarbon structure having 4 to 20 carbon atoms formed together with the carbon atom to which R 34 and R 35 are bonded.
  • R 36 is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms. "*" represents a bond.
  • the structural unit (A3-1) preferably has an acetal ester structure of a carboxylic acid as the protected carboxy group, and specifically, it preferably has a group represented by the following formula (X-2): (In formula (X-2), R 31 , R 32 and R 33 are the following (1) or (2).
  • R 31 is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • R 32 and R 33 are each independently an alkyl group having 1 to 12 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
  • R 31 is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • R 32 and R 33 are combined together to represent a cyclic ether structure formed together with the carbon atom to which R 32 and OR 33 are bonded. "*" represents a bond.
  • the alkyl group having 1 to 12 carbon atoms represented by R 31 , R 32 , R 33 , R 34 , R 35 and R 36 may be linear or branched.
  • the number of carbon atoms in the alkyl group is preferably 1 to 6, and more preferably 1 to 4. Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and the like.
  • Examples of the monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms represented by R 31 , R 32 , R 33 , R 34 , R 35 , and R 36 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, an isobornyl group, an adamantyl group, etc.
  • Examples of the aralkyl groups having 7 to 20 carbon atoms represented by R 32 and R 33 include a phenylmethyl group, a phenylethyl group, a methylphenylmethyl group, etc.
  • the alkenyl group having 2 to 12 carbon atoms represented by R 36 may be linear or branched.
  • the number of carbon atoms in the alkenyl group is preferably 2 to 6, and more preferably 2 to 4. Specific examples include an ethenyl group, a 1-propenyl group, a 2-propenyl group, and a 1-butenyl group.
  • Examples of the aryl group having 6 to 20 carbon atoms represented by R 36 include a phenyl group, a methylphenyl group, an ethylphenyl group, and a dimethylphenyl group.
  • Examples of the alicyclic hydrocarbon structure having 4 to 20 carbon atoms formed by combining R 34 and R 35 together include a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, and a cycloheptane structure.
  • the cyclic ether structure formed by combining R 32 and R 33 with each other preferably has a ring member number of 5 or more. Specific examples thereof include a tetrahydrofuran ring structure and a tetrahydropyran ring structure.
  • Specific examples of the group represented by the above formula (X-1) include a tert-butoxycarbonyl group, a 1,1-dimethylpropyloxycarbonyl group, a 1-methyl-1-cyclopentyloxycarbonyl group, a 1-ethyl-1-cyclopentyloxycarbonyl group, a 1-methyl-1-cyclohexyloxycarbonyl group, and a 1-ethyl-1-cyclohexyloxycarbonyl group.
  • R 31 is preferably a hydrogen atom, a methyl group or an ethyl group, and more preferably a hydrogen atom.
  • Specific examples of the group represented by formula (X-2) above include a 1-methoxyethoxycarbonyl group, a 1-ethoxyethoxycarbonyl group, a 1-propoxyethoxycarbonyl group, a 1-butoxyethoxycarbonyl group, a 1-cyclohexyloxyethoxycarbonyl group, a 2-tetrahydrofuranyloxycarbonyl group, a 2-tetrahydropyranyloxycarbonyl group, and a 1-phenylmethoxyethoxycarbonyl group.
  • the acid dissociable group contained in the structural unit (A3-2) is not particularly limited as long as it is capable of generating a phenolic hydroxyl group by being eliminated by the action of an acid. From the viewpoints of the sensitivity, pattern shape, storage stability, etc. of the present composition, the acid dissociable group contained in the structural unit (A3-2) is preferably an acetal functional group, a tertiary alkyl group, or an alkyl group-containing silyl group.
  • Examples of the acetal functional group that can be used in the structural unit (A3-2) include the same acid-dissociable groups that can be used in the structural unit (A3-1). Among them, a phenolic hydroxyl group protected by a group represented by "-O-C(R 31 )(R 32 )(OR 33 )" (wherein R 31 , R 32 and R 33 are the same as those defined in formula (X-2)) is preferred. In this case, the protected phenolic hydroxyl group contained in the structural unit (A3-2) can be represented by the following formula (Z-1). In formula (Z-1), Ar 1 is a substituted or unsubstituted arylene group. R 31 , R 32 and R 33 are the same as in formula (X-2). "*" represents a bond.
  • Preferred specific examples of the group represented by "-C(R 31 )(R 32 )(OR 33 )" contained in the structural unit (A3-2) include 1-alkoxyalkyl groups and 1-arylalkoxyalkyl groups, and specific examples include a 1-ethoxyethyl group, a 1-methoxyethyl group, a 1-butoxyethyl group, a 1-isobutoxyethyl group, a 1-(2-ethylhexyloxy)ethyl group, a 1-propoxyethyl group, a 1-cyclohexyloxyethyl group, a 1-(2-cyclohexylethoxy)ethyl group, and a 1-benzyloxyethyl group.
  • tertiary alkyl group examples include a tert-butyl group and a 1,1-dimethylpropyl group.
  • alkyl group-containing silyl group examples include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a tert-butyldimethylsilyl group, and a tert-butyldiphenylsilyl group.
  • the structural unit (A3-3) has a functional group that is eliminated by the action of an acid to generate a silanol group (Si-OH).
  • the structural unit (A3-3) preferably has a group "-Si(Y 1 )(Y 2 )(Y 3 )" (wherein Y 1 , Y 2 and Y 3 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, an alkyl group having 1 to 10 carbon atoms or a phenyl group, and at least one of Y 1 , Y 2 and Y 3 is an alkoxy group having 1 to 6 carbon atoms).
  • the alkoxy group represented by Y 1 to Y 3 preferably has 1 to 3 carbon atoms, and is more preferably a methoxy group or an ethoxy group.
  • the alkyl group represented by Y 1 to Y 3 is preferably a methyl group, an ethyl group, or a propyl group.
  • One of the groups represented by Y 1 to Y 3 is an alkoxy group having 1 to 6 carbon atoms.
  • the remaining group is preferably a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or a phenyl group, more preferably a hydroxy group, an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 3 carbon atoms, and even more preferably an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 3 carbon atoms.
  • the group "-Si(Y 1 )(Y 2 )(Y 3 )” is preferably bonded to a benzene ring, a naphthalene ring, or an alkyl chain.
  • the structural unit (A3-3) preferably has at least one selected from the group consisting of a group represented by the following formula (3-1), a group represented by the following formula (3-2), and a group represented by the following formula (3-3).
  • X21 and X22 each independently represent a halogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • n1 is an integer from 0 to 4.
  • n2 is an integer from 0 to 6.
  • R50 is an alkanediyl group.
  • Y1 , Y2 , and Y3 are as defined above. "*" represents a bond.
  • the structural unit (A3-3) has at least one type selected from the group consisting of the group represented by formula (3-1) and the group represented by formula (3-2) among the above formulas (3-1) to (3-3).
  • the structural unit (A3) is preferably a structural unit derived from at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds.
  • Specific examples of the structural unit (A3) include structural units represented by the following formulas. (In the formula, R 51 , R 52 and R 53 are each independently a hydrogen atom, a methyl group, a hydroxymethyl group, a cyano group or a trifluoromethyl group.)
  • the polymer [A] contains the structural unit (A3).
  • the content of the structural unit (A3) in the polymer [A] is preferably 5 mol% or more, more preferably 10 mol% or more, and even more preferably 15 mol% or more, based on all structural units constituting the polymer [A].
  • the content of the structural unit (A3) is preferably 60 mol% or less, more preferably 55 mol% or less, and even more preferably 50 mol% or less, based on all structural units constituting the polymer [A].
  • monomers that provide other structural units include, in addition to the above, (meth)acrylic acid alkyl esters, (meth)acrylic acid esters having an alicyclic structure, (meth)acrylic acid esters having an aromatic ring structure, vinyl compounds having a heterocyclic structure, vinyl ether compounds, conjugated diene compounds, nitrogen-containing vinyl compounds, unsaturated dicarboxylic acid dialkyl ester compounds, cycloolefins, and aromatic vinyl compounds or N-substituted maleimide compounds that are different from the structural units (A1) to (A3).
  • (meth)acrylic acid alkyl esters such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-lauryl (meth)acrylate, and n-stearyl (meth)acrylate
  • (meth)acrylic acid esters having an alicyclic structure include cyclohexyl (meth)acrylate, 2-methylcyclohexyl (meth)acrylate, tricyclo[5.2.1.0 2,6 ]decan-8-yl (meth)acrylate, tricyclo[5.2.1.0 2,5 ]decan-8-yloxyethyl (meth)acrylate, isobornyl (meth)acrylate, and ⁇ -methylene- ⁇ -butyrolactone;
  • (meth)acrylic acid alkyl esters
  • cycloolefins examples include cyclopentene, cyclohexene, cycloheptene, norbornene, etc.
  • monomers that provide other structural units include, in addition to the above, monomers such as vinyl chloride, vinylidene chloride, vinyl acetate, etc.
  • aromatic vinyl compounds or N-substituted maleimide compounds that are different from the structural units (A1) to (A3) include aromatic vinyl compounds such as styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 5-t-butyl-2-methylstyrene, divinylbenzene, trivinylbenzene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl)dimethylaminoethyl ether, N,N-dimethylaminoethylstyrene, N,N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-t-butyrene,
  • N-substituted maleimide compounds having a cyclic structure in the substituted portion are preferred, and compounds having a benzene ring or cyclohexane ring are more preferred.
  • the content of the structural units is preferably 70 mol % or less, and more preferably 60 mol % or less, based on the total structural units of the polymer [A].
  • the polymer [A] can be produced, for example, by using a monomer capable of introducing each of the structural units described above in a suitable solvent in the presence of a polymerization initiator, according to a known method such as radical polymerization.
  • a polymerization initiator include an azo compound and an organic peroxide.
  • the azo compound include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), and 2,2'-azobis(isobutyric acid) dimethyl.
  • the organic peroxide include benzoyl peroxide and di-tert-butyl peroxide.
  • the proportion of the polymerization initiator used is preferably 0.01 to 30 parts by mass relative to 100 parts by mass of the total amount of the monomers used in the reaction.
  • the polymerization solvent include alcohols, ethers, ketones, esters, and hydrocarbons.
  • the amount of the polymerization solvent used is preferably such that the total amount of the monomers used in the reaction is 0.1 to 60% by mass relative to the total amount of the reaction solution.
  • the reaction temperature is usually 30°C to 180°C.
  • the reaction time can be set depending on the type of polymerization initiator and monomer, and the reaction temperature.
  • the reaction time is usually 0.5 to 10 hours.
  • the polymer obtained by the polymerization reaction may be used in the preparation of the present composition while still dissolved in the reaction solution, or may be used in the preparation of the present composition after being isolated from the reaction solution.
  • the polymer can be isolated by known isolation methods, such as a method of pouring the reaction solution into a large amount of poor solvent and drying the resulting precipitate under reduced pressure, or a method of distilling the reaction solution under reduced pressure using an evaporator.
  • the weight average molecular weight (Mw) of the polymer [A] in terms of polystyrene measured by gel permeation chromatography (GPC) is preferably 3,000 or more. Mw of 3,000 or more is preferable in that a cured product having sufficiently high heat resistance, bending resistance, and chemical resistance and good developability can be obtained.
  • the Mw of the polymer [A] is more preferably 5,000 or more, and even more preferably 6,000 or more.
  • the Mw of the polymer [A] is preferably 150,000 or less, more preferably 100,000 or less, and even more preferably 80,000 or less.
  • the molecular weight distribution (Mw/Mn), expressed as the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), is preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.0 or less.
  • the photosensitive compound may be any component that changes the solubility of the composition by irradiation with radiation, and examples of such compounds include quinone diazide compounds, photoacid generators, and photopolymerization initiators. Among these, quinone diazide compounds and photoacid generators are preferably used.
  • a "quinone diazide compound” is a substance that changes to an indene carboxylic acid by irradiation with radiation
  • a “photoacid generator” is a substance that generates an acid by irradiation with radiation and eliminates an acid-dissociable group possessed by a component in the composition.
  • the quinone diazide compound may be a condensate of a phenolic compound or an alcoholic compound (hereinafter also referred to as "mother nucleus") with an orthonaphthoquinone diazide compound.
  • the quinone diazide compound used is preferably a condensate of a compound having a phenolic hydroxyl group as the mother nucleus with an orthonaphthoquinone diazide compound.
  • Specific examples of the mother nucleus include the compounds described in paragraphs 0065 to 0070 of JP-A-2014-186300.
  • the orthonaphthoquinone diazide compound is preferably 1,2-naphthoquinone diazide sulfonic acid halide.
  • a condensation product of a phenolic compound or alcoholic compound as the mother nucleus and 1,2-naphthoquinone diazide sulfonic acid halide can be preferably used, and a condensation product of a phenolic compound and 1,2-naphthoquinone diazide sulfonic acid halide can be more preferably used.
  • quinone diazide compounds include 4,4'-dihydroxydiphenylmethane, 2,3,4,2',4'-pentahydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, tri(p-hydroxyphenyl)methane, 1,1,1-tri(p-hydroxyphenyl)methane, 1,1,1-tri(p-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 1,3-bis[1-(4-hydroxyphenyl)-1-methylethyl]benzene, 1, Examples include ester compounds of a phenolic hydroxyl group-containing compound selected from 4-bis[1-(4-hydroxyphenyl)-1-methylethyl]benzene, 4,6-bis[1-(4-hydroxyphenyl)-1-methylethyl]-1,3-dihydroxybenzene, and 4,4'-[1-[4-[1-[4-hydroxyphenyl
  • the ratio of the mother nucleus to the 1,2-naphthoquinone diazide sulfonic acid halide is preferably such that the amount of 1,2-naphthoquinone diazide sulfonic acid halide used is an amount equivalent to 30 to 85 mol %, and more preferably an amount equivalent to 50 to 70 mol %, of the number of OH groups in the mother nucleus.
  • the above condensation reaction can be carried out according to a known method.
  • the content of the quinone diazide compound in the composition is preferably 2 parts by mass or more, more preferably 5 parts by mass or more, and even more preferably 10 parts by mass or more, per 100 parts by mass of the polymer [A] contained in the composition.
  • the content of the quinone diazide compound is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 40 parts by mass or less, per 100 parts by mass of the polymer [A] contained in the composition.
  • the content of the quinone diazide compound is 2 parts by mass or more, sufficient acid is generated by irradiation with actinic rays, and the difference in solubility in the developer between exposed and unexposed areas can be sufficiently large. This allows for good patterning. In addition, the amount of acid involved in the reaction with the polymer component can be increased, and the heat resistance and bending resistance of the cured product obtained using this composition can be sufficiently ensured.
  • the content of the quinone diazide compound is 60 parts by mass or less, the amount of unreacted quinone diazide compound can be sufficiently reduced, which is preferable in that it can suppress the decrease in developability and transparency caused by remaining quinone diazide compound.
  • Photoacid generator As the photoacid generator, a compound that responds to actinic rays having a wavelength of 300 nm or more (preferably 300 to 450 nm) and generates an acid can be preferably used. When a photoacid generator that does not directly respond to actinic rays having a wavelength of 300 nm or more is used, it may be used in combination with a sensitizer so that it responds to actinic rays having a wavelength of 300 nm or more and generates an acid.
  • a compound that generates an acid with an acid dissociation constant (pKa) of 4 or less can be preferably used as the photoacid generator.
  • the acid dissociation constant of the acid generated by the photoacid generator is more preferably 3 or less, and even more preferably 2 or less.
  • photoacid generators include oxime sulfonate compounds, onium salts (sulfonium salts, iodonium salts, quaternary ammonium salts, etc.), sulfonimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, and carboxylate compounds.
  • oxime sulfonate compounds onium salts, sulfonimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonate compounds, and carboxylate compounds
  • the compounds described in paragraphs 0034 to 0038 of JP 2012-252343 A the compounds described in paragraphs 0078 to 0106 of JP 2014-157252 A, and the compounds described in WO 2016/124493.
  • at least one selected from the group consisting of oxime sulfonate compounds, onium salts, sulfonimide compounds, halogen-containing compounds, sulfone compounds, and sulfonate compounds can be preferably used as the photoacid generator.
  • oxime sulfonate compounds such as (5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (5-octylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (camphorsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (5-p-toluenesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, ⁇ 2-[2-(4-methylphenylsulfonyloxyimino)]-2,3-dihydrothiophen-3-ylidene ⁇ -2-(2-methylphenyl)acetonitrile), 2-(octylsulfonate compounds
  • sulfonimide compounds include N-(trifluoromethylsulfonyloxy)succinimide, N-(camphorsulfonyloxy)succinimide, N-(4-methylphenylsulfonyloxy)succinimide, N-(2-trifluoromethylphenylsulfonyloxy)succinimide, N-(4-fluorophenylsulfonyloxy)succinimide, N-(trifluoromethylsulfonyloxy)phthalimide, N-(camphorsulfonyloxy)phthalimide, N-(2-trifluoromethylphenylsulfonyloxy)phthalimide, N-(2-fluorophenylsulfonyloxy)phthalimide, N-(trifluoromethylsulfonyloxy)diphenylmaleimide, N-(camphorsulfonyloxy)diphenylmaleimide, N-
  • onium salts include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium n-dodecylbenzenesulfonate, diphenyliodonium 10-camphorsulfonate, diphenyliodonium naphthalenesulfonate, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium n-dodecylbenzenesulfonate, triphenylsulfon ...
  • Examples include phenylsulfonium 10-camphorsulfonate, triphenylsulfonium hexafluoroantimonate, 2-oxocyclohexyldicyclohexylsulfonium trifluoromethanesulfonate, 1-naphthyldiethylsulfonium trifluoromethanesulfonate, 1-(4-benzyloxy)tetrahydrothiophenium trifluoromethanesulfonate, 1-(naphthylacetomethyl)tetrahydrothiophenium trifluoromethanesulfonate, and 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate.
  • halogen-containing compounds include phenylbis(trichloromethyl)-s-triazine, 4-methoxyphenylbis(trichloromethyl)-s-triazine, and 1-naphthylbis(trichloromethyl)-s-triazine.
  • sulfone compounds include 4-trisphenacylsulfone, mesitylphenacylsulfone, and bis(phenylsulfonyl)methane.
  • sulfonic acid ester compounds include benzoin tosylate, pyrogallol tris(trifluoromethanesulfonate), nitrobenzyl-9,10-diethoxyanthracene-2-sulfonate, trifluoromethanesulfonylbicyclo[2,2,1]hept-5-ene-2,3-dicarbodiimide, N-hydroxysuccinimide trifluoromethanesulfonate, and 1,8-naphthalenedicarboxylic acid imide trifluoromethanesulfonate.
  • the content of the photoacid generator in the composition is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, relative to 100 parts by mass of the polymer [A] contained in the composition.
  • the content of the photoacid generator is preferably 35 parts by mass or less, more preferably 30 parts by mass or less, relative to 100 parts by mass of the polymer [A] contained in the composition.
  • the amount of acid involved in the reaction with the polymer [A] can be increased, and the heat resistance and bending resistance of the obtained cured product can be sufficiently ensured.
  • the content of the photoacid generator to 35 parts by mass or less, the amount of unreacted photoacid generator after exposure can be sufficiently reduced, and the decrease in developability due to the remaining photoacid generator can be suppressed.
  • the composition may further contain components other than the polymer [A] and the photosensitive compound [B] (hereinafter also referred to as “other components”).
  • other components include a compound [C] having two or more crosslinkable functional groups (excluding the polymer [A]; hereinafter also simply referred to as “compound [C]”), an adhesion aid [D], a surfactant [E], and a solvent [F].
  • the compound [C] is a component that forms a crosslinked structure between or within the molecules of the polymer [A] by light or heat, or forms a bond between the compounds [C] themselves. It is preferable that the polymer [A] contains the structural unit (A2) together with the structural unit (A1) in the present composition, or that the curable composition contains the polymer [A] and the compound [C], in that the heat resistance and bending resistance of the cured product obtained by using the present composition can be further improved.
  • Examples of the crosslinkable functional group possessed by the compound [C] include a cyclic ether group, a cyclic thioether group, a carboxy group, a cyclic carbonate group, an alcoholic hydroxyl group, an amino group, a protected amino group, a protected isocyanate group, a polymerizable unsaturated bond group, a hydroxyalkylamide group, an oxazoline group, and an alkoxymethylphenyl group.
  • the crosslinkable functional group reacts with the polymer [A] to form a crosslinked structure between or within the molecules of the polymer [A], and from the viewpoint of making the heat resistance and bending resistance of the cured product excellent, at least one type selected from the group consisting of an oxiranyl group, an oxetanyl group, a thiirane group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and a protected isocyanate group is preferable, and at least one type selected from the group consisting of an oxiranyl group, an oxetanyl group, a hydroxyalkylamide group, a hydroxymethylphenyl group, and an alkoxymethylphenyl group is more preferable.
  • the number of crosslinkable functional groups that the compound [C] has in one molecule is preferably 2 to 10, and more preferably 3 to 8, from the viewpoint of sufficiently improving the heat resistance and bending resistance of the cured product and suppressing film shrinkage.
  • the compound [C] include compounds having an epoxy group, such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, triglycidyl isocyanurate, glycerol polyglycidyl ether, pentaerythritol tetraglycidyl ether, 1,4-cyclohexanedimethanol diglycidyl ether, N,N',N',N''-tetraglycidyl glycoluril, 1,6-hexanediol diglycidyl ether, trimethyl arylpropane triglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diger
  • the content is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and even more preferably 5 parts by mass or more, per 100 parts by mass of the [A] polymer contained in the composition.
  • the content of the [C] compound is preferably 40 parts by mass or less, and more preferably 30 parts by mass or less, per 100 parts by mass of the [A] polymer contained in the composition.
  • the adhesion aid is a component that improves the adhesion between the cured product formed by using the composition and the substrate.
  • a functional silane coupling agent having a reactive functional group can be preferably used as the adhesion aid.
  • the reactive functional group of the functional silane coupling agent include a carboxy group, a (meth)acryloyl group, an epoxy group, a vinyl group, and an isocyanate group.
  • functional coupling agents include trimethoxysilylbenzoic acid, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane.
  • the content is preferably 0.01 to 30 parts by mass, and more preferably 0.1 to 20 parts by mass, per 100 parts by mass of the polymer [A] contained in the composition.
  • the surfactant can be used to improve the coating properties of the composition (wetting and spreading properties and reducing coating unevenness).
  • examples of the surfactant include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • the surfactant can be selected from known ones such as these commercially available products.
  • the content of the surfactant is preferably 0.01 to 1.5 parts by mass, more preferably 0.02 to 1.2 parts by mass, and even more preferably 0.05 to 1.0 parts by mass, per 100 parts by mass of the polymer [A] contained in the composition.
  • the present composition is preferably a liquid composition in which the polymer [A], the photosensitive compound [B], and components to be blended as necessary are dissolved or dispersed in a solvent.
  • the solvent to be used is preferably an organic solvent that dissolves each component to be blended in the present composition and does not react with each component.
  • solvents include alcohols such as methanol, ethanol, isopropanol, butanol, and octanol; esters such as ethyl acetate, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, methyl 3-methoxypropionate, and ethyl 3-ethoxypropionate; ethers such as ethylene glycol monobutyl ether, propylene glycol monomethyl ether, ethylene diglycol monomethyl ether, ethylene diglycol ethyl methyl ether, dimethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and diethylene glycol ethyl methyl ether; amides such as dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone; ketones such as acetone, methyl e
  • the solvent preferably contains at least one selected from the group consisting of ethers and esters, and more preferably contains at least one selected from the group consisting of ethylene glycol alkyl ether acetate, diethylene glycols, propylene glycol monoalkyl ether, and propylene glycol monoalkyl ether acetate.
  • the content of the solvent in the composition (the total amount when two or more types of solvents are included) is preferably 50 to 95 parts by mass, and more preferably 60 to 90 parts by mass, per 100 parts by mass of all components of the composition.
  • Other components may include, in addition to those mentioned above, known additives such as acid diffusion control agents, sensitizers, antioxidants, thermal radical generators, thermal acid generators, ultraviolet absorbers, thickeners, development accelerators, acid multipliers, plasticizers, suspending agents, polymerization inhibitors, and chain transfer agents.
  • known additives such as acid diffusion control agents, sensitizers, antioxidants, thermal radical generators, thermal acid generators, ultraviolet absorbers, thickeners, development accelerators, acid multipliers, plasticizers, suspending agents, polymerization inhibitors, and chain transfer agents.
  • the blending ratio of these components is appropriately selected according to each component within a range that does not impair the effects of the present disclosure.
  • the solids concentration of the present composition (the ratio of the total mass of the components other than the solvent in the curable composition to the total mass of the curable composition) is appropriately selected taking into consideration the viscosity, volatility, etc.
  • the solids concentration of the present composition is preferably in the range of 5 to 60 mass%. If the solids concentration is 5 mass% or more, a sufficient thickness of the coating film can be ensured when the present composition is applied to a substrate. If the solids concentration is 60 mass% or less, the thickness of the coating film does not become too large, and the viscosity of the present composition can be appropriately increased, ensuring good coatability.
  • the solids concentration of the present composition is more preferably 10 to 55 mass%, and even more preferably 12 to 50 mass%.
  • the cured product of the present disclosure is formed by the present composition prepared as described above.
  • a pattern film can be formed that has high radiation sensitivity, high transmittance, low dielectric constant, and excellent heat resistance, low water permeability, and bending resistance.
  • Such a present composition can be preferably used as a composition for forming a cured product of an organic EL element, and particularly, can be preferably used as a composition for forming a planarizing film, a partition wall, or an interlayer insulating film in an organic EL element.
  • Step 1 A step of forming a coating film using the present composition.
  • Step 2 A step of irradiating at least a portion of the coating film with radiation.
  • Step 3 A step of developing the coating film after irradiation.
  • Step 4 A step of heating the developed coating film.
  • Step 1 Coating film formation step
  • the composition is applied to a substrate.
  • the substrate include glass substrates, silicon substrates, and resin substrates.
  • the surface of the substrate on which the coating film is formed may have a thin metal film formed thereon according to the application, or may have been subjected to various surface treatments such as HMDS (hexamethyldisilazane) treatment.
  • HMDS hexamethyldisilazane
  • compositions examples include spraying, roll coating, spin coating, slit die coating, bar coating, and inkjet coating. Among these, spin coating, slit die coating, and bar coating are preferred.
  • the composition applied to the substrate is preferably subjected to a heat treatment (pre-baking) to remove the solvent in the composition and form a coating film on the substrate.
  • pre-baking conditions vary depending on the type and content ratio of each component in the composition, but are, for example, 60 to 130°C for 0.5 to 10 minutes.
  • the thickness of the coating film formed is preferably 0.1 to 12 ⁇ m.
  • the composition applied to the substrate may be subjected to reduced pressure drying (VCD) before pre-baking.
  • VCD reduced pressure drying
  • Step 2 Irradiation step
  • step 2 at least a part of the coating film made of the present composition formed in step 1 is irradiated with radiation.
  • radiation include charged particle beams such as ultraviolet rays, far ultraviolet rays, visible rays, X-rays, and electron beams.
  • ultraviolet rays are preferred, and examples thereof include g-rays (wavelength 436 nm) and i-rays (wavelength 365 nm).
  • the exposure dose of radiation is preferably 0.1 to 20,000 J/ m2 .
  • Step 3 Development step
  • the developer may be an aqueous solution of an alkali (basic compound).
  • the alkali include sodium hydroxide, tetramethylammonium hydroxide, and the alkalis exemplified in paragraph [0127] of JP2016-145913A.
  • the alkali concentration in the aqueous alkali solution is preferably 0.1 to 5% by mass from the viewpoint of obtaining suitable developability.
  • the development method may be a suitable method such as a puddle method, a dipping method, a rocking immersion method, or a shower method.
  • the development time varies depending on the composition of the composition, but is, for example, 30 to 120 seconds. After the development step, it is preferable to perform a rinse process by washing the patterned coating film with running water.
  • Step 4 Heat curing step
  • the coating film developed in step 3 is heated (post-baked).
  • Post-baking can be performed using a heating device such as an oven or a hot plate.
  • the heating temperature is, for example, 120 to 260° C.
  • the heating time is, for example, 5 to 40 minutes when the heating treatment is performed on a hot plate, and 10 to 80 minutes when the heating treatment is performed in an oven.
  • This heating treatment causes a curing reaction to proceed, and a cured product having a desired pattern can be formed on a substrate.
  • the shape of the pattern of the cured product is not particularly limited, and examples thereof include a line and space pattern, a dot pattern, a hole pattern, and a lattice pattern.
  • the cured product obtained from this composition can also be used as a dry etching resist.
  • dry etching processes such as ashing, plasma etching, and ozone etching can be used as the etching process.
  • the organic EL element of the present disclosure includes a cured product formed using the present composition.
  • the type of the cured product is not particularly limited, but examples thereof include a planarizing film, a partition wall, or an interlayer insulating film that is included in an organic EL element.
  • the present composition is particularly suitable as a planarizing film-forming composition for an organic EL element, that is, a planarizing film-forming composition for forming a planarizing film that is an insulating layer that covers steps of TFT circuits and wirings formed on a substrate, since the present composition can provide a cured product that exhibits excellent bending resistance.
  • the cured product formed using this composition is poorly permeable and has excellent bending resistance, and is therefore suitable for use as an organic EL element for flexible displays.
  • Examples of flexible displays include foldable displays that can be folded, bendable displays that can be folded back or bent, and rollable displays that can be rolled up.
  • the cured product formed using this composition is particularly suitable as a cured product to be provided in an organic EL element for a bendable display, and is particularly suitable as a planarizing film for a bendable organic EL display.
  • a curable composition for an organic EL device comprising: [A] a polymer including a structural unit derived from a compound having an acidic group; and [B] a photosensitive compound, wherein the polymer [A] includes a structural unit (I) derived from an aromatic vinyl compound and a structural unit (II) derived from a maleimide compound, and the compound having an acidic group includes at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds, and the total proportion of the structural unit (I) and the structural unit (II) in the polymer [A] is 70 mol % or more based on all structural units of the polymer [A].
  • [Means 3] The curable composition for an organic EL device according to [Means 1] or [Means 2], wherein the polymer [A] has a crosslinkable functional group.
  • [Means 4] The curable composition for an organic EL device according to [Means 3], wherein the crosslinkable functional group is at least one selected from the group consisting of an oxiranyl group, an oxetanyl group, a thiirane group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and a protected isocyanate group.
  • the crosslinkable functional group is at least one selected from the group consisting of an oxiranyl group, an oxetanyl group, a thiirane group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and a protected isocyanate group.
  • [Means 5] The curable composition for an organic EL device according to [Means 3] or [Means 4], wherein the polymer [A] is at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds, and further contains a structural unit derived from a compound having a crosslinkable functional group.
  • [Means 6] The curable composition for an organic EL device according to any one of [Means 1] to [Means 5], further comprising [C] a compound having two or more crosslinkable functional groups (excluding the polymer [A]).
  • [Means 7] The curable composition for an organic EL device according to [Means 6], wherein the compound [C] has two or more of at least one selected from the group consisting of an oxiranyl group, an oxetanyl group, a thiirane group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and a protected isocyanate group.
  • [Means 8] The curable composition for an organic EL device according to any one of [Means 1] to [Means 7], wherein the photosensitive compound [B] is a quinone diazide compound.
  • [Measures 9] The curable composition for an organic EL device according to any one of [Measures 1] to [Measures 7], wherein the photosensitive compound [B] is a photoacid generator.
  • [Means 10] The curable composition for organic EL devices according to any one of [Means 1 ] to [Means 9 ], wherein the compound having an acidic group is at least one selected from the group consisting of a compound having a phenolic hydroxyl group, a compound having a group "* 1 -C(R 1 )(R 2 )-OH" (wherein R 1 and R 2 are each independently a cyano group or a fluoroalkyl group having 1 to 3 carbon atoms, and "* 1 " represents a bond to an aromatic ring), and maleimide.
  • [Means 11] A method for producing a cured product for an organic EL device, comprising: forming a coating film using the curable composition according to any one of [Means 1] to [Means 10]; irradiating at least a part of the coating film with radiation; developing the coating film after irradiation with radiation; and heating the developed coating film.
  • [Means 12] A cured product for an organic EL device formed using the curable composition according to any one of [Means 1] to [Means 10].
  • the polymer of [Means 15] above is suitable as a polymer component of a curable composition for forming a cured product for an organic EL device (preferably a planarizing film, an interlayer insulating film, or a partition wall). That is, the polymer of [Means 15] above is a suitable embodiment of the polymer [A] contained in the curable composition for an organic EL device of the present disclosure.
  • the specific configuration and manufacturing method of the polymer are as described above.
  • GPC column Shimadzu GLC's GPC-KF-801, GPC-KF-802, GPC-KF-803, and GPC-KF-804 combined
  • Mobile phase Tetrahydrofuran (in the case of styrene-maleimide resin), or N,N-dimethylformamide solution containing lithium bromide and phosphoric acid (in the case of polyimide)
  • Sample injection volume 100 ⁇ L
  • ⁇ Detector Differential refractometer
  • ⁇ Standard material Monodisperse polystyrene
  • ⁇ Monomer having a crosslinkable functional group aromatic vinyl compound, maleimide compound: M2>> MI-4, OL-4 to OL-7: Compounds represented by the following formulas (MI-4), (OL-4) to (OL-7), respectively.
  • ⁇ Monomer having an acid-dissociable group aromatic vinyl compound, maleimide compound: M3>> MI-5, MI-6, OL-8: Compounds represented by the following formulae (MI-5), (MI-6), and (OL-8), respectively.
  • MMA methyl methacrylate
  • MAA methacrylic acid
  • GMA glycidyl methacrylate MI-7 to MI-10
  • OL-9 to OL-13 compounds represented by the following formulas (MI-7) to (MI-10), (OL-9) to (OL-13), respectively.
  • polymer P-1 styrene-maleimide resin
  • Mw of the obtained polymer P-1 was 41,300, and the molecular weight distribution (Mw/Mn) was 2.52.
  • Synthesis Example 19 Synthesis of Polymer P-19 (Polyimide) 100 parts by mole of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane was dissolved in N-methyl-2-pyrrolidone (NMP), and 100 parts by mole of 4,4′-oxydiphthalic anhydride was added thereto and reacted at 40° C. for 8 hours to obtain a polyamic acid solution containing 20% by mass of polyamic acid. Next, NMP was added to the obtained polyamic acid solution to make the concentration of polyamic acid 10% by mass, and pyridine and acetic anhydride were added thereto, and a dehydration ring-closing reaction was carried out at 90° C. for 4 hours.
  • NMP N-methyl-2-pyrrolidone
  • the solvent in the system was replaced with fresh NMP to obtain a polyimide solution containing 15% by mass of polyimide with an imidization rate of about 70%.
  • the obtained polyimide solution was added to methanol, and the precipitated solid was washed with an aqueous methanol solution.
  • the obtained solid was dried to obtain polymer P-19 (polyimide).
  • the Mw of the obtained polymer P-19 was 32,000, and the molecular weight distribution (Mw/Mn) was 2.21.
  • Curable Composition R-1 100 parts by mass of polymer P-1 as a resin, 20 parts by mass of a quinone diazide compound (condensate of 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1,2-naphthoquinone diazide-5-sulfonic acid chloride (2.0 mol)) as a photosensitive compound, 5 parts by mass of an adhesion assistant ( ⁇ -glycidoxypropyltrimethoxysilane), and 0.5 parts by mass of a surfactant ("FTX-218", manufactured by NEOS Corporation) were mixed.
  • a quinone diazide compound condensate of 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1,2-naphth
  • the minimum exposure dose capable of forming a 10 ⁇ m wide line and space pattern was measured, and the measured value was rated as "excellent ( ⁇ )” when it was less than 1000 J/m 2 , "good ( ⁇ )” when it was 1000 J/m 2 or more and less than 2000 J/m 2 , "fair ( ⁇ )” when a 10 ⁇ m wide line and space pattern was obtained but the minimum exposure dose was 2000 J/m 2 or more, and "not good ( ⁇ )” when a 10 ⁇ m wide line and space pattern was not obtained.
  • the sensitivity was evaluated as "good ( ⁇ )” in this example.
  • the transmittance of light with a wavelength of 380 nm was evaluated as "good ( ⁇ )" when it was 70% or more, “acceptable ( ⁇ )” when it was 50% or more and less than 70%, and “not acceptable ( ⁇ )” when it was less than 50%. As a result, in this example, it was evaluated as "good ( ⁇ )".
  • the curable composition R-1 was applied onto a silicon substrate, and then prebaked on a hot plate at 90 ° C. for 2 minutes to form a coating film with a thickness of 3.0 ⁇ m.
  • a proximity exposure machine (Canon's "MA-1200" (ghi line mixed)) was used to irradiate the entire substrate with 3000 J / m 2 light, and then the silicon substrate was heated at 250 ° C. for 60 minutes in a clean oven substituted with nitrogen to form a cured film.
  • the 1% thermal weight loss temperature of the formed cured film was measured under air using a differential thermal / thermogravimetric simultaneous measurement device (Hitachi High-Tech Science's "TG / DTA220U”).
  • the heat resistance was evaluated as “good ( ⁇ )” when the 1% weight loss temperature was 300 ° C. or more, “acceptable ( ⁇ )” when the temperature was 250 ° C. or more and less than 300 ° C., and "not acceptable ( ⁇ )” when the temperature was less than 250 ° C.
  • a proximity exposure machine (Canon's "MA-1200" (ghi line mixture)) was used to irradiate the entire surface of the substrate with light of 3000 J/ m2 , and then the substrate was heated at 250°C for 60 minutes in a nitrogen-substituted clean oven to form a cured film (insulating film) on the substrate.
  • a Pt/Pd electrode pattern was formed on the insulating film by vapor deposition to prepare a sample for measuring dielectric constant.
  • the dielectric constant was measured by the CV method at a frequency of 10 kHz using an LCR meter (HP16451B electrode and HP4284A precision LCR meter manufactured by Hewlett-Packard Japan, LLC).
  • the dielectric constant was evaluated as follows: when the dielectric constant was 3.0 or less, it was rated as "excellent ( ⁇ )", when it was more than 3.0 and less than 3.2, it was rated as "good ( ⁇ )", when it was more than 3.2 and less than 3.5, it was rated as "passable ( ⁇ )", and when it was more than 3.5, it was rated as "unacceptable ( ⁇ )”. As a result, in this example, the dielectric constant was rated as "excellent ( ⁇ )".
  • the curable composition R-1 was applied to a polyimide sheet having a thickness of 25 ⁇ m by spin coating to a film thickness of 10 ⁇ m, and prebaked at 80 ° C. for 1.5 minutes. Next, using a proximity exposure machine (Canon's "MA-1200" (ghi line mixture)), the entire surface of the substrate was irradiated with light of 3000 J / m 2 , and then heated at 250 ° C. for 60 minutes to form a cured film on the polyimide sheet.
  • a proximity exposure machine Canon's "MA-1200" (ghi line mixture)
  • the laminated film of this polyimide sheet and the cured film was placed in the opening of an aluminum cup containing 15 g of distilled water with the surface of the cured film facing inward, and the opening of the aluminum cup was covered so as to be sealed with the laminated film. This was placed in a thermostatic chamber at 50 ° C., and the weight loss of the cup after 150 hours was measured, and the water permeability per unit area was calculated.
  • the permeability was evaluated as follows: if the weight loss value was 500 g/ cm2 or less, it was rated as “good ( ⁇ )", if it was more than 500 g/ cm2 and less than 700 g/ cm2 , it was rated as "passable ( ⁇ )", and if it was more than 700 g/ cm2 , it was rated as "not good ( ⁇ )”. When this value is 500 g/ cm2 or less, the permeability is sufficiently low. As a result, this example was rated as "good ( ⁇ )".
  • the obtained coating film was irradiated with 3000 J / m 2 light on the entire substrate using a proximity exposure machine (Canon's "MA-1200" (ghi line mixing)), and then heated at 250 ° C. for 1 hour in a nitrogen-substituted clean oven to form a cured film on the substrate.
  • the obtained substrate with the cured film was cut into a size of 50 mm long x 50 mm wide. Next, the substrate with the cured film was folded so that the surface on which the cured film was formed was inward and the cured film was in contact with each other, and the substrate was kept in this state for 10 minutes.
  • the folded substrate with the cured film was opened, and the folded part of the surface of the cured film was observed using an optical microscope, and the bending resistance (bending resistance) was evaluated based on the change in appearance.
  • the evaluation criteria were as follows: when there were no cracks in the cured film, it was rated as "good ( ⁇ )”, when there were cracks in a part of the cured film, it was rated as “passable ( ⁇ )”, and when there were cracks in the entire cured film, it was rated as "unacceptable ( ⁇ )”. As a result, in this example, it was rated as "passable ( ⁇ )".
  • a development process was performed at 25°C for 60 seconds using a developer (a 2.38% by mass aqueous solution of tetramethylammonium hydroxide), and then washed with running ultrapure water for 1 minute. At this time, the minimum exposure dose capable of forming a 10 ⁇ m contact hole pattern was measured.
  • a proximity exposure machine Canon's "MA-1200" (mixed ghi line)
  • the entire surface of the substrate was irradiated with light of 3000 J/ m2 , and then heated at 250°C for 1 hour in a nitrogen-substituted clean oven to form a cured film (also referred to as a "patterned cured resin layer”) having contact holes on the glass substrate.
  • an Al film having a thickness of 100 nm was formed on the patterned cured resin layer by DC sputtering using an Al target through a metal mask having a predetermined pattern.
  • An ITO film having a thickness of 20 nm was formed on the Al film by RF sputtering using an ITO target. In this way, an anode layer consisting of an Al film and an ITO film was formed.
  • a coating film was formed on the anode layer using a resist material ("OPTOMER NN803" manufactured by JSR Corporation), and a series of treatments including i-line (wavelength 365 nm) irradiation, development, washing with running water, air drying, and heat treatment were performed to form a pixel-defining layer having a part of the anode layer as an opening region.
  • the substrate on which the anode and the pixel defining layer were formed was moved to a vacuum deposition chamber, and the deposition chamber was evacuated to 1E-4 Pa.
  • molybdenum oxide (MoOx) having hole injection properties was deposited on the substrate by a resistance heating deposition method using a deposition mask having a predetermined pattern under conditions of a deposition rate of 0.004 to 0.005 nm/sec, thereby forming a hole injection layer with a thickness of 1 nm.
  • a film of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD) having hole transport properties was formed by resistance heating deposition under the same exhaust conditions as those for the hole injection layer, using a deposition mask with a predetermined pattern, to form a hole transport layer with a thickness of 35 nm.
  • the film formation rate was 0.2 to 0.3 nm/sec.
  • an alkylate complex of tris(8-quinolinolato)aluminum was deposited as a green light emitting material by resistance heating deposition under the same deposition conditions as those for the hole transport layer, using a deposition mask with a predetermined pattern, to form a light emitting layer with a thickness of 35 nm.
  • the deposition rate was 0.5 nm/sec or less.
  • lithium fluoride was deposited by resistance heating deposition under the same exhaust conditions as those for the hole injection layer, using a deposition mask with a predetermined pattern, to form a film of 0.8 nm in thickness at a deposition rate of 0.004 nm/sec or less.
  • Mg and Ag were simultaneously deposited on the electron injection layer by resistance heating deposition under the same exhaust conditions as those for the hole injection layer, using a deposition mask with a predetermined pattern, to form a first cathode layer with a thickness of 5 nm.
  • the deposition rate was 0.5 nm/sec or less.
  • the substrate was transferred to another film formation chamber (sputtering chamber), and a second cathode layer having a thickness of 100 nm was formed on the first cathode layer by RF sputtering using a mask having a predetermined pattern and an ITO target.
  • sputtering chamber a film formation chamber
  • a second cathode layer having a thickness of 100 nm was formed on the first cathode layer by RF sputtering using a mask having a predetermined pattern and an ITO target.
  • an organic EL element was formed on the substrate, and an organic EL element substrate was obtained.
  • a thin film sealing layer was formed by the following procedure.
  • the organic EL element substrate was transferred to a film-forming chamber (sputtering chamber), and an inorganic sealing layer (SiNx film) having a thickness of 100 nm was formed on the cathode layer by RF sputtering using a SiNx target using a mask having a predetermined pattern.
  • the organic EL element substrate was then transferred to a glove box substituted with N2 , and a curable composition containing an epoxy compound, an oxetane compound, and a polymerization initiator was discharged in a predetermined pattern by a piezoelectric inkjet printer.
  • an exposure dose of 1000 mJ/ cm2 was applied using a UniJetE110ZHD 395 nm LED lamp manufactured by Ushio Inc., and the formed curable composition was cured to form an organic sealing layer having a thickness of 10 ⁇ m.
  • the organic EL element substrate was transferred to a film-forming chamber (sputtering chamber), and an inorganic sealing layer (SiNx film) having a thickness of 100 nm was formed on the organic sealing layer by RF sputtering using a mask having a predetermined pattern using a SiNx target. In this manner, an organic EL element substrate with a sealing layer was obtained.
  • the obtained organic EL element substrate with the patterned cured resin layer was subjected to reliability evaluation by the following procedure.
  • the organic EL element substrate with the patterned cured resin layer was stored in an oven set at 60°C and humidity of 90% for 300 hours, and then a current was passed between the anode layer and the cathode layer of the organic EL element at a density of 20 mA/ cm2 from a constant current source via an organic EL lighting jig to light the organic EL element.
  • the luminance of the organic EL element in the front direction was measured by a luminance meter.
  • the lighting of the organic EL element and the measurement of the front brightness by a luminance meter were performed on the organic EL element substrate with the patterned cured resin layer and the reference organic EL element substrate without the patterned cured resin layer.
  • the less impurities generated from the patterned cured resin layer and the less moisture that permeated the patterned cured resin layer and the less the impact of the impurities and moisture on the organic EL element the closer the front brightness of the organic EL element substrate with the sealing layer is to the front brightness of the reference organic EL element substrate.
  • the reliability of the organic EL element was evaluated as "good ( ⁇ )" when the organic EL element substrate with the sealing layer was lit with a brightness of 80% or more compared to the front brightness of the reference organic EL element substrate, "passable ( ⁇ )” when it was lit with a brightness of 50% or more and less than 80%, and "not good ( ⁇ )” when it was not lit normally. As a result, in this example, it was evaluated as "good ( ⁇ )".
  • Example 15 to 17 Curable compositions R-15 to R-17 were prepared with the same solvent composition and solid content concentration as in Example 1, except that the blending composition was changed as shown in Table 2. In addition, the same types and amounts of adhesion assistants and surfactants as in Example 1 were blended in Examples 15 to 17. A crosslinking agent was blended in Example 16. In addition, various evaluations were performed in the same manner as in Example 1 using each curable composition. However, in preparing the patterned cured resin layer of the organic EL element substrate, in Examples 15 to 17, after the development process and running water washing, the substrate was not irradiated with 3000 J/m 2 light using a proximity exposure machine (Canon's "MA-1200" (ghi line mixing)) but was heated for 1 hour at 250 ° C. in a nitrogen-substituted clean oven. The evaluation results are shown in Table 2. The units of values in Table 2 are parts by mass.
  • NQD quinone diazide compound (condensation product of 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1,2-naphthoquinone diazide-5-sulfonic acid chloride (2.0 mol))
  • CAR 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate
  • Add-1 to Add-6 Compounds represented by the following formulas (Add-1) to (Add-6), respectively
  • the curable compositions of Examples 1 to 21 were evaluated as "excellent”, “good” or “fair” in sensitivity, transmittance, heat resistance, dielectric constant, poor water permeability, bending resistance and element reliability, and various properties were improved in a well-balanced manner.
  • the heat resistance and bending resistance were evaluated as good.
  • Comparative Examples 1 and 4 which used polymers in which the total ratio of structural units (I) and structural units (II) was less than 70 mol %, were either "passable” or “failable” in heat resistance, dielectric constant, water impermeability, and element reliability, and were generally inferior to Examples 1 to 21.
  • Comparative Example 3 which used polyimide as the polymer component, did not have sufficient sensitivity, transmittance, and dielectric constant
  • Comparative Example 6 which used a copolymer of cycloolefin and a styrene compound, was rated “passable” in heat resistance, dielectric constant, and water impermeability, but “failable” in bending resistance and element reliability.
  • Comparative Examples 2 and 5 were not photosensitive and could not be used as photosensitive compositions.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

Disclosed is a curable composition for organic EL elements, the curable composition containing (A) a polymer that comprises a structural unit derived from a compound having an acidic group, and (B) a photosensitive compound, wherein: the polymer (A) comprises a structural unit (I) that is derived from an aromatic vinyl compound and a structural unit (II) that is derived from a maleimide compound, while containing, as the compound having an acidic group, at least one compound that is selected from the group consisting of an aromatic vinyl compound and a maleimide compound; and the ratio of the sum of the structural unit (I) and the structural unit (II) in the polymer (A) is 70% by mole or more relative to all structural units in the polymer (A).

Description

有機EL素子用硬化性組成物、有機EL素子用硬化物及びその製造方法、有機EL素子、並びに重合体CURABLE COMPOSITION FOR ORGANIC EL DEVICE, CURED PRODUCT FOR ORGANIC EL DEVICE AND METHOD FOR PRODUCING SAME, ORGANIC EL DEVICE, AND POLYMER

[関連出願の相互参照]
 本出願は、2022年11月10日に出願された日本特許出願番号2022-180340号に基づく優先権を主張し、その全体が参照により本明細書に組み込まれる。
 本開示は、有機EL素子用硬化性組成物、有機EL素子用硬化物及びその製造方法、有機EL素子、並びに重合体に関する。
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to Japanese Patent Application No. 2022-180340, filed on November 10, 2022, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a curable composition for an organic EL device, a cured product for an organic EL device and a method for producing the same, an organic EL device, and a polymer.

 有機エレクトロルミネッセンス素子(有機EL素子)は、陽極、有機発光層及び陰極を含む積層構造を有する発光素子である。有機EL素子は、表示装置や照明装置等の各種用途において広く実用化されている。 An organic electroluminescence element (organic EL element) is a light-emitting element that has a layered structure including an anode, an organic light-emitting layer, and a cathode. Organic EL elements are widely used in a variety of applications, such as display devices and lighting devices.

 有機EL素子には、平坦化膜や隔壁、層間絶縁膜等の絶縁性の硬化物が設けられる。近年では、これらの硬化物を、重合体成分と感光性化合物とを含む硬化性組成物を用いて形成することが行われている(例えば、特許文献1参照)。具体的には、硬化性組成物により形成された塗膜に対し、パターンを有するマスクを介して放射線照射を行った後に現像処理を施し、続いて加熱処理を行い熱硬化させることにより、パターン形成された硬化膜を得ることができる。 Organic EL elements are provided with insulating cured products such as planarizing films, partition walls, and interlayer insulating films. In recent years, these cured products have been formed using curable compositions containing a polymer component and a photosensitive compound (see, for example, Patent Document 1). Specifically, a coating film formed from the curable composition is irradiated with radiation through a mask having a pattern, and then developed, and then heat-cured by heating to obtain a patterned cured film.

特開2021-157173号公報JP 2021-157173 A

 有機EL素子が備える有機発光層は、水分や酸素との接触により劣化しやすく、例えば長期間の駆動に伴い素子に浸入した水分によって部分的に発光しないエリア(ダークスポット)が形成されたり、水分や酸素との接触によって発光特性が低下したりすることが懸念される。そのため、有機EL素子に設けられる硬化物には水分を透過しにくいこと(以下、「難透水性」ともいう)が求められる。 The organic light-emitting layer in an organic EL element is prone to deterioration when it comes into contact with moisture or oxygen. For example, there are concerns that moisture may seep into the element over a long period of operation, resulting in the formation of areas that do not emit light (dark spots), and that contact with moisture or oxygen may cause a deterioration in the light-emitting characteristics. For this reason, the cured material provided in an organic EL element is required to be resistant to the passage of moisture (hereinafter referred to as "low water permeability").

 また近年では、有機ELディスプレイ(OLED)を搭載するスマートフォン等のデバイスにおいて、樹脂フィルム等の柔軟性のある基材を用いることで、湾曲させたり折り返したりするなど様々な形状に変形可能なフレキシブルディスプレイの適用が検討されている。そこで、有機ELディスプレイが備える有機EL素子用の硬化膜には、フレキシブルディスプレイに対応可能な耐折り曲げ性(以下、「ベンディング耐性」ともいう)を有することが要求されることがある。 In recent years, the use of flexible displays that can be deformed into various shapes, such as by bending or folding, using flexible substrates such as resin films has been considered for devices such as smartphones equipped with organic light-emitting diode (OLED). Therefore, the cured film for the organic EL element in an organic EL display may be required to have bending resistance (hereinafter also referred to as "bending resistance") that can be used with flexible displays.

 更に近年、モバイル式の有機ELディスプレイにおいて、ディスプレイの下にカメラを埋め込む技術(Under Display camera:UDC技術)が検討されており、これに伴い、有機EL素子には、低誘電率化を図りながら、更なる多層配線構造を実現することが求められる。また、素子の製造工程では、硬化膜に高温処理(例えば200℃以上の加熱処理)が施されることがあるため、有機EL素子に適用される硬化膜には、更に耐熱性に優れていることも求められる。特に、近年の有機EL表示装置に対する一層の高精細・高品質化の要求に伴い、有機EL素子においては、高感度でありながら、耐熱性及び高透過率を高度に維持し、低誘電率化を図り、難透水性及びベンディング耐性をバランス良く改善でき、素子信頼性に優れた硬化物を形成することができる有機EL素子用硬化性組成物が求められている。 Furthermore, in recent years, a technology for embedding a camera under the display (Under Display Camera: UDC technology) has been considered for mobile organic EL displays, and as a result, organic EL elements are required to realize a further multilayer wiring structure while achieving a low dielectric constant. In addition, since the cured film may be subjected to high-temperature treatment (e.g., heat treatment at 200°C or higher) during the manufacturing process of the element, the cured film applied to the organic EL element is also required to have excellent heat resistance. In particular, with the recent demand for even higher definition and quality for organic EL display devices, there is a demand for curable compositions for organic EL elements that are highly sensitive while maintaining high heat resistance and high transmittance, achieving a low dielectric constant, and providing a well-balanced improvement in poor permeability and bending resistance, and that can form a cured product with excellent element reliability.

 本開示は上記課題に鑑みなされたものであり、高感度でありながら、低誘電率かつ高透過率であり、かつ耐熱性、難透水性及びベンディング耐性に優れた硬化物を形成でき、しかも信頼性の高い有機EL素子を得ることができる有機EL素子用硬化性組成物を提供することを主たる目的とする。 The present disclosure has been made in consideration of the above problems, and has as its main object to provide a curable composition for organic EL elements that can form a cured product that has high sensitivity, low dielectric constant, high transmittance, and excellent heat resistance, low water permeability, and bending resistance, and can provide a highly reliable organic EL element.

 本発明者らは、有機EL素子の硬化物を構成する重合体成分として芳香族ビニル化合物とマレイミド化合物との共重合体を用いることに着目し、特定の重合体を含む硬化性組成物とすることにより上記課題を解決できることを見出した。すなわち、本開示によれば、以下の有機EL素子用硬化性組成物、有機EL素子用硬化物及びその製造方法、有機EL素子並びに重合体が提供される。 The present inventors have focused on using a copolymer of an aromatic vinyl compound and a maleimide compound as the polymer component constituting the cured material of an organic EL element, and have found that the above-mentioned problems can be solved by forming a curable composition containing a specific polymer. That is, according to the present disclosure, the following curable composition for an organic EL element, a cured material for an organic EL element and a method for producing the same, an organic EL element, and a polymer are provided.

[1] [A]酸性基を有する化合物に由来する構造単位を含む重合体と、[B]感光性化合物と、を含有し、前記[A]重合体は、芳香族ビニル化合物に由来する構造単位(I)と、マレイミド化合物に由来する構造単位(II)とを含み、前記酸性基を有する化合物として、芳香族ビニル化合物及びマレイミド化合物よりなる群から選択される少なくとも1種を含み、前記[A]重合体における前記構造単位(I)及び前記構造単位(II)の合計の割合が、前記[A]重合体の全構造単位に対して70モル%以上である、有機EL素子用硬化性組成物。 [1] A curable composition for organic EL devices, comprising [A] a polymer containing a structural unit derived from a compound having an acidic group, and [B] a photosensitive compound, the [A] polymer containing a structural unit (I) derived from an aromatic vinyl compound and a structural unit (II) derived from a maleimide compound, the compound having an acidic group containing at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds, and the total proportion of the structural unit (I) and the structural unit (II) in the [A] polymer is 70 mol % or more relative to the total structural units of the [A] polymer.

[2] 上記[1]の硬化性組成物を用いて塗膜を形成する工程と、前記塗膜の少なくとも一部に放射線を照射する工程と、放射線を照射した後の前記塗膜を現像する工程と、現像された前記塗膜を加熱する工程と、を含む、有機EL素子用硬化物の製造方法。 [2] A method for producing a cured material for an organic electroluminescence device, comprising the steps of forming a coating film using the curable composition of [1] above, irradiating at least a portion of the coating film with radiation, developing the coating film after irradiation with radiation, and heating the developed coating film.

[3] 上記[1]の硬化性組成物を用いて形成された有機EL素子用硬化物。
[4] 上記[3]の硬化物を備える有機EL素子。
[3] A cured product for an organic EL device formed using the curable composition according to [1] above.
[4] An organic electroluminescence device comprising the cured product according to [3] above.

[5] 芳香族ビニル化合物に由来する構造単位と、マレイミド化合物に由来する構造単位とを含む重合体であって、芳香族ビニル化合物に由来する構造単位及びマレイミド化合物に由来する構造単位の合計の割合が、前記重合体の全構造単位に対して70モル%以上であり、酸性基を有する化合物に由来する構造単位と、架橋性官能基を有する化合物に由来する構造単位とを含み、かつ、前記酸性基を有する化合物及び前記架橋性官能基を有する化合物が、芳香族ビニル化合物及びマレイミド化合物よりなる群から選択される少なくとも1種であり、前記酸性基を有する化合物が、フェノール性水酸基を有する化合物、基「*-C(R)(R)-OH」を有する化合物(ただし、R及びRは、それぞれ独立して、シアノ基又は炭素数1~3のフルオロアルキル基である。「*」は芳香環との結合手を表す。)、及びマレイミドよりなる群から選択される少なくとも1種である、重合体。 [5] A polymer comprising a structural unit derived from an aromatic vinyl compound and a structural unit derived from a maleimide compound, wherein the total ratio of the structural units derived from the aromatic vinyl compound and the structural units derived from the maleimide compound is 70 mol % or more based on all structural units of the polymer, the polymer comprises a structural unit derived from a compound having an acidic group and a structural unit derived from a compound having a crosslinkable functional group, and the compound having the acidic group and the compound having the crosslinkable functional group are at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds, and the compound having the acidic group is at least one selected from the group consisting of a compound having a phenolic hydroxyl group, a compound having a group "* 1 -C( R1 )( R2 )-OH" (wherein R1 and R2 are each independently a cyano group or a fluoroalkyl group having 1 to 3 carbon atoms, and "* 1 " represents a bond to an aromatic ring), and a maleimide.

 本開示の有機EL素子用硬化性組成物によれば、高感度でありながら、低誘電率かつ高透過率であり、かつ耐熱性、難透水性及びベンディング耐性に優れた硬化物を形成できる。また、本開示の有機EL素子用硬化性組成物によれば、信頼性の高い有機EL素子を得ることができる。 The disclosed curable composition for organic EL devices can form a cured product that has high sensitivity, low dielectric constant, high transmittance, and excellent heat resistance, low water permeability, and bending resistance. In addition, the disclosed curable composition for organic EL devices can provide a highly reliable organic EL device.

 以下、実施態様に関連する事項について詳細に説明する。なお、本明細書において、「~」を用いて記載された数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む意味である。「構造単位」とは、主鎖構造を主として構成する単位であって、少なくとも主鎖構造中に2個以上含まれる単位をいう。  Below, matters related to the embodiments will be explained in detail. In this specification, a numerical range described using "~" means that the numerical range includes the numerical values before and after "~" as the lower and upper limits. A "structural unit" refers to a unit that mainly constitutes the main chain structure, and is a unit that is contained in at least two units in the main chain structure.

 本明細書において、「炭化水素基」は、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基を含む意味である。「鎖状炭化水素基」とは、主鎖に環状構造を含まず、鎖状構造のみで構成された直鎖状炭化水素基及び分岐状炭化水素基を意味する。ただし、鎖状炭化水素基は飽和でも不飽和でもよい。「脂環式炭化水素基」とは、環構造としては脂環式炭化水素の構造のみを含み、芳香環構造を含まない炭化水素基を意味する。ただし、脂環式炭化水素基は脂環式炭化水素の構造のみで構成されている必要はなく、その一部に鎖状構造を有するものも含む。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基を意味する。ただし、芳香族炭化水素基は芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環式炭化水素の構造を含んでいてもよい。なお、脂環式炭化水素基及び芳香族炭化水素基が有する環構造は、炭化水素構造からなる置換基を有していてもよい。「環状炭化水素基」は、脂環式炭化水素基及び芳香族炭化水素基を含む意味である。 In this specification, the term "hydrocarbon group" includes chain-shaped hydrocarbon groups, alicyclic hydrocarbon groups, and aromatic hydrocarbon groups. The term "chain-shaped hydrocarbon group" means a straight-chain hydrocarbon group and a branched hydrocarbon group that do not include a cyclic structure in the main chain and are composed only of a chain structure. However, the chain-shaped hydrocarbon group may be saturated or unsaturated. The term "alicyclic hydrocarbon group" means a hydrocarbon group that includes only an alicyclic hydrocarbon structure as a ring structure and does not include an aromatic ring structure. However, the alicyclic hydrocarbon group does not have to be composed only of an alicyclic hydrocarbon structure, and also includes those that have a chain structure as a part of it. The term "aromatic hydrocarbon group" means a hydrocarbon group that includes an aromatic ring structure as a ring structure. However, the aromatic hydrocarbon group does not have to be composed only of an aromatic ring structure, and may include a chain structure or an alicyclic hydrocarbon structure as a part of it. The ring structure of the alicyclic hydrocarbon group and the aromatic hydrocarbon group may have a substituent composed of a hydrocarbon structure. The term "cyclic hydrocarbon group" includes alicyclic hydrocarbon groups and aromatic hydrocarbon groups.

 「置換又は無置換のp価の炭化水素基(ただし、pは1以上の整数)」の表記は、p価の炭化水素基(すなわち、置換されていないp価の炭化水素基)と、置換基を有する炭化水素基における炭化水素構造部分からp個の水素原子を取り除いた基とを包含する。置換又は無置換のp価の炭化水素基の一例を挙げると、例えばアルキル基やフルオロアルキル基はp=1の場合に該当し、アルカンジイル基やフルオロアルカンジイル基はp=2の場合に該当する。これらのうち、フルオロアルキル基は「置換された1価の炭化水素基」に該当し、フルオロアルカンジイル基は「置換された2価の炭化水素基」に該当する。「置換又は無置換の」が付された他の基についても同様である。 The expression "substituted or unsubstituted p-valent hydrocarbon group (where p is an integer of 1 or more)" includes p-valent hydrocarbon groups (i.e., unsubstituted p-valent hydrocarbon groups) and groups in which p hydrogen atoms have been removed from the hydrocarbon structural portion of a substituted hydrocarbon group. Examples of substituted or unsubstituted p-valent hydrocarbon groups include alkyl groups and fluoroalkyl groups where p=1, and alkanediyl groups and fluoroalkanediyl groups where p=2. Of these, fluoroalkyl groups are "substituted monovalent hydrocarbon groups" and fluoroalkanediyl groups are "substituted divalent hydrocarbon groups." The same applies to other groups to which "substituted or unsubstituted" is added.

 本明細書において、「(メタ)アクリル」は、「アクリル」及び「メタクリル」を包含する意味である。「(メタ)アクリロイル」は、「アクリロイル」及び「メタクリロイル」を包含する意味である。本明細書では、オキシラニル基及びオキセタニル基を包含して「エポキシ基」ともいう。 In this specification, "(meth)acrylic" includes "acrylic" and "methacrylic". "(meth)acryloyl" includes "acryloyl" and "methacryloyl". In this specification, it is also referred to as "epoxy group" to include oxiranyl group and oxetanyl group.

《有機EL素子用硬化性組成物》
 本開示の有機EL素子用硬化性組成物(以下、「本組成物」ともいう)は、有機EL素子に設けられる絶縁性の硬化物を形成するために用いられる。本組成物は、[A]酸性基を有する化合物に由来する構造単位を含む重合体(以下、「[A]重合体」ともいう)と、[B]感光性化合物と、を含有する。以下、本組成物に含まれる各成分、及び必要に応じて配合されるその他の成分について詳しく説明する。なお、各成分については特に言及しない限り、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<<Curable composition for organic EL device>>
The curable composition for organic EL devices of the present disclosure (hereinafter also referred to as "the composition") is used to form an insulating cured product to be provided in an organic EL device. The composition contains a polymer (hereinafter also referred to as "polymer [A]") containing a structural unit derived from a compound having an acidic group [A], and a photosensitive compound [B]. Each component contained in the composition and other components blended as necessary will be described in detail below. Note that, unless otherwise specified, each component may be used alone or in combination of two or more.

<[A]重合体>
 [A]重合体は、芳香族ビニル化合物に由来する構造単位(I)と、マレイミド化合物に由来する構造単位(II)とを含む共重合体である。[A]重合体において、構造単位(I)及び構造単位(II)の合計の割合は、[A]重合体の全構造単位に対して70モル%以上である。構造単位(I)及び構造単位(II)の合計の割合が重合体の全構造単位に対して70モル%未満であると、硬化性組成物より得られる硬化物の耐熱性及び難透水性が十分でなく、また硬化物の誘電率が高くなりすぎる傾向がある。耐熱性及び難透水性に優れ、かつ誘電率が十分に低い硬化物を得る観点から、[A]重合体における構造単位(I)及び構造単位(II)の合計の割合は、[A]重合体の全構造単位に対して、75モル%以上が好ましく、80モル%以上がより好ましく、85モル%以上が更に好ましく、90モル%以上がより更に好ましい。
<Polymer (A)>
The polymer [A] is a copolymer containing a structural unit (I) derived from an aromatic vinyl compound and a structural unit (II) derived from a maleimide compound. In the polymer [A], the total ratio of the structural unit (I) and the structural unit (II) is 70 mol% or more based on the total structural units of the polymer [A]. If the total ratio of the structural unit (I) and the structural unit (II) is less than 70 mol% based on the total structural units of the polymer, the heat resistance and water impermeability of the cured product obtained from the curable composition are insufficient, and the dielectric constant of the cured product tends to be too high. In order to obtain a cured product having excellent heat resistance and water impermeability and a sufficiently low dielectric constant, the total ratio of the structural unit (I) and the structural unit (II) in the polymer [A] is preferably 75 mol% or more, more preferably 80 mol% or more, even more preferably 85 mol% or more, and even more preferably 90 mol% or more based on the total structural units of the polymer [A].

 [A]重合体において、芳香族ビニル化合物及びマレイミド化合物はランダムに配置されていてもよく、交互に配置されていてもよい。本組成物により得られる硬化物の低誘電率化、高透過率化、耐熱性及び難透水性の改善効果を十分に得るとともに、素子信頼性を優れたものとする観点から、[A]重合体における構造単位(I)と構造単位(II)とのモル比率は、構造単位(I)/構造単位(II)=60/40~40/60であることが好ましく、58/42~42/58であることがより好ましく、56/44~44/56であることが更に好ましい。 In the polymer [A], the aromatic vinyl compound and the maleimide compound may be arranged randomly or alternately. From the viewpoint of obtaining a sufficient effect of improving the low dielectric constant, high transmittance, heat resistance, and water impermeability of the cured product obtained from this composition, and of achieving excellent device reliability, the molar ratio of the structural unit (I) to the structural unit (II) in the polymer [A] is preferably structural unit (I)/structural unit (II) = 60/40 to 40/60, more preferably 58/42 to 42/58, and even more preferably 56/44 to 44/56.

 なお、[A]重合体は、芳香族ビニル化合物及びマレイミド化合物とは異なる単量体(例えば、(メタ)アクリル化合物、ビニル化合物、ビニルエーテル化合物、共役ジエン化合物、シクロオレフィン)に由来する構造単位(III)を更に含んでいてもよい。[A]重合体における構造単位(III)の割合は、[A]重合体の全構造単位に対して、30モル%以下であり、25モル%以下が好ましく、20モル%以下がより好ましく、15モル%以下が更に好ましく、10モル%以下がより更に好ましい。 The polymer [A] may further contain a structural unit (III) derived from a monomer (e.g., a (meth)acrylic compound, a vinyl compound, a vinyl ether compound, a conjugated diene compound, a cycloolefin) different from the aromatic vinyl compound and the maleimide compound. The proportion of the structural unit (III) in the polymer [A] is 30 mol % or less, preferably 25 mol % or less, more preferably 20 mol % or less, even more preferably 15 mol % or less, and even more preferably 10 mol % or less, based on the total structural units of the polymer [A].

(酸性基を有する化合物に由来する構造単位)
 [A]重合体は、酸性基を有する化合物に由来する構造単位(以下、「構造単位(A1)」ともいう)を含む。[A]重合体が構造単位(A1)を含むことにより、アルカリ現像液への溶解性(アルカリ可溶性)を高めたり、硬化反応性を高めたりすることができる。なお、本明細書において「アルカリ可溶」とは、2.38質量%濃度のテトラメチルアンモニウムヒドロキシド水溶液等のアルカリ水溶液に溶解することを意味する。
(Structural unit derived from a compound having an acidic group)
The polymer [A] contains a structural unit derived from a compound having an acidic group (hereinafter, also referred to as "structural unit (A1)"). When the polymer [A] contains the structural unit (A1), it is possible to increase the solubility in an alkaline developer (alkali solubility) and to increase the curing reactivity. In this specification, "alkali soluble" means that the polymer is soluble in an alkaline aqueous solution such as a 2.38% by mass concentration aqueous solution of tetramethylammonium hydroxide.

 構造単位(A1)は、酸性基を有する限り特に限定されない。構造単位(A1)の好ましい例としては、フェノール性水酸基を有する構造単位、基「*-C(R)(R)-OH」を有する化合物(ただし、R及びRは、それぞれ独立して、シアノ基又は炭素数1~3のフルオロアルキル基である。「*」は芳香環との結合手を表す。以下同じ。)、カルボキシ基を有する構造単位、スルホン酸基を有する構造単位、スルホンアミド基を有する構造単位、ホスホン酸基を有する構造単位、マレイミドに由来する構造単位等が挙げられる。硬化物の低誘電率化を十分に図ることができる点において、構造単位(A1)はこれらの中でも、フェノール性水酸基を有する化合物、基「*-C(R)(R)-OH」を有する化合物及びマレイミドよりなる群から選択される少なくとも1種に由来する構造単位であることが好ましい。なお、本明細書において「フェノール性水酸基」とは、芳香環(例えば、ベンゼン環、ナフタレン環、アントラセン環等)に直接結合するヒドロキシ基を意味する。 The structural unit (A1) is not particularly limited as long as it has an acidic group. Preferred examples of the structural unit (A1) include a structural unit having a phenolic hydroxyl group, a compound having a group "* 1 -C(R 1 )(R 2 )-OH" (wherein R 1 and R 2 are each independently a cyano group or a fluoroalkyl group having 1 to 3 carbon atoms. "* 1 " represents a bond to an aromatic ring. The same applies below), a structural unit having a carboxyl group, a structural unit having a sulfonic acid group, a structural unit having a sulfonamide group, a structural unit having a phosphonic acid group, and a structural unit derived from maleimide. In terms of being able to sufficiently reduce the dielectric constant of the cured product, the structural unit (A1) is preferably a structural unit derived from at least one selected from the group consisting of a compound having a phenolic hydroxyl group, a compound having a group "* 1 -C(R 1 )(R 2 )-OH", and maleimide. In this specification, the term "phenolic hydroxyl group" refers to a hydroxy group directly bonded to an aromatic ring (for example, a benzene ring, a naphthalene ring, an anthracene ring, etc.).

 [A]重合体は、構造単位(A1)として、芳香族ビニル化合物及びマレイミド化合物よりなる群から選択される少なくとも1種に由来する構造単位(以下、「構造単位(A1-1)」ともいう)を含む。構造単位(A1-1)の具体例としては、下記式(a-1)、式(a-2)又は式(a-3)で表される構造単位が挙げられる。

Figure JPOXMLDOC01-appb-C000001
(式(a-1)~式(a-3)中、R、R、R、R及びRは、互いに独立して、水素原子、メチル基、ヒドロキシメチル基、シアノ基又はトリフルオロメチル基である。Rは、置換若しくは無置換の炭素数1~20の(r1+1)価の炭化水素基、又は、置換若しくは無置換の炭素数2~20の炭化水素基における炭素-炭素結合間に-O-、-CO-、-COO-、-NH-、-CONH-若しくは-S-を含む(r1+1)価の基である。Aは、置換又は無置換の炭素数6~20の(r2+1)価の芳香環基である。X及びXは、互いに独立して、フェノール性水酸基、基「*-C(R)(R)-OH」、カルボキシ基、スルホン酸基、スルホンアミド基又はホスホン酸基である。r1及びr2は、互いに独立して1又は2である。) The polymer [A] contains, as the structural unit (A1), a structural unit derived from at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds (hereinafter also referred to as "structural unit (A1-1)"). Specific examples of the structural unit (A1-1) include structural units represented by the following formula (a-1), formula (a-2), or formula (a-3).
Figure JPOXMLDOC01-appb-C000001
(In formulae (a-1) to (a-3), R 3 , R 4 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a methyl group, a hydroxymethyl group, a cyano group or a trifluoromethyl group. R 5 is a substituted or unsubstituted (r1+1)-valent hydrocarbon group having 1 to 20 carbon atoms, or a (r1+1)-valent group containing -O-, -CO-, -COO-, -NH-, -CONH- or -S- between the carbon-carbon bonds in a substituted or unsubstituted hydrocarbon group having 2 to 20 carbon atoms. A 1 is a substituted or unsubstituted (r2+1)-valent aromatic ring group having 6 to 20 carbon atoms. X 1 and X 2 are each independently a phenolic hydroxyl group, a group "* 1 -C(R 1 )(R 2 ) -OH", a carboxy group, a sulfonic acid group, a sulfonamide group or a phosphonic acid group. r1 and r2 are each independently 1 or 2.

 上記式(a-1)~式(a-3)において、R、R、R、R及びRは、共重合性の観点から、水素原子又はメチル基が好ましい。
 Rが(r1+1)価の炭化水素基である場合、当該(r1+1)価の炭化水素基としては、炭素数1~10の鎖状炭化水素基、炭素数3~20の脂環式炭化水素基、及び炭素数6~20の芳香族炭化水素基等が挙げられる。
In the above formulae (a-1) to (a-3), R 3 , R 4 , R 6 , R 7 and R 8 are preferably a hydrogen atom or a methyl group from the viewpoint of copolymerizability.
When R5 is a (r1+1)-valent hydrocarbon group, examples of the (r1+1)-valent hydrocarbon group include a chain hydrocarbon group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and an aromatic hydrocarbon group having 6 to 20 carbon atoms.

 Rで表される炭素数1~10の(r1+1)価の鎖状炭化水素基としては、炭素数1~10の直鎖状又は分岐状の飽和炭化水素基、及び炭素数1~10の直鎖状又は分岐状の不飽和炭化水素基等が挙げられる。これらのうち、炭素数1~10の直鎖状又は分岐状の飽和炭化水素基が好ましい。 Examples of the (r1+1)-valent chain hydrocarbon group having 1 to 10 carbon atoms represented by R5 include linear or branched saturated hydrocarbon groups having 1 to 10 carbon atoms and linear or branched unsaturated hydrocarbon groups having 1 to 10 carbon atoms. Of these, linear or branched saturated hydrocarbon groups having 1 to 10 carbon atoms are preferred.

 Rで表される炭素数3~20の(r1+1)価の脂環式炭化水素基としては、炭素数3~20の単環の飽和脂環式炭化水素、単環の不飽和脂環式炭化水素又は脂環式多環炭化水素から(r1+1)個の水素原子を除いた基が挙げられる。これら脂環式炭化水素の具体例としては、単環の飽和脂環式炭化水素として、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン及びシクロオクタン等を;単環の不飽和脂環式炭化水素として、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン及びシクロデセン等を;脂環式多環炭化水素として、ビシクロ[2.2.1]ヘプタン(ノルボルナン)、ビシクロ[2.2.2]オクタン、トリシクロ[3.3.1.13,7]デカン(アダマンタン)、テトラシクロ[6.2.1.13,6.02,7]ドデカン等を、それぞれ挙げることができる。 Examples of the (r1+1)-valent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R5 include groups in which (r1+1) hydrogen atoms have been removed from a monocyclic saturated alicyclic hydrocarbon, a monocyclic unsaturated alicyclic hydrocarbon, or an alicyclic polycyclic hydrocarbon having 3 to 20 carbon atoms. Specific examples of these alicyclic hydrocarbons include monocyclic saturated alicyclic hydrocarbons such as cyclobutane, cyclopentane, cyclohexane, cycloheptane, and cyclooctane; monocyclic unsaturated alicyclic hydrocarbons such as cyclopentene, cyclohexene, cycloheptene, cyclooctene, and cyclodecene; and alicyclic polycyclic hydrocarbons such as bicyclo[2.2.1]heptane (norbornane), bicyclo[2.2.2]octane, tricyclo[3.3.1.1 3,7 ]decane (adamantane), and tetracyclo[6.2.1.1 3,6 .0 2,7 ]dodecane.

 Rで表される炭素数6~20の(r1+1)価の芳香族炭化水素基としては、ベンゼン、ナフタレン、アントラセン、インデン及びフルオレン等の芳香環から(r1+1)個の水素原子を除いた基を挙げることができる。 Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms and a valence of (r1+1) represented by R5 include groups in which (r1+1) hydrogen atoms have been removed from an aromatic ring such as benzene, naphthalene, anthracene, indene, and fluorene.

 本組成物により得られる硬化物の耐熱性、ベンディング耐性及び難透水性を高めることができる点や、放射線の照射又は熱付与により架橋点を形成可能な点において、Rで表される基は、これらのうち、置換又は無置換の炭素数6~20の(r1+1)価の芳香族炭化水素基であることが好ましく、置換又は無置換の芳香族炭化水素の環部分から(r1+1)個の水素原子を取り除いた炭素数6~20の(r1+1)価の基(芳香環基)であることがより好ましい。Rで表される基は、中でも、置換又は無置換のベンゼン環又はナフタレン環の環部分から(r1+1)個の水素原子を取り除いた基であることが好ましい。 From the viewpoint of being able to enhance the heat resistance, bending resistance and water impermeability of the cured product obtained from the present composition, and being able to form crosslinking points by irradiation with radiation or application of heat, the group represented by R 5 is preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 20 carbon atoms and having a valence of (r1+1), and more preferably a (r1+1)-valent group (aromatic ring group) having 6 to 20 carbon atoms obtained by removing (r1+1) hydrogen atoms from the ring portion of a substituted or unsubstituted aromatic hydrocarbon. Among these, the group represented by R 5 is preferably a group obtained by removing (r1+1) hydrogen atoms from the ring portion of a substituted or unsubstituted benzene ring or naphthalene ring.

 Aで表される芳香環基は、置換又は無置換の芳香環の環部分から(r2+1)個の水素原子を取り除いた基である。当該芳香環は、ベンゼン環又はナフタレン環が好ましく、ベンゼン環がより好ましい。 The aromatic ring group represented by A 1 is a group in which (r2+1) hydrogen atoms have been removed from the ring portion of a substituted or unsubstituted aromatic ring. The aromatic ring is preferably a benzene ring or a naphthalene ring, and more preferably a benzene ring.

 Rで表される基、又はAで表される芳香環基が環部分に置換基を有する場合、当該置換基としては、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、アシル基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、水酸基、カルボキシ基、シアノ基、ニトロ基等が挙げられる。 When the group represented by R5 or the aromatic ring group represented by A1 has a substituent in the ring portion, examples of the substituent include an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an acyl group, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a hydroxyl group, a carboxy group, a cyano group, a nitro group, etc.

 X及びXは、フェノール性水酸基、基「*-C(R)(R)-OH」又はカルボキシ基が好ましく、より低誘電率の硬化物を得る観点から、フェノール性水酸基又は基「*-C(R)(R)-OH」がより好ましい。 X1 and X2 are preferably a phenolic hydroxyl group, a group "* 1 -C( R1 )( R2 )-OH" or a carboxy group, and from the viewpoint of obtaining a cured product with a lower dielectric constant, a phenolic hydroxyl group or a group "* 1 -C( R1 )( R2 )-OH" is more preferable.

 構造単位(A1-1)の更なる具体例としては、下記式で表される構造単位が挙げられる。

Figure JPOXMLDOC01-appb-C000002
(式中、R41、R42及びR43は、互いに独立して、水素原子、メチル基、ヒドロキシメチル基、シアノ基又はトリフルオロメチル基である。) Further specific examples of the structural unit (A1-1) include structural units represented by the following formulas.
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 41 , R 42 and R 43 are each independently a hydrogen atom, a methyl group, a hydroxymethyl group, a cyano group or a trifluoromethyl group.)

 [A]重合体は、構造単位(A1)として構造単位(A1-1)とは異なる構造単位(以下、「構造単位(A1-2)」ともいう)を更に含んでいてもよい。構造単位(A1-2)を与える単量体としては、構造単位(A1-1)を与える単量体と共重合可能な重合性基と共に酸性基を有する化合物であれば特に限定されない。構造単位(A1-2)を与える単量体としては、例えば、ビニル化合物、(メタ)アクリル化合物が挙げられる。 The polymer [A] may further contain a structural unit (A1) different from the structural unit (A1-1) (hereinafter also referred to as "structural unit (A1-2)"). The monomer that gives the structural unit (A1-2) is not particularly limited as long as it is a compound that has an acidic group as well as a polymerizable group that is copolymerizable with the monomer that gives the structural unit (A1-1). Examples of the monomer that gives the structural unit (A1-2) include vinyl compounds and (meth)acrylic compounds.

 構造単位(A1-2)を与える単量体の具体例としては、カルボキシ基を有する構造単位を与える単量体として、例えば、(メタ)アクリル酸、クロトン酸、4-ビニル安息香酸等の不飽和モノカルボン酸;マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸等の不飽和ジカルボン酸を;スルホン酸基を有する構造単位を与える単量体として、例えば、ビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリロイルオキシエチルスルホン酸等を;フェノール性水酸基を有する構造単位を与える単量体として、例えば、ヒドロキシフェニル(メタ)アクリレート等を、それぞれ挙げることができる。 Specific examples of monomers that give the structural unit (A1-2) include unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, and 4-vinylbenzoic acid that give structural units having a carboxy group; unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, and itaconic acid that give structural units having a sulfonic acid group; vinyl sulfonic acid, (meth)allylsulfonic acid, and (meth)acryloyloxyethylsulfonic acid that give structural units having a phenolic hydroxyl group; and hydroxyphenyl (meth)acrylate that gives structural units having a phenolic hydroxyl group.

 [A]重合体における構造単位(A1)の含有割合は、アルカリ現像液への良好な溶解性を付与する観点から、[A]重合体を構成する全構造単位に対して、12モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上が更に好ましい。一方、構造単位(A1)の含有割合が多すぎると、露光部分及び未露光部分においてアルカリ現像液への溶解性の差が小さくなり、良好なパターン形状が得られにくくなることがある。この観点から、構造単位(A1)の含有割合は、[A]重合体を構成する全構造単位に対して、80モル%以下が好ましく、75モル%以下がより好ましく、70モル%以下が更に好ましい。 The content of the structural unit (A1) in the polymer [A] is preferably 12 mol% or more, more preferably 15 mol% or more, and even more preferably 20 mol% or more, based on all structural units constituting the polymer [A], from the viewpoint of imparting good solubility in an alkaline developer. On the other hand, if the content of the structural unit (A1) is too high, the difference in solubility in an alkaline developer between the exposed and unexposed parts becomes small, and it may become difficult to obtain a good pattern shape. From this viewpoint, the content of the structural unit (A1) is preferably 80 mol% or less, more preferably 75 mol% or less, and even more preferably 70 mol% or less, based on all structural units constituting the polymer [A].

 [A]重合体における構造単位(A1-1)の含有割合は、アルカリ現像液への良好な溶解性を重合体に付与することに加え、高い感度を維持しながら、耐熱性、低誘電率、高透過率及び難透水性の硬化物を得ることが可能な硬化性組成物とする観点から、[A]重合体を構成する全構造単位に対して、10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上が更に好ましい。また、構造単位(A1-1)の含有割合は、[A]重合体を構成する全構造単位に対して、80モル%以下が好ましく、75モル%以下がより好ましく、70モル%以下が更に好ましい。 The content of the structural unit (A1-1) in the polymer [A] is preferably 10 mol % or more, more preferably 15 mol % or more, and even more preferably 20 mol % or more, based on the total structural units constituting the polymer [A], from the viewpoint of imparting good solubility in an alkaline developer to the polymer and of obtaining a curable composition capable of obtaining a cured product that is heat resistant, has a low dielectric constant, has high transmittance, and is poorly water permeable, while maintaining high sensitivity. The content of the structural unit (A1-1) is preferably 80 mol % or less, more preferably 75 mol % or less, and even more preferably 70 mol % or less, based on the total structural units constituting the polymer [A].

 [A]重合体が構造単位(A1-2)を含む場合、構造単位(A1-2)の含有割合は、本組成物の感度を高く維持しながら、耐熱性、低誘電率、高透過率及び難透水性の硬化物を得る観点から、[A]重合体を構成する全構造単位に対して、10モル%以下が好ましく、5モル%以下がより好ましく、1モル%以下が更に好ましく、0.5モル%以下がより更に好ましい。 When the polymer [A] contains the structural unit (A1-2), the content of the structural unit (A1-2) is preferably 10 mol % or less, more preferably 5 mol % or less, even more preferably 1 mol % or less, and even more preferably 0.5 mol % or less, based on the total structural units constituting the polymer [A], from the viewpoint of obtaining a cured product that is heat resistant, has a low dielectric constant, has high transmittance, and is poorly water permeable, while maintaining high sensitivity of the composition.

 [A]重合体は、構造単位(A1)とは異なる構造単位(以下、「その他の構造単位」ともいう)を更に含んでいてもよい。その他の構造単位としては、架橋性官能基を有する構造単位、酸解離性基を有する構造単位等が挙げられる。 The polymer [A] may further contain structural units other than the structural unit (A1) (hereinafter also referred to as "other structural units"). Examples of the other structural units include structural units having a crosslinkable functional group, structural units having an acid-dissociable group, etc.

(架橋性官能基を有する構造単位)
 [A]重合体は、架橋性官能基を有する構造単位(ただし、「構造単位(A1)」を除く。以下、「構造単位(A2)」ともいう)を更に含むことが好ましい。[A]重合体が架橋性官能基を有することにより、より優れた耐熱性及びベンディング耐性を示す硬化物を形成することができる。なお、本明細書では、架橋性を示すが、酸の作用により解離して酸性基を生じる官能基を有する構造単位については、後述する「酸解離性基を有する構造単位」に分類するものとする。
(Structural Unit Having a Crosslinkable Functional Group)
It is preferable that the polymer [A] further contains a structural unit having a crosslinkable functional group (excluding "structural unit (A1)"; hereinafter, also referred to as "structural unit (A2)"). When the polymer [A] has a crosslinkable functional group, a cured product exhibiting superior heat resistance and bending resistance can be formed. In this specification, a structural unit that exhibits crosslinkability but has a functional group that dissociates under the action of an acid to generate an acidic group is classified as a "structural unit having an acid-dissociable group" as described below.

 構造単位(A2)が有する架橋性官能基は、光又は熱により架橋反応を起こす基であることが好ましい。架橋性官能基の具体例としては、環状エーテル基、環状チオエーテル基、カルボキシ基、環状カーボネート基、アルコール性水酸基、アミノ基、保護されたアミノ基、保護されたイソシアネート基、重合性不飽和結合基、ヒドロキシアルキルアミド基等が挙げられる。[A]重合体の分子間又は分子内に架橋構造を形成し、硬化物の耐熱性及びベンディング耐性をより優れたものとする観点から、構造単位(A2)が有する架橋性官能基は、中でも、オキシラニル基、オキセタニル基、チイラン基、ヒドロキシアルキルアミド基、ヒドロキシメチルフェニル基、アルコキシメチルフェニル基、シクロカーボネート基、及び保護されたイソシアネート基よりなる群から選択される少なくとも1種であることが好ましく、反応性と保存安定性を両立する観点から、オキシラニル基、オキセタニル基、ヒドロキシアルキルアミド基、ヒドロキシメチルフェニル基、アルコキシメチルフェニル基及びアルコキシシリル基よりなる群から選択される少なくとも1種であることがより好ましい。 The crosslinkable functional group of the structural unit (A2) is preferably a group that undergoes a crosslinking reaction by light or heat. Specific examples of the crosslinkable functional group include a cyclic ether group, a cyclic thioether group, a carboxy group, a cyclic carbonate group, an alcoholic hydroxyl group, an amino group, a protected amino group, a protected isocyanate group, a polymerizable unsaturated bond group, and a hydroxyalkylamide group. [A] In order to form a crosslinked structure between or within the molecules of the polymer and to improve the heat resistance and bending resistance of the cured product, the crosslinkable functional group of the structural unit (A2) is preferably at least one selected from the group consisting of an oxiranyl group, an oxetanyl group, a thiirane group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and a protected isocyanate group, and more preferably at least one selected from the group consisting of an oxiranyl group, an oxetanyl group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and an alkoxysilyl group, in order to achieve both reactivity and storage stability.

 構造単位(I)及び構造単位(II)の量を十分に多くすることにより、耐熱性及び難透水性に優れ、かつ低誘電率の硬化物を得る観点から、[A]重合体は、構造単位(A2)として、芳香族ビニル化合物及びマレイミド化合物よりなる群から選択される少なくとも1種であって、架橋性官能基を有する化合物に由来する構造単位(以下、「構造単位(A2-1)」ともいう)を含むことが好ましい。 From the viewpoint of obtaining a cured product having excellent heat resistance and water impermeability and a low dielectric constant by sufficiently increasing the amount of structural unit (I) and structural unit (II), it is preferable that the polymer [A] contains, as structural unit (A2), at least one structural unit selected from the group consisting of aromatic vinyl compounds and maleimide compounds, which is derived from a compound having a crosslinkable functional group (hereinafter also referred to as "structural unit (A2-1)").

 構造単位(A2-1)の具体例としては、下記式(b-1)又は式(b-2)で表される構造単位が挙げられる。

Figure JPOXMLDOC01-appb-C000003
(式(b-1)及び式(b-2)中、R13、R14及びR16は、互いに独立して、水素原子、メチル基、ヒドロキシメチル基、シアノ基又はトリフルオロメチル基である。R15は、置換若しくは無置換の炭素数1~20の(r3+1)価の炭化水素基、又は、置換若しくは無置換の炭素数2~20の炭化水素基における炭素-炭素結合間に-O-、-CO-、-COO-、-NH-、-CONH-若しくは-S-を含む(r3+1)価の基である。A11は、置換又は無置換の炭素数6~20の2価の芳香環基である。R17は、単結合、置換若しくは無置換の炭素数1~20の(r4+1)価の炭化水素基、又は、置換若しくは無置換の炭素数2~20の炭化水素基における炭素-炭素結合間に-O-、-CO-、-COO-、-NH-、-CONH-若しくは-S-を含む(r4+1)価の基である。X11及びX12は、互いに独立して架橋性官能基である。r3及びr4は、互いに独立して1又は2である。) Specific examples of the structural unit (A2-1) include structural units represented by the following formula (b-1) or formula (b-2).
Figure JPOXMLDOC01-appb-C000003
(In formula (b-1) and formula (b-2), R 13 , R 14 , and R 16 are each independently a hydrogen atom, a methyl group, a hydroxymethyl group, a cyano group, or a trifluoromethyl group. R 15 is a substituted or unsubstituted (r3+1)-valent hydrocarbon group having 1 to 20 carbon atoms, or a (r3+1)-valent group containing -O-, -CO-, -COO-, -NH-, -CONH-, or -S- between the carbon-carbon bonds in a substituted or unsubstituted hydrocarbon group having 2 to 20 carbon atoms. A 11 is a substituted or unsubstituted divalent aromatic ring group having 6 to 20 carbon atoms. R X17 is a single bond, a substituted or unsubstituted (r4+1)-valent hydrocarbon group having 1 to 20 carbon atoms, or a substituted or unsubstituted (r4+1)-valent group containing -O-, -CO-, -COO-, -NH-, -CONH- or -S- between the carbon-carbon bonds in a substituted or unsubstituted hydrocarbon group having 2 to 20 carbon atoms. X11 and X12 are each independently a crosslinkable functional group. r3 and r4 are each independently 1 or 2.

 上記式(b-1)及び式(b-2)において、R13、R14及びR16は、共重合性の観点から、水素原子又はメチル基が好ましい。
 R15の具体例及び好ましい例としては、上記式(a-1)中のRの説明で例示した基と同様の基が挙げられる。
 R17の具体例としては、上記式(a-1)中のRの説明で例示した基と同様の基が挙げられる。R17は、単結合、置換若しくは無置換の炭素数1~20の(r4+1)価の鎖状炭化水素基、又は置換若しくは無置換の炭素数2~20の鎖状炭化水素基における炭素-炭素結合間に-O-、-CO-、-COO-、-NH-、-CONH-若しくは-S-を含む(r4+1)価の基であることが好ましい。
 A11の具体例及び好ましい例としては、上記式(a-2)中のAの説明で例示した基と同様の基が挙げられる。
 X11及びX12の具体例及び好ましい例としては、上記において架橋性官能基の具体例及び好ましい例として説明した基と同様の基が挙げられる。
In the above formulae (b-1) and (b-2), R 13 , R 14 and R 16 are preferably a hydrogen atom or a methyl group from the viewpoint of copolymerizability.
Specific and preferred examples of R 15 include the same groups as those exemplified in the explanation of R 5 in the above formula (a-1).
Specific examples of R 17 include the same groups as those exemplified in the description of R 5 in the above formula (a-1). R 17 is preferably a single bond, a substituted or unsubstituted (r4+1)-valent chain hydrocarbon group having 1 to 20 carbon atoms, or a (r4+1)-valent group containing -O-, -CO-, -COO-, -NH-, -CONH- or -S- between the carbon-carbon bonds in a substituted or unsubstituted chain hydrocarbon group having 2 to 20 carbon atoms.
Specific and preferred examples of A 11 include the same groups as those exemplified in the description of A 1 in the above formula (a-2).
Specific and preferred examples of X 11 and X 12 include the same groups as those explained above as specific and preferred examples of the crosslinkable functional group.

 構造単位(A2-1)の更なる具体例としては、下記式で表される構造単位が挙げられる。

Figure JPOXMLDOC01-appb-C000004
(式中、R61、R62及びR63は、互いに独立して、水素原子、メチル基、ヒドロキシメチル基、シアノ基又はトリフルオロメチル基である。) Further specific examples of the structural unit (A2-1) include structural units represented by the following formulas.
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 61 , R 62 and R 63 are each independently a hydrogen atom, a methyl group, a hydroxymethyl group, a cyano group or a trifluoromethyl group.)

 [A]重合体は、構造単位(A2)として構造単位(A2-1)とは異なる構造単位(以下、「構造単位(A2-2)」ともいう)を更に含んでいてもよい。構造単位(A2-2)を与える単量体としては、構造単位(A1)及び構造単位(A2-1)を与える単量体と共重合可能な重合性基と共に架橋性官能基を有する化合物であれば特に限定されず、例えば、(メタ)アクリル化合物、ビニル化合物等が挙げられる。構造単位(A2-2)を与える単量体の具体例としては、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、2-(3,4-エポキシシクロヘキシル)エチル(メタ)アクリレート、3,4-エポキシトリシクロ[5.2.1.02,6]デシル(メタ)アクリレート、(3-メチルオキセタン-3-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)(メタ)アクリレート、(オキセタン-3-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート等が挙げられる。 The polymer [A] may further contain, as the structural unit (A2), a structural unit different from the structural unit (A2-1) (hereinafter also referred to as "structural unit (A2-2)"). The monomer that gives the structural unit (A2-2) is not particularly limited as long as it is a compound that has a crosslinkable functional group as well as a polymerizable group copolymerizable with the monomer that gives the structural unit (A1) and the structural unit (A2-1), and examples thereof include (meth)acrylic compounds and vinyl compounds. Specific examples of monomers that provide the structural unit (A2-2) include glycidyl (meth)acrylate, 3,4-epoxycyclohexyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, 2-(3,4-epoxycyclohexyl)ethyl (meth)acrylate, 3,4-epoxytricyclo[5.2.1.0 2,6 ]decyl (meth)acrylate, (3-methyloxetan-3-yl)methyl (meth)acrylate, (3-ethyloxetan-3-yl)(meth)acrylate, (oxetan-3-yl)methyl (meth)acrylate, (3-ethyloxetan-3-yl)methyl (meth)acrylate, and the like.

 [A]重合体における構造単位(A2)の含有割合は、良好な耐熱性及びベンディング耐性を硬化物に付与する観点から、[A]重合体を構成する全構造単位に対して、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましい。また、良好なパターン形状を得る観点から、構造単位(A2)の含有割合は、[A]重合体を構成する全構造単位に対して、70モル%以下が好ましく、65モル%以下がより好ましく、60モル%以下が更に好ましい。 The content of the structural unit (A2) in the polymer [A] is preferably 5 mol% or more, more preferably 10 mol% or more, and even more preferably 15 mol% or more, based on all structural units constituting the polymer [A], from the viewpoint of imparting good heat resistance and bending resistance to the cured product. Also, from the viewpoint of obtaining a good pattern shape, the content of the structural unit (A2) is preferably 70 mol% or less, more preferably 65 mol% or less, and even more preferably 60 mol% or less, based on all structural units constituting the polymer [A].

 [A]重合体における構造単位(A2-1)の含有割合は、得られる硬化物の耐熱性及びベンディング耐性を良好にすることに加え、高い感度を維持しながら、低誘電率、高透過率及び難透水性の硬化物を得ることが可能な硬化性組成物とする観点から、[A]重合体を構成する全構造単位に対して、2モル%以上が好ましく、7モル%以上がより好ましく、15モル%以上が更に好ましい。また、構造単位(A2-1)の含有割合は、[A]重合体を構成する全構造単位に対して、70モル%以下が好ましく、65モル%以下がより好ましく、60モル%以下が更に好ましい。 The content of the structural unit (A2-1) in the polymer [A] is preferably 2 mol % or more, more preferably 7 mol % or more, and even more preferably 15 mol % or more, based on the total structural units constituting the polymer [A], from the viewpoint of obtaining a curable composition capable of obtaining a cured product with low dielectric constant, high transmittance, and low water permeability while maintaining high sensitivity, in addition to improving the heat resistance and bending resistance of the resulting cured product. The content of the structural unit (A2-1) is preferably 70 mol % or less, more preferably 65 mol % or less, and even more preferably 60 mol % or less, based on the total structural units constituting the polymer [A].

 [A]重合体が構造単位(A2-2)を含む場合、構造単位(A2-2)の含有割合は、本組成物の感度を高く維持しながら、良好な耐熱性、低誘電率、高透過率、難透水性及びベンディング耐性を示す硬化物を得る観点から、[A]重合体を構成する全構造単位に対して、30モル%以下が好ましく、15モル%以下がより好ましく、5モル%以下が更に好ましく、1モル%以下がより更に好ましい。 When the polymer [A] contains the structural unit (A2-2), the content of the structural unit (A2-2) is preferably 30 mol % or less, more preferably 15 mol % or less, even more preferably 5 mol % or less, and even more preferably 1 mol % or less, based on the total structural units constituting the polymer [A], from the viewpoint of obtaining a cured product that exhibits good heat resistance, low dielectric constant, high transmittance, poor water permeability, and bending resistance while maintaining high sensitivity of the composition.

(酸解離性基を有する構造単位)
 酸解離性基は、カルボキシ基、フェノール性水酸基、アルコール性水酸基、シラノール基、スルホ基等の酸性基が有する水素原子を置換する基であって、酸の作用により解離する基である。[A]重合体が酸解離性基を有し、かつ[B]感光性化合物として光酸発生剤を用いることにより、本組成物を化学増幅型の硬化性組成物とすることができる。すなわち、硬化性組成物の一部に放射線を照射すると、露光部では放射線の照射に伴い発生した酸により酸解離性基が脱離して酸性基が生じる一方、未露光部では酸性基が有する水素原子が酸解離性基によって置換されたままとなる。これにより、露光部と未露光部で現像液への溶解性を異ならせることができ、続いて露光後の硬化性組成物を現像することにより、パターンが形成された硬化物を得ることができる。
(Structural Unit Having an Acid-Dissociable Group)
The acid dissociable group is a group that replaces a hydrogen atom of an acidic group such as a carboxy group, a phenolic hydroxyl group, an alcoholic hydroxyl group, a silanol group, or a sulfo group, and is a group that dissociates under the action of an acid. By using a photoacid generator as the photosensitive compound [B] and the polymer [A] having an acid dissociable group, the composition can be made into a chemically amplified curable composition. That is, when a part of the curable composition is irradiated with radiation, the acid dissociable group is eliminated by the acid generated by the irradiation of radiation in the exposed part to generate an acidic group, while the hydrogen atom of the acidic group remains substituted by the acid dissociable group in the unexposed part. This allows the solubility in a developer to be different between the exposed part and the unexposed part, and then the curable composition after exposure can be developed to obtain a cured product having a pattern formed thereon.

 酸解離性基を有する構造単位(以下、「構造単位(A3)」ともいう)の好ましい具体例としては、酸の作用により酸解離性基が脱離してカルボキシ基を生じる構造単位(以下、「構造単位(A3-1)」ともいう)、酸の作用により酸解離性基が脱離してフェノール性水酸基を生じる構造単位(以下、「構造単位(A3-2)」ともいう)、又は、酸の作用により酸解離性基が脱離してケイ素原子に結合した水酸基を生じる構造単位(以下、「構造単位(A3-3)」ともいう)が挙げられる。 Preferred specific examples of structural units having an acid-dissociable group (hereinafter also referred to as "structural unit (A3)") include a structural unit in which an acid-dissociable group is eliminated by the action of an acid to generate a carboxyl group (hereinafter also referred to as "structural unit (A3-1)"), a structural unit in which an acid-dissociable group is eliminated by the action of an acid to generate a phenolic hydroxyl group (hereinafter also referred to as "structural unit (A3-2)"), and a structural unit in which an acid-dissociable group is eliminated by the action of an acid to generate a hydroxyl group bonded to a silicon atom (hereinafter also referred to as "structural unit (A3-3)").

・構造単位(A3-1)について
 構造単位(A3-1)としては、保護された不飽和カルボン酸に由来する構造単位が挙げられる。使用する不飽和カルボン酸は特に限定されないが、例えば、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和酸無水物、不飽和多価カルボン酸等が挙げられる。
Regarding the structural unit (A3-1): The structural unit (A3-1) may be a structural unit derived from a protected unsaturated carboxylic acid. The unsaturated carboxylic acid to be used is not particularly limited, but examples thereof include unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated acid anhydrides, and unsaturated polycarboxylic acids.

 構造単位(A3-1)に含まれる酸解離性基としては、例えば、第3級炭素含有炭化水素基、アセタール系官能基、第3級アルキルカーボネート基、アルキル基含有シリル基が挙げられる。これらのうち、酸により解離しやすい点で、第3級炭素含有炭化水素基又はアセタール系官能基が好ましい。 Examples of the acid-dissociable group contained in the structural unit (A3-1) include a tertiary carbon-containing hydrocarbon group, an acetal-based functional group, a tertiary alkyl carbonate group, and an alkyl group-containing silyl group. Of these, a tertiary carbon-containing hydrocarbon group or an acetal-based functional group is preferred because it is easily dissociated by an acid.

 酸解離性基が第3級炭素含有炭化水素基である場合、構造単位(A3-1)は、保護されたカルボキシ基として、下記式(X-1)で表される基を有することが好ましい。

Figure JPOXMLDOC01-appb-C000005
(式(X-1)中、R34、R35及びR36は、次の(1)又は(2)である。(1)R34、R35及びR36は、それぞれ独立して、炭素数1~12のアルキル基又は炭素数3~20の1価の脂環式炭化水素基である。(2)R34及びR35は、互いに合わせられR34及びR35が結合する炭素原子とともに構成される炭素数4~20の脂環式炭化水素構造を表す。R36は、炭素数1~12のアルキル基、炭素数2~12のアルケニル基又は炭素数6~20のアリール基である。「*」は結合手を表す。) When the acid-dissociable group is a tertiary carbon-containing hydrocarbon group, the structural unit (A3-1) preferably has a group represented by the following formula (X-1) as the protected carboxy group.
Figure JPOXMLDOC01-appb-C000005
(In formula (X-1), R 34 , R 35 and R 36 are the following (1) or (2). (1) R 34 , R 35 and R 36 are each independently an alkyl group having 1 to 12 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. (2) R 34 and R 35 , taken together, represent an alicyclic hydrocarbon structure having 4 to 20 carbon atoms formed together with the carbon atom to which R 34 and R 35 are bonded. R 36 is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms. "*" represents a bond.)

 酸解離性基がアセタール系官能基である場合、構造単位(A3-1)は、保護されたカルボキシ基として、カルボン酸のアセタールエステル構造を有することが好ましく、具体的には、下記式(X-2)で表される基を有することが好ましい。

Figure JPOXMLDOC01-appb-C000006
(式(X-2)中、R31、R32及びR33は、次の(1)又は(2)である。(1)R31は水素原子、炭素数1~12のアルキル基又は炭素数3~20の1価の脂環式炭化水素基である。R32及びR33は、互いに独立して、炭素数1~12のアルキル基、炭素数3~20の1価の脂環式炭化水素基、又は炭素数7~20のアラルキル基である。(2)R31は、水素原子、炭素数1~12のアルキル基又は炭素数3~20の1価の脂環式炭化水素基である。R32及びR33は、互いに合わせられR32及びOR33が結合する炭素原子とともに構成される環状エーテル構造を表す。「*」は結合手を表す。) When the acid-dissociable group is an acetal functional group, the structural unit (A3-1) preferably has an acetal ester structure of a carboxylic acid as the protected carboxy group, and specifically, it preferably has a group represented by the following formula (X-2):
Figure JPOXMLDOC01-appb-C000006
(In formula (X-2), R 31 , R 32 and R 33 are the following (1) or (2). (1) R 31 is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. R 32 and R 33 are each independently an alkyl group having 1 to 12 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms. (2) R 31 is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. R 32 and R 33 are combined together to represent a cyclic ether structure formed together with the carbon atom to which R 32 and OR 33 are bonded. "*" represents a bond.)

 R31、R32、R33、R34、R35及びR36で表される炭素数1~12のアルキル基は、直鎖状でも分岐状でもよい。当該アルキル基の炭素数は、好ましくは1~6、より好ましくは1~4である。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。 The alkyl group having 1 to 12 carbon atoms represented by R 31 , R 32 , R 33 , R 34 , R 35 and R 36 may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1 to 6, and more preferably 1 to 4. Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and the like.

 R31、R32、R33、R34、R35及びR36で表される炭素数3~20の1価の脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、イソボルニル基、アダマンチル基等が挙げられる。R32及びR33で表される炭素数7~20のアラルキル基としては、フェニルメチル基、フェニルエチル基、メチルフェニルメチル基等が挙げられる。 Examples of the monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms represented by R 31 , R 32 , R 33 , R 34 , R 35 , and R 36 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, an isobornyl group, an adamantyl group, etc. Examples of the aralkyl groups having 7 to 20 carbon atoms represented by R 32 and R 33 include a phenylmethyl group, a phenylethyl group, a methylphenylmethyl group, etc.

 R36で表される炭素数2~12のアルケニル基は、直鎖状でも分岐状でもよい。当該アルケニル基の炭素数は、好ましくは2~6、より好ましくは2~4である。具体的には、エテニル基、1-プロペニル基、2-プロぺニル基、1-ブテニル基等が挙げられる。
 R36で表される炭素数6~20のアリール基としては、フェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基等が挙げられる。
The alkenyl group having 2 to 12 carbon atoms represented by R 36 may be linear or branched. The number of carbon atoms in the alkenyl group is preferably 2 to 6, and more preferably 2 to 4. Specific examples include an ethenyl group, a 1-propenyl group, a 2-propenyl group, and a 1-butenyl group.
Examples of the aryl group having 6 to 20 carbon atoms represented by R 36 include a phenyl group, a methylphenyl group, an ethylphenyl group, and a dimethylphenyl group.

 R34及びR35が互いに合わせられて構成される炭素数4~20の脂環式炭化水素構造としては、例えばシクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造等が挙げられる。
 R32及びR33が互いに合わせられて構成される環状エーテル構造は、環員数5以上であることが好ましい。具体的には、例えばテトラヒドロフラン環構造、テトラヒドロピラン環構造等が挙げられる。
Examples of the alicyclic hydrocarbon structure having 4 to 20 carbon atoms formed by combining R 34 and R 35 together include a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, and a cycloheptane structure.
The cyclic ether structure formed by combining R 32 and R 33 with each other preferably has a ring member number of 5 or more. Specific examples thereof include a tetrahydrofuran ring structure and a tetrahydropyran ring structure.

 上記式(X-1)で表される基の具体例としては、tert-ブトキシカルボニル基、1,1-ジメチルプロピルオキシカルボニル基、1-メチル-1-シクロペンチルオキシカルボニル基、1-エチル-1-シクロペンチルオキシカルボニル基、1-メチル-1-シクロヘキシルオキシカルボニル基、1-エチル-1-シクロヘキシルオキシカルボニル基等が挙げられる。 Specific examples of the group represented by the above formula (X-1) include a tert-butoxycarbonyl group, a 1,1-dimethylpropyloxycarbonyl group, a 1-methyl-1-cyclopentyloxycarbonyl group, a 1-ethyl-1-cyclopentyloxycarbonyl group, a 1-methyl-1-cyclohexyloxycarbonyl group, and a 1-ethyl-1-cyclohexyloxycarbonyl group.

 上記式(X-2)中の「-C(R31)(R32)(OR33)」が酸の作用により解離しやすい点で、R31は、水素原子、メチル基又はエチル基が好ましく、水素原子がより好ましい。
 上記式(X-2)で表される基の具体例としては、1-メトキシエトキシカルボニル基、1-エトキシエトキシカルボニル基、1-プロポキシエトキシカルボニル基、1-ブトキシエトキシカルボニル基、1-シクロヘキシルオキシエトキシカルボニル基、2-テトラヒドロフラニルオキシカルボニル基、2-テトラヒドロピラニルオキシカルボニル基、1-フェニルメトキシエトキシカルボニル基等を挙げることができる。
In the above formula (X-2), since "-C(R 31 )(R 32 )(OR 33 )" is easily dissociated by the action of an acid, R 31 is preferably a hydrogen atom, a methyl group or an ethyl group, and more preferably a hydrogen atom.
Specific examples of the group represented by formula (X-2) above include a 1-methoxyethoxycarbonyl group, a 1-ethoxyethoxycarbonyl group, a 1-propoxyethoxycarbonyl group, a 1-butoxyethoxycarbonyl group, a 1-cyclohexyloxyethoxycarbonyl group, a 2-tetrahydrofuranyloxycarbonyl group, a 2-tetrahydropyranyloxycarbonyl group, and a 1-phenylmethoxyethoxycarbonyl group.

・構造単位(A3-2)について
 構造単位(A3-2)が有する酸解離性基は、酸の作用により脱離してフェノール性水酸基を生じればよく、特に限定されない。本組成物の感度やパターン形状、保存安定性等の観点から、構造単位(A3-2)が有する酸解離性基は、アセタール系官能基、第3級アルキル基又はアルキル基含有シリル基が好ましい。
Regarding the structural unit (A3-2) The acid dissociable group contained in the structural unit (A3-2) is not particularly limited as long as it is capable of generating a phenolic hydroxyl group by being eliminated by the action of an acid. From the viewpoints of the sensitivity, pattern shape, storage stability, etc. of the present composition, the acid dissociable group contained in the structural unit (A3-2) is preferably an acetal functional group, a tertiary alkyl group, or an alkyl group-containing silyl group.

 構造単位(A3-2)に用いることのできるアセタール系官能基としては、構造単位(A3-1)に用いることができる酸解離性基と同様のものを挙げることができる。中でも、「-O-C(R31)(R32)(OR33)」(ただし、R31、R32及びR33は式(X-2)と同義である。)で表される基により保護されたフェノール性水酸基であることが好ましい。この場合、構造単位(A3-2)に含まれる保護されたフェノール性水酸基は下記式(Z-1)で表すことができる。

Figure JPOXMLDOC01-appb-C000007
(式(Z-1)中、Arは、置換又は無置換のアリーレン基である。R31、R32及びR33は式(X-2)と同義である。「*」は結合手を表す。) Examples of the acetal functional group that can be used in the structural unit (A3-2) include the same acid-dissociable groups that can be used in the structural unit (A3-1). Among them, a phenolic hydroxyl group protected by a group represented by "-O-C(R 31 )(R 32 )(OR 33 )" (wherein R 31 , R 32 and R 33 are the same as those defined in formula (X-2)) is preferred. In this case, the protected phenolic hydroxyl group contained in the structural unit (A3-2) can be represented by the following formula (Z-1).
Figure JPOXMLDOC01-appb-C000007
In formula (Z-1), Ar 1 is a substituted or unsubstituted arylene group. R 31 , R 32 and R 33 are the same as in formula (X-2). "*" represents a bond.

 構造単位(A3-2)に含まれる「-C(R31)(R32)(OR33)」で表される基の好ましい具体例としては、1-アルコキシアルキル基及び1-アリールアルコキシアルキル基を挙げることができ、具体的には、例えば1-エトキシエチル基、1-メトキシエチル基、1-ブトキシエチル基、1-イソブトキシエチル基、1-(2-エチルヘキシルオキシ)エチル基、1-プロポキシエチル基、1-シクロヘキシルオキシエチル基、1-(2-シクロヘキシルエトキシ)エチル基、1-ベンジルオキシエチル基等が挙げられる。
 第3級アルキル基の具体例としては、tert-ブチル基、1,1-ジメチルプロピル基等が挙げられる。
 アルキル基含有シリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基等が挙げられる。
Preferred specific examples of the group represented by "-C(R 31 )(R 32 )(OR 33 )" contained in the structural unit (A3-2) include 1-alkoxyalkyl groups and 1-arylalkoxyalkyl groups, and specific examples include a 1-ethoxyethyl group, a 1-methoxyethyl group, a 1-butoxyethyl group, a 1-isobutoxyethyl group, a 1-(2-ethylhexyloxy)ethyl group, a 1-propoxyethyl group, a 1-cyclohexyloxyethyl group, a 1-(2-cyclohexylethoxy)ethyl group, and a 1-benzyloxyethyl group.
Specific examples of the tertiary alkyl group include a tert-butyl group and a 1,1-dimethylpropyl group.
Specific examples of the alkyl group-containing silyl group include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a tert-butyldimethylsilyl group, and a tert-butyldiphenylsilyl group.

・構造単位(A3-3)について
 構造単位(A3-3)は、酸の作用により脱離してシラノール基(Si-OH)を生じる官能基を有する。具体的には、構造単位(A3-3)は、基「-Si(Y)(Y)(Y)」(ただし、Y、Y及びYは、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ基、炭素数1~6のアルコキシ基、炭素数1~10のアルキル基又はフェニル基であり、Y、Y及びYのうち1つ以上は炭素数1~6のアルコキシ基である。)を有することが好ましい。
Regarding the structural unit (A3-3): The structural unit (A3-3) has a functional group that is eliminated by the action of an acid to generate a silanol group (Si-OH). Specifically, the structural unit (A3-3) preferably has a group "-Si(Y 1 )(Y 2 )(Y 3 )" (wherein Y 1 , Y 2 and Y 3 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, an alkyl group having 1 to 10 carbon atoms or a phenyl group, and at least one of Y 1 , Y 2 and Y 3 is an alkoxy group having 1 to 6 carbon atoms).

 ここで、Y~Yで表されるアルコキシ基は、炭素数1~3が好ましく、メトキシ基又はエトキシ基がより好ましい。Y~Yで表されるアルキル基は、メチル基、エチル基又はプロピル基が好ましい。Y~Yで表される基のうち1個は、炭素数1~6のアルコキシ基である。残りの基は、ヒドロキシ基、炭素数1~6のアルコキシ基、炭素数1~10のアルキル基、又はフェニル基であることが好ましく、ヒドロキシ基、炭素数1~3のアルコキシ基、又は炭素数1~3のアルキル基であることがより好ましく、炭素数1~3のアルコキシ基、又は炭素数1~3のアルキル基であることが更に好ましい。 Here, the alkoxy group represented by Y 1 to Y 3 preferably has 1 to 3 carbon atoms, and is more preferably a methoxy group or an ethoxy group. The alkyl group represented by Y 1 to Y 3 is preferably a methyl group, an ethyl group, or a propyl group. One of the groups represented by Y 1 to Y 3 is an alkoxy group having 1 to 6 carbon atoms. The remaining group is preferably a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or a phenyl group, more preferably a hydroxy group, an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 3 carbon atoms, and even more preferably an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 3 carbon atoms.

 基「-Si(Y)(Y)(Y)」は、ベンゼン環、ナフタレン環又はアルキル鎖に結合していることが好ましい。具体的には、構造単位(A3-3)は、下記式(3-1)で表される基、下記式(3-2)で表される基及び下記式(3-3)で表される基よりなる群から選択される少なくとも1種を有することが好ましい。

Figure JPOXMLDOC01-appb-C000008
(式(3-1)、式(3-2)及び式(3-3)中、X21及びX22は、それぞれ独立して、ハロゲン原子、ヒドロキシ基、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基である。n1は0~4の整数である。n2は0~6の整数である。ただし、n1が2以上の場合、複数のX21は、互いに同一又は異なる。n2が2以上の場合、複数のX22は、互いに同一又は異なる。R50はアルカンジイル基である。Y、Y及びYは上記と同義である。「*」は、結合手を表す。) The group "-Si(Y 1 )(Y 2 )(Y 3 )" is preferably bonded to a benzene ring, a naphthalene ring, or an alkyl chain. Specifically, the structural unit (A3-3) preferably has at least one selected from the group consisting of a group represented by the following formula (3-1), a group represented by the following formula (3-2), and a group represented by the following formula (3-3).
Figure JPOXMLDOC01-appb-C000008
(In formula (3-1), formula (3-2), and formula (3-3), X21 and X22 each independently represent a halogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. n1 is an integer from 0 to 4. n2 is an integer from 0 to 6. However, when n1 is 2 or more, multiple X21 are the same as or different from each other. When n2 is 2 or more, multiple X22 are the same as or different from each other. R50 is an alkanediyl group. Y1 , Y2 , and Y3 are as defined above. "*" represents a bond.)

 本組成物により得られる硬化物の耐熱性及びベンディング耐性をより高くできる点で、構造単位(A3-3)は、上記式(3-1)~式(3-3)のうち、上記式(3-1)で表される基及び上記式(3-2)で表される基よりなる群から選択される少なくとも1種を有することが好ましい。 In order to improve the heat resistance and bending resistance of the cured product obtained from this composition, it is preferable that the structural unit (A3-3) has at least one type selected from the group consisting of the group represented by formula (3-1) and the group represented by formula (3-2) among the above formulas (3-1) to (3-3).

 構造単位(I)及び構造単位(II)の導入量を十分に多くし、これにより耐熱性及び難透水性に優れ、かつ誘電率が十分に低い硬化物を得る観点から、構造単位(A3)は、芳香族ビニル化合物及びマレイミド化合物よりなる群から選択される少なくとも1種に由来する構造単位であることが好ましい。構造単位(A3)の具体例としては、下記式で表される構造単位等が挙げられる。

Figure JPOXMLDOC01-appb-C000009
(式中、R51、R52及びR53は、互いに独立して、水素原子、メチル基、ヒドロキシメチル基、シアノ基又はトリフルオロメチル基である。) From the viewpoint of sufficiently increasing the amount of the structural unit (I) and the structural unit (II) introduced and thereby obtaining a cured product having excellent heat resistance and poor water permeability and a sufficiently low dielectric constant, the structural unit (A3) is preferably a structural unit derived from at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds. Specific examples of the structural unit (A3) include structural units represented by the following formulas.
Figure JPOXMLDOC01-appb-C000009
(In the formula, R 51 , R 52 and R 53 are each independently a hydrogen atom, a methyl group, a hydroxymethyl group, a cyano group or a trifluoromethyl group.)

 [B]感光性化合物として光酸発生剤を用いる場合、[A]重合体は構造単位(A3)を含むことが好ましい。この場合、[A]重合体における構造単位(A3)の含有割合は、[A]重合体を構成する全構造単位に対して、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましい。また、構造単位(A3)の含有割合は、[A]重合体を構成する全構造単位に対して、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下が更に好ましい。構造単位(A3)の含有割合を上記範囲とすることにより、[B]感光性化合物として光酸発生剤を用いる場合に、本組成物の高感度化を図ることができる点、及び塗膜がより良好な解像性を示す点で好ましい。 When a photoacid generator is used as the photosensitive compound [B], it is preferable that the polymer [A] contains the structural unit (A3). In this case, the content of the structural unit (A3) in the polymer [A] is preferably 5 mol% or more, more preferably 10 mol% or more, and even more preferably 15 mol% or more, based on all structural units constituting the polymer [A]. The content of the structural unit (A3) is preferably 60 mol% or less, more preferably 55 mol% or less, and even more preferably 50 mol% or less, based on all structural units constituting the polymer [A]. By setting the content of the structural unit (A3) within the above range, when a photoacid generator is used as the photosensitive compound [B], it is preferable in that the sensitivity of the composition can be increased and the coating film shows better resolution.

 その他の構造単位を与える単量体としては、上記のほか、例えば、(メタ)アクリル酸アルキルエステル、脂環式構造を有する(メタ)アクリル酸エステル、芳香環構造を有する(メタ)アクリル酸エステル、複素環構造を有するビニル化合物、ビニルエーテル化合物、共役ジエン化合物、窒素含有ビニル化合物、不飽和ジカルボン酸ジアルキルエステル化合物、シクロオレフィン等や、芳香族ビニル化合物又はN-置換マレイミド化合物であって構造単位(A1)~構造単位(A3)とは異なる化合物が挙げられる。  Other examples of monomers that provide other structural units include, in addition to the above, (meth)acrylic acid alkyl esters, (meth)acrylic acid esters having an alicyclic structure, (meth)acrylic acid esters having an aromatic ring structure, vinyl compounds having a heterocyclic structure, vinyl ether compounds, conjugated diene compounds, nitrogen-containing vinyl compounds, unsaturated dicarboxylic acid dialkyl ester compounds, cycloolefins, and aromatic vinyl compounds or N-substituted maleimide compounds that are different from the structural units (A1) to (A3).

 上記単量体の具体例としては、(メタ)アクリル酸アルキルエステルとして、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ラウリル、(メタ)アクリル酸n-ステアリル等を;
脂環式構造を有する(メタ)アクリル酸エステルとして、(メタ)アクリル酸シクロへキシル、(メタ)アクリル酸2-メチルシクロへキシル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル、(メタ)アクリル酸トリシクロ[5.2.1.02,5]デカン-8-イルオキシエチル、(メタ)アクリル酸イソボロニル、α-メチレン-γ-ブチロラクトン等を;
芳香環構造を有する(メタ)アクリル酸エステルとして、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等を;
複素環構造を有するビニル化合物として、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸テトラヒドロピラニル、(メタ)アクリル酸5-エチル-1,3-ジオキサン-5-イルメチル、(メタ)アクリル酸5-メチル-1,3-ジオキサン-5-イルメチル、(メタ)アクリル酸(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル、2-(メタ)アクリロイルオキシメチル-1,4,6-トリオキサスピロ[4,6]ウンデカン、(メタ)アクリル酸(γ-ブチロラクトン-2-イル)、(メタ)アクリル酸グリセリンカーボネート、(メタ)アクリル酸(γ-ラクタム-2-イル)、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、2-ビニル-2-オキサゾリン、イソプロペニルオキサゾリン、N-ビニル-2-ピロリドン、イタコンイミド等を;
ビニルエーテル化合物として、エチルビニルエーテル、ブチルビニルエーテル、ビニルグリシジルエーテル、2-(グリシジルオキシ)エチルビニルエーテル、4-(グリシジルオキシ)ブチルビニルエーテル等を;
共役ジエン化合物として、1,3-ブタジエン、イソプレン等を;
窒素含有ビニル化合物として、(メタ)アクリロニトリル、(メタ)アクリルアミド等を;
不飽和ジカルボン酸ジアルキルエステル化合物として、イタコン酸ジエチル等を;
シクロオレフィンとして、シクロペンテン、シクロヘキセン、シクロヘプテン、ノルボルネン等を、それぞれ挙げることができる。また、その他の構造単位を与える単量体としては、上記のほか、塩化ビニル、塩化ビニリデン、酢酸ビニル等の単量体が挙げられる。
Specific examples of the above monomers include (meth)acrylic acid alkyl esters such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-lauryl (meth)acrylate, and n-stearyl (meth)acrylate;
Examples of (meth)acrylic acid esters having an alicyclic structure include cyclohexyl (meth)acrylate, 2-methylcyclohexyl (meth)acrylate, tricyclo[5.2.1.0 2,6 ]decan-8-yl (meth)acrylate, tricyclo[5.2.1.0 2,5 ]decan-8-yloxyethyl (meth)acrylate, isobornyl (meth)acrylate, and α-methylene-γ-butyrolactone;
Examples of (meth)acrylic acid esters having an aromatic ring structure include phenyl (meth)acrylate and benzyl (meth)acrylate;
Examples of vinyl compounds having a heterocyclic structure include tetrahydrofurfuryl (meth)acrylate, tetrahydropyranyl (meth)acrylate, 5-ethyl-1,3-dioxan-5-ylmethyl (meth)acrylate, 5-methyl-1,3-dioxan-5-ylmethyl (meth)acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate, 2-(meth)acryloyloxymethyl-1,4,6-trioxaspiro[4,6]undecane, (γ-butyrolactone-2-yl) (meth)acrylate, glycerin carbonate (meth)acrylic acid, (γ-lactam-2-yl) (meth)acrylate, N-(meth)acryloyloxyethylhexahydrophthalimide, 2-vinyl-2-oxazoline, isopropenyloxazoline, N-vinyl-2-pyrrolidone, and itaconimide;
Examples of vinyl ether compounds include ethyl vinyl ether, butyl vinyl ether, vinyl glycidyl ether, 2-(glycidyloxy)ethyl vinyl ether, and 4-(glycidyloxy)butyl vinyl ether;
Conjugated diene compounds include 1,3-butadiene and isoprene;
Nitrogen-containing vinyl compounds include (meth)acrylonitrile and (meth)acrylamide;
As the unsaturated dicarboxylic acid dialkyl ester compound, diethyl itaconate, etc.
Examples of cycloolefins include cyclopentene, cyclohexene, cycloheptene, norbornene, etc. Examples of monomers that provide other structural units include, in addition to the above, monomers such as vinyl chloride, vinylidene chloride, vinyl acetate, etc.

 また、芳香族ビニル化合物又はN-置換マレイミド化合物であって構造単位(A1)~構造単位(A3)とは異なる化合物としては、芳香族ビニル化合物として、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、5-t-ブチル-2-メチルスチレン、ジビニルベンゼン、トリビニルベンゼン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、4-t-ブチルスチレン、ジフェニルエチレン、ビニルナフタレン、ビニルピリジン等を;
N-置換マレイミド化合物として、N-シクロヘキシルマレイミド、N-シクロペンチルマレイミド、N-(2-メチルシクロヘキシル)マレイミド、N-(4-メチルシクロヘキシル)マレイミド、N-(4-エチルシクロヘキシル)マレイミド、N-(2,6-ジメチルシクロヘキシル)マレイミド、N-ノルボルニルマレイミド、N-トリシクロデシルマレイミド、N-アダマンチルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(4-メチルフェニル)マレイミド、N-(4-エチルフェニル)マレイミド、N-(2,6-ジメチルフェニル)マレイミド、N-ベンジルマレイミド、N-ナフチルマレイミド、N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-イソプロピルマレイミド、N-n-ブチルマレイミド、N-イソブチルマレイミド、N-s-ブチルマレイミド、N-t-ブチルマレイミド、N-n-ペンチルマレイミド、N-n-ヘキシルマレイミド、N-n-ヘプチルマレイミド、N-n-オクチルマレイミド、N-ラウリルマレイミド、N-ステアリルマレイミドN-2-エチルヘキシルマレイミド等を、それぞれ挙げることができる。
In addition, examples of aromatic vinyl compounds or N-substituted maleimide compounds that are different from the structural units (A1) to (A3) include aromatic vinyl compounds such as styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 5-t-butyl-2-methylstyrene, divinylbenzene, trivinylbenzene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl)dimethylaminoethyl ether, N,N-dimethylaminoethylstyrene, N,N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-t-butylstyrene, 3-t-butylstyrene, 4-t-butylstyrene, diphenylethylene, vinylnaphthalene, and vinylpyridine;
Examples of the N-substituted maleimide compounds include N-cyclohexylmaleimide, N-cyclopentylmaleimide, N-(2-methylcyclohexyl)maleimide, N-(4-methylcyclohexyl)maleimide, N-(4-ethylcyclohexyl)maleimide, N-(2,6-dimethylcyclohexyl)maleimide, N-norbornylmaleimide, N-tricyclodecylmaleimide, N-adamantylmaleimide, N-phenylmaleimide, N-(2-methylphenyl)maleimide, N-(4-methylphenyl)maleimide, N-(4-ethylphenyl)maleimide, N-(2, 6-dimethylphenyl)maleimide, N-benzylmaleimide, N-naphthylmaleimide, N-methylmaleimide, N-ethylmaleimide, N-n-propylmaleimide, N-isopropylmaleimide, N-n-butylmaleimide, N-isobutylmaleimide, N-s-butylmaleimide, N-t-butylmaleimide, N-n-pentylmaleimide, N-n-hexylmaleimide, N-n-heptylmaleimide, N-n-octylmaleimide, N-laurylmaleimide, N-stearylmaleimide, and N-2-ethylhexylmaleimide.

 N-置換マレイミド化合物は、硬化物における難透水性、耐熱性及びベンディング耐性の改善効果をより高める観点から、上記の中でも、置換部分に環状構造を有する化合物が好ましく、ベンゼン環又はシクロヘキサン環を有する化合物がより好ましい。 From the viewpoint of further improving the water impermeability, heat resistance, and bending resistance of the cured product, N-substituted maleimide compounds having a cyclic structure in the substituted portion are preferred, and compounds having a benzene ring or cyclohexane ring are more preferred.

 [A]重合体が、その他の構造単位として構造単位(A2)及び構造単位(A3)以外の構造単位を含む場合、当該構造単位の含有割合は、[A]重合体の全構造単位に対して、70モル%以下が好ましく、60モル%以下がより好ましい。 When the polymer [A] contains structural units other than the structural units (A2) and (A3) as other structural units, the content of the structural units is preferably 70 mol % or less, and more preferably 60 mol % or less, based on the total structural units of the polymer [A].

([A]重合体の合成)
 [A]重合体は、例えば、上述した各構造単位を導入可能な単量体を用い、適当な溶媒中、重合開始剤等の存在下で、ラジカル重合等の公知の方法に従って製造することができる。重合開始剤としては、アゾ化合物や有機過酸化物等が挙げられる。アゾ化合物としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソ酪酸)ジメチル等が挙げられる。有機過酸化物としては、過酸化ベンゾイル、ジ-tert-ブチルペルオキシド等が挙げられる。重合開始剤の使用割合は、反応に使用する単量体の全量100質量部に対して、0.01~30質量部であることが好ましい。重合溶媒としては、例えばアルコール類、エーテル類、ケトン類、エステル類、炭化水素類等が挙げられる。重合溶媒の使用量は、反応に使用する単量体の合計量が、反応溶液の全体量に対して、0.1~60質量%になるような量にすることが好ましい。
(Synthesis of polymer [A])
The polymer [A] can be produced, for example, by using a monomer capable of introducing each of the structural units described above in a suitable solvent in the presence of a polymerization initiator, according to a known method such as radical polymerization. Examples of the polymerization initiator include an azo compound and an organic peroxide. Examples of the azo compound include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), and 2,2'-azobis(isobutyric acid) dimethyl. Examples of the organic peroxide include benzoyl peroxide and di-tert-butyl peroxide. The proportion of the polymerization initiator used is preferably 0.01 to 30 parts by mass relative to 100 parts by mass of the total amount of the monomers used in the reaction. Examples of the polymerization solvent include alcohols, ethers, ketones, esters, and hydrocarbons. The amount of the polymerization solvent used is preferably such that the total amount of the monomers used in the reaction is 0.1 to 60% by mass relative to the total amount of the reaction solution.

 重合において、反応温度は、通常、30℃~180℃である。反応時間は、重合開始剤及び単量体の種類や反応温度に応じて設定し得る。反応時間は、通常、0.5~10時間である。重合反応により得られた重合体は、反応溶液に溶解された状態のまま本組成物の調製に用いられてもよいし、反応溶液から単離された後、本組成物の調製に用いられてもよい。重合体の単離は、例えば、反応溶液を大量の貧溶媒中に注ぎ、これにより得られる析出物を減圧下乾燥する方法、反応溶液をエバポレーターで減圧留去する方法等の公知の単離方法により行うことができる。 In the polymerization, the reaction temperature is usually 30°C to 180°C. The reaction time can be set depending on the type of polymerization initiator and monomer, and the reaction temperature. The reaction time is usually 0.5 to 10 hours. The polymer obtained by the polymerization reaction may be used in the preparation of the present composition while still dissolved in the reaction solution, or may be used in the preparation of the present composition after being isolated from the reaction solution. The polymer can be isolated by known isolation methods, such as a method of pouring the reaction solution into a large amount of poor solvent and drying the resulting precipitate under reduced pressure, or a method of distilling the reaction solution under reduced pressure using an evaporator.

 [A]重合体につき、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量(Mw)は、3,000以上であることが好ましい。Mwが3,000以上であると、耐熱性やベンディング耐性、耐薬品性が十分に高く、かつ良好な現像性を示す硬化物を得ることができる点で好ましい。[A]重合体のMwは、より好ましくは5,000以上であり、更に好ましくは6,000以上である。また、[A]重合体のMwは、成膜性を良好にする観点から、好ましくは150,000以下であり、より好ましくは100,000以下であり、更に好ましくは80,000以下である。 The weight average molecular weight (Mw) of the polymer [A] in terms of polystyrene measured by gel permeation chromatography (GPC) is preferably 3,000 or more. Mw of 3,000 or more is preferable in that a cured product having sufficiently high heat resistance, bending resistance, and chemical resistance and good developability can be obtained. The Mw of the polymer [A] is more preferably 5,000 or more, and even more preferably 6,000 or more. In addition, from the viewpoint of improving film-forming properties, the Mw of the polymer [A] is preferably 150,000 or less, more preferably 100,000 or less, and even more preferably 80,000 or less.

 [A]重合体につき、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、5.0以下が好ましく、4.0以下がより好ましく、3.0以下が更に好ましい。 [A] For the polymer, the molecular weight distribution (Mw/Mn), expressed as the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), is preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.0 or less.

<[B]感光性化合物>
 感光性化合物としては、放射線の照射により本組成物の溶解性を変化させる成分であればよく、例えば、キノンジアジド化合物、光酸発生剤、光重合開始剤等が挙げられる。これらの中でも、キノンジアジド化合物又は光酸発生剤を好ましく使用できる。ここで、本明細書において「キノンジアジド化合物」は、放射線の照射によりインデンカルボン酸に変化する物質であり、「光酸発生剤」は、放射線の照射により酸を発生して、組成物中の成分が有する酸解離性基を脱離させる物質である。
<[B] Photosensitive compound>
The photosensitive compound may be any component that changes the solubility of the composition by irradiation with radiation, and examples of such compounds include quinone diazide compounds, photoacid generators, and photopolymerization initiators. Among these, quinone diazide compounds and photoacid generators are preferably used. Here, in this specification, a "quinone diazide compound" is a substance that changes to an indene carboxylic acid by irradiation with radiation, and a "photoacid generator" is a substance that generates an acid by irradiation with radiation and eliminates an acid-dissociable group possessed by a component in the composition.

(キノンジアジド化合物)
 キノンジアジド化合物としては、フェノール性化合物又はアルコール性化合物(以下、「母核」ともいう)と、オルソナフトキノンジアジド化合物との縮合物が挙げられる。これらのうち、使用するキノンジアジド化合物は、母核としてのフェノール系水酸基を有する化合物と、オルソナフトキノンジアジド化合物との縮合物が好ましい。母核の具体例としては、例えば、特開2014-186300号公報の段落0065~0070に記載された化合物が挙げられる。オルソナフトキノンジアジド化合物は、1,2-ナフトキノンジアジドスルホン酸ハライドが好ましい。
(Quinone diazide compounds)
The quinone diazide compound may be a condensate of a phenolic compound or an alcoholic compound (hereinafter also referred to as "mother nucleus") with an orthonaphthoquinone diazide compound. Of these, the quinone diazide compound used is preferably a condensate of a compound having a phenolic hydroxyl group as the mother nucleus with an orthonaphthoquinone diazide compound. Specific examples of the mother nucleus include the compounds described in paragraphs 0065 to 0070 of JP-A-2014-186300. The orthonaphthoquinone diazide compound is preferably 1,2-naphthoquinone diazide sulfonic acid halide.

 キノンジアジド化合物としては、母核としてのフェノール性化合物又はアルコール性化合物と、1,2-ナフトキノンジアジドスルホン酸ハライドとの縮合物を好ましく使用でき、フェノール性化合物と1,2-ナフトキノンジアジドスルホン酸ハライドとの縮合物をより好ましく使用できる。 As the quinone diazide compound, a condensation product of a phenolic compound or alcoholic compound as the mother nucleus and 1,2-naphthoquinone diazide sulfonic acid halide can be preferably used, and a condensation product of a phenolic compound and 1,2-naphthoquinone diazide sulfonic acid halide can be more preferably used.

 キノンジアジド化合物の具体例としては、4,4'-ジヒドロキシジフェニルメタン、2,3,4,2',4'-ペンタヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、トリ(p-ヒドロキシフェニル)メタン、1,1,1-トリ(p-ヒドロキシフェニル)メタン、1,1,1-トリ(p-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,3-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、1,4-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、4,6-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]-1,3-ジヒドロキシベンゼン、及び4,4'-[1-[4-[1-[4-ヒドロキシフェニル]-1-メチルエチル]フェニル]エチリデン]ビスフェノールから選ばれるフェノール性水酸基含有化合物と、1,2-ナフトキノンジアジド-4-スルホン酸クロリド又は1,2-ナフトキノンジアジド-5-スルホン酸クロリドとのエステル化合物が挙げられる。 Specific examples of quinone diazide compounds include 4,4'-dihydroxydiphenylmethane, 2,3,4,2',4'-pentahydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, tri(p-hydroxyphenyl)methane, 1,1,1-tri(p-hydroxyphenyl)methane, 1,1,1-tri(p-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 1,3-bis[1-(4-hydroxyphenyl)-1-methylethyl]benzene, 1, Examples include ester compounds of a phenolic hydroxyl group-containing compound selected from 4-bis[1-(4-hydroxyphenyl)-1-methylethyl]benzene, 4,6-bis[1-(4-hydroxyphenyl)-1-methylethyl]-1,3-dihydroxybenzene, and 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol with 1,2-naphthoquinone diazide-4-sulfonic acid chloride or 1,2-naphthoquinone diazide-5-sulfonic acid chloride.

 上記縮合物を得るための縮合反応において、母核と1,2-ナフトキノンジアジドスルホン酸ハライドとの割合は、1,2-ナフトキノンジアジドスルホン酸ハライドの使用量を、母核中のOH基の数に対して、30~85モル%に相当する量とすることが好ましく、50~70モル%に相当する量とすることがより好ましい。なお、上記縮合反応は、公知の方法に従って行うことができる。 In the condensation reaction to obtain the above condensation product, the ratio of the mother nucleus to the 1,2-naphthoquinone diazide sulfonic acid halide is preferably such that the amount of 1,2-naphthoquinone diazide sulfonic acid halide used is an amount equivalent to 30 to 85 mol %, and more preferably an amount equivalent to 50 to 70 mol %, of the number of OH groups in the mother nucleus. The above condensation reaction can be carried out according to a known method.

 感光性化合物としてキノンジアジド化合物を使用する場合、本組成物におけるキノンジアジド化合物の含有割合は、本組成物に含まれる[A]重合体100質量部に対して、2質量部以上とすることが好ましく、5質量部以上とすることがより好ましく、10質量部以上とすることが更に好ましい。また、キノンジアジド化合物の含有割合は、本組成物に含まれる[A]重合体100質量部に対して、60質量部以下とすることが好ましく、50質量部以下とすることがより好ましく、40質量部以下とすることが更に好ましい。 When a quinone diazide compound is used as the photosensitive compound, the content of the quinone diazide compound in the composition is preferably 2 parts by mass or more, more preferably 5 parts by mass or more, and even more preferably 10 parts by mass or more, per 100 parts by mass of the polymer [A] contained in the composition. The content of the quinone diazide compound is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 40 parts by mass or less, per 100 parts by mass of the polymer [A] contained in the composition.

 キノンジアジド化合物の含有割合を2質量部以上とすると、活性光線の照射によって酸が十分に生じ、露光部と未露光部とにおける現像液に対する溶解度の差を十分に大きくできる。これにより、良好なパターニングを行うことができる。また、重合体成分との反応に関与する酸の量を多くでき、本組成物を用いて得られる硬化物の耐熱性やベンディング耐性を十分に確保できる。一方、キノンジアジド化合物の含有割合を60質量部以下とすると、未反応のキノンジアジド化合物の量を十分に少なくでき、キノンジアジド化合物の残存に起因する現像性及び透明性の低下を抑制できる点で好適である。 When the content of the quinone diazide compound is 2 parts by mass or more, sufficient acid is generated by irradiation with actinic rays, and the difference in solubility in the developer between exposed and unexposed areas can be sufficiently large. This allows for good patterning. In addition, the amount of acid involved in the reaction with the polymer component can be increased, and the heat resistance and bending resistance of the cured product obtained using this composition can be sufficiently ensured. On the other hand, when the content of the quinone diazide compound is 60 parts by mass or less, the amount of unreacted quinone diazide compound can be sufficiently reduced, which is preferable in that it can suppress the decrease in developability and transparency caused by remaining quinone diazide compound.

(光酸発生剤)
 光酸発生剤としては、波長300nm以上(好ましくは300~450nm)の活性光線に感応し、酸を発生する化合物を好ましく使用できる。波長300nm以上の活性光線に直接感応しない光酸発生剤を用いる場合、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸を発生するようにしてもよい。
(Photoacid generator)
As the photoacid generator, a compound that responds to actinic rays having a wavelength of 300 nm or more (preferably 300 to 450 nm) and generates an acid can be preferably used. When a photoacid generator that does not directly respond to actinic rays having a wavelength of 300 nm or more is used, it may be used in combination with a sensitizer so that it responds to actinic rays having a wavelength of 300 nm or more and generates an acid.

 光酸発生剤としては、酸解離定数(pKa)が4以下である酸を発生する化合物を好ましく使用できる。光酸発生剤により発生される酸の酸解離定数は、より好ましくは3以下であり、更に好ましくは2以下である。 As the photoacid generator, a compound that generates an acid with an acid dissociation constant (pKa) of 4 or less can be preferably used. The acid dissociation constant of the acid generated by the photoacid generator is more preferably 3 or less, and even more preferably 2 or less.

 光酸発生剤の具体例としては、例えば、オキシムスルホネート化合物、オニウム塩(スルホニウム塩、ヨードニウム塩、第4級アンモニウム塩等)、スルホンイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物等が挙げられる。 Specific examples of photoacid generators include oxime sulfonate compounds, onium salts (sulfonium salts, iodonium salts, quaternary ammonium salts, etc.), sulfonimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, and carboxylate compounds.

 オキシムスルホネート化合物、オニウム塩、スルホンイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、及びカルボン酸エステル化合物のそれぞれの具体例としては、特開2012-252343号公報の段落0034~0038に記載された化合物、特開2014-157252号公報の段落0078~0106に記載された化合物、国際公開第2016/124493号に記載された化合物等が挙げられる。光酸発生剤としては、これらのうち、オキシムスルホネート化合物、オニウム塩、スルホンイミド化合物、ハロゲン含有化合物、スルホン化合物及びスルホン酸エステル化合物よりなる群から選択される少なくとも1種を好ましく使用できる。 Specific examples of the oxime sulfonate compounds, onium salts, sulfonimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonate compounds, and carboxylate compounds include the compounds described in paragraphs 0034 to 0038 of JP 2012-252343 A, the compounds described in paragraphs 0078 to 0106 of JP 2014-157252 A, and the compounds described in WO 2016/124493. Of these, at least one selected from the group consisting of oxime sulfonate compounds, onium salts, sulfonimide compounds, halogen-containing compounds, sulfone compounds, and sulfonate compounds can be preferably used as the photoacid generator.

 これらの化合物の具体例としては、オキシムスルホネート化合物として、(5-プロピルスルホニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(5-オクチルスルホニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(カンファースルホニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(5-p-トルエンスルホニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、{2-[2-(4-メチルフェニルスルホニルオキシイミノ)]-2,3-ジヒドロチオフェン-3-イリデン}-2-(2-メチルフェニル)アセトニトリル)、2-(オクチルスルホニルオキシイミノ)-2-(4-メトキシフェニル)アセトニトリル、国際公開第2016/124493号に記載の化合物等が挙げられる。オキシムスルホネート化合物の市販品としては、BASF社製のIrgacure PAG121等が挙げられる。 Specific examples of these compounds include oxime sulfonate compounds such as (5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (5-octylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (camphorsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, (5-p-toluenesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile, {2-[2-(4-methylphenylsulfonyloxyimino)]-2,3-dihydrothiophen-3-ylidene}-2-(2-methylphenyl)acetonitrile), 2-(octylsulfonyloxyimino)-2-(4-methoxyphenyl)acetonitrile, and the compounds described in WO 2016/124493. Commercially available oxime sulfonate compounds include Irgacure PAG121 manufactured by BASF.

 スルホンイミド化合物の具体例としては、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(カンファスルホニルオキシ)スクシンイミド、N-(4-メチルフェニルスルホニルオキシ)スクシンイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)スクシンイミド、N-(4-フルオロフェニルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(カンファスルホニルオキシ)フタルイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)フタルイミド、N-(2-フルオロフェニルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(カンファスルホニルオキシ)ジフェニルマレイミド、4-メチルフェニルスルホニルオキシ)ジフェニルマレイミド、トリフルオロメタンスルホン酸-1,8-ナフタルイミド(ナフタルイミドトリフルオロメタンスルホネート)が挙げられる。 Specific examples of sulfonimide compounds include N-(trifluoromethylsulfonyloxy)succinimide, N-(camphorsulfonyloxy)succinimide, N-(4-methylphenylsulfonyloxy)succinimide, N-(2-trifluoromethylphenylsulfonyloxy)succinimide, N-(4-fluorophenylsulfonyloxy)succinimide, N-(trifluoromethylsulfonyloxy)phthalimide, N-(camphorsulfonyloxy)phthalimide, N-(2-trifluoromethylphenylsulfonyloxy)phthalimide, N-(2-fluorophenylsulfonyloxy)phthalimide, N-(trifluoromethylsulfonyloxy)diphenylmaleimide, N-(camphorsulfonyloxy)diphenylmaleimide, 4-methylphenylsulfonyloxy)diphenylmaleimide, and trifluoromethanesulfonic acid-1,8-naphthalimide (naphthalimide trifluoromethanesulfonate).

 オニウム塩の具体例としては、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムn-ドデシルベンゼンスルホネート、ジフェニルヨードニウム10-カンファースルホネート、ジフェニルヨードニウムナフタレンスルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムn-ドデシルベンゼンスルホネート、トリフェニルスルホニウムナフタレンスルホネート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2-オキソシクロヘキシルジシクロヘキシルスルホニウムトリフルオロメタンスルホネート、1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、1-(4?ベンジルオキシ)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(ナフチルアセトメチル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、4,7-ジ-n-ブトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート等が挙げられる。 Specific examples of onium salts include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium n-dodecylbenzenesulfonate, diphenyliodonium 10-camphorsulfonate, diphenyliodonium naphthalenesulfonate, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium n-dodecylbenzenesulfonate, triphenylsulfon ... Examples include phenylsulfonium 10-camphorsulfonate, triphenylsulfonium hexafluoroantimonate, 2-oxocyclohexyldicyclohexylsulfonium trifluoromethanesulfonate, 1-naphthyldiethylsulfonium trifluoromethanesulfonate, 1-(4-benzyloxy)tetrahydrothiophenium trifluoromethanesulfonate, 1-(naphthylacetomethyl)tetrahydrothiophenium trifluoromethanesulfonate, and 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate.

 ハロゲン含有化合物の具体例としては、フェニルビス(トリクロロメチル)-s-トリアジン、4-メトキシフェニルビス(トリクロロメチル)-s-トリアジン、1-ナフチルビス(トリクロロメチル)-s-トリアジン等が挙げられる。スルホン化合物の具体例としては、4-トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェニルスルホニル)メタン等が挙げられる。スルホン酸エステル化合物としては、ベンゾイントシレート、ピロガロールのトリス(トリフルオロメタンスルホネート)、ニトロベンジル-9,10-ジエトキシアントラセン-2-スルホネート、トリフルオロメタンスルホニルビシクロ[2,2,1]ヘプト-5-エン-2,3-ジカルボジイミド、N-ヒドロキシスクシンイミドトリフルオロメタンスルホネート、1,8-ナフタレンジカルボン酸イミドトリフルオロメタンスルホネート等が挙げられる。 Specific examples of halogen-containing compounds include phenylbis(trichloromethyl)-s-triazine, 4-methoxyphenylbis(trichloromethyl)-s-triazine, and 1-naphthylbis(trichloromethyl)-s-triazine. Specific examples of sulfone compounds include 4-trisphenacylsulfone, mesitylphenacylsulfone, and bis(phenylsulfonyl)methane. Examples of sulfonic acid ester compounds include benzoin tosylate, pyrogallol tris(trifluoromethanesulfonate), nitrobenzyl-9,10-diethoxyanthracene-2-sulfonate, trifluoromethanesulfonylbicyclo[2,2,1]hept-5-ene-2,3-dicarbodiimide, N-hydroxysuccinimide trifluoromethanesulfonate, and 1,8-naphthalenedicarboxylic acid imide trifluoromethanesulfonate.

 感光性化合物として光酸発生剤を用いる場合、本組成物における光酸発生剤の含有割合は、本組成物に含まれる[A]重合体100質量部に対して、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましい。また、光酸発生剤の含有割合は、本組成物に含まれる[A]重合体100質量部に対して、35質量部以下であることが好ましく、30質量部以下であることがより好ましい。光酸発生剤の含有割合を0.5質量部以上とすると、放射線の照射によって露光部に酸が十分に生成し、アルカリ溶液に対する露光部と未露光部との溶解度の差を十分に大きくできる。これにより、良好なパターニングを行うことができる。また、[A]重合体との反応に関与する酸の量を多くでき、得られる硬化物の耐熱性やベンディング耐性を十分に確保できる。一方、光酸発生剤の含有割合を35質量部以下とすることにより、露光後において未反応の光酸発生剤の量を十分に少なくでき、光酸発生剤の残存による現像性の低下を抑制することができる。 When a photoacid generator is used as the photosensitive compound, the content of the photoacid generator in the composition is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, relative to 100 parts by mass of the polymer [A] contained in the composition. The content of the photoacid generator is preferably 35 parts by mass or less, more preferably 30 parts by mass or less, relative to 100 parts by mass of the polymer [A] contained in the composition. When the content of the photoacid generator is 0.5 parts by mass or more, sufficient acid is generated in the exposed part by irradiation with radiation, and the difference in solubility between the exposed part and the unexposed part in the alkaline solution can be sufficiently increased. This allows good patterning to be performed. In addition, the amount of acid involved in the reaction with the polymer [A] can be increased, and the heat resistance and bending resistance of the obtained cured product can be sufficiently ensured. On the other hand, by setting the content of the photoacid generator to 35 parts by mass or less, the amount of unreacted photoacid generator after exposure can be sufficiently reduced, and the decrease in developability due to the remaining photoacid generator can be suppressed.

<その他の成分>
 本組成物は、[A]重合体及び[B]感光性化合物とは異なる成分(以下、「その他の成分」ともいう)を更に含有していてもよい。その他の成分としては、例えば、[C]架橋性官能基を2個以上有する化合物(ただし、[A]重合体を除く。以下、単に「[C]化合物」ともいう。)、[D]密着助剤、[E]界面活性剤、[F]溶剤等が挙げられる。
<Other ingredients>
The composition may further contain components other than the polymer [A] and the photosensitive compound [B] (hereinafter also referred to as "other components"). Examples of the other components include a compound [C] having two or more crosslinkable functional groups (excluding the polymer [A]; hereinafter also simply referred to as "compound [C]"), an adhesion aid [D], a surfactant [E], and a solvent [F].

([C]化合物)
 [C]化合物は、光又は熱によって[A]重合体の分子間又は分子内に架橋構造を形成したり、[C]化合物同士で結合を形成したりする成分である。本組成物につき、[A]重合体が構造単位(A1)と共に構造単位(A2)を含むか、又は[A]重合体と[C]化合物とを含む硬化性組成物とすることにより、本組成物を用いて得られる硬化物の耐熱性やベンディング耐性を更に向上させることができる点で好ましい。
([C] Compound)
The compound [C] is a component that forms a crosslinked structure between or within the molecules of the polymer [A] by light or heat, or forms a bond between the compounds [C] themselves. It is preferable that the polymer [A] contains the structural unit (A2) together with the structural unit (A1) in the present composition, or that the curable composition contains the polymer [A] and the compound [C], in that the heat resistance and bending resistance of the cured product obtained by using the present composition can be further improved.

 [C]化合物が有する架橋性官能基としては、例えば、環状エーテル基、環状チオエーテル基、カルボキシ基、環状カーボネート基、アルコール性水酸基、アミノ基、保護されたアミノ基、保護されたイソシアネート基、重合性不飽和結合基、ヒドロキシアルキルアミド基、オキサゾリン基、アルコキシメチルフェニル基等が挙げられる。架橋性官能基は、[A]重合体と反応して[A]重合体の分子間又は分子内に架橋構造を形成し、硬化物の耐熱性及びベンディング耐性を優れたものとする観点から、オキシラニル基、オキセタニル基、チイラン基、ヒドロキシアルキルアミド基、ヒドロキシメチルフェニル基、アルコキシメチルフェニル基、シクロカーボネート基、及び保護されたイソシアネート基よりなる群から選択される少なくとも1種が好ましく、オキシラニル基、オキセタニル基、ヒドロキシアルキルアミド基、ヒドロキシメチルフェニル基及びアルコキシメチルフェニル基よりなる群から選択される少なくとも1種がより好ましい。 Examples of the crosslinkable functional group possessed by the compound [C] include a cyclic ether group, a cyclic thioether group, a carboxy group, a cyclic carbonate group, an alcoholic hydroxyl group, an amino group, a protected amino group, a protected isocyanate group, a polymerizable unsaturated bond group, a hydroxyalkylamide group, an oxazoline group, and an alkoxymethylphenyl group. The crosslinkable functional group reacts with the polymer [A] to form a crosslinked structure between or within the molecules of the polymer [A], and from the viewpoint of making the heat resistance and bending resistance of the cured product excellent, at least one type selected from the group consisting of an oxiranyl group, an oxetanyl group, a thiirane group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and a protected isocyanate group is preferable, and at least one type selected from the group consisting of an oxiranyl group, an oxetanyl group, a hydroxyalkylamide group, a hydroxymethylphenyl group, and an alkoxymethylphenyl group is more preferable.

 [C]化合物が1分子内に有する架橋性官能基の数は、硬化物の耐熱性やベンディング耐性を向上させる効果を十分に得るとともに、膜収縮を抑制する観点から、2~10個が好ましく、3~8個がより好ましい。 The number of crosslinkable functional groups that the compound [C] has in one molecule is preferably 2 to 10, and more preferably 3 to 8, from the viewpoint of sufficiently improving the heat resistance and bending resistance of the cured product and suppressing film shrinkage.

 [C]化合物の具体例としては、エポキシ基を有する化合物として、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、トリグリシジルイソシアヌレート、グリセロールポリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、1,4-シクロヘキサンジメタノールジグリシジルエーテル、N,N’,N’,N’‘-テトラグリシジルグリコールウリル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、N,N-ジグリシジル-ベンジルアミン、N,N-ジグリシジル-アミノメチルシクロヘキサン、N,N-ジグリシジル-シクロヘキシルアミン、2,2’-ジアリルビスフェノールAジアリルエーテルの過酸化水素によるエポキシ化反応生成物等を;
シクロカーボネート基を有する化合物として、上記例示のエポキシ基を有する化合物のエポキシ基が保護された化合物(例えば、N,N,N’,N’-テトラ[(2-オキソ-1,3-ジオキソラン-4-イル)エチル]-4,4’-ジアミノジフェニルメタン)を;
チイラン基を有する化合物として、上記に例示したエポキシ基をチイラン基に置き換えた化合物を;
ヒドロキシアルキルアミド基を有する化合物として、例えば下記式(c-1)~式(c-7)のそれぞれで表される化合物等を;
ヒドロキシメチルフェニル基及びアルコキシメチルフェニル基の一方又は両方を有する化合物として、例えば2,2-ビス(4-ヒドロキシメチルフェニル)プロパン、2,2-ビス(2,3,4-トリヒドロキシメチルフェニル)プロパン、下記式(c-8)~式(c-16)のそれぞれで表される化合物等を;
保護されたイソシアネート基を有する化合物として、例えばトリレンジイソシアネート、キシリレンジイソシアネート、クロルフェニレンジイソシアナート、ヘキサメチレンジイソシアナート、テトラメチレンジイソシアナート、イソホロンジイソシアネート又はジフェニルメタンジイソシアネートにおけるイソシアネート基が保護された化合物等を、それぞれ挙げることができる。

Figure JPOXMLDOC01-appb-C000010
Specific examples of the compound [C] include compounds having an epoxy group, such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, triglycidyl isocyanurate, glycerol polyglycidyl ether, pentaerythritol tetraglycidyl ether, 1,4-cyclohexanedimethanol diglycidyl ether, N,N',N',N''-tetraglycidyl glycoluril, 1,6-hexanediol diglycidyl ether, trimethyl arylpropane triglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, N,N-diglycidyl-benzylamine, N,N-diglycidyl-aminomethylcyclohexane, N,N-diglycidyl-cyclohexylamine, epoxidation reaction product of 2,2'-diallyl bisphenol A diallyl ether with hydrogen peroxide, etc.;
As a compound having a cyclocarbonate group, a compound in which the epoxy group of the above-exemplified compound having an epoxy group is protected (for example, N,N,N',N'-tetra[(2-oxo-1,3-dioxolan-4-yl)ethyl]-4,4'-diaminodiphenylmethane);
As the compound having a thiirane group, the above-exemplified compounds in which the epoxy group is replaced with a thiirane group are included;
Examples of the compound having a hydroxyalkylamide group include compounds represented by the following formulas (c-1) to (c-7):
Examples of compounds having one or both of a hydroxymethylphenyl group and an alkoxymethylphenyl group include 2,2-bis(4-hydroxymethylphenyl)propane, 2,2-bis(2,3,4-trihydroxymethylphenyl)propane, and compounds represented by the following formulas (c-8) to (c-16):
Examples of compounds having a protected isocyanate group include compounds in which the isocyanate group in tolylene diisocyanate, xylylene diisocyanate, chlorophenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, isophorone diisocyanate, or diphenylmethane diisocyanate is protected.
Figure JPOXMLDOC01-appb-C000010

 本組成物が[C]化合物を含む場合、その含有割合は、本組成物に含まれる[A]重合体100質量部に対して、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、5質量部以上であることが更に好ましい。また、[C]化合物の含有割合は、本組成物に含まれる[A]重合体100質量部に対して、40質量部以下であることが好ましく、30質量部以下であることがより好ましい。 When the composition contains the [C] compound, the content is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and even more preferably 5 parts by mass or more, per 100 parts by mass of the [A] polymer contained in the composition. The content of the [C] compound is preferably 40 parts by mass or less, and more preferably 30 parts by mass or less, per 100 parts by mass of the [A] polymer contained in the composition.

([D]密着助剤)
 密着助剤は、本組成物を用いて形成される硬化物と基板との接着性を向上させる成分である。密着助剤としては、反応性官能基を有する官能性シランカップリング剤を好ましく使用できる。官能性シランカップリング剤が有する反応性官能基としては、カルボキシ基、(メタ)アクリロイル基、エポキシ基、ビニル基、イソシアネート基等が挙げられる。
([D] Adhesion Aid)
The adhesion aid is a component that improves the adhesion between the cured product formed by using the composition and the substrate. As the adhesion aid, a functional silane coupling agent having a reactive functional group can be preferably used. Examples of the reactive functional group of the functional silane coupling agent include a carboxy group, a (meth)acryloyl group, an epoxy group, a vinyl group, and an isocyanate group.

 官能性カップリング剤の具体例としては、例えば、トリメトキシシリル安息香酸、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、3-イソシアナートプロピルトリエトキシシラン等が挙げられる。 Specific examples of functional coupling agents include trimethoxysilylbenzoic acid, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane.

 本組成物が密着助剤を含む場合、その含有割合は、本組成物に含まれる[A]重合体100質量部に対して、0.01~30質量部であることが好ましく、0.1~20質量部であることがより好ましい。 If the composition contains an adhesion aid, the content is preferably 0.01 to 30 parts by mass, and more preferably 0.1 to 20 parts by mass, per 100 parts by mass of the polymer [A] contained in the composition.

([E]界面活性剤)
 界面活性剤は、本組成物の塗布性(濡れ広がり性や塗布ムラの低減)を改良するために使用することができる。界面活性剤としては、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、ノニオン系界面活性剤が挙げられる。界面活性剤としては、これらの市販品等の公知のものの中から任意に選択して使用することができる。
([E] Surfactant)
The surfactant can be used to improve the coating properties of the composition (wetting and spreading properties and reducing coating unevenness). Examples of the surfactant include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. The surfactant can be selected from known ones such as these commercially available products.

 本組成物中に界面活性剤を配合する場合、界面活性剤の含有量は、本組成物中に含まれる[A]重合体100質量部に対して、0.01~1.5質量部が好ましく、0.02~1.2質量部がより好ましく、0.05~1.0質量部が更に好ましい。 When a surfactant is blended in the composition, the content of the surfactant is preferably 0.01 to 1.5 parts by mass, more preferably 0.02 to 1.2 parts by mass, and even more preferably 0.05 to 1.0 parts by mass, per 100 parts by mass of the polymer [A] contained in the composition.

([F]溶剤)
 本組成物は、[A]重合体、[B]感光性化合物、及び必要に応じて配合される成分が溶剤に溶解又は分散された液状の組成物であることが好ましい。使用する溶剤としては、本組成物に配合される各成分を溶解し、かつ各成分と反応しない有機溶媒が好ましい。
([F] Solvent)
The present composition is preferably a liquid composition in which the polymer [A], the photosensitive compound [B], and components to be blended as necessary are dissolved or dispersed in a solvent. The solvent to be used is preferably an organic solvent that dissolves each component to be blended in the present composition and does not react with each component.

 溶剤の具体例としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等のエステル類;エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、エチレンジグリコールモノメチルエーテル、エチレンジグリコールエチルメチルエーテル、ジメチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル等のエーテル類;ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素が挙げられる。 Specific examples of solvents include alcohols such as methanol, ethanol, isopropanol, butanol, and octanol; esters such as ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, methyl 3-methoxypropionate, and ethyl 3-ethoxypropionate; ethers such as ethylene glycol monobutyl ether, propylene glycol monomethyl ether, ethylene diglycol monomethyl ether, ethylene diglycol ethyl methyl ether, dimethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and diethylene glycol ethyl methyl ether; amides such as dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; and aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene.

 これらのうち、溶剤は、エーテル類及びエステル類よりなる群から選択される少なくとも1種を含むことが好ましく、エチレングリコールアルキルエーテルアセテート、ジエチレングリコール類、プロピレングリコールモノアルキルエーテル、及びプロピレングリコールモノアルキルエーテルアセテートよりなる群から選択される少なくとも1種を含むことがより好ましい。 Among these, the solvent preferably contains at least one selected from the group consisting of ethers and esters, and more preferably contains at least one selected from the group consisting of ethylene glycol alkyl ether acetate, diethylene glycols, propylene glycol monoalkyl ether, and propylene glycol monoalkyl ether acetate.

 本組成物における溶剤の含有量(溶剤を2種以上含む場合にはその合計量)は、本組成物の全成分100質量部あたり、50~95質量部であることが好ましく、60~90質量部であることがより好ましい。 The content of the solvent in the composition (the total amount when two or more types of solvents are included) is preferably 50 to 95 parts by mass, and more preferably 60 to 90 parts by mass, per 100 parts by mass of all components of the composition.

 その他の成分として、上記のほか、酸拡散制御剤、増感剤、酸化防止剤、熱ラジカル発生剤、熱酸発生剤、紫外線吸収剤、増粘剤、現像促進剤、酸増殖剤、可塑剤、沈殿防止剤、重合禁止剤、連鎖移動剤等の公知の添加剤を含有させてもよい。これらの成分の配合割合は、本開示の効果を損なわない範囲で各成分に応じて適宜選択される。 Other components may include, in addition to those mentioned above, known additives such as acid diffusion control agents, sensitizers, antioxidants, thermal radical generators, thermal acid generators, ultraviolet absorbers, thickeners, development accelerators, acid multipliers, plasticizers, suspending agents, polymerization inhibitors, and chain transfer agents. The blending ratio of these components is appropriately selected according to each component within a range that does not impair the effects of the present disclosure.

 本組成物は、その固形分濃度(硬化性組成物中の溶剤以外の成分の合計質量が、硬化性組成物の全質量に対して占める割合)は、粘性や揮発性等を考慮して適宜に選択される。本組成物の固形分濃度は、好ましくは5~60質量%の範囲である。固形分濃度が5質量%以上であると、本組成物を基板上に塗布した際に塗膜の膜厚を十分に確保できる。また、固形分濃度が60質量%以下であると、塗膜の膜厚が過大となりすぎず、更に本組成物の粘性を適度に高くでき、良好な塗布性を確保できる。本組成物の固形分濃度は、より好ましくは10~55質量%であり、更に好ましくは12~50質量%である。 The solids concentration of the present composition (the ratio of the total mass of the components other than the solvent in the curable composition to the total mass of the curable composition) is appropriately selected taking into consideration the viscosity, volatility, etc. The solids concentration of the present composition is preferably in the range of 5 to 60 mass%. If the solids concentration is 5 mass% or more, a sufficient thickness of the coating film can be ensured when the present composition is applied to a substrate. If the solids concentration is 60 mass% or less, the thickness of the coating film does not become too large, and the viscosity of the present composition can be appropriately increased, ensuring good coatability. The solids concentration of the present composition is more preferably 10 to 55 mass%, and even more preferably 12 to 50 mass%.

<有機EL素子用硬化物及びその製造方法>
 本開示の硬化物は、上記のように調製された本組成物により形成される。本組成物によれば、高い放射線感度を示しながら、高透過率かつ低誘電率であり、耐熱性、難透水性及びベンディング耐性に優れたパターン膜を形成することができる。こうした本組成物は、有機EL素子の硬化物形成用の組成物として好ましく用いることができ、中でも特に、有機EL素子における平坦化膜、隔壁又は層間絶縁膜の形成用組成物として好ましく用いることができる。
<Cured material for organic EL device and method for producing same>
The cured product of the present disclosure is formed by the present composition prepared as described above. With this composition, a pattern film can be formed that has high radiation sensitivity, high transmittance, low dielectric constant, and excellent heat resistance, low water permeability, and bending resistance. Such a present composition can be preferably used as a composition for forming a cured product of an organic EL element, and particularly, can be preferably used as a composition for forming a planarizing film, a partition wall, or an interlayer insulating film in an organic EL element.

 本組成物により硬化物を製造する場合、放射線の照射部分を除去するポジ型現像、放射線の非照射部分を除去するネガ型現像のいずれでもよい。本組成物は、ポジ型の硬化物形成用として特に好ましく使用できる。本開示の硬化物は、本組成物を用いて、例えば以下の工程1~工程4を含む方法により製造することができる。
 (工程1)本組成物を用いて塗膜を形成する工程。
 (工程2)塗膜の少なくとも一部に放射線を照射する工程。
 (工程3)放射線を照射した後の塗膜を現像する工程。
 (工程4)現像された塗膜を加熱する工程。
以下、各工程について詳細に説明する。
When producing a cured product from the present composition, either positive development, which removes the irradiated portion, or negative development, which removes the non-irradiated portion, may be used. The present composition is particularly preferably used for forming a positive cured product. The cured product of the present disclosure can be produced using the present composition by a method including, for example, the following steps 1 to 4.
(Step 1) A step of forming a coating film using the present composition.
(Step 2) A step of irradiating at least a portion of the coating film with radiation.
(Step 3) A step of developing the coating film after irradiation.
(Step 4) A step of heating the developed coating film.
Each step will be described in detail below.

[工程1:塗膜形成工程]
 工程1では、基材に本組成物を塗布する。基材としては、例えば、ガラス基材、シリコン基材、樹脂基材が用いられる。塗膜を形成する基材の表面には、用途に応じた金属薄膜が形成されていてもよく、HMDS(ヘキサメチルジシラザン)処理等の各種表面処理が施されていてもよい。
[Step 1: Coating film formation step]
In step 1, the composition is applied to a substrate. Examples of the substrate include glass substrates, silicon substrates, and resin substrates. The surface of the substrate on which the coating film is formed may have a thin metal film formed thereon according to the application, or may have been subjected to various surface treatments such as HMDS (hexamethyldisilazane) treatment.

 本組成物の塗布方法としては、例えば、スプレー法、ロールコート法、スピンコート法、スリットダイ塗布法、バー塗布法、インクジェット法等が挙げられる。これらの中でも、スピンコート法、スリットダイ塗布法又はバー塗布法により行うことが好ましい。  Examples of methods for applying the composition include spraying, roll coating, spin coating, slit die coating, bar coating, and inkjet coating. Among these, spin coating, slit die coating, and bar coating are preferred.

 工程1では、基材に塗布された本組成物に対し、好ましくは加熱処理(プレベーク)を行うことにより本組成物中の溶剤を除去し、基材上に塗膜を形成する。プレベーク条件としては、本組成物における各成分の種類及び含有割合等によっても異なるが、例えば60~130℃で0.5~10分である。形成される塗膜の膜厚(すなわち、プレベーク後の膜厚)は、0.1~12μmが好ましい。基材に塗布した本組成物に対しては、プレベーク前に減圧乾燥(VCD)を行ってもよい。 In step 1, the composition applied to the substrate is preferably subjected to a heat treatment (pre-baking) to remove the solvent in the composition and form a coating film on the substrate. Pre-baking conditions vary depending on the type and content ratio of each component in the composition, but are, for example, 60 to 130°C for 0.5 to 10 minutes. The thickness of the coating film formed (i.e., the film thickness after pre-baking) is preferably 0.1 to 12 μm. The composition applied to the substrate may be subjected to reduced pressure drying (VCD) before pre-baking.

[工程2:照射工程]
 工程2では、上記工程1で形成した本組成物からなる塗膜の少なくとも一部に放射線を照射する。その際、所定のパターンを有するマスクを介して塗膜に放射線を照射することにより、パターンを有する硬化物を形成することができる。放射線としては、例えば、紫外線、遠紫外線、可視光線、X線、電子線等の荷電粒子線が挙げられる。これらの中でも紫外線が好ましく、例えばg線(波長436nm)、i線(波長365nm)が挙げられる。放射線の露光量としては、0.1~20,000J/mが好ましい。
[Step 2: Irradiation step]
In step 2, at least a part of the coating film made of the present composition formed in step 1 is irradiated with radiation. In this case, by irradiating the coating film with radiation through a mask having a predetermined pattern, a cured product having a pattern can be formed. Examples of radiation include charged particle beams such as ultraviolet rays, far ultraviolet rays, visible rays, X-rays, and electron beams. Among these, ultraviolet rays are preferred, and examples thereof include g-rays (wavelength 436 nm) and i-rays (wavelength 365 nm). The exposure dose of radiation is preferably 0.1 to 20,000 J/ m2 .

[工程3:現像工程]
 工程3では、上記工程2で放射線を照射した塗膜を現像する。現像液としては、アルカリ(塩基性化合物)の水溶液が挙げられる。アルカリとしては、例えば、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド、特開2016-145913号公報の段落0127に例示されたアルカリが挙げられる。アルカリ水溶液におけるアルカリ濃度としては、適度な現像性を得る観点から、0.1~5質量%が好ましい。
[Step 3: Development step]
In step 3, the coating film irradiated in step 2 is developed. The developer may be an aqueous solution of an alkali (basic compound). Examples of the alkali include sodium hydroxide, tetramethylammonium hydroxide, and the alkalis exemplified in paragraph [0127] of JP2016-145913A. The alkali concentration in the aqueous alkali solution is preferably 0.1 to 5% by mass from the viewpoint of obtaining suitable developability.

 現像方法としては、液盛り法、ディッピング法、揺動浸漬法、シャワー法等の適宜の方法が挙げられる。現像時間は、組成物の組成によっても異なるが、例えば30~120秒である。なお、現像工程の後、パターニングされた塗膜に対して流水洗浄によるリンス処理を行うことが好ましい。 The development method may be a suitable method such as a puddle method, a dipping method, a rocking immersion method, or a shower method. The development time varies depending on the composition of the composition, but is, for example, 30 to 120 seconds. After the development step, it is preferable to perform a rinse process by washing the patterned coating film with running water.

[工程4:熱硬化工程]
 工程4では、上記工程3で現像された塗膜を加熱する処理(ポストベーク)を行う。ポストベークは、例えばオーブンやホットプレート等の加熱装置を用いて行うことができる。ポストベーク条件について、加熱温度は、例えば120~260℃である。加熱時間は、例えばホットプレート上で加熱処理を行う場合には5~40分、オーブン中で加熱処理を行う場合には10~80分である。この加熱処理により硬化反応が進行し、目的とするパターンを有する硬化物を基板上に形成することができる。硬化物が有するパターンの形状は特に限定されず、例えば、ライン・アンド・スペースパターン、ドットパターン、ホールパターン、格子パターンが挙げられる。
[Step 4: Heat curing step]
In step 4, the coating film developed in step 3 is heated (post-baked). Post-baking can be performed using a heating device such as an oven or a hot plate. Regarding post-baking conditions, the heating temperature is, for example, 120 to 260° C. The heating time is, for example, 5 to 40 minutes when the heating treatment is performed on a hot plate, and 10 to 80 minutes when the heating treatment is performed in an oven. This heating treatment causes a curing reaction to proceed, and a cured product having a desired pattern can be formed on a substrate. The shape of the pattern of the cured product is not particularly limited, and examples thereof include a line and space pattern, a dot pattern, a hole pattern, and a lattice pattern.

 本組成物により得られた硬化物は、ドライエッチングレジストとして使用することもできる。硬化物をドライエッチングレジストとして使用する場合、エッチング処理としては、アッシング、プラズマエッチング、オゾンエッチング等のドライエッチング処理を採用することができる。 The cured product obtained from this composition can also be used as a dry etching resist. When using the cured product as a dry etching resist, dry etching processes such as ashing, plasma etching, and ozone etching can be used as the etching process.

<有機EL素子>
 本開示の有機EL素子は、本組成物を用いて形成された硬化物を備える。硬化物の種類は特に限定されないが、有機EL素子が備える平坦化膜、隔壁又は層間絶縁膜が挙げられる。本組成物によれば優れたベンディング耐性を示す硬化物を得ることができる点で、本組成物はこれらの中でも、有機EL素子の平坦化膜形成用組成物、すなわち、基材上に作製されたTFT回路や配線の段差を被覆する絶縁層である平坦化膜を形成するための平坦化膜形成用組成物として特に好適である。
<Organic EL element>
The organic EL element of the present disclosure includes a cured product formed using the present composition. The type of the cured product is not particularly limited, but examples thereof include a planarizing film, a partition wall, or an interlayer insulating film that is included in an organic EL element. The present composition is particularly suitable as a planarizing film-forming composition for an organic EL element, that is, a planarizing film-forming composition for forming a planarizing film that is an insulating layer that covers steps of TFT circuits and wirings formed on a substrate, since the present composition can provide a cured product that exhibits excellent bending resistance.

 本組成物を用いて形成された硬化物は、難透水性かつベンディング耐性に優れることから、フレキシブルディスプレイ用の有機EL素子として好ましく適用できる。フレキシブルディスプレイとしては、折り畳みが可能なフォルダブルディスプレイ、折り返しや折り曲げが可能なベンダブルディスプレイ、巻き取りが可能なローラブルディスプレイ等が挙げられる。本組成物を用いて形成された硬化物は、これらの中でも特に、ベンダブルディスプレイ用の有機EL素子に設けられる硬化物として好適であり、ベンダブル有機ELディスプレイ用の平坦化膜として特に好適である。 The cured product formed using this composition is poorly permeable and has excellent bending resistance, and is therefore suitable for use as an organic EL element for flexible displays. Examples of flexible displays include foldable displays that can be folded, bendable displays that can be folded back or bent, and rollable displays that can be rolled up. The cured product formed using this composition is particularly suitable as a cured product to be provided in an organic EL element for a bendable display, and is particularly suitable as a planarizing film for a bendable organic EL display.

 以上詳述した本開示によれば、以下の手段が提供される。
〔手段1〕 [A]酸性基を有する化合物に由来する構造単位を含む重合体と、[B]感光性化合物と、を含有し、前記[A]重合体は、芳香族ビニル化合物に由来する構造単位(I)と、マレイミド化合物に由来する構造単位(II)とを含み、前記酸性基を有する化合物として、芳香族ビニル化合物及びマレイミド化合物よりなる群から選択される少なくとも1種を含み、前記[A]重合体における前記構造単位(I)及び前記構造単位(II)の合計の割合が、前記[A]重合体の全構造単位に対して70モル%以上である、有機EL素子用硬化性組成物。
〔手段2〕 前記[A]重合体における前記構造単位(I)と前記構造単位(II)とのモル比率が、構造単位(I)/構造単位(II)=60/40~40/60である、〔手段1〕に記載の有機EL素子用硬化性組成物。
〔手段3〕 前記[A]重合体は、架橋性官能基を有する、〔手段1〕又は〔手段2〕に記載の有機EL素子用硬化性組成物。
〔手段4〕 架橋性官能基が、オキシラニル基、オキセタニル基、チイラン基、ヒドロキシアルキルアミド基、ヒドロキシメチルフェニル基、アルコキシメチルフェニル基、シクロカーボネート基、及び保護されたイソシアネート基よりなる群から選択される少なくとも1種である、〔手段3〕に記載の有機EL素子用硬化性組成物。
〔手段5〕 前記[A]重合体は、芳香族ビニル化合物及びマレイミド化合物よりなる群から選択される少なくとも1種であって、架橋性官能基を有する化合物に由来する構造単位を更に含む、〔手段3〕又は〔手段4〕に記載の有機EL素子用硬化性組成物。
〔手段6〕 [C]架橋性官能基を2個以上有する化合物(ただし、前記[A]重合体を除く。)を更に含有する、〔手段1〕~〔手段5〕のいずれかに記載の有機EL素子用硬化性組成物。
〔手段7〕 前記[C]化合物は、オキシラニル基、オキセタニル基、チイラン基、ヒドロキシアルキルアミド基、ヒドロキシメチルフェニル基、アルコキシメチルフェニル基、シクロカーボネート基、及び保護されたイソシアネート基よりなる群から選択される少なくとも1種を2個以上有する、〔手段6〕に記載の有機EL素子用硬化性組成物。
〔手段8〕 前記[B]感光性化合物がキノンジアジド化合物である、〔手段1〕~〔手段7〕のいずれかに記載の有機EL素子用硬化性組成物。
〔手段9〕 前記[B]感光性化合物が光酸発生剤である、〔手段1〕~〔手段7〕に記載の有機EL素子用硬化性組成物。
〔手段10〕 前記酸性基を有する化合物は、フェノール性水酸基を有する化合物、基「*-C(R)(R)-OH」を有する化合物(ただし、R及びRは、それぞれ独立して、シアノ基又は炭素数1~3のフルオロアルキル基である。「*」は芳香環との結合手を表す。)、及びマレイミドよりなる群から選択される少なくとも1種である、〔手段1〕~〔手段9〕のいずれかに記載の有機EL素子用硬化性組成物。
〔手段11〕 〔手段1〕~〔手段10〕のいずれかに記載の硬化性組成物を用いて塗膜を形成する工程と、前記塗膜の少なくとも一部に放射線を照射する工程と、放射線を照射した後の前記塗膜を現像する工程と、現像された前記塗膜を加熱する工程と、を含む、有機EL素子用硬化物の製造方法。
〔手段12〕 〔手段1〕~〔手段10〕のいずれかに記載の硬化性組成物を用いて形成された有機EL素子用硬化物。
〔手段13〕 平坦化膜、隔壁又は層間絶縁膜である、〔手段12〕に記載の有機EL素子用硬化物。
〔手段14〕 〔手段12〕に記載の硬化物を備える、有機EL素子。
〔手段15〕 芳香族ビニル化合物に由来する構造単位と、マレイミド化合物に由来する構造単位とを含む重合体であって、芳香族ビニル化合物に由来する構造単位及びマレイミド化合物に由来する構造単位の合計の割合が、前記重合体の全構造単位に対して70モル%以上であり、酸性基を有する化合物に由来する構造単位と、架橋性官能基を有する化合物に由来する構造単位とを含み、かつ、前記酸性基を有する化合物及び前記架橋性官能基を有する化合物が、芳香族ビニル化合物及びマレイミド化合物よりなる群から選択される少なくとも1種であり、前記酸性基を有する化合物が、フェノール性水酸基を有する化合物、基「*-C(R)(R)-OH」を有する化合物(ただし、R及びRは、それぞれ独立して、シアノ基又は炭素数1~3のフルオロアルキル基である。「*」は芳香環との結合手を表す。)、及びマレイミドよりなる群から選択される少なくとも1種である、重合体。
According to the present disclosure described above in detail, the following means are provided.
[Means 1] A curable composition for an organic EL device comprising: [A] a polymer including a structural unit derived from a compound having an acidic group; and [B] a photosensitive compound, wherein the polymer [A] includes a structural unit (I) derived from an aromatic vinyl compound and a structural unit (II) derived from a maleimide compound, and the compound having an acidic group includes at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds, and the total proportion of the structural unit (I) and the structural unit (II) in the polymer [A] is 70 mol % or more based on all structural units of the polymer [A].
[Means 2] The curable composition for an organic EL device according to [Means 1], wherein a molar ratio of the structural unit (I) to the structural unit (II) in the polymer [A] is structural unit (I)/structural unit (II)=60/40 to 40/60.
[Means 3] The curable composition for an organic EL device according to [Means 1] or [Means 2], wherein the polymer [A] has a crosslinkable functional group.
[Means 4] The curable composition for an organic EL device according to [Means 3], wherein the crosslinkable functional group is at least one selected from the group consisting of an oxiranyl group, an oxetanyl group, a thiirane group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and a protected isocyanate group.
[Means 5] The curable composition for an organic EL device according to [Means 3] or [Means 4], wherein the polymer [A] is at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds, and further contains a structural unit derived from a compound having a crosslinkable functional group.
[Means 6] The curable composition for an organic EL device according to any one of [Means 1] to [Means 5], further comprising [C] a compound having two or more crosslinkable functional groups (excluding the polymer [A]).
[Means 7] The curable composition for an organic EL device according to [Means 6], wherein the compound [C] has two or more of at least one selected from the group consisting of an oxiranyl group, an oxetanyl group, a thiirane group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and a protected isocyanate group.
[Means 8] The curable composition for an organic EL device according to any one of [Means 1] to [Means 7], wherein the photosensitive compound [B] is a quinone diazide compound.
[0023] [Measures 9] The curable composition for an organic EL device according to any one of [Measures 1] to [Measures 7], wherein the photosensitive compound [B] is a photoacid generator.
[Means 10] The curable composition for organic EL devices according to any one of [Means 1 ] to [Means 9 ], wherein the compound having an acidic group is at least one selected from the group consisting of a compound having a phenolic hydroxyl group, a compound having a group "* 1 -C(R 1 )(R 2 )-OH" (wherein R 1 and R 2 are each independently a cyano group or a fluoroalkyl group having 1 to 3 carbon atoms, and "* 1 " represents a bond to an aromatic ring), and maleimide.
[Means 11] A method for producing a cured product for an organic EL device, comprising: forming a coating film using the curable composition according to any one of [Means 1] to [Means 10]; irradiating at least a part of the coating film with radiation; developing the coating film after irradiation with radiation; and heating the developed coating film.
[Means 12] A cured product for an organic EL device formed using the curable composition according to any one of [Means 1] to [Means 10].
[Means 13] The cured product for an organic EL device according to [Means 12], which is a planarizing film, a partition wall, or an interlayer insulating film.
[Means 14] An organic EL device comprising the cured product according to [Means 12].
[Means 15] A polymer comprising a structural unit derived from an aromatic vinyl compound and a structural unit derived from a maleimide compound, wherein the total ratio of the structural units derived from the aromatic vinyl compound and the structural units derived from the maleimide compound is 70 mol % or more based on all structural units of the polymer, the polymer comprises a structural unit derived from a compound having an acidic group and a structural unit derived from a compound having a crosslinkable functional group, and the compound having the acidic group and the compound having the crosslinkable functional group are at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds, and the compound having the acidic group is at least one selected from the group consisting of a compound having a phenolic hydroxyl group, a compound having a group "* 1 -C( R1 )( R2 )-OH" (wherein R1 and R2 are each independently a cyano group or a fluoroalkyl group having 1 to 3 carbon atoms, and "* 1 " represents a bond to an aromatic ring), and a maleimide.

 なお、上記〔手段15〕の重合体は、有機EL素子用の硬化物(好ましくは、平坦化膜、層間絶縁膜又は隔壁)を形成するための硬化性組成物の重合体成分として好適である。すなわち、上記〔手段15〕の重合体は、本開示の有機EL素子用硬化性組成物に含まれる[A]重合体の好適な一実施形態である。当該重合体の具体的構成及び製造方法については上述したとおりである。 The polymer of [Means 15] above is suitable as a polymer component of a curable composition for forming a cured product for an organic EL device (preferably a planarizing film, an interlayer insulating film, or a partition wall). That is, the polymer of [Means 15] above is a suitable embodiment of the polymer [A] contained in the curable composition for an organic EL device of the present disclosure. The specific configuration and manufacturing method of the polymer are as described above.

 以下、本開示を実施例により具体的に説明するが、本開示はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。 The present disclosure will be explained in more detail below with reference to examples, but the present disclosure is not limited to these examples. Note that "parts" and "%" in the examples and comparative examples are by mass unless otherwise specified.

[重量平均分子量(Mw)及び分子量分布(Mw/Mn)]
 下記合成例で合成した重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)法により、以下の装置及び条件で測定した。測定したMw及びMnから分子量分布(Mw/Mn)を算出した。
・装置:昭和電工(株)製のGPC-101
・GPCカラム:(株)島津ジーエルシー製のGPC-KF-801、GPC-KF-802、GPC-KF-803及びGPC-KF-804を結合したもの
・移動相:テトラヒドロフラン(スチレン・マレイミド樹脂の場合)、又はリチウムブロミド及びリン酸含有のN,N-ジメチルホルムアミド溶液(ポリイミドの場合)
・カラム温度:40℃
・流速:1.0mL/分
・試料濃度:1.0質量%
・試料注入量:100μL
・検出器:示差屈折計
・標準物質:単分散ポリスチレン
[Weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn)]
The Mw and Mn of the polymers synthesized in the following Synthesis Examples were measured by gel permeation chromatography (GPC) using the following apparatus and conditions. The molecular weight distribution (Mw/Mn) was calculated from the measured Mw and Mn.
Apparatus: GPC-101 manufactured by Showa Denko Co., Ltd.
GPC column: Shimadzu GLC's GPC-KF-801, GPC-KF-802, GPC-KF-803, and GPC-KF-804 combined Mobile phase: Tetrahydrofuran (in the case of styrene-maleimide resin), or N,N-dimethylformamide solution containing lithium bromide and phosphoric acid (in the case of polyimide)
Column temperature: 40°C
Flow rate: 1.0 mL/min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
・Detector: Differential refractometer ・Standard material: Monodisperse polystyrene

[単量体]
 重合体の合成に用いた単量体の略称は以下のとおりである。
《酸性基を有する単量体(芳香族ビニル化合物、マレイミド化合物):M1》
 MI-1~MI-3、OL-1~OL-3:下記式(MI-1)~式(MI-3)、式(OL-1)~式(OL-3)のそれぞれで表される化合物

Figure JPOXMLDOC01-appb-C000011
[Monomer]
The abbreviations of the monomers used in the synthesis of the polymer are as follows.
<<Monomer having an acidic group (aromatic vinyl compound, maleimide compound): M1>>
MI-1 to MI-3, OL-1 to OL-3: Compounds represented by the following formulae (MI-1) to (MI-3) and (OL-1) to (OL-3), respectively.
Figure JPOXMLDOC01-appb-C000011

《架橋性官能基を有する単量体(芳香族ビニル化合物、マレイミド化合物):M2》
 MI-4、OL-4~OL-7:下記式(MI-4)、式(OL-4)~式(OL-7)のそれぞれで表される化合物

Figure JPOXMLDOC01-appb-C000012
<<Monomer having a crosslinkable functional group (aromatic vinyl compound, maleimide compound): M2>>
MI-4, OL-4 to OL-7: Compounds represented by the following formulas (MI-4), (OL-4) to (OL-7), respectively.
Figure JPOXMLDOC01-appb-C000012

《酸解離性基を有する単量体(芳香族ビニル化合物、マレイミド化合物):M3》
 MI-5、MI-6、OL-8:下記式(MI-5)、式(MI-6)、式(OL-8)のそれぞれで表される化合物

Figure JPOXMLDOC01-appb-C000013
<<Monomer having an acid-dissociable group (aromatic vinyl compound, maleimide compound): M3>>
MI-5, MI-6, OL-8: Compounds represented by the following formulae (MI-5), (MI-6), and (OL-8), respectively.
Figure JPOXMLDOC01-appb-C000013

《その他の単量体》
 MMA:メタクリル酸メチル
 MAA:メタクリル酸
 GMA:メタクリル酸グリシジル
 MI-7~MI-10、OL-9~OL-13:下記式(MI-7)~式(MI-10)、式(OL-9)~式(OL-13)のそれぞれで表される化合物

Figure JPOXMLDOC01-appb-C000014
Other Monomers
MMA: methyl methacrylate MAA: methacrylic acid GMA: glycidyl methacrylate MI-7 to MI-10, OL-9 to OL-13: compounds represented by the following formulas (MI-7) to (MI-10), (OL-9) to (OL-13), respectively.
Figure JPOXMLDOC01-appb-C000014

1.重合体の合成
[合成例1]重合体P-1(スチレン・マレイミド樹脂)の合成
 100mLの二つ口フラスコに、窒素下で、重合モノマーとして、マレイミド50モル部及びスチレン50モル部、ラジカル重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)5質量部、並びに、溶剤としてN-メチル-2-ピロリドン(NMP)を20質量%となるように加え、70℃で6時間重合した。重合後、メタノール水溶液に再沈殿させることで得られた固形分を濾過し、室温で8時間真空乾燥することで、重合体P-1(スチレン・マレイミド樹脂)を得た。得られた重合体P-1のMwは41,300、分子量分布(Mw/Mn)は2.52であった。
1. Polymer synthesis [Synthesis Example 1] Synthesis of polymer P-1 (styrene-maleimide resin) In a 100 mL two-neck flask, 50 mol parts of maleimide and 50 mol parts of styrene as polymerization monomers, 5 mass parts of 2,2'-azobis(2,4-dimethylvaleronitrile) as a radical polymerization initiator, and N-methyl-2-pyrrolidone (NMP) as a solvent were added under nitrogen to a concentration of 20 mass%, and polymerization was carried out at 70°C for 6 hours. After polymerization, the solid matter obtained by reprecipitation in an aqueous methanol solution was filtered and vacuum dried at room temperature for 8 hours to obtain polymer P-1 (styrene-maleimide resin). The Mw of the obtained polymer P-1 was 41,300, and the molecular weight distribution (Mw/Mn) was 2.52.

[合成例2~18、20、21]重合体P-2~P-18、20、21(スチレン・マレイミド樹脂)の合成
 重合に使用するモノマーの種類及び量を表1に記載のとおり変更した点以外は合成例1と同様に重合を行い、重合体P-2~P-18、20、21をそれぞれ得た。なお、表1中、括弧内の数値は、各重合に使用したモノマーの全量に対する各モノマーの量(単位:モル%)を表す。「合計量T(S/M)」欄の数値は、重合体の合成に使用した全単量体のうち芳香族ビニル化合物とマレイミド化合物の合計量(単位:モル%)を表す。
[Synthesis Examples 2 to 18, 20, 21] Synthesis of polymers P-2 to P-18, 20, 21 (styrene-maleimide resins) Polymerization was carried out in the same manner as in Synthesis Example 1, except that the type and amount of monomers used in polymerization were changed as shown in Table 1, to obtain polymers P-2 to P-18, 20, 21. In Table 1, the numbers in parentheses indicate the amount (unit: mol%) of each monomer relative to the total amount of monomers used in each polymerization. The numbers in the "Total amount T (S/M)" column indicate the total amount (unit: mol%) of aromatic vinyl compounds and maleimide compounds out of all monomers used in the synthesis of the polymers.

Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

[合成例19]重合体P-19(ポリイミド)の合成
 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン100モル部をN-メチル-2-ピロリドン(NMP)に溶解し、そこに4,4’-オキシジフタル酸無水物100モル部を加え、40℃で8時間反応させることにより、ポリアミック酸を20質量%含有するポリアミック酸溶液を得た。
 次いで、得られたポリアミック酸溶液に、NMPを追加してポリアミック酸の濃度を10質量%とし、そこにピリジン及び無水酢酸を添加して、90℃で4時間脱水閉環反応を行った。脱水閉環反応後、系内の溶媒を新たなNMPで溶媒置換することにより、イミド化率約70%のポリイミドを15質量%含有するポリイミド溶液を得た。得られたポリイミド溶液をメタノールに加え、析出した固形物をメタノール水溶液で洗浄し、得られた固形物を乾燥することで、重合体P-19(ポリイミド)を得た。得られた重合体P-19のMwは32,000、分子量分布(Mw/Mn)は2.21であった。
Synthesis Example 19 Synthesis of Polymer P-19 (Polyimide) 100 parts by mole of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane was dissolved in N-methyl-2-pyrrolidone (NMP), and 100 parts by mole of 4,4′-oxydiphthalic anhydride was added thereto and reacted at 40° C. for 8 hours to obtain a polyamic acid solution containing 20% by mass of polyamic acid.
Next, NMP was added to the obtained polyamic acid solution to make the concentration of polyamic acid 10% by mass, and pyridine and acetic anhydride were added thereto, and a dehydration ring-closing reaction was carried out at 90° C. for 4 hours. After the dehydration ring-closing reaction, the solvent in the system was replaced with fresh NMP to obtain a polyimide solution containing 15% by mass of polyimide with an imidization rate of about 70%. The obtained polyimide solution was added to methanol, and the precipitated solid was washed with an aqueous methanol solution. The obtained solid was dried to obtain polymer P-19 (polyimide). The Mw of the obtained polymer P-19 was 32,000, and the molecular weight distribution (Mw/Mn) was 2.21.

2.硬化性組成物の調製及び評価
[実施例1]
(1)硬化性組成物R-1の調製
 樹脂としての重合体P-1 100質量部と、感光性化合物としてのキノンジアジド化合物(4,4’-〔1-〔4-〔1-〔4-ヒドロキシフェニル〕-1-メチルエチル〕フェニル〕エチリデン〕ビスフェノール(1.0モル)と1,2-ナフトキノンジアジド-5-スルホン酸クロリド(2.0モル)との縮合物)20質量部と、密着助剤(γ-グリシドキシプロピルトリメトキシシラン)5質量部と、界面活性剤(「FTX-218」、ネオス社製)0.5質量部とを混合した。さらに、固形分濃度が20質量%となるように、溶剤としてガンマ-ブチロラクトンとジエチレングリコールエチルメチルエーテルとの混合溶液(ガンマ-ブチロラクトン:ジエチレングリコールエチルメチルエーテル=50:50(質量比))を添加した後、孔径0.2μmのメンブレンフィルターで濾過することにより、硬化性組成物R-1を調製した。
2. Preparation and evaluation of curable compositions [Example 1]
(1) Preparation of Curable Composition R-1 100 parts by mass of polymer P-1 as a resin, 20 parts by mass of a quinone diazide compound (condensate of 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1,2-naphthoquinone diazide-5-sulfonic acid chloride (2.0 mol)) as a photosensitive compound, 5 parts by mass of an adhesion assistant (γ-glycidoxypropyltrimethoxysilane), and 0.5 parts by mass of a surfactant ("FTX-218", manufactured by NEOS Corporation) were mixed. Further, a mixed solution of gamma-butyrolactone and diethylene glycol ethyl methyl ether (gamma-butyrolactone:diethylene glycol ethyl methyl ether=50:50 (mass ratio)) was added as a solvent so that the solid content concentration was 20 mass%, and then the mixture was filtered through a membrane filter having a pore size of 0.2 μm to prepare a curable composition R-1.

(2)感度(放射線感度)の評価
 スピンナーを用い、60℃で60秒間HMDS処理したシリコン基板上に、硬化性組成物R-1を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。この塗膜に、キヤノン社製の「MPA-600FA」露光機を用い、幅10μmのライン・アンド・スペースパターンを有するパターンマスクを介して、所定量の紫外線を照射した。次いで、現像液(テトラメチルアンモニウムヒドロキシド2.38質量%水溶液)を用い、25℃で60秒間現像処理を行った後、超純水で1分間流水洗浄を行った。幅10μmのライン・アンド・スペースパターンを形成可能な最小露光量を測定し、この測定値が1000J/m未満の場合を「優良(◎)」とし、1000J/m以上2000J/m未満の場合を「良好(○)」とし、幅10μmのライン・アンド・スペースパターンが得られたが最小露光量が2000J/m以上の場合を「可(△)」とし、幅10μmのライン・アンド・スペースパターンが得られなかった場合を「不可(×)」として感度を評価した。その結果、この実施例では良好(○)」の評価であった。
(2) Evaluation of Sensitivity (Radiation Sensitivity) Using a spinner, the curable composition R-1 was applied onto a silicon substrate that had been subjected to HMDS treatment at 60° C. for 60 seconds, and then prebaked on a hot plate at 90° C. for 2 minutes to form a coating film having a thickness of 3.0 μm. This coating film was irradiated with a predetermined amount of ultraviolet light through a pattern mask having a line-and-space pattern with a width of 10 μm, using a Canon Inc. "MPA-600FA" exposure machine. Next, development treatment was performed at 25° C. for 60 seconds using a developer (a 2.38% by mass aqueous solution of tetramethylammonium hydroxide), and then washed with running ultrapure water for 1 minute. The minimum exposure dose capable of forming a 10 μm wide line and space pattern was measured, and the measured value was rated as "excellent (◎)" when it was less than 1000 J/m 2 , "good (○)" when it was 1000 J/m 2 or more and less than 2000 J/m 2 , "fair (△)" when a 10 μm wide line and space pattern was obtained but the minimum exposure dose was 2000 J/m 2 or more, and "not good (×)" when a 10 μm wide line and space pattern was not obtained. The sensitivity was evaluated as "good (○)" in this example.

(3)透過率(光透過性)の評価
 スピンナーを用い、硬化性組成物R-1をガラス基板上に塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。次いで、プロキシミティ露光機(キヤノン社製の「MA-1200」(ghi線混合))を用いて、3000J/mの光を基板全面に照射した後、窒素に置換したクリーンオーブン中で、このガラス基板を250℃で60分間加熱することで硬化膜を形成した。形成した硬化膜の透過率を紫外可視分光光度計(日本分光社製の「V-630」)により測定した。波長380nmの光の透過率が70%以上の場合を「良好(○)」とし、50%以上70%未満の場合を「可(△)」とし、50%未満の場合を「不可(×)」として透過率を評価した。その結果、この実施例では「良好(〇)」の評価であった。
(3) Evaluation of transmittance (light transmittance) Using a spinner, the curable composition R-1 was applied onto a glass substrate, and then prebaked on a hot plate at 90 ° C. for 2 minutes to form a coating film with a thickness of 3.0 μm. Next, using a proximity exposure machine (Canon's "MA-1200" (ghi line mixed)), 3000 J / m 2 of light was irradiated onto the entire substrate, and then the glass substrate was heated at 250 ° C. for 60 minutes in a clean oven substituted with nitrogen to form a cured film. The transmittance of the formed cured film was measured with an ultraviolet-visible spectrophotometer (JASCO Corporation's "V-630"). The transmittance of light with a wavelength of 380 nm was evaluated as "good (○)" when it was 70% or more, "acceptable (△)" when it was 50% or more and less than 70%, and "not acceptable (×)" when it was less than 50%. As a result, in this example, it was evaluated as "good (○)".

(4)耐熱性の評価
 スピンナーを用い、硬化性組成物R-1をシリコン基板上に塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。次いで、プロキシミティ露光機(キヤノン社製の「MA-1200」(ghi線混合))を用いて、3000J/mの光を基板全面に照射した後、窒素に置換したクリーンオーブン中でこのシリコン基板を250℃で60分間加熱することで硬化膜を形成した。形成した硬化膜の1%熱重量減少温度を示差熱・熱重量同時測定装置(日立ハイテクサイエンス社製の「TG/DTA220U」)を用いて空気下で測定した。1%重量減少温度が、300℃以上の場合を「良好(○)」とし、250℃以上300℃未満の場合を「可(△)」とし、250℃未満の場合を「不可(×)」として耐熱性を評価した。その結果、この実施例では「良好(〇)」の評価であった。
(4) Evaluation of heat resistance Using a spinner, the curable composition R-1 was applied onto a silicon substrate, and then prebaked on a hot plate at 90 ° C. for 2 minutes to form a coating film with a thickness of 3.0 μm. Next, a proximity exposure machine (Canon's "MA-1200" (ghi line mixed)) was used to irradiate the entire substrate with 3000 J / m 2 light, and then the silicon substrate was heated at 250 ° C. for 60 minutes in a clean oven substituted with nitrogen to form a cured film. The 1% thermal weight loss temperature of the formed cured film was measured under air using a differential thermal / thermogravimetric simultaneous measurement device (Hitachi High-Tech Science's "TG / DTA220U"). The heat resistance was evaluated as "good (○)" when the 1% weight loss temperature was 300 ° C. or more, "acceptable (△)" when the temperature was 250 ° C. or more and less than 300 ° C., and "not acceptable (×)" when the temperature was less than 250 ° C. As a result, in this example, it was rated as "good (○)".

(5)誘電率の評価(比誘電率の測定)
 サイザルバフ(麻バフ)により研磨して表面を平滑化したSUS304製基板上に硬化性組成物R-1を塗布した後、基板上の硬化性組成物R-1から、到達圧力を100Paに設定して真空下で溶剤を除去し、更に90℃で2分間プレベークして平均膜厚3.0μmの塗膜を形成した。次いで、プロキシミティ露光機(キヤノン社製の「MA-1200」(ghi線混合))を用いて、3000J/mの光を基板全面に照射した後、窒素置換したクリーンオーブン内にて250℃で60分加熱することによって、基板上に硬化膜(絶縁膜)を形成した。この絶縁膜上に、蒸着法によりPt/Pd電極パターンを形成して誘電率測定用サンプルを作製した。
 作製した誘電率測定用サンプルを用い、LCRメーター(日本ヒューレット・パッカード合同会社製のHP16451B電極及びHP4284AプレシジョンLCRメーター)を用いて、10kHzの周波数で、CV法により比誘電率の測定を行った。比誘電率が、3.0以下の場合を「優良(◎)」とし、3.0を超えて3.2以下の場合を「良好(○)」とし、3.2を超えて3.5以下の場合を「可(△)」とし、3.5を超える場合を「不可(×)」として誘電率を評価した。その結果、この実施例では「優良(◎)」の評価であった。
(5) Evaluation of dielectric constant (measurement of relative dielectric constant)
After applying the curable composition R-1 onto a SUS304 substrate whose surface had been smoothed by polishing with a sisal buff (hemp buff), the solvent was removed from the curable composition R-1 on the substrate under vacuum with an ultimate pressure set to 100 Pa, and the substrate was prebaked at 90°C for 2 minutes to form a coating film having an average thickness of 3.0 μm. Next, a proximity exposure machine (Canon's "MA-1200" (ghi line mixture)) was used to irradiate the entire surface of the substrate with light of 3000 J/ m2 , and then the substrate was heated at 250°C for 60 minutes in a nitrogen-substituted clean oven to form a cured film (insulating film) on the substrate. A Pt/Pd electrode pattern was formed on the insulating film by vapor deposition to prepare a sample for measuring dielectric constant.
Using the prepared dielectric constant measurement sample, the dielectric constant was measured by the CV method at a frequency of 10 kHz using an LCR meter (HP16451B electrode and HP4284A precision LCR meter manufactured by Hewlett-Packard Japan, LLC). The dielectric constant was evaluated as follows: when the dielectric constant was 3.0 or less, it was rated as "excellent (◎)", when it was more than 3.0 and less than 3.2, it was rated as "good (○)", when it was more than 3.2 and less than 3.5, it was rated as "passable (△)", and when it was more than 3.5, it was rated as "unacceptable (×)". As a result, in this example, the dielectric constant was rated as "excellent (◎)".

(6)難透水性の評価
 厚さ25μmのポリイミドシート上に、硬化性組成物R-1を膜厚10μmになるようスピン法にて塗布し、80℃で1.5分間プレベ-クした。次いで、プロキシミティ露光機(キヤノン社製の「MA-1200」(ghi線混合))を用いて、3000J/mの光を基板全面に照射した後、250℃にて60分間加熱し、ポリイミドシート上に硬化膜を形成した。このポリイミドシートと硬化膜の積層フィルムを、蒸留水15gを入れたアルミカップの開口部に硬化膜の面を内側にして配置して、アルミカップの開口部を積層フィルムで密封するように覆った。これを50℃の恒温槽に入れ、150時間後のカップの重量減少を測定し、単位面積当たりの透水性を計算にて求めた。重量減少の値が、500g/cm以下の場合を「良好(○)」とし、500g/cmを超えて700g/cm以下の場合を「可(△)」とし、700g/cmを超える場合を「不可(×)」として透水性を評価した。この値が500g/cm以下のとき、透水性は十分低いといえる。その結果、この実施例では「良好(○)」の評価であった。
(6) Evaluation of Water Permeability The curable composition R-1 was applied to a polyimide sheet having a thickness of 25 μm by spin coating to a film thickness of 10 μm, and prebaked at 80 ° C. for 1.5 minutes. Next, using a proximity exposure machine (Canon's "MA-1200" (ghi line mixture)), the entire surface of the substrate was irradiated with light of 3000 J / m 2 , and then heated at 250 ° C. for 60 minutes to form a cured film on the polyimide sheet. The laminated film of this polyimide sheet and the cured film was placed in the opening of an aluminum cup containing 15 g of distilled water with the surface of the cured film facing inward, and the opening of the aluminum cup was covered so as to be sealed with the laminated film. This was placed in a thermostatic chamber at 50 ° C., and the weight loss of the cup after 150 hours was measured, and the water permeability per unit area was calculated. The permeability was evaluated as follows: if the weight loss value was 500 g/ cm2 or less, it was rated as "good (○)", if it was more than 500 g/ cm2 and less than 700 g/ cm2 , it was rated as "passable (△)", and if it was more than 700 g/ cm2 , it was rated as "not good (×)". When this value is 500 g/ cm2 or less, the permeability is sufficiently low. As a result, this example was rated as "good (○)".

(7)べンディング耐性(耐折り曲げ性)の評価
 ポリイミドフィルム基材上に、スピンコーターを用いて硬化性組成物R-1を塗布した後、基材上の硬化性組成物R-1から、到達圧力を100Paに設定して真空下で溶剤を除去し、更に90℃で2分間プレベークして平均膜厚3.0μmの塗膜を形成した。次いで、現像液(テトラメチルアンモニウムヒドロキシド2.38質量%水溶液)を用い、25℃で60秒間現像処理を行った後、超純水で1分間流水洗浄を行った。得られた塗膜をプロキシミティ露光機(キヤノン社製の「MA-1200」(ghi線混合))を用いて、3000J/mの光を基材全面に照射した後、窒素置換したクリーンオーブン内にて250℃で1時間加熱することによって、基材上に硬化膜を形成した。
 得られた硬化膜付き基材を、縦50mm×横50mmの大きさに切り出した。次に、硬化膜が形成された面を内側にして、硬化膜同士が接するように硬化膜付き基板を折り曲げた状態で10分間保持した。折り曲げてから10分後に、その折り曲げた硬化膜付き基材を開き、光学顕微鏡を用いて硬化膜表面の折り曲げ部分を観察し、外観変化によりべンディング耐性(耐折り曲げ性)を評価した。評価基準は、硬化膜にひび割れがない場合を「良好(○)」とし、硬化膜の一部にひび割れがある場合を「可(△)」とし、硬化膜の全体にひび割れがある場合を「不可(×)」とした。その結果、この実施例では「可(△)」の評価であった。
(7) Evaluation of bending resistance (bending resistance) After applying the curable composition R-1 onto a polyimide film substrate using a spin coater, the ultimate pressure was set to 100 Pa from the curable composition R-1 on the substrate, and the solvent was removed under vacuum, and the substrate was prebaked at 90 ° C. for 2 minutes to form a coating film with an average film thickness of 3.0 μm. Next, a developer (a 2.38% by mass aqueous solution of tetramethylammonium hydroxide) was used to perform a development process at 25 ° C. for 60 seconds, and then the substrate was washed with running ultrapure water for 1 minute. The obtained coating film was irradiated with 3000 J / m 2 light on the entire substrate using a proximity exposure machine (Canon's "MA-1200" (ghi line mixing)), and then heated at 250 ° C. for 1 hour in a nitrogen-substituted clean oven to form a cured film on the substrate.
The obtained substrate with the cured film was cut into a size of 50 mm long x 50 mm wide. Next, the substrate with the cured film was folded so that the surface on which the cured film was formed was inward and the cured film was in contact with each other, and the substrate was kept in this state for 10 minutes. After 10 minutes from folding, the folded substrate with the cured film was opened, and the folded part of the surface of the cured film was observed using an optical microscope, and the bending resistance (bending resistance) was evaluated based on the change in appearance. The evaluation criteria were as follows: when there were no cracks in the cured film, it was rated as "good (○)", when there were cracks in a part of the cured film, it was rated as "passable (△)", and when there were cracks in the entire cured film, it was rated as "unacceptable (×)". As a result, in this example, it was rated as "passable (△)".

(8)素子評価
<有機EL素子基板の作製>
 スピンナーを用い、アレイ状にITO透明電極が形成されたガラス基材(日本電気硝子社製「OA-10」)上に、調製した組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。この塗膜に、キヤノン社製の「MPA-600FA」露光機を用い、10μmのコンタクトホールパターンを有するパターンマスクを介して、所定量の紫外線を照射した。次いで、現像液(テトラメチルアンモニウムヒドロキシド2.38質量%水溶液)を用い、25℃で60秒間現像処理を行った後、超純水で1分間流水洗浄を行った。このとき、10μmのコンタクトホールパターンを形成可能な最小露光量を測定した。次いで、プロキシミティ露光機(キヤノン社製の「MA-1200」(ghi線混合))を用いて、3000J/mの光を基板全面に照射した後、窒素置換したクリーンオーブン内にて250℃で1時間加熱することによって、ガラス基材上にコンタクトホールを有する硬化膜(これを「パターン化硬化樹脂層」ともいう)を形成した。
 パターン化硬化樹脂層を有するガラス基材について、所定のパターンのメタルマスクを介して、Alターゲットを用いたDCスパッタ法により、パターン化硬化樹脂層上に膜厚100nmのAl膜を形成した。ITOターゲットを用いてRFスパッタリング法により、Al膜上に膜厚20nmのITO膜を形成した。この様にしてAl膜とITO膜とからなる陽極層を形成した。
 レジスト材料(JSR製「オプトマーNN803」)を用いて陽極層上に塗膜を形成し、i線(波長365nm)照射、現像、流水洗浄、風乾及び加熱処理を含む一連の処理を行い、陽極層の一部を開口領域として持つ画素規定層を形成した。
 陽極及び画素規定層が形成された基材を真空成膜室へ移動し、成膜室を1E-4Paまで排気した後、基材上に、所定のパターンの蒸着マスクを用いて、正孔注入性を有する酸化モリブデン(MoOx)を抵抗加熱蒸着法により成膜速度0.004~0.005nm/secの条件で成膜し、膜厚1nmの正孔注入層を形成した。
 正孔注入層上に、所定のパターンの蒸着マスクを用いて、正孔輸送性を有する4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(α-NPD)を抵抗加熱蒸着法により正孔注入層と同様の排気条件で成膜し、膜厚35nmの正孔輸送層を形成した。成膜速度は0.2~0.3nm/secの条件であった。
 正孔輸送層上に、所定のパターンの蒸着マスクを用いて、緑色の発光材料としてアルキレート錯体であるトリス(8-キノリノラト)アルミニウムを抵抗加熱蒸着法により正孔輸送層と同様の成膜条件で成膜し、膜厚35nmの発光層を形成した。成膜速度は0.5nm/sec以下の条件であった。
 発光層上に、所定のパターンの蒸着マスクを用いて、フッ化リチウムを抵抗加熱蒸着法により正孔注入層と同様の排気条件で成膜し、膜厚0.8nmの電子注入層を形成した。成膜速度は0.004nm/sec以下の条件であった。
 続いて電子注入層上に、所定のパターンの蒸着マスクを用いて、Mg及びAgを抵抗加熱蒸着法により正孔注入層と同様の排気条件で同時に成膜し、膜厚5nmの第1陰極層を形成した。成膜速度は0.5nm/sec以下の条件であった。
 続いて、別の成膜室(スパッタ室)に上記基材を移送し、第1陰極層上に、所定のパターンのマスクを用いて、ITOターゲットを用いてRFスパッタリング法により、膜厚100nmの第2陰極層を形成した。
 以上のようにして、基板上に有機EL素子を形成し、有機EL素子基板を得た。
(8) Element Evaluation <Fabrication of Organic EL Element Substrate>
Using a spinner, the prepared composition was applied onto a glass substrate (manufactured by Nippon Electric Glass Co., Ltd., "OA-10") on which an ITO transparent electrode was formed in an array, and then prebaked on a hot plate at 90°C for 2 minutes to form a coating film with a thickness of 3.0 μm. This coating film was irradiated with a predetermined amount of ultraviolet light through a pattern mask having a 10 μm contact hole pattern using a Canon Inc. "MPA-600FA" exposure machine. Next, a development process was performed at 25°C for 60 seconds using a developer (a 2.38% by mass aqueous solution of tetramethylammonium hydroxide), and then washed with running ultrapure water for 1 minute. At this time, the minimum exposure dose capable of forming a 10 μm contact hole pattern was measured. Next, using a proximity exposure machine (Canon's "MA-1200" (mixed ghi line)), the entire surface of the substrate was irradiated with light of 3000 J/ m2 , and then heated at 250°C for 1 hour in a nitrogen-substituted clean oven to form a cured film (also referred to as a "patterned cured resin layer") having contact holes on the glass substrate.
For a glass substrate having a patterned cured resin layer, an Al film having a thickness of 100 nm was formed on the patterned cured resin layer by DC sputtering using an Al target through a metal mask having a predetermined pattern. An ITO film having a thickness of 20 nm was formed on the Al film by RF sputtering using an ITO target. In this way, an anode layer consisting of an Al film and an ITO film was formed.
A coating film was formed on the anode layer using a resist material ("OPTOMER NN803" manufactured by JSR Corporation), and a series of treatments including i-line (wavelength 365 nm) irradiation, development, washing with running water, air drying, and heat treatment were performed to form a pixel-defining layer having a part of the anode layer as an opening region.
The substrate on which the anode and the pixel defining layer were formed was moved to a vacuum deposition chamber, and the deposition chamber was evacuated to 1E-4 Pa. After that, molybdenum oxide (MoOx) having hole injection properties was deposited on the substrate by a resistance heating deposition method using a deposition mask having a predetermined pattern under conditions of a deposition rate of 0.004 to 0.005 nm/sec, thereby forming a hole injection layer with a thickness of 1 nm.
On the hole injection layer, a film of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD) having hole transport properties was formed by resistance heating deposition under the same exhaust conditions as those for the hole injection layer, using a deposition mask with a predetermined pattern, to form a hole transport layer with a thickness of 35 nm. The film formation rate was 0.2 to 0.3 nm/sec.
On the hole transport layer, an alkylate complex of tris(8-quinolinolato)aluminum was deposited as a green light emitting material by resistance heating deposition under the same deposition conditions as those for the hole transport layer, using a deposition mask with a predetermined pattern, to form a light emitting layer with a thickness of 35 nm. The deposition rate was 0.5 nm/sec or less.
On the light-emitting layer, lithium fluoride was deposited by resistance heating deposition under the same exhaust conditions as those for the hole injection layer, using a deposition mask with a predetermined pattern, to form a film of 0.8 nm in thickness at a deposition rate of 0.004 nm/sec or less.
Next, Mg and Ag were simultaneously deposited on the electron injection layer by resistance heating deposition under the same exhaust conditions as those for the hole injection layer, using a deposition mask with a predetermined pattern, to form a first cathode layer with a thickness of 5 nm. The deposition rate was 0.5 nm/sec or less.
Next, the substrate was transferred to another film formation chamber (sputtering chamber), and a second cathode layer having a thickness of 100 nm was formed on the first cathode layer by RF sputtering using a mask having a predetermined pattern and an ITO target.
In this manner, an organic EL element was formed on the substrate, and an organic EL element substrate was obtained.

<有機EL素子の薄膜封止>
 上記で得られた有機EL素子上に、下記手順にて薄膜封止層を形成した。
 成膜室(スパッタ室)に有機EL素子基板を移送し、陰極層上に、所定のパターンのマスクを用いて、SiNxターゲットを用いてRFスパッタリング法により、膜厚100nmの無機封止層(SiNx膜)を形成した。続いて、有機EL素子基板をN置換されたグローブボックス中に移送し、ピエゾ方式インクジェットプリンタによって、エポキシ化合物及びオキセタン化合物と重合開始剤とを含む硬化性組成物を所定のパターンに吐出した。続いて、ウシオ電機社製UniJetE110ZHD 395nm LEDランプを用いて露光量1000mJ/cmを照射し、製膜された硬化性組成物を硬化させ、膜厚10μmの有機封止層を形成した。成膜室(スパッタ室)に有機EL素子基板を移送し、有機封止層上に、所定のパターンのマスクを用いて、SiNxターゲットを用いてRFスパッタリング法により、膜厚100nmの無機封止層(SiNx膜)を形成した。以上のようにして封止層付き有機EL素子基板を得た。
<Thin film encapsulation of organic EL elements>
On the organic EL element obtained above, a thin film sealing layer was formed by the following procedure.
The organic EL element substrate was transferred to a film-forming chamber (sputtering chamber), and an inorganic sealing layer (SiNx film) having a thickness of 100 nm was formed on the cathode layer by RF sputtering using a SiNx target using a mask having a predetermined pattern. The organic EL element substrate was then transferred to a glove box substituted with N2 , and a curable composition containing an epoxy compound, an oxetane compound, and a polymerization initiator was discharged in a predetermined pattern by a piezoelectric inkjet printer. Then, an exposure dose of 1000 mJ/ cm2 was applied using a UniJetE110ZHD 395 nm LED lamp manufactured by Ushio Inc., and the formed curable composition was cured to form an organic sealing layer having a thickness of 10 μm. The organic EL element substrate was transferred to a film-forming chamber (sputtering chamber), and an inorganic sealing layer (SiNx film) having a thickness of 100 nm was formed on the organic sealing layer by RF sputtering using a mask having a predetermined pattern using a SiNx target. In this manner, an organic EL element substrate with a sealing layer was obtained.

<有機EL素子の信頼性評価>
 得られたパターン化硬化樹脂層付き有機EL素子基板に対して、以下の手順で信頼性評価を行った。パターン化硬化樹脂層付き有機EL素子基板を60℃、湿度90%に設定されたオーブンで300時間保管した後、有機EL点灯治具を介して、定電流源により有機EL素子の陽極層と陰極層の間に20mA/cmの密度で電流を流し有機EL素子を点灯させた。次に、有機EL素子正面方向の輝度を輝度計により測定した。
 有機EL素子の点灯及び輝度計による正面輝度測定は、パターン化硬化樹脂層付き有機EL素子基板、パターン化硬化樹脂層を形成しなかった基準用の有機EL素子基板のそれぞれに対して行った。パターン化硬化樹脂層から発生する不純物や、パターン化硬化樹脂層を透過した水分が少なく、不純物や水分が有機EL素子に与える影響が小さいほど、封止層付き有機EL素子基板の正面輝度は、基準用の有機EL素子基板の正面輝度に近い値を取るといえる。封止層付き有機EL素子基板が基準用の有機EL素子基板の正面輝度に対して、80%以上の輝度で点灯した場合を「良好(○)」、50%以上80%未満の輝度で点灯した場合を「可(△)」、正常に点灯しなかった場合を「不可(×)」として有機EL素子の信頼性を評価した。その結果、この実施例では「良好(○)」の評価であった。
<Reliability evaluation of organic EL elements>
The obtained organic EL element substrate with the patterned cured resin layer was subjected to reliability evaluation by the following procedure. The organic EL element substrate with the patterned cured resin layer was stored in an oven set at 60°C and humidity of 90% for 300 hours, and then a current was passed between the anode layer and the cathode layer of the organic EL element at a density of 20 mA/ cm2 from a constant current source via an organic EL lighting jig to light the organic EL element. Next, the luminance of the organic EL element in the front direction was measured by a luminance meter.
The lighting of the organic EL element and the measurement of the front brightness by a luminance meter were performed on the organic EL element substrate with the patterned cured resin layer and the reference organic EL element substrate without the patterned cured resin layer. The less impurities generated from the patterned cured resin layer and the less moisture that permeated the patterned cured resin layer and the less the impact of the impurities and moisture on the organic EL element, the closer the front brightness of the organic EL element substrate with the sealing layer is to the front brightness of the reference organic EL element substrate. The reliability of the organic EL element was evaluated as "good (○)" when the organic EL element substrate with the sealing layer was lit with a brightness of 80% or more compared to the front brightness of the reference organic EL element substrate, "passable (△)" when it was lit with a brightness of 50% or more and less than 80%, and "not good (×)" when it was not lit normally. As a result, in this example, it was evaluated as "good (○)".

[実施例2~14、18~21、比較例1~6]
 配合組成を表2に示すとおり変更した点以外は実施例1と同じ溶剤組成及び固形分濃度で硬化性組成物R-2~R-14、R-18~R-27を調製した。なお、実施例2~14、18~21及び比較例1~6でについても実施例1と同様の種類及び配合量の密着助剤及び界面活性剤を配合した。実施例2~7、11、18~21及び比較例2については架橋剤を配合した。また、それぞれの硬化性組成物を用いて、実施例1と同様にして各種評価を行った。評価結果を表2に示す。なお、比較例2及び比較例5は、「(2)感度(放射線感度)の評価」において、幅10μmのライン・アンド・スペースパターンが得られなかったため、その後の評価を実施しなかったことから、表2では感度以外の評価項目については「-」と示した。
[Examples 2 to 14, 18 to 21, Comparative Examples 1 to 6]
Curable compositions R-2 to R-14 and R-18 to R-27 were prepared with the same solvent composition and solid content concentration as in Example 1, except that the blending composition was changed as shown in Table 2. In addition, in Examples 2 to 14, 18 to 21 and Comparative Examples 1 to 6, the same types and blending amounts of adhesion aid and surfactant as in Example 1 were blended. In Examples 2 to 7, 11, 18 to 21 and Comparative Example 2, a crosslinking agent was blended. In addition, various evaluations were performed in the same manner as in Example 1 using each curable composition. The evaluation results are shown in Table 2. In addition, in Comparative Example 2 and Comparative Example 5, a line and space pattern with a width of 10 μm was not obtained in "(2) Evaluation of sensitivity (radiation sensitivity)", so no subsequent evaluation was performed, and therefore the evaluation items other than sensitivity are indicated as "-" in Table 2.

[実施例15~17]
 配合組成を表2に示すとおり変更した点以外は実施例1と同じ溶剤組成及び固形分濃度で硬化性組成物R-15~R-17を調製した。なお、実施例15~17についても実施例1と同様の種類及び量の密着助剤及び界面活性剤を配合した。実施例16については架橋剤を配合した。また、それぞれの硬化性組成物を用いて、実施例1と同様にして各種評価を行った。ただし、有機EL素子基板のパターン化硬化樹脂層を作製する際に、実施例15~17では、現像処理及び流水洗浄の実施後に、プロキシミティ露光機(キヤノン社製の「MA-1200」(ghi線混合))を用いて3000J/mの光を基板全面に照射する処理を行わずに、窒素置換したクリーンオーブン内にて250℃で1時間加熱する処理を行った。評価結果を表2に示す。なお、表2中の数値の単位は質量部である。
[Examples 15 to 17]
Curable compositions R-15 to R-17 were prepared with the same solvent composition and solid content concentration as in Example 1, except that the blending composition was changed as shown in Table 2. In addition, the same types and amounts of adhesion assistants and surfactants as in Example 1 were blended in Examples 15 to 17. A crosslinking agent was blended in Example 16. In addition, various evaluations were performed in the same manner as in Example 1 using each curable composition. However, in preparing the patterned cured resin layer of the organic EL element substrate, in Examples 15 to 17, after the development process and running water washing, the substrate was not irradiated with 3000 J/m 2 light using a proximity exposure machine (Canon's "MA-1200" (ghi line mixing)) but was heated for 1 hour at 250 ° C. in a nitrogen-substituted clean oven. The evaluation results are shown in Table 2. The units of values in Table 2 are parts by mass.

Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016

 表2中、化合物の略称は以下のとおりである。
 NQD:キノンジアジド化合物(4,4’-〔1-〔4-〔1-〔4-ヒドロキシフェニル〕-1-メチルエチル〕フェニル〕エチリデン〕ビスフェノール(1.0モル)と1,2-ナフトキノンジアジド-5-スルホン酸クロリド(2.0モル)との縮合物)
 CAR:4,7-ジ-n-ブトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート
 Add-1~Add-6:下記式(Add-1)~式(Add-6)のそれぞれで表される化合物

Figure JPOXMLDOC01-appb-C000017
In Table 2, the abbreviations of the compounds are as follows.
NQD: quinone diazide compound (condensation product of 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1,2-naphthoquinone diazide-5-sulfonic acid chloride (2.0 mol))
CAR: 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate Add-1 to Add-6: Compounds represented by the following formulas (Add-1) to (Add-6), respectively
Figure JPOXMLDOC01-appb-C000017

 表2に示すように、実施例1~21の硬化性組成物は、感度、透過率、耐熱性、誘電率、難透水性、ベンディング耐性及び素子信頼性のいずれも「優良」、「良好」又は「可」の評価であり、各種特性がバランス良く改善された。これらの中でも特に、[A]重合体に架橋性官能基を導入するか、又は架橋剤としてAdd-1~Add-5のいずれかを配合した実施例2~6、8~10、12~16、20、21では、耐熱性及びベンディング耐性が良好の評価であった。また、酸性基を有する単量体として、フェノール性水酸基を有する化合物、基「*-C(R)(R)-OH」を有する化合物及びマレイミドのうち1種以上を用いた重合体を含むことにより、カルボキシ基を有する化合物を用いた場合(実施例8)に比べて、誘電率がより低い硬化膜を得ることができた。 As shown in Table 2, the curable compositions of Examples 1 to 21 were evaluated as "excellent", "good" or "fair" in sensitivity, transmittance, heat resistance, dielectric constant, poor water permeability, bending resistance and element reliability, and various properties were improved in a well-balanced manner. Among these, in particular, in Examples 2 to 6, 8 to 10, 12 to 16, 20 and 21 in which a crosslinkable functional group was introduced into the polymer [A] or any of Add-1 to Add-5 was blended as a crosslinking agent, the heat resistance and bending resistance were evaluated as good. In addition, by including a polymer using one or more of a compound having a phenolic hydroxyl group, a compound having a group "* 1 -C(R 1 )(R 2 )-OH" and maleimide as a monomer having an acidic group, a cured film having a lower dielectric constant could be obtained compared to the case in which a compound having a carboxy group was used (Example 8).

 これに対し、構造単位(I)と構造単位(II)との合計の割合が70モル%未満の重合体を用いた比較例1、4は、耐熱性、誘電率、難透水性及び素子信頼性がいずれも「可」又は「不可」であり、全体的に実施例1~21よりも劣っていた。また、重合体成分としてポリイミドを用いた比較例3は、感度、透過率及び誘電率が十分でなく、シクロオレフィンとスチレン化合物との共重合体を用いた比較例6は、耐熱性、誘電率及び難透水性の評価が「可」であり、ベンディング耐性及び素子信頼性の評価が「不可」であった。比較例2、5は感光せず、感光性組成物として適用不可であった。 In contrast, Comparative Examples 1 and 4, which used polymers in which the total ratio of structural units (I) and structural units (II) was less than 70 mol %, were either "passable" or "failable" in heat resistance, dielectric constant, water impermeability, and element reliability, and were generally inferior to Examples 1 to 21. Comparative Example 3, which used polyimide as the polymer component, did not have sufficient sensitivity, transmittance, and dielectric constant, and Comparative Example 6, which used a copolymer of cycloolefin and a styrene compound, was rated "passable" in heat resistance, dielectric constant, and water impermeability, but "failable" in bending resistance and element reliability. Comparative Examples 2 and 5 were not photosensitive and could not be used as photosensitive compositions.

Claims (15)

 [A]酸性基を有する化合物に由来する構造単位を含む重合体と、
 [B]感光性化合物と、
を含有し、
 前記[A]重合体は、芳香族ビニル化合物に由来する構造単位(I)と、マレイミド化合物に由来する構造単位(II)とを含み、
 前記酸性基を有する化合物として、芳香族ビニル化合物及びマレイミド化合物よりなる群から選択される少なくとも1種を含み、
 前記[A]重合体における前記構造単位(I)及び前記構造単位(II)の合計の割合が、前記[A]重合体の全構造単位に対して70モル%以上である、有機EL素子用硬化性組成物。
[A] a polymer including a structural unit derived from a compound having an acidic group;
[B] a photosensitive compound,
Contains
The polymer (A) contains a structural unit (I) derived from an aromatic vinyl compound and a structural unit (II) derived from a maleimide compound,
The compound having an acidic group includes at least one selected from the group consisting of an aromatic vinyl compound and a maleimide compound,
a curable composition for an organic EL device, wherein a total ratio of the structural unit (I) and the structural unit (II) in the polymer (A) is 70 mol % or more based on all structural units of the polymer (A).
 前記[A]重合体における前記構造単位(I)と前記構造単位(II)とのモル比率が、構造単位(I)/構造単位(II)=60/40~40/60である、請求項1に記載の有機EL素子用硬化性組成物。 The curable composition for organic EL devices according to claim 1, wherein the molar ratio of the structural unit (I) to the structural unit (II) in the polymer [A] is structural unit (I)/structural unit (II) = 60/40 to 40/60.  前記[A]重合体は、架橋性官能基を有する、請求項1に記載の有機EL素子用硬化性組成物。 The curable composition for organic EL devices according to claim 1, wherein the polymer [A] has a crosslinkable functional group.  架橋性官能基が、オキシラニル基、オキセタニル基、チイラン基、ヒドロキシアルキルアミド基、ヒドロキシメチルフェニル基、アルコキシメチルフェニル基、シクロカーボネート基及び保護されたイソシアネート基よりなる群から選択される少なくとも1種である、請求項3に記載の有機EL素子用硬化性組成物。 The curable composition for organic EL devices according to claim 3, wherein the crosslinkable functional group is at least one selected from the group consisting of an oxiranyl group, an oxetanyl group, a thiirane group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and a protected isocyanate group.  前記[A]重合体は、芳香族ビニル化合物及びマレイミド化合物よりなる群から選択される少なくとも1種であって、架橋性官能基を有する化合物に由来する構造単位を更に含む、請求項3に記載の有機EL素子用硬化性組成物。 The curable composition for organic EL devices according to claim 3, wherein the polymer [A] is at least one selected from the group consisting of aromatic vinyl compounds and maleimide compounds, and further contains a structural unit derived from a compound having a crosslinkable functional group.  [C]架橋性官能基を2個以上有する化合物(ただし、前記[A]重合体を除く。)を更に含有する、請求項1に記載の有機EL素子用硬化性組成物。 The curable composition for organic EL devices according to claim 1, further comprising [C] a compound having two or more crosslinkable functional groups (excluding the polymer [A]).  前記[C]化合物は、オキシラニル基、オキセタニル基、チイラン基、ヒドロキシアルキルアミド基、ヒドロキシメチルフェニル基、アルコキシメチルフェニル基、シクロカーボネート基、及び保護されたイソシアネート基よりなる群から選択される少なくとも1種を2個以上有する、請求項6に記載の有機EL素子用硬化性組成物。 The curable composition for organic EL devices according to claim 6, wherein the compound [C] has two or more of at least one selected from the group consisting of an oxiranyl group, an oxetanyl group, a thiirane group, a hydroxyalkylamide group, a hydroxymethylphenyl group, an alkoxymethylphenyl group, a cyclocarbonate group, and a protected isocyanate group.  前記[B]感光性化合物がキノンジアジド化合物である、請求項1に記載の有機EL素子用硬化性組成物。 The curable composition for organic EL devices according to claim 1, wherein the photosensitive compound [B] is a quinone diazide compound.  前記[B]感光性化合物が光酸発生剤である、請求項1に記載の有機EL素子用硬化性組成物。 The curable composition for organic EL devices according to claim 1, wherein the photosensitive compound [B] is a photoacid generator.  前記酸性基を有する化合物は、フェノール性水酸基を有する化合物、基「*-C(R)(R)-OH」を有する化合物(ただし、R及びRは、それぞれ独立して、シアノ基又は炭素数1~3のフルオロアルキル基である。「*」は芳香環との結合手を表す。)、及びマレイミドよりなる群から選択される少なくとも1種である、請求項1に記載の有機EL素子用硬化性組成物。 The curable composition for an organic EL device according to claim 1, wherein the compound having an acidic group is at least one selected from the group consisting of a compound having a phenolic hydroxyl group, a compound having a group "* 1 -C(R1)( R2 )-OH" (wherein R1 and R2 are each independently a cyano group or a fluoroalkyl group having 1 to 3 carbon atoms, and "* 1 " represents a bond to an aromatic ring), and maleimide.  請求項1~10のいずれか一項に記載の硬化性組成物を用いて塗膜を形成する工程と、
 前記塗膜の少なくとも一部に放射線を照射する工程と、
 放射線を照射した後の前記塗膜を現像する工程と、
 現像された前記塗膜を加熱する工程と、
を含む、有機EL素子用硬化物の製造方法。
A step of forming a coating film using the curable composition according to any one of claims 1 to 10;
exposing at least a portion of the coating to radiation;
developing the coating film after irradiation;
heating the developed coating;
The method for producing a cured material for an organic EL element comprising the steps of:
 請求項1~10のいずれか一項に記載の硬化性組成物を用いて形成された有機EL素子用硬化物。 A cured product for an organic EL device formed using the curable composition according to any one of claims 1 to 10.  平坦化膜、隔壁又は層間絶縁膜である、請求項12に記載の有機EL素子用硬化物。 The cured material for organic EL devices according to claim 12, which is a planarizing film, a partition wall, or an interlayer insulating film.  請求項12に記載の硬化物を備える、有機EL素子。 An organic EL element comprising the cured product according to claim 12.  芳香族ビニル化合物に由来する構造単位と、マレイミド化合物に由来する構造単位とを含む重合体であって、
 芳香族ビニル化合物に由来する構造単位及びマレイミド化合物に由来する構造単位の合計の割合が、前記重合体の全構造単位に対して70モル%以上であり、
 酸性基を有する化合物に由来する構造単位と、架橋性官能基を有する化合物に由来する構造単位とを含み、かつ、前記酸性基を有する化合物及び前記架橋性官能基を有する化合物が、芳香族ビニル化合物及びマレイミド化合物よりなる群から選択される少なくとも1種であり、
 前記酸性基を有する化合物が、フェノール性水酸基を有する化合物、基「*-C(R)(R)-OH」を有する化合物(ただし、R及びRは、それぞれ独立して、シアノ基又は炭素数1~3のフルオロアルキル基である。「*」は芳香環との結合手を表す。)、及びマレイミドよりなる群から選択される少なくとも1種である、重合体。
A polymer comprising a structural unit derived from an aromatic vinyl compound and a structural unit derived from a maleimide compound,
the total proportion of structural units derived from an aromatic vinyl compound and structural units derived from a maleimide compound is 70 mol % or more based on the total structural units of the polymer,
a structural unit derived from a compound having an acidic group and a structural unit derived from a compound having a crosslinkable functional group, the compound having an acidic group and the compound having a crosslinkable functional group being at least one selected from the group consisting of an aromatic vinyl compound and a maleimide compound;
The compound having an acidic group is at least one selected from the group consisting of a compound having a phenolic hydroxyl group, a compound having a group "* 1 -C( R1 )( R2 )-OH" (wherein R1 and R2 are each independently a cyano group or a fluoroalkyl group having 1 to 3 carbon atoms, and "* 1 " represents a bond to an aromatic ring), and a maleimide.
PCT/JP2023/040331 2022-11-10 2023-11-09 Curable composition for organic el elements, cured product for organic el elements and method for producing same, organic el element, and polymer WO2024101411A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202380073901.0A CN120077771A (en) 2022-11-10 2023-11-09 Curable composition for organic EL element, cured product for organic EL element, method for producing cured product for organic EL element, and polymer
JP2024557840A JPWO2024101411A1 (en) 2022-11-10 2023-11-09
KR1020257014152A KR20250107165A (en) 2022-11-10 2023-11-09 Curable composition for organic EL device, cured product for organic EL device and method for producing same, organic EL device, and polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-180340 2022-11-10
JP2022180340 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024101411A1 true WO2024101411A1 (en) 2024-05-16

Family

ID=91032534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040331 WO2024101411A1 (en) 2022-11-10 2023-11-09 Curable composition for organic el elements, cured product for organic el elements and method for producing same, organic el element, and polymer

Country Status (4)

Country Link
JP (1) JPWO2024101411A1 (en)
KR (1) KR20250107165A (en)
CN (1) CN120077771A (en)
WO (1) WO2024101411A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237310A (en) * 2009-03-30 2010-10-21 Jsr Corp Radiation-sensitive resin composition, organic EL display element partition and insulating film, and method for forming the same
JP2011221496A (en) * 2010-01-22 2011-11-04 Fujifilm Corp Positive photosensitive resin composition, cured film forming method, cured film, organic el display device, and liquid crystal display device
WO2013108716A1 (en) * 2012-01-19 2013-07-25 日産化学工業株式会社 Negative photosensitive resin composition
JP2014016553A (en) * 2012-07-10 2014-01-30 Fujifilm Corp Positive type photosensitive resin composition, method for producing cured film, cured film, organic el display and liquid crystal display
WO2014054455A1 (en) * 2012-10-02 2014-04-10 日産化学工業株式会社 Negative photosensitive resin composition
JP2021116400A (en) * 2020-01-29 2021-08-10 Jsr株式会社 Polymer composition, cured film and organic EL device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237310A (en) * 2009-03-30 2010-10-21 Jsr Corp Radiation-sensitive resin composition, organic EL display element partition and insulating film, and method for forming the same
JP2011221496A (en) * 2010-01-22 2011-11-04 Fujifilm Corp Positive photosensitive resin composition, cured film forming method, cured film, organic el display device, and liquid crystal display device
WO2013108716A1 (en) * 2012-01-19 2013-07-25 日産化学工業株式会社 Negative photosensitive resin composition
JP2014016553A (en) * 2012-07-10 2014-01-30 Fujifilm Corp Positive type photosensitive resin composition, method for producing cured film, cured film, organic el display and liquid crystal display
WO2014054455A1 (en) * 2012-10-02 2014-04-10 日産化学工業株式会社 Negative photosensitive resin composition
JP2021116400A (en) * 2020-01-29 2021-08-10 Jsr株式会社 Polymer composition, cured film and organic EL device

Also Published As

Publication number Publication date
KR20250107165A (en) 2025-07-11
CN120077771A (en) 2025-05-30
JPWO2024101411A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
TWI632431B (en) Photoresist underlayer film forming composition, pattern forming method and photoresist underlayer film
TW201233666A (en) Lactone photoacid generators and resins and photoresists comprising same
KR20170003380A (en) Photosensitive resin composition, method for producing cured film, cured film, and liquid crystal display device
CN113156763A (en) Photosensitive siloxane composition
TWI791622B (en) Radiation-sensitive resin composition, semiconductor element, display device, cured film, and manufacturing method thereof
JP7035889B2 (en) Radiation-sensitive resin compositions and their uses
KR102285071B1 (en) Radiation-sensitive resin composition, cured film, method for forming the cured film, and electronic device
TWI803587B (en) Radiation sensitive composition, cured film and display element
JP2017116834A (en) Radiation sensitive resin composition, cured film, formation method therefor and display element
JP6400540B2 (en) Photosensitive composition, method for producing cured film, method for producing liquid crystal display device, method for producing organic electroluminescence display device, and method for producing touch panel
TWI477913B (en) Positive photosensitive resin composition for electronic component, hardened film and method for manufacturing the same, and display device
WO2014088018A1 (en) Method for manufacturing cured film, cured film, liquid crystal display device and organic el display device
WO2024101411A1 (en) Curable composition for organic el elements, cured product for organic el elements and method for producing same, organic el element, and polymer
TW201426173A (en) Photosensitive resin composition, method for manufacturing cured film, cured film, organic electroluminescence display device, and liquid crystal display device
CN110794648B (en) Radiation-sensitive composition, cured film, method for producing cured film, and display element
KR102654731B1 (en) Radiation-sensitive resin composition and use thereof
CN110320746B (en) Radiation-sensitive composition, cured film, method for producing same, display element, and display device
TWI728067B (en) Pattern forming method and radiation-sensitive resin composition
JP7639536B2 (en) Radiation-sensitive composition, interlayer insulating film and method for producing the same, and display device
TW201420553A (en) Photoresist composition, method for forming resist pattern, and acid generator
JP7397419B1 (en) Radiation sensitive composition, cured film and method for producing the same, semiconductor element and display element
JP2025007415A (en) Film-forming composition, cured film and method for producing the same, and display element
KR102658153B1 (en) Radiation-sensitive resin composition and use thereof
CN117590689A (en) Radiation-sensitive composition, cured film, method for producing same, display device, and curable resin composition
CN120353097A (en) Radiation-sensitive composition, cured film, display element, and method for producing cured film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888756

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024557840

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE