[go: up one dir, main page]

WO2024095761A1 - 効率ブレーキシステム - Google Patents

効率ブレーキシステム Download PDF

Info

Publication number
WO2024095761A1
WO2024095761A1 PCT/JP2023/037542 JP2023037542W WO2024095761A1 WO 2024095761 A1 WO2024095761 A1 WO 2024095761A1 JP 2023037542 W JP2023037542 W JP 2023037542W WO 2024095761 A1 WO2024095761 A1 WO 2024095761A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheels
control unit
brake
steering
Prior art date
Application number
PCT/JP2023/037542
Other languages
English (en)
French (fr)
Inventor
正義 孫
Original Assignee
ソフトバンクグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022181942A external-priority patent/JP2024066362A/ja
Application filed by ソフトバンクグループ株式会社 filed Critical ソフトバンクグループ株式会社
Publication of WO2024095761A1 publication Critical patent/WO2024095761A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/12Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting otherwise than by retarding wheels, e.g. jet action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D17/00Means on vehicles for adjusting camber, castor, or toe-in
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D9/00Steering deflectable wheels not otherwise provided for

Definitions

  • the present invention relates to an efficient brake system.
  • Patent Document 1 describes a brake device that changes the braking force by controlling the strength of the regenerative braking force.
  • the present invention aims to provide a brake that can decelerate a vehicle more quickly and in a shorter distance.
  • An efficient brake system includes at least a pair of wheels positioned approximately symmetrically on the left and right of a vehicle, a steering means capable of individually controlling the steering angle of each of the pair of wheels, and a control unit that acquires or generates information related to the deceleration of the vehicle, and when the information is acquired or generated, the control unit controls the steering means so that the right wheel of the pair of wheels faces left and the left wheel faces right, or the right wheel faces right and the left wheel faces left, relative to the traveling direction of the vehicle.
  • One aspect of the present invention allows the vehicle to decelerate faster and over a shorter distance.
  • FIG. 1 is a diagram showing an example of a system configuration of a vehicle 1 equipped with an efficient brake system according to a first embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of a control unit 10 according to the present embodiment.
  • FIG. 1 is a diagram illustrating an example of an efficient brake system according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of an efficient brake system according to an embodiment of the present invention.
  • 4 is a flowchart showing an example of a processing procedure of a vehicle 1 equipped with an efficient brake system.
  • FIG. 2 is a diagram comparing the efficiency brake of the present embodiment with a conventional brake.
  • FIG. 4 is a flowchart showing an example of a processing procedure of a vehicle 1 equipped with the efficient brake system according to the present embodiment.
  • 4 is a diagram illustrating an example of acceleration data when a collision accident occurs in this embodiment.
  • FIG. FIG. 11 is a diagram showing an example of a system configuration of a vehicle equipped with an efficient brake system according to a third embodiment.
  • FIG. 4 is a diagram showing an example of an operation mode of an efficiency brake.
  • FIG. 4 is a diagram showing an example of an operation mode of an efficiency brake.
  • FIG. 4 is a diagram showing an example of an operation mode of an efficiency brake.
  • 4 is a flowchart showing an example of a processing procedure of a vehicle equipped with an efficient brake system.
  • FIG. 13 is a diagram showing an example of a system configuration of a vehicle equipped with a brake system according to a fourth embodiment.
  • FIG. 11 is an explanatory diagram showing an example of a selection operation of the type of brake.
  • 4 is a flowchart showing an example of a processing procedure of a vehicle equipped with a brake system.
  • a figure showing an example of the system configuration of a vehicle 1 equipped with an efficient brake system according to the fifth embodiment. 4 is a flowchart showing an example of a processing procedure of a vehicle 1 equipped with the efficient brake system according to the present embodiment.
  • 3A to 3C are diagrams illustrating the control of the steering angle of the wheels 30 by the steering means 20 in this embodiment.
  • 3A to 3C are diagrams illustrating the control of the steering angle of the wheels 30 by the steering means 20 in this embodiment.
  • 2 is a diagram illustrating an example of the relationship between the speed of the vehicle 1 and the steering angle of the wheels 30 in this embodiment.
  • FIG. 4A to 4C are diagrams illustrating the control of the steering angle of the wheels 30 while the vehicle is traveling along a curve in this embodiment.
  • 4A to 4C are diagrams illustrating the control of the steering angle of the wheels 30 while the vehicle is traveling along a curve in this embodiment.
  • 5 is a diagram showing an example of pattern data of the steering angle of the wheels 30 in the present embodiment.
  • FIG. 1 is a diagram showing an example of a system configuration of a vehicle 1 equipped with an efficient brake system according to this embodiment.
  • the vehicle 1 shown in Fig. 1 includes a control unit 10, a steering means 20, wheels 30, a first sensor 40, and a second sensor 50.
  • the vehicle 1 may also include various configurations constituting a conventional vehicle.
  • the vehicle 1 may have an automatic driving function that assists in automatic driving of the vehicle 1 in addition to a manual driving function that allows a driver to drive the vehicle 1, and each mode may be arbitrarily selected.
  • the control unit 10 can cause the steering means 20 to control the steering angle of the wheels 30 using various information acquired from inside and outside the vehicle 1. For example, the control unit 10 instructs the steering means 20 on the steering angle of the wheels 30 based on information detected by the first sensor 40 and/or the second sensor 50. At this time, the control unit 10 may acquire information related to the deceleration of the vehicle 1 from the first sensor 40. The control unit 10 may also generate information related to the deceleration based on the information acquired from the first sensor 40 and/or the second sensor 50.
  • the steering means 20 can individually control the steering angle of each wheel 30 based on instructions received from the control unit 10.
  • the steering means 20 includes steering means 20Ar, 20Al, 20Br, and 20Bl corresponding to each of the four wheels 30Ar, 30Al, 30Br, and 30Bl of the vehicle 1, and each steering means 20Ar, 20Al, 20Br, and 20Bl may be configured to individually set and control the steering angle of each wheel 30Ar, 30Al, 30Br, and 30Bl.
  • the vehicle 1 is equipped with at least a pair of wheels 30, which are arranged approximately symmetrically on the left and right sides of the vehicle 1.
  • the vehicle 1 is configured with four wheels, and has a pair of left and right front wheels 30A (30Ar and 30Al) and a pair of left and right rear wheels 30B (30Br and 30Bl).
  • the wheels 30 may be equipped with hub motors. Hub motors are also called in-wheel motors (IWM). By installing hub motors on all four wheels, the movement of each wheel 30 can be controlled individually, which is preferable for achieving efficient braking that changes the angle of the wheels to slow down the vehicle.
  • IWM in-wheel motors
  • the first sensor 40 detects information related to braking. For example, the first sensor 40 detects that the driver has stepped on the brake pedal and transmits the detected information to the control unit 10.
  • the second sensor 50 may be any of a variety of sensors mounted on the vehicle 1.
  • the second sensor 50 may be a speed sensor or an acceleration sensor.
  • the second sensor 50 transmits the detected information to the control unit 10.
  • FIG. 2 is a diagram showing an example of the configuration of the control unit 10 according to this embodiment.
  • the control unit 10 includes, for example, a processor 12 and a memory 14.
  • the processor 12 controls the operation of the entire vehicle 1.
  • the processor 12 may be, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), an FPGA (Field Programmable Gate Array), or a microcontroller.
  • the processor 12 functions as a control unit that controls the operation of the entire vehicle 1 by executing programs stored in the memory 14.
  • the memory 14 stores various programs and data executed by the processor 12.
  • the memory 14 may include, for example, volatile storage devices such as a ROM (Read Only Memory) or a RAM (Random Access Memory), and non-volatile storage devices such as a HDD (Hard Disk Drive) or flash memory.
  • volatile storage devices such as a ROM (Read Only Memory) or a RAM (Random Access Memory)
  • non-volatile storage devices such as a HDD (Hard Disk Drive) or flash memory.
  • the various data includes, for example, pattern data on the steering angles of each of the four wheels 30Ar, 30Al, 30Br, and 30Bl when using the efficient brake.
  • FIGS. 3 and 4 are diagrams showing an example of an efficient brake system in this embodiment.
  • Efficient braking is a method of decelerating a vehicle 1 in which at least a pair of left and right wheels can be steered individually by controlling the steering angle of the pair of left and right wheels. For example, in a vehicle 1 in which all four wheels can be steered, the steering angles of the four wheels can be controlled individually to decelerate the vehicle.
  • the steering angle of all four wheels can be freely controlled. Normally, when decelerating a vehicle, the brakes are used to reduce the rotational speed of the wheels through friction, but in this embodiment, the ability to change the steering angle of all four wheels is utilized to control the steering angle of the wheels to counteract the moment in the direction of travel.
  • the control unit 10 uses the steering means 20 to control the steering angle of the pair of front wheels 30A and the pair of rear wheels 30B so that they each form a "V" shape when viewed from above the vehicle. That is, the control unit 10 uses the steering means 20 to control the steering angle of the right wheel 30Ar of the pair of front wheels 30A to face left and the left wheel 30Al to face right. The control unit 10 also uses the steering means 20 to control the steering angle of the right wheel 30Br of the pair of rear wheels 30B to face left and the left wheel 30Bl to face right.
  • the control unit 10 uses the steering means 20 to control the steering angle so that the pair of front wheels 30A and the pair of rear wheels 30B form an inverted "V" shape when viewed from above the vehicle. That is, the control unit 10 uses the steering means 20 to control the steering angle so that, of the pair of front wheels 30A, the right wheel 30Ar faces right and the left wheel 30Al faces left. The control unit 10 also uses the steering means 20 to control the steering angle so that, of the pair of rear wheels 30B, the right wheel 30Br faces right and the left wheel 30Bl faces left.
  • the pair of left and right wheels 30A, 30B are turned inward to narrow the side in the direction of travel, or turned outward to widen the side in the direction of travel, thereby increasing the frictional force between the contact surface of the wheels 30 and the ground, thereby achieving deceleration.
  • the steering angle of the wheels 30 it is possible to adjust the coefficient of friction between the wheels 30 and the ground, and thereby adjust the frictional force.
  • the control unit 10 may also use the steering means 20 to set the steering angle so that the front wheels 30A form a "V" shape and the rear wheels 30B form an inverted “V” shape.
  • the control unit 10 may also use the steering means 20 to set the steering angle so that the front wheels 30A form an inverted "V” shape and the rear wheels 30B form an inverted "V” shape.
  • the control unit 10 may control the steering means 20 so that the angle between the traveling direction of the vehicle 1 and the steering angle of the right wheel 30Ar or 30Br of the pair of wheels 30A or 30B is approximately the same as the angle between the traveling direction of the vehicle 1 and the steering angle of the left wheel 30Al or 30Bl.
  • the steering means 20 may be controlled so that the angle formed by the traveling direction of the vehicle 1 and the rotation plane of the wheel 30Ar or 30Br and the angle formed by the traveling direction of the vehicle 1 and the rotation plane of the wheel 30Al or 30Bl are approximately the same. This makes the frictional forces acting on the left and right wheels approximately the same, which is expected to stabilize steering during deceleration.
  • the control unit 10 may also set the steering angle of each wheel 30 according to the speed and/or acceleration of the vehicle 1. For example, the control unit 10 obtains the speed and/or acceleration based on information detected by the second sensor 50. Then, the control unit 10 derives a steering angle suitable for the speed and/or acceleration of the vehicle 1, and controls the steering means 20 to achieve the derived steering angle. At this time, the steering angle may be derived using pattern data of the speed and/or acceleration and the steering angle of each wheel 30 stored in the memory 14. This makes it possible to efficiently decelerate according to the speed and/or acceleration of the vehicle 1.
  • the control unit 10 may control the steering means 20 so that the steering angle of each pair of wheels 30A or 30B relative to the traveling direction of the vehicle 1 increases as the speed of the vehicle 1 decreases.
  • control unit 10 may control the steering means 20 so as not to change the steering angle of each wheel 30 even if it detects or generates information related to deceleration.
  • a conventional brake mechanism when traveling at high speed, a conventional brake mechanism is used for deceleration, but when traveling at a low speed below a predetermined threshold, such as 30 km/h, an efficient brake may be activated. Also, the lower the speed, the greater the angle of the wheels relative to the direction of travel may be, thereby increasing the frictional force at lower speeds. This makes it possible to achieve both stable driving and efficient deceleration.
  • control unit 10 may control the steering means 20 so that the steering angle of each of the pair of wheels 30A or 30B is increased relative to the traveling direction of the vehicle 1. This is expected to reduce the risk of multiple rear-end collisions by activating an efficient brake in the event of an accident such as a rear-end collision, and stopping the vehicle 1 in a short distance.
  • FIG. 5 is a flowchart showing an example of a processing procedure for a vehicle 1 equipped with an efficient brake system.
  • the control unit 10 determines whether information related to deceleration has been acquired or generated while the vehicle 1 is traveling (step S101). For example, the control unit 10 may determine whether information related to deceleration of the vehicle 1 has been acquired from the first sensor 40. The control unit 10 may also determine whether information related to deceleration has been generated based on information acquired from the first sensor 40 and/or the second sensor 50.
  • step S101: No If the control unit 10 has not acquired or generated information regarding deceleration (step S101: No), the vehicle continues traveling.
  • control unit 10 If the control unit 10 has acquired or generated information related to deceleration (step S101: Yes), it activates the efficiency brake. For example, it uses the steering means 20 to set and control the steering angle of each wheel 30 so that the steering angle is as shown in FIG. 3 or FIG. 4 (step S102).
  • the control unit 10 activates the efficiency brake (S102) while the vehicle 1 is not stopped and information regarding deceleration is being acquired or generated (step S103: No).
  • control unit 10 releases the operation of the efficiency brake and controls the steering means 20 to return the steering angle of the wheels 30 to the original direction and to the same direction as the traveling direction (step S104).
  • FIG. 6 is a diagram comparing the efficient brake of this embodiment with a conventional brake.
  • FIG. 6(A) is a diagram showing the brake mechanism of a conventional two-wheel drive vehicle (front-wheel drive vehicle).
  • a two-wheel drive vehicle front-wheel drive vehicle
  • FIG. 6(B) is a diagram showing a conventional brake mechanism for a four-wheel drive vehicle.
  • a four-wheel drive vehicle has a mechanism for decelerating all four drive wheels.
  • a hub motor can brake all four wheels.
  • a four-wheel drive vehicle can obtain twice the deceleration power of a two-wheel drive vehicle, so it can stop the vehicle 1 in approximately half the distance compared to a two-wheel drive vehicle.
  • FIG. 6(C) shows the efficient brake of this embodiment.
  • the efficient brake also decelerates the vehicle by tilting the tires in a V-shape. This provides four times the deceleration power of a two-wheel drive vehicle, meaning that the vehicle 1 can be stopped in approximately one-quarter the distance compared to a two-wheel drive vehicle.
  • the vehicle can be decelerated more quickly and over a shorter distance.
  • Second Embodiment There is a need to stop the vehicle in a particularly short distance when it is necessary to prevent an accident, such as when avoiding a collision or rear-end collision, or when an erroneous operation has been performed.
  • An object of the present invention is to provide a brake system that prevents accidents from occurring.
  • An efficient brake system according to one embodiment of the present invention comprises at least a pair of wheels positioned approximately symmetrically on the left and right sides of a vehicle, a steering means capable of individually controlling the steering angle of each of the pair of wheels, a sensor for detecting the acceleration of the vehicle, and a control unit for controlling the steering means to change the steering angle of each wheel relative to the direction of travel of the vehicle when the acceleration of the vehicle satisfies a first condition.
  • the present invention provides a brake system that can prevent accidents from occurring.
  • FIG. 7 is a diagram showing an example of the system configuration of a vehicle 1 equipped with the efficient brake system according to this embodiment.
  • the vehicle 1 shown in FIG. 7 includes a control unit 10, a steering means 20, wheels 30, a first sensor 40, a second sensor 50, and a braking means 60.
  • the vehicle 1 may also include various configurations that constitute a conventional vehicle.
  • the vehicle 1 may also have an automatic driving function that assists in automatic driving of the vehicle 1, and each driving mode may be freely selected.
  • the control unit 10 can cause the steering means 20 to control the steering angle of the wheels 30 using various information acquired from inside and outside the vehicle 1.
  • the steering angle is the angle of the wheels 30 relative to the traveling direction of the vehicle 1.
  • the control unit 10 instructs the steering means 20 on the steering angle of the wheels 30 based on information detected by the first sensor 40 and/or the second sensor 50.
  • the control unit 10 can acquire information on the deceleration of the vehicle 1 due to braking from the first sensor 40.
  • the control unit 10 can also acquire information on the speed or acceleration of the vehicle 1 from the second sensor 50.
  • the steering means 20 can individually control the steering angle of each wheel 30 based on instructions received from the control unit 10.
  • the steering means 20 includes steering means 20Ar, 20Al, 20Br, and 20Bl corresponding to each of the four wheels 30Ar, 30Al, 30Br, and 30Bl of the vehicle 1, and each steering means 20Ar, 20Al, 20Br, and 20Bl may be configured to individually set and control the steering angle of each wheel 30Ar, 30Al, 30Br, and 30Bl.
  • the vehicle 1 has at least a pair of wheels 30, which are arranged approximately symmetrically on the left and right sides of the vehicle 1.
  • the vehicle 1 is configured with four wheels, and has a pair of left and right front wheels 30A (30Ar and 30Al) and a pair of left and right rear wheels 30B (30Br and 30Bl).
  • Each wheel 30 may be equipped with a hub motor, which is an electric motor mounted inside the hub. Note that even if the motor itself is not mounted inside the hub, a motor (in-wheel motor (IWM)) in which the driving force of the electric motor is transmitted directly to the wheel may be installed.
  • IWM in-wheel motor
  • the first sensor 40 detects information related to braking by the braking means 60. For example, the first sensor 40 detects that the braking means 60 has applied the brakes to the wheels 30 due to the driver's brake operation or automatic driving control, and transmits the detected information to the control unit 10.
  • the second sensor 50 may be any of a variety of sensors mounted on the vehicle 1.
  • the second sensor 50 may be a speed sensor or an acceleration sensor.
  • the second sensor 50 transmits the detected information to the control unit 10.
  • the braking means 60 can brake each of the wheels 30 based on instructions received from the control unit 10.
  • the braking means 60 may be configured to include, for example, wheel cylinders (not shown) provided on each of the wheels 30Ar, 30Al, 30Br, and 30Bl, and brake actuators (not shown) connected to the wheel cylinders.
  • the brake actuator controls the brake pressure generated by a hydraulic pump driven by a motor to an arbitrary magnitude and supplies it to the wheel cylinders to brake each of the wheels 30Ar, 30Al, 30Br, and 30Bl.
  • the control unit 10 detects that the driver has stepped on the brake pedal, it may issue an instruction to the braking means 60 to brake the wheels 30, or may issue an instruction to the braking means 60 to brake the wheels 30 by automatic driving control.
  • the configuration of the control unit 10 according to this embodiment is the same as that shown in FIG. 2, and therefore is not shown in the figure.
  • the control unit 10 includes, for example, a processor 12 and a memory 14 .
  • the processor 12 controls the operation of the entire vehicle 1.
  • the processor 12 may be, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), an FPGA (Field Programmable Gate Array), or a microcontroller.
  • the processor 12 functions as a control unit that controls the operation of the entire vehicle 1 by executing programs stored in the memory 14.
  • the memory 14 stores various programs and data executed by the processor 12.
  • the memory 14 may include, for example, volatile storage devices such as a ROM (Read Only Memory) or a RAM (Random Access Memory), and non-volatile storage devices such as a HDD (Hard Disk Drive) or a flash memory.
  • the various data include, for example, pattern data of the steering angles of each of the four wheels 30Ar, 30Al, 30Br, and 30Bl when using the efficiency brake, and condition data for activating the efficiency brake (for example, a vehicle speed threshold value, etc.).
  • the memory 14 stores information on characteristic signals (e.g., pulse signals) that may be included in the acceleration data of the vehicle 1 acquired via the second sensor 50 in the event of an accident, such as sudden acceleration, sudden braking, or sudden steering.
  • characteristic signals e.g., pulse signals
  • FIG. 8 is a flowchart showing an example of a processing procedure for a vehicle 1 equipped with an efficient brake system.
  • the control unit 10 acquires information on changes in the speed and acceleration of the vehicle 1 from the second sensor 50 while the vehicle 1 is traveling (step S101).
  • the control unit 10 determines whether the acceleration data includes a signal indicating an accident sign, such as sudden acceleration, sudden braking, or sudden steering (whether the first condition is satisfied) (step S102).
  • the control unit 10 makes the determination by comparing the acceleration data with the characteristics of the acceleration data that indicate an accident sign stored in the memory 14.
  • the control unit 10 may also make the determination by determining whether the absolute value of the acceleration of the vehicle 1 exceeds a predetermined threshold.
  • the determination may also be made using a machine learning model that has learned the characteristics of the acceleration data that indicate an accident sign.
  • step S102 If it is determined that the acceleration data includes a signal indicating an accident (step S102: YES), the control unit 10 outputs an instruction to the steering means 20 to control the steering angle of the wheels 30 (step S103).
  • the vehicle 1 can individually control the steering angles of all four wheels 30Ar, 30Al, 30Br, and 30Bl by the corresponding steering means 20Ar, 20Al, 20Br, and 20Bl.
  • the braking means 20 decelerates by braking the rotation of the wheels 30, but the steering means 20 decelerates by changing the steering angle of each of the four wheels to cancel out the moment in the traveling direction.
  • the control unit 10 may use the steering means 20 to control the steering angle so that the front wheels 30Ar, 30Al and the rear wheels 30Br, 30Bl form a "V" shape when viewed from above the vehicle 1. That is, the control unit 10 uses the steering means 20 to control the steering angle so that the right wheel 30Ar faces left and the left wheel 30Al faces right. The control unit 10 also uses the steering means 20 to control the steering angle so that the right wheel 30Br faces left and the left wheel 30Bl faces right.
  • control unit 10 may use the steering means 20 to control the steering angle so that the front wheels 30Ar, 30Al and the rear wheels 30Br, 30Bl form an inverted V shape when viewed from above the vehicle 1. That is, the control unit 10 uses the steering means 20 to control the steering angle so that the right wheel 30Ar faces right and the left wheel 30Al faces left. The control unit 10 also uses the steering means 20 to control the steering angle so that the right wheel 30Br faces right and the left wheel 30Bl faces left.
  • the steering angle may be set so that the front wheels 30Ar, 30Al form a "V" shape and the rear wheels 30Br, 30Bl form an inverted “V” shape, or the steering angle may be set so that the front wheels 30Ar, 30Al form an inverted "V” shape and the rear wheels 30Br, 30Bl form an "V” shape.
  • the control unit 10 may control the steering means 20 so that the steering angle of the wheels 30 corresponds to the acceleration of the vehicle 1. Specifically, the greater the angle of the wheels 30 relative to the direction of travel (i.e., the narrower the side in the direction of travel in the case of a "V" shape, and the wider the side in the direction of travel in the case of an inverted “V” shape), the greater the frictional force with the ground, and the greater the deceleration effect.
  • the control unit 10 can shorten the time until deceleration by controlling the angle of the wheels 30 relative to the traveling direction to be larger as the acceleration of the vehicle 1 is greater. This is expected to prevent the occurrence of multiple rear-end collisions by stopping the vehicle 1 in a short distance in the event of an accident such as a rear-end collision.
  • the control unit 10 may also derive the steering angle using acceleration data that indicates signs of an accident stored in the memory 14. In this way, accidents can be prevented or suppressed by detecting signs of an accident using acceleration data and responding accordingly. Furthermore, when an accident occurs (when the occurrence of an accident is detected by acceleration data), the vehicle 1 can be immediately stopped to prevent or suppress the accident from expanding or becoming a chain reaction.
  • the control unit 10 may also control the steering means 20 so that the steering angles of the right-side wheels 30Ar, 30Br and the left-side wheels 30Al, 30Bl are substantially the same.
  • the steering means 20 may be controlled so that the angle formed by the traveling direction of the vehicle 1 and the rotational plane of the wheel 30Ar or 30Br and the angle formed by the traveling direction of the vehicle 1 and the rotational plane of the wheel 30Al or 30Bl are substantially the same. This makes the frictional forces acting on the left and right wheels substantially the same, which is expected to result in stable steering during deceleration.
  • control unit 10 when the control unit 10 determines that a spin has occurred based on the characteristics of the acceleration data, it may set the orientation of each wheel 30 so that it faces inward or outward at a predetermined angle relative to the direction of rotation of the spin. In other words, by setting the orientation of each wheel 30 so that it is tilted by ⁇ (a predetermined angle) in a direction perpendicular to the center of gravity of the vehicle, a frictional force against the rotation may be generated to prevent the spin.
  • FIG. 9 is a diagram illustrating an example of an acceleration waveform (G) and a spin waveform (S) when a collision accident occurs while a vehicle is traveling. Note that this diagram is quoted from an accident analysis report by Data Tech Institute of Fundamental Theories Co., Ltd. (http://re-www.datatec.jp/product/report/kaiseki_2.html).
  • the acceleration waveform G in the section indicated by (A) in the diagram indicates that the brakes were applied to avoid the collision.
  • the acceleration waveform G in section (B) indicates that a collision (side collision) occurred.
  • the spin waveform C indicates that a spin occurred due to a side collision.
  • the acceleration waveform G in section (D) indicates that another collision occurred.
  • the control unit 10 may use acceleration waveforms and spin waveforms such as those shown in FIG. 9 to control the wheels 30 in response to the event that has occurred. For example, when an acceleration waveform caused by braking such as that shown in section (A) is detected, the steering means 20 can be controlled to immediately stop the vehicle 1, thereby avoiding a collision. Also, when a spin waveform such as that shown in section (C) is detected, the wheels 30 can be controlled to face inward or outward from the direction of the spin rotation, thereby avoiding a collision caused by a spin.
  • the control unit 10 controls the steering angle of the wheels 30 until the vehicle 1 stops (step S104).
  • step S104 the control unit 10 ends control of the steering means 20 (step S105).
  • the control unit 10 may set the steering angle of each wheel 30 according to the speed and/or acceleration of the vehicle 1. For example, the control unit 10 obtains the speed and/or acceleration based on information detected by the second sensor 50. Then, the control unit 10 derives a steering angle suitable for the speed and/or acceleration of the vehicle 1, and controls the steering means 20 to achieve the derived steering angle. At this time, the steering angle may be derived using pattern data of the speed and/or acceleration and the steering angle of each wheel 30 stored in the memory 14. This makes it possible to efficiently decelerate according to the speed and/or acceleration of the vehicle 1.
  • the control unit 10 when the speed or acceleration of the vehicle 1 while the vehicle 1 is traveling meets a predetermined condition that indicates an accident, such as sudden acceleration or deceleration, the control unit 10 outputs an instruction to the steering means 20 to change the steering angle of the wheels 30, canceling the moment in the traveling direction and stopping the vehicle 1 as quickly as possible. This makes it possible to prevent accidents such as collisions and rear-end collisions.
  • ABS anti-lock brake system
  • the present invention aims to provide a brake system that can sufficiently shorten the braking distance required to bring the vehicle to a complete stop.
  • the efficient brake system comprises at least a pair of wheels positioned approximately symmetrically on the left and right sides of a vehicle, a steering means capable of individually controlling the steering angle of each of the pair of wheels, a braking means for generating a braking force on the pair of wheels, and a control unit for controlling the steering means and the braking means, and when the control unit determines that one of the wheels is prone to locking during braking, it controls the braking means so that the braking force on the pair of wheels is reduced, and controls the steering means so that the pair of wheels form an approximately V-shape when viewed from above the vehicle.
  • the present invention makes it possible to sufficiently shorten the braking distance required to stop the vehicle.
  • FIG. 10 is a diagram showing an example of the system configuration of a vehicle 1 equipped with an efficient brake system according to this embodiment.
  • the efficient brake system not only controls the brake pressure when any of the wheels tend to lock during braking, but also changes the angle of each wheel to efficiently decelerate the vehicle, thereby preventing the wheels from locking and making it possible to sufficiently shorten the braking distance required to stop the vehicle.
  • the above braking method using the efficient brake system will be referred to as "efficient braking.”
  • the vehicle 1 shown in FIG. 10 includes a control unit 10, a steering means 20, a braking means 30, wheels 40, a first sensor 50, a second sensor 60, and a notification means 70.
  • the vehicle 1 may also include various components constituting a conventional vehicle.
  • the vehicle 1 may also have an automatic driving function that assists in the automatic driving of the vehicle 1, and each driving function may be selectable at will.
  • the control unit 10 performs control related to the efficient brake using various information acquired from inside and outside the vehicle 1. For example, the control unit 10 instructs the steering means 20 on the steering angle of the wheels 40 and instructs the braking means 30 on the braking force of the wheels 40 based on information detected by the first sensor 50 and/or the second sensor 60. At this time, the control unit 10 may obtain information regarding the brakes of the vehicle 1 from the first sensor 50 and information regarding the wheel speed from the second sensor 60 .
  • the steering means 20 can individually control the steering angle of each wheel 40 based on instructions received from the control unit 10.
  • the steering means 20 may be configured to include steering means 20Ar, 20Al, 20Br, and 20Bl corresponding to each of the four wheels 40Ar, 40Al, 40Br, and 40Bl of the vehicle 1, and each of the steering means 20Ar, 20Al, 20Br, and 20Bl may be configured to individually set and control the steering angle of each wheel 40Ar, 40Al, 40Br, and 40Bl.
  • the braking means 30 can brake each of the wheels 40 based on instructions received from the control unit 10.
  • the braking means 30 may be configured to include, for example, wheel cylinders (not shown) provided on each of the wheels 40Ar, 40Al, 40Br, and 40Bl, and brake actuators (not shown) connected to the wheel cylinders.
  • the brake actuator controls the brake pressure generated by a hydraulic pump driven by a motor to an arbitrary level and supplies it to the wheel cylinder, thereby braking each of the wheels 40Ar, 40Al, 40Br, and 40Bl.
  • Vehicle 1 has at least one pair of wheels, which are arranged approximately symmetrically on the left and right sides of vehicle 1.
  • vehicle 1 is configured with four wheels, and has a pair of left and right front wheels 40A (40Ar and 40Al) and a pair of left and right rear wheels 40B (40Br and 40Bl).
  • the wheels 40 may be equipped with hub motors.
  • Hub motors are also called in-wheel motors (IWM).
  • IWM in-wheel motors
  • the first sensor 50 detects information related to braking. For example, when the driver operates the brake pedal, the first sensor 50 transmits information indicating the amount of brake pedal operation (i.e., the stroke amount) to the control unit 10.
  • the second sensor 60 may be any of a variety of sensors mounted on the vehicle 1.
  • the second sensor 60 may be configured with a speed sensor, an acceleration sensor, or a wheel speed sensor provided on each of the wheels 40Ar, 40Al, 40Br, and 40Bl.
  • the second sensor 60 transmits information such as the speed, acceleration, and wheel speed of the vehicle 1 that are successively detected to the control unit 10.
  • the notification means 70 issues a specified warning to the driver when the efficient brake is activated.
  • the notification means 70 may be a buzzer or a lamp provided on the instrument panel (not shown). Note that if the vehicle 1 is provided with multiple notification means, these notification means may be activated simultaneously.
  • the configuration of the control unit 10 according to this embodiment is the same as that shown in FIG. 2 above, and is therefore not shown.
  • the control unit 10 includes, for example, a processor 12 and a memory 14.
  • the processor 12 controls the efficient braking of the vehicle 1.
  • the processor 12 may be, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), an FPGA (Field Programmable Gate Array), or a microcontroller.
  • the processor 12 functions as a control unit by executing a program stored in the memory 14.
  • the memory 14 stores various programs and data executed by the processor 12.
  • the memory 14 may include, for example, volatile storage devices such as a ROM (Read Only Memory) or a RAM (Random Access Memory), and non-volatile storage devices such as a HDD (Hard Disk Drive) or flash memory.
  • volatile storage devices such as a ROM (Read Only Memory) or a RAM (Random Access Memory)
  • non-volatile storage devices such as a HDD (Hard Disk Drive) or flash memory.
  • the various data include, for example, steering angle pattern data for each of the four wheels 40Ar, 40Al, 40Br, and 40Bl when using the efficiency brake, and condition data for activating the efficiency brake (for example, vehicle speed and wheel speed thresholds, etc.).
  • 11 to 13 are diagrams showing an example of an operation mode of the efficiency brake in this embodiment.
  • this embodiment it is possible to freely control the steering angles of all four wheels, so efficient braking is achieved by controlling the braking pressure and controlling the steering angles of the wheels to cancel out the moment in the direction of travel.
  • the control unit 10 controls the brake means 30 to control the brake pressure in order to reduce the braking force of the wheels. Furthermore, the control unit 10 controls the steering angle of the pair of front wheels 40A and the pair of rear wheels 40B using the steering means 20 so that they are each shaped like the letter "V" when viewed from above the vehicle, as shown in FIG. 11. That is, the control unit 10 controls the steering angle of the pair of front wheels 40A using the steering means 20 so that the right wheel 40Ar faces left and the left wheel 40Al faces right.
  • the control unit 10 also controls the steering angle of the pair of rear wheels 40B using the steering means 20 so that the right wheel 40Br faces left and the left wheel 40Bl faces right. It should be noted that detection of whether any of the wheels is locking can be achieved, for example, by comparing the wheel speeds detected by wheel speed sensors provided on each wheel 40.
  • FIG. 11 illustrates an example of controlling the steering angle using the steering means 20 so that the pair of front wheels 40A and the pair of rear wheels 40B form a "V" shape when viewed from above the vehicle, but as shown in FIG. 12, for example, the steering angle may be controlled so that the pair of front wheels 40A and the pair of rear wheels 40B form an inverted "V" shape when viewed from above the vehicle. That is, the control unit 10 uses the steering means 20 to control the steering angle so that the right wheel 40Ar of the pair of front wheels 40A faces right and the left wheel 40Al faces left. The control unit 10 also uses the steering means 20 to control the steering angle so that the right wheel 40Br of the pair of rear wheels 40B faces right and the left wheel 40Bl faces left.
  • control unit 10 may alternate at a predetermined timing between a first steering mode in which the steering angle of the pair of left and right wheels 40A, 40B is controlled so that they form a "V" shape when viewed from above the vehicle, as shown in FIG. 13, and a second steering mode in which the steering angle of the pair of left and right wheels 40A, 40B is controlled so that they form an inverted "V" shape when viewed from above the vehicle.
  • the control unit 10 may derive the timing of switching the steering mode based on various information obtained from the first sensor 50 and the second sensor 60, so that the wheels 40 can be prevented from locking and the maximum braking force can be secured to shorten the braking distance.
  • the brake pressure is not simply controlled, but the pair of left and right wheels 40A, 40B are turned inward to narrow the side in the direction of travel, or turned outward to widen the side in the direction of travel, thereby increasing the frictional force at the contact surface between the wheels 40 and the ground.
  • the control unit 10 can adjust the frictional force between the wheels 40 and the ground by adjusting the steering angle of the wheels 40.
  • the control unit 10 may also use the steering means 20 to set the steering angle so that the front wheels 40A form a "V" shape and the rear wheels 40B form an inverted “V” shape.
  • the control unit 10 may also use the steering means 20 to set the steering angle so that the front wheels 40A form an inverted "V” shape and the rear wheels 40B form an inverted "V” shape.
  • the control unit 10 may control the steering means 20 so that the angle between the traveling direction of the vehicle 1 and the steering angle of the right wheel 40Ar or 40Br of the pair of wheels 40A or 40B is approximately the same as the angle between the traveling direction of the vehicle 1 and the steering angle of the left wheel 40Al or 40Bl.
  • the steering means 20 may be controlled so that the angle formed by the traveling direction of the vehicle 1 and the rotation plane of the wheel 40Ar or 40Br and the angle formed by the traveling direction of the vehicle 1 and the rotation plane of the wheel 40Al or 40Bl are approximately the same. This makes the frictional forces acting on the left and right wheels approximately the same, which is expected to stabilize steering during deceleration.
  • the control unit 10 may also set the steering angle of each wheel 40 according to the speed and/or acceleration of the vehicle 1. For example, the control unit 10 obtains the speed and/or acceleration based on information detected by the second sensor 60. Then, the control unit 10 derives a steering angle suitable for the speed and/or acceleration of the vehicle 1, and controls the steering means 20 to achieve the derived steering angle. At this time, the steering angle may be derived using pattern data of the speed and/or acceleration and the steering angle of each wheel 40 stored in the memory 14. This makes it possible to efficiently decelerate according to the speed and/or acceleration of the vehicle 1.
  • the control unit 10 may also control the steering means 20 so that the steering angle of each of the pair of wheels 40A or 40B relative to the traveling direction of the vehicle 1 increases as the speed of the vehicle 1 decreases.
  • FIG. 14 is a flowchart showing an example of a processing procedure for a vehicle 1 equipped with an efficient brake system.
  • the control unit 10 determines (detects) whether any of the wheels 40 are in a state of locking by comparing the wheel speeds detected by the wheel speed sensors provided on each wheel 40 (step S101).
  • control unit 10 determines that none of the wheels 40 are in a state of locking (step S101: NO), it continues normal operation without activating the efficiency brake.
  • control unit 10 determines that any of the wheels 40 are tending to lock (step S101: YES), it activates the efficiency brake. Specifically, the control unit 10 instructs the brake means 30 to control the brake pressure in order to prevent the wheels 40 from locking (step S102). It also instructs the steering means 20 to control the steering angle of the wheels 40 in the manner shown in any of Figures 11 to 13 (step S103). Furthermore, the control unit 10 issues a predetermined alarm from the notification means 70 to inform the driver that the efficiency brake is being activated (step S104).
  • the control unit 10 activates the efficiency brake (steps S102 ⁇ S103 ⁇ S104) until the vehicle 1 stops (step S105: NO).
  • control unit 10 detects that the vehicle 1 has stopped (step S105: YES), it ends the issuance of the specified alarm, stops the operation of all brakes including the efficiency brakes (step S106), and performs control to return the steering angle of the wheels 40 to the same direction as the traveling direction (step S107), and then ends the processing.
  • controlling the wheel angle rather than simply controlling the brake pressure makes it possible to prevent the wheel from locking and sufficiently shorten the braking distance required to stop the vehicle.
  • An automatic braking device that detects the distance and relative speed between the vehicle and an obstacle ahead, and automatically applies the brakes to suddenly brake the vehicle if the detection result indicates that the vehicle is abnormally close to the obstacle ahead.
  • the above-mentioned automatic braking system is effective in preventing the vehicle from getting too close to an obstacle ahead, but there is a problem in that if the automatic braking system suddenly brakes when there is a vehicle behind, the vehicle behind may not be able to brake in time and may collide with the vehicle behind.
  • the present invention aims to provide a brake system that can perform optimal brake control according to the circumstances surrounding the vehicle.
  • a brake system includes at least a pair of wheels positioned approximately symmetrically on the left and right of a vehicle, a steering means capable of individually controlling the steering angle of each of the pair of wheels, a braking means for generating a braking force on the pair of wheels, a first acquisition unit for acquiring brake operation information related to the brake operation of the vehicle, a second acquisition unit for acquiring ambient environment information related to the ambient environment of the vehicle, and a control unit for controlling the steering means and the braking means, and the control unit selects, based on the brake operation information and the ambient environment information, either a normal brake that controls the braking means to brake the vehicle, or an efficient brake that controls the steering means together with the braking means to brake the vehicle.
  • the present invention makes it possible to perform optimal brake control according to the circumstances surrounding the vehicle.
  • FIG. 15 is a diagram showing an example of the system configuration of a vehicle 1 equipped with a brake system according to this embodiment.
  • the brake system according to this embodiment is capable of operating two types of brakes: a "normal brake” that controls the brake pressure to brake the vehicle, and an “efficient brake” that not only controls the brake pressure but also changes the angle of each wheel to efficiently decelerate and brake the vehicle.
  • the vehicle 1 shown in FIG. 1 includes a control unit 10, a steering means 20, a brake means 30, wheels 40, a first sensor 50, a second sensor 60, and a notification means 70.
  • the vehicle 1 may also include various configurations that configure a conventional vehicle.
  • the vehicle 1 may have an automatic driving function that assists in automatic driving of the vehicle 1, and each driving function may be selected arbitrarily.
  • the control unit 10 performs various controls related to the brakes using various information acquired from inside and outside the vehicle 1. For example, the control unit 10 selects the type of brakes (specifically, normal brakes or efficient brakes) based on the information detected by the first sensor 50 and the second sensor 60, and instructs the steering means 20 on the steering angle of the wheels 40 and instructs the braking means 30 on the braking force of the wheels 40 according to the selected type of brakes.
  • the type of brakes specifically, normal brakes or efficient brakes
  • the steering means 20 can individually control the steering angle of each wheel 40 based on instructions received from the control unit 10.
  • the steering means 20 may be configured to include steering means 20Ar, 20Al, 20Br, and 20Bl corresponding to each of the four wheels 40Ar, 40Al, 40Br, and 40Bl of the vehicle 1, and each steering means 20Ar, 20Al, 20Br, and 20Bl may be configured to individually set and control the steering angle of each wheel 40Ar, 40Al, 40Br, and 40Bl.
  • the braking means 30 can brake each of the wheels 40 based on instructions received from the control unit 10.
  • the braking means 30 may be configured to include, for example, wheel cylinders (not shown) provided on each of the wheels 40Ar, 40Al, 40Br, and 40Bl, and brake actuators (not shown) connected to the wheel cylinders.
  • the brake actuator controls the brake pressure generated by a hydraulic pump driven by a motor to an arbitrary level and supplies it to the wheel cylinder, thereby braking each of the wheels 40Ar, 40Al, 40Br, and 40Bl.
  • Vehicle 1 has at least a pair of wheels (tires), which are arranged approximately symmetrically on the left and right sides of vehicle 1.
  • vehicle 1 is configured with four wheels, and has a pair of left and right front wheels 40A (40Ar and 40Al) and a pair of left and right rear wheels 40B (40Br and 40Bl).
  • the wheels 40 may be equipped with hub motors.
  • Hub motors are also called in-wheel motors (IWM).
  • IWM in-wheel motors
  • the first sensor 50 detects brake operation information related to brake operation.
  • the first sensor 50 is composed of, for example, a brake pedal sensor. When the driver operates the brake pedal, the first sensor 50 transmits brake operation information indicating the amount of brake pedal operation (i.e., the stroke amount) to the control unit (first acquisition unit) 10.
  • the second sensor 60 detects information related to the surrounding environment of the vehicle (in this embodiment, rear vehicle information indicating the distance to the rear vehicle, relative speed, etc.).
  • the second sensor 60 is composed of, for example, a LIDAR (Light Detection And Ranging) sensor, an ultrasonic sonar, and a stereo camera. When the second sensor 60 detects rear vehicle information, it transmits it to the control unit (second acquisition unit) 10.
  • LIDAR Light Detection And Ranging
  • vehicle 1 is equipped with various sensors, including a speed sensor, an accelerator pedal sensor, a shift position sensor, and an acceleration sensor.
  • sensors including a speed sensor, an accelerator pedal sensor, a shift position sensor, and an acceleration sensor.
  • the notification means 70 notifies the outside (such as the driver) of the brake operation status.
  • the notification means 70 is composed of, for example, a buzzer, a lamp or a brake lamp provided on the instrument panel (not shown).
  • the notification means 70 may notify the driver of the presence or absence of the brake operation, the type of brake being operated, etc., by, for example, the color of the lamp, the lighting pattern, a text message, etc.
  • a specific lamp on the instrument panel is displayed as lit in yellow
  • a specific lamp on the instrument panel is displayed as flashing in blue. In this way, by notifying in different ways depending on the type of brake being operated, the driver can accurately grasp the brake being operated.
  • the combination of notification means to be used may be changed depending on the type of brake being operated. Also, the brake operation status may be notified to the rear vehicle, etc. by changing the display mode of the brake lamp depending on the type of brake being operated.
  • the configuration of the control unit 10 according to this embodiment is the same as that shown in FIG. 2 above, and is therefore not shown.
  • the control unit 10 includes, for example, a processor 12 and a memory 14.
  • the processor 12 controls the brakes of the vehicle 1.
  • the processor 12 may be, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), an FPGA (Field Programmable Gate Array), or a microcontroller.
  • the processor 12 functions as a control unit by executing a program stored in the memory 14.
  • the memory 14 stores various programs and data executed by the processor 12.
  • the memory 14 may include, for example, volatile storage devices such as a ROM (Read Only Memory) or a RAM (Random Access Memory), and non-volatile storage devices such as a HDD (Hard Disk Drive) or flash memory.
  • volatile storage devices such as a ROM (Read Only Memory) or a RAM (Random Access Memory)
  • non-volatile storage devices such as a HDD (Hard Disk Drive) or flash memory.
  • the various data include, for example, steering angle patterns that indicate the steering angles of each of the four wheels 40Ar, 40Al, 40Br, and 40Bl when the efficiency brake is activated.
  • the control unit 10 when the control unit 10 selects the efficient brake as the applied brake based on the brake operation information and rear vehicle information, it first controls the brake means 30 to control the brake pressure. Furthermore, the control unit 10 uses the steering means 20 to control the steering angle so that the pair of front wheels 40A and the pair of rear wheels 40B form a "V" shape when viewed from above the vehicle, for example as shown in FIG. 11 above. In other words, the control unit 10 uses the steering means 20 to control the steering angle so that the right wheel 40Ar of the pair of front wheels 40A faces left and the left wheel 40Al faces right. The control unit 10 also uses the steering means 20 to control the steering angle so that the right wheel 40Br of the pair of rear wheels 40B faces left and the left wheel 40Bl faces right.
  • the steering means 20 is used to control the steering angle so that the pair of front wheels 40A and the pair of rear wheels 40B form a "V" shape when viewed from above the vehicle, but as shown in FIG. 12, the steering angle may be controlled so that the pair of front wheels 40A and the pair of rear wheels 40B form an inverted "V" shape when viewed from above the vehicle. That is, the control unit 10 uses the steering means 20 to control the steering angle so that the right wheel 40Ar of the pair of front wheels 40A faces right and the left wheel 40Al faces left. The control unit 10 also uses the steering means 20 to control the steering angle so that the right wheel 40Br of the pair of rear wheels 40B faces right and the left wheel 40Bl faces left.
  • the control unit 10 can adjust the frictional force between the wheels 40 and the ground by adjusting the steering angle of the wheels 40.
  • control unit 10 selects the type of brake to be applied so that a rear-end collision from a vehicle behind can also be avoided.
  • control unit 10 selects whether to apply normal brakes or efficient brakes based on the brake operation information obtained from the first sensor 50 and the rear vehicle information obtained from the second sensor 60.
  • control unit 10 determines that there is no risk of being rear-ended by a vehicle behind even if the efficient brake is applied because a sufficient inter-vehicle distance is secured, the control unit 10 selects the efficient brake.
  • control unit 10 determines that there is a high possibility of being rear-ended by a vehicle behind if the efficient brake is applied because a sufficient inter-vehicle distance is not secured, the control unit 10 selects the normal brake. In this way, in this embodiment, it is possible to reliably prevent rear-end collisions from vehicles behind by selecting the type of brake to be applied according to the situation surrounding the vehicle.
  • the criteria for selecting the type of brake can be set or changed as desired, taking into account the probability of a collision accident occurring.
  • the probability of a collision accident occurring can be derived from the inter-vehicle distance and relative speed based on past collision accident cases, and if the derived probability of a collision accident occurring is less than a threshold value, the efficient brake can be selected, whereas if it exceeds the threshold value, the normal brake can be selected.
  • FIG. 17 is a flowchart showing an example of a processing procedure for a vehicle 1 equipped with a brake system.
  • the control unit 10 determines whether or not brake operation information has been acquired from the first sensor 50 while the vehicle 1 is traveling (step S101).
  • step S101 NO
  • step S101 YES
  • step S102 rear vehicle information from the second sensor 60
  • the control unit 10 selects the type of brake to be applied based on the brake operation information and rear vehicle information obtained from each sensor (step S103).
  • control unit 10 instructs the brake means 30 to control the brake pressure (step S104).
  • control unit 10 selects the efficient brake, it instructs the brake means 30 to control the brake pressure and instructs the steering means 20 to control the steering angle of the wheels 40 in the manner shown in Figure 11 or Figure 12 (step S105).
  • control unit 10 notifies the driver of the brake operation status (whether the brakes are operating, the type of brakes that are operating, etc.) using the lamps of the notification means 70 (step S106).
  • the control unit 10 continues selecting the type of brake and applying the selected brake until the vehicle 1 stops (step S107: NO).
  • step S107 when the control unit 10 detects that the vehicle 1 has stopped (step S107: YES), it ends the notification of the brake operation status, stops the brake operation (step S108), and ends the process.
  • the brake system according to this embodiment makes it possible to perform optimal brake control according to the circumstances surrounding the vehicle.
  • the type of brake to be applied is selected on the assumption that a vehicle behind is present, but the present invention is not limited to this.
  • the type of brake to be applied may be selected depending on the road surface condition on which the vehicle is traveling.
  • the second sensor 60 in the modified example detects road surface-related information relating to the road surface condition.
  • the second sensor 60 is composed of, for example, a surface temperature sensor, a temperature and humidity sensor, an image camera, etc.
  • road surface-related information indicating the road surface condition for example, unevenness of the road surface, dryness, semi-humidity, wetness, slush, snow accumulation, packed snow, freezing, humidity, air temperature, road surface temperature, etc.
  • the control unit 10 selects whether to apply normal brakes or efficient brakes based on the brake operation information obtained from the first sensor 50 and the road surface-related information obtained from the second sensor 60.
  • control unit 10 selects efficient braking to shorten the braking distance as much as possible, but when the road surface is dry, it selects normal braking. This makes it possible to perform safe and optimal brake control according to the road surface conditions, etc.
  • the second sensor 60 may detect the tire wear state (such as the amount of wear) in addition to the road surface condition.
  • the control unit 10 can select the optimal brake by taking into account not only the road surface condition but also the tire wear state.
  • the optimal brake may be selected by using various information related to the surrounding environment of the vehicle detected by the second sensor 60.
  • control unit 10 may use the steering means 20 to set the steering angle so that the front wheels 40A form a "V" shape and the rear wheels 40B form an inverted “V” shape.
  • control unit 10 may use the steering means 20 to set the steering angle so that the front wheels 40A form an inverted "V” shape and the rear wheels 40B form an inverted "V” shape.
  • the control unit 10 may control the steering means 20 so that the angle between the traveling direction of the vehicle 1 and the steering angle of the right wheel 40Ar or 40Br of the pair of wheels 40A or 40B is approximately the same as the angle between the traveling direction of the vehicle 1 and the steering angle of the left wheel 40Al or 40Bl.
  • the steering means 20 may be controlled so that the angle formed by the traveling direction of the vehicle 1 and the rotation plane of the wheel 40Ar or 40Br and the angle formed by the traveling direction of the vehicle 1 and the rotation plane of the wheel 40Al or 40Bl are approximately the same. This makes the frictional forces acting on the left and right wheels approximately the same, which is expected to stabilize steering during deceleration.
  • the control unit 10 may also set the steering angle of each wheel 40 according to the speed and/or acceleration of the vehicle 1. For example, the control unit 10 obtains the speed and/or acceleration based on information detected by the second sensor 60. Then, the control unit 10 derives a steering angle suitable for the speed and/or acceleration of the vehicle 1, and controls the steering means 20 to achieve the derived steering angle. At this time, the steering angle may be derived using pattern data of the speed and/or acceleration and the steering angle of each wheel 40 stored in the memory 14. This makes it possible to efficiently decelerate according to the speed and/or acceleration of the vehicle 1.
  • the control unit 10 may also control the steering means 20 so that the steering angle of each of the pair of wheels 40A or 40B relative to the traveling direction of the vehicle 1 increases as the speed of the vehicle 1 decreases.
  • the present invention aims to provide an efficient brake system that can appropriately decelerate a vehicle when it changes direction.
  • the efficient brake system comprises at least a pair of wheels positioned approximately symmetrically on the left and right sides of the vehicle, a steering means capable of individually controlling the steering angle of each of the pair of wheels, a sensor that detects changes in the vehicle's traveling direction, and a control unit that controls the steering means so that the steering angle of each wheel becomes an angle that is set according to the change in the traveling direction.
  • the present invention provides an efficient brake system that can appropriately decelerate a vehicle when it changes direction.
  • FIG. 18 is a diagram showing an example of the system configuration of a vehicle 1 equipped with the efficient brake system according to this embodiment.
  • the vehicle 1 shown in FIG. 1 includes a control unit 10, a steering means 20, wheels 30, a first sensor 40, a second sensor 50, and a braking means 60.
  • the vehicle 1 may also include various configurations that constitute a conventional vehicle.
  • the vehicle 1 may also have an automatic driving function that assists in automatic driving of the vehicle 1, and each driving mode may be freely selected.
  • the control unit 10 can cause the steering means 20 to control the steering angle of the wheels 30 using various information acquired from inside and outside the vehicle 1.
  • the steering angle is the angle of the wheels 30 with respect to the traveling direction of the vehicle 1.
  • the control unit 10 instructs the steering means 20 on the steering angle of the wheels 30 based on information detected by the first sensor 40 and/or the second sensor 50.
  • the control unit 10 can acquire information on the deceleration of the vehicle 1 due to braking from the first sensor 40.
  • the control unit 10 can also acquire information on the speed, acceleration, angular velocity, or angular acceleration of the vehicle 1 from the second sensor 50.
  • position information of the vehicle 1 may be acquired from the second sensor 50.
  • the steering means 20 can individually control the steering angle of each wheel 30 based on instructions received from the control unit 10.
  • the steering means 20 includes steering means 20Ar, 20Al, 20Br, and 20Bl corresponding to each of the four wheels 30Ar, 30Al, 30Br, and 30Bl of the vehicle 1, and each steering means 20Ar, 20Al, 20Br, and 20Bl may be configured to individually set and control the steering angle of each wheel 30Ar, 30Al, 30Br, and 30Bl.
  • the vehicle 1 has at least a pair of wheels 30, which are arranged approximately symmetrically on the left and right sides of the vehicle 1.
  • the vehicle 1 is configured with four wheels, and has a pair of left and right front wheels 30A (30Ar and 30Al) and a pair of left and right rear wheels 30B (30Br and 30Bl).
  • Each wheel 30 may be equipped with a hub motor, which is an electric motor mounted inside the hub. Note that even if the motor itself is not mounted inside the hub, a motor (in-wheel motor (IWM)) in which the driving force of the electric motor is transmitted directly to the wheel may be installed.
  • IWM in-wheel motor
  • the first sensor 40 detects information related to braking by the braking means 60. For example, the first sensor 40 detects that the braking means 60 has applied the brakes to the wheels 30 due to the driver's brake operation or automatic driving control, and transmits the detected information to the control unit 10.
  • the second sensor 50 may be any of various sensors mounted on the vehicle 1.
  • the second sensor 50 may be a speed sensor, an acceleration sensor, a gyro sensor, or a wheel speed sensor that measures the number of rotations of the wheels 30, a steering angle sensor that measures the angle of the steering wheel, a yaw rate sensor that detects the speed at which the vehicle 1 turns, a GPS sensor, or the like.
  • the second sensor 50 transmits the detected information to the control unit 10.
  • the braking means 60 can brake each of the wheels 30 based on instructions received from the control unit 10.
  • the braking means 60 may be configured to include, for example, wheel cylinders (not shown) provided on each of the wheels 30Ar, 30Al, 30Br, and 30Bl, and brake actuators (not shown) connected to the wheel cylinders.
  • the brake actuator controls the brake pressure generated by a hydraulic pump driven by a motor to an arbitrary magnitude and supplies it to the wheel cylinders to brake each of the wheels 30Ar, 30Al, 30Br, and 30Bl.
  • the control unit 10 detects that the driver has stepped on the brake pedal, it may issue an instruction to the braking means 60 to brake the wheels 30, or may issue an instruction to the braking means 60 to brake the wheels 30 by automatic driving control.
  • the configuration of the control unit 10 according to this embodiment is the same as that shown in FIG. 2, and therefore is not shown in the figure.
  • the control unit 10 includes, for example, a processor 12 and a memory 14 .
  • the processor 12 controls the operation of the entire vehicle 1.
  • the processor 12 may be, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), an FPGA (Field Programmable Gate Array), or a microcontroller.
  • the processor 12 functions as a control unit that controls the operation of the entire vehicle 1 by executing programs stored in the memory 14.
  • the memory 14 stores various programs and data executed by the processor 12.
  • the memory 14 may include, for example, volatile storage devices such as a ROM (Read Only Memory) or a RAM (Random Access Memory), and non-volatile storage devices such as a HDD (Hard Disk Drive) or a flash memory.
  • the various data include, for example, pattern data of the steering angles of each of the four wheels 30Ar, 30Al, 30Br, and 30Bl when using the efficiency brake, and condition data for activating the efficiency brake (for example, a vehicle speed threshold value, etc.).
  • FIG. 19 is a flowchart showing an example of a processing procedure for a vehicle 1 equipped with an efficient brake system.
  • the control unit 10 acquires information regarding the traveling direction of the vehicle 1 while the vehicle 1 is traveling (step S101). Furthermore, the control unit 10 determines whether the traveling direction of the vehicle 1 has changed based on the acquired information (step S102). The control unit 10 can determine whether the traveling direction has changed based on, for example, a change in angular velocity detected by a gyro sensor. The control unit 10 may also acquire position information of the vehicle 1 from a GPS sensor and acquire information on the change in the traveling direction from information on the road on which the vehicle 1 is traveling. Note that, in this embodiment, an example is shown in which the efficiency brake is activated when a change in the traveling direction of the vehicle 1 is detected, but this is not intended to be limiting. For example, the efficiency brake may be activated when a change in the traveling direction of the vehicle 1 is detected and the speed of the vehicle exceeds a set reference speed (for example, xx km/h).
  • a set reference speed for example, xx km/h
  • step S102 If the control unit 10 does not detect a change in the traveling direction of the vehicle 1 (step S102: NO), the control unit 10 proceeds to step S103, performs normal driving control, and returns to step S101. On the other hand, if the control unit 10 detects a change in the traveling direction of the vehicle 1 (step S102: YES), it outputs an instruction to the steering means 20 to control the steering angle of the wheels 30 (step S104) and activates the efficiency brake.
  • FIGS. 20 and 21 are diagrams for explaining the control of the steering angle of the wheels 30 by the steering means 20.
  • the vehicle 1 can individually control the steering angles of all four wheels 30Ar, 30Al, 30Br, and 30Bl by the corresponding steering means 20Ar, 20Al, 20Br, and 20Bl.
  • the braking means 20 decelerates by braking the rotation of the wheels 30, but the steering means 20 decelerates by changing the steering angle of each of the four wheels to cancel out the moment in the traveling direction.
  • the control unit 10 uses the steering means 20 to control the steering angle so that the front wheels 30Ar, 30Al and the rear wheels 30Br, 30Bl form a "V" shape when viewed from above the vehicle 1. That is, the control unit 10 uses the steering means 20 to control the steering angle so that the right wheel 30Ar faces left and the left wheel 30Al faces right. The control unit 10 also uses the steering means 20 to control the steering angle so that the right wheel 30Br faces left and the left wheel 30Bl faces right. In this way, by using the steering means 20 to turn the pair of left and right wheels 30A, 30B inward to narrow the traveling direction side, the frictional force between the contact surface of the wheels 30 and the ground is increased, achieving deceleration. Conversely, the control unit 10 may use the steering means 20 to control the steering angle so that the front wheels 30Ar, 30Al and the rear wheels 30Br, 30Bl form an inverted V shape when viewed from above the vehicle 1 (see FIG. 21).
  • the control unit 10 also controls the steering means 20 so that the steering angle of the wheels 30 is an angle that corresponds to the change in the traveling direction of the vehicle 1.
  • the greater the steering angle ⁇ of the wheels 30 relative to the traveling direction i.e., the narrower the traveling direction side in the case of a "V" shape, and the wider the traveling direction side in the case of an inverted "V" shape
  • the steering angle ⁇ of the wheels may be controlled according to the magnitude of the curve to change the degree of deceleration of the vehicle 1. For example, as shown in FIG.
  • the steering angle ⁇ of the wheels 30 may be set large to increase the degree of deceleration, while as shown in FIG. 24, when the curvature C of the curve is small, the steering angle ⁇ of the wheels 30 may be set small to reduce the degree of deceleration.
  • the present invention is not limited to such settings.
  • the control unit 10 controls the steering angle ⁇ of the wheels 30 relative to the traveling direction to be larger as the speed of the vehicle 1 is slower.
  • the steering angle ⁇ of the wheels 30 relative to the traveling direction may be controlled to be larger as the speed of the vehicle 1 is faster.
  • the relationship between the speed of the vehicle 1 and the steering angle ⁇ of the wheels 30 is not limited to this, and can be set so as to enable efficient and stable braking of the vehicle 1.
  • the control unit 10 may derive an appropriate steering angle using pattern data stored in the memory 14 that indicates the relationship between the amount of change in the traveling direction of the vehicle 1, the speed of the vehicle 1, and the steering angle of the wheels 30.
  • FIG. 25 is a diagram showing an example of pattern data of the steering angle of the wheels 30 that is appropriate for efficiently stopping the vehicle 1.
  • the control unit 10 uses the first pattern data D1 to set the steering angle ⁇ 2 of the wheels 30Ar, 30Br located on the outside (i.e., the right side) to be greater than the steering angle ⁇ 1 of the wheels 30Al, 30Bl located on the inside (i.e., the left side).
  • the control unit 10 uses the second pattern data D2 to set the steering angle ⁇ 1 of the inner wheels 30Ar, 30Br to remain unchanged (“KEEP"), while changing the steering angle ⁇ 2 of the outer wheels 30Al, 30Bl ("CHANGE").
  • the control unit 10 may control the steering means 20 so that the steering angle of the outer wheels 30Ar, 30Br and the steering angle of the inner wheels 30Al, 30Bl are substantially the same.
  • the steering means 20 may be controlled so that the angle formed by the traveling direction of the vehicle 1 and the rotational plane of the wheel 30Ar or 30Br and the angle formed by the traveling direction of the vehicle 1 and the rotational plane of the wheel 30Al or 30Bl are substantially the same. This makes the frictional forces acting on the left and right wheels substantially the same, and is expected to stabilize steering during deceleration.
  • the control unit 10 determines whether the information regarding the vehicle 1 stopping or deceleration has been released (step S105). If the information regarding the vehicle 1 stopping or deceleration has not been released (step S105: NO), the control unit 10 returns to step S104 and controls the steering angle of the wheels 30. On the other hand, if the vehicle 1 has stopped or the information regarding deceleration has been released (step S105: YES), the control unit 10 stops the operation of the efficiency brake by controlling the steering means 20 so that the steering angle of the wheels 30 is in the same direction as the traveling direction (step S106), and ends the process.
  • control unit 10 may set the steering angle of each wheel 30 according to the speed and/or acceleration of the vehicle 1. For example, the control unit 10 obtains the speed and/or acceleration based on the information detected by the second sensor 50. Then, the control unit 10 derives a steering angle suitable for the speed and/or acceleration of the vehicle 1, and controls the steering means 20 to achieve the derived steering angle. At this time, the steering angle may be derived using pattern data of the speed and/or acceleration and the steering angle of each wheel 30 stored in the memory 14. This makes it possible to efficiently decelerate according to the speed and/or acceleration of the vehicle 1.
  • control unit 10 when the control unit 10 detects a change in the traveling direction, for example when the vehicle 1 approaches a curve, it outputs an instruction to the steering means 20 to change the steering angle of the wheels 30 to an angle corresponding to the change in the traveling direction of the vehicle 1, and controls the vehicle to decelerate by canceling the moment in the traveling direction.
  • This makes it possible to efficiently decelerate the vehicle 1 in accordance with the change in the traveling direction, while avoiding slipping due to sudden deceleration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Regulating Braking Force (AREA)

Abstract

効率ブレーキシステムは、車両の左右に略対称に位置する少なくとも一対の車輪と、一対の車輪それぞれの操舵角を個別に制御することのできる操舵手段と、車両の減速に関する情報を取得又は生成する制御部であって、情報を取得又は生成したとき、車両の進行方向に対して、一対の車輪のうち右側の車輪を左向きかつ左側の車輪を右向き、又は、右側の車輪を右向きかつ左側の車輪を左向きとなるように、操舵手段を制御する、制御部と、を備える。

Description

効率ブレーキシステム 関連出願の相互参照
 本出願は、2022年10月31日に出願された日本特許出願番号2022-174994号、2022年11月14日に出願された日本特許出願番号2022-181942号、2022年11月21日に出願された日本特許出願番号2022-185687号、2022年12月14日に出願された日本特許出願番号2022-199548号及び2023年2月9日に出願された日本特許出願番号2023-018712号に基づくもので、ここにその記載内容を援用する。
 本発明は、効率ブレーキシステムに関する。
 従来、2輪駆動車や4輪駆動車では、駆動輪のタイヤの回転を減速して車両を停車、減速させる。例えば、特許文献1には、回生ブレーキ力の強さを制御することで、ブレーキ力を変更させるブレーキ装置について記載されている。
 [先行技術文献]
 [特許文献]
 [特許文献1]特開2020-145874号公報
 2輪駆動車において、前輪駆動車における後輪、後輪駆動車における前輪は、単に駆動輪についてくるのみであり、制動の対象ではない。そのため、タイヤの回転速度が落ちても、タイヤは進行方向へ進む力が働いており、減速のパワーが弱い。
 そこで、本発明は、車両の減速をより早く、より短い距離で行うことのできるブレーキを提供することを目的とする。
 本発明の一態様に係る効率ブレーキシステムは、車両の左右に略対称に位置する少なくとも一対の車輪と、一対の車輪それぞれの操舵角を個別に制御することのできる操舵手段と、車両の減速に関する情報を取得又は生成する制御部であって、情報を取得又は生成したとき、車両の進行方向に対して、一対の車輪のうち右側の車輪を左向きかつ左側の車輪を右向き、又は、右側の車輪を右向きかつ左側の車輪を左向きとなるように、操舵手段を制御する、制御部と、を備える。
 本発明の一態様によれば、車両の減速をより早く、より短い距離で行うことができる。
第1実施形態に係る効率ブレーキシステムを搭載する車両1のシステム構成の一例を示す図である。 本実施形態に係る制御部10の構成の一例を示す図である。 本実施形態における効率ブレーキシステムの一例を示す図である。 本実施形態における効率ブレーキシステムの一例を示す図である。 効率ブレーキシステムを搭載した車両1の処理手順の一例を示すフローチャートである。 本実施形態の効率ブレーキと従来のブレーキとを比較した図である。 第2実施形態に係る効率ブレーキシステムを搭載する車両1のシステム構成の一例を示す図である。 本実施形態に係る効率ブレーキシステムを搭載した車両1の処理手順の一例を示すフローチャートである。 本実施形態における衝突事故が発生した際の加速度データを例示する図である。 第3実施形態に係る効率ブレーキシステムを搭載する車両のシステム構成の一例を示す図である。 効率ブレーキの作動態様の一例を示す図である。 効率ブレーキの作動態様の一例を示す図である。 効率ブレーキの作動態様の一例を示す図である。 効率ブレーキシステムを搭載した車両の処理手順の一例を示すフローチャートである。 第4実施形態に係るブレーキシステムを搭載する車両のシステム構成の一例を示す図である。 ブレーキの種類の選択動作の一例を示す説明図である。 ブレーキシステムを搭載した車両の処理手順の一例を示すフローチャートである。 第5実施形態に係る効率ブレーキシステムを搭載する車両1のシステム構成の一例を示す図である。 本実施形態に係る効率ブレーキシステムを搭載した車両1の処理手順の一例を示すフローチャートである。 本実施形態における操舵手段20による車輪30の操舵角の制御を説明する図である。 本実施形態における操舵手段20による車輪30の操舵角の制御を説明する図である。 本実施形態における車両1の速度と車輪30の操舵角との関係を例示する図である。 本実施形態におけるカーブ走行中の車輪30の操舵角の制御を説明する図である。 本実施形態におけるカーブ走行中の車輪30の操舵角の制御を説明する図である。 本実施形態における車輪30の操舵角のパターンデータの例を示す図である。
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。
(1)第1実施形態
 図1は、本実施形態に係る効率ブレーキシステムを搭載する車両1のシステム構成の一例を示す図である。図1に示す車両1は、制御部10と、操舵手段20と、車輪30と、第1センサ40と、第2センサ50とを備える。また、図示省略するが、従来の車両を構成する種々の構成を備えてもよい。車両1は、運転者が車両1を運転する手動運転機能の他に、車両1の自動運転を支援する自動運転機能を有し、各モードを任意に選択できることとしてもよい。
 制御部10は、車両1の内外から取得した種々の情報を用いて、操舵手段20に車輪30の操舵角を制御させることができる。例えば、制御部10は、第1センサ40及び/又は第2センサ50が検知した情報に基づいて、操舵手段20に対して、車輪30の操舵角を指示する。このとき、制御部10は、第1センサ40から車両1の減速に関する情報を取得してよい。また、制御部10は、第1センサ40及び/又は第2センサ50から取得した情報に基づいて減速に関する情報を生成してよい。
 操舵手段20は、制御部10から受け取った指示に基づいて、車輪30それぞれの操舵角を個別に制御することができる。本実施形態において、操舵手段20としては、車両1が備える4つの車輪30Ar、30Al、30Br、30Blそれぞれに対応する操舵手段20Ar、20Al、20Br、20Blを備え、各操舵手段20Ar、20Al、20Br、20Blが各車輪30Ar、30Al、30Br、30Blの操舵角を個別に設定し、制御できるように構成されてよい。
 車輪30として、車両1は、少なくとも一対の車輪を備え、車両1の左右に略対称に配置される。本実施形態において、車両1は4輪で構成され、左右一対の前輪30A(30Arと30Al)と、左右一対の後輪30B(30Brと30Bl)とを有する。
 車輪30にはハブモーター(HUB motor)が搭載されてもよい。ハブモーターは、インホイールモーター(IWM:In Wheel Motor)と呼ばれることもある。4輪全てにハブモーターが搭載されることで、車輪30それぞれの動きを個別に制御することができるようになるため、車輪の角度を変えて減速する効率ブレーキを実現させる上で好ましい。
 第1センサ40は、ブレーキに関する情報を検知する。例えば、第1センサ40は、運転者がブレーキペダルを踏んだことを検知し、検知した情報を制御部10に送信する。
 第2センサ50は、車両1に搭載される種々のセンサであってよい。例えば、第2センサ50は、速度センサ又は加速度センサであってよい。第2センサ50は検知した情報を制御部10に送信する。
 図2は、本実施形態に係る制御部10の構成の一例を示す図である。制御部10は、例えば、プロセッサ12とメモリ14とを含む。
 プロセッサ12は、車両1全体の動作を制御する。プロセッサ12として、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、FPGA(Field Programmable Gate Array)又はマイコン(マイクロコントローラ)等を用いることができる。プロセッサ12は、メモリ14に記憶されたプログラムを実行することで、車両1全体の動作を制御する制御部として機能する。
 メモリ14は、プロセッサ12により実行される各種プログラムや各種データを記憶する。メモリ14には、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)等の揮発性記憶装置、及びHDD(Hard Disk Drive)やフラッシュメモリ等の不揮発性記憶装置が含まれ得る。
 各種データとして、例えば、効率ブレーキを用いる際の、4つの車輪30Ar、30Al、30Br、30Blそれぞれの操舵角度のパターンデータを含む。
 図3及び図4は、本実施形態における効率ブレーキシステムの一例を示す図である。効率ブレーキは、少なくとも左右一対の車輪のそれぞれを個別に操舵可能な車両1において、左右一対の車輪の操舵角を制御することにより減速する方法である。例えば、4輪の全てで操舵可能な車両1において、4輪の操舵角をそれぞれ個別に制御して減速してよい。
 車輪30にハブモーターが搭載されると、4輪全ての操舵角をそれぞれ自由自在に制御することができる。通常車両を減速する際はブレーキで車輪の回転速度を摩擦によって弱めるが、本実施形態においては、4輪全ての操舵角を変更できることを利用し、進行方向に向かうモーメントを打ち消すような車輪の操舵角制御を行う。
 例えば、図3に示すとおり、4輪の全てで操舵可能な車両1において、制御部10は操舵手段20を用いて、一対の前輪30A及び一対の後輪30Bを、車両上面から見て、それぞれ「ハ」の字になるよう操舵角を制御する。すなわち、制御部10は操舵手段20を用いて、一対の前輪30Aのうち、右側の車輪30Arを左向きかつ左側の車輪30Alを右向きとなるよう操舵角を制御する。また、制御部10は操舵手段20を用いて、一対の後輪30Bのうち、右側の車輪30Brを左向きかつ左側の車輪30Blを右向きとなるよう操舵角を制御する。
 また、図4に示すとおり、4輪の全てで操舵可能な車両1において、制御部10は操舵手段20を用いて、車両上面から見て、一対の前輪30A及び一対の後輪30Bを、車両上面から見て、それぞれ逆「ハ」の字になるよう操舵角を制御する。すなわち、制御部10は操舵手段20を用いて、一対の前輪30Aのうち、右側の車輪30Arを右向きかつ左側の車輪30Alを左向きとなるよう操舵角を制御する。また、制御部10は操舵手段20を用いて、一対の後輪30Bのうち、右側の車輪30Brを右向きかつ左側の車輪30Blを左向きとなるよう操舵角を制御する。
 このように、本実施形態の効率ブレーキシステムにおいては、左右一対の車輪30A,30Bを内側に向けて進行方向側を狭くしたり、外側に向けて進行方向側を広くしたりすることで、車輪30と地面の接触面の摩擦力を増大させ、減速を実現させる。このとき、車輪30の操舵角を調整することで、車輪30と地面の間の摩擦係数を調整し、摩擦力を調整することが可能となる。
 また、制御部10は操舵手段20を用いて、前輪30Aを「ハ」の字、後輪30Bを逆「ハ」の字となるように操舵角を設定してもよい。また、制御部10は操舵手段20を用いて、前輪30Aを逆「ハ」の字、後輪30Bを「ハ」の字となるように操舵角を設定してもよい。
 制御部10は、一対の車輪30A又は30Bのうち、車両1の進行方向と右側の車輪30Ar又は30Brの操舵角との間の角度と、車両1の進行方向と左側の車輪30Al又は30Blの操舵角との間の角度とが、略同一となるように操舵手段20を制御してよい。すなわち、車両1の進行方向と車輪30Ar又は30Brの回転面とによって形成される角度と、車両1の進行方向と車輪30Al又は30Blの回転面とによって形成される角度とが、略同一となるように操舵手段20を制御してよい。これにより、左右の車輪に働く摩擦力が略同一となり、減速時の操舵が安定することが期待できる。
 また、制御部10は、車両1の速度及び/又は加速度に応じて、車輪30それぞれの操舵角を設定してもよい。例えば、制御部10は、第2センサ50が検知した情報に基づいて速度及び/又は加速度を取得する。そして、車両1の速度及び/又は加速度に適した操舵角を導出し、導出された操舵角になるよう操舵手段20を制御する。このとき、メモリ14に記憶された、速度及び/又は加速度と車輪30それぞれの操舵角とのパターンデータを用いて、操舵角を導出してよい。これにより、車両1の速度及び/又は加速度に応じて、効率良く減速することが可能となる。
 制御部10は、車両1の速度が小さいほど、車両1の進行方向に対して一対の車輪30A又は30Bそれぞれの操舵角が大きくなるように操舵手段20を制御してよい。
 また、制御部10は、車両1の速度が所定の閾値よりも大きいとき、減速に関する情報を検知又は生成しても、車輪30それぞれの操舵角を変化させないように操舵手段20を制御してよい、
 このように、車両1が高速に走行しているとき、減速は従来のブレーキ機構を用いるものとし、例えば毎時30kmなど、所定の閾値以下の速度で低速に走行しているときに、効率ブレーキを作動させてもよい。また、低速になればなるほど、進行方向に対する車輪の角度を大きくすることにより、低速時ほど摩擦力が大きく働かせてもよい。これにより、走行の安定性と、効率的な減速とを両立させることができる。
 また、制御部10は、車両1の加速度が所定の閾値よりも大きいとき、車両1の進行方向に対して一対の車輪30A又は30Bそれぞれの操舵角が大きくなるように操舵手段20を制御してよい。これにより、例えば追突などの事故の際に効率ブレーキを作動させて、短い距離で車両1を停止させることで、多重の追突事故が発生するおそれを減らすことが期待できる。
 図5は、効率ブレーキシステムを搭載した車両1の処理手順の一例を示すフローチャートである。
 制御部10は、車両1の走行中に、減速に関する情報を取得又は生成したか判断する(ステップS101)。例えば、制御部10は、第1センサ40から車両1の減速に関する情報を取得したか否か判断してよい。また、制御部10は、第1センサ40及び/又は第2センサ50から取得した情報に基づいて減速に関する情報を生成したか否か判断してよい。
 制御部10は、減速に関する情報を取得又は生成していなければ(ステップS101:No)、そのまま走行を続ける。
 制御部10は、減速に関する情報を取得又は生成していれば(ステップS101:Yes)、効率ブレーキを作動させる。例えば、操舵手段20を用いて、図3または図4に図示したような操舵角になるよう、車輪30それぞれの操舵角を設定、制御する(ステップS102)。
 制御部10は、車両1が停止しておらず、かつ、減速に関する情報が取得されている間又は減速に関する情報が生成されている間は(ステップS103:No)、効率ブレーキを作動させる(S102)。
 制御部10は、減速に関する情報が解除されたとき(すなわち、減速に関する情報が取得されなくなったとき、若しくは、減速に関する情報が生成されなくなったとき)、又は、車両1が停止したとき(ステップS103:Yes)、効率ブレーキの作動を解除し、車輪30の操舵角を元に戻して、進行方向と同じ方向にするよう操舵手段20を制御する(ステップS104)。
 図6は、本実施形態の効率ブレーキと従来のブレーキとを比較した図である。図6(A)は、従来の2輪駆動車(前輪駆動車)のブレーキ機構を示す図である。2輪駆動車(前輪駆動車)は、駆動輪である2輪(前輪)のみを減速させる機構である。
 図6(B)は、従来の4輪駆動車のブレーキ機構を示す図である。4輪駆動車は、駆動輪である全輪(4輪)を減速させる機構である。例えば、ハブモーターは4輪全てにブレーキが可能である。4輪駆動車は、2輪駆動車の2倍の減速パワーを得られるため、2輪駆動車と比べると、およそ2分の1の距離で車両1を停止させることができる。
 図6(C)は、本実施形態の効率ブレーキを示す図である。効率ブレーキは、通常のブレーキ機構に加え、更にタイヤの角度を「ハ」の字にして減速させる。そのため、2輪駆動車の4倍の減速パワーを得られるため、2輪駆動車と比べると、およそ4分の1の距離で車両1を停止させることがきる。
 以上説明したとおり、車輪の角度を変えて減速する効率ブレーキを用いることで、車両の減速をより早く、より短い距離で行うことができる。
(2)第2実施形態
 車両を特に短い距離で停止させることが求められるのは、衝突や追突を避ける場合や誤った操作を行ってしまった場合など、事故を防止する必要がある時である。
 そこで本発明は、事故の発生を防止するブレーキシステムを提供することを目的とする。
 本発明の一態様に係る効率ブレーキシステムは、車両の左右に略対称に位置する少なくとも一対の車輪と、前記一対の車輪それぞれの操舵角を個別に制御することのできる操舵手段と、前記車両の加速度を検知するセンサと、前記車両の加速度が第1の条件を満たした場合に、前記操舵手段を制御して、前記車両の進行方向に対する各々の車輪の操舵角を変化させる制御部を備えたものである。
 本発明によれば、事故の発生を防止することが可能なブレーキシステムを提供することができる。
 図7は、本実施形態に係る効率ブレーキシステムを搭載する車両1のシステム構成の一例を示す図である。図7に示す車両1は、制御部10と、操舵手段20と、車輪30と、第1センサ40と、第2センサ50と、ブレーキ手段60を備える。また、図示を省略するが、従来の車両を構成する種々の構成を備えてもよい。車両1は、運転者が車両1を運転する手動運転機能の他に、車両1の自動運転を支援する自動運転機能を有し、各運転モードを任意に選択できるようにしてもよい。
 制御部10は、車両1の内外から取得した種々の情報を用いて、操舵手段20に車輪30の操舵角を制御させることができる。ここで操舵角とは、車両1の進行方向に対する車輪30の角度である。例えば、制御部10は、第1センサ40及び/又は第2センサ50が検知した情報に基づいて、操舵手段20に対して、車輪30の操舵角を指示する。このとき、制御部10は、第1センサ40からブレーキによる車両1の減速に関する情報を取得することができる。また、制御部10は、第2センサ50から車両1の速度または加速度に関する情報を取得することができる。
 操舵手段20は、制御部10から受け取った指示に基づいて、車輪30それぞれの操舵角を個別に制御することができる。本実施形態において、操舵手段20としては、車両1が備える4つの車輪30Ar、30Al、30Br、30Blそれぞれに対応する操舵手段20Ar、20Al、20Br、20Blを備え、各操舵手段20Ar、20Al、20Br、20Blが各車輪30Ar、30Al、30Br、30Blの操舵角を個別に設定し、制御できるように構成されてよい。
 車両1は、少なくとも一対の車輪30を備え、車両1の左右に略対称に配置される。本実施形態において、車両1は4輪で構成され、左右一対の前輪30A(30Arと30Al)と、左右一対の後輪30B(30Brと30Bl)とを有する。
 各車輪30にはハブの内部に実装される電気モーターであるハブモーター(HUB motor)が搭載されてもよい。なお、モーター自体がハブの内部に実装されていなくても、電気モーターの駆動力が直接ホイールへ伝わるモーター(インホイールモーター(IWM:In Wheel Motor))が搭載されてもよい。4輪全てにハブモーターが搭載されることで、車輪30それぞれの動きを個別に制御することができるようになるため、車輪の角度を変えて減速する効率ブレーキを実現させる上で好ましい。
 第1センサ40は、ブレーキ手段60によるブレーキに関する情報を検知する。例えば、第1センサ40は、運転者によるブレーキ操作や自動運転制御により、ブレーキ手段60による車輪30の制動が発動したことを検知し、検知した情報を制御部10に送信する。
 第2センサ50は、車両1に搭載される種々のセンサであってよい。例えば、第2センサ50は、速度センサ又は加速度センサであってよい。第2センサ50は検知した情報を制御部10に送信する。
 ブレーキ手段60は、制御部10から受け取った指示に基づいて、車輪30それぞれを制動することができる。ブレーキ手段60は、例えば各車輪30Ar、30Al、30Br、30Blにそれぞれ設けられたホイールシリンダ(図示略)や、ホイールシリンダに接続されたブレーキアクチュエータ(図示略)などを備える構成であってもよい。ブレーキアクチュエータは、モーターで駆動される液圧ポンプ等で発生したブレーキ圧を、任意の大きさに制御してホイールシリンダに供給することで、各車輪30Ar、30Al、30Br、30Blを制動する。制御部10は、運転者がブレーキペダルを踏んだことを検知した場合に、ブレーキ手段60に対し車輪30の制動を行うように指示を出してもよいし、自動運転制御により、ブレーキ手段60に対して車輪30の制動を行うように指示を出してもよい。
 本実施形態に係る制御部10の構成は、前掲図2と同様であるため、図示を省略する。
 制御部10は、例えば、プロセッサ12とメモリ14とを含む。
 プロセッサ12は、車両1全体の動作を制御する。プロセッサ12として、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、FPGA(Field Programmable Gate Array)又はマイコン(マイクロコントローラ)等を用いることができる。プロセッサ12は、メモリ14に記憶されたプログラムを実行することで、車両1全体の動作を制御する制御部として機能する。
 メモリ14は、プロセッサ12により実行される各種プログラムや各種データを記憶する。メモリ14には、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)等の揮発性記憶装置、及びHDD(Hard Disk Drive)やフラッシュメモリ等の不揮発性記憶装置が含まれ得る。各種データは、例えば、効率ブレーキを用いる際の、4つの車輪30Ar、30Al、30Br、30Blそれぞれの操舵角度のパターンデータや、効率ブレーキを作動させる条件データ(例えば、車両速度の閾値等)を含む。
 また、メモリ14には、急加速、急ブレーキ、急ハンドルなど、事故が発生した場合に第2センサ50を介して取得される車両1の加速度のデータに含まれ得る特徴的な信号(パルス信号等)の情報が記憶されている。
 図8は、効率ブレーキシステムを搭載した車両1の処理手順の一例を示すフローチャートである。
 制御部10は、車両1の走行中、第2センサ50から車両1の速度や加速度の変化に関する情報を取得する(ステップS101)。制御部10は、加速度のデータに、急加速や急ブレーキ、急ハンドルなどの事故の兆候を示す信号が含まれるか否か(第1の条件を満たすか否か)を判定する(ステップS102)。例えば、制御部10は、メモリ14に記憶されている事故の兆候を示す加速度データの特徴と比較することにより、判定を行う。また、制御部10は、車両1の加速度の絶対値が所定の閾値を超えたか否かを判断することにより判定を行ってもよい。また、事故の兆候を示す加速度データの特徴を学習した機械学習モデルを用いて判定を行うようにしてもよい。
 加速度データに事故の兆候を示す信号が含まれると判定された場合には(ステップS102:YES)、制御部10は、操舵手段20に指示を出力して車輪30の操舵角の制御を実施する(ステップS103)。
 操舵手段20による車輪30の操舵角の制御を前掲図3及び前掲図4を使って説明する。図3,4に示す例では、車両1は4つの車輪30Ar、30Al、30Br、30Bl全ての操舵角を、それぞれに対応する操舵手段20Ar、20Al、20Br、20Blによって個別に制御することができる。ブレーキ手段20による減速は、車輪30の回転を制動することで行うが、操舵手段20は、4輪それぞれの操舵角を変化させることで、進行方向に向かうモーメントを打ち消して減速する。
 例えば、図3に示すように、制御部10は操舵手段20を用いて、前輪30Ar、30Al及び後輪30Br、30Blが、車両1の上面から見て、それぞれ「ハ」の字になるように操舵角を制御するようにしてよい。すなわち、制御部10は操舵手段20を用いて、右側の車輪30Arが左向きかつ左側の車輪30Alが右向きとなるように操舵角を制御する。また、制御部10は操舵手段20を用いて、右側の車輪30Brが左向きかつ左側の車輪30Blが右向きとなるよう操舵角を制御する。
 また、図4に示すように、制御部10は操舵手段20を用いて、前輪30Ar、30Al及び後輪30Br、30Blが、車両1の上面から見て、それぞれ逆「ハ」の字になるよう操舵角を制御するようにしてもよい。すなわち、制御部10は操舵手段20を用いて、右側の車輪30Arが右向きかつ左側の車輪30Alが左向きとなるよう操舵角を制御する。また、制御部10は操舵手段20を用いて、右側の車輪30Brが右向きかつ左側の車輪30Blが左向きとなるように操舵角を制御する。
 このように、操舵手段20を用いて左右一対の車輪30A,30Bを内側に向けて進行方向側を狭くしたり、外側に向けて進行方向側を広くしたりすることで、車輪30と地面の接触面の摩擦力を増大させ、減速を実現させる。なお、前輪30Ar、30Alを「ハ」の字、後輪30Br、30Blを逆「ハ」の字となるように操舵角を設定してもよいし、前輪30Ar、30Alを逆「ハ」の字、後輪30Br、30Blを「ハ」の字となるように操舵角を設定してもよい。
 制御部10は、車輪30の操舵角が車両1の加速度に応じた角度となるように操舵手段20を制御してもよい。具体的には、進行方向に対する車輪30の角度が大きくなるほど(すなわち、「ハ」の字の場合は進行方向側が狭くなるほど、逆「ハ」の字の場合は進行方向側が広くなるほど)地面に対する摩擦力は増大し、減速の効果は高くなる。
 制御部10は、車両1の加速度が大きいほど進行方向に対する車輪30の角度が大きくなるように制御することにより、減速までの時間を短縮させることができる。これにより、例えば追突などの事故の際に、短い距離で車両1を停止させることで、多重の追突事故の発生を防止することが期待できる。なお、制御部10は、メモリ14に記憶された、事故の兆候を示す加速度データを用いて操舵角を導出するようにしてもよい。このように、加速度データで事故の兆候を検知して対応することで、事故の発生を防止・抑止することができる。さらに、事故発生時(加速度データで事故の発生が検知された時)には、即座に車両1を停止させることで、事故の拡大や連鎖を防止・抑止することができる。
 また、制御部10は、右側の車輪30Ar、30Brの操舵角と、左側の車輪30Al、30Blの操舵角が、略同一となるように操舵手段20を制御してよい。すなわち、車両1の進行方向と車輪30Ar又は30Brの回転面とによって形成される角度と、車両1の進行方向と車輪30Al又は30Blの回転面とによって形成される角度とが、略同一となるように操舵手段20を制御してよい。これにより、左右の車輪に働く摩擦力が略同一となり、減速時の操舵が安定することが期待できる。
 また、制御部10は、加速度データの特徴からスピンが発生したと判断された場合には、各車輪30の向きがスピンの回転方向に対して所定の角度だけ内側または外側を向くように設定してもよい。すなわち、各車輪30の向きを、車両の重心に対して直交する方向±α(所定角度)だけ傾けるように設定することで、回転に対する摩擦力を生じさせてスピンを抑止させるようにしてもよい。
 図9は、車両の走行中に衝突事故が発生した際の加速度の波形(G)とスピン波形(S)を例示する図である。なお、同図は、株式会社データ・テック基礎理論研究所の事故解析レポート(http://re-www.datatec.jp/product/report/kaiseki_2.html)から引用したものである。図中(A)で示す区間の加速度波形Gは、衝突を回避するためにブレーキ操作が行われたことを示している。また、区間(B)の加速度波形Gは衝突(側面衝突)が発生したことを示している。また、区間(C)では、スピン波形Cによって、側面衝突によりスピンが発生したことが示されている。さらに、区間(D)の加速度波形Gは再度衝突が発生したことを示している。
 制御部10は、図9に示すような加速度波形やスピン波形を利用して、発生した事象に応じた車輪30の制御を行うようにしてもよい。例えば、区間(A)に示すようなブレーキ操作による加速度波形を検知したら、即座に車両1を停止させるように操舵手段20を制御することにより、衝突の発生を回避することができる。また、区間(C)のようなスピン波形を検知したら、車輪30がスピンの回転方向よりも内側または外側を向くように制御することにより、スピンによる衝突を回避することができる。
 制御部10は、車両1が停止するまで(ステップS104)車輪30の操舵角の制御を実施する。制御部10は、車両1が停止したら(ステップS104:YES)、操舵手段20の制御を終了する(ステップS105)。
 なお、制御部10は、車両1の速度及び/又は加速度に応じて、車輪30それぞれの操舵角を設定してもよい。例えば、制御部10は、第2センサ50が検知した情報に基づいて速度及び/又は加速度を取得する。そして、車両1の速度及び/又は加速度に適した操舵角を導出し、導出された操舵角になるよう操舵手段20を制御する。このとき、メモリ14に記憶された、速度及び/又は加速度と車輪30それぞれの操舵角とのパターンデータを用いて操舵角を導出するようにしてもよい。これにより、車両1の速度及び/又は加速度に応じて、効率良く減速することが可能となる。
 以上のように、本実施形態によれば、制御部10は、車両1の走行中に車両1の速度や加速度が、急な加速や減速など、事故の兆候を示す所定の条件を満たした場合に、操舵手段20に指示を出力して車輪30の操舵角を変化させ、進行方向に向かうモーメントを打ち消して車両1ができるだけ早く停止するようにした。これにより、衝突や追突などの事故の発生を防止することができる。
(3)第3実施形態
 制動中のいずれかの車輪がロック傾向になったときに、その車輪の制動力を低減させることで車輪がロックするのを抑制し、停止までの制動距離の短縮を図るABS(アンチロック・ブレーキ・システム)が知られている。
 通常、制動中のいずれかの車輪がロック傾向になると、ABSを作動させてブレーキ圧を制御(減圧、加圧を繰り返すなど)しているが、このブレーキ圧の制御のみでは、停止までの制動距離を十分に短縮することができない場合があった。
 そこで、本発明は、停止までの制動距離を十分に短縮することが可能なブレーキシステムを提供することを目的とする。
 本発明の一態様に係る効率ブレーキシステムは、車両の左右に略対称に位置する少なくとも一対の車輪と、一対の車輪それぞれの操舵角を個別に制御することのできる操舵手段と、一対の車輪に制動力を発生させるブレーキ手段と、操舵手段及びブレーキ手段を制御する制御部とを備え、制御部は、制動中のいずれかの車輪がロック傾向にあると判定した場合に、一対の車輪に対する制動力が低減されるようにブレーキ手段を制御するとともに、一対の車輪を車両上面から見て略ハの字になるように操舵手段を制御することを要旨とする。
 本発明によれば、停止までの制動距離を十分に短縮することが可能となる。
 図10は、本実施形態に係る効率ブレーキシステムを搭載する車両1のシステム構成の一例を示す図である。効率ブレーキシステムは、従来のABSの問題点を解消するべく、制動中のいずれかの車輪がロック傾向になったときに、ブレーキ圧を制御するだけでなく、各車輪の角度を変えて効率的に減速することで、車輪のロックを抑制するとともに、停止までの制動距離を十分に短縮することを可能とする。なお、以下の説明では、効率ブレーキシステムを用いた上記ブレーキ方法を、「効率ブレーキ」と呼ぶ。
 図10に示す車両1は、制御部10と、操舵手段20と、ブレーキ手段30と、車輪40と、第1センサ50と、第2センサ60と、報知手段70とを備える。また、図示を省略するが、従来の車両を構成する種々の構成を備えてもよい。車両1は、運転者が車両1を運転する手動運転機能の他に、車両1の自動運転を支援する自動運転機能を有し、各運転機能を任意に選択できることとしてもよい。
 制御部10は、車両1の内外から取得した種々の情報を用いて、効率ブレーキに関する制御を行う。例えば、制御部10は、第1センサ50及び/又は第2センサ60が検知した情報に基づいて、操舵手段20に車輪40の操舵角を指示したり、ブレーキ手段30に車輪40の制動力を指示したりする。
 このとき、制御部10は、第1センサ50から車両1のブレーキに関する情報を取得するとともに、第2センサ60から車輪速度に関する情報を取得してよい。
 操舵手段20は、制御部10から受け取った指示に基づいて、車輪40それぞれの操舵角を個別に制御することができる。操舵手段20としては、車両1が備える4つの車輪40Ar、40Al、40Br、40Blそれぞれに対応する操舵手段20Ar、20Al、20Br、20Blを備え、各操舵手段20Ar、20Al、20Br、20Blが各車輪40Ar、40Al、40Br、40Blの操舵角を個別に設定し、制御できるように構成されてもよい。
 ブレーキ手段30は、制御部10から受け取った指示に基づいて、車輪40それぞれを制動することができる。ブレーキ手段30は、例えば各車輪40Ar、40Al、40Br、40Blにそれぞれ設けられたホイールシリンダ(図示略)や、ホイールシリンダに接続されたブレーキアクチュエータ(図示略)などを備える構成であってもよい。ブレーキアクチュエータは、モータで駆動される液圧ポンプ等で発生したブレーキ圧を、任意の大きさに制御してホイールシリンダに供給することで、各車輪40Ar、40Al、40Br、40Blを制動する。
 車両1は、少なくとも一対の車輪を備え、車輪は車両1の左右に略対称に配置される。本実施形態において、車両1は4輪で構成され、左右一対の前輪40A(40Arと40Al)と、左右一対の後輪40B(40Brと40Bl)とを有する。
 車輪40にはハブモーター(HUB motor)が搭載されてもよい。ハブモーターは、インホイールモーター(IWM:In Wheel Motor)と呼ばれることもある。4輪全てにハブモーターが搭載されることで、車輪40それぞれの動きを個別に制御することができるようになるため、車輪の角度を変えて減速する効率ブレーキを実現させる上で好ましい。
 第1センサ50は、ブレーキに関する情報を検知する。例えば、第1センサ50は、運転者によってブレーキペダルが操作されると、ブレーキペダルの操作量(すなわち、ストローク量)などをあらわす情報を制御部10に送信する。
 第2センサ60は、車両1に搭載される種々のセンサであってよい。例えば、第2センサ60は、速度センサ、加速度センサのほか、各車輪40Ar、40Al、40Br、40Blにそれぞれ設けられた車輪速センサなどによって構成されてもよい。第2センサ60は、逐次検出される車両1の速度、加速度、車輪速度などの情報を制御部10に送信する。
 報知手段70は、効率ブレーキが作動している場合に所定の警報を運転者に報知する。例えば、報知手段70は、ブザーやインストルメントパネル(図示略)に設けられたランプであってもよい。なお、車両1に複数の報知手段を設けた場合には、これらの報知手段を同時に作動させるようにしてもよい。
 本実施形態に係る制御部10の構成は、前掲図2と同様であるため、図示を省略する。 制御部10は、例えば、プロセッサ12とメモリ14とを含む。
 プロセッサ12は、車両1の効率ブレーキに関する制御を行う。プロセッサ12として、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、FPGA(Field Programmable Gate Array)又はマイコン(マイクロコントローラ)等を用いることができる。プロセッサ12は、メモリ14に記憶されたプログラムを実行することで、制御部として機能する。
 メモリ14は、プロセッサ12により実行される各種プログラムや各種データを記憶する。メモリ14には、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)等の揮発性記憶装置、及びHDD(Hard Disk Drive)やフラッシュメモリ等の不揮発性記憶装置が含まれ得る。
 各種データとして、例えば、効率ブレーキを用いる際の、4つの車輪40Ar、40Al、40Br、40Blそれぞれの操舵角のパターンデータや、効率ブレーキを作動させる条件データ(例えば、車両の速度や車輪速度の閾値など)を含む。
 図11~図13は、本実施形態における効率ブレーキの作動態様の一例を示す図である。
 本実施形態においては、4輪全ての操舵角をそれぞれ自由自在に制御することが可能となっているため、ブレーキ圧を制御するとともに、進行方向に向かうモーメントを打ち消すように車輪の操舵角を制御することで、効率ブレーキを実現する。
 4輪の全てで操舵可能な車両1において、例えば制動中のいずれかの車輪がロック傾向に入ったことを検出すると、制御部10は、車輪の制動力を低減するべく、ブレーキ手段30を制御してブレーキ圧を制御する。さらに、制御部10は、例えば図11に示すように、操舵手段20を用いて、一対の前輪40A及び一対の後輪40Bを、車両上面から見て、それぞれ「ハ」の字になるよう操舵角を制御する。すなわち、制御部10は操舵手段20を用いて、一対の前輪40Aのうち、右側の車輪40Arを左向きかつ左側の車輪40Alを右向きとなるよう操舵角を制御する。また、制御部10は操舵手段20を用いて、一対の後輪40Bのうち、右側の車輪40Brを左向きかつ左側の車輪40Blを右向きとなるよう操舵角を制御する。なお、いずれかの車輪がロック傾向に入ったか否かの検出は、例えば各車輪40に設けた車輪速センサで検出した車輪速度を比較等することで実現できる。
 図11では、操舵手段20を用いて、一対の前輪40A及び一対の後輪40Bを、車両上面から見て、それぞれ「ハ」の字になるよう操舵角を制御する態様を例示したが、例えば図12に示すように、一対の前輪40A及び一対の後輪40Bを、車両上面から見て、それぞれ逆「ハ」の字になるよう操舵角を制御してもよい。すなわち、制御部10は操舵手段20を用いて、一対の前輪40Aのうち、右側の車輪40Arを右向きかつ左側の車輪40Alを左向きとなるよう操舵角を制御する。また、制御部10は操舵手段20を用いて、一対の後輪40Bのうち、右側の車輪40Brを右向きかつ左側の車輪40Blを左向きとなるよう操舵角を制御する。
 さらに別の態様として、制御部10は、例えば図13に示すように、左右一対の車輪40A,40Bを、車両上面から見て、それぞれ「ハ」の字になるよう操舵角を制御する第1操舵モードと、左右一対の車輪40A,40Bを、車両上面から見て、それぞれ逆「ハ」の字になるよう操舵角を制御する第2操舵モードとを、所定のタイミングで交互に切り換えるようにしてもよい。このとき、制御部10は、第1センサ50及び第2センサ60から得られる様々な情報に基づいて、車輪40のロックを回避でき、かつ、最大限の制動力を確保して制動距離を短縮できるような操舵モードの切り換えタイミングを導出すればよい。
 このように、本実施形態の効率ブレーキシステムにおいては、制動中のいずれかの車輪40がロック傾向に入ったことを検出すると、単にブレーキ圧を制御するだけでなく、左右一対の車輪40A,40Bを内側に向けて進行方向側を狭くしたり、外側に向けて進行方向側を広くしたりすることで、車輪40と地面の接触面の摩擦力を増大させる。これにより、車輪40のロックを抑制するとともに、停止までの制動距離を十分に短縮することが可能となる。このとき、制御部10は、車輪40の操舵角を調整することで、車輪40と地面の間の摩擦力を調整することができる。
 また、制御部10は操舵手段20を用いて、前輪40Aを「ハ」の字、後輪40Bを逆「ハ」の字となるように操舵角を設定してもよい。また、制御部10は操舵手段20を用いて、前輪40Aを逆「ハ」の字、後輪40Bを「ハ」の字となるように操舵角を設定してもよい。
 制御部10は、一対の車輪40A又は40Bのうち、車両1の進行方向と右側の車輪40Ar又は40Brの操舵角との間の角度と、車両1の進行方向と左側の車輪40Al又は40Blの操舵角との間の角度とが、略同一となるように操舵手段20を制御してよい。すなわち、車両1の進行方向と車輪40Ar又は40Brの回転面とによって形成される角度と、車両1の進行方向と車輪40Al又は40Blの回転面とによって形成される角度とが、略同一となるように操舵手段20を制御してよい。これにより、左右の車輪に働く摩擦力が略同一となり、減速時の操舵が安定することが期待できる。
 また、制御部10は、車両1の速度及び/又は加速度に応じて、車輪40それぞれの操舵角を設定してもよい。例えば、制御部10は、第2センサ60が検知した情報に基づいて速度及び/又は加速度を取得する。そして、車両1の速度及び/又は加速度に適した操舵角を導出し、導出された操舵角になるよう操舵手段20を制御する。このとき、メモリ14に記憶された、速度及び/又は加速度と車輪40それぞれの操舵角とのパターンデータを用いて、操舵角を導出してよい。これにより、車両1の速度及び/又は加速度に応じて、効率良く減速することが可能となる。
 また、制御部10は、車両1の速度が小さいほど、車両1の進行方向に対して一対の車輪40A又は40Bそれぞれの操舵角が大きくなるように操舵手段20を制御してよい。
 図14は、効率ブレーキシステムを搭載した車両1の処理手順の一例を示すフローチャートである。
 制御部10は、各車輪40に設けた車輪速センサで検出した車輪速を比較することで、いずれかの車輪40がロック傾向に入ったか否かを判断(検出)する(ステップS101)。
 制御部10は、いずれの車輪40もロック傾向に入っていないと判断した場合には(ステップS101:NO)、効率ブレーキを作動させることなく、通常運転を続ける。
 一方、制御部10は、いずれかの車輪40がロック傾向に入っていると判断すると(ステップS101:YES)、効率ブレーキを作動させる。具体的には、制御部10は、車輪40のロックを抑制するために、ブレーキ手段30に対して、ブレーキ圧の制御を指示するとともに(ステップS102)。操舵手段20に対して、図11~図13のいずれかに示した態様で、車輪40の操舵角を制御するように指示する(ステップS103)。さらに、制御部10は、効率ブレーキが作動していることを運転者に知らせるために、所定の警報を報知手段70から報知する(ステップS104)。
 制御部10は、車両1が停止するまでの間は(ステップS105:NO)、効率ブレーキを作動させる(ステップS102→S103→S104)。
 その後、制御部10は、車両1が停止したことを検知すると(ステップS105:YES)、所定の警報の報知を終了し、効率ブレーキを含むすべてのブレーキの作動を停止し(ステップS106)、車輪40の操舵角を進行方向と同じ方向に戻す制御を行った後(ステップS107)、処理を終了する。
 以上説明したとおり、制動中のいずれかの車輪がロック傾向に入った場合には、単にブレーキ圧を制御するだけでなく、車輪の角度を制御することで、車輪のロックを抑制するとともに、停止までの制動距離を十分に短縮することが可能となる。
(4)第4実施形態
 自車両と前方の障害物との間の距離及び相対速度を検出し、その検出結果から前方の障害物に対して異常接近した場合に、自動的にブレーキを作動させて自車両を急制動する自動制動装置が知られている。
 上記自動制動装置においては、自車両と前方の障害物の距離が近すぎないようにするには効果的であるが、後方車両が存在する場合に自動制動装置が急ブレーキをかけると、後方車両が急制動に間に合わずに追突するおそれがある、という問題があった。
 そこで、本発明は、自車両を取り巻く状況に応じて最適なブレーキ制御を行うことが可能なブレーキシステムを提供することを目的とする。
 本発明の一態様に係るブレーキシステムは、車両の左右に略対称に位置する少なくとも一対の車輪と、一対の車輪それぞれの操舵角を個別に制御することのできる操舵手段と、一対の車輪に制動力を発生させるブレーキ手段と、車両のブレーキ操作に関するブレーキ操作情報を取得する第1取得部と、車両の周囲環境に関する周囲環境情報を取得する第2取得部と、操舵手段及びブレーキ手段を制御する制御部と、を備え、制御部は、ブレーキ操作情報及び周囲環境情報に基づき、ブレーキ手段を制御して車両を制動する通常ブレーキと、ブレーキ手段とともに操舵手段を制御して車両を制動する効率ブレーキのいずれかを選択する、ブレーキシステム。
 本発明によれば、自車両を取り巻く状況に応じて最適なブレーキ制御を行うことが可能となる。
 図15は、本実施形態に係るブレーキシステムを搭載する車両1のシステム構成の一例を示す図である。本実施形態に係るブレーキシステムは、ブレーキ圧を制御して車両を制動する「通常ブレーキ」と、ブレーキ圧を制御するだけでなく、各車輪の角度を変えて効率的に減速して車両を制動する「効率ブレーキ」の2種類のブレーキを作動することが可能となっている。図1に示す車両1は、制御部10と、操舵手段20と、ブレーキ手段30と、車輪40と、第1センサ50と、第2センサ60と、報知手段70を備える。また、図示省略するが、従来の車両を構成する種々の構成を備えてもよい。車両1は、運転者が車両1を運転する手動運転機能の他に、車両1の自動運転を支援する自動運転機能を有し、各運転機能を任意に選択できることとしてもよい。
 制御部10は、車両1の内外から取得した種々の情報を用いて、ブレーキに関する様々な制御を行う。例えば、制御部10は、第1センサ50及び第2センサ60が検知した情報に基づいて、ブレーキの種類(具体的には、通常ブレーキまたは効率ブレーキ)を選択し、選択したブレーキの種類に応じて操舵手段20に車輪40の操舵角を指示したり、ブレーキ手段30に車輪40の制動力を指示したりする。
 操舵手段20は、制御部10から受け取った指示に基づいて、車輪40それぞれの操舵角を個別に制御することができる。操舵手段20としては、車両1が備える4つの車輪40Ar、40Al、40Br、40Blそれぞれに対応する操舵手段20Ar、20Al、20Br、20Blを備え、各操舵手段20Ar、20Al、20Br、20Blが各車輪40Ar、40Al、40Br、40Blの操舵角を個別に設定し、制御できるように構成されてもよい。
 ブレーキ手段30は、制御部10から受け取った指示に基づいて、車輪40それぞれを制動することができる。ブレーキ手段30は、例えば各車輪40Ar、40Al、40Br、40Blにそれぞれ設けられたホイールシリンダ(図示略)や、ホイールシリンダに接続されたブレーキアクチュエータ(図示略)などを備える構成であってもよい。ブレーキアクチュエータは、モーターで駆動される液圧ポンプ等で発生したブレーキ圧を、任意の大きさに制御してホイールシリンダに供給することで、各車輪40Ar、40Al、40Br、40Blを制動する。
 車両1は、少なくとも一対の車輪(タイヤ)を備え、車輪は車両1の左右に略対称に配置される。本実施形態において、車両1は4輪で構成され、左右一対の前輪40A(40Arと40Al)と、左右一対の後輪40B(40Brと40Bl)とを有する。
 車輪40にはハブモーター(HUB motor)が搭載されてもよい。ハブモーターは、インホイールモーター(IWM:In Wheel Motor)と呼ばれることもある。4輪全てにハブモーターが搭載されることで、車輪40それぞれの動きを個別に制御することができるようになるため、車輪の角度を変えて減速する効率ブレーキを実現させる上で好ましい。
 第1センサ50は、ブレーキ操作に関するブレーキ操作情報を検知する。第1センサ50は、例えばブレーキペダルセンサなどによって構成されている。第1センサ50は、運転者によってブレーキペダルが操作されると、ブレーキペダルの操作量(すなわち、ストローク量)などをあらわすブレーキ操作情報を制御部(第1取得部)10に送信する。
 第2センサ60は、自車両の周囲環境に関わる情報(本実施形態では、後方車両との車間距離、相対速度などをあらわす後方車両情報)を検知する。第2センサ60は、例えばLIDAR(Light Detection And Ranging)センサ、超音波ソナー、及びステレオカメラなどによって構成される。第2センサ60は、後方車両情報を検出すると、制御部(第2取得部)10に送信する。
 その他にも、車両1には、速度センサ、アクセルペダルセンサ、シフトポジションセンサ、加速度センサをはじめとする様々なセンサが搭載されている。
 報知手段70は、ブレーキの作動状況を外部(運転者など)に報知する。報知手段70は、例えばブザーやインストルメントパネル(図示略)に設けられたランプやブレーキランプなどによって構成されている。報知手段70は、制御部10によってブレーキが作動されると、例えばランプの色、点灯パターン、文字メッセージなどによって、ブレーキの作動の有無や、作動中のブレーキの種類などを運転者に報知してもよい。一例として、通常ブレーキが作動中である場合には、インストルメントパネルの所定のランプを黄色で点灯表示する一方、効率ブレーキが作動中である場合には、インストルメントパネルの所定のランプを青色で点滅表示する。このように、作動中のブレーキの種類に応じて異なる態様で報知することで、運転者は作動中のブレーキを正確に把握することができる。なお、車両1に複数の報知手段70が設けられている場合には、作動中のブレーキの種類に応じて、利用する報知手段の組み合わせを変えてもよい。また、作動中のブレーキの種類に応じてブレーキランプの表示態様を変えることで、後方車両などにブレーキの作動状況を知らせてもよい。
 本実施形態に係る制御部10の構成は、前掲図2と同様であるため、図示を省略する。 制御部10は、例えば、プロセッサ12とメモリ14とを含む。
 プロセッサ12は、車両1のブレーキに関する制御を行う。プロセッサ12として、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、FPGA(Field Programmable Gate Array)又はマイコン(マイクロコントローラ)等を用いることができる。プロセッサ12は、メモリ14に記憶されたプログラムを実行することで、制御部として機能する。
 メモリ14は、プロセッサ12により実行される各種プログラムや各種データを記憶する。メモリ14には、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)等の揮発性記憶装置、及びHDD(Hard Disk Drive)やフラッシュメモリ等の不揮発性記憶装置が含まれ得る。
 各種データとして、例えば効率ブレーキを作動させる際の、4つの車輪40Ar、40Al、40Br、40Blそれぞれの操舵角をあらわす操舵角パターンを含む。
<効率ブレーキの特徴>
 本実施形態における効率ブレーキの作動態様の一例を、前掲図11及び前掲図12を利用して説明する。
 本実施形態においては、4輪全ての操舵角をそれぞれ自由自在に制御することが可能となっているため、ブレーキ圧を制御するとともに、進行方向に向かうモーメントを打ち消すように車輪の操舵角を制御することで、効率ブレーキを実現する。
 4輪の全てで操舵可能な車両1において、制御部10は、ブレーキ操作情報、後方車両情報に基づき、作動ブレーキとして効率ブレーキを選択すると、まず、ブレーキ手段30を制御してブレーキ圧を制御する。さらに、制御部10は、例えば前掲図11に示すように、操舵手段20を用いて、一対の前輪40A及び一対の後輪40Bを、車両上面から見て、それぞれ「ハ」の字になるよう操舵角を制御する。すなわち、制御部10は操舵手段20を用いて、一対の前輪40Aのうち、右側の車輪40Arを左向きかつ左側の車輪40Alを右向きとなるよう操舵角を制御する。また、制御部10は操舵手段20を用いて、一対の後輪40Bのうち、右側の車輪40Brを左向きかつ左側の車輪40Blを右向きとなるよう操舵角を制御する。
 前掲図11では、操舵手段20を用いて、一対の前輪40A及び一対の後輪40Bを、車両上面から見て、それぞれ「ハ」の字になるよう操舵角を制御する態様を例示したが、例えば前掲図12に示すように、一対の前輪40A及び一対の後輪40Bを、車両上面から見て、それぞれ逆「ハ」の字になるよう操舵角を制御してもよい。すなわち、制御部10は操舵手段20を用いて、一対の前輪40Aのうち、右側の車輪40Arを右向きかつ左側の車輪40Alを左向きとなるよう操舵角を制御する。また、制御部10は操舵手段20を用いて、一対の後輪40Bのうち、右側の車輪40Brを右向きかつ左側の車輪40Blを左向きとなるよう操舵角を制御する。
 このように、効率ブレーキを作動させた場合には、単にブレーキ圧を制御するだけでなく、左右一対の車輪40A,40Bを内側に向けて進行方向側を狭くしたり、外側に向けて進行方向側を広くしたりすることで、車輪40と地面の接触面の摩擦力を増大させる。これにより、停止までの制動距離を十分に短くすることが可能となる。このとき、制御部10は、車輪40の操舵角を調整することで、車輪40と地面の間の摩擦力を調整することができる。
<ブレーキの種類の選択>
 上述したように、制動距離を短縮するという観点では、効率ブレーキを選択することが望ましいが、自車両を取り巻く状況によっては、効率ブレーキではなく通常ブレーキを選択することが望ましい場合がある。
 例えば、図16に示すように、後方車両が猛スピードで迫ってくる状況下で、効率ブレーキを作動させると、自車両は短い制動距離で停止することができるものの、後方車両はブレーキが間に合わず、後方車両から追突されるおそれがある。
 このような問題を未然に解消するために、本実施形態では、制御部10は、後方車両からの追突も回避できるように、作動するブレーキの種類を選択する。
 具体的には、制御部10は、第1センサ50から取得されるブレーキ操作情報、第2センサ60から取得される後方車両情報に基づき、通常ブレーキを作動するか、効率ブレーキを作動するかを選択する。
 例えば、制御部10は、十分な車間距離等が確保されているために、効率ブレーキを作動しても後方車両から追突される可能性はないと判断すると、効率ブレーキを選択する。
 一方、制御部10は、十分な車間距離等が確保されていないために、効率ブレーキを作動した場合には後方車両から追突される可能性が高いと判断すると、通常ブレーキを選択する。このように、本実施形態では、自車両を取り巻く状況に応じて、作動するブレーキの種類を選択することで、後方車両からの追突を確実に防ぐことが可能となる。なお、ブレーキの種類の選択基準については、衝突事故の発生確率などを勘案して任意に設定・変更可能である。例えば、衝突事故の過去事例等に基づいて、車間距離及び相対速度から衝突事故の発生確率を導出し、導出した衝突事故の発生確率が閾値未満である場合には、効率ブレーキを選択する一方、閾値を超えた場合には、通常ブレーキを選択してもよい。
 図17は、ブレーキシステムを搭載した車両1の処理手順の一例を示すフローチャートである。
 制御部10は、車両1の走行中に、第1センサ50からブレーキ操作情報を取得したか否かを判断する(ステップS101)。
 制御部10は、ブレーキ操作情報を取得していない場合には(ステップS101:NO)、そのまま走行を続ける一方、ブレーキ操作情報を取得している場合には(ステップS101:YES)、第2センサ60から後方車両情報を取得する(ステップS102)。
 制御部10は、各センサから取得したブレーキ操作情報及び後方車両情報に基づき、作動するブレーキの種類を選択する(ステップS103)。
 制御部10は、通常ブレーキを選択した場合には、ブレーキ手段30に対して、ブレーキ圧の制御を指示する(ステップS104)。
 制御部10は、効率ブレーキを選択した場合には、ブレーキ手段30に対して、ブレーキ圧の制御を指示するとともに、操舵手段20に対して、前掲図11または前掲図12に示す態様で車輪40の操舵角を制御するように指示する(ステップS105)。
 そして、制御部10は、報知手段70のランプなどを利用して、ブレーキの作動状況(ブレーキの作動の有無、作動中のブレーキの種類など)を運転者に報知する(ステップS106)。
 制御部10は、車両1が停止するまでの間は(ステップS107:NO)、ブレーキの種類の選択及び選択したブレーキの作動を継続する。
 その後、制御部10は、車両1が停止したことを検知すると(ステップS107:YES)、ブレーキの作動状況の報知を終了するとともに、ブレーキの作動を停止し(ステップS108)、処理を終了する。
 以上説明したように、本実施形態に係るブレーキシステムによれば、自車両を取り巻く状況に応じて最適なブレーキ制御を行うことが可能となる。
<変形例>
 上述した本実施形態では、後方車両の存在を前提に作動するブレーキの種類を選択したが、これに限る趣旨ではない。例えば、自車両が走行する路面状態などに応じて、作動するブレーキの種類を選択してもよい。
 変形例に係る第2センサ60は、路面状態に関する路面関連情報を検知する。第2センサ60は、例えば表面温度センサ、温湿度センサ、画像カメラなどによって構成されている。第2センサ60は、路面状態(例えば、路面の凹凸、乾燥、半湿、湿潤、シャーベット、積雪、圧雪、凍結、湿度、気温、路面温度など)をあらわす路面関連情報を検知すると、制御部10に送信する。
 制御部10は、第1センサ50から取得されるブレーキ操作情報、第2センサ60から取得される路面関連情報に基づき、通常ブレーキを作動するか、効率ブレーキを作動するかを選択する。
 例えば、制御部10は、路面温度が0度以下であって路面が凍結などしている場合には、制動距離を可能な限り短くするために、効率ブレーキを選択する一方、路面が乾燥している場合には、通常ブレーキを選択する。これにより、路面状態などに応じて安全かつ最適なブレーキ制御を行うことが可能となる。
 なお、第2センサ60は、路面状態に加えて、タイヤの摩耗状態(摩耗量など)を検知してもよい。この場合、制御部10は、路面状態だけでなく、タイヤの摩耗状態を考慮に入れて最適なブレーキを選択することができる。もちろん、これに限らず、第2センサ60によって検出される自車両の周囲環境に関わる様々な情報を利用して最適なブレーキを選択してもよい。
 また、操舵角の制御に関して、制御部10は操舵手段20を用いて、前輪40Aを「ハ」の字、後輪40Bを逆「ハ」の字となるように操舵角を設定してもよい。また、制御部10は操舵手段20を用いて、前輪40Aを逆「ハ」の字、後輪40Bを「ハ」の字となるように操舵角を設定してもよい。
 制御部10は、一対の車輪40A又は40Bのうち、車両1の進行方向と右側の車輪40Ar又は40Brの操舵角との間の角度と、車両1の進行方向と左側の車輪40Al又は40Blの操舵角との間の角度とが、略同一となるように操舵手段20を制御してよい。すなわち、車両1の進行方向と車輪40Ar又は40Brの回転面とによって形成される角度と、車両1の進行方向と車輪40Al又は40Blの回転面とによって形成される角度とが、略同一となるように操舵手段20を制御してよい。これにより、左右の車輪に働く摩擦力が略同一となり、減速時の操舵が安定することが期待できる。
 また、制御部10は、車両1の速度及び/又は加速度に応じて、車輪40それぞれの操舵角を設定してもよい。例えば、制御部10は、第2センサ60が検知した情報に基づいて速度及び/又は加速度を取得する。そして、車両1の速度及び/又は加速度に適した操舵角を導出し、導出された操舵角になるよう操舵手段20を制御する。このとき、メモリ14に記憶された、速度及び/又は加速度と車輪40それぞれの操舵角とのパターンデータを用いて、操舵角を導出してよい。これにより、車両1の速度及び/又は加速度に応じて、効率良く減速することが可能となる。
 また、制御部10は、車両1の速度が小さいほど、車両1の進行方向に対して一対の車輪40A又は40Bそれぞれの操舵角が大きくなるように操舵手段20を制御してよい。
(5)第5実施形態
 従来、2輪駆動車や4輪駆動車では、駆動輪のタイヤの回転を減速して車両を停車、減速させる。
 ところで、車両が進行方向を変える場合(例えば、カーブを曲がる場合など)には、進行方向の変化の度合いなどに応じて適切に減速する必要がある。特に、大きなカーブに差し掛かるなどして車両の進行方向が大きく変わる場合に急激な減速をすると、スリップなどが発生する場合もあり危険である。
 そこで本発明は、車両が進行方向を変える場合に適切に減速することが可能な効率ブレーキシステムを提供することを目的とする。
 本発明の一態様に係る効率ブレーキシステムは、車両の左右に略対称に位置する少なくとも一対の車輪と、一対の車輪それぞれの操舵角を個別に制御することのできる操舵手段と、車両の進行方向の変化を検知するセンサと、各々の車輪の操舵角が、進行方向の変化に応じて設定される角度になるように、操舵手段を制御する制御部を備えることを要旨とする。
 本発明によれば、車両が進行方向を変える場合に適切に減速することが可能な効率ブレーキシステムを提供することができる。
 図18は、本実施形態に係る効率ブレーキシステムを搭載する車両1のシステム構成の一例を示す図である。図1に示す車両1は、制御部10と、操舵手段20と、車輪30と、第1センサ40と、第2センサ50と、ブレーキ手段60を備える。また、図示を省略するが、従来の車両を構成する種々の構成を備えてもよい。車両1は、運転者が車両1を運転する手動運転機能の他に、車両1の自動運転を支援する自動運転機能を有し、各運転モードを任意に選択できるようにしてもよい。
 制御部10は、車両1の内外から取得した種々の情報を用いて、操舵手段20に車輪30の操舵角を制御させることができる。ここで操舵角とは、車両1の進行方向に対する車輪30の角度である。例えば、制御部10は、第1センサ40及び/又は第2センサ50が検知した情報に基づいて、操舵手段20に対して、車輪30の操舵角を指示する。このとき、制御部10は、第1センサ40からブレーキによる車両1の減速に関する情報を取得することができる。また、制御部10は、第2センサ50から車両1の速度、加速度、角速度、または角加速度に関する情報を取得することができる。また、第2センサ50から車両1の位置情報が取得できてもよい。
 操舵手段20は、制御部10から受け取った指示に基づいて、車輪30それぞれの操舵角を個別に制御することができる。本実施形態において、操舵手段20としては、車両1が備える4つの車輪30Ar、30Al、30Br、30Blそれぞれに対応する操舵手段20Ar、20Al、20Br、20Blを備え、各操舵手段20Ar、20Al、20Br、20Blが各車輪30Ar、30Al、30Br、30Blの操舵角を個別に設定し、制御できるように構成されてよい。
 車両1は、少なくとも一対の車輪30を備え、車両1の左右に略対称に配置される。本実施形態において、車両1は4輪で構成され、左右一対の前輪30A(30Arと30Al)と、左右一対の後輪30B(30Brと30Bl)とを有する。
 各車輪30にはハブの内部に実装される電気モーターであるハブモーター(HUB motor)が搭載されてもよい。なお、モーター自体がハブの内部に実装されていなくても、電気モーターの駆動力が直接ホイールへ伝わるモーター(インホイールモーター(IWM:In Wheel Motor))が搭載されてもよい。4輪全てにハブモーターが搭載されることで、車輪30それぞれの動きを個別に制御することができるようになるため、車輪の角度を変えて減速する効率ブレーキを実現させる上で好ましい。
 第1センサ40は、ブレーキ手段60によるブレーキに関する情報を検知する。例えば、第1センサ40は、運転者によるブレーキ操作や自動運転制御により、ブレーキ手段60による車輪30の制動が発動したことを検知し、検知した情報を制御部10に送信する。
 第2センサ50は、車両1に搭載される種々のセンサであってよい。例えば、第2センサ50は、速度センサ、加速度センサ、ジャイロセンサなどのほか、車輪30の回転数を測定する車輪速センサ、ステアリングホイールの角度を計測する舵角センサ、車両1が回転する速度を検出するヨーレートセンサ、GPSセンサなどであってもよい。第2センサ50は検知した情報を制御部10に送信する。
 ブレーキ手段60は、制御部10から受け取った指示に基づいて、車輪30それぞれを制動することができる。ブレーキ手段60は、例えば各車輪30Ar、30Al、30Br、30Blにそれぞれ設けられたホイールシリンダ(図示略)や、ホイールシリンダに接続されたブレーキアクチュエータ(図示略)などを備える構成であってもよい。ブレーキアクチュエータは、モーターで駆動される液圧ポンプ等で発生したブレーキ圧を、任意の大きさに制御してホイールシリンダに供給することで、各車輪30Ar、30Al、30Br、30Blを制動する。制御部10は、運転者がブレーキペダルを踏んだことを検知した場合に、ブレーキ手段60に対し車輪30の制動を行うように指示を出してもよいし、自動運転制御により、ブレーキ手段60に対して車輪30の制動を行うように指示を出してもよい。
 本実施形態に係る制御部10の構成は、前掲図2と同様であるため、図示を省略する。
 制御部10は、例えば、プロセッサ12とメモリ14とを含む。
 プロセッサ12は、車両1全体の動作を制御する。プロセッサ12として、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、FPGA(Field Programmable Gate Array)又はマイコン(マイクロコントローラ)等を用いることができる。プロセッサ12は、メモリ14に記憶されたプログラムを実行することで、車両1全体の動作を制御する制御部として機能する。
 メモリ14は、プロセッサ12により実行される各種プログラムや各種データを記憶する。メモリ14には、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)等の揮発性記憶装置、及びHDD(Hard Disk Drive)やフラッシュメモリ等の不揮発性記憶装置が含まれ得る。各種データは、例えば、効率ブレーキを用いる際の、4つの車輪30Ar、30Al、30Br、30Blそれぞれの操舵角度のパターンデータや、効率ブレーキを作動させる条件データ(例えば、車両速度の閾値等)を含む。
 図19は、効率ブレーキシステムを搭載した車両1の処理手順の一例を示すフローチャートである。
 制御部10は、車両1の走行中、車両1の進行方向に関する情報を取得する(ステップS101)。さらに、制御部10は、取得した情報に基づいて、車両1の進行方向が変化しているか否かを判定する(ステップS102)。制御部10は、例えば、ジャイロセンサによって検出される角速度の変化に基づいて進行方向の変化の有無を判定することができる。また、制御部10は、GPSセンサから車両1の位置情報を取得し、車両1が走行している道路の情報から進行方向の変化の情報を取得してもよい。なお、本実施形態では、車両1の進行方向の変化が検知された場合に、効率ブレーキを作動させる態様を例示するが、これに限る趣旨ではない。例えば、車両1の進行方向の変化が検出され、かつ、車両の速度が設定基準速度(例えば、〇×km/h)を超えた場合に、効率ブレーキを作動させてもよい。
 制御部10は、車両1の進行方向の変化が検出されていない場合には(ステップS102:NO)、ステップS103に進み、通常の運転制御を行い、ステップS101に戻る。一方、制御部10は、車両1の進行方向の変化が検出されると(ステップS102:YES)、操舵手段20に指示を出力して車輪30の操舵角を制御し(ステップS104)、効率ブレーキを作動する。
 図20及び図21は、操舵手段20による車輪30の操舵角の制御を説明する図である。図20及び図21に示す例では、車両1は4つの車輪30Ar、30Al、30Br、30Bl全ての操舵角を、それぞれに対応する操舵手段20Ar、20Al、20Br、20Blによって個別に制御することができる。ブレーキ手段20による減速は、車輪30の回転を制動することで行うが、操舵手段20は、4輪それぞれの操舵角を変化させることで、進行方向に向かうモーメントを打ち消して減速する。
 図20に示す例では、制御部10は操舵手段20を用いて、前輪30Ar、30Al及び後輪30Br、30Blが、車両1の上面から見て、それぞれ「ハ」の字になるように操舵角を制御する。すなわち、制御部10は操舵手段20を用いて、右側の車輪30Arが左向きかつ左側の車輪30Alが右向きとなるように操舵角を制御する。また、制御部10は操舵手段20を用いて、右側の車輪30Brが左向きかつ左側の車輪30Blが右向きとなるよう操舵角を制御する。このように、操舵手段20を用いて左右一対の車輪30A,30Bを内側に向けて進行方向側を狭くすることで、車輪30と地面の接触面の摩擦力を増大させ、減速を実現させる。これとは逆に、制御部10は操舵手段20を用いて、前輪30Ar、30Al及び後輪30Br、30Blが、車両1の上面から見て、それぞれ逆「ハ」の字になるように操舵角を制御してもよい(図21参照)。
 また、制御部10は、車輪30の操舵角が車両1の進行方向の変化に応じた角度となるように操舵手段20を制御する。図22に示すように、進行方向に対する車輪30の操舵角αが大きければ大きいほど(すなわち、「ハ」の字の場合は進行方向側が狭くなるほど、逆「ハ」の字の場合は進行方向側が広くなるほど)地面に対する摩擦力は増大し、減速の効果は高くなる。このため、例えば車両1がカーブに差し掛かるなどして進行方向が変化した場合には、カーブの大きさに応じて車輪の操舵角αを制御し、車両1の減速の度合いを変化させてもよい。例えば、図23に示すように、カーブの曲率(曲がり具合)Cが大きい場合には、減速の度合いを高めるために車輪30の操舵角αを大きく設定する一方、図24に示すように、カーブの曲率Cが小さい場合には、減速の度合いを緩めるために車輪30の操舵角αを小さく設定してもよい。
 もっとも、このような設定に限る趣旨ではなく、例えば減速までの時間の短縮化と走行の安定性の確保の両立を図りたい場合には、制御部10は、車両1の速度が小さいほど進行方向に対する車輪30の操舵角αが大きくなるように制御する。もちろん、より短い距離で車両1の走行速度を落としたい場合には、車両1の速度が大きいほど進行方向に対する車輪30の操舵角αが大きくなるように制御してもよい。車両1の速度と車輪30の操舵角αの関係はこれらに限られず、効率的で安定した車両1の制動が行えるように設定することができる。このとき、制御部10は、メモリ14に記憶された、車両1の進行方向の変化量と、車両1の速度と、車輪30の操舵角との関係をあらわすパターンデータを用いて、適切な操舵角を導出するようにしてもよい。
 図25は、効率的に車両1を停止させるのに適切な車輪30の操舵角のパターンデータの例を示す図である。
 制御部10は、車両の進行方向の変化量δが第1基準変化量δst1を超えており、かつ、車両1の速度Vが第1基速度Vst1を超えている場合には、第1パターンデータD1を利用して、外側(すなわち右側)に位置する車輪30Ar、30Brの操舵角α2が、内側(すなわち左側)に位置する車輪30Al、30Blの操舵角α1よりも大きくなるように設定する。
 一方、制御部10は、車両の進行方向の変化量δが第1基準変化量δst1を超えているものの、車両1の速度Vが第1基速度Vst1を超えていない場合には、第2パターンデータD2を利用して、内側に位置する車輪30Ar、30Brの操舵角α1を変えずに(「KEEP」)、外側に位置する車輪30Al、30Blの操舵角α2を変える(「CHANGE」)ように設定する。
 上述したパターンデータは、あくまで例示にすぎず、その他の態様で車両30の操舵角を制御してもよい。例えば、制御部10は、外側の車輪30Ar、30Brの操舵角と、内側の車輪30Al、30Blの操舵角が、略同一となるように操舵手段20を制御してもよい。すなわち、車両1の進行方向と車輪30Ar又は30Brの回転面とによって形成される角度と、車両1の進行方向と車輪30Al又は30Blの回転面とによって形成される角度とが、略同一となるように操舵手段20を制御してよい。これにより、左右の車輪に働く摩擦力が略同一となり、減速時の操舵が安定することが期待できる。
 このようにして車輪30の操舵角を制御すると、制御部10は、車両1が停止または減速に関する情報が解除されたか否かを判定する(ステップS105)。制御部10は、車両1が停止または減速に関する情報が解除されていない場合には(ステップS105:NO)、ステップS104に戻り、車輪30の操舵角の制御を実施する。一方、制御部10は、車両1が停止、または、減速に関する情報が解除されると(ステップS105:YES)、車輪30の操舵角が進行方向と同じ方向になるように操舵手段20を制御することで効率ブレーキの作動を停止し(ステップS106)、処理を終了する。
 なお、制御部10は、車両1の速度及び/又は加速度に応じて、車輪30それぞれの操舵角を設定してもよいのはもちろんである。例えば、制御部10は、第2センサ50が検知した情報に基づいて速度及び/又は加速度を取得する。そして、車両1の速度及び/又は加速度に適した操舵角を導出し、導出された操舵角になるよう操舵手段20を制御する。このとき、メモリ14に記憶された、速度及び/又は加速度と車輪30それぞれの操舵角とのパターンデータを用いて操舵角を導出するようにしてもよい。これにより、車両1の速度及び/又は加速度に応じて、効率良く減速することが可能となる。
 以上のように、本実施形態によれば、制御部10は、車両1がカーブに差し掛かるなどして進行方向の変化を検知すると、操舵手段20に指示を出力して車輪30の操舵角を車両1の進行方向の変化に応じた角度に変化させ、進行方向に向かうモーメントを打ち消して減速するように制御する。これにより、車両1の進行方向の変化に合わせて効率よく減速させながら、急激な減速によるスリップなどを回避することができる。
 なお、車両1がカーブを走行している間は、カーブに対して外側に位置する車輪30の操舵角のみをカーブに応じて変化させるように制御してもよい。これにより、カーブ走行中により影響が大きい車輪30の操舵角を制御し、効率的に減速することができる。
 なお、本発明は、前述した各実施形態及び変形例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、他の様々な形で実施することができる。したがって、上記実施形態はあらゆる点で単なる例示にすぎず、限定的に解釈されるものではない。例えば、前述した各処理ステップは処理内容に矛盾を生じない範囲で任意に順番を変更し、又は並列に実行することができる。
1 車両
10 制御部
12 プロセッサ
14 メモリ
20 操舵手段
30 車輪
40 第1センサ
50 第2センサ
 

Claims (26)

  1.  車両の左右に略対称に位置する少なくとも一対の車輪と、
     前記一対の車輪それぞれの操舵角を個別に制御することのできる操舵手段と、
     前記車両の減速に関する情報を取得又は生成する制御部であって、前記情報を取得又は生成したとき、前記車両の進行方向に対して、前記一対の車輪のうち右側の車輪を左向きかつ左側の車輪を右向き、又は、右側の車輪を右向きかつ左側の車輪を左向きとなるように、前記操舵手段を制御する、制御部と、
    を備える効率ブレーキシステム。
  2.  前記制御部は、前記車両の進行方向と前記右側の車輪の操舵角との間の角度と、前記車両の進行方向と前記左側の車輪の操舵角との間の角度とが、略同一となるように前記操舵手段を制御する、
    請求項1記載の効率ブレーキシステム。
  3.  前記制御部は、前記一対の車輪それぞれが、前記車両の速度又は加速度のうち少なくともいずれかに基づいて導出された操舵角になるように前記操舵手段を制御する、
    請求項1記載の効率ブレーキシステム。
  4.  前記制御部は、前記車両の速度が小さいほど、前記車両の進行方向に対して前記一対の車輪それぞれの操舵角が大きくなるように前記操舵手段を制御する、
    請求項3記載の効率ブレーキシステム。
  5.  前記制御部は、前記車両の速度が所定の閾値よりも大きいとき、前記減速に関する情報を検知又は生成しても、前記一対の車輪それぞれの操舵角を変化させない、
    請求項3記載の効率ブレーキシステム。
  6.  前記制御部は、前記車両の加速度が所定の閾値よりも大きいとき、前記車両の進行方向に対して前記一対の車輪それぞれの操舵角が大きくなるように前記操舵手段を制御する、
    請求項3記載の効率ブレーキシステム。
  7.  車両の左右に略対称に位置する少なくとも一対の車輪と、
     前記一対の車輪それぞれの操舵角を個別に制御することのできる操舵手段と、
     前記車両の加速度を検知するセンサと、
     前記車両の加速度が第1の条件を満たした場合に、前記操舵手段を制御して、前記車両の進行方向に対する各々の車輪の操舵角を変化させる制御部を備えた、効率ブレーキシステム。
  8.  前記第1の条件は、前記車両の急加速、急ブレーキ、および急ハンドルの少なくとも1つが発生したことを示す信号が検知されることである、請求項7に記載の効率ブレーキシステム。
  9.  前記制御部は、
     前記車両の進行方向に対する各々の車輪の操舵角が、前記加速度に応じた角度になるように前記操舵手段を制御する、請求項7に記載の効率ブレーキシステム。
  10.  前記制御部は、
     前記車両の進行方向に対して、前記一対の車輪のうち、右側の車輪を左向きかつ左側の車輪を右向き、又は、右側の車輪を右向きかつ左側の車輪を左向きとなるように、前記操舵手段を制御する、請求項7に記載の効率ブレーキシステム。
  11.  車両の左右に略対称に位置する少なくとも一対の車輪と、
     前記一対の車輪それぞれの操舵角を個別に制御することのできる操舵手段と、
     前記一対の車輪に制動力を発生させるブレーキ手段と、
     前記操舵手段及び前記ブレーキ手段を制御する制御部と、を備え、
     前記制御部は、
     制動中のいずれかの車輪がロック傾向にあると判定した場合に、前記一対の車輪に対する制動力が低減されるように前記ブレーキ手段を制御するとともに、前記一対の車輪を車両上面から見て略ハの字になるように前記操舵手段を制御する、効率ブレーキシステム。
  12.  前記制御部は、
     制動中のいずれかの車輪がロック傾向にあると判定した場合に、前記一対の車輪に対する制動力が低減されるように前記ブレーキ手段を制御するとともに、前記一対の車輪を車両上面から見て略逆ハの字になるように前記操舵手段を制御する、請求項11に記載の効率ブレーキシステム。
  13.  前記制御部は、
     制動中のいずれかの車輪がロック傾向にあると判定した場合に、前記一対の車輪に対する制動力が低減されるように前記ブレーキ手段を制御するとともに、前記一対の車輪を車両上面から見て略ハの字になるように前記操舵手段を制御する第1操舵モードと、前記一対の車輪を車両上面から見て略逆ハの字になるように前記操舵手段を制御する第2操舵モードとを交互に切り換えて、前記操舵手段を制御する、請求項11に記載の効率ブレーキシステム。
  14.  前記一対の車輪のそれぞれの車輪速度を検出する車輪速センサをさらに備え、
     前記制御部は、
     検出される車輪速度に基づき、制動中のいずれかの車輪がロック傾向にあるか否かを判定する、請求項11から13のいずれか一項に記載の効率ブレーキシステム。
  15.  前記制御部は、
     前記車両の速度が小さいほど、前記車両の進行方向に対して前記一対の車輪それぞれの操舵角が大きくなるように前記操舵手段を制御する、請求項11から13のいずれか一項に記載の効率ブレーキシステム。
  16.  前記制御部によって前記操舵手段及び前記ブレーキ手段の制御が行われているときに、運転者に所定の警報を発する報知手段をさらに備える、請求項11から13のいずれか一項に記載の効率ブレーキシステム。
  17.  車両の左右に略対称に位置する少なくとも一対の車輪と、
     前記一対の車輪それぞれの操舵角を個別に制御することのできる操舵手段と、
     前記一対の車輪に制動力を発生させるブレーキ手段と、
     前記車両のブレーキ操作に関するブレーキ操作情報を取得する第1取得部と、
     前記車両の周囲環境に関する周囲環境情報を取得する第2取得部と、
     前記操舵手段及び前記ブレーキ手段を制御する制御部と、を備え、
     前記制御部は、
     前記ブレーキ操作情報及び前記周囲環境情報に基づき、前記ブレーキ手段を制御して車両を制動する通常ブレーキと、前記ブレーキ手段とともに前記操舵手段を制御して車両を制動する効率ブレーキのいずれかを選択する、ブレーキシステム。
  18.  前記周囲環境情報には、後方車両との車間距離及び相対速度をあらわす後方車両情報が含まれ、
     前記制御部は、
     前記ブレーキ操作情報及び前記後方車両情報に基づき、前記通常ブレーキと前記効率ブレーキのいずれかを選択する、請求項17に記載のブレーキシステム。
  19.  前記周囲環境情報には、路面状態に関する路面関連情報が含まれ、
     前記制御部は、
     前記ブレーキ操作情報及び前記路面関連情報に基づき、前記通常ブレーキと前記効率ブレーキのいずれかを選択する、請求項17に記載のブレーキシステム。
  20.  前記制御部は、
     前記効率ブレーキを選択した場合には、前記一対の車輪に対する制動力が低減されるように前記ブレーキ手段を制御するとともに、前記一対の車輪を車両上面から見て略ハの字になるように前記操舵手段を制御する、請求項17から19のいずれか一項に記載のブレーキシステム。
  21.  ブレーキの作動状況を外部に報知する報知手段をさらに備える、請求項17から19のいずれか一項に記載のブレーキシステム。
  22.  前記報知手段は、作動中のブレーキの種類に応じて異なる態様で報知する、請求項21に記載のブレーキシステム。
  23.  車両の左右に略対称に位置する少なくとも一対の車輪と、
     前記一対の車輪それぞれの操舵角を個別に制御することのできる操舵手段と、
     前記車両の進行方向の変化を検知するセンサと、
     各々の車輪の操舵角が、前記進行方向の変化に応じて設定される角度になるように、前記操舵手段を制御する制御部を備えた、効率ブレーキシステム。
  24.  前記センサは、さらに前記車両の進行方向の速度を検知し、
     前記制御部は、前記車両の速度が基準速度を超えた場合に、各々の車輪の操舵角が、前記進行方向の変化に応じて設定される角度になるように、前記操舵手段を制御する、請求項23に記載の効率ブレーキシステム。
  25.  前記制御部は、前記操舵手段を制御する際に、外側に位置する車輪の操舵角が、内側に位置する車輪の操舵角よりも大きくなるように設定する、請求項24に記載の効率ブレーキシステム。
  26.  前記制御部は、前記操舵手段を制御する際に、内側に位置する車輪の操舵角を変えずに、外側に位置する車輪の操舵角を変えるように設定する、請求項24に記載の効率ブレーキシステム。
     
PCT/JP2023/037542 2022-10-31 2023-10-17 効率ブレーキシステム WO2024095761A1 (ja)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2022174994 2022-10-31
JP2022-174994 2022-10-31
JP2022-181942 2022-11-14
JP2022181942A JP2024066362A (ja) 2022-10-31 2022-11-14 効率ブレーキシステム
JP2022185687A JP2024066369A (ja) 2022-10-31 2022-11-21 ブレーキシステム
JP2022-185687 2022-11-21
JP2022-199548 2022-12-14
JP2022199548A JP2024066374A (ja) 2022-10-31 2022-12-14 効率ブレーキシステム
JP2023-018712 2023-02-09
JP2023018712A JP2024066389A (ja) 2022-10-31 2023-02-09 効率ブレーキシステム

Publications (1)

Publication Number Publication Date
WO2024095761A1 true WO2024095761A1 (ja) 2024-05-10

Family

ID=90930351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037542 WO2024095761A1 (ja) 2022-10-31 2023-10-17 効率ブレーキシステム

Country Status (1)

Country Link
WO (1) WO2024095761A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145247A (ja) * 1987-11-30 1989-06-07 Honda Motor Co Ltd エアスポイラ用ランプ装置
JPH037669A (ja) * 1989-06-02 1991-01-14 Sumitomo Electric Ind Ltd スキッドコントロールシステム
JPH0558320A (ja) * 1991-08-29 1993-03-09 Mazda Motor Corp 車両の後輪操舵装置
JPH0776235A (ja) * 1993-07-16 1995-03-20 Toyota Motor Corp 車両用灯火制御装置
JPH09142203A (ja) * 1995-11-17 1997-06-03 Aisin Seiki Co Ltd 自動車用追突警報装置
JP2005350011A (ja) * 2004-06-14 2005-12-22 Fuji Heavy Ind Ltd 車両の操舵装置および車両の操舵方法
WO2006114977A1 (ja) * 2005-04-20 2006-11-02 Equos Research Co., Ltd. 制御装置、及び、車両
JP2007145253A (ja) * 2005-11-29 2007-06-14 Equos Research Co Ltd 制御装置及び車両
JP2007161166A (ja) * 2005-12-15 2007-06-28 Equos Research Co Ltd 車両
JP2013220664A (ja) * 2012-04-12 2013-10-28 Jtekt Corp 後輪操舵装置
JP2019171905A (ja) * 2018-03-27 2019-10-10 Ntn株式会社 ステアリングシステムおよびこれを備えた車両
JP2019171907A (ja) * 2018-03-27 2019-10-10 Ntn株式会社 ステアリングシステムおよびこれを備えた車両
JP2020145874A (ja) * 2019-03-07 2020-09-10 三菱自動車工業株式会社 電動車両の回生ブレーキ装置
JP2022122068A (ja) * 2021-02-09 2022-08-22 株式会社ジェイテクト 舵角制御装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145247A (ja) * 1987-11-30 1989-06-07 Honda Motor Co Ltd エアスポイラ用ランプ装置
JPH037669A (ja) * 1989-06-02 1991-01-14 Sumitomo Electric Ind Ltd スキッドコントロールシステム
JPH0558320A (ja) * 1991-08-29 1993-03-09 Mazda Motor Corp 車両の後輪操舵装置
JPH0776235A (ja) * 1993-07-16 1995-03-20 Toyota Motor Corp 車両用灯火制御装置
JPH09142203A (ja) * 1995-11-17 1997-06-03 Aisin Seiki Co Ltd 自動車用追突警報装置
JP2005350011A (ja) * 2004-06-14 2005-12-22 Fuji Heavy Ind Ltd 車両の操舵装置および車両の操舵方法
WO2006114977A1 (ja) * 2005-04-20 2006-11-02 Equos Research Co., Ltd. 制御装置、及び、車両
JP2007145253A (ja) * 2005-11-29 2007-06-14 Equos Research Co Ltd 制御装置及び車両
JP2007161166A (ja) * 2005-12-15 2007-06-28 Equos Research Co Ltd 車両
JP2013220664A (ja) * 2012-04-12 2013-10-28 Jtekt Corp 後輪操舵装置
JP2019171905A (ja) * 2018-03-27 2019-10-10 Ntn株式会社 ステアリングシステムおよびこれを備えた車両
JP2019171907A (ja) * 2018-03-27 2019-10-10 Ntn株式会社 ステアリングシステムおよびこれを備えた車両
JP2020145874A (ja) * 2019-03-07 2020-09-10 三菱自動車工業株式会社 電動車両の回生ブレーキ装置
JP2022122068A (ja) * 2021-02-09 2022-08-22 株式会社ジェイテクト 舵角制御装置

Similar Documents

Publication Publication Date Title
KR101081777B1 (ko) 사고로 인한 피해를 줄이기 위한 방법 및 장치
JP4507976B2 (ja) 車両用走行制御装置
JP4705087B2 (ja) 車両減速の自動作動方法及びその装置
JP3927265B2 (ja) 車両の自動制動制御装置
JP3025261B2 (ja) 自動車ストップランプの操作信号の発生方法および装置
US20090134987A1 (en) Motor Vehicle Having a Rear-end Impact Warning Device
CN100545015C (zh) 车辆制动控制装置
CN109969116B (zh) 一种用于车辆的防撞方法和系统
US8095277B2 (en) Method for determining a direction of travel in a motor vehicle
KR102175663B1 (ko) 주행 안정성을 조절하기 위한 방법
JP2005035535A (ja) 低速衝突回避システム
WO2007023667A1 (ja) 自動制動制御装置
US9393959B2 (en) Method and control unit for operating a dynamics control system of a vehicle as well as a control system for dynamics control of a vehicle using surroundings sensor data
JP2008519725A (ja) 衝突回避システムを備えた車両の制御方法及びこの方法を実行する装置
WO2011121700A1 (ja) 車両制御装置
JP2010173523A (ja) フロントエンジン・フロントドライブ車両用駆動制御装置
US20060220908A1 (en) Method and device for supporting the driver of a vehicle during an emergency braking
WO2024095761A1 (ja) 効率ブレーキシステム
CN102556044A (zh) 一种车辆快速泄气平稳制动方法及系统
JP7259217B2 (ja) 4輪駆動車の制御装置
JP7586033B2 (ja) 車両用衝突回避支援装置及び車両用衝突回避支援プログラム
JP7347457B2 (ja) 運転支援装置及び運転支援方法
JP2024066374A (ja) 効率ブレーキシステム
JP4023340B2 (ja) 車輌の衝突防止装置
JP3872035B2 (ja) 車両の走行安全装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885523

Country of ref document: EP

Kind code of ref document: A1