WO2024095620A1 - Surface emitting laser - Google Patents
Surface emitting laser Download PDFInfo
- Publication number
- WO2024095620A1 WO2024095620A1 PCT/JP2023/033470 JP2023033470W WO2024095620A1 WO 2024095620 A1 WO2024095620 A1 WO 2024095620A1 JP 2023033470 W JP2023033470 W JP 2023033470W WO 2024095620 A1 WO2024095620 A1 WO 2024095620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- emitting laser
- region
- transverse mode
- mode adjustment
- present technology
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
Definitions
- the technology disclosed herein (hereinafter also referred to as “the technology”) relates to a surface-emitting laser.
- VCSEL vertical-cavity surface-emitting laser
- Some conventional surface-emitting lasers use a concave mirror as the first reflector and have a transverse mode adjustment region that absorbs light or disturbs the phase to cause loss in the transverse mode (see, for example, Patent Document 1).
- the conditions for transverse mode adjustment are determined only by the area of the transverse mode adjustment region, etc.
- the main objective of this technology is to provide a surface-emitting laser that can impart the desired loss to the transverse mode.
- the present technology comprises an active layer and a first structure having a concave mirror disposed on one side of the active layer; a second structure having a reflector disposed on the other side of the active layer; Equipped with a transverse mode adjustment region is provided in the first structure and/or the second structure; the transverse mode adjustment region has at least the first region of the first and second regions, when a region surrounding a light emitting region of the active layer in a plan view is defined as a first region and a region surrounded by the first region is defined as a second region,
- the transverse mode adjustment region has only the first region of the first and second regions, the shortest distance from the center of gravity of the transverse mode adjustment region to the inner edge of the first region is defined as D S and the longest distance is defined as D L ;
- D S the longest distance from the areal center of gravity of the transverse mode adjustment region to the inner edge of the first region and the outer edge of the second region
- a current confinement region that sets the light emitting region may be provided in the first structure and/or the second structure.
- the relationship 1 ⁇ D L /D S ⁇ 6 may be satisfied.
- the relationship 1 ⁇ D L /D S ⁇ 3 may be satisfied. The following may hold: 0.5 ⁇ D S / ⁇ 6, and 0.5 ⁇ D L / ⁇ 12.
- ⁇ ⁇ 0 [(1+(L m /z) 2 ] 1/2
- L m Vertical distance from the beam waist to the transverse mode adjustment region
- n Refractive index of the medium
- ⁇ 0 Oscillation wavelength of the surface emitting laser 1 ⁇ D S / ⁇ 3 and 1 ⁇ D L / ⁇ 12 may be satisfied.
- ⁇ ⁇ 0 [(1+(L m /z) 2 ] 1/2
- L m Vertical distance from the beam waist to the transverse mode adjustment region
- n Refractive index of the medium
- ⁇ 0 Oscillation wavelength of the surface emitting laser 0.5 ⁇ D S / ⁇ 6 and 1 ⁇ D L / ⁇ 6 may be satisfied.
- the second structure may have an electrode arranged on the other side of the active layer, and the electrode may have the transverse mode adjustment region.
- the first structure may include an electrode disposed on the one side of the active layer, the electrode including the transverse mode tuning region.
- the concave mirror may include the transverse mode adjustment region.
- the reflector may have the transverse mode adjustment region.
- the second structure may have the transverse mode adjustment region on a side of the reflector opposite to the active layer side.
- the first structure may have the transverse mode adjustment region on a side of the concave mirror opposite to the active layer side.
- the first structure may have the transverse mode adjustment region between the concave mirror and the active layer.
- the second structure may have the transverse mode adjustment region between the reflector and the active layer.
- the current confinement region may include the transverse mode adjustment region.
- the second structure may have an insulating film disposed on the other side of the active layer, the insulating film having the transverse mode adjustment region.
- the first structure may include a substrate disposed between the concave mirror and the active layer, and an intermediate layer disposed between the concave mirror and the substrate, the intermediate layer having the transverse mode adjustment region.
- the first region and/or the second region may include a plurality of microstructures.
- the transverse mode adjustment region may be made of any one of a metal material, an alloy material, a dielectric
- 1 is a cross-sectional view of a surface-emitting laser according to Example 1 of an embodiment of the present technology.
- 2 is a plan view of a transverse mode adjustment region of the surface emitting laser of FIG. 1.
- 6A and 6B are cross-sectional views illustrating steps in an example of a method for manufacturing the surface-emitting laser of FIG.
- FIG. 7A and 7B are cross-sectional views illustrating steps in an example of a method for manufacturing the surface-emitting laser of FIG. 8A and 8B are cross-sectional views illustrating steps in an example of a method for manufacturing the surface-emitting laser of FIG. 9A and 9B are cross-sectional views illustrating steps of an example of a method for manufacturing the surface-emitting laser of FIG. 2A to 2C are cross-sectional views of steps in an example of a method for manufacturing the surface-emitting laser of FIG. 1 .
- Fig. 11A is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 2 of an embodiment of the present technology
- Fig. 11A is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 2 of an embodiment of the present technology
- Fig. 11A is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 2 of an embodiment of the
- FIG. 11B is a graph showing a relationship between a radial position of light and a mode loss when the inner edge shape of the transverse mode adjustment region is substantially circular and polygonal.
- Fig. 12A is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 3 of an embodiment of the present technology.
- Fig. 12B is a graph showing a relationship between a radial position of light and a mode loss when the inner edge shape of the transverse mode adjustment region is substantially circular and star-shaped.
- Fig. 13A is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 4 of an embodiment of the present technology.
- FIG. 12B is a graph showing a relationship between a radial position of light and a mode loss when the inner edge shape of the transverse mode adjustment region is substantially circular and when the inner edge shape is rose-shaped.
- 13 is a plan view of a transverse mode adjustment region of a surface emitting laser according to Example 5 of an embodiment of the present technology.
- FIG. 13 is a plan view of a transverse mode adjustment region of a surface emitting laser according to Example 6 of an embodiment of the present technology.
- FIG. FIG. 13 is a plan view of a transverse mode adjustment region of a surface emitting laser according to Example 7 of an embodiment of the present technology.
- FIG. 13 is a cross-sectional view of a surface-emitting laser according to Example 8 of an embodiment of the present technology.
- FIG. 18 is a flowchart for explaining an example of a method for manufacturing the surface emitting laser of FIG. 17 .
- 19A and 19B are cross-sectional views illustrating steps in an example of a method for manufacturing the surface-emitting laser of FIG. 20A and 20B are cross-sectional views illustrating steps in an example of a method for manufacturing the surface-emitting laser of FIG. 21A and 21B are cross-sectional views illustrating each process of an example of a method for manufacturing the surface-emitting laser of FIG. 22A and 22B are cross-sectional views illustrating steps in an example of a method for manufacturing the surface-emitting laser of FIG.
- FIG. 18A to 18C are cross-sectional views of steps in an example of a method for manufacturing the surface-emitting laser of FIG. 17.
- FIG. 13 is a cross-sectional view of a surface-emitting laser according to Example 9 of an embodiment of the present technology.
- FIG. 13 is a cross-sectional view of a surface-emitting laser according to a tenth example of an embodiment of the present technology.
- 26 is a flowchart for explaining an example of a method for manufacturing the surface emitting laser of FIG. 25 .
- 27A and 27B are cross-sectional views illustrating steps in an example of a method for manufacturing the surface-emitting laser of FIG. FIG.
- FIG. 13 is a cross-sectional view of a surface-emitting laser according to an eleventh example of an embodiment of the present technology.
- FIG. 21 is a cross-sectional view of a surface-emitting laser according to Example 12 of an embodiment of the present technology.
- 30 is a flowchart for explaining an example of a method for manufacturing the surface emitting laser of FIG. 29 .
- 31A and 31B are cross-sectional views illustrating each step of an example of a method for manufacturing the surface-emitting laser of FIG.
- FIG. 23 is a cross-sectional view of a surface-emitting laser according to Example 13 of an embodiment of the present technology.
- 33 is a flowchart for explaining an example of a method for manufacturing the surface emitting laser of FIG. 32.
- FIG. 21 is a cross-sectional view of a surface-emitting laser according to Example 14 of an embodiment of the present technology. 35 is a flowchart for explaining an example of a method for manufacturing the surface emitting laser of FIG. 34.
- FIG. 21 is a cross-sectional view of a surface-emitting laser according to Example 15 of an embodiment of the present technology.
- 13 is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 16 of an embodiment of the present technology.
- FIG. FIG. 21 is a cross-sectional view of a surface-emitting laser according to Example 17 of an embodiment of the present technology.
- Fig. 40A is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 20 of an embodiment of the present technology.
- Fig. 40B is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 21 of an embodiment of the present technology.
- 41A and 41B are plan views of a transverse mode adjustment region of a surface-emitting laser according to Example 22 and Example 23 of an embodiment of the present technology, respectively.
- Fig. 40A is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 20 of an embodiment of the present technology.
- Fig. 40B is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 21 of an embodiment of the present technology.
- 41A and 41B are plan views of a transverse mode adjustment region of a surface-emitting laser according to Example 22 and Example 23 of an embodiment of the present technology, respectively.
- Fig. 42A is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 24 of an embodiment of the present technology.
- Fig. 42B is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 25 of an embodiment of the present technology.
- 43A and 43B are plan views of a transverse mode adjustment region of a surface-emitting laser according to Example 26 and Example 27 of an embodiment of the present technology, respectively.
- Fig. 44A is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 28 of an embodiment of the present technology.
- FIG. 43B is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 29 of an embodiment of the present technology.
- Fig. 45A is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 30 of an embodiment of the present technology.
- Fig. 43B is a plan view of a transverse mode adjustment region of a surface-emitting laser according to Example 31 of an embodiment of the present technology.
- 46A and 46B are plan views of a transverse mode adjustment region of a surface-emitting laser according to Example 32 and Example 33 of an embodiment of the present technology, respectively.
- FIG. 13 is a cross-sectional view of a surface-emitting laser according to Example 34 of an embodiment of the present technology.
- FIG. 1 is a diagram showing an example of application of a surface emitting laser according to the present technology to a distance measuring device
- 1 is a block diagram showing an example of a schematic configuration of a vehicle control system
- FIG. 2 is an explanatory diagram showing an example of an installation position of a distance measuring device.
- Example 10 Surface-emitting laser according to Example 10 of an embodiment of the present technology 11.
- Surface-emitting laser according to Example 11 of an embodiment of the present technology Surface-emitting laser according to Example 12 of an embodiment of the present technology 13.
- Surface-emitting laser according to Example 13 of an embodiment of the present technology Surface-emitting laser according to Example 14 of an embodiment of the present technology 15.
- Surface-emitting laser 19 according to Example 18 of one embodiment of the present technology Surface-emitting laser 20 according to Example 19 of one embodiment of the present technology.
- Surface-emitting laser 21 according to Example 21 of one embodiment of the present technology.
- Surface-emitting laser 22 according to Example 22 of one embodiment of the present technology.
- Surface-emitting laser 23 according to Example 23 of one embodiment of the present technology.
- Surface-emitting laser 24 according to Example 24 of one embodiment of the present technology.
- Surface-emitting laser 25 according to Example 25 of one embodiment of the present technology.
- Surface-emitting laser 26 according to Example 26 of one embodiment of the present technology.
- Surface-emitting laser 27 according to Example 27 of one embodiment of the present technology.
- Surface-emitting laser 28 according to Example 28 of one embodiment of the present technology.
- Surface-emitting laser 29 according to Example 29 of one embodiment of the present technology.
- Surface-emitting laser 30 according to Example 30 of one embodiment of the present technology.
- the mode loss effect region as a transverse mode adjustment region is defined as a region that acts to increase or decrease the loss of the oscillation mode by absorbing light or disturbing the phase (see, for example, International Publication No. 2018/083877).
- the condition for transverse mode adjustment is to satisfy 0.01 ⁇ S1/(S1+S2) ⁇ 0.7.
- the inventors discovered that while the manner of laser oscillation is roughly determined by the size of the area, in order to more appropriately adjust the transverse mode, it is necessary to control the distance to give the desired loss to the transverse mode. Specifically, the inventors discovered that the transverse beam profile of a surface-emitting laser is generally circular or nearly circular, and that the effect (degree) of loss on the transverse mode is determined by the length of the distance from the center of gravity of the beam intensity to the inside of the mode loss effect region.
- the inventors developed a surface-emitting laser according to this technology that can impart the desired loss to the transverse mode.
- the upper side in the cross-sectional view of FIG. 1 and the like will be referred to as the upper side and the lower side as the lower side.
- FIG. 1 is a cross-sectional view of a surface-emitting laser according to a first embodiment of the present disclosure
- Fig. 2 is a plan view of a transverse mode adjustment region of the surface-emitting laser of Fig. 1 .
- the surface-emitting laser 11 is a vertical-cavity surface-emitting laser (VCSEL), as described in detail below.
- VCSEL vertical-cavity surface-emitting laser
- the surface-emitting laser 11 includes an active layer 101, a first structure ST1 having a concave mirror 102 arranged on one side (lower side) of the active layer 101, and a second structure ST2 having a reflecting mirror 103 arranged on the other side (upper side) of the active layer 101.
- the surface-emitting laser 11 has a vertical resonator structure in which the active layer 101 is disposed between a concave mirror 102 and a reflecting mirror 103 that are stacked on top of each other.
- the first structure ST1 further includes, as an example, a substrate 104 disposed between the active layer 101 and the concave mirror 102.
- the substrate 104 is provided with a cutout-shaped electrode installation portion 104b.
- a cathode electrode 109 is provided on the electrode installation portion 104b.
- the second structure ST2 further includes a cladding layer 105 disposed between the active layer 101 and the reflector 103.
- the second structure ST2 further includes a transparent conductive film 106 disposed between the cladding layer 105 and the reflector 103, and a ring-shaped insulating film 107 provided on the cladding layer 105 so as to surround the center of the transparent conductive film 106.
- the outer periphery of the transparent conductive film 106 is located on the inner periphery of the insulating film 107.
- the second structure ST2 further includes a ring-shaped anode electrode 108 provided across the transparent conductive film 106 and the insulating film 107 so as to surround the light-emitting area LA in a plan view. That is, the anode electrode 108 is disposed on the other side (upper side) of the active layer 101. The anode electrode 108 and a portion of the transparent conductive film 106 corresponding to the opening 108a of the anode electrode 108 are covered by the reflector 103.
- the active layer 101, the cladding layer 105, and the peripheral region of the upper part of the substrate 104 form an ion implantation region IIA as a current confinement region.
- the ion implantation region IIA defines the light-emitting region LA (current injection region) of the active layer 101.
- the first structure ST1 and/or the second structure ST2 are provided with a transverse mode adjustment area TMAA (Transverse Mode Adjustment Area).
- TMAA Transverse Mode Adjustment Area
- the transverse mode adjustment area TMAA is provided in the anode electrode 108.
- the cavity length of the surface-emitting laser 11, i.e., the distance between the concave mirror 102 and the reflector 103, is preferably 50 ⁇ m or less. If the cavity length is made 50 ⁇ m or more, there are disadvantages such as increased optical loss in the substrate 104 (e.g., a GaN substrate) and a smaller longitudinal mode spacing that makes mode hopping more likely to occur.
- the substrate 104 e.g., a GaN substrate
- the active layer 101 has, for example, a five-fold multiple quantum well structure in which In 0.04 Ga 0.96 N layers (barrier layers) and In 0.16 Ga 0.84 N layers (well layers) are stacked.
- the active layer 101 is also called a "light emitting layer.”
- the substrate 104 is an n-type semiconductor substrate, for example an n-GaN substrate.
- the substrate 104 has a convex structure 104a corresponding to the concave mirror 102 on the surface (lower surface) facing the concave mirror 102.
- the concave mirror 102 has a positive power and can reflect light from the active layer 101 and focus it near the active layer 101. This makes it possible to obtain a gain required for laser oscillation with high efficiency.
- FIG. 1 and other figures show reflected light RL, which is light from the active layer 101 and reflected by the concave mirror 102.
- the distance between the active layer 101 and the concave mirror 102 and the radius of curvature of the concave mirror 102 are set so that the beam waist of the reflected light RL is located within the active layer 101.
- the reflectance of concave mirror 102 is set to be slightly higher than that of reflecting mirror 103.
- reflecting mirror 103 is the reflecting mirror on the emission side.
- the reflectance of concave mirror 102 may be set to be slightly higher than that of reflecting mirror 103, and concave mirror 102 may be used as the reflecting mirror on the emission side.
- the concave mirror 102 is provided along the convex structure 104a of the substrate 104.
- the concave mirror 102 has a shape that follows the convex structure 104a.
- the concave mirror 102 is, for example, a dielectric multilayer reflector made of, for example, Ta2O5 / SiO2 , SiO2 /SiN, or SiO2 / Nb2O5 .
- the cathode electrode 109 is made of at least one metal (including alloy) selected from the group consisting of Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn, and In.
- the cathode electrode 109 has a laminated structure, it is made of materials such as Ti/Au, Ti/Al, Ti/Al/Au, Ti/Pt/Au, Ni/Au, Ni/Au/Pt, Ni/Pt, Pd/Pt, Ag/Pd, etc.
- the cathode electrode 109 is connected to the cathode (negative electrode) of the laser driver.
- the reflecting mirror 103 includes, as an example, a plane mirror.
- the reflecting mirror 103 has a stepped structure in which a central portion that substantially functions as a plane mirror is disposed within the opening 108a of the anode electrode 108, and a peripheral portion that does not substantially function as a plane mirror is disposed on the anode electrode 108.
- the reflecting mirror 103 may include a concave mirror.
- the reflecting mirror 103 is made of, for example, a dielectric multilayer film reflecting mirror.
- the dielectric multilayer film reflecting mirror is made of, for example, Ta2O5 / SiO2 , SiN/ SiO2 , or the like.
- the cladding layer 105 is a p-type cladding layer, and is made of, for example, a p-GaN layer.
- the transparent conductive film 106 functions as a buffer layer that prevents leakage while increasing the efficiency of hole injection into the active layer 101.
- the transparent conductive film 106 is made of, for example, ITO, ITiO, AZO, ZnO, SnO, SnO2 , SnO3 , TiO, TiO2 , graphene, or the like.
- the insulating film 107 is made of a dielectric material such as SiO 2 , SiN, SiON, etc.
- the insulating film 107 has a function of preventing dielectric breakdown of the element.
- the ion implantation region IIA is formed by implanting a high concentration of ions (e.g., B ++ , etc.).
- the ion implantation region IIA has a higher resistance (lower carrier conductivity) than the non-ion implantation region surrounded by the ion implantation region IIA, and functions as a current confinement region.
- the non-ion implantation region surrounded by the ion implantation region IIA functions as a current passing region.
- the current confinement diameter (aperture diameter) by the ion implantation region IIA can be several ⁇ m (e.g., 4 ⁇ m).
- the ion implantation region IIA is annular.
- the anode electrode 108 is made of at least one metal (including alloy) selected from the group consisting of Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn, and In.
- the anode electrode 108 has a laminated structure, it is made of materials such as Ti/Au, Ti/Al, Ti/Al/Au, Ti/Pt/Au, Ni/Au, Ni/Au/Pt, Ni/Pt, Pd/Pt, Ag/Pd, etc.
- the anode electrode 108 is connected to the anode (positive electrode) of the laser driver.
- the transverse mode adjustment region TMAA is provided in the anode electrode 108 as an example.
- the region surrounding the light emitting region LA (current injection region) of the active layer 101 in a plan view is defined as the first region A1
- the region surrounded by the first region A1 is defined as the second region A2
- the transverse mode adjustment region TMAA has at least one region A1 of the first and second regions A1 and A2.
- the transverse mode adjustment region TMAA has only the first region A1 of the first and second regions A1 and A2.
- the first region A1 functions as a mode loss effect region that gives loss to the transverse mode.
- the inner edge shape of the substantially annular first region A1 i.e., the shape of the opening 108a of the anode electrode 108, is substantially circular (a shape in which the circle is relatively slightly distorted in a direction perpendicular to each other).
- the area center of gravity C of the transverse mode adjustment region TMAA i.e., the center of the first region A1 coincides with the center of the light emitting region LA (see FIG. 2), but it does not have to coincide.
- FIG. 3 is a diagram for explaining the influence of the transverse mode adjustment region TMAA on each mode.
- the transverse mode adjustment region TMAA has a low light transmittance (e.g., 0-50%) in the first region A1 and a high light transmittance (e.g., 50-100%) in the opening AP (including the case where other materials are inserted in the opening AP) of the first region A1, and adjusts the transverse mode appropriately by giving the desired loss to each mode.
- the transverse mode adjustment region TMAA gives almost no mode loss to laser oscillation in a single mode (fundamental mode) transverse mode, and outputs it as is in a single mode.
- the transverse mode adjustment region TMAA gives a large mode loss to laser oscillation in a multimode (higher mode) transverse mode with a larger mode diameter than the single mode, and essentially converts it to a single mode and outputs it.
- the transverse mode adjustment region TMAA has only the first region A1 of the first and second regions A1 and A2
- the shortest distance from the areal center C of the transverse mode adjustment region TMAA to the inner edge of the first region A1 is D S and the longest distance is D L , as shown in Fig. 2
- the transverse mode adjusting region TMAA it is preferable that 1 ⁇ D L /D S ⁇ 10 is satisfied, it is more preferable that 1 ⁇ D L /D S ⁇ 6 is satisfied, it is even more preferable that 1 ⁇ D L /D S ⁇ 3 is satisfied, and it is even more preferable that 1 ⁇ D L /D S ⁇ 2 is satisfied.
- the ion implantation region IIA also formally corresponds to the transverse mode adjusting region, but since the light blocking property of the ion implantation region IIA is much lower than that of the anode electrode 108, the mode loss effect is very small, and the transverse mode adjusting function can be substantially achieved only by the anode electrode 108. That is, the transverse mode adjusting property of the transverse mode adjusting region depends on the light blocking property of the transverse mode adjusting region in addition to the satisfaction of at least one of the above inequalities. The same argument is also valid when the following combination of inequalities is satisfied for the ion implantation region IIA.
- 0.5 ⁇ Ds / ⁇ 6 and 0.5 ⁇ D L / ⁇ 12 hold it is more preferable that 1 ⁇ Ds / ⁇ 6 and 1 ⁇ D L / ⁇ 12 hold, it is even more preferable that 1 ⁇ Ds / ⁇ 6 and 1 ⁇ D L / ⁇ 6 hold, and it is even more preferable that 1 ⁇ Ds / ⁇ 3 and 1 ⁇ D L / ⁇ 6 hold.
- ⁇ ⁇ 0 [(1+(L m /z) 2 ] 1/2
- ⁇ 0 [ ⁇ 0 (LR-L 2 ) 1/2 / ⁇ n] 1/2
- L m Vertical distance from the beam waist to the transverse mode adjustment region (effective distance)
- n refractive index of the medium
- ⁇ 0 oscillation wavelength of the surface-emitting laser L
- resonator length R radius of curvature of the concave mirror
- the beam waist radius ⁇ 0 can also be defined as the distance from the center of the fundamental mode beam to the position where the radiation intensity is 1/ e2 (13.5%) of the maximum value.
- D S has a larger effect on mode loss than D L , and is important in controlling the transverse mode and further in determining the general shape of the transverse beam profile. In other words, it is more important that the value of D S / ⁇ is within an appropriate range.
- the transverse mode adjustment area TMAA it is preferable that 1 ⁇ Ds / ⁇ 3 and 1 ⁇ D L / ⁇ 12 hold, it is more preferable that 1 ⁇ Ds / ⁇ 2.5 and 1 ⁇ D L / ⁇ 12 hold, it is even more preferable that 1.5 ⁇ Ds / ⁇ 2.5 and 1.5 ⁇ D L / ⁇ 12 hold, and it is even more preferable that 2 ⁇ Ds / ⁇ 2.5 and 2 ⁇ D L / ⁇ 12 hold.
- 0.5 ⁇ Ds / ⁇ 6 and 1 ⁇ D L / ⁇ 6 hold it is preferable that 0.5 ⁇ Ds / ⁇ 4 and 1 ⁇ D L / ⁇ 4 hold, it is even more preferable that 0.5 ⁇ Ds / ⁇ 3 and 1 ⁇ D L / ⁇ 3 hold, and it is even more preferable that 0.5 ⁇ Ds / ⁇ 2.5 and 1 ⁇ D L / ⁇ 2.5 hold.
- the transverse mode adjustment area TMAA it is preferable that 1 ⁇ D S / ⁇ 3 and 1 ⁇ D L / ⁇ 6 are satisfied, it is more preferable that 1 ⁇ D S / ⁇ 3 and 1 ⁇ D L / ⁇ 4 are satisfied, it is even more preferable that 1 ⁇ D S / ⁇ 2.5 and 1 ⁇ D L / ⁇ 3 are satisfied, and it is even more preferable that 1 ⁇ D S / ⁇ 2.5 and 1 ⁇ D L / ⁇ 2.5 are satisfied. Furthermore, 1 ⁇ D S / ⁇ and/or 1 ⁇ D L / ⁇ may be satisfied.
- the anode electrode 108 having a substantially circular transverse mode adjustment area TMAA had a three-layer structure of Ti/Pt/Au, with D S / ⁇ being 2.2, D L / ⁇ being 2.25, the current confinement diameter being 4 ⁇ m, the resonator length being 24 ⁇ m, and the radius of curvature of the concave mirror 102 being 80 ⁇ m.
- D S / ⁇ being 2.2
- D L / ⁇ being 2.25
- the current confinement diameter being 4 ⁇ m
- the resonator length being 24 ⁇ m
- the radius of curvature of the concave mirror 102 being 80 ⁇ m.
- the LG00 mode is the fundamental mode
- the LG10 mode, LG12 mode, LG22 mode, LG20 mode, LG01 mode, LG11 mode, LG21 mode, and LG02 mode are higher-order modes.
- the active layer 101 emits light, and the light travels back and forth between the concave mirror 102 and the reflecting mirror 103 while being amplified by the active layer 101 (at this time, the light is reflected by the concave mirror 102 while being focused near the active layer 101, and is reflected by the reflecting mirror 103 as parallel light or weakly diffused light toward the active layer 101), and is emitted as a laser light from the reflecting mirror 103 when the oscillation condition is satisfied.
- a desired loss is given to the transverse mode by the transverse mode adjustment region TMAA, and a single-mode laser light having a desired transverse beam profile is output.
- the current injected into the active layer 101 flows through the substrate 104 and out of the cathode electrode 109 to the cathode side of the laser driver.
- a method for manufacturing the surface-emitting laser 11 will be described below with reference to the flow chart of Fig. 5.
- a plurality of surface-emitting lasers 11 are simultaneously produced on a single wafer (e.g., an n-GaN substrate, hereinafter referred to as "substrate 104" for convenience) that serves as the base material for the substrate 104.
- substrate 104" n-GaN substrate
- the series of surface-emitting lasers 11 are separated from one another to obtain chip-shaped surface-emitting lasers 11 (surface-emitting laser chips).
- the active layer 101 and the cladding layer 105 are laminated on the substrate 104 (see FIG. 6A). Specifically, the active layer 101 and the cladding layer 105 are laminated in this order on the substrate 104 in a growth chamber by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) to generate a laminate.
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- the electrode installation portion 104b is formed (see FIG. 6B). Specifically, a resist pattern is formed on the laminate to cover areas other than the areas where the electrode installation portion 104b is to be formed, and the laminate is etched using the resist pattern as a mask. At this time, etching is continued until the substrate 104 is exposed. As a result, a cutout-shaped electrode installation portion 104b is formed in the laminate.
- an ion implantation region IIA is formed (see FIG. 7A). Specifically, a protective film made of resist, SiO2 , or the like is formed to cover the portion of the laminate other than the portion where the ion implantation region IIA is to be formed, and ions (e.g., B ++ ) are implanted into the laminate from the cladding layer 105 side using the protective film as a mask. At this time, the ion implantation depth is set to reach inside the substrate 104.
- the insulating film 107 is formed (see FIG. 7B). Specifically, first, the insulating film 107 is formed over the entire surface of the laminate by, for example, vacuum deposition, sputtering, or the like. Next, the insulating film 107 other than the insulating film 107 covering the peripheral portion of the cladding layer 105 is removed by photolithography and etching. As a result, a ring-shaped insulating film 107 is formed that covers the peripheral portion of the cladding layer 105.
- the transparent conductive film 106 is formed (see FIG. 8A). Specifically, first, the transparent conductive film 106 is formed over the entire surface of the laminate by, for example, vacuum deposition, sputtering, or the like. Next, the transparent conductive film 106 other than the transparent conductive film 106 covering the center of the first cladding layer 105 and the inner periphery of the insulating film 107 is removed by photolithography and etching. As a result, the transparent conductive film 106 covering the center of the first cladding layer 105 and the inner periphery of the insulating film 107 is formed.
- the anode electrode 108 and the cathode electrode 109 are formed (see FIG. 8B). Specifically, for example, using a lift-off method, the ring-shaped anode electrode 108 is formed to cover the peripheral portion including the outer periphery of the transparent conductive film 106 and the outer periphery of the insulating film 107, and the cathode electrode 109 is formed on the electrode installation portion 104b. At this time, the electrode material is deposited by, for example, a vacuum deposition method, sputtering, etc.
- the reflector 103 is formed (see FIG. 9A). Specifically, first, a dielectric multilayer film, which is the material of the reflector 103, is formed on the entire surface of the laminate by, for example, vacuum deposition, sputtering, or CVD. Next, the dielectric multilayer film other than the dielectric multilayer film that covers the transparent conductive film 106 and the anode electrode 108 is removed by photolithography and etching. As a result, the reflector 103 is formed, which is a dielectric multilayer film reflector that covers the transparent conductive film 106 and the anode electrode 108.
- the convex structure 104a is formed (see FIG. 9B). Specifically, first, a fluid material is patterned on the back surface (lower surface) of the substrate 104. More specifically, first, a fluid material (e.g., photoresist) is formed by photolithography at the location on the back surface of the substrate 104 where the convex structure 104a will be formed. Next, the fluid material is formed into a convex shape by reflow. Specifically, the fluid material is molded into a convex shape (e.g., an approximately hemispherical shape) by reflow at a temperature of 200°C. Etching is performed using the fluid material as a mask to form the convex structure 104a. Specifically, the substrate 104 is dry-etched by photolithography using the fluid material as a mask to form the convex structure 104a (e.g., an approximately hemispherical structure).
- a fluid material e.g., photoresist
- the concave mirror 102 is formed (see FIG. 10). Specifically, the material of the concave mirror 102 (e.g., a dielectric multilayer film) is deposited on the convex structure 104a by, for example, vacuum deposition, sputtering, or CVD. As a result, the concave mirror 102 is formed in a shape that matches the convex structure 104a. This produces a plurality of surface-emitting lasers 11 on a wafer (semiconductor substrate (e.g., n-GaN substrate)).
- a wafer semiconductor substrate (e.g., n-GaN substrate)).
- the series of surface-emitting lasers 11 are separated by dicing to obtain chip-shaped surface-emitting lasers 11 (surface-emitting laser chips).
- the surface-emitting lasers 11 are then mounted in, for example, a CAN package. More specifically, the surface of the surface-emitting laser 11 on the concave mirror 102 side is soldered to the CAN package.
- the surface-emitting laser 11 includes an active layer 101, a first structure ST1 having a concave mirror 102 arranged on one side of the active layer 101, and a second structure ST2 having a reflecting mirror 103 arranged on the other side of the active layer 101.
- a transverse mode adjustment region TMAA is provided in the second structure ST2, and when a region surrounding the light emitting region LA of the active layer 101 in a plan view is defined as a first region A1 and a region surrounded by the first region A1 is defined as a second region A2, the transverse mode adjustment region TMAA has at least the first region A1 of the first and second regions A1 and A2.
- the transverse mode adjustment region TMAA has only the first region A1 of the first and second regions A1 and A2, and the shortest distance from the areal center of gravity of the transverse mode adjustment region TMAA to the inner edge of the first region A1 is defined as D S and the longest distance is defined as D L , 1 ⁇ D L /D S ⁇ 10 is satisfied.
- the surface-emitting laser 11 can provide a surface-emitting laser that can impart a desired loss to the transverse mode. By imparting a desired loss to the transverse mode, a single transverse mode output of only the fundamental mode becomes possible.
- the surface-emitting laser 11 has a gentle radial loss distribution, improving tolerance to manufacturing errors and improving yields.
- the outer peripheral length of the transverse mode adjustment area TMAA included in the anode electrode 108 can be made relatively long, making the lift-off process easier and improving yields.
- the anode electrode 108 including the transverse mode adjustment area TMAA, is made of metal, which contributes more to mode loss than semiconductors or dielectrics, and provides high mode controllability.
- the material for the anode electrode 108 including the transverse mode adjustment area TMAA, it is possible to make it function as a heat sink and improve heat dissipation.
- the transverse mode adjustment region TMAA can also be used for wavelength control and polarization control by using surface plasmons that may exist on the metal surface.
- surface plasmons that may exist on the metal surface.
- D S ⁇ D L the surface area of the metal surface is larger than that of a circular aperture, and therefore stronger surface plasmons can be expected.
- the transverse mode adjustment region TMAA is included in the anode electrode 108, the transverse mode adjustment region TMAA can be formed by the same process as in the conventional method.
- the inner diameter of the anode electrode 108 can be reduced (the surface area can be increased) to reduce the internal resistance, thereby improving the IV characteristics (current-voltage characteristics).
- Fig. 11A is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 12 according to Example 2 of an embodiment of the present technology.
- Fig. 11B is a graph showing the relationship between the radial position of light and the mode loss when the inner edge shape of the transverse mode adjustment area TMAA is substantially circular and polygonal.
- the surface-emitting laser 12 has a configuration similar to that of the surface-emitting laser 11 according to the first embodiment, except that the inner edge shape of the transverse mode adjustment area TMAA (the shape of the opening 108a of the anode electrode 108) is a regular pentagon.
- the surface-emitting laser 12 has a more gentle radial loss distribution than the surface-emitting laser 11, in which the inner edge of the transverse mode adjustment area TMAA has a substantially circular shape.
- the surface-emitting laser 12 achieves the same effects as the surface-emitting laser 11 of Example 1, while also improving tolerance to manufacturing errors and yield.
- the anode electrode 108 having a substantially regular pentagonal transverse mode adjustment region TMAA had a three-layer structure of Ti/Pt/Au, with D S / ⁇ being 2.2, D L / ⁇ being 2.7, the current confinement diameter being 4 ⁇ m, the resonator length being 24 ⁇ m, and the curvature radius of the concave mirror 102 being 80 ⁇ m.
- D S / ⁇ being 2.2
- D L / ⁇ being 2.7
- the current confinement diameter being 4 ⁇ m
- the resonator length being 24 ⁇ m
- the curvature radius of the concave mirror 102 being 80 ⁇ m.
- Fig. 12A is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 13 according to Example 3 of an embodiment of the present technology.
- Fig. 12B is a graph showing the relationship between the radial position of light and the mode loss when the inner edge shape of the transverse mode adjustment area TMAA is substantially circular and star-shaped.
- the surface-emitting laser 13 has a configuration similar to that of the surface-emitting laser 11 according to the first embodiment, except that the inner edge shape of the transverse mode adjustment area TMAA (the shape of the opening 108a of the anode electrode 108) is star-shaped.
- the surface-emitting laser 13 has a more gentle radial loss distribution than the surface-emitting laser 11, in which the inner edge of the transverse mode adjustment area TMAA has a substantially circular shape.
- the surface-emitting laser 13 provides the same effects as the surface-emitting laser 11 of Example 1, and also provides improved tolerance to manufacturing errors and improved yield.
- the shape of the inner edge of the transverse mode adjustment region TMAA of the surface-emitting laser 13 is not limited to a star shape, but may be any shape that satisfies the following formula (1) (for example, a shape in which the inner edge of the first region A1 has multiple convex portions that protrude radially toward the outer edge side of the first region A1).
- ⁇ is the radius
- ⁇ is the angle
- n is the number of vertices of the convex shape
- m is a value that determines how many vertices the sides will pass through to line up on a straight line
- k is the rigidity.
- it is an intermediate value between 0 ⁇ k ⁇ 1 it represents a figure intermediate between a circle and a polygon.
- the anode electrode 108 having a star-shaped transverse mode adjustment region TMAA had a three-layer structure of Ti/Pt/Au, with D S / ⁇ being 2.2, D L / ⁇ being 2.3, the current confinement diameter being 4 ⁇ m, the resonator length being 24 ⁇ m, and the curvature radius of the concave mirror 102 being 80 ⁇ m.
- D S / ⁇ being 2.2
- D L / ⁇ being 2.3
- the current confinement diameter being 4 ⁇ m
- the resonator length being 24 ⁇ m
- the curvature radius of the concave mirror 102 being 80 ⁇ m.
- Fig. 13A is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 14 according to Example 4 of an embodiment of the present technology.
- Fig. 13B is a graph showing the relationship between the radial position of light and the mode loss when the inner edge shape of the transverse mode adjustment area TMAA is substantially circular and when it is rose-shaped.
- the surface-emitting laser 14 has a configuration similar to that of the surface-emitting laser 11 according to the first embodiment, except that the inner edge shape of the transverse mode adjustment area TMAA (the shape of the opening 108a of the anode electrode 108) is rose-shaped.
- the surface-emitting laser 14 has a more gentle radial loss distribution than the surface-emitting laser 11, in which the inner edge of the transverse mode adjustment area TMAA has a substantially circular shape.
- the surface-emitting laser 14 achieves the same effects as the surface-emitting laser 11 of Example 1, and also improves tolerance to manufacturing errors and yields.
- the shape of the inner edge of the transverse mode adjustment region TMAA of the surface-emitting laser 13 is not limited to a rose shape, but may be any shape that satisfies the following formula (2) (for example, a shape in which the inner edge of the first region A1 has multiple convex portions that protrude radially toward the outer edge side of the first region A1).
- r is the radius
- ⁇ is the angle
- n is the number of vertices of the convex shape
- d is a variable that gives variation in shape. Additionally, the shape of the figure expressed by formula (2) changes depending on the value of d.
- the anode electrode 108 having a rose-shaped transverse mode adjustment region TMAA had a three-layer structure of Ti/Pt/Au, with D S / ⁇ being 2.2, D L / ⁇ being 2.3, the current confinement diameter being 4 ⁇ m, the resonator length being 24 ⁇ m, and the curvature radius of the concave mirror 102 being 80 ⁇ m.
- D S / ⁇ being 2.2
- D L / ⁇ being 2.3
- the current confinement diameter being 4 ⁇ m
- the resonator length being 24 ⁇ m
- the curvature radius of the concave mirror 102 being 80 ⁇ m.
- FIG. 14 is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 15 according to Example 5 of an embodiment of the present technology.
- the surface-emitting laser 15 has a similar configuration to the surface-emitting laser 11 of Example 1, except that the inner edge shape of the transverse mode adjustment area TMAA (the shape of the opening 108a of the anode electrode 108) is elliptical (a shape formed by relatively distorting a circle in mutually orthogonal directions).
- the surface-emitting laser 15 provides the same effects as the surface-emitting laser 11 of Example 1 and can also perform polarization control.
- the anode electrode 108 having an elliptical transverse mode adjustment region TMAA has a three-layer structure of Ti/Pt/Au, with D S / ⁇ being 2.1, D L / ⁇ being 2.4, the current confinement diameter being 4 ⁇ m, the resonator length being 24 ⁇ m, and the radius of curvature of the concave mirror 102 being 80 ⁇ m.
- D S / ⁇ being 2.1
- D L / ⁇ being 2.4
- the current confinement diameter being 4 ⁇ m
- the resonator length being 24 ⁇ m
- the radius of curvature of the concave mirror 102 being 80 ⁇ m.
- FIG. 15 is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 16 according to Example 6 of an embodiment of the present technology.
- the surface-emitting laser 16 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the transverse mode adjustment area TMAA has first and second areas A1 and A2. As described above, the second area A2 is an area surrounded by the first area A1.
- the first and second regions A1 and A2 function as mode loss effect regions that give loss to the transverse mode.
- the second region A2 is composed of multiple (e.g., three) circular portions separated from each other and arranged inside the annular first region A1, i.e., within the opening A1a of the first region A1.
- the multiple portions constituting the second region A2 are arranged two-dimensionally at a predetermined pitch in a planar view.
- the three portions constituting the second region A2 are located on the three vertices of an equilateral triangle centered on the center of the first region A1. In a planar view, the equilateral triangle surrounds the light-emitting region LA.
- each of the multiple (e.g., three) portions of the second region A2 may have a shape other than a circle, such as an ellipse or polygon.
- the center of the equilateral triangle coincides with the center of the first region A1, but it does not have to coincide.
- the triangle with each portion of the second region A2 as a vertex is not limited to an equilateral triangle, and may be another triangle such as an isosceles triangle.
- the multiple portions constituting the second region A2 may not have a constant arrangement pitch in a planar view.
- the transverse mode adjustment region TMAA has the first and second regions A1 and A2
- the shortest distance from the center of gravity of the transverse mode adjustment region TMAA to the inner edge of the first region A1 and the outer edge of the second region A2 is D S and the longest distance is D L
- the ratio of D S to D L be within a predetermined range in order to properly adjust the transverse mode (to a single mode having a desired transverse beam profile), as shown in Fig. 15. This makes the radial loss distribution gentle, and therefore it is expected that the tolerance to manufacturing errors will be improved and the yield will also be improved.
- the transverse mode adjustment area TMAA it is preferable that 1 ⁇ D L /D S ⁇ 10 holds, it is more preferable that 1 ⁇ D L /D S ⁇ 6 holds, it is even more preferable that 1 ⁇ D L /D S ⁇ 3 holds, and it is even more preferable that 1 ⁇ D L /D S ⁇ 2 holds.
- 0.5 ⁇ Ds / ⁇ 6 and 0.5 ⁇ D L / ⁇ 12 hold it is more preferable that 1 ⁇ Ds / ⁇ 6 and 1 ⁇ D L / ⁇ 12 hold, it is even more preferable that 1 ⁇ Ds / ⁇ 6 and 1 ⁇ D L / ⁇ 6 hold, and it is even more preferable that 1 ⁇ Ds / ⁇ 3 and 1 ⁇ D L / ⁇ 6 hold.
- D S has a larger effect on the mode loss than D L , and is important in determining the general shape of the transverse beam profile. In other words, it is more important that the value of D S / ⁇ is within an appropriate range.
- the transverse mode adjustment area TMAA it is preferable that 1 ⁇ Ds / ⁇ 3 and 1 ⁇ D L / ⁇ 12 hold, it is more preferable that 1 ⁇ Ds / ⁇ 2.5 and 1 ⁇ D L / ⁇ 12 hold, it is even more preferable that 1.5 ⁇ Ds / ⁇ 2.5 and 1.5 ⁇ D L / ⁇ 12 hold, and it is even more preferable that 2 ⁇ Ds / ⁇ 2.5 and 2 ⁇ D L / ⁇ 12 hold.
- 0.5 ⁇ Ds / ⁇ 6 and 1 ⁇ D L / ⁇ 6 hold it is preferable that 0.5 ⁇ Ds / ⁇ 4 and 1 ⁇ D L / ⁇ 4 hold, it is even more preferable that 0.5 ⁇ Ds / ⁇ 3 and 1 ⁇ D L / ⁇ 3 hold, and it is even more preferable that 0.5 ⁇ Ds / ⁇ 2.5 and 1 ⁇ D L / ⁇ 2.5 hold.
- the transverse mode adjustment area TMAA it is preferable that 1 ⁇ D S / ⁇ 3 and 1 ⁇ D L / ⁇ 6 are satisfied, it is more preferable that 1 ⁇ D S / ⁇ 3 and 1 ⁇ D L / ⁇ 4 are satisfied, it is even more preferable that 1 ⁇ D S / ⁇ 2.5 and 1 ⁇ D L / ⁇ 3 are satisfied, and it is even more preferable that 1 ⁇ D S / ⁇ 2.5 and 1 ⁇ D L / ⁇ 2.5 are satisfied. Furthermore, 1 ⁇ D S / ⁇ and/or 1 ⁇ D L / ⁇ may be satisfied.
- the surface-emitting laser 16 has the same effect as the surface-emitting laser 11 of Example 1, and since the transverse mode adjustment area TMAA has the first and second areas A1 and A2, mode control is possible without affecting the IV characteristics, and since it can be designed according to the mode shape to be suppressed, more accurate mode control is possible. In contrast, if a method is used to simply narrow the inner diameter of the anode electrode (ring electrode), for example, the current path will change due to the anode electrode, which may affect the IV characteristics.
- the anode electrode 108 including the transverse mode adjustment region TMAA having the first and second regions A1 and A2 had a three-layer structure of Ti/Pt/Au, with D S / ⁇ being 2.1, D L / ⁇ being 2.4, the current confinement diameter being 4 ⁇ m, the resonator length being 24 ⁇ m, and the radius of curvature of the concave mirror 102 being 80 ⁇ m. As a result, it was possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired single mode).
- FIG. 16 is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 17 according to Example 7 of an embodiment of the present technology.
- the surface-emitting laser 17 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the transverse mode adjustment area TMAA has first and second areas A1 and A2. As described above, the second area A2 is an area surrounded by the first area A1.
- the first and second regions A1 and A2 function as mode loss effect regions that give loss to the transverse mode.
- the annular second region A2 (region approximately similar to the first region A1) is arranged inside the annular first region A1, i.e., within the opening A1a of the first region A1.
- the first and second regions A1 and A2 are arranged concentrically.
- the second region A2 surrounds the light emitting region LA in a planar view. That is, the light emitting region LA is located within the opening A2a of the second region A2 in a planar view. Note that the first and second regions A1 and A2 do not have to be arranged concentrically.
- the area center of gravity C of the transverse mode adjustment region TMAA coincides with the center of the light emitting region LA in a planar view, but it does not have to coincide.
- the second region A2 consists of a single annular region, but may have multiple concentric or heterocentric annular regions (regions approximately similar).
- the transverse mode adjustment region TMAA has the first and second regions A1 and A2
- the shortest distance from the areal center C of the transverse mode adjustment region TMAA to the inner edge of the first region A1 and the outer edge of the second region A2 is D S and the longest distance is D L
- the ratio of D S to D L be within a predetermined range in order to properly adjust the transverse mode (to a single mode having a desired transverse beam profile), as shown in Fig. 16.
- the transverse mode adjustment area TMAA it is preferable that 1 ⁇ D L /D S ⁇ 10 holds, it is more preferable that 1 ⁇ D L /D S ⁇ 6 holds, it is even more preferable that 1 ⁇ D L /D S ⁇ 3 holds, and it is even more preferable that 1 ⁇ D L /D S ⁇ 2 holds.
- 0.5 ⁇ Ds / ⁇ 6 and 0.5 ⁇ D L / ⁇ 12 hold it is more preferable that 1 ⁇ Ds / ⁇ 6 and 1 ⁇ D L / ⁇ 12 hold, it is even more preferable that 1 ⁇ Ds / ⁇ 6 and 1 ⁇ D L / ⁇ 6 hold, and it is even more preferable that 1 ⁇ Ds / ⁇ 3 and 1 ⁇ D L / ⁇ 6 hold.
- D S has a larger effect on the mode loss than D L , and is important in determining the general shape of the transverse beam profile. In other words, it is more important that the value of D S / ⁇ is within an appropriate range.
- the transverse mode adjustment area TMAA it is preferable that 1 ⁇ Ds / ⁇ 3 and 1 ⁇ D L / ⁇ 12 hold, it is more preferable that 1 ⁇ Ds / ⁇ 2.5 and 1 ⁇ D L / ⁇ 12 hold, it is even more preferable that 1.5 ⁇ Ds / ⁇ 2.5 and 1.5 ⁇ D L / ⁇ 12 hold, and it is even more preferable that 2 ⁇ Ds / ⁇ 2.5 and 2 ⁇ D L / ⁇ 12 hold.
- the transverse mode adjustment area TMAA it is preferable that 1 ⁇ D S / ⁇ 3 and 1 ⁇ D L / ⁇ 6 are satisfied, it is more preferable that 1 ⁇ D S / ⁇ 3 and 1 ⁇ D L / ⁇ 4 are satisfied, it is even more preferable that 1 ⁇ D S / ⁇ 2.5 and 1 ⁇ D L / ⁇ 3 are satisfied, and it is even more preferable that 1 ⁇ D S / ⁇ 2.5 and 1 ⁇ D L / ⁇ 2.5 are satisfied. Furthermore, 1 ⁇ D S / ⁇ and/or 1 ⁇ D L / ⁇ may be satisfied.
- 0.5 ⁇ Ds / ⁇ 6 and 1 ⁇ D L / ⁇ 6 hold it is preferable that 0.5 ⁇ Ds / ⁇ 4 and 1 ⁇ D L / ⁇ 4 hold, it is even more preferable that 0.5 ⁇ Ds / ⁇ 3 and 1 ⁇ D L / ⁇ 3 hold, and it is even more preferable that 0.5 ⁇ Ds / ⁇ 2.5 and 1 ⁇ D L / ⁇ 2.5 hold.
- the surface-emitting laser 17 has the same effect as the surface-emitting laser 11 of Example 1, and since the transverse mode adjustment area TMAA has the first and second areas A1 and A2, mode control is possible without affecting the IV characteristics, and since it can be designed according to the mode shape to be suppressed, more precise mode control is possible.
- the anode electrode 108 including the transverse mode adjustment region TMAA having the first and second regions A1 and A2 had a three-layer structure of Ti/Pt/Au, with D S / ⁇ being 2.1, D L / ⁇ being 2.4, the current confinement diameter being 4 ⁇ m, the resonator length being 24 ⁇ m, and the radius of curvature of the concave mirror 102 being 80 ⁇ m. As a result, it was possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired single mode).
- FIG. 17 is a cross-sectional view of a surface-emitting laser 18 according to Example 8 of an embodiment of the present technology.
- the surface-emitting laser 18 has a configuration generally similar to that of the surface-emitting laser 11 according to the first embodiment, except that the cathode electrode 109 is disposed on one side (lower side) of the active layer 101, and the cathode electrode 109 has a transverse mode adjustment region TMAA.
- the surface-emitting laser 18 does not have an electrode installation portion 104b. In the surface-emitting laser 18, the above-mentioned transverse mode adjustment condition is not satisfied for the anode electrode 108, and the anode electrode 108 does not function as the transverse mode adjustment region TMAA.
- a concave mirror 102 (hereinafter also referred to as the "concave mirror central portion") is provided in the center of the convex structure 104a of the substrate 104, and a cathode electrode 109 (hereinafter also referred to as the “concave mirror peripheral portion”) is provided across the peripheral portion of the convex structure 104a and the flat portion around the peripheral portion.
- the cathode electrode 109 which is the peripheral portion of the concave mirror, has a transverse mode adjustment area TMAA. In other words, the cathode electrode 109 satisfies at least one of the transverse mode adjustment conditions described above.
- a method for manufacturing the surface-emitting laser 18 will be described below with reference to the flow chart of Fig. 18.
- a plurality of surface-emitting lasers 18 are simultaneously produced on a single wafer (e.g., an n-GaN substrate, hereinafter referred to as "substrate 104" for convenience) that serves as the base material for the substrate 104.
- substrate 104" n-GaN substrate
- the series of surface-emitting lasers 18 are separated from one another to obtain chip-shaped surface-emitting lasers 18 (surface-emitting laser chips).
- the active layer 101 and the cladding layer 105 are laminated on the substrate 104 (see FIG. 19A). Specifically, the active layer 101 and the cladding layer 105 are laminated in this order on the substrate 104 in a growth chamber by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) to generate a laminate.
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- an ion implantation region IIA is formed (see FIG. 19B). Specifically, a protective film made of resist, SiO2 , or the like is formed to cover the portion of the laminate other than the portion where the ion implantation region IIA is to be formed, and ions (e.g., B ++ ) are implanted into the laminate from the cladding layer 105 side using the protective film as a mask. At this time, the ion implantation depth is set to reach inside the substrate 104.
- the insulating film 107 is formed (see FIG. 20A). Specifically, first, the insulating film 107 is formed over the entire surface of the laminate by, for example, vacuum deposition, sputtering, or the like. Next, the insulating film 107 other than the insulating film 107 covering the peripheral portion of the cladding layer 105 is removed by photolithography and etching. As a result, a ring-shaped insulating film 107 is formed that covers the peripheral portion of the cladding layer 105.
- the transparent conductive film 106 is formed (see FIG. 20B). Specifically, first, the transparent conductive film 106 is formed over the entire surface of the laminate by, for example, vacuum deposition, sputtering, or the like. Next, the transparent conductive film 106 other than the transparent conductive film 106 covering the center of the first cladding layer 105 and the inner periphery of the insulating film 107 is removed by photolithography and etching. As a result, the transparent conductive film 106 covering the center of the first cladding layer 105 and the inner periphery of the insulating film 107 is formed.
- the anode electrode 108 is formed (see FIG. 21A). Specifically, for example, a lift-off method is used to form the ring-shaped anode electrode 108 that covers the outer periphery of the transparent conductive film 106 and the outer periphery of the insulating film 107.
- the electrode material is deposited by, for example, vacuum deposition, sputtering, etc.
- the reflector 103 is formed (see FIG. 21B). Specifically, a dielectric multilayer film, which is the material of the reflector 103, is formed on the entire surface of the laminate by, for example, vacuum deposition, sputtering, or CVD. As a result, the reflector 103 is formed, which is a dielectric multilayer film reflector that covers the transparent conductive film 106 and the anode electrode 108.
- the convex structure 104a is formed (see FIG. 22A). Specifically, first, a fluid material is patterned on the back surface (lower surface) of the substrate 104. More specifically, first, a fluid material (e.g., photoresist) is formed by photolithography at the location on the back surface of the substrate 104 where the convex structure 104a will be formed. Next, the fluid material is formed into a convex shape by reflow. Specifically, the fluid material is molded into a convex shape (e.g., an approximately hemispherical shape) by reflow at a temperature of 200°C. Etching is performed using the fluid material as a mask to form the convex structure 104a. Specifically, the substrate 104 is dry-etched by photolithography using the fluid material as a mask to form the convex structure 104a (e.g., an approximately hemispherical structure).
- a fluid material e.g., photoresist
- the cathode electrode 109 is formed (see FIG. 22B). Specifically, the cathode electrode 109 is formed so as to cover the peripheral portion of the convex structure 104a and the flat portion around the peripheral portion, for example, using a lift-off method.
- the electrode material is deposited by, for example, vacuum deposition, sputtering, etc.
- the concave mirror 102 is formed (see FIG. 23). Specifically, first, the material of the concave mirror 102 (e.g., a dielectric multilayer film) is formed by, for example, vacuum deposition, sputtering, or CVD so as to cover the cathode electrode 109 and the center of the convex structure 104a. Next, the dielectric multilayer film other than the dielectric multilayer film covering the center of the convex structure 104a is removed by photolithography and etching. As a result, the concave mirror 102 is formed in a shape that imitates the center of the convex structure 104a.
- the material of the concave mirror 102 e.g., a dielectric multilayer film
- the cathode electrode 109 having the transverse mode adjustment region TMAA has a three-layer structure of Ti/Pt/Au, D S / ⁇ is 2.2, D L / ⁇ is 2.25, the current confinement diameter is 4 ⁇ m, the resonator length is 24 ⁇ m, and the curvature radius of the concave mirror 102 is 80 ⁇ m.
- the desired loss can be given to the transverse mode, and the transverse mode can be appropriately ( It was possible to adjust the output to the desired single mode.
- FIG. 24 is a cross-sectional view of a surface-emitting laser 19 according to Example 9 of an embodiment of the present technology.
- the surface-emitting laser 19 has a configuration generally similar to that of the surface-emitting laser 11 according to the first embodiment, except that the ion implantation region IIA serving as a current confinement region has a transverse mode adjustment region TMAA.
- the anode electrode 108 does not satisfy the transverse mode adjustment conditions described above, and does not have a transverse mode adjustment function.
- the transverse mode adjustment region TMAA of the ion implantation region IIA is, for example, approximately annular, and satisfies at least one of the transverse mode adjustment conditions described above.
- the shape of the ion implantation region IIA of the surface-emitting laser 19 may be the same as the shape of the transverse mode adjustment region TMAA of the surface-emitting lasers 12 to 17 according to Examples 2 to 7, and at least one of the transverse mode adjustment conditions may be satisfied.
- the ion implantation region IIA has the transverse mode adjustment region TMAA, so that the transverse mode adjustment region TMAA can be fabricated by the same process as in the conventional method.
- the ion species of the ion implantation region IIA having the transverse mode adjustment region TMAA was B+, D S / ⁇ was 2.2, D L / ⁇ was 2.25, the current confinement diameter was 4 ⁇ m, the resonator length was 24 ⁇ m, and the radius of curvature of the concave mirror 102 was 80 ⁇ m.
- the desired loss could be given to the transverse mode, and the transverse mode could be appropriately adjusted (to the desired single mode).
- FIG. 25 is a cross-sectional view of a surface-emitting laser 20 according to Example 10 of an embodiment of the present technology.
- the surface-emitting laser 20 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the transverse mode adjustment area TMAA has a plurality of protrusions 104a1 (microstructures) provided on the convex structure 104a of the substrate 104.
- the transverse mode adjustment area TMAA is an annular protrusion formation area in which multiple protrusions 104a1 are formed along the circumferential direction on the peripheral portion of the convex structure 104a, which corresponds to the peripheral portion of the concave mirror 102. At least one of the transverse mode adjustment conditions described above is satisfied for this protrusion formation area.
- This protrusion formation area functions as a mode loss effect area.
- the surface emitting laser 20 is manufactured, for example, according to the procedure of the flow chart shown in Fig. 26. Steps S21 to S27 in Fig. 26 are similar to steps S1 to S7 in Fig. 5, respectively.
- a protruding convex structure is formed, which is a convex structure 104a having a plurality of protrusions 104a1 (see FIG. 27A).
- the protruding convex structure is formed by, for example, performing photolithography and etching on the convex structure 104a (see FIG. 9B).
- the concave mirror 102 is formed (see FIG. 27B). Specifically, the material of the concave mirror 102 (e.g., a dielectric multilayer film) is deposited on the protruding convex structure by, for example, vacuum deposition, sputtering, or CVD. As a result, the concave mirror 102 is formed in a shape that matches the protruding convex structure. This produces a plurality of surface-emitting lasers 20 on a wafer (semiconductor substrate (e.g., n-GaN substrate)).
- a wafer semiconductor substrate (e.g., n-GaN substrate)).
- the series of surface-emitting lasers 20 is separated by dicing to obtain chip-shaped surface-emitting lasers 20 (surface-emitting laser chips).
- the surface-emitting lasers 20 are then mounted in, for example, a CAN package. More specifically, the surface of the surface-emitting laser 20 on the concave mirror 102 side is soldered to the CAN package.
- the surface-emitting laser 20 exhibits the same effects as the surface-emitting laser 11 of the first embodiment, and since the transverse mode adjustment region TMAA is provided at the position of the concave mirror 102 where the beam diameter is maximum, the tolerance to manufacturing errors is improved and the yield is improved, and since the transverse mode adjustment region TMAA has a plurality of protrusions 104a1, the adhesion with solder is improved.
- FIG. 28 is a cross-sectional view of a surface-emitting laser 21 according to Example 11 of an embodiment of the present technology.
- the surface-emitting laser 21 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the insulating film 107 has a transverse mode adjustment region TMAA.
- the annular insulating film 107 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
- the surface-emitting laser 21 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser 21 according to the first embodiment.
- the surface-emitting laser 21 has a poorer mode loss effect, it achieves substantially the same effect as the surface-emitting laser 11 according to the first embodiment.
- the material of the insulating film 107 having the transverse mode adjustment region TMAA was SiO2 , D S / ⁇ was 2.2, D L / ⁇ was 2.25, the current confinement diameter was 4 ⁇ m, the resonator length was 24 ⁇ m, and the curvature radius of the concave mirror 102 was 80 ⁇ m.
- the desired loss could be given to the transverse mode, and the transverse mode could be appropriately adjusted (to the desired single mode).
- FIG. 29 is a cross-sectional view of a surface-emitting laser 22 according to Example 12 of an embodiment of the present technology.
- the surface-emitting laser 22 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the metal film 110, which serves as an intermediate layer provided between the substrate 104 and the concave mirror 102, has a transverse mode adjustment area TMAA.
- the metal film 110 preferably has a single-layer or multi-layer configuration including at least one type of metal selected from the group consisting of Au, Ag, Cu, Al, W, Ni, Ti, Pt, Pd, Co, Rh, and Cr.
- the metal film 110 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
- the surface emitting laser 22 is manufactured, for example, according to the procedure of the flow chart shown in Fig. 30. Steps S31 to S38 in Fig. 30 are similar to steps S1 to S8 in Fig. 5, respectively.
- the metal film 110 is formed (see FIG. 31A). Specifically, the metal film 110 is formed on the peripheral portion of the convex structure 104a and on the flat portion around the peripheral portion, for example, by a lift-off method.
- the metal film 110 is formed by, for example, a vacuum deposition method, a sputtering method, or the like.
- the concave mirror 102 is formed (see FIG. 31B).
- the material of the concave mirror 102 e.g., a dielectric multilayer film
- the concave mirror 102 is formed by, for example, vacuum deposition, sputtering, CVD, or the like so as to cover the center of the convex structure 104a and the metal film 110.
- the concave mirror 102 is formed in a shape that imitates the convex structure 104a and the metal film 110. This produces a plurality of surface-emitting lasers 22 on a wafer (semiconductor substrate (e.g., n-GaN substrate)).
- the series of surface-emitting lasers 22 are separated by dicing to obtain chip-shaped surface-emitting lasers 22 (surface-emitting laser chips).
- the surface-emitting lasers 22 are then mounted, for example, in a CAN package. More specifically, the surface of the surface-emitting laser 22 on the concave mirror 102 side is soldered to the CAN package.
- the surface-emitting laser 22 exhibits the same effects as the surface-emitting laser 11 of Example 1, and the metal film 110 serving as an intermediate layer provided between the substrate 104 and the concave mirror 102 has a transverse mode adjustment region TMAA, making it possible to control the mode while maintaining element characteristics such as the beam diameter, IV characteristics, and reliability.
- FIG. 32 is a cross-sectional view of a surface-emitting laser 23 according to Example 13 of an embodiment of the present technology.
- the surface-emitting laser 23 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the metal film 110 provided on the back surface (lower surface) of the concave mirror 102 has a transverse mode adjustment area TMAA.
- the metal film 110 preferably has a single-layer or multi-layer configuration including at least one type of metal selected from the group consisting of Au, Ag, Cu, Al, W, Ni, Ti, Pt, Pd, Co, Rh, and Cr.
- the metal film 110 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
- the surface emitting laser 23 is manufactured, for example, according to the procedure of the flow chart shown in Fig. 33. Steps S41 to S49 in Fig. 33 are similar to steps S1 to S9 in Fig. 5, respectively.
- the metal film 110 is formed (see FIG. 32). Specifically, the metal film 110 is formed on the periphery of the concave mirror 102 by, for example, a lift-off method. The metal film 110 is formed by, for example, a vacuum deposition method, a sputtering method, or the like.
- the surface-emitting laser 23 exhibits the same effects as the surface-emitting laser 11 of Example 1, and since the metal film 110 provided on the rear surface of the concave mirror 102 has a transverse mode adjustment region TMAA, mode control becomes possible while maintaining element characteristics such as beam diameter, IV characteristics, and reliability.
- FIG. 34 is a cross-sectional view of a surface-emitting laser 24 according to Example 14 of an embodiment of the present technology.
- the surface-emitting laser 24 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the metal film 110 provided in an annular shape on the periphery of the reflector 103 has a transverse mode adjustment area TMAA, as shown in FIG. 34.
- the metal film 110 preferably has a single-layer or multi-layer configuration including at least one type of metal selected from the group consisting of Au, Ag, Cu, Al, W, Ni, Ti, Pt, Pd, Co, Rh, and Cr.
- the metal film 110 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
- the surface emitting laser 24 is manufactured, for example, according to the procedure of the flow chart shown in Fig. 35. Steps S51 to S57, S59, and S59.5 in Fig. 35 are similar to steps S1 to S7, S8, and S9 in Fig. 5, respectively.
- the metal film 110 is formed. Specifically, the metal film 110 is formed in a ring shape on the periphery of the reflecting mirror 103 by, for example, a lift-off method.
- the metal film 110 is formed by, for example, a vacuum deposition method, a sputtering method, or the like.
- the surface-emitting laser 24 exhibits the same effects as the surface-emitting laser 11 of Example 1, and since the metal film 110 provided on the periphery of the reflector 103 has the transverse mode adjustment region TMAA, mode control becomes possible while maintaining element characteristics such as the beam diameter, IV characteristics, and reliability.
- FIG. 36 is a cross-sectional view of a surface-emitting laser 25 according to Example 15 of an embodiment of the present technology.
- the surface-emitting laser 25 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the metal film 110 provided in a ring shape in a plan view on the periphery and inner wall surface of the reflector 103 has a transverse mode adjustment area TMAA, as shown in Figure 36.
- the metal film 110 preferably has a single-layer or multi-layer configuration including at least one type of metal selected from the group consisting of Au, Ag, Cu, Al, W, Ni, Ti, Pt, Pd, Co, Rh, and Cr.
- the metal film 110 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
- the surface-emitting laser 25 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser 24 of Example 14.
- the surface-emitting laser 25 exhibits the same effects as the surface-emitting laser 11 of Example 1, and the metal film 110 provided on the peripheral portion and the inner wall surface of the reflector 103 has a transverse mode adjustment region TMAA, making it possible to control the mode while maintaining element characteristics such as the beam diameter, IV characteristics, and reliability.
- FIG. 37 is a cross-sectional view of a surface-emitting laser 26 according to Example 16 of an embodiment of the present technology.
- the transverse mode adjustment region TMAA is provided to surround the light emitting region LA in a plan view (so as not to overlap the light emitting region LA) in order to adjust the transverse mode mainly to a single mode, but in the surface emitting laser 26 shown in FIG. 37, a second region A2, which is a part of the transverse mode adjustment region TMAA, is provided to overlap the light emitting region LA in order to adjust the transverse mode mainly to a multimode.
- the annular first region A1 and the circular second region A2 are arranged concentrically, but they do not have to be arranged concentrically. The size, shape, etc. of the first and second regions A1 and A2 can be changed as appropriate.
- Example 16 (Optical Simulation) In Example 16, D S / ⁇ was 2.1, D L / ⁇ was 2.4, the current confinement diameter was 4 ⁇ m, the resonator length was 24 ⁇ m, and the curvature radius of the concave mirror 102 was 80 ⁇ m. As a result, it was possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired multimode). ⁇ 17.
- a surface emitting laser according to Example 17 of an embodiment of the present technology will be described with reference to the drawings.
- FIG. 38 is a cross-sectional view of a surface-emitting laser 27 according to Example 17 of an embodiment of the present technology.
- the anode electrode 108 and the ion implantation region IIA have a transverse mode adjustment region TMAA.
- the transverse mode adjustability of the ion implantation region IIA is high enough to be disregarded compared to the transverse mode adjustability of the anode electrode 108 (for example, the light blocking property of the anode electrode 108 is not very high).
- the surface-emitting laser 27 can combine multiple transverse mode adjustment areas TMAA to appropriately adjust the transverse mode.
- FIG. 39A is a plan view of a transverse mode adjustment region of a surface-emitting laser 28 according to Example 18 of an embodiment of the present technology.
- the surface-emitting laser 28 has a configuration similar to that of the surface-emitting laser 11 of Example 1, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is triangular.
- the surface-emitting laser 28 provides substantially the same effects as the surface-emitting laser 11 of Example 1.
- FIG. 39B is a plan view of a transverse mode adjustment region of a surface-emitting laser 29 according to Example 19 of an embodiment of the present technology.
- the surface-emitting laser 29 has a configuration similar to that of the surface-emitting laser 11 of Example 1, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is square.
- the surface-emitting laser 29 provides substantially the same effects as the surface-emitting laser 11 of Example 1.
- FIG. 40A is a plan view of a transverse mode adjustment region of a surface-emitting laser 30 according to Example 20 of an embodiment of the present technology.
- the surface-emitting laser 30 has a configuration similar to that of the surface-emitting laser 11 of Example 1, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is a regular hexagon.
- the surface-emitting laser 30 provides substantially the same effects as the surface-emitting laser 11 of Example 1.
- FIG. 40B is a plan view of the transverse mode adjustment region of a surface-emitting laser 31 according to Example 21 of an embodiment of the present technology.
- the surface-emitting laser 31 has a configuration similar to that of the surface-emitting laser 11 of Example 1, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is a regular octagon.
- the surface-emitting laser 31 provides substantially the same effects as the surface-emitting laser 11 of Example 1.
- the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA may be a regular polygon having more sides than a regular octagon.
- FIG. 41A is a plan view of a transverse mode adjustment region of a surface-emitting laser 32 according to Example 22 of an embodiment of the present technology.
- the surface-emitting laser 32 has a configuration similar to that of the surface-emitting laser 15 of Example 5, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is a regular pentagon that has been distorted horizontally.
- the surface-emitting laser 32 provides substantially the same effects as the surface-emitting laser 15 of Example 5.
- FIG. 41B is a plan view of the transverse mode adjustment region of a surface-emitting laser 33 according to Example 23 of an embodiment of the present technology.
- the surface-emitting laser 33 has a configuration similar to that of the surface-emitting laser 15 of Example 5, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is a regular pentagon that has been distorted vertically.
- the surface-emitting laser 32 provides substantially the same effects as the surface-emitting laser 15 of Example 5.
- the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA may be a distorted regular polygon having more sides than a regular octagon.
- FIG. 42A is a plan view of a transverse mode adjustment region of a surface-emitting laser 34 according to Example 24 of an embodiment of the present technology.
- the surface-emitting laser 34 has a similar configuration to the surface-emitting laser 13 of Example 3, except that the inner edge of the first area A1 of the transverse mode adjustment area TMAA has four convex portions that protrude radially.
- the surface-emitting laser 34 provides substantially the same effects as the surface-emitting laser 13 of Example 3.
- FIG. 42B is a plan view of the transverse mode adjustment region of a surface-emitting laser 35 according to Example 25 of an embodiment of the present technology.
- the surface-emitting laser 35 has a similar configuration to the surface-emitting laser 13 of Example 3, except that the inner edge of the first area A1 of the transverse mode adjustment area TMAA has six protrusions that protrude radially.
- the surface-emitting laser 35 provides substantially the same effects as the surface-emitting laser 13 of Example 3.
- the inner edge of the first area A1 of the transverse mode adjustment area TMAA may have seven or more protrusions that protrude radially.
- FIG. 43A is a plan view of the transverse mode adjustment region of a surface-emitting laser 36 according to Example 26 of an embodiment of the present technology.
- the surface-emitting laser 36 has a similar configuration to the surface-emitting laser 16 of Example 6, except that the second region A2 of the transverse mode adjustment area TMAA has four parts (e.g., circular parts) that are separated from one another.
- the four parts that make up the second region A2 are located on the four vertices of a square that surrounds the light-emitting area LA.
- the center of the square coincides with the center of the annular first region A1, but this does not have to be the case.
- the surface-emitting laser 36 provides substantially the same effects as the surface-emitting laser 16 of Example 6.
- FIG. 43A is a plan view of a transverse mode adjustment region of a surface-emitting laser 37 according to Example 27 of an embodiment of the present technology.
- the surface-emitting laser 37 has a similar configuration to the surface-emitting laser 16 of Example 6, except that the second area A2 of the transverse mode adjustment area TMAA has two parts (e.g., circular parts) that are separated from each other.
- the two parts constituting the second area A2 are arranged at positions sandwiching the light-emitting area LA in a planar view.
- the midpoint of the two parts coincides with the center of the annular first area A1, but this does not have to be the case.
- the surface-emitting laser 37 provides substantially the same effects as the surface-emitting laser 16 of Example 6.
- the second area A2 of the transverse mode adjustment area TMAA may have five or more parts that are separated from each other and arranged two-dimensionally.
- FIG. 44A is a plan view of a transverse mode adjustment region of a surface-emitting laser 38 according to Example 28 of an embodiment of the present technology.
- the surface-emitting laser 38 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the second region A2 of the transverse mode adjustment area TMAA is an equilateral triangular frame surrounding the light-emitting area LA in a plan view.
- the center of the second region A2 coincides with the center of the annular first region A1, but they do not have to coincide.
- the surface-emitting laser 38 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
- FIG. 44B is a plan view of the transverse mode adjustment region of a surface-emitting laser 39 according to Example 29 of an embodiment of the present technology.
- the surface-emitting laser 39 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the second region A2 of the transverse mode adjustment area TMAA is a square frame surrounding the light-emitting area LA in a plan view.
- the center of the second region A2 coincides with the center of the annular first region A1, but they do not have to coincide.
- the surface-emitting laser 39 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
- FIG. 45A is a plan view of a transverse mode adjustment region of a surface-emitting laser 40 according to Example 30 of an embodiment of the present technology.
- the surface-emitting laser 40 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the second region A2 of the transverse mode adjustment area TMAA is a pentagonal frame surrounding the light-emitting area LA in a planar view.
- the center of the second region A2 coincides with the center of the annular first region A1, but they do not have to coincide.
- the surface-emitting laser 40 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
- FIG. 45B is a plan view of a transverse mode adjustment region of a surface-emitting laser 41 according to Example 31 of an embodiment of the present technology.
- the surface-emitting laser 41 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the second region A2 of the transverse mode adjustment area TMAA is a hexagonal frame surrounding the light-emitting area LA in a planar view.
- the center of the second region A2 coincides with the center of the annular first region A1, but they do not have to coincide.
- the surface-emitting laser 41 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
- the second area A2 of the transverse mode adjustment area TMAA may be in the shape of a regular polygonal frame having more sides than a regular hexagon.
- FIG. 46A is a plan view of a transverse mode adjustment region of a surface-emitting laser 42 according to Example 32 of an embodiment of the present technology.
- the surface-emitting laser 42 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the inner edge shape of the first region A1 of the transverse mode adjustment area TMAA is elliptical, and the second region A2 is an elliptical frame surrounding the light-emitting area LA in a planar view.
- the center of the second region A2 and the center of the first region A1 coincide with each other, but they do not have to coincide with each other.
- the surface-emitting laser 42 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
- FIG. 46B is a plan view of the transverse mode adjustment region of a surface-emitting laser 43 according to Example 33 of an embodiment of the present technology.
- the surface-emitting laser 43 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the inner edge shape of the second region A2 of the transverse mode adjustment area TMAA is circular, and the second region A2 is an elliptical frame surrounding the light-emitting area LA in a plan view.
- the center of the second region A2 coincides with the center of the annular first region A1, but they do not have to coincide.
- the surface-emitting laser 43 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
- the second region A2 of the transverse mode adjustment region TMAA may have multiple concentric and/or substantially similar portions.
- FIG. 47 is a cross-sectional view of a surface-emitting laser 44 according to Example 34 of an embodiment of the present technology.
- the surface-emitting laser 34 has a configuration generally similar to that of the surface-emitting laser 23 of Example 13, except that a metal film having a transverse mode adjustment region TMAA is provided across the back surface (lower surface) of the concave mirror 102 and the back surface (lower surface) of the substrate 104.
- the metal film having the transverse mode adjustment region TMAA also serves as the cathode electrode 109.
- the metal film serving as the cathode electrode 109 has a transverse mode adjustment region.
- the metal film serving as the cathode electrode 109 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
- the surface emitting laser 34 can be manufactured by a method substantially similar to the method for manufacturing the surface emitting laser 23 according to the thirteenth embodiment.
- the surface-emitting laser 34 exhibits the same effects as the surface-emitting laser 11 of Example 1, and the metal film serving as the cathode electrode 109 provided across the rear surface of the concave mirror 102 and the rear surface of the substrate 104 has a transverse mode adjustment area TMAA, making it possible to control the mode while maintaining element characteristics such as the beam diameter, IV characteristics, and reliability.
- the present technology is not limited to the above-described embodiments, and various modifications are possible.
- the surface-emitting laser according to the above-described embodiments is a GaN-based VCSEL, but the present technology is not limited thereto, and is applicable to all VCSELs made of III-V group compound semiconductors.
- the present technology is also applicable to GaAs-based VCSELs and InP-based VCSELs.
- the inner edge shape of the first region and the inner edge shape and outer edge shape of the second region of the transverse mode adjustment region are not limited to the above examples and can be changed as appropriate.
- the transverse mode tuning region may be made of, for example, a semiconductor material or an organic material.
- the surface-emitting laser according to this technology does not need to have the insulating film 107.
- the current confinement region may be made of an insulating material such as polyimide.
- Parts of the configurations of the surface-emitting lasers in each of the above embodiments may be combined within the limits of not mutually contradicting each other.
- the conductivity types (p-type and n-type) may be interchanged.
- the material, thickness, width, length, shape, size, arrangement, etc. of each component that makes up the surface-emitting laser can be changed as appropriate within the range that allows the surface-emitting laser to function.
- the technology according to the present disclosure can be applied to various products (electronic devices).
- the technology according to the present disclosure may be realized as a device (e.g., a distance measuring device, a shape recognition device, etc.) mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, etc.
- the surface-emitting laser according to this technology can also be used as a light source or the display itself for devices that form or display images using laser light (e.g. laser printers, laser copiers, projectors, head-mounted displays, head-up displays, etc.).
- laser printers e.g. laser printers, laser copiers, projectors, head-mounted displays, head-up displays, etc.
- FIG. 48 shows an example of the schematic configuration of a distance measuring device 1000 (distance measuring device) equipped with a surface emitting laser 11, as an example of electronic equipment related to the present technology.
- the distance measuring device 1000 measures the distance to a subject S using a TOF (Time Of Flight) method.
- the distance measuring device 1000 is equipped with a surface emitting laser 11 as a light source.
- the distance measuring device 1000 is equipped with, for example, the surface emitting laser 11, a light receiving device 125, lenses 117, 130, a signal processing unit 140, a control unit 150, a display unit 160, and a memory unit 170.
- the surface-emitting laser 11 is driven by a laser driver (driver).
- the laser driver has an anode terminal and a cathode terminal that are connected to the anode electrode and cathode electrode of the surface-emitting laser 11 via wiring, respectively.
- the laser driver is configured to include circuit elements such as capacitors and transistors.
- the light receiving device 125 detects the light reflected by the subject S.
- the lens 117 is a collimating lens that converts the light emitted from the surface-emitting laser 11 into parallel light.
- the lens 130 is a focusing lens that collects the light reflected by the subject S and guides it to the light receiving device 125.
- the signal processing unit 140 is a circuit for generating a signal corresponding to the difference between the signal input from the light receiving device 125 and the reference signal input from the control unit 150.
- the control unit 150 is configured to include, for example, a Time to Digital Converter (TDC).
- the reference signal may be a signal input from the control unit 150, or may be an output signal of a detection unit that directly detects the output of the surface emitting laser 11.
- the control unit 150 is, for example, a processor that controls the surface emitting laser 11, the light receiving device 125, the signal processing unit 140, the display unit 160, and the storage unit 170.
- the control unit 150 is a circuit that measures the distance to the specimen S based on the signal generated by the signal processing unit 140.
- the control unit 150 generates a video signal for displaying information about the distance to the specimen S and outputs it to the display unit 160.
- the display unit 160 displays information about the distance to the specimen S based on the video signal input from the control unit 150.
- the control unit 150 stores the information about the distance to the specimen S in the storage unit 170.
- any one of the surface-emitting lasers 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, and 44 can be applied to the distance measurement device 1000.
- a driver capable of driving the plurality of element portions individually can also be used.
- FIG. 49 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology disclosed herein can be applied.
- the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
- the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
- Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
- the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
- the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
- the body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs.
- the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps.
- radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020.
- the body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
- the outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
- a distance measurement device 12031 is connected to the outside-vehicle information detection unit 12030.
- the distance measurement device 12031 includes the distance measurement device 1000 described above.
- the outside-vehicle information detection unit 12030 causes the distance measurement device 12031 to measure the distance to an object outside the vehicle (subject S), and acquires the distance data obtained thereby.
- the outside-vehicle information detection unit 12030 may perform object detection processing of people, cars, obstacles, signs, etc. based on the acquired distance data.
- the in-vehicle information detection unit 12040 detects information inside the vehicle.
- a driver state detection unit 12041 that detects the state of the driver is connected.
- the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
- the microcomputer 12051 can calculate control target values for the driving force generating device, steering mechanism, or braking device based on information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output control commands to the drive system control unit 12010.
- the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including vehicle collision avoidance or impact mitigation, following driving based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
- ADAS Advanced Driver Assistance System
- the microcomputer 12051 can also control the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, thereby performing cooperative control aimed at automatic driving, which allows the vehicle to travel autonomously without relying on the driver's operation.
- the microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
- the audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information.
- an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
- the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
- Figure 50 shows an example of the installation location of the distance measuring device 12031.
- the vehicle 12100 has distance measurement devices 12101, 12102, 12103, 12104, and 12105 as the distance measurement device 12031.
- the distance measuring devices 12101, 12102, 12103, 12104, and 12105 are provided, for example, on the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100.
- the distance measuring device 12101 provided on the front nose and the distance measuring device 12105 provided on the top of the windshield inside the vehicle cabin mainly obtain data in front of the vehicle 12100.
- the distance measuring devices 12102 and 12103 provided on the side mirrors mainly obtain data on the sides of the vehicle 12100.
- the distance measuring device 12104 provided on the rear bumper or back door mainly obtains data on the rear of the vehicle 12100.
- the forward data obtained by the distance measuring devices 12101 and 12105 is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, etc.
- FIG. 50 shows an example of the detection ranges of distance measuring devices 12101 to 12104.
- Detection range 12111 indicates the detection range of distance measuring device 12101 provided on the front nose
- detection ranges 12112 and 12113 indicate the detection ranges of distance measuring devices 12102 and 12103 provided on the side mirrors, respectively
- detection range 12114 indicates the detection range of distance measuring device 12104 provided on the rear bumper or back door.
- the microcomputer 12051 can determine the distance to each three-dimensional object within the detection ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance data obtained from the distance measuring devices 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest three-dimensional object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
- automatic braking control including follow-up stop control
- automatic acceleration control including follow-up start control
- the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance data obtained from the distance measuring devices 12101 to 12104, and can use the data to automatically avoid obstacles.
- the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
- the microcomputer 12051 determines the collision risk, which indicates the degree of risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by forcibly decelerating or steering to avoid a collision via the drive system control unit 12010.
- the above describes an example of a mobile object control system to which the technology disclosed herein can be applied.
- the technology disclosed herein can be applied to the distance measuring device 12031 of the configuration described above.
- the present technology can also be configured as follows. (1) an active layer; a first structure having a concave mirror disposed on one side of the active layer; a second structure having a reflector disposed on the other side of the active layer; Equipped with a transverse mode adjustment region is provided in the first structure and/or the second structure; the transverse mode adjustment region has at least the first region of the first and second regions, when a region surrounding a light emitting region of the active layer in a plan view is defined as a first region and a region surrounded by the first region is defined as a second region, When the transverse mode adjustment region has only the first region of the first and second regions, the shortest distance from the center of gravity of the transverse mode adjustment region to the inner edge of the first region is defined as D S and the longest distance is defined as D L ; When the transverse mode adjustment region has the first and second regions, the shortest distance from the areal center of gravity of the transverse mode adjustment region to the inner edge of the first region and the outer edge of the second region is denoted
- the surface-emitting laser according to any one of (1) to (20), wherein the shape of the inner edge of the first region is a distorted circle or a distorted regular polygon.
- the transverse mode adjustment region is made of a metal material or an alloy material.
- the transverse mode adjustment regions are provided in a plurality of regions.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
本開示に係る技術(以下「本技術」とも呼ぶ)は、面発光レーザに関する。 The technology disclosed herein (hereinafter also referred to as "the technology") relates to a surface-emitting laser.
従来、第1及び第2反射鏡で活性層を挟む、垂直共振器型面発光レーザ(VCSEL)が知られている。 Conventionally, a vertical-cavity surface-emitting laser (VCSEL) is known in which an active layer is sandwiched between first and second reflectors.
従来の面発光レーザの中には、第1反射鏡に凹面鏡を用いるとともに、光を吸収する、あるいは位相を乱すことで横モードにロスを与える横モード調整領域を有するものがある(例えば特許文献1参照)。この面発光レーザでは、横モード調整の条件が横モード調整領域などの面積のみで規定されている。 Some conventional surface-emitting lasers use a concave mirror as the first reflector and have a transverse mode adjustment region that absorbs light or disturbs the phase to cause loss in the transverse mode (see, for example, Patent Document 1). In this type of surface-emitting laser, the conditions for transverse mode adjustment are determined only by the area of the transverse mode adjustment region, etc.
しかしながら、従来の面発光レーザでは、横モードに所望のロスを与えることに関して改善の余地があった。 However, conventional surface-emitting lasers have room for improvement in terms of imparting the desired loss to the transverse mode.
そこで、本技術は、横モードに所望のロスを与えることができる面発光レーザを提供することを主目的とする。 The main objective of this technology is to provide a surface-emitting laser that can impart the desired loss to the transverse mode.
本技術は、活性層と、
前記活性層の一側に配置された凹面鏡を有する第1構造と、
前記活性層の他側に配置された反射鏡を有する第2構造と、
を備え、
前記第1構造及び/又は前記第2構造に横モード調整領域が設けられ、
前記横モード調整領域は、平面視において前記活性層の発光領域を囲む領域を第1領域、該第1領域に囲まれる領域を第2領域としたときに、前記第1及び第2領域のうち少なくとも前記第1領域を有し、
前記横モード調整領域が前記第1及び第2領域のうち前記第1領域のみを有する場合に、前記横モード調整領域の面積重心から前記第1領域の内縁までの距離のうち最短距離をDS、最長距離をDLとし、
前記横モード調整領域が前記第1及び第2領域を有する場合に、前記横モード調整領域の面積重心から前記第1領域の内縁及び前記第2領域の外縁までの距離のうち最短距離をDS、最長距離をDLとすると、
1≦DL/DS≦10が成立する、面発光レーザを提供する。
前記第1構造及び/又は前記第2構造に、前記発光領域を設定する電流狭窄領域が設けられていてもよい。
1≦DL/DS≦6が成立してもよい。
1≦DL/DS≦3が成立してもよい。
0.5≦DS/ω≦6、且つ、0.5≦DL/ω≦12が成立してもよい。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長
1≦DS/ω≦3、且つ、1≦DL/ω≦12が成立してもよい。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長
0.5≦DS/ω≦6、且つ、1≦DL/ω≦6が成立してもよい。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長
前記第2構造は、前記活性層の前記他側に配置された電極を有し、前記電極が前記横モード調整領域を有していてもよい。
前記第1構造は、前記活性層の前記一側に配置された電極を有し、前記電極が前記横モード調整領域を有していてもよい。
前記凹面鏡が前記横モード調整領域を有していてもよい。
前記反射鏡が前記横モード調整領域を有していてもよい。
前記第2構造は、前記横モード調整領域を前記反射鏡の前記活性層側とは反対側に有していてもよい。
前記第1構造は、前記横モード調整領域を前記凹面鏡の前記活性層側とは反対側に有していてもよい。
前記第1構造は、前記横モード調整領域を前記凹面鏡と前記活性層との間に有していてもよい。
前記第2構造は、前記横モード調整領域を前記反射鏡と前記活性層との間に有していてもよい。
前記電流狭窄領域が前記横モード調整領域を有していてもよい。
前記第2構造は、前記活性層の前記他側に配置された絶縁膜を有し、前記絶縁膜が前記横モード調整領域を有していてもよい。
前記第1構造は、前記凹面鏡と前記活性層との間に配置された基板と、前記凹面鏡と前記基板との間に配置された中間層と、を有し、前記中間層が前記横モード調整領域を有していてもよい。
前記第1領域及び/又は前記第2領域は、複数の微細構造を含んでいてもよい。
前記横モード調整領域は、金属材料、合金材料、誘電体材料、半導体材料及び有機材料のいずれかからなっていてもよい。
The present technology comprises an active layer and
a first structure having a concave mirror disposed on one side of the active layer;
a second structure having a reflector disposed on the other side of the active layer;
Equipped with
a transverse mode adjustment region is provided in the first structure and/or the second structure;
the transverse mode adjustment region has at least the first region of the first and second regions, when a region surrounding a light emitting region of the active layer in a plan view is defined as a first region and a region surrounded by the first region is defined as a second region,
When the transverse mode adjustment region has only the first region of the first and second regions, the shortest distance from the center of gravity of the transverse mode adjustment region to the inner edge of the first region is defined as D S and the longest distance is defined as D L ;
When the transverse mode adjustment region has the first and second regions, the shortest distance from the areal center of gravity of the transverse mode adjustment region to the inner edge of the first region and the outer edge of the second region is denoted by D S and the longest distance is denoted by D L .
A surface emitting laser in which 1≦D L /D S ≦10 is provided.
A current confinement region that sets the light emitting region may be provided in the first structure and/or the second structure.
The relationship 1≦D L /D S ≦6 may be satisfied.
The relationship 1≦D L /D S ≦3 may be satisfied.
The following may hold: 0.5≦D S /ω≦6, and 0.5≦D L /ω≦12.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n: Refractive index of the medium λ 0 : Oscillation wavelength of the surface emitting laser 1≦D S /ω≦3 and 1≦D L /ω≦12 may be satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n: Refractive index of the medium λ 0 : Oscillation wavelength of the surface emitting laser 0.5≦D S /ω≦6 and 1≦D L /ω≦6 may be satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω0 : Beam waist radius Lm : Vertical distance from the beam waist to the transverse mode adjustment region n: Refractive index of the medium λ0 : Oscillation wavelength of the surface-emitting laser The second structure may have an electrode arranged on the other side of the active layer, and the electrode may have the transverse mode adjustment region.
The first structure may include an electrode disposed on the one side of the active layer, the electrode including the transverse mode tuning region.
The concave mirror may include the transverse mode adjustment region.
The reflector may have the transverse mode adjustment region.
The second structure may have the transverse mode adjustment region on a side of the reflector opposite to the active layer side.
The first structure may have the transverse mode adjustment region on a side of the concave mirror opposite to the active layer side.
The first structure may have the transverse mode adjustment region between the concave mirror and the active layer.
The second structure may have the transverse mode adjustment region between the reflector and the active layer.
The current confinement region may include the transverse mode adjustment region.
The second structure may have an insulating film disposed on the other side of the active layer, the insulating film having the transverse mode adjustment region.
The first structure may include a substrate disposed between the concave mirror and the active layer, and an intermediate layer disposed between the concave mirror and the substrate, the intermediate layer having the transverse mode adjustment region.
The first region and/or the second region may include a plurality of microstructures.
The transverse mode adjustment region may be made of any one of a metal material, an alloy material, a dielectric material, a semiconductor material, and an organic material.
以下に添付図面を参照しながら、本技術の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。本明細書において、本技術に係る面発光レーザが複数の効果を奏することが記載される場合でも、本技術に係る面発光レーザは、少なくとも1つの効果を奏すればよい。本明細書に記載された効果はあくまで例示であって限定されるものではなく、また他の効果があってもよい。 Below, a preferred embodiment of the present technology will be described in detail with reference to the attached drawings. Note that in this specification and the drawings, components having substantially the same functional configuration will be denoted with the same reference numerals to avoid repeated description. The embodiments described below are representative embodiments of the present technology, and are not intended to narrow the scope of the present technology. Even if this specification describes that the surface-emitting laser according to the present technology has multiple effects, it is sufficient that the surface-emitting laser according to the present technology has at least one effect. The effects described in this specification are merely examples and are not limiting, and other effects may also be present.
また、以下の順序で説明を行う。
0.導入
1.本技術の一実施形態の実施例1に係る面発光レーザ
2.本技術の一実施形態の実施例2に係る面発光レーザ
3.本技術の一実施形態の実施例3に係る面発光レーザ
4.本技術の一実施形態の実施例4に係る面発光レーザ
5.本技術の一実施形態の実施例5に係る面発光レーザ
6.本技術の一実施形態の実施例6に係る面発光レーザ
7.本技術の一実施形態の実施例7に係る面発光レーザ
8.本技術の一実施形態の実施例8に係る面発光レーザ
9.本技術の一実施形態の実施例9に係る面発光レーザ
10.本技術の一実施形態の実施例10に係る面発光レーザ
11.本技術の一実施形態の実施例11に係る面発光レーザ
12.本技術の一実施形態の実施例12に係る面発光レーザ
13.本技術の一実施形態の実施例13に係る面発光レーザ
14.本技術の一実施形態の実施例14に係る面発光レーザ
15.本技術の一実施形態の実施例15に係る面発光レーザ
16.本技術の一実施形態の実施例16に係る面発光レーザ
17.本技術の一実施形態の実施例17に係る面発光レーザ
18.本技術の一実施形態の実施例18に係る面発光レーザ
19.本技術の一実施形態の実施例19に係る面発光レーザ
20.本技術の一実施形態の実施例20に係る面発光レーザ
21.本技術の一実施形態の実施例21に係る面発光レーザ
22.本技術の一実施形態の実施例22に係る面発光レーザ
23.本技術の一実施形態の実施例23に係る面発光レーザ
24.本技術の一実施形態の実施例24に係る面発光レーザ
25.本技術の一実施形態の実施例25に係る面発光レーザ
26.本技術の一実施形態の実施例26に係る面発光レーザ
27.本技術の一実施形態の実施例27に係る面発光レーザ
28.本技術の一実施形態の実施例28に係る面発光レーザ
29.本技術の一実施形態の実施例29に係る面発光レーザ
30.本技術の一実施形態の実施例30に係る面発光レーザ
31.本技術の一実施形態の実施例31に係る面発光レーザ
32.本技術の一実施形態の実施例32に係る面発光レーザ
33.本技術の一実施形態の実施例33に係る面発光レーザ
34.本技術の一実施形態の実施例34に係る面発光レーザ
35.本技術の変形例
36.電子機器への応用例
37.面発光レーザを距離測定装置に適用した例
38.距離測定装置を移動体に搭載した例
The explanation will be given in the following order:
0. Introduction 1. Surface-emitting laser according to Example 1 of an embodiment of the present technology 2. Surface-emitting laser according to Example 2 of an embodiment of the present technology 3. Surface-emitting laser according to Example 3 of an embodiment of the present technology 4. Surface-emitting laser according to Example 4 of an embodiment of the present technology 5. Surface-emitting laser according to Example 5 of an embodiment of the present technology 6. Surface-emitting laser according to Example 6 of an embodiment of the present technology 7. Surface-emitting laser according to Example 7 of an embodiment of the present technology 8. Surface-emitting laser according to Example 8 of an embodiment of the present technology 9. Surface-emitting laser according to Example 9 of an embodiment of the present technology 10. Surface-emitting laser according to Example 10 of an embodiment of the present technology 11. Surface-emitting laser according to Example 11 of an embodiment of the present technology 12. Surface-emitting laser according to Example 12 of an embodiment of the present technology 13. Surface-emitting laser according to Example 13 of an embodiment of the present technology 14. Surface-emitting laser according to Example 14 of an embodiment of the present technology 15. Surface-emitting laser according to Example 15 of an embodiment of the present technology 16. Surface-emitting laser according to Example 16 of an embodiment of the present technology 17. Surface-emitting laser according to Example 17 of an embodiment of the present technology 18. Surface-emitting laser 19 according to Example 18 of one embodiment of the present technology. Surface-emitting laser 20 according to Example 19 of one embodiment of the present technology. Surface-emitting laser 21 according to Example 21 of one embodiment of the present technology. Surface-emitting laser 22 according to Example 22 of one embodiment of the present technology. Surface-emitting laser 23 according to Example 23 of one embodiment of the present technology. Surface-emitting laser 24 according to Example 24 of one embodiment of the present technology. Surface-emitting laser 25 according to Example 25 of one embodiment of the present technology. Surface-emitting laser 26 according to Example 26 of one embodiment of the present technology. Surface-emitting laser 27 according to Example 27 of one embodiment of the present technology. Surface-emitting laser 28 according to Example 28 of one embodiment of the present technology. Surface-emitting laser 29 according to Example 29 of one embodiment of the present technology. Surface-emitting laser 30 according to Example 30 of one embodiment of the present technology. Surface-emitting laser 31 according to Example 31 of one embodiment of the present technology. Surface-emitting laser 32 according to Example 32 of one embodiment of the present technology. Surface-emitting laser 33 according to Example 33 of one embodiment of the present technology. Surface emitting laser according to Example 34 of an embodiment of the present technology 35. Modification of the present technology 36. Application example to electronic devices 37. Example of application of surface emitting laser to distance measurement device 38. Example of mounting distance measurement device on a moving body
<0.導入>
従来技術では、横モード調整領域としてのモードロス作用領域を、光を吸収する、あるいは位相を乱すことで発振モードのロスの増減に作用する領域と定義している(例えば国際公開第2018/083877号参照)。この従来技術では、電流注入領域(発光領域)の正射影像の面積をS1、モードロス作用領域内側の面積をS2としたとき、0.01≦S1/(S1+S2)≦0.7を満足することを横モード調整の条件としている。
<0. Introduction>
In the conventional technology, the mode loss effect region as a transverse mode adjustment region is defined as a region that acts to increase or decrease the loss of the oscillation mode by absorbing light or disturbing the phase (see, for example, International Publication No. 2018/083877). In this conventional technology, when the area of the orthogonal projection image of the current injection region (light emitting region) is S1 and the area inside the mode loss effect region is S2, the condition for transverse mode adjustment is to satisfy 0.01≦S1/(S1+S2)≦0.7.
このように、従来技術では、横モード調整の条件がモードロス作用領域などの面積のみで規定しており、距離についての言及が一切ない。 As such, in conventional technology, the conditions for transverse mode adjustment are specified only in terms of the area of the mode loss effect region, etc., with no mention of distance whatsoever.
発明者らは、大まかには面積の大小関係でレーザ発振の態様が決まるが、横モード調整をより適正に行うためには、横モードに所望のロスを与えるべく距離を制御する必要があることを見出した。具体的には、発明者らは、一般に面発光レーザの横方向のビームプロファイルは円形あるいは略円形であり、ビームの強度重心からモードロス作用領域の内側までの距離の長短によって、横モードに与えるロスの影響(程度)が定まることを見出した。 The inventors discovered that while the manner of laser oscillation is roughly determined by the size of the area, in order to more appropriately adjust the transverse mode, it is necessary to control the distance to give the desired loss to the transverse mode. Specifically, the inventors discovered that the transverse beam profile of a surface-emitting laser is generally circular or nearly circular, and that the effect (degree) of loss on the transverse mode is determined by the length of the distance from the center of gravity of the beam intensity to the inside of the mode loss effect region.
そこで、発明者らは、この新規知見に基づき、横モードに所望のロスを与えることができる面発光レーザとして、本技術に係る面発光レーザを開発した。 Based on this new knowledge, the inventors developed a surface-emitting laser according to this technology that can impart the desired loss to the transverse mode.
以下、本技術に係る面発光レーザの一実施形態を幾つかの実施例を挙げて詳細に説明する。以下では、便宜上、図1等の断面図における上方を上、下方を下として説明する。 Below, an embodiment of a surface-emitting laser according to the present technology will be described in detail with reference to several examples. For convenience, the upper side in the cross-sectional view of FIG. 1 and the like will be referred to as the upper side and the lower side as the lower side.
<1.本技術の一実施形態の実施例1に係る面発光レーザ>
以下、本技術の一実施形態の実施例1に係る面発光レーザについて、図面を用いて説明する。
1. Surface-emitting laser according to Example 1 of an embodiment of the present technology
Hereinafter, a surface emitting laser according to a first example of an embodiment of the present technology will be described with reference to the drawings.
≪面発光レーザの構成≫
(全体構成)
図1は、本技術の一実施形態の実施例1に係る面発光レーザの断面図である。図2は、図1の面発光レーザの横モード調整領域の平面図である。
<Configuration of surface-emitting laser>
(overall structure)
Fig. 1 is a cross-sectional view of a surface-emitting laser according to a first embodiment of the present disclosure, Fig. 2 is a plan view of a transverse mode adjustment region of the surface-emitting laser of Fig. 1 .
面発光レーザ11は、以下に具体的に説明するように、垂直共振器型面発光レーザ(VCSEL)である。 The surface-emitting laser 11 is a vertical-cavity surface-emitting laser (VCSEL), as described in detail below.
面発光レーザ11は、一例として、図1に示すように、活性層101と、該活性層101の一側(下側)に配置された凹面鏡102を有する第1構造ST1と、活性層101の他側(上側)に配置された反射鏡103を有する第2構造ST2と、を備える。 As an example, as shown in FIG. 1, the surface-emitting laser 11 includes an active layer 101, a first structure ST1 having a concave mirror 102 arranged on one side (lower side) of the active layer 101, and a second structure ST2 having a reflecting mirror 103 arranged on the other side (upper side) of the active layer 101.
すなわち、面発光レーザ11は、互いに積層された凹面鏡102と反射鏡103との間に活性層101が配置された垂直共振器構造を有する。 In other words, the surface-emitting laser 11 has a vertical resonator structure in which the active layer 101 is disposed between a concave mirror 102 and a reflecting mirror 103 that are stacked on top of each other.
第1構造ST1は、一例として、活性層101と凹面鏡102との間に配置された基板104を更に有する。基板104には、一例として、切り欠き状の電極設置部104bが設けられている。電極設置部104b上には、カソード電極109が設置されている。 The first structure ST1 further includes, as an example, a substrate 104 disposed between the active layer 101 and the concave mirror 102. As an example, the substrate 104 is provided with a cutout-shaped electrode installation portion 104b. A cathode electrode 109 is provided on the electrode installation portion 104b.
第2構造ST2は、一例として、活性層101と反射鏡103との間に配置されたクラッド層105を更に有する。 The second structure ST2, as an example, further includes a cladding layer 105 disposed between the active layer 101 and the reflector 103.
第2構造ST2は、一例として、クラッド層105と反射鏡103との間に配置された透明導電膜106と、透明導電膜106の中央部を取り囲むようにクラッド層105上に設けられた環状の絶縁膜107とを更に有する。透明導電膜106の外周部は、一例として、絶縁膜107の内周部上に位置している。 The second structure ST2, for example, further includes a transparent conductive film 106 disposed between the cladding layer 105 and the reflector 103, and a ring-shaped insulating film 107 provided on the cladding layer 105 so as to surround the center of the transparent conductive film 106. For example, the outer periphery of the transparent conductive film 106 is located on the inner periphery of the insulating film 107.
第2構造ST2は、一例として、平面視において発光領域LAを取り囲むように透明導電膜106上及び絶縁膜107上に跨って設けられたリング状のアノード電極108を更に有する。すなわち、アノード電極108は、活性層101の他側(上側)に配置されている。アノード電極108と、透明導電膜106のアノード電極108の開口部108aに対応する部分とが、反射鏡103により覆われている。 The second structure ST2, as an example, further includes a ring-shaped anode electrode 108 provided across the transparent conductive film 106 and the insulating film 107 so as to surround the light-emitting area LA in a plan view. That is, the anode electrode 108 is disposed on the other side (upper side) of the active layer 101. The anode electrode 108 and a portion of the transparent conductive film 106 corresponding to the opening 108a of the anode electrode 108 are covered by the reflector 103.
面発光レーザ11では、一例として、活性層101、クラッド層105及び基板104上部の周辺領域が、電流狭窄領域としてのイオン注入領域IIAとなっている。イオン注入領域IIAにより、活性層101の発光領域LA(電流注入領域)が設定されている。 In the surface-emitting laser 11, as an example, the active layer 101, the cladding layer 105, and the peripheral region of the upper part of the substrate 104 form an ion implantation region IIA as a current confinement region. The ion implantation region IIA defines the light-emitting region LA (current injection region) of the active layer 101.
第1構造ST1及び/又は第2構造ST2に横モード調整領域TMAA(Transverse Mode Adjustment Area)が設けられている。ここでは、横モード調整領域TMAAは、一例として、アノード電極108に設けられている。 The first structure ST1 and/or the second structure ST2 are provided with a transverse mode adjustment area TMAA (Transverse Mode Adjustment Area). Here, as an example, the transverse mode adjustment area TMAA is provided in the anode electrode 108.
面発光レーザ11の共振器長、すなわち凹面鏡102と反射鏡103との距離は、50μm以下であることが好ましい。共振器長を50μm以上にすると、基板104(例えばGaN基板)における光学ロスが大きくなることや、縦モード間隔が小さくなりモードホップが生じやすくなるというデメリットが生じるからである。 The cavity length of the surface-emitting laser 11, i.e., the distance between the concave mirror 102 and the reflector 103, is preferably 50 μm or less. If the cavity length is made 50 μm or more, there are disadvantages such as increased optical loss in the substrate 104 (e.g., a GaN substrate) and a smaller longitudinal mode spacing that makes mode hopping more likely to occur.
(活性層)
活性層101は、一例として、In0.04Ga0.96N層(障壁層)とIn0.16Ga0.84N層(井戸層)とが積層された5重の多重量子井戸構造から成る。活性層101は、「発光層」とも呼ばれる。
(Active layer)
The active layer 101 has, for example, a five-fold multiple quantum well structure in which In 0.04 Ga 0.96 N layers (barrier layers) and In 0.16 Ga 0.84 N layers (well layers) are stacked. The active layer 101 is also called a "light emitting layer."
(基板) (Substrate)
基板104は、n型の半導体基板であり、例えばn-GaN基板からなる。基板104は、凹面鏡102側の面(下側の面)に凹面鏡102に対応する凸面構造104aを有する。 The substrate 104 is an n-type semiconductor substrate, for example an n-GaN substrate. The substrate 104 has a convex structure 104a corresponding to the concave mirror 102 on the surface (lower surface) facing the concave mirror 102.
(凹面鏡)
凹面鏡102は、正のパワーを有し、活性層101からの光を反射して活性層101付近に集光させることができる。これにより、レーザ発振に必要なゲイン(利得)を高効率で得ることができる。図1等には、活性層101からの光であって凹面鏡102で反射された反射光RLが図示されている。ここでは、反射光RLのビームウエストが活性層101内に位置するように、活性層101と凹面鏡102との距離及び凹面鏡102の曲率半径が設定されている。
(concave mirror)
The concave mirror 102 has a positive power and can reflect light from the active layer 101 and focus it near the active layer 101. This makes it possible to obtain a gain required for laser oscillation with high efficiency. FIG. 1 and other figures show reflected light RL, which is light from the active layer 101 and reflected by the concave mirror 102. Here, the distance between the active layer 101 and the concave mirror 102 and the radius of curvature of the concave mirror 102 are set so that the beam waist of the reflected light RL is located within the active layer 101.
凹面鏡102の反射率は、一例として、反射鏡103の反射率よりも若干高く設定されている。すなわち、反射鏡103が出射側の反射鏡である。なお、凹面鏡102の反射率を反射鏡103の反射率よりも若干高くして、凹面鏡102を出射側の反射鏡としてもよい。 As an example, the reflectance of concave mirror 102 is set to be slightly higher than that of reflecting mirror 103. In other words, reflecting mirror 103 is the reflecting mirror on the emission side. Note that the reflectance of concave mirror 102 may be set to be slightly higher than that of reflecting mirror 103, and concave mirror 102 may be used as the reflecting mirror on the emission side.
凹面鏡102は、基板104の凸面構造104aに沿って設けられている。すなわち、凹面鏡102は、凸面構造104aに倣った形状を有している。 The concave mirror 102 is provided along the convex structure 104a of the substrate 104. In other words, the concave mirror 102 has a shape that follows the convex structure 104a.
凹面鏡102は、一例として、誘電体多層膜反射鏡からなる。当該誘電体多層膜反射鏡は、例えばTa2O5/SiO2、SiO2/SiN、SiO2/Nb2O5等からなる。 The concave mirror 102 is, for example, a dielectric multilayer reflector made of, for example, Ta2O5 / SiO2 , SiO2 /SiN, or SiO2 / Nb2O5 .
(カソード電極)
カソード電極109は、例えばAu、Ag、Pd、Pt、Ni、Ti、V、W、Cr、Al、Cu、Zn、Sn及びInからなる群から選択された少なくとも1種類の金属(合金を含む)によって構成されている。カソード電極109が積層構造である場合は、例えばTi/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pd等の材料で構成される。カソード電極109は、レーザドライバの陰極(負極)に接続される。
(Cathode Electrode)
The cathode electrode 109 is made of at least one metal (including alloy) selected from the group consisting of Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn, and In. When the cathode electrode 109 has a laminated structure, it is made of materials such as Ti/Au, Ti/Al, Ti/Al/Au, Ti/Pt/Au, Ni/Au, Ni/Au/Pt, Ni/Pt, Pd/Pt, Ag/Pd, etc. The cathode electrode 109 is connected to the cathode (negative electrode) of the laser driver.
(反射鏡)
反射鏡103は、一例として、平面鏡を含む。反射鏡103は、実質的に平面鏡として機能する中央部がアノード電極108の開口部108a内に配置され、且つ、実質的に平面鏡として機能しない周辺部がアノード電極108上に配置された段付き構造を有している。なお、反射鏡103は、凹面鏡を含んでいてもよい。反射鏡103は、例えば誘電体多層膜反射鏡からなる。当該誘電体多層膜反射鏡は、例えばTa2O5/SiO2、SiN/SiO2等からなる。
(Reflector)
The reflecting mirror 103 includes, as an example, a plane mirror. The reflecting mirror 103 has a stepped structure in which a central portion that substantially functions as a plane mirror is disposed within the opening 108a of the anode electrode 108, and a peripheral portion that does not substantially function as a plane mirror is disposed on the anode electrode 108. The reflecting mirror 103 may include a concave mirror. The reflecting mirror 103 is made of, for example, a dielectric multilayer film reflecting mirror. The dielectric multilayer film reflecting mirror is made of, for example, Ta2O5 / SiO2 , SiN/ SiO2 , or the like.
(クラッド層)
クラッド層105は、p型のクラッド層であり、例えばp-GaN層からなる。
(cladding layer)
The cladding layer 105 is a p-type cladding layer, and is made of, for example, a p-GaN layer.
(透明導電膜)
透明導電膜106は、活性層101への正孔注入効率を高めるとともに、リークを防止するバッファ層として機能する。透明導電膜106は、例えばITO、ITiO、AZO、ZnO、SnO、SnO2、SnO3、TiO、TiO2、グラフェン等からなる。
(Transparent conductive film)
The transparent conductive film 106 functions as a buffer layer that prevents leakage while increasing the efficiency of hole injection into the active layer 101. The transparent conductive film 106 is made of, for example, ITO, ITiO, AZO, ZnO, SnO, SnO2 , SnO3 , TiO, TiO2 , graphene, or the like.
(絶縁膜)
絶縁膜107は、例えばSiO2、SiN、SiON等の誘電体からなる。絶縁膜107は、素子の絶縁破壊を防止する機能を有する。
(Insulating Film)
The insulating film 107 is made of a dielectric material such as SiO 2 , SiN, SiON, etc. The insulating film 107 has a function of preventing dielectric breakdown of the element.
(イオン注入領域)
イオン注入領域IIAは、高濃度のイオン(例えばB++等)が注入されることにより形成されている。イオン注入領域IIAは、該イオン注入領域IIAにより取り囲まれたイオン非注入領域よりも高抵抗であり(キャリアの伝導性が低く)、電流狭窄領域として機能する。イオン注入領域IIAにより取り囲まれたイオン非注入領域は、電流通過領域として機能する。イオン注入領域IIAによる電流狭窄径(アパーチャ径)は、数μm(例えば4μm)とすることができる。ここでは、イオン注入領域IIAは、円環状である。
(Ion implantation region)
The ion implantation region IIA is formed by implanting a high concentration of ions (e.g., B ++ , etc.). The ion implantation region IIA has a higher resistance (lower carrier conductivity) than the non-ion implantation region surrounded by the ion implantation region IIA, and functions as a current confinement region. The non-ion implantation region surrounded by the ion implantation region IIA functions as a current passing region. The current confinement diameter (aperture diameter) by the ion implantation region IIA can be several μm (e.g., 4 μm). Here, the ion implantation region IIA is annular.
(アノード電極)
アノード電極108は、例えばAu、Ag、Pd、Pt、Ni、Ti、V、W、Cr、Al、Cu、Zn、Sn及びInからなる群から選択された少なくとも1種類の金属(合金を含む)によって構成されている。アノード電極108が積層構造である場合は、例えばTi/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pd等の材料で構成される。アノード電極108は、レーザドライバの陽極(正極)に接続される。
(Anode electrode)
The anode electrode 108 is made of at least one metal (including alloy) selected from the group consisting of Au, Ag, Pd, Pt, Ni, Ti, V, W, Cr, Al, Cu, Zn, Sn, and In. When the anode electrode 108 has a laminated structure, it is made of materials such as Ti/Au, Ti/Al, Ti/Al/Au, Ti/Pt/Au, Ni/Au, Ni/Au/Pt, Ni/Pt, Pd/Pt, Ag/Pd, etc. The anode electrode 108 is connected to the anode (positive electrode) of the laser driver.
(横モード調整領域)
横モード調整領域TMAAは、前述したように、一例としてアノード電極108に設けられている。横モード調整領域TMAAは、平面視において活性層101の発光領域LA(電流注入領域)を囲む領域を第1領域A1、該第1領域A1に囲まれる領域を第2領域A2としたときに、第1及び第2領域A1、A2のうち少なくとも1領域A1を有する。ここでは、横モード調整領域TMAAが第1及び第2領域A1、A2のうち第1領域A1のみを有する。第1領域A1は、横モードにロスを与えるモードロス作用領域として機能する。ここでは、略円環状の第1領域A1の内縁形状、すなわちアノード電極108の開口部108aの形状は、略円形(円形を互いに直交する方向に相対的に僅かに歪ませた形状)である。一例として、平面視において、横モード調整領域TMAAの面積重心C、すなわち第1領域A1の中心は、発光領域LAの中心に一致している(図2参照)が、一致していなくてもよい。
(Transverse mode adjustment area)
As described above, the transverse mode adjustment region TMAA is provided in the anode electrode 108 as an example. When the region surrounding the light emitting region LA (current injection region) of the active layer 101 in a plan view is defined as the first region A1, and the region surrounded by the first region A1 is defined as the second region A2, the transverse mode adjustment region TMAA has at least one region A1 of the first and second regions A1 and A2. Here, the transverse mode adjustment region TMAA has only the first region A1 of the first and second regions A1 and A2. The first region A1 functions as a mode loss effect region that gives loss to the transverse mode. Here, the inner edge shape of the substantially annular first region A1, i.e., the shape of the opening 108a of the anode electrode 108, is substantially circular (a shape in which the circle is relatively slightly distorted in a direction perpendicular to each other). As an example, in a plan view, the area center of gravity C of the transverse mode adjustment region TMAA, i.e., the center of the first region A1, coincides with the center of the light emitting region LA (see FIG. 2), but it does not have to coincide.
図3は、横モード調整領域TMAAの各モードへの影響について説明するための図である。横モード調整領域TMAAは、図3に示すように、第1領域A1の光透過率が低く(例えば0~50%)、第1領域A1の開口部AP(開口部AP内に他の材料が入り込んでいる場合も含む)の光透過率が高く(例えば50~100%)なっており、各モードに所望のロスを与えることにより、横モードを適正に調整する。具体的には、横モード調整領域TMAAは、横モードがシングルモード(基本モード)でのレーザ発振に対しては、モードロスをほとんど与えず、シングルモードのまま出力する。横モード調整領域TMAAは、横モードがシングルモードよりモード径の大きいマルチモード(高次モード)でのレーザ発振に対しては、モードロスを大きく与えることにより、実質的にシングルモードに変換して出力する。 FIG. 3 is a diagram for explaining the influence of the transverse mode adjustment region TMAA on each mode. As shown in FIG. 3, the transverse mode adjustment region TMAA has a low light transmittance (e.g., 0-50%) in the first region A1 and a high light transmittance (e.g., 50-100%) in the opening AP (including the case where other materials are inserted in the opening AP) of the first region A1, and adjusts the transverse mode appropriately by giving the desired loss to each mode. Specifically, the transverse mode adjustment region TMAA gives almost no mode loss to laser oscillation in a single mode (fundamental mode) transverse mode, and outputs it as is in a single mode. The transverse mode adjustment region TMAA gives a large mode loss to laser oscillation in a multimode (higher mode) transverse mode with a larger mode diameter than the single mode, and essentially converts it to a single mode and outputs it.
横モード調整領域TMAAが第1及び第2領域A1、A2のうち第1領域A1のみを有する場合に、図2に示すように、横モード調整領域TMAAの面積重心Cから第1領域A1の内縁までの距離のうち最短距離をDS、最長距離をDLとしたときに、横モードを適正に(所望の横方向のビームプロファイルを持つシングルモードに)調整するために、DsとDLの比が、所定範囲内にあることが望まれる。これにより、径方向のロス分布がなだらかになるので、作製誤差耐性が向上し、歩留まりが向上することも期待できる。 In the case where the transverse mode adjustment region TMAA has only the first region A1 of the first and second regions A1 and A2, when the shortest distance from the areal center C of the transverse mode adjustment region TMAA to the inner edge of the first region A1 is D S and the longest distance is D L , as shown in Fig. 2, in order to properly adjust the transverse mode (to a single mode having a desired transverse beam profile), it is desirable that the ratio of D S to D L be within a predetermined range. This makes the radial loss distribution gentle, and therefore it is expected that the tolerance to manufacturing errors will be improved and the yield will also be improved.
具体的には、横モード調整領域TMAAにおいて、1≦DL/DS≦10が成立することが好ましく、1≦DL/DS≦6が成立することがより好ましく、1≦DL/DS≦3が成立することがより一層好ましく、1≦DL/DS≦2が成立することが更により一層好ましい。なお、仮に電流狭窄領域としてのイオン注入領域IIAについて上記不等式の少なくとも1つが成立すると、形式的にはイオン注入領域IIAも横モード調整領域に該当することになるが、アノード電極108に比べてイオン注入領域IIAは遮光性が格段に低いのでモードロス作用効果が非常に小さく、実質的にアノード電極108のみにより横モード調整機能が達成されうる。すなわち、横モード調整領域の横モード調整性は、上記不等式の少なくとも1つの成立に加えて、横モード調整領域の遮光性にも依存する。イオン注入領域IIAについて下記の不等式の組み合わせが成立する場合も同様の議論が成立する。 Specifically, in the transverse mode adjusting region TMAA, it is preferable that 1≦D L /D S ≦10 is satisfied, it is more preferable that 1≦D L /D S ≦6 is satisfied, it is even more preferable that 1≦D L /D S ≦3 is satisfied, and it is even more preferable that 1≦D L /D S ≦2 is satisfied. If at least one of the above inequalities is satisfied for the ion implantation region IIA as the current confinement region, the ion implantation region IIA also formally corresponds to the transverse mode adjusting region, but since the light blocking property of the ion implantation region IIA is much lower than that of the anode electrode 108, the mode loss effect is very small, and the transverse mode adjusting function can be substantially achieved only by the anode electrode 108. That is, the transverse mode adjusting property of the transverse mode adjusting region depends on the light blocking property of the transverse mode adjusting region in addition to the satisfaction of at least one of the above inequalities. The same argument is also valid when the following combination of inequalities is satisfied for the ion implantation region IIA.
より詳細には、横モード調整領域TMAAにおいて、0.5≦DS/ω≦6、且つ、0.5≦DL/ω≦12が成立することが好ましく、1≦DS/ω≦6、且つ、1≦DL/ω≦12が成立することがより好ましく、1≦DS/ω≦6、且つ、1≦DL/ω≦6が成立することがより一層好ましく、1≦DS/ω≦3、且つ、1≦DL/ω≦6が成立することが更により一層好ましい。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径、ω0=[λ0(LR-L2)1/2/πn]1/2
Lm:ビームウエストから横モード調整領域までの垂直方向の距離(実効距離)
n:媒質の屈折率
λ0:面発光レーザの発振波長
L;共振器長
R:凹面鏡の曲率半径
なお、ビームウエスト半径ω0は、基本モードのビーム中央から放射強度が最大値の1/e2(13.5%)になる位置までの距離と定義することもできる。
More specifically, in the transverse mode adjustment area TMAA, it is preferable that 0.5≦ Ds /ω≦6 and 0.5≦D L /ω≦12 hold, it is more preferable that 1≦ Ds /ω≦6 and 1≦D L /ω≦12 hold, it is even more preferable that 1≦ Ds /ω≦6 and 1≦D L /ω≦6 hold, and it is even more preferable that 1≦ Ds /ω≦3 and 1≦D L /ω≦6 hold.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius, ω 0 = [λ 0 (LR-L 2 ) 1/2 /πn] 1/2
L m : Vertical distance from the beam waist to the transverse mode adjustment region (effective distance)
n: refractive index of the medium λ0 : oscillation wavelength of the surface-emitting laser L; resonator length R: radius of curvature of the concave mirror The beam waist radius ω0 can also be defined as the distance from the center of the fundamental mode beam to the position where the radiation intensity is 1/ e2 (13.5%) of the maximum value.
以下では、上記のDS/ω及びDL/ωについての不等式の各組み合わせを「横モード調整条件」とも呼ぶ。 Hereinafter, each combination of the above inequalities for D S /ω and D L /ω will also be referred to as a "transverse mode adjustment condition."
ここで、横モード調整領域TMAAにおいては、DLよりもDSの方がモードロスに及ぼす効果が大きく、横モードを制御する上で、さらには横方向のビームプロファイルの概形を決定する上で重要である。すなわち、DS/ωの値が適正な範囲内にあることがより重要となる。 Here, in the transverse mode adjustment area TMAA, D S has a larger effect on mode loss than D L , and is important in controlling the transverse mode and further in determining the general shape of the transverse beam profile. In other words, it is more important that the value of D S /ω is within an appropriate range.
そこで、横モード調整領域TMAAにおいて、1≦DS/ω≦3、且つ、1≦DL/ω≦12が成立することが好ましく、1≦DS/ω≦2.5、且つ、1≦DL/ω≦12が成立することがより好ましく、1.5≦DS/ω≦2.5、且つ、1.5≦DL/ω≦12が成立することがより一層好ましく、2≦DS/ω≦2.5、且つ、2≦DL/ω≦12が成立することが更により一層好ましい。 Therefore, in the transverse mode adjustment area TMAA, it is preferable that 1≦ Ds /ω≦3 and 1≦D L /ω≦12 hold, it is more preferable that 1≦ Ds /ω≦2.5 and 1≦D L /ω≦12 hold, it is even more preferable that 1.5≦ Ds /ω≦2.5 and 1.5≦D L /ω≦12 hold, and it is even more preferable that 2≦ Ds /ω≦2.5 and 2≦D L /ω≦12 hold.
また、横モード調整領域TMAAにおいて、横方向のビームプロファイルを微調整する上でDL/ωの値が適正な範囲内にあることも重要である。 In addition, in the transverse mode adjustment area TMAA, it is also important that the value of D L /ω is within an appropriate range in finely adjusting the beam profile in the transverse direction.
そこで、横モード調整領域TMAAにおいて、0.5≦DS/ω≦6、且つ、1≦DL/ω≦6が成立することが好ましく、0.5≦DS/ω≦4、且つ、1≦DL/ω≦4が成立することがより好ましく、0.5≦DS/ω≦3、且つ、1≦DL/ω≦3が成立することがより一層好ましく、0.5≦DS/ω≦2.5、且つ、1≦DL/ω≦2.5が成立することがより一層好ましい。 Therefore, in the transverse mode adjustment area TMAA, it is preferable that 0.5≦ Ds /ω≦6 and 1≦D L /ω≦6 hold, it is more preferable that 0.5≦ Ds /ω≦4 and 1≦D L /ω≦4 hold, it is even more preferable that 0.5≦ Ds /ω≦3 and 1≦D L /ω≦3 hold, and it is even more preferable that 0.5≦ Ds /ω≦2.5 and 1≦D L /ω≦2.5 hold.
以上より、横モード調整領域TMAAにおいて、横方向のビームプロファイルを調整する上でDS/ω及びDL/ω及びの値が適正な範囲内にあることがより重要である。 From the above, it is more important that the values of D S /ω and D L /ω are within appropriate ranges in adjusting the beam profile in the transverse mode adjustment area TMAA.
そこで、横モード調整領域TMAAにおいて、1≦DS/ω≦3、且つ、1≦DL/ω≦6が成立することが好ましく、1≦DS/ω≦3、且つ、1≦DL/ω≦4が成立することがより好ましく、1≦DS/ω≦2.5、且つ、1≦DL/ω≦3が成立することがより一層好ましく、1≦DS/ω≦2.5、且つ、1≦DL/ω≦2.5が成立することがより一層好ましい。さらに、1<DS/ω、及び/又は、1<DL/ωを満たしていてもよい。 Therefore, in the transverse mode adjustment area TMAA, it is preferable that 1≦D S /ω≦3 and 1≦D L /ω≦6 are satisfied, it is more preferable that 1≦D S /ω≦3 and 1≦D L /ω≦4 are satisfied, it is even more preferable that 1≦D S /ω≦2.5 and 1≦D L /ω≦3 are satisfied, and it is even more preferable that 1≦D S /ω≦2.5 and 1≦D L /ω≦2.5 are satisfied. Furthermore, 1<D S /ω and/or 1<D L /ω may be satisfied.
(光学シミュレーション)
略円形の横モード調整領域TMAAを有するアノード電極108をTi/Pt/Auの3層構造とし、DS/ωを2.2、DL/ωを2.25、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
The anode electrode 108 having a substantially circular transverse mode adjustment area TMAA had a three-layer structure of Ti/Pt/Au, with D S /ω being 2.2, D L /ω being 2.25, the current confinement diameter being 4 μm, the resonator length being 24 μm, and the radius of curvature of the concave mirror 102 being 80 μm. As a result, the desired loss could be given to the transverse mode, and the transverse mode could be appropriately adjusted (to the desired single mode).
図4は、DS(=DL)(横軸:Inner diameter of p-pad)と、アノード電極(p-pad)におけるモードロス(縦軸:p-pad Loss)との関係をモード毎に示すグラフである。図4における各線LG(Laguerre-Gaussian)は、VCSELに設定された円筒座標系におけるガウシアン分布(但し、ω=2.7μm)を示す。LG00モードが基本モードであり、LG10モード、LG12モード、LG22モード、LG20モード、LG01モード、LG11モード、LG21モード及びLG02モードが高次モードである。図4から分かるように、DS(=DL)を適切な値に設定することにより、各高次モードに所望のロスを与えてシングルモードに調整することが可能である。 FIG. 4 is a graph showing the relationship between D S (=D L ) (horizontal axis: inner diameter of p-pad) and the mode loss (vertical axis: p-pad loss) in the anode electrode (p-pad) for each mode. Each line LG (Laguerre-Gaussian) in FIG. 4 shows a Gaussian distribution (where ω=2.7 μm) in a cylindrical coordinate system set in the VCSEL. The LG00 mode is the fundamental mode, and the LG10 mode, LG12 mode, LG22 mode, LG20 mode, LG01 mode, LG11 mode, LG21 mode, and LG02 mode are higher-order modes. As can be seen from FIG. 4, by setting D S (=D L ) to an appropriate value, it is possible to give a desired loss to each higher-order mode and adjust it to a single mode.
≪面発光レーザの動作≫
以下、面発光レーザ11の動作について説明する。
面発光レーザ11では、レーザドライバによりアノード電極108とカソード電極109との間に駆動電圧が印加されると、レーザドライバの陽極側からアノード電極108を介して流入された電流が透明導電膜106を介してイオン注入領域IIAで狭窄されつつ活性層101へ注入される。このとき、活性層101が発光し、その光が凹面鏡102と反射鏡103との間を活性層101で増幅されつつ往復し(この際、光は、凹面鏡102で活性層101付近に集光されつつ反射され、反射鏡103で平行光又は弱拡散光として活性層101に向けて反射される)、発振条件を満たしたときに反射鏡103からレーザ光として出射される。このとき、横モード調整領域TMAAにより横モードに所望のロスが付与され、所望の横方向のビームプロファイルを持つシングルモードのレーザ光が出力される。活性層101に注入された電流は、基板104を介してカソード電極109からレーザドライバの陰極側へ流出される。
<Operation of surface-emitting laser>
The operation of the surface emitting laser 11 will now be described.
In the surface-emitting laser 11, when a driving voltage is applied between the anode electrode 108 and the cathode electrode 109 by the laser driver, a current flowing from the anode side of the laser driver through the anode electrode 108 is narrowed in the ion implantation region IIA through the transparent conductive film 106 and injected into the active layer 101. At this time, the active layer 101 emits light, and the light travels back and forth between the concave mirror 102 and the reflecting mirror 103 while being amplified by the active layer 101 (at this time, the light is reflected by the concave mirror 102 while being focused near the active layer 101, and is reflected by the reflecting mirror 103 as parallel light or weakly diffused light toward the active layer 101), and is emitted as a laser light from the reflecting mirror 103 when the oscillation condition is satisfied. At this time, a desired loss is given to the transverse mode by the transverse mode adjustment region TMAA, and a single-mode laser light having a desired transverse beam profile is output. The current injected into the active layer 101 flows through the substrate 104 and out of the cathode electrode 109 to the cathode side of the laser driver.
≪面発光レーザの製造方法≫
以下、面発光レーザ11の製造方法について図5のフローチャート等を参照して説明する。ここでは、一例として、基板104の基材となる1枚のウェハ(例えばn-GaN基板、以下、便宜上「基板104と呼ぶ)上に複数の面発光レーザ11を複数同時に生成する。次いで、一連一体の複数の面発光レーザ11を互いに分離して、チップ状の面発光レーザ11(面発光レーザチップ)を得る。
<Manufacturing method of surface-emitting laser>
A method for manufacturing the surface-emitting laser 11 will be described below with reference to the flow chart of Fig. 5. As an example, a plurality of surface-emitting lasers 11 are simultaneously produced on a single wafer (e.g., an n-GaN substrate, hereinafter referred to as "substrate 104" for convenience) that serves as the base material for the substrate 104. Next, the series of surface-emitting lasers 11 are separated from one another to obtain chip-shaped surface-emitting lasers 11 (surface-emitting laser chips).
最初
のステップS1では、基板104上に活性層101及びクラッド層105を積層する(図6A参照)。具体的には、有機金属気層成長法(MOCVD法)又は分子線エピタキシー法(MBE法)により、成長室において基板104上に活性層101及びクラッド層105をこの順に積層して積層体を生成する。
In the first step S1, the active layer 101 and the cladding layer 105 are laminated on the substrate 104 (see FIG. 6A). Specifically, the active layer 101 and the cladding layer 105 are laminated in this order on the substrate 104 in a growth chamber by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) to generate a laminate.
次のステップS2では、電極設置部104bを形成する(図6B参照)。具体的には、積層体上に電極設置部104bが形成される箇所以外の箇所を覆うレジストパターンを形成し、該レジストパターンをマスクとして積層体をエッチングする。この際、基板104が露出するまでエッチングを行う。この結果、積層体に切り欠き状の電極設置部104bが形成される。 In the next step S2, the electrode installation portion 104b is formed (see FIG. 6B). Specifically, a resist pattern is formed on the laminate to cover areas other than the areas where the electrode installation portion 104b is to be formed, and the laminate is etched using the resist pattern as a mask. At this time, etching is continued until the substrate 104 is exposed. As a result, a cutout-shaped electrode installation portion 104b is formed in the laminate.
次のステップS3では、イオン注入領域IIAを形成する(図7A参照)。具体的には、積層体上のイオン注入領域IIAが形成される箇所以外の部分を覆う、レジスト、SiO2等からなる保護膜を形成し、該保護膜をマスクとして積層体にクラッド層105側からイオンを(例えばB++)注入する。この際、イオン注入の注入深さは基板104内に達するまでとする。 In the next step S3, an ion implantation region IIA is formed (see FIG. 7A). Specifically, a protective film made of resist, SiO2 , or the like is formed to cover the portion of the laminate other than the portion where the ion implantation region IIA is to be formed, and ions (e.g., B ++ ) are implanted into the laminate from the cladding layer 105 side using the protective film as a mask. At this time, the ion implantation depth is set to reach inside the substrate 104.
次のステップS4では、絶縁膜107を形成する(図7B参照)。具体的には、先ず、積層体の全面に絶縁膜107を例えば真空蒸着法、スパッタ等により成膜する。次いで、フォトリソグラフィー及びエッチングにより、クラッド層105の周辺部を覆う絶縁膜107以外の絶縁膜107を除去する。この結果、クラッド層105の周辺部を覆う環状の絶縁膜107が形成される。 In the next step S4, the insulating film 107 is formed (see FIG. 7B). Specifically, first, the insulating film 107 is formed over the entire surface of the laminate by, for example, vacuum deposition, sputtering, or the like. Next, the insulating film 107 other than the insulating film 107 covering the peripheral portion of the cladding layer 105 is removed by photolithography and etching. As a result, a ring-shaped insulating film 107 is formed that covers the peripheral portion of the cladding layer 105.
次のステップS5では、透明導電膜106を形成する(図8A参照)。具体的には、先ず、積層体の全面に透明導電膜106を例えば真空蒸着法、スパッタ等により成膜する。次いで、フォトリソグラフィー及びエッチングにより、第1クラッド層105の中央部及び絶縁膜107の内周部を覆う透明導電膜106以外の透明導電膜106を除去する。この結果、第1クラッド層105の中央部及び絶縁膜107の内周部を覆う透明導電膜106が形成される。 In the next step S5, the transparent conductive film 106 is formed (see FIG. 8A). Specifically, first, the transparent conductive film 106 is formed over the entire surface of the laminate by, for example, vacuum deposition, sputtering, or the like. Next, the transparent conductive film 106 other than the transparent conductive film 106 covering the center of the first cladding layer 105 and the inner periphery of the insulating film 107 is removed by photolithography and etching. As a result, the transparent conductive film 106 covering the center of the first cladding layer 105 and the inner periphery of the insulating film 107 is formed.
次のステップS6では、アノード電極108及びカソード電極109を形成する(図8B参照)。具体的には、例えばリフトオフ法を用いて、透明導電膜106の外周部を含む周辺部及び絶縁膜107の外周部を覆うリング状のアノード電極108を形成し、カソード電極109を電極設置部104b上に形成する。このときの電極材料の成膜は、例えば真空蒸着法、スパッタ等により行われる。 In the next step S6, the anode electrode 108 and the cathode electrode 109 are formed (see FIG. 8B). Specifically, for example, using a lift-off method, the ring-shaped anode electrode 108 is formed to cover the peripheral portion including the outer periphery of the transparent conductive film 106 and the outer periphery of the insulating film 107, and the cathode electrode 109 is formed on the electrode installation portion 104b. At this time, the electrode material is deposited by, for example, a vacuum deposition method, sputtering, etc.
次のステップS7では、反射鏡103を形成する(図9A参照)。具体的には、先ず、積層体の全面に反射鏡103の材料である誘電体多層膜を例えば真空蒸着法、スパッタ法、CVD法等により成膜する。次いで、フォトリソグラフィー及びエッチングにより、透明導電膜106及びアノード電極108を覆う誘電体多層膜以外の誘電体多層膜を除去する。この結果、透明導電膜106及びアノード電極108を覆う誘電体多層膜反射鏡からなる反射鏡103が形成される。 In the next step S7, the reflector 103 is formed (see FIG. 9A). Specifically, first, a dielectric multilayer film, which is the material of the reflector 103, is formed on the entire surface of the laminate by, for example, vacuum deposition, sputtering, or CVD. Next, the dielectric multilayer film other than the dielectric multilayer film that covers the transparent conductive film 106 and the anode electrode 108 is removed by photolithography and etching. As a result, the reflector 103 is formed, which is a dielectric multilayer film reflector that covers the transparent conductive film 106 and the anode electrode 108.
次のステップS8では、凸面構造104aを形成する(図9B参照)。具体的には、先ず、基板104の裏面(下面)に流動性材料をパターニングする。詳述すると、先ず、フォトリソグラフィーにより、基板104の裏面の凸面構造104aが形成されることとなる箇所に流動性材料(例えばフォトレジスト)を形成する。次いで、リフローにより流動性材料を凸面形状に形成する。具体的には、温度200℃でリフローにより流動性材料を凸面形状(例えば略半球形状)に成形する。流動性材料をマスクとしてエッチングを行って凸面構造104aを形成する。具体的には、フォトリソグラフィーにより流動性材料をマスクとして基板104を例えばドライエッチングして凸面構造104a(例えば略半球構造)を形成する。 In the next step S8, the convex structure 104a is formed (see FIG. 9B). Specifically, first, a fluid material is patterned on the back surface (lower surface) of the substrate 104. More specifically, first, a fluid material (e.g., photoresist) is formed by photolithography at the location on the back surface of the substrate 104 where the convex structure 104a will be formed. Next, the fluid material is formed into a convex shape by reflow. Specifically, the fluid material is molded into a convex shape (e.g., an approximately hemispherical shape) by reflow at a temperature of 200°C. Etching is performed using the fluid material as a mask to form the convex structure 104a. Specifically, the substrate 104 is dry-etched by photolithography using the fluid material as a mask to form the convex structure 104a (e.g., an approximately hemispherical structure).
最後のステップS9では、凹面鏡102を形成する(図10参照)。具体的には、凸面構造104aに凹面鏡102の材料(例えば誘電体多層膜)を例えば真空蒸着法、スパッタ法、CVD法等により成膜する。この結果、凸面構造104aに倣った形状の凹面鏡102が形成される。これにより、ウェハ(半導体基板(例えばn-GaN基板))上に複数の面発光レーザ11が複数生成される。その後、一連一体の複数の面発光レーザ11をダイシングにより分離して、チップ状の面発光レーザ11(面発光レーザチップ)を得る。その後、該面発光レーザ11は、例えばCANパッケージに実装される。より詳細には、該面発光レーザ11は、凹面鏡102側の表面がCANパッケージに半田付けされる。 In the final step S9, the concave mirror 102 is formed (see FIG. 10). Specifically, the material of the concave mirror 102 (e.g., a dielectric multilayer film) is deposited on the convex structure 104a by, for example, vacuum deposition, sputtering, or CVD. As a result, the concave mirror 102 is formed in a shape that matches the convex structure 104a. This produces a plurality of surface-emitting lasers 11 on a wafer (semiconductor substrate (e.g., n-GaN substrate)). After that, the series of surface-emitting lasers 11 are separated by dicing to obtain chip-shaped surface-emitting lasers 11 (surface-emitting laser chips). The surface-emitting lasers 11 are then mounted in, for example, a CAN package. More specifically, the surface of the surface-emitting laser 11 on the concave mirror 102 side is soldered to the CAN package.
≪面発光レーザの効果≫
以下、本技術の一実施形態の実施例1に係る面発光レーザ11の効果について説明する。
<Effects of surface-emitting lasers>
Hereinafter, effects of the surface emitting laser 11 according to the example 1 of the embodiment of the present technology will be described.
面発光レーザ11は、活性層101と、該活性層101の一側に配置された凹面鏡102を有する第1構造ST1と、活性層101の他側に配置された反射鏡103を有する第2構造ST2と、を備える。第2構造ST2に横モード調整領域TMAAが設けられ、横モード調整領域TMAAは、平面視において活性層101の発光領域LAを囲む領域を第1領域A1、該第1領域A1に囲まれる領域を第2領域A2としたときに、第1及び第2領域A1、A2のうち少なくとも第1領域A1を有する。横モード調整領域TMAAが第1及び第2領域A1、A2のうち第1領域A1のみを有し、横モード調整領域TMAAの面積重心から第1領域A1の内縁までの距離のうち最短距離をDS、最長距離をDLとすると、1≦DL/DS≦10が成立する。 The surface-emitting laser 11 includes an active layer 101, a first structure ST1 having a concave mirror 102 arranged on one side of the active layer 101, and a second structure ST2 having a reflecting mirror 103 arranged on the other side of the active layer 101. A transverse mode adjustment region TMAA is provided in the second structure ST2, and when a region surrounding the light emitting region LA of the active layer 101 in a plan view is defined as a first region A1 and a region surrounded by the first region A1 is defined as a second region A2, the transverse mode adjustment region TMAA has at least the first region A1 of the first and second regions A1 and A2. When the transverse mode adjustment region TMAA has only the first region A1 of the first and second regions A1 and A2, and the shortest distance from the areal center of gravity of the transverse mode adjustment region TMAA to the inner edge of the first region A1 is defined as D S and the longest distance is defined as D L , 1≦D L /D S ≦10 is satisfied.
面発光レーザ11によれば、横モードに所望のロスを与えることができる面発光レーザを提供することができる。横モードに所望のロスを与えることで、基本モードのみの単一横モード出力が可能となる。 The surface-emitting laser 11 can provide a surface-emitting laser that can impart a desired loss to the transverse mode. By imparting a desired loss to the transverse mode, a single transverse mode output of only the fundamental mode becomes possible.
さらに、面発光レーザ11によれば、径方向のロス分布がなだらかになるので、作製誤差耐性が向上し、歩留まりが向上する。 Furthermore, the surface-emitting laser 11 has a gentle radial loss distribution, improving tolerance to manufacturing errors and improving yields.
アノード電極108に含まれる横モード調整領域TMAAの外周部長を比較的長くできるので、リフトオフプロセスが容易になり、歩留まりが向上する。 The outer peripheral length of the transverse mode adjustment area TMAA included in the anode electrode 108 can be made relatively long, making the lift-off process easier and improving yields.
横モード調整領域TMAAを含むアノード電極108の材料に金属を用いているので、半導体や誘電体を用いる場合に比べて、モードロスへの寄与が大きく、高いモード制御性を得ることができる。 The anode electrode 108, including the transverse mode adjustment area TMAA, is made of metal, which contributes more to mode loss than semiconductors or dielectrics, and provides high mode controllability.
横モード調整領域TMAAを含むアノード電極108の材料に、より熱伝導性が高い金属を用いることにより、ヒートシンクとして機能させ、放熱性を向上することも可能である。 By using a metal with higher thermal conductivity as the material for the anode electrode 108, including the transverse mode adjustment area TMAA, it is possible to make it function as a heat sink and improve heat dissipation.
横モード調整領域TMAAは、金属表面に存在し得る表面プラズモンを用いることにより、波長制御や偏光制御にも活用することができる。特にDS<DLを満たすので、円形開口と比較して金属表面の表面積が大きくなることから、より強い表面プラズモンが期待できる。 The transverse mode adjustment region TMAA can also be used for wavelength control and polarization control by using surface plasmons that may exist on the metal surface. In particular, since D S <D L is satisfied, the surface area of the metal surface is larger than that of a circular aperture, and therefore stronger surface plasmons can be expected.
横モード調整領域TMAAがアノード電極108に含まれるため、従来と同様の工程により横モード調整領域TMAAを形成することができる。 Since the transverse mode adjustment region TMAA is included in the anode electrode 108, the transverse mode adjustment region TMAA can be formed by the same process as in the conventional method.
横モード調整領域TMAAがアノード電極108に含まれるため、アノード電極108の内径を小さくして(表面積を大きくして)内部抵抗を下げることができ、IV特性(電流電圧特性)の改善が可能となる。 Because the transverse mode adjustment area TMAA is included in the anode electrode 108, the inner diameter of the anode electrode 108 can be reduced (the surface area can be increased) to reduce the internal resistance, thereby improving the IV characteristics (current-voltage characteristics).
<2.本技術の一実施形態の実施例2に係る面発光レーザ>
以下、本技術の一実施形態の実施例2に係る面発光レーザについて、図面を用いて説明する。
2. Surface-emitting laser according to Example 2 of an embodiment of the present technology
Hereinafter, a surface emitting laser according to a second example of an embodiment of the present technology will be described with reference to the drawings.
図11Aは、本技術の一実施形態の実施例2に係る面発光レーザ12の横モード調整領域TMAAの平面図である。図11Bは、横モード調整領域TMAAの内縁形状が略円形の場合と多角形である場合の光の径方向位置とモードロスとの関係を示すグラフである。 Fig. 11A is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 12 according to Example 2 of an embodiment of the present technology. Fig. 11B is a graph showing the relationship between the radial position of light and the mode loss when the inner edge shape of the transverse mode adjustment area TMAA is substantially circular and polygonal.
面発光レーザ12は、図11Aに示すように、横モード調整領域TMAAの内縁形状(アノード電極108の開口部108aの形状)が正五角形である点を除いて、実施例1に係る面発光レーザ11と同様の構成を有する。 As shown in FIG. 11A, the surface-emitting laser 12 has a configuration similar to that of the surface-emitting laser 11 according to the first embodiment, except that the inner edge shape of the transverse mode adjustment area TMAA (the shape of the opening 108a of the anode electrode 108) is a regular pentagon.
面発光レーザ12では、図11Bに示すように、横モード調整領域TMAAの内縁形状が略円形の面発光レーザ11よりも径方向のロス分布がなだらかである。 As shown in FIG. 11B, the surface-emitting laser 12 has a more gentle radial loss distribution than the surface-emitting laser 11, in which the inner edge of the transverse mode adjustment area TMAA has a substantially circular shape.
面発光レーザ12によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、作製誤差耐性がより向上し、歩留まりがより向上する。 The surface-emitting laser 12 achieves the same effects as the surface-emitting laser 11 of Example 1, while also improving tolerance to manufacturing errors and yield.
(光学シミュレーション)
略正五角形の横モード調整領域TMAAを有するアノード電極108をTi/Pt/Auの3層構造とし、DS/ωを2.2、DL/ωを2.7、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
The anode electrode 108 having a substantially regular pentagonal transverse mode adjustment region TMAA had a three-layer structure of Ti/Pt/Au, with D S /ω being 2.2, D L /ω being 2.7, the current confinement diameter being 4 μm, the resonator length being 24 μm, and the curvature radius of the concave mirror 102 being 80 μm. As a result, the desired loss could be given to the transverse mode, and the transverse mode could be appropriately adjusted (to the desired single mode).
<3.本技術の一実施形態の実施例3に係る面発光レーザ>
以下、本技術の一実施形態の実施例3に係る面発光レーザについて、図面を用いて説明する。
<3. Surface-emitting laser according to Example 3 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to a third example of an embodiment of the present technology will be described with reference to the drawings.
図12Aは、本技術の一実施形態の実施例3に係る面発光レーザ13の横モード調整領域TMAAの平面図である。図12Bは、横モード調整領域TMAAの内縁形状が略円形の場合と星形である場合の光の径方向位置とモードロスとの関係を示すグラフである。 Fig. 12A is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 13 according to Example 3 of an embodiment of the present technology. Fig. 12B is a graph showing the relationship between the radial position of light and the mode loss when the inner edge shape of the transverse mode adjustment area TMAA is substantially circular and star-shaped.
面発光レーザ13は、図12Aに示すように、横モード調整領域TMAAの内縁形状(アノード電極108の開口部108aの形状)が星形である点を除いて、実施例1に係る面発光レーザ11と同様の構成を有する。 As shown in FIG. 12A, the surface-emitting laser 13 has a configuration similar to that of the surface-emitting laser 11 according to the first embodiment, except that the inner edge shape of the transverse mode adjustment area TMAA (the shape of the opening 108a of the anode electrode 108) is star-shaped.
面発光レーザ13では、図12Bに示すように、横モード調整領域TMAAの内縁形状が略円形の面発光レーザ11よりも径方向のロス分布がなだらかである。 As shown in FIG. 12B, the surface-emitting laser 13 has a more gentle radial loss distribution than the surface-emitting laser 11, in which the inner edge of the transverse mode adjustment area TMAA has a substantially circular shape.
面発光レーザ13によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、作製誤差耐性がより向上し、歩留まりがより向上する。 The surface-emitting laser 13 provides the same effects as the surface-emitting laser 11 of Example 1, and also provides improved tolerance to manufacturing errors and improved yield.
なお、面発光レーザ13の横モード調整領域TMAAの内縁形状は、星形に限らず、次の(1)式を満たす形状(例えば第1領域A1の内縁が、第1領域A1の外縁側へ向けて放射状に突出する複数の凸部を有する形状等)であればよい。 The shape of the inner edge of the transverse mode adjustment region TMAA of the surface-emitting laser 13 is not limited to a star shape, but may be any shape that satisfies the following formula (1) (for example, a shape in which the inner edge of the first region A1 has multiple convex portions that protrude radially toward the outer edge side of the first region A1).
但し、ρは動径、φは角度、nは凸型の頂点の数、mは何個の頂点を経て辺が同一直線上に並ぶかを決定する値、kは剛性とする。補足すると、上記(1)式は、上記k=0では他のパラメータに関係なく円を表し、k=1では直線を含む多角形を表し、0<k<1の中間の値では円と多角形の中間的な図形を表す。例えば、上記(1)は、n=7、k=0.3、m=3のとき、星形に類似した多角形を表す。
where ρ is the radius, φ is the angle, n is the number of vertices of the convex shape, m is a value that determines how many vertices the sides will pass through to line up on a straight line, and k is the rigidity. Supplementally, in the above formula (1), when k=0, it represents a circle regardless of other parameters, when k=1, it represents a polygon including straight lines, and when it is an intermediate value between 0<k<1, it represents a figure intermediate between a circle and a polygon. For example, when n=7, k=0.3, and m=3, the above formula (1) represents a polygon similar to a star shape.
(光学シミュレーション)
星形の横モード調整領域TMAAを有するアノード電極108をTi/Pt/Auの3層構造とし、DS/ωを2.2、DL/ωを2.3、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
The anode electrode 108 having a star-shaped transverse mode adjustment region TMAA had a three-layer structure of Ti/Pt/Au, with D S /ω being 2.2, D L /ω being 2.3, the current confinement diameter being 4 μm, the resonator length being 24 μm, and the curvature radius of the concave mirror 102 being 80 μm. As a result, the desired loss could be given to the transverse mode, and the transverse mode could be appropriately adjusted (to the desired single mode).
<4.本技術の一実施形態の実施例4に係る面発光レーザ>
以下、本技術の一実施形態の実施例4に係る面発光レーザについて、図面を用いて説明する。
<4. Surface-emitting laser according to Example 4 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to a fourth embodiment of the present technology will be described with reference to the drawings.
図13Aは、本技術の一実施形態の実施例4に係る面発光レーザ14の横モード調整領域TMAAの平面図である。図13Bは、横モード調整領域TMAAの内縁形状が略円形の場合とバラ形である場合の光の径方向位置とモードロスとの関係を示すグラフである。 Fig. 13A is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 14 according to Example 4 of an embodiment of the present technology. Fig. 13B is a graph showing the relationship between the radial position of light and the mode loss when the inner edge shape of the transverse mode adjustment area TMAA is substantially circular and when it is rose-shaped.
面発光レーザ14は、図13Aに示すように、横モード調整領域TMAAの内縁形状(アノード電極108の開口部108aの形状)がバラ形である点を除いて、実施例1に係る面発光レーザ11と同様の構成を有する。 As shown in FIG. 13A, the surface-emitting laser 14 has a configuration similar to that of the surface-emitting laser 11 according to the first embodiment, except that the inner edge shape of the transverse mode adjustment area TMAA (the shape of the opening 108a of the anode electrode 108) is rose-shaped.
面発光レーザ14では、図13Bに示すように、横モード調整領域TMAAの内縁形状が略円形の面発光レーザ11よりも径方向のロス分布がなだらかである。 As shown in FIG. 13B, the surface-emitting laser 14 has a more gentle radial loss distribution than the surface-emitting laser 11, in which the inner edge of the transverse mode adjustment area TMAA has a substantially circular shape.
面発光レーザ14によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、作製誤差耐性がより向上し、歩留まりがより向上する。 The surface-emitting laser 14 achieves the same effects as the surface-emitting laser 11 of Example 1, and also improves tolerance to manufacturing errors and yields.
なお、面発光レーザ13の横モード調整領域TMAAの内縁形状は、バラ形に限らず、次の(2)式を満たす形状(例えば第1領域A1の内縁が、第1領域A1の外縁側へ向けて放射状に突出する複数の凸部を有する形状等)であればよい。 The shape of the inner edge of the transverse mode adjustment region TMAA of the surface-emitting laser 13 is not limited to a rose shape, but may be any shape that satisfies the following formula (2) (for example, a shape in which the inner edge of the first region A1 has multiple convex portions that protrude radially toward the outer edge side of the first region A1).
但し、rを動径、θを角度、nは凸型の頂点の数、dは形状のバリエーションを与える変数である。補足すると、dの値により(2)式で表される図形の形状が変化する。
where r is the radius, θ is the angle, n is the number of vertices of the convex shape, and d is a variable that gives variation in shape. Additionally, the shape of the figure expressed by formula (2) changes depending on the value of d.
バラ形の横モード調整領域TMAAを有するアノード電極108をTi/Pt/Auの3層構造とし、DS/ωを2.2、DL/ωを2.3、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。 The anode electrode 108 having a rose-shaped transverse mode adjustment region TMAA had a three-layer structure of Ti/Pt/Au, with D S /ω being 2.2, D L /ω being 2.3, the current confinement diameter being 4 μm, the resonator length being 24 μm, and the curvature radius of the concave mirror 102 being 80 μm. As a result, the desired loss could be given to the transverse mode, and the transverse mode could be appropriately adjusted (to the desired single mode).
<5.本技術の一実施形態の実施例5に係る面発光レーザ>
以下、本技術の一実施形態の実施例5に係る面発光レーザについて、図面を用いて説明する。
<5. Surface-emitting laser according to Example 5 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to a fifth embodiment of the present technology will be described with reference to the drawings.
図14は、本技術の一実施形態の実施例5に係る面発光レーザ15の横モード調整領域TMAAの平面図である。 FIG. 14 is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 15 according to Example 5 of an embodiment of the present technology.
面発光レーザ15は、図14に示すように、横モード調整領域TMAAの内縁形状(アノード電極108の開口部108aの形状)が楕円形(円を互いに直交する方向に相対的に歪ませた形状)である点を除いて、実施例1に係る面発光レーザ11と同様の構成を有する。 As shown in FIG. 14, the surface-emitting laser 15 has a similar configuration to the surface-emitting laser 11 of Example 1, except that the inner edge shape of the transverse mode adjustment area TMAA (the shape of the opening 108a of the anode electrode 108) is elliptical (a shape formed by relatively distorting a circle in mutually orthogonal directions).
面発光レーザ15によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、偏光制御を行うことができる。 The surface-emitting laser 15 provides the same effects as the surface-emitting laser 11 of Example 1 and can also perform polarization control.
(光学シミュレーション)
楕円形の横モード調整領域TMAAを有するアノード電極108をTi/Pt/Auの3層構造とし、DS/ωを2.1、DL/ωを2.4、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができるとともに偏光制御を行うことができ、横モードを適正に(所望のシングルモードに)調整することができるとともに偏光方向を揃えることができた。
(Optical Simulation)
The anode electrode 108 having an elliptical transverse mode adjustment region TMAA has a three-layer structure of Ti/Pt/Au, with D S /ω being 2.1, D L /ω being 2.4, the current confinement diameter being 4 μm, the resonator length being 24 μm, and the radius of curvature of the concave mirror 102 being 80 μm. As a result, it was possible to give the desired loss to the transverse mode and perform polarization control, and it was possible to properly adjust the transverse mode (to the desired single mode) and align the polarization direction.
<6.本技術の一実施形態の実施例6に係る面発光レーザ>
以下、本技術の一実施形態の実施例6に係る面発光レーザについて、図面を用いて説明する。
<6. Surface-emitting laser according to Example 6 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 6 of an embodiment of the present technology will be described with reference to the drawings.
図15は、本技術の一実施形態の実施例6に係る面発光レーザ16の横モード調整領域TMAAの平面図である。 FIG. 15 is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 16 according to Example 6 of an embodiment of the present technology.
面発光レーザ16は、図15に示すように、横モード調整領域TMAAが第1及び第2領域A1、A2を有している点を除いて、実施例1に係る面発光レーザ11と概ね同様の構成を有する。第2領域A2は、前述のとおり、第1領域A1に囲まれる領域である。 As shown in FIG. 15, the surface-emitting laser 16 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the transverse mode adjustment area TMAA has first and second areas A1 and A2. As described above, the second area A2 is an area surrounded by the first area A1.
第1及び第2領域A1、A2は、横モードにロスを与えるモードロス作用領域として機能する。ここでは、円環状の第1領域A1の内側、すなわち第1領域A1の開口部A1a内に互いに分離された複数(例えば3つ)の円形状の部分から成る第2領域A2が配置されている。一例として、第2領域A2を構成する複数の部分は、平面視において所定ピッチで2次元配置されている。詳述すると、第2領域A2を構成する3つの部分は、それぞれ第1領域A1の中心を中心とする正三角形の3つの頂点上に位置する。平面視において、当該正三角形は、発光領域LAを囲んでいる。なお、第2領域A2の複数(例えば3つ)の部分の各々は、例えば楕円形、多角形等の円形以外の形状を有していてもよい。ここでは、当該正三角形の中心が第1領域A1の中心に一致しているが、一致していなくてもよい。第2領域A2の各部分を頂点とする三角形は、正三角形に限らず、二等辺三角形等の他の三角形であってもよい。すなわち、第2領域A2を構成する複数の部分は、平面視において配列ピッチが一定でなくてもよい。 The first and second regions A1 and A2 function as mode loss effect regions that give loss to the transverse mode. Here, the second region A2 is composed of multiple (e.g., three) circular portions separated from each other and arranged inside the annular first region A1, i.e., within the opening A1a of the first region A1. As an example, the multiple portions constituting the second region A2 are arranged two-dimensionally at a predetermined pitch in a planar view. In detail, the three portions constituting the second region A2 are located on the three vertices of an equilateral triangle centered on the center of the first region A1. In a planar view, the equilateral triangle surrounds the light-emitting region LA. Note that each of the multiple (e.g., three) portions of the second region A2 may have a shape other than a circle, such as an ellipse or polygon. Here, the center of the equilateral triangle coincides with the center of the first region A1, but it does not have to coincide. The triangle with each portion of the second region A2 as a vertex is not limited to an equilateral triangle, and may be another triangle such as an isosceles triangle. In other words, the multiple portions constituting the second region A2 may not have a constant arrangement pitch in a planar view.
横モード調整領域TMAAが第1及び第2領域A1、A2を有する場合に、図15に示すように、横モード調整領域TMAAの面積重心から第1領域A1の内縁及び第2領域A2の外縁までの距離のうち最短距離をDS、最長距離をDLとしたときに、横モードを適正に(所望の横方向のビームプロファイルを持つシングルモードに)調整するために、DsとDLの比が、所定範囲内にあることが望まれる。これにより、径方向のロス分布がなだらかになるので、作製誤差耐性が向上し、歩留まりが向上することも期待できる。 In the case where the transverse mode adjustment region TMAA has the first and second regions A1 and A2, when the shortest distance from the center of gravity of the transverse mode adjustment region TMAA to the inner edge of the first region A1 and the outer edge of the second region A2 is D S and the longest distance is D L , it is desirable that the ratio of D S to D L be within a predetermined range in order to properly adjust the transverse mode (to a single mode having a desired transverse beam profile), as shown in Fig. 15. This makes the radial loss distribution gentle, and therefore it is expected that the tolerance to manufacturing errors will be improved and the yield will also be improved.
具体的には、横モード調整領域TMAAにおいて、1≦DL/DS≦10が成立することが好ましく、1≦DL/DS≦6が成立することがより好ましく、1≦DL/DS≦3が成立することがより一層好ましく、1≦DL/DS≦2が成立することが更により一層好ましい。 Specifically, in the transverse mode adjustment area TMAA, it is preferable that 1≦D L /D S ≦10 holds, it is more preferable that 1≦D L /D S ≦6 holds, it is even more preferable that 1≦D L /D S ≦3 holds, and it is even more preferable that 1≦D L /D S ≦2 holds.
より詳細には、横モード調整領域TMAAにおいて、0.5≦DS/ω≦6、且つ、0.5≦DL/ω≦12が成立することが好ましく、1≦DS/ω≦6、且つ、1≦DL/ω≦12が成立することがより好ましく、1≦DS/ω≦6、且つ、1≦DL/ω≦6が成立することがより一層好ましく、1≦DS/ω≦3、且つ、1≦DL/ω≦6が成立することが更により一層好ましい。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径、ω0=[λ0(LR-L2)1/2/πn]1/2
Lm:ビームウエストから横モード調整領域までの垂直方向の距離(実効距離)
n:媒質の屈折率
λ0:面発光レーザの発振波長
L;共振器長
R:凹面鏡の曲率半径
More specifically, in the transverse mode adjustment area TMAA, it is preferable that 0.5≦ Ds /ω≦6 and 0.5≦D L /ω≦12 hold, it is more preferable that 1≦ Ds /ω≦6 and 1≦D L /ω≦12 hold, it is even more preferable that 1≦ Ds /ω≦6 and 1≦D L /ω≦6 hold, and it is even more preferable that 1≦ Ds /ω≦3 and 1≦D L /ω≦6 hold.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius, ω 0 = [λ 0 (LR-L 2 ) 1/2 /πn] 1/2
L m : Vertical distance from the beam waist to the transverse mode adjustment region (effective distance)
n: refractive index of the medium λ 0 : oscillation wavelength of the surface emitting laser L; resonator length R: radius of curvature of the concave mirror
また、横モード調整領域TMAAにおいては、DLよりもDSの方がモードロスに及ぼす効果が大きく、横方向のビームプロファイルの概形を決定する上で重要である。すなわち、DS/ωの値が適正な範囲内にあることがより重要となる。 In addition, in the transverse mode adjustment area TMAA, D S has a larger effect on the mode loss than D L , and is important in determining the general shape of the transverse beam profile. In other words, it is more important that the value of D S /ω is within an appropriate range.
そこで、横モード調整領域TMAAにおいて、1≦DS/ω≦3、且つ、1≦DL/ω≦12が成立することが好ましく、1≦DS/ω≦2.5、且つ、1≦DL/ω≦12が成立することがより好ましく、1.5≦DS/ω≦2.5、且つ、1.5≦DL/ω≦12が成立することがより一層好ましく、2≦DS/ω≦2.5、且つ、2≦DL/ω≦12が成立することが更により一層好ましい。 Therefore, in the transverse mode adjustment area TMAA, it is preferable that 1≦ Ds /ω≦3 and 1≦D L /ω≦12 hold, it is more preferable that 1≦ Ds /ω≦2.5 and 1≦D L /ω≦12 hold, it is even more preferable that 1.5≦ Ds /ω≦2.5 and 1.5≦D L /ω≦12 hold, and it is even more preferable that 2≦ Ds /ω≦2.5 and 2≦D L /ω≦12 hold.
また、横モード調整領域TMAAにおいて、横方向のビームプロファイルを微調整する上でDL/ωの値が適正な範囲内にあることも重要である。 In addition, in the transverse mode adjustment area TMAA, it is also important that the value of D L /ω is within an appropriate range in finely adjusting the beam profile in the transverse direction.
そこで、横モード調整領域TMAAにおいて、0.5≦DS/ω≦6、且つ、1≦DL/ω≦6が成立することが好ましく、0.5≦DS/ω≦4、且つ、1≦DL/ω≦4が成立することがより好ましく、0.5≦DS/ω≦3、且つ、1≦DL/ω≦3が成立することがより一層好ましく、0.5≦DS/ω≦2.5、且つ、1≦DL/ω≦2.5が成立することがより一層好ましい。 Therefore, in the transverse mode adjustment area TMAA, it is preferable that 0.5≦ Ds /ω≦6 and 1≦D L /ω≦6 hold, it is more preferable that 0.5≦ Ds /ω≦4 and 1≦D L /ω≦4 hold, it is even more preferable that 0.5≦ Ds /ω≦3 and 1≦D L /ω≦3 hold, and it is even more preferable that 0.5≦ Ds /ω≦2.5 and 1≦D L /ω≦2.5 hold.
以上より、横モード調整領域TMAAにおいて、横方向のビームプロファイルを調整する上でDS/ω及びDL/ω及びの値が適正な範囲内にあることがより重要である。 From the above, it is more important that the values of D S /ω and D L /ω are within appropriate ranges in adjusting the beam profile in the transverse mode adjustment area TMAA.
そこで、横モード調整領域TMAAにおいて、1≦DS/ω≦3、且つ、1≦DL/ω≦6が成立することが好ましく、1≦DS/ω≦3、且つ、1≦DL/ω≦4が成立することがより好ましく、1≦DS/ω≦2.5、且つ、1≦DL/ω≦3が成立することがより一層好ましく、1≦DS/ω≦2.5、且つ、1≦DL/ω≦2.5が成立することがより一層好ましい。さらに、1<DS/ω、及び/又は、1<DL/ωを満たしていてもよい。 Therefore, in the transverse mode adjustment area TMAA, it is preferable that 1≦D S /ω≦3 and 1≦D L /ω≦6 are satisfied, it is more preferable that 1≦D S /ω≦3 and 1≦D L /ω≦4 are satisfied, it is even more preferable that 1≦D S /ω≦2.5 and 1≦D L /ω≦3 are satisfied, and it is even more preferable that 1≦D S /ω≦2.5 and 1≦D L /ω≦2.5 are satisfied. Furthermore, 1<D S /ω and/or 1<D L /ω may be satisfied.
面発光レーザ16によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、横モード調整領域TMAAが第1及び第2領域A1、A2を有するので、IV特性に影響を与えずにモード制御が可能になり、且つ、抑制したいモード形状に合わせて設計できるので、より高精度なモード制御が可能となる。これに対して、例えば単純にアノード電極(リング電極)の内径を狭める手法を用いると、アノード電極により電流経路が変化し、IV特性に影響が及びうる。 The surface-emitting laser 16 has the same effect as the surface-emitting laser 11 of Example 1, and since the transverse mode adjustment area TMAA has the first and second areas A1 and A2, mode control is possible without affecting the IV characteristics, and since it can be designed according to the mode shape to be suppressed, more accurate mode control is possible. In contrast, if a method is used to simply narrow the inner diameter of the anode electrode (ring electrode), for example, the current path will change due to the anode electrode, which may affect the IV characteristics.
(光学シミュレーション)
当該第1及び第2領域A1、A2を有する横モード調整領域TMAAを含むアノード電極108をTi/Pt/Auの3層構造とし、DS/ωを2.1、DL/ωを2.4、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
The anode electrode 108 including the transverse mode adjustment region TMAA having the first and second regions A1 and A2 had a three-layer structure of Ti/Pt/Au, with D S /ω being 2.1, D L /ω being 2.4, the current confinement diameter being 4 μm, the resonator length being 24 μm, and the radius of curvature of the concave mirror 102 being 80 μm. As a result, it was possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired single mode).
<7.本技術の一実施形態の実施例7に係る面発光レーザ>
以下、本技術の一実施形態の実施例7に係る面発光レーザについて、図面を用いて説明する。
7. Surface-emitting laser according to Example 7 of an embodiment of the present technology
Hereinafter, a surface emitting laser according to Example 7 of an embodiment of the present technology will be described with reference to the drawings.
図16は、本技術の一実施形態の実施例7に係る面発光レーザ17の横モード調整領域TMAAの平面図である。 FIG. 16 is a plan view of the transverse mode adjustment area TMAA of a surface-emitting laser 17 according to Example 7 of an embodiment of the present technology.
面発光レーザ17は、図16に示すように、横モード調整領域TMAAが第1及び第2領域A1、A2を有している点を除いて、実施例1に係る面発光レーザ11と概ね同様の構成を有する。第2領域A2は、前述のとおり、第1領域A1に囲まれる領域である。 As shown in FIG. 16, the surface-emitting laser 17 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the transverse mode adjustment area TMAA has first and second areas A1 and A2. As described above, the second area A2 is an area surrounded by the first area A1.
第1及び第2領域A1、A2は、横モードにロスを与えるモードロス作用領域として機能する。ここでは、円環状の第1領域A1の内側、すなわち第1領域A1の開口部A1a内に円環状の第2領域A2(第1領域A1と略相似の領域)が配置されている。一例として、第1及び第2領域A1、A2は、同心に配置されている。第2領域A2は、平面視において、発光領域LAを囲んでいる。すなわち、平面視において、第2領域A2の開口部A2a内に発光領域LAが位置している。なお、第1及び第2領域A1、A2は、同心に配置されていなくてもよい。ここでは、平面視において横モード調整領域TMAAの面積重心Cが発光領域LAの中心に一致しているが、一致していなくてもよい。ここでは、第2領域A2は、単一の円環状の領域から成るが、同心又は異心の複数の円環状の領域(略相似の領域)を有していてもよい。 The first and second regions A1 and A2 function as mode loss effect regions that give loss to the transverse mode. Here, the annular second region A2 (region approximately similar to the first region A1) is arranged inside the annular first region A1, i.e., within the opening A1a of the first region A1. As an example, the first and second regions A1 and A2 are arranged concentrically. The second region A2 surrounds the light emitting region LA in a planar view. That is, the light emitting region LA is located within the opening A2a of the second region A2 in a planar view. Note that the first and second regions A1 and A2 do not have to be arranged concentrically. Here, the area center of gravity C of the transverse mode adjustment region TMAA coincides with the center of the light emitting region LA in a planar view, but it does not have to coincide. Here, the second region A2 consists of a single annular region, but may have multiple concentric or heterocentric annular regions (regions approximately similar).
横モード調整領域TMAAが第1及び第2領域A1、A2を有する場合に、図16に示すように、横モード調整領域TMAAの面積重心Cから第1領域A1の内縁及び第2領域A2の外縁までの距離のうち最短距離をDS、最長距離をDLとしたときに、横モードを適正に(所望の横方向のビームプロファイルを持つシングルモードに)調整するために、DsとDLの比が、所定範囲内にあることが望まれる。これにより、径方向のロス分布がなだらかになるので、作製誤差耐性が向上し、歩留まりが向上することも期待できる。 In the case where the transverse mode adjustment region TMAA has the first and second regions A1 and A2, when the shortest distance from the areal center C of the transverse mode adjustment region TMAA to the inner edge of the first region A1 and the outer edge of the second region A2 is D S and the longest distance is D L , it is desired that the ratio of D S to D L be within a predetermined range in order to properly adjust the transverse mode (to a single mode having a desired transverse beam profile), as shown in Fig. 16. This makes the radial loss distribution gentle, and therefore it is expected that the tolerance to manufacturing errors will be improved and the yield will also be improved.
具体的には、横モード調整領域TMAAにおいて、1≦DL/DS≦10が成立することが好ましく、1≦DL/DS≦6が成立することがより好ましく、1≦DL/DS≦3が成立することがより一層好ましく、1≦DL/DS≦2が成立することが更により一層好ましい。 Specifically, in the transverse mode adjustment area TMAA, it is preferable that 1≦D L /D S ≦10 holds, it is more preferable that 1≦D L /D S ≦6 holds, it is even more preferable that 1≦D L /D S ≦3 holds, and it is even more preferable that 1≦D L /D S ≦2 holds.
より詳細には、横モード調整領域TMAAにおいて、0.5≦DS/ω≦6、且つ、0.5≦DL/ω≦12が成立することが好ましく、1≦DS/ω≦6、且つ、1≦DL/ω≦12が成立することがより好ましく、1≦DS/ω≦6、且つ、1≦DL/ω≦6が成立することがより一層好ましく、1≦DS/ω≦3、且つ、1≦DL/ω≦6が成立することが更により一層好ましい。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径、ω0=[λ0(LR-L2)1/2/πn]1/2
Lm:ビームウエストから横モード調整領域までの垂直方向の距離(実効距離)
n:媒質の屈折率
λ0:面発光レーザの発振波長
L;共振器長
R:凹面鏡の曲率半径
More specifically, in the transverse mode adjustment area TMAA, it is preferable that 0.5≦ Ds /ω≦6 and 0.5≦D L /ω≦12 hold, it is more preferable that 1≦ Ds /ω≦6 and 1≦D L /ω≦12 hold, it is even more preferable that 1≦ Ds /ω≦6 and 1≦D L /ω≦6 hold, and it is even more preferable that 1≦ Ds /ω≦3 and 1≦D L /ω≦6 hold.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius, ω 0 = [λ 0 (LR-L 2 ) 1/2 /πn] 1/2
L m : Vertical distance from the beam waist to the transverse mode adjustment region (effective distance)
n: refractive index of the medium λ 0 : oscillation wavelength of the surface emitting laser L; resonator length R: radius of curvature of the concave mirror
また、横モード調整領域TMAAにおいては、DLよりもDSの方がモードロスに及ぼす効果が大きく、横方向のビームプロファイルの概形を決定する上で重要である。すなわち、DS/ωの値が適正な範囲内にあることがより重要となる。 In addition, in the transverse mode adjustment area TMAA, D S has a larger effect on the mode loss than D L , and is important in determining the general shape of the transverse beam profile. In other words, it is more important that the value of D S /ω is within an appropriate range.
そこで、横モード調整領域TMAAにおいて、1≦DS/ω≦3、且つ、1≦DL/ω≦12が成立することが好ましく、1≦DS/ω≦2.5、且つ、1≦DL/ω≦12が成立することがより好ましく、1.5≦DS/ω≦2.5、且つ、1.5≦DL/ω≦12が成立することがより一層好ましく、2≦DS/ω≦2.5、且つ、2≦DL/ω≦12が成立することが更により一層好ましい。 Therefore, in the transverse mode adjustment area TMAA, it is preferable that 1≦ Ds /ω≦3 and 1≦D L /ω≦12 hold, it is more preferable that 1≦ Ds /ω≦2.5 and 1≦D L /ω≦12 hold, it is even more preferable that 1.5≦ Ds /ω≦2.5 and 1.5≦D L /ω≦12 hold, and it is even more preferable that 2≦ Ds /ω≦2.5 and 2≦D L /ω≦12 hold.
以上より、横モード調整領域TMAAにおいて、横方向のビームプロファイルを調整する上でDS/ω及びDL/ω及びの値が適正な範囲内にあることがより重要である。 From the above, it is more important that the values of D S /ω and D L /ω are within appropriate ranges in adjusting the beam profile in the transverse mode adjustment area TMAA.
そこで、横モード調整領域TMAAにおいて、1≦DS/ω≦3、且つ、1≦DL/ω≦6が成立することが好ましく、1≦DS/ω≦3、且つ、1≦DL/ω≦4が成立することがより好ましく、1≦DS/ω≦2.5、且つ、1≦DL/ω≦3が成立することがより一層好ましく、1≦DS/ω≦2.5、且つ、1≦DL/ω≦2.5が成立することがより一層好ましい。さらに、1<DS/ω、及び/又は、1<DL/ωを満たしていてもよい。 Therefore, in the transverse mode adjustment area TMAA, it is preferable that 1≦D S /ω≦3 and 1≦D L /ω≦6 are satisfied, it is more preferable that 1≦D S /ω≦3 and 1≦D L /ω≦4 are satisfied, it is even more preferable that 1≦D S /ω≦2.5 and 1≦D L /ω≦3 are satisfied, and it is even more preferable that 1≦D S /ω≦2.5 and 1≦D L /ω≦2.5 are satisfied. Furthermore, 1<D S /ω and/or 1<D L /ω may be satisfied.
また、横モード調整領域TMAAにおいて、横方向のビームプロファイルを微調整する上でDL/ωの値が適正な範囲内にあることも重要である。 In addition, in the transverse mode adjustment area TMAA, it is also important that the value of D L /ω is within an appropriate range in finely adjusting the beam profile in the transverse direction.
そこで、横モード調整領域TMAAにおいて、0.5≦DS/ω≦6、且つ、1≦DL/ω≦6が成立することが好ましく、0.5≦DS/ω≦4、且つ、1≦DL/ω≦4が成立することがより好ましく、0.5≦DS/ω≦3、且つ、1≦DL/ω≦3が成立することがより一層好ましく、0.5≦DS/ω≦2.5、且つ、1≦DL/ω≦2.5が成立することがより一層好ましい。 Therefore, in the transverse mode adjustment area TMAA, it is preferable that 0.5≦ Ds /ω≦6 and 1≦D L /ω≦6 hold, it is more preferable that 0.5≦ Ds /ω≦4 and 1≦D L /ω≦4 hold, it is even more preferable that 0.5≦ Ds /ω≦3 and 1≦D L /ω≦3 hold, and it is even more preferable that 0.5≦ Ds /ω≦2.5 and 1≦D L /ω≦2.5 hold.
面発光レーザ17によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、横モード調整領域TMAAが第1及び第2領域A1、A2を有するので、IV特性に影響を与えずにモード制御が可能になり、且つ、抑制したいモード形状に合わせて設計できるので、より高精度なモード制御が可能となる。 The surface-emitting laser 17 has the same effect as the surface-emitting laser 11 of Example 1, and since the transverse mode adjustment area TMAA has the first and second areas A1 and A2, mode control is possible without affecting the IV characteristics, and since it can be designed according to the mode shape to be suppressed, more precise mode control is possible.
(光学シミュレーション)
当該第1及び第2領域A1、A2を有する横モード調整領域TMAAを含むアノード電極108をTi/Pt/Auの3層構造とし、DS/ωを2.1、DL/ωを2.4、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
The anode electrode 108 including the transverse mode adjustment region TMAA having the first and second regions A1 and A2 had a three-layer structure of Ti/Pt/Au, with D S /ω being 2.1, D L /ω being 2.4, the current confinement diameter being 4 μm, the resonator length being 24 μm, and the radius of curvature of the concave mirror 102 being 80 μm. As a result, it was possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired single mode).
<8.本技術の一実施形態の実施例8に係る面発光レーザ>
≪面発光レーザの構成≫
以下、本技術の一実施形態の実施例8に係る面発光レーザについて、図面を用いて説明する。
8. Surface-emitting laser according to Example 8 of an embodiment of the present technology
<Configuration of surface-emitting laser>
Hereinafter, a surface emitting laser according to an eighth embodiment of the present technology will be described with reference to the drawings.
図17は、本技術の一実施形態の実施例8に係る面発光レーザ18の断面図である。 FIG. 17 is a cross-sectional view of a surface-emitting laser 18 according to Example 8 of an embodiment of the present technology.
面発光レーザ18は、カソード電極109が活性層101の一側(下側)に配置され、且つ、カソード電極109が横モード調整領域TMAAを有している点を除いて、実施例1に係る面発光レーザ11と概ね同様の構成を有する。面発光レーザ18は、電極設置部104bを有していない。面発光レーザ18では、アノード電極108について、前述した横モード調整条件が成立せず、アノード電極108は横モード調整領域TMAAとして機能しない。 The surface-emitting laser 18 has a configuration generally similar to that of the surface-emitting laser 11 according to the first embodiment, except that the cathode electrode 109 is disposed on one side (lower side) of the active layer 101, and the cathode electrode 109 has a transverse mode adjustment region TMAA. The surface-emitting laser 18 does not have an electrode installation portion 104b. In the surface-emitting laser 18, the above-mentioned transverse mode adjustment condition is not satisfied for the anode electrode 108, and the anode electrode 108 does not function as the transverse mode adjustment region TMAA.
面発光レーザ18では、基板104の凸面構造104aの中央部に凹面鏡102(以下「凹面鏡中央部」とも呼ぶ)が設けられ、凸面構造104aの周辺部及び該周辺部の周囲の平坦部に跨ってカソード電極109(以下「凹面鏡周辺部」とも呼ぶ)が設けられている。ここでは、凹面鏡周辺部であるカソード電極109が横モード調整領域TMAAを有する。すなわち、カソード電極109が、前述した横モード調整条件の少なくとも1つを満たしている。 In the surface-emitting laser 18, a concave mirror 102 (hereinafter also referred to as the "concave mirror central portion") is provided in the center of the convex structure 104a of the substrate 104, and a cathode electrode 109 (hereinafter also referred to as the "concave mirror peripheral portion") is provided across the peripheral portion of the convex structure 104a and the flat portion around the peripheral portion. Here, the cathode electrode 109, which is the peripheral portion of the concave mirror, has a transverse mode adjustment area TMAA. In other words, the cathode electrode 109 satisfies at least one of the transverse mode adjustment conditions described above.
≪面発光レーザの製造方法≫
以下、面発光レーザ18の製造方法について図18のフローチャート等を参照して説明する。ここでは、一例として、基板104の基材となる1枚のウェハ(例えばn-GaN基板、以下、便宜上「基板104と呼ぶ)上に複数の面発光レーザ18を複数同時に生成する。次いで、一連一体の複数の面発光レーザ18を互いに分離して、チップ状の面発光レーザ18(面発光レーザチップ)を得る。
<Manufacturing method of surface-emitting laser>
A method for manufacturing the surface-emitting laser 18 will be described below with reference to the flow chart of Fig. 18. Here, as an example, a plurality of surface-emitting lasers 18 are simultaneously produced on a single wafer (e.g., an n-GaN substrate, hereinafter referred to as "substrate 104" for convenience) that serves as the base material for the substrate 104. Next, the series of surface-emitting lasers 18 are separated from one another to obtain chip-shaped surface-emitting lasers 18 (surface-emitting laser chips).
最初のステップS11では、基板104上に活性層101及びクラッド層105を積層する(図19A参照)。具体的には、有機金属気層成長法(MOCVD法)又は分子線エピタキシー法(MBE法)により、成長室において基板104上に活性層101及びクラッド層105をこの順に積層して積層体を生成する。 In the first step S11, the active layer 101 and the cladding layer 105 are laminated on the substrate 104 (see FIG. 19A). Specifically, the active layer 101 and the cladding layer 105 are laminated in this order on the substrate 104 in a growth chamber by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) to generate a laminate.
次のステップS12では、イオン注入領域IIAを形成する(図19B参照)。具体的には、積層体上のイオン注入領域IIAが形成される箇所以外の部分を覆う、レジスト、SiO2等からなる保護膜を形成し、該保護膜をマスクとして積層体にクラッド層105側からイオンを(例えばB++)注入する。この際、イオン注入の注入深さは基板104内に達するまでとする。 In the next step S12, an ion implantation region IIA is formed (see FIG. 19B). Specifically, a protective film made of resist, SiO2 , or the like is formed to cover the portion of the laminate other than the portion where the ion implantation region IIA is to be formed, and ions (e.g., B ++ ) are implanted into the laminate from the cladding layer 105 side using the protective film as a mask. At this time, the ion implantation depth is set to reach inside the substrate 104.
次のステップS13では、絶縁膜107を形成する(図20A参照)。具体的には、先ず、積層体の全面に絶縁膜107を例えば真空蒸着法、スパッタ等により成膜する。次いで、フォトリソグラフィー及びエッチングにより、クラッド層105の周辺部を覆う絶縁膜107以外の絶縁膜107を除去する。この結果、クラッド層105の周辺部を覆う環状の絶縁膜107が形成される。 In the next step S13, the insulating film 107 is formed (see FIG. 20A). Specifically, first, the insulating film 107 is formed over the entire surface of the laminate by, for example, vacuum deposition, sputtering, or the like. Next, the insulating film 107 other than the insulating film 107 covering the peripheral portion of the cladding layer 105 is removed by photolithography and etching. As a result, a ring-shaped insulating film 107 is formed that covers the peripheral portion of the cladding layer 105.
次のステップS14では、透明導電膜106を形成する(図20B参照)。具体的には、先ず、積層体の全面に透明導電膜106を例えば真空蒸着法、スパッタ等により成膜する。次いで、フォトリソグラフィー及びエッチングにより、第1クラッド層105の中央部及び絶縁膜107の内周部を覆う透明導電膜106以外の透明導電膜106を除去する。この結果、第1クラッド層105の中央部及び絶縁膜107の内周部を覆う透明導電膜106が形成される。 In the next step S14, the transparent conductive film 106 is formed (see FIG. 20B). Specifically, first, the transparent conductive film 106 is formed over the entire surface of the laminate by, for example, vacuum deposition, sputtering, or the like. Next, the transparent conductive film 106 other than the transparent conductive film 106 covering the center of the first cladding layer 105 and the inner periphery of the insulating film 107 is removed by photolithography and etching. As a result, the transparent conductive film 106 covering the center of the first cladding layer 105 and the inner periphery of the insulating film 107 is formed.
次のステップS15では、アノード電極108を形成する(図21A参照)。具体的には、例えばリフトオフ法を用いて、透明導電膜106の外周部及び絶縁膜107の外周部を覆うリング状のアノード電極108を形成する。このときの電極材料の成膜は、例えば真空蒸着法、スパッタ等により行われる。 In the next step S15, the anode electrode 108 is formed (see FIG. 21A). Specifically, for example, a lift-off method is used to form the ring-shaped anode electrode 108 that covers the outer periphery of the transparent conductive film 106 and the outer periphery of the insulating film 107. The electrode material is deposited by, for example, vacuum deposition, sputtering, etc.
次のステップS16では、反射鏡103を形成する(図21B参照)。具体的には、積層体の全面に反射鏡103の材料である誘電体多層膜を例えば真空蒸着法、スパッタ法、CVD法等により成膜する。この結果、透明導電膜106及びアノード電極108を覆う誘電体多層膜反射鏡からなる反射鏡103が形成される。 In the next step S16, the reflector 103 is formed (see FIG. 21B). Specifically, a dielectric multilayer film, which is the material of the reflector 103, is formed on the entire surface of the laminate by, for example, vacuum deposition, sputtering, or CVD. As a result, the reflector 103 is formed, which is a dielectric multilayer film reflector that covers the transparent conductive film 106 and the anode electrode 108.
次のステップS17では、凸面構造104aを形成する(図22A参照)。具体的には、先ず、基板104の裏面(下面)に流動性材料をパターニングする。詳述すると、先ず、フォトリソグラフィーにより、基板104の裏面の凸面構造104aが形成されることとなる箇所に流動性材料(例えばフォトレジスト)を形成する。次いで、リフローにより流動性材料を凸面形状に形成する。具体的には、温度200℃でリフローにより流動性材料を凸面形状(例えば略半球形状)に成形する。流動性材料をマスクとしてエッチングを行って凸面構造104aを形成する。具体的には、フォトリソグラフィーにより流動性材料をマスクとして基板104を例えばドライエッチングして凸面構造104a(例えば略半球構造)を形成する。 In the next step S17, the convex structure 104a is formed (see FIG. 22A). Specifically, first, a fluid material is patterned on the back surface (lower surface) of the substrate 104. More specifically, first, a fluid material (e.g., photoresist) is formed by photolithography at the location on the back surface of the substrate 104 where the convex structure 104a will be formed. Next, the fluid material is formed into a convex shape by reflow. Specifically, the fluid material is molded into a convex shape (e.g., an approximately hemispherical shape) by reflow at a temperature of 200°C. Etching is performed using the fluid material as a mask to form the convex structure 104a. Specifically, the substrate 104 is dry-etched by photolithography using the fluid material as a mask to form the convex structure 104a (e.g., an approximately hemispherical structure).
次のステップS18では、カソード電極109を形成する(図22B参照)。具体的には、例えばリフトオフ法を用いて、カソード電極109を凸面構造104aの周辺部及び該周辺部の周囲の平坦部を覆うように形成する。このときの電極材料の成膜は、例えば真空蒸着法、スパッタ等により行われる。 In the next step S18, the cathode electrode 109 is formed (see FIG. 22B). Specifically, the cathode electrode 109 is formed so as to cover the peripheral portion of the convex structure 104a and the flat portion around the peripheral portion, for example, using a lift-off method. The electrode material is deposited by, for example, vacuum deposition, sputtering, etc.
最後のステップS19では、凹面鏡102を形成する(図23参照)。具体的には、先ず、カソード電極109及び凸面構造104aの中央部を覆うように凹面鏡102の材料(例えば誘電体多層膜)を例えば真空蒸着法、スパッタ法、CVD法等により成膜する。次いで、フォトリソグラフィー及びエッチングにより、凸面構造104aの中央部を覆う誘電体多層膜以外の誘電体多層膜を除去する。この結果、凸面構造104aの中央部に倣った形状の凹面鏡102が形成される。これにより、ウェハ(半導体基板(例えばn-GaN基板))上に複数の面発光レーザ18が複数生成される。その後、一連一体の複数の面発光レーザ18をダイシングにより分離して、チップ状の面発光レーザ18(面発光レーザチップ)を得る。その後、該面発光レーザ18は、例えばCANパッケージに実装される。より詳細には、該面発光レーザ18は、凹面鏡側の表面がCANパッケージに半田付けされる。 In the final step S19, the concave mirror 102 is formed (see FIG. 23). Specifically, first, the material of the concave mirror 102 (e.g., a dielectric multilayer film) is formed by, for example, vacuum deposition, sputtering, or CVD so as to cover the cathode electrode 109 and the center of the convex structure 104a. Next, the dielectric multilayer film other than the dielectric multilayer film covering the center of the convex structure 104a is removed by photolithography and etching. As a result, the concave mirror 102 is formed in a shape that imitates the center of the convex structure 104a. This produces a plurality of surface-emitting lasers 18 on a wafer (semiconductor substrate (e.g., n-GaN substrate)). After that, the series of surface-emitting lasers 18 are separated by dicing to obtain chip-shaped surface-emitting lasers 18 (surface-emitting laser chips). The surface-emitting lasers 18 are then mounted, for example, in a CAN package. More specifically, the surface of the surface-emitting laser 18 on the concave mirror side is soldered to the CAN package.
≪面発光レーザの効果≫
面発光レーザ18によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、横モード調整領域TMAAを有するカソード電極109が、ビーム径が最大となる凹面鏡102の位置に設けられているので、作製誤差耐性が向上し、歩留まりが向上する。
<Effects of surface-emitting lasers>
According to the surface-emitting laser 18, the same effects as those of the surface-emitting laser 11 of Example 1 are achieved, and since the cathode electrode 109 having the transverse mode adjustment area TMAA is provided at the position of the concave mirror 102 where the beam diameter is maximum, the tolerance to manufacturing errors is improved, and the yield is improved.
(光学シミュレーション)
横モード調整領域TMAAを有するカソード電極109をTi/Pt/Auの3層構造とし、DS/ωを2.2、DL/ωを2.25、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(
所望のシングルモードに)調整することができた。
(Optical Simulation)
The cathode electrode 109 having the transverse mode adjustment region TMAA has a three-layer structure of Ti/Pt/Au, D S /ω is 2.2, D L /ω is 2.25, the current confinement diameter is 4 μm, the resonator length is 24 μm, and the curvature radius of the concave mirror 102 is 80 μm. As a result, the desired loss can be given to the transverse mode, and the transverse mode can be appropriately (
It was possible to adjust the output to the desired single mode.
<9.本技術の一実施形態の実施例9に係る面発光レーザ>
≪面発光レーザの構成≫
以下、本技術の一実施形態の実施例9に係る面発光レーザについて、図面を用いて説明する。
<9. Surface-emitting laser according to Example 9 of an embodiment of the present technology>
<Configuration of surface-emitting laser>
Hereinafter, a surface emitting laser according to a ninth example of an embodiment of the present technology will be described with reference to the drawings.
図24は、本技術の一実施形態の実施例9に係る面発光レーザ19の断面図である。 FIG. 24 is a cross-sectional view of a surface-emitting laser 19 according to Example 9 of an embodiment of the present technology.
面発光レーザ19は、電流狭窄領域としてのイオン注入領域IIAが横モード調整領域TMAAを有する点を除いて、実施例1に係る面発光レーザ11と概ね同様の構成を有する。ここでは、アノード電極108は、前述した横モード調整条件を満たしておらず、横モード調整機能を有していない。 The surface-emitting laser 19 has a configuration generally similar to that of the surface-emitting laser 11 according to the first embodiment, except that the ion implantation region IIA serving as a current confinement region has a transverse mode adjustment region TMAA. Here, the anode electrode 108 does not satisfy the transverse mode adjustment conditions described above, and does not have a transverse mode adjustment function.
面発光レーザ19では、イオン注入領域IIAが有する横モード調整領域TMAAが例えば略円環状であり、前述した横モード調整条件の少なくとも1つを満たしている。 In the surface-emitting laser 19, the transverse mode adjustment region TMAA of the ion implantation region IIA is, for example, approximately annular, and satisfies at least one of the transverse mode adjustment conditions described above.
面発光レーザ19のイオン注入領域IIAの形状を、実施例2~7に係る面発光レーザ12~17の横モード調整領域TMAAと同一の形状とし、且つ、横モード調整条件の少なくとも1つが成立してもよい。 The shape of the ion implantation region IIA of the surface-emitting laser 19 may be the same as the shape of the transverse mode adjustment region TMAA of the surface-emitting lasers 12 to 17 according to Examples 2 to 7, and at least one of the transverse mode adjustment conditions may be satisfied.
面発光レーザ19によれば、イオン注入領域IIAが横モード調整領域TMAAを有するので、従来と同様の工程により横モード調整領域TMAAを作製することができる。 In the surface-emitting laser 19, the ion implantation region IIA has the transverse mode adjustment region TMAA, so that the transverse mode adjustment region TMAA can be fabricated by the same process as in the conventional method.
(光学シミュレーション)
横モード調整領域TMAAを有するイオン注入領域IIAのイオン種をB+、DS/ωを2.2、DL/ωを2.25、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
The ion species of the ion implantation region IIA having the transverse mode adjustment region TMAA was B+, D S /ω was 2.2, D L /ω was 2.25, the current confinement diameter was 4 μm, the resonator length was 24 μm, and the radius of curvature of the concave mirror 102 was 80 μm. As a result, the desired loss could be given to the transverse mode, and the transverse mode could be appropriately adjusted (to the desired single mode).
<10.本技術の一実施形態の実施例10に係る面発光レーザ>
≪面発光レーザの構成≫
以下、本技術の一実施形態の実施例10に係る面発光レーザについて、図面を用いて説明する。
<10. Surface-emitting laser according to Example 10 of an embodiment of the present technology>
<Configuration of surface-emitting laser>
Hereinafter, a surface emitting laser according to a tenth example of an embodiment of the present technology will be described with reference to the drawings.
図25は、本技術の一実施形態の実施例10に係る面発光レーザ20の断面図である。 FIG. 25 is a cross-sectional view of a surface-emitting laser 20 according to Example 10 of an embodiment of the present technology.
面発光レーザ20は、図25に示すように、横モード調整領域TMAAが、基板104の凸面構造104aに設けられた複数の突起104a1(微細構造)を有する点を除いて、実施例1に係る面発光レーザ11と概ね同様の構成を有する。 As shown in FIG. 25, the surface-emitting laser 20 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the transverse mode adjustment area TMAA has a plurality of protrusions 104a1 (microstructures) provided on the convex structure 104a of the substrate 104.
面発光レーザ20では、横モード調整領域TMAAが、凹面鏡102の周辺部に対応する、凸面構造104aの周辺部に周方向に沿って複数の突起104a1が形成された環状の突起形成領域となっている。当該突起形成領域について、前述した横モード調整条件の少なくとも1つが成立している。当該突起形成領域がモードロス作用領域として機能する。 In the surface-emitting laser 20, the transverse mode adjustment area TMAA is an annular protrusion formation area in which multiple protrusions 104a1 are formed along the circumferential direction on the peripheral portion of the convex structure 104a, which corresponds to the peripheral portion of the concave mirror 102. At least one of the transverse mode adjustment conditions described above is satisfied for this protrusion formation area. This protrusion formation area functions as a mode loss effect area.
≪面発光レーザの製造方法≫
面発光レーザ20は、一例として、図26に示すフローチャートの手順で製造される。図26のステップS21~S27は、それぞれ図5のステップS1~S7と同様である。
<Manufacturing method of surface-emitting laser>
The surface emitting laser 20 is manufactured, for example, according to the procedure of the flow chart shown in Fig. 26. Steps S21 to S27 in Fig. 26 are similar to steps S1 to S7 in Fig. 5, respectively.
ステップS28では、複数の突起104a1が設けられた凸面構造104aである突起付き凸面構造を形成する(図27A参照)。当該突起付き凸面構造は、凸面構造104a(図9B参照)に対して、例えばフォトリソグラフィー及びエッチングを行うことにより形成される。 In step S28, a protruding convex structure is formed, which is a convex structure 104a having a plurality of protrusions 104a1 (see FIG. 27A). The protruding convex structure is formed by, for example, performing photolithography and etching on the convex structure 104a (see FIG. 9B).
最後のステップS29では、凹面鏡102を形成する(図27B参照)。具体的には、突起付き凸面構造に凹面鏡102の材料(例えば誘電体多層膜)を例えば真空蒸着法、スパッタ法、CVD法等により成膜する。この結果、突起付き凸面構造に倣った形状の凹面鏡102が形成される。これにより、ウェハ(半導体基板(例えばn-GaN基板))上に複数の面発光レーザ20が複数生成される。その後、一連一体の複数の面発光レーザ20をダイシングにより分離して、チップ状の面発光レーザ20(面発光レーザチップ)を得る。その後、該面発光レーザ20は、例えばCANパッケージに実装される。より詳細には、該面発光レーザ20は、凹面鏡102側の表面がCANパッケージに半田付けされる。 In the final step S29, the concave mirror 102 is formed (see FIG. 27B). Specifically, the material of the concave mirror 102 (e.g., a dielectric multilayer film) is deposited on the protruding convex structure by, for example, vacuum deposition, sputtering, or CVD. As a result, the concave mirror 102 is formed in a shape that matches the protruding convex structure. This produces a plurality of surface-emitting lasers 20 on a wafer (semiconductor substrate (e.g., n-GaN substrate)). After that, the series of surface-emitting lasers 20 is separated by dicing to obtain chip-shaped surface-emitting lasers 20 (surface-emitting laser chips). The surface-emitting lasers 20 are then mounted in, for example, a CAN package. More specifically, the surface of the surface-emitting laser 20 on the concave mirror 102 side is soldered to the CAN package.
≪面発光レーザの効果≫
面発光レーザ20によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、横モード調整領域TMAAが、ビーム径が最大となる、凹面鏡102の位置に設けられているので、作製誤差耐性が向上し、歩留まりが向上し、且つ、横モード調整領域TMAAが複数の突起104a1を有するので半田との密着性が向上する。
<Effects of surface-emitting lasers>
The surface-emitting laser 20 exhibits the same effects as the surface-emitting laser 11 of the first embodiment, and since the transverse mode adjustment region TMAA is provided at the position of the concave mirror 102 where the beam diameter is maximum, the tolerance to manufacturing errors is improved and the yield is improved, and since the transverse mode adjustment region TMAA has a plurality of protrusions 104a1, the adhesion with solder is improved.
(光学シミュレーション)
横モード調整領域TMAAが複数の突起104a1を有する場合に、DS/ωを2.2、DL/ωを2.2、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
When the transverse mode adjustment region TMAA has multiple protrusions 104a1, D S /ω is 2.2, D L /ω is 2.2, the current confinement diameter is 4 μm, the resonator length is 24 μm, and the curvature radius of the concave mirror 102 is 80 μm. As a result, it is possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired single mode).
<11.本技術の一実施形態の実施例11に係る面発光レーザ>
以下、本技術の一実施形態の実施例11に係る面発光レーザについて、図面を用いて説明する。
<11. Surface-emitting laser according to Example 11 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to an eleventh example of an embodiment of the present technology will be described with reference to the drawings.
図28は、本技術の一実施形態の実施例11に係る面発光レーザ21の断面図である。 FIG. 28 is a cross-sectional view of a surface-emitting laser 21 according to Example 11 of an embodiment of the present technology.
面発光レーザ21は、図28に示すように、絶縁膜107が横モード調整領域TMAAを有する点を除いて、実施例1に係る面発光レーザ11と概ね同様の構成を有する。 As shown in FIG. 28, the surface-emitting laser 21 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the insulating film 107 has a transverse mode adjustment region TMAA.
面発光レーザ21では、環状の絶縁膜107が、前述した横モード調整条件の少なくとも1つを満たしており、モードロス作用領域として機能する。 In the surface-emitting laser 21, the annular insulating film 107 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
面発光レーザ21は、実施例1に係る面発光レーザ21の製造方法と概ね同様の製法により製造できる。 The surface-emitting laser 21 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser 21 according to the first embodiment.
面発光レーザ21によれば、モードロス作用効果が劣るものの、実施例1に係る面発光レーザ11と概ね同様の効果を奏する。 Although the surface-emitting laser 21 has a poorer mode loss effect, it achieves substantially the same effect as the surface-emitting laser 11 according to the first embodiment.
(光学シミュレーション)
横モード調整領域TMAAを有する絶縁膜107の材料をSiO2、DS/ωを2.2、DL/ωを2.25、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
The material of the insulating film 107 having the transverse mode adjustment region TMAA was SiO2 , D S /ω was 2.2, D L /ω was 2.25, the current confinement diameter was 4 μm, the resonator length was 24 μm, and the curvature radius of the concave mirror 102 was 80 μm. As a result, the desired loss could be given to the transverse mode, and the transverse mode could be appropriately adjusted (to the desired single mode).
<12.本技術の一実施形態の実施例12に係る面発光レーザ>
以下、本技術の一実施形態の実施例12に係る面発光レーザについて、図面を用いて説明する。
<12. Surface-emitting laser according to Example 12 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 12 of an embodiment of the present technology will be described with reference to the drawings.
≪面発光レーザの構成≫
図29は、本技術の一実施形態の実施例12に係る面発光レーザ22の断面図である。
<Configuration of surface-emitting laser>
FIG. 29 is a cross-sectional view of a surface-emitting laser 22 according to Example 12 of an embodiment of the present technology.
面発光レーザ22は、図29に示すように、基板104と凹面鏡102との間に設けられた中間層としての金属膜110が、横モード調整領域TMAAを有している点を除いて、実施例1に係る面発光レーザ11と概ね同様の構成を有する。金属膜110は、例えばAu、Ag、Cu、Al、W、Ni、Ti、Pt、Pd、Co、Rh、Crから成る群から選択された少なくとも1種類の金属を含む、単層構成又は多層構成を有することが好ましい。 As shown in FIG. 29, the surface-emitting laser 22 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the metal film 110, which serves as an intermediate layer provided between the substrate 104 and the concave mirror 102, has a transverse mode adjustment area TMAA. The metal film 110 preferably has a single-layer or multi-layer configuration including at least one type of metal selected from the group consisting of Au, Ag, Cu, Al, W, Ni, Ti, Pt, Pd, Co, Rh, and Cr.
面発光レーザ22では、金属膜110が、前述した横モード調整条件の少なくとも1つを満たしており、モードロス作用領域として機能する。 In the surface-emitting laser 22, the metal film 110 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
≪面発光レーザの製造方法≫
面発光レーザ22は、一例として、図30に示すフローチャートの手順で製造される。図30のステップS31~S38は、それぞれ図5のステップS1~S8と同様である。
<Manufacturing method of surface-emitting laser>
The surface emitting laser 22 is manufactured, for example, according to the procedure of the flow chart shown in Fig. 30. Steps S31 to S38 in Fig. 30 are similar to steps S1 to S8 in Fig. 5, respectively.
ステップS39では、金属膜110を形成する(図31A参照)。具体的には、例えばリフトオフ法により、凸面構造104aの周辺部及び該周辺部の周囲の平坦部に金属膜110を形成する。このときの金属膜110の成膜は、例えば真空蒸着法、スパッタ法等により行われる。 In step S39, the metal film 110 is formed (see FIG. 31A). Specifically, the metal film 110 is formed on the peripheral portion of the convex structure 104a and on the flat portion around the peripheral portion, for example, by a lift-off method. The metal film 110 is formed by, for example, a vacuum deposition method, a sputtering method, or the like.
最後のステップS39.5では、凹面鏡102を形成する(図31B参照)。具体的には、凸面構造104aの中央部及び金属膜110を覆うように凹面鏡102の材料(例えば誘電体多層膜)を例えば真空蒸着法、スパッタ法、CVD法等により成膜する。この結果、凸面構造104a及び金属膜110に倣った形状の凹面鏡102が形成される。これにより、ウェハ(半導体基板(例えばn-GaN基板))上に複数の面発光レーザ22が複数生成される。その後、一連一体の複数の面発光レーザ22をダイシングにより分離して、チップ状の面発光レーザ22(面発光レーザチップ)を得る。その後、該面発光レーザ22は、例えばCANパッケージに実装される。より詳細には、該面発光レーザ22は、凹面鏡102側の表面がCANパッケージに半田付けされる。 In the final step S39.5, the concave mirror 102 is formed (see FIG. 31B). Specifically, the material of the concave mirror 102 (e.g., a dielectric multilayer film) is formed by, for example, vacuum deposition, sputtering, CVD, or the like so as to cover the center of the convex structure 104a and the metal film 110. As a result, the concave mirror 102 is formed in a shape that imitates the convex structure 104a and the metal film 110. This produces a plurality of surface-emitting lasers 22 on a wafer (semiconductor substrate (e.g., n-GaN substrate)). After that, the series of surface-emitting lasers 22 are separated by dicing to obtain chip-shaped surface-emitting lasers 22 (surface-emitting laser chips). The surface-emitting lasers 22 are then mounted, for example, in a CAN package. More specifically, the surface of the surface-emitting laser 22 on the concave mirror 102 side is soldered to the CAN package.
≪面発光レーザの効果≫
面発光レーザ22によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、基板104と凹面鏡102との間に設けられた中間層としての金属膜110が横モード調整領域TMAAを有するので、ビーム径やIV特性、信頼性などの素子特性を維持したまま、モード制御が可能になる。
<Effects of surface-emitting lasers>
The surface-emitting laser 22 exhibits the same effects as the surface-emitting laser 11 of Example 1, and the metal film 110 serving as an intermediate layer provided between the substrate 104 and the concave mirror 102 has a transverse mode adjustment region TMAA, making it possible to control the mode while maintaining element characteristics such as the beam diameter, IV characteristics, and reliability.
(光学シミュレーション)
当該金属膜110が横モード調整領域TMAAを有する場合に、DS/ωを2.2、DL/ωを2.2、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
When the metal film 110 has the transverse mode adjustment region TMAA, D S /ω is 2.2, D L /ω is 2.2, the current confinement diameter is 4 μm, the resonator length is 24 μm, and the curvature radius of the concave mirror 102 is 80 μm. As a result, it is possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired single mode).
<13.本技術の一実施形態の実施例13に係る面発光レーザ>
以下、本技術の一実施形態の実施例13に係る面発光レーザについて、図面を用いて説明する。
<13. Surface-emitting laser according to Example 13 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 13 of an embodiment of the present technology will be described with reference to the drawings.
≪面発光レーザの構成≫
図32は、本技術の一実施形態の実施例13に係る面発光レーザ23の断面図である。
<Configuration of surface-emitting laser>
FIG. 32 is a cross-sectional view of a surface-emitting laser 23 according to Example 13 of an embodiment of the present technology.
面発光レーザ23は、図32に示すように、凹面鏡102の裏面(下面)に設けられた金属膜110が横モード調整領域TMAAを有している点を除いて、実施例1に係る面発光レーザ11と概ね同様の構成を有する。金属膜110は、例えばAu、Ag、Cu、Al、W、Ni、Ti、Pt、Pd、Co、Rh、Crから成る群から選択された少なくとも1種類の金属を含む、単層構成又は多層構成を有することが好ましい。 As shown in Fig. 32, the surface-emitting laser 23 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the metal film 110 provided on the back surface (lower surface) of the concave mirror 102 has a transverse mode adjustment area TMAA. The metal film 110 preferably has a single-layer or multi-layer configuration including at least one type of metal selected from the group consisting of Au, Ag, Cu, Al, W, Ni, Ti, Pt, Pd, Co, Rh, and Cr.
面発光レーザ23では、金属膜110が、前述した横モード調整条件の少なくとも1つを満たしており、モードロス作用領域として機能する。 In the surface-emitting laser 23, the metal film 110 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
≪面発光レーザの製造方法≫
面発光レーザ23は、一例として、図33に示すフローチャートの手順で製造される。図33のステップS41~S49は、それぞれ図5のステップS1~S9と同様である。
<Manufacturing method of surface-emitting laser>
The surface emitting laser 23 is manufactured, for example, according to the procedure of the flow chart shown in Fig. 33. Steps S41 to S49 in Fig. 33 are similar to steps S1 to S9 in Fig. 5, respectively.
最後のステップS49.5では、金属膜110を形成する(図32参照)。具体的には、例えばリフトオフ法により、凹面鏡102の周辺部に金属膜110を形成する。このときの金属膜110の成膜は、例えば真空蒸着法、スパッタ法等により行われる。 In the final step S49.5, the metal film 110 is formed (see FIG. 32). Specifically, the metal film 110 is formed on the periphery of the concave mirror 102 by, for example, a lift-off method. The metal film 110 is formed by, for example, a vacuum deposition method, a sputtering method, or the like.
≪面発光レーザの効果≫
面発光レーザ23によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、凹面鏡102の裏面に設けられた金属膜110が横モード調整領域TMAAを有するので、ビーム径やIV特性、信頼性などの素子特性を維持したまま、モード制御が可能になる。
<Effects of surface-emitting lasers>
The surface-emitting laser 23 exhibits the same effects as the surface-emitting laser 11 of Example 1, and since the metal film 110 provided on the rear surface of the concave mirror 102 has a transverse mode adjustment region TMAA, mode control becomes possible while maintaining element characteristics such as beam diameter, IV characteristics, and reliability.
(光学シミュレーション)
当該金属膜110が横モード調整領域TMAAを有する場合に、DS/ωを2.2、DL/ωを2.2、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
When the metal film 110 has the transverse mode adjustment region TMAA, D S /ω is 2.2, D L /ω is 2.2, the current confinement diameter is 4 μm, the resonator length is 24 μm, and the curvature radius of the concave mirror 102 is 80 μm. As a result, it is possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired single mode).
<14.本技術の一実施形態の実施例14に係る面発光レーザ>
以下、本技術の一実施形態の実施例14に係る面発光レーザについて、図面を用いて説明する。
<14. Surface-emitting laser according to Example 14 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 14 of an embodiment of the present technology will be described with reference to the drawings.
≪面発光レーザの構成≫
図34は、本技術の一実施形態の実施例14に係る面発光レーザ24の断面図である。
<Configuration of surface-emitting laser>
FIG. 34 is a cross-sectional view of a surface-emitting laser 24 according to Example 14 of an embodiment of the present technology.
面発光レーザ24は、図34に示すように、反射鏡103の周辺部上に環状に設けられた金属膜110が横モード調整領域TMAAを有している点を除いて、実施例1に係る面発光レーザ11と概ね同様の構成を有する。金属膜110は、例えばAu、Ag、Cu、Al、W、Ni、Ti、Pt、Pd、Co、Rh、Crから成る群から選択された少なくとも1種類の金属を含む、単層構成又は多層構成を有することが好ましい。 The surface-emitting laser 24 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the metal film 110 provided in an annular shape on the periphery of the reflector 103 has a transverse mode adjustment area TMAA, as shown in FIG. 34. The metal film 110 preferably has a single-layer or multi-layer configuration including at least one type of metal selected from the group consisting of Au, Ag, Cu, Al, W, Ni, Ti, Pt, Pd, Co, Rh, and Cr.
面発光レーザ24では、金属膜110が、前述した横モード調整条件の少なくとも1つを満たしており、モードロス作用領域として機能する。 In the surface-emitting laser 24, the metal film 110 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
≪面発光レーザの製造方法≫
面発光レーザ24は、一例として、図35に示すフローチャートの手順で製造される。図35のステップS51~S57、S59、S59.5は、それぞれ図5のステップS1~S7、S8、S9と同様である。
<Manufacturing method of surface-emitting laser>
The surface emitting laser 24 is manufactured, for example, according to the procedure of the flow chart shown in Fig. 35. Steps S51 to S57, S59, and S59.5 in Fig. 35 are similar to steps S1 to S7, S8, and S9 in Fig. 5, respectively.
ステップS58では、金属膜110を形成する。具体的には、例えばリフトオフ法により、反射鏡103の周辺部上に金属膜110を環状に形成する。このときの金属膜110の成膜は、例えば真空蒸着法、スパッタ法等により行われる。 In step S58, the metal film 110 is formed. Specifically, the metal film 110 is formed in a ring shape on the periphery of the reflecting mirror 103 by, for example, a lift-off method. The metal film 110 is formed by, for example, a vacuum deposition method, a sputtering method, or the like.
≪面発光レーザの効果≫
面発光レーザ24によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、反射鏡103の周辺部上に設けられた金属膜110が横モード調整領域TMAAを有するので、ビーム径やIV特性、信頼性などの素子特性を維持したまま、モード制御が可能になる。
<Effects of surface-emitting lasers>
The surface-emitting laser 24 exhibits the same effects as the surface-emitting laser 11 of Example 1, and since the metal film 110 provided on the periphery of the reflector 103 has the transverse mode adjustment region TMAA, mode control becomes possible while maintaining element characteristics such as the beam diameter, IV characteristics, and reliability.
(光学シミュレーション)
当該金属膜110が横モード調整領域TMAAを有する場合に、DS/ωを2.2、DL/ωを2.2、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
When the metal film 110 has the transverse mode adjustment region TMAA, D S /ω is 2.2, D L /ω is 2.2, the current confinement diameter is 4 μm, the resonator length is 24 μm, and the curvature radius of the concave mirror 102 is 80 μm. As a result, it is possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired single mode).
<15.本技術の一実施形態の実施例15に係る面発光レーザ>
以下、本技術の一実施形態の実施例15に係る面発光レーザについて、図面を用いて説明する。
<15. Surface-emitting laser according to Example 15 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to a fifteenth example of an embodiment of the present technology will be described with reference to the drawings.
図36は、本技術の一実施形態の実施例15に係る面発光レーザ25の断面図である。 FIG. 36 is a cross-sectional view of a surface-emitting laser 25 according to Example 15 of an embodiment of the present technology.
面発光レーザ25は、図36に示すように、反射鏡103の周辺部上及び内壁面上に平面視環状に設けられた金属膜110が横モード調整領域TMAAを有している点を除いて、実施例1に係る面発光レーザ11と概ね同様の構成を有する。金属膜110は、例えばAu、Ag、Cu、Al、W、Ni、Ti、Pt、Pd、Co、Rh、Crから成る群から選択された少なくとも1種類の金属を含む、単層構成又は多層構成を有することが好ましい。 The surface-emitting laser 25 has a configuration generally similar to that of the surface-emitting laser 11 of Example 1, except that the metal film 110 provided in a ring shape in a plan view on the periphery and inner wall surface of the reflector 103 has a transverse mode adjustment area TMAA, as shown in Figure 36. The metal film 110 preferably has a single-layer or multi-layer configuration including at least one type of metal selected from the group consisting of Au, Ag, Cu, Al, W, Ni, Ti, Pt, Pd, Co, Rh, and Cr.
面発光レーザ25では、金属膜110が、前述した横モード調整条件の少なくとも1つを満たしており、モードロス作用領域として機能する。 In the surface-emitting laser 25, the metal film 110 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
面発光レーザ25は、実施例14に係る面発光レーザ24の製造方法と概ね同様の製法により製造できる。 The surface-emitting laser 25 can be manufactured by a method generally similar to the method for manufacturing the surface-emitting laser 24 of Example 14.
≪面発光レーザの効果≫
面発光レーザ25によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、反射鏡103の周辺部上及び内壁面上に設けられた金属膜110が横モード調整領域TMAAを有するので、ビーム径やIV特性、信頼性などの素子特性を維持したまま、モード制御が可能になる。
<Effects of surface-emitting lasers>
The surface-emitting laser 25 exhibits the same effects as the surface-emitting laser 11 of Example 1, and the metal film 110 provided on the peripheral portion and the inner wall surface of the reflector 103 has a transverse mode adjustment region TMAA, making it possible to control the mode while maintaining element characteristics such as the beam diameter, IV characteristics, and reliability.
(光学シミュレーション)
当該金属膜110が横モード調整領域TMAAを有する場合に、DS/ωを2.2、DL/ωを2.2、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
<16.本技術の一実施形態の実施例16に係る面発光レーザ>
以下、本技術の一実施形態の実施例16に係る面発光レーザについて、図面を用いて説明する。
(Optical Simulation)
When the metal film 110 has the transverse mode adjustment region TMAA, D S /ω is 2.2, D L /ω is 2.2, the current confinement diameter is 4 μm, the resonator length is 24 μm, and the curvature radius of the concave mirror 102 is 80 μm. As a result, it is possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired single mode).
<16. Surface-emitting laser according to Example 16 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 16 of an embodiment of the present technology will be described with reference to the drawings.
図37は、本技術の一実施形態の実施例16に係る面発光レーザ26の断面図である。 FIG. 37 is a cross-sectional view of a surface-emitting laser 26 according to Example 16 of an embodiment of the present technology.
上記各実施例では、横モードを主にシングルモードに調整すべく横モード調整領域TMAAを平面視において発光領域LAを囲むように(発光領域LAに重ならないように)設けているが、図37に示す面発光レーザ26では、横モードを主にマルチモードに調整すべく横モード調整領域TMAAの一部である第2領域A2を発光領域LAに重なるように設けている。ここでは、円環状の第1領域A1と円形状の第2領域A2が同心に配置されているが、同心に配置されていなくてもよい。第1及び第2領域A1、A2の大きさ、形状等は適宜変更可能である。 In each of the above embodiments, the transverse mode adjustment region TMAA is provided to surround the light emitting region LA in a plan view (so as not to overlap the light emitting region LA) in order to adjust the transverse mode mainly to a single mode, but in the surface emitting laser 26 shown in FIG. 37, a second region A2, which is a part of the transverse mode adjustment region TMAA, is provided to overlap the light emitting region LA in order to adjust the transverse mode mainly to a multimode. Here, the annular first region A1 and the circular second region A2 are arranged concentrically, but they do not have to be arranged concentrically. The size, shape, etc. of the first and second regions A1 and A2 can be changed as appropriate.
(光学シミュレーション)
実施例16において、DS/ωを2.1、DL/ωを2.4、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のマルチモードに)調整することができた。
<17.本技術の一実施形態の実施例17に係る面発光レーザ>
以下、本技術の一実施形態の実施例17に係る面発光レーザについて、図面を用いて説明する。
(Optical Simulation)
In Example 16, D S /ω was 2.1, D L /ω was 2.4, the current confinement diameter was 4 μm, the resonator length was 24 μm, and the curvature radius of the concave mirror 102 was 80 μm. As a result, it was possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired multimode).
<17. Surface-emitting laser according to Example 17 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 17 of an embodiment of the present technology will be described with reference to the drawings.
図38は、本技術の一実施形態の実施例17に係る面発光レーザ27の断面図である。 FIG. 38 is a cross-sectional view of a surface-emitting laser 27 according to Example 17 of an embodiment of the present technology.
面発光レーザ27では、アノード電極108及びイオン注入領域IIAが横モード調整領域TMAAを有している。ここでは、アノード電極108の横モード調整性に比べて、イオン注入領域IIAの横モード調整性が無視し得ないほど高い場合(例えばアノード電極108の遮光性がさほど高くない場合)を想定している。 In the surface-emitting laser 27, the anode electrode 108 and the ion implantation region IIA have a transverse mode adjustment region TMAA. Here, it is assumed that the transverse mode adjustability of the ion implantation region IIA is high enough to be disregarded compared to the transverse mode adjustability of the anode electrode 108 (for example, the light blocking property of the anode electrode 108 is not very high).
面発光レーザ27によれば、複数の横モード調整領域TMAAを組み合わせて、横モードを適正に調整することができる。 The surface-emitting laser 27 can combine multiple transverse mode adjustment areas TMAA to appropriately adjust the transverse mode.
<18.本技術の一実施形態の実施例18に係る面発光レーザ>
以下、本技術の一実施形態の実施例18に係る面発光レーザについて、図面を用いて説明する。
<18. Surface-emitting laser according to Example 18 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to an eighteenth example of an embodiment of the present technology will be described with reference to the drawings.
図39Aは、本技術の一実施形態の実施例18に係る面発光レーザ28の横モード調整領域の平面図である。 FIG. 39A is a plan view of a transverse mode adjustment region of a surface-emitting laser 28 according to Example 18 of an embodiment of the present technology.
面発光レーザ28は、横モード調整領域TMAAの第1領域A1の内縁形状が三角形である点を除いて、実施例1に係る面発光レーザ11と同様の構成を有する。 The surface-emitting laser 28 has a configuration similar to that of the surface-emitting laser 11 of Example 1, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is triangular.
面発光レーザ28によれば、実施例1に係る面発光レーザ11と概ね同様の効果を奏する。 The surface-emitting laser 28 provides substantially the same effects as the surface-emitting laser 11 of Example 1.
<19.本技術の一実施形態の実施例19に係る面発光レーザ>
以下、本技術の一実施形態の実施例19に係る面発光レーザについて、図面を用いて説明する。
<19. Surface-emitting laser according to Example 19 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 19 of an embodiment of the present technology will be described with reference to the drawings.
図39Bは、本技術の一実施形態の実施例19に係る面発光レーザ29の横モード調整領域の平面図である。 FIG. 39B is a plan view of a transverse mode adjustment region of a surface-emitting laser 29 according to Example 19 of an embodiment of the present technology.
面発光レーザ29は、横モード調整領域TMAAの第1領域A1の内縁形状が正方形である点を除いて、実施例1に係る面発光レーザ11と同様の構成を有する。 The surface-emitting laser 29 has a configuration similar to that of the surface-emitting laser 11 of Example 1, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is square.
面発光レーザ29によれば、実施例1に係る面発光レーザ11と概ね同様の効果を奏する。 The surface-emitting laser 29 provides substantially the same effects as the surface-emitting laser 11 of Example 1.
<20.本技術の一実施形態の実施例20に係る面発光レーザ>
以下、本技術の一実施形態の実施例20に係る面発光レーザについて、図面を用いて説明する。
<20. Surface-emitting laser according to Example 20 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 20 of an embodiment of the present technology will be described with reference to the drawings.
図40Aは、本技術の一実施形態の実施例20に係る面発光レーザ30の横モード調整領域の平面図である。 FIG. 40A is a plan view of a transverse mode adjustment region of a surface-emitting laser 30 according to Example 20 of an embodiment of the present technology.
面発光レーザ30は、横モード調整領域TMAAの第1領域A1の内縁形状が正六角形である点を除いて、実施例1に係る面発光レーザ11と同様の構成を有する。 The surface-emitting laser 30 has a configuration similar to that of the surface-emitting laser 11 of Example 1, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is a regular hexagon.
面発光レーザ30によれば、実施例1に係る面発光レーザ11と概ね同様の効果を奏する。 The surface-emitting laser 30 provides substantially the same effects as the surface-emitting laser 11 of Example 1.
<21.本技術の一実施形態の実施例21に係る面発光レーザ>
以下、本技術の一実施形態の実施例21に係る面発光レーザについて、図面を用いて説明する。
<21. Surface-emitting laser according to Example 21 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 21 of an embodiment of the present technology will be described with reference to the drawings.
図40Bは、本技術の一実施形態の実施例21に係る面発光レーザ31の横モード調整領域の平面図である。 FIG. 40B is a plan view of the transverse mode adjustment region of a surface-emitting laser 31 according to Example 21 of an embodiment of the present technology.
面発光レーザ31は、横モード調整領域TMAAの第1領域A1の内縁形状が正八角形である点を除いて、実施例1に係る面発光レーザ11と同様の構成を有する。 The surface-emitting laser 31 has a configuration similar to that of the surface-emitting laser 11 of Example 1, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is a regular octagon.
面発光レーザ31によれば、実施例1に係る面発光レーザ11と概ね同様の効果を奏する。 The surface-emitting laser 31 provides substantially the same effects as the surface-emitting laser 11 of Example 1.
なお、横モード調整領域TMAAの第1領域A1の内縁形状を正八角形よりも辺の数が多い正多角形としてもよい。 The inner edge shape of the first area A1 of the transverse mode adjustment area TMAA may be a regular polygon having more sides than a regular octagon.
<22.本技術の一実施形態の実施例22に係る面発光レーザ>
以下、本技術の一実施形態の実施例22に係る面発光レーザについて、図面を用いて説明する。
<22. Surface-emitting laser according to Example 22 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 22 of an embodiment of the present technology will be described with reference to the drawings.
図41Aは、本技術の一実施形態の実施例22に係る面発光レーザ32の横モード調整領域の平面図である。 FIG. 41A is a plan view of a transverse mode adjustment region of a surface-emitting laser 32 according to Example 22 of an embodiment of the present technology.
面発光レーザ32は、横モード調整領域TMAAの第1領域A1の内縁形状が正五角形を横長に歪ませた形状である点を除いて、実施例5に係る面発光レーザ15と同様の構成を有する。 The surface-emitting laser 32 has a configuration similar to that of the surface-emitting laser 15 of Example 5, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is a regular pentagon that has been distorted horizontally.
面発光レーザ32によれば、実施例5に係る面発光レーザ15と概ね同様の効果を奏する。 The surface-emitting laser 32 provides substantially the same effects as the surface-emitting laser 15 of Example 5.
<23.本技術の一実施形態の実施例23に係る面発光レーザ>
以下、本技術の一実施形態の実施例23に係る面発光レーザについて、図面を用いて説明する。
<23. Surface-emitting laser according to Example 23 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 23 of an embodiment of the present technology will be described with reference to the drawings.
図41Bは、本技術の一実施形態の実施例23に係る面発光レーザ33の横モード調整領域の平面図である。 FIG. 41B is a plan view of the transverse mode adjustment region of a surface-emitting laser 33 according to Example 23 of an embodiment of the present technology.
面発光レーザ33は、横モード調整領域TMAAの第1領域A1の内縁形状が正五角形を縦長に歪ませた形状である点を除いて、実施例5に係る面発光レーザ15と同様の構成を有する。 The surface-emitting laser 33 has a configuration similar to that of the surface-emitting laser 15 of Example 5, except that the inner edge shape of the first area A1 of the transverse mode adjustment area TMAA is a regular pentagon that has been distorted vertically.
面発光レーザ32によれば、実施例5に係る面発光レーザ15と概ね同様の効果を奏する。 The surface-emitting laser 32 provides substantially the same effects as the surface-emitting laser 15 of Example 5.
なお、横モード調整領域TMAAの第1領域A1の内縁形状を正八角形よりも辺の数が多い正多角形を歪ませた形状としてもよい。 The inner edge shape of the first area A1 of the transverse mode adjustment area TMAA may be a distorted regular polygon having more sides than a regular octagon.
<24.本技術の一実施形態の実施例24に係る面発光レーザ>
以下、本技術の一実施形態の実施例24に係る面発光レーザについて、図面を用いて説明する。
<24. Surface-emitting laser according to Example 24 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 24 of an embodiment of the present technology will be described with reference to the drawings.
図42Aは、本技術の一実施形態の実施例24に係る面発光レーザ34の横モード調整領域の平面図である。 FIG. 42A is a plan view of a transverse mode adjustment region of a surface-emitting laser 34 according to Example 24 of an embodiment of the present technology.
面発光レーザ34は、横モード調整領域TMAAの第1領域A1の内縁が放射状に突出する4つの凸部を有している点を除いて、実施例3に係る面発光レーザ13と同様の構成を有する。 The surface-emitting laser 34 has a similar configuration to the surface-emitting laser 13 of Example 3, except that the inner edge of the first area A1 of the transverse mode adjustment area TMAA has four convex portions that protrude radially.
面発光レーザ34によれば、実施例3に係る面発光レーザ13と概ね同様の効果を奏する。 The surface-emitting laser 34 provides substantially the same effects as the surface-emitting laser 13 of Example 3.
<25.本技術の一実施形態の実施例25に係る面発光レーザ>
以下、本技術の一実施形態の実施例25に係る面発光レーザについて、図面を用いて説明する。
<25. Surface-emitting laser according to Example 25 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 25 of an embodiment of the present technology will be described with reference to the drawings.
図42Bは、本技術の一実施形態の実施例25に係る面発光レーザ35の横モード調整領域の平面図である。 FIG. 42B is a plan view of the transverse mode adjustment region of a surface-emitting laser 35 according to Example 25 of an embodiment of the present technology.
面発光レーザ35は、横モード調整領域TMAAの第1領域A1の内縁が放射状に突出する6つの凸部を有している点を除いて、実施例3に係る面発光レーザ13と同様の構成を有する。 The surface-emitting laser 35 has a similar configuration to the surface-emitting laser 13 of Example 3, except that the inner edge of the first area A1 of the transverse mode adjustment area TMAA has six protrusions that protrude radially.
面発光レーザ35によれば、実施例3に係る面発光レーザ13と概ね同様の効果を奏する。 The surface-emitting laser 35 provides substantially the same effects as the surface-emitting laser 13 of Example 3.
なお、横モード調整領域TMAAの第1領域A1の内縁が放射状に突出する7つ以上の凸部を有していてもよい。 The inner edge of the first area A1 of the transverse mode adjustment area TMAA may have seven or more protrusions that protrude radially.
<26.本技術の一実施形態の実施例26に係る面発光レーザ>
以下、本技術の一実施形態の実施例26に係る面発光レーザについて、図面を用いて説明する。
<26. Surface-emitting laser according to Example 26 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 26 of an embodiment of the present technology will be described with reference to the drawings.
図43Aは、本技術の一実施形態の実施例26に係る面発光レーザ36の横モード調整領域の平面図である。 FIG. 43A is a plan view of the transverse mode adjustment region of a surface-emitting laser 36 according to Example 26 of an embodiment of the present technology.
面発光レーザ36は、横モード調整領域TMAAの第2領域A2が互いに分離された4つの部分(例えば円形状の部分)を有している点を除いて、実施例6に係る面発光レーザ16と同様の構成を有する。一例として、第2領域A2を構成する当該4つの部分は、それぞれ発光領域LAを囲む正方形の4つの頂点上に位置している。ここでは、当該正方形の中心が円環状の第1領域A1の中心と一致しているが、一致していなくてもよい。 The surface-emitting laser 36 has a similar configuration to the surface-emitting laser 16 of Example 6, except that the second region A2 of the transverse mode adjustment area TMAA has four parts (e.g., circular parts) that are separated from one another. As an example, the four parts that make up the second region A2 are located on the four vertices of a square that surrounds the light-emitting area LA. Here, the center of the square coincides with the center of the annular first region A1, but this does not have to be the case.
面発光レーザ36によれば、実施例6に係る面発光レーザ16と概ね同様の効果を奏する。 The surface-emitting laser 36 provides substantially the same effects as the surface-emitting laser 16 of Example 6.
<27.本技術の一実施形態の実施例27に係る面発光レーザ>
以下、本技術の一実施形態の実施例27に係る面発光レーザについて、図面を用いて説明する。
<27. Surface-emitting laser according to Example 27 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 27 of an embodiment of the present technology will be described with reference to the drawings.
図43Aは、本技術の一実施形態の実施例27に係る面発光レーザ37の横モード調整領域の平面図である。 FIG. 43A is a plan view of a transverse mode adjustment region of a surface-emitting laser 37 according to Example 27 of an embodiment of the present technology.
面発光レーザ37は、横モード調整領域TMAAの第2領域A2が互いに分離された2つの部分(例えば円形状の部分)を有している点を除いて、実施例6に係る面発光レーザ16と同様の構成を有する。一例として、第2領域A2を構成する当該2つの部分は、平面視において発光領域LAを挟む位置に配置されている。ここでは、当該2つの部分の中間点が円環状の第1領域A1の中心と一致しているが、一致していなくてもよい。 The surface-emitting laser 37 has a similar configuration to the surface-emitting laser 16 of Example 6, except that the second area A2 of the transverse mode adjustment area TMAA has two parts (e.g., circular parts) that are separated from each other. As an example, the two parts constituting the second area A2 are arranged at positions sandwiching the light-emitting area LA in a planar view. Here, the midpoint of the two parts coincides with the center of the annular first area A1, but this does not have to be the case.
面発光レーザ37によれば、実施例6に係る面発光レーザ16と概ね同様の効果を奏する。 The surface-emitting laser 37 provides substantially the same effects as the surface-emitting laser 16 of Example 6.
なお、横モード調整領域TMAAの第2領域A2が互いに分離された5つ以上の部分であって2次元配置された5つ以上の部分を有していてもよい。 The second area A2 of the transverse mode adjustment area TMAA may have five or more parts that are separated from each other and arranged two-dimensionally.
<28.本技術の一実施形態の実施例28に係る面発光レーザ>
以下、本技術の一実施形態の実施例28に係る面発光レーザについて、図面を用いて説明する。
<28. Surface-emitting laser according to Example 28 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 28 of an embodiment of the present technology will be described with reference to the drawings.
図44Aは、本技術の一実施形態の実施例28に係る面発光レーザ38の横モード調整領域の平面図である。 FIG. 44A is a plan view of a transverse mode adjustment region of a surface-emitting laser 38 according to Example 28 of an embodiment of the present technology.
面発光レーザ38は、横モード調整領域TMAAの第2領域A2が平面視において発光領域LAを囲む正三角形枠状である点を除いて、実施例7に係る面発光レーザ17と同様の構成を有する。ここでは、第2領域A2の中心と円環状の第1領域A1の中心とが一致しているが、一致していなくてもよい。 The surface-emitting laser 38 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the second region A2 of the transverse mode adjustment area TMAA is an equilateral triangular frame surrounding the light-emitting area LA in a plan view. Here, the center of the second region A2 coincides with the center of the annular first region A1, but they do not have to coincide.
面発光レーザ38によれば、実施例7に係る面発光レーザ17と概ね同様の効果を奏する。 The surface-emitting laser 38 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
<29.本技術の一実施形態の実施例29に係る面発光レーザ>
以下、本技術の一実施形態の実施例29に係る面発光レーザについて、図面を用いて説明する。
<29. Surface-emitting laser according to Example 29 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 29 of an embodiment of the present technology will be described with reference to the drawings.
図44Bは、本技術の一実施形態の実施例29に係る面発光レーザ39の横モード調整領域の平面図である。 FIG. 44B is a plan view of the transverse mode adjustment region of a surface-emitting laser 39 according to Example 29 of an embodiment of the present technology.
面発光レーザ39は、横モード調整領域TMAAの第2領域A2が平面視において発光領域LAを囲む正方形枠状である点を除いて、実施例7に係る面発光レーザ17と同様の構成を有する。ここでは、第2領域A2の中心と円環状の第1領域A1の中心とが一致しているが、一致していなくてもよい。 The surface-emitting laser 39 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the second region A2 of the transverse mode adjustment area TMAA is a square frame surrounding the light-emitting area LA in a plan view. Here, the center of the second region A2 coincides with the center of the annular first region A1, but they do not have to coincide.
面発光レーザ39によれば、実施例7に係る面発光レーザ17と概ね同様の効果を奏する。 The surface-emitting laser 39 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
<30.本技術の一実施形態の実施例30に係る面発光レーザ>
以下、本技術の一実施形態の実施例30に係る面発光レーザについて、図面を用いて説明する。
<30. Surface-emitting laser according to Example 30 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 30 of an embodiment of the present technology will be described with reference to the drawings.
図45Aは、本技術の一実施形態の実施例30に係る面発光レーザ40の横モード調整領域の平面図である。 FIG. 45A is a plan view of a transverse mode adjustment region of a surface-emitting laser 40 according to Example 30 of an embodiment of the present technology.
面発光レーザ40は、横モード調整領域TMAAの第2領域A2が平面視において発光領域LAを囲む五角形枠状である点を除いて、実施例7に係る面発光レーザ17と同様の構成を有する。ここでは、第2領域A2の中心と円環状の第1領域A1の中心とが一致しているが、一致していなくてもよい。 The surface-emitting laser 40 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the second region A2 of the transverse mode adjustment area TMAA is a pentagonal frame surrounding the light-emitting area LA in a planar view. Here, the center of the second region A2 coincides with the center of the annular first region A1, but they do not have to coincide.
面発光レーザ40によれば、実施例7に係る面発光レーザ17と概ね同様の効果を奏する。 The surface-emitting laser 40 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
<31.本技術の一実施形態の実施例31に係る面発光レーザ>
以下、本技術の一実施形態の実施例31に係る面発光レーザについて、図面を用いて説明する。
<31. Surface-emitting laser according to Example 31 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 31 of an embodiment of the present technology will be described with reference to the drawings.
図45Bは、本技術の一実施形態の実施例31に係る面発光レーザ41の横モード調整領域の平面図である。 FIG. 45B is a plan view of a transverse mode adjustment region of a surface-emitting laser 41 according to Example 31 of an embodiment of the present technology.
面発光レーザ41は、横モード調整領域TMAAの第2領域A2が平面視において発光領域LAを囲む六角形枠状である点を除いて、実施例7に係る面発光レーザ17と同様の構成を有する。ここでは、第2領域A2の中心と円環状の第1領域A1の中心とが一致しているが、一致していなくてもよい。 The surface-emitting laser 41 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the second region A2 of the transverse mode adjustment area TMAA is a hexagonal frame surrounding the light-emitting area LA in a planar view. Here, the center of the second region A2 coincides with the center of the annular first region A1, but they do not have to coincide.
面発光レーザ41によれば、実施例7に係る面発光レーザ17と概ね同様の効果を奏する。 The surface-emitting laser 41 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
なお、横モード調整領域TMAAの第2領域A2が正六角形よりも辺の数が多い正多角形枠状であってもよい。 The second area A2 of the transverse mode adjustment area TMAA may be in the shape of a regular polygonal frame having more sides than a regular hexagon.
<32.本技術の一実施形態の実施例32に係る面発光レーザ>
以下、本技術の一実施形態の実施例32に係る面発光レーザについて、図面を用いて説明する。
<32. Surface-emitting laser according to Example 32 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 32 of an embodiment of the present technology will be described with reference to the drawings.
図46Aは、本技術の一実施形態の実施例32に係る面発光レーザ42の横モード調整領域の平面図である。 FIG. 46A is a plan view of a transverse mode adjustment region of a surface-emitting laser 42 according to Example 32 of an embodiment of the present technology.
面発光レーザ42は、横モード調整領域TMAAの第1領域A1の内縁形状が楕円形であり、且つ、第2領域A2が平面視において発光領域LAを囲む楕円枠状である点を除いて、実施例7に係る面発光レーザ17と同様の構成を有する。ここでは、第2領域A2の中心と第1領域A1の中心とが一致しているが、一致していなくてもよい。 The surface-emitting laser 42 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the inner edge shape of the first region A1 of the transverse mode adjustment area TMAA is elliptical, and the second region A2 is an elliptical frame surrounding the light-emitting area LA in a planar view. Here, the center of the second region A2 and the center of the first region A1 coincide with each other, but they do not have to coincide with each other.
面発光レーザ42によれば、実施例7に係る面発光レーザ17と概ね同様の効果を奏する。 The surface-emitting laser 42 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
<33.本技術の一実施形態の実施例33に係る面発光レーザ>
以下、本技術の一実施形態の実施例33に係る面発光レーザについて、図面を用いて説明する。
<33. Surface-emitting laser according to Example 33 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 33 of an embodiment of the present technology will be described with reference to the drawings.
図46Bは、本技術の一実施形態の実施例33に係る面発光レーザ43の横モード調整領域の平面図である。 FIG. 46B is a plan view of the transverse mode adjustment region of a surface-emitting laser 43 according to Example 33 of an embodiment of the present technology.
面発光レーザ43は、横モード調整領域TMAAの第2領域A2の内縁形状が円形であり、且つ、第2領域A2が平面視において発光領域LAを囲む楕円枠状である点を除いて、実施例7に係る面発光レーザ17と同様の構成を有する。ここでは、第2領域A2の中心と円環状の第1領域A1の中心とが一致しているが、一致していなくてもよい。 The surface-emitting laser 43 has a similar configuration to the surface-emitting laser 17 of Example 7, except that the inner edge shape of the second region A2 of the transverse mode adjustment area TMAA is circular, and the second region A2 is an elliptical frame surrounding the light-emitting area LA in a plan view. Here, the center of the second region A2 coincides with the center of the annular first region A1, but they do not have to coincide.
面発光レーザ43によれば、実施例7に係る面発光レーザ17と概ね同様の効果を奏する。 The surface-emitting laser 43 provides substantially the same effects as the surface-emitting laser 17 of Example 7.
なお、横モード調整領域TMAAの第2領域A2が互いに同心及び/又は互いに略相似の部分を複数有していてもよい。 The second region A2 of the transverse mode adjustment region TMAA may have multiple concentric and/or substantially similar portions.
<34.本技術の一実施形態の実施例34に係る面発光レーザ>
以下、本技術の一実施形態の実施例34に係る面発光レーザについて、図面を用いて説明する。
<34. Surface-emitting laser according to Example 34 of an embodiment of the present technology>
Hereinafter, a surface emitting laser according to Example 34 of an embodiment of the present technology will be described with reference to the drawings.
≪面発光レーザの構成≫
図47は、本技術の一実施形態の実施例34に係る面発光レーザ44の断面図である。
<Configuration of surface-emitting laser>
FIG. 47 is a cross-sectional view of a surface-emitting laser 44 according to Example 34 of an embodiment of the present technology.
面発光レーザ34は、図47に示すように、横モード調整領域TMAAを有する金属膜が凹面鏡102の裏面(下面)及び基板104の裏面(下面)に跨って設けられている点を除いて、実施例13に係る面発光レーザ23と概ね同様の構成を有する。面発光レーザ34では、横モード調整領域TMAAを有する金属膜がカソード電極109を兼ねる。逆に言うと、カソード電極109としての金属膜が横モード調整領域を有する。 As shown in FIG. 47, the surface-emitting laser 34 has a configuration generally similar to that of the surface-emitting laser 23 of Example 13, except that a metal film having a transverse mode adjustment region TMAA is provided across the back surface (lower surface) of the concave mirror 102 and the back surface (lower surface) of the substrate 104. In the surface-emitting laser 34, the metal film having the transverse mode adjustment region TMAA also serves as the cathode electrode 109. In other words, the metal film serving as the cathode electrode 109 has a transverse mode adjustment region.
面発光レーザ23では、カソード電極109としての金属膜が、前述した横モード調整条件の少なくとも1つを満たしており、モードロス作用領域として機能する。 In the surface-emitting laser 23, the metal film serving as the cathode electrode 109 satisfies at least one of the transverse mode adjustment conditions described above and functions as a mode loss effect region.
≪面発光レーザの製造方法≫
面発光レーザ34は、実施例13に係る面発光レーザ23の製造方法と概ね同様の製法により製造できる。
<Manufacturing method of surface-emitting laser>
The surface emitting laser 34 can be manufactured by a method substantially similar to the method for manufacturing the surface emitting laser 23 according to the thirteenth embodiment.
≪面発光レーザの効果≫
面発光レーザ34によれば、実施例1に係る面発光レーザ11と同様の効果を奏するとともに、凹面鏡102の裏面及び基板104の裏面に跨って設けられたカソード電極109としての金属膜が横モード調整領域TMAAを有するので、ビーム径やIV特性、信頼性などの素子特性を維持したまま、モード制御が可能になる。
<Effects of surface-emitting lasers>
The surface-emitting laser 34 exhibits the same effects as the surface-emitting laser 11 of Example 1, and the metal film serving as the cathode electrode 109 provided across the rear surface of the concave mirror 102 and the rear surface of the substrate 104 has a transverse mode adjustment area TMAA, making it possible to control the mode while maintaining element characteristics such as the beam diameter, IV characteristics, and reliability.
(光学シミュレーション)
当該金属膜が横モード調整領域TMAAを有する場合に、DS/ωを2.2、DL/ωを2.2、電流狭窄径を4μm、共振器長を24μm、凹面鏡102の曲率半径を80μmとした。この結果、横モードに所望のロスを与えることができ、横モードを適正に(所望のシングルモードに)調整することができた。
(Optical Simulation)
When the metal film had the transverse mode adjustment region TMAA, D S /ω was 2.2, D L /ω was 2.2, the current confinement diameter was 4 μm, the resonator length was 24 μm, and the curvature radius of the concave mirror 102 was 80 μm. As a result, it was possible to impart a desired loss to the transverse mode, and to properly adjust the transverse mode (to a desired single mode).
<35.本技術の変形例>
本技術は、上記各実施例に限定されることなく、種々の変形が可能である。例えば、上記各実施例に係る面発光レーザは、GaN系VCSELであるが、これに限らず、本技術は、III-V族化合物半導体からなるVCSEL全般に適用可能である。例えば、本技術は、GaAs系VCSEL、InP系VCSELにも適用可能である。
<35. Modifications of the present technology>
The present technology is not limited to the above-described embodiments, and various modifications are possible. For example, the surface-emitting laser according to the above-described embodiments is a GaN-based VCSEL, but the present technology is not limited thereto, and is applicable to all VCSELs made of III-V group compound semiconductors. For example, the present technology is also applicable to GaAs-based VCSELs and InP-based VCSELs.
横モード調整領域の第1領域の内縁形状、第2領域の内縁形状及び外縁形状は、上記各実施例に限定されず、適宜変更可能である。 The inner edge shape of the first region and the inner edge shape and outer edge shape of the second region of the transverse mode adjustment region are not limited to the above examples and can be changed as appropriate.
横モード調整領域は、例えば半導体材料又は有機材料からなっていてもよい。 The transverse mode tuning region may be made of, for example, a semiconductor material or an organic material.
本技術に係る面発光レーザは、絶縁膜107を有していなくてもよい。 The surface-emitting laser according to this technology does not need to have the insulating film 107.
電流狭窄領域は、例えばポリイミド等の絶縁材料により構成されてもよい。 The current confinement region may be made of an insulating material such as polyimide.
上記各実施例の面発光レーザの構成の一部を相互に矛盾しない範囲内で組み合わせてもよい。 Parts of the configurations of the surface-emitting lasers in each of the above embodiments may be combined within the limits of not mutually contradicting each other.
各実施例に係る面発光レーザにおいて、導電型(p型及びn型)を入れ替えてもよい。 In the surface-emitting lasers according to each embodiment, the conductivity types (p-type and n-type) may be interchanged.
各実施例に係る面発光レーザがアレイ状に配置された面発光レーザアレイを構成することもできる。 It is also possible to configure a surface-emitting laser array in which the surface-emitting lasers according to each embodiment are arranged in an array.
以上説明した各実施例及び変形例において、面発光レーザを構成する各構成要素の材質、厚み、幅、長さ、形状、大きさ、配置等は、面発光レーザとして機能する範囲内で適宜変更可能である。 In each of the embodiments and modifications described above, the material, thickness, width, length, shape, size, arrangement, etc. of each component that makes up the surface-emitting laser can be changed as appropriate within the range that allows the surface-emitting laser to function.
<36.電子機器への応用例>
本開示に係る技術(本技術)は、様々な製品(電子機器)へ応用する
ことができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置(例えば測距装置、形状認識装置等)として実現されてもよい。
<36. Application examples to electronic devices>
The technology according to the present disclosure (the present technology) can be applied to various products (electronic devices). For example, the technology according to the present disclosure may be realized as a device (e.g., a distance measuring device, a shape recognition device, etc.) mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, etc.
本技術に係る面発光レーザは、例えば、レーザ光により画像を形成又は表示する機器(例えばレーザプリンタ、レーザ複写機、プロジェクタ、ヘッドマウントディスプレイ、ヘッドアップディスプレイ等)の光源あるいはディスプレイそのものとしても応用可能である。 The surface-emitting laser according to this technology can also be used as a light source or the display itself for devices that form or display images using laser light (e.g. laser printers, laser copiers, projectors, head-mounted displays, head-up displays, etc.).
<37.面発光レーザを距離測定装置に適用した例>
以下に、上記各実施形態及び各変形例に係る面発光レーザの適用例について説明する。
<37. Example of application of surface emitting laser to distance measuring device>
Application examples of the surface emitting lasers according to the above embodiments and modifications will be described below.
図48は、本技術に係る電子機器の一例としての、面発光レーザ11を備えた距離測定装置1000(測距装置)の概略構成の一例を表したものである。距離測定装置1000は、TOF(Time Of Flight)方式により被検体Sまでの距離を測定するものである。距離測定装置1000は、光源として面発光レーザ11を備えている。距離測定装置1000は、例えば、面発光レーザ11、受光装置125、レンズ117、130、信号処理部140、制御部150、表示部160および記憶部170を備えている。 FIG. 48 shows an example of the schematic configuration of a distance measuring device 1000 (distance measuring device) equipped with a surface emitting laser 11, as an example of electronic equipment related to the present technology. The distance measuring device 1000 measures the distance to a subject S using a TOF (Time Of Flight) method. The distance measuring device 1000 is equipped with a surface emitting laser 11 as a light source. The distance measuring device 1000 is equipped with, for example, the surface emitting laser 11, a light receiving device 125, lenses 117, 130, a signal processing unit 140, a control unit 150, a display unit 160, and a memory unit 170.
面発光レーザ11は、レーザドライバ(ドライバ)により駆動される。該レーザドライバは、面発光レーザ11のアノード電極及びカソード電極にそれぞれ配線を介して接続される陽極端子及び陰極端子を有する。該レーザドライバは、例えばコンデンサ、トランジスタ等の回路素子を含んで構成されている。 The surface-emitting laser 11 is driven by a laser driver (driver). The laser driver has an anode terminal and a cathode terminal that are connected to the anode electrode and cathode electrode of the surface-emitting laser 11 via wiring, respectively. The laser driver is configured to include circuit elements such as capacitors and transistors.
受光装置125は、被検体Sで反射された光を検出する。レンズ117は、面発光レーザ11から出射された光を平行光化するためのレンズであり、コリメートレンズである。レンズ130は、被検体Sで反射された光を集光し、受光装置125に導くためのレンズであり、集光レンズである。 The light receiving device 125 detects the light reflected by the subject S. The lens 117 is a collimating lens that converts the light emitted from the surface-emitting laser 11 into parallel light. The lens 130 is a focusing lens that collects the light reflected by the subject S and guides it to the light receiving device 125.
信号処理部140は、受光装置125から入力された信号と、制御部150から入力された参照信号との差分に対応する信号を生成するための回路である。制御部150は、例えば、Time to Digital Converter (TDC)を含んで構成されている。参照信号は、制御部150から入力される信号であってもよいし、面発光レーザ11の出力を直接検出する検出部の出力信号であってもよい。制御部150は、例えば、面発光レーザ11、受光装置125、信号処理部140、表示部160および記憶部170を制御するプロセッサである。制御部150は、信号処理部140で生成された信号に基づいて、被検体Sまでの距離を計測する回路である。制御部150は、被検体Sまでの距離についての情報を表示するための映像信号を生成し、表示部160に出力する。表示部160は、制御部150から入力された映像信号に基づいて、被検体Sまでの距離についての情報を表示する。制御部150は、被検体Sまでの距離についての情報を記憶部170に格納する。 The signal processing unit 140 is a circuit for generating a signal corresponding to the difference between the signal input from the light receiving device 125 and the reference signal input from the control unit 150. The control unit 150 is configured to include, for example, a Time to Digital Converter (TDC). The reference signal may be a signal input from the control unit 150, or may be an output signal of a detection unit that directly detects the output of the surface emitting laser 11. The control unit 150 is, for example, a processor that controls the surface emitting laser 11, the light receiving device 125, the signal processing unit 140, the display unit 160, and the storage unit 170. The control unit 150 is a circuit that measures the distance to the specimen S based on the signal generated by the signal processing unit 140. The control unit 150 generates a video signal for displaying information about the distance to the specimen S and outputs it to the display unit 160. The display unit 160 displays information about the distance to the specimen S based on the video signal input from the control unit 150. The control unit 150 stores the information about the distance to the specimen S in the storage unit 170.
本適用例において、面発光レーザ11に代えて、上記面発光レーザ12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44のいずれかを距離測定装置1000に適用することもできる。なお、複数の素子部を有する面発光レーザを距離測定装置1000に適用する場合には、複数の素子部を個別に駆動可能なドライバを用いることもできる。
<38.距離測定装置を移動体に搭載した例>
In this application example, instead of the surface-emitting laser 11, any one of the surface-emitting lasers 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, and 44 can be applied to the distance measurement device 1000. When a surface-emitting laser having a plurality of element portions is applied to the distance measurement device 1000, a driver capable of driving the plurality of element portions individually can also be used.
<38. Example of distance measuring device installed on a moving object>
図49は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 49 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology disclosed herein can be applied.
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図49に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 49, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050. Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs. For example, the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps. In this case, radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020. The body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、距離測定装置12031が接続される。距離測定装置12031には、上述の距離測定装置1000が含まれる。車外情報検出ユニット12030は、距離測定装置12031に車外の物体(被検体S)との距離を計測させ、それにより得られた距離データを取得する。車外情報検出ユニット12030は、取得した距離データに基づいて、人、車、障害物、標識等の物体検出処理を行ってもよい。 The outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, a distance measurement device 12031 is connected to the outside-vehicle information detection unit 12030. The distance measurement device 12031 includes the distance measurement device 1000 described above. The outside-vehicle information detection unit 12030 causes the distance measurement device 12031 to measure the distance to an object outside the vehicle (subject S), and acquires the distance data obtained thereby. The outside-vehicle information detection unit 12030 may perform object detection processing of people, cars, obstacles, signs, etc. based on the acquired distance data.
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects information inside the vehicle. To the in-vehicle information detection unit 12040, for example, a driver state detection unit 12041 that detects the state of the driver is connected. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 can calculate control target values for the driving force generating device, steering mechanism, or braking device based on information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output control commands to the drive system control unit 12010. For example, the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including vehicle collision avoidance or impact mitigation, following driving based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 The microcomputer 12051 can also control the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, thereby performing cooperative control aimed at automatic driving, which allows the vehicle to travel autonomously without relying on the driver's operation.
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 The microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図49の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information. In the example of FIG. 49, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
図50は、距離測定装置12031の設置位置の例を示す図である。 Figure 50 shows an example of the installation location of the distance measuring device 12031.
図50では、車両12100は、距離測定装置12031として、距離測定装置12101,12102,12103,12104,12105を有する。 In FIG. 50, the vehicle 12100 has distance measurement devices 12101, 12102, 12103, 12104, and 12105 as the distance measurement device 12031.
距離測定装置12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる距離測定装置12101及び車室内のフロントガラスの上部に備えられる距離測定装置12105は、主として車両12100の前方のデータを取得する。サイドミラーに備えられる距離測定装置12102,12103は、主として車両12100の側方のデータを取得する。リアバンパ又はバックドアに備えられる距離測定装置12104は、主として車両12100の後方のデータを取得する。距離測定装置12101及び12105で取得される前方のデータは、主として先行車両又は、歩行者、障害物、信号機、交通標識等の検出に用いられる。 The distance measuring devices 12101, 12102, 12103, 12104, and 12105 are provided, for example, on the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100. The distance measuring device 12101 provided on the front nose and the distance measuring device 12105 provided on the top of the windshield inside the vehicle cabin mainly obtain data in front of the vehicle 12100. The distance measuring devices 12102 and 12103 provided on the side mirrors mainly obtain data on the sides of the vehicle 12100. The distance measuring device 12104 provided on the rear bumper or back door mainly obtains data on the rear of the vehicle 12100. The forward data obtained by the distance measuring devices 12101 and 12105 is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, etc.
なお、図50には、距離測定装置12101ないし12104の検出範囲の一例が示されている。検出範囲12111は、フロントノーズに設けられた距離測定装置12101の検出範囲を示し、検出範囲12112,12113は、それぞれサイドミラーに設けられた距離測定装置12102,12103の検出範囲を示し、検出範囲12114は、リアバンパ又はバックドアに設けられた距離測定装置12104の検出範囲を示す。 Note that FIG. 50 shows an example of the detection ranges of distance measuring devices 12101 to 12104. Detection range 12111 indicates the detection range of distance measuring device 12101 provided on the front nose, detection ranges 12112 and 12113 indicate the detection ranges of distance measuring devices 12102 and 12103 provided on the side mirrors, respectively, and detection range 12114 indicates the detection range of distance measuring device 12104 provided on the rear bumper or back door.
例えば、マイクロコンピュータ12051は、距離測定装置12101ないし12104から得られた距離データを基に、検出範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 can determine the distance to each three-dimensional object within the detection ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance data obtained from the distance measuring devices 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest three-dimensional object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
例えば、マイクロコンピュータ12051は、距離測定装置12101ないし12104から得られた距離データを元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance data obtained from the distance measuring devices 12101 to 12104, and can use the data to automatically avoid obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. The microcomputer 12051 then determines the collision risk, which indicates the degree of risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by forcibly decelerating or steering to avoid a collision via the drive system control unit 12010.
以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、距離測定装置12031に適用され得る。 The above describes an example of a mobile object control system to which the technology disclosed herein can be applied. The technology disclosed herein can be applied to the distance measuring device 12031 of the configuration described above.
また、本技術は、以下のような構成をとることもできる。
(1)活性層と、
前記活性層の一側に配置された凹面鏡を有する第1構造と、
前記活性層の他側に配置された反射鏡を有する第2構造と、
を備え、
前記第1構造及び/又は前記第2構造に横モード調整領域が設けられ、
前記横モード調整領域は、平面視において前記活性層の発光領域を囲む領域を第1領域、該第1領域に囲まれる領域を第2領域としたときに、前記第1及び第2領域のうち少なくとも前記第1領域を有し、
前記横モード調整領域が前記第1及び第2領域のうち前記第1領域のみを有する場合に、前記横モード調整領域の面積重心から前記第1領域の内縁までの距離のうち最短距離をDS、最長距離をDLとし、
前記横モード調整領域が前記第1及び第2領域を有する場合に、前記横モード調整領域の面積重心から前記第1領域の内縁及び前記第2領域の外縁までの距離のうち最短距離をDS、最長距離をDLとすると、
1≦DL/DS≦10が成立する、面発光レーザ。
(2)前記第1構造及び/又は前記第2構造に、前記発光領域を設定する電流狭窄領域が設けられている、(1)に記載の面発光レーザ。
(3)1≦DL/DS≦6が成立する、(1)又は(2)に記載の面発光レーザ。
(4)1≦DL/DS≦3が成立する、(1)~(3)のいずれか1つに記載の面発光レーザ。
(5)0.5≦DS/ω≦6、且つ、0.5≦DL/ω≦12が成立する、(1)~(4)のいずれか1つに記載の面発光レーザ。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長
(6)1≦DS/ω≦3、且つ、1≦DL/ω≦12が成立する、(1)~(5)のいずれか1つに記載の面発光レーザ。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長
(7)0.5≦DS/ω≦6、且つ、1≦DL/ω≦6が成立する、(1)~(6)のいずれか1つに記載の面発光レーザ。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長
(8)前記第2構造は、前記活性層の前記他側に配置された電極を有し、前記電極が前記横モード調整領域を有する、(1)~(7)のいずれか1つに記載の面発光レーザ。
(9)前記第1構造は、前記活性層の前記一側に配置された電極を有し、前記電極が前記横モード調整領域を有する、(1)~(8)のいずれか1つに記載の面発光レーザ。
(10)前記凹面鏡が前記横モード調整領域を有する、(1)~(9)のいずれか1つに記載の面発光レーザ。
(11)前記反射鏡が前記横モード調整領域を有する、(1)~(10)のいずれか1つに記載の面発光レーザ。
(12)前記第2構造は、前記横モード調整領域を前記反射鏡の前記活性層側とは反対側に有する、(1)~(11)のいずれか1つに記載の面発光レーザ。
(13)前記第1構造は、前記横モード調整領域を前記凹面鏡の前記活性層側とは反対側に有する、(1)~(12)のいずれか1つに記載の面発光レーザ。
(14)前記第1構造は、前記横モード調整領域を前記凹面鏡と前記活性層との間に有する、(1)~(13)のいずれか1つに記載の面発光レーザ。
(15)前記第2構造は、前記横モード調整領域を前記反射鏡と前記活性層との間に有する、(1)~(14)のいずれか1つに記載の面発光レーザ。
(16)前記電流狭窄領域が前記横モード調整領域を有する、(2)~(15)のいずれか1つに記載の面発光レーザ。
(17)前記第2構造は、前記活性層の前記他側に配置された絶縁膜を有し、前記絶縁膜が前記横モード調整領域を有する、(1)~(16)のいずれか1つに記載の面発光レーザ。
(18)前記第1構造は、前記凹面鏡と前記活性層との間に配置された基板と、前記凹面鏡と前記基板との間に配置された中間層と、を有し、前記中間層が前記横モード調整領域を有する、(1)~(17)のいずれか1つに記載の面発光レーザ。
(19)前記第1領域及び/又は前記第2領域は、複数の微細構造を含む、(1)~(18)のいずれか1つに記載の面発光レーザ。
(20)前記横モード調整領域は、金属材料、合金材料、誘電体材料、半導体材料及び有機材料のいずれかからなる、(1)~(19)のいずれか1つに記載の面発光レーザ。
(21)前記第1領域の内縁の形状は、略円形又は略正多角形である、(1)~(20)のいずれか1つに記載の面発光レーザ。
(22)前記第1領域の内縁の形状は、円形又は正多角形を歪ませた形状である、(1)~(20)のいずれか1つに記載の面発光レーザ。
(23)前記第1領域の内縁は、前記第1領域の外縁側へ向けて放射状に突出する複数の凸部を有する、(1)~(22)のいずれか1つに記載の面発光レーザ。
(24)前記横モード調整領域が前記第1及び第2領域を有し、前記第2領域は、互いに分離された複数の部分を有する、(1)~(23)のいずれか1つに記載の面発光レーザ。
(25)前記複数の部分は、少なくとも3つの部分であり、前記少なくとも3つの部分は、平面視において所定ピッチで2次元配置されている、(24)に記載の面発光レーザ。
(26)前記横モード調整領域が前記第1及び第2領域を有し、前記第2領域は、平面視において前記第1領域と略相似の領域を少なくとも1つ有する、(1)~(25)のいずれか1つに記載の面発光レーザ。
(27)前記横モード調整領域が前記第1及び第2領域を有し、前記第2領域は、平面視において前記第1領域と略同心に配置された領域を少なくとも1つ有する、(1)~(26)のいずれか1つに記載の面発光レーザ。
(28)共振器長は50μm以下である、(1)~(27)のいずれか1つに記載の面発光レーザ。
(29)前記横モード調整領域は、金属材料、合金材料、誘電体材料、半導体材料及び有機材料のいずれかからなる、(1)~(28)のいずれか1つに記載の面発光レーザ。
(30)前記横モード調整領域は、金属材料又は合金材料からなる、(1)~(29)のいずれか1つに記載の面発光レーザ。
(31)前記横モード調整領域が複数ある、(1)~(30)のいずれか1つに記載の面発光レーザ。
(32)1≦DS/ω≦3、且つ、1≦DL/ω≦6が成立する、(1)~(31)のいずれか1つに記載の面発光レーザ。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長
(33)1≦DS/ω≦2.5、且つ、1≦DL/ω≦6が成立する、(1)~(32)のいずれか1つに記載の面発光レーザ。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長
(34)1≦DS/ω≦3、且つ、1≦DL/ω≦4が成立する、(1)~(33)のいずれか1つに記載の面発光レーザ。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長
(35)1≦DS/ω≦2.5、且つ、1≦DL/ω≦4が成立する、(1)~(34)のいずれか1つに記載の面発光レーザ。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長
(36)1≦DS/ω≦2.5、且つ、1≦DL/ω≦3が成立する、(1)~(35)のいずれか1つに記載の面発光レーザ。
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0
2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長
(37)(1)~(36)のいずれか1つに記載の面発光レーザを備える、電子機器。
The present technology can also be configured as follows.
(1) an active layer;
a first structure having a concave mirror disposed on one side of the active layer;
a second structure having a reflector disposed on the other side of the active layer;
Equipped with
a transverse mode adjustment region is provided in the first structure and/or the second structure;
the transverse mode adjustment region has at least the first region of the first and second regions, when a region surrounding a light emitting region of the active layer in a plan view is defined as a first region and a region surrounded by the first region is defined as a second region,
When the transverse mode adjustment region has only the first region of the first and second regions, the shortest distance from the center of gravity of the transverse mode adjustment region to the inner edge of the first region is defined as D S and the longest distance is defined as D L ;
When the transverse mode adjustment region has the first and second regions, the shortest distance from the areal center of gravity of the transverse mode adjustment region to the inner edge of the first region and the outer edge of the second region is denoted by D S and the longest distance is denoted by D L .
A surface emitting laser in which 1≦D L /D S ≦10 is satisfied.
(2) The surface-emitting laser according to (1), wherein the first structure and/or the second structure is provided with a current confinement region that sets the light-emitting region.
(3) The surface emitting laser according to (1) or (2), in which 1≦D L /D S ≦6 is satisfied.
(4) The surface-emitting laser according to any one of (1) to (3), wherein 1≦D L /D S ≦3 is satisfied.
(5) The surface-emitting laser according to any one of (1) to (4), wherein 0.5≦D S /ω≦6 and 0.5≦D L /ω≦12 are satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n: Refractive index of the medium λ 0 : Oscillation wavelength of the surface-emitting laser (6) The surface-emitting laser according to any one of (1) to (5), in which 1≦D S /ω≦3 and 1≦D L /ω≦12 are satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n: Refractive index of the medium λ 0 : Oscillation wavelength of the surface-emitting laser (7) The surface-emitting laser according to any one of (1) to (6), in which 0.5≦D S /ω≦6 and 1≦D L /ω≦6 are satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n : Refractive index of the medium λ 0 : Oscillation wavelength of the surface-emitting laser (8) The surface-emitting laser according to any one of (1) to (7), wherein the second structure has an electrode arranged on the other side of the active layer, and the electrode has the transverse mode adjustment region.
(9) The surface-emitting laser according to any one of (1) to (8), wherein the first structure has an electrode disposed on the one side of the active layer, the electrode having the transverse mode adjustment region.
(10) The surface-emitting laser according to any one of (1) to (9), wherein the concave mirror has the transverse mode adjustment region.
(11) The surface-emitting laser according to any one of (1) to (10), wherein the reflecting mirror has the transverse mode adjustment region.
(12) The surface-emitting laser according to any one of (1) to (11), wherein the second structure has the transverse mode adjustment region on the opposite side of the reflector to the active layer.
(13) The surface-emitting laser according to any one of (1) to (12), wherein the first structure has the transverse mode adjustment region on a side of the concave mirror opposite to the active layer side.
(14) The surface-emitting laser according to any one of (1) to (13), wherein the first structure has the transverse mode adjustment region between the concave mirror and the active layer.
(15) The surface-emitting laser according to any one of (1) to (14), wherein the second structure has the transverse mode adjustment region between the reflector and the active layer.
(16) The surface-emitting laser according to any one of (2) to (15), wherein the current confinement region has the transverse mode adjustment region.
(17) The surface-emitting laser according to any one of (1) to (16), wherein the second structure has an insulating film arranged on the other side of the active layer, the insulating film having the transverse mode adjustment region.
(18) A surface-emitting laser according to any one of (1) to (17), wherein the first structure has a substrate disposed between the concave mirror and the active layer, and an intermediate layer disposed between the concave mirror and the substrate, the intermediate layer having the transverse mode adjustment region.
(19) The surface-emitting laser according to any one of (1) to (18), wherein the first region and/or the second region includes a plurality of microstructures.
(20) The surface-emitting laser according to any one of (1) to (19), wherein the transverse mode adjustment region is made of any one of a metal material, an alloy material, a dielectric material, a semiconductor material, and an organic material.
(21) The surface-emitting laser according to any one of (1) to (20), wherein the shape of the inner edge of the first region is substantially circular or substantially regular polygonal.
(22) The surface-emitting laser according to any one of (1) to (20), wherein the shape of the inner edge of the first region is a distorted circle or a distorted regular polygon.
(23) The surface-emitting laser according to any one of (1) to (22), wherein an inner edge of the first region has a plurality of protrusions protruding radially toward an outer edge side of the first region.
(24) The surface-emitting laser according to any one of (1) to (23), wherein the transverse mode adjustment region has the first and second regions, and the second region has a plurality of portions separated from each other.
(25) The surface-emitting laser according to (24), wherein the plurality of portions are at least three portions, and the at least three portions are two-dimensionally arranged at a predetermined pitch in a plan view.
(26) A surface-emitting laser described in any one of (1) to (25), wherein the lateral mode adjustment region has the first and second regions, and the second region has at least one region that is approximately similar to the first region in a planar view.
(27) A surface-emitting laser described in any one of (1) to (26), wherein the lateral mode adjustment region has the first and second regions, and the second region has at least one region arranged approximately concentrically with the first region in a planar view.
(28) The surface-emitting laser according to any one of (1) to (27), wherein the cavity length is 50 μm or less.
(29) The surface-emitting laser according to any one of (1) to (28), wherein the transverse mode adjustment region is made of any one of a metal material, an alloy material, a dielectric material, a semiconductor material, and an organic material.
(30) The surface-emitting laser according to any one of (1) to (29), wherein the transverse mode adjustment region is made of a metal material or an alloy material.
(31) The surface-emitting laser according to any one of (1) to (30), wherein the transverse mode adjustment regions are provided in a plurality of regions.
(32) The surface-emitting laser according to any one of (1) to (31), wherein 1≦D S /ω≦3 and 1≦D L /ω≦6 are satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n: Refractive index of the medium λ 0 : Oscillation wavelength of the surface-emitting laser (33) The surface-emitting laser according to any one of (1) to (32), wherein 1≦D S /ω≦2.5 and 1≦D L /ω≦6 are satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n: Refractive index of the medium λ 0 : Oscillation wavelength of the surface-emitting laser (34) The surface-emitting laser according to any one of (1) to (33), wherein 1≦D S /ω≦3 and 1≦D L /ω≦4 are satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n: Refractive index of the medium λ 0 : Oscillation wavelength of the surface-emitting laser (35) The surface-emitting laser according to any one of (1) to (34), wherein 1≦D S /ω≦2.5 and 1≦D L /ω≦4 are satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n: Refractive index of the medium λ 0 : Oscillation wavelength of the surface-emitting laser (36) The surface-emitting laser according to any one of (1) to (35), wherein 1≦D S /ω≦2.5 and 1≦D L /ω≦3 are satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n: Refractive index of the medium λ 0 : Oscillation wavelength of the surface-emitting laser (37) An electronic device comprising the surface-emitting laser according to any one of (1) to (36).
11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44・・・面発光レーザ
101:活性層
102:凹面鏡
103:反射鏡
104:基板
108:アノード電極(電極)
109:カソード電極(電極)
110:金属膜
TMAA:横モード調整領域
A1:第1領域
A2:第2領域
LA:発光領域
ST1:第1構造
ST2:第2構造
IIA:イオン注入領域(電流狭窄領域)
C:面積重心
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44... Surface-emitting laser 101: active layer 102: concave mirror 103: reflecting mirror 104: substrate 108: anode electrode (electrode)
109: Cathode electrode (electrode)
110: Metal film TMAA: Transverse mode adjustment region A1: First region A2: Second region LA: Light emitting region ST1: First structure ST2: Second structure IIA: Ion implantation region (current confinement region)
C: Area center of gravity
Claims (20)
前記活性層の一側に配置された凹面鏡を有する第1構造と、
前記活性層の他側に配置された反射鏡を有する第2構造と、
を備え、
前記第1構造及び/又は前記第2構造に横モード調整領域が設けられ、
前記横モード調整領域は、平面視において前記活性層の発光領域を囲む領域を第1領域、該第1領域に囲まれる領域を第2領域としたときに、前記第1及び第2領域のうち少なくとも前記第1領域を有し、
前記横モード調整領域が前記第1及び第2領域のうち前記第1領域のみを有する場合に、前記横モード調整領域の面積重心から前記第1領域の内縁までの距離のうち最短距離をDS、最長距離をDLとし、
前記横モード調整領域が前記第1及び第2領域を有する場合に、前記横モード調整領域の面積重心から前記第1領域の内縁及び前記第2領域の外縁までの距離のうち最短距離をDS、最長距離をDLとすると、
1≦DL/DS≦10が成立する、面発光レーザ。 An active layer;
a first structure having a concave mirror disposed on one side of the active layer;
a second structure having a reflector disposed on the other side of the active layer;
Equipped with
a transverse mode adjustment region is provided in the first structure and/or the second structure;
the transverse mode adjustment region has at least the first region of the first and second regions, when a region surrounding a light emitting region of the active layer in a plan view is defined as a first region and a region surrounded by the first region is defined as a second region,
When the transverse mode adjustment region has only the first region of the first and second regions, the shortest distance from the center of gravity of the transverse mode adjustment region to the inner edge of the first region is defined as D S and the longest distance is defined as D L ;
When the transverse mode adjustment region has the first and second regions, the shortest distance from the areal center of gravity of the transverse mode adjustment region to the inner edge of the first region and the outer edge of the second region is denoted by D S and the longest distance is denoted by D L .
A surface emitting laser in which 1≦D L /D S ≦10 is satisfied.
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0 2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長 2. The surface emitting laser according to claim 1, wherein 0.5≦D S /ω≦6 and 0.5≦D L /ω≦12 are satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n : Refractive index of the medium λ 0 : Oscillation wavelength of the surface emitting laser
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0 2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長 2. The surface emitting laser according to claim 1, wherein 1≦D S /ω≦3 and 1≦D L /ω≦12 are satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n : Refractive index of the medium λ 0 : Oscillation wavelength of the surface emitting laser
但し、ω=ω0[(1+(Lm/z)2]1/2、z=πnω0 2/λ0
ω0:ビームウエスト半径
Lm:ビームウエストから横モード調整領域までの垂直方向の距離
n:媒質の屈折率
λ0:面発光レーザの発振波長 2. The surface emitting laser according to claim 1, wherein 0.5≦D S /ω≦6 and 1≦D L /ω≦6 are satisfied.
where ω=ω 0 [(1+(L m /z) 2 ] 1/2 , z=πnω 0 2 /λ 0
ω 0 : Beam waist radius L m : Vertical distance from the beam waist to the transverse mode adjustment region n : Refractive index of the medium λ 0 : Oscillation wavelength of the surface emitting laser
前記電極が前記横モード調整領域を有する、請求項1に記載の面発光レーザ。 the second structure has an electrode disposed on the other side of the active layer;
2. The surface emitting laser of claim 1, wherein the electrode comprises the transverse mode tuning region.
前記電極が前記横モード調整領域を有する、請求項1に記載の面発光レーザ。 the first structure having an electrode disposed on the one side of the active layer;
2. The surface emitting laser of claim 1, wherein the electrode comprises the transverse mode tuning region.
前記絶縁膜が前記横モード調整領域を有する、請求項1に記載の面発光レーザ。 the second structure has an insulating film disposed on the other side of the active layer;
2. The surface emitting laser according to claim 1, wherein the insulating film has the transverse mode adjustment region.
前記凹面鏡と前記活性層との間に配置された基板と、
前記凹面鏡と前記基板との間に配置された中間層と、
を有し、
前記中間層が前記横モード調整領域を有する、請求項1に記載の面発光レーザ。 The first structure is
a substrate disposed between the concave mirror and the active layer;
an intermediate layer disposed between the concave mirror and the substrate;
having
2. The surface emitting laser of claim 1, wherein the intermediate layer comprises the transverse mode tuning region.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-174633 | 2022-10-31 | ||
JP2022174633 | 2022-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024095620A1 true WO2024095620A1 (en) | 2024-05-10 |
Family
ID=90930216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/033470 WO2024095620A1 (en) | 2022-10-31 | 2023-09-14 | Surface emitting laser |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024095620A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002368333A (en) * | 2001-06-02 | 2002-12-20 | Heon-Su Jeon | Surface emitting laser |
JP2011018855A (en) * | 2009-07-10 | 2011-01-27 | Sony Corp | Semiconductor laser |
JP2012195510A (en) * | 2011-03-17 | 2012-10-11 | Canon Inc | Method for producing surface-emitting laser and method for producing surface-emitting laser array |
WO2020184148A1 (en) * | 2019-03-12 | 2020-09-17 | ソニー株式会社 | Light emitting element and method for manufacturing same |
US20200366067A1 (en) * | 2019-04-30 | 2020-11-19 | Aurelien David | Optical Devices and Methods of Manufacture and Operation |
JP2022003700A (en) * | 2016-11-02 | 2022-01-11 | ソニーグループ株式会社 | Light emitting element |
-
2023
- 2023-09-14 WO PCT/JP2023/033470 patent/WO2024095620A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002368333A (en) * | 2001-06-02 | 2002-12-20 | Heon-Su Jeon | Surface emitting laser |
JP2011018855A (en) * | 2009-07-10 | 2011-01-27 | Sony Corp | Semiconductor laser |
JP2012195510A (en) * | 2011-03-17 | 2012-10-11 | Canon Inc | Method for producing surface-emitting laser and method for producing surface-emitting laser array |
JP2022003700A (en) * | 2016-11-02 | 2022-01-11 | ソニーグループ株式会社 | Light emitting element |
WO2020184148A1 (en) * | 2019-03-12 | 2020-09-17 | ソニー株式会社 | Light emitting element and method for manufacturing same |
US20200366067A1 (en) * | 2019-04-30 | 2020-11-19 | Aurelien David | Optical Devices and Methods of Manufacture and Operation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12300969B2 (en) | Surface emitting laser, electronic device, and method for manufacturing surface emitting laser | |
EP4020724A1 (en) | Surface-emitting laser device | |
US20240088627A1 (en) | Surface emitting laser | |
US20250079798A1 (en) | Surface emitting device, light source device, and method for manufacturing surface emitting device | |
WO2024095620A1 (en) | Surface emitting laser | |
US20250096527A1 (en) | Surface emitting laser, surface emitting laser array, and light source device | |
US20240235167A1 (en) | Surface emitting laser element, electronic device, and method for manufacturing surface emitting laser element | |
WO2022176482A1 (en) | Surface-emitting laser | |
US20250023329A1 (en) | Surface emitting element and individual authentication device | |
US20250167514A1 (en) | Surface-emitting laser, light source device, and electronic device | |
US20240413611A1 (en) | Surface emitting laser and method for manufacturing surface emitting laser | |
US20240380185A1 (en) | Surface-light emitting element and light source device | |
WO2023199645A1 (en) | Surface emission laser | |
EP4485717A1 (en) | Light-emitting device and vos (vcsel-on-silicon) device | |
US20240120709A1 (en) | Surface emitting element, method for detecting optic characteristic, and method for adjusting optical characteristic | |
US20250070531A1 (en) | Surface emitting laser | |
WO2024241744A1 (en) | Surface light-emitting element | |
WO2024241742A1 (en) | Surface light-emitting element | |
WO2024236916A1 (en) | Light emitting element | |
WO2023171148A1 (en) | Surface-emitting laser, surface-emitting laser array, and method for manufacturing surface-emitting laser | |
WO2024014140A1 (en) | Surface emitting laser and method for manufacturing surface emitting laser | |
TW202448053A (en) | Surface Emitting Laser | |
WO2024142624A1 (en) | Surface-emitting laser | |
WO2025105127A1 (en) | Light-emitting element and production method | |
WO2024161986A1 (en) | Light source device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23885386 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |