WO2024095457A1 - Optical device - Google Patents
Optical device Download PDFInfo
- Publication number
- WO2024095457A1 WO2024095457A1 PCT/JP2022/041185 JP2022041185W WO2024095457A1 WO 2024095457 A1 WO2024095457 A1 WO 2024095457A1 JP 2022041185 W JP2022041185 W JP 2022041185W WO 2024095457 A1 WO2024095457 A1 WO 2024095457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- optical
- coupling region
- optical waveguide
- waveguide
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
Definitions
- the present invention relates to an optical device equipped with a waveguide-type optically active element.
- Si is an indirect transition semiconductor, and it is not easy to realize highly efficient semiconductor lasers or semiconductor optical amplifiers using Si.
- direct transition semiconductors have been used for optical components such as semiconductor lasers and semiconductor optical amplifiers.
- optically active elements such as lasers or optical amplifiers using these compound semiconductors, and monolithically integrate them with Si optical circuits.
- optically active elements such as lasers individually on InP substrates and hybrid integrate them with Si optical circuits.
- Non-Patent Document 1 In the latter hybrid integration, there is a method of butting together an optically active element chip and a Si optical circuit chip to connect them. There is also a method of transfer printing the optically active element onto the Si optical circuit (Non-Patent Document 1).
- hybrid integration requires high assembly costs, it has the advantage of being able to integrate after selecting non-defective products, and of being able to apply the optimal manufacturing process for each of the Si and compound semiconductor device manufacturing processes.
- transfer printing has the advantage of being able to achieve integration capabilities equivalent to monolithic integration while maintaining the aforementioned advantages.
- this technology requires highly accurate alignment in order to integrate the optically active elements in a way that optically connects them to the optical waveguides of the fine Si optical circuit. If the alignment accuracy is poor, the optical output from the laser cannot be input to the Si optical circuit. Typically, alignment with an accuracy of a few hundred nanometers or less is desired, but achieving this level of alignment accuracy is not easy with current technology. For this reason, there is a demand for the realization of an optical connection structure with high tolerance to misalignment.
- the present invention was made to solve the above problems, and aims to optically connect an optical active element and a Si optical circuit using an optical connection structure with high tolerance to misalignment.
- the optical device comprises a first optical waveguide made of a first core that enters the optical coupling region from one side and terminates at the center of the optical coupling region, a second optical waveguide made of a second core that enters the optical coupling region from the other side and terminates at the center of the optical coupling region, a third core that is arranged at a distance in the optical coupling region that allows optical coupling to the first and second cores and is wider than the first and second cores, and a waveguide-type optical active element that is connected to the first optical waveguide and has an active layer made of a compound semiconductor, and the first core A is made of a compound semiconductor and has a first tapered portion tapered toward the center of the optical coupling region, the second core is made of Si and has a second tapered portion tapered toward the center of the optical coupling region, the waveguiding direction of the first optical waveguide and the waveguiding direction of the second optical waveguide are the same in the optical coupling region, the first core and the second core are formed without
- a third core is provided that is arranged at a distance that allows optical coupling to the first core connected to the optical active element and the second core connected to the Si optical circuit, and that is wider than the first and second cores. This allows the optical active element and the Si optical circuit to be optically connected with an optical connection structure that has high tolerance to misalignment.
- FIG. 1A is a plan view showing a configuration of an optical device according to an embodiment of the present invention.
- FIG. 1B is a cross-sectional view showing a configuration of an optical device according to an embodiment of the present invention.
- FIG. 1C is a cross-sectional view showing a partial configuration of an optical device according to an embodiment of the present invention.
- FIG. 1D is a plan view showing a partial configuration of an optical device according to an embodiment of the present invention.
- FIG. 2 is a diagram showing the configuration of an optical connection structure for comparison.
- FIG. 3 is a characteristic diagram showing the calculation results of the optical coupling efficiency between the first optical waveguide 110 and the second optical waveguide 120. As shown in FIG. FIG. FIG.
- FIG. 4 is a characteristic diagram showing the calculation results of the change in light transmittance from the first optical waveguide 110 to the second optical waveguide 120, with the width (thickness) t in the first direction and the width W in the second direction of the third core 103 as parameters.
- FIG. 5 is a characteristic diagram showing the calculation results of the change in light transmittance from the first optical waveguide 110 to the second optical waveguide 120, with the width (thickness) t of the third core 103 in the first direction and the refractive index of the third core 103 as parameters.
- FIG. 6 is a diagram showing the configuration of an application example of an optical device according to an embodiment of the present invention.
- FIG. 7 is a diagram showing the configuration of another application example of the optical device according to the embodiment of the present invention.
- FIG. 8 is a diagram showing the configuration of another application example of the optical device according to the embodiment of the present invention.
- FIG. 9 is a diagram showing the configuration of another application example of the optical device according to the embodiment of the present invention.
- FIG. 10 is a cross-sectional view showing a partial configuration of another application example of the optical device according to the embodiment of the present invention.
- FIG. 11 is a diagram showing the configuration of another application example of the optical device according to the embodiment of the present invention.
- FIG. 12 is a cross-sectional view showing a partial configuration of another application example of the optical device according to the embodiment of the present invention.
- Figure 1B shows a cross section parallel to the waveguide direction
- Figure 1C shows a cross section perpendicular to the waveguide direction.
- This optical device includes a first optical waveguide 110 that enters the optical coupling region 151 from one side and terminates at the center of the optical coupling region 151, and a second optical waveguide 120 that enters the optical coupling region 151 from the other side and terminates at the center of the optical coupling region 151.
- the waveguiding direction of the first optical waveguide 110 and the waveguiding direction of the second optical waveguide 120 are the same in the optical coupling region 151.
- a waveguide-type optical active element 141 having an active layer 104 made of a compound semiconductor is connected to the first optical waveguide 110.
- the first optical waveguide 110 is composed of a first core 101 that terminates in the center of the optical coupling region 151
- the second optical waveguide 120 is composed of a second core 102 that terminates in the center of the optical coupling region 151.
- the first core 101 and the second core 102 are formed without overlapping each other.
- the first core 101 is made of a compound semiconductor.
- the first core 101 also has a first tapered section 111 that tapers toward the center of the optical coupling region 151.
- the second core 102 is made of Si.
- the second core 102 also has a second tapered section 121 that tapers toward the center of the optical coupling region 151.
- the optical device also includes a third core 103 that is disposed at a distance in the optical coupling region 151 that allows it to be optically coupled to the first core 101 and the second core 102.
- the third core 103 is formed to be wider than the first core 101 and the second core 102.
- the third core 103 is formed to extend in the same waveguiding direction of the first optical waveguide 110 and the waveguiding direction of the second optical waveguide 120.
- the third core 103 can be disposed between the first tapered portion 111 (first core 101) and the second tapered portion 121 (second core 102).
- the third core 103 is formed at a different height from the first core 101 and the second core 102 on the substrate 131 on which the first core 101 and the second core 102 are formed.
- the second core 102 is disposed below the first core 101 (on the substrate 131 side).
- a first cladding layer 132 is formed on a substrate 131, a third core 103 is formed on the first cladding layer 132, and a second cladding layer 133 is formed on the third core 103.
- the second core 102 is formed so as to be embedded in the first cladding layer 132, and these constitute a second optical waveguide 120.
- the first core 101 is formed so as to be embedded in the second cladding layer 133, and these constitute a first optical waveguide 110.
- the first cladding layer 132 and the second cladding layer 133 can be made of, for example, silicon oxide (SiO 2 ).
- the third core 103 is formed at least in the optical coupling region 151.
- the first taper section 111 (first core 101) and the second taper section 121 (second core 102) can be positioned on the same side as seen from the third core 103.
- the optically active element 141 is embedded in a semiconductor layer 105 made of a compound semiconductor, and an active layer 104 is formed therein. As shown in FIG. 1C, an n-type region 107a and a p-type region 107b are formed in the semiconductor layer 105 so as to sandwich the active layer 104. An n-electrode 108a is ohmic-connected to the n-type region 107a, and a p-electrode 108b is connected to the p-type region 107b. This allows current injection or voltage application to the active layer 104.
- SCH Separate Confined Heterostructure
- the optical active element 141 can be a distributed feedback (DFB) laser.
- the diffraction grating 106 can be composed of, for example, a plurality of grooves 106a formed in the third core 103. The plurality of grooves 106a are arranged periodically in the waveguiding direction.
- Figure 3 shows the calculation results of the coupling efficiency in the optical coupling region 151.
- the width (thickness) of the third core 103 in the first direction from the first core 101 to the second core 102 is 450 nm
- the width of the third core 103 in the second direction perpendicular to the first direction is 4000 nm
- the refractive index of the material constituting the third core 103 is 2.
- the third core 103 can be composed of, for example, silicon oxynitride or silicon nitride.
- FIG. 3 shows the coupling efficiency between the first optical waveguide 110 and the second optical waveguide 120 in the optical coupling region 151 of the optical device according to the embodiment.
- (b) of FIG. 3 shows the coupling efficiency of the optical coupling structure shown in FIG. 2.
- the horizontal axis represents the positional deviation (Error) between the two optical waveguides
- the vertical axis represents the optical transmittance from one optical waveguide to the other optical waveguide.
- Figure 4 shows the calculation results of the change in light transmittance from the first optical waveguide 110 to the second optical waveguide 120, using the width (thickness) t in the first direction and the width W in the second direction of the third core 103 in the optical coupling region 151 as parameters.
- the positional deviation between the first optical waveguide 110 and the second optical waveguide 120 in the optical coupling region 151 is set to 1.5 ⁇ m.
- the refractive index of the third core 103 is set to 2.
- the transmittance is high when the width W in the second direction is 4 ⁇ m, regardless of the width (thickness) t in the first direction.
- the width (thickness) t in the first direction of the third core 103 is appropriate to be 250 nm or more.
- Figure 5 shows the calculation results of the change in light transmittance from the first optical waveguide 110 to the second optical waveguide 120, with the width (thickness) t of the third core 103 in the first direction in the optical coupling region 151 and the refractive index of the third core 103 as parameters.
- the positional deviation between the first optical waveguide 110 and the second optical waveguide 120 in the optical coupling region 151 is set to 1.5 ⁇ m
- the width W of the third core 103 in the second direction is set to 4000 nm.
- the refractive index of the material constituting the third core 103 is high at about 2.2 when t is 400 nm, and about 1.9 when t is 550 nm. Examples of materials with this refractive index include SiON and SiN.
- the third core 103 it is appropriate for the third core 103 to be made of silicon oxynitride or silicon nitride, have a refractive index of 1.5 to 3.0, have a width in the first direction from the first core 101 to the second core 102 of approximately 100 to 500 nm, and have a width in the second direction perpendicular to the first direction of approximately 2000 to 6000 nm.
- a Mach-Zehnder modulator can be configured by combining a phase shifter 201, which is an optically active element having an active layer 104, and a multimode interference (MMI) 202 made of Si, which is an optical circuit.
- MMI multimode interference
- a Mach-Zehnder modulator can be configured by combining two MMIs 202 with two arms, each of which has a phase shifter 201. In each arm, a first optical waveguide formed by a first core 101 connected continuously to the phase shifter 201 and a second optical waveguide formed by a second core 102 of the MMI 202 are optically connected via a third core 103 in the optical coupling region 151.
- a smaller directly modulated laser array can be constructed by combining a plurality of optically active elements 141 each having an active layer 104 with an arrayed waveguide grating (AWG) 203 made of Si.
- a second optical waveguide made of a second core 102 optically connected via a third core 103 in an optical coupling region 151 to a first optical waveguide made of a first core 101 connected continuously to the optically active elements 141 constituting the laser is connected to an optical fiber 204 of the AWG 203.
- a highly efficient multi-wavelength laser array can be constructed by changing the photoluminescence (PL) wavelength of the active layer 104 in each optically active element 141 according to the oscillation wavelength.
- PL photoluminescence
- the third core 103 by extending the third core 103 up to the substrate end 111a, optical coupling with the optical fiber 204 is possible. If the refractive index of the third core 103 is about 2 and the core width of the third core 103 in the first direction is about 500 nm, it becomes possible to achieve highly efficient optical coupling to the optical fiber 204 at the substrate end 111a.
- the optical fiber 204 can be optically connected to the second optical waveguide formed by the second core 102 through the third optical waveguide 205 having a core 205c made of SiOx or a polymer material having a refractive index equivalent to that of the core of the optical fiber 204.
- the third optical waveguide 205 includes, for example, a clad 205b formed on a Si substrate 205a and a core 205c embedded in the clad 205b.
- the third optical waveguide 205 can be combined by connecting the core 205c partially exposed by removing a part of the clad 205b to the third core 103 extended to the substrate end 111a. In this way, the use of the third optical waveguide 205 enables coupling with the optical fiber 204 with lower reflection and higher efficiency.
- the thickness of the cladding 205b between the Si substrate 205a and the core 205c of the third optical waveguide 205 it is possible to reduce light leakage to the Si substrate 205a. It is desirable to set the thickness of the first cladding layer 132 between the second core 102 and the substrate 131 to 1 to 2 ⁇ m. This is because if the first cladding layer 132 is too thick, the thermal resistance increases and the optical device characteristics deteriorate.
- the optical fiber 204 can be optically connected to the second optical waveguide formed by the second core 102 via the third optical waveguide 205.
- the optical connection is made to the second optical waveguide formed by the second core 102 without going through the third core 103.
- a part of the cladding 205b of the third optical waveguide 205 is removed to partially expose the core 205c, which is then connected to the top of the second optical waveguide 120 at the substrate end 111a.
- the optical coupling region includes a third core that is arranged at a distance that allows optical coupling to the first core connected to the optical active element and the second core connected to the Si optical circuit, and that is wider than the first and second cores, so that the optical active element and the Si optical circuit can be optically connected with an optical connection structure that has high tolerance to misalignment.
- the optical active element and the Si optical circuit can be optically connected with high efficiency, and for example, a large proportion of light compared to the laser output can be input to the Si optical circuit.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
本発明は、導波路型の光能動素子を備える光デバイスに関する。 The present invention relates to an optical device equipped with a waveguide-type optically active element.
通信トラフィックの爆発的な増大に伴い、光送受信器の高速・大容量化および小型・低コスト化が求められている。この要求に対して、大口径のSiウェハ上に成熟したCMOS技術を活用して光回路を形成するシリコンフォトニクス技術が注目されている。現在までに、Siを用いた小型なパッシブ光部品および高速な光変調器などが実現している。また、これら光部品を用いた光送受信器がすでに実用化されている。 The explosive increase in communication traffic has created a demand for faster, larger capacity, smaller, and less costly optical transceivers. In response to this demand, silicon photonics technology, which uses mature CMOS technology to form optical circuits on large-diameter Si wafers, has attracted attention. To date, small passive optical components and high-speed optical modulators using Si have been developed. Optical transceivers using these optical components are already in practical use.
一方、Siは間接遷移型半導体であり、高効率な半導体レーザや半導体光増幅器をSiで実現することは容易ではない。従来、これら半導体レーザや半導体光増幅器といった光部品には、直接遷移型半導体が用いられてきた。このため、Si基板上に化合物半導体をエピタキシャル成長あるいは直接接合し,この化合物半導体によりレーザあるいは光増幅器などの光能動素子を形成し、Si光回路とモノリシック集積する試みがなされている。また、InP基板上にレーザなどの光能動素子を個別に形成し、これをSi光回路とハイブリッド集積する試みがなされている。 On the other hand, Si is an indirect transition semiconductor, and it is not easy to realize highly efficient semiconductor lasers or semiconductor optical amplifiers using Si. Traditionally, direct transition semiconductors have been used for optical components such as semiconductor lasers and semiconductor optical amplifiers. For this reason, attempts have been made to epitaxially grow or directly bond compound semiconductors onto Si substrates, form optically active elements such as lasers or optical amplifiers using these compound semiconductors, and monolithically integrate them with Si optical circuits. Also, attempts have been made to form optically active elements such as lasers individually on InP substrates and hybrid integrate them with Si optical circuits.
後者のハイブリッド集積においては、光能動素子のチップとSi光回路チップとを突き合わせて接続させる方法がある。また、Si光回路の上に光能動素子をトランスファープリンティング(非特許文献1)する方法がある。 In the latter hybrid integration, there is a method of butting together an optically active element chip and a Si optical circuit chip to connect them. There is also a method of transfer printing the optically active element onto the Si optical circuit (Non-Patent Document 1).
ハイブリッド集積では、集積のためのアセンブリコストが高い一方で、良品選別後集積が可能なこと、Siおよび化合物半導体デバイス製造において個別に最適な製造プロセスを適用できることなどが利点として挙げられる。特に、トランスファープリンティングにおいては、前述の利点を確保しつつモノリシック集積と同等の集積性を有することが優れる点である。 While hybrid integration requires high assembly costs, it has the advantage of being able to integrate after selecting non-defective products, and of being able to apply the optimal manufacturing process for each of the Si and compound semiconductor device manufacturing processes. In particular, transfer printing has the advantage of being able to achieve integration capabilities equivalent to monolithic integration while maintaining the aforementioned advantages.
しかしながら、本技術では、光能動素子を微細なSi光回路の光導波路と光学的に接続する形で集積するために、高精度な位置合わせを必要とされる。仮に、位置合わせ精度が劣っていたとすると、レーザからの光出力がSi光回路に入力できなくなる。典型的に、数100nm以下の精度で位置合わせをすることが望まれるが、この位置合わせ精度は現状の技術では容易ではない。このため、位置ずれに対してトレランスが高い、光接続構造の実現が望まれている。 However, this technology requires highly accurate alignment in order to integrate the optically active elements in a way that optically connects them to the optical waveguides of the fine Si optical circuit. If the alignment accuracy is poor, the optical output from the laser cannot be input to the Si optical circuit. Typically, alignment with an accuracy of a few hundred nanometers or less is desired, but achieving this level of alignment accuracy is not easy with current technology. For this reason, there is a demand for the realization of an optical connection structure with high tolerance to misalignment.
本発明は、以上のような問題点を解消するためになされたものであり、位置ずれに対してトレランスが高い光接続構造で光能動素子とSi光回路とが光学的に接続することを目的とする。 The present invention was made to solve the above problems, and aims to optically connect an optical active element and a Si optical circuit using an optical connection structure with high tolerance to misalignment.
本発明に係る光デバイスは、光結合領域に一方から侵入して光結合領域の中央部で終端する第1コアから構成された第1光導波路と、光結合領域に他方から侵入して光結合領域の中央部で終端する第2コアから構成された第2光導波路と、光結合領域で第1コアおよび第2コアに光学的に結合可能な距離に配置されて第1コアおよび第2コアより幅が広くされた第3コアと、第1光導波路に接続し、化合物半導体から構成された活性層を備える導波路型の光能動素子とを備え、第1コアは、化合物半導体から構成され、光結合領域の中央部に向けて先細りとされた第1テーパ部を備え、第2コアは、Siから構成され、光結合領域の中央部に向けて先細りとされた第2テーパ部を備え、第1光導波路の導波方向と第2光導波路の導波方向とは、光結合領域において同一とされ、光結合領域において、第1コアと第2コアとは、互いに重なること無く形成され、第3コアは、同一とされた第1光導波路の導波方向および第2光導波路の導波方向に延在して形成されている。 The optical device according to the present invention comprises a first optical waveguide made of a first core that enters the optical coupling region from one side and terminates at the center of the optical coupling region, a second optical waveguide made of a second core that enters the optical coupling region from the other side and terminates at the center of the optical coupling region, a third core that is arranged at a distance in the optical coupling region that allows optical coupling to the first and second cores and is wider than the first and second cores, and a waveguide-type optical active element that is connected to the first optical waveguide and has an active layer made of a compound semiconductor, and the first core A is made of a compound semiconductor and has a first tapered portion tapered toward the center of the optical coupling region, the second core is made of Si and has a second tapered portion tapered toward the center of the optical coupling region, the waveguiding direction of the first optical waveguide and the waveguiding direction of the second optical waveguide are the same in the optical coupling region, the first core and the second core are formed without overlapping each other in the optical coupling region, and the third core is formed extending in the same waveguiding direction of the first optical waveguide and the waveguiding direction of the second optical waveguide.
以上説明したように、本発明によれば、光結合領域において、光能動素子に接続する第1コアおよびSi光回路に接続する第2コアに光学的に結合可能な距離に配置されて、第1コアおよび第2コアより幅が広くされた第3コアを備えるので、位置ずれに対してトレランスが高い光接続構造で光能動素子とSi光回路とが光学的に接続することができる。 As described above, according to the present invention, in the optical coupling region, a third core is provided that is arranged at a distance that allows optical coupling to the first core connected to the optical active element and the second core connected to the Si optical circuit, and that is wider than the first and second cores. This allows the optical active element and the Si optical circuit to be optically connected with an optical connection structure that has high tolerance to misalignment.
以下、本発明の実施の形態に係る光デバイスについて図1A、図1B、図1C、図1Dを参照して説明する。なお、図1Bは、導波方向に平行な方向の断面を示し、図1Cは、導波方向に垂直な方向の断面を示している。 Below, an optical device according to an embodiment of the present invention will be described with reference to Figures 1A, 1B, 1C, and 1D. Note that Figure 1B shows a cross section parallel to the waveguide direction, and Figure 1C shows a cross section perpendicular to the waveguide direction.
この光デバイスは、光結合領域151に一方から侵入して光結合領域151の中央部で終端する第1光導波路110と、光結合領域151に他方から侵入して光結合領域151の中央部で終端する第2光導波路120とを備える。第1光導波路110の導波方向と第2光導波路120の導波方向とは、光結合領域151において同一とされている。第1光導波路110には、化合物半導体から構成された活性層104を備える導波路型の光能動素子141が接続している。
This optical device includes a first
第1光導波路110は、光結合領域151の中央部で終端する第1コア101から構成され、第2光導波路120は、光結合領域151の中央部で終端する第2コア102から構成されている。また、光結合領域151において、第1コア101と第2コア102とは、互いに重なること無く形成されている。
The first
第1コア101は、化合物半導体から構成されている。また、第1コア101は、光結合領域151の中央部に向けて先細りとされた第1テーパ部111を備える。第2コア102は、Siから構成されている。また、第2コア102は、光結合領域151の中央部に向けて先細りとされた第2テーパ部121を備える。
The
また、この光デバイスは、光結合領域151で、第1コア101および第2コア102に光学的に結合可能な距離に配置された第3コア103を備える。第3コア103は、第1コア101および第2コア102より幅が広く形成されている。第3コア103は、同一とされた第1光導波路110の導波方向および第2光導波路120の導波方向に延在して形成されている。
The optical device also includes a
図1Bに示すように、第3コア103は、第1テーパ部111(第1コア101)と第2テーパ部121(第2コア102)との間に配置することができる。また、この例では、第1コア101および第2コア102が形成される基板131の上で、第1コア101と第2コア102とは異なる高さに形成されている。更にこの例では、第1コア101の下側(基板131の側)に第2コア102が配置されている。
As shown in FIG. 1B, the
この例では、基板131の上に第1クラッド層132が形成され、第1クラッド層132の上に第3コア103が形成され、第3コア103の上に第2クラッド層133が形成されている。また、第1クラッド層132に埋め込まれるように第2コア102が形成され、これらで第2光導波路120が構成されている。また、第2クラッド層133に埋め込まれるように第1コア101が形成され、これらで第1光導波路110が構成されている。第1クラッド層132、第2クラッド層133は、例えば、酸化シリコン(SiO2)から構成することができる。
In this example, a
なお、第3コア103は、少なくとも光結合領域151に形成されていることが重要となる。また、第1テーパ部111(第1コア101)および第2テーパ部121(第2コア102)は、第3コア103から見て同じ側に配置することができる。
It is important that the
光能動素子141は、化合物半導体からなる半導体層105に埋め込まれて活性層104が形成されている。また、図1Cに示すように、半導体層105には、活性層104を挾むようにn型領域107aおよびp型領域107bが形成され、また、n型領域107aにはn電極108aがオーミック接続し、p型領域107bには、p電極108bが接続している。これらにより、活性層104に、電流注入または電圧印加を可能としている。この例では、半導体層105に埋め込まれている活性層104の上下の半導体層を光閉じ込め層とした、分離閉じ込めヘテロ(Separate Confined Heterostructure;SCH)構造とされ、活性層104をコアとした光導波路を備える導波路構造とされている。
The optically
また、導波方向に配列された格子による回折格子106を活性層104の近傍に配置することで、光能動素子141を分布帰還型(Distributed Feedback:DFB)レーザとすることができる。回折格子106は、例えば、第3コア103に形成された複数の溝106aから構成することができる。複数の溝106aは、導波方向に周期的に配列されている。
In addition, by arranging a
次に、実施の形態に係る光デバイスの第1光導波路110と第2光導波路120との光学的な接続の結合効率について説明する。なお、以下では、図2に示すように、第1光導波路を構成する第1コア301の第1テーパ部311と、第2光導波路を構成する第2コア302の第1テーパ部331とを、光結合領域351で重なる状態に配置した光結合構造を比較として用いる。
Next, the coupling efficiency of the optical connection between the first
図3に、光結合領域151における結合効率の計算結果を示す。第1コア101から第2コア102への第1方向における第3コア103の幅(厚さ)を450nmとし、第1方向に垂直な第2方向の第3コア103の幅を4000nmとし、第3コア103を構成する材料は屈折率を2とした。第3コア103は、例えば、酸窒化シリコンまたは窒化シリコンから構成することができる。
Figure 3 shows the calculation results of the coupling efficiency in the
図3の(a)は、実施の形態に係る光デバイスの光結合領域151における第1光導波路110と第2光導波路120との結合効率を示している。また、図3の(b)は、図2に示した光結合構造の結合効率を示している。図3は、2つの光導波路の位置ずれ量(Error)を横軸とし、一方の光導波路から他方の光導波路への光透過率を縦軸としている。
(a) of FIG. 3 shows the coupling efficiency between the first
図3に示すように、位置ずれ量が無い場合は、ほぼ100%の高率で光結合がなされることがわかる。しかし、第3コア103がない図2の構成では、(b)に示すように位置ずれ量が増えると、透過率が減少しており光結合損失が増えることがわかる。一方、第3コア103を設けた実施の形態によれば、(a)に示すように、位置ずれ量が1μm程度あってもほとんど透過損失が無いことがわかる。このように、実施の形態によれば、光結合領域151における第1光導波路110と第2光導波路120との間に多少の位置ずれがあっても、両者を高効率に光接続できることがわかる。
As shown in Figure 3, when there is no misalignment, optical coupling is achieved at a high rate of nearly 100%. However, in the configuration of Figure 2 without the
図4に、光結合領域151における第3コア103の第1方向の幅(厚さ)tおよび第2方向の幅Wをパラメータとした、第1光導波路110から第2光導波路120への光透過率の変化の計算結果を示す。この計算では、光結合領域151における第1光導波路110と第2光導波路120との位置ずれ量を1.5μmとしている。また、第3コア103の屈折率は2とした。図4に示すように、第1方向の幅(厚さ)tによらず、第2方向の幅Wが4μmにおいて、透過率が高いことがわかる。また、第3コア103の第1方向の幅(厚さ)tは、250nm以上が適当であることがわかる。
Figure 4 shows the calculation results of the change in light transmittance from the first
図5に、光結合領域151における第3コア103の第1方向の幅(厚さ)t、および第3コア103の屈折率をパラメータとした、第1光導波路110から第2光導波路120への光透過率の変化の計算結果を示す。この計算では、光結合領域151における第1光導波路110と第2光導波路120との位置ずれ量を1.5μmとし、第3コア103の第2方向の幅Wを4000nmとしている。第3コア103を構成する材料の屈折率は、tが400nmの場合は2.2程度、tが550nmの場合は1.9程度において、透過率が高いことがわかる。この屈折率を有する材料としてSiONおよびSiNが当てはまる。
Figure 5 shows the calculation results of the change in light transmittance from the first
以上の結果より、第3コア103は、酸窒化シリコンまたは窒化シリコンから構成し、屈折率は1.5~3.0とし、第1コア101から第2コア102への第1方向の幅は、100~500nm程度とし、第1方向に垂直な第2方向の幅は、2000~6000nm程度とすることが適切であることがわかる。
From the above results, it can be seen that it is appropriate for the
次に、実施の形態に係る光デバイスの適用例について説明する。例えば、図6に示すように、活性層104を備える光能動素子である位相シフタ201と、光回路であるSiからなる多モード干渉型(MMI)202とを組み合わせることでマッハツェンダ変調器が構成できる。各々が位相シフタ201を備える2つのアームに、2つのMMI202を組み合わせることで、マッハツェンダ変調器とすることができる。各々アームにおいて、位相シフタ201に連続して接続する第1コア101による第1光導波路と、MMI202の第2コア102による第2光導波路とを、光結合領域151において、第3コア103を介して光学的に接続する。
Next, an application example of the optical device according to the embodiment will be described. For example, as shown in FIG. 6, a Mach-Zehnder modulator can be configured by combining a
また、図7に示すように、各々活性層104を備える複数の光能動素子141と、Siから構成したアレイ導波路格子(AWG)203とを組み合わせることで、より小型な直接変調レーザアレイが構成できる。レーザを構成する光能動素子141に連続して接続する第1コア101による第1光導波路に、光結合領域151において第3コア103を介して光学的に接続する第2コア102による第2光導波路を、AWG203の光ファイバ204に接続する。各々の光能動素子141における活性層104のフォトルミネッセンス(PL)波長を発振波長に応じて変えることで、高効率な多波長レーザアレイとすることができる。
Also, as shown in FIG. 7, a smaller directly modulated laser array can be constructed by combining a plurality of optically
例えば、図8に示すように、基板端111aまで第3コア103を存在させることで、光ファイバ204との光結合を可能とすることができる。第3コア103の屈折率を2程度とし、第3コア103の第1方向のコア幅を500nm程度とすれば、基板端111aにおいて光ファイバ204に高効率に光結合させることが可能となる。
For example, as shown in FIG. 8, by extending the
また、図9,図10に示すように、光ファイバ204を、光ファイバ204のコアと屈折率が同等なSiOxやポリマー材料をコア205cとした第3光導波路205を介して、第2コア102による第2光導波路に光接続することができる。第3光導波路205は、例えば、Si基板205aの上に形成されたクラッド205bと、クラッド205bに埋め込まれたコア205cとを備える。第3光導波路205は、一部のクラッド205bを除去して部分的に露出させたコア205cと、基板端111aに延在させた第3コア103とを接続することで組み合わせることができる。このように、第3光導波路205を用いることで、より低反射、高効率な光ファイバ204との結合が可能となる。
9 and 10, the
第3光導波路205のSi基板205aとコア205cとの間のクラッド205bの厚さを3~20μmとすることで、Si基板205aへの光リークを低減させることができる。なお、第2コア102と、基板131との間の第1クラッド層132の厚さは、1~2μmとすることが望ましい。これは、第1クラッド層132が厚すぎると熱抵抗が上がり、光デバイス特性が劣化するからである。
By setting the thickness of the
また、図11,図12に示すように、光ファイバ204に第3光導波路205を介して、第2コア102による第2光導波路に光接続することができる。この構成では、第3コア103を介さずに、第2コア102による第2光導波路に光接続する。図12に示すように、第3光導波路205の一部のクラッド205bを除去して部分的に露出させたコア205cを、基板端111aの第2光導波路120の上に接続する。
Also, as shown in Figures 11 and 12, the
以上に説明したように、本発明によれば、光結合領域において、光能動素子に接続する第1コアおよびSi光回路に接続する第2コアに光学的に結合可能な距離に配置されて、第1コアおよび第2コアより幅が広くされた第3コアを備えるので、位置ずれに対してトレランスが高い光接続構造で光能動素子とSi光回路とが光学的に接続することができるようになる。本発明によれば、光結合領域における第1コアと第2コアとの間に多少の位置ずれがあったとしても、例えば、高効率に光能動素子とSi光回路を光学的に接続でき、例えば、レーザの出力に対して多くの割合の光を、Si光回路に入力させることができる。 As described above, according to the present invention, the optical coupling region includes a third core that is arranged at a distance that allows optical coupling to the first core connected to the optical active element and the second core connected to the Si optical circuit, and that is wider than the first and second cores, so that the optical active element and the Si optical circuit can be optically connected with an optical connection structure that has high tolerance to misalignment. According to the present invention, even if there is some misalignment between the first core and the second core in the optical coupling region, for example, the optical active element and the Si optical circuit can be optically connected with high efficiency, and for example, a large proportion of light compared to the laser output can be input to the Si optical circuit.
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 The present invention is not limited to the embodiments described above, and it is clear that many modifications and combinations can be implemented by those with ordinary skill in the art within the technical concept of the present invention.
101…第1コア、102…第2コア、103…第3コア、104…活性層、105…半導体層、106…回折格子、106a…溝、107a…n型領域、107b…p型領域、108a…n電極、108b…p電極、110…第1光導波路、111…第1テーパ部、120…第2光導波路、121…第2テーパ部、131…基板、132…第1クラッド層、133…第2クラッド層、141…光能動素子、151…光結合領域。 101...first core, 102...second core, 103...third core, 104...active layer, 105...semiconductor layer, 106...diffraction grating, 106a...groove, 107a...n-type region, 107b...p-type region, 108a...n-electrode, 108b...p-electrode, 110...first optical waveguide, 111...first tapered portion, 120...second optical waveguide, 121...second tapered portion, 131...substrate, 132...first cladding layer, 133...second cladding layer, 141...optically active element, 151...optical coupling region.
Claims (4)
前記光結合領域に他方から侵入して前記光結合領域の中央部で終端する第2コアから構成された第2光導波路と、
前記光結合領域で前記第1コアおよび前記第2コアに光学的に結合可能な距離に配置されて前記第1コアおよび前記第2コアより幅が広くされた第3コアと、
前記第1光導波路に接続し、化合物半導体から構成された活性層を備える導波路型の光能動素子と
を備え、
前記第1コアは、化合物半導体から構成され、前記光結合領域の中央部に向けて先細りとされた第1テーパ部を備え、
前記第2コアは、Siから構成され、前記光結合領域の中央部に向けて先細りとされた第2テーパ部を備え、
前記第1光導波路の導波方向と前記第2光導波路の導波方向とは、前記光結合領域において同一とされ、
前記光結合領域において、前記第1コアと前記第2コアとは、互いに重なること無く形成され、
前記第3コアは、同一とされた前記第1光導波路の導波方向および前記第2光導波路の導波方向に延在して形成されている
ことを特徴とする光デバイス。 a first optical waveguide including a first core that enters an optical coupling region from one side and terminates at a center of the optical coupling region;
a second optical waveguide including a second core that enters the optical coupling region from the other side and terminates at a center of the optical coupling region;
a third core that is disposed at a distance capable of being optically coupled to the first core and the second core in the optical coupling region and has a width greater than that of the first core and the second core;
a waveguide-type optical active element connected to the first optical waveguide and having an active layer made of a compound semiconductor;
the first core is made of a compound semiconductor and has a first tapered portion tapered toward a center of the optical coupling region;
the second core is made of Si and has a second tapered portion tapered toward a center of the optical coupling region;
a waveguiding direction of the first optical waveguide and a waveguiding direction of the second optical waveguide are made the same in the optical coupling region;
In the optical coupling region, the first core and the second core are formed without overlapping with each other,
an optical device according to claim 1 , wherein the third core is formed extending in a same waveguiding direction of the first optical waveguide and a same waveguiding direction of the second optical waveguide;
前記第3コアは、前記第1テーパ部と前記第2テーパ部との間に配置されていることを特徴とする光デバイス。 2. The optical device according to claim 1,
An optical device, comprising: a third core disposed between the first tapered portion and the second tapered portion;
前記第1コアおよび前記第2コアが形成される基板の上で、前記第1コアと前記第2コアとは異なる高さに形成されていることを特徴とする光デバイス。 3. The optical device according to claim 2,
An optical device, characterized in that the first core and the second core are formed at different heights above a substrate on which the first core and the second core are formed.
前記第3コアは、屈折率は1.5~3.0の窒化シリコンまたは酸窒化シリコンから構成され、
前記第3コアの前記第1コアから前記第2コアへの第1方向の幅は、100~500nmとされ、
前記第3コアの前記第1方向に垂直な第2方向の幅は、2000~6000nmとされている
ことを特徴とする光デバイス。 The optical device according to any one of claims 1 to 3,
the third core is made of silicon nitride or silicon oxynitride having a refractive index of 1.5 to 3.0;
The width of the third core in the first direction from the first core to the second core is 100 to 500 nm;
a width of the third core in a second direction perpendicular to the first direction is 2000 to 6000 nm.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/041185 WO2024095457A1 (en) | 2022-11-04 | 2022-11-04 | Optical device |
JP2024554058A JPWO2024095457A1 (en) | 2022-11-04 | 2022-11-04 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/041185 WO2024095457A1 (en) | 2022-11-04 | 2022-11-04 | Optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024095457A1 true WO2024095457A1 (en) | 2024-05-10 |
Family
ID=90930084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/041185 WO2024095457A1 (en) | 2022-11-04 | 2022-11-04 | Optical device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2024095457A1 (en) |
WO (1) | WO2024095457A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014191301A (en) * | 2013-03-28 | 2014-10-06 | Fujitsu Ltd | Spot size converter, manufacturing method thereof and optical integrated circuit device |
US20150030282A1 (en) * | 2013-07-25 | 2015-01-29 | Electronics And Telecommunications Research Institute | Optical device and manufacturing method thereof |
WO2015011845A1 (en) * | 2013-07-23 | 2015-01-29 | 独立行政法人産業技術総合研究所 | Interlayer lightwave coupling device |
JP2016212415A (en) * | 2015-05-05 | 2016-12-15 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Optical coupling method |
US20180231714A1 (en) * | 2015-10-09 | 2018-08-16 | Caliopa N.V. | Optical coupling scheme |
US20210088727A1 (en) * | 2019-09-25 | 2021-03-25 | Hyundai Park | Active-passive photonic integrated circuit platform |
WO2022043525A1 (en) * | 2020-08-27 | 2022-03-03 | Rockley Photonics Limited | Waveguide structure |
-
2022
- 2022-11-04 JP JP2024554058A patent/JPWO2024095457A1/ja active Pending
- 2022-11-04 WO PCT/JP2022/041185 patent/WO2024095457A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014191301A (en) * | 2013-03-28 | 2014-10-06 | Fujitsu Ltd | Spot size converter, manufacturing method thereof and optical integrated circuit device |
WO2015011845A1 (en) * | 2013-07-23 | 2015-01-29 | 独立行政法人産業技術総合研究所 | Interlayer lightwave coupling device |
US20150030282A1 (en) * | 2013-07-25 | 2015-01-29 | Electronics And Telecommunications Research Institute | Optical device and manufacturing method thereof |
JP2016212415A (en) * | 2015-05-05 | 2016-12-15 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Optical coupling method |
US20180231714A1 (en) * | 2015-10-09 | 2018-08-16 | Caliopa N.V. | Optical coupling scheme |
US20210088727A1 (en) * | 2019-09-25 | 2021-03-25 | Hyundai Park | Active-passive photonic integrated circuit platform |
WO2022043525A1 (en) * | 2020-08-27 | 2022-03-03 | Rockley Photonics Limited | Waveguide structure |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024095457A1 (en) | 2024-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5290534B2 (en) | Optical integrated circuit and optical integrated circuit module | |
JP5897414B2 (en) | Optical device manufacturing method | |
US8380032B2 (en) | Semiconductor optical amplifier module | |
JP5323646B2 (en) | Hybrid integrated optical module | |
JP2929481B2 (en) | Optical function element | |
US10151877B2 (en) | Optical circuit module, optical transceiver using the same, and semiconductor photonic device | |
CN110741517B (en) | Wavelength-variable laser device and method for manufacturing wavelength-variable laser device | |
JP2011022464A (en) | Optical waveguide | |
JP2019504357A (en) | Photonic integrated circuit using chip integration | |
JP7024359B2 (en) | Fiber optic connection structure | |
US11002909B2 (en) | Optical integrated device and optical transmitter module | |
JPH02195309A (en) | Optical coupling element | |
CN117501159A (en) | Integrated optoelectronic device with optical interconnect structure for improved BEOL device integration | |
US20130207140A1 (en) | Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof | |
JP7247120B2 (en) | Optical integrated device and optical module | |
US20110134513A1 (en) | Optical device module | |
JP5718007B2 (en) | Manufacturing method of semiconductor optical waveguide device | |
CN114994832A (en) | Waveguide and Optical Quantum Integrated Chip Containing the Same | |
CN114994833A (en) | Waveguide and laser comprising same | |
JP4962279B2 (en) | Semiconductor device, semiconductor optical integrated device, and optical transmission device | |
WO2024095457A1 (en) | Optical device | |
CN1361873A (en) | Integrated optical device with coupling waveguide layer | |
JP2965011B2 (en) | Semiconductor optical device and method of manufacturing the same | |
JPH04283704A (en) | semiconductor optical waveguide | |
JP3445226B2 (en) | Directional coupler, optical modulator, and wavelength selector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22964474 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024554058 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |