[go: up one dir, main page]

WO2024084797A1 - Sink with sterilization function, sink sterilization method - Google Patents

Sink with sterilization function, sink sterilization method Download PDF

Info

Publication number
WO2024084797A1
WO2024084797A1 PCT/JP2023/030263 JP2023030263W WO2024084797A1 WO 2024084797 A1 WO2024084797 A1 WO 2024084797A1 JP 2023030263 W JP2023030263 W JP 2023030263W WO 2024084797 A1 WO2024084797 A1 WO 2024084797A1
Authority
WO
WIPO (PCT)
Prior art keywords
bowl
ultraviolet light
sink
sterilization
light source
Prior art date
Application number
PCT/JP2023/030263
Other languages
French (fr)
Japanese (ja)
Inventor
善彦 奥村
恭典 藤名
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2024084797A1 publication Critical patent/WO2024084797A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/12Plumbing installations for waste water; Basins or fountains connected thereto; Sinks
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/12Plumbing installations for waste water; Basins or fountains connected thereto; Sinks
    • E03C1/18Sinks, whether or not connected to the waste-pipe

Definitions

  • the present invention relates to a sink with a sterilization function and a method for sterilizing a sink.
  • Patent Document 1 describes a sink equipped with an LED that emits ultraviolet light for sterilization toward the drain.
  • the wavelength of ultraviolet light currently used for sterilization is still mainly 254 nm. This is because ultraviolet light with a wavelength of around 260 nm is known to have a high sterilizing and inactivating effect on bacteria and pathogens.
  • sinks installed in hospitals may be provided for washing towels used in the treatment and care of patients.
  • bacteria, viruses, etc. (hereinafter sometimes simply referred to as "bacteria, etc.") attached to the towels may not be completely discharged with the water and may remain on the inner surface of the bowl. This may result in the bacteria, etc. remaining on the inner surface of the bowl gradually infecting many people via the people who use the sink. For this reason, there is a strong demand to maintain a clean environment for sinks installed in environments where utmost attention must be paid to hygiene, such as hospitals.
  • Possible methods for sterilizing sinks include sterilization methods using chemicals such as alcohol or hypochlorous acid.
  • chemicals such as alcohol or hypochlorous acid.
  • spore-forming bacteria such as Bacillus cereus can be sterilized by irradiation with ultraviolet light, but are difficult to sterilize with alcohol.
  • sterilization methods using chemicals containing hypochlorous acid which are also effective against spore-forming bacteria, are difficult to actively adopt, for example, when sinks or drain pipes are made of metal, as there is a risk of these materials corroding. For this reason, sterilization using ultraviolet light has attracted attention.
  • ultraviolet light with a wavelength of 254 nm When ultraviolet light with a wavelength of 254 nm is irradiated onto the human body, it reaches the nuclei of human cells and kills the cells that make up the skin, making it harmful to the human body. For this reason, sterilization devices that irradiate ultraviolet light with 254 nm are installed solely for the purpose of sterilizing the inner surface of the bowl and the area around the drain, and when constructing such a device, it is necessary to devise a way to irradiate the sink while preventing the human body from being irradiated.
  • ultraviolet light is easily absorbed by the surface layer of the skin and the corneal epithelium, and that the shorter the wavelength, the greater the safety.
  • ultraviolet light with a wavelength of less than 240 nm poses little risk of affecting the human body.
  • a regulated value is set for the cumulative dose of irradiation on the human body for safety reasons.
  • the cumulative dose of ultraviolet light irradiated on the human body be within the regulated value (tolerable limit value) set by ACGIH (American Conference of Governmental Industrial Hygienists).
  • the tolerable limit value of the cumulative dose of ultraviolet light having a wavelength of 222 nm per day (8 hours) is set to 22 mJ/ cm2 .
  • the numerical values of the permissible limit values in this specification are current numerical values and may be changed in the future.
  • the present invention aims to provide a sink with a sterilization function that maintains the clean state of the sink while suppressing exposure of the human body to ultraviolet light, and a method for sterilizing the sink.
  • the sterilizing sink of the present invention is A bowl and A faucet that discharges water toward the bowl; A drain hole provided on the inner bottom surface of the bowl; An ultraviolet light source that emits ultraviolet light having a main emission wavelength belonging to a wavelength band of 200 nm or more and less than 240 nm toward the inner surface of the bowl; A first detection unit that detects whether the bowl is in use; a lighting control unit that controls the ultraviolet light source based on a detection signal output from the first detection unit, The lighting control unit is characterized in that when the first detection unit detects that the bowl is not in use, it executes a sterilization treatment mode in which the ultraviolet light is irradiated toward the inner surface of the bowl.
  • the lighting control unit may be configured to execute an in-use mode in which, when the first detection unit detects that the bowl is in use, the ultraviolet light source is turned off or the ultraviolet light is irradiated with an integrated irradiation amount per unit time that is lower than in the sterilization processing mode.
  • main emission wavelength refers to a wavelength ⁇ i in a wavelength range Z( ⁇ i) that shows an integrated intensity of 40% or more of the total integrated intensity in the emission spectrum when a wavelength range Z( ⁇ ) of ⁇ 10 nm from a certain wavelength ⁇ is defined on the emission spectrum.
  • the bowl is in use refers to a state in which a person holds out their hand towards the bowl and is waiting for water to be dispensed from the faucet, a state in which a person is touching the faucet to make water dispense, a state in which water is being dispensed from the faucet, or a state in which water is being drained from the drain.
  • the first detection unit is composed of, for example, a sensor that detects that a hand has been held out towards the bowl, a sensor that detects that a person is touching the faucet, a sensor that detects the presence of water flow on the inner surface of the bowl, or a combination of these.
  • the "cumulative dose per unit time” is defined as the time until a predetermined cumulative dose is reached during the execution period of each processing mode. Specifically, for example, if the predetermined cumulative dose is 5 mJ/ cm2 , the unit time is the time from the start of the mode until the cumulative dose on the inner surface of the bowl reaches 5 mJ/ cm2 .
  • the sterilization mode is a mode in which bacteria and the like present on the inner surface of the bowl are sterilized intensively, and the cumulative irradiation amount on the inner surface of the bowl is relatively high.
  • the sterilization mode may be a mode in which ultraviolet light is irradiated toward the inner surface of the bowl when the bowl is not in use, and switching to the sterilization mode is not limited to adjusting the cumulative irradiation amount.
  • a shutter may open and ultraviolet light may be emitted toward the inner surface of the bowl.
  • the above configuration allows irradiation of ultraviolet light with a high cumulative dose per unit time for sterilization to occur only while it is detected that the bowl is not in use. This significantly reduces the risk that the person using the bowl will be irradiated with an amount of ultraviolet light that exceeds the allowable limit while the bowl is in use.
  • a timer is provided to measure the time during which the sterilization processing mode is executed, After the sterilization treatment mode has been continuously executed for a predetermined time, the lighting control unit may be configured to execute a preventive treatment mode in which the ultraviolet light irradiated to the inner surface of the bowl has an integrated irradiation amount per unit time of the ultraviolet light that is lower than that in the sterilization treatment mode.
  • the bowl After a sufficient period of exposure to UV light, the bowl will remain clean until the sink is used again or until a long period of time has passed that causes bacteria to rise from the drain. Also, exposure to UV light for long periods of time can cause deterioration of the materials that make up the sink, although the deterioration is very slight compared to chemicals that contain hypochlorous acid, etc.
  • the sterilization mode is constantly running while it is detected that the bowl is not in use, and there is a worker performing some kind of work around the bowl, even though he or she is not using the bowl, there is a risk that the worker will continue to be exposed to ultraviolet light leaking from the bowl or ultraviolet light reflected by the surface of the bowl.
  • this configuration also reduces the power supplied to the ultraviolet light source, which contributes to reducing power consumption and extending the life of the ultraviolet light source.
  • the sink above is A second detection unit that detects whether or not a human body is present around the bowl
  • the lighting control unit may be configured to execute a human approach mode in which, when the second detection unit detects the presence of a human body while the sterilization processing mode is being executed, the ultraviolet light is irradiated to the inner surface of the bowl at a cumulative irradiation amount per unit time that is lower than that in the sterilization processing mode.
  • the irradiated ultraviolet light will have a lower illuminance than in the sterilization mode. This makes it possible to realize a sink with improved safety.
  • the first detection unit may be a human presence sensor that detects a human body present between the faucet and the bowl.
  • the first detection unit may be a flow sensor that detects the discharge of water from the faucet or the inflow of water into the drain.
  • the sink above is
  • the first detection unit and the second detection unit may be optical human presence sensors, and may use different wavelength bands of light for detection.
  • the light emitted by one motion sensor may be received by the other motion sensor, resulting in a false detection that a person is present within the detection area even when no person is actually present.
  • the ultraviolet light source may be positioned at a distance of 1.5 m or less from the inner bottom surface of the bowl.
  • the illuminance of the ultraviolet light in the irradiation area decreases as the distance between the ultraviolet light source and the irradiation area increases. In other words, if the ultraviolet light source is too far away from the irradiation area, the illuminance on the surface of the irradiated object may not be sufficient for sterilization. In particular, it is preferable to irradiate the inside bottom surface of the sink, the drain outlet from which bacteria may come out of the drain pipe, and the inside of the drain pipe connected to the drain outlet with ultraviolet light of an illuminance sufficient for sterilization.
  • ultraviolet light with a relatively high illuminance is irradiated onto the inner bottom surface of the bowl, the drain outlet, and the inner wall surface of the drain pipe connected to the drain outlet, so bacteria and the like present on the inner bottom surface of the bowl and in the drain pipe can be sterilized more reliably.
  • An irradiation area changing mechanism may be provided that changes the position of the ultraviolet light source and changes the irradiation area of the ultraviolet light on the inner surface of the bowl.
  • the sink is An optical element may be provided that changes the direction of travel or blocks at least a portion of the ultraviolet light generated from the ultraviolet light source and changes the irradiation area of the ultraviolet light on the inner surface of the bowl.
  • ultraviolet light in order to irradiate ultraviolet light over a wide area, it is possible to provide a member that diffuses and transmits ultraviolet light.
  • diffusing the ultraviolet light emitted from the ultraviolet light source may result in a decrease in illuminance per unit area in the ultraviolet light irradiation area, or ultraviolet light may be unnecessarily irradiated onto the space surrounding the bowl.
  • the above configuration makes it possible to realize a sink that can sterilize the entire inner surface of the bowl evenly, regardless of the shape or size of the bowl.
  • the ultraviolet light source may be configured to change the irradiation area of the ultraviolet light on the inner surface of the bowl, while the drain outlet is included in the irradiation area of the ultraviolet light.
  • the ultraviolet light source may be fixed in a state in which it irradiates the ultraviolet light onto an area including the drain outlet.
  • a waterproof cover may be provided to cover the entire ultraviolet light source.
  • the above configuration prevents the ultraviolet light source from getting wet from splashed water. This prevents water from adhering to the ultraviolet light source while it is turned on, causing it to go out or become damaged.
  • “covering the entire ultraviolet light source” here means that the configuration is such that water droplets that splash when people wash their hands, for example, do not penetrate into the interior, and includes not only cases where the ultraviolet light source is completely sealed, but also cases where there are gaps that allow outside air to enter and exit.
  • the method for sterilizing a sink of the present invention comprises the steps of: A method for irradiating an inner surface of a bowl of a sink with ultraviolet light having a main emission wavelength in a wavelength band of 200 nm or more and less than 240 nm, comprising: a sterilization treatment step of irradiating the inner surface of the bowl with the ultraviolet light; a first determination step for determining whether the bowl is in use;
  • the method is characterized in that it includes an in-use step in which, when it is determined in the first judgment step that the bowl is in use, the irradiation of the ultraviolet light is stopped, or the ultraviolet light is irradiated with an integrated irradiation amount per unit time that is lower than that of the sterilization treatment step.
  • the sterilization method includes the steps of:
  • the method may include an in-use step of stopping the irradiation of the ultraviolet light when it is determined in the first judgment step that the bowl is in use, or irradiating the ultraviolet light with an integrated irradiation amount per unit time that is lower than that of the sterilization treatment step.
  • the sterilization method includes the steps of:
  • the first determination step may include a preventive treatment step in which, if it is determined that the bowl has not been in use for a predetermined period of time, an ultraviolet light irradiation amount per unit time is lower than that of the sterilization treatment step.
  • the sterilization method includes the steps of: a second determination step of determining whether or not a person is approaching the bowl during the execution of the sterilization treatment step;
  • the second judgment process may include a human approach treatment process in which, when it is determined that a person is approaching the bowl, an ultraviolet light treatment process is performed in which an integrated irradiation amount per unit time is lower than that of the sterilization treatment process.
  • the subject product of the present invention does not cause erythema or keratitis on the skin or eyes of humans or animals, and can provide the germicidal and virus inactivation capabilities inherent to ultraviolet light.
  • it can be used in manned environments, and by installing it in manned environments indoors and outdoors, it can irradiate the entire environment, suppressing and sterilizing viruses in the air and on the surfaces of materials installed in the environment.
  • the above configuration realizes a sink with a sterilization function that maintains the clean state of the sink while suppressing exposure of the human body to ultraviolet light, and a sterilization method for the sink.
  • FIG. 1 is a diagram illustrating a schematic configuration of an embodiment of a sink.
  • FIG. 2 is a side cross-sectional view of the sink of FIG. 1 .
  • FIG. 2 is a side cross-sectional view of the drain pipe and its surroundings in FIG. 1 .
  • FIG. 2 is a perspective view illustrating an example of the appearance of a light source device.
  • FIG. 2 is a perspective view showing an example of the appearance of a light source device, in which an ultraviolet light source disposed inside a cover member is shown by a dashed line.
  • 11 is a flowchart of a control executed by an embodiment of a sink.
  • 13 is a diagram illustrating a configuration of another embodiment of a sink.
  • FIG. 8 is an enlarged view of the light source device of FIG. 7 .
  • FIG. 11 is a schematic side cross-sectional view of the drain pipe and its surroundings in another embodiment of the sink.
  • FIG. 1 is a diagram showing a schematic configuration of one embodiment of a sink 1.
  • Fig. 2 is a side cross-sectional view of the sink 1 in Fig. 1
  • Fig. 3 is a side cross-sectional view of the drain pipe 11d and its surroundings in Fig. 1.
  • this embodiment of the sink 1 includes a plurality of light source devices 10, a bowl 11, a faucet 12, a lighting control unit 13, and a water discharge control unit 14.
  • the bowl 11 in this embodiment is made of stainless steel and has a recessed portion having a roughly rectangular parallelepiped shape that receives water discharged from the faucet 12. As shown in FIG. 1, the bowl 11 has a drain port 11c on the inner bottom surface 11b that is connected to a drain pipe 11d. The material and shape of the bowl 11 are optional.
  • a human presence sensor S1 corresponding to the first detection unit and a human presence sensor S2 corresponding to the second detection unit are arranged on one surface of the inner surface 11a of the bowl 11.
  • the human presence sensor S1 is an optical sensor that detects whether or not a person is holding out their hand towards the bowl 11, that is, whether or not the bowl 11 is in use.
  • the human presence sensor S2 is an optical sensor that detects whether or not a person is present around the bowl 11.
  • the components constituting the first and second detection units do not have to be human sensors, and may be, for example, a face recognition system that detects a person's face in a space photographed by a camera. If the system can distinguish and detect whether a person is using the bowl 11 or whether the bowl 11 is not being used but a person is present near the bowl 11, the system may function as both the first and second detection units on its own.
  • the human presence sensors (S1, S2) used in this embodiment use different wavelength bands of light for detection to prevent erroneous detection. Note that if the human presence sensors (S1, S2) are placed far enough apart that erroneous detection does not occur, the wavelength bands used for detection may overlap or match.
  • the placement positions of the human presence sensors (S1, S2) shown in Figures 1 and 2 are merely examples, and are adjusted as appropriate depending on the configuration of the sink 1 and the specifications of the sensors.
  • the human presence sensor S1 When the human presence sensor S1 detects that a person is holding out their hand towards the bowl 11, i.e., that the bowl 11 is in use, it outputs a detection signal d1 to the lighting control unit 13 and the water discharge control unit 14. Then, when the human presence sensor S1 detects that the person withdraws their hand from the bowl 11, i.e., that the bowl 11 is not in use, it stops outputting the detection signal d1.
  • the human presence sensor S2 When the human presence sensor S2 detects the presence of a person around the bowl 11, it outputs a detection signal d2 to the lighting control unit 13. Then, when there is no person around the bowl 11, the human presence sensor S2 stops outputting the detection signal d2.
  • the lighting control unit 13 controls the power supplied to the light source device 10 based on the detection signal d1 and the detection signal d2 input from each of the human sensors (S1, S2).
  • the lighting control unit 13 also includes a timer 13a that measures the time that the various modes described below are continuously executed. Note that if the lighting control unit 13 is configured not to switch modes depending on the passage of time, the timer 13a does not have to be included.
  • the water discharge control unit 14 controls the water faucet 12 to discharge water.
  • the water discharge control unit 14 is connected to the human presence sensor S1 in the same way as the lighting control unit 13, but the water discharge control unit 14 may be connected to a sensor other than the human presence sensor S1 to which the lighting control unit 13 is connected.
  • FIG. 4 is a perspective view showing an example of the appearance of the light source device 10.
  • FIG. 5 is a perspective view showing an example of the appearance of the light source device 10, in which the ultraviolet light source 30 arranged inside the cover member 20 is illustrated by a dashed line.
  • the light source device 10 includes a cover member 20 consisting of a lid portion 20a and a main body portion 20b, and an ultraviolet light source 30 housed within the cover member 20, which emits ultraviolet light L1 whose main emission wavelength belongs to a wavelength band of 200 nm or more and less than 240 nm.
  • a power supply line is connected to the cover member 20 to supply power from the lighting control unit 13, but for convenience of illustration, the power supply line is omitted in Figures 4 and 5.
  • the power supply line is wired inside the cover member 20 to prevent it from getting wet, and is wired so that it is hidden by the bowl 11 and cannot be seen when it is installed on the sink 1.
  • the light source device 10 of this embodiment is installed at a position where the distance A1 between the center of the drain outlet 11c on the surface along the inner bottom surface 11b and the light source device 10 is 50 cm, as shown in FIG. 2.
  • This distance A1 is preferably 1 m or less, and more preferably 80 cm or less, so that the ultraviolet light L1 emitted from the light source device 10 has an illuminance sufficient to sterilize the inner bottom surface 11b of the bowl 11, including spore-forming bacteria.
  • the lid portion 20a constituting the cover member 20 is provided with a light exit window 20c for extracting the ultraviolet light L1 emitted from the ultraviolet light source 30 to the outside.
  • the material of the light exit window 20c is quartz glass, but any material other than quartz glass may be used as long as it is a material through which the ultraviolet light L1 can pass.
  • ceramic materials such as borosilicate glass, sapphire, magnesium fluoride, calcium fluoride, lithium fluoride, and barium fluoride, and resin materials such as silicone resin and fluororesin may be used.
  • the cover member 20 in this embodiment is a member that fixes and supports the ultraviolet light source 30 at a predetermined position on the sink 1, and is also a waterproof cover that covers the entire ultraviolet light source 30.
  • the cover member 20 may be configured such that, for example, the light exit window 20c is simply an opening and does not function as a waterproof cover.
  • the light exit window 20c is configured with an optical filter that transmits ultraviolet light with a wavelength in the range of 200 nm or more and less than 240 nm, and suppresses the intensity of at least ultraviolet light with a wavelength of 240 nm or more and less than 280 nm.
  • the optical filter provided in this embodiment is a dielectric multilayer film formed on the main surface of the light exit window 20c. If the ultraviolet light source 30 is a light source that emits almost no ultraviolet light with a wavelength of 240 nm or more and less than 280 nm, and measures for light in this wavelength range are not necessary, an optical filter does not have to be provided.
  • the ultraviolet light source 30 in this embodiment is an excimer lamp equipped with multiple arc tubes 31 and a pair of electrodes (32a, 32b), as shown by the dashed lines in FIG. 5.
  • the arc tube 31 is a straight tube in which krypton (Kr) and chlorine (Cl) gases are sealed as luminous gases.
  • the ultraviolet light source 30 in this embodiment emits ultraviolet light with a main emission wavelength of 222 nm when a predetermined voltage is applied between the electrodes (32a, 32b).
  • the ultraviolet light source 30 may be an excimer lamp that has krypton (Kr) and bromine (Br) gas sealed inside the tube as the light emitting gas and emits ultraviolet light with a main emission wavelength of 207 nm when a predetermined voltage is applied between the electrodes (32a, 32b), or may be a solid-state light source such as an LED.
  • the number of light emitting tubes 31 and the number of solid-state light sources such as LEDs can be set to any number depending on the purpose and mode of use.
  • FIG. 6 is a flow chart of the control executed by the present embodiment of the sink 1.
  • the control executed by the lighting control unit 13 will be described with reference to Fig. 6.
  • the control method described below is merely an example, and the conditions and order for executing each mode (each process) are not limited to the conditions and order described below, and are appropriately changed according to the usage mode.
  • the following explanation is based on the premise that no person is present around the bowl 11 when the power is turned on and control starts.
  • step ST1 When the power is turned on and control starts, a sterilization mode is executed in which ultraviolet light is irradiated toward the inner surface (11a, 11b) of the bowl (step ST1).
  • This step ST1 corresponds to the sterilization process in the sterilization method.
  • step ST1 the timer 13a measures the time during which the sterilization mode is continuously executed, and determines whether 30 minutes have passed since the sterilization mode was started (step ST2). Note that this time is adjusted appropriately depending on the shape and size of the bowl 11 and the location and environment in which the sink 1 is installed.
  • step ST3 When it is detected (determined) in step ST2 that the sterilization processing mode has been executed for a predetermined time, a decision is made as to whether or not to continue the processing operation (step ST3). If the processing operation is to be continued, the next operation is started directly, and if the control operation is not to be continued, the control ends when the sterilization processing is completed.
  • step ST4 corresponds to the preventive processing step in the sterilization processing method.
  • ultraviolet light is irradiated with a lower cumulative irradiation amount per unit time than in the sterilization processing mode (sterilization processing step).
  • the lighting control unit 13 controls the power supplied to the light source device 10 so that the cumulative irradiation amount of the ultraviolet light L1 on the inner bottom surface 11b of the bowl 11 is 30 mJ/ cm2 or more.
  • the cumulative irradiation amount of the ultraviolet light L1 on the inner bottom surface 11b of the bowl 11 is preferably 5 mJ/cm2 or more , and more preferably 15 mJ/ cm2 or more, from the viewpoint of performing a sufficient sterilization process.
  • the lighting control unit 13 controls the power supplied to the light source device 10 so that the cumulative irradiation amount per unit time of the ultraviolet light L1 on the inner bottom surface 11b of the bowl 11 is 70% or less of the cumulative irradiation amount per unit time in the sterilization treatment mode.
  • the preventive treatment mode is a mode in which the cumulative irradiation amount per unit time is controlled to be lower than that in the sterilization treatment mode (sterilization treatment process).
  • the cumulative amount of irradiation per unit time can be adjusted not only by lowering the illuminance value, but also, for example, by changing the ON/OFF duty ratio of intermittent operation.
  • intermittent operation here is used to include not only repeated turning on and off, but also repeated switching between high-intensity lighting and low-intensity lighting. It is also possible that one mode is a continuous lighting operation and the other mode is an intermittent operation.
  • step ST5 corresponds to the second determination step in the sterilization treatment method.
  • step ST6 corresponds to the human approach processing step in the sterilization processing method.
  • the lighting control unit 13 controls the power supplied to the light source device 10 so that the cumulative irradiation amount per unit time of the ultraviolet light L1 on the inner bottom surface 11b of the bowl 11 is 50% or less of the cumulative irradiation amount per unit time in the sterilization processing mode.
  • the human approach mode is a mode in which the cumulative irradiation amount per unit time is controlled to be lower than the sterilization processing mode (sterilization processing step).
  • the human approach mode (human approach processing step) may be controlled to be lower than the illuminance value in the preventive processing mode (preventive processing step).
  • the lighting control unit 13 is configured to transition to the human approach mode (step ST6) even if the human presence sensor S2 detects the presence of a person around the bowl 11 while the sterilization processing mode is being executed.
  • a method can be considered in which visible light is emitted, music is played, or a buzzer is sounded to keep people away while the sterilization processing mode is being executed.
  • step ST6 If the human presence sensor S1 does not detect that a person is holding out a finger in step ST6, the lighting control unit 13 performs the judgment in step ST5 again (step ST7).
  • This step ST7 corresponds to the first judgment step in the sterilization processing method.
  • step ST8 corresponds to the in-use process in the sterilization processing method.
  • the in-use mode may be a mode in which the ultraviolet light source 30 is turned off.
  • step ST8 While step ST8 is being executed, while the human presence sensor S1 detects that a person is holding out their fingers, the lighting control unit 13 continues step ST8 (step ST9). If the human presence sensor S1 no longer detects that a person is holding out their fingers while step ST8 is being executed, the lighting control unit 13 causes the water discharge control unit 14 to stop discharging water, and returns to step ST1. The lighting control unit 13 then repeatedly executes the operations from ST1 to ST9 described above until control is terminated.
  • irradiation with ultraviolet light which has a high cumulative irradiation amount per unit time for sterilization processing, is performed only while it is detected that the bowl 11 is not being used by a person. Therefore, while the bowl 11 is in use, the risk of a person using the bowl 11 being irradiated with an amount of ultraviolet light L1 that exceeds the allowable limit is significantly reduced.
  • a human presence sensor S2 is provided as the second detection unit, but in cases where, for example, the intensity of the ultraviolet light L1 emitted from the light source device 10 in the sterilization processing mode and preventive processing mode is relatively low and there is no concern about the impact on people around the bowl 11, the second detection unit does not have to be provided.
  • Fig. 7 is a schematic diagram showing another embodiment of the sink 1, and Fig. 8 is an enlarged view of the light source device 10 of Fig. 7.
  • the light source device 10 of this embodiment has an irradiation area changing mechanism 21 for changing the direction in which the ultraviolet light L1 is emitted and changing the irradiation area on the inner surface (11a, 11b) of the bowl 11.
  • the irradiation area changing mechanism 21 has a first rotation part 21a that rotates the light source device 10 around the axis Rx of the support rod 22 that supports the light source device 10, and a second rotation part 21b that rotates the light source device 10 around an axis Ry that is perpendicular to the axis Rx on a plane parallel to the horizontal plane.
  • one light source device 10 can irradiate the entire inner surface (11a, 11b) of the bowl 11 with ultraviolet light L1.
  • the irradiation area changing mechanism 21 may be configured so that the sink 1 is equipped with a drive control unit and is automatically controlled, or it may be configured so that the direction is changed manually by a person.
  • the light source device 10 may be equipped with optical components such as a lens that controls the direction of travel of the ultraviolet light L1 emitted from the light exit window 20c, or a shutter that adjusts the aperture to block some of the ultraviolet light.
  • Figure 9 is a schematic side cross-sectional view of the drain pipe 11d and its surroundings in another embodiment of the sink 1.
  • the sink 1 may be provided with a flow sensor S3 on the inside of the drain pipe 11d for detecting the flow of water discharged from the drain outlet 11c.
  • the human sensor S1 will not be able to detect that the person has put out their hand, and there is a possibility that the person pouring the water will be irradiated with ultraviolet light of relatively high illuminance.
  • the above configuration makes it possible to more reliably prevent people from being accidentally exposed to relatively high-intensity ultraviolet light.
  • the method for detecting whether the bowl 11 is in use is selected according to the structure of the sink 1 or the environment or location in which the sink 1 is installed. For example, if the sink 1 does not have a water discharge control unit 14 and the faucet 12 is configured so that water is discharged by a person turning a valve, a flow sensor may be provided in the faucet 12 or a pressure sensor may be provided on the valve.
  • the light source device 10 may be configured to be stored in the sink 1 when not in use.
  • the light source device 10 may be configured to automatically retract into the wall of the sink 1 after irradiation of the ultraviolet light L1 is completed.
  • the light source device 10 may be configured such that, when the human presence sensor S1 corresponding to the first detection unit detects that the bowl 11 is not in use, the shutter opens and starts emitting ultraviolet light toward the inner surface of the bowl. With this configuration, when the first detection unit detects that the bowl 11 is not in use, a sterilization processing mode is executed in which ultraviolet light is irradiated toward the inner surface of the bowl 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Sink And Installation For Waste Water (AREA)
  • Physical Water Treatments (AREA)

Abstract

Provided is a sink with a sterilization function that maintains the clean state of the sink and minimizes irradiation of ultraviolet light to the human body, and a method for sterilizing the sink. The sink is provided with a bowl, a faucet that discharges water into the bowl, a drain hole provided on the inner bottom surface of the bowl, an ultraviolet light source that emits ultraviolet light of which the main emission wavelength belongs to a wavelength band of 200 nm or more and less than 240 nm toward the inner surface of the bowl, a first detection unit that detects whether the bowl is in use, and a lighting control unit that controls the ultraviolet light source on the basis of the detection signal outputted from the first detection unit. When the first detection unit detects that the bowl is in use, the lighting control unit executes a sterilization mode in which ultraviolet light is irradiated toward the inner surface of the bowl.

Description

殺菌機能付きシンク、シンクの殺菌処理方法Sink with sterilization function and sterilization method for sink

 本発明は、殺菌機能付きシンク、及びシンクの殺菌処理方法に関する。 The present invention relates to a sink with a sterilization function and a method for sterilizing a sink.

 従来、キッチン、洗面台、トイレ等のシンクを清浄な状態に保つために、ボウルの内面や排水口周辺に紫外光が照射されるシンクが知られている。例えば、下記特許文献1には、殺菌用の紫外光を排水口に向かって出射するLEDが搭載されたシンクが記載されている。  Conventionally, sinks that irradiate the inner surface of the bowl and the area around the drain with ultraviolet light to keep the sink in the kitchen, washstand, toilet, etc. clean are known. For example, the following Patent Document 1 describes a sink equipped with an LED that emits ultraviolet light for sterilization toward the drain.

 また、殺菌に用いられる紫外光の波長は、現在もなお、主に254nmが利用されている。これは、波長が260nm付近の紫外光は、細菌や病原菌に対して高い殺菌効果や不活化効果を示すことが知られていることによる。 In addition, the wavelength of ultraviolet light currently used for sterilization is still mainly 254 nm. This is because ultraviolet light with a wavelength of around 260 nm is known to have a high sterilizing and inactivating effect on bacteria and pathogens.

特開2001-112855号公報JP 2001-112855 A

 例えば、病院内に設置されているシンクには、患者の治療や看護に用いられたタオルを洗濯するためのシンクが設けられている場合がある。このようなシンクでは、タオルに付着していた菌やウイルス等(以下、単に「菌等」と略記する場合がある。)が水とともに完全には排出されず、ボウルの内面に残存してしまうことがある。そうすると、ボウルの内面に残存していた菌等が、シンクを使用する人を介して、徐々に多くの人へと感染してしまうおそれがある。このため、病院等の特に衛生面に細心の注意を払わなければならない環境下に設置されたシンクについては、清浄な環境を維持することが強く求められる。 For example, sinks installed in hospitals may be provided for washing towels used in the treatment and care of patients. In such sinks, bacteria, viruses, etc. (hereinafter sometimes simply referred to as "bacteria, etc.") attached to the towels may not be completely discharged with the water and may remain on the inner surface of the bowl. This may result in the bacteria, etc. remaining on the inner surface of the bowl gradually infecting many people via the people who use the sink. For this reason, there is a strong demand to maintain a clean environment for sinks installed in environments where utmost attention must be paid to hygiene, such as hospitals.

 シンクを殺菌処理する方法としては、アルコールや次亜塩素酸等の薬剤を用いた殺菌処理方法が考えられる。ところが、セレウス菌等の芽胞を形成する菌は、紫外光の照射では殺菌できるが、アルコールでは殺菌することが困難であることが知られている。また、芽胞形成菌に対しても有効な次亜塩素酸を含む薬剤による殺菌処理方法は、例えば、シンクや排水管が金属製であった場合に、これらが腐食してしまうおそれがあり、積極的には採用し難い。このため、紫外光による殺菌処理が注目されている。  Possible methods for sterilizing sinks include sterilization methods using chemicals such as alcohol or hypochlorous acid. However, it is known that spore-forming bacteria such as Bacillus cereus can be sterilized by irradiation with ultraviolet light, but are difficult to sterilize with alcohol. Furthermore, sterilization methods using chemicals containing hypochlorous acid, which are also effective against spore-forming bacteria, are difficult to actively adopt, for example, when sinks or drain pipes are made of metal, as there is a risk of these materials corroding. For this reason, sterilization using ultraviolet light has attracted attention.

 ここで、波長が254nmの紫外光は、人体に照射されると、人間の細胞の核に到達し、皮膚などを構成する細胞が死滅してしまうため、人体には有害である。そのため、254nmの紫外光を照射する殺菌装置は、専らボウルの内面や排水口周辺を殺菌することのみを目的として設置されるものであり、また、このような装置を構成する場合は、シンクに対して照射しつつも、人体には照射されないようにする工夫が必要であった。 When ultraviolet light with a wavelength of 254 nm is irradiated onto the human body, it reaches the nuclei of human cells and kills the cells that make up the skin, making it harmful to the human body. For this reason, sterilization devices that irradiate ultraviolet light with 254 nm are installed solely for the purpose of sterilizing the inner surface of the bowl and the area around the drain, and when constructing such a device, it is necessary to devise a way to irradiate the sink while preventing the human body from being irradiated.

 なお、近年、紫外光の人体への影響に関する研究や検証が進んでおり、紫外光は、皮膚表層や角膜上皮で吸収されやすく、波長が短くなるほど安全性が高まることが確認されている。特に、波長が240nm未満の紫外光は、人体に影響を及ぼすリスクが少ないことが確認されている。 In recent years, research and verification into the effects of ultraviolet light on the human body has progressed, and it has been confirmed that ultraviolet light is easily absorbed by the surface layer of the skin and the corneal epithelium, and that the shorter the wavelength, the greater the safety. In particular, it has been confirmed that ultraviolet light with a wavelength of less than 240 nm poses little risk of affecting the human body.

 また、人体への影響が小さい波長帯域の紫外光を利用した殺菌処理は、最近のコロナウイルス感染症の流行の影響により特に注目を集めており、病院内に限らず、一般住宅や人が頻繁に往来する施設に設けられたシンク等においても導入されることが期待されている。 In addition, sterilization using ultraviolet light in a wavelength range that has little effect on the human body has attracted particular attention in the wake of the recent coronavirus infection epidemic, and it is expected that this method will be introduced not only in hospitals, but also in sinks and other facilities installed in private homes and facilities with frequent human traffic.

 しかしながら、波長が200nm以上240nm未満の紫外光は、波長が260nm付近の紫外光に比べると人体に対する影響が極めて小さいとはいえ、安全性を考慮して人体に対する積算照射量についての規制値が設けられている。本願出願時において、人体に照射される紫外光の積算照射量は、ACGIH(American Conference of Governmental Industrial Hygienists:アメリカ合衆国産業衛生専門官会議)で定められている規制値(許容限界値)以内にすることが推奨されている。例えば、波長が222nmの紫外光は、一日(8時間)あたりの積算照射量の許容限界値が22mJ/cm2と定められている。
なお、本明細書における許容限界値の数値は、現行の数値であって、今後変更される可能性がある数値である。また、上記に限らず、安全性を確保する観点から、人体に照射される紫外光の積算照射量は、所定の上限値を定めておくことが望ましい。
However, although ultraviolet light having a wavelength of 200 nm or more and less than 240 nm has a much smaller effect on the human body than ultraviolet light having a wavelength of around 260 nm, a regulated value is set for the cumulative dose of irradiation on the human body for safety reasons. At the time of filing the present application, it is recommended that the cumulative dose of ultraviolet light irradiated on the human body be within the regulated value (tolerable limit value) set by ACGIH (American Conference of Governmental Industrial Hygienists). For example, the tolerable limit value of the cumulative dose of ultraviolet light having a wavelength of 222 nm per day (8 hours) is set to 22 mJ/ cm2 .
The numerical values of the permissible limit values in this specification are current numerical values and may be changed in the future. In addition, not limited to the above, from the viewpoint of ensuring safety, it is desirable to set a predetermined upper limit value for the cumulative irradiation amount of ultraviolet light irradiated to the human body.

 したがって、紫外光を照射することで殺菌処理が行われるシンクは、人体への影響が小さい波長帯域の紫外光を利用する場合であっても、ボウルの内面や排水口周辺に対して紫外光を照射しつつも、人体にはできる限り紫外光を照射しないような工夫が施されていることが望ましい。 Therefore, in sinks where sterilization is performed by irradiating ultraviolet light, even if the ultraviolet light used is in a wavelength range that has little effect on the human body, it is desirable to irradiate the inner surface of the bowl and the area around the drain with ultraviolet light while taking measures to avoid irradiating the human body with ultraviolet light as much as possible.

 本発明は、上記課題に鑑み、シンクの清浄状態の維持を実現するとともに、人体への紫外光照射が抑制された殺菌機能付きシンク、及びシンクの殺菌処理方法を提供することを目的とする。 In view of the above problems, the present invention aims to provide a sink with a sterilization function that maintains the clean state of the sink while suppressing exposure of the human body to ultraviolet light, and a method for sterilizing the sink.

 本発明の殺菌機能付きシンクは、
 ボウルと、
 前記ボウルに向けて水を吐出する水栓と、
 前記ボウルの内底面に設けられた排水口と、
 前記ボウルの内面に向かって、主たる発光波長が200nm以上240nm未満の波長帯域に属する紫外光を出射する紫外光源と、
 前記ボウルが使用状態にあるか否かを検知する第一検知部と、
 前記第一検知部から出力される検知信号に基づいて、前記紫外光源を制御する点灯制御部とを備え、
 前記点灯制御部は、前記ボウルが不使用状態にあることを前記第一検知部が検知すると、前記ボウルの内面に向かって、前記紫外光を照射する殺菌処理モードを実行することを特徴とする。
The sterilizing sink of the present invention is
A bowl and
A faucet that discharges water toward the bowl;
A drain hole provided on the inner bottom surface of the bowl;
An ultraviolet light source that emits ultraviolet light having a main emission wavelength belonging to a wavelength band of 200 nm or more and less than 240 nm toward the inner surface of the bowl;
A first detection unit that detects whether the bowl is in use;
a lighting control unit that controls the ultraviolet light source based on a detection signal output from the first detection unit,
The lighting control unit is characterized in that when the first detection unit detects that the bowl is not in use, it executes a sterilization treatment mode in which the ultraviolet light is irradiated toward the inner surface of the bowl.

 上記シンクにおいて、
 前記点灯制御部は、前記ボウルが使用状態にあることを前記第一検知部が検知すると、前記紫外光源を消灯する、又は前記殺菌処理モードよりも単位時間あたりの積算照射量が低い前記紫外光の照射を行う、使用時モードを実行するように構成されていても構わない。
In the sink,
The lighting control unit may be configured to execute an in-use mode in which, when the first detection unit detects that the bowl is in use, the ultraviolet light source is turned off or the ultraviolet light is irradiated with an integrated irradiation amount per unit time that is lower than in the sterilization processing mode.

 本明細書における「主たる発光波長」とは、ある波長λに対して±10nmの波長域Z(λ)を発光スペクトル上で規定した場合において、発光スペクトル内における全積分強度に対して40%以上の積分強度を示す波長域Z(λi)における、波長λiを指す。 In this specification, the term "main emission wavelength" refers to a wavelength λi in a wavelength range Z(λi) that shows an integrated intensity of 40% or more of the total integrated intensity in the emission spectrum when a wavelength range Z(λ) of ±10 nm from a certain wavelength λ is defined on the emission spectrum.

 本明細書における「ボウルが使用状態にある」とは、人がボウルに向かって手を差し出して水栓からの水の吐出を待っている状態、人が水栓に触れて水を吐出させようとしている状態、水栓から水が吐出している状態、又は排水口からの排水が生じている状態をいう。そして、第一検知部は、例えば、ボウルに向かって手が差し出されたことを検知するセンサや、人が水栓に触れていることを検知するセンサ、ボウルの内面における水の流れの存在を検知するセンサ、又はこれらの組み合わせ等によって構成される。 In this specification, "the bowl is in use" refers to a state in which a person holds out their hand towards the bowl and is waiting for water to be dispensed from the faucet, a state in which a person is touching the faucet to make water dispense, a state in which water is being dispensed from the faucet, or a state in which water is being drained from the drain. The first detection unit is composed of, for example, a sensor that detects that a hand has been held out towards the bowl, a sensor that detects that a person is touching the faucet, a sensor that detects the presence of water flow on the inner surface of the bowl, or a combination of these.

 また、本明細書における「単位時間あたりの積算照射量」とは、各処理モードの実行期間内において、所定の積算照射量に達するまでの時間として定義される。具体的には、例えば、所定の積算照射量が5mJ/cm2である場合、モードを開始してからボウルの内面における積算照射量が5mJ/cm2に到達するまでの時間が、単位時間となる。 In addition, in this specification, the "cumulative dose per unit time" is defined as the time until a predetermined cumulative dose is reached during the execution period of each processing mode. Specifically, for example, if the predetermined cumulative dose is 5 mJ/ cm2 , the unit time is the time from the start of the mode until the cumulative dose on the inner surface of the bowl reaches 5 mJ/ cm2 .

 殺菌処理モードとは、ボウルの内面に存在する菌等を集中的に殺菌処理するモードであって、ボウルの内面における積算照射量が相対的に高いモードである。なお、殺菌処理モードは、ボウルが不使用状態である場合に、ボウルの内面に向かって、紫外光を照射するモードであればよく、殺菌処理モードへの切り替えは、積算照射量の調整に限られない。
例えば、ボウルが不使用状態であることを第一検知部が検知すると、シャッターが開き、ボウルの内面に向かって紫外光を出射するモードであっても構わない。
The sterilization mode is a mode in which bacteria and the like present on the inner surface of the bowl are sterilized intensively, and the cumulative irradiation amount on the inner surface of the bowl is relatively high. Note that the sterilization mode may be a mode in which ultraviolet light is irradiated toward the inner surface of the bowl when the bowl is not in use, and switching to the sterilization mode is not limited to adjusting the cumulative irradiation amount.
For example, when the first detector detects that the bowl is not in use, a shutter may open and ultraviolet light may be emitted toward the inner surface of the bowl.

 ボウルが使用状態にある場合は、紫外光が照射されて殺菌処理が行われているボウル周辺に、人、又は手や腕などの人体の一部が存在する可能性が非常に高い。このような場合においてまで、単位時間あたりの積算照射量が比較的高い紫外光の照射を継続していると、シンクで手を洗っている人やボウル周辺を清掃している人は、作業をしている間に、上述したような許容限界値を超える量の紫外光が照射されるおそれがある。 When the bowl is in use, there is a very high possibility that a person, or a part of the human body such as a hand or arm, is present in the vicinity of the bowl where the sterilization process is being carried out by irradiating it with ultraviolet light. Even in such a case, if irradiation with ultraviolet light at a relatively high cumulative dose per unit time continues, a person washing their hands at the sink or cleaning around the bowl may be exposed to an amount of ultraviolet light that exceeds the above-mentioned permissible limit while they are working.

 そこで、上記構成とすることで、殺菌処理を行うための単位時間あたりの積算照射量が高い紫外光の照射は、人がボウルを使用していない状態であると検知されている間にのみ行われる。したがって、ボウルを使用している間に、ボウルを使用する人に対して許容限界値を超える量の紫外光が照射されるリスクが大幅に低減される。 The above configuration allows irradiation of ultraviolet light with a high cumulative dose per unit time for sterilization to occur only while it is detected that the bowl is not in use. This significantly reduces the risk that the person using the bowl will be irradiated with an amount of ultraviolet light that exceeds the allowable limit while the bowl is in use.

 上記シンクにおいて、
 前記殺菌処理モードを実行している時間を計測するタイマを備え、
 所定の時間にわたって前記殺菌処理モードが継続して実行された後、前記点灯制御部は、前記ボウルの内面に照射される前記紫外光の単位時間あたりの積算照射量が前記殺菌処理モードよりも低い前記紫外光の照射を行う、予防処理モードを実行するように構成されていても構わない。
In the sink,
A timer is provided to measure the time during which the sterilization processing mode is executed,
After the sterilization treatment mode has been continuously executed for a predetermined time, the lighting control unit may be configured to execute a preventive treatment mode in which the ultraviolet light irradiated to the inner surface of the bowl has an integrated irradiation amount per unit time of the ultraviolet light that is lower than that in the sterilization treatment mode.

 十分な時間にわたって紫外光が照射された後は、再度シンクが利用されるまで、又は排水口から菌が湧き上がってくる程の長時間が経過しない限り、ボウルは清浄な状態が維持される。また、紫外光の長時間にわたる照射は、次亜塩素酸等を含む薬剤と比較するとごく僅かではあるが、シンクを構成する部材を劣化させてしまう場合がある。 After a sufficient period of exposure to UV light, the bowl will remain clean until the sink is used again or until a long period of time has passed that causes bacteria to rise from the drain. Also, exposure to UV light for long periods of time can cause deterioration of the materials that make up the sink, although the deterioration is very slight compared to chemicals that contain hypochlorous acid, etc.

 さらに、人がボウルを使用していない状態が検知されている間、常に殺菌処理モードが実行されていると、ボウルを使用してはいないものの、ボウルの周囲で何らかの作業をしている作業者が存在すると、ボウルから漏れた紫外光、又はボウルの表面で反射された紫外光が、当該作業者に照射され続けてしまうおそれがある。 Furthermore, if the sterilization mode is constantly running while it is detected that the bowl is not in use, and there is a worker performing some kind of work around the bowl, even though he or she is not using the bowl, there is a risk that the worker will continue to be exposed to ultraviolet light leaking from the bowl or ultraviolet light reflected by the surface of the bowl.

 上記構成とすることで、ボウルの内面を十分に殺菌処理できると想定される紫外光の照射が完了した後は、シンクを構成する部材や、ボウルの周囲に存在する人への照射が抑制される。また、当該構成は、紫外光源に対して供給される電力が抑制されるため、消費電力の低減や、紫外光源の長寿命化にも少なからず寄与する。 With the above configuration, once irradiation of the ultraviolet light, which is expected to be sufficient to sterilize the inner surface of the bowl, is completed, irradiation of the components that make up the sink and people around the bowl is suppressed. In addition, this configuration also reduces the power supplied to the ultraviolet light source, which contributes to reducing power consumption and extending the life of the ultraviolet light source.

 上記シンクは、
 前記ボウルの周囲に人体が存在するか否かを検知する第二検知部を備え、
 前記点灯制御部は、前記殺菌処理モードの実行中に前記第二検知部が人体の存在を検知すると、前記ボウルの内面に照射される前記紫外光の単位時間あたりの積算照射量が、前記殺菌処理モードよりも低い前記紫外光の照射を行う、人接近時モードを実行するように構成されていても構わない。
The sink above is
A second detection unit that detects whether or not a human body is present around the bowl,
The lighting control unit may be configured to execute a human approach mode in which, when the second detection unit detects the presence of a human body while the sterilization processing mode is being executed, the ultraviolet light is irradiated to the inner surface of the bowl at a cumulative irradiation amount per unit time that is lower than that in the sterilization processing mode.

 本明細書における「ボウルの周囲」とは、ボウルからの離間距離が1.5m以下の空間をいう。 In this specification, "around the bowl" refers to the space that is no more than 1.5 m away from the bowl.

 上述したように、ボウルを使用してはいないものの、ボウルの周囲で何らかの作業をしている作業者が存在する場合がある。 As mentioned above, there may be workers performing some tasks around the bowl, even if they are not using it.

 上記構成とすることで、ボウルの周囲に存在する人や、ボウルの周囲を通過した人に対しては、紫外光が照射されたとしても、殺菌処理モードと比較すると低い照度の紫外光が照射されることとなる。したがって、安全性がより高められたシンクが実現される。 With the above configuration, even if ultraviolet light is irradiated onto people around the bowl or those who have passed around the bowl, the irradiated ultraviolet light will have a lower illuminance than in the sterilization mode. This makes it possible to realize a sink with improved safety.

 上記シンクにおいて、
 前記第一検知部は、前記水栓と前記ボウルとの間に存在する人体を検知する人感センサであっても構わない。
In the sink,
The first detection unit may be a human presence sensor that detects a human body present between the faucet and the bowl.

 上記シンクにおいて、
 前記第一検知部は、前記水栓の水の吐出、又は前記排水口への水の流入を検知するフローセンサであっても構わない。
In the sink,
The first detection unit may be a flow sensor that detects the discharge of water from the faucet or the inflow of water into the drain.

 上記シンクは、
 前記第一検知部及び前記第二検知部は、光学式の人感センサであって、検知に用いられる光の波長帯域がそれぞれ異なっていても構わない。
The sink above is
The first detection unit and the second detection unit may be optical human presence sensors, and may use different wavelength bands of light for detection.

 検知に用いる光の波長帯域が重複する複数の光学式の人感センサが、お互いの検知領域内に配置された場合、一方の人感センサが発した光を、他方の人感センサが受光し、検知領域内に人が存在していないにも関わらず、人が存在する誤検知してしまうおそれがある。 If multiple optical motion sensors that use overlapping wavelength bands of light for detection are placed within each other's detection areas, the light emitted by one motion sensor may be received by the other motion sensor, resulting in a false detection that a person is present within the detection area even when no person is actually present.

 上記構成とすることで、複数の人感センサが相互に反応し、上述したような誤検知が回避される。 With the above configuration, multiple human sensors react to each other, avoiding false detections as described above.

 上記シンクにおいて、
 前記紫外光源は、前記ボウルの内底面からの離間距離が1.5m以下の位置に配置されていても構わない。
In the sink,
The ultraviolet light source may be positioned at a distance of 1.5 m or less from the inner bottom surface of the bowl.

 照射領域における紫外光の照度は、紫外光源と照射領域との離間距離が大きくなるにつれて低下する。すなわち、紫外光源と、照射領域とが離間しすぎていると、照射対象物の表面における照度が、殺菌処理に十分な照度とならない可能性がある。特に、シンクの内底面、菌等が排水管から湧き出してくる可能性がある排水口、及び排水口に接続された排水管の内部には、十分な殺菌処理が行える照度の紫外光が照射されることが好ましい。 The illuminance of the ultraviolet light in the irradiation area decreases as the distance between the ultraviolet light source and the irradiation area increases. In other words, if the ultraviolet light source is too far away from the irradiation area, the illuminance on the surface of the irradiated object may not be sufficient for sterilization. In particular, it is preferable to irradiate the inside bottom surface of the sink, the drain outlet from which bacteria may come out of the drain pipe, and the inside of the drain pipe connected to the drain outlet with ultraviolet light of an illuminance sufficient for sterilization.

 また、芽胞形成菌は芽胞によって菌の本体部分が守られているため、芽胞形成菌を殺菌処理するには、芽胞を破壊できる照度での紫外光の照射が必要となる。このため、芽胞形成菌を殺菌処理対象とするような場合は、紫外光源ができる限り殺菌処理の対象領域に近くに配置されることが好ましい。 In addition, since the main body of spore-forming bacteria is protected by the spores, sterilization of spore-forming bacteria requires irradiation with ultraviolet light at an illuminance sufficient to destroy the spores. For this reason, when spore-forming bacteria are to be sterilized, it is preferable to place the ultraviolet light source as close as possible to the area to be sterilized.

 上記構成とすることで、ボウルの内底面、排水口、及び排水口に接続された排水管の内壁面に、比較的高い照度の紫外光が照射されるため、より確実にボウルの内底面や、排水管内に存在する菌等を殺菌処理することができる。 With the above configuration, ultraviolet light with a relatively high illuminance is irradiated onto the inner bottom surface of the bowl, the drain outlet, and the inner wall surface of the drain pipe connected to the drain outlet, so bacteria and the like present on the inner bottom surface of the bowl and in the drain pipe can be sterilized more reliably.

 上記シンクは、
 前記紫外光源の位置を変更し、前記ボウルの内面における前記紫外光の照射領域を変更する照射領域変更機構を備えていても構わない。
The sink above is
An irradiation area changing mechanism may be provided that changes the position of the ultraviolet light source and changes the irradiation area of the ultraviolet light on the inner surface of the bowl.

 また、上記シンクは、
 前記紫外光源から発生される前記紫外光の少なくとも一部について、進行方向を変更、又は遮光し、前記ボウルの内面における前記紫外光の照射領域を変更する光学部材を備えていても構わない。
In addition, the sink is
An optical element may be provided that changes the direction of travel or blocks at least a portion of the ultraviolet light generated from the ultraviolet light source and changes the irradiation area of the ultraviolet light on the inner surface of the bowl.

 例えば、紫外光を広範囲にわたって照射するために、紫外光を拡散透過させる部材を設けることが考えられる。しかしながら、紫外光源から出射される紫外光を拡散させると、紫外光の照射領域において、単位面積当たりの照度が低下してしまう場合や、ボウルの周囲の空間に対して不必要に紫外光を照射してしまう場合がある。 For example, in order to irradiate ultraviolet light over a wide area, it is possible to provide a member that diffuses and transmits ultraviolet light. However, diffusing the ultraviolet light emitted from the ultraviolet light source may result in a decrease in illuminance per unit area in the ultraviolet light irradiation area, or ultraviolet light may be unnecessarily irradiated onto the space surrounding the bowl.

 また、非常に大型のシンクが要望された場合、当該シンクのサイズに応じて紫外光源を大型化して対応することが考えられるが、このような対応は、照射領域の制御や、点灯に必要な電力の問題等もあり、現実的な対応ではない。 In addition, if a very large sink is required, it is possible to enlarge the ultraviolet light source depending on the size of the sink, but this is not realistic due to issues such as controlling the irradiation area and the power required to turn on the light.

 そこで、上記構成とすることで、ボウルの形状やサイズによらず、ボウルの内面全体をムラなく殺菌処理できるシンクが実現される。 The above configuration makes it possible to realize a sink that can sterilize the entire inner surface of the bowl evenly, regardless of the shape or size of the bowl.

 なお、上記シンクの構成において、
 前記紫外光源は、前記ボウルの内面における前記紫外光の照射領域に、前記排水口が含まれる状態の下で、前記紫外光の照射領域を変更する構成であっても構わない。
In the above sink configuration,
The ultraviolet light source may be configured to change the irradiation area of the ultraviolet light on the inner surface of the bowl, while the drain outlet is included in the irradiation area of the ultraviolet light.

 また、上記シンクにおいて、
 前記紫外光源は、前記排水口を含む領域に前記紫外光を照射する状態で固定されていても構わない。
In addition, in the sink,
The ultraviolet light source may be fixed in a state in which it irradiates the ultraviolet light onto an area including the drain outlet.

 上記シンクは、
 前記紫外光源全体を覆う防水カバーを備えていても構わない。
The sink above is
A waterproof cover may be provided to cover the entire ultraviolet light source.

 上記構成とすることで、紫外光源が飛散した水によって濡れてしまうことが抑制される。したがって、点灯中の紫外光源に水が付着し、紫外光源が立ち消えしてしまうことや、破損してしまうことが抑制される。なお、ここでの「紫外光源全体を覆う」とは、人が手を洗うなどして飛散する水滴が内部にまで侵入しないように構成されていればよく、紫外光源が完全に密封されている場合のみならず、外気が出入りできるような隙間が存在する場合も想定される。 The above configuration prevents the ultraviolet light source from getting wet from splashed water. This prevents water from adhering to the ultraviolet light source while it is turned on, causing it to go out or become damaged. Note that "covering the entire ultraviolet light source" here means that the configuration is such that water droplets that splash when people wash their hands, for example, do not penetrate into the interior, and includes not only cases where the ultraviolet light source is completely sealed, but also cases where there are gaps that allow outside air to enter and exit.

 本発明のシンクの殺菌処理方法は、
 シンクが備えるボウルの内面に、主たる発光波長が200nm以上240nm未満の波長帯域に属する紫外光を照射する方法であって、
 前記ボウルの内面に対して、前記紫外光を照射する殺菌処理工程と、
 前記ボウルが使用状態にあるか否かを判定する第一判定工程と、
 前記第一判定工程において、前記ボウルが使用状態にあるとの判定がなされると、前記紫外光の照射を停止する、又は前記殺菌処理工程よりも単位時間あたりの積算照射量が低い前記紫外光の照射を行う使用時工程とを含むことを特徴とする。
The method for sterilizing a sink of the present invention comprises the steps of:
A method for irradiating an inner surface of a bowl of a sink with ultraviolet light having a main emission wavelength in a wavelength band of 200 nm or more and less than 240 nm, comprising:
a sterilization treatment step of irradiating the inner surface of the bowl with the ultraviolet light;
a first determination step for determining whether the bowl is in use;
The method is characterized in that it includes an in-use step in which, when it is determined in the first judgment step that the bowl is in use, the irradiation of the ultraviolet light is stopped, or the ultraviolet light is irradiated with an integrated irradiation amount per unit time that is lower than that of the sterilization treatment step.

 上記殺菌処理方法は、
 前記第一判定工程において、前記ボウルが使用状態にあると判定された場合において、前記紫外光の照射を停止する、又は前記殺菌処理工程よりも単位時間あたりの積算照射量が低い前記紫外光の照射を行う使用時工程を含んでいても構わない。
The sterilization method includes the steps of:
The method may include an in-use step of stopping the irradiation of the ultraviolet light when it is determined in the first judgment step that the bowl is in use, or irradiating the ultraviolet light with an integrated irradiation amount per unit time that is lower than that of the sterilization treatment step.

 上記殺菌処理方法は、
 前記第一判定工程において、前記ボウルが所定の時間にわたって使用状態にないとの判定がなされると、前記殺菌処理工程よりも単位時間あたりの積算照射量が低い前記紫外光の照射を行う予防処理工程を含んでいても構わない。
The sterilization method includes the steps of:
The first determination step may include a preventive treatment step in which, if it is determined that the bowl has not been in use for a predetermined period of time, an ultraviolet light irradiation amount per unit time is lower than that of the sterilization treatment step.

 上記殺菌処理方法は、
 前記殺菌処理工程の実行中に前記ボウルの周囲に人が接近しているか否かを判定する第二判定工程と、
 前記第二判定工程において、前記ボウルの周囲に人が接近しているとの判定がなされると、前記殺菌処理工程よりも単位時間あたりの積算照射量が低い前記紫外光の照射を行う人接近時処理工程とを含んでいても構わない。
The sterilization method includes the steps of:
a second determination step of determining whether or not a person is approaching the bowl during the execution of the sterilization treatment step;
The second judgment process may include a human approach treatment process in which, when it is determined that a person is approaching the bowl, an ultraviolet light treatment process is performed in which an integrated irradiation amount per unit time is lower than that of the sterilization treatment process.

 なお、本発明の対象製品は、人や動物の皮膚や目に紅斑や角膜炎を起こすことはなく、紫外光本来の殺菌、ウイルスの不活化能力を提供することができる。特に、従来の紫外光源とは異なり、有人環境で使用できるという特徴を生かし、屋内外の有人環境に設置することで、環境全体を照射することができ、空気と環境内設置部材表面のウイルス抑制・除菌を提供することができる。 The subject product of the present invention does not cause erythema or keratitis on the skin or eyes of humans or animals, and can provide the germicidal and virus inactivation capabilities inherent to ultraviolet light. In particular, unlike conventional ultraviolet light sources, it can be used in manned environments, and by installing it in manned environments indoors and outdoors, it can irradiate the entire environment, suppressing and sterilizing viruses in the air and on the surfaces of materials installed in the environment.

 このことは、国連が主導する持続可能な開発目標(SDGs)の目標3「あらゆる年齢の全ての人々が健康的な生活を確保し、福祉を促進する」に対応し、また、ターゲット3.3「2030年までに、エイズ、結核、マラリア及び顧みられない熱帯病といった伝染病を根絶するとともに、肝炎、水系感染症及びその他の感染症に対処する」に大きく貢献するものである。 This corresponds to Goal 3 of the UN-led Sustainable Development Goals (SDGs) "Ensure healthy lives and promote well-being for all at all ages" and also contributes significantly to Target 3.3 "By 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases, and combat hepatitis, water-borne and other communicable diseases."

 上記構成によれば、シンクの清浄状態の維持を実現するとともに、人体への紫外光照射が抑制された殺菌機能付きシンク、及びシンクの殺菌処理方法が実現される。 The above configuration realizes a sink with a sterilization function that maintains the clean state of the sink while suppressing exposure of the human body to ultraviolet light, and a sterilization method for the sink.

シンクの一実施形態の構成を模式的に示す図面である。1 is a diagram illustrating a schematic configuration of an embodiment of a sink. 図1のシンクの側面断面図である。FIG. 2 is a side cross-sectional view of the sink of FIG. 1 . 図1の排水管周辺の側面断面図である。FIG. 2 is a side cross-sectional view of the drain pipe and its surroundings in FIG. 1 . 光源装置の外観の一例を模式的に示す斜視図である。FIG. 2 is a perspective view illustrating an example of the appearance of a light source device. 光源装置の外観の一例を模式的に示す斜視図であり、カバー部材の内側に配置された紫外光源を破線で図示した図面である。FIG. 2 is a perspective view showing an example of the appearance of a light source device, in which an ultraviolet light source disposed inside a cover member is shown by a dashed line. シンクの一実施形態が実行する制御のフローチャートである。11 is a flowchart of a control executed by an embodiment of a sink. シンクの別実施形態の構成を模式的に示す図面である。13 is a diagram illustrating a configuration of another embodiment of a sink. 図7の光源装置の拡大図である。FIG. 8 is an enlarged view of the light source device of FIG. 7 . シンクの別実施形態における排水管周辺の模式的な側面断面図である。FIG. 11 is a schematic side cross-sectional view of the drain pipe and its surroundings in another embodiment of the sink.

 以下、本発明の殺菌機能付きシンク及びシンクの殺菌処理方法について、図面を参照して説明する。なお、殺菌機能付きシンクに関して、以下の各図面は、いずれも模式的に図示されたものであり、図面上の寸法比や個数は、実際の寸法比や個数と必ずしも一致していない。 The sink with sterilization function and the sterilization method for the sink of the present invention will be described below with reference to the drawings. Note that the following drawings of the sink with sterilization function are all schematic illustrations, and the dimensional ratios and numbers in the drawings do not necessarily match the actual dimensional ratios and numbers.

 [本実施形態の構成]
 図1は、シンク1の一実施形態の構成を模式的に示す図面である。図2は、図1のシンク1の側面断面図であり、図3は、図1の排水管11d周辺の側面断面図である。図1及び図2に示すように、シンク1の本実施形態は、複数の光源装置10と、ボウル11と、水栓12と、点灯制御部13と、吐水制御部14とを備える。
[Configuration of this embodiment]
Fig. 1 is a diagram showing a schematic configuration of one embodiment of a sink 1. Fig. 2 is a side cross-sectional view of the sink 1 in Fig. 1, and Fig. 3 is a side cross-sectional view of the drain pipe 11d and its surroundings in Fig. 1. As shown in Figs. 1 and 2, this embodiment of the sink 1 includes a plurality of light source devices 10, a bowl 11, a faucet 12, a lighting control unit 13, and a water discharge control unit 14.

 本実施形態におけるボウル11は、ステンレス製であって、水栓12から吐出される水を受ける略直方体形状を呈する凹部が形成されている。ボウル11は、図1に示すように、内底面11bに排水管11dと接続される排水口11cが設けられている。なお、ボウル11の材質や形状は任意である。 The bowl 11 in this embodiment is made of stainless steel and has a recessed portion having a roughly rectangular parallelepiped shape that receives water discharged from the faucet 12. As shown in FIG. 1, the bowl 11 has a drain port 11c on the inner bottom surface 11b that is connected to a drain pipe 11d. The material and shape of the bowl 11 are optional.

 ボウル11の内側面11aの一面には、図1及び図2に示すように、第一検知部に相当する人感センサS1と,第二検知部に相当する人感センサS2とが配置されている。人感センサS1は、ボウル11に向かって人が手を差し出しているか否かを検知する、すなわち、ボウル11が使用状態であるか否かを検知する光学式のセンサである。人感センサS2は、ボウル11の周囲に人が存在するか否かを検知する、光学式のセンサである。 As shown in Figures 1 and 2, a human presence sensor S1 corresponding to the first detection unit and a human presence sensor S2 corresponding to the second detection unit are arranged on one surface of the inner surface 11a of the bowl 11. The human presence sensor S1 is an optical sensor that detects whether or not a person is holding out their hand towards the bowl 11, that is, whether or not the bowl 11 is in use. The human presence sensor S2 is an optical sensor that detects whether or not a person is present around the bowl 11.

 なお、第一検知部及び第二検知部を構成する部材は、人感センサでなくてもよく、例えば、カメラで撮影した空間内で人の顔を検知する顔認証システムであっても構わない。そして、当該システムによって、人がボウル11を使用しているか、又はボウル11は使用していないがボウル11の周辺に人が存在するかを区別して検出できる場合は、当該システムが、単体で第一検知部と第二検知部とを兼ねていてもよい。 The components constituting the first and second detection units do not have to be human sensors, and may be, for example, a face recognition system that detects a person's face in a space photographed by a camera. If the system can distinguish and detect whether a person is using the bowl 11 or whether the bowl 11 is not being used but a person is present near the bowl 11, the system may function as both the first and second detection units on its own.

 本実施形態において採用されているそれぞれの人感センサ(S1,S2)は、相互に誤検知してしまうことを防止するために、検知に利用する光の波長帯域が異なっている。なお、人感センサ(S1,S2)が、誤検知が生じない程度にまで離間して配置される場合は、検知に利用する波長帯域が一部重複、又は一致していてもよい。また、人感センサ(S1,S2)の配置位置に関しては、図1及び図2に示す配置位置は、単なる一例であって、シンク1の構成やセンサの仕様に応じて適宜調整される。 The human presence sensors (S1, S2) used in this embodiment use different wavelength bands of light for detection to prevent erroneous detection. Note that if the human presence sensors (S1, S2) are placed far enough apart that erroneous detection does not occur, the wavelength bands used for detection may overlap or match. In addition, the placement positions of the human presence sensors (S1, S2) shown in Figures 1 and 2 are merely examples, and are adjusted as appropriate depending on the configuration of the sink 1 and the specifications of the sensors.

 人感センサS1は、人がボウル11に向かって手を差し出していることを検知、すなわち、ボウル11が使用状態にあることを検知すると、点灯制御部13及び吐水制御部14に対して検知信号d1を出力する。そして、人感センサS1は、人がボウル11から手を引っ込めると、すなわち、ボウル11が使用状態でないことを検知すると、検知信号d1の出力を停止する。 When the human presence sensor S1 detects that a person is holding out their hand towards the bowl 11, i.e., that the bowl 11 is in use, it outputs a detection signal d1 to the lighting control unit 13 and the water discharge control unit 14. Then, when the human presence sensor S1 detects that the person withdraws their hand from the bowl 11, i.e., that the bowl 11 is not in use, it stops outputting the detection signal d1.

 人感センサS2は、ボウル11の周囲に人が存在することを検知すると、点灯制御部13に対して検知信号d2を出力する。そして、人感センサS2は、ボウル11の周知に人が存在しなくなると、検知信号d2の出力を停止する。 When the human presence sensor S2 detects the presence of a person around the bowl 11, it outputs a detection signal d2 to the lighting control unit 13. Then, when there is no person around the bowl 11, the human presence sensor S2 stops outputting the detection signal d2.

 点灯制御部13は、図2に示すように、それぞれの人感センサ(S1,S2)から入力される検知信号d1及び検知信号d2に基づいて、光源装置10に供給する電力の制御を行う。また、点灯制御部13は、後述される各種モードを継続して実行している時間を計測するタイマ13aを備える。なお、点灯制御部13が、時間経過に応じてモードの切り替えない構成の場合は、タイマ13aが備えられていなくても構わない。 As shown in FIG. 2, the lighting control unit 13 controls the power supplied to the light source device 10 based on the detection signal d1 and the detection signal d2 input from each of the human sensors (S1, S2). The lighting control unit 13 also includes a timer 13a that measures the time that the various modes described below are continuously executed. Note that if the lighting control unit 13 is configured not to switch modes depending on the passage of time, the timer 13a does not have to be included.

 吐水制御部14は、人感センサS1から検知信号d1が入力されると、水栓12から水を吐出させるように制御する。本実施形態では、吐水制御部14が、点灯制御部13と同様に人感センサS1に接続されているが、吐水制御部14は、点灯制御部13が接続されている人感センサS1とは別のセンサに接続されていても構わない。 When a detection signal d1 is input from the human presence sensor S1, the water discharge control unit 14 controls the water faucet 12 to discharge water. In this embodiment, the water discharge control unit 14 is connected to the human presence sensor S1 in the same way as the lighting control unit 13, but the water discharge control unit 14 may be connected to a sensor other than the human presence sensor S1 to which the lighting control unit 13 is connected.

 図4は、光源装置10の外観の一例を模式的に示す斜視図である。図5は、光源装置10の外観の一例を模式的に示す斜視図であり、カバー部材20の内側に配置された紫外光源30を破線で図示した図面である。光源装置10は、図4及び図5に示すように、蓋部20a及び本体部20bからなるカバー部材20と、カバー部材20内に収容された、主たる発光波長が200nm以上240nm未満の波長帯域に属する紫外光L1を出射する紫外光源30を備える。 FIG. 4 is a perspective view showing an example of the appearance of the light source device 10. FIG. 5 is a perspective view showing an example of the appearance of the light source device 10, in which the ultraviolet light source 30 arranged inside the cover member 20 is illustrated by a dashed line. As shown in FIGS. 4 and 5, the light source device 10 includes a cover member 20 consisting of a lid portion 20a and a main body portion 20b, and an ultraviolet light source 30 housed within the cover member 20, which emits ultraviolet light L1 whose main emission wavelength belongs to a wavelength band of 200 nm or more and less than 240 nm.

 なお、実際には、カバー部材20は、点灯制御部13から電力を供給するための給電線が接続されているが、図4及び図5においては、図示の都合上、給電線が省略されている。給電線は、水に濡れてしまうことを防止するため、カバー部材20の内側で配線されており、かつ、シンク1に搭載される際には、ボウル11によって隠れされて視認できないように配線される。 In reality, a power supply line is connected to the cover member 20 to supply power from the lighting control unit 13, but for convenience of illustration, the power supply line is omitted in Figures 4 and 5. The power supply line is wired inside the cover member 20 to prevent it from getting wet, and is wired so that it is hidden by the bowl 11 and cannot be seen when it is installed on the sink 1.

 また、本実施形態の光源装置10は、図2に示す、内底面11bに沿う面上における排水口11cの中心と、光源装置10との離間距離A1が50cmとなる位置に設置されている。この離間距離A1は、光源装置10から出射される紫外光L1が、ボウル11の内底面11bにおいて、芽胞形成菌等も含めて十分に殺菌処理できる照度となるように、1m以下であることが好ましく、80cm以下であることがより好ましい。 The light source device 10 of this embodiment is installed at a position where the distance A1 between the center of the drain outlet 11c on the surface along the inner bottom surface 11b and the light source device 10 is 50 cm, as shown in FIG. 2. This distance A1 is preferably 1 m or less, and more preferably 80 cm or less, so that the ultraviolet light L1 emitted from the light source device 10 has an illuminance sufficient to sterilize the inner bottom surface 11b of the bowl 11, including spore-forming bacteria.

 カバー部材20を構成する蓋部20aは、図4に示すように、紫外光源30から発せられた紫外光L1を外側に取り出すための光出射窓20cが設けられている。本実施形態における光出射窓20cの材料は、石英ガラスであるが、紫外光L1が透過できる材料であれば、石英ガラス以外の材料であってもよく、例えば、ホウ珪酸ガラスや、サファイア、フッ化マグネシウム材、フッ化カルシウム材、フッ化リチウム材、フッ化バリウム材等のセラミックス系材料や、シリコン樹脂、フッ素樹脂等の樹脂系材料を採用し得る。なお、本実施形態におけるカバー部材20は、紫外光源30をシンク1の所定の位置に固定し、支持する部材であるとともに、紫外光源30全体を覆う防水カバーでもある。 As shown in FIG. 4, the lid portion 20a constituting the cover member 20 is provided with a light exit window 20c for extracting the ultraviolet light L1 emitted from the ultraviolet light source 30 to the outside. In this embodiment, the material of the light exit window 20c is quartz glass, but any material other than quartz glass may be used as long as it is a material through which the ultraviolet light L1 can pass. For example, ceramic materials such as borosilicate glass, sapphire, magnesium fluoride, calcium fluoride, lithium fluoride, and barium fluoride, and resin materials such as silicone resin and fluororesin may be used. Note that the cover member 20 in this embodiment is a member that fixes and supports the ultraviolet light source 30 at a predetermined position on the sink 1, and is also a waterproof cover that covers the entire ultraviolet light source 30.

 なお、光源装置10が、ボウル11から十分離間した位置に配置されており、防水対策が不要であるような場合、カバー部材20は、例えば、光出射窓20cが、単なる開口であって、防水カバーとして機能しない構成であっても構わない。 If the light source device 10 is positioned far enough away from the bowl 11 and waterproofing is not necessary, the cover member 20 may be configured such that, for example, the light exit window 20c is simply an opening and does not function as a waterproof cover.

 本実施形態における光出射窓20cには、波長が200nm以上240nm未満の範囲内に属する紫外光を透過させ、少なくとも波長が240nm以上280nm未満の紫外光の強度を抑制する光学フィルタが構成されている。なお、本実施形態が備える光学フィルタは、光出射窓20cの主面上に形成された誘電体多層膜である。なお、紫外光源30が240nm以上280nm未満の紫外光をほとんど出射しない光源であって、当該波長範囲の光についての対策が不要である場合は、光学フィルタが設けられていなくても構わない。 In this embodiment, the light exit window 20c is configured with an optical filter that transmits ultraviolet light with a wavelength in the range of 200 nm or more and less than 240 nm, and suppresses the intensity of at least ultraviolet light with a wavelength of 240 nm or more and less than 280 nm. The optical filter provided in this embodiment is a dielectric multilayer film formed on the main surface of the light exit window 20c. If the ultraviolet light source 30 is a light source that emits almost no ultraviolet light with a wavelength of 240 nm or more and less than 280 nm, and measures for light in this wavelength range are not necessary, an optical filter does not have to be provided.

 本実施形態における紫外光源30は、図5において破線で示すように、複数の発光管31と、一対の電極(32a,32b)とを備えるエキシマランプである。発光管31は、直管状の管体内に、発光ガスとしてクリプトン(Kr)と塩素(Cl)ガスが封入されている。本実施形態における紫外光源30は、電極(32a,32b)間に所定の電圧が印加されることで、主たる発光波長が222nmの紫外光を発する。 The ultraviolet light source 30 in this embodiment is an excimer lamp equipped with multiple arc tubes 31 and a pair of electrodes (32a, 32b), as shown by the dashed lines in FIG. 5. The arc tube 31 is a straight tube in which krypton (Kr) and chlorine (Cl) gases are sealed as luminous gases. The ultraviolet light source 30 in this embodiment emits ultraviolet light with a main emission wavelength of 222 nm when a predetermined voltage is applied between the electrodes (32a, 32b).

 なお、紫外光源30は、管体内に、発光ガスとしてクリプトン(Kr)と臭素(Br)ガスが封入されており、電極(32a,32b)間に所定の電圧が印加されることで、主たる発光波長が207nmの紫外光を発するエキシマランプであってもよく、LED等の固体光源であっても構わない。また、搭載する発光管31の本数や、LED等の固体光源の個数も、使用用途や使用態様に応じて任意の数に設定される。 The ultraviolet light source 30 may be an excimer lamp that has krypton (Kr) and bromine (Br) gas sealed inside the tube as the light emitting gas and emits ultraviolet light with a main emission wavelength of 207 nm when a predetermined voltage is applied between the electrodes (32a, 32b), or may be a solid-state light source such as an LED. The number of light emitting tubes 31 and the number of solid-state light sources such as LEDs can be set to any number depending on the purpose and mode of use.

 [制御方法]
 図6は、シンク1の本実施形態が実行する制御のフローチャートである。以下、図6を参照しながら、点灯制御部13が実行する制御について説明する。なお、以下で説明される制御方法は単なる一例であって、各モード(各工程)を実行する条件や順番は、下記の条件や順序に限定されるわけではなく、使用態様に応じて適宜変更される。また、以下の説明では、説明の都合上、電源が投入されて制御が開始した時点では、ボウル11の周囲に人が存在していない状態であることを前提として説明される。
[Control method]
Fig. 6 is a flow chart of the control executed by the present embodiment of the sink 1. Hereinafter, the control executed by the lighting control unit 13 will be described with reference to Fig. 6. Note that the control method described below is merely an example, and the conditions and order for executing each mode (each process) are not limited to the conditions and order described below, and are appropriately changed according to the usage mode. In addition, for convenience of explanation, the following explanation is based on the premise that no person is present around the bowl 11 when the power is turned on and control starts.

 電源が入れられて制御が開始すると、ボウルの内面(11a,11b)に向かって、紫外光を照射する殺菌処理モードが実行される(ステップST1)。このステップST1が、殺菌処理方法における殺菌処理工程に対応する。 When the power is turned on and control starts, a sterilization mode is executed in which ultraviolet light is irradiated toward the inner surface (11a, 11b) of the bowl (step ST1). This step ST1 corresponds to the sterilization process in the sterilization method.

 ステップST1が開始されると、タイマ13aは、殺菌処理モードを継続して実行している時間を計測し、殺菌処理モードを開始して30分経過したか否かを判定する(ステップST2)。なお、当該時間は、ボウル11の形状やサイズ、シンク1を設置する場所や環境に応じて、適宜調整される。 When step ST1 is started, the timer 13a measures the time during which the sterilization mode is continuously executed, and determines whether 30 minutes have passed since the sterilization mode was started (step ST2). Note that this time is adjusted appropriately depending on the shape and size of the bowl 11 and the location and environment in which the sink 1 is installed.

 ステップST2において、殺菌処理モードを所定の時間にわたって実行したことが検知(判定)されると、処理動作を継続するか否かの判断が行われる(ステップST3)。処理動作が継続される場合は、そのまま次の動作に移行し、制御動作が継続されない場合は、殺菌処理が完了した段階で制御が終了する。 When it is detected (determined) in step ST2 that the sterilization processing mode has been executed for a predetermined time, a decision is made as to whether or not to continue the processing operation (step ST3). If the processing operation is to be continued, the next operation is started directly, and if the control operation is not to be continued, the control ends when the sterilization processing is completed.

 ステップST3において、処理動作を継続するとなった場合、点灯制御部13は、予防処理モードを実行する(ステップST4)。このステップST4が、殺菌処理方法における予防処理工程に対応する。予防処理モード(予防処理工程)は、殺菌処理モード(殺菌処理工程)よりも単位時間あたりの積算照射量が低い紫外光の照射が行われる。 If it is decided in step ST3 that the processing operation is to be continued, the lighting control unit 13 executes the preventive processing mode (step ST4). This step ST4 corresponds to the preventive processing step in the sterilization processing method. In the preventive processing mode (preventive processing step), ultraviolet light is irradiated with a lower cumulative irradiation amount per unit time than in the sterilization processing mode (sterilization processing step).

 本実施形態では、殺菌処理モード(殺菌処理工程)は、ボウル11の内底面11bにおける紫外光L1の積算照射量が30mJ/cm2以上となるように、点灯制御部13が光源装置10に供給する電力を制御する。なお、殺菌処理モードにおいて、ボウル11の内底面11bにおける紫外光L1の積算照射量は、十分な殺菌処理を実行する観点から、5mJ/cm2以上であることが好ましく、15mJ/cm2以上であることがより好ましい。予防処理モード(予防処理工程)は、ボウル11の内底面11bにおける紫外光L1の単位時間あたりの積算照射量が、殺菌処理モードの単位時間あたりの積算照射量に対して70%以下となるように点灯制御部13が光源装置10に供給する電力を制御する。つまり、予防処理モード(予防処理工程)は、殺菌処理モード(殺菌処理工程)よりも単位時間あたりの積算照射量が低く制御されるモードである。 In this embodiment, in the sterilization mode (sterilization process), the lighting control unit 13 controls the power supplied to the light source device 10 so that the cumulative irradiation amount of the ultraviolet light L1 on the inner bottom surface 11b of the bowl 11 is 30 mJ/ cm2 or more. In the sterilization mode, the cumulative irradiation amount of the ultraviolet light L1 on the inner bottom surface 11b of the bowl 11 is preferably 5 mJ/cm2 or more , and more preferably 15 mJ/ cm2 or more, from the viewpoint of performing a sufficient sterilization process. In the preventive treatment mode (preventive treatment process), the lighting control unit 13 controls the power supplied to the light source device 10 so that the cumulative irradiation amount per unit time of the ultraviolet light L1 on the inner bottom surface 11b of the bowl 11 is 70% or less of the cumulative irradiation amount per unit time in the sterilization treatment mode. In other words, the preventive treatment mode (preventive treatment process) is a mode in which the cumulative irradiation amount per unit time is controlled to be lower than that in the sterilization treatment mode (sterilization treatment process).

 単位時間あたりの積算照射量は、照度値を低下させるのみならず、例えば、間欠的な動作によるON/OFFのデューティ比を変更して調整しても構わない。なお、ここでの、間欠的な動作とは、点灯と消灯とを繰り返すのみならず、高照度点灯と低照度点灯とを繰り返す場合をも含む意図で用いられている。また、一方のモードは、連続的な点灯動作、他方のモードは、間欠的な動作という場合も想定される。 The cumulative amount of irradiation per unit time can be adjusted not only by lowering the illuminance value, but also, for example, by changing the ON/OFF duty ratio of intermittent operation. Note that intermittent operation here is used to include not only repeated turning on and off, but also repeated switching between high-intensity lighting and low-intensity lighting. It is also possible that one mode is a continuous lighting operation and the other mode is an intermittent operation.

 予防処理モードの実行中において、人感センサS2がボウル11の周囲に人が存在することを検知しない場合、点灯制御部13は、ステップST4を継続する(ステップST5)。このステップST5が、殺菌処理方法における第二判定工程に対応する。 If the human presence sensor S2 does not detect the presence of a person around the bowl 11 while the preventive treatment mode is being executed, the lighting control unit 13 continues step ST4 (step ST5). This step ST5 corresponds to the second determination step in the sterilization treatment method.

 ステップST5において、人感センサS2がボウル11の周囲に人が存在することを検知した場合は、点灯制御部13が人接近時モードを実行する(ステップST6)。このステップST6が、殺菌処理方法における人接近時処理工程に対応する。人接近時モード(人接近時処理工程)は、ボウル11の内底面11bにおける紫外光L1の単位時間あたりの積算照射量が、殺菌処理モードの単位時間あたりの積算照射量に対して50%以下となるように点灯制御部13が光源装置10に供給する電力を制御する。つまり、人接近時モード(人接近時処理工程)は、殺菌処理モード(殺菌処理工程)よりも単位時間あたりの積算照射量が低く制御されるモードである。さらに、人接近時モード(人接近時処理工程)は、予防処理モード(予防処理工程)の照度値よりも低くするよう制御するものであっても良い。 If the human presence sensor S2 detects the presence of a person around the bowl 11 in step ST5, the lighting control unit 13 executes the human approach mode (step ST6). This step ST6 corresponds to the human approach processing step in the sterilization processing method. In the human approach mode (human approach processing step), the lighting control unit 13 controls the power supplied to the light source device 10 so that the cumulative irradiation amount per unit time of the ultraviolet light L1 on the inner bottom surface 11b of the bowl 11 is 50% or less of the cumulative irradiation amount per unit time in the sterilization processing mode. In other words, the human approach mode (human approach processing step) is a mode in which the cumulative irradiation amount per unit time is controlled to be lower than the sterilization processing mode (sterilization processing step). Furthermore, the human approach mode (human approach processing step) may be controlled to be lower than the illuminance value in the preventive processing mode (preventive processing step).

 なお、安全性の観点から、殺菌処理モードの実行中に人感センサS2がボウル11の周囲に人が存在することを検知した場合においても、点灯制御部13は、人接近時モード(ステップST6)に移行するように構成されていることが好ましい。ただし、別の対応として、殺菌処理モードが実行されている最中には、可視光を発する、又は音楽流したりやブザーを鳴らしたりして、人を近づかせないような工夫を施す方法が考えられる。 In addition, from the viewpoint of safety, it is preferable that the lighting control unit 13 is configured to transition to the human approach mode (step ST6) even if the human presence sensor S2 detects the presence of a person around the bowl 11 while the sterilization processing mode is being executed. However, as another possible measure, a method can be considered in which visible light is emitted, music is played, or a buzzer is sounded to keep people away while the sterilization processing mode is being executed.

 ステップST6において、人感センサS1が、人が手指を差し出していることを検知しない場合、点灯制御部13は、再びステップST5の判定を行う(ステップST7)。このステップST7が、殺菌処理方法における第一判定工程に対応する。 If the human presence sensor S1 does not detect that a person is holding out a finger in step ST6, the lighting control unit 13 performs the judgment in step ST5 again (step ST7). This step ST7 corresponds to the first judgment step in the sterilization processing method.

 ステップST6において、人感センサS1が、人が手指を差し出していることを検知した場合、点灯制御部13は、殺菌処理モードよりも単位時間あたりの積算照射量が低い紫外光の照射を行う使用時モードを実行する(ステップST8)。このステップST8が、殺菌処理方法における使用時工程に対応する。なお、ステップST6において、人感センサS1が、人が手指を差し出していることを検知した場合、吐水制御部14が水の吐出を開始する。なお、使用時モードは、紫外光源30を消灯するモードであっても構わない。 If the human presence sensor S1 detects that a person is holding out a finger in step ST6, the lighting control unit 13 executes an in-use mode in which ultraviolet light is irradiated with a lower cumulative dose per unit time than in the sterilization processing mode (step ST8). This step ST8 corresponds to the in-use process in the sterilization processing method. Note that, if the human presence sensor S1 detects that a person is holding out a finger in step ST6, the water discharge control unit 14 starts discharging water. Note that the in-use mode may be a mode in which the ultraviolet light source 30 is turned off.

 ステップST8の実行中において、人感センサS1が、人が手指を差し出していることを検知している間は、点灯制御部13が、ステップST8を継続する(ステップST9)。ステップST8の実行中において、人感センサS1が、人が手指を差し出していることを検知しなくなった場合、点灯制御部13は、吐水制御部14が水の吐出を停止し、ステップST1に戻る。そして、点灯制御部13は、上述したST1~ST9の動作を、制御が終了するまで繰り返し実行する。 While step ST8 is being executed, while the human presence sensor S1 detects that a person is holding out their fingers, the lighting control unit 13 continues step ST8 (step ST9). If the human presence sensor S1 no longer detects that a person is holding out their fingers while step ST8 is being executed, the lighting control unit 13 causes the water discharge control unit 14 to stop discharging water, and returns to step ST1. The lighting control unit 13 then repeatedly executes the operations from ST1 to ST9 described above until control is terminated.

 上記構成とすることで、殺菌処理を行うための単位時間あたりの積算照射量が高い紫外光の照射は、人がボウル11を使用していない状態であると検知されている間にのみ行われる。したがって、ボウル11を使用している間に、ボウル11を使用する人に対して許容限界値を超える量の紫外光L1が照射されるリスクが大幅に低減される。 With the above configuration, irradiation with ultraviolet light, which has a high cumulative irradiation amount per unit time for sterilization processing, is performed only while it is detected that the bowl 11 is not being used by a person. Therefore, while the bowl 11 is in use, the risk of a person using the bowl 11 being irradiated with an amount of ultraviolet light L1 that exceeds the allowable limit is significantly reduced.

 なお、本実施形態のシンク1においては、第二検知部として人感センサS2が備えられているが、例えば、殺菌処理モード及び予防処理モードにおいて光源装置10から出射される紫外光L1の強度が比較的低く、ボウル11の周囲に存在する人への影響が懸念されないような場合は、第二検知部が備えられていなくても構わない。 In addition, in the sink 1 of this embodiment, a human presence sensor S2 is provided as the second detection unit, but in cases where, for example, the intensity of the ultraviolet light L1 emitted from the light source device 10 in the sterilization processing mode and preventive processing mode is relatively low and there is no concern about the impact on people around the bowl 11, the second detection unit does not have to be provided.

 [別実施形態]
 以下、別実施形態につき説明する。
[Another embodiment]
Another embodiment will be described below.

 〈1〉 図7は、シンク1の別実施形態を示す模式的な図面であり、図8は、図7の光源装置10の拡大図である。図8に示すように、本実施形態の光源装置10は、紫外光L1を出射する方向を変更し、ボウル11の内面(11a,11b)における照射領域を変更するための、照射領域変更機構21を備える。そして、照射領域変更機構21は、光源装置10を支持する支持棒22の軸Rxを中心に、光源装置10を回動させる第一回動部21aと、水平面と平行な平面上に関する軸Rxと直交する軸Ryを中心に、光源装置10を回動させる第二回動部21bとを備える。 <1> Fig. 7 is a schematic diagram showing another embodiment of the sink 1, and Fig. 8 is an enlarged view of the light source device 10 of Fig. 7. As shown in Fig. 8, the light source device 10 of this embodiment has an irradiation area changing mechanism 21 for changing the direction in which the ultraviolet light L1 is emitted and changing the irradiation area on the inner surface (11a, 11b) of the bowl 11. The irradiation area changing mechanism 21 has a first rotation part 21a that rotates the light source device 10 around the axis Rx of the support rod 22 that supports the light source device 10, and a second rotation part 21b that rotates the light source device 10 around an axis Ry that is perpendicular to the axis Rx on a plane parallel to the horizontal plane.

 上記構成とすることで、一つの光源装置10によって、ボウル11の内面(11a,11b)全体にわたって紫外光L1を照射することができる。なお、照射領域変更機構21は、シンク1が駆動制御部を備え、自動で制御される構成であってもよく、人が手動で向きを変える構成であっても構わない。 With the above configuration, one light source device 10 can irradiate the entire inner surface (11a, 11b) of the bowl 11 with ultraviolet light L1. The irradiation area changing mechanism 21 may be configured so that the sink 1 is equipped with a drive control unit and is automatically controlled, or it may be configured so that the direction is changed manually by a person.

 また、ボウル11の内面(11a,11b)における照射領域を変更する構成として、光源装置10は、光出射窓20cから出射される紫外光L1の進行方向を制御するレンズや、絞りを調整して一部の紫外光を遮光するシャッター等の光学部材を備えていても構わない。 In addition, as a configuration for changing the irradiation area on the inner surface (11a, 11b) of the bowl 11, the light source device 10 may be equipped with optical components such as a lens that controls the direction of travel of the ultraviolet light L1 emitted from the light exit window 20c, or a shutter that adjusts the aperture to block some of the ultraviolet light.

 〈2〉 図9は、シンク1の別実施形態における排水管11d周辺の模式的な側面断面図である。図9に示すように、シンク1は、排水管11dの内側に、排水口11cから排出される水の流れを検知するためのフローセンサS3を備えていても構わない。 <2> Figure 9 is a schematic side cross-sectional view of the drain pipe 11d and its surroundings in another embodiment of the sink 1. As shown in Figure 9, the sink 1 may be provided with a flow sensor S3 on the inside of the drain pipe 11d for detecting the flow of water discharged from the drain outlet 11c.

 例えば、人が手を洗うのではなく、タオルの洗濯に用いたタライの水をボウル11に流すような場合、人感センサS1によって人が手を差し出したことを検知することができず、水を流す人に比較的高い照度の紫外光が照射されてしまう可能性がある。 For example, if a person is not washing their hands but instead pours water from a basin used to wash towels into the bowl 11, the human sensor S1 will not be able to detect that the person has put out their hand, and there is a possibility that the person pouring the water will be irradiated with ultraviolet light of relatively high illuminance.

 そこで、上記構成とすることで、比較的高い照度の紫外光が、あやまって人に照射されることを、より確実に回避することができる。 The above configuration makes it possible to more reliably prevent people from being accidentally exposed to relatively high-intensity ultraviolet light.

 なお、ボウル11が使用状態であるか否かを検知する方法は、シンク1の構造、又はシンク1が設置されている環境や場所に応じて選択される。例えば、吐水制御部14を備えず、水栓12が、人がバルブを捻って水を吐出させる構成のシンク1であれば、水栓12内にフローセンサを設けたり、バルブに圧力センサを設けたりしても構わない。 The method for detecting whether the bowl 11 is in use is selected according to the structure of the sink 1 or the environment or location in which the sink 1 is installed. For example, if the sink 1 does not have a water discharge control unit 14 and the faucet 12 is configured so that water is discharged by a person turning a valve, a flow sensor may be provided in the faucet 12 or a pressure sensor may be provided on the valve.

 〈3〉 光源装置10は、不使用時にシンク1内に収容されるように構成されていても構わない。例えば、図1に示すようなシンク1の構成において、光源装置10が、紫外光L1照射の完了後、自動でシンク1の壁面内に引っ込むように構成されていてもよい。 〈3〉 The light source device 10 may be configured to be stored in the sink 1 when not in use. For example, in the configuration of the sink 1 shown in FIG. 1, the light source device 10 may be configured to automatically retract into the wall of the sink 1 after irradiation of the ultraviolet light L1 is completed.

 〈4〉 光源装置10は、ボウル11が不使用状態であることを第一検知部に相当する人感センサS1が検知すると、シャッターが開き、ボウルの内面に向かって紫外光の出射を開始するような構成であっても構わない。当該構成により、ボウル11が不使用状態にあることを第一検知部が検知すると、ボウル11の内面に向かって、紫外光を照射する、という殺菌処理モードが実行される。 <4> The light source device 10 may be configured such that, when the human presence sensor S1 corresponding to the first detection unit detects that the bowl 11 is not in use, the shutter opens and starts emitting ultraviolet light toward the inner surface of the bowl. With this configuration, when the first detection unit detects that the bowl 11 is not in use, a sterilization processing mode is executed in which ultraviolet light is irradiated toward the inner surface of the bowl 11.

 〈5〉 上述したシンク1が備える構成は、あくまで一例であり、本発明は、図示された各構成に限定されない。 <5> The configuration of the sink 1 described above is merely an example, and the present invention is not limited to the configurations shown in the figures.

    1    :  シンク
   10    :  光源装置
   11    :  ボウル
   11a   :  内側面
   11b   :  内底面
   11c   :  排水口
   11d   :  排水管
   12    :  水栓
   13    :  点灯制御部
   13a   :  タイマ
   14    :  吐水制御部
   20    :  カバー部材
   20a   :  蓋部
   20b   :  本体部
   20c   :  光出射窓
   21    :  照射領域変更機構
   21a   :  第一回動部
   21b   :  第二回動部
   22    :  支持棒
   30    :  紫外光源
   31    :  発光管
   32a,32b   :  電極
    L1   :  紫外光
    S1,S2   :  人感センサ
    S3   :  フローセンサ
 
LIST OF SYMBOLS 1: Sink 10: Light source device 11: Bowl 11a: Inner surface 11b: Inner bottom surface 11c: Drain 11d: Drain pipe 12: Faucet 13: Lighting control unit 13a: Timer 14: Water discharge control unit 20: Cover member 20a: Lid portion 20b: Main body portion 20c: Light exit window 21: Irradiation area change mechanism 21a: First rotation portion 21b: Second rotation portion 22: Support rod 30: Ultraviolet light source 31: Light emitting tube 32a, 32b: Electrodes L1: Ultraviolet light S1, S2: Human presence sensor S3: Flow sensor

Claims (15)

 ボウルと、
 前記ボウルに向けて水を吐出する水栓と、
 前記ボウルの内底面に設けられた排水口と、
 前記ボウルの内面に向かって、主たる発光波長が200nm以上240nm未満の波長帯域に属する紫外光を出射する紫外光源と、
 前記ボウルが使用状態にあるか否かを検知する第一検知部と、
 前記第一検知部から出力される検知信号に基づいて、前記紫外光源を制御する点灯制御部とを備え、
 前記点灯制御部は、前記ボウルが不使用状態にあることを前記第一検知部が検知すると、前記ボウルの内面に向かって、前記紫外光を照射する殺菌処理モードを実行することを特徴とする殺菌機能付きシンク。
A bowl and
A faucet that discharges water toward the bowl;
A drain hole provided on the inner bottom surface of the bowl;
An ultraviolet light source that emits ultraviolet light having a main emission wavelength belonging to a wavelength band of 200 nm or more and less than 240 nm toward the inner surface of the bowl;
A first detection unit that detects whether the bowl is in use;
a lighting control unit that controls the ultraviolet light source based on a detection signal output from the first detection unit,
A sink with a sterilization function, characterized in that when the first detection unit detects that the bowl is not in use, the lighting control unit executes a sterilization treatment mode in which the ultraviolet light is irradiated toward the inner surface of the bowl.
 前記点灯制御部は、前記ボウルが使用状態にあることを前記第一検知部が検知すると、前記紫外光源を消灯する、又は前記殺菌処理モードよりも単位時間あたりの積算照射量が低い前記紫外光の照射を行う、使用時モードを実行することを特徴とする請求項1に記載の殺菌機能付きシンク。 The sink with sterilization function according to claim 1, characterized in that, when the first detection unit detects that the bowl is in use, the lighting control unit turns off the ultraviolet light source or executes an in-use mode in which the ultraviolet light is irradiated with a lower cumulative irradiation amount per unit time than in the sterilization processing mode.  前記殺菌処理モードを実行している時間を計測するタイマを備え、
 所定の時間にわたって前記殺菌処理モードが継続して実行された後、前記点灯制御部は、前記ボウルの内面に照射される前記紫外光の単位時間あたりの積算照射量が前記殺菌処理モードよりも低い前記紫外光の照射を行う、予防処理モードを実行することを特徴とする請求項1に記載の殺菌機能付きシンク。
A timer is provided to measure the time during which the sterilization processing mode is executed,
The sink with sterilization function described in claim 1, characterized in that after the sterilization treatment mode is continuously executed for a predetermined time, the lighting control unit executes a preventive treatment mode in which the ultraviolet light irradiated to the inner surface of the bowl is irradiated with a lower cumulative irradiation amount per unit time of the ultraviolet light than in the sterilization treatment mode.
 前記ボウルの周囲に人体が存在するか否かを検知する第二検知部を備え、
 前記点灯制御部は、前記殺菌処理モードの実行中に前記第二検知部が人体の存在を検知すると、前記ボウルの内面に照射される前記紫外光の単位時間あたりの積算照射量が、前記殺菌処理モードよりも低い前記紫外光の照射を行う、人接近時モードを実行することを特徴とする請求項1に記載の殺菌機能付きシンク。
A second detection unit that detects whether or not a human body is present around the bowl,
The sink with sterilization function described in claim 1, characterized in that when the second detection unit detects the presence of a human body while the sterilization treatment mode is being executed, the lighting control unit executes a human approach mode in which the integrated irradiation amount of the ultraviolet light per unit time irradiated onto the inner surface of the bowl is lower than that in the sterilization treatment mode.
 前記第一検知部は、前記水栓と前記ボウルとの間に存在する人体を検知する人感センサであることを特徴とする請求項1に記載の殺菌機能付きシンク。 The sink with sterilization function according to claim 1, characterized in that the first detection unit is a human presence sensor that detects a human body present between the faucet and the bowl.  前記第一検知部は、前記水栓の水の吐出、又は前記排水口への水の流入を検知するフローセンサであることを特徴とする請求項1に記載の殺菌機能付きシンク。 The sink with sterilization function according to claim 1, characterized in that the first detection unit is a flow sensor that detects the discharge of water from the faucet or the inflow of water into the drain.  前記第一検知部及び前記第二検知部は、光学式の人感センサであって、検知に用いられる光の波長帯域がそれぞれ異なることを特徴とする請求項4に記載の殺菌機能付きシンク。 The sink with sterilization function according to claim 4, characterized in that the first detection unit and the second detection unit are optical human sensors, and the wavelength bands of light used for detection are different.  前記紫外光源は、前記ボウルの内底面からの離間距離が1.5m以下の位置に配置されていることを特徴とする請求項1に記載の殺菌機能付きシンク。 The sink with sterilization function according to claim 1, characterized in that the ultraviolet light source is positioned at a distance of 1.5 m or less from the inner bottom surface of the bowl.  前記紫外光源の位置を変更し、前記ボウルの内面における前記紫外光の照射領域を変更する照射領域変更機構を備えることを特徴とする請求項1に記載の殺菌機能付きシンク。 The sink with sterilization function according to claim 1, characterized in that it is provided with an irradiation area changing mechanism that changes the position of the ultraviolet light source and changes the irradiation area of the ultraviolet light on the inner surface of the bowl.  前記紫外光源から発生される前記紫外光の少なくとも一部について、進行方向を変更、又は遮光し、前記ボウルの内面における前記紫外光の照射領域を変更する光学部材を備えることを特徴とする請求項1に記載の殺菌機能付きシンク。 The sink with sterilization function according to claim 1, characterized in that it is provided with an optical element that changes the direction of travel or blocks at least a portion of the ultraviolet light generated by the ultraviolet light source, and changes the irradiation area of the ultraviolet light on the inner surface of the bowl.  前記紫外光源全体を覆う防水カバーを備えることを特徴とする請求項1に記載の殺菌機能付きシンク。 The sink with sterilization function according to claim 1, characterized in that it is provided with a waterproof cover that entirely covers the ultraviolet light source.  シンクが備えるボウルの内面に、主たる発光波長が200nm以上240nm未満の波長帯域に属する紫外光を照射する方法であって、
 前記ボウルが使用状態にあるか否かを判定する第一判定工程と、
 前記第一判定工程において、前記ボウルが不使用状態にあると判定された場合において、前記ボウルの内面に対して、前記紫外光を照射する殺菌処理工程とを含むことを特徴とするシンクの殺菌処理方法。
A method for irradiating an inner surface of a bowl of a sink with ultraviolet light having a main emission wavelength in a wavelength band of 200 nm or more and less than 240 nm, comprising:
a first determination step for determining whether the bowl is in use;
A sink sterilization method characterized by including a sterilization treatment step of irradiating the inner surface of the bowl with ultraviolet light when it is determined in the first judgment step that the bowl is in an unused state.
 前記第一判定工程において、前記ボウルが使用状態にあると判定された場合において、前記紫外光の照射を停止する、又は前記殺菌処理工程よりも単位時間あたりの積算照射量が低い前記紫外光の照射を行う使用時工程を含む請求項12に記載のシンクの殺菌処理方法。 The sink sterilization method according to claim 12, further comprising an in-use step of stopping the irradiation of the ultraviolet light or irradiating the ultraviolet light with a lower cumulative irradiation amount per unit time than in the sterilization step when the first determination step determines that the bowl is in use.  前記第一判定工程において、前記ボウルが所定の時間にわたって使用状態にないとの判定がなされると、前記殺菌処理工程よりも単位時間あたりの積算照射量が低い前記紫外光の照射を行う予防処理工程を含むことを特徴とする請求項12に記載のシンクの殺菌処理方法。 The sink sterilization method according to claim 12, further comprising a preventive treatment step of irradiating the ultraviolet light with a lower cumulative dose per unit time than the sterilization treatment step when it is determined in the first determination step that the bowl has not been in use for a predetermined time.  前記殺菌処理工程の実行中に前記ボウルの周囲に人が接近しているか否かを判定する第二判定工程と、
 前記第二判定工程において、前記ボウルの周囲に人が接近しているとの判定がなされると、前記殺菌処理工程よりも単位時間あたりの積算照射量が低い前記紫外光の照射を行う人接近時処理工程とを含むことを特徴とする請求項12又は13に記載のシンクの殺菌処理方法。
 
a second determination step of determining whether or not a person is approaching the bowl during the execution of the sterilization treatment step;
The sink sterilization method according to claim 12 or 13, characterized in that when it is determined in the second judgment step that a person is approaching around the bowl, a person approach processing step is included in which the ultraviolet light is irradiated with an integrated irradiation amount per unit time that is lower than that of the sterilization processing step.
PCT/JP2023/030263 2022-10-21 2023-08-23 Sink with sterilization function, sink sterilization method WO2024084797A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-168880 2022-10-21
JP2022168880A JP2024061143A (en) 2022-10-21 2022-10-21 Sink with sterilization function and sink sterilization method

Publications (1)

Publication Number Publication Date
WO2024084797A1 true WO2024084797A1 (en) 2024-04-25

Family

ID=90737462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030263 WO2024084797A1 (en) 2022-10-21 2023-08-23 Sink with sterilization function, sink sterilization method

Country Status (2)

Country Link
JP (1) JP2024061143A (en)
WO (1) WO2024084797A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549877U (en) * 1991-12-16 1993-07-02 株式会社イナックス Kitchen faucets
JPH1136387A (en) * 1997-07-22 1999-02-09 Inax Corp Sanitary equipment
JP2001112855A (en) * 1999-10-21 2001-04-24 Inax Corp Sterilizing installation for water section hygienic equipment chamber
WO2015141000A1 (en) * 2014-03-20 2015-09-24 株式会社タカギ Water faucet device having bactericidal function, and sink
WO2022215333A1 (en) * 2021-04-07 2022-10-13 ウシオ電機株式会社 Ultraviolet light radiating device, and method for using ultraviolet light radiating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549877U (en) * 1991-12-16 1993-07-02 株式会社イナックス Kitchen faucets
JPH1136387A (en) * 1997-07-22 1999-02-09 Inax Corp Sanitary equipment
JP2001112855A (en) * 1999-10-21 2001-04-24 Inax Corp Sterilizing installation for water section hygienic equipment chamber
WO2015141000A1 (en) * 2014-03-20 2015-09-24 株式会社タカギ Water faucet device having bactericidal function, and sink
WO2022215333A1 (en) * 2021-04-07 2022-10-13 ウシオ電機株式会社 Ultraviolet light radiating device, and method for using ultraviolet light radiating device

Also Published As

Publication number Publication date
JP2024061143A (en) 2024-05-07

Similar Documents

Publication Publication Date Title
US11547772B2 (en) Pre-doffing disinfection systems and methods
JP7119534B2 (en) Dry sterilization device and dry sterilization method
JP5658441B2 (en) Drainage device for sanitary equipment
JP4417374B2 (en) Liquid sterilizer
US11039519B2 (en) Door mounted sanitizer light
JP2007232323A (en) Ceiling fan
RU2746145C1 (en) Method for water disinfection and attachment point for water supply device for its implementation
KR100891542B1 (en) Illuminated Glow Male Urinal
WO2022014087A1 (en) Inactivation device and inactivation method
CN111388733A (en) Method and device for disinfecting small public space
CA3069276A1 (en) Antibacterial door knob
US20190083672A1 (en) Disinfecting apparatus device
KR20150000852U (en) Hand Sterilization Appapatus for Door Handle
JP4072538B2 (en) Automatic door-linked dry sterilizer
JP7263967B2 (en) Sink sterilizer
KR20170021016A (en) Bidet apparatus
WO2016129394A1 (en) Toilet device
WO2024084797A1 (en) Sink with sterilization function, sink sterilization method
US20220288254A1 (en) Smart, rapid, safe disinfection methods, devices, and systems for flushometers, toilets, faucets, baths, and showers
JP3235875U (en) New disinfection device for toilet booths in public toilets
CN213099587U (en) Mobile sterilization device
JP2022187275A (en) Hand drier
JP2022062131A (en) Inactivating device and inactivating method
EP4331628A1 (en) Inactivation method
RU217553U1 (en) Device for disinfection of air and surfaces by UV irradiation in a sanitary facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE