[go: up one dir, main page]

WO2024080285A1 - Liquefied gas vaporizer - Google Patents

Liquefied gas vaporizer Download PDF

Info

Publication number
WO2024080285A1
WO2024080285A1 PCT/JP2023/036804 JP2023036804W WO2024080285A1 WO 2024080285 A1 WO2024080285 A1 WO 2024080285A1 JP 2023036804 W JP2023036804 W JP 2023036804W WO 2024080285 A1 WO2024080285 A1 WO 2024080285A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied gas
heat exchange
cooled
brine
storage tank
Prior art date
Application number
PCT/JP2023/036804
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 大野
伊朗 井筒
Original Assignee
株式会社MARS Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MARS Company filed Critical 株式会社MARS Company
Priority to JP2024551703A priority Critical patent/JPWO2024080285A1/ja
Publication of WO2024080285A1 publication Critical patent/WO2024080285A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy

Definitions

  • the present invention relates to a liquefied gas vaporizer.
  • Patent Document 1 discloses an LNG vaporizer that vaporizes LNG (liquefied natural gas).
  • This LNG vaporizer is an open rack type LNG vaporizer (ORV) and has multiple heat exchange panels, a lower manifold that connects the heat exchange panels in parallel at their lower ends, and an upper manifold that connects the heat exchange panels in parallel at their upper ends.
  • Each heat exchange panel also has multiple heat transfer tubes that extend vertically and are arranged side by side in the horizontal direction, a lower header tube that is connected to the lower manifold and connects the heat transfer tubes in parallel at their lower ends, and an upper header tube that is connected to the upper manifold and connects the heat transfer tubes in parallel at their upper ends.
  • the LNG vaporizer also has a trough that stores seawater to be supplied to the outer surface of each heat transfer tube, and seawater supply means that supplies seawater to the trough.
  • the LNG vaporizer of Patent Document 1 is a type of heat exchanger that generates NG by heating and vaporizing LNG through heat exchange with seawater.
  • seawater is supplied from the ocean to the trough using a seawater supply means, and the cooled seawater overflows from the trough and hangs down the outer surface of the heat transfer tube, before being returned to the ocean.
  • the temperature difference ⁇ T between the seawater before and after it is used to heat the LNG is large, it can lead to a drop in the seawater temperature, which could have an impact on the environment of the ocean and its surrounding areas. To avoid this, the temperature difference ⁇ T is kept within about 2.0°C, but this requires a large amount of seawater to be continuously supplied to the heat transfer tube, which can easily increase operating costs.
  • the object of the present invention is to provide a liquefied gas vaporizer that can effectively utilize the cold energy of liquefied gases such as LNG and LPG while minimizing the impact on the environment.
  • a liquefied gas vaporizer characterized in that the liquefied gas is vaporized to generate gas and the cooled medium is cooled by heat exchange between the liquefied gas and the cooled medium in the heat exchange section.
  • the medium to be cooled is salt water, The liquefied gas vaporizer described in (1) above, wherein the salt water is cooled by heat exchange between the liquefied gas and the cooled medium in the heat exchange section to generate ice slurry, and the ice slurry is stored in the storage tank.
  • the heat exchange unit has a heat transfer tube into which the liquefied gas is introduced, The liquefied gas vaporizer according to (1) above, wherein heat exchange between the liquefied gas and the cooled medium is performed by the cooled medium hanging down the outer surface of the heat transfer tube.
  • the circulation unit includes a trough disposed above the heat exchange unit and configured to store the cooled medium, and a first pipe connecting the storage tank and the trough and supplying the cooled medium in the storage tank to the trough, The liquefied gas vaporizer according to the above (3), wherein the cooled medium overflowing from the trough is supplied to a heat transfer tube.
  • the circulation section includes a recovery tank that recovers the cooled medium from the heat transfer tube hanging down, and a second pipe that connects the recovery tank to the storage tank and introduces the cooled medium in the recovery tank into the storage tank.
  • the liquefied gas vaporizer of the present invention vaporizes the liquefied gas to generate gas through heat exchange between the liquefied gas and the cooled medium, while also cooling the cooled medium.
  • the cold energy of the liquefied gas is used to cool the cooled medium. This allows for effective use of the cold energy of the liquefied gas.
  • problems such as a drop in seawater temperature do not occur as in the past, and the environmental burden can also be reduced.
  • FIG. 1 is a diagram showing an LNG receiving terminal.
  • FIG. 2 is a diagram showing the liquefied gas vaporizer according to the first embodiment.
  • FIG. 3 is a diagram showing a heat exchange panel of the liquefied gas vaporizer of FIG.
  • FIG. 4 shows the use of ice slurry in an air conditioning system.
  • FIG. 5 is a diagram showing a state in which the ice slurry is used for quick freezing of an object to be kept cold.
  • FIG. 6 is a diagram showing a liquefied gas vaporizer according to the second embodiment.
  • FIG. 7 is a diagram showing a liquefied gas vaporizer according to the third embodiment.
  • FIG. 8 is a diagram showing a liquefied gas vaporizer according to the fourth embodiment.
  • FIG. 9 is a diagram showing a liquefied gas vaporizer according to the fifth embodiment.
  • the liquefied gas vaporizer of the present invention will be described in detail below based on each embodiment shown in the attached drawings.
  • the liquefied gas vaporized by the liquefied gas vaporizer of the present invention is not particularly limited, but typically includes LNG (liquefied natural gas) and LPG (liquefied petroleum gas).
  • the liquefied gas may be anything other than LNG or LPG, such as hydrogen gas (liquefied hydrogen) or liquefied ammonia (liquid ammonia).
  • LNG liquefied natural gas
  • LPG liquefied petroleum gas
  • the liquefied gas may be anything other than LNG or LPG, such as hydrogen gas (liquefied hydrogen) or liquefied ammonia (liquid ammonia).
  • LNG liquefied natural gas
  • LPG liquefied petroleum gas
  • the liquefied gas may be anything other than LNG or LPG, such as hydrogen gas (liquefied hydrogen) or liquefied ammonia (liquid ammonia).
  • LPG liquefied gas
  • NG natural gas
  • the NG is converted into LNG (liquefied natural gas) at about -162°C by a liquefaction plant installed in a natural gas field 190, and then transported to about 40 receiving terminals 100 in Japan using LNG tankers 180.
  • LNG liquefied natural gas
  • the receiving terminal 100 is equipped with LNG tanks 120 for temporarily storing the transported LNG, a liquefied gas vaporizer 130 for vaporizing the LNG stored in the LNG tanks 120 to produce the required amount of natural gas NG, and an odorizer 140 for adding an odor to the NG produced by the liquefied gas vaporizer 130.
  • the NG odorized by the odorizer 140 is sent to and stored in gas holders 150 installed in various locations in urban areas, etc., and is then sent to each contracted party through gas pipes.
  • an LPG receiving terminal it has an LPG tank for temporarily storing the transported LPG, a liquefied gas vaporizer for vaporizing the LPG stored in the LPG tank to produce the required amount of gas, an odorizer for adding an odor to the gas produced by the liquefied gas vaporizer, and a gas holder for storing the gas odorized by the odorizer.
  • the gas stored in the gas holder is then transported to the required location by tanker truck or the like.
  • brine B salt water
  • LNG is vaporized (evaporated) by heat exchange between the LNG and brine B to produce NG, and the brine B is cooled to produce ice slurry I.
  • the cold energy of the LNG can be used to cool the brine B. This allows for effective use of the cold energy of the LNG. Furthermore, because the LNG is vaporized using the brine B instead of seawater, problems such as a drop in seawater temperature, which occurred in the past, do not occur, and the burden on the environment can also be reduced.
  • brine B is around -22°C to -1°C
  • LNG is around -162°C. Therefore, a lot of heat is exchanged between the two, and both ice slurry I and LNG are efficiently produced.
  • brine B as the cooled medium
  • ice slurry I that can be used for a variety of purposes can be produced, making the liquefied gas vaporizer 130 more convenient.
  • the uses of the ice slurry I produced by the liquefied gas vaporizer 130 are not particularly limited, and examples include quick freezing (instantaneous freezing) of fresh foods (mainly marine products such as fish, shellfish, and crustaceans), non-frozen storage, and air conditioning systems such as cooling, refrigeration, and freezing.
  • quick freezing instantaneous freezing
  • fresh foods mainly marine products such as fish, shellfish, and crustaceans
  • non-frozen storage mainly air conditioning systems
  • air conditioning systems such as cooling, refrigeration, and freezing.
  • Ice slurry I is sherbet-like ice in which fine ice particles are mixed in salt water, and is also called slurry ice, ice slurry, or slurry ice.
  • the salt concentration of the brine B is not particularly limited and is set appropriately depending on the use of the ice slurry I. As will be described later, for example, if it is to be used for the quick freezing of fresh foods, the salt concentration is preferably about 25% (saturation concentration). This allows the temperature of the ice slurry I to be lowered to about -22°, allowing the fresh foods to be frozen more quickly. Furthermore, if it is to be used for the frozen preservation of fresh foods, the salt concentration is preferably about 1%. This allows the temperature of the ice slurry I to be lowered to about -1°, allowing the fresh foods to be preserved in an unfrozen state at a lower temperature.
  • the liquefied gas vaporizer 130 As described above, the liquefied gas vaporizer 130 is installed at the LNG receiving terminal 100 and is connected between the LNG tank 120 and the odorizer 140. This makes it easy to supply LNG to the liquefied gas vaporizer 130.
  • the location where the liquefied gas vaporizer 130 is installed is not particularly limited.
  • the liquefied gas vaporizer 130 of this embodiment is an open rack type liquefied gas vaporizer 200.
  • the liquefied gas vaporizer 200 has a heat exchange section 210 that performs heat exchange between LNG and brine B, a storage tank 280 that stores brine B, and a circulation section 290 that circulates brine B between the storage tank 280 and the heat exchange section 210. Then, by the heat exchange between LNG and brine B in the heat exchange section 210, LNG is vaporized (evaporated) to become NG, and the brine B is cooled to become ice slurry I. The NG generated by heat exchange with the brine B is sent to the odorizer 140.
  • the ice slurry I generated by heat exchange with LNG is stored in the storage tank 280, and only the required amount is taken out from the storage tank 280 when necessary and used.
  • the heat exchange section 210 has a plurality of heat exchange panels 211 arranged in a horizontal line. As shown in FIG. 3, each heat exchange panel 211 has a plurality of heat transfer tubes 212 extending in a vertical direction and arranged in a horizontal line, a lower header tube 213 connecting the heat transfer tubes 212 at their lower ends, and an upper header tube 214 connecting the heat transfer tubes 212 at their upper ends.
  • each heat exchange panel 211 The lower header pipes 213 of each heat exchange panel 211 are connected to a lower manifold 220, which is connected to the LNG tank 120.
  • the upper header pipes 214 of each heat exchange panel 211 are connected to an upper manifold 230, which is connected to the odorizer 140.
  • the LNG discharged from the LNG tank 120 is introduced into each heat transfer tube 212 of each heat exchange panel 211 from the lower end side via the lower manifold 220.
  • the LNG introduced into the heat transfer tube 212 is vaporized (evaporated) by heat exchange with the brine B to become NG.
  • the NG thus generated rises inside the heat transfer tube 212 and is introduced into the odorizer 140 from the upper end side of the heat transfer tube 212 via the upper manifold 230.
  • the circulation unit 290 has a trough 291 (weir), a first pipe 292 connecting the trough 291 and the storage tank 280, a recovery tank 294, and a second pipe 295 connecting the recovery tank 294 and the storage tank 280.
  • the circulation unit 290 also has a pump (not shown) for circulating the brine B.
  • the troughs 291 are disposed above each heat exchange panel 211.
  • Brine B is supplied to each of the troughs 291 from the storage tank 280 through the first pipe 292. This allows brine B to accumulate in each trough 291.
  • the brine B accumulated in the trough 291 overflows from the trough 291 and hangs down while wetting the outer surface of each heat transfer tube 212 of the heat exchange panel 211.
  • heat exchange occurs between the LNG in each heat transfer tube 212 and the brine B, and the LNG vaporizes and becomes NG.
  • heat exchange section 210 heat exchange between the LNG and the brine B can be performed efficiently with a simple configuration.
  • the brine B overflowing from the trough 291 to be supplied to the heat exchange section 210, the supply of brine B to the heat exchange section 210 is stabilized.
  • the recovery tank 294 is disposed below each heat exchange panel 211 and recovers the brine B that hangs down from each heat exchange panel 211.
  • the brine B recovered in the recovery tank 294 is introduced into the storage tank 280 through the second pipe 295. This allows the brine B supplied to the heat exchange section 210 to be easily recovered.
  • the circulation section 290 circulates the brine B between the storage tank 280 and the heat exchange section 210 with the above configuration. By continuing to circulate the brine B between the storage tank 280 and the heat exchange section 210, the brine B is gradually cooled by heat exchange with the LNG in the heat exchange section 210, and gradually some of it freezes to become ice, generating a sherbet-like ice slurry I in which fine ice is mixed in salt water. The ice slurry I generated in this manner is then stored in the storage tank 280.
  • the liquefied gas vaporizer 200 of this embodiment has multiple storage tanks 280.
  • the first pipe 292 is provided with a valve B1 for each storage tank 280. Therefore, by controlling the opening and closing of each valve B1, it is possible to select which storage tank 280 the brine B in to be supplied to the heat exchange section 210, that is, which storage tank 280 the brine B in to be cooled is to be selected.
  • the second pipe 295 is provided with a valve B2 for each storage tank 280. Then, by controlling the opening and closing of each valve B2, it is possible to select which storage tank 280 the brine B cooled by heat exchange is to be introduced into.
  • the salinity of the brine B differs for each storage tank 280.
  • a different type of brine B is stored in each storage tank 280.
  • storage tank 280A stores brine B with a salinity of 1%
  • storage tank 280B stores brine B with a salinity of 10%
  • storage tank 280C stores brine B with a salinity of 25% (saturation concentration).
  • valves B1 and B2 of the storage tank 280A are opened, and the valves B1 and B2 of the storage tanks 280B and 280C are closed, and the brine B in the storage tank 280A is circulated to the heat exchange section 210.
  • valves B1 and B2 of storage tank 280B are opened, valves B1 and B2 of storage tanks 280A and 280C are closed, and the brine B in storage tank 280B is circulated to heat exchange section 210.
  • valves B1 and B2 of storage tank 280C are opened, valves B1 and B2 of storage tanks 280A and 280B are closed, and the brine B in storage tank 280C is circulated to heat exchange section 210.
  • ice slurries I of various concentrations can be generated and stored.
  • this is not limited to this, and brine B with the same salt concentration may be stored in all storage tanks 280. Also, there may be only one storage tank 280.
  • Each storage tank 280 is provided with a discharge port 281 for discharging the ice slurry I stored therein, and a supply port 282 for supplying brine B therein.
  • a discharge port 281 for discharging the ice slurry I stored therein
  • a supply port 282 for supplying brine B therein.
  • each storage tank 280 is equipped with a stirring blade for stirring the stored brine B. This makes it possible to suppress the aggregation of ice slurry I within the storage tank 280.
  • the liquefied gas vaporizer 200 also has a heating mechanism 270 that heats the ice slurry I to melt at least a portion of the ice. For example, if the amount of ice slurry I used is small relative to the amount of NG produced (the amount of LNG supplied), there is little opportunity to raise the temperature of the brine B by refilling it with new brine B, so the brine B in the storage tank 280 is excessively cooled, the ice content of the ice slurry I becomes excessively high, the fluidity of the brine B deteriorates, and the production of NG may be hindered.
  • the fluidity of the brine B is maintained by heating the ice slurry I in the storage tank 280 with the heating mechanism 270 to melt at least a portion of the ice. Therefore, even if the amount of ice slurry I used is small relative to the amount of NG produced, NG can be produced continuously and continuously.
  • the heating mechanism 270 of this embodiment has a heater 271 arranged in each storage tank 280. With this configuration, the ice slurry I in the storage tank 280 can be heated simply and efficiently by driving the heater 271. It is possible to arbitrarily select which storage tank 280 contains the ice slurry I to be heated.
  • the configuration of the heating mechanism 270 is not particularly limited.
  • the heater 271 may be disposed in the first pipe 292 to heat the brine B passing through the first pipe 292.
  • the heater 271 may also be disposed in the recovery tank 294 to heat the brine B recovered in the recovery tank 294.
  • the mechanism may also heat the ice slurry I without using a heater, such as by heating the ice slurry I through heat exchange with a heat generating part (e.g., a motor, a pump, etc.) in the liquefied gas vaporizer 200 or with the outside air.
  • a heat generating part e.g., a motor, a pump, etc.
  • FIG. 4 building X is equipped with an ice slurry storage tank 710 and an air conditioner 720 installed indoors as the air conditioning system 700, and a pipe 730 connecting the suction port 721 and the blowing port 722 of the air conditioner 720 passes through the ice slurry storage tank 710.
  • the ice slurry storage tank 710 stores a sufficient amount of ice slurry I produced by the liquefied gas vaporizer 200, and the indoor air sucked in from the suction port 721 is cooled by the cold energy of the ice slurry I as it passes through the ice slurry storage tank 710, and is blown out from the blowout port 722 into the room. This allows the room to be cooled.
  • the ice slurry I keeps the temperature of the ice slurry I near the melting point of the brine B until the ice components (solid components) melt due to the action of latent heat.
  • the heat of fusion required to turn a solid into a liquid is much higher than the specific heat of the liquid, so the ice slurry I functions as a highly efficient heat storage material and allows the indoor air to be cooled for a longer period of time.
  • the air conditioning system 700 may be a conventionally known ice thermal storage air conditioning system.
  • the air conditioning system may be used to cool the inside of a refrigerator or freezer, rather than just cooling a room.
  • ice slurry I Another use of ice slurry I is the rapid freezing of marine products (item F) such as fish, shellfish, and crustaceans.
  • the item F is placed in an insulated polystyrene foam box filled with ice slurry I. Because ice slurry I has a large specific surface area, it can quickly freeze the item F.
  • the above-mentioned latent heat effect allows the item F to be frozen for a long time. Therefore, the item F can be kept cold for a long time while maintaining its freshness.
  • ice slurry I is soft and does not damage the item F even when it comes into contact (collisions) with it.
  • the brine B is saturated salt water.
  • the higher the salt concentration, the lower the melting point of the brine B, and the melting point of saturated brine B is about -22°C. Therefore, the ice slurry I becomes colder, which enhances the air conditioning effect described above and enables the refrigerated object F to be frozen more quickly.
  • ice slurry I Another use of ice slurry I is the non-frozen low-temperature preservation of marine products (item F) such as fish, shellfish, and crustaceans.
  • the item F is placed in a polystyrene foam insulation box and filled with ice slurry I. Because ice slurry I has a large specific surface area, it can quickly cool the item F.
  • the above-mentioned latent heat effect allows the item F to be kept at low temperatures for a long period of time. Therefore, the item F can be kept cold for a long period of time while maintaining its freshness.
  • ice slurry I is soft and does not damage the item F even when it comes into contact (collisions) with it.
  • the salt concentration of the brine B which is the raw material for the ice slurry I used to preserve the refrigerated item F without freezing, is preferably around 1%. This makes the melting point of the brine B around -1°C, and the temperature of the ice slurry I is maintained at around -1°C. Since seafood such as fish freezes at around -2°C, by maintaining the temperature of the ice slurry I at around -1°C, the seafood can be stored for a long time at a lower temperature while preventing it from freezing. This makes the above-mentioned effects even more pronounced.
  • a liquefied gas vaporizer according to a second embodiment will be described.
  • a storage tank 280 is connected to a freezing tank 250, and ice slurry I is circulated between the storage tank 280 and the freezing tank 250.
  • the object F to be cooled can be immersed in the ice slurry I stored in the freezing tank 250 to perform a quick freezing process.
  • fresh ice slurry I is continuously supplied to the freezing tank 250, so that the quick freezing process of the object F to be cooled can be easily and reliably performed.
  • the second embodiment described above can also achieve the same effects as the first embodiment described above.
  • there is only one storage tank 280 but the number of storage tanks 280 is not particularly limited.
  • all of the storage tanks 280 may be connected to the same freezing tank 250, or each storage tank 280 may be connected to a different freezing tank 250.
  • a liquefied gas vaporizer according to a third embodiment will be described.
  • one liquefied gas vaporizer 200 is used to vaporize LNG to generate NG, but in this embodiment, multiple liquefied gas vaporizers 200 are used to vaporize LNG to generate NG.
  • LNG has an ultra-low temperature of about -162°C, it may not be possible to sufficiently vaporize LNG depending on the capacity of the liquefied gas vaporizer 200, and some of the LNG may pass through the liquefied gas vaporizer 200 in the LNG state.
  • multiple liquefied gas vaporizers 200 are connected in series.
  • heat exchange with the brine B occurs each time the LNG passes through each liquefied gas vaporizer 200, so that the LNG can be more reliably vaporized to produce NG.
  • NG can be more reliably sent out from the last liquefied gas vaporizer 200.
  • the number of liquefied gas vaporizers 200 is not particularly limited.
  • the brine B may be different for each liquefied gas vaporizer 200, or may be the same. If they are different, for example, the first liquefied gas vaporizer 200 may use brine B with a saturated concentration, the next liquefied gas vaporizer 200 may use brine B with a salinity of 10%, and the last liquefied gas vaporizer 200 may use brine B with a salinity of 1%. This allows ice slurries I with different concentrations to be generated simultaneously. Also, the type of cooled medium may be different for each liquefied gas vaporizer 200. For example, the first liquefied gas vaporizer 200 may use brine B, the next liquefied gas vaporizer 200 may use sodium chloride, and the last liquefied gas vaporizer 200 may use alcohol.
  • the third embodiment described above can also achieve the same effects as the first embodiment described above.
  • a liquefied gas vaporizer according to a fourth embodiment will be described.
  • the liquefied gas vaporizer of this embodiment is similar to the liquefied gas vaporizer of the first embodiment described above, except that the configurations of the heat exchange section and the circulation section are different. Therefore, in the following description, the liquefied gas vaporizer of this embodiment will be described with a focus on the differences from the first embodiment described above, and the description of the similar points will be omitted.
  • the same reference numerals are used for the same configurations as the above-mentioned embodiment.
  • the heat exchange section 210 of the liquefied gas vaporizer 200 of this embodiment has an outer pipe 219 into which brine B is introduced.
  • Each heat transfer tube 212 of each heat exchange panel 211 is arranged inside this outer pipe 219.
  • Brine B is supplied to the upper end side of the outer pipe 219, and brine B is discharged from the lower end side.
  • Each heat transfer tube 212 is arranged so as to penetrate the outer pipe 219 from top to bottom.
  • the circulation unit 290 also has a first pipe 292 that connects the outer pipe 219 and the storage tank 280, and a second pipe 295 that connects the outer pipe 219 and the storage tank 280.
  • the circulation unit 290 also has a pump (not shown) for circulating the brine B.
  • the fourth embodiment described above can also achieve the same effects as the first embodiment described above.
  • the liquefied gas vaporizer 130 of this embodiment is an intermediate medium type liquefied gas vaporizer 300.
  • the liquefied gas vaporizer 300 has a heat exchanger 310 that exchanges heat between LNG and brine B, a storage tank 380 that stores the brine B, and a circulation unit 390 that circulates the brine B between the storage tank 380 and the heat exchanger 310.
  • the LNG vaporizes (evaporates) and becomes NG, and the brine B is cooled and becomes ice slurry I.
  • the NG generated by heat exchange with the brine B is sent to the odorizer 140.
  • the ice slurry I generated by heat exchange with the LNG is stored in the storage tank 380, and only the required amount is taken out from the storage tank 280 when needed and used.
  • the storage tank 380 has the same configuration as the storage tank 280 in the first embodiment described above, so a description thereof will be omitted.
  • the heat exchange section 310 has an intermediate medium evaporator 320 with a shell 321, an LNG evaporator 330 arranged in the shell 321, and a heater 340 with a shell 341.
  • An intermediate medium Q having a boiling point lower than the temperature of the brine B is stored in the shell 321 of the intermediate medium evaporator 320.
  • the intermediate medium Q is not particularly limited, but may be, for example, propane.
  • the LNG evaporator 330 has a third heat transfer tube 331 into which LNG is introduced.
  • the LNG evaporator 330 is connected to the shell 341 of the heater 340 via a conduit 350.
  • the circulation section 390 has an inlet chamber 391 located at the end on the shell 341 side, an intermediate chamber 392 located between the shells 321 and 341, an outlet chamber 393 located at the end on the shell 321 side, a plurality of first heat transfer tubes 394 passing through the shell 341 and connecting the inlet chamber 391 and the intermediate chamber 392, a plurality of second heat transfer tubes 395 passing through the shell 321 and connecting the intermediate chamber 392 and the outlet chamber 393, a first pipe 396 connecting the inlet chamber 391 and the storage tank 380, and a second pipe 397 connecting the outlet chamber 393 and the storage tank 380.
  • the circulation section 390 also has a pump (not shown) for circulating the brine B.
  • each second heat transfer tube 395 is disposed so as to pass through the liquid intermediate medium Q.
  • the third heat transfer tube 331 of the LNG evaporator 330 is disposed above the liquid intermediate medium Q so as to be in contact with the vaporized intermediate medium Q.
  • the brine B passes through the inlet chamber 391, the first heat transfer tube 394, the intermediate chamber 392, and the second heat transfer tube 395 to reach the outlet chamber 393.
  • heat exchange between the brine B and the intermediate medium Q is performed through the second heat transfer tube 395, and the intermediate medium Q is vaporized (evaporated) and the brine B is cooled.
  • the LNG is introduced into the third heat transfer tube 331 of the LNG evaporator 330.
  • heat exchange between the LNG and the vaporized intermediate medium Q is performed, the LNG is vaporized to generate NG, and the intermediate medium Q is condensed into droplets and falls into the shell 321.
  • the intermediate medium Q repeatedly vaporizes and condenses, and heat exchange between the LNG and the brine B is performed through the intermediate medium Q. This allows efficient heat exchange between the LNG and the brine B.
  • the NG generated in the LNG evaporator 330 is introduced into the shell 341 of the heater 340 via the conduit 350, where it is heated by heat exchange with the brine B flowing inside the first heat transfer tube 394 and is sent out as room temperature gas.
  • the fifth embodiment described above can also achieve the same effects as the first embodiment described above.
  • the liquefied gas vaporizer of the present invention has been described above based on the illustrated embodiment, but the present invention is not limited to this.
  • the configuration of each part can be replaced with any configuration that performs the same function, and any configuration can be added.
  • the medium to be cooled was brine, but it is not limited to this and may be, for example, water, various types of drinking water, sodium chloride, calcium chloride, alcohol, etc. Also, as long as the medium to be cooled can be cooled, it does not have to be frozen. In other words, a liquefied gas vaporizer may be used like a chiller.
  • the liquefied gas vaporizer 130 was installed at the receiving base 100, but the location of the liquefied gas vaporizer 130 is not particularly limited, and may be, for example, a power plant that generates electricity using the gas produced by vaporizing liquefied gas as fuel, a liquefied gas satellite base (a base that receives LNG transported by tanker truck from the receiving base 100, gasifies it, and sends the gas to a contracted party to areas where there is no pipeline from the receiving base 100 and direct supply is not possible), etc.
  • a power plant that generates electricity using the gas produced by vaporizing liquefied gas as fuel
  • a liquefied gas satellite base a base that receives LNG transported by tanker truck from the receiving base 100, gasifies it, and sends the gas to a contracted party to areas where there is no pipeline from the receiving base 100 and direct supply is not possible
  • the liquefied gas vaporizer of the present invention vaporizes the liquefied gas to generate gas through heat exchange between the liquefied gas and the cooled medium, and cools the cooled medium.
  • the cold energy of the liquefied gas is used to cool the cooled medium.
  • This allows the cold energy of the liquefied gas to be used effectively.
  • the liquefied gas is vaporized using the cooled medium, rather than using seawater as in the past, problems such as a drop in seawater temperature do not occur, and the environmental load can also be reduced. Therefore, the liquefied gas vaporizer of the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention makes effective use of the cold energy of a liquefied gas and suppresses effects on the environment. A liquefied gas vaporizer 200 has a heat exchange part 210 that performs a heat exchange between liquefied natural gas (LNG) and brine B, a storage tank 280 that stores the brine B, and a circulation part 280 that circulates the brine B between the storage tank 280 and the heat exchange part 210. The heat exchange between the LNG and the brine B at the heat exchange part 210 evaporates the LNG to generate natural gas (NG) and cools the brine B to generate an ice slurry.

Description

液化ガス気化器Liquefied Gas Vaporizer

 本発明は、液化ガス気化器に関する。 The present invention relates to a liquefied gas vaporizer.

 特許文献1には、LNG(液化天然ガス:Liquefied Natural Gas)を気化するLNG気化器が開示されている。このLNG気化器は、オープンラック式LNG気化器(ORV)であり、複数の熱交換パネルと、各熱交換パネルを下端で並列に接続する下部マニホールドと、各熱交換パネルを上端で並列に接続する上部マニホールドと、を有する。また、各熱交換パネルは、鉛直方向に延在し水平方向に並んで配置された複数の伝熱管と、下部マニホールドに接続され各伝熱管を下端で並列に接続した下部ヘッダー管と、上部マニホールドに接続され各伝熱管を上端で並列に接続した上部ヘッダー管と、を有する。また、LNG気化器は、各伝熱管の外表面に供給するための海水を貯めるトラフと、トラフに海水を供給する海水供給手段と、を有する。 Patent Document 1 discloses an LNG vaporizer that vaporizes LNG (liquefied natural gas). This LNG vaporizer is an open rack type LNG vaporizer (ORV) and has multiple heat exchange panels, a lower manifold that connects the heat exchange panels in parallel at their lower ends, and an upper manifold that connects the heat exchange panels in parallel at their upper ends. Each heat exchange panel also has multiple heat transfer tubes that extend vertically and are arranged side by side in the horizontal direction, a lower header tube that is connected to the lower manifold and connects the heat transfer tubes in parallel at their lower ends, and an upper header tube that is connected to the upper manifold and connects the heat transfer tubes in parallel at their upper ends. The LNG vaporizer also has a trough that stores seawater to be supplied to the outer surface of each heat transfer tube, and seawater supply means that supplies seawater to the trough.

 このようなLNG気化器では、LNGが下部マニホールドから下部ヘッダー管を介して各伝熱管内に下端側から導入される。一方、海水供給手段によりトラフに貯められた海水は、トラフから溢流して伝熱管の外表面を濡らしながら垂下する。伝熱管内に導入されたLNGは、伝熱管の外部を流通する海水により加熱されて気化することでNG(天然ガス:Natural Gas)となり、伝熱管内を上昇する。このNGは、伝熱管の上端から上部ヘッダー管を介して上部マニホールドへ導出される。このように、特許文献1のLNG気化器は、熱交換器の一種であり、海水との熱交換によってLNGを加熱して気化することでNGを生成するものである。 In such an LNG vaporizer, LNG is introduced from the lower manifold through the lower header pipe into each heat transfer tube from the lower end. Meanwhile, seawater stored in the trough by the seawater supply means overflows from the trough and hangs down while wetting the outer surface of the heat transfer tube. The LNG introduced into the heat transfer tube is heated and vaporized by the seawater flowing outside the heat transfer tube, becoming NG (natural gas), which rises inside the heat transfer tube. This NG is led from the top of the heat transfer tube through the upper header pipe to the upper manifold. In this way, the LNG vaporizer of Patent Document 1 is a type of heat exchanger that generates NG by heating and vaporizing LNG through heat exchange with seawater.

特開2013-148253号公報JP 2013-148253 A

 以上のようなLNG気化器では、海水供給手段を用いて海から海水をトラフに供給し、トラフから溢流して伝熱管の外表面を垂下して冷やされた海水を再び海に戻している。そのため、LNGの冷熱エネルギーが海に廃棄され、LNGの冷熱エネルギーを有効活用することができない。また、LNGの加熱に利用される前後の海水の温度差ΔTが大きいと海水温の低下を招き、海およびその周辺地域の環境に影響を与えるおそれがある。そのため、それを避けるために温度差ΔTを2.0℃以内程度に抑える運用がされており、その分、大量の海水を伝熱管に供給し続けなければならず、運転コストが高くなり易い。 In LNG vaporizers like the one above, seawater is supplied from the ocean to the trough using a seawater supply means, and the cooled seawater overflows from the trough and hangs down the outer surface of the heat transfer tube, before being returned to the ocean. This means that the cold energy of the LNG is dumped into the ocean, and the cold energy of the LNG cannot be used effectively. Also, if the temperature difference ΔT between the seawater before and after it is used to heat the LNG is large, it can lead to a drop in the seawater temperature, which could have an impact on the environment of the ocean and its surrounding areas. To avoid this, the temperature difference ΔT is kept within about 2.0°C, but this requires a large amount of seawater to be continuously supplied to the heat transfer tube, which can easily increase operating costs.

 本発明の目的は、LNG、LPG等の液化ガスの冷熱エネルギーを有効活用することができ、かつ、環境への影響を抑えることのできる液化ガス気化器を提供することにある。 The object of the present invention is to provide a liquefied gas vaporizer that can effectively utilize the cold energy of liquefied gases such as LNG and LPG while minimizing the impact on the environment.

 このような目的は、下記の本発明により達成される。 This objective is achieved by the present invention described below.

 (1) 液化ガスと被冷却媒体との熱交換を行う熱交換部と、
 被冷却媒体を貯留する貯留タンクと、
 前記貯留タンクと前記熱交換部との間で前記被冷却媒体を循環させる循環部と、を有し、
 前記熱交換部での前記液化ガスと前記被冷却媒体との熱交換により、前記液化ガスを気化させてガスを生成すると共に前記被冷却媒体を冷却することを特徴とする液化ガス気化器。
(1) a heat exchange unit that exchanges heat between the liquefied gas and a medium to be cooled;
a storage tank for storing the medium to be cooled;
a circulation unit that circulates the cooled medium between the storage tank and the heat exchange unit,
A liquefied gas vaporizer characterized in that the liquefied gas is vaporized to generate gas and the cooled medium is cooled by heat exchange between the liquefied gas and the cooled medium in the heat exchange section.

 (2) 前記被冷却媒体は、塩水であり、
 前記熱交換部での前記液化ガスと前記被冷却媒体との熱交換により、前記塩水を冷却させて氷スラリーを生成し、前記氷スラリーを前記貯留タンクに貯留する上記(1)に記載の液化ガス気化器。
(2) The medium to be cooled is salt water,
The liquefied gas vaporizer described in (1) above, wherein the salt water is cooled by heat exchange between the liquefied gas and the cooled medium in the heat exchange section to generate ice slurry, and the ice slurry is stored in the storage tank.

 (3) 前記熱交換部は、前記液化ガスが導入される伝熱管を有し、
 前記被冷却媒体が前記伝熱管の外表面を垂下することにより、前記液化ガスと前記被冷却媒体との熱交換が行われる上記(1)に記載の液化ガス気化器。
(3) The heat exchange unit has a heat transfer tube into which the liquefied gas is introduced,
The liquefied gas vaporizer according to (1) above, wherein heat exchange between the liquefied gas and the cooled medium is performed by the cooled medium hanging down the outer surface of the heat transfer tube.

 (4) 前記循環部は、前記熱交換部の上方に配置され前記被冷却媒体を貯留するトラフと、前記貯留タンクと前記トラフとを接続し前記貯留タンク内の前記被冷却媒体を前記トラフに供給する第1配管と、を有し、
 前記トラフから溢流した前記被冷却媒体が伝熱管に供給される上記(3)に記載の液化ガス気化器。
(4) The circulation unit includes a trough disposed above the heat exchange unit and configured to store the cooled medium, and a first pipe connecting the storage tank and the trough and supplying the cooled medium in the storage tank to the trough,
The liquefied gas vaporizer according to the above (3), wherein the cooled medium overflowing from the trough is supplied to a heat transfer tube.

 (5) 前記循環部は、前記伝熱管を垂下した前記被冷却媒体を回収する回収槽と、前記回収槽と前記貯留タンクとを接続し前記回収槽内の前記被冷却媒体を前記貯留タンクに導入する第2配管と、を有する上記(4)に記載の液化ガス気化器。 (5) The liquefied gas vaporizer described in (4) above, in which the circulation section includes a recovery tank that recovers the cooled medium from the heat transfer tube hanging down, and a second pipe that connects the recovery tank to the storage tank and introduces the cooled medium in the recovery tank into the storage tank.

 (6) 前記熱交換部は、前記被冷却媒体が導入される外管と、前記外管内に配置され前記液化ガスが導入される伝熱管と、を有する上記(1)に記載の液化ガス気化器。 (6) The liquefied gas vaporizer described in (1) above, wherein the heat exchange unit has an outer tube into which the cooled medium is introduced and a heat transfer tube disposed within the outer tube into which the liquefied gas is introduced.

 (7) 前記熱交換部は、中間媒体を介して前記液化ガスと前記被冷却媒体との熱交換を行う上記(1)に記載の液化ガス気化器。 (7) A liquefied gas vaporizer as described in (1) above, in which the heat exchange section exchanges heat between the liquefied gas and the cooled medium via an intermediate medium.

 (8) 前記液化ガスの受け入れ基地に設置される上記(1)に記載の液化ガス気化器。 (8) A liquefied gas vaporizer as described in (1) above, which is installed at a receiving base for the liquefied gas.

 本発明の液化ガス気化器は、液化ガスと被冷却媒体との熱交換により、液化ガスを気化させてガスを生成すると共に被冷却媒体を冷却する。つまり、液化ガスの冷熱エネルギーを被冷却媒体の冷却に利用する。これにより、液化ガスの冷熱エネルギーを有効活用することができる。また、従来の海水ではなく、被冷却媒体を用いて液化ガスを気化させるため、従来のような海水温度の低下等の問題が生じず、環境負荷を低減することもできる。 The liquefied gas vaporizer of the present invention vaporizes the liquefied gas to generate gas through heat exchange between the liquefied gas and the cooled medium, while also cooling the cooled medium. In other words, the cold energy of the liquefied gas is used to cool the cooled medium. This allows for effective use of the cold energy of the liquefied gas. In addition, because the liquefied gas is vaporized using the cooled medium, rather than seawater as in the past, problems such as a drop in seawater temperature do not occur as in the past, and the environmental burden can also be reduced.

図1は、LNGの受け入れ基地を示す図である。FIG. 1 is a diagram showing an LNG receiving terminal. 図2は、第1実施形態に係る液化ガス気化器を示す図である。FIG. 2 is a diagram showing the liquefied gas vaporizer according to the first embodiment. 図3は、図2の液化ガス気化器が有する熱交換パネルを示す図である。FIG. 3 is a diagram showing a heat exchange panel of the liquefied gas vaporizer of FIG. 図4は、氷スラリーを空調システムに使用した様子を示す図である。FIG. 4 shows the use of ice slurry in an air conditioning system. 図5は、氷スラリーを被保冷物の急速凍結処理に使用した様子を示す図である。FIG. 5 is a diagram showing a state in which the ice slurry is used for quick freezing of an object to be kept cold. 図6は、第2実施形態に係る液化ガス気化器を示す図である。FIG. 6 is a diagram showing a liquefied gas vaporizer according to the second embodiment. 図7は、第3実施形態に係る液化ガス気化器を示す図である。FIG. 7 is a diagram showing a liquefied gas vaporizer according to the third embodiment. 図8は、第4実施形態に係る液化ガス気化器を示す図である。FIG. 8 is a diagram showing a liquefied gas vaporizer according to the fourth embodiment. 図9は、第5実施形態に係る液化ガス気化器を示す図である。FIG. 9 is a diagram showing a liquefied gas vaporizer according to the fifth embodiment.

 以下、本発明の液化ガス気化器を添付図面に示す各実施形態に基づいて詳細に説明する。なお、本発明の液化ガス気化器で気化する液化ガスとしては、特に限定されないが、典型的には、LNG(液化天然ガス)、LPG(液化石油ガス)が挙げられる。ただし、液化ガスとしては、例えば、水素ガス(液化水素)、液化アンモニア(液安)等、LNG、LPG以外のいかなるものであってもよい。以下の各実施形態では、説明の便宜上、液化ガスとしてLNGを用いる例について代表して説明するが、各実施形態の液化ガス気化器によれば、LPG等のLNG以外の液化ガスについても、LNGと同様に気化することができる。 The liquefied gas vaporizer of the present invention will be described in detail below based on each embodiment shown in the attached drawings. The liquefied gas vaporized by the liquefied gas vaporizer of the present invention is not particularly limited, but typically includes LNG (liquefied natural gas) and LPG (liquefied petroleum gas). However, the liquefied gas may be anything other than LNG or LPG, such as hydrogen gas (liquefied hydrogen) or liquefied ammonia (liquid ammonia). For ease of explanation, each of the following embodiments will be described using an example in which LNG is used as the liquefied gas, but the liquefied gas vaporizer of each embodiment can vaporize liquefied gases other than LNG, such as LPG, in the same way as LNG.

 <第1実施形態>
 まず、日本国内におけるNG(天然ガス)の供給方法について簡単に説明する。日本国においては、NGのほとんどを輸入に頼っている。また、NG原産国との間にパイプラインが通っておらず、海運により輸入される。この際、輸送効率を高めるため、図1に示すように、NGは、天然ガス田190に設置された液化プラントによって-162℃程度のLNG(液化天然ガス)にされ、LNGタンカー180を用いて日本にある約40カ所の受け入れ基地100に輸送される。
First Embodiment
First, we will briefly explain how NG (natural gas) is supplied in Japan. In Japan, most of the NG is imported. In addition, there are no pipelines between Japan and the countries where NG originates, so NG is imported by sea transport. In order to increase the efficiency of transportation, as shown in FIG. 1, the NG is converted into LNG (liquefied natural gas) at about -162°C by a liquefaction plant installed in a natural gas field 190, and then transported to about 40 receiving terminals 100 in Japan using LNG tankers 180.

 受け入れ基地100には、輸送されたLNGを一時的に保管するLNGタンク120と、LNGタンク120に保管されたLNGを気化して必要量の天然ガスNGを生成する液化ガス気化器130と、液化ガス気化器130で生成されたNGに匂いを付ける付臭器140と、が設置されている。付臭器140で臭い付けされたNGは、市街地等の各所に設置されたガスホルダー150に送られて貯留され、そこからガス管を通って各契約先に送られる。 The receiving terminal 100 is equipped with LNG tanks 120 for temporarily storing the transported LNG, a liquefied gas vaporizer 130 for vaporizing the LNG stored in the LNG tanks 120 to produce the required amount of natural gas NG, and an odorizer 140 for adding an odor to the NG produced by the liquefied gas vaporizer 130. The NG odorized by the odorizer 140 is sent to and stored in gas holders 150 installed in various locations in urban areas, etc., and is then sent to each contracted party through gas pipes.

 なお、LPGの受け入れ基地の場合、輸送されたLPGを一時的に保管するLPGタンクと、LPGタンクに保管されたLPGを気化して必要量のガスを生成する液化ガス気化器と、液化ガス気化器で生成されたガスに匂いを付ける付臭器と、付臭器で臭い付けされたガスを貯留するガスホルダーと、を有する。そして、ガスホルダーに貯留したガスをタンクローリー等で必要箇所に搬送する。 In the case of an LPG receiving terminal, it has an LPG tank for temporarily storing the transported LPG, a liquefied gas vaporizer for vaporizing the LPG stored in the LPG tank to produce the required amount of gas, an odorizer for adding an odor to the gas produced by the liquefied gas vaporizer, and a gas holder for storing the gas odorized by the odorizer. The gas stored in the gas holder is then transported to the required location by tanker truck or the like.

 前述したように、従来では、液化ガス気化器130において海水を用いてLNGを気化(蒸発)させるが、この方法では、LNGの冷熱エネルギーを海水と共に海に捨てることになり、LNGの冷熱エネルギーを有効活用することができず、かつ、環境への負荷が大きい。そこで、本実施形態の液化ガス気化器130では、海水の代わりに被冷却媒体であるブラインB(塩水)を用い、LNGとブラインBとの熱交換によってLNGを気化(蒸発)させてNGを生成すると共に、ブラインBを冷却して氷スラリーIを生成する。 As mentioned above, conventionally, LNG is vaporized (evaporated) using seawater in the liquefied gas vaporizer 130, but with this method, the cold energy of the LNG is dumped into the ocean together with the seawater, making it impossible to effectively utilize the cold energy of the LNG and placing a heavy burden on the environment. Therefore, in the liquefied gas vaporizer 130 of this embodiment, brine B (salt water) is used as a cooled medium instead of seawater, and LNG is vaporized (evaporated) by heat exchange between the LNG and brine B to produce NG, and the brine B is cooled to produce ice slurry I.

 このような構成の液化ガス気化器130によれば、LNGの冷熱エネルギーをブラインBの冷却に利用することができる。そのため、LNGの冷熱エネルギーを有効活用することができる。さらに、海水ではなくブラインBを用いてLNGを気化させるため、従来のような海水温度の低下等の問題が生じず、環境への負荷を低減することもできる。 With the liquefied gas vaporizer 130 configured in this way, the cold energy of the LNG can be used to cool the brine B. This allows for effective use of the cold energy of the LNG. Furthermore, because the LNG is vaporized using the brine B instead of seawater, problems such as a drop in seawater temperature, which occurred in the past, do not occur, and the burden on the environment can also be reduced.

 なお、塩分濃度にもよるがブラインBが-22℃~-1℃程度であるのに対して、LNGは-162℃程度である。そのため、両者の間で多くの熱が交換され、氷スラリーIおよびNGが共に効率的に生成される。特に、被冷却媒体をブラインBとすることで、種々の用途に使用可能な氷スラリーIを生成することができ、より利便性の高い液化ガス気化器130となる。 Note that, although it depends on the salinity, brine B is around -22°C to -1°C, whereas LNG is around -162°C. Therefore, a lot of heat is exchanged between the two, and both ice slurry I and LNG are efficiently produced. In particular, by using brine B as the cooled medium, ice slurry I that can be used for a variety of purposes can be produced, making the liquefied gas vaporizer 130 more convenient.

 液化ガス気化器130で生成した氷スラリーIの使用用途としては、特に限定されず、例えば、生鮮食品(主に、魚類、貝類、甲殻類等の海産物)の急速凍結処理(瞬間冷凍処理)、非凍結保存や、冷房、冷蔵、冷凍等の空調システムなどが挙げられる。 The uses of the ice slurry I produced by the liquefied gas vaporizer 130 are not particularly limited, and examples include quick freezing (instantaneous freezing) of fresh foods (mainly marine products such as fish, shellfish, and crustaceans), non-frozen storage, and air conditioning systems such as cooling, refrigeration, and freezing.

 氷スラリーIは、塩水中に微細な氷が混濁したシャーベット状の氷であり、スラリー氷、アイススラリー、スラリーアイスなどとも呼ばれる。ブラインBの塩分濃度は、特に限定されず、氷スラリーIの使用用途によって適宜設定される。後述するが、例えば、生鮮食品の急速凍結処理に用いるものであれば、塩分濃度が25%程度(飽和濃度)であることが好ましい。これにより、氷スラリーIの温度を-22°程度まで下げられ、より急速に生鮮食品を凍結処理することができる。また、生鮮食品の被凍結保存に用いるものであれば、塩分濃度が1%程度であることが好ましい。これにより、氷スラリーIの温度を-1°程度にすることができ、生鮮食品を非凍結状態でかつより低温で保存することができる。 Ice slurry I is sherbet-like ice in which fine ice particles are mixed in salt water, and is also called slurry ice, ice slurry, or slurry ice. The salt concentration of the brine B is not particularly limited and is set appropriately depending on the use of the ice slurry I. As will be described later, for example, if it is to be used for the quick freezing of fresh foods, the salt concentration is preferably about 25% (saturation concentration). This allows the temperature of the ice slurry I to be lowered to about -22°, allowing the fresh foods to be frozen more quickly. Furthermore, if it is to be used for the frozen preservation of fresh foods, the salt concentration is preferably about 1%. This allows the temperature of the ice slurry I to be lowered to about -1°, allowing the fresh foods to be preserved in an unfrozen state at a lower temperature.

 次に、液化ガス気化器130について説明する。前述したように、液化ガス気化器130は、LNGの受け入れ基地100に設置され、LNGタンク120と付臭器140との間に接続されている。これにより、液化ガス気化器130へのLNGの供給が容易となる。ただし、液化ガス気化器130の設置場所は、特に限定されない。 Next, the liquefied gas vaporizer 130 will be described. As described above, the liquefied gas vaporizer 130 is installed at the LNG receiving terminal 100 and is connected between the LNG tank 120 and the odorizer 140. This makes it easy to supply LNG to the liquefied gas vaporizer 130. However, the location where the liquefied gas vaporizer 130 is installed is not particularly limited.

 図2に示すように、本実施形態の液化ガス気化器130は、オープンラック式の液化ガス気化器200である。液化ガス気化器200は、LNGとブラインBとの熱交換を行う熱交換部210と、ブラインBを貯留する貯留タンク280と、貯留タンク280と熱交換部210との間でブラインBを循環させる循環部290と、を有する。そして、熱交換部210でのLNGとブラインBとの熱交換により、LNGが気化(蒸発)してNGとなり、ブラインBが冷却されて氷スラリーIとなる。ブラインBとの熱交換により生成されたNGは、付臭器140に送られる。一方、LNGとの熱交換により生成された氷スラリーIは、貯留タンク280に貯留され、必要時に必要量だけ貯留タンク280から取り出されて使用される。 As shown in FIG. 2, the liquefied gas vaporizer 130 of this embodiment is an open rack type liquefied gas vaporizer 200. The liquefied gas vaporizer 200 has a heat exchange section 210 that performs heat exchange between LNG and brine B, a storage tank 280 that stores brine B, and a circulation section 290 that circulates brine B between the storage tank 280 and the heat exchange section 210. Then, by the heat exchange between LNG and brine B in the heat exchange section 210, LNG is vaporized (evaporated) to become NG, and the brine B is cooled to become ice slurry I. The NG generated by heat exchange with the brine B is sent to the odorizer 140. On the other hand, the ice slurry I generated by heat exchange with LNG is stored in the storage tank 280, and only the required amount is taken out from the storage tank 280 when necessary and used.

 熱交換部210は、水平方向に並んで配置された複数の各熱交換パネル211を有する。また、各熱交換パネル211は、図3に示すように、鉛直方向に延在し水平方向に並んで配置された複数の伝熱管212と、各伝熱管212を下端で接続した下部ヘッダー管213と、各伝熱管212を上端で接続した上部ヘッダー管214と、を有する。 The heat exchange section 210 has a plurality of heat exchange panels 211 arranged in a horizontal line. As shown in FIG. 3, each heat exchange panel 211 has a plurality of heat transfer tubes 212 extending in a vertical direction and arranged in a horizontal line, a lower header tube 213 connecting the heat transfer tubes 212 at their lower ends, and an upper header tube 214 connecting the heat transfer tubes 212 at their upper ends.

 また、各熱交換パネル211の下部ヘッダー管213は、下部マニホールド220に接続され、下部マニホールド220は、LNGタンク120に接続されている。また、各熱交換パネル211の上部ヘッダー管214は、上部マニホールド230に接続され、上部マニホールド230は、付臭器140に接続されている。 The lower header pipes 213 of each heat exchange panel 211 are connected to a lower manifold 220, which is connected to the LNG tank 120. The upper header pipes 214 of each heat exchange panel 211 are connected to an upper manifold 230, which is connected to the odorizer 140.

 そして、LNGタンク120から送出されたLNGが下部マニホールド220を介して各熱交換パネル211の各伝熱管212内に下端側から導入される。伝熱管212内に導入されたLNGは、ブラインBとの熱交換によって気化(蒸発)してNGとなる。このようにして生成されたNGは、伝熱管212内を上昇し、伝熱管212の上端側から上部マニホールド230を介して付臭器140に導入される。 Then, the LNG discharged from the LNG tank 120 is introduced into each heat transfer tube 212 of each heat exchange panel 211 from the lower end side via the lower manifold 220. The LNG introduced into the heat transfer tube 212 is vaporized (evaporated) by heat exchange with the brine B to become NG. The NG thus generated rises inside the heat transfer tube 212 and is introduced into the odorizer 140 from the upper end side of the heat transfer tube 212 via the upper manifold 230.

 また、図2に示すように、循環部290は、トラフ291(堰)と、トラフ291と貯留タンク280とを接続する第1配管292と、回収槽294と、回収槽294と貯留タンク280とを接続する第2配管295と、を有する。また、循環部290は、ブラインBを循環させるための図示しないポンプを有する。 As shown in FIG. 2, the circulation unit 290 has a trough 291 (weir), a first pipe 292 connecting the trough 291 and the storage tank 280, a recovery tank 294, and a second pipe 295 connecting the recovery tank 294 and the storage tank 280. The circulation unit 290 also has a pump (not shown) for circulating the brine B.

 トラフ291は、各熱交換パネル211の上部に配置されている。これら各トラフ291には貯留タンク280から第1配管292を通ってブラインBが供給される。これにより、各トラフ291にブラインBが溜められる。トラフ291に溜められたブラインBは、トラフ291から溢流して熱交換パネル211の各伝熱管212の外表面を濡らしながら垂下する。この際に、各伝熱管212内のLNGとブラインBとの熱交換が行われ、LNGが気化してNGとなる。このような熱交換部210によれば、簡単な構成でかつ効率的にLNGとブラインBとの熱交換を行うことができる。特に、トラフ291から溢流したブラインBが熱交換部210に供給される構成とすることにより、熱交換部210へのブラインBの供給が安定する。 The troughs 291 are disposed above each heat exchange panel 211. Brine B is supplied to each of the troughs 291 from the storage tank 280 through the first pipe 292. This allows brine B to accumulate in each trough 291. The brine B accumulated in the trough 291 overflows from the trough 291 and hangs down while wetting the outer surface of each heat transfer tube 212 of the heat exchange panel 211. At this time, heat exchange occurs between the LNG in each heat transfer tube 212 and the brine B, and the LNG vaporizes and becomes NG. According to such a heat exchange section 210, heat exchange between the LNG and the brine B can be performed efficiently with a simple configuration. In particular, by configuring the brine B overflowing from the trough 291 to be supplied to the heat exchange section 210, the supply of brine B to the heat exchange section 210 is stabilized.

 回収槽294は、各熱交換パネル211の下側に配置されており、各熱交換パネル211を垂下したブラインBを回収する。回収槽294に回収されたブラインBは、第2配管295を通って貯留タンク280に導入される。これにより、熱交換部210に供給されたブラインBを簡単に回収することができる。循環部290は、以上のような構成によって、貯留タンク280と熱交換部210との間でブラインBを循環させる。ブラインBを貯留タンク280と熱交換部210との間で循環させ続けることにより、熱交換部210でのLNGとの熱交換によってブラインBが徐々に冷却され、次第に一部が凍結して氷となり、塩水中に微細な氷が混濁したシャーベット状の氷スラリーIが生成される。そして、このようにして生成された氷スラリーIが貯留タンク280に貯蔵される。 The recovery tank 294 is disposed below each heat exchange panel 211 and recovers the brine B that hangs down from each heat exchange panel 211. The brine B recovered in the recovery tank 294 is introduced into the storage tank 280 through the second pipe 295. This allows the brine B supplied to the heat exchange section 210 to be easily recovered. The circulation section 290 circulates the brine B between the storage tank 280 and the heat exchange section 210 with the above configuration. By continuing to circulate the brine B between the storage tank 280 and the heat exchange section 210, the brine B is gradually cooled by heat exchange with the LNG in the heat exchange section 210, and gradually some of it freezes to become ice, generating a sherbet-like ice slurry I in which fine ice is mixed in salt water. The ice slurry I generated in this manner is then stored in the storage tank 280.

 ここで、本実施形態の液化ガス気化器200は、複数の貯留タンク280を有する。また、第1配管292には貯留タンク280毎にバルブB1が設けられている。そのため、各バルブB1の開閉を制御することにより、どの貯留タンク280内のブラインBを熱交換部210に供給するか、つまり、どの貯留タンク280内のブラインBを冷却するかを選択することができる。同様に、第2配管295には貯留タンク280毎にバルブB2が設けられている。そして、各バルブB2の開閉を制御することにより、どの貯留タンク280内に熱交換により冷却されたブラインBを導入するかを選択することができる。 Here, the liquefied gas vaporizer 200 of this embodiment has multiple storage tanks 280. In addition, the first pipe 292 is provided with a valve B1 for each storage tank 280. Therefore, by controlling the opening and closing of each valve B1, it is possible to select which storage tank 280 the brine B in to be supplied to the heat exchange section 210, that is, which storage tank 280 the brine B in to be cooled is to be selected. Similarly, the second pipe 295 is provided with a valve B2 for each storage tank 280. Then, by controlling the opening and closing of each valve B2, it is possible to select which storage tank 280 the brine B cooled by heat exchange is to be introduced into.

 さらに、本実施形態では、ブラインBの塩分濃度が貯留タンク280毎に異なっている。つまり、貯留タンク280毎に種類の異なるブラインBが貯留されている。例えば、貯留タンク280Aには塩分濃度1%のブラインBが貯留され、貯留タンク280Bには塩分濃度10%のブラインBが貯留され、貯留タンク280Cには塩分濃度25%(飽和濃度)のブラインBが貯留されている。 Furthermore, in this embodiment, the salinity of the brine B differs for each storage tank 280. In other words, a different type of brine B is stored in each storage tank 280. For example, storage tank 280A stores brine B with a salinity of 1%, storage tank 280B stores brine B with a salinity of 10%, and storage tank 280C stores brine B with a salinity of 25% (saturation concentration).

 そのため、例えば、塩分濃度1%の氷スラリーIを生成したい場合は、貯留タンク280AのバルブB1、B2を開、貯留タンク280B、280CのバルブB1、B2を閉とし、貯留タンク280A内のブラインBを熱交換部210に循環させればよい。 Therefore, for example, if it is desired to generate ice slurry I with a salinity of 1%, the valves B1 and B2 of the storage tank 280A are opened, and the valves B1 and B2 of the storage tanks 280B and 280C are closed, and the brine B in the storage tank 280A is circulated to the heat exchange section 210.

 同様に、塩分濃度10%の氷スラリーIを生成したい場合は、貯留タンク280BのバルブB1、B2を開、貯留タンク280A、280CのバルブB1、B2を閉とし、貯留タンク280B内のブラインBを熱交換部210に循環させればよい。また、塩分濃度25%の氷スラリーIを生成したい場合は、貯留タンク280CのバルブB1、B2を開、貯留タンク280A、280BのバルブB1、B2を閉とし、貯留タンク280C内のブラインBを熱交換部210に循環させればよい。 Similarly, to generate ice slurry I with a salinity of 10%, valves B1 and B2 of storage tank 280B are opened, valves B1 and B2 of storage tanks 280A and 280C are closed, and the brine B in storage tank 280B is circulated to heat exchange section 210. To generate ice slurry I with a salinity of 25%, valves B1 and B2 of storage tank 280C are opened, valves B1 and B2 of storage tanks 280A and 280B are closed, and the brine B in storage tank 280C is circulated to heat exchange section 210.

 このように、ブラインBの塩分濃度を貯留タンク280毎に異ならせることにより、種々の濃度の氷スラリーIを生成、貯留することができる。ただし、これに限定されず、塩分濃度が同じブラインBが全ての貯留タンク280に貯留されていてもよい。また、貯留タンク280は、1つであってもよい。 In this way, by varying the salt concentration of the brine B for each storage tank 280, ice slurries I of various concentrations can be generated and stored. However, this is not limited to this, and brine B with the same salt concentration may be stored in all storage tanks 280. Also, there may be only one storage tank 280.

 また、各貯留タンク280には、内部に貯留された氷スラリーIを排出するための排出口281と、内部にブラインBを供給するための供給口282と、が設けられている。氷スラリーIを使用する場合は、排出口281を介して必要量の氷スラリーIを取り出すことができる。また、氷スラリーIの使用により内部のブラインBの量が所定量以下となった場合などには、供給口282を介してブラインBを補充することができる。 Each storage tank 280 is provided with a discharge port 281 for discharging the ice slurry I stored therein, and a supply port 282 for supplying brine B therein. When ice slurry I is used, the required amount of ice slurry I can be taken out through the discharge port 281. Furthermore, when the amount of brine B inside falls below a predetermined amount due to use of ice slurry I, brine B can be replenished through the supply port 282.

 また、図示しないが、各貯留タンク280には、貯留されたブラインBを撹拌する撹拌羽根が設置されている。これにより、貯留タンク280内での氷スラリーIの凝集を抑制することができる。 In addition, although not shown, each storage tank 280 is equipped with a stirring blade for stirring the stored brine B. This makes it possible to suppress the aggregation of ice slurry I within the storage tank 280.

 また、液化ガス気化器200は、氷スラリーIを昇温させて氷の少なくとも一部を融かす昇温機構270を有する。例えば、NGの生産量(LNGの供給量)に対して氷スラリーIの使用料が少ないと、新たなブラインBの補充によるブラインBの温度上昇の機会が少ないことから貯留タンク280内のブラインBが過度に冷却され、氷スラリーIの氷含有量が過度に高くなってブラインBの流動性が悪化し、NGの生成が阻害されるおそれがある。そのため、昇温機構270によって貯留タンク280内の氷スラリーIを昇温させて氷の少なくとも一部を融かすことにより、ブラインBの流動性を維持する。そのため、NGの生産量に対して氷スラリーIの使用料が少ない場合においても、NGの生成を連続的かつ継続的に行うことができる。 The liquefied gas vaporizer 200 also has a heating mechanism 270 that heats the ice slurry I to melt at least a portion of the ice. For example, if the amount of ice slurry I used is small relative to the amount of NG produced (the amount of LNG supplied), there is little opportunity to raise the temperature of the brine B by refilling it with new brine B, so the brine B in the storage tank 280 is excessively cooled, the ice content of the ice slurry I becomes excessively high, the fluidity of the brine B deteriorates, and the production of NG may be hindered. Therefore, the fluidity of the brine B is maintained by heating the ice slurry I in the storage tank 280 with the heating mechanism 270 to melt at least a portion of the ice. Therefore, even if the amount of ice slurry I used is small relative to the amount of NG produced, NG can be produced continuously and continuously.

 本実施形態の昇温機構270は、各貯留タンク280に配置されたヒーター271を有している。このような構成によれば、ヒーター271を駆動することで貯留タンク280内の氷スラリーIを簡単かつ効率的に昇温させることができる。なお、どの貯留タンク280内の氷スラリーIを昇温させるかは任意に選択することができる。 The heating mechanism 270 of this embodiment has a heater 271 arranged in each storage tank 280. With this configuration, the ice slurry I in the storage tank 280 can be heated simply and efficiently by driving the heater 271. It is possible to arbitrarily select which storage tank 280 contains the ice slurry I to be heated.

 ただし、昇温機構270の構成は、特に限定されない。例えば、ヒーター271を第1配管292に配置し、第1配管292内を通るブラインBを加熱してもよい。また、ヒーター271を回収槽294に配置し、回収槽294に回収されたブラインBを加熱してもよい。また、液化ガス気化器200内の発熱部(例えば、モーター、ポンプなど)、外気などとの熱交換により氷スラリーIを昇温させるなど、ヒーターを用いずに氷スラリーIを昇温させる機構であってもよい。 However, the configuration of the heating mechanism 270 is not particularly limited. For example, the heater 271 may be disposed in the first pipe 292 to heat the brine B passing through the first pipe 292. The heater 271 may also be disposed in the recovery tank 294 to heat the brine B recovered in the recovery tank 294. The mechanism may also heat the ice slurry I without using a heater, such as by heating the ice slurry I through heat exchange with a heat generating part (e.g., a motor, a pump, etc.) in the liquefied gas vaporizer 200 or with the outside air.

 以上、液化ガス気化器200について説明した。次に、液化ガス気化器200で生成された氷スラリーIの使用用途について説明する。1つの使用用途として空調システム700が挙げられる。例えば、図4に示すように、建物Xには、空調システム700として、氷スラリー貯留タンク710と、室内に設置された空調機720と、が設置されており、空調機720の吸引口721と吹出口722とを繋ぐ管路730が氷スラリー貯留タンク710を通過している。 The above describes the liquefied gas vaporizer 200. Next, the uses of the ice slurry I generated by the liquefied gas vaporizer 200 will be described. One use is an air conditioning system 700. For example, as shown in FIG. 4, building X is equipped with an ice slurry storage tank 710 and an air conditioner 720 installed indoors as the air conditioning system 700, and a pipe 730 connecting the suction port 721 and the blowing port 722 of the air conditioner 720 passes through the ice slurry storage tank 710.

 氷スラリー貯留タンク710には、液化ガス気化器200で生成された氷スラリーIが十分に貯留されており、吸引口721から吸引された室内の空気は、氷スラリー貯留タンク710を通過する際に氷スラリーIの冷熱エネルギーによって冷却され、吹出口722から室内に吹き出される。これにより、室内を冷房することができる。氷スラリーIによれば、潜熱の作用によって氷成分(個体成分)が融解するまで、氷スラリーIの温度がブラインBの融点付近に維持される。固体を液体とするための融解熱は、液体の比熱と比べて非常に高いため、氷スラリーIが高効率の蓄熱材として機能し、より長時間室内の空気を冷却することができる。 The ice slurry storage tank 710 stores a sufficient amount of ice slurry I produced by the liquefied gas vaporizer 200, and the indoor air sucked in from the suction port 721 is cooled by the cold energy of the ice slurry I as it passes through the ice slurry storage tank 710, and is blown out from the blowout port 722 into the room. This allows the room to be cooled. The ice slurry I keeps the temperature of the ice slurry I near the melting point of the brine B until the ice components (solid components) melt due to the action of latent heat. The heat of fusion required to turn a solid into a liquid is much higher than the specific heat of the liquid, so the ice slurry I functions as a highly efficient heat storage material and allows the indoor air to be cooled for a longer period of time.

 ただし、空調システム700としては、氷スラリーIを利用するものであれば、特に限定されない。例えば、従来から知られている氷蓄熱式空調システムであってもよい。また、空調システムは、部屋の冷房ではなく、冷蔵庫や冷凍庫内の冷却に用いることもできる。 However, there are no particular limitations on the air conditioning system 700, so long as it uses ice slurry I. For example, it may be a conventionally known ice thermal storage air conditioning system. Furthermore, the air conditioning system may be used to cool the inside of a refrigerator or freezer, rather than just cooling a room.

 また、氷スラリーIの別の使用用途として、魚類、貝類、甲殻類等の海産物(被保冷物F)の急速凍結処理が挙げられる。この場合、図5に示すように、例えば、氷スラリーIが充填された発泡スチロール製の保温箱に被保冷物Fを投入する。氷スラリーIは、比表面積が大きいため、被保冷物Fを素早く凍結処理することができる。また、前述した潜熱の効果によって、被保冷物Fを長時間凍結保存することができる。そのため、被保冷物Fの鮮度を保ちつつ、長時間にわたって被保冷物Fを保冷することができる。また、氷スラリーIは、柔らかく、被保冷物Fとの接触(衝突)によっても被保冷物を傷付けることがない。 Another use of ice slurry I is the rapid freezing of marine products (item F) such as fish, shellfish, and crustaceans. In this case, as shown in FIG. 5, the item F is placed in an insulated polystyrene foam box filled with ice slurry I. Because ice slurry I has a large specific surface area, it can quickly freeze the item F. In addition, the above-mentioned latent heat effect allows the item F to be frozen for a long time. Therefore, the item F can be kept cold for a long time while maintaining its freshness. In addition, ice slurry I is soft and does not damage the item F even when it comes into contact (collisions) with it.

 ここで、空調システム700や被保冷物Fの急速凍結処理に用いられる氷スラリーIの原料となるブラインBの塩分濃度は、高い程好ましく、飽和状態であることが特に好ましい。すなわち、ブラインBは、飽和塩水であることが好ましい。塩分濃度が高い程、ブラインBの融点が低くなり、飽和状態のブラインBの融点は、-22℃程度である。そのため、氷スラリーIがより低温となり、上述の空調効果が高まると共に、被保冷物Fのより急速な凍結が可能となる。 Here, the higher the salt concentration of the brine B, which is the raw material for the ice slurry I used in the air conditioning system 700 and the rapid freezing process of the refrigerated object F, the better, and it is particularly preferable that it is saturated. In other words, it is preferable that the brine B is saturated salt water. The higher the salt concentration, the lower the melting point of the brine B, and the melting point of saturated brine B is about -22°C. Therefore, the ice slurry I becomes colder, which enhances the air conditioning effect described above and enables the refrigerated object F to be frozen more quickly.

 また、氷スラリーIの別の使用用途として、魚類、貝類、甲殻類等の海産物(被保冷物F)の非凍結低温保存が挙げられる。この場合、急速凍結処理と同様に、発泡スチロール製の保温箱に被保冷物Fを投入し、氷スラリーIを充填する。氷スラリーIは、比表面積が大きいため、被保冷物Fを素早く冷却することができる。また、上述した潜熱の効果によって、被保冷物Fを長時間低温保存することができる。そのため、被保冷物Fの鮮度を保ちつつ、長時間にわたって被保冷物Fを保冷することができる。また、氷スラリーIは、柔らかく、被保冷物Fとの接触(衝突)によっても被保冷物を傷付けることがない。 Another use of ice slurry I is the non-frozen low-temperature preservation of marine products (item F) such as fish, shellfish, and crustaceans. In this case, as with the quick freezing process, the item F is placed in a polystyrene foam insulation box and filled with ice slurry I. Because ice slurry I has a large specific surface area, it can quickly cool the item F. In addition, the above-mentioned latent heat effect allows the item F to be kept at low temperatures for a long period of time. Therefore, the item F can be kept cold for a long period of time while maintaining its freshness. In addition, ice slurry I is soft and does not damage the item F even when it comes into contact (collisions) with it.

 なお、被保冷物Fの非凍結保存に用いられる氷スラリーIの原料となるブラインBの塩分濃度は、1%程度であることが好ましい。これにより、ブラインBの融点が-1℃程度となり、氷スラリーIの温度が-1℃程度に維持される。魚等の海産物は、-2℃程度で凍結が生じるため、氷スラリーIの温度を-1℃程度に維持することにより、海産物の凍結を防止しつつ、より低温で長時間保存することができる。そのため、上述した効果がより顕著となる。 The salt concentration of the brine B, which is the raw material for the ice slurry I used to preserve the refrigerated item F without freezing, is preferably around 1%. This makes the melting point of the brine B around -1°C, and the temperature of the ice slurry I is maintained at around -1°C. Since seafood such as fish freezes at around -2°C, by maintaining the temperature of the ice slurry I at around -1°C, the seafood can be stored for a long time at a lower temperature while preventing it from freezing. This makes the above-mentioned effects even more pronounced.

 <第2実施形態>
 次に、第2実施形態に係る液化ガス気化器について説明する。図6に示すように、本実施形態の液化ガス気化器では、貯留タンク280が凍結槽250に接続されており、貯留タンク280と凍結槽250との間で氷スラリーIが循環する構成となっている。凍結槽250内に貯められた氷スラリーIに被保冷物Fを浸漬させることにより、被保冷物Fを急速凍結処理することができる。このような構成によれば、凍結槽250にフレッシュな氷スラリーIが継続的に供給されるため、被保冷物Fの急速凍結処理を容易かつ確実に行うことができる。
Second Embodiment
Next, a liquefied gas vaporizer according to a second embodiment will be described. As shown in Fig. 6, in the liquefied gas vaporizer according to this embodiment, a storage tank 280 is connected to a freezing tank 250, and ice slurry I is circulated between the storage tank 280 and the freezing tank 250. The object F to be cooled can be immersed in the ice slurry I stored in the freezing tank 250 to perform a quick freezing process. With this configuration, fresh ice slurry I is continuously supplied to the freezing tank 250, so that the quick freezing process of the object F to be cooled can be easily and reliably performed.

 以上のような第2実施形態によっても、前述した第1実施形態と同様の効果を発揮することができる。なお、本実施形態では、説明の便宜上、貯留タンク280を1つにしているが、貯留タンク280の数は、特に限定されない。例えば、貯留タンク280が複数の場合は、全ての貯留タンク280を同じ凍結槽250に接続してもよいし、貯留タンク280毎に異なる凍結槽250に接続してもよい。 The second embodiment described above can also achieve the same effects as the first embodiment described above. Note that in this embodiment, for convenience of explanation, there is only one storage tank 280, but the number of storage tanks 280 is not particularly limited. For example, if there are multiple storage tanks 280, all of the storage tanks 280 may be connected to the same freezing tank 250, or each storage tank 280 may be connected to a different freezing tank 250.

 <第3実施形態>
 次に、第3実施形態に係る液化ガス気化器について説明する。前述した第1実施形態では、1つの液化ガス気化器200を用いてLNGを気化しNGを生成するが、本実施形態では、複数の液化ガス気化器200を用いてLNGを気化しNGを生成する。LNGは、-162℃程度と超低温であるため、液化ガス気化器200の容量によっては十分に気化させることができず、一部がLNGのままの状態で、液化ガス気化器200を通過する可能性もある。
Third Embodiment
Next, a liquefied gas vaporizer according to a third embodiment will be described. In the first embodiment described above, one liquefied gas vaporizer 200 is used to vaporize LNG to generate NG, but in this embodiment, multiple liquefied gas vaporizers 200 are used to vaporize LNG to generate NG. Since LNG has an ultra-low temperature of about -162°C, it may not be possible to sufficiently vaporize LNG depending on the capacity of the liquefied gas vaporizer 200, and some of the LNG may pass through the liquefied gas vaporizer 200 in the LNG state.

 そこで、本実施形態では、図7に示すように、複数の液化ガス気化器200を直列に接続している。このような構成によれば、各液化ガス気化器200を通過する度にブラインBとの熱交換が行われるため、より確実に、LNGを気化させてNGを生成することができる。つまり、より確実に、最後の液化ガス気化器200からNGを送出することができる。なお、図示の構成では、3つの液化ガス気化器200を接続しているが、液化ガス気化器200の数は、特に限定されない。 In this embodiment, therefore, as shown in FIG. 7, multiple liquefied gas vaporizers 200 are connected in series. With this configuration, heat exchange with the brine B occurs each time the LNG passes through each liquefied gas vaporizer 200, so that the LNG can be more reliably vaporized to produce NG. In other words, NG can be more reliably sent out from the last liquefied gas vaporizer 200. Note that, although three liquefied gas vaporizers 200 are connected in the illustrated configuration, the number of liquefied gas vaporizers 200 is not particularly limited.

 ここで、ブラインBは、液化ガス気化器200毎に異なっていてもよいし、同じであってもよい。異なっている場合は、例えば、最初の液化ガス気化器200では飽和濃度のブラインBを用い、次の液化ガス気化器200では塩分濃度10%のブラインBを用い、最後の液化ガス気化器200では塩分濃度1%のブラインBを用いてもよい。これにより、濃度の異なる氷スラリーIを同時に生成することができる。また、液化ガス気化器200毎に被冷却媒体の種類が異なっていてもよい。例えば、最初の液化ガス気化器200ではブラインBを用い、次の液化ガス気化器200では塩化ナトリウムを用い、最後の液化ガス気化器200ではアルコールを用いてもよい。 Here, the brine B may be different for each liquefied gas vaporizer 200, or may be the same. If they are different, for example, the first liquefied gas vaporizer 200 may use brine B with a saturated concentration, the next liquefied gas vaporizer 200 may use brine B with a salinity of 10%, and the last liquefied gas vaporizer 200 may use brine B with a salinity of 1%. This allows ice slurries I with different concentrations to be generated simultaneously. Also, the type of cooled medium may be different for each liquefied gas vaporizer 200. For example, the first liquefied gas vaporizer 200 may use brine B, the next liquefied gas vaporizer 200 may use sodium chloride, and the last liquefied gas vaporizer 200 may use alcohol.

 以上のような第3実施形態によっても、前述した第1実施形態と同様の効果を発揮することができる。 The third embodiment described above can also achieve the same effects as the first embodiment described above.

 <第4実施形態>
 次に、第4実施形態に係る液化ガス気化器について説明する。本実施形態の液化ガス気化器は、熱交換部および循環部の構成が異なること以外は、前述した第1実施形態の液化ガス気化器と同様である。そのため、以下の説明では、本実施形態の液化ガス気化器に関し、前述した第1実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、本実施形態の図では、前述した実施形態と同様の構成について、同一符号を付している。
Fourth Embodiment
Next, a liquefied gas vaporizer according to a fourth embodiment will be described. The liquefied gas vaporizer of this embodiment is similar to the liquefied gas vaporizer of the first embodiment described above, except that the configurations of the heat exchange section and the circulation section are different. Therefore, in the following description, the liquefied gas vaporizer of this embodiment will be described with a focus on the differences from the first embodiment described above, and the description of the similar points will be omitted. In addition, in the drawings of this embodiment, the same reference numerals are used for the same configurations as the above-mentioned embodiment.

 図8に示すように、本実施形態の液化ガス気化器200の熱交換部210は、ブラインBが導入される外管219を有する。そして、この外管219内に各熱交換パネル211の各伝熱管212が配置されている。外管219には、その上端側からブラインBが供給され、下端側からブラインBが排出される。また、各伝熱管212は、外管219を上下に貫通するようにして配置されている。このような熱交換部210によれば、簡単な構成で、LNGとブラインBとの熱交換を行うことができる。 As shown in FIG. 8, the heat exchange section 210 of the liquefied gas vaporizer 200 of this embodiment has an outer pipe 219 into which brine B is introduced. Each heat transfer tube 212 of each heat exchange panel 211 is arranged inside this outer pipe 219. Brine B is supplied to the upper end side of the outer pipe 219, and brine B is discharged from the lower end side. Each heat transfer tube 212 is arranged so as to penetrate the outer pipe 219 from top to bottom. With this heat exchange section 210, heat exchange between LNG and brine B can be performed with a simple configuration.

 また、循環部290は、外管219と貯留タンク280とを接続する第1配管292と、外管219と貯留タンク280とを接続する第2配管295と、を有する。また、循環部290は、ブラインBを循環させるための図示しないポンプを有する。 The circulation unit 290 also has a first pipe 292 that connects the outer pipe 219 and the storage tank 280, and a second pipe 295 that connects the outer pipe 219 and the storage tank 280. The circulation unit 290 also has a pump (not shown) for circulating the brine B.

 以上のような第4実施形態によっても、前述した第1実施形態と同様の効果を発揮することができる。 The fourth embodiment described above can also achieve the same effects as the first embodiment described above.

 <第5実施形態>
 次に、第5実施形態に係る液化ガス気化器について説明する。本実施形態の液化ガス気化器130は、中間媒体式の液化ガス気化器300である。図9に示すように、液化ガス気化器300は、LNGとブラインBとの熱交換を行う熱交換部310と、ブラインBを貯留する貯留タンク380と、貯留タンク380と熱交換部310との間でブラインBを循環させる循環部390と、を有する。
Fifth Embodiment
Next, a liquefied gas vaporizer according to a fifth embodiment will be described. The liquefied gas vaporizer 130 of this embodiment is an intermediate medium type liquefied gas vaporizer 300. As shown in Fig. 9, the liquefied gas vaporizer 300 has a heat exchanger 310 that exchanges heat between LNG and brine B, a storage tank 380 that stores the brine B, and a circulation unit 390 that circulates the brine B between the storage tank 380 and the heat exchanger 310.

 そして、熱交換部310でのLNGとブラインBとの熱交換により、LNGが気化(蒸発)してNGとなり、ブラインBが冷却されて氷スラリーIとなる。ブラインBとの熱交換により生成されたNGは、付臭器140に送られる。一方、LNGとの熱交換により生成された氷スラリーIは、貯留タンク380に貯留され、必要時に必要量だけ貯留タンク280から取り出されて使用される。なお、貯留タンク380は、前述した第1実施形態の貯留タンク280と同様の構成であるため、その説明を省略する。 Then, due to heat exchange between the LNG and the brine B in the heat exchange section 310, the LNG vaporizes (evaporates) and becomes NG, and the brine B is cooled and becomes ice slurry I. The NG generated by heat exchange with the brine B is sent to the odorizer 140. Meanwhile, the ice slurry I generated by heat exchange with the LNG is stored in the storage tank 380, and only the required amount is taken out from the storage tank 280 when needed and used. Note that the storage tank 380 has the same configuration as the storage tank 280 in the first embodiment described above, so a description thereof will be omitted.

 熱交換部310は、シェル321を備える中間媒体蒸発器320と、シェル321内に配置されたLNG蒸発器330と、シェル341を備える加温器340と、を有する。また、中間媒体蒸発器320のシェル321には、ブラインBの温度よりも沸点が低い中間媒体Qが貯留されている。中間媒体Qとしては、特に限定されないが、例えば、プロパンを用いることができる。また、LNG蒸発器330は、LNGが導入される第3伝熱管331を有する。そして、LNG蒸発器330は、導管350を介して加温器340のシェル341と接続されている。 The heat exchange section 310 has an intermediate medium evaporator 320 with a shell 321, an LNG evaporator 330 arranged in the shell 321, and a heater 340 with a shell 341. An intermediate medium Q having a boiling point lower than the temperature of the brine B is stored in the shell 321 of the intermediate medium evaporator 320. The intermediate medium Q is not particularly limited, but may be, for example, propane. The LNG evaporator 330 has a third heat transfer tube 331 into which LNG is introduced. The LNG evaporator 330 is connected to the shell 341 of the heater 340 via a conduit 350.

 循環部390は、シェル341側の端に位置する入口室391と、シェル321、341の間に位置する中間室392と、シェル321側の端に位置する出口室393と、シェル341内を通過して入口室391と中間室392とを接続する複数の第1伝熱管394と、シェル321内を通過して中間室392と出口室393とを接続する複数の第2伝熱管395と、入口室391と貯留タンク380とを接続する第1配管396と、出口室393と貯留タンク380とを接続する第2配管397と、を有する。また、循環部390は、ブラインBを循環させるための図示しないポンプを有する。 The circulation section 390 has an inlet chamber 391 located at the end on the shell 341 side, an intermediate chamber 392 located between the shells 321 and 341, an outlet chamber 393 located at the end on the shell 321 side, a plurality of first heat transfer tubes 394 passing through the shell 341 and connecting the inlet chamber 391 and the intermediate chamber 392, a plurality of second heat transfer tubes 395 passing through the shell 321 and connecting the intermediate chamber 392 and the outlet chamber 393, a first pipe 396 connecting the inlet chamber 391 and the storage tank 380, and a second pipe 397 connecting the outlet chamber 393 and the storage tank 380. The circulation section 390 also has a pump (not shown) for circulating the brine B.

 また、各第2伝熱管395は、液状の中間媒体Q内を通過して配置されている。これに対して、LNG蒸発器330の第3伝熱管331は、液状の中間媒体Qの上方に、気化した中間媒体Qと接するように配置されている。 Furthermore, each second heat transfer tube 395 is disposed so as to pass through the liquid intermediate medium Q. In contrast, the third heat transfer tube 331 of the LNG evaporator 330 is disposed above the liquid intermediate medium Q so as to be in contact with the vaporized intermediate medium Q.

 このような液化ガス気化器300において、ブラインBは、入口室391、第1伝熱管394、中間室392および第2伝熱管395を通って出口室393に至る。このとき、第2伝熱管395を介してブラインBと中間媒体Qとの熱交換が行われ、中間媒体Qが気化(蒸発)すると共にブラインBが冷却される。一方、LNGは、LNG蒸発器330の第3伝熱管331に導入される。第3伝熱管331内では、LNGと気化した中間媒体Qとの熱交換が行われ、LNGが気化してNGが生成され、中間媒体Qが凝縮して液滴となってシェル321内に落下する。このように、中間媒体Qが気化と凝縮とを繰り返すことで、中間媒体Qを介してLNGとブラインBとの熱交換が行われる。これにより、LNGとブラインBとの熱交換を効率的に行うことができる。 In such a liquefied gas vaporizer 300, the brine B passes through the inlet chamber 391, the first heat transfer tube 394, the intermediate chamber 392, and the second heat transfer tube 395 to reach the outlet chamber 393. At this time, heat exchange between the brine B and the intermediate medium Q is performed through the second heat transfer tube 395, and the intermediate medium Q is vaporized (evaporated) and the brine B is cooled. Meanwhile, the LNG is introduced into the third heat transfer tube 331 of the LNG evaporator 330. In the third heat transfer tube 331, heat exchange between the LNG and the vaporized intermediate medium Q is performed, the LNG is vaporized to generate NG, and the intermediate medium Q is condensed into droplets and falls into the shell 321. In this way, the intermediate medium Q repeatedly vaporizes and condenses, and heat exchange between the LNG and the brine B is performed through the intermediate medium Q. This allows efficient heat exchange between the LNG and the brine B.

 LNG蒸発器330で生成されたNGは、導管350を介して加温器340のシェル341内に導入され、第1伝熱管内394を流れるブラインBとの熱交換によって加温されて常温のガスとして送出される。 The NG generated in the LNG evaporator 330 is introduced into the shell 341 of the heater 340 via the conduit 350, where it is heated by heat exchange with the brine B flowing inside the first heat transfer tube 394 and is sent out as room temperature gas.

 以上のような第5実施形態によっても、前述した第1実施形態と同様の効果を発揮することができる。 The fifth embodiment described above can also achieve the same effects as the first embodiment described above.

 以上、本発明の液化ガス気化器について、図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではない。例えば、各部の構成は、同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。 The liquefied gas vaporizer of the present invention has been described above based on the illustrated embodiment, but the present invention is not limited to this. For example, the configuration of each part can be replaced with any configuration that performs the same function, and any configuration can be added.

 また、前述した実施形態では、被冷却媒体がブラインであったが、これに限定されず、例えば、水、各種飲料水、塩化ナトリウム、塩化カルシウム、アルコールなどであってもよい。また、被冷却媒体を冷却することができれば、凍結させなくてもよい。つまり、液化ガス気化器をチラーのように使用してもよい。 In addition, in the above-described embodiment, the medium to be cooled was brine, but it is not limited to this and may be, for example, water, various types of drinking water, sodium chloride, calcium chloride, alcohol, etc. Also, as long as the medium to be cooled can be cooled, it does not have to be frozen. In other words, a liquefied gas vaporizer may be used like a chiller.

 また、前述した実施形態では、液化ガス気化器130を受け入れ基地100に設置した例について説明したが、液化ガス気化器130の設置場所としては、特に限定されず、例えば、液化ガスを気化させて生成したガスを燃料として発電を行う発電所、液化ガスのサテライト基地(受け入れ基地100からのパイプラインがなく、直接供給できない地域に対し、受け入れ基地100からローリー車で運ばれてくるLNGを受入れ、ガス化して契約先にガスを送る基地)等であってもよい。 In the above embodiment, an example was described in which the liquefied gas vaporizer 130 was installed at the receiving base 100, but the location of the liquefied gas vaporizer 130 is not particularly limited, and may be, for example, a power plant that generates electricity using the gas produced by vaporizing liquefied gas as fuel, a liquefied gas satellite base (a base that receives LNG transported by tanker truck from the receiving base 100, gasifies it, and sends the gas to a contracted party to areas where there is no pipeline from the receiving base 100 and direct supply is not possible), etc.

 以上のように、本発明の液化ガス気化器は、液化ガスと被冷却媒体との熱交換により、液化ガスを気化させてガスを生成すると共に被冷却媒体を冷却する。つまり、液化ガスの冷熱エネルギーを被冷却媒体の冷却に利用する。これにより、液化ガスの冷熱エネルギーを有効活用することができる。また、従来の海水ではなく、被冷却媒体を用いて液化ガスを気化させるため、従来のような海水温度の低下等の問題が生じず、環境負荷を低減することもできる。したがって、本発明の液化ガス気化器は、産業上の利用可能性を有する。 As described above, the liquefied gas vaporizer of the present invention vaporizes the liquefied gas to generate gas through heat exchange between the liquefied gas and the cooled medium, and cools the cooled medium. In other words, the cold energy of the liquefied gas is used to cool the cooled medium. This allows the cold energy of the liquefied gas to be used effectively. Furthermore, because the liquefied gas is vaporized using the cooled medium, rather than using seawater as in the past, problems such as a drop in seawater temperature do not occur, and the environmental load can also be reduced. Therefore, the liquefied gas vaporizer of the present invention has industrial applicability.

 100…受け入れ基地、120…LNGタンク、130…液化ガス気化器、140…付臭器、150…ガスホルダー、180…LNGタンカー、190…天然ガス田、200…液化ガス気化器、210…熱交換部、211…熱交換パネル、212…伝熱管、213…下部ヘッダー管、214…上部ヘッダー管、219…外管、220…下部マニホールド、230…上部マニホールド、250…凍結槽、270…昇温機構、271…ヒーター、280…貯留タンク、280A…貯留タンク、280B…貯留タンク、280C…貯留タンク、281…排出口、282…供給口、290…循環部、291…トラフ、292…第1配管、293…第1ポンプ、294…回収槽、295…第2配管、296…第2ポンプ、300…液化ガス気化器、310…熱交換部、320…中間媒体蒸発器、321…シェル、330…LNG蒸発器、331…第3伝熱管、340…加温器、341…シェル、350…導管、380…貯留タンク、390…循環部、391…入口室、392…中間室、393…出口室、394…第1伝熱管、395…第2伝熱管、396…第1配管、397…第2配管、700…空調システム、710…氷スラリー貯留タンク、720…空調機、721…吸引口、722…吹出口、730…管路、B…ブライン、B1…バルブ、B2…バルブ、F…被保冷物、I…氷スラリー、Q…中間媒体、X…建物

 
100...receiving terminal, 120...LNG tank, 130...liquefied gas vaporizer, 140...odorizer, 150...gas holder, 180...LNG tanker, 190...natural gas field, 200...liquefied gas vaporizer, 210...heat exchange section, 211...heat exchange panel, 212...heat transfer tube, 213...lower header tube, 214...upper header tube, 219...outer tube, 220...lower manifold, 230...upper manifold, 250...freezing tank, 270...heating mechanism, 271...heater, 280...storage tank, 280A...storage tank, 280B...storage tank, 280C...storage tank, 281...discharge port, 282...supply port, 290...circulation section, 291...trough, 292...first piping, 293...first pump, 29 4...recovery tank, 295...second piping, 296...second pump, 300...liquefied gas vaporizer, 310...heat exchange section, 320...intermediate medium evaporator, 321...shell, 330...LNG evaporator, 331...third heat transfer tube, 340...heater, 341...shell, 350...conduit, 380...storage tank, 390...circulation section, 391...inlet chamber, 392...intermediate chamber, 393 ...Outlet chamber, 394...First heat transfer tube, 395...Second heat transfer tube, 396...First piping, 397...Second piping, 700...Air conditioning system, 710...Ice slurry storage tank, 720...Air conditioner, 721...Suction port, 722...Blow-out port, 730...Pipe line, B...Brine, B1...Valve, B2...Valve, F...Item to be cooled, I...Ice slurry, Q...Intermediate medium, X...Building

Claims (8)

 液化ガスと被冷却媒体との熱交換を行う熱交換部と、
 被冷却媒体を貯留する貯留タンクと、
 前記貯留タンクと前記熱交換部との間で前記被冷却媒体を循環させる循環部と、を有し、
 前記熱交換部での前記液化ガスと前記被冷却媒体との熱交換により、前記液化ガスを気化させてガスを生成すると共に前記被冷却媒体を冷却することを特徴とする液化ガス気化器。
a heat exchange unit for exchanging heat between the liquefied gas and the medium to be cooled;
a storage tank for storing the medium to be cooled;
a circulation unit that circulates the cooled medium between the storage tank and the heat exchange unit,
A liquefied gas vaporizer characterized in that the liquefied gas is vaporized to generate gas and the cooled medium is cooled by heat exchange between the liquefied gas and the cooled medium in the heat exchange section.
 前記被冷却媒体は、塩水であり、
 前記熱交換部での前記液化ガスと前記被冷却媒体との熱交換により、前記塩水を冷却させて氷スラリーを生成し、前記氷スラリーを前記貯留タンクに貯留する請求項1に記載の液化ガス気化器。
The medium to be cooled is salt water,
2. The liquefied gas vaporizer according to claim 1, wherein the salt water is cooled by heat exchange between the liquefied gas and the cooled medium in the heat exchange section to generate ice slurry, and the ice slurry is stored in the storage tank.
 前記熱交換部は、前記液化ガスが導入される伝熱管を有し、
 前記被冷却媒体が前記伝熱管の外表面を垂下することにより、前記液化ガスと前記被冷却媒体との熱交換が行われる請求項1に記載の液化ガス気化器。
The heat exchange unit has a heat transfer tube into which the liquefied gas is introduced,
2. The liquefied gas vaporizer according to claim 1, wherein the medium to be cooled hangs down on the outer surface of the heat transfer tube, thereby performing heat exchange between the liquefied gas and the medium to be cooled.
 前記循環部は、前記熱交換部の上方に配置され前記被冷却媒体を貯留するトラフと、前記貯留タンクと前記トラフとを接続し前記貯留タンク内の前記被冷却媒体を前記トラフに供給する第1配管と、を有し、
 前記トラフから溢流した前記被冷却媒体が伝熱管に供給される請求項3に記載の液化ガス気化器。
the circulation unit includes a trough disposed above the heat exchange unit and configured to store the cooled medium, and a first pipe connecting the storage tank and the trough and supplying the cooled medium in the storage tank to the trough,
4. A liquefied gas vaporizer according to claim 3, wherein the cooled medium overflowing from the trough is supplied to a heat transfer tube.
 前記循環部は、前記伝熱管を垂下した前記被冷却媒体を回収する回収槽と、前記回収槽と前記貯留タンクとを接続し前記回収槽内の前記被冷却媒体を前記貯留タンクに導入する第2配管と、を有する請求項4に記載の液化ガス気化器。 The liquefied gas vaporizer according to claim 4, wherein the circulation section includes a recovery tank that recovers the cooled medium hanging down from the heat transfer tube, and a second pipe that connects the recovery tank to the storage tank and introduces the cooled medium in the recovery tank into the storage tank.  前記熱交換部は、前記被冷却媒体が導入される外管と、前記外管内に配置され前記液化ガスが導入される伝熱管と、を有する請求項1に記載の液化ガス気化器。 The liquefied gas vaporizer according to claim 1, wherein the heat exchange section has an outer tube into which the cooled medium is introduced, and a heat transfer tube disposed within the outer tube into which the liquefied gas is introduced.  前記熱交換部は、中間媒体を介して前記液化ガスと前記被冷却媒体との熱交換を行う請求項1に記載の液化ガス気化器。 The liquefied gas vaporizer according to claim 1, wherein the heat exchange section exchanges heat between the liquefied gas and the cooled medium via an intermediate medium.  前記液化ガスの受け入れ基地に設置される請求項1に記載の液化ガス気化器。

 
The liquefied gas vaporizer according to claim 1, which is installed at a receiving station for the liquefied gas.

PCT/JP2023/036804 2022-10-11 2023-10-10 Liquefied gas vaporizer WO2024080285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024551703A JPWO2024080285A1 (en) 2022-10-11 2023-10-10

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-163208 2022-10-11
JP2022163208 2022-10-11
JP2022-208071 2022-12-26
JP2022208071 2022-12-26

Publications (1)

Publication Number Publication Date
WO2024080285A1 true WO2024080285A1 (en) 2024-04-18

Family

ID=90669618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036804 WO2024080285A1 (en) 2022-10-11 2023-10-10 Liquefied gas vaporizer

Country Status (2)

Country Link
JP (1) JPWO2024080285A1 (en)
WO (1) WO2024080285A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313687A (en) * 1993-04-27 1994-11-08 Osaka Gas Co Ltd Liquefied natural gas vaporizer using accumulated cold heat
JPH11281266A (en) * 1998-03-26 1999-10-15 Ishikawajima Harima Heavy Ind Co Ltd Liquefied natural gas vaporization equipment
JP2001324094A (en) * 2000-05-12 2001-11-22 Sumitomo Precision Prod Co Ltd Liquefied-gas vaporization device
JP2009008312A (en) * 2007-06-27 2009-01-15 Takasago Thermal Eng Co Ltd Cold heat utilization system, ice production device, ice transport device, and cold heat utilization method
JP2017075633A (en) * 2015-10-14 2017-04-20 株式会社神戸製鋼所 Gas vaporizer
JP2018119511A (en) * 2017-01-27 2018-08-02 株式会社神戸製鋼所 Natural gas burning combined cycle power generation system and natural gas burning combined cycle power generation method
JP2019178686A (en) * 2018-03-30 2019-10-17 大陽日酸株式会社 Method for operating liquefied gas vaporizer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313687A (en) * 1993-04-27 1994-11-08 Osaka Gas Co Ltd Liquefied natural gas vaporizer using accumulated cold heat
JPH11281266A (en) * 1998-03-26 1999-10-15 Ishikawajima Harima Heavy Ind Co Ltd Liquefied natural gas vaporization equipment
JP2001324094A (en) * 2000-05-12 2001-11-22 Sumitomo Precision Prod Co Ltd Liquefied-gas vaporization device
JP2009008312A (en) * 2007-06-27 2009-01-15 Takasago Thermal Eng Co Ltd Cold heat utilization system, ice production device, ice transport device, and cold heat utilization method
JP2017075633A (en) * 2015-10-14 2017-04-20 株式会社神戸製鋼所 Gas vaporizer
JP2018119511A (en) * 2017-01-27 2018-08-02 株式会社神戸製鋼所 Natural gas burning combined cycle power generation system and natural gas burning combined cycle power generation method
JP2019178686A (en) * 2018-03-30 2019-10-17 大陽日酸株式会社 Method for operating liquefied gas vaporizer

Also Published As

Publication number Publication date
JPWO2024080285A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US7155917B2 (en) Apparatus and methods for converting a cryogenic fluid into gas
US6560971B2 (en) Air conditioning and thermal storage systems using clathrate hydrate slurry
CN102192626B (en) Freezer with liquid cryogen refrigerant and method
JP2017190829A (en) System that integrates gas supply facility and cooling facility
JP2013091481A (en) Air conditioning system of marine vessel using cold heat of lng and seawater
JP2002340296A (en) Liquefied gas vaporizing and heating device
WO2024080285A1 (en) Liquefied gas vaporizer
CN103403460A (en) Air conditioning system with ice storage
JP6912673B2 (en) Defrost system
JPH05296503A (en) Ice heat storage device
WO2002016836A1 (en) Stirling cooling device, cooling chamber, and refrigerator
WO2024162119A1 (en) Cold energy utilization method and cold energy utilization apparatus
KR101919336B1 (en) Cooling unit using isobutane as refrigerant
KR101786563B1 (en) Shipboard binary refrigeration system
JP6937608B2 (en) Cooling device for superconducting cable and cooling method of superconducting cable using it
JP3358845B2 (en) Liquefied natural gas vaporizer using cold storage heat
JP2009192004A (en) Liquefied gas vaporizing equipment
JP2024178532A (en) Method and device for utilizing cold energy
WO2024162120A1 (en) Device for freezing cold storage material and method for using cold storage material
WO2023219051A1 (en) Method for producing and using ice slurry
JP2001324094A (en) Liquefied-gas vaporization device
KR102806863B1 (en) Optimal control cooling system utilizing the cold energy of LNG liquefied gas
JP2000055520A (en) Liquefied natural gas cold using vaporizer
JP2025074812A (en) Regenerative cooling storage and regenerative cooling vehicle
US1371235A (en) Refrigerating system and method of operating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024551703

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE