[go: up one dir, main page]

WO2024080237A1 - Silicon-containing film precursor, composition for forming silicon-containing film, method for manufacturing sulfur-containing siloxane, and method for manufacturing silicon-containing film - Google Patents

Silicon-containing film precursor, composition for forming silicon-containing film, method for manufacturing sulfur-containing siloxane, and method for manufacturing silicon-containing film Download PDF

Info

Publication number
WO2024080237A1
WO2024080237A1 PCT/JP2023/036524 JP2023036524W WO2024080237A1 WO 2024080237 A1 WO2024080237 A1 WO 2024080237A1 JP 2023036524 W JP2023036524 W JP 2023036524W WO 2024080237 A1 WO2024080237 A1 WO 2024080237A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
carbon atoms
sulfur
formula
siloxane
Prior art date
Application number
PCT/JP2023/036524
Other languages
French (fr)
Japanese (ja)
Inventor
元輝 平
恵英 上野
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Publication of WO2024080237A1 publication Critical patent/WO2024080237A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the technical field of this disclosure relates to sulfur-containing siloxanes and methods for producing silicon-containing films using such compounds.
  • silicon-containing thin films are produced in various forms, such as silicon films, silicon oxide films, silicon nitride films, silicon carbonitride films, and silicon oxynitride films, through various deposition processes, and are used in a variety of fields.
  • silicon oxide films and silicon nitride films have excellent barrier properties and oxidation resistance, and therefore function as insulating films, intermetal dielectric materials, seed layers, spacers, hard masks, trench isolation, diffusion barriers, etch stop layers, and protective film layers in device fabrication.
  • Patent Document 1 proposes a method for forming a uniform silicon oxide film by using the aminosilane compound bisdiethylaminosilane (BDEAS) as a silicon source in an atomic layer deposition (ALD) method.
  • BDEAS aminosilane compound bisdiethylaminosilane
  • ALD atomic layer deposition
  • Patent Document 2 proposes a method for forming a uniform silicon oxide film at a high deposition rate by atomic layer deposition (ALD) using the aminosilane compound 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane as a silicon source.
  • ALD atomic layer deposition
  • Patent Document 3 also proposes a method for forming a uniform silicon oxide film at high temperatures using the atomic layer deposition (ALD) method and the aminosilane compound dimethylaminotrimethylsilane (DMATMS) as a silicon source.
  • ALD atomic layer deposition
  • DMATMS aminosilane compound dimethylaminotrimethylsilane
  • the bisdiethylaminosilane described in Patent Document 1 can form a silicon oxide film by atomic layer deposition (ALD) at 200 to 400°C
  • the 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane described in Patent Document 2 can form a silicon oxide film by atomic layer deposition (ALD) at 100 to 300°C
  • the temperature range is low, and if the film is formed at a high temperature of 500°C or higher, there is a risk that the film forming material will decompose and the film will not be formed uniformly.
  • the dimethylaminotrimethylsilane described in Patent Document 3 can form a silicon oxide film by the ALD method at 500 to 650°C, which is higher than the bisdiethylaminosilane described in Patent Document 1 and the 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane described in Patent Document 2, but it is difficult to say that the high temperature conditions are yet sufficient.
  • the present disclosure was conceived under these circumstances, and its main objective is to provide a siloxane compound that can be used as a new silicon-containing film precursor that can be formed by atomic layer deposition (ALD) even under high temperature conditions in the formation of silicon-containing films.
  • ALD atomic layer deposition
  • aminosilane compounds in which an amino group is bonded to a silicon atom have been commonly used as precursors for forming silicon-containing films (silicon-containing film precursors), but the inventors have found, after extensive research, that it is useful to use a thiosilane compound in which a sulfur atom is bonded to a silicon atom as a silicon-containing film precursor in order to obtain the desired effects.
  • a thiosilane compound in which a sulfur atom is bonded to a silicon atom as a silicon-containing film precursor in order to obtain the desired effects.
  • a specific compound in which a sulfur atom is bonded to a silicon atom of a siloxane structure (-Si-O-) as a silicon-containing film precursor it is possible to form a film by atomic layer deposition (ALD) under higher temperature conditions, which has led to the completion of this disclosure.
  • ALD atomic layer deposition
  • R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
  • X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
  • n is an integer from 0 to 2.
  • the sulfur-containing siloxane has the formula (2): [In formula (2), R 1 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms; n is an integer from 0 to 2.
  • the sulfur-containing siloxane has the formula (3): Item 5.
  • R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
  • X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
  • n is an integer from 0 to 2.
  • a composition for forming a silicon-containing film comprising a sulfur-containing siloxane represented by the formula: [Item 9]
  • Formula (1) [In formula (1), R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
  • X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
  • n is an integer from 0 to 2.
  • Item 10 The method for producing a sulfur-containing siloxane according to Item 9, wherein in step (a), the raw material siloxane is reacted with a sulfurizing agent to synthesize the sulfur-containing siloxane.
  • the raw material siloxane has the following formula (4): [In formula (4), R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring; X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom; Y is a hydrogen atom or a halogen atom; n is an integer from 0 to 2. Item 11.
  • R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
  • X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
  • n is an integer from 0 to 2.
  • the silicon film obtained by the method of the present disclosure may exhibit a good shrinkage rate and/or a good etching rate. Therefore, according to the method of the present disclosure, it is possible to form a film that is uniform and has excellent film properties even under high temperature conditions, making it possible to fabricate high-performance semiconductor devices.
  • Example 1 shows a 1 H-NMR chart of 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane obtained by the production method in Example 1 of the present disclosure.
  • 1 shows the relationship between the substrate temperature and the deposition rate in Example 2 and Comparative Examples 1 to 3 of the present disclosure.
  • the sulfur-containing siloxane of the present disclosure has at least one sulfur atom and has a cyclic structure.
  • R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
  • X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
  • n is an integer from 0 to 2. It is expressed as:
  • R 1 to R 8 in each occurrence are independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms (e.g., 1 to 3, 1 to 2, 1) (e.g., methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl), an alkenyl group having 2 to 5 carbon atoms (e.g., 2 to 4, 2 to 3, and 2) (e.g., vinyl or 2-propenyl), an alkynyl group having 2 to 5 carbon atoms (e.g., 2 to 4, 2 to 3, and 2) (e.g., ethynyl or propynyl), or an alkoxy group having 1 to 5 carbon atoms (e.g., 1 to 3, 1 to 2, and 1) (e.g., methoxy, ethoxy, propoxy).
  • an alkyl group having 1 to 5 carbon atoms e
  • the average number of carbon atoms in R 1 to R 8 may be 0.5 or more, 1 or more, 2 or more, or 3 or more, and is preferably at least 1.
  • the average number of carbon atoms in R 1 to R 8 may be 5 or less, 4 or less, 3 or less, 2 or less, or 1, and is preferably 3 or less, for example 2 or less.
  • R 1 to R 8 may be linear, branched, or cyclic, preferably linear or branched, and more preferably linear.
  • R 1 to R 8 may or may not be bonded to each other to form a ring (when a ring is formed, one of R 1 to R 8 may form a ring with, for example, R 1 to R 8 bonded to the same silicon atom or an adjacent silicon atom).
  • bond here may mean that the bonds possessed by each of R 1 to R 8 (for example, bonds resulting from the elimination of a hydrogen atom from each of R 1 to R 8 ) are bonded to each other.
  • At least one of R 1 to R 8 may be a hydrocarbon group or an alkoxy group (e.g., a hydrocarbon group, particularly an alkyl group). All of R 1 to R 8 may be other than a hydrogen atom.
  • the number of R 1 to R 8 that is a hydrocarbon group or an alkoxy group may be 10 % or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more, preferably 50% or more, based on the total number of R 1 to R 8.
  • the number of R 1 to R 8 that is a hydrocarbon group or an alkoxy group may be 100% or less, 95% or less, 85% or less, 75% or less, or 65% or less, based on the total number of R 1 to R 8 .
  • All of R 1 through R 8 may be hydrocarbon or alkoxy groups (eg, hydrocarbon groups, especially alkyl groups).
  • R 1 to R 8 may be the same or different, for example, they may be the same.
  • a preferred example is when all of R 1 to R 8 are alkyl groups, particularly methyl groups.
  • X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom.
  • At least one of X 1 to X 3 may be an oxygen atom.
  • the number of X 1 to X 3 which are oxygen atoms may be 20% or more, 40% or more, 60% or more, or 80 or more, preferably 40% or more, based on the total number of X 1 to X 3.
  • the number of X 1 to X 3 which are oxygen atoms may be 100% or less, 70% or less, or 40% or less, based on the total number of X 1 to X 3. All of X 1 to X 3 may be oxygen atoms.
  • n is an integer from 0 to 2, for example 0, 1 or 2, for example 0 or 1, 0 or 2, or 1 or 2, and in particular 1.
  • the molecular weight of the sulfur-containing siloxane may be 200 or more, 250 or more, 300 or more, 350 or more, 400 or more, 450 or more, 500 or more, 550 or more, or 600 or more, preferably 300 or more.
  • the molecular weight of the sulfur-containing siloxane may be 1000 or less, 900 or less, 800 or less, 700 or less, 600 or less, 500 or less, 400 or less, or 350 or less, preferably 400 or less.
  • the number of carbon atoms of the sulfur-containing siloxane may be 0 or more, 1 or more, 4 or more, 6 or more, 8 or more, 10 or more, 12 or more, 15 or more, or 20 or more, and is preferably 6 or more.
  • the number of carbon atoms of the sulfur-containing siloxane may be 50 or less, 40 or less, 30 or less, 25 or less, 20 or less, 15 or less, or 10 or less, and is preferably 20 or less.
  • Examples of sulfur-containing siloxanes include: Formula (2): [In formula (2), R 1 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms; n is an integer from 0 to 2. Examples of the compound include compounds represented by the following formula:
  • sulfur-containing siloxanes in this disclosure include 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane, 1,3-dioxa-5-thia-2,4,6-trisilacyclohexane, 2,2,4,4,6,6-hexamethyl-1,3-dioxa-5-thia-2,4,6-trisilacyclohexane, 2,2,4,4,6,6-hexaethyl-1,3-dioxa-5-thia-2,4,6-trisilacyclohexane, 2,2,4,4,6,6-hexavinyl-1,3-dioxa-5-thia-2,4,6-trisilacyclohexane, and 2,2,4,4,6,6-hexapropyl-1,3-dioxa-5-thia-2,4,6- Trisilacyclohexan
  • the method for producing the sulfur-containing siloxane according to the present disclosure includes: The method may include a production method including: (a) a step of synthesizing a sulfur-containing siloxane from a raw material siloxane; and (b) a distillation step of isolating the sulfur-containing siloxane by distillation.
  • the synthesis step (a) may include reacting a starting siloxane with a sulfurizing agent.
  • the raw material siloxane has the following formula (4): [In formula (4), R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring; X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom; Y is a hydrogen atom or a halogen atom; n is an integer from 0 to 2.
  • the compound may be represented by the formula:
  • Y is a hydrogen atom or a halogen atom.
  • examples of Y include a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the siloxane compound in which Y is a hydrogen atom may be used as is in the synthesis step (a), or Y may be substituted with a halogen using a halogenating agent before carrying out the synthesis step (a).
  • the halogenating agent may be a fluorinating agent, a chlorinating agent, a brominating agent, or an iodinating agent.
  • chlorinating agents such as N-chlorosuccinimide and N-chlorophthalimide are preferably used.
  • the molecular weight of the raw siloxane may be 150 or more, 200 or more, 250 or more, 300 or more, 350 or more, 400 or more, 450 or more, 500 or more, or 550 or more, and is preferably 250 or more.
  • the molecular weight of the raw siloxane may be 1000 or less, 900 or less, 800 or less, 700 or less, 600 or less, 500 or less, 400 or less, 350 or less, or 300 or less, and is preferably 350 or less.
  • the sulfurizing agent is a sulfur compound capable of replacing Y in -SiY with sulfur, and examples of sulfides that can be used include lithium sulfide, sodium sulfide, and hydrogen sulfide.
  • step (a) either of the following methods can be applied to this reaction: first dissolving the raw material siloxane (e.g., raw material siloxane (4)) in an organic solvent and then adding the sulfurizing agent; or dissolving the sulfurizing agent in an organic solvent and then adding the raw material siloxane (e.g., raw material siloxane (4)).
  • the amount of sulfurizing agent used is usually 0.2 to 3.0 moles, preferably 0.4 to 2.0 moles, per 1.0 mole of raw siloxane (e.g., raw siloxane (4)).
  • the reaction may be carried out at temperatures between -20°C and 100°C, preferably between -10°C and 60°C.
  • the reaction time is usually in the range of 0.5 to 30 hours.
  • Solvents that can be used in the present disclosure include, for example, hydrocarbons such as hexane, cyclohexane, heptane, nonane, and decane; halogenated hydrocarbons such as dichloroethane, dichloromethane, and chloroform; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, and trichlorobenzene; ethers such as diethyl ether, tetrahydrofuran (THF), and ethylene glycol dimethyl ether, and mixtures thereof.
  • hydrocarbons such as hexane, cyclohexane, heptane, nonane, and decane
  • halogenated hydrocarbons such as dichloroethane, dichloromethane, and chloroform
  • aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, and trichlorobenz
  • ethers such as diethyl ether and tetrahydrofuran (THF) are preferred, with tetrahydrofuran (THF) being particularly preferred.
  • THF tetrahydrofuran
  • the amount of solvent used is usually 0.1 to 50 times the mass of the raw siloxane compound.
  • step (a) if solids such as by-product salts are present in the reaction liquid, filtration may be performed after completion of the reaction, if necessary.
  • a dry inert gas for example, nitrogen or argon
  • the filtration temperature is not uniquely determined, but can be from 10°C to the boiling point of the solvent used. It is preferable to perform the filtration in the range of 20°C to 65°C.
  • step (b) the sulfur-containing siloxane is isolated by distillation, for example, vacuum distillation.
  • the sulfurizing agent and the organic solvent can be easily removed, and the sulfur-containing siloxane can be purified to a sufficiently high purity.
  • the sulfur-containing siloxane according to the present disclosure can be used as an intermediate for forming a silicon-containing film on a substrate.
  • the method for forming a silicon-containing film according to the present disclosure can be chemical vapor deposition, particularly atomic layer deposition.
  • the method for forming a silicon-containing film according to the present disclosure includes: (c) applying to the substrate a compound represented by the following formula (1):
  • R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring
  • X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom
  • n is an integer from 0 to 2.
  • the method may be a chemical vapor deposition method (particularly an atomic layer deposition method).
  • the substrate temperature may be 100 to 800°C, preferably 100 to 750°C. From the viewpoint of the film properties obtained, the substrate temperature may be 200°C or higher, 300°C or higher, 400°C or higher, 500°C or higher, 600°C or higher, or 700°C or higher, for example, 250°C or higher, preferably 300°C or higher, 400°C or higher, or 500°C or higher.
  • the film formation temperature may be the temperature of at least one of steps (c) to (f), for example, the temperature of the substrate when it comes into contact with the sulfur-containing siloxane composition in step (c).
  • the silicon-containing film obtained from the sulfur-containing siloxane of the present disclosure is stable even at high temperatures, and the sulfur-containing siloxane of the present disclosure can be suitably used in a method for producing a silicon-containing film that employs a high substrate temperature.
  • the pressure during gas injection in steps (c) and (e) is 0.05 to 100 Torr, preferably 0.05 to 50 Torr.
  • the sulfur-containing siloxane composition may contain an inert gas such as nitrogen or argon as a carrier gas.
  • step (e) when forming a silicon oxide film having Si-O bonds, one or more gases selected from oxygen, ozone, and nitric oxide can be used as the reactive gas.
  • one or more gases selected from nitrogen, ammonia, nitrous oxide, nitric oxide, and nitrogen dioxide can be used.
  • the formation of the silicon-containing film is preferably carried out after replacing the atmosphere with an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • the sulfur-containing siloxanes disclosed herein are suitable for use in the manufacture of silicon-containing films (silicon oxide films, silicon nitride films, etc.) by chemical vapor deposition (particularly atomic layer deposition).
  • the lower limit of the ALD window may be 300°C, preferably 350°C.
  • the upper limit of the ALD window may be 800°C, preferably 750°C.
  • the ALD window generally refers to the temperature range between the vaporization temperature of a silicon-containing film precursor compound and the thermal decomposition temperature of the silicon-containing film precursor compound, and in this specification, the ALD window can be defined as the temperature range from the point at which the deposition rate is maximum to the point at which it is minimum when the deposition temperature is on the horizontal axis and the deposition rate is on the vertical axis.
  • Example 1 Synthesis of 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane
  • 1.98 g (0.043 mol) of lithium sulfide and 317 g of tetrahydrofuran were added to a 500 mL flask equipped with a thermometer, a condenser, and a motor stirrer.
  • 10.9 g (0.031 mol) of 1,7-dichloro-octamethyltetrasiloxane was slowly added dropwise while stirring at room temperature. After the addition, the mixture was stirred for 6 hours while maintaining the temperature at 20 to 26°C.
  • Tetrahydrofuran was then removed by vacuum distillation at an internal temperature of 50 to 60°C. Then, in a nitrogen-substituted glove box, solid matter, mainly lithium chloride produced as a by-product, was removed by vacuum filtration to obtain a solution containing 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane. Thereafter, distillation was performed under reduced pressure at an internal temperature of 68° C. and 1.9 Torr to obtain 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane in high purity.
  • Example 2 Formation of silicon-containing film using 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane]
  • a silicon substrate was placed in a vacuum apparatus and heated to a predetermined temperature of 500 to 750°C.
  • the siloxane composition containing 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane and a carrier gas obtained in Example 1 was injected at a pressure of 0.05 to 100 Torr and adsorbed onto the heated silicon substrate.
  • argon gas was introduced to purge the unadsorbed sulfur-containing siloxane composition and by-products from the apparatus.
  • ozone was injected as a reactive gas at a pressure of 0.05 to 100 Torr to form an atomic layer of silicon oxide derived from 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane deposited on the substrate.
  • argon gas was introduced to purge the unadsorbed ozone and by-products. The above cycle was repeated to obtain a silicon oxide film.
  • Comparative Example 1 Formation of silicon-containing film using bis(diethylaminosilane) A silicon substrate was placed in a vacuum apparatus and heated to a predetermined temperature of 100 to 750°C. An aminosilane composition containing bisdiethylaminosilane and a carrier gas was injected at a pressure of 0.05 to 100 Torr and adsorbed onto the heated silicon substrate. Argon gas was then introduced to purge the unadsorbed aminosilane composition and by-products from within the apparatus. Ozone was then injected as a reactive gas at a pressure of 0.05 to 100 Torr to form an atomic layer of silicon oxide derived from bisdiethylaminosilane deposited on the substrate. Argon gas was then introduced to purge the unreacted ozone gas and by-products. The above cycle was repeated to obtain a silicon oxide film.
  • Ozone was then injected as a reactive gas at a pressure of 0.05 to 100 Torr to form an atomic layer of silicon oxide derived from 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane deposited on the substrate.
  • Argon gas was then introduced to purge the unreacted ozone gas and by-products. The above cycle was repeated to obtain a silicon oxide film.
  • Comparative Example 3 Formation of silicon-containing film using 2,4,6,8-tetramethylcyclotetrasiloxane A silicon substrate was placed in a vacuum apparatus and heated to a predetermined temperature of 200 to 750°C. A siloxane composition containing 2,4,6,8-tetramethylcyclotetrasiloxane and a carrier gas was injected at a pressure of 0.05 to 100 Torr and adsorbed onto the heated silicon substrate. Next, argon gas was introduced to purge the unadsorbed aminosiloxane composition and by-products from within the apparatus.
  • ozone was injected as a reactive gas at a pressure of 0.05 to 100 Torr to form an atomic layer of silicon oxide derived from 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane deposited on the substrate.
  • argon gas was introduced to purge the unreacted ozone gas and by-products. The above cycle was repeated to obtain a silicon oxide film.
  • Table 1 Specific deposition methods are shown in Table 1 below.
  • Figure 2 shows the relationship between substrate temperature and deposition rate. In the measurement of each plot in Figure 2, the siloxane supply time that maximizes the deposition rate was selected.
  • Table 2 shows the deposition rate in Example 2 when 50 cycles were repeated at a substrate temperature of 725°C, which is the maximum temperature of the ALD window, and at 750°C, which is outside the ALD window.
  • the ALD window here refers to the temperature range from the point where the deposition rate is maximum to the point where it is minimum in Figure 2.
  • Table 3 also summarizes the temperature range of the ALD window for Example 1 and Comparative Examples 1 and 2. The layer thickness was measured with an ellipsometer.
  • Table 4 shows the shrinkage rate when a film was formed near the upper limit of the ALD window (700°C for the Example, 550°C for Comparative Example 1) and then annealed at 800°C for 30 minutes.
  • Table 5 shows the etching rate when a film was formed near the upper limit of the ALD window (700°C for the Example, 500°C for Comparative Example 1) and then immersed in 0.5% hydrofluoric acid for 60 seconds. The etching rate was calculated by measuring the film thickness before and after immersion in 0.5% hydrofluoric acid with an ellipsometer, calculating the amount of film thickness reduction, and dividing the result by the immersion time.
  • Example 2 the supply time of the 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane composition was examined to form an atomic layer of silicon oxide derived from the 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane compound. It was confirmed that the deposition rate reached its maximum at a substrate temperature of 725°C for 6 seconds or more, resulting in ALD film formation.
  • the sulfur-containing siloxane disclosed herein is useful for atomic deposition methods that form films at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Silicon Polymers (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

Provided is a siloxane compound that can be used as a siloxane-containing film precursor with which it is possible, in the formation of a silicon-containing film, to form a film by atomic layer deposition (ALD) even in high-temperature conditions, by a sulfur-containing siloxane represented by formula (1) (where: R1 to R8 are, independently in each occurrence, a hydrogen atom, a C1-5 alkyl group, a C2-5 alkenyl group, a C2-5 alkynyl group, or a C1-5 alkoxy group; R1 to R8 may each bond with each other to form a ring; X1 to X3 are, independently in each occurrence, an oxygen atom or a sulfur atom; and n is an integer from 0 to 2).

Description

シリコン含有膜前駆体、シリコン含有膜形成用の組成物、硫黄含有シロキサンの製造方法、及びシリコン含有膜の製造方法Silicon-containing film precursor, composition for forming silicon-containing film, method for producing sulfur-containing siloxane, and method for producing silicon-containing film

 本開示の技術分野は、硫黄含有シロキサン、及び当該化合物を用いるシリコン含有膜の製造方法等に関する。 The technical field of this disclosure relates to sulfur-containing siloxanes and methods for producing silicon-containing films using such compounds.

 半導体デバイスの製作において、シリコン含有薄膜は、様々な蒸着工程によりシリコン膜、シリコン酸化膜、シリコン窒化膜、シリコン炭窒化膜、及びシリコンオキシ窒化膜等の種々の形態の薄膜に製造されており、様々な分野で応用されている。中でもシリコン酸化膜及びシリコン窒化膜は、非常に優れた遮断特性及び耐酸化性を有するため、装置の製作において絶縁膜、金属間誘電物質、シード層、スペーサー、ハードマスク、トレンチアイソレーション、拡散防止膜、エッチング停止層、及び保護膜層として機能する。 In the fabrication of semiconductor devices, silicon-containing thin films are produced in various forms, such as silicon films, silicon oxide films, silicon nitride films, silicon carbonitride films, and silicon oxynitride films, through various deposition processes, and are used in a variety of fields. Among them, silicon oxide films and silicon nitride films have excellent barrier properties and oxidation resistance, and therefore function as insulating films, intermetal dielectric materials, seed layers, spacers, hard masks, trench isolation, diffusion barriers, etch stop layers, and protective film layers in device fabrication.

 近年は素子の微細化、アスペクト比の増加、及び素子材料の多様化に伴い、均一な膜形成が可能な原子層堆積(ALD)法で成膜する技術が要求されている。また、近年は不純物が少なく電気特性に優れた高品質な膜の需要がある。高品質な膜を形成するための解決策の一つとして、500℃以上の高温で成膜する方法が注目されている。しかしながら、従来の成膜材料では高温で分解し、原子層堆積(ALD)法での成膜が困難となる場合が多い。分解が生じると成膜の自己制御が難しいため、均一な膜の形成が困難となり、微細化などに伴う高アスペクト比の成膜が実現できない可能性がある。このため、高温条件でも分解せずALD法で成膜できる材料が求められている。 In recent years, with the miniaturization of elements, the increase in aspect ratios, and the diversification of element materials, there is a demand for technology to form films using atomic layer deposition (ALD), which allows for uniform film formation. In addition, there is a demand in recent years for high-quality films with few impurities and excellent electrical properties. As one solution to form high-quality films, a method of forming films at high temperatures of 500°C or more has attracted attention. However, conventional film formation materials often decompose at high temperatures, making film formation using the atomic layer deposition (ALD) method difficult. When decomposition occurs, it is difficult to self-control the film formation, making it difficult to form a uniform film, and there is a possibility that film formation with a high aspect ratio associated with miniaturization cannot be achieved. For this reason, there is a demand for materials that do not decompose even under high-temperature conditions and can be formed using the ALD method.

 従来の成膜材料の一例として、特許文献1では原子層堆積(ALD)法で、シリコン源としてアミノシラン化合物であるビスジエチルアミノシラン(BDEAS)を用いることにより、均一なシリコン酸化膜を形成する方法が提案されている。 As an example of a conventional film-forming material, Patent Document 1 proposes a method for forming a uniform silicon oxide film by using the aminosilane compound bisdiethylaminosilane (BDEAS) as a silicon source in an atomic layer deposition (ALD) method.

 特許文献2ではシリコン源としてアミノシラン化合物である2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサンを使用することにより、原子層堆積(ALD)法で均一なシリコン酸化膜を高い堆積速度で形成する方法が提案されている。 Patent Document 2 proposes a method for forming a uniform silicon oxide film at a high deposition rate by atomic layer deposition (ALD) using the aminosilane compound 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane as a silicon source.

 また、特許文献3では原子層堆積(ALD)法で、シリコン源としてアミノシラン化合物であるジメチルアミノトリメチルシラン(DMATMS)を用いることにより、均一なシリコン酸化膜を高温で形成する方法が提案されている。 Patent Document 3 also proposes a method for forming a uniform silicon oxide film at high temperatures using the atomic layer deposition (ALD) method and the aminosilane compound dimethylaminotrimethylsilane (DMATMS) as a silicon source.

特表2008-533731Special table 2008-533731 特開2018-154615Patent Publication 2018-154615 特開2020-038978Patent Publication 2020-038978

 しかしながら、特許文献1に記載のビスジエチルアミノシランは200~400℃で、特許文献2に記載の2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサンは100~300℃でそれぞれ原子層堆積(ALD)にてシリコン酸化膜を形成可能であるが、その温度範囲は低温であり、500℃以上のような高温で成膜する場合は成膜材料が分解して均一に成膜できない恐れがある。また、特許文献3に記載のジメチルアミノトリメチルシランは、特許文献1に記載のビスジエチルアミノシランや特許文献2に記載の2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサンよりも高温である500~650℃でALD法にてシリコン酸化膜を形成可能であるが、高温条件が未だ十分であるとは言い難い。 However, although the bisdiethylaminosilane described in Patent Document 1 can form a silicon oxide film by atomic layer deposition (ALD) at 200 to 400°C, and the 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane described in Patent Document 2 can form a silicon oxide film by atomic layer deposition (ALD) at 100 to 300°C, the temperature range is low, and if the film is formed at a high temperature of 500°C or higher, there is a risk that the film forming material will decompose and the film will not be formed uniformly. In addition, the dimethylaminotrimethylsilane described in Patent Document 3 can form a silicon oxide film by the ALD method at 500 to 650°C, which is higher than the bisdiethylaminosilane described in Patent Document 1 and the 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane described in Patent Document 2, but it is difficult to say that the high temperature conditions are yet sufficient.

 本開示は、このような事情の下で考え出されたものであって、シリコン含有膜の形成において、高温条件でも原子層堆積(ALD)法による成膜が可能な新規シリコン含有膜前駆体として利用可能なシロキサン化合物を提供することを主たる課題とする。 The present disclosure was conceived under these circumstances, and its main objective is to provide a siloxane compound that can be used as a new silicon-containing film precursor that can be formed by atomic layer deposition (ALD) even under high temperature conditions in the formation of silicon-containing films.

 従来、シリコン原子に対してアミノ基が結合したアミノシラン化合物をシリコン含有膜形成用の前駆体(シリコン含有膜前駆体)とすることが一般的であったが、本発明者らは鋭意検討の結果、所望の効果を得るためにはシリコン原子に対して硫黄原子が結合したチオシラン化合物をシリコン含有膜前駆体として用いることが有用であることを見出した。特に、シロキサン構造(-Si-O-)のシリコン原子に対して硫黄原子が結合した特定の化合物をシリコン含有膜前駆体とすることで、より高温条件で原子層堆積(ALD)法による膜形成が実現できることを見出し、本開示を完成させるに至った。  Conventionally, aminosilane compounds in which an amino group is bonded to a silicon atom have been commonly used as precursors for forming silicon-containing films (silicon-containing film precursors), but the inventors have found, after extensive research, that it is useful to use a thiosilane compound in which a sulfur atom is bonded to a silicon atom as a silicon-containing film precursor in order to obtain the desired effects. In particular, they have found that by using a specific compound in which a sulfur atom is bonded to a silicon atom of a siloxane structure (-Si-O-) as a silicon-containing film precursor, it is possible to form a film by atomic layer deposition (ALD) under higher temperature conditions, which has led to the completion of this disclosure.

 本開示における実施形態の一例は次のとおりである。
[項1]
式(1):

Figure JPOXMLDOC01-appb-I000008
[式(1)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
nは0~2の整数である。]
で表される硫黄含有シロキサンを含む、シリコン含有膜前駆体。
[項2]
~Xが酸素原子である、項1に記載のシリコン含有膜前駆体。
[項3]
前記硫黄含有シロキサンが
式(2):
Figure JPOXMLDOC01-appb-I000009
[式(2)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、又は炭素数1~5のアルコキシ基であり、
nは0~2の整数である。]
で表される、項1又は2に記載のシリコン含有膜前駆体。
[項4]
~Rが、各出現において独立して、炭素数1~5のアルキル基である、項1~3のいずれか一項に記載のシリコン含有膜前駆体。
[項5]
前記硫黄含有シロキサンが
式(3):
Figure JPOXMLDOC01-appb-I000010
で表される、2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンである、項1~4のいずれか一項に記載のシリコン含有膜前駆体。
[項6]
前記シリコン含有膜が化学気相成長により形成される、項1~5のいずれか一項に記載のシリコン含有膜前駆体。
[項7]
前記シリコン含有膜が原子層堆積法により形成される、項1~6のいずれか一項に記載のシリコン含有膜前駆体。
[項8]
式(1):
Figure JPOXMLDOC01-appb-I000011
[式(1)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
nは0~2の整数である。]
で表される硫黄含有シロキサンを含む、シリコン含有膜形成用の組成物。
[項9]
式(1):
Figure JPOXMLDOC01-appb-I000012
[式(1)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
nは0~2の整数である。]
で表される硫黄含有シロキサンの製造方法であって、
(a)原料シロキサンから前記硫黄含有シロキサンを合成する工程;及び
(b)蒸留により前記硫黄含有シロキサンを単離する蒸留工程を含む、硫黄含有シロキサンの製造方法。
[項10]
 工程(a)において、前記原料シロキサンと硫化剤とを反応させて前記硫黄含有シロキサンを合成する、項9に記載の硫黄含有シロキサンの製造方法。
[項11]
前記原料シロキサンが下式(4):
Figure JPOXMLDOC01-appb-I000013
[式(4)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
Yは水素原子又はハロゲン原子であり、
nは0~2の整数である。]
で表される、項9又は10に記載の硫黄含有シロキサンの製造方法。
[項12]
式(1):
Figure JPOXMLDOC01-appb-I000014
[式(1)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
nは0~2の整数である。]
で表される硫黄含有シロキサンを用いる、シリコン含有膜の製造方法。 An example of an embodiment of the present disclosure is as follows.
[Item 1]
Formula (1):
Figure JPOXMLDOC01-appb-I000008
[In formula (1),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
n is an integer from 0 to 2.
A silicon-containing film precursor comprising a sulfur-containing siloxane represented by the formula:
[Item 2]
Item 2. The silicon-containing film precursor according to item 1, wherein X 1 to X 3 are oxygen atoms.
[Item 3]
The sulfur-containing siloxane has the formula (2):
Figure JPOXMLDOC01-appb-I000009
[In formula (2),
R 1 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms;
n is an integer from 0 to 2.
Item 3. The silicon-containing film precursor according to item 1 or 2, represented by:
[Item 4]
Item 4. The silicon-containing film precursor according to any one of items 1 to 3, wherein R 1 to R 8 are independently in each occurrence an alkyl group having 1 to 5 carbon atoms.
[Item 5]
The sulfur-containing siloxane has the formula (3):
Figure JPOXMLDOC01-appb-I000010
Item 5. The silicon-containing film precursor according to any one of items 1 to 4, which is 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane represented by the formula:
[Item 6]
Item 6. The silicon-containing film precursor according to any one of items 1 to 5, wherein the silicon-containing film is formed by chemical vapor deposition.
[Item 7]
Item 7. The silicon-containing film precursor according to any one of items 1 to 6, wherein the silicon-containing film is formed by atomic layer deposition.
[Item 8]
Formula (1):
Figure JPOXMLDOC01-appb-I000011
[In formula (1),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
n is an integer from 0 to 2.
A composition for forming a silicon-containing film, comprising a sulfur-containing siloxane represented by the formula:
[Item 9]
Formula (1):
Figure JPOXMLDOC01-appb-I000012
[In formula (1),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
n is an integer from 0 to 2.
A method for producing a sulfur-containing siloxane represented by the formula:
A method for producing a sulfur-containing siloxane, comprising: (a) synthesizing the sulfur-containing siloxane from a raw material siloxane; and (b) isolating the sulfur-containing siloxane by distillation.
[Item 10]
Item 10. The method for producing a sulfur-containing siloxane according to Item 9, wherein in step (a), the raw material siloxane is reacted with a sulfurizing agent to synthesize the sulfur-containing siloxane.
[Item 11]
The raw material siloxane has the following formula (4):
Figure JPOXMLDOC01-appb-I000013
[In formula (4),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
Y is a hydrogen atom or a halogen atom;
n is an integer from 0 to 2.
Item 11. The method for producing a sulfur-containing siloxane according to item 9 or 10, wherein the sulfur-containing siloxane is represented by the formula:
[Item 12]
Formula (1):
Figure JPOXMLDOC01-appb-I000014
[In formula (1),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
n is an integer from 0 to 2.
A method for producing a silicon-containing film using a sulfur-containing siloxane represented by the formula:

 本開示によれば、特定の硫黄原子を有するシロキサン化合物をシリコン含有膜前駆体として使用することで、より高温条件でALD法により均一で良質な膜を形成することが出来る。例えば、本開示の方法により、得られるシリコン膜は、良好な収縮率及び/又は良好なエッチングレートを示し得る。したがって、本開示の方法によれば、高温条件でも均一で膜特性に優れた成膜が可能となるため、高性能な半導体デバイスを作製することができる。 According to the present disclosure, by using a siloxane compound having a specific sulfur atom as a silicon-containing film precursor, it is possible to form a uniform, high-quality film by the ALD method under higher temperature conditions. For example, the silicon film obtained by the method of the present disclosure may exhibit a good shrinkage rate and/or a good etching rate. Therefore, according to the method of the present disclosure, it is possible to form a film that is uniform and has excellent film properties even under high temperature conditions, making it possible to fabricate high-performance semiconductor devices.

本開示の実施例1における製造方法により得られた2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンのH-NMRチャートを示す。1 shows a 1 H-NMR chart of 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane obtained by the production method in Example 1 of the present disclosure. 本開示の実施例2並びに比較例1~3における基板温度と堆積速度の関係を示す。1 shows the relationship between the substrate temperature and the deposition rate in Example 2 and Comparative Examples 1 to 3 of the present disclosure.

<硫黄含有シロキサン>
 本開示の硫黄含有シロキサンは、少なくとも一の硫黄原子を有し、環状構造を有する。
<Sulfur-containing siloxane>
The sulfur-containing siloxane of the present disclosure has at least one sulfur atom and has a cyclic structure.

 本開示における硫黄含有シロキサンは、
下式(1):

Figure JPOXMLDOC01-appb-I000015
[式(1)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
nは0~2の整数である。]
で表される。 The sulfur-containing siloxane in the present disclosure is
The following formula (1):
Figure JPOXMLDOC01-appb-I000015
[In formula (1),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
n is an integer from 0 to 2.
It is expressed as:

[R~R
 R~Rは、各出現において独立して、水素原子、炭素数1~5(例えば、1~3、1~2、1)のアルキル基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、イソブチル、tert-ブチル、ペンチル)、炭素数2~5(例えば、2~4、2~3、及び2)のアルケニル基(例えば、ビニル又は2-プロペニル)、炭素数2~5(例えば、2~4、2~3、及び2)のアルキニル基(例えば、エチニル又はプロピニル)、又は炭素数1~5(例えば、1~3、1~2、及び1)のアルコキシ基(例えば、メトキシ、エトキシ、プロポキシ)である。
[R 1 to R 8 ]
R 1 to R 8 in each occurrence are independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms (e.g., 1 to 3, 1 to 2, 1) (e.g., methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl), an alkenyl group having 2 to 5 carbon atoms (e.g., 2 to 4, 2 to 3, and 2) (e.g., vinyl or 2-propenyl), an alkynyl group having 2 to 5 carbon atoms (e.g., 2 to 4, 2 to 3, and 2) (e.g., ethynyl or propynyl), or an alkoxy group having 1 to 5 carbon atoms (e.g., 1 to 3, 1 to 2, and 1) (e.g., methoxy, ethoxy, propoxy).

 R~Rの平均炭素数は、0.5以上、1以上、2以上、又は3以上であってよく、好ましくは1以上である。R~Rの平均炭素数は、5以下、4以下、3以下、2以下、又は1であってよく、好ましくは3以下、例えば2以下である。 The average number of carbon atoms in R 1 to R 8 may be 0.5 or more, 1 or more, 2 or more, or 3 or more, and is preferably at least 1. The average number of carbon atoms in R 1 to R 8 may be 5 or less, 4 or less, 3 or less, 2 or less, or 1, and is preferably 3 or less, for example 2 or less.

 R~Rは直鎖状、分岐鎖状、又は環状であってもよく、好ましくは直鎖状又は分岐鎖状であり、より好ましくは直鎖状である。 R 1 to R 8 may be linear, branched, or cyclic, preferably linear or branched, and more preferably linear.

 ここで、R~Rはそれぞれ互いに結合し環を形成してもよいし、形成していなくてもよい(環が形成されている場合、一のR~Rと、例えば同一シリコン原子、又は隣接シリコン原子に結合しているR~Rとで環を形成していてもよい)。なお、ここで、結合とは、R~Rのそれぞれが有する結合手(例えば、各R~Rの水素原子が脱離して生じる結合手)が互いに結合することを意味してよい。 Here, R 1 to R 8 may or may not be bonded to each other to form a ring (when a ring is formed, one of R 1 to R 8 may form a ring with, for example, R 1 to R 8 bonded to the same silicon atom or an adjacent silicon atom). Note that the term "bond" here may mean that the bonds possessed by each of R 1 to R 8 (for example, bonds resulting from the elimination of a hydrogen atom from each of R 1 to R 8 ) are bonded to each other.

 R~Rの少なくとも1つ(例えば、1個以上、2個以上、3個以上、4個以上、又は5個以上)が炭化水素基又はアルコキシ基(例えば、炭化水素基、特にアルキル基)であってよい。R~Rのすべてが水素原子以外であってもよい。炭化水素基又はアルコキシ基(例えば、炭化水素基、特にアルキル基)であるR~Rの数は、R~Rの合計の数に対して、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、又は90%以上であってよく、好ましくは50%以上である。炭化水素基又はアルコキシ基(例えば、炭化水素基、特にアルキル基)であるR~Rの数は、R~Rの合計の数に対して、100%以下、95%以下、85%以下、75%以下、又は65%以下であってよい。R~Rの全てが、炭化水素基又はアルコキシ基(例えば、炭化水素基、特にアルキル基)であってよい。 At least one of R 1 to R 8 (e.g., 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more) may be a hydrocarbon group or an alkoxy group (e.g., a hydrocarbon group, particularly an alkyl group). All of R 1 to R 8 may be other than a hydrogen atom. The number of R 1 to R 8 that is a hydrocarbon group or an alkoxy group (e.g., a hydrocarbon group, particularly an alkyl group) may be 10 % or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more, preferably 50% or more, based on the total number of R 1 to R 8. The number of R 1 to R 8 that is a hydrocarbon group or an alkoxy group (e.g., a hydrocarbon group, particularly an alkyl group) may be 100% or less, 95% or less, 85% or less, 75% or less, or 65% or less, based on the total number of R 1 to R 8 . All of R 1 through R 8 may be hydrocarbon or alkoxy groups (eg, hydrocarbon groups, especially alkyl groups).

 R~Rは、同一又は異なっていてもよく、例えば同一であってもよい。好適な例として、R~Rの全てがアルキル基、特にメチル基の場合が挙げられる。 R 1 to R 8 may be the same or different, for example, they may be the same. A preferred example is when all of R 1 to R 8 are alkyl groups, particularly methyl groups.

[X~X
 X~Xは、各出現において独立して、酸素原子又は硫黄原子である。
[X 1 to X 3 ]
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom.

 X~Xの少なくとも1つ(例えば、1個以上、2個以上、3個以上、又は4個)が酸素原子であってよい。酸素原子であるX~Xの数は、X~Xの合計の数に対して、20%以上、40%以上、60%以上、又は80以上であってよく、好ましくは40%以上である。酸素原子であるX~Xの数は、X~Xの合計の数に対して、100%以下、70%以下、又は40%以下であってよい。X~Xの全てが、酸素原子であってもよい。 At least one of X 1 to X 3 (for example, 1 or more, 2 or more, 3 or more, or 4) may be an oxygen atom. The number of X 1 to X 3 which are oxygen atoms may be 20% or more, 40% or more, 60% or more, or 80 or more, preferably 40% or more, based on the total number of X 1 to X 3. The number of X 1 to X 3 which are oxygen atoms may be 100% or less, 70% or less, or 40% or less, based on the total number of X 1 to X 3. All of X 1 to X 3 may be oxygen atoms.

[n]
 nは0~2の整数であり、0、1又は2であり、例えば0又は1、0又は2、若しくは1又は2であり、特に1である。
[n]
n is an integer from 0 to 2, for example 0, 1 or 2, for example 0 or 1, 0 or 2, or 1 or 2, and in particular 1.

[その他]
 硫黄含有シロキサンの分子量は200以上、250以上、300以上、350以上、400以上、450以上、500以上、550以上、又は600以上であってよく、好ましくは300以上である。硫黄含有シロキサンの分子量は1000以下、900以下、800以下、700以下、600以下、500以下、400以下、又は350以下であってよく、好ましくは400以下である。
[others]
The molecular weight of the sulfur-containing siloxane may be 200 or more, 250 or more, 300 or more, 350 or more, 400 or more, 450 or more, 500 or more, 550 or more, or 600 or more, preferably 300 or more. The molecular weight of the sulfur-containing siloxane may be 1000 or less, 900 or less, 800 or less, 700 or less, 600 or less, 500 or less, 400 or less, or 350 or less, preferably 400 or less.

 硫黄含有シロキサンの炭素数は0以上、1以上、4以上、6以上、8以上、10以上、12以上、15以上、又は20以上であってよく、好ましくは6以上である。硫黄含有シロキサンの炭素数は50以下、40以下、30以下、25以下、20以下、15以下、10以下であってよく、好ましくは20以下である。 The number of carbon atoms of the sulfur-containing siloxane may be 0 or more, 1 or more, 4 or more, 6 or more, 8 or more, 10 or more, 12 or more, 15 or more, or 20 or more, and is preferably 6 or more. The number of carbon atoms of the sulfur-containing siloxane may be 50 or less, 40 or less, 30 or less, 25 or less, 20 or less, 15 or less, or 10 or less, and is preferably 20 or less.

 一分子中に多数のSi-O構造が存在する方が、シリコン酸化膜を形成する上では構成元素が膜組成と類似しているため、膜特性の観点から好ましい。一方で、詳細な理由は不明であるが、Si-S構造が存在する方が、高温条件でのALD成膜が可能となる。一方で、成膜性の観点や蒸気圧制御の観点からいうと、分子サイズも重要である。本願発明者らは鋭意検討を重ねた結果、上記で特定したような適度なSi-O構造の数及び適度な分子量を有する硫黄含有シロキサンにより良好な効果を奏し得ることを見出した。 The presence of many Si-O structures in one molecule is preferable from the standpoint of film properties, since the constituent elements are similar to the film composition when forming a silicon oxide film. On the other hand, the presence of Si-S structures makes it possible to form ALD films under high temperature conditions, although the detailed reasons are unclear. On the other hand, from the standpoint of film formability and vapor pressure control, molecular size is also important. As a result of extensive research, the inventors of the present application have found that a sulfur-containing siloxane with an appropriate number of Si-O structures and an appropriate molecular weight, as specified above, can produce good effects.

[硫黄含有シロキサンの例]
 硫黄含有シロキサンの例として、
式(2):

Figure JPOXMLDOC01-appb-I000016
[式(2)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、又は炭素数1~5のアルコキシ基であり、
nは0~2の整数である。]
で表される化合物が挙げられる。 [Examples of sulfur-containing siloxanes]
Examples of sulfur-containing siloxanes include:
Formula (2):
Figure JPOXMLDOC01-appb-I000016
[In formula (2),
R 1 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms;
n is an integer from 0 to 2.
Examples of the compound include compounds represented by the following formula:

 式(2)中、R~R及びnの詳細については上述の式(1)の説明を援用する。 In formula (2), the details of R 1 to R 8 and n are as described above in relation to formula (1).

 本開示における硫黄含有シロキサンの具体的な例として、2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタン、1,3-ジオキサ-5-チア-2,4,6-トリシラシクロヘキサン、2,2,4,4,6,6-ヘキサメチル-1,3-ジオキサ-5-チア-2,4,6-トリシラシクロヘキサン、2,2,4,4,6,6-ヘキサエチル-1,3-ジオキサ-5-チア-2,4,6-トリシラシクロヘキサン、2,2,4,4,6,6-ヘキサビニル-1,3-ジオキサ-5-チア-2,4,6-トリシラシクロヘキサン、2,2,4,4,6,6-ヘキサプロピル-1,3-ジオキサ-5-チア-2,4,6-トリシラシクロヘキサン、2,2,4,4,6,6-ヘキサイソプロピル-1,3-ジオキサ-5-チア-2,4,6-トリシラシクロヘキサン、2,2,4,4,6,6-ヘキサブチル-1,3-ジオキサ-5-チア-2,4,6-トリシラシクロヘキサン、1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタン、2,2,4,4,6,6,8,8-オクタエチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタン、2,2,4,4,6,6,8,8-オクタビニル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタン、2,2,4,4,6,6,8,8-オクタプロピル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタン、2,2,4,4,6,6,8,8-オクタイソプロピル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタン、2,2,4,4,6,6,8,8-オクタブチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタン、1,3,5、7-テトラオキサ-9-チア-2,4,6,8,10-ペンタシラシクロデカン、2,2,4,4,6,6,8,8,10,10-デカメチル-1,3,5,7-テトラオキサ-9-チア-2,4,6,8,10-ペンタシラシクロデカン、2,2,4,4,6,6,8,8,10,10-デカエチル-1,3,5,7-テトラオキサ-9-チア-2,4,6,8,10-ペンタシラシクロデカン、2,2,4,4,6,6,8,8,10,10-デカビニル-1,3,5,7-テトラオキサ-9-チア-2,4,6,8,10-ペンタシラシクロデカン、2,2,4,4,6,6,8,8,10,10-デカプロピル-1,3,5,7-テトラオキサ-9-チア-2,4,6,8,10-ペンタシラシクロデカン、2,2,4,4,6,6,8,8,10,10-デカイソプロピル-1,3,5,7-テトラオキサ-9-チア-2,4,6,8,10-ペンタシラシクロデカン、2,2,4,4,6,6,8,8,10,10-デカブチル-1,3,5,7-テトラオキサ-9-チア-2,4,6,8,10-ペンタシラシクロデカン等が挙げられる。 Specific examples of sulfur-containing siloxanes in this disclosure include 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane, 1,3-dioxa-5-thia-2,4,6-trisilacyclohexane, 2,2,4,4,6,6-hexamethyl-1,3-dioxa-5-thia-2,4,6-trisilacyclohexane, 2,2,4,4,6,6-hexaethyl-1,3-dioxa-5-thia-2,4,6-trisilacyclohexane, 2,2,4,4,6,6-hexavinyl-1,3-dioxa-5-thia-2,4,6-trisilacyclohexane, and 2,2,4,4,6,6-hexapropyl-1,3-dioxa-5-thia-2,4,6- Trisilacyclohexane, 2,2,4,4,6,6-hexaisopropyl-1,3-dioxa-5-thia-2,4,6-trisilacyclohexane, 2,2,4,4,6,6-hexabutyl-1,3-dioxa-5-thia-2,4,6-trisilacyclohexane, 1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane, 2,2,4,4,6,6,8,8-octaethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane, 2,2,4,4,6,6,8,8-octavinyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane, 2,2,4,4,6,6,8,8-octapropyl-1,3,5-trioxa-7-thia-2,4,6,8,8-octapropyl-1,3,5-trioxa-7- Thia-2,4,6,8-tetrasilacyclooctane, 2,2,4,4,6,6,8,8-octaisopropyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane, 2,2,4,4,6,6,8,8-octabutyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane, 1,3,5,7- Tetraoxa-9-thia-2,4,6,8,10-pentasilacyclodecane, 2,2,4,4,6,6,8,8,10,10-decamethyl-1,3,5,7-tetraoxa-9-thia-2,4,6,8,10-pentasilacyclodecane, 2,2,4,4,6,6,8,8,10,10-decaethyl-1,3,5,7-tetraoxa-9-thia-2,4, 6,8,10-pentasilacyclodecane, 2,2,4,4,6,6,8,8,10,10-decavinyl-1,3,5,7-tetraoxa-9-thia-2,4,6,8,10-pentasilacyclodecane, 2,2,4,4,6,6,8,8,10,10-decapropyl-1,3,5,7-tetraoxa-9-thia-2,4,6,8,10-pentasilacyclodecane Examples include rhodecane, 2,2,4,4,6,6,8,8,10,10-decaisopropyl-1,3,5,7-tetraoxa-9-thia-2,4,6,8,10-pentasilacyclodecane, and 2,2,4,4,6,6,8,8,10,10-decabutyl-1,3,5,7-tetraoxa-9-thia-2,4,6,8,10-pentasilacyclodecane.

<硫黄含有シロキサンの製造方法>
 本開示における硫黄含有シロキサンの製造方法は、
(a)原料のシロキサンから硫黄含有シロキサンを合成する工程、及び(b)蒸留により硫黄含有シロキサンを単離する蒸留工程
を含む製造方法を含んでよい。
<Method for producing sulfur-containing siloxane>
The method for producing the sulfur-containing siloxane according to the present disclosure includes:
The method may include a production method including: (a) a step of synthesizing a sulfur-containing siloxane from a raw material siloxane; and (b) a distillation step of isolating the sulfur-containing siloxane by distillation.

[合成工程(a)]
 合成工程(a)においては、原料シロキサンを硫化剤と反応させる工程を含んでよい。
[Synthesis step (a)]
The synthesis step (a) may include reacting a starting siloxane with a sulfurizing agent.

 前記原料シロキサンは下式(4):

Figure JPOXMLDOC01-appb-I000017
[式(4)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
Yは水素原子又はハロゲン原子であり、
nは0~2の整数である。]
で表される化合物であってよい。 The raw material siloxane has the following formula (4):
Figure JPOXMLDOC01-appb-I000017
[In formula (4),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
Y is a hydrogen atom or a halogen atom;
n is an integer from 0 to 2.
The compound may be represented by the formula:

 式(4)中、R~R及びnの詳細については上述の式(1)の説明を援用する。 In formula (4), the details of R 1 to R 8 and n are as described above in relation to formula (1).

 Yは、水素原子又はハロゲン原子である。Yの例としては、水素原子、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。 Y is a hydrogen atom or a halogen atom. Examples of Y include a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

 Yが水素原子であるシロキサン化合物は、そのまま合成工程(a)に使用してもよく、ハロゲン化剤を用いてYをハロゲンに置換してから合成工程(a)を実施してもよい。ハロゲン化剤はフッ素化剤、塩素化剤、臭素化剤、ヨウ素化剤であってよい。これらの中でもN-クロロスクシンイミド、N-クロロフタルイミド等の塩素化剤が好ましく用いられる。 The siloxane compound in which Y is a hydrogen atom may be used as is in the synthesis step (a), or Y may be substituted with a halogen using a halogenating agent before carrying out the synthesis step (a). The halogenating agent may be a fluorinating agent, a chlorinating agent, a brominating agent, or an iodinating agent. Among these, chlorinating agents such as N-chlorosuccinimide and N-chlorophthalimide are preferably used.

 原料シロキサンの分子量は150以上、200以上、250以上、300以上、350以上、400以上、450以上、500以上、又は550以上であってよく、好ましくは250以上である。原料シロキサンの分子量は1000以下、900以下、800以下、700以下、600以下、500以下、400以下、350以下、又は300以下であってよく、好ましくは350以下である。 The molecular weight of the raw siloxane may be 150 or more, 200 or more, 250 or more, 300 or more, 350 or more, 400 or more, 450 or more, 500 or more, or 550 or more, and is preferably 250 or more. The molecular weight of the raw siloxane may be 1000 or less, 900 or less, 800 or less, 700 or less, 600 or less, 500 or less, 400 or less, 350 or less, or 300 or less, and is preferably 350 or less.

 前記硫化剤は-SiYにおけるYを硫黄に置換可能な硫黄化合物であって、例えば硫化リチウム、硫化ナトリウム、硫化水素等の硫化物を用いることができる。 The sulfurizing agent is a sulfur compound capable of replacing Y in -SiY with sulfur, and examples of sulfides that can be used include lithium sulfide, sodium sulfide, and hydrogen sulfide.

 原料シロキサン(4)と硫化剤との反応式の例を以下式(5)に示す。

Figure JPOXMLDOC01-appb-I000018
An example of the reaction between the raw material siloxane (4) and the sulfurizing agent is shown in the following formula (5).
:
Figure JPOXMLDOC01-appb-I000018

 工程(a)では、最初に原料シロキサン(例えば原料シロキサン(4))を有機溶媒に溶解させて、そこに硫化剤を加えていく方法、及び、硫化剤を有機溶媒に溶かしておき、原料シロキサン(例えば原料シロキサン(4))を加えていく方法のいずれでも本反応には適用可能である。 In step (a), either of the following methods can be applied to this reaction: first dissolving the raw material siloxane (e.g., raw material siloxane (4)) in an organic solvent and then adding the sulfurizing agent; or dissolving the sulfurizing agent in an organic solvent and then adding the raw material siloxane (e.g., raw material siloxane (4)).

 硫化剤の使用量は、原料シロキサン(例えば原料シロキサン(4))1.0モルに対して、通常0.2~3.0モル、好ましくは0.4~2.0モルである。 The amount of sulfurizing agent used is usually 0.2 to 3.0 moles, preferably 0.4 to 2.0 moles, per 1.0 mole of raw siloxane (e.g., raw siloxane (4)).

 反応は-20℃~100℃、好ましくは-10℃~60℃の範囲で反応が行われてよい。反応時間は通常0.5~30時間の範囲である。 The reaction may be carried out at temperatures between -20°C and 100°C, preferably between -10°C and 60°C. The reaction time is usually in the range of 0.5 to 30 hours.

 本開示に用いることができる溶媒は、例えばヘキサン、シクロヘキサン、ヘプタン、ノナン、デカンなどの炭化水素類;ジクロロエタン、ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;ベンゼン、トルエン、キシレン、クロロベンゼン、トリクロロベンゼン等の芳香族炭化水素類;ジエチルエーテル、テトラヒドロフラン(THF)、エチレングリコールジメチルエーテルなどのエーテル類及びこれらの混合物を用いることができる。これらの中でもジエチルエーテル、テトラヒドロフラン(THF)などのエーテル類が好ましく、とりわけテトラヒドロフラン(THF)が好ましく用いられる。溶媒の使用量は原料シロキサン化合物に対して、通常0.1~50倍質量である。 Solvents that can be used in the present disclosure include, for example, hydrocarbons such as hexane, cyclohexane, heptane, nonane, and decane; halogenated hydrocarbons such as dichloroethane, dichloromethane, and chloroform; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, and trichlorobenzene; ethers such as diethyl ether, tetrahydrofuran (THF), and ethylene glycol dimethyl ether, and mixtures thereof. Among these, ethers such as diethyl ether and tetrahydrofuran (THF) are preferred, with tetrahydrofuran (THF) being particularly preferred. The amount of solvent used is usually 0.1 to 50 times the mass of the raw siloxane compound.

 シロキサン、硫黄含有シロキサンの加水分解を回避するため、反応系は全て無水条件で行うことが望ましく、使用する全ての原料中の水分を全ての原料質量に対して0~5000質量ppm、好ましくは0~500質量ppmの範囲にして反応を行う。また、反応装置は加熱乾燥及び減圧、窒素やアルゴンなどの不活性ガス置換を行うことで乾燥されたものを用いることが望ましい。 To avoid hydrolysis of siloxanes and sulfur-containing siloxanes, it is desirable to carry out the reaction under anhydrous conditions, with the moisture content of all raw materials used being in the range of 0 to 5,000 ppm by mass, preferably 0 to 500 ppm by mass, relative to the mass of all raw materials. It is also desirable to use a reaction apparatus that has been dried by heating, reducing pressure, and replacing the atmosphere with an inert gas such as nitrogen or argon.

 工程(a)では、副生塩などの固体が反応液中に存在する場合は、必要に応じて反応終了後に濾過を行ってよい。濾過を行う場合は、硫黄含有シロキサンの分解を抑えるために乾燥した不活性ガス下で、例えば窒素又はアルゴン下で行うことが望ましい。濾過温度は一意的に決まるものではないが、10℃から使用溶媒の沸点まで適用可能である。好ましくは20℃から65℃の範囲で行うのが望ましい。 In step (a), if solids such as by-product salts are present in the reaction liquid, filtration may be performed after completion of the reaction, if necessary. When filtration is performed, it is desirable to perform the filtration under a dry inert gas, for example, nitrogen or argon, in order to suppress decomposition of the sulfur-containing siloxane. The filtration temperature is not uniquely determined, but can be from 10°C to the boiling point of the solvent used. It is preferable to perform the filtration in the range of 20°C to 65°C.

[蒸留工程(b)]
 工程(b)では、蒸留、例えば減圧蒸留を行うことによって硫黄含有シロキサンが単離される。硫化剤及び有機溶媒は容易に除去され、硫黄含有シロキサンを十分に高い純度で精製することができる。
[Distillation step (b)]
In step (b), the sulfur-containing siloxane is isolated by distillation, for example, vacuum distillation. The sulfurizing agent and the organic solvent can be easily removed, and the sulfur-containing siloxane can be purified to a sufficiently high purity.

<シリコン含有膜の製造方法>
 本開示による硫黄含有シロキサンをシリコン含有膜の中間体として用いて、基板上にシリコン含有膜を形成することができる。本開示によるシリコン含有膜の形成方法は、化学気相成長、特に原子層堆積であってよい。より詳しくは、本開示によるシリコン含有膜の形成方法は、
(c)基板に、下式(1):

Figure JPOXMLDOC01-appb-I000019
[式(1)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
nは0~2の整数である。]
で表される硫黄含有シロキサンを含む硫黄含有シロキサン組成物を接触させて、基板に前記硫黄含有シロキサン組成物を吸着させる工程;
(d)未吸着の硫黄含有シロキサン組成物および副生物をパージする工程;
(e)前記硫黄含有シロキサン組成物が吸着した基板に反応ガスを注入することで、硫黄含有シロキサンが分解され原子層を形成する工程;および
(f)未反応の反応ガスと副生物をパージする工程
を含む、化学気相成長法(特に原子層堆積法)であってよい。 <Method of manufacturing silicon-containing film>
The sulfur-containing siloxane according to the present disclosure can be used as an intermediate for forming a silicon-containing film on a substrate. The method for forming a silicon-containing film according to the present disclosure can be chemical vapor deposition, particularly atomic layer deposition. More specifically, the method for forming a silicon-containing film according to the present disclosure includes:
(c) applying to the substrate a compound represented by the following formula (1):

Figure JPOXMLDOC01-appb-I000019
[In formula (1),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
n is an integer from 0 to 2.
a step of contacting a substrate with a sulfur-containing siloxane composition containing a sulfur-containing siloxane represented by the formula:
(d) purging unadsorbed sulfur-containing siloxane composition and by-products;
(e) injecting a reactive gas into the substrate to which the sulfur-containing siloxane composition is adsorbed, thereby decomposing the sulfur-containing siloxane to form an atomic layer; and (f) purging unreacted reactive gas and by-products. The method may be a chemical vapor deposition method (particularly an atomic layer deposition method).

 基板の温度は100~800℃で行われてよく、好ましくは100~750℃である。得られる膜特性の観点から、基板の温度は200℃以上、300℃以上、400℃以上、500℃以上、600℃以上、又は700℃以上であってよく、例えば250℃以上であり、好ましくは300℃以上、400℃以上、又は500℃以上である。なお、成膜温度は、(c)~(f)の少なくとも一工程の温度であってよく、例えば、工程(c)における硫黄含有シロキサン組成物と接触する際の基板の温度である。本開示の硫黄含有シロキサンから得られるシリコン含有膜は高温においても安定しており、本開示の硫黄含有シロキサンは高温の基板温度を採用するシリコン含有膜の製造方法においても好適に用いることができる。 The substrate temperature may be 100 to 800°C, preferably 100 to 750°C. From the viewpoint of the film properties obtained, the substrate temperature may be 200°C or higher, 300°C or higher, 400°C or higher, 500°C or higher, 600°C or higher, or 700°C or higher, for example, 250°C or higher, preferably 300°C or higher, 400°C or higher, or 500°C or higher. The film formation temperature may be the temperature of at least one of steps (c) to (f), for example, the temperature of the substrate when it comes into contact with the sulfur-containing siloxane composition in step (c). The silicon-containing film obtained from the sulfur-containing siloxane of the present disclosure is stable even at high temperatures, and the sulfur-containing siloxane of the present disclosure can be suitably used in a method for producing a silicon-containing film that employs a high substrate temperature.

 工程(c)および工程(e)でガス注入時の圧力は0.05~100Torr、好ましくは0.05~50Torrである。硫黄含有シロキサン組成物は、窒素やアルゴンなどの不活性ガスをキャリアガスとして含有してよい。 The pressure during gas injection in steps (c) and (e) is 0.05 to 100 Torr, preferably 0.05 to 50 Torr. The sulfur-containing siloxane composition may contain an inert gas such as nitrogen or argon as a carrier gas.

 工程(e)では、反応ガスとして、Si-O結合を有する酸化シリコン膜を形成する際は酸素、オゾン、及び一酸化窒素から選択される一種類以上のガスを用いることができる。Si-N結合を有する窒化シリコン膜を形成する際は窒素、アンモニア、一酸化二窒素、一酸化窒素、二酸化窒素から選択される一種類以上のガスを用いることができる。 In step (e), when forming a silicon oxide film having Si-O bonds, one or more gases selected from oxygen, ozone, and nitric oxide can be used as the reactive gas. When forming a silicon nitride film having Si-N bonds, one or more gases selected from nitrogen, ammonia, nitrous oxide, nitric oxide, and nitrogen dioxide can be used.

 シリコン含有膜の形成は窒素やアルゴンなどの不活性ガス置換を行った後に行うことが望ましい。すなわち、反応系内部を不活性ガス置換した後に、上記工程(c)を行うことが好ましい。 The formation of the silicon-containing film is preferably carried out after replacing the atmosphere with an inert gas such as nitrogen or argon. In other words, it is preferable to carry out the above step (c) after replacing the atmosphere inside the reaction system with an inert gas.

 本開示における硫黄含有シロキサンは、化学気相成長法(特に原子層堆積法)によるシリコン含有膜(シリコン酸化膜、シリコン窒化膜等)の製造に好適に用いられる。本開示におけるシリコン含有膜の製造方法においては、そのALDウィンドウの下限が、300℃であってよく、好ましくは350℃である。また、本開示におけるシリコン含有膜の製造方法においては、ALDウィンドウの上限が、800℃であってよく、好ましくは750℃である。ここで、ALDウィンドウとは、一般にはシリコン含有膜前駆体化合物の蒸気化する温度とシリコン含有膜前駆体化合物の熱分解温度との間の温度範囲を指し、本願明細書においてALDウィンドウは成膜温度を横軸にとって堆積速度を縦軸にとったときに堆積速度が極大となる点から極小となる点までの温度範囲と定義することができる。 The sulfur-containing siloxanes disclosed herein are suitable for use in the manufacture of silicon-containing films (silicon oxide films, silicon nitride films, etc.) by chemical vapor deposition (particularly atomic layer deposition). In the method for manufacturing a silicon-containing film disclosed herein, the lower limit of the ALD window may be 300°C, preferably 350°C. In the method for manufacturing a silicon-containing film disclosed herein, the upper limit of the ALD window may be 800°C, preferably 750°C. Here, the ALD window generally refers to the temperature range between the vaporization temperature of a silicon-containing film precursor compound and the thermal decomposition temperature of the silicon-containing film precursor compound, and in this specification, the ALD window can be defined as the temperature range from the point at which the deposition rate is maximum to the point at which it is minimum when the deposition temperature is on the horizontal axis and the deposition rate is on the vertical axis.

 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments have been described above, it will be understood that various changes in form and details are possible without departing from the spirit and scope of the claims.

 以下、実施例を挙げて本開示を詳しく説明するが、本開示はこれらの実施例に限定されるものではない。 The present disclosure will be explained in detail below with reference to examples, but the present disclosure is not limited to these examples.

[実施例1:2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンの合成]
 窒素置換後、温度計、冷却管、モーター撹拌機をセットした500mLのフラスコに硫化リチウム1.98g(0.043モル)とテトラヒドロフラン317gを添加した。室温で攪拌しながら1,7-ジクロロ-オクタメチルテトラシロキサン10.9g(0.031モル)をゆっくり滴下した。滴下後、20~26℃を保持しながら6時間攪拌した。その後、内温50~60℃で減圧蒸留することでテトラヒドロフランを除去した。その後窒素置換したグローブボックス内で減圧濾過により副生する塩化リチウムが主である固形物を取り除き、2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンを含む溶液を得た。その後、内温68℃、1.9Torrで減圧蒸留することで2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンを高純度で得た。
[Example 1: Synthesis of 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane]
After nitrogen replacement, 1.98 g (0.043 mol) of lithium sulfide and 317 g of tetrahydrofuran were added to a 500 mL flask equipped with a thermometer, a condenser, and a motor stirrer. 10.9 g (0.031 mol) of 1,7-dichloro-octamethyltetrasiloxane was slowly added dropwise while stirring at room temperature. After the addition, the mixture was stirred for 6 hours while maintaining the temperature at 20 to 26°C. Tetrahydrofuran was then removed by vacuum distillation at an internal temperature of 50 to 60°C. Then, in a nitrogen-substituted glove box, solid matter, mainly lithium chloride produced as a by-product, was removed by vacuum filtration to obtain a solution containing 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane. Thereafter, distillation was performed under reduced pressure at an internal temperature of 68° C. and 1.9 Torr to obtain 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane in high purity.

 蒸留後のGC分析により、面積98.3%の純度で5.7g(収率58%)の2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンが得られたことが確認された。得られた2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンはH-NMRおよびGC-MSによって同定した。H-NMRの帰属は以下の通りである。H-NMRチャートは図1に示す通りである。
H-NMR(400MHz,CDCl3):δ0.12(s,12H,[CH -Si]), δ0.43(s,12H,[CH -SiS])
  上記H-NMRおよびGC-MSの結果により、得られた硫黄含有シロキサンは、下式:

Figure JPOXMLDOC01-appb-I000020
2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンであると同定した。 GC analysis after distillation confirmed that 5.7 g (58% yield) of 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane was obtained with a purity of 98.3% area. The obtained 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane was identified by 1 H-NMR and GC-MS. The 1 H-NMR assignments are as follows. The 1 H-NMR chart is shown in FIG. 1.
1H -NMR (400MHz, CDCl3): δ0.12 (s, 12H, [ CH3 - Si]), δ0.43 (s, 12H, [ CH3 - SiS])
From the results of 1 H-NMR and GC-MS, the obtained sulfur-containing siloxane was found to have the following formula:
Figure JPOXMLDOC01-appb-I000020
It was identified as 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane.

[実施例2:2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、500~750℃の所定温度に加熱した。実施例1で得られた2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンおよびキャリアガスを含むシロキサン組成物を0.05~100Torrの圧力で注入し、加熱したシリコン基板に吸着させた。次いで、アルゴンガスを導入することで装置内に未吸着の硫黄含有シロキサン組成物および副生物をパージした。その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積した2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタン由来の酸化シリコンの原子層を形成した。次いで、アルゴンガスを導入することで未反応のオゾンと副生物をパージした。上記のサイクルを繰り返して、酸化シリコン膜を得た。
[Example 2: Formation of silicon-containing film using 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane]
A silicon substrate was placed in a vacuum apparatus and heated to a predetermined temperature of 500 to 750°C. The siloxane composition containing 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane and a carrier gas obtained in Example 1 was injected at a pressure of 0.05 to 100 Torr and adsorbed onto the heated silicon substrate. Then, argon gas was introduced to purge the unadsorbed sulfur-containing siloxane composition and by-products from the apparatus. Then, ozone was injected as a reactive gas at a pressure of 0.05 to 100 Torr to form an atomic layer of silicon oxide derived from 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane deposited on the substrate. Then, argon gas was introduced to purge the unadsorbed ozone and by-products. The above cycle was repeated to obtain a silicon oxide film.

[比較例1:ビスジエチルアミノシランを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、100~750℃の所定温度に加熱した。ビスジエチルアミノシラン及びキャリアガスを含むアミノシラン組成物を0.05~100Torrの圧力で注入し、加熱したシリコン基板に吸着させた。次いで、アルゴンガスを導入することで装置内に未吸着のアミノシラン組成物及び副生物をパージした。その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積したビスジエチルアミノシラン由来の酸化シリコンの原子層を形成した。次いで、アルゴンガスを導入することで未反応のオゾンガスと副生物をパージした。上記のサイクルを繰り返して、酸化シリコン膜を得た。
Comparative Example 1: Formation of silicon-containing film using bis(diethylaminosilane)
A silicon substrate was placed in a vacuum apparatus and heated to a predetermined temperature of 100 to 750°C. An aminosilane composition containing bisdiethylaminosilane and a carrier gas was injected at a pressure of 0.05 to 100 Torr and adsorbed onto the heated silicon substrate. Argon gas was then introduced to purge the unadsorbed aminosilane composition and by-products from within the apparatus. Ozone was then injected as a reactive gas at a pressure of 0.05 to 100 Torr to form an atomic layer of silicon oxide derived from bisdiethylaminosilane deposited on the substrate. Argon gas was then introduced to purge the unreacted ozone gas and by-products. The above cycle was repeated to obtain a silicon oxide film.

[比較例2:2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサンを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、100~750℃の所定温度に加熱した。2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサン及びキャリアガスを含むシロキサン組成物を0.05~100Torrの圧力で注入し、加熱したシリコン基板に吸着させた。次いで、アルゴンガスを導入することで装置内に未吸着のアミノシロキサン組成物及び副生物をパージした。その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積した2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサン由来の酸化シリコンの原子層を形成した。次いで、アルゴンガスを導入することで未反応のオゾンガスと副生物をパージした。上記のサイクルを繰り返して、酸化シリコン膜を得た。
[Comparative Example 2: Formation of silicon-containing film using 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane]
A silicon substrate was placed in a vacuum apparatus and heated to a predetermined temperature of 100 to 750°C. A siloxane composition containing 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane and a carrier gas was injected at a pressure of 0.05 to 100 Torr and adsorbed onto the heated silicon substrate. Argon gas was then introduced to purge the unadsorbed aminosiloxane composition and by-products from within the apparatus. Ozone was then injected as a reactive gas at a pressure of 0.05 to 100 Torr to form an atomic layer of silicon oxide derived from 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane deposited on the substrate. Argon gas was then introduced to purge the unreacted ozone gas and by-products. The above cycle was repeated to obtain a silicon oxide film.

[比較例3:2,4,6,8-テトラメチルシクロテトラシロキサンを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、200~750℃の所定温度に加熱した。2,4,6,8-テトラメチルシクロテトラシロキサン及びキャリアガスを含むシロキサン組成物を0.05~100Torrの圧力で注入し、加熱したシリコン基板に吸着させた。次いで、アルゴンガスを導入することで装置内に未吸着のアミノシロキサン組成物及び副生物をパージした。その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積した2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサン由来の酸化シリコンの原子層を形成した。次いで、アルゴンガスを導入することで未反応のオゾンガスと副生物をパージした。上記のサイクルを繰り返して、酸化シリコン膜を得た。
Comparative Example 3: Formation of silicon-containing film using 2,4,6,8-tetramethylcyclotetrasiloxane
A silicon substrate was placed in a vacuum apparatus and heated to a predetermined temperature of 200 to 750°C. A siloxane composition containing 2,4,6,8-tetramethylcyclotetrasiloxane and a carrier gas was injected at a pressure of 0.05 to 100 Torr and adsorbed onto the heated silicon substrate. Next, argon gas was introduced to purge the unadsorbed aminosiloxane composition and by-products from within the apparatus. Thereafter, ozone was injected as a reactive gas at a pressure of 0.05 to 100 Torr to form an atomic layer of silicon oxide derived from 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane deposited on the substrate. Next, argon gas was introduced to purge the unreacted ozone gas and by-products. The above cycle was repeated to obtain a silicon oxide film.

 以下表1に具体的な蒸着方法を示した。図2には基板温度と堆積速度の関係を示した。図2の各プロットの測定において、堆積速度最大となるシロキサン供給時間を選択した。表2には実施例2にてALDウィンドウの最高温度である基板温度725℃及びALDウィンドウ外である750℃で50サイクル繰り返した際の堆積速度を示した。ここでのALDウィンドウとは図2において堆積速度が極大となる点から極小となる点までの温度領域を示す。また、表3に実施例1並びに比較例1及び2についてのALDウィンドウの温度範囲をまとめる。なお、層の厚さはエリプソメータで測定した。表4にALDウィンドウの上限付近(実施例は700℃、比較例1は550℃)で成膜した後に800℃で30分アニールした時の収縮率を示した。表5にALDウィンドウの上限付近(実施例は700℃、比較例1は500℃)で成膜した後に0.5%フッ化水素酸に60秒浸漬した際のエッチングレートを示した。エッチングレートは、0.5%フッ化水素酸への浸漬前後の膜厚をエリプソメータで測定し、膜厚の減少量を算出し、浸漬時間で割ることで算出した。  Specific deposition methods are shown in Table 1 below. Figure 2 shows the relationship between substrate temperature and deposition rate. In the measurement of each plot in Figure 2, the siloxane supply time that maximizes the deposition rate was selected. Table 2 shows the deposition rate in Example 2 when 50 cycles were repeated at a substrate temperature of 725°C, which is the maximum temperature of the ALD window, and at 750°C, which is outside the ALD window. The ALD window here refers to the temperature range from the point where the deposition rate is maximum to the point where it is minimum in Figure 2. Table 3 also summarizes the temperature range of the ALD window for Example 1 and Comparative Examples 1 and 2. The layer thickness was measured with an ellipsometer. Table 4 shows the shrinkage rate when a film was formed near the upper limit of the ALD window (700°C for the Example, 550°C for Comparative Example 1) and then annealed at 800°C for 30 minutes. Table 5 shows the etching rate when a film was formed near the upper limit of the ALD window (700°C for the Example, 500°C for Comparative Example 1) and then immersed in 0.5% hydrofluoric acid for 60 seconds. The etching rate was calculated by measuring the film thickness before and after immersion in 0.5% hydrofluoric acid with an ellipsometer, calculating the amount of film thickness reduction, and dividing the result by the immersion time.

Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021

Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022

Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023

Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024

Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025

 表2に示したように、実施例2にて2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタン化合物由来の酸化シリコンの原子層を形成するために、2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタン組成物の供給時間を検討した。基板温度725℃では6秒以上で堆積速度が最大となり、ALD成膜となることを確認した。 As shown in Table 2, in Example 2, the supply time of the 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane composition was examined to form an atomic layer of silicon oxide derived from the 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane compound. It was confirmed that the deposition rate reached its maximum at a substrate temperature of 725°C for 6 seconds or more, resulting in ALD film formation.

 表3及び図2に示したように、2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンは、ビスジエチルアミノシラン及び2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサンよりもALD成膜が可能となる温度領域(ALDウィンドウ)が高温側に位置することを確認した。 As shown in Table 3 and Figure 2, it was confirmed that the temperature region (ALD window) in which ALD film formation is possible for 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane is located on the higher side than bisdiethylaminosilane and 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane.

 表4及び表5に示したように、2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンは、ビスジエチルアミノシランよりもALD成膜において収縮率、エッチングレートが低い良質な膜を形成できることを確認した。 As shown in Tables 4 and 5, it was confirmed that 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane can form high-quality films with lower shrinkage and etching rates in ALD deposition than bisdiethylaminosilane.

 本開示に記載の方法を用いれば、アスペクト比が高い構造が形成された半導体基板やナノワイヤーなどにも、極薄かつ原子欠陥がない酸化シリコン膜などを形成することができる。特に、本開示による硫黄含有シロキサンは、高温で成膜する原子堆積法に有用である。 By using the method disclosed herein, it is possible to form an extremely thin silicon oxide film that is free of atomic defects even on semiconductor substrates or nanowires that have structures with high aspect ratios. In particular, the sulfur-containing siloxane disclosed herein is useful for atomic deposition methods that form films at high temperatures.

Claims (12)

式(1):
Figure JPOXMLDOC01-appb-I000001
[式(1)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
nは0~2の整数である。]
で表される硫黄含有シロキサンを含む、シリコン含有膜前駆体。
Formula (1):
Figure JPOXMLDOC01-appb-I000001
[In formula (1),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
n is an integer from 0 to 2.
A silicon-containing film precursor comprising a sulfur-containing siloxane represented by the formula:
~Xが酸素原子である、請求項1に記載のシリコン含有膜前駆体。 The silicon-containing film precursor of claim 1 , wherein X 1 to X 3 are oxygen atoms. 前記硫黄含有シロキサンが
式(2):
Figure JPOXMLDOC01-appb-I000002
[式(2)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、又は炭素数1~5のアルコキシ基であり、
nは0~2の整数である。]
で表される、請求項1又は2に記載のシリコン含有膜前駆体。
The sulfur-containing siloxane has the formula (2):
Figure JPOXMLDOC01-appb-I000002
[In formula (2),
R 1 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms;
n is an integer from 0 to 2.
The silicon-containing film precursor according to claim 1 or 2, represented by:
~Rが、各出現において独立して、炭素数1~5のアルキル基である、請求項1~3のいずれか一項に記載のシリコン含有膜前駆体。 The silicon-containing film precursor of any one of claims 1 to 3, wherein R 1 to R 8 are, independently in each occurrence, an alkyl group having 1 to 5 carbon atoms. 前記硫黄含有シロキサンが
式(3):
Figure JPOXMLDOC01-appb-I000003
で表される、2,2,4,4,6,6,8,8-オクタメチル-1,3,5-トリオキサ-7-チア-2,4,6,8-テトラシラシクロオクタンである、請求項1~4のいずれか一項に記載のシリコン含有膜前駆体。
The sulfur-containing siloxane has the formula (3):
Figure JPOXMLDOC01-appb-I000003
The silicon-containing film precursor according to any one of claims 1 to 4, which is 2,2,4,4,6,6,8,8-octamethyl-1,3,5-trioxa-7-thia-2,4,6,8-tetrasilacyclooctane represented by the formula:
前記シリコン含有膜が化学気相成長により形成される、請求項1~5のいずれか一項に記載のシリコン含有膜前駆体。 The silicon-containing film precursor according to any one of claims 1 to 5, wherein the silicon-containing film is formed by chemical vapor deposition. 前記シリコン含有膜が原子層堆積法により形成される、請求項1~6のいずれか一項に記載のシリコン含有膜前駆体。 The silicon-containing film precursor according to any one of claims 1 to 6, wherein the silicon-containing film is formed by atomic layer deposition. 式(1):
Figure JPOXMLDOC01-appb-I000004
[式(1)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
nは0~2の整数である。]
で表される硫黄含有シロキサンを含む、シリコン含有膜形成用の組成物。
Formula (1):
Figure JPOXMLDOC01-appb-I000004
[In formula (1),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
n is an integer from 0 to 2.
A composition for forming a silicon-containing film, comprising a sulfur-containing siloxane represented by the formula:
式(1):
Figure JPOXMLDOC01-appb-I000005
[式(1)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
nは0~2の整数である。]
で表される硫黄含有シロキサンの製造方法であって、
(a)原料シロキサンから前記硫黄含有シロキサンを合成する工程;及び
(b)蒸留により前記硫黄含有シロキサンを単離する蒸留工程を含む、硫黄含有シロキサンの製造方法。
Formula (1):
Figure JPOXMLDOC01-appb-I000005
[In formula (1),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
n is an integer from 0 to 2.
A method for producing a sulfur-containing siloxane represented by the formula:
A method for producing a sulfur-containing siloxane, comprising: (a) synthesizing the sulfur-containing siloxane from a raw material siloxane; and (b) isolating the sulfur-containing siloxane by distillation.
 工程(a)において、前記原料シロキサンと硫化剤とを反応させて前記硫黄含有シロキサンを合成する、請求項9に記載の硫黄含有シロキサンの製造方法。 The method for producing sulfur-containing siloxane according to claim 9, wherein in step (a), the raw material siloxane is reacted with a sulfurizing agent to synthesize the sulfur-containing siloxane. 前記原料シロキサンが下式(4):
Figure JPOXMLDOC01-appb-I000006
[式(4)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
Yは水素原子又はハロゲン原子であり、
nは0~2の整数である。]
で表される、請求項9又は10に記載の硫黄含有シロキサンの製造方法。
The raw material siloxane has the following formula (4):
Figure JPOXMLDOC01-appb-I000006
[In formula (4),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
Y is a hydrogen atom or a halogen atom;
n is an integer from 0 to 2.
The method for producing the sulfur-containing siloxane according to claim 9 or 10,
式(1):
Figure JPOXMLDOC01-appb-I000007
[式(1)中、
~Rは、各出現において独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は炭素数1~5のアルコキシ基であり、R~Rはそれぞれ互いに結合し環を形成してもよく、
~Xは、各出現において独立して、酸素原子又は硫黄原子であり、
nは0~2の整数である。]
で表される硫黄含有シロキサンを用いる、シリコン含有膜の製造方法。
Formula (1):
Figure JPOXMLDOC01-appb-I000007
[In formula (1),
R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 1 to R 8 may be bonded to each other to form a ring;
X 1 to X 3 are independently in each occurrence an oxygen atom or a sulfur atom;
n is an integer from 0 to 2.
A method for producing a silicon-containing film using a sulfur-containing siloxane represented by the formula:
PCT/JP2023/036524 2022-10-11 2023-10-06 Silicon-containing film precursor, composition for forming silicon-containing film, method for manufacturing sulfur-containing siloxane, and method for manufacturing silicon-containing film WO2024080237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022163442 2022-10-11
JP2022-163442 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024080237A1 true WO2024080237A1 (en) 2024-04-18

Family

ID=90669265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036524 WO2024080237A1 (en) 2022-10-11 2023-10-06 Silicon-containing film precursor, composition for forming silicon-containing film, method for manufacturing sulfur-containing siloxane, and method for manufacturing silicon-containing film

Country Status (2)

Country Link
TW (1) TW202428586A (en)
WO (1) WO2024080237A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238578A (en) * 2001-12-21 2003-08-27 Air Products & Chemicals Inc Method and composition for stabilizing cyclotetrasiloxane
WO2007061134A1 (en) * 2005-11-24 2007-05-31 Nec Corporation Method for forming porous insulating film, apparatus for manufacturing semiconductor device, method for manufacturing semiconductor device and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238578A (en) * 2001-12-21 2003-08-27 Air Products & Chemicals Inc Method and composition for stabilizing cyclotetrasiloxane
WO2007061134A1 (en) * 2005-11-24 2007-05-31 Nec Corporation Method for forming porous insulating film, apparatus for manufacturing semiconductor device, method for manufacturing semiconductor device and semiconductor device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. BECKER: "Contributions to the chemistry of silicon-sulphur compounds: LI. The insertion of sulphur into SiSi bonds of permethylpolysilanes", JOURNAL OF ORGANOMETALLIC CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 346, no. 3, 1 January 1988 (1988-01-01), AMSTERDAM, NL , pages 287 - 296, XP093159442, ISSN: 0022-328X, DOI: 10.1016/0022-328X(88)80128-1 *
K S DILANJAN SOYSA: "PYROLYSIS OF HEXAMETHYLCYCLOTRISILTHIANE AND TETRAMETHYLCYCLODISILTHIANE IN THE PRESENCE OF CYCLIC SILOXANES: EVIDENCE FOR THE INTERMEDIACY OF DIMETHYLSILATHIONE [:Si=s]", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 165, no. 1, 23 January 1979 (1979-01-23), pages C1 - C4, XP093159446, DOI: 10.1016/S0022-328X(00)81143-2 *

Also Published As

Publication number Publication date
TW202428586A (en) 2024-07-16

Similar Documents

Publication Publication Date Title
KR102242461B1 (en) Compositions and methods for the deposition of silicon oxide films
JP6456450B2 (en) Novel cyclodisilazane derivative, production method thereof, and silicon-containing thin film using the same
KR101857478B1 (en) Novel trisilyl amine derivative, method for manufacturing thereof and silicon-containing thin film use the same
JP6876145B2 (en) A composition for vapor deposition of a silicon-containing thin film containing a bis (aminosilyl) alkylamine compound, and a method for producing a silicon-containing thin film using the composition.
KR102005940B1 (en) Novel amino-silyl amine compound, method for manufacturing thereof and silicon-containing thin film use the same
JP6900503B2 (en) A silylamine compound, a composition for vapor deposition of a silicon-containing thin film containing the compound, and a method for producing a silicon-containing thin film using the same.
JP6651663B1 (en) Aminosilane compound, composition for forming a silicon-containing film containing the aminosilane compound
WO2024080237A1 (en) Silicon-containing film precursor, composition for forming silicon-containing film, method for manufacturing sulfur-containing siloxane, and method for manufacturing silicon-containing film
JP7265446B2 (en) Aminosilane compound, composition for forming a silicon-containing film containing said aminosilane compound
WO2020116386A1 (en) Bis(alkylamino)disilazane compound, bis(alkylamino)disilazane compound-containing composition for forming silicon-containing film
KR101380317B1 (en) Cyclic aminosilane compounds having excellent affinity towards silicon and metal atoms, preparing method thereof, and its application
KR20240167001A (en) Sulfur-containing siloxane, a composition for forming a silicon-containing film comprising the sulfur-containing siloxane, a method for producing the sulfur-containing siloxane, a silicon-containing film, and a method for producing the silicon-containing film
JP7337257B2 (en) Novel silylcyclodisilazane compound and method for producing silicon-containing thin film using the same
TW202031667A (en) Bisalkylaminodisilazane compound, composition for forming silicon-containing film containing said bisalkylaminodisilazane compound
JP2024132524A (en) Aminosilsesquioxane
KR20150110310A (en) composition comprising boron-containing compound, boron-containing thin film and method for manufacturing boron-containing thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024551494

Country of ref document: JP