WO2024079373A1 - Recirculation cell for groundwater remediation in aquifer-aquitard transition zones - Google Patents
Recirculation cell for groundwater remediation in aquifer-aquitard transition zones Download PDFInfo
- Publication number
- WO2024079373A1 WO2024079373A1 PCT/ES2023/070598 ES2023070598W WO2024079373A1 WO 2024079373 A1 WO2024079373 A1 WO 2024079373A1 ES 2023070598 W ES2023070598 W ES 2023070598W WO 2024079373 A1 WO2024079373 A1 WO 2024079373A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- well
- reinjection
- water
- aquifer
- tank
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/02—Extraction using liquids, e.g. washing, leaching, flotation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/26—Treatment of water, waste water, or sewage by extraction
Definitions
- the present invention refers to the field of groundwater decontamination, more specifically to an injection-extraction cell that allows the aquifer-aquitard transition zones to be effectively decontaminated.
- Groundwater decontamination has traditionally been carried out either by ex-situ techniques (often using pumping and treating systems) or by in-situ techniques.
- Zero Valent Iron In the case of the reagents used in ISCR techniques, one of the most common has been metallic iron (Fe 0 ), known as Zero Valent Iron (ZVI). It is a reagent that is applied to the medium in the form of particles of different grain sizes, from millimeter size (mm) to the size of microparticles (pm) and nanoparticles (nm) (Labeeuw, V. (2013). In Situ Chemical Reduction using Zero-Valent Iron Injection-A Technique for the Remediation of Source Zones. Machteld De Wit, OVAM, 104). These particles are injected into the medium in the form of a dispersion within an emulsion that keeps them in suspension. Depending on their size, ZVI particles present different limitations, the most important being the individual weight of these particles.
- bioremediation techniques Two large groups are differentiated. Those based on the biostimulation of the indigenous microbial population and those based on bioaugmentation through the inoculation of non-native microorganisms, but capable of degrading contaminants in the environment, and the inoculation of indigenous microorganisms grown in the laboratory (Adams, GO, Fufeyin, PT , Okoro, S.E., & Ehinomen, I. (2015). biostimulation and bioaugmentation: a review. International Journal of Environmental Bioremediation & Biodegradation, 3(1), 28-39).
- reagent injection and pollution treatments focus on decontaminating aquifers.
- the techniques used have a very low penetrability within formations of low hydraulic conductivity (aquifer-aquitard transition zones), which makes the treatment of these zones difficult, within which large amounts of contaminant are stored, especially when These are mature contamination episodes (that is, decades old since the contamination began).
- treatment or “treatments”, regardless of whether they are chemical or biological treatments.
- Passive methods and closed injection and pumping cells are discussed in Kitanidis & McCarty (2012) (Kitanidis, PK & McCarty, PL (Eds.). (2012). Delivery and Mixing in the Subsurface: Processes and Design Principles for in situ remediation (Vol. 4).
- Passive methods consist of injecting the reactants into the aquifer, allowing them to react along the flow (Rosansky, S., Condit, W., & Sirabian, R. (2013). Best practices for injection and distribution of amendments . Technical Report TR-NAVFAC-EXWC-EV-1303.). This implies that most of the reactants migrate through the most permeable levels, that is, more conductive levels (that is, with greater hydraulic conductivity), ceasing to interact with the levels of low hydraulic conductivity, where large quantities accumulate. of contaminants.
- the reagents favor the generation of reducing redox conditions, these are promoted in the zone of influence of the cell.
- the problem arises when the degradation products generated are more toxic than the parents from which they are derived, which increases the risk to human health and ecosystems, especially when they accumulate in the environment.
- aquifer-aquitard transition zones are formed by numerous intercalations of centimeter-thick levels with low permeability (hydraulic conductivity) where contaminants accumulate. These intercalations are separated by more permeable (more conductive) levels, also centimeter thick.
- the alternation of low permeability levels (below 0.001 cm/s) and more permeable levels (between 0.001 and 0.023 cm/s) makes these transition zones jointly (i.e., globally) low permeability formations (i.e. that is, low hydraulic conductivity), that is, poorly permeable formations. However, in any case, they are part of the aquifer.
- Its range of overall hydraulic conductivity i.e. global permeability
- the inventors of the present invention after extensive and exhaustive experiments, have discovered a recirculation cell that works by filling and emptying half cycles and a decontamination procedure associated with it that allow, in an effective and surprising way, to solve the problems present in the state of the art (mentioned previously) and, therefore, decontaminate the aquifer-aquitard transition zones, located at the base, in the middle or on the roof of the aquifers.
- the recirculation cell and the procedure of the present invention are applicable and effective for the treatment of low permeability media (i.e., low hydraulic conductivity media), for example and preferably, of the aquifer-aquitard transition zone type.
- low permeability media i.e., low hydraulic conductivity media
- the recirculation cell and the procedure of the present invention are applicable and effective for the treatment of low permeability media (i.e., low hydraulic conductivity media), for example and preferably, of the aquifer-aquitard transition zone type.
- low permeability media i.e., low hydraulic conductivity media
- Puigserver D., et.al. (2016). Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards. Environmental Science and Pollution Research, 23(18), 18724-18741 ; Puigserver, D., et.al. (2020).
- Transmissibility is a parameter widely known in the state of the art and by those skilled in the art and which results from multiplying the permeability (that is, the hydraulic conductivity) by the water-saturated thickness of the medium of interest (which can either be a aquifer as a part of it, such as, for example, an aquifer-aquitard transition zone).
- the present invention refers to a recirculation cell that comprises: a) at least one extraction well that allows the extraction of water from an aquifer-aquitard transition zone; b) at least one tank to store recirculated water; c) at least one reinjection well that allows reinjection into the aquifer-aquitard transition zone of water from at least one tank to store recirculated water; and d) at least one means to supply a treatment to the aquifer-aquitard transition zone, characterized in that said cell is configured to operate in semi-cycles of filling and emptying of at least one tank to store the recirculated water, so that in the semi-cycle of filling the at least one tank to store recirculated water, water is extracted from the at least one extraction well at a flow rate of between 0.30 and 1.30 L/min for filling the said at least one tank to store recirculated water ; and in the semi-cycle of emptying the at least one tank to store store recirculated water
- the present invention refers to a procedure for the decontamination of an aquifer-aquitard transition zone that comprises the use of a cell of the present invention to carry out said decontamination.
- low hydraulic conductivity level and its plural have the meaning they commonly acquire in the state of the art, that is, layers of low permeability materials (hydraulic conductivity or permeability below 0.001 cm). /s). Although the thickness of these levels can be varied, in the context of the present invention they are thin layers.
- “poorly permeable formation” and its plural acquire the meaning that they commonly have in the state of the art and are accumulations of layers (levels) that, as far as permeability is concerned, can be homogeneous or heterogeneous (that is, with diverse permeability values), but overall its permeability is low (not reaching the category of good aquifer - very transmissive hydrogeological formation).
- advection it moves by advection at low speed, as corresponds to groundwater, although in a perceptible way on the human scale
- water does not frequently move in a perceptible way at the human scale, in which case we are faced with aquicludes (advection at these levels is practically zero, that is, the speed of water movement is practically zero), although, as has been indicated, the contaminants penetrate inside, but not by advective flow of ground
- An aquifer-aquitard transition zone is always a poor aquifer (compared to an aquifer of the same thickness, whose permeability will always be greater precisely because it is an aquifer).
- the problem is that, as explained above, when the transition zone is contaminated, the flow of groundwater through it contaminates the aquifers with which it is connected, hence the importance of achieving means that allow the decontamination of these areas, such as the cell and the process of the present invention.
- the range of global hydraulic conductivity (global permeability) of an aquifer-aquitard transition zone can vary from 0.001 cm/s to 0.0120 cm/s.
- aquitard and its plural acquire the meaning that they commonly have in the state of the art, that is, it is a hydrogeological formation capable of storing water, but whose hydraulic conductivity is very low, so it transmits it with slowness.
- aquitards are fine sands and silts.
- An aquitard has a permeability (hydraulic conductivity), whose range varies from 10' 7 to 10' 3 cm/s.
- aquiclude and its plural acquire the meaning that they commonly have in the state of the art, that is, it is a hydrogeological formation that, although it contains water in its pores, its permeability is extremely low. , so water circulates considerably slowly, so that on a human scale it can be considered impermeable.
- Anglo-Saxon literature there is a certain tendency not to use the term aquiclude, replacing it with aquitard accompanied by the value of its permeability. Examples of aquicludes are clays.
- An aquiclude has a permeability (hydraulic conductivity) below 10' 7 cm/s.
- Transmissivity is a hydraulic parameter that results from multiplying permeability by the water-saturated thickness of an aquifer. This parameter is indicative of the flow of water that circulates through the aquifer (and, therefore, the flow that can be extracted from it). This flow rate depends, therefore, on the permeability of the aquifer (the more permeable it is, the greater the flow rate that can be obtained) and the thickness of that aquifer (the greater the thickness, the greater the flow rate that can be obtained).
- transmissivity is indicative of the flow of water that circulates through the aquifer (and therefore the flow that can be extracted from it).
- Typical transmissivity values for good aquifers can range from 700 (medium transmissivity) to 4000 m 2 /day (high transmissivity).
- hydraulic conductivity and its plural acquire the meaning they commonly have in the state of the art. Therefore, hydraulic conductivity is synonymous with permeability, and is a measure of the ability of a medium to transmit water through it (regardless of the thickness of that medium). Its determination in the state of the art is diverse:
- hydraulic conductivity is determined using various methods of typologies 2 and 3 and, as the testimonies from surveys are available, comparing with literature databases.
- FIG. 1 Shows a schematic plan view of the recirculation cell of the present invention placed in an aquifer-aquitard transition zone to be treated.
- FIG. 2. Shows a diagram of an extraction well of the recirculation cell of the present invention.
- FIG. 3. Shows a diagram of a reinjection well of the recirculation cell of the present invention.
- FIG. 4. Shows a diagram of a tank to store recirculated water from the recirculation cell of the present invention.
- FIG. 5 Shows a schematic of a tank to store a recirculation cell treatment of the present invention.
- FIG. 6 Shows a diagram of the operation of the recirculation cell of the present invention.
- FIG. 7 Shows a diagram (section) of the recirculation cell of the present invention used in example 1, as well as the pretreatment applied in said example to the aquifer-aquitard transition zone to be treated.
- the present invention refers to a recirculation cell that comprises: a) at least one extraction well that allows the extraction of water from an aquifer-aquitard transition zone; b) at least one tank to store recirculated water; c) at least one reinjection well that allows reinjection into the aquifer-aquitard transition zone of water from at least one tank to store recirculated water; and d) at least one means to supply a treatment to the aquifer-aquitard transition zone, characterized in that said cell is configured to operate in semi-cycles of filling and emptying of at least one tank to store recirculated water, so that in the semi-cycle of filling of the at least one recirculated water tank, water is extracted from the at least an extraction well at a flow rate of between 0.30 and 1.30 L/min for filling said at least one tank to store recirculated water (more preferably, at a flow rate of between 0.42 and 1.25 L/min
- the at least one extraction well and the at least one reinjection well are positioned at the ends of the cell in the direction and direction of the water flow, the at least one water extraction well being located downstream and at least one reinjection well upstream.
- the at least one extraction well and the at least one reinjection well preferably have a well casing.
- Each of the wells of the cell of the present invention comprises at least one slotted area, more preferably a slotted area.
- the slotted zone of a well is the part of a well through which it extracts or injects water. , depending on the well in question. It is an area of variable length in which the pipe that forms the corresponding well is perforated (slotted), so that water enters the porous and permeable geological formation through said slotted area if it is a well equipped of an injection pump (therefore, reinjection well). Likewise, if it is a well equipped with an extraction pump (therefore, it is an extraction well), the water leaves the porous and permeable formation through the aforementioned slotted area.
- the upper part of the grooved area is at a certain depth, and the lower part of it is at a greater depth.
- the slotted area of the at least one extraction well and the slotted area of the at least one reinjection well are located exactly in front of the aquifer-aquitard transition zone. That is, the top of both grooved zones is at the same depth as the top of the aforementioned transition zone (which is which is called the roof of that transition zone), and the bottom of both grooved zones is at the same depth as the bottom of said transition zone (what is called the base of that transition zone).
- the treatment and/or reagents are injected through the entire thickness of the contaminated transition zone, and the recirculated water is extracted through the entire thickness of the extraction zone.
- the recirculation cell of the present invention works in semicycles. Two half-cycles form a cycle, a half-cycle for filling the at least one tank to store recirculated water and a half-cycle for emptying the at least one tank filled with water that has been recirculated throughout the area of influence of the cell (between the roof and the base of the transition zone). Therefore, in the cell of the present invention, when water is extracted through the at least one extraction well to fill the at least one tank to store recirculated water, water is not being reinjected into the cell through the at least a reinjection well, and vice versa. That is, the filling and emptying half cycles are successive and never simultaneous. In a preferred embodiment, the filling half cycle lasts between 60 and 180 minutes; and the emptying semicycle between 20 and 90 minutes.
- the extraction and reinjection flow rates in the recirculation cell of the present invention are very small. In this way, in addition to avoiding an excessive drop in levels and practically drying out the cell, above all, a very low flow speed is obtained. This low speed ensures that the chemical and biogeochemical reactions that enable the degradation of contaminants have sufficient time to occur along the path taken by the reagents or treatments inside the cell.
- water is extracted from said zone through at least one extraction well until the filling of at least one tank to store recirculated water (semicycle of filling) and in the subsequent emptying semicycle said recirculated water will be reinjected into the at least one reinjection well and will circulate through the cell again to the at least one extraction well to be extracted in the next filling semicycle.
- the space between the at least one extraction well and the at least one reinjection well determines or comprises the area to be treated and decontaminate and is the area through which the extracted and reinjected water and the treatment or treatments injected into the cell of the present invention will recirculate.
- the at least one extraction well and the at least one reinjection well have the necessary length to reach the aquifer-aquitard transition zone and their respective at least one grooved zone (preferably, one) has the arrangement previously explained.
- Said at least one extraction well also preferably, has the necessary depth to be able to extract water from the aquifer-aquitard transition zone; more preferably said at least one extraction well reaches the aquifer-aquitard transition zone; Even more preferably, said at least one extraction well reaches the base of the aquifer-aquitard transition zone.
- the at least one reinjection well in a preferred embodiment, has the necessary depth to be able to reinject the recirculated water into the aquifer-aquitard transition zone; more preferably said at least one reinjection well reaches the aquifer-aquitard transition zone; Even more preferably, said at least one reinjection well reaches the base of the aquifer-aquitard transition zone.
- an expert in the field will be able to determine the necessary depth of the at least one extraction well and the at least one reinjection well based on the characteristics and situation of the aquifer-aquitard transition zone to be treated.
- each of the at least one extraction well comprises at least one means for extracting water, more preferably a means for extracting water.
- Each of said at least one means for extracting water comprises at least one extraction pipe and at least one extraction pump; more preferably an extraction pipe and an extraction pump, said extraction pipe connecting the extraction well with at least one tank for storing recirculated water.
- Said at least one extraction pipe preferably has at least one sampling means, more preferably one. Additionally, in a preferred embodiment, said at least one extraction pipe is thermally insulated, more preferably it is covered with thermal insulating material (califugators). Also in a preferred embodiment, the at least one extraction pump is a peristaltic pump or a submersible pump.
- the at least one extraction well preferably additionally comprises a pressure sensor configured to measure the water level of the well. If the pressure sensor detects a water level below that established as the minimum water level of the extraction well, the semi-filling cycle of at least one tank will be stopped to store recirculated water (to avoid drying out of the well).
- the at least one extraction well additionally comprises at least one sensor for measuring one or more of the following parameters: temperature, electrical conductivity, dissolved oxygen, redox potential and pH.
- the at least one extraction well comprises sensors for measuring temperature, electrical conductivity, dissolved oxygen, redox potential and pH.
- the internal diameter of the at least one extraction well is at least 100 mm, more preferably between 100 mm and 150 mm.
- the at least one reinjection well comprises at least one means for reinjecting water.
- Said at least one means for reinjection of water preferably comprises at least one reinjection pipe and at least one reinjection pump, more preferably a reinjection pipe and a reinjection pump, said reinjection pipe connecting the reinjection well with at least one tank to store recirculated water.
- Said at least one reinjection pipe preferably has at least one sampling means, more preferably one. Also preferably, the at least one reinjection pipe is thermally insulated, more preferably, the at least one reinjection pipe is covered with thermal insulating material (califugators).
- the at least one reinjection pump is a peristaltic pump or a submersible pump.
- the at least one reinjection well preferably additionally comprises a sensor pressure configured to measure the water level of said well. If the pressure sensor detects a water level above that established as the maximum water level of the reinjection well, the emptying half-cycle of at least one tank to store recirculated water will be stopped (to prevent the well from overflowing).
- the at least one reinjection well may additionally comprise at least one additional sensor, for example, to measure one or more of the following parameters: temperature, electrical conductivity, dissolved oxygen, redox potential and pH.
- the internal diameter of the at least one reinjection well is at least 100 mm, more preferably between 100 and 150 mm, even more preferably between 100 and 120 mm.
- each of the at least one means for supplying a treatment to the aquifer-aquitard transition zone comprises a storage tank for the treatment (in liquid form) and a means (preferably, a pipe and a pump) for injection. of treatment in the aquifer-aquitard transition zone.
- the means for injecting the treatment into the aquifer-aquitard transition zone allows the injection of the treatment into the at least one reinjection well.
- Said treatment can be any treatment known in the state of the art suitable for water decontamination.
- An expert in the field depending on the type of contamination present in the aquifer-aquitard transition zone to be treated, will be able to determine if said at least one treatment is necessary and which one should be applied. It is contemplated that more than one simultaneous or successive treatment can be applied, depending on each contaminant and contaminated location.
- the cell of the present invention comprises means for supplying lactic acid, even more preferably means for supplying lactic acid and means for supplying a buffer solution (preferably sodium bicarbonate and sodium carbonate in an aqueous medium).
- a buffer solution preferably sodium bicarbonate and sodium carbonate in an aqueous medium.
- each of the treatments is injected at a flow rate of between 0.5 and 1.5 mL/min.
- the at least one tank for storing recirculated water is any tank available in the state of the art.
- the at least one tank for storing recirculated water is opaque, even more preferably it is made of opaque polyethylene.
- the at least one tank for storing recirculated water comprises a settling volume, a useful volume and a head volume (in this order, from the base to the top of the tank), the useful volume being the which is filled and emptied with water in the filling and emptying half cycles of the cell of the present invention.
- the cell of the present invention is configured (preferably, by means of automatic control of the operation of the cell) to carry out consecutive filling and emptying half cycles in which: a) first a semi-cycle for filling the at least one tank for storing recirculated water in which the useful volume of the at least one tank for storing recirculated water is filled by extracting water from the aquifer-aquitard transition zone to be treated by means of at least one well. extraction.
- the useful volume of at least one tank is emptied to store recirculated water, reinjecting the recirculated water into the aquifer-aquitard transition zone to be treated by means of at least one reinjection well, preferably together with at least one treatment.
- stages a) and b) are contemplated (that is, the filling and emptying half cycles) until the desired decontamination is obtained.
- the recirculation cell of the present invention comprises at least one monitoring well that includes sensors for monitoring water quality, and thus, being able to verify how the water treatment procedure is evolving. More preferably, the cell of the present invention comprises three monitoring wells: a first monitoring well located upstream of the cell; a second monitoring well located between the extraction well and the reinjection well; and a third well located downstream of the cell.
- the at least one extraction well is an extraction well
- the at least one reinjection well is a reinjection well
- the at least one tank for storing recirculated water is a tank for storing recirculated water.
- the at least one extraction well preferably, an extraction well
- the at least one reinjection well preferably, a reinjection well
- the at least one extraction well are positioned at the ends of the transition zone portion aquifer-aquitard to be treated (preferably, the entire aquifer-aquitard transition zone to be treated), in the direction and sense of the flow of groundwater, with at least one extraction well being located (preferably, a water extraction well underground) downstream and the at least one reinjection well (preferably, a reinjection well) upstream.
- various recirculation cells of the present invention can be placed both in parallel and in series, or both at the same time (forming a regular rectangular mesh).
- the distance between the extraction well and the reinjection well is between 4 and 8 meters, more preferably 6 meters.
- the length of the slotted areas of the extraction well (through whose slotted area the recirculated water in the aquifer-aquitard transition zone to be treated is extracted) and of the reinjection well (through whose slotted area The recirculated water is injected and the decontamination treatments in the aquifer-aquitard transition zone to be treated) are identical to the thickness of the aquifer-aquitard transition zone to be treated.
- said slotted zones are positioned just in front of the aquifer-aquitard transition zone to be treated, and both wells are aligned in the direction and direction of the flow of groundwater within the cell, with the water extraction well located downstream and the reinjection well upstream.
- the recirculation cell of the present invention due to its special structural and operating configuration (including the low flow rates at which it operates and operation in successive filling and emptying semi-cycles) allows solving the present technical problems. in the state of the art and mentioned above, as derived from the example included below. Therefore, the recirculation cell of the present invention allows the effective decontamination of media that globally (i.e., as a whole) are of low permeability (i.e., low hydraulic conductivity media). As already described above, these media are formed by the alternation of numerous levels of low permeability (each of them of thin thickness, usually centimetric); and more permeable levels, each also of thin thickness (usually centimeter). The result of this alternation of levels is a medium that is overall poorly permeable (that is, with little hydraulic conductivity), for example and preferably, of the aquifer-aquitard transition zone type.
- the recirculation cell of the present invention can be applied for the abiotic or biotic decontamination of organic contaminants (for example, halogenated solvents, hydrocarbons in general, emerging contaminants such as pesticides, pharmaceutical products, including veterinary pharmacy products, persistent contaminants , etc). It can also be used for the decontamination of, among others, nitrate in the aforementioned transition zones.
- organic contaminants for example, halogenated solvents, hydrocarbons in general, emerging contaminants such as pesticides, pharmaceutical products, including veterinary pharmacy products, persistent contaminants , etc. It can also be used for the decontamination of, among others, nitrate in the aforementioned transition zones.
- the recirculation cell of the present invention works in semi-cycles and at small flow rates, otherwise the contaminated formation would remain practically dry within the poorly permeable geological formation to be treated. If this were to happen, all the mass of contaminant that would have been stored within the very low permeability levels would not be eliminated. This situation would be unsustainable, so when the cell was subsequently dismantled and the water levels recovered, the rebound effect mentioned above would take place. Furthermore, if the source of contamination is made up of a non-aqueous liquid that is denser than water, this would not be treated either, which, when were to recover the levels, it would lead to new incorporation of contaminant into the groundwater of the poorly permeable area.
- the emptying of the at least one tank to store recirculated water coincides with the reinjection into the cell of the recirculated water through the at least one reinjection well.
- This reinjection is accompanied by the injection of the corresponding reagent/s or necessary treatment/s.
- the recirculated water (and the reagents and/or treatments that have not yet been consumed, if applicable), are extracted again through at least one extraction well located downstream of the cell. reinjection.
- the extracted water is stored again in at least one tank to store recirculated water, to start a semi-cycle of filling that tank again.
- the extraction and reinjection flow rates are very small.
- a very low flow speed is obtained (preferably between 0.35 and 1.40 mm/min). This low speed ensures that the chemical and biogeochemical reactions that enable the degradation of contaminants have sufficient time to occur along the path carried out by the treatments and/or reagents within the cell.
- the longer residence time of the reactants due to the small flow velocity generated makes it possible for the reagents penetrate by molecular diffusion into the levels of lowest permeability, allowing the degradation of the contaminant mass that is stored inside and avoiding the subsequent rebound effect when the most permeable levels have been decontaminated (which allows being very precise in the remediation).
- the present invention refers to a procedure for the decontamination of an aquifer-aquitard transition zone, characterized in that it comprises the steps of:
- steps b) and c) filling and emptying half cycle, respectively are repeated until the desired decontamination is obtained.
- the recirculation cell of the present invention and its characteristics are in accordance with what was previously explained in the first aspect of the present invention.
- the filling of the useful volume of at least one tank for storing recirculated water in step b) is carried out at a flow rate of between 0.30 and 1.30 L/min, more preferably at a flow rate of between 0.42 and 1.25 L/min, even more preferably at a flow rate between 0.58 and 0.94 L/min.
- the emptying of the useful volume of the at least one tank for storing recirculated water in step c) is carried out at a flow rate of between 0.80 and 3.80 L/min. , more preferably at a flow rate of between 0.83 and 3.75 L/min, even more preferably at a flow rate of 1.25 L/min.
- step b) (filling half cycle) in the process of the present invention lasts between 60 and 180 minutes; and stage c) (emptying half cycle) lasts between 20 and 90 minutes.
- water is extracted from said zone through at least one extraction well until the filling of at least one tank to store recirculated water (semi-cycle of filling (stage b)) and in the subsequent emptying semi-cycle (stage c)) said recirculated water will be reinjected into the at least one reinjection well and will circulate through the cell again to the at least one extraction well to be extracted in the next half-filling cycle.
- At least one pretreatment of the aquifer-aquitard transition zone to be treated is carried out before stage a), therefore, the at least one pretreatment, preferably, is carried out before the start-up of the at least one recirculation cell of the present invention, even more preferably, before the construction of the at least one recirculation cell of the present invention.
- Pretreatment will depend on the nature of the contamination to be treated.
- the pretreatment is with metallic iron (Fe 0 ), more preferably with mZVI (microscale zero-valent iron).
- step b) if the water level of the at least one extraction well falls below the minimum established water level, the filling half cycle is stopped. This semi-cycle is resumed when, naturally, the water level in the corresponding extraction well recovers, exceeding the water level value established as a minimum in the extraction well and a water level value (preset) is reached. in the automatic cell control) that is above said minimum value (normally, after a few minutes of natural recovery of levels in the well).
- step c) if the water level in the at least one reinjection well rises above the maximum level established, the emptying half-cycle stops. This semi-cycle is resumed when, naturally, the water level in the reinjection well drops (because the recirculated water reinfiltrates into the aquifer-aquitard transition zone) to a depth preset in the automatic control of the cell (this depth must be the one corresponding to the natural static level of the reinjection well). At that moment (preferably, automatic cell control) the reinjection pump is started again until the useful volume of at least one tank to store recirculated water is emptied.
- At least one treatment is preferably injected into the reinjection well.
- Said at least one treatment can be any treatment known in the state of the art suitable for the decontamination of groundwater.
- An expert in the field depending on the type of contamination present in the aquifer-aquitard transition zone to be treated, will be able to determine if said at least one treatment is necessary and which one should be applied. It is contemplated that more than one simultaneous or successive treatment can be applied, depending on each pollutant and contaminated site.
- this at least one treatment applied in step c) of the process of the present invention is lactic acid, more preferably together with a buffer solution (preferably sodium bicarbonate and sodium carbonate in an aqueous medium).
- a buffer solution preferably sodium bicarbonate and sodium carbonate in an aqueous medium.
- each of the treatments is injected at a flow rate of between 0.5 and 1.5 mL/min.
- the recirculation cell of the present invention comprises: a) at least one extraction well that allows the extraction of water from an aquifer-aquitard transition zone; b) at least one reinjection well that allows the reinjection of water from the tank to store recirculated water in the aquifer-aquitard transition zone; c) at least one tank to store recirculated water; and d) at least one means to supply a treatment to the aquifer-aquitard transition zone, characterized in that said cell is configured to operate in semi-cycles of filling and emptying of at least one tank to store recirculated water, so that in the semi-cycle of filling the at least one recirculated water tank, water is extracted from the at least one extraction well at a flow rate of between 0.30 and 1.30 L/min for filling said at least one tank for storing recirculated water (more preferably , at a flow rate of between 0.42 and 1.25 L/min); and in the semi-cycle of emptying
- the recirculation cell of the present invention covers the volume of subsoil in which, within the aquifer-aquitard transition zone to be treated, the groundwater is contaminated (see FIG. 1).
- This volume of subsoil is contaminated because either: 1) it totally or partially contains within it a source of contamination that constantly emits contaminant to the groundwater flow, giving rise to a pollution plume, or 2) it totally or partially contains , inside a plume of pollution.
- the objective of the cell of the present invention is to eliminate the source of contamination, and thus also the associated plume.
- the objective is to eliminate the pollution plume that had already moved downstream from the previously eliminated pollution source.
- various recirculation cells of the present invention can be placed, in series or in parallel, so that, together, the entire volume of contaminating source and contaminated water to be treated is contained within the overlap of all the cells of the present invention used.
- FIG. 1 a general scheme of the recirculation cell of the present invention 1 is shown, which comprises an extraction well 2 and a reinjection well 3 positioned at the ends of the aquifer-aquitard transition zone to be treated (in dashed lines), in the direction and sense of groundwater.
- the direction of the arrows shows the flow of water both outside the recirculation cell 1, in solid arrows, and inside the recirculation cell 1, in dashed arrows. Therefore, extraction well 2 is located downstream and reinjection well 3 is located upstream of the recirculation cell.
- the reflected flow within recirculation cell 1 and from extraction well 2 to reinjection well 3 shows the recirculated water (dashed arrows).
- the distance between the extraction well 2 and the reinjection well 3 must be determined by the person skilled in the art based on the aquifer-aquitard transition zone to be treated. However, preferably the distance between the extraction well 2 and the reinjection well 3 is between 4 and 8 meters, more preferably 6 meters.
- the recirculation cell 1 of the present invention should preferably be provided with at least three monitoring wells (FIG. 1). All three equipped with pressure sensors to control the water level in each well, and distributed as follows: 1) A first monitoring well A 4 located at a distance of 2 or 3 meters upstream of the cell (that is, upstream of the reinjection well 3). Its objective is to monitor the contaminated water not recirculated upstream of the cell. This would be the case where recirculation cell 1 only partially encompasses a pollution source and/or a pollution plume. In these cases, as indicated above, other cells of the present invention should overlap with this one (if the final objective is the total remediation of the site).
- a second monitoring well B 5 in the center of the cell to monitor the recirculated water that is being decontaminated inside the recirculation cell 1.
- a third monitoring well C 6 is located about 2 or 3 m downstream of the cell (i.e., downstream of extraction well 2). This well 6 monitors the groundwater located downstream of cell 1 and, therefore, untreated. Its function is similar to that of the cases mentioned for the first monitoring well 4 located upstream of cell 1.
- monitoring wells 4, 5 and 6 are equipped with pressure sensors for continuous recording of levels and physical and chemical parameters that allow continuous, real-time monitoring of the evolution of the remediation.
- the monitoring well 5, and the extraction well 2 allow periodically taking samples of recirculated (and, therefore, treated) water to verify that, beyond the continuous parameter sensors, the progression of the remediation or decontamination is being carried out adequately.
- FIG. 2 shows the detail of an extraction well 2 that comprises an extraction pipe 7 that connects the extraction well 2 with the tank for storing recirculated water 8 and that, together with the extraction pump 9, allows the extraction of water and the filling the tank to store recirculated water 8 during the filling half cycle.
- U Unsaturated zone
- E Aquifer
- F Aquifer-aquitard transition zone
- G Aquitard
- the bold arrows show how water from the Aquifer-Aquitard Transition Zone (F) enters extraction well 2.
- the slotted area 32 of the extraction well 2 has the necessary length to be located precisely between the depth of the roof of the aquifer-aquitard transition zone and the base of said hydrogeological formation to be treated.
- FIG. 2 also shows the water pressure sensor 10 intended to measure the length of the water column present in the extraction well 2, as well as other sensors 11,12,13 intended to measure other variables such as temperature, pH, dissolved oxygen. or redox potential, among others (these other sensors 11, 12, 13) measure, record and store the temporal variation of said parameters at previously set time intervals (for example, at a minute or five-minute measurement interval).
- sensors 11,12,13 intended to measure other variables such as temperature, pH, dissolved oxygen. or redox potential, among others (these other sensors 11, 12, 13) measure, record and store the temporal variation of said parameters at previously set time intervals (for example, at a minute or five-minute measurement interval).
- the extraction pump 9, shown in FIG. 6, is of small flow (see two flow examples included in Table 1). This flow rate, as indicated above, must necessarily be small to enable a slow underground flow rate within cell 1, which gives time for the chemical and biogeochemical reactions that transform the contaminants to take place.
- the extraction pump 9 is equipped with a flow control system that allows this parameter to be adjusted to the operating value considered appropriate for each case.
- the extraction pump can be submerged or non-submerged, but it must always be capable of lifting water at a small flow rate. If it is a peristaltic extraction pump, it is located outside the extraction well, and if it is a submerged extraction pump, its flow control system is located outside the well. In the case that the extraction pump is peristaltic, it is connected to the extraction pipe 7.
- the groundwater suction end (suction zone 14) of the extraction pipe 7), is below the level of security 1 (SL1).
- SL1 security 1
- the water pressure sensor 10 measures the level of the water column in the extraction well 2 and if said level drops to the value set as safety level 1 (SL1), the pump extraction 9 is stopped to prevent the suction zone 14 of the extraction pipe 7, through which the extraction pump 9 extracts groundwater, from running dry.
- SL1 safety level 1
- the value of SL1 must be above the depth at which the aforementioned groundwater suction zone 14 is located.
- the SL1 value can be reached if the extraction flow rate exceeds the reinjection flow rate in the reinjection well producing a significant drop in the level in the extraction well, which drops to the value corresponding to SL1.
- the SL1 value can also be reached due to various circumstances (natural or anthropogenic) throughout the decontamination that cause a significant level drop in the extraction well.
- FIG. 3 shows the detail of a reinjection well 3 comprising a reinjection pipe 15 that connects the tank for storing recirculated water 8, FIG. 4, with the bottom of the reinjection well 3 and that, together with the reinjection pump 16, FIG. 6, allows the reinjection of water and the emptying of the tank to store recirculated water 8 during the emptying half cycle.
- a reinjection well 3 comprising a reinjection pipe 15 that connects the tank for storing recirculated water 8, FIG. 4, with the bottom of the reinjection well 3 and that, together with the reinjection pump 16, FIG. 6, allows the reinjection of water and the emptying of the tank to store recirculated water 8 during the emptying half cycle.
- FIG. 3 you can also see the different layers of the terrain: Unsaturated Zone (D), Aquifer (E), Aquifer-Aquitard Transition Zone (F) and Aquitard (G). It is observed how reinjection well 3 has the necessary depth to reach the aquifer-aquitard transition zone (F) to be
- reinjection well 3 has the necessary depth to reach the aquifer-aquitard transition zone to be treated.
- Slotted area 18 This well extends from the top of the aforementioned transition zone to be treated to the base of said zone.
- FIG. 3 also shows the water pressure sensor 17 intended to measure the length of the water column present in the reinjection well 3.
- the reinjection pump 16 has a small flow rate (see two flow examples included in Table 2). This flow rate, as indicated above, must necessarily be small to enable a slow underground flow rate within cell 1, which gives time for the chemical and biogeochemical reactions that transform the contaminants to take place.
- the reinjection pump 16 is equipped with a flow control system that allows this parameter to be adjusted to the operating value considered appropriate for each case.
- the reinjection pump can be submerged or non-submerged, but must always be able to operate at a low flow rate. If it is a peristaltic type reinjection pump, it is located outside the reinjection well 3, and if it is a submerged reinjection pump, its flow control system is located outside the well.
- the water pressure sensor 17 measures the level of the water column in the reinjection well 3, and if said level rises to the value set as safety level 2 (SL2), the pump reinjection well 16 is stopped to prevent reinjection well 3 from overflowing. That is, this water pressure sensor 17 detects or indicates that the level of the water reinjected into the reinjection well 3 is very high and there is a danger that this water will overflow over the edge of the extraction well 3 and go outside. This situation can occur if the geological formation is not capable of absorbing the reinjection flow in reinjection well 3, or if biological or abiotic plugging occurs in the slotted zone 18 in reinjection well 3 (or even in the own geological formation).
- SL2 safety level 2
- FIG. 4 shows the tank for storing recirculated water 8.
- Said tank 8 is preferably cylindrical and made of opaque polyethylene (or other resistant plastic).
- the extraction pipe 7 (which comes from the extraction well 2) enters the upper part and, inside the tank, descends to an area near the base, approximately 4 centimeters below the top of the settling volume 8.1, so that it is always submerged (in this way, aeration by bubbling of the recirculated water that fills the tank is avoided as much as possible and changes in redox conditions are minimized. of this water before it is reinjected into cell 1).
- reinjection pipe 15 exits (which goes to reinjection well 3).
- the tank for storing recirculated water 8 has three zones, from bottom to top (from bottom to top of tank 8): a settling volume 8.1 (acts as a decanter for possible inflows of fine materials from extraction well 2, or from solid precipitates that may form during the recirculation and storage process inside tank 8; these fine materials could clog the pipes if they do not have sufficient gradient), a useful volume 8.2 and a head volume 8.3.
- a settling volume 8.1 acts as a decanter for possible inflows of fine materials from extraction well 2, or from solid precipitates that may form during the recirculation and storage process inside tank 8; these fine materials could clog the pipes if they do not have sufficient gradient
- a useful volume 8.2 and a head volume 8.3.
- the settling volume 8.1 would be 25L
- the useful volume 8.2 would be 75L
- the head volume 8.3 would be 20L.
- the tank 8 has a pressure sensor 22 at the bottom to measure the water column present in the tank and, consequently, the amount or volume of water present in the tank 8 and thus be able to determine the filling and emptying half cycles.
- this volume is only 25 L, it corresponds to the settling volume 8.1, it indicates that the emptying half cycle of tank 8 has come to an end (because the settling volume 8.1 has already been reached) so it is given the order to stop the reinjection pump 16, thereby stopping reinjection.
- the order to start the extraction pump 9 is given and a half-cycle of filling the tank 8 begins.
- the pressure sensor 22 located at the bottom of the tank 8 indicates a water column corresponding to the sum of the settling volume 8.1, 25 L and the useful volume 8.2, 75L, is the signal that the useful volume 8.2 is complete and that therefore the tank 8 is full up to 100 L.
- the order is given to the extraction pump 9 is stopped in the extraction well 2, ending the filling half-cycle and, at the same time, starting an emptying half-cycle.
- the wall of the tank 8 has in its upper part a ventilation perforation 33 of two or three millimeters in diameter, which crosses it from side to side, and which acts as a vent to prevent vacuum from being generated in the tank during emptying and from deforming due to implosion.
- FIG. 5 shows a tank for storing a treatment 21 (preferably cylindrical and made of opaque polyethylene or other resistant plastic).
- Said tank 21 in an area close to its base presents (area of the decantation volume 21.1) the treatment injection pipe 19 that connects the tank 21 with the reinjection well 3 and allows the treatment contained in the tank to be injected into said well 3.
- the tank for storing a treatment 21 has three zones, from bottom to top: a reserve volume 21.1 (reagent or treatment reserve volume), a useful volume 21.2 and a head volume 21.3.
- the reserve volume 21.1 would be 15L
- the useful volume 21.2 would be 75L
- the head volume 21.3 would be 10L.
- the tank 21 is preferably provided with a visual (or electronic) device that indicates the level of reagent or treatment solution present inside (not shown in the figure). Obviously, the level indicator device must be resistant to the reagent or treatment contained in the tank 21.
- the wall of the tank 21 has in its upper part a ventilation perforation 34 of two or three millimeters in diameter, which crosses it from side to side, and which acts as a vent to prevent vacuum from being generated in the tank during emptying and from deforming due to implosion.
- the recirculation cell 1 of the present invention has a system for sending the data captured by the different sensors that includes a central server.
- the evolution of the remediation or treatment can be evaluated in real time within the perimeter of the cell's zone of influence.
- FIG. 6 shows a diagram of the operation of the recirculation cell 1 of the present invention.
- the emptying semi-cycle begins in which the useful volume 8.2 of the tank is emptied to store recirculated water 8.
- the water is driven from the tank 8 to the reinjection well 3 by means of the reinjection pump 16 through of the reinjection pipe 15.
- the reinjection pipe 15 is equipped with a tap 23 that allows sampling. This cock 23 is located at a point along the route of the reinjection pipe 15 located after the tank 8 and before the reinjection pipe 15 enters the reinjection well 3.
- the means for the storage and injection of two treatments comprise a first tank for storing a first treatment 21 which, by means of a first injection pipe 19 and a first injection pump 24, inject a first treatment or reagent into the reinjection well 3 ; and a second tank to store a second treatment 25 that, by means of a second injection pipe 20 and a second injection pump 26, inject a second treatment or reagent into the reinjection well 3.
- Both the first injection pipe 19 and the second injection pipe injection 20 have a tap 27, 28 that allows sampling and verifying the operation of the injection pumps 24, 26.
- the first treatment is lactic acid and the second treatment is a buffer solution of sodium bicarbonate and sodium carbonate in an aqueous medium.
- the two injection pumps 24, 26 inject directly into the reinjection well 3 a certain number of doses of each treatment through the corresponding injection pipes 19, 20. This injection is It is always carried out below the water level in the reinjection well 3.
- the two injection pumps 24, 26 can be peristaltic or submerged.
- the purpose of injecting the treatment doses in the indicated manner is that these doses of treatment solution are carried away by the water. recirculated throughout cell 1 to carry out the treatment of the aquifer-aquitard zone to be treated by dispersion and molecular diffusion.
- each of the operating cycles of the recirculation cell 2 of the present invention is formed by two successive half cycles (non-concurrent), one for filling the tank to store recirculated water 8 and another for emptying it. .
- all the pipes of the recirculation cell 1 of the present invention are covered with thermal insulating material (heaters) to prevent freezing of the water they transport in winter.
- the recirculation cell of the present invention 1 presents a system for the automatic control of the cell 1 and its operation, for example, an automatic electrical control panel 29 that It receives information from all the sensors and automatically controls all the pumps of the recirculation cell of the present invention 2.
- FIG. 7 shows the location of the uncased boreholes for the injection of mZVI 31.
- the mZVI injection method in each well was pressure hydrostatic, always from bottom to top between 8 and 4.5 m deep.
- the total mass of mZVI injected was 30 kg (5 in each injection well).
- the pilot test began. This moment is considered day zero of the test (time 0 days).
- the recirculation cell of the present invention was activated on day 149 after the start of the test (time 149 days) to inject the lactic acid solution used in the biostimulation (FIG. 7 shows the zone of influence of this recirculation cell).
- FIG. 7 shows: 7A Zone of influence of recirculation cell 1 (limited by the outermost flow lines). Location of the six untubed boreholes for the injection of mZVI 31 (from the emulsion of mZVI and guar gum) and also location of the extraction well 2 and reinjection 3 of recirculated water and lactic acid. 7B Vertical section of the uncased wells for the injection of mZVI 31 and the recirculation cell 1 of the present invention showing the extraction well 2, the reinjection well 3, the tank for storing recirculated water 8 and the tank 21 lactic acid solution. The arrows indicate the circulation of water within recirculation cell 1.
- the recirculation cell of the present invention was designed to biostimulate the aquifer-aquitard transition zone to be treated. Given the low hydraulic conductivity of this transition zone, the cell was designed to operate in semi-cycles of filling and emptying a water recirculation tank to prevent the extraction well from drying out and allow time for reinjection. Furthermore, it was interesting to obtain a slow velocity of the groundwater so that the residence time of the lactic acid in the medium was long enough to favor the degradation reactions of the chloroethene.
- the recirculation cell of the present invention was formed by:
- an extraction well 2 slotted 32 in the aquifer-aquitard transition zone and equipped with a peristaltic pump that extracted flow rates ranging between 0.58 and 0.94 L/min (this well also had a pressure sensor of the water column that controlled the water level between the pre-established maximum and minimum values);
- both tanks mentioned in point 3 were connected to peristaltic pumps that dosed the lactic acid and the buffer solution (with flow rates ranging from 0.5 to 1.5 mL/min);
- this well was equipped with a water column pressure sensor that regulated the level between preset maximum and minimum values. If the maximum level was reached, the reinjection pump and the two dosing pumps were automatically turned off, thus preventing the spillage of reinjected water that did not have time to re-infiltrate into the well.
- the monitoring network of the pilot test was made up of a multilevel well, and the two wells that made up the cell. Data on the main characteristics of the pilot test monitoring points can be found in Table 3 included below.
- Depth rank, rank zone. (Depth range of the grooved area), Length. your B. blind (length of blind pipe).
- the pilot test began at the time corresponding to day 0 (first day of sampling), when mZVI was injected. This reagent acted only during the first 149 days. At the end of this period (day 149), the recirculation cell of the present invention was activated and the combined treatment of mZVI and biostimulation with lactic acid came into operation for a total of 355 days (i.e., until day 504, see Table 4).
- Puigserver et. to the. (Puigserver, D., Herrero, J., Parker, B. L, & Carmona, J. M. (2020). Natural attenuation of pools and plumes of carbon tetrachloride and chloroform in the transition zone to bottom aquitards and the microorganisms involved in their degradation .Science of The Total
- checkpoints were purged using a peristaltic pump connected to a field flow cell coupled to sensors for physicochemical parameters.
- the parameters were dissolved oxygen (DO, mg/L), oxidation-reduction potential (ORP, mV), pH, temperature (T, °C) and electrical conductivity (EC, pS/cm). Once the values of these parameters were stabilized and recorded, water samples were taken with the peristaltic pump at low flow to minimize the volatilization of VOCs (according to Puigserver, D., Cortés, A., Viladevall, M., Nogueras, X., Parker,
- the order of field sampling was: 1) 1 L of water (in autoclaved glass bottles) for the determination of microbial communities in groundwater (phyla and genera); This water was subsequently filtered with 0.2 micron filters and frozen at -20 °C in the laboratory according to Puigserver et al. (2020).
- samples were transported and stored at 4 °C, and in each sampling campaign the following samples were taken: 1 evaluation field sample and 1 low concentration evaluation field sample. Each sample was taken in duplicate and 1 field blank was collected, except in the case of samples intended for microbial determination, in which two blanks were collected, 1 blank of blanks and 1 blank of transport for each sample transport refrigerator, in order to guarantee the traceability and representativeness of the samples.
- VOCs present in groundwater were analyzed by gas chromatography (GC) (Carlo-Erba GC8000-Top) coupled to a mass spectrometer (GC-MS) (ThermoFinnigan Fisons MD800).
- GC gas chromatography
- TCE trichlorethylene
- cDCE cis-dichloroethylene
- tDCE trans-dichloroethylene
- 1,1-dichloroethylene 1,1-dichloroethylene
- vinyl chloride CV
- dichloroacetylene chloroacetylene and the gases ethene, ethane, acetylene and methane.
- CCA Compound Specific Isotopic Analysis
- DNA extraction for the identification of the phyla and genera of microorganisms in the sampled groundwater was carried out in a sterile environment with the DNeasy Ultraclean Microbial Kit from Qiagen, with an adaptation of the first two stages, to extract the DNA from the filters .
- the preparation of the 16S rRNA library, sequencing and bioinformatic analysis was carried out at the Genomics Unit of the Scientific and Technological Centers of the University of Barcelona (CCiTUB).
- the V3V4 region of the 16S rRNA was amplified as described by Willis et al. (Willis, J., et al. (2016). Citizen science charts two major “stomatotypes" in the oral microbiome of adolescents and reveals links with habits and drinking water composition.
- the PCR products were purified, a second PCR and a second purification were performed, followed by a normalization and quantification process as described by Willis et al. (2016).
- HM-276D and HM-277D Three simulated community samples were used in this study.
- Two mock bacterial communities were obtained from the Human Microbiome Project BEI Resources (HM-276D and HM-277D), each containing genomic DNA from ribosomal operons of 20 bacterial species.
- the third mock community, ZymoBIOMICSTM Microbial Community DNA Standard (Zymo Research, catalog number D6306), is a mixture of genomic DNA isolated from pure cultures of eight bacterial strains and two fungal strains. Test DNAs were amplified and sequenced in the same way as the other experimental samples.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Soil Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
Celda de recirculación para la remediación de agua subterránea en zonas de transición acuífero-acuitardo Recirculation cell for groundwater remediation in aquifer-aquitard transition zones
La presente invención se refiere al campo de la descontaminación de aguas subterráneas, más concretamente a una celda de inyección-extracción que permite descontaminar de forma efectiva las zonas de transición acuífero-acuitardo. The present invention refers to the field of groundwater decontamination, more specifically to an injection-extraction cell that allows the aquifer-aquitard transition zones to be effectively decontaminated.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
A escala mundial, las aguas subterráneas proporcionan entre el 25 y el 40% del agua de bebida (UNEP, (2003). Groundwater and its Susceptibility to Degradation. UNEP/DEWA, Nairobi). En Europa el 60% del agua potable es de origen subterráneo (Schmidt-Thomé, P., & Klein, J. (Eds.). (2013). Climate change adaptation in practice: from strategy development to implementation. John Wiley & Sons.). La pérdida de su calidad tiene consecuencias sanitarias y económicas, pues incrementa los costes de potabilización. Por ello, la lucha contra su contaminación es uno de los grandes retos de la sociedad actual, pues pone en riesgo la salud humana y los ecosistemas (Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorthy, K. (2021). Sources and consequences of groundwater contamination.). On a global scale, groundwater provides between 25 and 40% of drinking water (UNEP, (2003). Groundwater and its Susceptibility to Degradation. UNEP/DEWA, Nairobi). In Europe, 60% of drinking water is of underground origin (Schmidt-Thomé, P., & Klein, J. (Eds.). (2013). Climate change adaptation in practice: from strategy development to implementation. John Wiley & Sons .). The loss of quality has health and economic consequences, as it increases purification costs. Therefore, the fight against its pollution is one of the great challenges of today's society, since it puts human health and ecosystems at risk (Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorthy, K. (2021).
La descontaminación de las aguas subterráneas tradicionalmente se ha llevado a cabo tanto a nivel de técnicas ex-situ (a menudo mediante sistemas de tipo bombeo y tratamiento, en inglés, pumping and treat) o mediante técnicas in-situ. Groundwater decontamination has traditionally been carried out either by ex-situ techniques (often using pumping and treating systems) or by in-situ techniques.
Entre las técnicas in-situ de uso frecuente se encuentran las de remediación química y las de biorremediación (Chen, Q., Fan, G., Na, W., Liu, J., Cui, J., & Li, H. (2019). Past, present, and future of groundwater remediation research: A scientometric analysis. International journal of environmental research and public health, 16(20), 3975). Estas técnicas han sido aplicadas casi siempre de forma separada. Entre las técnicas químicas, conocidas en la literatura anglosajona como in-situ chemical remediation, se distinguen las que utilizan reactivos que llevan a cabo reacciones de oxidación (en inglés, In-Situ Chemical Oxidation, ISCO) (ITRC, I. (2005). Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater, New York: Council TITaR.) y las que emplean reactivos que dan lugar a reacciones de reducción (en inglés, In-Situ Chemical Reduction, ISCR), (Tratnyek, P. G., Johnson, R. L., Lowry, G. V., & Brown, R. A. (2014). In situ chemical reduction for source remediation. In Chlorinated Solvent Source Zone Remediation (pp. 307-351). Springer, New York, NY). Among the frequently used in-situ techniques are chemical remediation and bioremediation (Chen, Q., Fan, G., Na, W., Liu, J., Cui, J., & Li, H. (2019). Past, present, and future of groundwater remediation research: A scientometric analysis. International journal of environmental research and public health, 16(20), 3975). These techniques have almost always been applied separately. Among the chemical techniques, known in the English literature as in-situ chemical remediation, those that use reagents that carry out oxidation reactions (in English, In-Situ Chemical Oxidation, ISCO) are distinguished (ITRC, I. (2005) . Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater, New York: Council TITaR.) and those that use reagents that give rise to reduction reactions (in English, In-Situ Chemical Reduction, ISCR), (Tratnyek). , PG, Johnson, RL, Lowry, GV, & Brown, RA (2014). remediation. In Chlorinated Solvent Source Zone Remediation (pp. 307-351). Springer, New York, NY).
En el caso de las técnicas ISCO, una de las principales limitaciones que se conocen es la corta vida media de los reactivos utilizados (con la excepción del uso de permanganate potásico). Esto limita mucho la migración de los reactivos aguas abajo de su punto de inyección (Siegrist, R. L, Crimi, M., & Simpkin, T. J. (Eds.). (2011). In situ chemical oxidation for groundwater remediation (Vol. 3). Springer Science & Business Media) y limita también la zona de tratamiento, y consecuentemente la eficiencia en la descontaminación. Además, la corta vida de los reactivos dificulta la penetración de éstos, por difusión molecular, hasta el interior de los niveles de baja conductividad hidráulica, en donde se almacenan grandes cantidades de contaminante (EPA (2017): How To Evaluate Alternative Cleanup Technologies For Underground Storage Tank Sites A Guide For Corrective Action Plan Reviewers. EPA 510- B-17-003). La falta de tratamiento de estos niveles favorece la existencia del denominado efecto rebote una vez descontaminado el acuífero (Puigserver, D. Herrero, J., Nogueras, X., Cortés, A., Parker, B. L. Playá, E. & Carmona, J. M. (2021). Biotic and abiotic reductive dechlorination of chloroethenes in aquitards. Science of the total environment), con lo que éste vuelve a contaminarse. In the case of ISCO techniques, one of the main known limitations is the short half-life of the reagents used (with the exception of the use of potassium permanganate). This greatly limits the migration of the reactants downstream of their injection point (Siegrist, R. L, Crimi, M., & Simpkin, T. J. (Eds.). (2011). In situ chemical oxidation for groundwater remediation (Vol. 3). Springer Science & Business Media) and also limits the treatment area, and consequently the decontamination efficiency. Furthermore, the short life of the reagents makes it difficult for them to penetrate, through molecular diffusion, to the interior of the levels of low hydraulic conductivity, where large amounts of contaminant are stored (EPA (2017): How To Evaluate Alternative Cleanup Technologies For Underground Storage Tank Sites A Guide For Corrective Action Plan Reviewers. EPA 510-B-17-003). The lack of treatment of these levels favors the existence of the so-called rebound effect once the aquifer is decontaminated (Puigserver, D. Herrero, J., Nogueras, X., Cortés, A., Parker, B. L. Playá, E. & Carmona, J. M. (2021). Biotic and abiotic reductive dechlorination of chloroethenes in aquitards.
En el caso de los reactivos utilizados en las técnicas ISCR, uno de los más habituales ha sido el hierro metálico (Fe0), conocido como Zero Valent Iron (ZVI). Se trata de un reactivo que se aplica al medio en forma de partículas de diferentes tamaños de grano, desde tamaño milimétrico (mm) a tamaño de micropartículas (pm) y nanopartículas (nm) (Labeeuw, V. (2013). In Situ Chemical Reduction using Zero-Valent Iron Injection-A Technique for the Remediation of Source Zones. CiyChlor. Machteld De Wit, OVAM, 104). Estas partículas se inyectan en el medio en forma de dispersión dentro de una emulsión que las mantiene en suspensión. En función de su tamaño, las partículas de ZVI presentan diferentes limitaciones, siendo la más importante el peso individual de esas partículas. In the case of the reagents used in ISCR techniques, one of the most common has been metallic iron (Fe 0 ), known as Zero Valent Iron (ZVI). It is a reagent that is applied to the medium in the form of particles of different grain sizes, from millimeter size (mm) to the size of microparticles (pm) and nanoparticles (nm) (Labeeuw, V. (2013). In Situ Chemical Reduction using Zero-Valent Iron Injection-A Technique for the Remediation of Source Zones. Machteld De Wit, OVAM, 104). These particles are injected into the medium in the form of a dispersion within an emulsion that keeps them in suspension. Depending on their size, ZVI particles present different limitations, the most important being the individual weight of these particles.
Entre las técnicas de biorremediación, se diferencian dos grandes grupos. Las basadas en la bioestimulación de la población microbiana indígena y las basadas en la bioaumentación mediante la inoculación de microorganismos alóctonos, pero capaces de degradar los contaminantes del medio, y la inoculación de los microorganismos autóctonos cultivados en laboratorio (Adams, G. O., Fufeyin, P. T., Okoro, S. E., & Ehinomen, I. (2015). Bioremediation, biostimulation and bioaugmention: a review. International Journal of Environmental Bioremediation & Biodegradation, 3(1), 28-39). Among bioremediation techniques, two large groups are differentiated. Those based on the biostimulation of the indigenous microbial population and those based on bioaugmentation through the inoculation of non-native microorganisms, but capable of degrading contaminants in the environment, and the inoculation of indigenous microorganisms grown in the laboratory (Adams, GO, Fufeyin, PT , Okoro, S.E., & Ehinomen, I. (2015). biostimulation and bioaugmentation: a review. International Journal of Environmental Bioremediation & Biodegradation, 3(1), 28-39).
Los reactivos utilizados en la bioestimulación son muy vahados, y van desde los nutrientes a los donadores de electrones, entre otros (Hussain, C. M. (Ed.). (2020). The handbook of environmental remediation: classic and modern techniques. Royal Society of Chemistry). En todos los casos, sin embargo, uno de los problemas que a menudo se presenta con la bioestimulación es que existe la posibilidad de promocionar el sobrecrecimiento microbiano de comunidades que no descontaminan los compuestos que se desea eliminar (Puigserver, D., Carmona, J. M., Barker, J., Cortes, A., Nogueras, X., & Viladevall, M. (2011). Use of chemical and biological techniques in the remediation of sites contaminated by chlorinated solvents. Journal of IAHS-AISH. International Association of Hydrological Sciences, 445-448.), o que se generan desplazamientos del nicho microbiano, lo que disminuye la eficiencia en la descontaminación (Herrero, J., Puigserver, D., Nijenhuis, I., Kuntze, K., & Carmona, J. M. (2019). Combined use of /SCR and biostimulation techniques in incomplete processes of reductive dehalogenation of chlorinated solvents. Science of the total environment, 648, 819- 829.). The reagents used in biostimulation are very varied, ranging from nutrients to electron donors, among others (Hussain, C. M. (Ed.). (2020). The handbook of environmental remediation: classic and modern techniques. Royal Society of Chemistry). In all cases, however, one of the problems that often arises with biostimulation is that there is the possibility of promoting microbial overgrowth of communities that do not decontaminate the compounds to be eliminated (Puigserver, D., Carmona, J. M. , Barker, J., Cortes, A., Nogueras, X., & Viladevall, M. (2011). Use of chemical and biological techniques in the remediation of sites contaminated by chlorinated solvents. Hydrological Sciences, 445-448.), or that displacements of the microbial niche are generated, which decreases decontamination efficiency (Herrero, J., Puigserver, D., Nijenhuis, I., Kuntze, K., & Carmona, J. M. (2019). Combined use of /SCR and biostimulation techniques in incomplete processes of reductive dehalogenation of chlorinated solvents. Science of the total environment, 648, 819- 829.
Además, en la mayoría de los casos la inyección de reactivos y de tratamientos de la contaminación se centran en descontaminar los acuíferos. Sin embargo, las técnicas utilizadas tienen una muy baja penetrabilidad dentro de las formaciones de baja conductividad hidráulica (zonas de transición acuífero-acuitardo), lo que dificulta el tratamiento de esas zonas, dentro de las cuales se almacenan grandes cantidades de contaminante, especialmente cuando se trata de episodios de contaminación maduros (es decir, con décadas de edad desde que se inició la contaminación). Furthermore, in most cases reagent injection and pollution treatments focus on decontaminating aquifers. However, the techniques used have a very low penetrability within formations of low hydraulic conductivity (aquifer-aquitard transition zones), which makes the treatment of these zones difficult, within which large amounts of contaminant are stored, especially when These are mature contamination episodes (that is, decades old since the contamination began).
Los procedimientos habitualmente utilizados para emplazar los tratamientos y/o reactivos en el medio contaminado se han basado en métodos pasivos o mediante la creación de celdas cerradas de inyección y bombeo en el acuífero. Estos tratamientos consisten en soluciones acuosas de productos químicos (por ejemplo, reactivos químicos) o emulsiones de preparados específicos (por ejemplo, de microrganismos cultivados para su inoculación en el medio. De ahora en adelante, las citadas soluciones acuosas y emulsiones serán referidas en este documento como “tratamiento” o “tratamientos”, independientemente de que se trate de tratamientos químicos o biológicos. En Kitanidis & McCarty (2012) se tratan los métodos pasivos y las celdas cerradas de inyección y bombeo (Kitanidis, P. K. & McCarty, P. L. (Eds.). (2012). Delivery and Mixing in the Subsurface: Processes and Design Principles for in situ remediation (Vol. 4). Springer Science & Business Media.). The procedures usually used to place treatments and/or reagents in the contaminated environment have been based on passive methods or by creating closed injection and pumping cells in the aquifer. These treatments consist of aqueous solutions of chemicals (for example, chemical reagents) or emulsions of specific preparations (for example, of microorganisms cultured for inoculation in the medium. From now on, the aforementioned aqueous solutions and emulsions will be referred to in this document as “treatment” or “treatments”, regardless of whether they are chemical or biological treatments. Passive methods and closed injection and pumping cells are discussed in Kitanidis & McCarty (2012) (Kitanidis, PK & McCarty, PL (Eds.). (2012). Delivery and Mixing in the Subsurface: Processes and Design Principles for in situ remediation (Vol. 4).
Los métodos pasivos consisten en la inyección de los reactivos en el acuífero dejando que éstos reaccionen a lo largo del flujo (Rosansky, S., Condit, W., & Sirabian, R. (2013). Best practices for injection and distribution of amendments. Technical Report TR-NAVFAC-EXWC- EV-1303.). Ello implica que la mayor parte de los reactivos migren a través de los niveles más permeables, es decir, niveles más conductores (o sea, de mayor conductividad hidráulica) dejando de interaccionar con los niveles de baja conductividad hidráulica, en donde se acumulan grandes cantidades de contaminantes. Passive methods consist of injecting the reactants into the aquifer, allowing them to react along the flow (Rosansky, S., Condit, W., & Sirabian, R. (2013). Best practices for injection and distribution of amendments . Technical Report TR-NAVFAC-EXWC-EV-1303.). This implies that most of the reactants migrate through the most permeable levels, that is, more conductive levels (that is, with greater hydraulic conductivity), ceasing to interact with the levels of low hydraulic conductivity, where large quantities accumulate. of contaminants.
En el caso de la utilización de celdas cerradas (formadas por pozos de inyección de agua con tratamiento y/o reactivos y pozos de extracción de agua tratada dentro del medio contaminado), la continua inyección y el bombeo modifican el campo de flujo natural y el caudal que fluye entre los pozos de inyección y de extracción. Esto requiere de medios suficientemente permeables que eviten que el sistema quede seco y lo aíslen del resto del acuífero (Muller, K. A., Johnson, C. D., Bagwell, C. E., & Freedman, V. L. (2019). Review of Amendment Delivery and Distribution Methods, and Relevance to Potential In Situ Source Area Treatment at the Hanford Site (No. PNNL-29198; DVZ-RPT-0023-Rev. 0.0). Pacific Northwest National Lab.(PNNL), Richland, WA (United States)). Adicionalmente, en el caso de que los reactivos favorezcan la generación de condiciones redox reductoras, éstas se ven promovidas en la zona de influencia de la celda. El problema surge cuando los productos de degradación generados son más tóxicos que los parentales de los que derivan, lo que incrementa el riesgo para la salud humana y los ecosistemas, especialmente cuando éstos se acumulan en el medio. In the case of the use of closed cells (formed by wells for injecting water with treatment and/or reagents and wells for extracting treated water within the contaminated medium), the continuous injection and pumping modify the natural flow field and the flow that flows between the injection and extraction wells. This requires sufficiently permeable media that prevent the system from being dry and isolate it from the rest of the aquifer (Muller, K. A., Johnson, C. D., Bagwell, C. E., & Freedman, V. L. (2019). Review of Amendment Delivery and Distribution Methods, and Relevance to Potential In Situ Source Area Treatment at the Hanford Site (No. PNNL-29198; DVZ-RPT-0023-Rev. 0.0). Additionally, in the event that the reagents favor the generation of reducing redox conditions, these are promoted in the zone of influence of the cell. The problem arises when the degradation products generated are more toxic than the parents from which they are derived, which increases the risk to human health and ecosystems, especially when they accumulate in the environment.
Existen dos grandes grupos de sistemas de inyección de reactivos en el medio. Por un lado, se tienen los sistemas basados en la realización de perforaciones que quedan equipadas como pozos de inyección que permiten la inyección continua o discontinua de los reactivos. Por otro lado, las técnicas de tipo Direct-Push basadas en la perforación del medio e inyección simultánea de los reactivos, por lo que se trata de inyecciones puntuales (en el espacio y en el tiempo) y guiadas, pero que no permiten la introducción posterior de reactivos en ese mismo punto (Muller, K. A., Johnson, C. D., Bagwell, C. E., & Freedman, V. L. (2019). Review of Amendment Delivery and Distribution Methods, and Relevance to Potential In Situ Source Area Treatment at the Hanford Site (No. PNNL-29198; DVZ-RPT-0023-Rev. 0.0). Pacific Northwest National Lab.(PNNL), Richland, WA (United States)). There are two large groups of reagent injection systems in the environment. On the one hand, there are systems based on drilling that are equipped as injection wells that allow continuous or discontinuous injection of reagents. On the other hand, Direct-Push type techniques based on perforation of the medium and simultaneous injection of the reagents, so they are punctual injections (in space and time) and guided, but they do not allow the introduction subsequent reagents at that same point (Muller, KA, Johnson, CD, Bagwell, CE, & Freedman, VL (2019). Review of Amendment Delivery and Distribution Methods, and Relevance to Potential In Situ Source Area Treatment at the Hanford Site (No. PNNL-29198; DVZ-RPT-0023-Rev. 0.0). Pacific Northwest National Lab.(PNNL), Richland, WA (United States)).
Aparte de estos dos grupos, también existen sistemas capaces de introducir los reactivos en el medio de forma instantánea (un pulso de inyección), o mediante un sistema pasivo, como es la introducción en un pozo de barras de productos capaces de liberar lentamente reactivo al contacto con el agua subterránea, como es el caso de barras de ORC (iniciales del inglés, oxygen release compound - compuesto liberador de oxígeno), que se disuelven liberando oxigeno de forma progresiva a medida que el flujo de agua subterránea circula. Apart from these two groups, there are also systems capable of introducing the reagents into the medium instantly (an injection pulse), or through a passive system, such as the introduction into a well of rods of products capable of slowly releasing reagent to the medium. contact with groundwater, as is the case of ORC bars (oxygen release compound), which dissolve, releasing oxygen progressively as the groundwater flow circulates.
Tal como se deriva de lo anterior, en el estado de la técnica sigue existiendo la necesidad de disponer de sistemas y procedimientos que permitan el tratamiento de la gran cantidad de masa de contaminantes que se halla acumulada en el interior de los materiales de baja permeabilidad (conductividad hidráulica) evitando así, el efecto rebote citado anteriormente. Se trata, por ejemplo, de los niveles de baja permeabilidad (conductividad) que se hallan intercalados en la base, en medio o en el techo de numerosos acuíferos formando las zonas de transición que frecuentemente existen entre los acuíferos y los acuitardos subyacentes o suprayacentes (aunque, en menor medida, también se pueden hallar en medio de los acuíferos). Estas zonas de transición acuífero-acuitardo están formadas por numerosas intercalaciones de niveles de grosor centimétrico y de baja permeabilidad (conductividad hidráulica) en donde se acumulan los contaminantes. Estas intercalaciones están separadas por niveles más permeables (más conductores), también de grosor centimétrico. La alternancia de niveles de baja permeabilidad (por debajo de 0,001 cm/s) y niveles más permeables (entre 0,001 y 0,023 cm/s) hace que estas zonas de transición sean en conjunto (o sea, globalmente) formaciones de baja permeabilidad (es decir, de baja conductividad hidráulica), o sea formaciones poco permeables. Sin embargo, en cualquier caso, forman parte del acuífero. Su rango de conductividad hidráulica global (es decir, de permeabilidad global) puede vahar desde 0,001 cm/s hasta 0,012 cm/s. As can be derived from the above, in the state of the art there is still a need to have systems and procedures that allow the treatment of the large amount of pollutant mass that is accumulated inside low permeability materials ( hydraulic conductivity) thus avoiding the rebound effect mentioned above. These are, for example, the levels of low permeability (conductivity) that are interspersed at the base, in the middle or on the roof of numerous aquifers, forming the transition zones that frequently exist between the aquifers and the underlying or superjacent aquitards ( although, to a lesser extent, they can also be found in the middle of aquifers). These aquifer-aquitard transition zones are formed by numerous intercalations of centimeter-thick levels with low permeability (hydraulic conductivity) where contaminants accumulate. These intercalations are separated by more permeable (more conductive) levels, also centimeter thick. The alternation of low permeability levels (below 0.001 cm/s) and more permeable levels (between 0.001 and 0.023 cm/s) makes these transition zones jointly (i.e., globally) low permeability formations (i.e. that is, low hydraulic conductivity), that is, poorly permeable formations. However, in any case, they are part of the aquifer. Its range of overall hydraulic conductivity (i.e. global permeability) can range from 0.001 cm/s to 0.012 cm/s.
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
Los inventores de la presente invención, tras extensos y exhaustivos experimentos, han descubierto una celda de recirculación que funciona por semiciclos de llenado y vaciado y un procedimiento de descontaminación asociado a la misma que permiten, de forma efectiva y sorprendente, solucionar los problemas presentes en el estado de la técnica (mencionados anteriormente) y, por tanto, descontaminar las zonas de transición acuífero-acuitardo, situadas en la base, en medio o en el techo de los acuíferos. The inventors of the present invention, after extensive and exhaustive experiments, have discovered a recirculation cell that works by filling and emptying half cycles and a decontamination procedure associated with it that allow, in an effective and surprising way, to solve the problems present in the state of the art (mentioned previously) and, therefore, decontaminate the aquifer-aquitard transition zones, located at the base, in the middle or on the roof of the aquifers.
Por tanto, la celda de recirculación y el procedimiento de la presente invención son aplicables y efectivos para el tratamiento de medios de baja permeabilidad (es decir, medios de baja conductividad hidráulica), por ejemplo y preferentemente, del tipo zonas de transición acuífero-acuitardo (Puigserver, D., et.al. (2016). Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards. Environmental Science and Pollution Research, 23(18), 18724-18741 ; Puigserver, D., et.al. (2020). Natural attenuation of pools and plumes of carbon tetrachloride and chloroform in the transition zone to bottom aquitards and the microorganisms involved in their degradation. Science of The T otal Environment, 712, 135679), que, aunque frecuentes, el estado de la técnica no logra tratar de forma efectiva y provocan problemas como el efecto rebote y consiguiente recontaminación de acuíferos ya tratados. En contraposición, la celda y procedimiento de la presente invención no son, por tanto, de aplicación para medios de muy baja permeabilidad (como por ejemplo los acuícludos), ni tampoco para acuitardos de elevado grosor, más allá de la escala decimétrica. La celda y el procedimiento de la presente invención tampoco son de aplicación para medios de mediana a alta transmisividad (es decir, buenos medios acuíferos). La transmisibilidad es un parámetro ampliamente conocido en el estado del arte y por el experto en la materia y que resulta de multiplicar la permeabilidad (es decir, la conductividad hidráulica) por el grosor saturado en agua del medio de interés (que tanto puede ser un acuífero como una parte del mismo, como por ejemplo, una zona de transición acuífero- acuitardo). Por tanto, en un primer aspecto, la presente invención se refiere a una celda de recirculación que comprende: a) al menos un pozo de extracción que permite la extracción de agua de una zona de transición acuífero-acuitardo; b) al menos un tanque para almacenar agua recirculada; c) al menos un pozo de reinyección que permite la reinyección en la zona de transición acuífero- acuitardo de agua proveniente del al menos un tanque para almacenar agua recirculada; y d) al menos un medio para suministrar un tratamiento a la zona de transición acuífero-acuitardo, caracterizada porque dicha celda está configurada para funcionar en semiciclos de llenado y vaciado del al menos un tanque para almacenar el agua recirculada, de manera que en el semiciclo de llenado del al menos un tanque para almacenar agua recirculada se extrae agua del al menos un pozo de extracción a un caudal de entre 0,30 y 1 ,30 L/min para el llenado del mencionado al menos un tanque para almacenar agua recirculada; y en el semiciclo de vaciado del al menos un tanque para almacenar agua recirculada, el agua de dicho tanque se reinyecta en el al menos un pozo de reinyección a un caudal de entre 0,80 y 3,80 L/min. Therefore, the recirculation cell and the procedure of the present invention are applicable and effective for the treatment of low permeability media (i.e., low hydraulic conductivity media), for example and preferably, of the aquifer-aquitard transition zone type. (Puigserver, D., et.al. (2016). Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards. Environmental Science and Pollution Research, 23(18), 18724-18741 ; Puigserver, D., et.al. (2020). Natural attenuation of pools and plumes of carbon tetrachloride and chloroform in the transition zone to bottom aquitards and the microorganisms involved in their degradation. Science of The T otal Environment, 712, 135679), which, although frequent. , the state of the art fails to treat effectively and causes problems such as the rebound effect and subsequent recontamination of already treated aquifers. In contrast, the cell and procedure of the present invention are, therefore, not applicable to media with very low permeability (such as aquicludes), nor to aquitards of high thickness, beyond the decimetric scale. The cell and method of the present invention are also not applicable to media of medium to high transmissivity (i.e., good aquifer media). Transmissibility is a parameter widely known in the state of the art and by those skilled in the art and which results from multiplying the permeability (that is, the hydraulic conductivity) by the water-saturated thickness of the medium of interest (which can either be a aquifer as a part of it, such as, for example, an aquifer-aquitard transition zone). Therefore, in a first aspect, the present invention refers to a recirculation cell that comprises: a) at least one extraction well that allows the extraction of water from an aquifer-aquitard transition zone; b) at least one tank to store recirculated water; c) at least one reinjection well that allows reinjection into the aquifer-aquitard transition zone of water from at least one tank to store recirculated water; and d) at least one means to supply a treatment to the aquifer-aquitard transition zone, characterized in that said cell is configured to operate in semi-cycles of filling and emptying of at least one tank to store the recirculated water, so that in the semi-cycle of filling the at least one tank to store recirculated water, water is extracted from the at least one extraction well at a flow rate of between 0.30 and 1.30 L/min for filling the said at least one tank to store recirculated water ; and in the semi-cycle of emptying the at least one tank to store recirculated water, the water from said tank is reinjected into the at least one reinjection well at a flow rate of between 0.80 and 3.80 L/min.
En un segundo aspecto, la presente invención se refiere a un procedimiento para la descontaminación de una zona de transición acuífero-acuitardo que comprende la utilización de una celda de la presente invención para llevar a cabo dicha descontaminación. In a second aspect, the present invention refers to a procedure for the decontamination of an aquifer-aquitard transition zone that comprises the use of a cell of the present invention to carry out said decontamination.
Tal como se utilizan en el presente documento “nivel de baja conductividad hidráulica” y su plural tienen el significado que comúnmente adquieren en el estado de la técnica, es decir, capas de materiales de baja permeabilidad (conductividad hidráulica o permeabilidad por debajo de 0,001 cm/s). Aunque el grosor de estos niveles puede ser vahado, en el contexto de la presente invención se trata de capas de poco grosor. As used herein, “low hydraulic conductivity level” and its plural have the meaning they commonly acquire in the state of the art, that is, layers of low permeability materials (hydraulic conductivity or permeability below 0.001 cm). /s). Although the thickness of these levels can be varied, in the context of the present invention they are thin layers.
En el presente documento, “formación poco permeable” y su plural adquieren el significado que comúnmente tienen en el estado de la técnica y son acumulaciones de capas (niveles) que, por lo que se refiere a la permeabilidad, pueden ser homogéneas o heterogéneas (es decir con valores de permeabilidad diversos), pero que en conjunto su permeabilidad es baja (no llegando a la categoría de buen acuífero - formación hidrogeológica muy transmisiva). In the present document, “poorly permeable formation” and its plural acquire the meaning that they commonly have in the state of the art and are accumulations of layers (levels) that, as far as permeability is concerned, can be homogeneous or heterogeneous ( that is, with diverse permeability values), but overall its permeability is low (not reaching the category of good aquifer - very transmissive hydrogeological formation).
Tal y como se utilizan en el presente documento “zona de transición acuífero-acuitardo” y su plural, adquieren el significado que comúnmente tienen en el estado de la técnica, es decir, son formaciones constituidas por la alternancia de niveles de baja permeabilidad y niveles más permeables, lo que hace que estas zonas de transición sean en conjunto formaciones poco permeables en las que a lo largo de los niveles más permeables tiene lugar flujo de agua subterránea, es decir, a lo largo de estos niveles más permeables, el agua subterránea fluye “por advección” (se desplaza por advección a poca velocidad, tal y como corresponde al agua subterránea, aunque de manera perceptible a la escala humana); en contraposición, a lo largo de los niveles de baja permeabilidad de la misma zona de transición, el agua no se desplaza frecuentemente de manera perceptible a la escala humana, en cuyo caso nos encontramos ante acuícludos (la advección en estos niveles es prácticamente cero, o sea la velocidad de movimiento del agua es prácticamente cero), aunque, como se ha indicado, los contaminantes penetran en su interior, pero no por flujo advectivo de agua subterránea sino por difusión molecular. Una zona de transición acuífero-acuitardo, siempre es un acuífero pobre (comparado con un acuífero del mismo grosor, cuya permeabilidad siempre será mayor por el hecho precisamente de ser un acuífero). El problema es que, como se ha explicado anteriormente, cuando la zona de transición está contaminada, el flujo de agua subterránea a través de ella contamina los acuíferos con los que está conectada, de ahí la importancia de lograr medios que permitan la descontaminación de estas zonas, tales como la celda y el procedimiento de la presente invención. El rango de conductividad hidráulica global (permeabilidad global) de una zona de transición acuífero-acuitardo puede variar desde 0,001 cm/s hasta 0,0120 cm/s. As used in this document, “aquifer-aquitard transition zone” and its plural, they acquire the meaning that they commonly have in the state of the art, that is, they are formations constituted by the alternation of low permeability levels and more permeable, which makes these transition zones together be poorly permeable formations in which groundwater flow takes place along the more permeable levels, that is, along these more permeable levels, groundwater flows “by advection” (it moves by advection at low speed, as corresponds to groundwater, although in a perceptible way on the human scale); In contrast, along the low permeability levels of the same transition zone, water does not frequently move in a perceptible way at the human scale, in which case we are faced with aquicludes (advection at these levels is practically zero, that is, the speed of water movement is practically zero), although, as has been indicated, the contaminants penetrate inside, but not by advective flow of groundwater but by diffusion. molecular. An aquifer-aquitard transition zone is always a poor aquifer (compared to an aquifer of the same thickness, whose permeability will always be greater precisely because it is an aquifer). The problem is that, as explained above, when the transition zone is contaminated, the flow of groundwater through it contaminates the aquifers with which it is connected, hence the importance of achieving means that allow the decontamination of these areas, such as the cell and the process of the present invention. The range of global hydraulic conductivity (global permeability) of an aquifer-aquitard transition zone can vary from 0.001 cm/s to 0.0120 cm/s.
En el presente documento, “acuitardo” y su plural adquieren el significado que comúnmente tienen en el estado de la técnica, es decir, es una formación hidrogeológica capaz de almacenar agua, pero cuya conductividad hidráulica es muy baja, por lo que la transmite con lentitud. Ejemplos de acuitardos son las arenas finas y los limos. Un acuitardo presenta una permeabilidad (conductividad hidráulica), cuyo rango varía desde 10'7 a 10'3 cm/s. In this document, “aquitard” and its plural acquire the meaning that they commonly have in the state of the art, that is, it is a hydrogeological formation capable of storing water, but whose hydraulic conductivity is very low, so it transmits it with slowness. Examples of aquitards are fine sands and silts. An aquitard has a permeability (hydraulic conductivity), whose range varies from 10' 7 to 10' 3 cm/s.
Tal y como se utiliza en el presente documento, “acuícludo” y su plural adquieren el significado que comúnmente tienen en el estado de la técnica, es decir, es una formación hidrogeológica que, aunque contiene agua en sus poros, su permeabilidad es extremadamente baja, por lo que el agua circula de manera considerablemente lenta, de forma que a la escala humana se puede considerar como impermeable. En la literatura anglosajona, hay una cierta tendencia a no usar el término acuícludo, sustituyéndolo por el de acuitardo acompañado del valor de su permeabilidad. Ejemplos de acuícludos son las arcillas. Un acuícludo presenta una permeabilidad (conductividad hidráulica) por debajo de 10'7 cm/s. As used in this document, “aquiclude” and its plural acquire the meaning that they commonly have in the state of the art, that is, it is a hydrogeological formation that, although it contains water in its pores, its permeability is extremely low. , so water circulates considerably slowly, so that on a human scale it can be considered impermeable. In Anglo-Saxon literature, there is a certain tendency not to use the term aquiclude, replacing it with aquitard accompanied by the value of its permeability. Examples of aquicludes are clays. An aquiclude has a permeability (hydraulic conductivity) below 10' 7 cm/s.
Tal y como se utilizan en el presente documento, “medios de mediana a alta transmisividad” y “buenos medios acuíferos” tienen el mismo significado y se usan de forma intercambiable. En ambos casos, el significado es el que comúnmente adquieren en el estado de la técnica. La transmisividad es un parámetro hidráulico que resulta de multiplicar la permeabilidad por el grosor saturado en agua de un acuífero. Este parámetro es indicativo del caudal de agua que circula por el acuífero (y, por tanto, del caudal que se puede extraer de él). Este caudal depende, por tanto, de la permeabilidad del acuífero (cuanto más permeable es, mayor es el caudal que se puede obtener) y del grosor de ese acuífero (cuando mayor es el grosor, mayor es el caudal que se puede obtener). Cuanto más elevado es el valor de este parámetro más bueno es el acuífero y viceversa. Desde el punto de vista de los caudales que se pueden extraer, la transmisividad es indicativa del caudal de agua que circula por el acuífero (y por tanto del caudal que se puede que se puede extraer de él). Los valores de transmisividad ordinarios para buenos acuíferos pueden vahar desde 700 (mediana transmisividad) a 4000 m2/día (alta transmisividad). As used herein, “medium to high transmissivity media” and “good aquifer media” have the same meaning and are used interchangeably. In both cases, the meaning is that which is commonly acquired in the state of the art. Transmissivity is a hydraulic parameter that results from multiplying permeability by the water-saturated thickness of an aquifer. This parameter is indicative of the flow of water that circulates through the aquifer (and, therefore, the flow that can be extracted from it). This flow rate depends, therefore, on the permeability of the aquifer (the more permeable it is, the greater the flow rate that can be obtained) and the thickness of that aquifer (the greater the thickness, the greater the flow rate that can be obtained). The higher the value of this parameter, the better the aquifer is and vice versa. From the point of view of the flows that can be extract, transmissivity is indicative of the flow of water that circulates through the aquifer (and therefore the flow that can be extracted from it). Typical transmissivity values for good aquifers can range from 700 (medium transmissivity) to 4000 m 2 /day (high transmissivity).
Tal y como se utiliza en el presente documento “conductividad hidráulica” y su plural adquieren el significado que comúnmente tienen en el estado de la técnica. Por tanto, conductividad hidráulica es sinónimo de permeabilidad, y es una medida de la capacidad de un medio para transmitir agua a su través (independientemente del grosor de ese medio). Su determinación en el estado de la técnica es diversa: As used herein, “hydraulic conductivity” and its plural acquire the meaning they commonly have in the state of the art. Therefore, hydraulic conductivity is synonymous with permeability, and is a measure of the ability of a medium to transmit water through it (regardless of the thickness of that medium). Its determination in the state of the art is diverse:
1. En laboratorio a través de la medida de la permeabilidad (mediante un permeámetro de laboratorio) de una muestra tomada en campo. Representatividad muy puntual. 1. In the laboratory through the measurement of permeability (using a laboratory permeameter) of a sample taken in the field. Very punctual representation.
2. En campo mediante ensayos de campo: ensayos de bombeo, ensayos slug, inyección de trazadores, etc. Representatividad muy elevada de la realidad del medio. 2. In the field through field tests: pumping tests, slug tests, injection of tracers, etc. Very high representation of the reality of the environment.
3. En gabinete, a través de datos reales de campo (caudal y gradientes hidráulicos). Representatividad muy elevada. 3. In the office, through real field data (flow and hydraulic gradients). Very high representativeness.
4. Mediante bases de datos de valores reales de rocas y sedimentos en función de su tipología y textura. Representatividad elevada si se realiza una buena testificación de las rocas y sedimentos del subsuelo. 4. Through databases of real values of rocks and sediments based on their typology and texture. High representativeness if good witnessing of subsoil rocks and sediments is carried out.
En el presente documento la conductividad hidráulica se determina mediante diversos de los métodos de las tipologías 2 y 3 y, como se dispone de las testificaciones de sondeos, comparando con bases de datos de la literatura. In this document, hydraulic conductivity is determined using various methods of typologies 2 and 3 and, as the testimonies from surveys are available, comparing with literature databases.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus vahantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Además, la palabra "comprende" incluye el caso "consiste en". Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Los signos numéricos relativos a los dibujos y colocados entre paréntesis en una reivindicación, son solamente para intentar aumentar la comprensión de la reivindicación, y no deben ser interpretados como limitantes del alcance de la protección de la reivindicación. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas. BREVE DESCRIPCIÓN DE LOS DIBUJOS Throughout the description and claims the word "comprises" and its meanings are not intended to exclude other technical characteristics, additives, components or steps. Furthermore, the word "comprises" includes the case "consists of." For those skilled in the art, other objects, advantages and features of the invention will emerge partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention. Numerical signs relating to the drawings and placed in parentheses in a claim are intended solely to enhance the understanding of the claim, and should not be construed as limiting the scope of protection of the claim. Furthermore, the present invention covers all possible combinations of particular and preferred embodiments indicated herein. BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1. Muestra una vista en planta esquemática de la celda de recirculación de la presente invención colocada en una zona de transición acuífero-acuitardo a tratar. FIG. 1. Shows a schematic plan view of the recirculation cell of the present invention placed in an aquifer-aquitard transition zone to be treated.
FIG. 2. Muestra un esquema de un pozo de extracción de la celda de recirculación de la presente invención. FIG. 2. Shows a diagram of an extraction well of the recirculation cell of the present invention.
FIG. 3. Muestra un esquema de un pozo de reinyección de la celda de recirculación de la presente invención. FIG. 3. Shows a diagram of a reinjection well of the recirculation cell of the present invention.
FIG. 4. Muestra un esquema de un tanque para almacenar agua recirculada de la celda de recirculación de la presente invención. FIG. 4. Shows a diagram of a tank to store recirculated water from the recirculation cell of the present invention.
FIG. 5. Muestra un esquema de un tanque para almacenar un tratamiento de la celda de recirculación de la presente invención. FIG. 5. Shows a schematic of a tank to store a recirculation cell treatment of the present invention.
FIG. 6. Muestra un esquema del funcionamiento de la celda de recirculación de la presente invención. FIG. 6. Shows a diagram of the operation of the recirculation cell of the present invention.
FIG. 7. Muestra un esquema (sección) de la celda de recirculación de la presente invención utilizada en el ejemplo 1 , así como del pretratamiento aplicado en dicho ejemplo a la zona de transición acuífero-acuitardo a tratar. FIG. 7. Shows a diagram (section) of the recirculation cell of the present invention used in example 1, as well as the pretreatment applied in said example to the aquifer-aquitard transition zone to be treated.
EXPOSICIÓN DETALLADA DE MODOS DE REALIZACIÓN DETAILED EXPOSITION OF IMPLEMENTATION MODES
Tal como se ha indicado anteriormente, en un primer aspecto, la presente invención se refiere a una celda de recirculación que comprende: a) al menos un pozo de extracción que permite la extracción de agua de una zona de transición acuífero-acuitardo; b) al menos un tanque para almacenar agua recirculada; c) al menos un pozo de reinyección que permite la reinyección en la zona de transición acuífero-acuitardo de agua proveniente del al menos un tanque para almacenar agua recirculada; y d) al menos un medio para suministrar un tratamiento a la zona de transición acuífero- acuitardo, caracterizada porque dicha celda está configurada para funcionar en semiciclos de llenado y vaciado del al menos un tanque para almacenar agua recirculada, de manera que en el semiciclo de llenado del al menos un tanque de agua recirculada se extrae agua del al menos un pozo de extracción a un caudal de entre 0,30 y 1 ,30 L/min para el llenado del mencionado al menos un tanque para almacenar agua recirculada (más preferentemente, a un caudal de entre 0,42 y 1 ,25 L/min, aún más preferentemente, a un caudal entre 0,58 y 0,94 L/min ); y en el semiciclo de vaciado del al menos un tanque para almacenar agua recirculada, el agua de dicho tanque se reinyecta en el al menos un pozo de reinyección a un caudal de entre 0,80 y 3,80 L/min (más preferentemente, a un caudal de entre 0,83 y 3,75 L/min, aún más preferentemente a un caudal de 1 ,25 L/min). As indicated above, in a first aspect, the present invention refers to a recirculation cell that comprises: a) at least one extraction well that allows the extraction of water from an aquifer-aquitard transition zone; b) at least one tank to store recirculated water; c) at least one reinjection well that allows reinjection into the aquifer-aquitard transition zone of water from at least one tank to store recirculated water; and d) at least one means to supply a treatment to the aquifer-aquitard transition zone, characterized in that said cell is configured to operate in semi-cycles of filling and emptying of at least one tank to store recirculated water, so that in the semi-cycle of filling of the at least one recirculated water tank, water is extracted from the at least an extraction well at a flow rate of between 0.30 and 1.30 L/min for filling said at least one tank to store recirculated water (more preferably, at a flow rate of between 0.42 and 1.25 L/min min, even more preferably, at a flow rate between 0.58 and 0.94 L/min); and in the semi-cycle of emptying the at least one tank for storing recirculated water, the water from said tank is reinjected into the at least one reinjection well at a flow rate of between 0.80 and 3.80 L/min (more preferably, at a flow rate of between 0.83 and 3.75 L/min, even more preferably at a flow rate of 1.25 L/min).
En la celda de la presente invención, el al menos un pozo de extracción y el al menos un pozo de reinyección se posicionan en los extremos de la celda en la dirección y sentido del flujo del agua, situándose el al menos un pozo de extracción aguas abajo y el al menos un pozo de reinyección aguas arriba. In the cell of the present invention, the at least one extraction well and the at least one reinjection well are positioned at the ends of the cell in the direction and direction of the water flow, the at least one water extraction well being located downstream and at least one reinjection well upstream.
El al menos un pozo de extracción y el al menos un pozo de reinyección presentan preferentemente un revestimiento del pozo. The at least one extraction well and the at least one reinjection well preferably have a well casing.
Cada uno de los pozos de la celda de la presente invención comprende al menos una zona ranurada, más preferentemente una zona ranurada. Each of the wells of the cell of the present invention comprises at least one slotted area, more preferably a slotted area.
La zona ranurada de un pozo (en inglés, screening zone, o zona de admisión del pozo, independientemente de que se trate de un pozo de extracción o de inyección) es la parte de un pozo a través de la cual éste extrae o inyecta agua, en función del pozo de que se trate. Es una zona de longitud variable en la que la tubería que forma el correspondiente pozo se halla perforada (ranurada), de manera que el agua entra dentro de la formación geológica porosa y permeable a través de dicha zona ranurada si se trata de un pozo dotado de una bomba de inyección (por tanto, pozo de reinyección). Igualmente, si se trata de un pozo dotado de una bomba de extracción (por tanto, es un pozo de extracción), el agua sale de la formación porosa y permeable a través de la mencionada zona ranurada. La parte superior de la zona ranurada se halla a una determinada profundidad, y la parte inferior de la misma se halla a una profundidad mayor. The slotted zone of a well (in English, screening zone, or well admission zone, regardless of whether it is an extraction or injection well) is the part of a well through which it extracts or injects water. , depending on the well in question. It is an area of variable length in which the pipe that forms the corresponding well is perforated (slotted), so that water enters the porous and permeable geological formation through said slotted area if it is a well equipped of an injection pump (therefore, reinjection well). Likewise, if it is a well equipped with an extraction pump (therefore, it is an extraction well), the water leaves the porous and permeable formation through the aforementioned slotted area. The upper part of the grooved area is at a certain depth, and the lower part of it is at a greater depth.
En la celda de la presente invención, la zona ranurada del al menos un pozo de extracción y la zona ranurada del al menos un pozo de reinyección se sitúan exactamente frente a la zona de transición acuífero-acuitardo. Es decir, la parte superior de ambas zonas ranuradas se halla a la misma profundidad que la parte superior de la mencionada zona de transición (lo que se denomina el techo de esa zona de transición), y la parte inferior de ambas zonas ranuradas se halla a la misma profundidad que la parte inferior de la mencionada zona de transición (lo que se denomina la base de esa zona de transición). In the cell of the present invention, the slotted area of the at least one extraction well and the slotted area of the at least one reinjection well are located exactly in front of the aquifer-aquitard transition zone. That is, the top of both grooved zones is at the same depth as the top of the aforementioned transition zone (which is which is called the roof of that transition zone), and the bottom of both grooved zones is at the same depth as the bottom of said transition zone (what is called the base of that transition zone).
De esta forma el tratamiento y/o los reactivos se inyectan por todo el grosor de la zona de transición contaminada, y el agua recirculada es extraída por todo el grosor de la zona de extracción. In this way, the treatment and/or reagents are injected through the entire thickness of the contaminated transition zone, and the recirculated water is extracted through the entire thickness of the extraction zone.
La celda de recirculación de la presente invención trabaja por semiciclos. Dos semiciclos forman un ciclo, un semiciclo de llenado del al menos un tanque para almacenar agua recirculada y un semiciclo de vaciado del al menos un tanque lleno con agua que ha recirculado a lo largo de la zona de influencia de la celda (entre el techo y la base de la zona de transición). Por tanto, en la celda de la presente invención, cuando se extrae el agua a través del al menos un pozo de extracción para llenar el al menos un tanque para almacenar agua recirculada, no se está reinyectando agua en la celda a través del al menos un pozo de reinyección, y viceversa. Es decir, los semiciclos de llenado y vaciado son sucesivos y nunca simultáneos. En una realización preferente el semiciclo de llenado dura entre 60 y 180 minutos; y el semiciclo de vaciado entre 20 y 90 minutos. The recirculation cell of the present invention works in semicycles. Two half-cycles form a cycle, a half-cycle for filling the at least one tank to store recirculated water and a half-cycle for emptying the at least one tank filled with water that has been recirculated throughout the area of influence of the cell (between the roof and the base of the transition zone). Therefore, in the cell of the present invention, when water is extracted through the at least one extraction well to fill the at least one tank to store recirculated water, water is not being reinjected into the cell through the at least a reinjection well, and vice versa. That is, the filling and emptying half cycles are successive and never simultaneous. In a preferred embodiment, the filling half cycle lasts between 60 and 180 minutes; and the emptying semicycle between 20 and 90 minutes.
El caudal de extracción y el de reinyección en la celda de recirculación de la presente invención son muy pequeños. De esta forma, además de evitar una caída desmesurada de niveles y prácticamente el secado de la celda, se obtiene, sobre todo, una velocidad de flujo muy pequeña. Esta baja velocidad asegura que las reacciones químicas y biogeoquímicas que posibilitan la degradación de los contaminantes tengan tiempo suficiente para producirse a lo largo del recorrido realizado por los reactivos o tratamientos dentro de la celda. The extraction and reinjection flow rates in the recirculation cell of the present invention are very small. In this way, in addition to avoiding an excessive drop in levels and practically drying out the cell, above all, a very low flow speed is obtained. This low speed ensures that the chemical and biogeochemical reactions that enable the degradation of contaminants have sufficient time to occur along the path taken by the reagents or treatments inside the cell.
Por tanto, en la celda de la presente invención para el tratamiento de zonas de transición acuífero-acuitardo, se extrae agua de dicha zona por el al menos un pozo de extracción hasta el llenado de al menos un taque para almacenar agua recirculada (semiciclo de llenado) y en el posterior semiciclo de vaciado dicha agua recirculada será reinyectada en el al menos un pozo de reinyección y circulara por la celda nuevamente hasta el al menos un pozo de extracción para ser extraída en el siguiente semiciclo de llenado. Therefore, in the cell of the present invention for the treatment of aquifer-aquitard transition zones, water is extracted from said zone through at least one extraction well until the filling of at least one tank to store recirculated water (semicycle of filling) and in the subsequent emptying semicycle said recirculated water will be reinjected into the at least one reinjection well and will circulate through the cell again to the at least one extraction well to be extracted in the next filling semicycle.
En la celda de recirculación de la presente invención, el espacio entre el al menos un pozo de extracción y el al menos un pozo de reinyección determina o comprende la zona a tratar y descontaminar y es la zona por la que recirculara el agua extraída y reinyectada y el tratamiento o tratamientos inyectados en la celda de la presente invención. In the recirculation cell of the present invention, the space between the at least one extraction well and the at least one reinjection well determines or comprises the area to be treated and decontaminate and is the area through which the extracted and reinjected water and the treatment or treatments injected into the cell of the present invention will recirculate.
En una realización preferente, el al menos un pozo de extracción y el al menos un pozo de reinyección tienen la longitud necesaria para llegar a la zona de transición acuífero-acuitardo y sus respectivas al menos una zona ranurada (preferentemente, una) presenta la disposición anteriormente explicada. In a preferred embodiment, the at least one extraction well and the at least one reinjection well have the necessary length to reach the aquifer-aquitard transition zone and their respective at least one grooved zone (preferably, one) has the arrangement previously explained.
Dicho al menos un pozo de extracción, también de forma preferente, tiene la profundidad necesaria para poder extraer agua de la zona de transición acuífero-acuitardo; más preferentemente dicho al menos un pozo de extracción llega hasta la zona de transición acuífero-acuitardo; aún más preferentemente dicho al menos un pozo de extracción llega hasta la base de la zona de transición acuífero-acuitardo. Said at least one extraction well, also preferably, has the necessary depth to be able to extract water from the aquifer-aquitard transition zone; more preferably said at least one extraction well reaches the aquifer-aquitard transition zone; Even more preferably, said at least one extraction well reaches the base of the aquifer-aquitard transition zone.
Por su parte, el al menos un pozo de reinyección, en una realización preferente, tiene la profundidad necesaria para poder reinyectar el agua recirculada a la zona de transición acuífero-acuitardo; más preferentemente dicho al menos un pozo de reinyección llega hasta la zona de transición acuífero-acuitardo; aún más preferentemente dicho al menos un pozo de reinyección llega hasta la base de la zona de transición acuífero-acuitardo. For its part, the at least one reinjection well, in a preferred embodiment, has the necessary depth to be able to reinject the recirculated water into the aquifer-aquitard transition zone; more preferably said at least one reinjection well reaches the aquifer-aquitard transition zone; Even more preferably, said at least one reinjection well reaches the base of the aquifer-aquitard transition zone.
Por tanto, un experto en la materia podrá determinar la profundidad necesaria del al menos un pozo de extracción y del al menos un pozo de reinyección en base a las características y situación de la zona de transición acuífero-acuitardo a tratar. Therefore, an expert in the field will be able to determine the necessary depth of the at least one extraction well and the at least one reinjection well based on the characteristics and situation of the aquifer-aquitard transition zone to be treated.
En una realización preferente, cada uno de los al menos un pozo de extracción comprende al menos un medio para la extracción de agua, más preferentemente un medio para la extracción de agua. Cada uno de dicho al menos un medio para la extracción de agua comprende al menos una tubería de extracción y al menos una bomba de extracción; más preferentemente una tubería de extracción y una bomba de extracción, conectando dicha tubería de extracción el pozo de extracción con al menos un tanque para almacenar agua recirculada. In a preferred embodiment, each of the at least one extraction well comprises at least one means for extracting water, more preferably a means for extracting water. Each of said at least one means for extracting water comprises at least one extraction pipe and at least one extraction pump; more preferably an extraction pipe and an extraction pump, said extraction pipe connecting the extraction well with at least one tank for storing recirculated water.
Dicha al menos una tubería de extracción presenta, preferentemente, al menos un medio de muestreo, más preferentemente, uno. Adicionalmente, en una realización preferente, dicha al menos una tubería de extracción está aislada térmicamente, más preferentemente está recubierta de material aislante térmico (califugadores). También en una realización preferente, la al menos una bomba de extracción es una bomba peristáltica o una bomba sumergible. Said at least one extraction pipe preferably has at least one sampling means, more preferably one. Additionally, in a preferred embodiment, said at least one extraction pipe is thermally insulated, more preferably it is covered with thermal insulating material (califugators). Also in a preferred embodiment, the at least one extraction pump is a peristaltic pump or a submersible pump.
El al menos un pozo de extracción, de forma preferente, comprende adicionalmente un sensor de presión configurado para medir el nivel de agua del pozo. Si el sensor de presión detecta un nivel de agua por debajo del establecido como nivel de agua mínimo del pozo de extracción, se detendrá el semiciclo de llenado del al menos un tanque para almacenar agua recirculada (para evitar el secado del pozo). The at least one extraction well preferably additionally comprises a pressure sensor configured to measure the water level of the well. If the pressure sensor detects a water level below that established as the minimum water level of the extraction well, the semi-filling cycle of at least one tank will be stopped to store recirculated water (to avoid drying out of the well).
Se contempla que el al menos un pozo de extracción comprenda adicionalmente al menos un sensor para medir uno o más de los siguientes parámetros: temperatura, conductividad eléctrica, oxígeno disuelto, potencial redox y pH. Preferentemente, el al menos un pozo de extracción comprende sensores para medir temperatura, conductividad eléctrica, oxígeno disuelto, potencial redox y pH. It is contemplated that the at least one extraction well additionally comprises at least one sensor for measuring one or more of the following parameters: temperature, electrical conductivity, dissolved oxygen, redox potential and pH. Preferably, the at least one extraction well comprises sensors for measuring temperature, electrical conductivity, dissolved oxygen, redox potential and pH.
De forma preferente, el diámetro interno del al menos un pozo de extracción es de al menos 100 mm, más preferentemente, entre 100 mm y 150 mm. Preferably, the internal diameter of the at least one extraction well is at least 100 mm, more preferably between 100 mm and 150 mm.
En una realización preferente, el al menos un pozo de reinyección comprende al menos un medio para la reinyección de agua. Dicho al menos un medio para la reinyección de agua comprende, preferentemente, al menos una tubería de reinyección y al menos una bomba de reinyección, más preferentemente una tubería de reinyección y una bomba de reinyección, conectando dicha tubería de reinyección el pozo de reinyección con al menos un tanque para almacenar agua recirculada. In a preferred embodiment, the at least one reinjection well comprises at least one means for reinjecting water. Said at least one means for reinjection of water preferably comprises at least one reinjection pipe and at least one reinjection pump, more preferably a reinjection pipe and a reinjection pump, said reinjection pipe connecting the reinjection well with at least one tank to store recirculated water.
Dicha al menos una tubería de reinyección presenta, de forma preferente, al menos un medio de muestreo, más preferentemente, uno. También de forma preferente, la al menos una tubería de reinyección está aislada térmicamente, más preferentemente, la al menos una tubería de reinyección está recubierta de material aislante térmico (califugadores). Said at least one reinjection pipe preferably has at least one sampling means, more preferably one. Also preferably, the at least one reinjection pipe is thermally insulated, more preferably, the at least one reinjection pipe is covered with thermal insulating material (califugators).
También en una realización preferente, la al menos una bomba de reinyección es una bomba peristáltica o una bomba sumergible. Also in a preferred embodiment, the at least one reinjection pump is a peristaltic pump or a submersible pump.
El al menos un pozo de reinyección, preferentemente, comprende adicionalmente un sensor de presión configurado para medir el nivel de agua de dicho pozo. Si el sensor de presión detecta un nivel de agua por encima del establecido como nivel de agua máximo del pozo de reinyección se detendrá el semiciclo de vaciado del al menos un tanque para almacenar agua recirculada (para evitar que el pozo rebose). The at least one reinjection well preferably additionally comprises a sensor pressure configured to measure the water level of said well. If the pressure sensor detects a water level above that established as the maximum water level of the reinjection well, the emptying half-cycle of at least one tank to store recirculated water will be stopped (to prevent the well from overflowing).
Se contempla que el al menos un pozo de reinyección pueda comprender adicionalmente al menos un sensor adicional, por ejemplo, para medir uno o más de los siguientes parámetros: temperatura, conductividad eléctrica, oxígeno disuelto, potencial redox y pH. It is contemplated that the at least one reinjection well may additionally comprise at least one additional sensor, for example, to measure one or more of the following parameters: temperature, electrical conductivity, dissolved oxygen, redox potential and pH.
De forma preferente, el diámetro interno del al menos un pozo de reinyección es de al menos 100 mm, más preferentemente entre 100 y 150 mm, aún más preferentemente entre 100 y 120 mm. Preferably, the internal diameter of the at least one reinjection well is at least 100 mm, more preferably between 100 and 150 mm, even more preferably between 100 and 120 mm.
En una realización preferente cada uno del al menos un medio para suministrar un tratamiento a la zona de transición acuífero-acuitardo comprende un tanque de almacenaje del tratamiento (en forma líquida) y un medio (preferentemente, una tubería y una bomba) para la inyección del tratamiento en la zona de transición acuífero-acuitardo. In a preferred embodiment, each of the at least one means for supplying a treatment to the aquifer-aquitard transition zone comprises a storage tank for the treatment (in liquid form) and a means (preferably, a pipe and a pump) for injection. of treatment in the aquifer-aquitard transition zone.
Preferentemente, el medio para la inyección del tratamiento en la zona de transición acuífero- acuitardo permite la inyección del tratamiento en el al menos un pozo de reinyección. Preferably, the means for injecting the treatment into the aquifer-aquitard transition zone allows the injection of the treatment into the at least one reinjection well.
Dicho tratamiento puede ser cualquier tratamiento conocido en el estado de la técnica apto para la descontaminación de aguas. Un experto en la materia, en función del tipo de contaminación presente en la zona de transición acuífero-acuitardo a tratar podrá determinar si dicho al menos un tratamiento es necesario y cuál se debe aplicar. Se contempla que se pueda aplicar más de un tratamiento simultáneo o sucesivo, en función de cada contaminante y emplazamiento contaminado. En una realización preferente la celda de la presente invención comprende medios para suministrar ácido láctico, aún más preferentemente medios para suministrar ácido láctico y medios para suministrar una solución tampón (preferentemente de bicarbonato de sodio y carbonato de sodio en medio acuoso). Preferentemente, cada uno de los tratamientos se inyecta a un caudal de entre 0,5 y 1 ,5 mL/min. Said treatment can be any treatment known in the state of the art suitable for water decontamination. An expert in the field, depending on the type of contamination present in the aquifer-aquitard transition zone to be treated, will be able to determine if said at least one treatment is necessary and which one should be applied. It is contemplated that more than one simultaneous or successive treatment can be applied, depending on each contaminant and contaminated location. In a preferred embodiment, the cell of the present invention comprises means for supplying lactic acid, even more preferably means for supplying lactic acid and means for supplying a buffer solution (preferably sodium bicarbonate and sodium carbonate in an aqueous medium). Preferably, each of the treatments is injected at a flow rate of between 0.5 and 1.5 mL/min.
Se contempla que el al menos un tanque para almacenar agua recirculada sea cualquier tanque disponible en el estado de la técnica. De forma preferente, el al menos un tanque para almacenar agua recirculada es opaco, aún más preferentemente es de polietileno opaco. En una realización más preferente, el al menos un tanque para almacenar agua recirculada comprende un volumen de decantación, un volumen útil y un volumen de cabeza (por este orden, desde la base hasta la parte superior del tanque), siendo el volumen útil el que se llena y vacía de agua en los semiciclos de llenado y vaciado de la celda de la presente invención.It is contemplated that the at least one tank for storing recirculated water is any tank available in the state of the art. Preferably, the at least one tank for storing recirculated water is opaque, even more preferably it is made of opaque polyethylene. In a more preferred embodiment, the at least one tank for storing recirculated water comprises a settling volume, a useful volume and a head volume (in this order, from the base to the top of the tank), the useful volume being the which is filled and emptied with water in the filling and emptying half cycles of the cell of the present invention.
Lo indicado anteriormente para el tanque para almacenar agua recirculada también es aplicable a cada uno de los tanques de almacenaje de tratamientos (uno o más). What was indicated above for the tank to store recirculated water is also applicable to each of the treatment storage tanks (one or more).
Se contempla que la celda de la presente invención esté configurada (preferentemente, mediante medios para el control automático del funcionamiento de la celda) para llevar a cabo semiciclos de llenado y vaciado consecutivos en los que: a) en primer lugar se lleva a cabo un semiciclo de llenado del al menos un tanque para almacenar agua recirculada en el que se llena el volumen útil del al menos un tanque para almacenar agua recirculada mediante extracción de agua de la zona de transición acuífero- acuitardo a tratar por medio de al menos un pozo de extracción. b) a continuación, en el semiciclo de vaciado, se lleva a cabo el vaciado del volumen útil del al menos un tanque para almacenar agua recirculada, reinyectando el agua recirculada en la zona de transición acuífero-acuitardo a tratar por medio de al menos un pozo de reinyección, preferentemente junto con al menos un tratamiento. It is contemplated that the cell of the present invention is configured (preferably, by means of automatic control of the operation of the cell) to carry out consecutive filling and emptying half cycles in which: a) first a semi-cycle for filling the at least one tank for storing recirculated water in which the useful volume of the at least one tank for storing recirculated water is filled by extracting water from the aquifer-aquitard transition zone to be treated by means of at least one well. extraction. b) then, in the emptying semi-cycle, the useful volume of at least one tank is emptied to store recirculated water, reinjecting the recirculated water into the aquifer-aquitard transition zone to be treated by means of at least one reinjection well, preferably together with at least one treatment.
Se contempla la repetición de las etapas a) y b) (es decir, de los semiciclos de llenado y vaciado) hasta obtener la descontaminación deseada. The repetition of stages a) and b) is contemplated (that is, the filling and emptying half cycles) until the desired decontamination is obtained.
Adicionalmente, en una realización preferente, la celda de recirculación de la presente invención comprende al menos un pozo de monitorización que comprende sensores para la monitorización de la calidad del agua, y así, poder verificar cómo está evolucionando el procedimiento de tratamiento del agua. Más preferentemente, la celda de la presente invención comprende tres pozos de monitorización: un primer pozo de monitorización situado aguas arriba de la celda; un segundo pozo de monitorización situado entre el pozo de extracción y el pozo de reinyección; y un tercer pozo situado aguas abajo de la celda. Additionally, in a preferred embodiment, the recirculation cell of the present invention comprises at least one monitoring well that includes sensors for monitoring water quality, and thus, being able to verify how the water treatment procedure is evolving. More preferably, the cell of the present invention comprises three monitoring wells: a first monitoring well located upstream of the cell; a second monitoring well located between the extraction well and the reinjection well; and a third well located downstream of the cell.
En la realización más preferente (combinable con cualquiera de las realizaciones mencionadas anteriormente), en la celda de recirculación de la presente invención: el al menos un pozo de extracción es un pozo de extracción; el al menos un pozo de reinyección es un pozo de reinyección; y el al menos un tanque para almacenar agua recirculada es un tanque para almacenar agua recirculada. In the most preferred embodiment (combinable with any of the embodiments mentioned above), in the recirculation cell of the present invention: the at least one extraction well is an extraction well; the at least one reinjection well is a reinjection well; and the at least one tank for storing recirculated water is a tank for storing recirculated water.
Tal como se ha indicado anteriormente, el al menos un pozo de extracción (preferentemente, un pozo de extracción) y el al menos un pozo de reinyección (preferentemente, un pozo de reinyección) se posicionan en los extremos de la porción de zona de transición acuífero- acuitardo a tratar (preferentemente, el conjunto de la zona de transición acuífero-acuitardo a tratar), en la dirección y sentido del flujo de agua subterránea, situándose el al menos un pozo de extracción (preferentemente, un pozo de extracción de agua subterránea) aguas abajo y el al menos un pozo de reinyección (preferentemente, un pozo de reinyección) aguas arriba. As indicated above, the at least one extraction well (preferably, an extraction well) and the at least one reinjection well (preferably, a reinjection well) are positioned at the ends of the transition zone portion aquifer-aquitard to be treated (preferably, the entire aquifer-aquitard transition zone to be treated), in the direction and sense of the flow of groundwater, with at least one extraction well being located (preferably, a water extraction well underground) downstream and the at least one reinjection well (preferably, a reinjection well) upstream.
Se contempla que si la zona de transición acuífero-acuitardo a tratar es muy extensa se puedan colocar diversas celdas de recirculación de la presente invención tanto en paralelo como en serie, o ambas a la vez (formando una malla rectangular regular). It is contemplated that if the aquifer-aquitard transition zone to be treated is very extensive, various recirculation cells of the present invention can be placed both in parallel and in series, or both at the same time (forming a regular rectangular mesh).
De forma preferente, en la celda de recirculación de la presente invención la distancia entre el pozo de extracción y el de reinyección es de entre 4 y 8 metros, más preferentemente 6 metros. Preferably, in the recirculation cell of the present invention the distance between the extraction well and the reinjection well is between 4 and 8 meters, more preferably 6 meters.
En una realización preferente, la longitud de las zonas ranuradas del pozo de extracción (a través de cuya zona ranurada se extrae el agua recirculada en la zona de transición acuífero- acuitardo a tratar) y del pozo de reinyección (a través de cuya zona ranurada se inyecta el agua recirculada y los tratamientos descontaminadores en la zona de transición acuífero- acuitardo a tratar) son idénticas al grosor de la zona de transición acuífero-acuitardo a tratar. Adicionalmente, de forma preferente, dichas zonas ranuradas se posicionan justamente frente a la zona de transición acuífero-acuitardo a tratar, y ambos pozos se alinean en la dirección y sentido del flujo de agua subterránea dentro de la celda, situándose el pozo de extracción aguas abajo y el pozo de reinyección aguas arriba. In a preferred embodiment, the length of the slotted areas of the extraction well (through whose slotted area the recirculated water in the aquifer-aquitard transition zone to be treated is extracted) and of the reinjection well (through whose slotted area The recirculated water is injected and the decontamination treatments in the aquifer-aquitard transition zone to be treated) are identical to the thickness of the aquifer-aquitard transition zone to be treated. Additionally, preferably, said slotted zones are positioned just in front of the aquifer-aquitard transition zone to be treated, and both wells are aligned in the direction and direction of the flow of groundwater within the cell, with the water extraction well located downstream and the reinjection well upstream.
La celda de recirculación de la presente invención por su especial configuración estructural y de funcionamiento (incluyendo los bajos caudales a los que funciona y el funcionamiento en semiciclos de llenado y vaciado sucesivos) permite resolver los problemas técnicos presentes en el estado de la técnica y mencionados anteriormente, tal y como se deriva del ejemplo incluido más adelante. Por tanto, la celda de recirculación de la presente invención permite la descontaminación efectiva de medios que globalmente (es decir, en conjunto) son de baja permeabilidad (es decir, medios de baja conductividad hidráulica). Como ya se describió anteriormente, estos medios están formados por la alternancia de numerosos niveles de baja permeabilidad (cada uno de ellos de grosor delgado, normalmente centi métrico); y niveles más permeables, cada uno de ellos también de grosor delgado (normalmente centimétrico). El resultado de esta alternancia de niveles es un medio que en conjunto es poco permeable (es decir de poca conductividad hidráulica), por ejemplo y preferentemente, del tipo zonas de transición acuífero-acuitardo. The recirculation cell of the present invention, due to its special structural and operating configuration (including the low flow rates at which it operates and operation in successive filling and emptying semi-cycles) allows solving the present technical problems. in the state of the art and mentioned above, as derived from the example included below. Therefore, the recirculation cell of the present invention allows the effective decontamination of media that globally (i.e., as a whole) are of low permeability (i.e., low hydraulic conductivity media). As already described above, these media are formed by the alternation of numerous levels of low permeability (each of them of thin thickness, usually centimetric); and more permeable levels, each also of thin thickness (usually centimeter). The result of this alternation of levels is a medium that is overall poorly permeable (that is, with little hydraulic conductivity), for example and preferably, of the aquifer-aquitard transition zone type.
Adicionalmente, la celda de recirculación de la presente invención se puede aplicar para la descontaminación abiótica o biótica de contaminantes orgánicos (por ejemplo, solventes halogenados, hidrocarburos en general, contaminantes emergentes del tipo pesticidas, productos farmacéuticos, incluidos los de farmacia veterinaria, contaminantes persistentes, etc...). También se puede utilizar para la descontaminación de, entre otros, nitrato en las mencionadas zonas de transición. Additionally, the recirculation cell of the present invention can be applied for the abiotic or biotic decontamination of organic contaminants (for example, halogenated solvents, hydrocarbons in general, emerging contaminants such as pesticides, pharmaceutical products, including veterinary pharmacy products, persistent contaminants , etc...). It can also be used for the decontamination of, among others, nitrate in the aforementioned transition zones.
En el estado de la técnica no existen celdas de recirculación por semiciclos, pues todas las celdas que existen están diseñadas para acuíferos contaminados (es decir formaciones geológicas muy permeables), y no pueden trabajar en formaciones poco permeables contaminadas como aquellas para las que se ha diseñado la celda por semiciclos, tal y como se ha expuesto anteriormente. Además, las celdas para acuíferos funcionan de manera continua, están formadas por dos pozos, uno de extracción y otro de reinyección, ambos funcionado de forma continua. Por tanto, en dichas celdas del estado de la técnica el agua continuamente entra y sale de la celda, y a caudales elevados. En cambio, la celda de recirculación de la presente invención funciona por semiciclos y a caudales pequeños, de lo contarlo la formación contaminada quedaría prácticamente en seco dentro de la formación geológica poco permeable a tratar. Si esto sucediese, toda la masa de contaminante que habría quedado almacenada dentro de los niveles de muy baja permeabilidad no sería eliminada. Esta situación sería insostenible, por lo que, cuando, posteriormente se desmantelase la celda y los niveles de agua se recuperasen, tendría lugar el efecto rebote mencionado anteriormente. Además, si la fuente de contaminación está formada por un líquido no acuoso más denso que el agua, éste tampoco se trataría, lo que, cuando se recuperasen los niveles, daría lugar a nueva incorporación de contaminante al agua subterránea de la zona poco permeable. In the state of the art there are no semi-cycle recirculation cells, since all the cells that exist are designed for contaminated aquifers (that is, very permeable geological formations), and they cannot work in contaminated, slightly permeable formations such as those for which it has been designed. designed the cell by half cycles, as previously explained. In addition, the aquifer cells operate continuously, they are made up of two wells, one for extraction and the other for reinjection, both operating continuously. Therefore, in said state-of-the-art cells, water continually enters and leaves the cell, and at high flow rates. On the other hand, the recirculation cell of the present invention works in semi-cycles and at small flow rates, otherwise the contaminated formation would remain practically dry within the poorly permeable geological formation to be treated. If this were to happen, all the mass of contaminant that would have been stored within the very low permeability levels would not be eliminated. This situation would be unsustainable, so when the cell was subsequently dismantled and the water levels recovered, the rebound effect mentioned above would take place. Furthermore, if the source of contamination is made up of a non-aqueous liquid that is denser than water, this would not be treated either, which, when were to recover the levels, it would lead to new incorporation of contaminant into the groundwater of the poorly permeable area.
Como se ha indicado anteriormente, el vaciado del al menos un tanque para almacenar agua recirculada coincide con la reinyección dentro de la celda del agua recirculada a través del al menos un pozo de reinyección. Esta reinyección se acompaña de la inyección de los correspondientes reactivo/s o tratamiento/s necesario/s. Tras circular a lo largo de la celda el agua recirculada (y los reactivos y/o tratamientos que aún no se han consumido, si es el caso), se vuelven a extraer a través del al menos un pozo de extracción situado aguas abajo del de reinyección. El agua extraída se vuelve a almacenar en el al menos un tanque para almacenar agua recirculada, para iniciar de nuevo un semiciclo de llenado de ese tanque. El caudal de extracción y el de reinyección son muy pequeños. De esta forma (además de evitar una caída desmesurada de niveles y prácticamente el secado de la celda) se obtiene, sobre todo, una velocidad de flujo muy pequeña (preferentemente de entre 0,35 y 1 ,40 mm/min). Esta baja velocidad asegura que las reacciones químicas y biogeoquímicas que posibilitan la degradación de los contaminantes tengan tiempo suficiente para producirse a lo largo del recorrido realizado por los tratamientos y/o reactivos dentro de la celda. Además de esto, y de manera simultánea a la degradación de la masa de contaminante que circula por los niveles más permeables de la formación tratada, el mayor tiempo de residencia de los reactivos a causa de la pequeña velocidad del flujo generada, hace posible que los reactivos penetren por difusión molecular dentro de los niveles de más baja permeabilidad, permitiendo la degradación de la masa contaminante que se almacena en su interior y evitando el posterior efecto rebote cuando los niveles más permeables se han descontaminado (lo que permite ser muy preciso en la remediación). As indicated above, the emptying of the at least one tank to store recirculated water coincides with the reinjection into the cell of the recirculated water through the at least one reinjection well. This reinjection is accompanied by the injection of the corresponding reagent/s or necessary treatment/s. After circulating throughout the cell, the recirculated water (and the reagents and/or treatments that have not yet been consumed, if applicable), are extracted again through at least one extraction well located downstream of the cell. reinjection. The extracted water is stored again in at least one tank to store recirculated water, to start a semi-cycle of filling that tank again. The extraction and reinjection flow rates are very small. In this way (in addition to avoiding a disproportionate drop in levels and practically drying out the cell) a very low flow speed is obtained (preferably between 0.35 and 1.40 mm/min). This low speed ensures that the chemical and biogeochemical reactions that enable the degradation of contaminants have sufficient time to occur along the path carried out by the treatments and/or reagents within the cell. In addition to this, and simultaneously with the degradation of the mass of contaminant that circulates through the most permeable levels of the treated formation, the longer residence time of the reactants due to the small flow velocity generated, makes it possible for the reagents penetrate by molecular diffusion into the levels of lowest permeability, allowing the degradation of the contaminant mass that is stored inside and avoiding the subsequent rebound effect when the most permeable levels have been decontaminated (which allows being very precise in the remediation).
Tal como se ha indicado anteriormente, en un segundo aspecto, la presente invención se refiere a un procedimiento para la descontaminación de una zona de transición acuífero- acuitardo, caracterizado porque comprende las etapas de: As indicated above, in a second aspect, the present invention refers to a procedure for the decontamination of an aquifer-aquitard transition zone, characterized in that it comprises the steps of:
Etapa a): Establecer al menos una celda de recirculación de la presente invención, de manera que entre el al menos un pozo de extracción y el al menos un pozo de reinyección quede incluida o englobada la zona de transición acuífero-acuitardo a tratar. Step a): Establish at least one recirculation cell of the present invention, so that between the at least one extraction well and the at least one reinjection well the aquifer-aquitard transition zone to be treated is included or encompassed.
Etapa b): Etapa de semiciclo de llenado: Llenado del volumen útil del al menos un tanque para almacenar agua recirculada mediante extracción de agua de la zona de transición acuífero- acuitardo a tratar por medio del al menos un pozo de extracción. Stage b): Filling semi-cycle stage: Filling of the useful volume of at least one tank to store recirculated water by extracting water from the aquifer-aquitard transition zone to be treated by means of at least one extraction well.
Etapa c): Etapa de semiciclo de vaciado: A continuación, tras la etapa b), vaciado del volumen útil del al menos un tanque para almacenar agua recirculada reinyectando el agua en la zona de transición acuífero-acuitardo a tratar por medio del al menos un pozo de reinyección, preferentemente junto con al menos un tratamiento. Stage c): Empty semi-cycle stage: Next, after stage b), emptying of the volume useful of at least one tank to store recirculated water by reinjecting the water into the aquifer-aquitard transition zone to be treated by means of the at least one reinjection well, preferably together with at least one treatment.
En el procedimiento de la presente invención se contempla que las etapas b) y c) (semiciclo de llenado y de vaciado, respectivamente), se repitan hasta obtener la descontaminación deseada. In the procedure of the present invention, it is contemplated that steps b) and c) (filling and emptying half cycle, respectively) are repeated until the desired decontamination is obtained.
La celda de recirculación de la presente invención y sus características son de acuerdo a lo explicado anteriormente en el primer aspecto de la presente invención. The recirculation cell of the present invention and its characteristics are in accordance with what was previously explained in the first aspect of the present invention.
Más preferente, en el procedimiento de la presente invención el llenado del volumen útil del al menos un tanque para almacenar agua recirculada en la etapa b) se lleva a cabo a un caudal de entre 0,30 y 1 ,30 L/min, más preferentemente a un caudal de entre 0,42 y 1 ,25 L/min, aún más preferentemente a un caudal entre 0,58 y 0,94 L/min. More preferably, in the process of the present invention, the filling of the useful volume of at least one tank for storing recirculated water in step b) is carried out at a flow rate of between 0.30 and 1.30 L/min, more preferably at a flow rate of between 0.42 and 1.25 L/min, even more preferably at a flow rate between 0.58 and 0.94 L/min.
También más preferentemente, en el procedimiento de la presente invención, el vaciado del volumen útil del al menos un tanque para almacenar agua recirculada en la etapa c) se lleva a cabo a un caudal de entre 0,80 y 3,80 L/min, más preferentemente a un caudal de entre 0,83 y 3,75 L/min, aún más preferentemente a un caudal de 1 ,25 L/min. Also more preferably, in the process of the present invention, the emptying of the useful volume of the at least one tank for storing recirculated water in step c) is carried out at a flow rate of between 0.80 and 3.80 L/min. , more preferably at a flow rate of between 0.83 and 3.75 L/min, even more preferably at a flow rate of 1.25 L/min.
En una realización preferente, la etapa b) (semiciclo de llenado) en el procedimiento de la presente invención dura entre 60 y 180 minutos; y la etapa c) (semiciclo de vaciado) dura entre 20 y 90 minutos. In a preferred embodiment, step b) (filling half cycle) in the process of the present invention lasts between 60 and 180 minutes; and stage c) (emptying half cycle) lasts between 20 and 90 minutes.
Por tanto, en el procedimiento de la presente invención para el tratamiento de zonas de transición acuífero-acuitardo, se extrae agua de dicha zona por el al menos un pozo de extracción hasta el llenado de al menos un tanque para almacenar agua recirculada (semiciclo de llenado (etapa b)) y en el posterior semiciclo de vaciado (etapa c)) dicha agua recirculada será reinyectada en el al menos un pozo de reinyección y circulará por la celda nuevamente hasta el al menos un pozo de extracción para ser extraída en el siguiente semiciclo de llenado. Therefore, in the procedure of the present invention for the treatment of aquifer-aquitard transition zones, water is extracted from said zone through at least one extraction well until the filling of at least one tank to store recirculated water (semi-cycle of filling (stage b)) and in the subsequent emptying semi-cycle (stage c)) said recirculated water will be reinjected into the at least one reinjection well and will circulate through the cell again to the at least one extraction well to be extracted in the next half-filling cycle.
En el procedimiento de la presente invención se contempla y resulta preferente que, antes de la etapa a) y/o de la etapa b), se lleva a cabo al menos un tratamiento previo de la zona de transición acuífero-acuitardo a tratar. De forma preferente, dicho tratamiento se lleva a cabo antes de la etapa a), por tanto, el al menos un tratamiento previo, preferentemente, se lleva a cabo antes de la puesta en marcha de la al menos una celda de recirculación de la presente invención, aún más preferentemente, antes de la construcción de la al menos una celda de recirculación de la presente invención. El tratamiento previo dependerá de la naturaleza de la contaminación a tratar. En una realización preferente el tratamiento previo es con el hierro metálico (Fe0), más preferentemente con mZVI (hierro cero-valente a microescala, en inglés microscale zerovalent iron). In the process of the present invention, it is contemplated and preferred that, before stage a) and/or stage b), at least one pretreatment of the aquifer-aquitard transition zone to be treated is carried out. Preferably, said treatment is carried out before step a), therefore, the at least one pretreatment, preferably, is carried out before the start-up of the at least one recirculation cell of the present invention, even more preferably, before the construction of the at least one recirculation cell of the present invention. Pretreatment will depend on the nature of the contamination to be treated. In a preferred embodiment, the pretreatment is with metallic iron (Fe 0 ), more preferably with mZVI (microscale zero-valent iron).
En el procedimiento de la presente invención, preferentemente, en la etapa b), si el nivel del agua del al menos un pozo de extracción baja por debajo del nivel de agua establecido como mínimo, se detiene el semiciclo de llenado. Este semiciclo se reemprende cuando, de manera natural, el nivel del agua en el correspondiente pozo de extracción se recupera, sobrepasándose el valor del nivel de agua establecido como mínimo en el pozo de extracción y se llega a un valor de nivel de agua (prefijado en el control automático de la celda) que se sitúa por encima de dicho valor mínimo (normalmente, al cabo de pocos minutos de recuperación natural de niveles en el pozo). In the process of the present invention, preferably, in step b), if the water level of the at least one extraction well falls below the minimum established water level, the filling half cycle is stopped. This semi-cycle is resumed when, naturally, the water level in the corresponding extraction well recovers, exceeding the water level value established as a minimum in the extraction well and a water level value (preset) is reached. in the automatic cell control) that is above said minimum value (normally, after a few minutes of natural recovery of levels in the well).
En el procedimiento de la presente invención, preferentemente, en la etapa c), si el nivel de agua en el al menos un pozo de reinyección el nivel de agua sube por encima del nivel establecido como máximo, se detiene el semiciclo de vaciado. Este semiciclo se reemprende cuando, de manera natural, el nivel del agua en el pozo de reinyección desciende (porque el agua recirculada se reinfiltra en la zona de transición acuífero-acuitardo) hasta una profundidad prefijada en el control automático de la celda (esta profundidad ha de ser la correspondiente al nivel estático natural del pozo de reinyección). En ese momento (preferentemente, el control automático de la celda) se pone de nuevo en marcha la bomba de reinyección hasta vaciar el volumen útil del al menos un tanque para almacenar agua recirculada. In the process of the present invention, preferably, in step c), if the water level in the at least one reinjection well rises above the maximum level established, the emptying half-cycle stops. This semi-cycle is resumed when, naturally, the water level in the reinjection well drops (because the recirculated water reinfiltrates into the aquifer-aquitard transition zone) to a depth preset in the automatic control of the cell (this depth must be the one corresponding to the natural static level of the reinjection well). At that moment (preferably, automatic cell control) the reinjection pump is started again until the useful volume of at least one tank to store recirculated water is emptied.
En el procedimiento de la presente invención, tal como se ha indicado anteriormente, en la etapa c), de forma preferente se inyecta en el pozo de reinyección al menos un tratamiento. Dicho al menos un tratamiento puede ser cualquier tratamiento conocido en el estado de la técnica apto para la descontaminación de aguas subterráneas. Un experto en la materia, en función del tipo de contaminación presente en la zona de transición acuífero-acuitardo a tratar podrá determinar si dicho al menos un tratamiento es necesario y cuál se debe aplicar. Se contempla que se pueda aplicar más de un tratamiento simultáneo o sucesivo, en función de cada contaminante y emplazamiento contaminado. En una realización preferente este al menos un tratamiento aplicado en la etapa c) del procedimiento de la presente invención es ácido láctico, más preferentemente junto con una solución tampón (preferentemente de bicarbonato de sodio y carbonato de sodio en medio acuoso). Preferentemente, cada uno de los tratamientos se inyecta a un caudal de entre 0,5 y 1 ,5 mL/min. In the process of the present invention, as indicated above, in step c), at least one treatment is preferably injected into the reinjection well. Said at least one treatment can be any treatment known in the state of the art suitable for the decontamination of groundwater. An expert in the field, depending on the type of contamination present in the aquifer-aquitard transition zone to be treated, will be able to determine if said at least one treatment is necessary and which one should be applied. It is contemplated that more than one simultaneous or successive treatment can be applied, depending on each pollutant and contaminated site. In a preferred embodiment, this at least one treatment applied in step c) of the process of the present invention is lactic acid, more preferably together with a buffer solution (preferably sodium bicarbonate and sodium carbonate in an aqueous medium). Preferably, each of the treatments is injected at a flow rate of between 0.5 and 1.5 mL/min.
Tal como se ha indicado anteriormente, la celda de recirculación de la presente invención comprende: a) al menos un pozo de extracción que permite la extracción de agua de una zona de transición acuífero-acuitardo; b) al menos un pozo de reinyección que permite la reinyección de agua proveniente del tanque para almacenar agua recirculada en la zona de transición acuífero-acuitardo; c) al menos un tanque para almacenar agua recirculada; y d) al menos un medio para suministrar un tratamiento a la zona de transición acuífero- acuitardo, caracterizada porque dicha celda está configurada para funcionar en semiciclos de llenado y vaciado del al menos un tanque para almacenar agua recirculada, de manera que en el semiciclo de llenado del al menos un tanque de agua recirculada se extrae agua del al menos un pozo de extracción a un caudal de entre 0,30 y 1 ,30 L/min para el llenado del mencionado al menos un tanque para almacenar agua recirculada (más preferentemente, a un caudal de entre 0,42 y 1 ,25 L/min); y en el semiciclo de vaciado del al menos un tanque para almacenar agua recirculada, el agua de dicho tanque se reinyecta en el al menos un pozo de reinyección a un caudal de entre 0,80 y 3,80 L/min (más preferentemente, a un caudal de entre 0,83 y 3,75 L/min). As indicated above, the recirculation cell of the present invention comprises: a) at least one extraction well that allows the extraction of water from an aquifer-aquitard transition zone; b) at least one reinjection well that allows the reinjection of water from the tank to store recirculated water in the aquifer-aquitard transition zone; c) at least one tank to store recirculated water; and d) at least one means to supply a treatment to the aquifer-aquitard transition zone, characterized in that said cell is configured to operate in semi-cycles of filling and emptying of at least one tank to store recirculated water, so that in the semi-cycle of filling the at least one recirculated water tank, water is extracted from the at least one extraction well at a flow rate of between 0.30 and 1.30 L/min for filling said at least one tank for storing recirculated water (more preferably , at a flow rate of between 0.42 and 1.25 L/min); and in the semi-cycle of emptying the at least one tank for storing recirculated water, the water from said tank is reinjected into the at least one reinjection well at a flow rate of between 0.80 and 3.80 L/min (more preferably, at a flow rate of between 0.83 and 3.75 L/min).
La celda de recirculación de la presente invención abarca el volumen de subsuelo en el que, dentro de la zona de transición acuífero-acuitardo a tratar, el agua subterránea está contaminada (ver FIG. 1). Este volumen de subsuelo está contaminado porque o bien: 1) contiene totalmente, o parcialmente, en su interior una fuente de contaminación que constantemente emite contaminante al flujo de agua subterránea dando lugar a un penacho de contaminación, o 2) contiene totalmente, o parcialmente, en su interior un penacho de contaminación. En el primer caso, el objetivo de la celda de la presente invención es eliminar la fuente de contaminación, y con ello también el penacho asociado. En el segundo caso, el objetivo es eliminar el penacho de contaminación que ya se había desplazado aguas abajo de la fuente de contaminación previamente eliminada. The recirculation cell of the present invention covers the volume of subsoil in which, within the aquifer-aquitard transition zone to be treated, the groundwater is contaminated (see FIG. 1). This volume of subsoil is contaminated because either: 1) it totally or partially contains within it a source of contamination that constantly emits contaminant to the groundwater flow, giving rise to a pollution plume, or 2) it totally or partially contains , inside a plume of pollution. In the first case, the objective of the cell of the present invention is to eliminate the source of contamination, and thus also the associated plume. In the second case, the objective is to eliminate the pollution plume that had already moved downstream from the previously eliminated pollution source.
Tal como se ha indicado anteriormente, si las dimensiones de la fuente de contaminación y/o del penacho son muy grandes (por lo que la porción de zona de transición acuífero-acuitardo que necesita ser tratada es también muy grande, de acuerdo con las dimensiones de la menciona fuente y/o penacho), se pueden colocar diversas celdas de recirculación de la presente invención, en serie o en paralelo, de forma que, en conjunto, todo el volumen de fuente contaminante y agua contaminada a tratar quede contenido dentro del solapamiento de todas las celdas de la presente invención utilizadas. As indicated above, if the dimensions of the contamination source and/or plume are very large (so the portion of the aquifer-aquitard transition zone that needs to be treated is also very large, according to the dimensions of the aforementioned source and/or plume), various recirculation cells of the present invention can be placed, in series or in parallel, so that, together, the entire volume of contaminating source and contaminated water to be treated is contained within the overlap of all the cells of the present invention used.
En la FIG. 1 , se muestra un esquema general de la celda de recirculación de la presente invención 1 que comprende un pozo de extracción 2 y un pozo de reinyección 3 posicionados en los extremos de la zona de transición acuífero-acuitardo a tratar (en líneas discontinuas), en la dirección y sentido del agua subterránea. La dirección de las flechas muestra el flujo de agua tanto fuera de la celda de recirculación 1 , en flechas de líneas continuas, como dentro de la celda de recirculación 1 , en flechas de líneas discontinuas. Por tanto, el pozo de extracción 2 está situado aguas abajo y el pozo de reinyección 3 está situado aguas arriba de la celda de recirculación. In FIG. 1, a general scheme of the recirculation cell of the present invention 1 is shown, which comprises an extraction well 2 and a reinjection well 3 positioned at the ends of the aquifer-aquitard transition zone to be treated (in dashed lines), in the direction and sense of groundwater. The direction of the arrows shows the flow of water both outside the recirculation cell 1, in solid arrows, and inside the recirculation cell 1, in dashed arrows. Therefore, extraction well 2 is located downstream and reinjection well 3 is located upstream of the recirculation cell.
El flujo reflejado dentro de la celda de recirculación 1 y que va del pozo de extracción 2 al pozo de reinyección 3 muestra el agua recirculada (flechas de líneas discontinuas). The reflected flow within recirculation cell 1 and from extraction well 2 to reinjection well 3 shows the recirculated water (dashed arrows).
En la celda de recirculación 1 de la presente invención, la distancia entre el pozo de extracción 2 y el de reinyección 3 la debe determinar el experto en la materia en función de la zona de transición acuífero-acuitardo a tratar. Sin embargo, preferentemente la distancia entre el pozo de extracción 2 y el de reinyección 3 es de entre 4 y 8 metros, más preferentemente 6 metros. In the recirculation cell 1 of the present invention, the distance between the extraction well 2 and the reinjection well 3 must be determined by the person skilled in the art based on the aquifer-aquitard transition zone to be treated. However, preferably the distance between the extraction well 2 and the reinjection well 3 is between 4 and 8 meters, more preferably 6 meters.
Tal como se ha indicado anteriormente, la celda de recirculación 1 de la presente invención, preferentemente se debería dotar de, al menos, tres pozos de monitorización (FIG. 1). Los tres dotados de sensores de presión para el control del nivel de agua en cada pozo, y distribuidos del siguiente modo: 1) Un primer pozo de monitorización A 4 situado a una distancia de 2 o 3 metros aguas arriba de la celda (o sea, aguas arriba del pozo de reinyección 3). Su objetivo es monitorizar el agua contaminada no recirculada aguas arriba de la celda. Este sería el caso en que la celda de recirculación 1 sólo abarcase parcialmente una fuente de contaminación y/o un penacho de contaminación. En estos casos, como se ha indicado anteriormente, otras celdas de la presente invención deberían solaparse con ésta (si el objetivo final es la remediación total del emplazamiento). As indicated above, the recirculation cell 1 of the present invention should preferably be provided with at least three monitoring wells (FIG. 1). All three equipped with pressure sensors to control the water level in each well, and distributed as follows: 1) A first monitoring well A 4 located at a distance of 2 or 3 meters upstream of the cell (that is, upstream of the reinjection well 3). Its objective is to monitor the contaminated water not recirculated upstream of the cell. This would be the case where recirculation cell 1 only partially encompasses a pollution source and/or a pollution plume. In these cases, as indicated above, other cells of the present invention should overlap with this one (if the final objective is the total remediation of the site).
2) Un segundo pozo de monitorización B 5 en el centro de la celda, para monitorizar el agua recirculada que se está descontaminado en el interior de la celda de recirculación 1. 2) A second monitoring well B 5 in the center of the cell, to monitor the recirculated water that is being decontaminated inside the recirculation cell 1.
3) Un tercer pozo de monitorización C 6 se sitúa unos 2 o 3 m aguas abajo de la celda (o sea, aguas abajo del pozo de extracción 2). Este pozo 6 monitoriza el agua subterránea situada aguas abajo de la celda 1 y, por tanto, no tratada. Su función es similar a la de los casos mencionados para el primer pozo de monitorización 4 situado aguas arriba de la celda 1. 3) A third monitoring well C 6 is located about 2 or 3 m downstream of the cell (i.e., downstream of extraction well 2). This well 6 monitors the groundwater located downstream of cell 1 and, therefore, untreated. Its function is similar to that of the cases mentioned for the first monitoring well 4 located upstream of cell 1.
Estos tres pozos de monitorización, 4, 5 y 6, están dotados de sensores de presión para el registro continuo de niveles y parámetros físicos y químicos que permiten hacer un seguimiento continuo y en tiempo real de la evolución de la remediación. Al mismo tiempo, el pozo de monitorización 5, y el pozo de extracción 2, permiten periódicamente tomar muestras de agua recirculada (y, por tanto, tratada) para verificar que, más allá de los sensores de parámetros en continuo, la progresión de la remediación o descontaminación se está desarrollando de manera adecuada. These three monitoring wells, 4, 5 and 6, are equipped with pressure sensors for continuous recording of levels and physical and chemical parameters that allow continuous, real-time monitoring of the evolution of the remediation. At the same time, the monitoring well 5, and the extraction well 2, allow periodically taking samples of recirculated (and, therefore, treated) water to verify that, beyond the continuous parameter sensors, the progression of the remediation or decontamination is being carried out adequately.
En la FIG. 2 se muestra el detalle de un pozo de extracción 2 que comprende una tubería de extracción 7 que conecta el pozo de extracción 2 con el tanque para almacenar agua recirculada 8 y que, junto con la bomba de extracción 9 permite la extracción de agua y el llenado del tanque para almacenar agua recirculada 8 durante el semiciclo de llenado. En la FIG. 2 también se puede observar las diferentes capas del terreno: Zona no saturada (D), Acuífero (E), Zona de transición acuífero-acuitardo (F) y Acuitardo (G). Se observa como el pozo de extracción 2 presenta la profundidad necesaria para llegar a la Zona de transición acuífero-acuitardo (F) a tratar. Adicionalmente, las flechas negritas muestran cómo el agua de la Zona de transición acuífero-acuitardo (F) entra en el pozo de extracción 2. Tal como se ha explicado anteriormente, la zona ranurada 32 del pozo de extracción 2 tiene la longitud necesaria como para situarse justamente entre la profundidad del techo de la zona de transición acuífero-acuitardo y la base de dicha formación hidrogeológica a tratar. In FIG. 2 shows the detail of an extraction well 2 that comprises an extraction pipe 7 that connects the extraction well 2 with the tank for storing recirculated water 8 and that, together with the extraction pump 9, allows the extraction of water and the filling the tank to store recirculated water 8 during the filling half cycle. In FIG. 2 you can also see the different layers of the terrain: Unsaturated zone (D), Aquifer (E), Aquifer-aquitard transition zone (F) and Aquitard (G). It is observed how extraction well 2 has the necessary depth to reach the aquifer-aquitard transition zone (F) to be treated. Additionally, the bold arrows show how water from the Aquifer-Aquitard Transition Zone (F) enters extraction well 2. As explained above, the slotted area 32 of the extraction well 2 has the necessary length to be located precisely between the depth of the roof of the aquifer-aquitard transition zone and the base of said hydrogeological formation to be treated.
En la FIG. 2 se muestra también el sensor de presión de agua 10 destinado a medir la longitud de la columna de agua presente en el pozo de extracción 2, así como otros sensores 11 ,12,13 destinados a medir otras variables como temperatura, pH, oxígeno disuelto o potencial redox, entre otros (estos otros sensores 11 , 12, 13) miden, registran y almacenan a intervalos de tiempo previamente fijados (por ejemplo, a un intervalo de medición minutal o cincominutal) la variación temporal de dichos parámetros). In FIG. 2 also shows the water pressure sensor 10 intended to measure the length of the water column present in the extraction well 2, as well as other sensors 11,12,13 intended to measure other variables such as temperature, pH, dissolved oxygen. or redox potential, among others (these other sensors 11, 12, 13) measure, record and store the temporal variation of said parameters at previously set time intervals (for example, at a minute or five-minute measurement interval).
La bomba de extracción 9, que se muestra en la FIG. 6, es de pequeño caudal (ver dos ejemplos de caudal incluidos en la Tabla 1). Este caudal, tal y como se ha indicado anteriormente, ha de ser necesariamente pequeño para posibilitar una velocidad de flujo subterráneo lento dentro de la celda 1 , lo que da tiempo a que las reacciones químicas y biogeoquímicas que transforman los contaminantes tengan lugar. La bomba de extracción 9 está dotada de un sistema de control de caudal que permite ajustar este parámetro hasta el valor de operación que se considere adecuado para cada caso. La bomba de extracción puede ser sumergida o no sumergida, pero siempre ha de ser capaz de elevar agua a pequeño caudal. Si se trata de una bomba de extracción de tipo peristáltico, ésta se sitúa en el exterior del pozo de extracción, y si se trata de una bomba de extracción sumergida, su sistema de control de caudal se halla en el exterior del pozo. En el caso de que la bomba de extracción sea peristáltica, ésta está conectada a la tubería de extracción 7. El extremo de succión del agua subterránea (zona de succión 14) de la tubería de extracción 7), se halla por debajo del nivel de seguridad 1 (SL1). En el caso de que se trate de una bomba de extracción sumergida, es el propio cuerpo de la bomba de extracción el que constituye la zona de succión 14 de la tubería de extracción 7, situándose por debajo del nivel de seguridad (SL1). The extraction pump 9, shown in FIG. 6, is of small flow (see two flow examples included in Table 1). This flow rate, as indicated above, must necessarily be small to enable a slow underground flow rate within cell 1, which gives time for the chemical and biogeochemical reactions that transform the contaminants to take place. The extraction pump 9 is equipped with a flow control system that allows this parameter to be adjusted to the operating value considered appropriate for each case. The extraction pump can be submerged or non-submerged, but it must always be capable of lifting water at a small flow rate. If it is a peristaltic extraction pump, it is located outside the extraction well, and if it is a submerged extraction pump, its flow control system is located outside the well. In the case that the extraction pump is peristaltic, it is connected to the extraction pipe 7. The groundwater suction end (suction zone 14) of the extraction pipe 7), is below the level of security 1 (SL1). In the case of a submerged extraction pump, it is the body of the extraction pump itself that constitutes the suction zone 14 of the extraction pipe 7, being below the safety level (SL1).
El sensor de presión de agua 10, tal como se ha indicado anteriormente, mide el nivel de la columna de agua en el pozo de extracción 2 y si dicho nivel desciende hasta el valor fijado como nivel de seguridad 1 (SL1), la bomba de extracción 9 se detiene para evitar que la zona de succión 14 de la tubería de extracción 7, a través de la cual la bomba de extracción 9 extrae agua subterránea, quede en seco. Para ello, el valor del SL1 ha de situarse por encima de la profundidad a la que se halla la mencionada zona de succión 14 de agua subterránea. Se puede alcanzar el valor SL1 si el caudal de extracción excede al del caudal de reinyección en el pozo de reinyección produciendo un descenso significativo del nivel en el pozo de extracción, que baja hasta el valor correspondiente al SL1. También se puede alcanzar el valor SL1 por diversas circunstancias (naturales o antrópicas) a lo largo de la descontaminación que hagan que se pueda dar una caída de nivel importante en el pozo de extracción. Por ejemplo, durante la puesta en marcha de la celda hasta ajustar un adecuado caudal de extracción y de reinyección, como causa antrópica. También puede ocurrir que el nivel descienda de manera natural durante el verano, provocando que, aunque el caudal de extracción sea pequeño, sea lo suficientemente grande como para que el nivel llegue a situarse a la altura de SL 1. Un caso similar, pero de carácter antrópico, sería que se pusiesen en funcionamiento pozos ajenos al de descontaminación de la presente invención y que hiciesen descender el nivel. The water pressure sensor 10, as indicated above, measures the level of the water column in the extraction well 2 and if said level drops to the value set as safety level 1 (SL1), the pump extraction 9 is stopped to prevent the suction zone 14 of the extraction pipe 7, through which the extraction pump 9 extracts groundwater, from running dry. To do this, the value of SL1 must be above the depth at which the aforementioned groundwater suction zone 14 is located. The SL1 value can be reached if the extraction flow rate exceeds the reinjection flow rate in the reinjection well producing a significant drop in the level in the extraction well, which drops to the value corresponding to SL1. The SL1 value can also be reached due to various circumstances (natural or anthropogenic) throughout the decontamination that cause a significant level drop in the extraction well. For example, during the start-up of the cell until an adequate extraction and reinjection flow rate is adjusted, as an anthropogenic cause. It can also happen that the level drops naturally during the summer, causing that, although the extraction flow is small, it is large enough for the level to reach the height of SL 1. A similar case, but of anthropic nature, would be that wells other than the decontamination of the present invention were put into operation and that would lower the level.
Tabla 1. Ejemplos de operación del pozo de extracción en una celda de recirculación de la presente invención Table 1. Examples of operation of the extraction well in a recirculation cell of the present invention
En la FIG. 3 se muestra el detalle de un pozo de reinyección 3 que comprende una tubería de reinyección 15 que conecta el tanque para almacenar agua recirculada 8, FIG. 4, con el fondo del pozo de reinyección 3 y que, junto con la bomba de reinyección 16, FIG. 6, permite la reinyección de agua y el vaciado del tanque para almacenar agua recirculada 8 durante el semiciclo de vaciado. En la FIG. 3 también se puede observar las diferentes capas del terreno: Zona no saturada (D), Acuífero (E), Zona de transición acuífero-acuitardo (F) y Acuitardo (G). Se observa cómo el pozo de reinyección 3 presenta la profundidad necesaria para llegar a la Zona de transición acuífero-acuitardo (F) a tratar. Adicionalmente, las flechas negritas muestran cómo el agua sale del pozo de reinyección 3 y entra en la Zona de transición acuífero-acuitardo (F). In FIG. 3 shows the detail of a reinjection well 3 comprising a reinjection pipe 15 that connects the tank for storing recirculated water 8, FIG. 4, with the bottom of the reinjection well 3 and that, together with the reinjection pump 16, FIG. 6, allows the reinjection of water and the emptying of the tank to store recirculated water 8 during the emptying half cycle. In FIG. 3 you can also see the different layers of the terrain: Unsaturated Zone (D), Aquifer (E), Aquifer-Aquitard Transition Zone (F) and Aquitard (G). It is observed how reinjection well 3 has the necessary depth to reach the aquifer-aquitard transition zone (F) to be treated. Additionally, the bold arrows show how water leaves reinjection well 3 and enters the aquifer-aquitard transition zone (F).
Tal como se ha explicado anteriormente, el pozo de reinyección 3 tiene la profundidad necesaria para llegar a la zona de transición acuífero-acuitardo a tratar. La zona ranurada 18 de este pozo abarca desde la parte superior de la mencionada zona de transición a tratar hasta la base de dicha zona. As explained previously, reinjection well 3 has the necessary depth to reach the aquifer-aquitard transition zone to be treated. Slotted area 18 This well extends from the top of the aforementioned transition zone to be treated to the base of said zone.
En la FIG. 3 se muestra también el sensor de presión de agua 17 destinado a medir la longitud de la columna de agua presente en el pozo de reinyección 3. In FIG. 3 also shows the water pressure sensor 17 intended to measure the length of the water column present in the reinjection well 3.
La bomba de reinyección 16 es de pequeño caudal (ver dos ejemplos de caudal incluidos en la Tabla 2). Este caudal, tal y como se ha indicado anteriormente, ha de ser necesariamente pequeño para posibilitar una velocidad de flujo subterráneo lento dentro de la celda 1 , lo que da tiempo a que las reacciones químicas y biogeoquímicas que transforman los contaminantes tengan lugar. La bomba de reinyección 16 está dotada de un sistema de control de caudal que permite ajustar este parámetro hasta el valor de operación que se considere adecuado para cada caso. La bomba de reinyección puede ser sumergida o no sumergida, pero siempre ha de ser capaz operar a pequeño caudal. Si se trata de una bomba de reinyección de tipo peristáltico, ésta se sitúa en el exterior del pozo de reinyección 3, y si se trata de una bomba de reinyección sumergida, su sistema de control de caudal se halla en el exterior del pozo. The reinjection pump 16 has a small flow rate (see two flow examples included in Table 2). This flow rate, as indicated above, must necessarily be small to enable a slow underground flow rate within cell 1, which gives time for the chemical and biogeochemical reactions that transform the contaminants to take place. The reinjection pump 16 is equipped with a flow control system that allows this parameter to be adjusted to the operating value considered appropriate for each case. The reinjection pump can be submerged or non-submerged, but must always be able to operate at a low flow rate. If it is a peristaltic type reinjection pump, it is located outside the reinjection well 3, and if it is a submerged reinjection pump, its flow control system is located outside the well.
El sensor de presión de agua 17, tal como se ha indicado anteriormente, mide el nivel de la columna de agua en el pozo de reinyección 3, y si dicho nivel asciende hasta al valor fijado como nivel de seguridad 2 (SL2), la bomba de reinyección 16 se detiene para evitar que el pozo de reinyección 3 rebose. Es decir, este sensor de presión de agua 17 detecta o indica que el nivel del agua reinyectada en el pozo de reinyección 3 es muy elevado y hay peligro de que esta agua rebose por el brocal del pozo de extracción 3 y salga al exterior. Esta situación se puede dar si la formación geológica no es capaz de absorber el caudal de reinyección en el pozo de reinyección 3, o si se produce un taponamiento biológico o abiótico en la zona ranurada 18 en el pozo de reinyección 3 (o incluso en la propia formación geológica). The water pressure sensor 17, as indicated above, measures the level of the water column in the reinjection well 3, and if said level rises to the value set as safety level 2 (SL2), the pump reinjection well 16 is stopped to prevent reinjection well 3 from overflowing. That is, this water pressure sensor 17 detects or indicates that the level of the water reinjected into the reinjection well 3 is very high and there is a danger that this water will overflow over the edge of the extraction well 3 and go outside. This situation can occur if the geological formation is not capable of absorbing the reinjection flow in reinjection well 3, or if biological or abiotic plugging occurs in the slotted zone 18 in reinjection well 3 (or even in the own geological formation).
Tabla 2. Ejemplos de operación del pozo de reinyección en una celda de recirculación de la presente invención En la FIG. 3, también se observan las primera y segunda tuberías de inyección de tratamientos 19, 20. Table 2. Examples of operation of the reinjection well in a recirculation cell of the present invention In FIG. 3, the first and second treatment injection pipes 19, 20 are also observed.
La FIG. 4 muestra el tanque para almacenar agua recirculada 8. Dicho tanque 8 es preferentemente cilindrico y de polietileno opaco (u otro plástico resistente). A dicho tanque 8, tal y como se observa en esta figura, por la parte de arriba entra la tubería de extracción 7 (que viene del pozo de extracción 2) y, dentro del tanque, desciende hasta una zona cercana a la base, aproximadamente a 4 centímetros por debajo de la parte superior del volumen de decantación 8.1 , de forma que esté siempre sumergida (de esta manera, se evita al máximo la aireación por borboteo del agua recirculada que va llenando el tanque y se minimizan cambios en las condiciones redox de este agua antes de que vuelva a ser reinyectada en la celda 1). Por la zona de la base del tanque 8 (zona de volumen de decantación 8.1), sale la tubería de reinyección 15 (que va al pozo de reinyección 3). El tanque para almacenar agua recirculada 8 presenta tres zonas, de abajo a arriba (de parte inferior a superior del tanque 8): un volumen de decantación 8.1 (actúa como decantador de posibles entradas de materiales finos procedentes del pozo de extracción 2, o de precipitados sólidos que se puedan formar durante el proceso de recirculación y almacenamiento dentro del tanque 8; estos materiales finos podrían obstruir las tuberías si éstas no disponen de suficiente gradiente), un volumen útil 8.2 y un volumen de cabeza 8.3. Para un tanque 8 de 120L (este volumen es el que contendría, por ejemplo, un tanque de 45 cm de diámetro y 75,5 cm de altura) el volumen de decantación 8.1 sería de 25L, el volumen útil 8.2 sería de 75L y el volumen de cabeza 8.3 sería de 20L. El tanque 8 presenta en el fondo un sensor de presión 22 para medir la columna de agua presente en el tanque y, en consecuencia, la cantidad o volumen de agua presente en el tanque 8 y poder así determinar los semiciclos de llenado y vaciado. Cuando ese volumen es de solo 25 L, se corresponde con el volumen de decantación 8.1 , indica que el semiciclo de vaciado del tanque 8 ha llegado a su fin (porque se ha llegado ya hasta el volumen de decantación 8.1) por lo que se da la orden de parar a la bomba de reinyección 16, con lo que cesa la reinyección. Al mismo tiempo, se da la orden de puesta en marcha de la bomba de extracción 9 y comienza un semiciclo de llenado del tanque 8. Cuando el sensor de presión 22 situado en el fondo del tanque 8 indica una columna de agua correspondiente a la suma del volumen de decantación 8.1 , 25 L y del volumen útil 8.2, 75L, es la señal de que el volumen útil 8.2 está completo y que por tanto el tanque 8 está lleno hasta 100 L. En ese momento, se da la orden de que se detenga la bomba de extracción 9 en el pozo de extracción 2 dándose por finalizado el semiciclo de llenado y, al mismo momento, iniciándose un semiciclo de vaciado. Aunque la tapadera del tanque 8 debe estar perfectamente cerrada en todo momento, la pared del tanque 8 dispone en su parte superior de una perforación de ventilación 33 de dos o tres milímetros de diámetro, que la atraviesa de lado a lado, y que actúa como respiradero para evitar que se genere el vacío en el tanque durante su vaciado y que éste se deforme por implosión. FIG. 4 shows the tank for storing recirculated water 8. Said tank 8 is preferably cylindrical and made of opaque polyethylene (or other resistant plastic). To said tank 8, as seen in this figure, the extraction pipe 7 (which comes from the extraction well 2) enters the upper part and, inside the tank, descends to an area near the base, approximately 4 centimeters below the top of the settling volume 8.1, so that it is always submerged (in this way, aeration by bubbling of the recirculated water that fills the tank is avoided as much as possible and changes in redox conditions are minimized. of this water before it is reinjected into cell 1). Through the base area of tank 8 (settling volume area 8.1), reinjection pipe 15 exits (which goes to reinjection well 3). The tank for storing recirculated water 8 has three zones, from bottom to top (from bottom to top of tank 8): a settling volume 8.1 (acts as a decanter for possible inflows of fine materials from extraction well 2, or from solid precipitates that may form during the recirculation and storage process inside tank 8; these fine materials could clog the pipes if they do not have sufficient gradient), a useful volume 8.2 and a head volume 8.3. For a 120L tank 8 (this volume is what would contain, for example, a tank 45 cm in diameter and 75.5 cm high) the settling volume 8.1 would be 25L, the useful volume 8.2 would be 75L and the head volume 8.3 would be 20L. The tank 8 has a pressure sensor 22 at the bottom to measure the water column present in the tank and, consequently, the amount or volume of water present in the tank 8 and thus be able to determine the filling and emptying half cycles. When this volume is only 25 L, it corresponds to the settling volume 8.1, it indicates that the emptying half cycle of tank 8 has come to an end (because the settling volume 8.1 has already been reached) so it is given the order to stop the reinjection pump 16, thereby stopping reinjection. At the same time, the order to start the extraction pump 9 is given and a half-cycle of filling the tank 8 begins. When the pressure sensor 22 located at the bottom of the tank 8 indicates a water column corresponding to the sum of the settling volume 8.1, 25 L and the useful volume 8.2, 75L, is the signal that the useful volume 8.2 is complete and that therefore the tank 8 is full up to 100 L. At that moment, the order is given to the extraction pump 9 is stopped in the extraction well 2, ending the filling half-cycle and, at the same time, starting an emptying half-cycle. Although the lid of the tank 8 must be perfectly closed at all times, the wall of the tank 8 has in its upper part a ventilation perforation 33 of two or three millimeters in diameter, which crosses it from side to side, and which acts as a vent to prevent vacuum from being generated in the tank during emptying and from deforming due to implosion.
La FIG. 5 muestra un tanque para el almacenamiento de un tratamiento 21 (preferentemente cilindrico y de polietileno opaco u otro plástico resistente). Dicho tanque 21 en una zona cercana a su base presenta (zona del volumen de decantación 21.1) la tubería de inyección de tratamientos 19 que conecta el tanque 21 con el pozo de reinyección 3 y permite inyectar en dicho pozo 3 el tratamiento contenido en el tanque 21. El tanque para el almacenamiento de un tratamiento 21 presenta tres zonas, de abajo a arriba: un volumen de reserva 21.1 (volumen de reserva de reactivo o tratamiento), un volumen útil 21.2 y un volumen de cabeza 21.3. Para un tanque 21 de 100L el volumen de reserva 21.1 sería de 15L, el volumen útil 21.2 sería de 75L y el volumen de cabeza 21.3 sería de 10L. El tanque 21 está preferentemente dotado de un dispositivo visual (o electrónico) que indica el nivel de solución de reactivo o tratamiento presente en su interior (no mostrado en la figura). Evidentemente el dispositivo indicador de nivel ha de ser resistente al reactivo o tratamiento contenido por el tanque 21 .FIG. 5 shows a tank for storing a treatment 21 (preferably cylindrical and made of opaque polyethylene or other resistant plastic). Said tank 21 in an area close to its base presents (area of the decantation volume 21.1) the treatment injection pipe 19 that connects the tank 21 with the reinjection well 3 and allows the treatment contained in the tank to be injected into said well 3. 21. The tank for storing a treatment 21 has three zones, from bottom to top: a reserve volume 21.1 (reagent or treatment reserve volume), a useful volume 21.2 and a head volume 21.3. For a 100L tank 21, the reserve volume 21.1 would be 15L, the useful volume 21.2 would be 75L and the head volume 21.3 would be 10L. The tank 21 is preferably provided with a visual (or electronic) device that indicates the level of reagent or treatment solution present inside (not shown in the figure). Obviously, the level indicator device must be resistant to the reagent or treatment contained in the tank 21.
Aunque la tapadera del tanque 21 debe estar perfectamente cerrada en todo momento, la pared del tanque 21 dispone en su parte superior de una perforación de ventilación 34 de dos o tres milímetros de diámetro, que la atraviesa de lado a lado, y que actúa como respiradero para evitar que se genere el vacío en el tanque durante su vaciado y que éste se deforme por implosión. Although the lid of the tank 21 must be perfectly closed at all times, the wall of the tank 21 has in its upper part a ventilation perforation 34 of two or three millimeters in diameter, which crosses it from side to side, and which acts as a vent to prevent vacuum from being generated in the tank during emptying and from deforming due to implosion.
Se contempla que la celda de recirculación 1 de la presente invención disponga de un sistema de envío de los datos captados por los diferentes sensores que comprende a un servidor central. En este caso, se puede evaluar en tiempo real la evolución de la remediación o tratamiento dentro del perímetro de la zona de influencia de la celda. It is contemplated that the recirculation cell 1 of the present invention has a system for sending the data captured by the different sensors that includes a central server. In this case, the evolution of the remediation or treatment can be evaluated in real time within the perimeter of the cell's zone of influence.
La FIG. 6 muestra un esquema del funcionamiento de la celda de recirculación 1 de la presente invención. Una vez extraída el agua recirculada a lo largo de la celda a través del pozo de extracción 2, ésta, por medio de la bomba de extracción 9 y a través de la tubería de extracción 7 llega al tanque para almacenar agua recirculada 8 que se llena durante el semiciclo de llenado. En el caso del pozo de extracción 2, la tubería de extracción 7, está, preferentemente, dotada de un grifo 30, que permite realizar muéstreos (este grifo 30 se halla, por tanto, en un punto del recorrido de la tubería de extracción 7) situado inmediatamente después de salir del pozo de extracción 2 y antes de entrar en el tanque 8). Una vez el volumen útil 8.2 del tanque para almacenar agua recirculada 8 se ha llenado, se da por finalizado el semiciclo de llenado (y, por tanto, se para la extracción de agua del pozo de extracción 2). En este momento se inicia el semiciclo de vaciado en el que se vacía el volumen útil 8.2 del tanque para almacenar agua recirculada 8. Para ello, el agua es impulsada desde el tanque 8 al pozo de reinyección 3 mediante la bomba de reinyección 16 a través de la tubería de reinyección 15. La tubería de reinyección 15 está dotada de un grifo 23 que permite realizar muestreo. Este grifo 23 se halla en un punto del recorrido de la tubería de reinyección 15 situado después del tanque 8 y antes de que la tubería de reinyección 15 entre en el pozo de reinyección 3. FIG. 6 shows a diagram of the operation of the recirculation cell 1 of the present invention. Once the recirculated water has been extracted throughout the cell through the extraction well 2, it, through the extraction pump 9 and through the extraction pipe 7, reaches the tank to store recirculated water 8, which is filled during the filling semicycle. In the case of the extraction well 2, the extraction pipe 7 is preferably equipped with a tap 30, which allows sampling to be carried out (this tap 30 is located therefore, at a point along the route of the extraction pipe 7) located immediately after leaving the extraction well 2 and before entering the tank 8). Once the useful volume 8.2 of the tank for storing recirculated water 8 has been filled, the filling half cycle is completed (and, therefore, the extraction of water from the extraction well 2 stops). At this moment the emptying semi-cycle begins in which the useful volume 8.2 of the tank is emptied to store recirculated water 8. To do this, the water is driven from the tank 8 to the reinjection well 3 by means of the reinjection pump 16 through of the reinjection pipe 15. The reinjection pipe 15 is equipped with a tap 23 that allows sampling. This cock 23 is located at a point along the route of the reinjection pipe 15 located after the tank 8 and before the reinjection pipe 15 enters the reinjection well 3.
En la FIG. 6, aparecen también representados medios para el almacenamiento y la inyección de dos tratamientos, que se ponen en funcionamiento para la inyección de uno o más tratamientos en el pozo de reinyección 3 en el semiciclo de vaciado (es decir, junto con la reinyección de agua recirculada se produce la inyección de los uno o más tratamientos durante el semiciclo de vaciado). En la FIG. 6, los medios para el almacenamiento y la inyección de dos tratamientos comprenden un primer tanque para almacenar un primer tratamiento 21 que mediante una primera tubería de inyección 19 y una primera bomba de inyección 24 inyectan un primer tratamiento o reactivo en el pozo de reinyección 3; y un segundo tanque para almacenar un segundo tratamiento 25 que mediante una segunda tubería de inyección 20 y una segunda bomba de inyección 26 inyectan un segundo tratamiento o reactivo en el pozo de reinyección 3. Tanto la primera tubería de inyección 19 como la segunda tubería de inyección 20 presentan un grifo 27, 28 que permite realizar muéstreos y verificar el funcionamiento de las bombas de inyección 24, 26. En este sentido, en la FIG. 6 se ha representado el caso de dos tratamientos, aunque puede haber tantos como sea necesario en función de la contaminación a tratar. En una realización preferente el primer tratamiento es ácido láctico y el segundo tratamiento es una solución tampón de bicarbonato de sodio y carbonato de sodio en medio acuoso. Durante el tiempo que dura la reinyección de agua recirculada, las dos bombas de inyección 24, 26 inyectan directamente en el pozo de reinyección 3 un número determinado de dosis de cada tratamiento a través de las correspondientes tuberías de inyección 19, 20. Esta inyección se realiza siempre por debajo del nivel del agua en el pozo de reinyección 3. Las dos bombas de inyección 24, 26 pueden ser peristálticas o sumergidas. La finalidad de inyectar las dosis de tratamiento en la manera indicada es que estas dosis de solución de tratamiento sean arrastradas por el agua recirculada a lo largo de la celda 1 para llevar a cabo el tratamiento de la zona acuífero- acuitardo a tratar por dispersión y difusión molecular. In FIG. 6, means for the storage and injection of two treatments are also represented, which are put into operation for the injection of one or more treatments in the reinjection well 3 in the emptying half cycle (that is, together with the reinjection of water recirculated, the injection of one or more treatments occurs during the emptying semicycle). In FIG. 6, the means for the storage and injection of two treatments comprise a first tank for storing a first treatment 21 which, by means of a first injection pipe 19 and a first injection pump 24, inject a first treatment or reagent into the reinjection well 3 ; and a second tank to store a second treatment 25 that, by means of a second injection pipe 20 and a second injection pump 26, inject a second treatment or reagent into the reinjection well 3. Both the first injection pipe 19 and the second injection pipe injection 20 have a tap 27, 28 that allows sampling and verifying the operation of the injection pumps 24, 26. In this sense, in FIG. 6 has represented the case of two treatments, although there may be as many as necessary depending on the contamination to be treated. In a preferred embodiment, the first treatment is lactic acid and the second treatment is a buffer solution of sodium bicarbonate and sodium carbonate in an aqueous medium. During the time that the reinjection of recirculated water lasts, the two injection pumps 24, 26 inject directly into the reinjection well 3 a certain number of doses of each treatment through the corresponding injection pipes 19, 20. This injection is It is always carried out below the water level in the reinjection well 3. The two injection pumps 24, 26 can be peristaltic or submerged. The purpose of injecting the treatment doses in the indicated manner is that these doses of treatment solution are carried away by the water. recirculated throughout cell 1 to carry out the treatment of the aquifer-aquitard zone to be treated by dispersion and molecular diffusion.
Tal como se ha indicado, cada uno de los ciclos de funcionamiento de la celda de recirculación 2 de la presente invención está formado por dos semiciclos sucesivos (no concurrentes), uno de llenado del tanque para almacenar agua recirculada 8 y otro de vaciado del mismo. As indicated, each of the operating cycles of the recirculation cell 2 of the present invention is formed by two successive half cycles (non-concurrent), one for filling the tank to store recirculated water 8 and another for emptying it. .
De forma preferente, todas las tuberías de la celda de recirculación 1 de la presente invención están recubiertas de material aislante térmico (califugadores) para evitar la congelación del agua que transportan en época invernal. Preferably, all the pipes of the recirculation cell 1 of the present invention are covered with thermal insulating material (heaters) to prevent freezing of the water they transport in winter.
Finalmente, hay que indicar que se contempla y de hecho resulta preferente que la celda de recirculación de la presente invención 1 presente un sistema para el control automático de la celda 1 y de su funcionamiento, por ejemplo, un panel de control eléctrico automático 29 que recibe la información de todos los sensores y controla de forma automática todas las bombas de la celda de recirculación de la presente invención 2. Finally, it should be noted that it is contemplated and in fact preferred that the recirculation cell of the present invention 1 presents a system for the automatic control of the cell 1 and its operation, for example, an automatic electrical control panel 29 that It receives information from all the sensors and automatically controls all the pumps of the recirculation cell of the present invention 2.
Para una mejor comprensión, la presente invención se describe en más detalle a continuación en referencia al siguiente ejemplo no limitativo. For better understanding, the present invention is described in more detail below with reference to the following non-limiting example.
Ejemplo. Prueba piloto de movilización de fuentes de PCE en la zona de transición a los acuitardos (zona de transición acuífero-acuitardo) mediante la combinación de mZVI y bioestimulación con ácido láctico con una celda de recirculación de la presente invención Example. Pilot test of mobilization of PCE sources in the transition zone to the aquitards (aquifer-aquitard transition zone) by combining mZVI and biostimulation with lactic acid with a recirculation cell of the present invention
Materiales y métodos: Diseño y puesta en marcha de una celda de la presente invención. La ejecución de la prueba piloto consistió en dos etapas. En la primera etapa, se perforaron seis sondeos para la inyección de mZVI de 8 metros de profundidad por rotación y con recuperación continua de testigos de sondeo siguiendo las directrices proporcionadas por Puigserver et al. (Puigserver, D., Herrero, J., Torres, M., Cortés, A., Nijenhuis, I., Kuntze, K., ... & Carmona, J. M. (2016). Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards. Environmental Science and Pollution Research, 23(18), 18724-18741.). La inyección de una emulsión acuosa de mZVI y goma guar (ambas de calidad alimentaria) se llevó a cabo en los seis pozos utilizando el agua subterránea de los pozos perforados (la FIG. 7 muestra la ubicación de los sondeos no entubados para la inyección de mZVI 31). El método de inyección de mZVI en cada pozo fue la presión hidrostática, siempre de abajo hacia arriba entre 8 y 4,5 m de profundidad. La masa total de mZVI inyectada fue de 30 kg (5 en cada pozo de inyección). Con la inyección de mZVI en el sexto sondeo, el último, se inició la prueba piloto. Este momento se considera el día cero de la prueba (tiempo 0 días). Materials and methods: Design and implementation of a cell of the present invention. The pilot test execution consisted of two stages. In the first stage, six mZVI injection boreholes of 8 meters depth were drilled by rotation and with continuous recovery of borehole cores following the guidelines provided by Puigserver et al. (Puigserver, D., Herrero, J., Torres, M., Cortés, A., Nijenhuis, I., Kuntze, K., ... & Carmona, JM (2016). Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquifers. Environmental Science and Pollution Research, 23(18), 18724-18741.). Injection of an aqueous emulsion of mZVI and guar gum (both food grade) was carried out in all six wells using groundwater from the drilled wells (FIG. 7 shows the location of the uncased boreholes for the injection of mZVI 31). The mZVI injection method in each well was pressure hydrostatic, always from bottom to top between 8 and 4.5 m deep. The total mass of mZVI injected was 30 kg (5 in each injection well). With the injection of mZVI in the sixth, last survey, the pilot test began. This moment is considered day zero of the test (time 0 days).
En una segunda etapa, se activó la celda de recirculación de la presente invención el día 149 después del inicio de la prueba (tiempo 149 días) para inyectar la solución de ácido láctico utilizada en la bioestimulación (la FIG. 7 muestra la zona de influencia de esta celda de recirculación). In a second stage, the recirculation cell of the present invention was activated on day 149 after the start of the test (time 149 days) to inject the lactic acid solution used in the biostimulation (FIG. 7 shows the zone of influence of this recirculation cell).
La FIG. 7 muestra: 7A Zona de influencia de la celda de recirculación 1 (limitada por las líneas de flujo más externas). Ubicación de los seis sondeos no entubados para la inyección de mZVI 31 (de la emulsión de mZVI y goma guar) y ubicación también del pozo de extracción 2 y de reinyección 3 de agua recirculada y de ácido láctico. 7B Sección vertical de los sondeos no entubados para la inyección de mZVI 31 y de la celda de recirculación 1 de la presente invención mostrando el pozo de extracción 2, el pozo de reinyección 3, el tanque para almacenar agua recirculada 8 y el tanque 21 de solución de ácido láctico. Las flechas indican la circulación del agua dentro de la celda de recirculación 1 . FIG. 7 shows: 7A Zone of influence of recirculation cell 1 (limited by the outermost flow lines). Location of the six untubed boreholes for the injection of mZVI 31 (from the emulsion of mZVI and guar gum) and also location of the extraction well 2 and reinjection 3 of recirculated water and lactic acid. 7B Vertical section of the uncased wells for the injection of mZVI 31 and the recirculation cell 1 of the present invention showing the extraction well 2, the reinjection well 3, the tank for storing recirculated water 8 and the tank 21 lactic acid solution. The arrows indicate the circulation of water within recirculation cell 1.
La celda de recirculación de la presente invención se diseñó para bioestimular la zona de transición acuífero-acuitardo a tratar. Dada la baja conductividad hidráulica de esta zona de transición, la celda se diseñó para operar en semiciclos de llenado y vaciado de un tanque de recirculación de agua para evitar que el pozo de extracción se secara y dar tiempo a la reinyección. Además, interesaba obtener una velocidad lenta del agua subterránea para que el tiempo de residencia del ácido láctico en el medio fuera lo suficientemente largo como para favorecer las reacciones de degradación de los cloroetenos. The recirculation cell of the present invention was designed to biostimulate the aquifer-aquitard transition zone to be treated. Given the low hydraulic conductivity of this transition zone, the cell was designed to operate in semi-cycles of filling and emptying a water recirculation tank to prevent the extraction well from drying out and allow time for reinjection. Furthermore, it was interesting to obtain a slow velocity of the groundwater so that the residence time of the lactic acid in the medium was long enough to favor the degradation reactions of the chloroethene.
La celda de recirculación de la presente invención estaba formada por: The recirculation cell of the present invention was formed by:
1) un pozo de extracción 2, ranurado 32 en la zona de transición acuífero-acuitardo y equipado con una bomba peristáltica que extraía caudales que oscilaban entre 0,58 y 0,94 L/min (este pozo también tenía un sensor de presión de la columna de agua que controlaba el nivel del agua entre los valores máximos y mínimos preestablecidos); 1) an extraction well 2, slotted 32 in the aquifer-aquitard transition zone and equipped with a peristaltic pump that extracted flow rates ranging between 0.58 and 0.94 L/min (this well also had a pressure sensor of the water column that controlled the water level between the pre-established maximum and minimum values);
2) un tanque para almacenar agua recirculada 8 que almacenaba hasta 100 L de agua recirculada, lo que permitía la reinyección de 75 L de esa agua en cada ciclo de llenado- vaciado; 3) dos tanques 21 y 25 de 30 L de capacidad, cada uno almacenaba reactivos (un tanque para una solución de ácido láctico y el otro una solución tampón compuesta por un 80% de bicarbonato de sodio y un 20% de carbonato de sodio); 2) a tank to store recirculated water 8 that stored up to 100 L of recirculated water, which allowed the reinjection of 75 L of that water in each filling-emptying cycle; 3) two tanks 21 and 25 of 30 L capacity, each stored reagents (one tank for a lactic acid solution and the other a buffer solution composed of 80% sodium bicarbonate and 20% sodium carbonate) ;
4) ambos tanques mencionados en el punto 3 estaban conectados a bombas peristálticas que dosificaban el ácido láctico y la solución tampón (con caudales que iban de 0,5 a 1 ,5 mL/min); y 4) both tanks mentioned in point 3 were connected to peristaltic pumps that dosed the lactic acid and the buffer solution (with flow rates ranging from 0.5 to 1.5 mL/min); and
5) un pozo de reinyección 3. 5) a reinjection well 3.
Durante la prueba piloto de forma semicíclica (durante casi un año, entre los días 149 y 504; es decir, 355 días), se inyectó un total de 13,03 kg de ácido láctico, concretamente de ácido (S)-láctico, también llamado ácido (S)-2-hidroxiprop¡ón¡co (IIIPAC) de calidad alimentaria. El ácido láctico y la solución tampón se inyectaron a 6 m de profundidad en el pozo de reinyección, ranurado en la parte superior del acuífero y en la zona de transición acuífero- acuitardo. Este pozo también estaba equipado con una bomba peristáltica conectada al tanque para almacenar agua recirculada y se reinyectaba el agua recirculada a un caudal de 1 ,25 L/min. Como en el caso del pozo de extracción, este pozo estaba equipado con un sensor de presión de la columna de agua que regulaba el nivel entre los valores máximo y mínimo preestablecidos. Si se alcanzaba el nivel máximo se apagaban automáticamente la bomba de reinyección y las dos bombas de dosificación, evitando así el derrame del agua reinyectada que no tenía tiempo de reinfiltrarse en el pozo. During the pilot test in a semi-cyclical manner (for almost a year, between days 149 and 504; that is, 355 days), a total of 13.03 kg of lactic acid, specifically (S)-lactic acid, was also injected. called food grade (S)-2-hydroxypropion¡ic acid (IIIPAC). The lactic acid and the buffer solution were injected 6 m deep into the reinjection well, slotted in the upper part of the aquifer and in the aquifer-aquitard transition zone. This well was also equipped with a peristaltic pump connected to the tank to store recirculated water and the recirculated water was reinjected at a flow rate of 1.25 L/min. As in the case of the extraction well, this well was equipped with a water column pressure sensor that regulated the level between preset maximum and minimum values. If the maximum level was reached, the reinjection pump and the two dosing pumps were automatically turned off, thus preventing the spillage of reinjected water that did not have time to re-infiltrate into the well.
La red de monitoñzación de la prueba piloto estaba formada por un pozo multinivel, y los dos pozos que conformaron la celda. Los datos sobre las principales características de los puntos de monitoñzación de la prueba piloto se pueden encontrar en la Tabla 3 incluida más adelante. The monitoring network of the pilot test was made up of a multilevel well, and the two wells that made up the cell. Data on the main characteristics of the pilot test monitoring points can be found in Table 3 included below.
Tabla 3 Características de los puntos de monitoñzación de la prueba piloto P1 (pozo de extracción), P2 (pozo de reinyección). F1 UB (sistema multinivel CMT de Solinst), tres puertos en la zona de transición. HDPD (polietileno de alta densidad). TEFLON™ (politetrafluoroetileno, PTFE). Prof, (profundidad), Tipo revest, (tipo de tubería de revestimiento), Diam. Int. (diámetro interior de la tubería de revestimiento), Diam. ext. (diámetro exterior de la tubería de revestimiento), Long. ran. (longitud de la zona ranurada),Table 3 Characteristics of the monitoring points of the pilot test P1 (extraction well), P2 (reinjection well). F1 UB (Solinst CMT multilevel system), three ports in the transition zone. HDPD (high density polyethylene). TEFLON™ (polytetrafluoroethylene, PTFE). Depth, (depth), Casing type, (type of casing), Diam. Int. (inner diameter of casing), Diam. ext. (casing outside diameter), Length. ran. (length of the slotted area),
Rango prof, zona ran. (Rango de profundidad de la zona ranurada), Long. tub. ciega (longitud de la tubería ciega). Depth rank, rank zone. (Depth range of the grooved area), Length. your B. blind (length of blind pipe).
Control de las aguas subterráneas durante la prueba piloto y métodos analíticos Groundwater monitoring during pilot testing and analytical methods
La prueba piloto comenzó en el momento correspondiente al día 0 (primer día de muestreo), cuando se inyectó mZVI. Este reactivo actuó solo durante los primeros 149 días. Al finalizar este periodo (día 149), se activó la celda de recirculación de la presente invención y entró en funcionamiento el tratamiento combinado de mZVI y bioestimulación con ácido láctico durante un total de 355 días (es decir, hasta el día 504, ver Tabla 4). The pilot test began at the time corresponding to day 0 (first day of sampling), when mZVI was injected. This reagent acted only during the first 149 days. At the end of this period (day 149), the recirculation cell of the present invention was activated and the combined treatment of mZVI and biostimulation with lactic acid came into operation for a total of 355 days (i.e., until day 504, see Table 4).
Tabla 4. Días desde el inicio de la prueba piloto en los que se tomaron muestras de aguas subterráneas en la red de control. La primera muestra (día 0) se tomó inmediatamente antes de la inyección de mZVI. Los días en los que también se tomaron muestras de aguas subterráneas para identificar microorganismos están marcados con una "X". Table 4. Days from the beginning of the pilot test in which groundwater samples were taken in the control network. The first sample (day 0) was taken immediately before mZVI injection. Days on which groundwater samples were also taken to identify microorganisms are marked with an "X."
Días de muestreo de aguas subterráneas en la red de control (días desde el inicio de la prueba piloto) Days of groundwater sampling in the control network (days from the start of the pilot test)
^final de la prueba piloto ^end of pilot test
A continuación, se describen brevemente los procedimientos seguidos para el muestreo de aguas subterráneas en la red de seguimiento. Antes del muestreo y de acuerdo conThe procedures followed for groundwater sampling in the monitoring network are briefly described below. Before sampling and in accordance with
Puigserver et. al. (Puigserver, D., Herrero, J., Parker, B. L, & Carmona, J. M. (2020). Natural attenuation of pools and plumes of carbon tetrachloride and chloroform in the transition zone to bottom aquitards and the microorganisms involved in their degradation. Science of The T otalPuigserver et. to the. (Puigserver, D., Herrero, J., Parker, B. L, & Carmona, J. M. (2020). Natural attenuation of pools and plumes of carbon tetrachloride and chloroform in the transition zone to bottom aquitards and the microorganisms involved in their degradation .Science of The Total
Environment, 712, 135679), los puntos de control se purgaron mediante una bomba peristáltica conectada a una célula de flujo de campo acoplada a sensores para parámetros fisicoquímicos. Los parámetros fueron el oxígeno disuelto (OD, mg/L), el potencial de reducción-oxidación (ORP, mV), el pH, la temperatura (T, °C) y la conductividad eléctrica (CE, pS/cm). Una vez estabilizados y registrados los valores de estos parámetros, se procedió a la toma de muestras de agua con la bomba peristáltica a bajo caudal para minimizar la volatilización de COVs (según Puigserver, D., Cortés, A., Viladevall, M., Nogueras, X., Parker,Environment, 712, 135679), checkpoints were purged using a peristaltic pump connected to a field flow cell coupled to sensors for physicochemical parameters. The parameters were dissolved oxygen (DO, mg/L), oxidation-reduction potential (ORP, mV), pH, temperature (T, °C) and electrical conductivity (EC, pS/cm). Once the values of these parameters were stabilized and recorded, water samples were taken with the peristaltic pump at low flow to minimize the volatilization of VOCs (according to Puigserver, D., Cortés, A., Viladevall, M., Nogueras, X., Parker,
B. L., & Carmona, J. M. (2014). Processes controlling the fate of chloroethenes emanating from DNAPL aged sources in river-aquifer contexts. Journal of contaminant hydrology, 168,B. L., & Carmona, J. M. (2014). Processes controlling the fate of chloroethene emanating from DNAPL aged sources in river-aquifer contexts. Journal of contaminant hydrology, 168,
25-40). Los protocolos de muestreo utilizados fueron los descritos por Puigserver et al. (2014).25-40). The sampling protocols used were those described by Puigserver et al. (2014).
El orden de muestreo en campo fue: 1) 1 L de agua (en botellas de vidrio autoclavadas) para la determinación de las comunidades microbianas en el agua subterránea (filos y géneros); esta agua fue posteriormente filtrada con filtros de 0,2 mieras y congelada a -20 °C en el laboratorio según Puigserver et al. (2020). 2) 250 mL para determinar las concentraciones de cloroetenos, y otros COVs: dicloroacetileno (DCA), cloroacetileno (CA), y los gases eteno, etano, acetileno y metano, 3) 250 mL para determinar el 513C de los cloroetenos, 4) 100 mL para determinar las especies de nitrógeno, Mn2+, Fe2+, sulfato, S2' y, finalmente, 5) 50 mL de agua para la determinación de lactato y acetato. The order of field sampling was: 1) 1 L of water (in autoclaved glass bottles) for the determination of microbial communities in groundwater (phyla and genera); This water was subsequently filtered with 0.2 micron filters and frozen at -20 °C in the laboratory according to Puigserver et al. (2020). 2) 250 mL to determine the concentrations of chloroethene, and other VOCs: dichloroacetylene (DCA), chloroacetylene (CA), and the gases ethene, ethane, acetylene and methane, 3) 250 mL to determine the 5 13 C of the chloroethene, 4) 100 mL to determine the nitrogen species, Mn 2+ , Fe 2+ , sulfate, S 2 ' and, finally, 5) 50 mL of water for the determination of lactate and acetate.
Las muestras se transportaron y almacenaron a 4 °C, y en cada campaña de muestreo se tomaron las siguientes muestras: 1 muestra de campo de evaluación y 1 muestra de campo de evaluación de bajas concentraciones. Cada muestra se tomó por duplicado y se recogió 1 blanco de campo, excepto en el caso de las muestras destinadas a la determinación microbiana, en las que se recogieron dos blancos, 1 blanco de blancos y 1 blanco de transporte para cada refrigerador de transporte de muestras, con el fin de garantizar la trazabilidad y la representatividad de las muestras. The samples were transported and stored at 4 °C, and in each sampling campaign the following samples were taken: 1 evaluation field sample and 1 low concentration evaluation field sample. Each sample was taken in duplicate and 1 field blank was collected, except in the case of samples intended for microbial determination, in which two blanks were collected, 1 blank of blanks and 1 blank of transport for each sample transport refrigerator, in order to guarantee the traceability and representativeness of the samples.
En el caso de las muestras para determinar las concentraciones de cloroetenos y los valores de 513C de estos compuestos, se añadió bactericida para inhibir la actividad bacteriana durante el transporte y el almacenamiento siguiendo el protocolo descrito en Puigserver et al. (2020). Todas las muestras fueron analizadas por el grupo de Hidrogeología Ambiental y Cambio Global de la Universidad de Barcelona en los laboratorios de los Centros Científicos y Tecnológicos de la Universidad de Barcelona (CCiTUB), que siguen la norma ISO 9001 :2000. In the case of samples to determine chloroethene concentrations and 5 13 C values of these compounds, bactericidal was added to inhibit bacterial activity during transport and storage following the protocol described in Puigserver et al. (2020). All samples were analyzed by the Environmental Hydrogeology and Global Change group of the University of Barcelona in the laboratories of the Scientific and Technological Centers of the University of Barcelona (CCiTUB), which follow the ISO 9001:2000 standard.
Los COVs presentes en las aguas subterráneas se analizaron mediante cromatografía de gases (GC) (Carlo-Erba GC8000-Top) acoplada a un espectrómetro de masas (GC-MS) (ThermoFinnigan Fisons MD800). Los compuestos analizados fueron percloroetileno (PCE), tricloretileno (TCE), cis-dicloroetileno (cDCE), trans-dicloroetileno (tDCE), 1 ,1-dicloroetileno (1 ,1 -DCE), cloruro de vinilo (CV), dicloroacetileno, cloroacetileno y los gases eteno, etano, acetileno y metano. VOCs present in groundwater were analyzed by gas chromatography (GC) (Carlo-Erba GC8000-Top) coupled to a mass spectrometer (GC-MS) (ThermoFinnigan Fisons MD800). The compounds analyzed were perchloroethylene (PCE), trichlorethylene (TCE), cis-dichloroethylene (cDCE), trans-dichloroethylene (tDCE), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (CV), dichloroacetylene, chloroacetylene and the gases ethene, ethane, acetylene and methane.
Se aplicó el Análisis Isotópico Específico de Compuestos (CSIA) para determinar la composición isotópica de los COV y los gases. Para ello, se utilizó la microextracción en fase sólida siguiendo el método descrito por Puigserver et al. (2014) y utilizando la Espectrometría de Masas de Relación Isotópica por Cromatografía de Combustión (GC-C-IRMS). Compound Specific Isotopic Analysis (CSIA) was applied to determine the isotopic composition of VOCs and gases. For this, solid phase microextraction was used following the method described by Puigserver et al. (2014) and using Combustion Chromatography Isotope Ratio Mass Spectrometry (GC-C-IRMS).
Las concentraciones de aniones se determinaron por cromatografía iónica, siguiendo el protocolo EPA 9056. El Mn2+, el Fe2+ y el S2' se midieron por espectrofotometría de absorción con un Merck Spectroquant NOVA60. El lactato, el acetato y el formato se determinaron por cromatografía líquida (HPLC). Anion concentrations were determined by ion chromatography, following EPA protocol 9056. Mn 2+ , Fe 2+ , and S 2 ' were measured by absorption spectrophotometry with a Merck Spectroquant NOVA60. Lactate, acetate and formate were determined by liquid chromatography (HPLC).
La extracción de ADN para la identificación de los filos y géneros de microorganismos en las aguas subterráneas muestreadas se realizó en un ambiente estéril con el DNeasy Ultraclean Microbial Kit de Qiagen, con una adaptación de las dos primeras etapas, para extraer el ADN de los filtros. La preparación de la biblioteca de ARNr 16S, la secuenciación y el análisis bioinformático se realizó en la Unidad de Genómica de los Centros Científicos y Tecnológicos de la Universidad de Barcelona (CCiTUB). La región V3V4 del ARNr 16S se amplificó según lo descrito por Willis et al. (Willis, J., et al. (2018). Citizen science charts two major “stomatotypes" in the oral microbiome of adolescents and reveals links with habits and drinking water composition. Microbiome, 6(1), 1-17. ) utilizando un conjunto de cebadores modificados V3-V4-F y V3-V4-R que contienen un "espaciador de heterogeneidad" de 1-4 pb que fueron diseñados para mitigar los problemas causados por los amplicones de baja diversidad de secuencias (los cebadores utilizados para la secuenciación del ARNr 16S se pueden encontrar en la Tabla 4). Se modificaron las condiciones de la PCR: una desnaturalización inicial a 95°C durante 3 minutos, seguida de 25 ciclos de tres pasos consistentes en 95°C durante 30 s, 55°C durante 30 s y 72°C durante 30 s; y una extensión final de 5 minutos a 72°C. Cada amplificación por PCR se llevó a cabo con 4 pl de ADN, 0,2-pM de cada cebador directo e inverso y Kapa ready mix (Kapa biosystems) en un volumen total de 10 pl. DNA extraction for the identification of the phyla and genera of microorganisms in the sampled groundwater was carried out in a sterile environment with the DNeasy Ultraclean Microbial Kit from Qiagen, with an adaptation of the first two stages, to extract the DNA from the filters . The preparation of the 16S rRNA library, sequencing and bioinformatic analysis was carried out at the Genomics Unit of the Scientific and Technological Centers of the University of Barcelona (CCiTUB). The V3V4 region of the 16S rRNA was amplified as described by Willis et al. (Willis, J., et al. (2018). Citizen science charts two major “stomatotypes" in the oral microbiome of adolescents and reveals links with habits and drinking water composition. Microbiome, 6(1), 1-17. ) using a set of modified primers V3-V4-F and V3-V4-R containing a 1-4 bp "heterogeneity spacer" that were designed to mitigate problems caused by low sequence diversity amplicons (the primers used for 16S rRNA sequencing can be found in Table 4). PCR conditions were modified: an initial denaturation at 95°C for 3 min, followed by 25 three-step cycles consisting of 95°C for 30 s, 55 °C for 30 s and 72°C for 30 s; and a final extension of 5 minutes at 72°C. Each PCR amplification was carried out with 4 μl of DNA, 0.2-pM of each forward and reverse primer. Kapa ready mix (Kapa biosystems) in a total volume of 10 pl.
Tras el primer paso de la PCR, se purificaron los productos de la PCR, se realizó una segunda PCR y una segunda purificación, seguidas de un proceso de normalización y cuantificación como el descrito por Willis et al. (2018). After the first PCR step, the PCR products were purified, a second PCR and a second purification were performed, followed by a normalization and quantification process as described by Willis et al. (2018).
La secuenciación se realizó en Illumina MiSeq con lecturas de 2 x 300 pares de bases utilizando el kit v3 (Bioo Scientific) con una concentración de carga de 18 pM. Para aumentar la diversidad de la secuenciación se introdujo un 10% de bibliotecas de control PhlX. Sequencing was performed on Illumina MiSeq with 2 × 300 base pair reads using the v3 kit (Bioo Scientific) with a loading concentration of 18 pM. To increase the diversity of sequencing, 10% PhlX control libraries were introduced.
En este estudio se utilizaron tres muestras de comunidades simuladas. Dos comunidades bacterianas simuladas se obtuvieron de los Recursos BEI del Proyecto Microbioma Humano (HM-276D y HM-277D), cada una contenía ADN genómico de operones ribosómicos de 20 especies bacterianas. La tercera comunidad simulada, ZymoBIOMICS™ Microbial Community DNA Standard (Zymo Research, número de catálogo D6306), es una mezcla de ADN genómico aislado de cultivos puros de ocho cepas bacterianas y dos cepas fúngicas. Los ADNs de prueba se amplificaron y secuenciaron de la misma manera que las demás muestras experimentales. Three simulated community samples were used in this study. Two mock bacterial communities were obtained from the Human Microbiome Project BEI Resources (HM-276D and HM-277D), each containing genomic DNA from ribosomal operons of 20 bacterial species. The third mock community, ZymoBIOMICS™ Microbial Community DNA Standard (Zymo Research, catalog number D6306), is a mixture of genomic DNA isolated from pure cultures of eight bacterial strains and two fungal strains. Test DNAs were amplified and sequenced in the same way as the other experimental samples.
Tal como se deriva de los resultados obtenidos (ver Tabla 5) y los incluidos anteriormente, en la remediación de la contaminación por solventes clorados, la utilización combinada de mZVI y biostimulación con ácido láctico de la flora microbiana del medio por medio de la celda de la presente invención resultó un método eficiente de para la eliminación de fuentes de contaminación recalcitrantes situadas en zonas de transición del acuífero-acuitardo, objeto del tratamiento de la prueba piloto. As derived from the results obtained (see Table 5) and those included previously, in the remediation of contamination by chlorinated solvents, the combined use of mZVI and biostimulation with lactic acid of the microbial flora of the medium through the cell The present invention resulted in an efficient method for eliminating sources of recalcitrant contamination located in aquifer-aquitard transition zones, object of the pilot test treatment.
Se obtuvieron eficiencias en la eliminación que oscilaron entre un 83% y un 96% del PCE en pools situadas en la zona de influencia de la celda dentro de la zona de transición. La degradación de este PCE fue prácticamente total, llegándose hasta compuestos inocuos como etano, eteno y CO2. Removal efficiencies ranging between 83% and 96% of PCE were obtained in pools located in the zone of influence of the cell within the transition zone. The degradation of this PCE was practically total, reaching harmless compounds such as ethane, ethene and CO2.
Tabla 5. Porcentaje de PCE original (el que existía en el tiempo 0) degradado al largo de la prueba piloto. Table 5. Percentage of original PCE (the one that existed at time 0) degraded throughout the pilot test.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP202230876 | 2022-10-11 | ||
ES202230876 | 2022-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024079373A1 true WO2024079373A1 (en) | 2024-04-18 |
Family
ID=90668911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2023/070598 WO2024079373A1 (en) | 2022-10-11 | 2023-10-09 | Recirculation cell for groundwater remediation in aquifer-aquitard transition zones |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024079373A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001074723A1 (en) * | 2000-04-03 | 2001-10-11 | Bechtel Bwxt Idaho, Llc | Extraction of chemicals from aquifer remediation effluent |
WO2006014126A1 (en) * | 2004-08-06 | 2006-02-09 | TYRESÖ, Miljökemi | Method and apparatus for the purification of ground water |
-
2023
- 2023-10-09 WO PCT/ES2023/070598 patent/WO2024079373A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001074723A1 (en) * | 2000-04-03 | 2001-10-11 | Bechtel Bwxt Idaho, Llc | Extraction of chemicals from aquifer remediation effluent |
WO2006014126A1 (en) * | 2004-08-06 | 2006-02-09 | TYRESÖ, Miljökemi | Method and apparatus for the purification of ground water |
Non-Patent Citations (1)
Title |
---|
YANG MINJUNE; ANNABLE MICHAEL D.; JAWITZ JAMES W.: "Field-scale forward and back diffusion through low-permeability zones", CONTAMINANT HYDROLOGY, ELSEVIER, AMSTERDAM, NL, vol. 202, 10 May 2017 (2017-05-10), NL , pages 47 - 58, XP085054031, ISSN: 0169-7722, DOI: 10.1016/j.jconhyd.2017.05.001 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Roberts et al. | A field evaluation of in‐situ biodegradation of chlorinated ethenes: Part I, methodology and field site characterization | |
Mackay et al. | Transport of organic contaminants in groundwater | |
Brusseau | Soil and groundwater remediation | |
Abdel-Moghny et al. | Effect of Soil Texture on Remediation of Hydrocarbons‐Contaminated Soil at El‐Minia District, Upper Egypt | |
Anders et al. | Virus fate and transport during artificial recharge with recycled water | |
Puigserver et al. | Subsoil heterogeneities controlling porewater contaminant mass and microbial diversity at a site with a complex pollution history | |
Malakar et al. | Occurrence of arsenite in surface and groundwater associated with a perennial stream located in Western Nebraska, USA | |
Devlin et al. | A semipassive nutrient injection scheme for enhanced in situ bioremediation | |
Baawain et al. | Studying groundwater quality affected by Barka dumping site: an integrated approach | |
Dyer et al. | A Field Trial for In-Situ Bioremediation of 1–2, DCA | |
WO2024079373A1 (en) | Recirculation cell for groundwater remediation in aquifer-aquitard transition zones | |
Gooddy et al. | Field and modelling studies to assess the risk to UK groundwater from earth‐based stores for livestock manure | |
Kharaka et al. | Fate and groundwater impacts of produced water releases at OSPER “B” site, Osage County, Oklahoma | |
Balcke et al. | Nitrogen as an indicator of mass transfer during in-situ gas sparging | |
Lai et al. | Performance monitoring of remediation technologies for soil and groundwater contamination | |
Wu et al. | Surge block method for controlling well clogging and sampling sediment during bioremediation | |
Erickson et al. | Months-long spike in aqueous arsenic following domestic well installation and disinfection: Short-and long-term drinking water quality implications | |
Custodio | Groundwater protection and contamination | |
Struse | Mass transport of potassium permanganate in low permeability media and matrix interactions | |
Paradis et al. | In situ decay of polyfluorinated benzoic acids under anaerobic conditions | |
Azizian et al. | Push-pull test evaluation of the in situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms | |
Ismail | The effect of water table fluctuation and hydrogeochemical properties on NAPLs natural attenuation | |
Norris et al. | Hydrocarbon-Contaminated Soil and Groundwater in a Low-Permeability Aquifer | |
Kanyerere | Assessing effectiveness of groundwater remediation technologies to a coastal aquifer within an urban environment in South Africa | |
Pope | Quality of shallow ground water in areas of recent residential and commercial development, Wichita, Kansas, 2000 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23876851 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |